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Preface

The component-based software development approach has emerged as a promising
paradigm to cope with the complexity of present-day software systems by bringing
sound engineering principles into software engineering. However, many challenging
conceptual and technological issues still remain in this area, theoretically as well as
practically. Moreover, the advent of cloud computing, cyber-physical systems, and
of the Internet of Things has brought to the fore new dimensions, such as quality of
service, reconfiguration, and robustness to withstand inevitable faults, which require
established concepts to be revisited and new ones to be developed in order to meet the
opportunities offered by those architectures.

That was emphasized by the program of FACS 2016. Several sessions and invited
talks were devoted to formal analysis and model-based development, whereas a
practical session focused on applications and experience. Security aspects were present,
too, in particular at an invited talk. Finally, the last two sessions dealt with operations
on components.

A total of 14 papers successfully passed the review process, showing that
component-based development is still an active research field.

March 2017 Olga Kouchnarenko
Ramtin Khosravi
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Formal Models and Analysis for Self-adaptive
Cyber-Physical Systems

(Extended Abstract)

Holger Giese

Hasso Plattner Institute at the University of Potsdam, Potsdam, Germany
holger.giese@hpi.uni-potsdam.de

In this extended abstract, we will analyze the current challenges for the envi-
sioned Self-Adaptive Cyber-Physical Systems. In addition, we will outline our
results to approach these challenges with SMARTSOS, a generic approach
based on extensions of graph transformation systems employing open and
adaptive collaborations and models at runtime for trustworthy self-adaptation,
self-organization, and evolution of the individual systems and the system-of-
systems level taking the independent development, operation, management, and
evolution of these systems into account.



From Formal Methods to Software
Components: Back to the Future?

Kung-Kiu Lau

School of Computer Science, The University of Manchester,
Manchester, M13 9PL, UK

kung-kiu.lau@manchester.ac.uk

Abstract. Looking back at the past, I believe Formal Methods and Component-
based Software Engineering have missed opportunities to synergise. Looking
forward to the future, I believe even more strongly that this synergy will be
crucial for developing Software Engineering techniques that tackle scale and
complexity. In this position paper I outline the fundamentals of my belief, in
terms of existing work and future challenges.



From Devices to Data: Testing the IoT

Franck Le Gall

Easy Global Market, 1200 Route des Lucioles, 06560 Valbonne, France
franck.le-gall@eglobalmark.com

http://www.eglobalmark.com

Abstract. This paper provides an extended abstract of the FACS 2016 invited
call on IoT testing.

Introduction

The internet of Things paradigm relies on innovative applications transversally
deployed over vertical domains. However, the situation today is still fragmented with
the need for an end user to handle different applications to access information from
different providers, missing the expected value from transversal deployment.
Answering that concern, many standards are developing around the world which now
lead to a complex ecosystem in which interoperability of solutions must be ensured [1].
In addition, IoT is handling huge amount of data, threatening users privacy while
control capacity of actuators raise the security level requirement. For these reasons,
appropriate verification and testing of IoT solutions become a prerequisite to any field
deployment. Formal methods such as Model Based Testing (MBT) approach provide
an appropriate answer and experiences learnt from on-going European research and
standardisation activities have been presented during an invited talk.

Compliance to Standards and Specifications

FIWARE [3] is an ecosystem providing APIs and open-source implementation for
lightweight and simple means to gather, publish, query and subscribe context-based,
real-time information. This independent community includes more than 60 cities in the
OASC alliance who adopt FIWARE NGSI API.

oneM2M [2] was established to develop a single horizontal platform for the
exchange and sharing of M2M/IoT data among all applications. oneM2M is creating a
distributed software layer which provides a framework for interworking with different
technologies.

Both platforms define RESTful interfaces and from their specifications, behavioural
models have been made. Such models are typically built using UML modelling with
constraints defined with OCL. A commercial tool [4] has been used to generate test
suites from the model. Two execution environments were built 1. To demonstrate in the



case of FIWARE, the possible integration of the execution platform, as a webservice,
within a Jenkins based continuous integration process and 2. in oneM2M using a
normalised execution environment based on the TTCN-3 language [5], popular in the
telecom word.

Use of MBT allows increasing both test coverage in comparison with manual
approaches and traceability with implemented standards specifications. However, in
both projects, the acceptance of functional testing is still to be accepted within the test
communities as seen as complex.

Security Test

The ARMOUR project [6] co-funded by the European Commission under the Horizon
2020 program provides duly tested, benchmarked and certified Security and Trust
solutions for evaluation of large-scale IoT deployments. It has defined 7 experiments
each focused on a different part of an IoT tool chain going from device to data platform.
In that project, a methodology based on formal methods has been proposed for security
testing. A list of vulnerability patterns has been produced and allowed to derive cor-
responding test patterns. Here again, a model based testing approach has been chosen
allowing testing of security functions by modelling of test purposes related to each
experiment. A strong innovation brought by MBT is the integration of the individual
models into a meta model allowing end to end security testing of the deployed solution.
An offline model driven fuzzing approach is added at that stage to go beyond security
functions testing and identify additional vulnerabilities which may arise from faulty
implementations. Results from that project are already being contributed to the
oneM2M standardisation alliance.

Conclusions and Future Outlook

In addition to compliance and security testing, new challenges are now raised by the
need to test interoperability at the semantic layer level. Some initial developments have
been made [7] but will require intensified efforts over the coming years. The presented
projects take place in a stream of multi-year support from the European Commission
toward Internet of Things. This support has been extended in the current H2020
workprogramme which now explicitly asks for verification and testing as part of its
open call [8].

References

1. Alliance for IoT Innovation - Working Group 3, IoT standardisation landscape, version 2.6
(2016)

2. oneM2M. http://www.onem2m.org
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Formal Models and Analysis for Self-adaptive
Cyber-physical Systems

(Extended Abstract)

Holger Giese(B)

Hasso Plattner Institute at the University of Potsdam, Potsdam, Germany
holger.giese@hpi.uni-potsdam.de

In the past advanced technological products and facilities employed more and
more information and communication technology to enhance their functional-
ity and quality. Therefore, already a decade ago software played an increasingly
important role in the control and operation of many technical systems such as
electrical and mechanical devices, complex products, or technical processes in
industry. This trend towards software-intensive and embedded systems resulted
in astonishing observation that, for example, the technology company Siemens
employed in 2005 more software developers than Microsoft [1]. In addition, we
could observe that advanced technological sectors such as the automotive indus-
try had started major efforts to address software quality and software integration
issues (cf. AUTOSAR [18]).

This development lead in recent years to the emergence of Cyber-Physical
Systems (CPS) [3,20], which often include System of Systems (SoS) [13,20]
aspects and may be also Ultra-Large Scale Systems (ULSS) [15] that are highly
distributed. Nowadays, these CPS are in addition expected to exhibit adap-
tive and anticipatory behavior when operating in highly dynamic environments
and interfacing with the physical world leading to Self-Adaptive CPS. Therefore,
appropriate modeling and analysis techniques to address such Self-Adaptive CPS
are required that support a mix of models from a multitude of disciplines such as
software engineering, control engineering, and business process engineering (c.f.
[2,20]).

In this extended abstract, we will analyze the current challenges for the envi-
sioned Self-Adaptive CPS. In addition, we will outline our results to approach
these challenges with SMARTSOS [10] a generic approach based on extensions
of graph transformation systems employing open and adaptive collaborations
and models at runtime for trustworthy self-adaptation, self-organization, and
evolution of the individual systems and the system-of-systems level taking the
independent development, operation, management, and evolution of these sys-
tems into account.

For these Self-Adaptive CPS the following main needs can be identified: Sup-
port for operational and managerial independence for subsystems is needed, as
the subsystems of a CPS are often operated independent from each other with-
out global coordination and therefore no centralized management decisions are
possible and instead possibly conflicting local decisions have to be coordinated.
Support for dynamic architecture and openness is needed, as the CPS must be
c© Springer International Publishing AG 2017
O. Kouchnarenko and R. Khosravi (Eds.): FACS 2016, LNCS 10231, pp. 3–9, 2017.
DOI: 10.1007/978-3-319-57666-4 1



4 H. Giese

able to dynamically adapt/absorb structural deviations and must support that
subsystems may join or leave over time in a not pre-planned manner. The CPS
must scale for local systems or networked resp. large-scale systems of systems.
They must support the integration of the physical, cyber, (and social) dimen-
sion, support the adaptation at the system and system of system level, allow the
independent evolution of the systems and joint evolution the system of system,
and must be sufficiently resilient at the system of system level.

An analogy often employed in the context of highly distributed, adaptive,
and resilient systems like the considered Self-Adaptive CPS are ant colonies
that operate as a superorganism that combines information processing of many
ants and their interaction with the environment at the physical level (using
stigmergy as coordination mechanism). In the famous “asymmetric binary bridge
experiment”, there are path (bridges) from the ant colony to a food source. It can
be observed that initially both options will be taken with the same probability
by the ants. Then, over time the higher concentration of the pheromones on the
shorter path will result in an increase of its usage, while the lower concentration
of the pheromones on the longer path will result in a decrease of its usage. The
higher concentration of pheromones on the shorter path will make it more likely
that an ant choses this shorter one and positive feedback will amplify this effect
and thus finally the longer path will only be used seldom anymore. However,
there also exists phenomena such as “ant mill” where a whole colony of ants is
caught in cycling once the colony has by accident started to do so. All ants will
starve as they do not find any new food following the scheme. But they simply
do not have any strategy to avoid this.

Consequently, the envisioned class of systems cannot be simply addressed by
borrow ideas from superorganisms in nature, as behavior such as the ant mil
would be not acceptable for an engineered system even if they are possible only
for rather unexpected circumstances (rare events). It is surprising that “nature”
did not come up with design solutions that are more resilient even though evo-
lution has operated for ages. However, there is also a solution in nature we
can observe in more complex forms of life that have more advanced adaptation
capabilities also including to reflect on itself and its goals. By reflecting on the
behavior of the colony as a superorganism and compare it to its goals, an ant
colony could have detected that their standard behavior requires a temporary
adjustment to escape the ant mill. However, an ant colony lacks the required
reflection capabilities, while more complex forms of life can reflect on their own
behavior and how successful it is to achieve its goals to some extent. Conse-
quently, we argue that we need in fact Self-Adaptive CPS that are capable of
advanced forms of self-awareness w.r.t. goals [16] to be able to handle problems
due to unexpected circumstances.

The need for adaptation has different sources: On the one hand, “Adaptation
is needed to compensate for changes in the mission requirements” [15]. On the
other hand, “The vision [...] is that of open, ubiquitous systems of coordinated
computing and physical elements which interactively adapt to their context”
[3]. This need for adaptation requests for systems that “are capable of learning,
dynamically and automatically reconfigure themselves and cooperate with other



Formal Models and Analysis for Self-adaptive Cyber-physical Systems 5

CPSs” [3]. Therefore, the challenge is to develop systems with adaptation capable
of adaptation at the system level as well at the level of the system-of-systems.

An option to achieve the required capability of adaption including self-
awareness w.r.t. goals, are self-adaptive systems [8], which make systems self-
aware, context-aware, and requirements-aware using some form of reflection and
therefore enable systems to adjust their structure/behavior accordingly, as well
as self-organization, which results in the capability of a group of systems to
organize their structure/behavior without a central control to achieve required
behavior resp. structures in form of emergent behavior. From an engineering per-
spective, a spectrum from centralized top-down self-adaptation to decentralized
bottom-up self-organization with many intermediate forms (e.g. partial hier-
archies) exists and a proper design requires to identify the right compromise
between both extremes. A crucial element for the reflection and self-awareness
are runtime models [22–24] that are linked by a causal relation to the software
and/or context such that self-adaptation can operate at a higher level of abstrac-
tion. Here generic runtime models allow to capture and handle many possible
changes such that the adaptation adjust the core software accordingly.

Besides adaptation there is also the need for integration of the physical, cyber,
(and social) dimension, which is particularly challenging as there are (1) prob-
lems to integrate models as different models of computation are employed and
(2) leaky abstractions caused by lack of composability across system dimensions,
which therefore result in intractable interactions, unpredictable system level
behavior, and the problem that full system verification does not scale (cf. [19]).

One option to approach the integration of the physical, cyber, and social
dimension is multi-paradigm modeling [14]. It enables to use different domain-
specific models with different models of computation for different modeling
aspects and can be employed at the system level to combine all necessary models
for a system as well as at the system-of-systems level to combine all necessary
models for a system-of-systems. It requires, however, that for employed model
combinations a suitable semantic integration is known and supported by tools.
These combinations of multiple paradigms then result in hybrid behavior cov-
ering continuous behavior and discrete behavior in real-time and probabilistic
behavior as required for physical system on the one hand and discrete behavior
often ignoring time with non-determinism as employed for cyber components of
the system on the other hand.

It is further expected that the system “fulfill stringent safety, security and
private data protection regulations” [3]. Due to the scale of the system, often also
“the capability of a system [...] to absorb the disruption, recover to an acceptable
level of performance, and sustain that level for an acceptable period of time”
(Resilient Systems Working Group, INCOSE) is required. This resilience, which
“is the attribute of a system [...] that makes it less likely to experience failure
and more likely to recover from a major disruption” [21] further includes the
physical and control elements (via layers of idealization), the software elements
(via layers of abstraction), and the horizontal and vertical composition of layers.
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Formal models and analysis at development- and run-time are an option
to approach the required resilience. However, such formal model and analysis
techniques must support also integration and adaptation. Consequently, formal
models must support the following characteristics: Compositionality for key
properties, support for dynamic structures, suitable abstraction, support for
hybrid behavior including non-deterministic behavior, support for reflection via
runtime models, support for the incremental extensions of models, and support
for probabilistic behavior.

In our own work, we approached the formal modeling of the considered
advanced form of Self-Adaptive CPS by extensions of graph transformation
systems (GTS) [17]. GTS with attributes can already encode models and
their linking and thus allow to combine service-oriented architecture, self-
adaptive/self-organization, and runtime models with evolving structures.

Graphs and graph transformations encoding the concepts of the Service-
Oriented Architecture (SOA) supporting dynamic architecture and openness
can be employed for Self-Adaptive CPS that must be able to dynamically
adapt/absorb structural deviations and must support that subsystems may join
or leave over time in a not pre-planned manner. In addition, SOA permits Self-
Adaptive CPS that scale for local systems or networked resp. large-scale systems
of systems.

Self-adaptive and self-organization can be described by a graph of links
between the components resp. systems that evolve/reconfigure accordingly to
graph transformations and in case of reflection most models can be described
by such a graph as well. Also, runtime models can be described by a dynamic
graph of models and links between them and thus also reflection on models can
be captured.

A need that is in contrast not supported by GTS with attributes are the inte-
gration of the physical, cyber, (and social) dimension. Thus, we developed Timed
GTS [5] and Hybrid GTS [6] that support hybrid behavior and non-deterministic
behavior as well as Probabilistic GTS [12] that provide probabilistic behavior
in form of probabilistic decisions. However, a combination of both directions is
missing.

In our SMARTSOS [10] we in addition tackle based on our results for Hybrid
resp. Timed GTS also compositionality, abstraction, reflection for models, and
incremental extensions. However, the approach inherits the limitations of Hybrid
resp. Timed GTS concerning probabilistic behavior concerning the integration.

Even more challenging is the situation for formal analysis, which is key as
we must assure resilience for complex sequence properties and even ensemble
properties such as stability for hybrid probabilistic infinite state systems with
structural dynamics.

For Hybrid resp. Time GTS model checking is limited to very small finite
state spaces. Our own approach for checking inductive invariants for GTS [4],
Timed GTS [5], and Hybrid GTS [6] covers infinite state models, however, it can
support only state properties of limited complexity and does not cover complex
sequence properties or ensemble properties. The model checking for Probabilistic
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GTS [12] covers only very restricted probabilistic sequence properties for finite
state systems of at most moderate size. Techniques for a combination of hybrid
and probabilistic behavior with structural dynamics do not even exist nowadays.

To summarize, Self-Adaptive CPS require the capability of self-awareness
w.r.t. goals to be able to handle problems due to unexpected circumstances
such that models must be able to evolve (runtime models), systems must reflect
on itself (self-aware w.r.t. goals), and must adapt/self-adapt/learn. Therefore,
existing formal models and analysis approaches for CPS are no longer applicable
for these Self-Adaptive CPS as they do not cover reflection/adaptation as well
as the design and verification of such Self-Adaptive CPS.

Graph transformation systems encoding models and their linking allow
to combine service-oriented architecture, self-adaptive/self-organization, and
runtime models with evolving structures and have been extended in several
directions such that are potentially a suitable basis for a solid foundation for
Self-Adaptive CPS. As example in our SMARTSOS approach [10] extending
ideas from [7,9,11] we support collaborations that allow system-of-systems level
self-organization, system-of-systems structural dynamics, and runtime knowl-
edge exchange. The runtime models and via collaborations shared runtime mod-
els enabled self-adaptation of the systems. Compositional verification seems to
be a first element for the resilience of the Self-Adaptive CPS.

However, there also remain some serious limitations: At first the suggested
model is a rather strong idealization. We argue here that if such an idealization
is wrong, likely also related less idealized design will fail as well. Furthermore,
also more accurate explicit runtime models can be used at the cost of making
verification much harder (e.g., by storing overlapping information redundantly).
In addition, the formal model requires that a strong separation into collabo-
rations is possible to support the compositional analysis. Finally, any approach
based on formal models and analysis relies on the validity/trustworthiness of the
employed models and development-time models as well as run-time models may
become invalid over time. However, runtime models may also in certain bounds
preserve validity by employing learning based on monitored data to adhere to
the characteristics of the original even though the original may change over time.
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Abstract. Looking back at the past, I believe Formal Methods and
Component-based Software Engineering have missed opportunities to
synergise. Looking forward to the future, I believe even more strongly
that this synergy will be crucial for developing Software Engineering
techniques that tackle scale and complexity. In this position paper I out-
line the fundamentals of my belief, in terms of existing work and future
challenges.

1 The Future?

Any engineering discipline is based on: (i) a well-established underlying theory;
(ii) standard parts or components for building systems; and (iii) tools for con-
structing systems from components, and for verifying systems. So it would seem
logical to conclude that Component-based Software Engineering (CBSE) and
Formal Methods (FM) are the essential ingredients for Software Engineering.

As software becomes ever more pervasive (witness the Internet of Things),
the challenge facing Software Engineering nowadays is how to tackle ever increas-
ing scale and complexity, while guaranteeing safety. Is CBSE + FM up to the
challenge? Is CBSE + FM addressing the challenge? To answer in the affirma-
tive, I believe we need to accomplish two things: (i) compositional construction;
and (ii) compositional verification.

2 Compositional Construction

Compositional construction is what CBSE sets out to achieve. The general pic-
ture of CBSE is depicted in Fig. 1. The basic idea is that components should pre-
exist, i.e. they should be built independently from specific systems and deposited
in a repository. Repository components can be reused in many different systems
constructed by composing the components.

Whilst a generic component (Fig. 2(a)) is a unit of composition with provided
and required services, commonly used components fall into three main categories:
(i) objects (Fig. 2(b)); (ii) architectural units (Fig. 2(c)); and (iii) encapsulated
components (Fig. 2(d)). Composition mechanisms (Fig. 3) used by these cate-
gories are respectively: (i) direct message passing (method call); (ii) indirect
message passing (port connection); (iii) coordination (exogenous composition).
c© Springer International Publishing AG 2017
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Fig. 1. CBSE: compositional construction.

Fig. 2. Types of components.

Fig. 3. Composition mechanisms.

The desiderata for compositional construction are embodied in the idealised
component life cycle [1], illustrated in Fig. 4. Apart from the use of pre-existing
components from a repository, the key desiderata include composition in both the
design phase and the deployment phase;1 since maximum composition equates
to maximum reuse.

2.1 Component Models

For compositional construction, components and their composition mechanisms
[5] have to be defined properly. We advocate to do so in a component model
[9,10]. Figure 5 shows a taxonomy of current component models with respect to
the idealised component life cycle. Categories 1–4 do not support composition
in both design and deployment phases. Category 5 does, but has only a lone
member, namely X-MAN [2,7,8,12], that we have defined and implemented. X-

1 Run-time composition, or dynamic reconfiguration, is also meaningful, though it
may be harder to define, implement and verify.
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Fig. 4. Idealised component life cycle.

MAN achieves compositional construction, but it currently lacks tool support
for compositional verification [3].

3 Compositional Verification

With compositional construction, we should be able to accomplish composi-
tional verification, i.e. hierarchical, bottom-up, verification of component-based
systems whereby the smallest (atomic) components at the lowest level are veri-
fied first, and their verification is reused, i.e. not repeated, in the verification of
a composite at the next level up.

This is illustrated in Fig. 6, which shows the W model [6] for component-based
development life cycles: component life cycle and system life cycle, and how they
intersect. The W model supports compositional verification. Component verifi-
cation is done in the component life cycle when components are developed for
the repository, independent of specific systems. Compositional verification is
done when a specific system has been assembled from already verified repository
components. By reusing the verification of sub-components at successive levels
of composition, instead of verifying the complete system as a monolith, compo-
sitional verification should be able to scale to large complex systems which are
beyond the capability of current verification techniques and tools.

4 Back to the Future?

Looking back, I advocated synergy between FM and CBSE [4] at the early stages
of the International CBSE Symposium. In my opinion, hitherto this synergy has
not really materialised, or at least what little there is has not been effective.
According to [11], there has been little FM activity at the CBSE symposium. I
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Fig. 5. Idealised component life cycle: taxonomy of component models.

surmise the converse is true of CBSE activity at FM conferences – maybe even
FACS?

Looking forward to the future, I strongly believe that this synergy will be cru-
cial for developing Software Engineering techniques that are not only truly engi-
neering techniques as in traditional engineering disciplines, but can also tackle
scale and complexity. In other words, this synergy can provide not only an engi-
neering (compositional) approach to software construction from standard parts,
but also compositional reasoning, which together can tackle ever increasing scale
and complexity in software systems and their V&V.

Fig. 6. The W model.
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Abstract. Choreographic Programming is a paradigm for developing
concurrent programs that are deadlock-free by construction, by program-
ming communications declaratively and then synthesising process imple-
mentations automatically. Despite strong interest on choreographies, a
foundational model that explains which computations can be performed
with the hallmark constructs of choreographies is still missing.

In this work, we introduce Core Choreographies (CC), a model that
includes only the core primitives of choreographic programming. Every
computable function can be implemented as a choreography in CC, from
which we can synthesise a process implementation where independent
computations run in parallel. We discuss the design of CC and argue
that it constitutes a canonical model for choreographic programming.

1 Introduction

Programming concurrent and distributed systems is hard, because it is challeng-
ing to predict how programs executed at the same time in different computers will
interact. Empirical studies reveal two important lessons: (i) while programmers
have clear intentions about the order in which communication actions should be
performed, tools do not adequately support them in translating these wishes to
code [21]; (ii) combining different communication protocols in a single applica-
tion is a major source of mistakes [20].

The paradigm of Choreographic Programming [22] was introduced to address
these problems. In this paradigm, programmers declaratively write the commu-
nications that they wish to take place, as programs called choreographies. Chore-
ographies are descriptions of concurrent systems that syntactically disallow writ-
ing mismatched I/O actions, inspired by the “Alice and Bob” notation of security
protocols. An EndPoint Projection (EPP) can then be used to synthesise imple-
mentations in process models, which faithfully realise the communications given
in the choreography and are guaranteed to be deadlock-free by construction even
in the presence of arbitrary protocol compositions [6,25].

So far, work on choreographic programming focused on features of practical
value – including web services [5], multiparty sessions [6,8], modularity [24], and
runtime adaptation [12]. The models proposed all come with differing domain-
specific syntaxes, semantics and EPP definitions (e.g., for channel mobility
or runtime adaptation), and cannot be considered minimal. Another problem,
arguably a consequence of the former, is that choreographic programming is
c© Springer International Publishing AG 2017
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meant for implementation, but we still know little of what can be computed
with the code obtained from choreographies (choreography projections). The
expressivity of the aforementioned models is evaluated just by showing some
examples.

In this paper, we propose a canonical model for choreographic programming,
called Core Choreographies (CC). CC includes only the core primitives that can
be found in most choreography languages, restricted to the minimal require-
ments to achieve the computational power of Turing machines. In particular,
local computation at processes is severely restricted, and therefore nontrivial
computations must be implemented by using communications. Therefore, CC is
both representative of the paradigm and simple enough to analyse from a the-
oretical perspective. Our technical development is based on a natural notion of
function implementation, and the proof of Turing completeness yields an algo-
rithm for constructing a choreography that implements any given computable
function. Since choreographies describe concurrent systems, it is also natural to
ask how much parallelism choreographies exhibit. CC helps us in formally defin-
ing parallelism in choreographies; we exemplify how to use this notion to reason
about the concurrent implementation of functions.

Choreographies

Projectable Choreographies

Processes

Deadlock-free Processes

Choreography Projections

EPP

However, analysing the expressivity of choreogra-
phies is not enough. What we are ultimately inter-
ested in is what can be computed with choreography
projections, since those are the terms that represent
executable code. However, the expressivity of chore-
ographies does not translate directly to expressivity of
projections, because EPP is typically an incomplete pro-
cedure: it must guarantee deadlock-freedom, which in
previous models is obtained by complex requirements,
e.g., type systems [5,6]. Therefore, only a subset of choreographies (projectable
choreographies) can be used to synthesise process implementations. The EPPs of
such projectable choreographies form the set of choreography projections, which
are deadlock-free processes (see figure on the right).

The main technical contribution of this paper is showing that the set of pro-
jectable choreographies in CC is still Turing complete. Therefore, by EPP, the
set of corresponding choreography projections is also Turing complete, leading
us to a characterisation of a Turing complete and deadlock-free fragment of a
process calculus (which follows the same minimal design of CC). Furthermore,
the parallel behaviour observed in CC choreographies for function implementa-
tions translates directly to parallel execution of the projected processes.

More importantly, the practical consequence of our results is that CC is a
simple common setting for the study of foundational questions in choreogra-
phies. This makes CC an appropriate foundational model for choreographic pro-
gramming, akin to λ-calculus for functional programming and π-calculus for
mobile processes. As an example of such foundational questions, we describe
how the standard communication primitive of label selection can be removed
from CC without altering its computational power, yielding a truly minimal
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choreography language wrt computation called Minimal Choreographies (MC).
However, doing so eliminates the clean separation between data and behaviour
in message exchanges, which makes the resulting choreography hard to read.
Thus, in a practical application of our work, CC would be the better candidate
as frontend language for programmers, and MC could be used as an intermedi-
ate step in a compiler. A key technical advantage of this methodology is that
it bypasses the need for the standard notion of merging [5], which is typically
one of the most complicated steps in EPP. Our EPP for MC enjoys an elegant
definition.
Structure of the paper. CC is defined in Sect. 2. In Sect. 3, we introduce Stateful
Processes (SP), our target process model, and an EPP procedure from CC to
SP. We show that CC and its set of choreography projections are Turing com-
plete in Sect. 4. In Sect. 5, we show that all primitives of CC except for label
selections are necessary to achieve Turing completeness; we then introduce MC
(the fragment of CC without label selections) and prove both that it is Turing
complete and that removing or weakening any of its primitives breaks this prop-
erty. In Sect. 6, we discuss the implications of our work for other choreography
languages. Related work and discussion are given in Sect. 7. Full definitions and
proofs are in [9].

2 Core Choreographies

We introduce Core Choreographies (CC), define function implementation and
parallel execution of choreographies, and prove some key properties of CC.
Syntax. The syntax of CC is as follows, where C ranges over choreographies.

C : : = η;C | if p<-
= q thenC1 elseC2 | def X = C2 inC1 |X |0

η : : = p.e -> q | p -> q[l] e : : = ε | c | s · c l : : = l | r
We use two (infinite) disjoint sets of names: processes (p, q, . . .) and proce-

dures (X, . . .). Processes run in parallel, and each process stores a value – a
string of the form s · · · s · ε – in a local memory cell. Each process can access
its own value, but it cannot read the contents of another process (no data shar-
ing). Term η;C is an interaction between two processes, read “the system may
execute η and proceed as C”. An interaction η is either a value communication
– p.e -> q – or a label selection – p -> q[l]. In p.e -> q, p sends its local evalua-
tion of expression e to q, which stores the received value. Expressions are either
the constant ε, the value of the sender (written as c), or an application of the
successor operator to c. In p -> q[l], p communicates label l (either l or r) to q.
In a conditional if p

<-
= q thenC1 elseC2, q sends its value to p, which checks if the

received value is equal to its own; the choreography proceeds as C1, if that is the
case, or as C2, otherwise. In value communications, selections and conditionals,
the two interacting processes must be different (no self-communications). Defi-
nitions and invocations of recursive procedures are standard. The term 0, also
called exit point, is the terminated choreography.
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Semantics. The semantics of CC uses reductions of the form C, σ → C ′, σ′. The
total state function σ maps each process name to its value. We use v, w, . . .
to range over values: v, w, . . . : : = ε | s · v. Values are isomorphic to natural
numbers via �n� = sn · ε. The reduction relation → is defined by the rules given
below and closed under structural precongruence �.

v = e[σ(p)/c]

p.e -> q; C, σ → C, σ[q �→ v]
�C|Com�

i = 1 if σ(p) = σ(q), i = 2 o.w.

if p
<-
=q thenC1 elseC2, σ → Ci, σ

�C|Cond�

p -> q[l]; C, σ → C, σ
�C|Sel� C1, σ → C′

1, σ
′

def X = C2 inC1, σ → def X = C2 inC′
1, σ

′ �C|Ctx�

These rules formalise the intuition presented earlier. In the premise of
�C|Com�, we write e[σ(p)/c] for the result of replacing c with σ(p) in e. In
the reductum, σ[q �→ v] denotes the updated state function σ where q now maps
to v. The key rule defining the structural precongruence is �C|Eta-Eta�, allowing
non-interfering actions to be executed in any order.

�C|Eta-Eta� if pn(η) ∩ pn(η′) = ∅ then η; η′ ≡ η′; η

Function pn(C) returns the set of all process names occurring in C, and
C ≡ C ′ stands for C � C ′ and C ′ � C. The other rules for � are standard, and
support recursion unfolding and garbage collection of unused definitions.

Remark 1 (Label Selection). To the reader unfamiliar with choreographies, the
role of selection – p -> q[l] – may be unclear at this point. They are cru-
cial in making choreographies projectable, as we anticipate with the choreog-
raphy if p

<-
= q then (p.c -> r;0) else (r.c -> p;0). Here, p checks whether its

value is the same as that of q. If so, p communicates its value to r; oth-
erwise, it is r that communicates its value to p. Recall that processes are
assumed to run independently and share no data. Here, p is the only process
that knows which branch of the conditional should be executed. However, r
also needs to know this information, since it must behave differently. Intu-
itively, we need to propagate p’s decision to r, which is achieved with selections:
if p

<-
= q then (p -> r[l]; p.c -> r;0) else (p -> r[r]; r.c -> p;0). Now, p tells r about

its choice by sending a different label. This intuition will be formalised in our
definition of EndPoint Projection in Sect. 3. The first choreography we presented
(without label selections) is not projectable, whereas the second one is.

Theorem 1. If C is a choreography, then either C � 0 (C has terminated) or,
for all σ, C, σ → C ′, σ′ for some C ′ and σ′ (C can reduce).

The semantics of CC suggests a natural definition of computation. We
write →∗ for the transitive closure of → and C, σ 
→∗ 0 for C, σ 
→∗ 0, σ′ for
any σ′.
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Definition 1. A choreography C implements a function f : N
n → N with input

processes p1, . . . , pn and output process q if, for all x1, . . . , xn ∈ N and for every
state σ s.t. σ(pi) = �xi�:

– if f(x̃) is defined, then C, σ →∗ 0, σ′ where σ′(q) = �f(x̃)�;
– if f(x̃) is undefined, then C, σ 
→∗ 0.

By Theorem 1, in the second case C, σ must reduce infinitely (diverge).
Sequential composition and parallelism. The results in the remainder use chore-
ographies with only one exit point (a single occurrence of 0). When C has a
single exit point, we write C � C ′ for the choreography obtained by replacing 0
in C with C ′. Then, C � C ′ behaves as a “sequential composition” of C and C ′.

Lemma 1. Let C have one exit point, C ′ be a choreography, σ, σ′, σ′′ be states.

1. If C, σ →∗ 0, σ′ and C ′, σ′ →∗ 0, σ′′, then C � C ′, σ →∗ 0, σ′′.
2. If C, σ 
→∗ 0, then C � C ′, σ 
→∗ 0.
3. If C, σ →∗ 0, σ′ and C ′, σ′ 
→∗ 0, then C � C ′, σ 
→∗ 0.

Structural precongruence gives C � C ′ fully parallel behaviour in some cases.
Intuitively, C1 and C2 run in parallel in C1 �C2 if their reduction paths to 0 can
be interleaved in any possible way. Below, we write C

σ̃−→∗ 0 for C, σ1 → C2, σ2 →
· · · → 0, σn, where σ̃ = σ1, . . . , σn, and ˜σ(p) for the sequence σ1(p), . . . , σn(p).

Definition 2. Let p̃ and q̃ be disjoint. Then, σ̃ is an interleaving of σ̃1 and σ̃2

wrt p̃ and q̃ if σ̃ contains two subsequences ˜σ′
1 and ˜σ′

2 such that:

– ˜σ′
2 = σ̃ \ ˜σ′

1;
– σ̃′

1(p) = σ̃1(p) for all p ∈ p̃, and σ̃′
2(q) = σ̃2(q) for all q ∈ q̃;

– ˜σ(r) is a constant sequence for all r 
∈ p̃ ∪ q̃.

Definition 3. Let C1 and C2 be choreographies such that pn(C1) ∩ pn(C2) = ∅
and C1 has only one exit point. We say that C1 and C2 run in parallel in C1 �C2

if: whenever Ci
σ̃i−→∗ 0, then C1 � C2

σ̃−→∗ 0 for every interleaving σ̃ of σ̃1 and σ̃2

wrt pn(C1) and pn(C2).

Theorem 2. Let C1 and C2 be choreographies such that pn(C1) ∩ pn(C2) = ∅
and C1 has only one exit point. Then C1 and C2 run in parallel in C1 � C2.

Example 1. We present examples of choreographies in CC, writing them as
macros (syntax shortcuts). We use the notation m(params) Δ= C, where m is
the name of the macro, params its parameters, and C its body.

The macro inc(p, t) increments the value of p using an auxiliary process t.

inc(p, t) Δ= p.c -> t; t.(s · c) -> p; 0

Using inc, we write a macro add(p, q, r, t1, t2) that adds the values of p and
q and stores the result in p, using auxiliary processes r, t1 and t2. We follow the
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intuition as in low-level abstract register machines. First, t1 sets the value of r to
zero, and then calls procedure X, which increments the value of p as many times
as the value in q. In the body of X, r checks whether its value is the same as q’s.
If so, it informs the other processes that the recursion will terminate (selection
of l); otherwise, it asks them to do another step (selection of r). In each step,
the values of p and r are incremented using t1 and t2. The compositional usage
of inc is allowed, as it has exactly one exit point.

add(p, q, r, t1, t2)
Δ=

defX = if r
<-
= q then r -> p[l]; r -> q[l]; r -> t1[l]; r -> t2[l];0

else r -> p[r]; r -> q[r]; r -> t1[r]; r -> t2[r]; inc(p, t1) � inc(r, t2) � X

in t1.ε -> r;X

By Theorem 2, the calls to inc(p, t1) and inc(r, t2) can be executed in parallel.
Indeed, applying rule �C|Eta-Eta� for � repeatedly we can check that:

p.c -> t1; t1.(s · c) -> p;
︸ ︷︷ ︸

expansion of inc(p, t1)

r.c -> t2; t2.(s · c) -> r;
︸ ︷︷ ︸

expansion of inc(r, t2)

X

� r.c -> t2; t2.(s · c) -> r;
︸ ︷︷ ︸

expansion of inc(r, t2)

p.c -> t1; t1.(s · c) -> p;
︸ ︷︷ ︸

expansion of inc(p, t1)

X

Definition 3 and Theorem 2 straightforwardly generalise to an arbitrary num-
ber of processes. We provide an example of such parallel behaviour in Theorem6.

3 Stateful Processes and EndPoint Projection

We present Stateful Processes (SP), our target process model, and show how to
synthesise process implementations from choreographies in CC.
Syntax. The syntax of SP is reported below. Networks (N,M) are either the
inactive network 0 or parallel compositions of processes p �v B, where p is the
name of the process, v its stored value, and B its behaviour.

B : : = q!〈e〉;B | p?;B | q ⊕ l;B | p&{li : Bi}i∈I | N, M : : = p �v B | 0 | N |M
| 0 | if c<-

= q thenB1 elseB2 | def X = B2 inB1 | X

Expressions and labels are as in CC. A send term q!〈e〉;B sends the evaluation
of expression e to q, proceeding as B. Term p?;B, the dual receiving action, stores
the value received from p in the process executing the behaviour, proceeding as
B. A selection term q⊕ l;B sends l to q. Dually, a branching term p&{li : Bi}i∈I

receives one of the labels li and proceeds as Bi. A process offers either: a single
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branch (labeled l or r); or two branches (with distinct labels). In a conditional
if c

<-
= q thenB1 elseB2, the process receives a value from process q and compares

it with its own value to choose the continuation B1 or B2. The other terms
(definition/invocation of recursive procedures, termination) are standard.
Semantics. The reduction rules for SP are mostly standard, from process calculi.
The key difference from CC is that execution is now distributed over processes.
We report the key rules for synchronisation:

u = e[v/c]
p �v q!〈e〉;B1 | q �w p?;B2 → p �v B1 | q �u B2

�S|Com�

j ∈ I

p �v q ⊕ lj ;B | q �w p&{li : Bi}i∈I → p �v B | q �w Bj
�S|Sel�

i = 1 if v = e[w/c], i = 2 otherwise

p �v if c
<-
= q thenB1 elseB2 | q �w p!〈e〉;B′ → p �v Bi | q �w B′

�S|Cond�

Rule �S|Com� follows the standard communication rule in process calculi. A
process p executing a send action towards a process q can synchronise with a
receive-from-p action at q; in the reduct, q’s value is updated with the value sent
by p, obtained by replacing the placeholder c in e with the value of p. Rule �S|Sel�
is selection from session types [15], with the sender selecting one of the branches
offered by the receiver. In rule �S|Cond�, p (executing the conditional) acts as
a receiver for the value sent by the process whose value it wants to read (q).
All other rules are standard (see [9]), and use a structural precongruence that
supports: recursion unfolding, garbage collection of terminated processes and
unused definitions, and associativity and commutativity of parallel composition.

As for CC, we can define function implementation in SP.

Definition 4. A network N implements a function f : N
n → N with input

processes p1, . . . , pn and output process q if N � (
∏

i∈[1,n] pi �vi
Bi) | q �w B′ |N ′

and, for all x1, . . . , xn ∈ N:

– if f(x̃) is defined, then N(x̃) →∗ q ��f(x̃)� 0;
– if f(x̃) is not defined, then N(x̃) 
→∗ 0.

where N(x̃) is a shorthand for N [ ˜�xi�/vi], the network obtained by replacing in
N the values of the input processes with the arguments of the function.

Projection. We now define an EndPoint Projection (EPP) from CC to SP.
We first discuss the rules for projecting the behaviour of a single process p, a

partial function [[C]]p defined by the rules in Fig. 1. All rules follow the intuition
of projecting, for each choreography term, the local action performed by the
process that we are projecting. For example, for a communication term p.e -> q,
we project a send action for the sender p, a receive action for the receiver q, or
just the continuation otherwise. The rule for selection is similar. The rules for
projecting recursive definitions and calls assume that procedure names have been



24 L. Cruz-Filipe and F. Montesi

Fig. 1. Minimal Choreographies, Behaviour Projection.

annotated with the process names appearing inside the body of the procedure,
in order to avoid projecting unnecessary procedure code (see [5]).

The rule for projecting a conditional is more involved, using the partial merg-
ing operator � to merge the possible behaviours of a process that does not know
which branch will be chosen. Merging is a homomorphic binary operator; for
all terms but branchings it requires isomorphism, e.g.: q!〈e〉;B � q!〈e〉;B′ =
q!〈e〉; (B �B′). Branching terms can have unmergeable continuations, as long as
they are guarded by distinct labels. In this case, merge returns a larger branching
including all options (merging branches with the same label):

p&{li : Bi}i∈J � p&{li : B′
i}i∈K =

p&
({li : (Bi � B′

i)}i∈J∩K ∪ {li : Bi}i∈J\K ∪ {li : B′
i}i∈K\J

)

Merging explains the role of selections in CC, common in choreography mod-
els [2,5,6,12,16,25]. Recall the choreographies from Remark 1. In the first
one, the behaviour of r cannot be projected because we cannot merge its
different behaviours in the two branches of the conditional (a send with a
receive). The second one is projectable, and the behaviour of r is [[C]]r =
p&{l : p?;0, r : p!〈c〉;0}.

Definition 5. Given a choreography C and a state σ, the endpoint projection
of C and σ is the parallel composition of the projections of the processes in C:
[[C, σ]] =

∏

p∈pn(C) p �σ(p) [[C]]p.

Since the σs are total, [[C, σ]] is defined for some σ iff [[C, σ′]] is defined for all
other σ′. In this case, we say that C is projectable.

EPP guarantees the following operational correspondence.

Theorem 3. Let C be a projectable choreography. Then, for all σ:

Completeness: If C, σ → C ′, σ′, then [[C, σ]] →� [[C ′, σ′]];
Soundness: If [[C, σ]] → N , then C, σ → C ′, σ′ for some σ′, with [[C ′, σ′]] ≺ N .
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The pruning relation ≺ [5,6] deletes branches introduced by merging when
no longer needed; N � N ′ means N ′ ≺ N . Pruning does not alter the behaviour
of a network: eliminated branches are never selected, as shown in [5,12,18]. As
a consequence of Theorems 1 and 3, choreography projections never deadlock.

Theorem 4. Let N = [[C, σ]] for some C and σ. Then, either N � 0 (N has
terminated), or N → N ′ for some N ′ (N can reduce).

Choreography Amendment. An important property of CC is that all unpro-
jectable choreographies can be made projectable by adding some selections. We
annotate recursion variables as for EPP, assuming that pn(X p̃) = {p̃}.

Definition 6. Given C in CC, the transformation Amend(C) repeatedly applies
the following procedure until no longer possible, starting from the innermost
subterms in C. For each conditional subterm if p

<-
= q thenC1 elseC2 in C, let

r̃ ⊆ (pn(C1) ∪ pn(C2)) be the largest set such that [[C1]]r � [[C2]]r is undefined for
all r ∈ r̃; then if p

<-
= q thenC1 elseC2 in C is replaced with:

if (p
<-
=q) then (p -> r1[l]; · · · ; p -> rn[l];C1) else (p -> r1[r]; · · · ; p -> rn[r];C2)

From the definitions of Amend, EPP and the semantics of CC, we get:

Lemma 2. For every choreography C:

Completeness: Amend(C) is defined;
Projectability: for all σ, [[Amend(C), σ]] is defined;
Correspondence: for all σ, C, σ →∗ C ′, σ′ iff Amend(C), σ →∗ Amend(C ′), σ′.

Example 2. Applying Amend to the first choreography in Remark 1 yields
the second choreography in the same remark. Thanks to merging,
amendment can also recognise some situations where additional selec-
tions are not needed. For example, in the choreography C = if p

<-
=

q then (p.(s · c) -> r;0) else (p.(c) -> r;0), r does not need to know the choice
made by p, as it always performs the same input action. Here, C is projectable
and Amend(C) = C.

4 Turing Completeness of CC and SP

We now move to our main result: the set of choreography projections of CC (the
processes synthesised by EPP) is not only deadlock-free, but also capable of com-
puting all partial recursive functions, as defined by Kleene [17], and hence Turing
complete. To this aim, the design and properties of CC give us a considerable pay
off. First, by Theorem 3, the problem reduces to establishing that a projectable
fragment of CC is Turing complete. Second, by Lemma 2, this simpler problem is
reduced to establishing that CC is Turing complete regardless of projectability,
since any unprojectable choreography can be amended to one that is projectable
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and computes the same values. We also exploit the concurrent semantics of CC
and Theorem 2 to parallelise independent sub-computations (Theorem6).

Our proof is in line with other traditional proofs of computational complete-
ness [11,17,27], where data and programs are distinct. This differs from other
proofs of similar results for, e.g., π-calculus [26] and λ-calculus [1], which encode
data as particular programs. The advantages are: our proof can be used to build
choreographies that compute particular functions; and we can parallelise inde-
pendent sub-computations in functions (Theorem6).
Partial Recursive Functions. Our definition of the class of partial recursive func-
tions R is slightly simplified, but equivalent to, that in [17], where it is shown
to be the class of computable functions. R is defined inductively as follows.

Unary zero: Z ∈ R, where Z : N → N is s.t. Z(x) = 0 for all x ∈ N.
Unary successor: S ∈ R, where S : N → N is s.t. S(x) = x + 1 for all x ∈ N.
Projections: If n ≥ 1 and 1 ≤ m ≤ n, then Pn

m ∈ R, where Pn
m : N

n → N is
s.t. Pn

m(x1, . . . , xn) = xm for all x1, . . . , xn ∈ N.
Composition: if f, gi ∈ R for 1 ≤ i ≤ k, with each gi : N

n → N and f : N
k → N,

then h = C(f, g̃) ∈ R, where h : N
n → N is defined by composition from f

and g1, . . . , gk as: h(x̃) = f(g1(x̃), . . . , gk(x̃)).
Primitive recursion: if f, g ∈ R, with f : N

n → N and g : N
n+2 → N, then

h = R(f, g) ∈ R, where h : N
n+1 → N is defined by primitive recursion from

f and g as: h(0, x̃) = f(x̃) and h(x0 + 1, x̃) = g(x0, h(x0, x̃), x̃).
Minimization: If f ∈ R, with f : N

n+1 → N, then h = M(f) ∈ R, where
h : N

n → N is defined by minimization from f as: h(x̃) = y iff (1) f(x̃, y) = 0
and (2) f(x̃, y) is defined and different from 0 for all z < y.

Encoding Partial Recursive Functions in CC. All functions in R can be imple-
mented in CC, in the sense of Definition 1. Given f : N

n → N, we denote its
implementation by [[f ]]p̃ �→q, where p̃ and q are parameters. All choreographies
we build have a single exit point, and we combine them using the sequential
composition operator � from Sect. 2. We use auxiliary processes (r0, r1, . . .) for
intermediate computation, and annotate the encoding with the index � of the
first free auxiliary process name ([[f ]]p̃ �→q

� ). To alleviate the notation, the encod-
ing assigns mnemonic names to these processes and their correspondence to the
actual process names is formalised in the text using π(f) for the number of
auxiliary processes needed for encoding f : N

n → N, defined by

π(S) = π(Z) = π (Pn
m) = 0 π(R(f, g)) = π(f) + π(g) + 3

π (C(f, g1, . . . , gk)) = π(f) +
∑k

i=1 π(gi) + k π(M(f)) = π(f) + 3

For simplicity, we write p̃ for p1, . . . , pn (when n is known) and {Ai}n
i=1 for

A1 � . . . � An. We omit the selections needed for projectability, as they can be
inferred by amendment; we will discuss this aspect formally later.

The encoding of the base cases is straightforward.

[[Z]]p�→q
� = p.ε -> q [[S]]p�→q

� = p.(s · c) -> q [[Pn
m]]p̃ �→q

� = pm.c -> q



A Core Model for Choreographic Programming 27

Composition is also simple. Let h = C(f, g1, . . . , gk) : N
n → N. Then:

[[h]]p̃ �→q
� =

{

[[gi]]
p̃�→r′i
�i

}k

i=1
� [[f ]]r

′
1,...,r′k �→q

�k+1

where r′i = r�+i−1, �1 = � + k and �i+1 = �i + π(gi). Each auxiliary process
r′i connects the output of gi to the corresponding input of f . Choreographies
obtained inductively use these process names as parameters; name clashes are
prevented by increasing �. By definition of � [[gi+1]] is substituted for the (unique)
exit point of [[gi]], and [[f ]] is substituted for the exit point of [[gk]]. The resulting
choreography also has only one exit point (that of [[f ]]). Below we discuss how
to modify this construction slightly so that the gis are computed in parallel.

For the recursion operator, we need to use recursive procedures. Let h =
R(f, g) : N

n+1 → N. Then, using the macro inc from Example 1 for brevity:

[[h]]p0,...,pn �→q
� = def T = if (rc

<-
= p0) then (q′.c -> q; 0)

else [[g]]rc,q′,p1,...,pn �→rt
�g

� rt.c -> q′; inc(rc, rt) � T

in [[f ]]p1,...,pn �→q′
�f

� rt.ε -> rc; T

where q′ = r�, rc = r�+1, rt = r�+2, �f = � + 3 and �g = �f + π(f). Process rc is
a counter, q′ stores intermediate results, and rt is temporary storage; T checks
the value of rc and either outputs the result or recurs. Note that [[h]] has only
one exit point (after the communication from r to q), as the exit points of [[f ]]
and [[g]] are replaced by code ending with calls to T .

The strategy for minimization is similar, but simpler. Let h = M(f) : N
n →

N. Again we use a counter rc and compute successive values of f , stored in q′,
until a zero is found. This procedure may loop forever, either because f(x̃, xn+1)
is never 0 or because one of the evaluations itself never terminates.

[[h]]p1,...,pn+1 �→q
� = def T = [[f ]]p1,...,pn,rc �→q′

�f
� rc.ε -> rz;

if (rz
<-
= q′) then (rc.c -> q; 0) else (inc(rc, rz) � T )

in rz.ε -> rc; T

where q′ = r�, rc = r�+1, rz = r�+2, �f = � + 3 and �g = �f + π(f). In this case,
the whole if-then-else is inserted at the exit point of [[f ]]; the only exit point of
this choreography is again after communicating the result to q.

Definition 7. Let f ∈ R. The encoding of f in CC is [[f ]]p̃ �→q = [[f ]]p̃ �→q
0 .

Main Results. We prove that our construction is sound by induction.

Theorem 5. If f : N
n → N and f ∈ R, then, for every k, [[f ]]p̃ �→q

k implements
f with input processes p̃ = p1, . . . , pn and output process q.

Let SPCC = {[[C, σ]] | [[C, σ]] is defined} be the set of the projections of all
projectable choreographies in CC. By Theorem4, all terms in SPCC are deadlock-
free. By Lemma 2, for every function f we can amend [[f ]] to an equivalent
projectable choreography. Then SPCC is Turing complete by Theorems 3 and 5.
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Corollary 1. Every partial recursive function is implementable in SPCC.

We finish this section by showing how to optimize our encoding and obtain
parallel process implementations of independent computations. If h is defined
by composition from f and g1, . . . , gk, then in principle the computation of the
gis could be completely parallelised. However, [[]] does not fully achieve this,
as [[g1]],. . . ,[[gk]] share the processes containing the input. We define a modified
variant {{}} of [[]] where, for h = C(f, g1, . . . , gk), {{h}}p̃ �→q

� is

{

pj .c -> pi
j

}

1≤i≤k,1≤j≤n
�

{

{{gi}}p̃
i �→r′i

�i

}k

i=1
� {{f}}r′1,...,r′k �→q

�k+1

with a suitably adapted label function �. Now Theorem 2 applies, yielding:

Theorem 6. Let h = C(f, g1, . . . , gk). For all p̃ and q, if h(x̃) is defined and σ

is such that σ(pi) = �xi�, then all the {{gi}}p̃
i �→r′i

�i
run in parallel in {{h}}p̃ �→q.

This parallelism is preserved by EPP, through Theorem3.

5 Minimality in Choreography Languages

We now discuss our choice of primitives for CC, showing it to be a good candidate
core language for choreographic programming. We analyse each primitive of
CC. Recall that Turing completeness of CC is a pre-requisite for the Turing
completeness of choreography projections. In many cases, simplifying CC yields a
decidable termination problem (thus breaking Turing completeness). We discuss
these cases first, and then proceed to a discussion on label selection.
Minimality in CC. Removing or simplifying the following primitives makes ter-
mination decidable.

– Exit point – 0: without it, no choreography terminates.
– Value communication – p.e -> q: without it, values of processes cannot be

changed, and termination becomes decidable. The syntax of expressions is
also minimal: ε (zero) is the only terminal; without c values become stati-
cally defined, while without s no new values can be computed; in either case,
termination is decidable.

– Recursion – def X = C2 inC1 and X: without it, all choreographies trivially
terminate. The terms are minimal: they support only tail recursion and defi-
nitions are not parameterised.

Theorem 7. Let C be a choreography with no conditionals. Then, termination
of C is decidable and independent of the initial state.

More interestingly, limiting processes to evaluating only their own local values
in conditions makes termination decidable. Intuitively, this is because a process
can only hold a value at a time, and thus no process can compare its current
value to that of another process anymore.
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Theorem 8. If the conditional is replaced by if p.c = v thenC1 elseC2, where

v is a value, and rule �C|Cond� by
i = 1 ifσ(p) = v, i = 2 otherwise

if p.c = v thenC1 elseC2, σ → Ci, σ
, then

termination is decidable.

Label selection. The argument for including label selections in CC is of a dif-
ferent nature. As the construction in Sect. 4 shows, selections are not needed
for implementing computable functions in CC; they are used only for obtaining
projectable choreographies, via amendment. We now show that we can encode
selections introduced by amendment using the other primitives of CC, thereby
eliminating the need for them from a purely computational point of view.

We denote by Minimal Choreographies (MC) the fragment of CC that does
not contain label selections. We can therefore view amendment as a function from
MC into the subset of projectable CC choreographies. Recall that the definition
of amendment guarantees that selections only occur in branches of conditionals,
and that they are always paired and in the same order (see Definition 6). The
fragment of CC obtained by amending choreographies in MC is thus:

C : : = p.e -> q;C | if p<-
= q thenS(p, r̃, l, C1) elseS(p, r̃,r, C2) | def X = C2 inC1 | X |0

Term S(p, r̃, l, C) denotes a series of selections of label l from p to all
processes in the list r̃. Formally, S(p, ∅, l, C) = C and S(p, r : :̃r, l, C) =
p -> r[l]; S(p, r̃, l, C).

Definition 8. Let C be obtained by amending a choreography in MC. The encod-
ing (|C|)+ of C in MC uses processes p, p• for each p ∈ pn(C) and a special
process z, and is defined as (|C|)+ = p.ε -> z; (|C|), with (|C|) defined in Fig. 2.

Fig. 2. Elimination of selections from amended choreographies.

The definition of (|C|) exploits the structure of amended choreographies,
where selections are always paired at the top of the two branches of conditionals.
It is immediate that |pn((|C|)+)| = 2|pn(C)| + 1 (the extra process is z). Let |C|
be the size of the syntax tree of C. Then, |(|C|)+| ≤ 2|C|, and in the worst case
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we get exponential growth. However, EPP collapses all branches of conditionals,
hence projections do not grow exponentially: |[[(|C|)+]]q• | ≤ |[[(|C|)+]]q| ≤ 3|[[C]]q|
for every q ∈ pn(C).

Theorem 9. For every choreography C in MC, [[(|Amend(C)|)]] is defined.

It is straightforward to prove that C and (|Amend(C)|) behave exactly in the
same way when we only observe communications between the original processes
– except that label selections are replaced by regular messages.

Lemma 3. If C, σ → C ′, σ′ and σ+ is such that σ+(p) = σ(p) for p ∈ pn(C)
and σ+(z) = ε, then (|Amend(C)|), σ+ →∗ (|C ′|), σ′+ for some σ′+ similarly
related to σ′. Conversely, if (|Amend(C)|), σ+ → C ′, σ′, then C, σ → C ′′, σ′′

where C ′, σ′ →∗ (|Amend(C ′′)|), σ′′+.

Corollary 2. With the notation of the previous lemma, if C, σ →∗ C ′, σ′, then
(|Amend(C)|)+, σ+ →∗ (|Amend(C ′)|), σ′+.

As a consequence, the set SPMC = {[[C, σ]] | C in MC and [[C, σ]] is defined}
of projections of minimal choreographies is also Turing complete.

Corollary 3. Every partial recursive function is implementable in SPMC.

Since choreographies in MC do not have selections, process projections of
choreographies in MC never have branchings. This means that, in the case of
MC, the merging operator � used in EPP is exactly syntactic equality (since the
only nontrivial case was that of branchings). Consequently, we can replace the
rule for projecting conditionals with a simpler one:

[[if p
<-
= q thenC1 elseC2]]r =

⎧
⎪⎨

⎪⎩

if c
<-
= q then [[C1]]r else [[C2]]r if r = p

p!〈c〉; [[C1]]r if r = q and [[C1]]r = [[C2]]r

[[C1]]r if r �∈ {p, q} and [[C1]]r = [[C2]]r

The advantages of eliminating selections are thus a simpler choreography
language, a simpler definition of EPP (without merging), and a simpler process
language (without selection and branching). The main drawback is that elim-
inating a selection needed for projectability makes the choreography exponen-
tially larger and requires the addition of extra processes and communications;
this significantly changes the structure of the choreography, potentially making
it unreadable. Selections are also present in virtually all choreography mod-
els [2,5,6,12,16,25], therefore we believe that a core model such as CC should
have them (in addition to the drawback we mentioned).

Our results suggest the viability of a particular implementation strategy for
choreographic programming. Programmers could write choreographies without
label selections, and then our results could be used to translate these choreogra-
phies to process implementations in a simple language that does not include label
communications, thus simplifying the target language. The exponential growth
of the intermediate choreography representation can be bypassed by using shared
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data structures for the syntax tree, since the generated choreographies contain
a lot of duplicate terms.

However, this implementation removes an important ability provided in CC
and all other standard choreography calculi: deciding at which point of execution
selections should be performed. In more expressive languages than CC, processes
can perform complex internal computations [10]. For example, assume that p had
to assign tasks to other two processes r and s based on a condition. In one case,
r would run a slow task and s a fast one; otherwise, r would run a fast task and
s a slow one. In this case, p should begin by sending a selection to the process
with the slow task and then by sending it the necessary data for its computation,
before it sends the selection to the process with the fast task.

6 CC and Other Languages

CC is representative of the body of previous work on choreographic pro-
gramming, where choreographies are used for implementations, for exam-
ple [5,6,8,12,24,28]. All the primitives of CC can be encoded in such languages.
Thus, we obtain a notion of function implementation for these languages, induced
by that for CC, for which they are Turing complete. For the model in [6], we
formalise this result in [9]. Below, we discuss the significance of our results for
the cited languages.

Differently from CC, other choreography languages typically use channel-
based communications (as in the π-calculus [26]). Communications via process
references as in CC can be encoded by assigning a dedicated channel to each
pair of processes [9]. For example, the calculus in [6], which we refer to as
Channel Choreographies (ChC), features an EPP targeting the session-based
π-calculus [2]. ChC is a fully-fledged calculus aimed at real-world application
that has been implemented as a choreographic programming framework (the
Chor language [8]). Our formal translation from CC to ChC (given in [9]) shows
that many primitives of ChC are not needed to achieve Turing completeness,
including: asynchronous communications, creation of sessions and processes,
channel mobility, parameterised recursive definitions, arbitrary local computa-
tion, unbounded memory cells at processes, multiparty sessions. While useful in
practice, these primitives come at the cost of making the formal treatment of
ChC very technically involved. In particular, ChC (and its implementation Chor)
requires a sophisticated type system, linearity analysis, and definition of EPP
to ensure correctness of projected processes. These features are not needed in
CC. Using our encoding from CC to ChC, we can repeat the argument in Sect. 4
to characterise a fragment of the session-based π-calculus from [2] that contains
only deadlock-free terms and is Turing complete. ChC has also been translated
to the Jolie programming language [14,23], whence our reasoning also applies
to the latter and, in general, to service-oriented languages based on message
correlation.

The language WS-CDL from W3C [28] and the formal models inspired by
it (e.g., [5]) are very similar to ChC and a similar translation from CC could
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be formally developed, with similar implications as above. The same applies
to the choreography language developed in [12], which adds higher-order fea-
tures to choreographies in terms of runtime adaptation. Finally, the language
of compositional choreographies presented in [24] is an extension of ChC and
therefore our translation applies directly. This implies that adding modularity
to choreographies does not add any computational power, as expected.

7 Related Work and Discussion

Register Machines. The computational primitives in CC recall those of the
Unlimited Register Machine (URM) [11], but CC and URM differ in two main
aspects. First, URM programs contain go-to statements, while CC supports only
tail recursion. Second, in the URM there is a single sequential program manip-
ulating the cells, whereas in CC computation is distributed among the various
cells (the processes), which operate concurrently.

Simulating the URM is an alternative way to prove Turing completeness of
CC. However, our proof using partial recursive functions is more direct and gives
an algorithm to implement any function in CC, given its proof of membership
in R. It also yields the natural interpretation of parallelisation stated in The-
orem 6. Similarly, we could establish Turing completeness of CC using only a
bounded number of processes. However, such constructions encode data using
Gödel numbers, which is not in the spirit of our declarative notion of function
implementation. They also restrict concurrency, breaking Theorem6.
Multiparty Sessions and Types. The communication primitives in CC recall
those of protocols for multiparty sessions, e.g., in Multiparty Session Types
(MPST) [16] and conversation types [4]. These protocols are not meant for com-
putation, as in choreographic programming (and CC); rather, they are types
used to verify that sessions (e.g., π-calculus channels) are used accordingly to
their respective protocol specifications. For such formalisms, we know of a strong
characterisation result: a variant of MPST corresponds to communicating finite
state machines [3] that respect the property of multiparty compatibility [13].
To the best of our knowledge, this is the first work studying the expressivity of
choreographic programming (choreographies for implementations).

Full β-reduction and Nondeterminism. Execution in CC is nondeterministic due
to the swapping of communications allowed by the structural precongruence
�. This recalls full β-reduction for λ-calculus, where sub-terms can be evalu-
ated whenever possible. However, the two mechanisms are actually different.
Consider the choreography C

Δ= p.c -> q; q.ε -> r;0. If CC supported full
β-reduction, we should be able to reduce the second communication before the
first one, since there is no data dependency between the two. Formally, for some
σ: C, σ → p.c -> q;0, σ[r �→ ε]. However, this reduction is disallowed by our
semantics: rule �C|Eta-Eta� cannot be applied because q is present in both com-
munications. This difference is a key feature of choreographies, stemming from
their practical origins: controlling sequentiality by establishing causalities using
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process identifiers is important for the implementation of business processes [28].
For example, imagine that the choreography C models a payment transaction
and that the message from q to r is a confirmation that p has sent its credit card
information to q; then, it is a natural requirement that the second communica-
tion happens only after the first. Note that we would reach the same conclusions
even if we adopted an asynchronous messaging semantics for SP, since the first
action by q is a blocking input.

While execution in CC can be nondeterministic, computation results are
deterministic as in many other choreography languages [6,7,24]: if a choreogra-
phy terminates, the result will always be the same regardless of how its execution
is scheduled (recalling the Church–Rosser Theorem for the λ-calculus). Nonde-
terministic computation is not necessary for our results. Nevertheless, it can be
easily added to CC. Specifically, we could augment CC with the syntax primitive
C1 ⊕p C2 and the reduction rule C1 ⊕p C2 → Ci for i = 1, 2. Extending SP with
an internal choice B1 ⊕ B2 and our definition of EPP is straightforward: in SP,
we would also allow B1 ⊕ B2 → Bi for i = 1, 2, and define [[C1 ⊕p C2]]r to be
[[C1]]r ⊕ [[C2]]r if r = p and [[C1]]r � [[C2]]r otherwise.
Merging and Amendment. Amendment was first studied in [19] for a simple
language with finite traces (thus not Turing complete). Our definition is different,
since it uses merging for the first time.
Actors and Asynchrony. Processes in SP communicate by using direct references
to each other, recalling actor systems. However, there are notable differences:
communications are synchronous and inputs specify the intended sender. The
first difference comes from minimality: asynchrony would add possible behav-
iours to CC, which are unnecessary to establish Turing completeness. We leave
an investigation of asynchrony in CC to future work. The second difference arises
because CC is a choreography calculus, and communication primitives in chore-
ographies typically express both sender and receiver.
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Abstract. Business processes support the modeling and the implemen-
tation of software as workflows of local and inter-process activities. Tak-
ing over structuring and composition, evolution has become a central
concern in software development. We advocate it should be taken into
account as soon as the modeling of business processes, which can there-
after be made executable using process engines or model-to-code trans-
formations. We show here that business process evolution needs formal
analysis in order to compare different versions of processes, identify pre-
cisely the differences between them, and ensure the desired consistency.
To reach this objective, we first present a model transformation from
the BPMN standard notation to the LNT process algebra. We then pro-
pose a set of relations for comparing business processes at the formal
model level. With reference to related work, we propose a richer set of
comparison primitives supporting renaming, refinement, property- and
context-awareness. Thanks to an implementation of our approach that
can be used through a Web application, we put the checking of evolution
within the reach of business process designers.

1 Introduction

Context. A business process is a structured set of activities, or tasks, that is used
to create some product or perform some service. BPMN [16,24] has become the
standard notation for business processes. It allows one to model these processes
as sequences of tasks, but also as more complex workflows using different kinds
of gateways. There are now plenty of frameworks supporting BPMN modeling,
e.g., Activiti, Bonita BPM, or the Eclipse BPMN Designer. Most of them accept
BPMN 2.0 (BPMN for short in the rest of this paper) as input and enable one
to execute it using business process engines.

Modern software exhibits a high degree of dynamicity and is subject to con-
tinuous evolution. This is the case in areas such as autonomic computing, per-
vasive or self-adaptive systems, where parts of the system components may have
to be removed or added in reaction to some stimulus. This is also the case for
more mainstream software, e.g., when developed using an agile method.

In this paper, we focus on software development based on BPMN. We suppose
some application has been developed from a BPMN model and in order to evolve
this application one wants first to evolve the BPMN model. This is sensible to
c© Springer International Publishing AG 2017
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keep the application and the model consistent, either for documentation purposes
or because one follows a model at runtime approach (executing business processes
on process engines being a specific case of this).
Objective. Given two BPMN business processes, we want to support the
(human) process designer in the evolution activity with automated verification
techniques to check whether the evolved process satisfies desired properties with
reference to the original process version. The designer should have different kinds
of verifications at hand for different kinds of evolutions one can perform on a
business process. These verifications will enable the designer to understand the
impact of evolution and, if necessary, support the refinement of an incorrect
evolution into a correct one.
Approach. Since BPMN has only an informal semantics, we have first to define a
model transformation into a formal model that could ground the different needed
verifications. For this we choose to transform BPMN processes into LNT [4]
process algebraic descriptions. Using the LNT operational semantics, we can
retrieve Labelled Transition Systems (LTSs) which are a formal model with rich
tool support. Then we define a set of atomic evolution verifications based on LTS
equivalences and LTS pre-orders originating from concurrency theory. These can
be applied iteratively to get feed-back on the correctness of evolutions and per-
form changes on business processes until satisfaction. Our approach is completely
automated in a tool we have developed, VBPMN, that designers may use through
a Web application to check process evolution [1]. It includes an implementation
of our BPMN to LNT transformation, and relies on a state-of-the-art verification
tool-box, CADP [13], for computing LTS models from LNT descriptions and for
performing LTS-level operations and atomic analysis actions used in our evolution
verification techniques. We have applied our approach and tool support to many
examples for validation purposes. Thanks to the use of a modular architecture in
VBPMN, other workflow-based notations, such as UML activity diagrams [20] or
YAWL workflows [28], could be integrated to our framework.
Organization. Section 2 introduces BPMN and our running example. Section 3
presents the process algebra and the formal model transformation we use to give
a translational semantics to BPMN process. We then build on this to present and
formalize in Sect. 4 our different notions of business process evolution. Section 5
gives details on the implementation of our approach in a tool and discusses
results of experiments performed with it. We present related work in Sect. 6 and
we conclude in Sect. 7.

2 BPMN in a Nutshell

In this section, we give a short introduction on BPMN. We then present the
running example we will use for illustration purposes in the rest of this paper.

BPMN is a workflow-based graphical notation (Fig. 1) for modeling busi-
ness processes that can be made executable either using process engines
(e.g., Activiti, Bonita BPM, or jBPM) or using model transformations into
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Fig. 1. BPMN notation (Part of)

executable languages (e.g., BPEL). BPMN is an ISO/IEC standard since 2013
but its semantics is only described informally in official documents [16,24].
Therefore, several attempts have been made for providing BPMN with a formal
semantics, e.g., [10,18,22,25,33]. In this paper, we abstract from the features
of BPMN related to data and we focus on the core features of BPMN, that is,
its control flow constructs, which is the subset of interest with respect to the
properties we propose to formally analyze in this paper. More precisely, we con-
sider the following categories of workflow nodes: start and end event, tasks, and
gateways.

Start and end events are used to denote respectively the starting and the end-
ing point of a process. A task is an abstraction of some activity and corresponds
in practice, e.g., to manual tasks, scripted tasks, or inter-process message-based
communication. In our context, we use a unique general concept of task for all
these possibilities. Start (end, resp.) events must have only one outgoing (incom-
ing, resp.) flow, and tasks must have exactly one incoming and one outgoing
flow. Gateways are used, along with sequence flows, to represent the control flow
of the whole process and in particular the task execution ordering. There are
five types of gateways in BPMN: exclusive, inclusive, parallel, event-based and
complex gateways. We take into account all of them but for complex gateways,
which are used to model complex synchronization behaviors especially based on
data control. An exclusive gateway is used to choose one out of a set of mutu-
ally exclusive alternative incoming or outgoing branches. It can also be used to
denote looping behaviors as in Fig. 5. For an inclusive gateway, any number of
branches among all its incoming or outgoing branches may be taken. A parallel
gateway creates concurrent flows for all its outgoing branches or synchronizes
concurrent flows for all its incoming branches. For an event-based gateway, it
takes one of its outgoing branches based on events (message reception) or accepts
one of its incoming branches. If a gateway has one incoming branch and multiple
outgoing branches, it is called a split (gateway). Otherwise, it should have one
outgoing branch and multiple incoming branches, and it is called a merge (gate-
way). In this paper, we assume processes where we have an exact split→merge
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Fig. 2. Bank account opening process in BPMN. Sequence flow identifiers (used for
the encoding in Fig. 3) are given as textual annotations.

correspondence for inclusive gateways. We also suppose that BPMN processes
are syntactically correct. This can be enforced using a BPMN designer, e.g., the
Activiti BPM platform, Bonita BPM, or the Eclipse BPMN Designer.

Example. We use as running example the opening of a bank account depicted in
Fig. 2. This process starts by retrieving information about the customer (exclu-
sive gateway, top part). Then, the type of account is identified and several docu-
ments need to be delivered (parallel gateway, middle part). Finally, the account
creation is rejected or accepted, and in the latter case, some information is sent
to the customer (inclusive gateway, bottom part) and the account is activated.

3 From BPMN to LTS

We present in this section a translational semantics from BPMN to LTSs,
obtained through a model transformation from BPMN to the LNT process alge-
bra, LNT being equipped with an LTS semantics.

3.1 LNT

LNT [4] is an extension of LOTOS, an ISO standardized process algebra [15],
which allows the definition of data types, functions, and processes. LNT processes
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are built from actions, choices (select), parallel composition (par), looping behav-
iors (loop), conditions (if), and sequential composition (;). The communication
between the process participants is carried out by rendezvous on a list of syn-
chronized actions included in the parallel composition (par).

The use of a process algebra such as LNT is preferred over the direct use
of LTS (i.e., the definition of a BPMN to LTS transformation) since this yields
a simpler, high-level and more declarative transformation. Thanks to the LTS
semantics of process algebras, one can use thereafter the rich set of tools existing
for LTS-based verification. The choice of LNT over other process algebras has
been guided by the availability of the CADP [13] toolbox, which comes with
a very comprehensive set of verification tools, including ones supporting the
implementation of the various checks presented in the sequel.

3.2 From BPMN to LNT

We present here the encoding into LNT of the BPMN constructs that we support.
The main idea is to encode as LNT processes all BPMN elements involved in a
process definition, that is, the nodes (tasks, gateways), which correspond to the
behavior of the BPMN process, initial/end events, and sequence flows, which
encode the execution semantics of the process. Finally, all these independent
LNT processes are composed in parallel and synchronized in order to respect
the BPMN execution semantics. For instance, after execution of a node, the
corresponding LNT process synchronizes with the process encoding the outgoing
flow, which then synchronizes with the process encoding the node appearing at
the end of this flow, and so on.

Table 1 presents the encoding patterns for the main BPMN constructs. The
actions corresponding to the flows (incf, outf, etc.) will be used as synchronization
points between the different BPMN elements. The begin and finish actions in
the initial/end events are just used to trigger and terminate, respectively, these
events. The actions used in task constructs (e.g., task) will be the only ones
to appear in the final LTS. All other synchronizations actions will be hidden
because they do not make sense from an observational point of view. Both the
sequence flow and the task construct are enclosed within an LNT loop operator
since these elements can be repeated several times if the BPMN process exhibits
looping behaviors. We do not present the encoding of communication/interaction
messages in Table 1 because they are translated similarly to tasks.

The parallel gateway is encoded using the par LNT operator, which cor-
responds in this case to an interleaving of all flows. The exclusive gateway is
encoded using the select LNT operator, which corresponds to a nondeterminis-
tic choice among all flows. The event-based gateway is handled in the same way
as the exclusive gateway, hence it is not presented here.

The semantics of inclusive gateways is quite intricate [5]. We assume here
that each inclusive merge gateway has a corresponding inclusive split gateway.
The inclusive gateway uses the select and par operators to allow all possible
combinations of the outgoing branches. Note the introduction of synchronization
points (si), which are necessary to indicate to the merge gateway the behavior
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Table 1. Encoding patterns in LNT for the main BPMN constructs

BPMN construct BPMN notation LNT encoding

Initial event begin ; outf

End event incf ; finish

Sequence flow loop begin ; finish end loop

Task loop incf ; task ; outf end loop

Parallel gateway
(split)

incf ;
par

outf1 || outf2 || outf3
end par

Parallel gateway
(merge)

par
incf1 || incf2 || incf3

end par ;
outf

Exclusive gateway
(split)

incf ;
select

outf1 [] outf2 [] outf3
end select

Exclusive gateway
(merge)

select
incf1 [] incf2 [] incf3

end select ;
outf

Inclusive gateway
(split)

incf ;
select (* si if one matching merge *)

outf1 ; s1
[] outf2 ; s2
[] par outf1 || outf2 end par ; s3

end select

Inclusive gateway
(merge)

select (* si if one matching split *)
s1 ; incf1
[] s2 ; incf2
[] s3 ; par incf1 || incf2 end par

end select ; outf

that was executed at the split level. Without such synchronization points, the
corresponding merge does not know whether it is supposed to wait for one or
several branches (and which branches in this second case).

Once all BPMN elements are encoded into LNT, the last step is to compose
them in order to obtain the behavior of the whole BPMN process. To do so,
we compose in parallel all the flows with all the other constructs. All flows are
interleaved because they do not interact one with another. All events and nodes
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Fig. 3. Main LNT process for the bank account opening process

(start/end events, tasks, gateways) are interleaved as well for the same reason.
Then both sets are synchronized on flow sequences (flowXX actions). These addi-
tional actions are finally hidden because they should not appear as observable
actions and will be transformed into internal transitions in the resulting LTS.
Each process call is accompanied with its alphabet, that is, the list of actions
used in that process. For instance, each call of a flow process comes with a couple
of actions corresponding to the initiation and termination of the flow.

Example. The translation of the bank account opening process in LNT results
in several processes. The main process is given in Fig. 3. Process actions of the
form flowXX correspond to the encoding of flows, e.g., flow2 finish, flow3 begin,
and flow4 begin for the flows 2, 3, and 4 that are connected to the first split
exclusive gateway. The corresponding LTS is shown in Fig. 4.

4 Comparing Processes

In this section, we formally define several kinds of comparisons between BPMN
processes. Their analysis allows one to ensure that the evolution of one process
into another one is satisfactory.

Notation. LNT processes are denoted in italics, e.g., p, and BPMN processes are
denoted using a bold fond, e.g., b. In the sequel, we denote with ||p|| the semantic
model of an LNT process p, that is the LTS for p. Further, we denote the BPMN
to LNT transformation introduced in the previous section using Θ, and the
application of it to a BPMN process b using Θ(b). Accordingly, || Θ(b) || denotes
the LTS for this process. As far as the comparisons are concerned, we suppose we
are in the context of the evolution of a BPMN process b into a BPMN process b′,
denoted by b ��� b′.
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Fig. 4. LTS formal model for the bank account opening process

4.1 Conservative Evolution

Our first comparison criterion is quite strong. Given an evolution b ��� b′,
it ensures that the observable behavior of b is exactly preserved in b′. It sup-
ports very constrained refactorings of BPMN processes such as grouping or split-
ting parallel or exclusive branches (e.g., ( (a,b), c) ���

��� (a,b, c) where

(x1, . . . , xn) denotes a balanced exclusive split-merge). At the semantic level,
several behavioral equivalences could be used. We have to deal with internal
transitions introduced by hiding (see Sect. 3.2). Hence, we chose to use branch-

ing equivalence [30], denoted with
br≡, since it is the finest equivalence notion in

presence of such internal transitions.

Definition 1 (Conservative Evolution). Let b and b′ be two processes, b ���
b′ is a conservative evolution iff || Θ(b) || br≡ || Θ(b′) ||.
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4.2 Inclusive and Exclusive Evolution

In most cases, one does not want to replace a business process by another one
having exactly the same behavior. Rather, one wants to be able to add new
functionalities in the process, without interfering with the existing ones. A typical
example is adding new choices, e.g., (a,b) ��� (a,b, c), or evolving an

existing one, e.g., (a,b) ��� (a, (b, c)). So here, we ground on a
preorder relation rather than on an equivalence one, ensuring that, given b ���
b′, all observable behaviors that were in b are still in b′. For this we rely on the

branching preorder [30], denoted by
br
<.

Definition 2 (Inclusive Evolution). Let b and b′ be two processes, b ��� b′ is

an inclusive evolution iff || Θ(b) || br
< || Θ(b′) ||.

Similarly, one may refine a process by implementing only a part of it. Here,
in b ��� b′, one does not want that b′ exposes any additional behavior that is
outside what is specified in b. This is a reversed form of inclusive evolution.

Definition 3 (Exclusive Evolution). Let b and b′ be two processes, b ��� b′ is

an exclusive evolution iff || Θ(b′) || br
< || Θ(b) ||.

The duality between inclusive and exclusive evolution is usual when one
formalizes the fact that some abstract specification a is correctly implemented
into a more concrete system c. For some people, this means that at least all
the behaviors expected from a should be available in c. Taking the well-known
“coffee machine” example, if a specification requires that the machine is able to
deliver coffee, an implementation delivering either coffee or tea (depending on the
people interacting with it) is correct. For others, e.g., in the testing community,
an implementation should not expose more behaviors than what was specified.

4.3 Selective Evolution

Up to now, we have supposed that all tasks in the original process were of
interest. Still, one could choose to focus on a subset of them, called tasks of
interest. This gives freedom to change parts of the processes as soon as the
behaviors stay the same for the tasks of interest. For this, we define selective
evolution up to a set of tasks T . Tasks that are not in this set will be hidden in
the comparison process. Formally, this is achieved with an operation [T ] on LTSs,
which, given an LTS l, hides any transition whose label is not in T by changing
this label to τ (it becomes an internal transition). Again, here we can rely on
branching equivalence to deal with these internal transitions.

Definition 4 (Selective Conservative Evolution). Let b and b′ be two processes,
and T be a set of tasks, b ��� b′ is a selective conservative evolution with

reference to T iff || Θ(b′) || [T ]
br≡ || Θ(b) || [T ].
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A specific interesting case of selective evolution is when the set of tasks
of interest corresponds exactly to the tasks of the original process. This lets
the designer add new behaviors not only in a separate way (as with inclusive
evolution) but also within the behaviors of the original process. For example,
a;b ��� (a, log);b, that is a way to log some information each time a is
done is not an inclusive evolution but is a selective conservative evolution with
reference to {a,b}. Accordingly to selective conservative evolution, we can define
selective inclusive evolution (respectively selective exclusive evolution) by using

the branching preorder,
br
<, instead of

br≡.

4.4 Renaming and Refinement

One may also want to take into account renaming when checking an evolution
b ��� b′. For this we use a relabelling relation R ⊆ Tb ×Tb′ , where Tb (respec-
tively Tb′) denotes the set of tasks in b (respectively b′). Applying a relabelling
relation R to an LTS l, which is denoted by l � R, consists in replacing in l any
transition labelled by some t in the domain of R by a transition labelled by R(t).

To take into account task renaming in any of the above-mentioned evolutions,
we just have to perform the equivalence (or preorder) checking up to relabelling
in the formal model for b. For example, b ��� b′ is a conservative evolution

up to a relabelling relation R for b and b′ iff || Θ(b) || �R
br≡ || Θ(b′) ||.

Sometimes renaming is not sufficient, e.g., when evolution corresponds to the
refinement of a task by a workflow. We define a refinement rule as a couple (t,W ),
noted t ��� W 1, where t is a task and W a workflow. A set of refinement rules,
or refinement set, R =

⋃
i∈1...n ti ��� Wi is valid if there are no multiple

refinements of the same task (∀i, j ∈ 1 . . . n, i �= j ⇒ ti �= tj) and if no refinement
rule has in its right-hand part a task that has to be refined (∀i, j ∈ 1 . . . n,
ti �∈ Wj). These constraints enforce that refinements do not depend on the
application ordering of refinement rules, i.e., they are deterministic.

To take into account refinement in evolution, a pre-processing has to be
performed on the source process. For example, given that b � R denotes the
replacement in b of ti by Wi for each ti ��� Wi in R, b ��� b′ is a conservative

evolution up to a refinement set R iff || Θ(b � R) || br≡ || Θ(b′) ||.

4.5 Property-Aware Evolution

A desirable feature when checking evolution is to be able to focus on properties
of interest and avoid in-depth analysis of the workflows. This gives the freedom
to perform changes (including some not possible with the previous evolution
relations) as long as the properties of interest are preserved. Typical properties
are deadlock freedom or safety and liveness properties defined over the alphabet
of process tasks and focusing on the functionalities expected from the process
1 The ��� symbol is overloaded since a refinement rule is an evolution at the task

level.
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under analysis. Such properties are written in a temporal logic supporting actions
and, to make the property writing easier, the developer can rely on well-known
patterns as those presented in [11].

Definition 5 (Property-Aware Evolution). Let b and b′ be two processes, T be
a set of tasks, and φ be a formula defined over T , b ��� b′ is a property-aware
evolution with respect to φ iff || Θ(b) || |= φ ⇒ || Θ(b′) || |= φ.

4.6 Context-Aware Evolution

A process is often used in the context of a collaboration, which in BPMN takes
the form of a set of processes (“pool lanes”) communicating via messages. When
evolving a process b, one may safely make changes as soon as they do not have
an impact on the overall system made up of b and these processes. To ensure
this, we have to compute the semantics of b communicating on a set of interac-
tions I (a subset of its tasks) with the other processes that constitute the context
of b. We support two communication modes: synchronous or asynchronous. For
each mode m we have an operation

m×I , where || Θ(b) || m×I || Θ(c) || denotes
the LTS representing the communication on a set of interactions I between b
and c. For synchronous communication,

m×I is the LTS synchronous product [2].

For asynchronous communication,
m×I is achieved by adding a buffer to each

process [3]. Here, to keep things simple, we will suppose without loss of general-
ity, that a context is a single process c.

Definition 6 (Context-Aware Conservative Evolution). Let b, b′, and c be
three processes, c being the context for b and b′, m be a communication mode
(m ∈ {sync, async}), and I be the set of interactions taking place between
b and c, b ��� b′ is a context-aware conservative evolution with reference to c,

m, and I iff || Θ(b) || m×I || Θ(c) || br≡ || Θ(b′) || m×I || Θ(c) ||.
Accordingly, we may define context-aware inclusive and exclusive evolution,

or combine them with renaming and refinement.

Example. We introduce in Fig. 5 a revised version of the bank account opening
process presented in Fig. 2. In this new process, if the application is rejected,
additional information may be asked to the customer. This is achieved adding a
split exclusive gateway and a task “request additional info”.

The two versions of the bank account opening process are not conservative
because all traces including the task “request additional info” are present only in
the new version of the process. However, both versions are related with respect to
the inclusive/exclusive evolution notions. The new version includes all possible
executions of the former one (the opposite is false) while incorporating new traces
(those including “request additional info”).

If we make another update to our process by taking the task “receive support
documents” out of the parallel gateway (central part of the original process given
in Fig. 5). This slight modification is shown in Fig. 6. In this case, both versions
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Fig. 5. Bank account opening process in BPMN (V2, partial view)

Fig. 6. Bank account opening process in BPMN (V3, partial view)

(V2 and V3) of the process are not conservative, because V3 is more restrictive
and V2 exhibits behavior, e.g., the trace “process application”, “create profile”,
“identify account”, “prepare opening”, and “background verification”, which
does not appear in V3. However, all behaviors appearing in V3 are included in
V2, so both versions are related wrt. the inclusive evolution relation.

As far as property-aware evolution is concerned, one can check for instance
whether any process execution eventually terminates by a rejection notification
or by an account activation. This is formalized in the MCL [23] temporal logic
as shown below using box modalities and fix points. This property is actually
satisfied for the original process, but not for its two extensions because in those
processes a possible behavior is to infinitely request additional information.

[true* . PROCESSAPPLICATION] mu X .

(〈 true 〉 true and [not (NOTIFYREJECTION or ACTIVATEACCOUNT)] X)
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5 Tool Support

The goal of this section is to present the implementation of the approach pre-
sented beforehand into our VBPMN tool and some experimental results. VBPMN
is available online with a set of BPMN samples [1].

5.1 Architecture

VBPMN heavily relies on model transformation as depicted in Fig. 7. The central
part is a pivot language called Process Intermediate Format (PIF). We propose
this format to make our approach more modular, generic, and easily extensible.
PIF gathers common constructs and operators one can find in any workflow-
based modeling language. The interest of such an intermediate language is that
several front-end modeling languages could be used as input (e.g., UML activity
diagrams or YAWL workflows). Further, several analysis techniques and tools
could also be connected as a back-end to the PIF format (e.g., to deal with data
or timed aspects of processes).

Fig. 7. Overview of VBPMN

As front-end, we integrate with BPMN editors by providing a Web applica-
tion to which designers may submit the BPMN models they want to compare,
together with parameters for the evolution. A model-to-model transformation is
used to transform the BPMN processes to compare into PIF models. Then, a
model-to-text transformation is used to generate from the PIF models two LNT
encodings and a CADP verification script in the SVL language [12]. Equivalences

(
br≡), preorders (

br
<), and relabelling (�, used for renaming) are directly supported

by SVL commands. Restriction to tasks of interest ([T ], used for selective evo-
lution) is achieved by using the SVL command for hiding all labels but for the

ones to restrict to. The communication products (
synch×I and

asynch×I ) are achieved

at the LNT level by using the par operator and (for
asynch×I ) using additional LNT

processes encoding buffers. The refinement (�) and context-aware evolutions are
not yet available in the current version of VBPMN. When one of the checks in
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the SVL scripts fails, one gets a witness (counter-example) that is presented in
our Web application so that the designer can use it to modify the erroneous
process evolution.

5.2 Experiments

We used a Mac OS laptop running on a 2.3 GHz Intel Core i7 processor with
16 GB of Memory. We carried out experiments on many examples taken from
the literature or hand-crafted, and we present in Table 2 some of these results.

Table 2. Experimental results

BPMN Proc. Size LTS (states/transitions) Evol.

Tasks Flows Gateways Raw Minimized ≡ < >

1 6 11 2 29/29 8/9 × √ ×
1’ 7 15 2 + 2 78/118 11/14 15s

2 4 7 1 70/105 7/9
√ √ √

2’ 8 14 2 36/38 10/12 15s

3 7 14 2 + 2 62/87 10/11 × × ×
3’ 8 16 4 1,786/5,346 28/56 15s

4 15 29 3 + 2 + 2 469/1,002 24/34 × √ ×
4’ 16 33 5 + 2 + 2 479/1,013 26/37 15s

5 12 24 6 742,234/3,937,158 148/574 × × √

5’ 12 24 4 + 2 6,394/21,762 60/152 31s

6 20 43 6 + 6 4,488,843/26,533,828 347/1,450 × √ ×
6’ 20 39 8 4,504,775/26,586,197 348/1,481 9m31s

Each example consists of two versions of the process (original and revised).
For each version, we first characterize the size of the workflow by giving the
number of tasks, sequence flows, and gateways. We show then the size (states and
transitions) of the resulting LTS before and after minimization. Minimization is
useful for automatically removing unnecessary internal transitions, which were
introduced during the process algebra encoding but do not make sense from
an observational point of view. We use branching reduction [30], which is the
finest equivalence notion in presence of internal transitions and removes most
internal transitions in an efficient way. Finally, the last column gives the results
when comparing the LTSs for the two versions of the process using conservative,
inclusive, and exclusive evolution, resp., and the overall computation time.

Examples 4 and 4’ correspond to the first and second versions of our running
example. Medium-size examples (e.g., examples 5 and 6) can result in quite
huge LTSs involving millions of states and transitions. This is not always the
case and this is due to our choice to show processes in the table containing
several parallel and inclusive gateways, which result in many possible interleaved
executions in the corresponding LTSs. In our database, we have much larger
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examples of BPMN processes in terms of tasks and gateways, which result in
small LTSs (thousands of states and transitions) due to their sequential behavior.
Another comment concerns the considerable drop in size of the LTSs before and
after minimization. Example 3’ for example goes from about 2,000 states/5,000
transitions to about 30 states/60 transitions. This drastic reduction is due to
all sequence flow actions encoded in LNT for respecting the BPMN original
semantics. They do not have any special meaning per se, and are therefore hidden
and removed by reduction.

As far as computation times are concerned, we observe that the final column
of Table 2 gives the overall time, that is, the time for generating both LTSs,
minimizing and comparing them. The comparison time is negligible. It takes 568 s
for instance for generating and minimizing both LTSs for examples 6 and 6’, and
only 3 s for comparing both LTSs wrt. the three evolution notions considered in
the table. On a wider scale, computation times remain reasonable (about 10 min)
even for LTSs containing millions of states and transitions.

6 Related Work

Several works have focused on providing formal semantics and verification tech-
niques for business processes using Petri nets, process algebras, or abstract state
machines, see, e.g., [9,10,14,18,21,22,25,26,33,34]. Those using process algebras
for formalizing and verifying BPMN processes are the most related to the app-
roach presented in this paper. The authors of [33] present a formal semantics
for BPMN by encoding it into the CSP process algebra. They show in [34] how
this semantic model can be used to verify compatibility between business par-
ticipants in a collaboration. This work was extended in [32] to propose a timed
semantics of BPMN with delays. In a previous work [14,25], we have proposed a
first transformation from BPMN to LNT, targetted at checking the realizability
of a BPMN choreography. We followed a state machine pattern for representing
workflows, while we here encode them in a way close to Petri net firing seman-
tics, which favours compositionality and is more natural for a workflow-based
language such as BPMN. In [6], the authors propose a new operational semantics
of a subset of BPMN focusing on collaboration diagrams and message exchange.
The BPMN subset is quite restricted (no support of the inclusive merge gateway
for instance) and no tool support is provided yet. Compared to the approaches
above, our encoding also gives a semantics to the considered BPMN subset by
translation to LNT, although it was not our primary goal. The main difference
with respect to these related works is our focus on the evolution of processes and
its automated analysis.

In the rest of this section, we present existing approaches for comparing
several BPMN processes (or workflows). In [19], the author proposes a theoretical
framework for comparing BPMN processes. His main focus is substitutability and
therefore he explores various sorts of behavioral equivalences in order to replace
equals for equals. This work applies at the BPMN level and aims at detecting
equivalent patterns in processes. In a related line of works, [17] studies BPMN
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behaviors from a semantic point of view. It presents several BPMN patterns
and structures that are syntactically different but semantically equivalent. This
work is not theoretically grounded and is not complete in the sense that only
a few patterns are tackled. The notion of equivalence is similar to the one used
in [19]. The authors of [17] also overview best practices that can be used as
guidelines by modelers for avoiding syntactic discrepancies in equivalent process
models. Compared to our approach, this work only studies strong notions of
equivalence where the behavior is preserved in an identical manner. We consider
a similar notion here, but we also propose weaker notions because one can make
deeper changes (e.g., by introducing new tasks) and in these cases such strong
equivalences cannot be preserved.

In Chap. 9 of [27], the authors study the evolution of processes from a migra-
tion point of view. They define several notions of evolution, migration, and refac-
toring. Our goal here is rather complementary since we have studied the impact
of modifying a workflow wrt. a former version of this workflow on low-level for-
mal models, but we do not propose any solutions for applying these changes
on a running instance of that initial workflow. In [31], the authors address the
equivalence or alignment of two process models. To do so, they check whether
correspondences exist between a set of activities in one model and a set of activ-
ities in the other model. They consider Petri net systems as input and process
graphs as low-level formalism for analysis purposes. Their approach resides in
the identification of regions (set of activities) in each graph that can coincide
with respect to an equivalence notion. They particularly study two equivalence
notions, namely trace and branching equivalences. The main limit of this app-
roach is that it does not work in the presence of overlapping correspondences,
meaning that in some cases, the input models cannot be analyzed. This work
shares similarities with our approach, in particular the use of low-level graph
models, hiding techniques and behavioral equivalences for comparing models.
Still, our approach always provides a result and considers new notions of model
correspondence such as property-aware evolution.

7 Concluding Remarks

We have introduced our approach for checking the evolution of BPMN processes.
To promote its adoption by business process designers, we have implemented
it in a tool, VBPMN, that can be used through a Web application. We have
presented different kinds of atomic evolutions that can be combined and formally
verified. We have defined a BPMN to LNT model transformation, which, using
the LTS operational semantics of LNT enables us to automate our approach
using existing LTS verification tools. We have applied our approach to many
examples for evaluation purposes. It turns out that our tool is rather efficient
since it can handle quite huge examples within a reasonable amount of time.

Diagnoses are returned to the designers under the form of low-level counter-
examples (LTSs). This could be enhanced by presenting this information directly
on the BPMN models, e.g. using animation. In the implementation of our BPMN
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to LNT transformation, we rely on an intermediate format including the main
workflow-based constructs. This paves the way for new front-end DSLs and other
back-end verification techniques. Another perspective of this work is to propose
quantitative analysis for comparing business processes as studied in [8,29]. Our
goal is thus to consider non-functional requirements in BPMN processes, such as
the throughput and latency of tasks, which can be modeled by extending LTSs
with Markovian information and computed using steady-state analysis [7].
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Abstract. We propose an input/output conformance testing theory uti-
lizing Modal Interface Automata with Input Refusals (IR-MIA) as novel
behavioral formalism for both the specification and the implementation
under test. A modal refinement relation on IR-MIA allows distinguish-
ing between obligatory and allowed output behaviors, as well as between
implicitly underspecified and explicitly forbidden input behaviors. The
theory therefore supports positive and negative conformance testing with
optimistic and pessimistic environmental assumptions. We further show
that the resulting conformance relation on IR-MIA, called modal-irioco,
enjoys many desirable properties concerning component-based behav-
iors. First, modal-irioco is preserved under modal refinement and con-
stitutes a preorder under certain restrictions which can be ensured by a
canonical input completion for IR-MIA. Second, under the same restric-
tions, modal-irioco is compositional with respect to parallel composition
of IR-MIA with multi-cast and hiding. Finally, the quotient operator on
IR-MIA, as the inverse to parallel composition, facilitates decomposition-
ality in conformance testing to solve the unknown-component problem.

Keywords: Model-based testing · Modal transition systems ·
Input/output conformance · Composition and decomposition in testing

1 Introduction

Formal approaches to model-based testing of component-based systems define
notions of behavioral conformance between a specification and a (black-box)
implementation (under test), both usually given as (variations of) labeled tran-
sition systems (LTS). Existing notions of behavioral conformance may be cate-
gorized into two research directions. Extensional approaches define observational
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equivalences, requiring that no observer process (tester) is ever able to distin-
guish behaviors shown by the implementation from those allowed by the spec-
ification [9]. In contrast, intensional approaches rely on I/O labeled transition
systems (IOLTS) from which test cases are derived as sequences of control-
lable input and observable output actions, to establish an alternating simulation
relation on IOLTS [1,11,27]. One of the most prominent conformance testing
theories, initially introduced by Tretmans in [24], combines both views on for-
mal conformance testing into an input/output conformance (ioco) relation on
IOLTS. Although many formal properties of, and extensions to, ioco have been
intensively investigated, ioco still suffers several essential weaknesses.

– ioco permits underspecification by means of (1) unspecified input behaviors
and (2) non-deterministic input/output behaviors. But, concerning (1), ioco
is limited to positive testing (i.e., unspecified inputs may be implemented arbi-
trarily) thus implicitly relying on optimistic environmental assumptions. Also
supporting negative testing in a pessimistic setting, however, would require a
distinction between critical and uncritical unintended input behaviors. Con-
cerning (2), ioco requires the implementation to exhibit at most output behav-
iors permitted by the specification. In addition, the notion of quiescence (i.e.,
observable absence of any outputs) enforces implementations to show at least
one specified output behavior (if any). Apart from that, no explicit distinction
between obligatory and allowed output behaviors is expressible in IOLTS.

– ioco imposes a special kind of alternating simulation between specification
and implementation which is, in general, not a preorder, although being a
crucial property for testing relations on LTS [10].

– ioco lacks a unified theory for input/output conformance testing in the face
of component-based behaviors being compatible with potential solutions for
the aforementioned weaknesses.

As all these weaknesses mainly stem from the limited expressiveness of IOLTS as
behavioral formalism, we propose Modal Interface Automata with Input Refusals
(IR-MIA) as a new model for input/output conformance testing for both the
specification and the implementation under test. IR-MIA adopt Modal Interface
Automata (MIA) [5], which combine concepts of Interface Automata [8] (i.e., I/O
automata permitting underspecified input behaviors) and (I/O-labeled) Modal
Transitions Systems [2,13,22] (i.e., LTS with distinct mandatory and optional
transition relations). In particular, we exploit enhanced versions of MIA sup-
porting both optimistic and pessimistic environmental assumptions [16] and non-
deterministic input/output behaviors [5]. For the latter, we have to re-interpret
the universal state of MIA, simulating every possible behavior, as failure state
to serve as target for those unintended, yet critical input behaviors to be refused,
i.e., non-blocking which means that the input event is received but its process-
ing is refused by the implementation [21]. Modal refinement of IR-MIA therefore
allows distinguishing between obligatory and allowed output behaviors, as well
as between implicitly underspecified and explicitly forbidden input behaviors.

The resulting testing theory on IR-MIA unifies positive and negative con-
formance testing with optimistic and pessimistic environmental assumptions.



56 L. Luthmann et al.

We further prove that the corresponding modal I/O conformance relation on IR-
MIA, called modal-irioco, exhibits essential properties, especially with respect
to component-based systems testing.

– modal-irioco is preserved under modal refinement and constitutes a pre-
order under certain restrictions which can be obtained by a canonical input
completion [23].

– modal-irioco is compositional with respect to parallel composition of IR-MIA
with multi-cast and hiding [5].

– modal-irioco allows for decomposition of conformance testing, thus support-
ing environmental synthesis for component-based testing in contexts [7,20],
also known as the unknown-component problem [28]. To this end, we adapt
the MIA quotient operator to IR-MIA, serving as the inverse to parallel com-
position.

The remainder of this paper is organized as follows. In Sect. 2, we revisit the
foundations of ioco testing. In Sect. 3, we introduce IR-MIA and modal refine-
ment on IR-MIA and, thereupon, define modal-irioco, provide a correctness
proof and discuss necessary restrictions to obtain a preorder. Our main results
concerning compositionality and decompositionality of modal-irioco are pre-
sented in Sects. 4 and 5, respectively. In Sect. 6, we discuss related work and in
Sect. 7, we conclude the paper. Please note that all proofs and more detailed
examples may be found in the accompanying technical report [18].

2 Preliminaries

The ioco testing theory relies on I/O-labeled transition systems (IOLTS) as
behavioral formalism [24]. An IOLTS (Q, I,O,−→) specifies the externally visible
behaviors of a system or component by means of a transition relation −→⊆ Q×
(I∪O∪{τ})×Q on a set of states Q. The set of transition labels A = I∪O consists
of two disjoint subsets: set I of externally controllable/internally observable input
actions, and set O of internally controllable/externally observable output actions.
In figures, we use prefix ? to mark input actions and prefix ! for output actions,
respectively. In addition, transitions labeled with internal actions τ �∈ (I ∪ O)
denote silent moves, neither being externally controllable, nor observable. We
write Aτ = A ∪ {τ}, and by q

α−→ q′ we denote that (q, α, q′) ∈−→ holds, where
α ∈ Aτ , and we write q

α−→ as a short hand for ∃q′ ∈ Q : q
α−→ q′ and q � α−→, else.

Furthermore, we write q
α1···αn−−−−−→ q′ to express that ∃q0, . . . , qn ∈ Q : q = q0

α1−→
q1

α2−→ · · · αn−→ qn = q′ holds, and write q
ε=⇒ q′ whenever q = q′ or q

τ ···τ−−−→ q′.
Additionally, by q

α=⇒ q′, we denote that ∃q1, q2 : q
ε=⇒ q1

α−→ q2
ε=⇒ q′. We

further use the notations q
a1···an====⇒ q′ and q

a=⇒ (a, a1, . . . , an ∈ A∗) analogously
to q

α1···αn−−−−−→ q′ and q
α−→. Finally, by q0

a1−→ q1
a2−→ · · · an−→ qn we denote a path,

where σ = a1a2 . . . an ∈ A∗ is called a trace (note: τ equals ε). We pick from an
IOLTS a state and use it to identify the behavior associated with it (i.e., q ∈ Q
describes one behavior of (Q, I,O,−→)). We only consider strongly convergent
IOLTS (i.e., no infinite τ -sequences exist).
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In the ioco testing theory, both specification s as well as a (black-box) imple-
mentation under test i are assumed to be (explicitly or implicitly) given as
IOLTS. In particular, ioco does not necessarily require specification s to be
input-enabled, whereas implementation i is assumed to never reject any input
a ∈ I from the environment (or tester). More precisely, ioco requires implemen-
tations to be weak input-enabled (i.e., ∀q ∈ Q : ∀a ∈ I : q

a=⇒) thus yielding the
subclass of I/O transition systems (IOTS). Intuitively, the IOTS of implemen-
tation i I/O-conforms to the IOLTS of specification s if all output behaviors of
i observed after any possible sequence σ = α1 · · · αn in s are permitted by s. In
case of non-determinism, more than one state may be reachable in i as well as
in s after sequence σ and therefore all possible outputs of any state in the set

p after σ := {q ∈ Q | p
σ=⇒ q}

have to be taken into account. Formally, set Out(Q′) ⊆ O denotes all output
actions being enabled in any possible state q ∈ Q′ = p after σ. To further reject
trivial implementations never showing any outputs, the notion of quiescence has
been introduced by means of a special observable action δ explicitly denoting the
permission of the absence (suspension) of any output in a state p, thus requiring
an input to proceed. In particular, p is quiescent, denoted δ(p), iff

init(p) := {α ∈ (I ∪ O ∪ {τ}) | p
α=⇒} ⊆ I

holds. Thereupon, we denote

Out(P ) := {α ∈ O | ∃p ∈ P : p
α−→} ∪ {δ | ∃p ∈ P : δ(p)},

where symbol δ is used both as action as well as a state predicate. Based on
these notions, I/O conformance is defined w. r. t. the set of suspension traces

Straces(s) := {σ ∈ (I ∪ O ∪ {δ})∗ | p
σ=⇒}

of specification s, where q
δ−→ q iff δ(q).

Definition 1 (ioco [24]). Let s be an IOLTS and i an IOTS with identical sets
I and O.

i ioco s :⇔ ∀σ ∈ Straces(s) : Out(i after σ) ⊆ Out(s after σ).

3 Modal Input/Output Conformance with Input Refusals

IOLTS permit specifications s to be underspecified by means of unspecified input
behaviors and non-deterministic input/output behaviors. In particular, if q � a−→,
then no proper reaction on occurrences of input a ∈ I is specified while residing
in state q. Moreover, if q

a−→ q′ and q
a−→ q′′, a ∈ Aτ , it does not neces-

sarily follow that q′ = q′′ and if q
a′

−→ q′ and q
a′′

−→ q′′ with a′, a′′ ∈ O, it
does not necessarily follow that a′ = a′′ (i.e., IOLTS are neither input-, nor
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output-deterministic). In this way, ioco permits, at least up to a certain degree,
implementation freedom in two ways. First, in case of input behaviors being
unspecified in s, ioco solely relies on positive testing principles, i.e., reactions
to unspecified input behaviors are never tested and may therefore show arbi-
trary output behaviors if ever applied to i. Second, in case of non-deterministic
specifications, implementation i is allowed to show any, but at least one of those
output behaviors being permitted by s (if any), or it must be quiescent, else.
These limitations of ioco in handling underspecified behaviors essentially stem
from the limited expressive power of IOLTS. To overcome these limitations, we
propose to adopt richer specification concepts from interfaces theories [22] to
serve as novel formal foundation for I/O conformance testing. In particular, we
replace IOLTS by a modified version of (I/O-labeled) Modal Interface Automata
(MIA) with universal state [5]. Similar to IOLTS, MIA also support both kinds
of underspecification but allow for explicit distinctions (1) between obligatory
and allowed behaviors in case of non-deterministic input/output behaviors, and
(2) between critical and non-critical unspecified input behaviors.

Concerning (1), MIA separate mandatory from optional behaviors in terms
of may/must transition modality. For every must-transition q

a−→� q′, a cor-
responding may-transition q

a−→♦ q′ exists, as mandatory behaviors must
also be allowed (so-called syntactic consistency). Conversely, may-transitions
q

a−→♦ q′ for which q � a−→� q′ holds constitute optional behaviors. Accordingly,
we call may-transitions without corresponding must-transitions optional, else
mandatory.

Concerning (2), MIA make explicit input actions a ∈ I being unspecified, yet
uncritical in a certain state q by introducing may-transitions q

a−→♦ u leading
to a special universal state u (permitting any possible behavior following that
input). In contrast, unintended input actions to be rejected in a certain state are
implicitly forbidden if q � a−→♦ holds. We alter the interpretation of unspecified
input behaviors of MIA by introducing a distinct failure state qΦ replacing u. As
a consequence, an unspecified input a ∈ I being uncritical if residing in a certain
state q is (similar to IOLTS) implicitly denoted as q � a−→♦, whereas inputs a′ ∈ I

being critical while residing in state q are explicitly forbidden by q
a′

−→� qΦ.
We therefore enrich I/O conformance testing by the notion of input refusals in
the spirit of refusal testing, initially proposed by Phillips for testing preorders
on LTS with undirected actions [21]. Analogous to quiescence, denoting the
observable absence of any output in a certain state, refusals therefore denote the
observable rejection of a particular input in a certain state during testing. In
this way, we unify positive testing (i.e., unspecified behaviors are ignored) and
negative testing (i.e., unspecified behaviors must be rejected) with optimistic
and pessimistic environmental assumptions known from interface theories [22].
In particular, we are now able to explicitly reject certain input behavior, which
is not supported by ioco. We refer to the resulting model as Modal Interface
Automata with Input Refusals (IR-MIA).
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Fig. 1. Sample IR-MIA

Definition 2 (IR-MIA). A Modal Interface Automaton with Input-Refusal
(IR-MIA or MIAΦ) is a tuple (Q, IQ, OQ,−→�,−→♦, qΦ), where Q is a finite
set of states with failure state qΦ ∈ Q, AQ = IQ ∪ OQ is a finite set of actions
with τ /∈ AQ and IQ ∩ OQ = ∅ and for all γ ∈ {♦,�}, a ∈ AQ ∪ {τ}, i ∈ IQ,

1. −→γ⊆ ((Q \ {qΦ}) × IQ × Q) ∪ ((Q \ {qΦ}) × (OQ ∪ {τ}) × (Q \ {qΦ})),
2. q

a−→� q′ ⇒ q
a−→♦ q′,

3. q
i−→♦ qΦ ⇔ q

i−→� qΦ, and
4. q

i−→� qΦ ⇒
(
∀q′.q i−→♦ q′ ⇒ q′ = qΦ

)
.

Property 3 ensures syntactic consistency and properties 1 and 2 together
with property 4 ensure that the failure state qΦ only occurs as target of must-
transitions being labeled with input actions. Property 5 further requires consis-
tency of refusals of specified input actions in every state (i.e., each input is either
forbidden or not, but not both in a state q).

Figure 1b shows a sample IR-MIA. Dashed lines denote optional behaviors
and solid lines denote mandatory behaviors. Additionally, the distinct state qΦ

depicts the failure state (i.e., input f is refused by state q1). This example also
exhibits input non-determinism (state q0 defines two possible reactions to input
a), as well as output non-determinism (state q3 defines two possible outputs
after input d).

Modal refinement provides a semantic implementation relation on MIA [5], an
adapted version of modal refinement due to Larsen and Thomsen [14]. Intuitively,
MIA P refines MIA Q if mandatory behaviors of Q are preserved in P and
optional behaviors in P are permitted by Q. Adapted to IR-MIA, input behaviors
being unspecified in Q, may be either implemented arbitrarily in P , or become
forbidden after refinement. In particular, if q � a−→♦ holds in Q, then either q � a−→♦,
q

a−→♦ q′ (and even q
a−→� q′), or q

a−→� qΦ holds in P , respectively.

Definition 3 (IR-MIA Refinement). Let P,Q be MIAΦ with IP = IQ and
OP = OQ. A relation R ⊆ P × Q is an IR-MIA Refinement Relation if for all
(p, q) ∈ R and ω ∈ (O ∪ {τ}), with p �= pΦ and γ ∈ {♦,�}, it holds that
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1. q �= qΦ,
2. q

i−→� q′ �= qΦ implies ∃p′.p i−→�
ε=⇒� p′ �= pΦ and (p′, q′) ∈ R,

3. q
ω−→� q′ implies ∃p′.p ω̂=⇒� p′ and (p′, q′) ∈ R,

4. p
i−→♦ p′ ∧ q

i−→♦ implies ∃q′.q i−→♦
ε=⇒♦ q′ and (p′, q′) ∈ R,

5. q
i−→♦ q′ implies ∃p′.p i−→♦

ε=⇒♦ p′ and (p′, q′) ∈ R, and
6. p

ω−→♦ p′ implies ∃q′.q ω̂=⇒♦ q′ and (p′, q′) ∈ R.

State p refines state q if there exists R such that (p, q) ∈ R. (Note: q
ω̂=⇒γ q′

equals q
ε=⇒γ

ω−→γ
ε=⇒γ q′).

Clause 1 ensures that the failure state qΦ can only be refined by pΦ, since both
suspend any subsequent behavior. Clauses 2 and 3 guarantee that mandatory
behavior of Q is preserved by P . All other clauses handle optional behavior,
where inputs are either refined to forbidden or mandatory inputs, and outputs
are either refined to mandatory or unspecified outputs. By P �Φ Q, we denote
the existence of an IR-MIA refinement relation between P and Q.

As an example, consider IR-MIA Q and Q′ in Fig. 1. Q′ �Φ Q does not hold
as the mandatory output e of q4 in Q is not mandatory anymore in Q′. However,
the other modifications in Q′ are valid refinements of Q as output g of q3 has
become mandatory, and optional input f of q1 is now refused (i.e., the transition
is redirected to qΦ). Additionally, inputs being unspecified in Q may be added
to Q′ (e.g., q4 of Q′ now accepts input d). Furthermore, internal steps may be
added after inputs as well as before and after outputs under refinement (e.g., Q′

has a τ step after output e in q3). The former ensures that a refined IR-MIA
may be controlled by the environment in the same way as the unrefined IR-
MIA. Considering IR-MIA Q′′ in Fig. 1 instead, Q′′ �Φ Q holds. The removal
of mandatory output e from q4 is valid as q4 is not reachable anymore after
refinement.

In the context of modal I/O conformance testing, modal refinement offers a
controlled way to resolve underspecification within specifications s. In addition,
we also assume i to be represented as IR-MIA in order to support (partially)
underspecified implementations under test as apparent in earlier phases of con-
tinuous systems and component development.

We next define an adapted version of ioco to operate on IR-MIA. Intuitively,
a modal implementation i I/O-conforms to a modal specification s if all observ-
able mandatory behaviors of s are also observable as mandatory behaviors of i
and none of the observable optional behaviors of i exceed the observable optional
behaviors of s. If established between implementation i and specification s, modal
I/O conformance ensures for all implementations i′ �Φ i, derivable from i via
modal refinement, the existence of an accompanying specification refinement
s′ �Φ s of s such that i′ is I/O conforming to s′.

Similar to δ denoting observable quiescence, we introduce a state predicate
ϕ to denote may-failure/must-failure states (i.e., states having may/must input-
transitions leading to qΦ). We therefore use ϕ as a special symbol to observe
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refusals of particular inputs in certain states of the implementation during test-
ing. To this end, we first lift the auxiliary notations of ioco from IOLTS to
IR-MIA, where we write γ ∈ {♦,�} for short in the following.

Definition 4. Let Q be a MIAΦ over I and O, p ∈ Q and σ ∈ (I ∪O ∪{δ, ϕ})∗.

– initγ(p) := {μ ∈ (I ∪ O) | p
μ

=⇒γ} ∪ {ϕ | p = pΦ},
– p is may-quiescent, denoted by δ♦(p), iff init�(p) ⊆ I and p �= pΦ,
– p is must-quiescent, denoted by δ�(p), iff init♦(p) ⊆ I and p �= pΦ,
– p is may-failure, denoted by ϕ♦(p), iff p = pΦ or ∃p′ ∈ Q : (p′′ i−→♦ p ∧

p′′ � i−→� p),
– p is must-failure, denoted by ϕ�(p), iff p = pΦ,
– p after γ σ := {p′ | p

σ=⇒γ p′},
– Outγ(p) := {μ ∈ O | p

μ−→γ} ∪ {δ | δγ(p)} ∪ {ϕ | ϕγ(p)}, and
– Stracesγ(p) := {σ ∈ (I ∪ O ∪ {δ, ϕ})∗ | p

σ=⇒γ}, where p
δ−→γ p if δγ(p), and

p
ϕ−→γ p if ϕγ(p).

Hence, quiescence as well as failure behaviors may occur with both may- and
must-modality. Intuitively, a state is may-quiescent if all enabled output tran-
sitions are optional, i.e., such a state may become quiescent under refinement.
Likewise, a state p is a may-failure if there is an optional input leading to p,
since this optional input may be refused under refinement.

According to ioco, MIAΦ i constituting a modal implementation under test
is assumed to be input-enabled. In particular, modal input-enabledness of IR-
MIA comes in four flavors by combining weak/strong input-enabledness with
may-/must-modality. Note, that q

i−→γ q′ implies q
i=⇒γ q′, q

i=⇒� q′ implies
q

i=⇒♦ q′, and q
i−→� q′ implies q

i−→♦ q′.

Definition 5 (Input-Enabled IR-MIA). MIAΦ Q is weak/strong γ-input-
enabled, respectively, iff for each q ∈ Q \ {qΦ} it holds that ∀i ∈ I : ∃q′ ∈ Q :
q

i=⇒γ q′, or ∀i ∈ I : ∃q′ ∈ Q : q
i−→γ q′.

May-input-enabledness is preserved under modal refinement as optional input
behaviors either remain optional, become mandatory, or are redirected to the fail-
ure state (and finally become must-input-enabled under complete refinement).

Lemma 1. If MIAΦ i is strong may-input-enabled then i′ �Φ i is strong may-
input-enabled.

We now define a modal version of ioco on IR-MIA (called modal-irioco or
miocoΦ), by means of alternating suspension-trace inclusion.

Definition 6 (modal-irioco). Let s and i be MIAΦ over I and O with i being
weak may-input-enabled. i miocoΦ s :⇔
1. ∀σ ∈ Straces♦(s) : Out♦(iafter♦ σ) ⊆ Out♦(safter♦ σ), and
2. ∀σ ∈ Straces♦(i) : Out�(safter♦ σ) ⊆ Out�(iafter♦ σ).
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Fig. 2. Problem of modal-irioco regarding MIA with universal state.

We illustrate the intuition of modal-irioco by providing a concrete exam-
ple. Let IR-MIA in Fig. 1b constitute implementation i and IR-MIA in Fig. 1c
constitute specification s. Similar to ioco, Property 1 of modal-irioco requires
all possible output behaviors of i to be permitted by s which is satisfied in this
example. Property 2 of modal-irioco requires all mandatory outputs of s to be
actually implemented as mandatory outputs in i. This property does not hold in
the example as mandatory output e of q4 in s is not mandatory in i. As a conse-
quence, i miocoΦ s does not hold. The example in Fig. 1 also explains why we
consider Straces♦ and after♦ in property 2 (unlike modal-ioco in [15]). Other-
wise, output e of q4 in i would not be considered as mandatory output behavior
because q4 is not reachable via must-transitions. In contrast, when considering
the IR-MIA in Fig. 1a as i and the IR-MIA in Fig. 1c as s, we have i miocoΦ s
as the mandatory output e of q4 in s is not reachable in i.

Finally, Fig. 2a, b and c illustrate the necessity for re-interpreting universal
state u of MIA [5] as failure state qΦ in IR-MIA. The IR-MIA in Fig. 2a serves
as implementation i, the MIA in Fig. 2b serves as specification su with universal
state, and the IR-MIA in Fig. 2c depicts the same specification with failure state
sΦ instead of u. Hence, i would be (erroneously) considered to be non-conforming
to su as state u does not specify any outputs (i.e., u is quiescent). In contrast,
we have i miocoΦ sΦ as the reaction of i to input a is never tested, because
this input is unspecified in sΦ.

An I/O conformance testing theory is correct if it is sound (i.e., every imple-
mentation i conforming to specification s does indeed only show specified behav-
iors), and complete (i.e., every erroneous implementation i is rejected) [24]. For
lifting these notions to IR-MIA, we relate modal-irioco to ioco. This way, we
show compatibility of modal-irioco and the original ioco as follows.

– modal-irioco is sound if i miocoΦ s implies that every refinement of i con-
forms to a refinement of s with respect to ioco.

– modal-irioco is complete if the correctness of all refinements of i regarding
s with respect to ioco implies i miocoΦ s, and if at least one refinement of i
is non-conforming to any refinement of s, then i miocoΦ s does not hold.
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We first have to show that modal-irioco is preserved under modal refine-
ment. Although, intuitions behind both relations are quite similar, they are
incomparable (cf. [18] for counter-examples). Instead, we obtain a weaker corre-
spondence.

Theorem 1. Let i, s be MIAΦ, i being weak may-input-enabled and i miocoΦ s.
Then for each i′ �Φ i there exists s′ �Φ s such that i′ miocoΦ s′ holds.

Note, that we refer to the ioco-relation in our modal-irioco in Clause 1
in Definition 6. Hence, in order to relate modal-irioco and ioco, we define
applications of ioco to IR-MIA by considering the may-transition relation as
the actual transition relation.

Definition 7 (ioco on MIAΦ). Let i, s be MIAΦ, i be weak may-input-enabled.
Then, i ioco s :⇔ ∀σ ∈ Straces♦(s) : Out♦(iafter♦ σ) ⊆ Out♦(safter♦ σ).

Based on this definition, we are able to prove correctness of modal-irioco.

Theorem 2 (modal-irioco is correct). Let i, s be MIAΦ, i being weak may-
input-enabled.

1. If i miocoΦ s, then for all i′ �Φ i, there exists s′ �Φ s such that i′ ioco s′.
2. If there exists i′ �Φ i such that i′ ioco s′ does not hold for any s′ �Φ s, then

i miocoΦ s does not hold.

Property 1 states soundness of modal-irioco. However, the immediate
inverse does not hold as ioco does not guarantee mandatory behaviors of s to be
actually implemented by i (cf. [18] for a counter-example). Instead, Property 2
states completeness of modal-irioco in the sense that modal implementations
i are rejected if at least one refinement of i exists not conforming to any refine-
ment of specification s. Finally, we conclude that miocoΦ becomes a preorder
if being restricted to input-enabled IR-MIA specifications.

Theorem 3. miocoΦ is a preorder on the set of weak may-input-enabled MIAΦ.

Must-input-enabledness (and therefore may-input-enabledness) of a specifica-
tion s may be achieved for any given IR-MIA by applying a behavior-preserving
canonical input completion, while still allowing arbitrary refinements of previ-
ously unspecified inputs (instead of ignoring inputs as, e.g., achieved by angelic
completion [25]). This construction essentially adapts the notion of demonic
completion [10] from IOLTS to IR-MIA as follows.

Definition 8 (Demonic Completion of IR-MIA). The demonic completion
of MIAΦ (Q, I,O,−→�,−→♦, qΦ) with ∀q ∈ Q : q

τ−→♦⇒ q
τ−→� is a MIAΦ

(Q′, I, O,−→′
�,−→′

♦, qΦ), where

– Q′ = Q ∪ {qχ, qΩ} with qχ, qΩ /∈ Q, and
– −→′

�=−→� ∪{(q, i, qχ) | q ∈ Q, i ∈ I, q � i−→�, q � τ−→�} ∪ {(qχ, τ, qΩ)} ∪
{(qχ, λ, qχ), (qΩ , λ, qΩ) | λ ∈ I}.
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Fig. 3. Demonic completion adapted for MIAΦ and miocoΦ.

– −→′
♦=−→♦ ∪{(q, i, qχ) | q ∈ Q, i ∈ I, q � i−→�, q � τ−→�} ∪ {(qχ, τ, qΩ)} ∪

{(qΩ , λ, qχ) | λ ∈ (I ∪ O)} ∪ {(qχ, λ, qχ), (qΩ , λ, qΩ) | λ ∈ I}.
The restriction imposed by ∀q ∈ Q : q

τ−→♦⇒ q
τ−→� is due to weak input-

enabled states not being input-enabled anymore if an optional τ -transition is
removed. We refer to the demonic completion of MIAΦ s as Ξ(s).

Figure 3 illustrates demonic completion. As state q1 of s is not must-input-
enabled, a must-transition for action a is added from q1 to qχ. The fresh states
qχ and qΩ have outgoing must-transitions for each i ∈ I, thus being (strong)
must-input-enabled. Additionally, qχ in combination with qΩ allow (but do not
require) every output o ∈ O (in qχ via one silent move), such that demonic
completion preserves underspecification. We conclude that this construction pre-
serves modal-irioco.

Theorem 4. Let i, s be MIAΦ with i being weak must-input-enabled. Then
i miocoΦ Ξ(s) if i miocoΦ s.

4 Compositionality

Interface theories are equipped with a (binary) interleaving parallel operator ‖
on interface specifications to define interaction behaviors in systems composed
of multiple concurrently running components [8]. Intuitively, transition p

a−→ p′,
a ∈ OP , of component P synchronizes with transition q

a−→ q′, a ∈ IQ, of com-
ponent Q, where the resulting synchronized action (p, q) τ−→ (p′, q′) becomes a
silent move. Modal interface theories generalize parallel composition to multi-
cast communication (i.e., one output action synchronizes with all concurrently
running components having this action as input) and explicit hiding of synchro-
nized output actions [22]. According to MIA, we define parallel composition on
IR-MIA in two steps: (1) standard parallel product P1 ⊗Φ P2 on MIAΦ P1, P2,
followed by (2) parallel composition P1 ‖Φ P2, removing erroneous states (p1, p2)
from P1 ⊗Φ P2, where for an output action of p1, no corresponding input is pro-
vided by p2 (and vice versa). In addition, all states (p′

1, p
′
2) from which erroneous

states are reachable are also removed (pruned) from P1 ‖Φ P2.
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Concerning (1), we first require composability of P1 and P2 (i.e., disjoint
output actions). In P1 ⊗Φ P2, a fresh state p12Φ serves as unified failure state.
The input alphabet of P1 ⊗Φ P2 contains all those inputs of P1 and P2 not
being contained in one of their output sets, whereas the output alphabet of
P1⊗ΦP2 is the union of both output sets. The modality γ of composed transitions
(p1, p2)

α−→γ (p′
1, p

′
2) depends on the modality of the individual transitions.

Definition 9 (IR-MIA Parallel Product). MIAΦ P1, P2 are composable
if O1 ∩ O2 = ∅. The parallel product is defined as P1 ⊗Φ P2 = ((P1 × P2) ∪
{q12Φ}, I, O,−→�,−→♦, p12Φ), where I =def (I1 ∪ I2) \ (O1 ∪ O2) and O =def

O1∪O2, and where −→� and −→♦ are the least relations satisfying the following
conditions:

(May1/Must1) (p1, p2)
α−→γ (p′

1, p2) if p1
α−→γ p′

1 and α /∈ A2

(May2/Must2) (p1, p2)
α−→γ (p1, p

′
2) if p2

α−→γ p′
2 and α /∈ A1

(May3/Must3) (p1, p2)
a−→γ (p′

1, p
′
2) if p1

a−→γ p′
1 and p2

a−→γ p′
2

for some a

(May4/Must4) (p1, p2)
a−→γ p12Φ if p1

a−→γ p′
1 and p2 � a−→γ

for some a ∈ I1 ∩ A2

(May5/Must5) (p1, p2)
a−→γ p12Φ if p2

a−→γ p′
2 and p1 � a−→γ

for some a ∈ I2 ∩ A1.

Rules (May1/Must1) and (May2/Must2) define interleaving of transitions
labeled with actions being exclusive to one of both components; whereas Rule
(May3/Must3) synchronizes transitions with common actions, and the Rules
(May4/Must4) and (May5/Must5) forbid transitions of a component labeled
with inputs being common to both components, but not being supported by the
other component. Concerning (2), we define E ⊆ P1 × P2 to contain illegal state
pairs (p1, p2) in P1 ⊗Φ P2.

Definition 10 (Illegal State Pairs). Given a parallel product P1 ⊗Φ P2, a
state (p1, p2) is a new error if there exists a ∈ A1 ∩ A2 such that

– a ∈ O1, p1
a−→♦ and p2 � a−→�, or

– a ∈ O2, p2
a−→♦ and p1 � a−→�, or

– a ∈ O1, p1
a−→♦ and p2

a−→♦ p2Φ, or
– a ∈ O2, p2

a−→♦ and p1
a−→♦ p1Φ.

The relation E ⊆ P1 × P2 containing illegal state pairs is the least relation such
that (p1, p2) ∈ E if

– (p1, p2) is a new error, or
– (p1, p2)

ω−→� (p′
1, p

′
2) with ω ∈ (O ∪ {τ}) and (p′

1, p
′
2) ∈ E.

If the initial state of P1 ⊗Φ P2 is illegal (i.e., (p01, p02) ∈ E), it is replaced by
a fresh initial state without incoming and outgoing transitions such that P1 and
P2 are considered incompatible.
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Fig. 4. Example for Parallel Composition with Multicast and Quotienting (cf. Sect. 5)

Definition 11 (IR-MIA Parallel Composition). The parallel composition
P1 ‖Φ P2 of P1 ⊗Φ P2 is obtained by pruning illegal states as follows.

– transitions leading to a state of the form (q1Φ, p2) or (p1, q2Φ) are redirected
to q12Φ.

– states (p1, p2) ∈ E and all unreachable states (except for q12Φ) and all their
incoming and outgoing transitions are removed.

– for states (p1, p2) /∈ E and (p1, p2)
i−→♦ (p′

1, p
′
2) ∈ E, i ∈ I, all transitions

(p1, p2)
i−→♦ (p′′

1 , p′′
2) are removed.

If (p1, p2) ∈ P1 ‖Φ P2, we write p1 ‖Φ p2 and call p1 and p2 compatible.

For example, consider P ′ = Q ‖Φ D (cf. Figs. 1c and 4). Here, q0 of both Q
and D have action a as common action thus being synchronized to become an
output action in P ′ (to allow multicast communication). Action a is mandatory
in P ′ as a is mandatory in both Q and D. In any other case, the resulting
transition modality becomes optional. Further common actions (i.e., b and f )
are treated similarly under composition. In contrast, transitions with actions
being exclusive to Q or D are preserved under composition. As Q⊗Φ D contains
no illegal states, no pruning is required in P ′ = Q ‖Φ D. In contrast, assuming,
e.g., one of the inputs a of Q being optional instead, then the initial state of P ′

would become illegal as a ∈ OD, pD
a−→♦ and pQ � a−→�, and Q and D would be

incompatible.
We obtain the following compositionality result for modal-irioco with

respect to parallel composition with multicast communication.

Theorem 5 (Compositionality of modal-irioco). Let s1, s2, i1, and i2
be MIAΦ with i1 and i2 being strong must-input-enabled, and s1 and s2

being compatible. Then it holds that (i1 miocoΦ s1 ∧ i2 miocoΦ s2) ⇒ i1 ‖Φ

i2 miocoΦ s1 ‖Φ s2.
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Theorem 5 is restricted to must-input-enabled implementations as the input
of an input/output pair has to be mandatory (otherwise leading to an illegal
state). We further require strong input-enabledness as inputs in an input/output
pair have to immediately react to outputs (otherwise, again, leading to an illegal
state). In [18], it is further shown that IR-MIA parallel composition is associa-
tive, thus facilitating multicast communication among multiple IR-MIA compo-
nents being composed in arbitrary order. In addition, it is shown in [18] that
compositionality of modal-irioco also holds if we combine multicast parallel
composition with explicit hiding of outputs, if specification s has no τ -steps.

5 Decompositionality

Compositionality of modal-irioco allows for decomposing I/O conformance
testing of systems consisting of several interacting components. In particular,
given two components c1, c2 being supposed to implement corresponding speci-
fications s1, s2, then Theorem 5 ensures that if c1 miocoΦ s1 and c2 miocoΦ s2

holds, then c1 ‖Φ c2 miocoΦ s1 ‖Φ s2 is guaranteed without the need for (re-
)testing after composition. However, in order to benefit from this property, a
mechanism is required to decompose specifications s = s1 ‖Φ s2 and respec-
tive implementations i = c1 ‖Φ c2, accordingly. Interface theories therefore pro-
vide quotient operators // serving as the inverse to parallel composition (i.e., if
c1 ‖ c2 = c then c // c1 = c2), where c2 is often referred to as unknown compo-
nent [28] or testing context [20]. We therefore adopt the quotient operator defined
for MIA with universal state [5] to IR-MIA. Similar to parallel composition, the
quotient operator is defined in two steps.

1. The pseudo-quotient P � D is constructed as appropriate communication
partner (if exists) for a given divisor D with respect to the overall specification
P .

2. The quotient P //Φ D is derived from P � D, again, by pruning erroneous
states.

For this, we require P and D to be τ -free and D to be may-deterministic (i.e.,
d

a−→♦ d′ and d
a−→♦ d′′ implies d′ = d′′). In contrast to [5], we restrict our

considerations to IR-MIA with at least one state and one may-transition. A pair
P and D satisfying these restrictions is called a quotient pair.

Definition 12 (IR-MIA Pseudo-Quotient). Let (P, IP , OP ,−→�,−→♦, pΦ)
and (D, ID, OD,−→�,−→♦, dΦ) be a MIAΦ quotient pair with AD ⊆ AP and
OD ⊆ OP . We set I =def IP ∪ OD and O =def OP \ OD. P � D =def (P ×
D, I,O,−→�,−→♦, (pΦ, dΦ)), where the transition relations are defined by the
rules:

(QMay1/QMust1) (p, d) a−→γ (p′, d) if p
a−→γ p′ �= pΦ and a /∈ AD

(QMay2) (p, d) a−→♦ (p′, d′) if p
a−→♦ p′ �= pΦ and d

a−→� d′ �= dΦ

(QMay3) (p, d) a−→♦ (p′, d′) if p
a−→♦ p′ �= pΦ, d

a−→♦ d′ �= dΦ
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and a /∈ OP ∩ ID

(QMust2) (p, d) a−→� (p′, d′) if p
a−→� p′ �= pΦ and d

a−→� d′ �= dΦ

(QMust3) (p, d) a−→� (p′, d′) if p
a−→♦ p′ �= pΦ, d

a−→♦ d′ �= dΦ

and a ∈ OD

(QMay4/QMust4) (p, d) a−→γ (pΦ, dΦ) if p
a−→γ pΦ and d � a−→� dΦ.

The Rules (QMay1/QMust1) to (QMust3) require p �= pΦ, as the special case
p = pΦ is handled by rule (QMay4/QMust4). Rule (QMay1/QMust1) concerns
transitions with uncommon actions. Rule (QMay2) requires a mandatory tran-
sition with action in D as composition requires input transitions labeled with
common actions to be mandatory (the additional requirement of Rule (QMay3)
is stated for the same reason). Rule (QMust3) only requires transitions to be
optional, because if a ∈ OD holds, then the resulting transition accepts as input
a common action (which must be mandatory for the composition).

The quotient P //Φ D is derived from pseudo-quotient P � D by recursively
pruning all so-called impossible states (p, d) (i.e., states leading to erroneous
parallel composition).

Definition 13 (IR-MIA Quotient). The set G ⊆ P ×D of impossible states
of pseudo-quotient P � D is defined as the least set satisfying the rules:

(G1) p
a−→� p′ �= pΦ and d � a−→� and a ∈ AD implies (p, d) ∈ G

(G2) p
a−→� pΦ and d

a−→♦ and a ∈ OD implies (p, d) ∈ G

(G3) (p, d) a−→� r and r ∈ G implies (p, d) ∈ G.

The quotient P //Φ D is obtained from P � D by deleting all states (p, d) ∈ G
(and respective transitions). If (p, d) ∈ P //Φ D, then we write p//Φ d, and quotient
P //Φ D is defined.

Rule (G1) ensures that for a transition labeled with a common action, there
is a corresponding transition in the divisor (otherwise, the state is impossible and
therefore removed). Rule (G2) ensures that a forbidden action of the specification
is also forbidden in the divisor (otherwise, the state is considered impossible).
Finally, Rule (G3) (recursively) removes all states from which impossible states
are reachable.

For example, consider the quotient Q = P //Φ D (cf. Figs. 1c, 4a, and c). A
common action becomes input action in Q if it is an input action in both P
and D (e.g., f ), and likewise for output actions. If a common action is output
action of P and input action of D, then it becomes output of Q (e.g., b). In
contrast, a common action must not be input action of P and output action
of D as composing outputs with inputs always yields outputs. Actions being
exclusive to P are treated similar to parallel composition, whereas D must not
have exclusive actions (cf. Definition 12).

For decomposability to hold for modal-irioco (i.e., i //Φ ci miocoΦ s //Φ
cs ∧ ci miocoΦ cs ⇒ i miocoΦ s), we further require i to only have manda-
tory outputs as illustrated in Fig. 5: here, i miocoΦ s does not hold, although
ci miocoΦ cs and i //Φ ci miocoΦ s //Φ cs holds. This is due to the fact that
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Fig. 5. Example for the necessity of mandatory outputs for i′ miocoΦ s′ ⇒
i miocoΦ s of Theorem 6.

optional outputs combined with mandatory outputs become mandatory inputs
in the quotient (as parallel composition requires inputs of an input/output pair
to be mandatory). The following result ensures that the quotient operator on
IR-MIA indeed serves (under the aforementioned restrictions) as the inverse to
parallel composition with respect to modal-irioco.

Theorem 6 (Decompositionality of modal-irioco). Let i, s, ci, and cs be
MIAΦ with i and ci being weak must-input-enabled and all output behaviors of i
being mandatory. Then i miocoΦ s if i //Φ ci miocoΦ s//Φ cs and ci miocoΦ cs.

Based on this result, modal-irioco supports synthesis of testing environ-
ments for testing through contexts [7,20], as well as a solution to the unknown-
component problem [28].

6 Related Work

We discuss related work on modal conformance relations, testing equivalences,
alternative formulations of, and extensions to I/O conformance testing and com-
position/decomposition results in I/O conformance testing.

Various interfaces theories have been presented defining modal conformance
relations by means of different kinds of modal refinement relations [22]. Amongst
others, Bauer et al. use interface automata for compositional reasoning [2],
whereas Alur et al. characterize modal conformance as alternating simulation
relation on interface automata [1], and Larsen et al. have shown that both views
on modal conformance coincide [13]. Based on our own previous work on modal
I/O conformance testing [15,17], we present, to the best of our knowledge, the
first comprehensive testing theory by means of a modal I/O conformance rela-
tion. More recently, Bujtor et al. proposed testing relations on modal transition
systems [6] based on (existing) test-suites, rather than being specification-based
as our approach.

In contrast to I/O conformance relations, testing equivalences constitute a
special class of (observational) equivalence relations [9,23]. One major differ-
ence to ioco-like theories is that actions are usually undirected, thus no dis-
tinction between (input) refusals and (output) quiescence is made as in our
approach [4,21].

Concerning alterations of and extensions to I/O conformance testing, Veanes
et al. and Gregorio-Rodŕıguez et al. propose to reformulate I/O conformance
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from suspension-trace inclusion to an alternating simulation to obtain a more
fine-grained conformance notion constituting a preorder [11,27]. However, these
approaches neither distinguish optional from mandatory behaviors, nor under-
specified from forbidden inputs as in our approach. Heerink and Tretmans
extended ioco by introducing so-called channels (i.e., subsets of I/O labels)
for weakening the requirement of input-enabledness of implementations under
test in order to also support refusal testing [12]. However, their notion of input
refusals refers to a global property rather than being specific to particular states
and they also do not distinguish mandatory from optional behaviors. Beohar
and Mousavi extend ioco by replacing IOLTS with so-called Featured Transi-
tion Systems (FTS) and thereby enhance ioco to express fine-grained behavioral
variability as apparent in software product lines [3]. As in our approach, FTS
allow the environment to explicitly influence the presence or absence of particular
transitions, whereas compositionality properties are not considered.

Concerning (de-)compositionality in I/O conformance testing, van der Bijl
et al. present a compositional version of ioco with respect to synchronous par-
allel composition on IOTS [26], whereas Noroozi et al. consider asynchronously
interacting components [19]. To overcome the inherent limitations of compo-
sitional I/O conformance testing, Daca et al. introduce alternative criteria for
obtaining compositional specifications [7]. Concerning decomposition in I/O con-
formance testing, Noroozi et al. describe a framework for decomposition of ioco
testing similar to our setting. However, all these related approaches neither dis-
tinguish mandatory from optional behaviors, nor support input refusals as in
our approach.

7 Conclusion

We proposed a novel foundation for modal I/O-conformance testing theory based
on a modified version of Modal Interface Automata with Input Refusals and show
correctness and (de-)compositionality properties of the corresponding modal I/O
conformance relation called modal-irioco. As a future work, we are interested
in properties of modal-irioco regarding compositionality with respect to fur-
ther operators on IR-MIA, such as interface conjunction [16] and asynchronous
parallel composition [19]. Furthermore, we aim at generating test suites, in the
spirit of Tretmans [24], exploiting the capabilities of modal-irioco, i.e., test
cases distinguishing optional from mandatory behaviors, as well as recognizing
refused inputs. In this line, we also plan to conduct a comprehensive case study
showing the usefulness of the framework.
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Abstract. In multi-view modeling the system under development is
described by distinct models, called views, which capture different per-
spectives of the system. Inevitably, possible overlaps of the views may
give rise to inconsistencies. Hence, it becomes essential to check for con-
sistency among the separate views. Existing work checks view consistency
of discrete systems (transition systems or finite automata) with respect to
two types of abstraction functions: (1) projections of state variables, (2)
projections of an alphabet of events onto a subalphabet. In this paper, we
study view consistency with respect to timing abstractions, specifically,
periodic sampling. We define the multi-view consistency problem for peri-
odic sampling abstractions, and provide an algorithm for the problem.

1 Introduction

Designing complex systems, such as distributed, embedded, or cyber-physical
systems, is a challenging task. As many of these systems are safety-critical, design
by trial-and-error is not an option, and more rigorous methods such as model-
based design are preferred (see [13] for an overview). In addition, the design of
such systems involves several experts and stakeholders, each having their own
perspective, or view, of the system [2,6,14]. These views are typically different
kinds of models. These model cover different and potentially overlapping aspects
of the system. In such a multi-view modeling setting, a basic problem is to check
that the views are consistent, i.e., that they don’t contradict each other [11].

In this paper we follow the multi-view modeling framework proposed in [11],
where systems are sets of behaviors (often described by transition systems), and
views are also sets of behaviors obtained by some kind of abstraction of system
behaviors. Previous work studied the view consistency problem for discrete sys-
tems (transition systems or automata) with respect to two types of abstraction
functions: (1) projections of state variables [11], and (2) projections of alphabet
of events onto a subalphabet [10].
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In this work we study the multi-view consistency problem for discrete systems
with respect to timing abstractions and in particular periodic sampling abstrac-
tion functions. Given a period which is a positive integer number T , the periodic
sampling abstraction consists in sampling the system once every T steps. That
is, given a system behavior which is a sequence of states s0s1s2 · · · , the periodic
sampling w.r.t. T = 2 produces the abstract behavior s0s2s4 · · · .

In summary the contributions of this paper are the following: first, we define
the notions of (forward and inverse) periodic sampling abstraction functions;
second, we study the closure of discrete systems under these abstraction func-
tions; third, we provide an algorithm for the multi-view consistency problem for
discrete systems in the periodic sampling setting. The algorithm is sound in the
sense that if it reports that the views are inconsistent, then an inconsistency
indeed exists. However, the algorithm may fail to detect all inconsistencies, as
it relies on a state-based reachability, and inconsistencies may also involve the
transition structure of the system.

2 Related Work

The view consistency problem is a well-known problem in the engineering com-
munity. The several design teams engaged in the development process of a sys-
tem obtain distinct models of the system utilizing versatile tools and modeling
languages [3,12].

Existing literature mainly focus on designing architectures that combine var-
ious modeling tools or elements of the same tools [5,9,15], while a formal frame-
work has been lacking with respect to behavioral views. [7,8] study behavioral
views within the context of cyber-physical systems, in order to aid their veri-
fication rather than checking view consistency. This is the focus of the recent
work [10,11] towards behavioral views. [11] offers a generic formal framework
for multi-view modeling and its basic problems, since the system and views are
within any global universe and most importantly they can be related by any
kind of abstraction functions. The framework is instantiated for discrete sys-
tems using projection of state variables as abstraction functions, and the view
consistency problem is solved. In [10] the framework is also extended to lan-
guages and automata, where abstraction functions are projections of alphabet
of events onto a subalphabet.

Our work follows the setting of [10,11], but the abstraction functions studied
there are different, and consist in projections, either of state variables, or of some
events in the alphabet of events. Here we consider timing abstractions, and in
particular periodic sampling abstraction functions, which to our knowledge have
not been investigated earlier in the multi-view modeling context.

3 Background

Sets: Let S denote an arbitrary finite set: |S| denotes its cardinality and P(S)
denotes its powerset. Also: Z>0 := {n ∈ Z | n > 0}, Z≥0 := {n ∈ Z | n ≥ 0} are
sets of integer numbers, and B := {0, 1} is the set of booleans.
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Alphabet, Finite words, Infinite words: A finite alphabet Σ is a non-empty finite
set of symbols. Σ∗ is the set of all finite words over Σ and Σω is the set of all
infinite words over Σ. The set of all words over Σ is Σ∞, i.e., Σ∞ = Σ∗ ∪ Σω.

3.1 Automata

Nondeterministic finite automaton: A nondeterministic finite automaton (NFA
for short) is a tuple A = (Q,Σ,Q0,Δ, F ) where Q is the finite set of states, Σ
is the finite alphabet, Q0 ⊆ Q is the set of initial states, Δ ⊆ Q × Σ × Q
is the transition function, and F ⊆ Q is the set of final states. A path
Pw of A over a finite word w = w0 · · · wn−1 ∈ Σ∗ is a finite sequence
Pw : (q0, w0, q1) · · · (qn−1, wn−1, qn) such that q0 ∈ Q0 is the initial state and
(qi, wi, qi+1) ∈ Δ for every 0 ≤ i < n. A path Pw of A over a finite word w ∈ Σ∗

is called accepting if additionally qn ∈ F . A finite word w ∈ Σ∗ is accepted by
A if there is an accepting path Pw of A over w. The language accepted by A,
also called the behavior of A, written L(A), is the set of finite words accepted
by A: L(A) = {w ∈ Σ∗ | ∃ accepting path Pw of A over w}.

We say that A is deterministic (DFA for short) iff (i) |Q0| = 1 and (ii) for
every q ∈ Q and x ∈ Σ there exists at most one successor state q′ ∈ Q such that
(q, x, q′) ∈ Δ. We call two automata equivalent iff they accept the same language.
It is known that every nondeterministic finite automaton can be transformed into
an equivalent deterministic finite automaton [4].

Nondeterministic Muller automaton: A nondeterministic Muller automaton
(NMA for short) is a tuple A = (Q,Σ,Q0,Δ, F ) where Q,Σ,Q0,Δ are defined
as in a NFA and F ⊆ 2Q. Now an infinite path Pw of A over an infinite word
w = w0w1 · · · ∈ Σω is an infinite sequence Pw : (q0, w0, q1)(q1, w1, q2) · · · such
that q0 ∈ Q0 is the initial state and (qi, wi, qi+1) ∈ Δ for every i ≥ 0. For
every path Pw of A over an infinite word w ∈ Σω we denote with Inf (Pw)
the set of states occurring an infinite number of times along Pw. Then, a path
Pw of A over w ∈ Σω is called accepting if additionally Inf (Pw) ∈ F . An
infinite word w ∈ Σω is accepted by A if there is an accepting path Pw of
A over w. The language accepted by A, also called the behavior of A, writ-
ten L(A), is the set of infinite words accepted by A: L(A) = {w ∈ Σω |
∃ infinite accepting path Pw of A over w}. A deterministic Muller automaton
(DMA for short) is the deterministic variant of NMA, like DFAs are deterministic
NFAs. Every nondeterministic Muller automaton has an equivalent deterministic
Muller automaton [1].

3.2 Multi-view Modeling

In multi-view modeling, one or more design teams obtain diverse models (views)
of the same system under development, as they target capturing and analyzing
different aspects of the system. For our framework we consider a system and
its views as sets of behaviors [11]. There is no restriction on the behavior of the
system, and we only assume that it is defined within an arbitrary global universe.
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Formally, a system S over a domain of behaviors U , is a subset of U : S ⊆ U . A
view is intuitively an incomplete picture of a system, and may be obtained by
some kind of transformation of the system behaviors into (incomplete) behaviors
in another domain. Following [11], such a transformation is defined by means of
an abstraction function a : U → D, where D is the view domain. A view V over
view domain D, is a subset of D: V ⊆ D.

However, it is not always the case that the system S is given. Indeed, usually,
only the views are available and we need to check for the existence of such a
system S, which, in positive cases, is constructed from the views. The existence
of S implies that the views should not have inconsistencies among them. But
this raises the question of what does formally consistency mean?

Following [10,11] we define the notion of consistency. A set of views
V1, · · · ,Vn over view domains D1, · · · ,Dn, are consistent with respect to a set
of abstraction functions a1, · · · , an, if there exists a system S over U so that
Vi = ai(S), for all i = 1, · · · , n. In general, we call such a system S a witness
system to the consistency of V1, · · · ,Vn. Obviously, if there is no such system,
then we conclude that the views are inconsistent.

In our setting, both systems and views are finite state discrete systems, as
defined in the next section, and the views are obtained by applying periodic
sampling abstraction functions.

3.3 Symbolic Discrete Systems

We consider finite state discrete systems described symbolically as in [11]. The
state space is described by a (finite) set of boolean variables X, resulting in 2n

states where n = |X|, and a state s over X is a function s : X → B. A behavior
over X is in general a finite or infinite sequence of states over X, σ = s0s1 · · · ,
where si denotes the state at position i. We denote with U(X) the set of all
possible behaviors over X. Semantically, a discrete system S over X is a set of
behaviors over X, i.e., S ⊆ U(X).

In the sequel we give concrete (syntactic) representations of discrete sys-
tems of two kinds: first, fully observable systems where all variables are observ-
able; second, non-fully-observable systems which also have internal, unobservable
variables.

Fully-observable discrete systems: Initially we consider fully-observable symbolic
discrete systems, i.e., systems where all variables are observable. Syntactically,
a fully-observable discrete system (FOS for short) is defined by a triple S =
(X, θ, φ) where X is the finite set of boolean variables, θ is a boolean expression
over X characterizing the set of all initial states, and φ is a boolean expression
over X ∪ X ′, where X ′ := {x′ | x ∈ X} is the set of the next state variables.
φ characterizes pairs of states (s, s′) representing a transition from s to s′ of S.
We write θ(s) to denote that s satisfies θ. We write φ(s, s′) to denote that the
pair (s, s′) satisfies φ, i.e., that there is a transition from s to s′.
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A behavior of a FOS (X, θ, φ) is a finite or infinite sequence of states over X,
σ = s0s1 · · · , such that σ can be generated by the FOS, i.e., such that θ(s0) and
∀i : φ(si, si+1). We denote by [[S]] the set of all behaviors of S.

Non-fully-observable discrete systems: Fully-observable systems can also be
extended with a set of internal, unobservable state variables. For their defin-
ition we need to introduce the notion of hiding function.

Given a state s over the set of variables X and a subset Y ⊆ X, the hiding
function hY projects s onto the set of variables Y , hence hY hides from s all
variables in X\Y . Then hY (s) is defined to be the new state s′, that is, s′ : Y → B

such that s′(x) = s(x) for every x ∈ Y . We extend hiding to sets of states and
to behaviors. For a set of states s = {s1, · · · , sn} where si : X → B for every
1 ≤ i ≤ n, we define hY (s) = {hY (s1), · · · , hY (sn)}. If σ = s0s1 · · · is a behavior
over X, then hY (σ) is a behavior over Y defined by hY (σ) := hY (s0)hY (s1) · · · .
If S is a discrete system over X, then hY ([[S]]) := {hY (σ) | σ ∈ [[S]]}.

Formally, a non-fully-observable discrete system (nFOS for short), described
symbolically, is a tuple S = (X,Z, θ, φ) where X,Z are disjoint finite sets of
variables such that X describes the set of observable variables, and Z the set of
internal (unobservable) variables. The initial condition θ is a boolean expression
over X ∪ Z, and the transition relation φ is a boolean expression over X ∪ Z ∪
X ′ ∪ Z ′.

A behavior of a nFOS S = (X,Z, θ, φ) is a finite or infinite sequence of states
over X ∪ Z which can be generated by S, in the same manner as with behaviors
generated by a FOS. The observable behavior of a behavior σ over X ∪ Z is the
behavior hX(σ) over X. In what follows we denote by [[S]] the set of all behaviors
of S (over X ∪ Z), and by [[S]]o the set of its observable behaviors (over X). If
Z = ∅, i.e., the system has no internal variables, then it is a FOS. Note that for
every FOS S, it holds that [[S]] = [[S]]o.

4 Forward and Inverse Periodic Sampling Abstraction
Functions

Now we would like to relate systems over U and views over D, using periodic
sampling abstraction functions. We define as period any T ∈ Z>0. Note that in
general, we can apply the periodic sampling to the behaviors starting from the
state at position τ = 0 or at τ > 0, τ ∈ Z.

Periodic sampling abstraction functions (forward): Let X be a finite set of
variables. Given a domain of behaviors U(X) and a view domain D(X) =
U(X), a periodic sampling abstraction function from U(X) to D(X) w.r.t.
period T and initial position τ , denoted by aT,τ , is defined by the mapping
aT,τ : U(X) → D(X) such that for every behavior σ = s0s1 · · · ∈ U(X),
aT,τ (σ) := s′

0s
′
1 · · · ∈ D(X) where s′

i = sτ+i·T for every i ≥ 0. When τ = 0,
instead of writing aT,τ or aT,0, we simply write aT .
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Then we lift the notion of periodic sampling abstraction function to systems.
For a system S ⊆ U(X), we define aT,τ (S) := {aT,τ (σ) | σ ∈ S}. Since aT,τ (S) ⊆
D(X), aT,τ (S) is a view over D(X). In what follows we refer to periodic sampling
abstraction functions simply by periodic sampling.

Closure of discrete systems under periodic sampling: Given a nFOS S =
(X,Z, θ, φ) and periodic sampling aT,τ : U(X ∪ Z) → D(X ∪ Z), D(X ∪
Z) = U(X ∪ Z), we would like to examine whether there exists a nFOS
S′ = (X,Z, θ′, φ′) such that [[S′]] = aT,τ ([[S]]). Indeed, we prove closure for
discrete systems S with Z = ∅ or Z �= ∅.

Theorem 1

(a) Given a FOS system S = (X, θ, φ) and periodic sampling aT,τ , there exists
a FOS system S′ such that [[S′]] = aT,τ ([[S]]).

(b) Given a nFOS system S = (X,Z, θ, φ) and periodic sampling aT,τ , there
exists a nFOS system S′ such that [[S′]] = aT,τ ([[S]]).

Proof. (a) We define the FOS S′ = (X, θ′, φ′), where θ′ contains all states over
X which can be reached from some initial state of S in exactly τ steps; and
φ′ is defined as follows. Let s, s′ be two states over X. Then φ′(s, s′) iff S has
a path from s to s′ of length exactly T . Consider an arbitrary behavior σ =
s0s1s2 · · · ∈ [[S]]. Applying the periodic sampling aT,τ to σ we obtain the behav-
ior aT,τ (σ) = sτsτ+T sτ+2T · · · . By construction of S′ we have that θ′(sτ ) and
φ′(sτ+iT , sτ+(i+1)T ) for every i ≥ 0, which implies that aT,τ (σ) ∈ [[S′]]. Hence,
aT,τ ([[S]]) = {aT,τ (σ) | σ ∈ [[S]]} ⊆ [[S′]]. Conversely, let σ′ = s′

0s
′
1s

′
2 . . . ∈ [[S′]].

Since φ′(s′
0), by definition of S′ there exists a state s0 in S with θ(s0) so that

s′
0 can be reached from s0 in exactly τ steps. Moreover, for σ′ we have that

φ′(s′
i, s

′
i+1), thus there exists a path in S from s′

i to s′
i+1 of length exactly T for

every i ≥ 0. Then, we obtain the behavior σ = s0s1s2 · · · ∈ [[S]] where sτ+iT = s′
i

for every i ≥ 0. Hence, aT,τ (σ) ∈ aT,τ ([[S]]) and [[S′]] ⊆ aT,τ ([[S]]) which completes
our proof. The part (b) of the theorem is proved similarly. �


Inverse periodic sampling: Consider a finite set of variables X, a domain of
behaviors U(X) and a view domain D(X) = U(X). Then, an inverse periodic
sampling abstraction function from D(X) to U(X) w.r.t. period T and initial
position τ , denoted by a−1

T,τ , is defined by the mapping a−1
T,τ : D(X) → U(X) such

that for every behavior σ = s0s1 · · · ∈ D(X), a−1
T,τ (σ) := {σ′ | σ′ = s′

0s
′
1 · · · ∈

U(X) s.t. s′
τ+i·T = si, i ≥ 0} or equivalently a−1

T,τ (σ) := {σ′ | aT,τ (σ′) = σ}.
Moreover, for a system S ⊆ U(X), we define a−1

T,τ (S) :=
⋃

σ∈S
a−1

T,τ (σ). When

τ = 0, we simply write a−1
T .

Non-closure of FOS under inverse periodic sampling: Given a FOS S = (X, θ, φ)
and inverse periodic sampling a−1

T,τ : D(X) → U(X), D(X) = U(X), we
show that there does not exist always a FOS S′ = (X, θ′, φ′) such that
[[S′]] = a−1

T,τ ([[S]]).
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Fig. 1. FOS obtained from aT with period T = 2.

Fig. 2. Incomplete behavior σ of system S′.

Example 1. Consider the FOS S = ({x, y}, θ, φ) where both x and y are Boolean
variables, θ = x∧y and φ = (x∧y → ¬x′ ∧y′)∧ (¬x∧y → x′ ∧¬y′)∧ (x∧¬y →
x′∧y′) as shown in Fig. 1. The system S has been obtained with periodic sampling
aT and period T = 2. In order to find a system S′ such that [[S′]] = a−1

T ([[S]])
one would have to replace each of the “?” shown in Fig. 2 with at least one
state over X, so that the first 6 states in the unique behavior σ of S′ would be
distinct. Indeed, S′ needs at least 6 distinct states, otherwise we would have to
have extra transitions between the three states (1, 1), (0, 1), (1, 0) shown in the
figure. But adding such transitions creates loops, and results in [[S′]] �= a−1

T ([[S]]),
which is wrong. However, having 6 distinct states is also not possible, since we
only have two Boolean variables x, y, thus, only 4 possible combinations. Hence,
there exists no such FOS S′.

Closure of nFOS under inverse periodic sampling: In contrast with FOS, that
are not closed under inverse periodic samplings, we prove closure for nFOS, i.e.,
for discrete systems with internal variables.
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Theorem 2. Given a system S = (X,Z, θ, φ) and inverse periodic sampling
a−1

T,τ : D(X ∪ Z) → U(X ∪ Z ∪ W ), there exists always a non-fully-observable
system S′ = (X ∪ Z,W, θ′, φ′) such that [[S′]] = a−1

T,τ ([[S]]).

Proof. Given the nFOS S = (X,Z, θ, φ) let R denote the set of reachable states
of S over X ∪ Z. Moreover, let |R| = n and consider a set of Boolean variables
W such that |W | ≥ �log2(n · (T − 1) + τ)� (here we assume that T ≥ 2; if T = 1
then we can simply take S′ = S). By definition we have that σ ∈ a−1

T,τ ([[S]]) iff
aT,τ (σ) ∈ [[S]]. Moreover, σ′ = aT,τ (σ) = sτsτ+T sτ+2T · · · , i.e., each behavior σ′

in [[S]] has been obtained with starting position τ and period T . The system S′

has to be defined such that each behavior in [[S′]] results from σ′ by (i) adding τ
transitions (or states) in the beginning of σ′ and T transitions (or T −1 states) in
between the transition φ(sτ+iT , sτ+(i+1)T ) for every i ≥ 0, and by (ii) replacing
each sτ+iT in σ′ with s′

τ+iT = hX∪Z(sτ+iT ). Since S consists of n reachable states
then S′ should have at least n(T − 1) + τ more reachable states or equivalently
�log2(n · (T − 1) + τ)� more Boolean variables. One can then obtain a nFOS S′

over X∪Z∪W , where X∪Z and W denote the set of observable and unobservable
variables respectively, such that [[S′]] = a−1

T,τ ([[S]]). �

Note that the system S′ of Theorem 2 is not unique. Indeed, even for each
possible value of |W | one obtains a family of systems S′ with [[S′]] = a−1

T,τ ([[S]]).

5 Checking View Consistency W.r.t. Periodic Sampling
Abstraction Functions

For this entire section, we assume that τ = 0.

5.1 Views and Consistency

Views are finite-state discrete systems with or without internal variables. In our
framework views are obtained applying some periodic sampling aT , where T is
the period of the periodic sampling. Thus, if S = (X,Z, θ, φ) is a discrete system
over a set of observable variables X and domain of behaviors U(X ∪ Z), then a
view obtained with periodic sampling aT is a discrete system V = (X,Z, θ′, φ′)
over the same set of observable variables X and view domain D(X ∪ Z) =
U(X ∪ Z).

We consider views defined by nFOS and we refer to V simply as a view of
S. However, this does not exclude the case where the views are described by
a FOS. Indeed, FOS is a special case of nFOS and we can always assume that
the set of unobservable variables is empty. Hence, the results we derive can be
naturally extended also for views described by FOS. Moreover, in the rest of
the paper when we compare systems or views we compare them with respect to
their observable behaviors, and instead of writing for instance [[V ]]o = aT ([[S]]o)
we simply write [[V ]] = aT ([[S]]).

Note that, although each of the views is a nFOS, this does not always imply
that the witness system is also a nFOS. This motivates to study three different
variants of the consistency problem for views obtained by periodic sampling.
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Problem 1. Given a finite set of nFOS Si = (X,Wi, θi, φi) and periodic sam-
plings aTi

, for 1 ≤ i ≤ n, check whether there exists a system S over U(X) such
that aTi

(S) = [[Si]] for every 1 ≤ i ≤ n.

Problem 2. Given a finite set of nFOS Si = (X,Wi, θi, φi) and periodic sam-
plings aTi

, for 1 ≤ i ≤ n, check whether there exists an nFOS S = (X,W, θ, φ),
W ⊇ W1 ∪ . . . ∪ Wn, such that aTi

([[S]]) = [[Si]] for every 1 ≤ i ≤ n.

Problem 3. Given a finite set of nFOS Si = (X,Wi, θi, φi) and periodic sam-
plings aTi

, for 1 ≤ i ≤ n, check whether there exists a fully-observable system
S = (X, θ, φ), such that aTi

([[S]]) = [[Si]] for every 1 ≤ i ≤ n.

Observe that the three problems are different, since Problem 1 asks for a
semantic witness system, not necessarily representable as a symbolic discrete
system, while Problems 2 and 3 ask for a symbolic discrete witness system with
or without internal variables respectively. Obviously, a solution to Problem 3 is
also a solution to Problem 2, and a solution to Problem 2 is also a solution to
Problem 1. We do not yet know whether Problems 1 and 2 are equivalent, i.e.,
whether existence of a semantic witness implies existence of a syntactic (nFOS)
witness. This is an interesting question which has to do with whether the finite-
state nature of nFOS is enough to represent all possible semantic witnesses of
consistent nFOS views. Example 2 that follows shows that Problems 2 and 3
are not equivalent, that is, existence of a nFOS witness does not always imply
existence of a FOS witness.

Example 2. Consider the views Vi = ({xi}, {yi, zi}, θi = ¬xi ∧ ¬yi ∧ ¬zi, φi) for
i = 1, 2, where all variables are Boolean and φ1, φ2 are such that [[V1]] = {σ1 =
(0, 0, 0)(0, 1, 1)(0, 1, 0)(0, 0, 1), σ′

1 = (0, 0, 0)(1, 1, 1)(1, 1, 0)(1, 0, 1)} and [[V2]] =
{σ2 = (0, 0, 0)(0, 1, 1)(0, 0, 1), σ′

2 = (0, 0, 0)(1, 1, 0)(1, 1, 1)}. The views V1 and V2

have been sampled with periods T1 = 2 and T2 = 3 respectively. The observable
behavior of the views is shown in the form of trees in Fig. 3, along with the
corresponding positions as described in the sequel. For the view V2 which has
been sampled with period T2 = 3, we have that in the first position i = 0, V2

is at state x = 0, in the next position i = 3, V2 is at one of the states x = 0 or
x = 1, and similarly in the last position i = 6. Similarly are interpreted the tree
of behaviors for V1. There exists a nFOS system S witness to the consistency
of V1 and V2, with one observable state variable, whose observable behavior is
shown in the form of a tree in the rightmost part of Fig. 3 where the ∗−state of
the system denotes an arbitrary state 0 or 1. However, there does not exist any
fully-observable system with a single state variable x that is a witness system to
the consistency of V1 and V2. For instance, it is not possible to define by distinct
states, the five states labelled by 0 in the positions i = 0, 2, 3, 4, 6, using only
one Boolean variable (as it can only encode 2 states).

In the sequel we prove a Lemma that will help prove one of the main results of
this paper. We firstly introduce some notation. Consider a set of views S1, ..., Sn.
For every 1 ≤ i ≤ n and any positive integer m let Y m

i be the set of all states
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Fig. 3. Behavior trees for views V1 and V2 and possible nFOS witness system S.

that can be found at position m in some behavior of Si, i.e., Y m
i = {si | si :

X → B occurs at position m in some behavior σ ∈ [[Si]]}.

Lemma 1. Consider a set of views S1, ..., Sn and periodic samplings aTi
, for

1 ≤ i ≤ n. If there exist i, j ∈ {1, ..., n} and positive integer m multiple of
LCM(Ti, Tj) such that Y

m/Tj

j �= Y
m/Ti

i , then S1, ..., Sn are inconsistent.

Proof. Let Si = (X,Wi, θi, φi). Assume that there exist i, j ∈ {1, ..., n} and
positive integer m multiple of LCM(Ti, Tj) such that Y

m/Tj

j �= Y
m/Ti

i . W.l.o.g.,

suppose that there exists a state s ∈ Y
m/Ti

i \ Y
m/Tj

j . We would like to prove
that the views S1, ..., Sn are inconsistent. Assume to the contrary that they
are consistent. This implies that there exists a system S over U(X) such that
aTk

(S) = [[Sk]] for every 1 ≤ k ≤ n. Then, aTi
(S) = [[Si]] and aTj

(S) = [[Sj ]].
Since there exists state s ∈ Y

m/Ti

i \ Y
m/Tj

j , then there exists some behavior
σi ∈ [[Si]] such that σi is at position m/Ti at state s. Because aTi

(S) = [[Si]] we
have that σi ∈ aTi

(S). By definition, aTi
(S) = {aTi

(σ) | σ ∈ S} and because
σi ∈ aTi

(S) then ∃σ ∈ S such that aTi
(σ) = σi. By construction, σ is at state s at

position m. Since σ ∈ S we have that aTj
(σ) ∈ aTj

(S) = [[Sj ]]. Let σj = aTj
(σ).

Because σ is at state s at position m, σj must be at the same state s at position
m/Tj . This in turn implies that s ∈ Y m

j , which is a contradiction. �


5.2 Algorithm for Detecting View Inconsistency

In this chapter we describe the steps of the algorithm for detecting inconsistencies
among a finite number of views, w.r.t. periodic sampling abstraction functions.
Our algorithm applies to sets of views that satisfy one of the following conditions:
(i) either every view generates only infinite behaviors; (ii) or every view generates
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only finite behaviors. This means that we cannot have views that have both
finite and infinite behaviors, and also that we cannot have some views with
finite behaviors and some other views with infinite behaviors. Extending the
algorithm to those cases is part of future work. Note that a view which only has
finite behaviors corresponds to a transition system where all paths eventually
lead to a deadlock. On the other hand, a view which only has infinite behaviors
corresponds to a transition system with no reachable deadlocks.

From now on we use the term finite automata (FA for short) to refer to NFA
or NMA, and the term deterministic finite automata to refer to DFA or DMA.

Our algorithm involves constructing the so called hyper-period automaton
(HPA). The algorithm also involves a special composition operator for finite
automata w.r.t. HPA called the label-driven composition. We define these notions
next.

Hyper-period finite automaton: Consider a finite set of periods T1, . . . , Tn ∈ Z>0.
Let LCM be the least common multiple operator, and let T = LCM(T1, . . . , Tn)
be the hyper-period of the above set of periods. Also let M = {0,m1, . . . ,mk}
denote the finite ordered set of multiples of T1, . . . , Tn up to the hyper-period,
i.e., with mk < T . For example, let T1 = 2, T2 = 3 and T3 = 6. Then, T =
LCM(T1, T2, T3) = 6 and M = {0, 2, 3, 4}.

The intuition of the hyper-period automaton is that it contains as states the
elements of M and its transitions are labelled with sets of labels of the form pTi

,
denoting the fact that the period Ti is “active” at the corresponding time instant.
The accepting states of the automaton correspond to those instants where two
or more periods are “active”.

We first illustrate this intuition by example, and then provide the formal
definition of the hyper-period automaton.

Example 3. Consider the two periods T1 = 3 and T2 = 2. Then, the hyper-period
automaton w.r.t. T1, T2, is the automaton H shown in Fig. 4. We have H =
(M,P, {0},Δ, {0}) where M = {0, 2, 3, 4}, P = P({pT1 , pT2}) = P({p3, p2})
(T1 = 3 and T2 = 2, hence pT1 = p3 and pT2 = p2), and the transition function
Δ is as depicted in Fig. 4.

Fig. 4. HPA w.r.t. the periods 2 and 3.

The above example of HPA is simple as we only have two periods. In the
sequel we provide a more interesting example which involves three periods. This
example also illustrates the fact that the HPA generally has more than one
accepting states.



84 M. Pittou and S. Tripakis

Example 4. Consider the three periods T1 = 4, T2 = 2 and T3 = 3.
Then, the hyper-period automaton is H = (M,P, {0},Δ, F ) where M =
{0, 2, 3, 4, 6, 8, 9, 10}, P = P({pT1 , pT2 , pT3}) = P({p4, p2, p3}), F = {0, 4, 6, 8},
and the transition function Δ is as depicted in Fig. 5.

Fig. 5. HPA w.r.t. the periods 2, 3 and 4.

We now formally define the hyper-period automaton H w.r.t. T1, . . . , Tn as
the deterministic finite automaton H = (M,P, {0},Δ, F ), where:

– M is the (finite) set of states of H.
– P = P({pT1 , . . . , pTn

}) is the (finite) alphabet of H, where {pT1 , . . . , pTn
} is

obtained by assigning to every i = 1, . . . , n the label pTi
, corresponding to the

period Ti.
– Δ is defined as follows. First, let M = {m0,m1, ...,mk} where we assume that

mi are ordered in increasing sequence, i.e., m0 < m1 < · · · < mk. Note that
under this assumption, m0 must be 0. Then Δ contains exactly k+1 transitions
(i.e., as many as the elements of M): Δ = {(m0, l0,m1), (m1, l1,m2), ...,
(mk, lk,m0)}, where for i = 0, ..., k, li = {pTj

| Tj is a divisor of mi+1}. Note
that, as defined, Δ creates a loop starting at the initial state m0 = 0, and
ending at the same state, with each state in M having a unique successor as
well as a unique predecessor. Given m ∈ M , let π(m) denote the set of period
labels annotating the unique incoming transition to m. For example, in the
HPA of Fig. 5, π(3) = {p3} and π(4) = {p2, p4}.

– F = {m ∈ M | |π(m)| ≥ 2}, that is, F contains all states whose (unique)
incoming transition is labeled by a set containing at least two period labels.

Since H is deterministic, in the sequel we use for simplicity the notation
Δ(s, x) for the transition function, i.e., to denote the unique successor state of
s with symbol x.

Label-driven composition of view automata with an HPA: Suppose we want to
check consistency between a set of views described as finite automata A1, ..., An,
w.r.t. periods T1, ..., Tn. Our view consistency algorithm, described later in this
section, relies on computing a special kind of automata composition among mod-
ified versions of A1, ..., An and the HPA H w.r.t. T1, ..., Tn. The modified version
of Ai consists essentially in labeling all transitions of Ai by its period label pTi

,
and then determinizing. Then, the composition with H consists in synchroniz-
ing every transition of H with the corresponding automata Ai whose period is
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“active” on that transition, i.e., whose label pTi
belongs to the corresponding

label set of the transition of H. This composition is called label-driven composi-
tion, and is formalized next.

Consider a set of deterministic finite automata Ar = (Qr, Σr, Qr0 ,Δr, Fr)
where Σr = {pTr

} for 1 ≤ r ≤ n. Let H = (M,P, {0},Δ, F ) be the HPA w.r.t.
T1, ..., Tn defined as above. The label-driven composition of A1, ..., An and H,
denoted by A1 ‖ . . . ‖ An ‖ H, is the finite automaton C = (Qc, Σc, Qc0 ,Δc, Fc)
where Qc = Q1 × · · · × Qn × M , Σc = P , Qc0 = Q10 × · · · × Qn0 × {0},
Fc = Q1 × · · · × Qn × F , and the transition function Δc ⊆ Qc × Σc × Qc is
defined as follows:

Δc = {((q1, . . . , qn,m), l, (q′
1, . . . , q

′
n,m′)) | (m, l,m′) ∈ Δ ∧

∀i = 1, ..., n : if pTi
∈ l then (qi, pTj

, q′
i) ∈ Δi, otherwise q′

i = qi}.

Example 5. Consider the finite automata A1, A2 as shown in Fig. 6 and the HPA
H of Fig. 4. Then, Fig. 7 depicts the label-driven composition C = A1 ‖ A2 ‖ H.

Algorithm for detecting view inconsistency: Consider a finite set of views defined
by the nFOS Si = (X,Wi, θi, φi), and obtained by applying some periodic sam-
pling aTi

with sampling period Ti, for i = 1, . . . , n, respectively.
Let T = LCM(T1, . . . , Tn), P = P({pT1 , . . . , pTn

}) and M = {0,m1, . . . ,mk}
denote respectively the hyper-period of periods, the labels of periods, and the
ordered set of multiples of periods up to their hyper-period, as defined previously.
The algorithm for detecting inconsistency among the views S1, . . . , Sn, consists
of the following steps:

– Step 1: Construct for each Si, i = 1, . . . , n, the FA Li = (Qi, Σi, Qi0 ,Δi, Fi)
where Qi = B

X∪Wi , Σi = {pTi
}, Qi0 = {s | θi(s)}, Fi = ∅, and Δi ⊆

Qi × Σi × Qi is defined such that (s, pTi
, s′) ∈ Δi iff φi(s, s′).

– Step 2: Determinize each of the FA Li and obtain the equivalent deterministic
FA dLi for every i = 1, . . . , n.

Fig. 6. Finite automata A1 and A2.

Fig. 7. The label-driven composition of automata A1, A2 of Fig. 6 and HPA H of Fig. 4.
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– Step 3: Construct the hyper-period automaton H w.r.t. the periods
T1, . . . , Tn.

– Step 4: Obtain the label-driven composition C = (dL1, . . . , dLn,H) w.r.t
HPA H.

– Step 5: Let s = (s1, . . . , sn,m) be a state of C, and let Is = {i ∈ {1, ..., n} |
pTi

∈ π(m)}. The algorithm reports inconsistency if C contains at least one
reachable state s = (s1, . . . , sn,m) where si are states of dLi for i = 1, . . . , n
respectively, and m ∈ F is a final state of H, such that ∃i, j ∈ Is : hX(si) �=
hX(sj). Otherwise, it reports inconclusive.

The determinization procedure at Step 2 is needed because the algorithm
detects view inconsistency by comparing sets of states of where each of the given
views can be at same points in time. We note that this determinization procedure
does not attempt to complete an automaton, i.e., to add transitions with missing
symbols.

In the sequel we prove that the algorithm is sound, i.e., if it reports incon-
sistency then the views are indeed inconsistent. We first introduce two auxiliary
lemmas used for proving this fact.

Lemma 2. Let S be a nFOS, T a period, L the FA obtained from S as in Step 1
of the algorithm above, and dL the deterministic FA obtained from L. Then every
reachable state of dL is non-empty.

Proof. The set of initial states of S, and therefore also of L, is non-empty. There-
fore, the initial state of dL is a non-empty set of states of L. Recall that the
alphabet of both L and dL is the singleton {pT }. Let s be a state of dL. We
show by induction that if s is a non-empty set, and (s, pT , s′) is a transition of
dL, then s′ is also non-empty. By definition of dL, if all elements of s are dead-
locks, i.e., none of them has a transition with pT , then no transition is added
to s either (note that we do not complete the automaton dL as we mentioned
above). Therefore, in order for a transition (s, pT , s′) to exist, at least one state
q ∈ s must have a transition (q, pT , q′) in L. But in that case, s′ contains at least
the state q′, and is therefore non-empty. �

We now introduce some concepts used in the lemma that follows. First, observe
that the HPA H is finite and deterministic, and so is every automaton dLi.
Moreover, by definition, the label driven composition C obtained by Step 4
of the algorithm forms a lasso, that is, C is finite-state and every state has
a unique successor state. Consider a state m of the HPA H as obtained by
Step 3 of the algorithm. We define the indices of m, denoted by ins(m), to
be the ordered set of numbers ins(m) =

⋃

w≥0

{w · LCM(T1, . . . , Tn) + m}. For

instance, consider the HPA H of Example 3. Since T1 = 3 and T2 = 2 we
have that LCM(T1, T2) = 6. Then, the indices of the state m = 3 is the set
ins(3) =

⋃

w≥0

{w · 6 + 3} = {3, 9, 15, . . .}.

Now consider a reachable state s = (q1, . . . , qn,m) of the label driven compo-
sition C. Because C is a lasso, there is a unique acyclic path in C that reaches m.
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Let ξ be the number of times that the state m of the HPA occurs in the states
of this path reaching s. We define the latent index of s, denoted by lin(s), to be
the element of ins(m) that occurs in position ξ in ins(m). For instance, consider
the label driven composition C of Example 5. For the state s = (q1, r2, 3) of C
we have that m = 3 and ins(3) = {3, 9, 15, . . .} computed as above. The state
m = 3 of the HPA H occured twice up to the state s = (q1, r2, 3), hence ξ = 2.
Then, the second element of ins(m) is the integer 9, and thus lin(s) = 9. The
intuition is that lin(s) represents the first point in time where s appears in a
behavior of the system.

Lemma 3. Consider the label driven composition C as obtained by Step 4 of the
algorithm. Let s = (s1, . . . , sn,m) be a state of C, and let Is = {i ∈ {1, ..., n} |
pTi

∈ π(m)}. Then, for every i ∈ Is, lin(s)/Ti is an integer number and it holds
that si = Y

lin(s)/Ti

i .

Proof. Let i ∈ Is. Then pTi
∈ π(m). By definition of the HPA H, and since

pTi
belongs as a label in the incoming transition to m, lin(s) is a multiple of

the period Ti, thus k = lin(s)/Ti is an integer number. We also need to show
that si = Y k

i . By definition of C, automaton dLi has “moved” (i.e., taken a
transition) k times up to state s. Thus, si must contain the set of all states of
Li that can be reached from an initial state after k steps. But this is exactly the
set of states contained in Y k

i . �

Theorem 3. If the algorithm reports inconsistency then there exists no solution
to Problems 1, 2, and 3.

Proof. Assume that the algorithm reports inconsistency. Then there exists a
reachable final state (s1, . . . , sn,m) of C such that ∃i, j ∈ Is : hX(si) �= hX(sj),
where si is a state of dLi, sj is a state of dLj , and m is a final state of the HPA H.
By Lemma 2 we have that si �= ∅ and sj �= ∅. Moreover by Lemma 3 we have that
si = Y

lin(s)/Ti

i and sj = Y
lin(s)/Tj

j , where lin(s) is the latent index of state s.

Since hX(si) �= hX(sj) we obtain that si �= sj and hence Y
lin(s)/Ti

i �= Y
lin(s)/Tj

j .
Then, by Lemma 1 the views S1, . . . , Sn are inconsistent. Hence, there is no
solution to Problem 1, and therefore neither to Problems 2 and 3. �

The algorithm is sound, but not complete, i.e., if the algorithm reports “incon-
clusive” then the views can either be consistent or not. Example 6 that follows
indicates this fact.

Example 6. Consider the views Vi = ({xi}, {yi, zi, wi}, θi = ¬xi ∧ ¬yi ∧ ¬zi ∧
¬wi, φi) for i = 1, 2, where all variables are Boolean and φ1, φ2 are such that
[[V1]]o = {σ1 = (0)(0)(0)(0)(0), σ′

1 = (0)(1)(1)(1)(1)} and [[V2]]o = {σ2 =
(0)(0)(1), σ′

2 = (0)(1)(0)}. The views V1 and V2 have been sampled with periods
T1 = 2 and T2 = 4 respectively. The observable behavior of the views is shown in
the form of trees in Fig. 8. We claim that the views V1 and V2 are inconsistent.
Assume the contrary. Then a possible witness system S should contain at least
one behavior which at position i = 8 is at state x = 0, while at position i = 4 it



88 M. Pittou and S. Tripakis

is at state x = 0 (like σ1 above), and also at least one behavior which at position
i = 8 is at state x = 1 while at position i = 4 it is at state x = 0 (like σ2). This
implies that aT1(S) or equivalently [[V1]]o should contain at least one behavior
that is at position i = 8 at state x = 1 while at position i = 4 it is at state
x = 0. This is not possible since [[V1]]o contains only two behaviors: σ1 which is
at state x = 0 at both positions i = 4 and i = 8; and σ′

1 which is at state x = 1
at both positions i = 4 and i = 8. Therefore, V1 and V2 are inconsistent.

The algorithm cannot detect the inconsistency of V1 and V2, however, and
reports “inconclusive”. This is because at the common positions 0, 4, 8 the behav-
iors of the views are both in the same sets of states ({0} at position 0, and {0, 1}
at both positions 4 and 8). Hence, each of the reachable final states of the rel-
evant label driven composition C, contains in the first 2 coordinates the same
states.

Fig. 8. Behavior trees for views V1 and V2.

Example 7. We provide an example run of the algorithm. Consider two views
described by the FOS Si = (X = {x, y}, θi = ¬x ∧ ¬y, φi) where the definitions
of φi are indicated in Fig. 9, for i = 1, 2. Although the two views have the same
initial state and the same set of (three) reachable states, they are not identical as
their transitions are different. For the remaining exposition, it helps to label the
states of S1 as 1, 2, 3, and the states of S2 as a, b, c. Suppose that the views have
been obtained with periodic samplings aTi

for i = 1, 2 and periods T1 = 2, T2 = 3
respectively.

Applying Step 1 of the algorithm we obtain the finite automata Li for each
of Si for i = 1, 2 respectively, as shown in Fig. 10. After the determinization
Step 2, we obtain the deterministic automata shown in Fig. 11. The HPA H of
Step 3 coincides with the HPA shown in Fig. 4. Figure 12 shows the label driven
composition dL1 ‖ dL2 ‖ H w.r.t. H of Step 4. We observe that there exists
a final state (l123, lab, 0) that l123 �= lab. Hence, according to the Step 5 of the
view consistency algorithm, we obtain that the views S1, S2 are inconsistent.
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Fig. 9. FOS views S1 and S2.

Fig. 10. Step 1: Finite automata L1 and L2 obtained from the views S1 and S2 of
Fig. 9 by adding the labels p2 and p3 corresponding to their respective periods.

Fig. 11. Step 2: Deterministic FA dL1 and dL2 obtained by determinizing the
automata L1 and L2 of Fig. 10.

Fig. 12. Step 4: Label-driven composition dL1 ‖ dL2 ‖ H.
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6 Conclusions and Future Work

Multi-view modeling is key to systems engineering, as a technique where the
use of multiple models/views guides the development of a system. However, one
of the crucial issues in multi-view modeling is ensuring consistency among the
views. In this work we studied the view consistency problem within the formal
framework of [10,11], but for a different type of abstraction functions than those
studied previously. In particular, we studied view consistency w.r.t. periodic
sampling abstractions.

The main future work direction is to develop a complete view consistency
algorithm. It would be also interesting to answer the question whether Prob-
lems 1 and 2 are equivalent, which is currently open. Moreover, we would like to
extend our results to handle Problem 3, i.e., to examine under which conditions
some given views have a witness fully-observable system. Other future research
includes considering other abstraction functions than projections or periodic
samplings. Also part of future work is to study heterogeneous instantiations of
the multi-view modeling framework, e.g., where some views are discrete, some
continuous, some hybrid, and so on. In addition to these theoretical directions,
ongoing work includes an implementation of the current framework and experi-
mentation with case studies.
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Abstract. Synthesis from component libraries is the problem of build-
ing a network of components from a given library, such that the network
realizes a given specification. This problem is undecidable in general.
It becomes decidable if we impose a bound on the number of chosen
components. However, the bounded problem remains computationally
hard and brute-force approaches do not scale. In this paper we study
scalable methods for solving the problem of bounded synthesis from
libraries, proposing a solution based on the CounterExample-Guided
Inductive Synthesis paradigm. Although our synthesis algorithm does
not assume a specific formalism a priori, we present a parallel imple-
mentation which instantiates components defined as Linear Temporal
Logic-based Assume/Guarantee Contracts. We show the potential of our
approach and evaluate our implementation by applying it to an industrial
case study.

1 Introduction

While synthesis of an implementation given formal specifications in areas such
as program synthesis is a well studied problem [8,10,11,15,22,23], the appli-
cation of synthesis techniques for Cyber-Physical Systems (CPS), where it is
hard to completely decouple cyber and physical aspects of design, is still in its
infancy. Synthesis from component libraries is the process of synthesizing a new
component by composing elements chosen from a library. This type of synthe-
sis is able to capture the complexity of CPS by restricting possible synthesis
outcomes to a set of well-tested, already available components. Library-based
design approaches are nowadays a de facto standard in many fields, such as
VLSI design, where the market for Intellectual Property (IP) blocks is growing
well above 3 Billion US$ [1]. On the basis of this trend the interest of system
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companies on library-based design, both for hardware and software, is steadily
increasing. This leads to the need of methodologies which guarantee correct by
construction designs.

The general problem of synthesis from component libraries, where the com-
ponents are state machines, is undecidable [11]. In this paper we focus on a
decidable variant of the problem, presenting two variants of an algorithm, a
sequential and a parallel one, based on the CounterExample-Guided Inductive
Synthesis (CEGIS) paradigm [10,22]. To reduce the solution search space, this
algorithm leverages designer hints and relations among components, some of
them precomputed and stored in the libraries as additional composition rules.
To the best of our knowledge, this is the first time that a concurrent synthe-
sis algorithm is proposed for this problem, thanks to the decoupling of a solu-
tion topology from its semantic evaluation. Although no particular formalism is
assumed a priori, we present an implementation of the parallel version of the
algorithm (developed in a tool we call pyco) which uses linear temporal logic
(LTL)-based Assume/Guarantee (A/G) Contracts as the underlying formalism
for specifying components, and exploits multiprocessor architectures to speed up
synthesis. We evaluate pyco by synthesizing a controller for an aircraft Elec-
trical Power distribution System (EPS) [12]. This problem has already been
studied using contracts [9,13]. In these papers, however, contracts have been
used mostly for verification and to describe requirements, without playing any
role in the synthesis process itself, performed using standard reactive synthesis
techniques. Here, contracts collected in the component library represent con-
trollers for a number of EPS subsystems. Our synthesis algorithm, for the first
time, operates directly on those contracts to compose a controller that satisfies
all the requirements.

The contributions of this paper, both theoretical and methodological, can
be then summarized as: (i) definition of an algorithm for constrained synthesis
from component libraries which can leverage precomputed, library-specific com-
position rules; (ii) implementation of a parallel variant of the synthesis algorithm
using libraries of temporal components, defined as A/G Contracts; and (iii) its
application to an industrial relevant case study, i.e. synthesis of a controller for
an aircraft EPS. The rest of the paper is organized as follows. Section 2 pro-
vides references on background concepts and describes related works. In Sect. 3
we define the synthesis problem we tackle and analyze its complexity, propos-
ing our solution in Sect. 4. There, we also introduce a running example used
to explain in detail the problem encoding and the approach we adopt. Imple-
mentation is discussed in Sect. 5, where we also describe details of the parallel
algorithm variant. In Sect. 6 we present the EPS case study and discuss empirical
results. Finally, we draw conclusions in Sect. 7.

2 Previous Work

Synthesis Our work on synthesis from component libraries is inspired by two
major contributions in this field. In [15], Pnueli and Rosner show that the prob-
lem of synthesizing a set of distributed finite-state controllers such that their
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network satisfies a given specification is undecidable. In [11], Lustig and Vardi
show that the problem of synthesis from component libraries for data-flow com-
position, where the output of a component is fed to another one, is also unde-
cidable. Thus, [15] shows that fixing the topology of the network while letting
the synthesis process find the components is undecidable, while [11] shows that
fixing the components while letting the synthesis process find the topology (pos-
sibly by replicating components) is also undecidable. In this paper we achieve
decidability by imposing a bound on the total number of component instances,
positioning our efforts in between the two approaches presented above. The gen-
eral idea of synthesis from component libraries adopted here is reminiscent of
the work in [8]. There, Gulwani et al. considered the problem of synthesis of
finite loop-free programs from libraries of atomic program statements. Our work
is different as (i) we consider a more generic concept of component (considering
multiple output ports and port types) that can be also defined using temporal
logic, (ii) decouple topological properties from component specification formal-
ism, and (iii) introduce the idea, in the context of synthesis from component
libraries, of applying library-specific composition rules. A recent effort in syn-
thesis from component libraries has also been described in [3]. There, a controller
is built out of library components in a control-flow fashion (using the terminol-
ogy introduced in [11]). That approach, however, is orthogonal to ours since we
focus on data-flow compositions.

Counterexample-Guided Inductive Synthesis and combination of Induction,
Deduction, and Structure. CEGIS is a well known synthesis paradigm which
originates from techniques of debugging using counterexamples [20] and Counter-
Example-Guided Abstraction Refinement (CEGAR) [6]. CEGIS is an inductive
synthesis approach where synthesis is the result of inferring details of the spec-
ification from I/O examples, driven by counterexamples usually provided by a
constraint solver. In CEGIS an iterative algorithm, according to a certain concept
class, generates candidate solutions which are processed by an oracle and either
declared valid, in which case the algorithm terminates, or used as counterexam-
ples to restrict the candidate space. Recently, a novel methodology which for-
malizes the combination of Structure, Inductive and Deductive reasoning (SID)
has been proposed in [19], representing a generalization of both CEGAR and
CEGIS. The approach proposed in this paper instantiate the CEGIS paradigm
(not a trivial task, in general), and thus it is an implementation of the SID
methodology.

Platform Based Design and A/G Contracts. Platform-Based Design (PBD) [17]
is an iterative design methodology which has been successfully applied in a num-
ber of domains, including electronic and automotive design. In PBD, design is
carried out as the mapping of a user defined function to a platform instance. This
platform instance represents a network of interconnected components, chosen
from a library. Components in PBD, together with their functionality, expose
other characteristics such as composition rules and performance indices. This
additional information is used to optimize the mapping process, according to
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both functional and non-functional specifications. In this paper, we borrow from
PBD the idea that platform components can define their own composition con-
straints to be applied during mapping. A/G contracts, based on the more general
theory of contracts [4,14,18], offer a formal framework for a rigorous application
of PBD. An A/G contract describes a component as a tuple C = (A,G) where
A represents the assumptions that a component makes on its environment, and
G represents the guarantees it provides. Contract algebra formalizes a wide set
of operations to manipulate contracts, including parallel composition and refine-
ment. In Sect. 5, we discuss the implementation of our approach for the LTL
A/G contract framework, i.e., the A/G contract framework where A and G are
specified as LTL formulas. Nevertheless, our solution is general and works with
other compositional frameworks as well.

3 Constrained Synthesis from Component Libraries

In our framework, a component is a tuple G = (IG, OG, ϕG, σG, RG), where IG

is the set of input ports (or variables), OG is the set of output ports, and ϕG

is the component specification, expressed using a specific notation (e.g. an A/G
Contract, or a LTL formula). IG, OG and ϕG are all defined over a common set
of symbols, or alphabet, ΣIO. σG : IG ∪ OG → T is a function mapping ports of
G to elements in T , where T is a typeset. A typeset is a poset consisting of a set of
symbols (types) ordered by the subtype relation1. For a, b ∈ T , the notation a ≤ b
means that a is a subtype of b. Finally RG = {RGi | RGi ⊆ (IG ∪OG ×IG ∪OG)}
is a set of relations over ports in G. A library is a tuple L = (Z, T,RZ , RT ).
Here Z = {G1, . . . , Gn} is a finite multiset of components, meaning that Z
might contain multiple instances of the same component. RZ = {RZi | RZi ⊆
(ΣIO ×ΣIO)} is a set of relations over component ports in Z, while RT = T ×T
is a relation over types. Sets RG and RZ , and relation RT , are used by the
library designer to provide additional design constraints to speed up the synthesis
process, according to her domain knowledge. General composition rules between
components, which define constraints that need to be applied no matter what
a specific library defines, are collected in a set, called Q. We give more details
about Q in Sect. 4.2.

Definition 1 (Topological Constraints). With the term Topological Con-
straints, we refer to all the constraints encoded in the relations in RG, RZ , and
RT , together with the general composition constraints in the set Q.

We consider the system specification S = (IS , OS , ϕS , σS , RS), that needs to
be synthesized, as a component itself. In this way (through relations in RS) a
user of the synthesizer is also able to provide design hints that are specific to the
problem instance, such as precise input/output interface, in terms of ports and

1 Without loss of generality, here we can consider the poset T being organized as a
tree. This is enough to obtain a simple type system with single inheritance, where
all the types share the same root type (⊥).
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their types, as well as additional constraints over those ports. The composition
of two components G1 = (I1, O1, ϕ1, σ1, R1) and G2 = (I2, O2, ϕ2, σ2, R2) is a
new component G1⊗G2 = ((I1∪I2)\(O1∪O2), O1∪O2, ϕ1⊗ϕ2, σ1∪σ2, R1∪R2),
assuming that the operator ⊗ is defined for ϕ1 and ϕ2, and there is no conflict
between σ1 and σ2. Input ports that are connected to output ports are considered
outputs in the resulting composition. For instance, when input a is connected
to output b, the resulting composite component only contains output b (input
a “disappears” since it is going to be controlled by b). To model interactions
between components (e.g. when the output of a component is the input of another
one) we need to introduce the concept of connection between ports. Formally,
we indicate connections between ports using the function

ρ : ΣIO × ΣIO → {0, 1}
Given ports a and b, we have ρ(a, b) = 1 if and only if, in the resulting compo-
sition, a and b will be expressed (i.e. renamed) using the same symbol2. Often
we will refer to composition of components (and their specifications) using the
notation G1 ⊗ρ G2, where with ⊗ρ we indicate the renaming of variables of G1

and G2 according to ρ, followed by the usual composition operation. We also
assume that the formalism used to express component specifications ϕ1, . . . , ϕ2

includes the notion of refinement. Intuitively, if ϕ1 refines ϕ2, indicated with
ϕ1 � ϕ2, then ϕ2 will always hold if ϕ1 holds, i.e. ϕ1 can be safely used in place
of ϕ2. For instance, if ϕ1 and ϕ2 are logic formulas, ϕ1 � ϕ2 is equivalent to
the implication ϕ1 ⇒ ϕ2. The Constrained Synthesis from Component Libraries
(CSCL) problem can then be defined as:

Definition 2 (CSCL problem). Given a system specification S = (IS , OS ,
ϕS , σS , RS), and a library of components L = (Z, T,RZ , RT ) where the opera-
tions of composition (⊗) and refinement (�) are defined, find a finite set of com-
ponents {G1, . . . , GN | Gi = (Ii, Oi, ϕi, σi, RGi) ∈ Z} and a connection function
ρ such that (a) ϕ1 ⊗ρ · · · ⊗ρ ϕN � ϕS, and (b) all the topological constraints
hold.

3.1 A Combinatorial Analysis for the CSCL Problem

The CSCL problem is a hard problem. In this section, we quantify its combi-
natorial complexity by analyzing two simpler cases first, and then putting the
results together for the general case. As in the previous section, we consider a
library L = (Z, T,RZ , RT ), with finite Z = {G1, . . . , GN}, and a specification
S = (IS , OS , ϕS , σS , RS). Since we are interested in the worst-case scenario, in
this case we assume RZ = RT = RS = RG1 = · · · = RGN

= ∅, and T = {⊥} (a
typeset containing only the root type). First we examine the case in which we
already have a set of m connected components {G′

1, . . . , G
′
m} and we want to

find a single component Gz ∈ Z such that ϕz ⊗ϕ′
1⊗· · ·⊗ϕ′

m � ϕS . Assuming N
is the number of components in Z, we have N possibilities to try. Extending this
2 To indicate ρ(p, q) = 1, we will often use the shorthand ρp,q, and ¬ρp,q for ρ(p, q) = 0.
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example to include c ≤ N unknown components is straightforward. In this case,
there are N !

(N−c)! candidate solutions. On the other hand, we have a scenario in
which we still have m components {G′

1, . . . , G
′
m}, but connections among them

are missing. We want to connect the components to each other, according to
a certain function ρ, such that ϕ′

1 ⊗ρ · · · ⊗ρ ϕ′
m � ϕS . The complexity of this

problem depends on the total number of ports. Assuming p being the number
of ports of a component, then there are 2

mp(mp−1)
2 possible solutions.3 Com-

bining together the previous two examples yields the CSCL scenario, in which
we want to find both components and their connections to satisfy S. Assuming
every component in our library Z has p ports, and a finite Ns as the maxi-
mum number of components in a possible solution, one can see how in this case
there are ΣNs

c=1
N !

(N−c)!2
cp(cp−1)

2 possible solutions, where again N is number of
elements in Z.

4 Encoding and Solving the CSCL Problem

We propose a solution for the CSCL problem based on the CEGIS paradigm, in
which synthesis is carried out by an iterative algorithm. In each iteration two
major steps are performed. In the first one, a constraint solver is invoked to
provide a candidate solution, that is, a set of components and their connections.
With respect to Definition 2, this first step takes care of point (b) and provides
the function ρ used in point (a). To provide meaningful candidates, the solver
has to make sure that all the topological constraints are satisfied. The second
step satisfies point (a) of Definition 2, and it is performed interrogating a verifier
which determines whether the candidate composition, after proper interconnec-
tion of components, refines the global specification ϕS . In this step, the choice of
the verifier depends on the formalism used to specify components. For instance,
a model checker could be chosen as verifier in case components are specified as
state machines and the global specification is an LTL formula. We call counterex-
ample a candidate composition (i.e. a set of components and their connections)
which has been proven wrong by the verifier. A counterexample is used to induc-
tively learn new constraints. These constraints include generic ones (i.e. prevent
components with the same behavior of those in the counterexample to appear
in future candidate compositions) and those inferred using library-specific con-
straints (i.e. prevent components which represent an abstraction of those in the
counterexample to appear in future candidate compositions, if this information
is available in the library through relations in the set RZ).

Table 1 illustrates the CSCL algorithm. In the CSCL algorithm, the task of
pruning the search space is carried out in a twofold manner. First the topological
constraints drastically reduce the number of potential solutions. Note once again
that some of these constraints can be precomputed and stored in the library
through the relations in RZ , RT , RS , and RG1 = · · · = RGN

, avoiding the

3 Just recall that the maximum number of edges in a graph of n nodes is n(n−1)
2

.

2
n(n−1)

2 enumerates all the subsets of those connections.
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Table 1. CSCL algorithm. (STEP 1) and (STEP 2) are labels.

Algorithm 1: CSCL
Input: A specification S = (IS , OS , ϕS , σS , RS), a library of components L =
(Z, T, RZ , RT )
Output: A set of components H = {G1, . . . , Gn}, H ⊆ Z, and a connection function
ρ, such that ϕ1 ⊗ρ · · · ⊗ρ ϕn � ϕS , or NULL if no solution is found
1. Initialize constraint solver and verifier, and instantiate topological constraints for

problem instance

2. (STEP 1) while get candidate solution (H ′ = {G1, . . . , Gn}, ρ′) from constraint
solver
(a) Build composition G1 ⊗ρ′ · · · ⊗ρ′ Gn

(b) (STEP 2) if the verifier checks that ϕ1 ⊗ρ′ · · · ⊗ρ′ ϕn � ϕS holds
return H = H ′ and ρ = ρ′

(c) else infer new topological constraints from counterexample (H ′, ρ′)
3. return NULL

need to re-learn those constraints during the synthesis process. Second, being
Z a multiset, a counterexample observed in step 2.c of the CSCL algorithm
in Table 1 can be used to match multiple elements of the library, ruling out a
number of possible candidate instances exponential in the number of components
in the rejected candidate. For instance, if the counterexample is a composition
of 4 components, and each of those components has 3 instances in Z, then
adding that single counterexample will discard 34 erroneous candidate instances.
The output of the CSCL algorithm is a finite set of components, H, and their
connections, expressed as a function, ρ.

To ensure termination, the CSCL algorithm requires an implicit bound on
the number of components to be used in a candidate solution. For instance, one
possibility could be letting the maximum number of components in a solution
be equal to the cardinality of Z. This is a problem, however, when the size of the
library increases. As it will be described in Sect. 4.2, we set the maximum number
of components in H to be equal to the number of outputs of the specification S. In
such way, the cardinality of H is directly tied to the complexity, in terms of ports,
of S. Moreover, this constraint is not too restrictive, since it is always possible
to add dummy outputs to S to increase the maximum number of components
allowed in the solution.

4.1 Running Example: Synthesize the Modulo Operation

We introduce a simple example to help understanding the CSCL algorithm and
give an intuition on the formulation of the topological constraints discussed in
Sect. 4.2. Our objective is to synthesize the modulo operation starting from a
library of simpler arithmetic operations. In this example, the reader will have the
responsibility to be the verifier. For simplicity, we assume only strictly positive
integer inputs.
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Let us define our library to be Lop = (Zop,⊥, ∅, ∅), where we have only one
type (⊥) for all the ports and no additional relations over ports and types.
Zop = {add, sub,mult, div} is a set containing addition, subtraction, multiplica-
tion and integer division. Every component has two inputs and one output, and
its specification is the associated arithmetic operation. We assume no additional
relations over ports also at component level. Thus we have:

add = ({aa, ba}, {ca}, ca = aa + ba, {aa, ba, ca} → {⊥}, ∅)
sub = ({as, bs}, {cs}, cs = as − bs, {as, bs, cs} → {⊥}, ∅)
mult = ({am, bm}, {cm}, cm = am · bm, {am, bm, cm} → {⊥}, ∅)
div = ({ad, bd}, {cd}, cd = �ad/bd
, {ad, bd, cd} → {⊥}, ∅)

To apply the CSCL algorithm, we need to make sure the operations of com-
position and refinement are defined for elements in Lop. Here, the composition
of two component specifications is the classical function composition, while the
refinement relation can simply be the equality between functions. The specifi-
cation is the component Smod = ({x, y}, {z}, z = mod(x, y), {x, y, z} → {⊥}, ∅).
Playing the role of verifier, we know that the modulo operation can be com-
puted as mod(x, y) = x − �x/y
 · y. A composition of elements in Zop that
implements Smod is shown in Fig. 1: sub(x,mult(div(x, y), y)), with connections
ρbs,cm , ρam,cd , ρx,as

, ρx,ad
, ρy,bd , ρy,bm , ρz,cs . Such composition is correct because,

as we will see soon, it respects the topological constraint (STEP 1 of the CSCL
algorithm), and because the reader, as verifier, can validate the resulting com-
position (STEP 2) (cf. the composition add(x,mult(div(x, y), y)), which is also
correct according to the computation in STEP 1, but does not implement the
modulo operation).

Fig. 1. Modulo opera-
tion composition from
elements in Lop (see
Sect. 4.1).

Fig. 2. Illegal composi-
tion of elements in Lop

(as disconnected).

Fig. 3. Illegal composi-
tion of elements in Lop

(z disconnected).

4.2 Topological Constraints

In this section, we discuss the topological constraints for the CSCL problem.
As introduced in Sects. 3 and 4, topological constraints are a set of logic for-
mulas defined over the library of components L = (Z, T,RZ , RT ), with com-
ponents of the form G = (IG, OG, ϕG, σG, RG), and a system specification
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S = (IS , OS , ϕS , σS , RS). Part of the topological constraints encode general com-
position rules collected in the set Q, introduced in Sect. 3. Before enumerating
such constraints, it is useful to define an operator to address all the ports of all
components in L:

Plib = {p | ∃G ∈ Z : p ∈ IG ∪ OG}
Similarly, to address all the ports in L and the ports in the system specification
S, we use:

Plib∪S = Plib ∪ IS ∪ OS

As seen before, the result of the synthesis process is a finite set of components
H ⊆ Z and the connection function ρ, introduced in Sect. 3. We can then
enumerate the constraints in Q as follows4:

– Every candidate component must control at least an output of the global
specification S. Assuming NO outputs in OS , then trivially a solution can
include at most NO components. As already pointed out, it is possible to
relax this constraint by adding dummy outputs to S.

∀G ∈ H : ∃p ∈ OG : ∃s ∈ OS : ρp,s (1)

Example 1. In the case of the example in Sect. 4.1, to obtain the composition
showed in Fig. 1 we need to add two dummy outputs to Smod (not shown in
the figure). This is needed because Smod has only one output port but our
implementation requires three components.

– The following properties encode the semantics of our connection function.
Equation 2 tells us that if for three ports p, q, w we have ρp,q and ρq,w, then it
must be also ρp,w.

∀p, q, w ∈ Plib∪S : ρp,q ∧ ρq,w ⇒ ρp,w (2)

Equation 3 represents the fact that if p is connected to q, then q is also con-
nected to p.

∀p, q ∈ Plib∪S : ρp,q ⇒ ρq,p (3)

Equation 4 simply states that a port is always connected to itself.

∀p ∈ Plib∪S : ρp,p (4)

– Two output ports of components in the library cannot be connected to each
other:

∀G,G′ ∈ Z : ∀p, q ∈ OG ∪ OG′ : (p �= q) ⇒ ¬ρp,q (5)

4 Here we borrow the notation typical of first order logic formulas, although all the
formulas refer to a finite number of elements.
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– Inputs of a candidate component must be connected to specification inputs or
candidate component outputs (Eq. 6), while outputs of a candidate component
must be connected to specification outputs or candidate component inputs
(Eq. 7).

∀G ∈ H : ∀p ∈ IG : (∃s ∈ IS : ρp,s) ∨ (∃G′ ∈ H : ∃q ∈ OG′ : ρp,q) (6)

∀G ∈ H : ∀p ∈ OG : (∃s ∈ OS : ρp,s) ∨ (∃G′ ∈ H : ∃q ∈ IG′ : ρp,q) (7)

Example 2. Equation 5 prevents the connection of outputs of components in the
library. With respect to the example in Sect. 4.1, this means enforcing ¬ρca,cs ,
¬ρca,cm , ¬ρca,cd , ¬ρcs,cm , ¬ρcs,cd , and ¬ρcm,cd . Equations 6 and 7 make sure
that all the candidate compositions are properly connected. For instance, the
composition in Fig. 2 violates Eq. 6, because as is not connected to any other
port.

– No distinct ports of S can be connected to each other. Also in this case, this is
not too restrictive. If needed, in fact, one can relax this constraint by explicitly
adding a component in the library implementing the identity function.

∀s, r ∈ IS ∪ OS : s �= r ⇒ ¬ρs,r (8)

– Inputs of the specification S cannot be connected to component outputs,
because otherwise in the resulting composition those inputs will be treated
as outputs (as seen in Sect. 3).

∀s ∈ IS : ∀G ∈ Z : ∀p ∈ OG : ¬ρs,p (9)

– Every input of the specification S has to be connected at least to one candidate
component input (Eq. 10), while every output of S has to be connected at least
to one candidate component output (Eq. 11).

∀s ∈ IS : ∃G ∈ H : ∃p ∈ IG : ρs,p (10)

∀s ∈ OS : ∃G ∈ H : ∃p ∈ OG : ρs,p (11)

Example 3. Equations 10 and 11 ensure that there is a full mapping of specifica-
tion ports into components ports. For instance, the composition in Fig. 3 violates
Eq. 11 because there is an output of the specification, z, which is not connected
to any component outputs.

Together with constraints in Q, topological constraints encode also rules
to properly connect ports of different types, according to the subtype relation
defined in Sect. 3 and considering contravariant inputs and outputs5 (similarly to

5 This means that, given two components G1 and G2, if G1 has more legal inputs and
less legal outputs than G2 then G1 can be used in place of G2.
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what described by de Alfaro and Henzinger in [2]). Moreover, they encode rules
to include designer hints into the synthesis process at library (RGis, RT , and
RZ) and specification level (RS). Such additional constraints, although being
domain specific, can greatly reduce the solution search space and therefore syn-
thesis time. For space reasons, however, here we omit an exhaustive enumeration
of all the topological constraints, which can be derived autonomously by the
reader as interesting exercise.

4.3 An Efficient Encoding for the Topological Constraints

If implemented directly, the encoding we just presented is not particularly effi-
cient. For instance one can see how Eq. 2 represents a formula which grows
cubically in the number of ports of all components in the library. The encoding
we present in this section exploits a more efficient representation of component
connections.

Given library L = (Z, T,RZ , RT ) and global specification S = (IS , OS , ϕS ,
σS , RS), we assign an index to all the output ports in the library and also to
all the input ports of the specification S, and indicate with I the set containing
such indices. Conversely, we associate an integer variable to every input port
in the library, as well as to every output port of S. We call these variables
connection variables and group them in the set V. Connection variables, as the
name suggests, are used to specify connections between ports, and they are
assigned by the constraint solver in the first step of the CSCL algorithm. We
use the function I : Plib∪S → I ∪ {−1} to retrieve the index of a given port,
or −1 if the index is not defined for the port. Similarly, we use the function
V : Plib∪S → V ∪ {∅} to retrieve the connection variable of a given port, or ∅ if
the connection variable is not defined for that port (e.g. input ports of S). We
then map connection variables to indices using the function M : V → I ∪ {−1}.
Such encoding allows us to eliminate the expensive explicit representation of
function ρ. For instance, the new encoding will represent the assertion ρp,q for
an input port p and output port q with the assignment M(V(p)) = I(q), also
indicated, for convenience, as M(p) = I(q). If p is not connected to any port,
then M(p) = −1. We only allow inputs from the library to be connected to
outputs in the library or inputs of the specification S:

∀G ∈ Z : ∀p ∈ IG :

(M(p) = −1) ∨ [∃G′ ∈ Z : ∃q ∈ OG′ : M(p) = I(q)] ∨ [∃s ∈ IS : M(p) = I(s)] (12)

We also impose that outputs of the specification S can only be mapped to
outputs from the library:

∀s ∈ OS : (M(s) = −1) ∨ (∃G ∈ Z : ∃p ∈ OG : M(s) = I(p)) (13)

The following theorem affirms that, under the list of constraints in the set Q, the
encoding presented in this section is at least as expressive as the one obtained
representing ρ explicitly.
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Theorem 1. Let C1 be the set of connections among components in Z ∪ {S}
representable by the function ρ under the set of constraints Q defined in Sect. 4.2.
Let also C2 be the set of connections representable with the connection variables
in V and indices in I, constrained by Eqs. 12 and 13. Then C1 ⊆ C2.

Proof. We start considering only connections between ports in Plib. Given an
input port p and an output port q, a connection ρp,q in C1 (and by Eq. 3 also
ρq,p) can be trivially be represented in C2 by the assignment M(p) = I(q). If
both p and q are outputs, then by Eq. 5 their connection cannot be in C1. If
both p and q are inputs and ρp,q is in C1, then by Eq. 6 p and q have to be
connected to another output in the library or to an input of S. In either case,
assume w be such port, where ρp,w and ρq,w are also in C1. Then M(p) =
I(w) and M(q) = I(w) represent the equivalent connections in C2, including
indirectly ρp,q (because they have a reference to the same index). Consider now
also ports of the specification S. Since, in C1, we do not allow any two ports of
S being connected to each other (Eq. 8), we have only the case in which there
is a connection ρs,p between ports s ∈ IS ∪ OS and p ∈ Plib. If s is an input,
then p has to be an input too (because of Eq. 9), and we can represent ρs,p as
M(p) = I(s) in C2. If s is an output, then p can be either a component input
or output. If p is an output, then ρs,p can be represented as M(s) = I(p). If
p is an input, then by Eq. 11 there must be another component output q such
that ρs,q. By Eq. 2, then it must be also ρp,q. Therefore we can map these three
connections in C2 with M(s) = I(q) and M(p) = I(q) (where ρS,q is implicit
because s and p refer to the same index). This shows that all the connections in
C1 have an equivalent in C2, hence C1 ⊆ C2. ��
Given Theorem 1, one can define additional topological constraints for the new
encoding, to further shrink C2 and create a set C′

2 = C1∩C2, equivalent to C1.
For space reasons, we omit here the explicit enumeration of those constraints. We
claim however that their derivation, given the constraints defined in Sect. 4.2, is
rather simple. All the results in Sect. 6 are obtained using the encoding described
in this section and the reformulated topological constraints.

5 Implementing the CSCL Algorithm

In this and the following sections we describe the implementation of a parallel
variant of the CSCL algorithm and evaluate its capabilities and performance.
We used the SMT solver Z3 [7] to find candidates satisfying the topological con-
straints and we chose to represent our library as a multiset of LTL-based A/G
contracts. This choice is also motivated by the fact composition and refinement
operations are well defined in the contract algebra. Moreover, additional con-
cepts such as compatibility and consistency, can be leveraged to derive, before
the actual synthesis process, library constraints on components composability (in
the form of incompatible sets of ports stored through relations in RZ). Lastly, but
not less important, several tools are available to deal with LTL specifications. In
our experiments the verifier chosen to compute refinement checks is NuXMV [5].
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Table 2. Parallel CSCL algorithm

Algorithm 2: Parallel CSCL
Input: A specification S = (IS , OS , ϕS , σS , RS), a library of components L =
(Z, T, RZ , RT )
Output: A set of components H = {G1, . . . , Gn}, H ⊆ Z, and a connection function
ρ, such that ϕ1 ⊗ρ · · · ⊗ρ ϕn � ϕS , or NULL if no solution is found
1. Initialize constraint solver and verifier, and instantiate topological constraints for

problem instance

2. while get candidate solution (H ′ = {G1, . . . , Gn}, ρ′) from constraint solver
(a) Build composition G1 ⊗ρ′ · · · ⊗ρ′ Gn

(b) Spawn a new verifier instance (process) to verify ϕ1 ⊗ρ′ · · · ⊗ρ′ ϕn � ϕS

(c) if any verifier instance has signaled success
retrieve instance and return H = H ′ and ρ = ρ′

(d) else infer new topological constraints from counterexample (H ′, ρ′)
3. Wait for all the remaining running verifier instances to terminate

4. if any verifier instance has signaled success
retrieve instance and return H = H ′ and ρ = ρ′

5. return NULL

An efficient implementation of the CSCL algorithm has been developed using the
encoding described in Sect. 4.3. Moreover, we decided to modify the CSCL algo-
rithm to exploit multiprocessor architectures and further speed up synthesis. In
what described so far, the CSCL algorithm computes a candidate solution first
and then it asks the verifier to validate or discard that candidate. The verifier
execution is, in general, a time consuming operation (i.e. verifying the validity
of a LTL formula is a PSPACE-complete problem [16,21]). The intuition behind
this version of the algorithm is that it is possible (and convenient) to interrogate
several verifier instances at the same time, providing them with different can-
didates. The CSCL algorithm in Table 1 needs then to be modified to reject a
candidate as soon as it is given to the verifier, providing the ability to retrieve an
old candidate in case one of the many verifier instances gives a positive answer.
Table 2 illustrates the parallel version of the CSCL algorithm. We call pyco the
tool resulting from the implementation of this algorithm.

6 Case Study

Figure 4 shows the simplified structure of an aircraft EPS in the form of a single-
line diagram6 [9,12,13]. Generators (as those on the top left and right sides of
the diagram) deliver power to the loads (e.g. avionics, lighting, heating and
motors) via AC and DC buses. In case of generator failures, Auxiliary Power
Units (APUs) will provide the required power. Some buses supply loads which

6 Single line diagrams are usually used to simplify the description of three-phase power
systems.
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are critical, therefore they cannot be unpowered for more than a predefined
amount of time. Other, non-essential, buses supply loads that may be shed in the
case of a fault. The power flow from sources to loads is determined by contactors,
which are electromechanical switches that can be opened or closed. Transformer
Rectifier Units (TRUs) convert and route AC power to DC buses. The goal of
the controller, called Bus Power Control Unit (BPCU), is to react to changes
in system conditions or failures and reroute power by actuating the contactors,
ensuring that essential buses are adequately powered. Generators, APUs, and
TRUs are components subject to failures. Our goal is to synthesize the logic of
the BCPU from a set of subsystem controllers, described by a library of A/G
contracts. In our model, controller inputs are Boolean variables, corresponding
to the state of the various physical elements (i.e. presence or absence of faults).
Controller outputs are also Boolean variables, and represent the status of the
contactors in the system (open or closed). At this level of abstraction, contactors
are assumed to have a negligible reaction time.

Fig. 4. Single line diagram of the EPS Fig. 5. Tree representing the typeset
used in the case study

Table 3 illustrates the set of specifications that the BPCU needs to satisfy.
The first two rows describe what are the input and output variables of the EPS
plant and their types, indicated in parenthesis next to the variable names (Fig. 5
shows the type tree associated to variables in the specification and library compo-
nents). In total, each specification is defined over 6 input and 10 output variables.
Input variables GL, GR, AL, AR, RL, RR represent the environment event of fail-
ure of left and right generator, APU, and TRU, respectively. Output variables
C1, . . . , C10 represent the state of the contactors. The remaining rows of Table 3
describe a set of 9 specifications, all sharing the same assumptions. In this exam-
ple, we assume from the environment that all the components do not start to
operate in a faulty state (see, for instance, ¬GL in the first line of the assump-
tions in Table 3, referring to the left generator), and if a component breaks, then



106 A. Iannopollo et al.

it will stay broken (specified, for the left generator, by �(GL ⇒ �GL)). Spec-
ifications S1 to S4 require that if a generator or APU breaks, then it will be
disconnected from the rest of the EPS in the next execution step. Note that
S1 and S2 require also the two generators to be initially connected to the rest
of the plant. S5 requires the absence of short circuit between the two APUs,
while S6 requires the absence of short circuit between generators in case they
are both healthy (after an initial setup period). Furthermore, S7 specifies that
bus B3 needs to be isolated if no faults in generators or APUs occur. Finally, S8

and S9 require that DC loads need to be connected to the plant if at least one
TRU is working correctly. In this example, the topological constraints include
also the restriction that the variables associated to the specifications cannot be
connected to each other, i.e. the failure of two EPS components needs to be
associated to distinct events. These hints are encoded as a relation in RS , not
shown in Table 3.

Table 4 shows the contracts and the library-specific relations (in this example
only type compatibility) in the component library. The table is divided in three
sections, where the first two describe library components and the last one, on the
bottom, shows the library-specific relations used to derive additional topological
constraints. Every component in the library is described by its I/O variables
(annotated with their types), and its specification as an A/G pair. All the com-
ponents make some assumptions over the state of a certain type of EPS elements,
and provide a guarantee over the state of some contactors. Consider, for instance,
component B1. It just assumes that a certain generator is not initially broken
(note that the type of the input variable allows it to be connected to either a
generator or an APU), and guarantees that the contactor will be always open.
Clearly, B1 is not a good candidate to satisfy either S1 or S2, since they require
the contactor to be closed at least initially. Similarly, all the other components
in the library encode a particular behavior that can be used to control parts of
the EPS.

We ran all the experiments on a 2.3 GHz Intel Core i7 machine, with 8 GB of
RAM, limiting the maximum number of parallel processes to 8. Figure 6 shows
the observed results, in terms of execution time, running pyco to synthesize the
BPCU using two different libraries, one with 20 elements and the other with
40 (both obtained by replicating the components described in Table 4). Every
bar in the histogram indicates the synthesis time for the specification subsets
{S1}, {S1, S2}, . . . , {S1, . . . , S9}. In both series, the increment in synthesis time
is not constant between different specification sets because some specifications
might have the same solution space as others, leading to similar synthesis times.
We observed that the difference in synthesis times between the two series is
mostly due to the initialization phase of the synthesis tool, when the library is
processed and the constraint solver instantiated. For reference, a typical solution
satisfying all 9 specifications included 6 components, {I1,D1, L1, G1, L2, C1}, for
a total of 22 ports connected accordingly.

In a separate experiment, using the library with 40 elements, pyco was been
able to explore the whole solution search space invoking the verifier 108176
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Table 3. Set of global specifications S1 . . . S9 to satisfy. Assumptions are common to
all the specifications

Input variables

GL, GR (ActiveGenerator)

AL, AR (BackupGenerator)

RL, RR (Rectifier)

Output variables

C1, C4 (ACGenContactor)

C2, C3 (ACGenContactor)

C5, C6 (ACBackContactor)

C7, C8 (DCBackContactor)

C9, C10 (DCLoadContactor)

Assumptions (common to all)

¬GL ∧ �(GL ⇒ �GL)∧
¬GR ∧ �(GR ⇒ �GR)∧
¬AL ∧ �(AL ⇒ �AL)∧
¬AR ∧ �(AR ⇒ �AR)∧
¬RL ∧ �(RL ⇒ �RL)∧
¬RR ∧ �(RR ⇒ �RR)

S1 C1 ∧ �(GL ⇒ �¬C1)

S2 C4 ∧ �(GR ⇒ �¬C4)

S3 �(AL ⇒ �¬C2)

S4 �(AR ⇒ �¬C3)

S5 �¬(C2 ∧ C3)

S6 �[(¬GL ∧¬GR) ⇒ �¬(C5 ∧C6)]

S7 �[(¬GL ∧¬AL ∧¬AR ∧¬GR) ⇒�(¬C2 ∧ ¬C3 ∧ ¬C5 ∧ ¬C6)]

S8 �[¬(RL ∧ RR) ⇒ C9]

S9 �[¬(RL ∧ RR) ⇒ C10]

times. This corresponded to more than 16M rejected candidates, which did not
require an explicit check thanks to the inductive learning process. Among these
candidates, 386 distinct ones were satisfying all the specifications.

Figure 7 shows, instead, the effect of designer hints and library-specific con-
straints on synthesis time. Here synthesis is performed on smaller and simplified
instances of the EPS problem, including 2, 4, 6, 10 and 16 variables, using a
library with 20 elements. The graph (in logarithmic scale), shows how these
constraints are critical in decreasing the overall problem complexity. In case of
the instance with 16 variables, the CSCL algorithm variant without additional
constraints was not able to synthesize a solution within the time bound of 10 min.
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Table 4. Structure of the EPS library

Fig. 6. Synthesis time for the EPS
example, subject to increasing number
of specifications

Fig. 7. Impact of types and user pro-
vided hints on synthesis time for sim-
plified instances of the EPS example

7 Conclusion

We studied the problem of constrained synthesis from component libraries.
The problem has been defined in terms of generic components subject to a
number of topological constraints. These constraints include types on compo-
nent ports, hints from the designer and composition rules precomputed and
stored in the library. After an assessment on the complexity of the problem,
we presented two variants of an algorithm based on CEGIS, a sequential and a
parallel one, and evaluated its implementation with LTL-based A/G contracts
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on an industrial-relevant case study. Future extensions of this work include the
study of algorithms to decompose complex specifications into smaller instances
(to increase performance by dealing with smaller synthesis problems), the appli-
cation of the synthesis technique described here to component libraries defined
over multi-aspect specifications (e.g. behavioral, security, real-time specifica-
tions) and the analysis of erroneous designs and infeasible specifications in order
to provide feedback to the designer on how to fix her library and obtain the
intended result.
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Abstract. Cyber-Physical Systems (CPSs) are networks of heteroge-
neous embedded systems immersed within a physical environment. Sev-
eral ad-hoc frameworks and mathematical models have been studied to
deal with challenging issues raised by CPSs. In this paper, we explore
a more standard-based approach that relies on SysML/MARTE to cap-
ture different aspects of CPSs, including structure, behaviors, clock con-
straints, and non-functional properties. The novelty of our work lies in
the use of logical clocks and MARTE/CCSL to drive and coordinate
different models. Meanwhile, to capture stochastic behaviors of CPSs,
we propose an extension of CCSL, called pCCSL, where logical clocks
are adorned with stochastic properties. Possible variants are explored
using Statistical Model Checking (SMC) via a transformation from the
MARTE/pCCSL models into Stochastic Hybrid Automata. The whole
process is illustrated through a case study of energy-aware building, in
which the system is modeled by SysML/MARTE/pCCSL and different
variants are explored through SMC to help expose the best alternative
solutions.

Keywords: Cyber-physical systems · MARTE · pCCSL · Stochastic
hybrid automata · Energy-aware building · Statistical model checking

1 Introduction

Cyber-Physical Systems (CPSs) combine digital computational systems with sur-
rounding physical processes and can be viewed as a network of embedded systems
where a (large) number of computational components are deployed within a phys-
ical environment [25]. Each component collects information about and offers ser-
vices to its environment (e.g., environmental monitoring, health-care monitoring
and traffic control). This information is processed either within the component,
in the network or at a remote location (e.g., a base station), or in any combina-
tion of these. The prominent characteristic of CPSs is that they have to meet a
c© Springer International Publishing AG 2017
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multitude of quantitative constraints, e.g., timing constraints, energy consump-
tion, memory usage, communication bandwidth, QoS, and often with uncertain
environment or user behaviors. So how to model and verify CPSs still remains a
challenging problem. Now CPSs are spreading in numerous applications with a
large societal impact, ranging from automotive systems, manufacturing, medical
devices, automated highway systems (AHS) [17], air traffic control systems [37],
personal and medical devices [22], Smart Grids and Smart Building, etc.

In the literature we find that both a variety of engineering modeling languages
(lots of them are UML/SysML/MARTE-based) and a bunch of formal models
(e.g., timed automata, hybrid automata, Petri nets, synchronous languages) pro-
vide a good support for formal verification. However, the integration of industry
standards with verification frameworks is still in its infancy. For instance, a clas-
sical flow consists in adorning a UML state machine with some annotations and
then transforming it into a timed automata for verification. We intend to go fur-
ther by combining together several models of various kinds to cover heterogeneous
aspects of the systems before transforming them into a language amenable to veri-
fication. While several frameworks inspired by Ptolemy [31] address the important
issue of heterogeneity, most of them propose an ad-hoc environment and notation,
while here we start from UML/SysML/MARTE models. The aim of our work is
to facilitate the modeling CPSs with standard-based modeling language.

We consider that the UML, as a general-purpose language, provides a variety
of models to cover lots of aspects of CPSs, structural aspects with structured
classifiers and components, state-based models with state machines and data-
flow models with activities. Because we target embedded systems, we use the
MARTE profile, which appears as the best choice [8] for a UML-based solution.
In particular we focus on its subprofiles covering time, allocation, non-functional
properties (NFP) (like power or energy consumption) and Performance Analysis
Modeling (PAM). Because CPSs combine discrete and continuous aspects, we
follow the lead of other works [32] and combine MARTE with SysML. In partic-
ular, we use SysML parametrics to capture the equations that link the energy
to time and power.

As in any UML-based models, the relationships among models and the con-
sistency is of paramount importance. We claim that logical clocks [23], just
like tagged structures [24], provide a good abstraction to link different models
together. Indeed, logical clocks can be used as activation conditions [3] of dif-
ferent models. Clock constraints then define a coordination model to constrain
the joint execution of these models. The time subprofile of MARTE extends the
UML with logical clocks that can then be used to control the different interac-
tions between the models, e.g., the relationships between a state transition and a
part in a structured classifier, or the start of an action and the sampling step to
integrate the energy and compute the power consumption, but also relationships
between UML and SysML models.

While MARTE extends UML with the notion of logical clock, its compan-
ion language CCSL [1] offers a syntax to build clock constraints. CCSL as a
declarative language helps build a specification that can be refined when new
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constraints from the environment, or the platform or the application become
available. There may be several implementations that satisfy a CCSL specifica-
tion, a classical approach [15] consists in defining a policy (e.g., non-deterministic
choice or as soon as possible) to decide which solution to retain. Another solution,
which is explored here, consists in extending CCSL with stochastic constructs
and probability. Such constructs help pick one solution instead of another one
by giving the likelihood that a clock ticks.

Once the SysML/MARTE model is built, we propose to analyze the resulting
model through a transformation to Stochastic Hybrid Automata and to use
Statistical Model Checking (SMC) [6,27,33,39] to explore different solutions. To
illustrate our approach, we take the example of a energy-aware building and
show how to explore and compare alternative solutions.

Our contributions are (1) to propose an extension of CCSL, called pCCSL,
with stochastic constructs and probability to drive the exploration of alternative
solutions when building clock specifications; (2) To show how pCCSL speci-
fications can augment UML/SysML/MARTE models to link together several
models; (3) To propose a structural transformation into SHA according to the
semantics of pCCSL so as to perform evaluation on the alternative solutions
with statistical model checking, which helps designers refine system models. The
whole process is illustrated on the example of an energy-aware building.

The remainder of this paper is organized as follows. Section 2 introduces
CCSL and our proposed extension, pCCSL. Section 3 introduces our case study
and makes a joint use of UML, SysML and MARTE to capture different
aspects of this model. Section 4 proposes some transformation rules to trans-
form MARTE/pCCSL into SHA. Finally we position our work with respect to
related works before concluding and discussing possible future extensions.

2 pCCSL: The Probabilistic Extensions of CCSL

2.1 Syntax of pCCSL

We first recall the basic constructs of CCSL [1] and then further describe the
proposed extensions (see Fig. 1).

Core constructs of CCSL. A specification is made of clock relations and
declarations. Relations prevent some clocks from ticking depending on configu-
rations. Declarations are meant to declare new clocks, either to capture events
of the system or to build intermediate clocks based on other ones. The two basic
CCSL relations are subclocking and causality. The former one is inspired by syn-
chronous languages and prevents one clock (the subclock) from ticking when its
superclock cannot tick. The superclock is said to be coarser and the subclock
is finer than the other one. The latter one is akin to the causality relation in
event structures. It prevents a clock (the effect) from ticking when another clock
(its cause) has not ticked. The cause is said to be faster than the effect (which is
then slower). This typically represents first-in-first-out (FIFO) constructs, e.g.,
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one cannot read a data before it has been written. The other relations (prece-
dence, synchrony, exclusion) are derived.

When declaring a clock, one can specify (if required) how it is related to
other clocks. This is done using clock definitions, e.g., filters, or expressions.

Filters allow for precisely defining a subclock based on its superclock. For
instance, a PeriodicFilter makes one clock tick every p ticks of its superclock.
The Select expression selects an interval (possibly not closed) of ticks to the
superclock at which the subclock ticks.

Function-expression builds a new clock based on two (or more clocks). Union
builds the coarsest clock that is a super clock of two other clocks, whereas Inter-
section builds the finest subclock of two clocks. Inf (resp. Sup) builds the slowest
(resp. fastest) clock that is faster (resp. slower) than two clocks.

The Sampling takes a triggering and sampling clock and builds the fastest
clock slower than the triggering clock and subclock of a sampling clock.

One can also declare a period and optionally a jitter for clock making refer-
ence to an ideal physical clock. This information related to physical time is not
used in CCSL clock calculus but is a mere annotation to display results with a
scale that is meaningful to the user.

Fig. 1. Grammar of pCCSL
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Proposed extensions for pCCSL. The grammar of pCCSL is shown in Fig. 1.
There are three proposed extensions marked with red fonts. The first consists in
adding a rate parameter to the subclock relation. It specifies the rate at which
the subclock ticks compared to its superclock. It corresponds to a probability
for the subclock to tick when its superclock ticks. This is an intermediate solu-
tion between saying nothing, which may imply that the subclock never ticks,
and completely deciding when the subclock ticks, with a filtering expression for
instance.

The second proposed extension consists in assigning a probability to a clock,
to replace an expression. Rather than giving a deterministic expression that
says when the clock may or cannot tick, we give the probability that the clock
ticks. As we show later, the consistent integration of this probabilistic clock with
the semantics of the other relations is not trivial and requires some particular
caution. However, this is useful to help CCSL clock calculus picking one solution
instead of another one when several solutions are possible.

The third and last extension consists in giving a parameter λ to control when
a clock ticks or not. The lambda parameter makes a clock tick according to an
exponential distribution. The probability that the clock ticks at the time less
than x is 1 − e−λx. x here is either relative to the ticks of another clock or, if no
reference clock is provided, relative to an absolute ideal physical-time clock. In
the latter case, the information is a mere annotation only used to interpret the
ticking of the clock according to an ideal physical time reference but is not used
in the clock calculus process.

Note that these three extensions cannot add new solutions, they are just
meant to reduce the set of solutions in case of several possible solutions.
The probability and distribution constructs help us decide on the likelihood
for a clock to tick (when allowed by the other constraints).

2.2 Semantics of pCCSL

A constraint specification spec = 〈C, Cons〉, is a tuple where C is a set of
clock names and Cons is a set of constraints. The semantics of each individual
constraint is given by a special form of transition system called clock-labeled
transition systems.

Definition 1 (Labeled Transition System). A labeled transition system
(lts) is a structure 〈S,A,−→〉 consisting of a set S (of elements, s, called states),
a set A of labels, and a transition relation −→⊆ S × A × S. s

a−→ s′ is used to
denote (s, a, s′) ∈−→.

A clock-labeled transition system is a lts where each label is a set of clocks.
From each state, there are maximum 2n outgoing transitions, where n = |C| is
the number of clocks. Each transition corresponds to a particular configuration
of ticking clocks. Transition systems may have an infinite number of states.

Definition 2 (Clock-Labeled Transition System). A clock-labeled tran-
sition system (clts) is a structure 〈S,C, −→〉 where 〈S, 2C ,−→〉 is a labelled
transition system.
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To capture the semantics of the proposed extension we extend the clts by
adding a probability to each transition.

Definition 3 (Probabilistic CLTS). A probabilistic clock-labeled transition
system (pclts) is a clts with an extended transition relation −→⊆ S×2C ×P ×S,
where P ⊆ Q is a real number between 0 and 1 (i.e., a probability).

For a given transition t = (s, Γ, p, s′) ∈−→, π(t) = p denotes the probability
p that the transition t is fired.

For a pclts 〈S,C,−→〉, we call s• the set of all transitions whose source is s:

s• = {(s, Γ, p, s′) ∈−→}

Note that s• can never be empty since it is always possible to do nothing in
CCSL, i.e., (s, ∅, p, s) is always in −→ for all s ∈ S and for some value p.

Given a clock c ∈ C, let us call s•
c the set of all transitions whose source is s

and such that the clock c ticks:

s•
c = {(s, Γ, p, s′) ∈−→| c ∈ Γ}

For a pclts to be well-formed, it must satisfy the two following conditions:

∀s ∈ S,
∑

t∈ s•
π(t) = 1 (1)

∀s ∈ S,∀c ∈ C,
∑

t∈ s•
c

π(t) = pc (2)

In Eq. 2, for each clock c ∈ C, the probability pc is either manually assigned
by the user with a declaration ‘Clock c probability p’, or derived using the rate
in a subclocking relation or assigned to the default value 1/|s•| otherwise.

A ‘normal’ clts can be seen as a probabilistic clts where all the probabilities
are assigned with default values 1/|s•| for all the states s ∈ S.

Subclocking and synchrony. Let a, b ∈ C be two clocks and r ∈ Q a real
number such that 0 ≤ r ≤ 1. The subclocking relation (see Fig. 2(a)), b ⊆
a rate r is defined as a pclts 〈{s0}, {a, b},−→⊆〉, such that −→⊆= {(s0, {}, 1 −
pa, s0), (s0, {a, b}, pa ∗ r, s0), (s0, {a}, pa ∗ (1− r), s0)}, where pa ∈ Q is the prob-
ability assigned to clock a. Let us note that Eq. 1 is satisfied since

∑
t∈ s0• π(t) =

(1 − pa) + (pa ∗ r) + (pa ∗ (1 − r)) = 1. Equation 2 is also satisfied since∑
t∈ s0•

b
π(t) = pa ∗ r = pb and

∑
t∈ s0•

a
π(t) = (pa ∗ r) + (pa ∗ (1 − r)) = pa.

If no probability was assigned then the default is 2/3. If no rate is assigned,
then r defaults to 1/2. With default values, each one of the three transitions has
a probability of 1/3, i.e., each transition has the same probability to be fired.
The transition {b} however has a probability of 0 since it would contradict the
subclocking relation.

Note that if both the probability of a is given and the rate of b relative to a
is given, then pb = pa ∗ r. In any other cases, the specification is ill-formed.
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Fig. 2. pclts for subclocking and exclusion

Fig. 3. pCCSL causality (infinite state pclts): a ≤ c

The synchrony constraint is a special case of subclock defined as follows
a = b ≡ b ⊆ a rate 1, which implies pa = pb.

The exclusion constraint (see Fig. 2(b)), a# b is defined similarly using the
following transition relation −→#= {(s0, {}, 1 − pb − pa, s0), (s0, {b}, pb, s0),
(s0, {a}, pa, s0)}. Again the two consistency rules are satisfied.

Causality. Let a, c ∈ C be two clocks. The causality relation (see Fig. 3), a ≤ c
is defined as a pclts 〈N, {a, c},−→≤〉, such that −→≤=

⋃
i∈N

si, where N is
the set of natural numbers, s0 = {(0, {}, 1 − pa, 0), (0, {a, c}, pc, 0), (0, {a}, pa −
pc, 0)}, and for all i ∈ N, i > 0, si = {(i, {}, (1 − pa) ∗ (1 − pc), i), (i, {a, c}, pa ∗
pc, i), (i, {a}, pa ∗ (1 − pc), i + 1), (i, {c}, (1 − pa) ∗ pc, i − 1)}. pa, pc ∈ Q are the
probabilities assigned to clocks a and c respectively.

Note that whatever the values of pa and pc, then a will occur more frequently
than c since c cannot occur alone in state 0 and to reach state 0, a and c must
have occurred exactly the same number of times.

When a size is associated with the causality constraint, then the transition
system becomes finite and is such that the number of states equals to size + 1.
With size 1, there are two states, with size 2 there are three states and so on.

The precedence is very similar to causality except that in state 0 the simulta-
neous occurrence of a and c is forbidden. The whole semantics of the operators
is available in [30] and we just give here the ones used in this paper and that
have been extended with stochastic constructs.
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2.3 Composition

Each constraint is expressed as a clts and a specification is then captured as
the synchronized product [2] of all the clts. The process for standard CCSL
constraints is explained in detail in [30].

With the proposed extensions, for each clts L = 〈S,C,−→L〉 that results
from the synchronized product and such that C is the union of all the clocks
of all the composed clts, we derive a pclts P = 〈S,C,−→P 〉 such that the two
consistency rules (Eqs. 1 and 2) are satisfied.

For instance, let us consider the following pCCSL specification:

1. Clock a with probability pa

2. Clock b ⊆ a rate: r
3. Clock a ≤ c size: 1

The semantics of each constraint is captured with a clts which are then
composed through a synchronized product. Then the probabilities are added to
the transitions resulting in the pclts shown in Fig. 4.

Fig. 4. Example of composition through synchronized product

Note that Eq. 1 is satisfied since
∑

t∈ s0• π(t) = (1 − pa) + (pa ∗ (1 − r)) +
(pa ∗ r) = 1 and

∑
t∈ s1• π(t) = 1/2 + 1/2 = 1. Equation 2 is also satisfied since∑

t∈ s0•
a
π(t) = (pa ∗ (1 − r)) + (pa ∗ r) = pa and

∑
t∈ s0•

b
π(t) = pa ∗ r = pb. Since

the probability of c is not given and c is the only clock that can tick from state
s1 then the outgoing transitions are assigned with the default value 1/2 since
|s1•| = 2.

3 Modeling and Refining Energy-Aware Building
with MARTE/pCCSL

This section describes the application of MARTE/pCCSL to a hybrid system
case, which addresses the control problem of the temperature of rooms in a
given building with limited heaters. With MARTE/pCCSL, we can flexibly
model every part of the system in multi-views (structure, equation, behavior,
and clock constraints) with quite loose coupling between them. MARTE facili-
tates the modeling of Time and Non Functional Properties (NFP, here energy
and temperature), and pCCSL provides precise and probabilistic time control



MARTE/pCCSL: Modeling and Refining Stochastic Behaviors of CPSs 119

through definition and constraints of logical clocks used between abstract spec-
ification and its refinements to help us expose the best alternative solutions.
Next we briefly introduce the case of energy-aware building and then present its
SysML/MARTE/pCCSL models in multi-views.

3.1 Energy-Aware Building Setup

As a starting point, consider a setup proposed by [11] as an extension of the chal-
lenging benchmark for hybrid systems model-checkers addressed in [20]. The case
consists of a building layout with temperature dynamics, autonomous heaters
and a central controller deciding which room gets a heater. The room tempera-
ture dynamics is described by a differential equation:

T ′
i =

∑

j �=i

ai,j(Tj − Ti) + bi(u − Ti) + cihi

where Ti and Tj are the temperatures in rooms i and j respectively, u is the
environment temperature and hi is equal to 1 when the heater is turned on in
the room i and 0 otherwise. The building layout is encoded by an adjacency
matrix a where ai,j is a heat exchange coefficient between rooms i and j. The
heat exchange with an environment is encoded in a separate vector b, where bi is
the energy loss coefficient for room i. An energy supply from a heater is encoded
as a vector c, where ci is a power coefficient for room i. Figure 5(a) shows a
building configuration instance (HEAT15 in [20]) with rooms and heaters, where
the wall thickness corresponds to an isolation defined by a and b. The definition
of matrix a, vectors b and c can be found in [11].

Fig. 5. Representation of building layout, outside temperature and dynamic user profile

Each heater is equipped with a bang-bang controller configured to turn on
the heating (hi := 1) when the temperature Ti is below threshold oni and turn
off (hi := 0) when the temperature Ti is greater than offi . Whenever the heating
is turned on, the heaters consume an amount of power denoted by vector pow.
The central controller can switch-over the heating from one room to another.
The room is said to be needing a heater if the temperature drops below its get
threshold and it is said to be outside comfort zone if the temperature drops below
low. To decide when the heating can be switched over, we consider a control
strategy, which is based on heuristics that the temperature difference between
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rooms should not be too high. To be precise, if roomi whose temperature Ti ≤
geti has no heater while roomj has a heater, the heater can move from roomj to
roomi when the difference Tj −Ti ≥ difi . To reduce the non-determinism further,
we consider probabilistic choices between the possible room destinations denoted
by probabilistic weights imp. The temperature thresholds for each room used
above also refer to [11].

Further we propose to augment this setup with specific weather conditions
and different user profiles to make a more realistic case for optimizing the energy
consumption. The case [20] assumes that the environment temperature is within
a range between 0◦C and −2◦C without any specific dynamics. Figure 5(b) shows
one daily cycle and Fig. 5(c) shows the user profile with dynamic temperature
thresholds in a day. To this user profile, we have two different refinement versions,
one of which is a more complex user profile with probabilistic choice that is
explained later to show the usage of MARTE/pCCSL and probabilistic clock
and to demonstrate how to refine the models.

3.2 MARTE/pCCSL Models of Energy-Aware Building

Structure Modeling. As described above, the structure of our energy-aware
building is modeled with SysML Internal Block Diagrams shown in Fig. 6. Build-
ingContext represents the whole context that consists of five rooms and a central
controller as well as the environment such as weather. Room represents the com-
mon template of five rooms, each of which contains a heater, a TempSensor, and
a UserProfile for user-defined temperature conditioning thresholds. We limit the
maximum number of heaters turned on at a time to three, though each room has
a heater. Each part in the energy-aware building is stereotyped by clock that
means their behaviors should be controlled by certain clock constraints (specified
in pCCSL). For instance, controller monitors the information of rooms with the
constraint monitor = sensori (i is from 1 to 5), representing that monitor clock
in controller and sensor clock of each room is synchronous. Besides such discrete
control behavior, continuous behavior such as temperature change of each room
as well as outside environment (weather) is constrained by clock, that is, contin-
uous behavior is discretized by clocks. We use several nfpTypes to define related
variables like Weather.T and Room.T as NFP Temperature, Heater.energy as
NFP Energy, Heater.power as NFP Power so that NFP properties like unit can
be used. Several nfpTypes are imported from MARTE Library (NFP Energy and
NFP Power), and NFP Temperature is defined by us using MARTE constructs
(units, dimension and nfpType stereotypes). The definition is simple and similar
to most nfpTypes defined in MARTE Library, so we do not discuss the details.

Time/Clock Domain. Figure 7 shows the time domain of the whole system.
Seven clocks are defined to constrain the time of the system and three of them are
defined as probabilistic ones with the keyword rate. We define a new clockType
called BuildingClock which serves as a base time of the whole system. Building-
Clock is discrete and owns a read-only attribute resolution. sysClk, hour, stepClk



MARTE/pCCSL: Modeling and Refining Stochastic Behaviors of CPSs 121

Fig. 6. Structure of an energy-aware building (Internal Block Diagram)

are three instances of BuildingClock with their own time units and resolutions
for different usage. sysClk with high resolution (0.01 s) is used in precise control
process; hour with low resolution (1h = 3600 s) is used to specify user profile.
stepClk is similar to sysClk, but is mainly used for discretizing continuous behav-
ior. Then we import idealClk from MARTE TimeLibrary to constrain our clock
instances with pCCSL. Besides, we define three probabilistic subclocks sub-
stepClk, refinehour1 and refinehour2. substepClk is the subclock of stepClk with
rate 2/3. refinehour1 and refinehour2 is the subclock of hour, where refinehour1
is used to describe user behaviors when the user may need to go out for meeting
in the afternoon as well as refinehour2 is used when the user will not go out and
just work.

Fig. 7. Time domain of an energy-aware building

Behavior Modeling. The system behaviors specified with pCCSL specifica-
tions are shown in Fig. 8. We present these activities stereotyped by timed-
Processing, of which the first represents monitoring and scheduling behaviors
of the system and the rest represent pre-defined user behaviors (user profiles).
System behavior references sysClk and the whole control process is triggered
by a timedEvent called monitorEvent that occurs every 120 s. Each time the
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Fig. 8. Activity diagram for system behaviors

system readSensorData (e.g. temperature of rooms) and also readProfileData
(e.g. whether user stays in the room or not). Then the system starts Sched-
ule process made of three sequential actions: getNeedList (to collect need and
heating information), chooseMostImportant (to find the room that needs to be
heated most according to the strategy if more than one room is in the list),
and changeHeatingConfig (that changes heating parameter of rooms or mode of
heaters). Each action is also stereotyped by timedProcessing and may include
complex operations implemented in code. The chooseMostImportant contains
the code implementation of scheduling strategy described in the last subsection.
The changeHeatingConfig contains the code that will set necessary parameters
such as Heater.on (for denoting the running mode of heater), HeatingVector (for
denoting the heated state of room), and Room.cold (for denoting the discom-
fort state of user) and so on. The pink part in Fig. 8 is the pCCSL specification
including three kinds of constraints:

– distribution clock (e.g. Clock getNeedList with distribution 0.03 that means
getNeedList occurs with an exponential time delay whose parameter λ = 0.03
on this clock) to describe the possibility of the unstable performance of sensors;

– clock synchrony (e.g. monitorEvent = readSensorData that means moni-
torEvent coincides with readSensorData);

– clock causality (e.g. getNeedList ≤ chooseMostImportant that means get-
NeedList is always followed by chooseMostImportant).

Figure 9 shows us the abstract user behaviors. userProfile abstract references
the clock hour to describe the abstract possible actions of user in a day. The
newday occurs every 24 h, representing the start of one day. User may arrive at
the building between 8:00 and 9:00. The morning time lasts 4 h and the afternoon
time lasts 4 h. In the middle, we have 1 h to have lunch. Having this abstract
specification, we have two kinds of refined models with subclocks of hour.

Refinement of Behavior Models. The refinement processes are shown in
Figs. 10 and 11. The refined version shown as Fig. 10 uses subclock refinehour1
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Fig. 9. Abstract activity diagram for user behaviors

Fig. 10. Refined version 1 of activity diagram for user behaviors (refinehour1⊆hour,
rate=1)

with rate 1. User arrives at the building between 8:00 and 9:00. After 4 h, user
may go for lunch between 12:00 and 13:00. After lunch, user can either go on
working in the building (with a probability of 0.6) or go to a meeting (with a
probability 0.4). If working in the afternoon, user may leave the building after
4 h (i.e. between 17:00 and 18:00). If not, user will not go back to the building
until next day. When user stays in the building, temperature thresholds are
relatively higher than that when user does not, so that energy can be saved
due to low temperature duration. As shown in the pink part of Fig. 10, pCCSL
specifies the probabilistic clocks (e.g. Clock outMeeting with probability 0.4 that
means outMeeting may occur with a probability of 0.4). We also use MARTE
stereotype GaStep from the Performance Analysis Modeling (PAM) subprofile
to report that information on the UML model. The refined version shown as
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Fig. 11. Refined version 2 of activity diagram for user behaviors (refinehour2⊆hour,
rate=3/4)

Fig. 11 uses subclock refinehour2 with rate 3/4. The user doesn’t need to work
8 h a day, he/she only needs to work determined time given by subclock in the
morning and afternoon, and the user can leave in the rest time and we neglect it.
User may also arrive at the building between 8:00 and 9:00, and then, in 4 h of
morning time, according to the rate, user may work 3 h randomly and the other
time is rest time (neglected). In the afternoon, user may work 3 h randomly, too.
Thus, as we can see, the abstract specification and its refinements are connected
logically by clock hour and its subclock refinehour1 and refinehour2. Why we
use user profiles to model is that user profiles are stochastic behaviors and we
can refine these behaviors. The relation between Figs. 9, 10 and 11 is that Fig. 9
is the abstract specification of user profiles, while Fig. 10 is refinement1 and
Fig. 11 is the refinement2 of the abstract specification. Lay down an abstract
specification of some behaviors first, and then we can refine it with probabilistic
clocks to model stochastic behaviors and various solutions.

Equation Modeling. Continuous behaviors described by differential equations
also play an important role. Most continuous variables need to be monitored in
effective real-time control, such as temperature and energy consumption
in this case. To model continuous behaviors of CPSs, the parametric models
are used to present the Ordinary Differential Equations (ODE). As shown in
Fig. 12, we consider four equations: RoomTemperatureEquation (that determines
the temperature change of each room according to the adjacent room, weather,
and heater), HeaterEnergyEquation (for monitoring energy consumption of each
heater), DiscomfortMonitorEquation (for monitoring discomfort value of users),
WeatherEquation (that describes outside temperature curve). The former three
equations use derivatives like d(T)/d(t) where t refers to the clock substepClk
defined already as discretization step.

From this case study, we can find the reason why we use pCCSL rather
than CCSL. Since pCCSL has the concept of rate, it can present the stochastic
behaviors of the system effectivly and simply. CCSL does has logical time and
ticks, but its tick position is certain. For instance, if A is a subclock of B and
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Fig. 12. Equations of continuous behavior of energy-aware building (modeled as a
SysML parametrics)

A ticks every four B, then the tick positions of A must be the fist position of
every four consecutive B, that is the first, the fifth, the ninth and so on. But for
pCCSL, if A is a subclock of B with rate 1/4, the tick position of A is stochastic.
We can only ensure that A will tick only once in four consecutive B, but the
certain position is unknown. Thus, it can be seen that pCCSL gives a global rate
rather than a precise position as before, which can be used to model stochastic
behaviors of CPS.

4 Transformation from MARTE/pCCSL to SHA
for Evaluation

This section discusses the transformation approach from MARTE/pCCSL spec-
ification to Stochastic Hybrid Automata (SHA) used in Uppaal-smc [10]. The
transformation mainly targets stochastic behaviors and continuous behaviors
(ODE) in terms of SHA. The core elements of MARTE/pCCSL can be directly
mapped to the elements of SHA. At last, we compare the energy consumption
of users using Uppaal-smc aiming to help designers refine the design models.

4.1 Stochastic Hybrid Automata

Definition 4 (Stochastic Hybrid Automata). A Stochastic Hybrid Auto-
maton (SHA) H is a tuple H = (L, l0,X, Σ,E, F, I), where

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– X is a finite set of continuous variables,
– Σ is a finite set of actions, and Σ = Σi + Σo, where Σi is the set of input

actions, Σo is the set of output actions,
– E is a finite set of transitions, for each transition denoted by

(l, g, α, ϕ, l
′
),l, l

′ ∈ L, g is a predicate defined by RX and action label α ∈ Σ,
ϕ is a binary relationship on RX .
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Fig. 13. Mapping rule from MARTE/pCCSL to SHA

– F (l) is a time delay function for each location l ∈ L,
– I is a finite set of invariants.

Uppaal-smc supports the analysis of stochastic hybrid automata (SHA) that are
timed automata whose clock rates can be changed to be constants or expressions
depending on other clocks, effectively defining ODEs. This generalizes the model
used in previous works [13,14] where only linear priced automata were handled.

Definition 5 (Semantics of SHA). The semantics are denoted by a timed
Labeled Transition System, which supports the seamlessly transformation from
MARTE/pCCSL to SHA. For a SHA H, each location (l, v) ∈ L × RX and
v |= I(l), where the transitions may be of two kinds:

– timed transition: (l, v) d−→ (l, v
′
), where d ∈ R≥0 and v

′
= F (d, v)

– event-triggered transition: (l, v) α−→ (l
′
, v

′
), which means the transition is

enabled with v |= g and ϕ ∈ (v, v
′
).

For timed transition, the probability density distribution of delay is a uniform
distribution or an exponential distribution depending on the invariant of l and∫

μs(t) · dt = 1 (μs is the probabilistic density function). Let El denotes the
disjunction of guards g such that (l, g, o,−,−) ∈ Ej for some output o. Let d(l,v)
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denotes the infimum delay and D(l,v) denotes the supremum delay, i.e. d(l,v)=
inf{d ∈ R≥0 : v + Rj · d |= El} and D(l,v)= sup{d ∈ R≥0 : v + Rj · d |= Ij

l }.
If D(l, v)<∞, the probabilistic density function μs means a uniform distribution
on [d(l, v),D(l, v)]. Otherwise, μs means an exponential distribution with rate
P(l), where Ij

l dosen’t put an upper bound on the possible delays out of (l,v)
and P : Lj → R≥0 is an additional distribution rate. For action transition, the
output probability function γs over Σj

o is the uniform distribution over the set
{o : (l, g, o,−,−) ∈ Ej ∧ v |= g} whenever this set is non-empty. The detailed
semantics of SHA is referred to [13].

4.2 Transformation from MARTE/pCCSL Models to SHA

Transformation from Mode/State-based MARTE/CCSL behavior to Timed
Automata (TA) has been discussed in our previous work [36]. The transfor-
mation approach to be presented in this section will reinforce it by encoding
activity behavior, stochastic behavior and continuous behavior into SHA. First,
we need to unify all chronometric clocks by converting all physical time units
into one. For instance, if we choose the time unit of highest resolution s as the
base unit, the conversion has to be conducted through multiplying all clocks in
userProfile using the unit h by 3600. Then we can encode behaviors (modelled
by Activity Diagram or State machine) with pclts according to the semantics
of pCCSL. After that, we can map pclts without probabilistic time delay and
choice into TA, which addresses two classes of timing constraints: determinis-
tic delay and non-deterministic duration. For instance, the duration of absent
is [8,9](h) that is mapped to an invariant (t ≤ 9) and a guard (t ≥ 8). Then,
we add probabilistic aspects in transformed TA. For the activity who contains
several actions constrained by a clock with exponential distribution, it will be
mapped to an location with its exponential parameter λ equalling to the expo-
nential distribution. When we use GaStep with the property prob to describe
the probabilistic choice, it is mapped to two branches with their probabilistic
weights. The mapping rules are summarized in Fig. 13. Due to the space limita-
tion of the paper, the detailed correctness demonstration is not given here. But,
the correctness of mapping is ensured with the semantics of pCCSL in [36,40].

Based on the above mapping rules, we can get corresponding SHA mod-
els. And then, we can compare and evaluate different refinement versions with
Uppaal-smc to expose the best alternative one.

4.3 Evaluation with UPPAAL-SMC

With transformed SHA, we conduct evaluation experiment in Uppaal-smc. We
can get a specific and quantitative analysis using SMC and the evaluation analy-
sis results help us to expose the proper one from different refinement solutions.

To compare and evaluate energy consumption of two refined versions, the
following query is used:

Pr[energy ≤ 1000000](〈〉time ≥ 5 ∗ 24)
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Fig. 14. Energy consumption comparison between two refinement versions

The experiment result is shown in Fig. 14. As we can see, energy consumption
of refinement1 is about 50% more than that of refinement2. From the model
point of view, the time of staying at the building of refinement1 is 4 + 4 ∗ 0.6 =
6.4 h, which is a little more than that of refinement2. Therefore, the energy
consumption of refinement2 should be less than that of refinement1 and our
experiment result dose confirm this. So, if we just consider energy-saving, the
user profile of refinement version 2 is more suitable.

The details of our experiments can be found in https://github.com/
ECNU-MODANA/AL-Modana.git.

5 Related Work

This section compares our approach to related works for (1) the modeling of
Cyber-Physical Systems in general, (2) the use of MARTE to conduct various
kinds of analysis, (3) the use of Statistical Model Checking along with UML-
based models.

The main challenges [25] of designing CPSs resides in combining physical
and computational models to deal with both the digital embedded systems, their
environment and their interactions in a close-loop fashion. In [26], the author
acknowledges the need to extend deterministic paradigms with probabilistic con-
structs to capture the unknown (and unknowable) behaviors in a more precise

https://github.com/ECNU-MODANA/AL-Modana.git
https://github.com/ECNU-MODANA/AL-Modana.git
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manner. PTides [41] is mentioned as a successful example of simulation frame-
work that can deal with these challenges. While PTides gives an ad-hoc solu-
tion, we strive to rely on industry-standard models as a front-end. We think that
UML has a large-enough acceptance in industry to be a good base, and we use
some of its extensions to deal with non-functional properties (with MARTE) and
systems engineering properties (Parametrics of SysML). PTides, as an analysis
tool, could very well be used as a back-end provided that a semantic-preserving
transformation is given.

Combining MARTE and SysML to address issues of CPSs was initially sug-
gested in [32]. MARTE was also experimented on industrial-size case studies [16]
and proved [21] first, to be up to the task, second, to require additional ad-
hoc extensions depending on the kind of analysis that is targeted. MARTE has
also been used standalone on academic examples to address some aspects of
CPSs, notably in [29] where an extension of StateCharts is proposed and in [28]
where a hybrid version is explored. MARTE is also often used for its ability
to describe non-functional properties [4] or as a base to conduct performance
analysis [18,38] or other sort of non-functional analysis like dependability analy-
sis [5]. In literature [34], they use MARTE state machines to model embedded
system and transform it to stochastic petri net for energy consumption estima-
tion. In all these examples, only one model of UML is used (like state machine
or sequence diagram) while this paper focuses more on finding a practical solu-
tion to combine together several UML/SysML/MARTE models. We believe that
logical clocks, in a similar way than tagged systems [24], provides the good
abstraction level to do that. CCSL [1] then provides a concrete syntax to handle
logical clocks. While CCSL is a deterministic declarative polychronous speci-
fication language, its pCCSL extension provides new constructs to model the
unknown(able) behaviors. Our proposed transformation into stochastic hybrid
automata is largely inspired by our previous work to transform CCSL to timed
automata [36,40] however we deal here with new operators of CCSL and with
its stochastic extension.

Other works, either based on MARTE [35] or just on UML [9] also use sto-
chastic models to analyze the energy consumption. In this case, the authors rely
on Stochastic Petri Nets while in our work we use Stochastic Hybrid Automata.
The key difference here again is in the use of probabilistic logical clocks to coor-
dinate the models. However, it is rather a practical matter for us and Stochastic
Petri Nets could also be used as a backend instead.

Statistical model checking is a highly scalable simulation-based approach
which is useful to bound the probability of making an error by increasing the
simulation effort. SMC gets widely accepted in various research areas such as
software engineering, in particular for industrial applications [7,19], or even for
solving problems originating from systems biology [12,22]. Inspired by our previ-
ous work [11] which particularly focuses on the analysis of energy consumption of
energy-aware building case in different cases to find the most significant factors
that influence energy consumption, we attempted to apply MARTE/pCCSL to
this case and further evaluate NFP performance of CPSs with SMC.
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6 Conclusion

This paper explores an idea of using probabilistic logical clocks in relation to
UML models to capture several aspects of CPSs including the stochastic behavior
of unknowable events. We believe that using industry-standard is important for
a better adoption and we show how to make a consistent use of SysML and
MARTE. Clocks through pCCSL are used to coordinate multi-view models. The
underlying pCCSL specification is key for the semantic interpretation of models
and the transformation into Stochastic Hybrid Automata.

To summarize our contributions (1) MARTE/CCSL has been extended to
model stochastic behaviors. The syntax and semantics models of pCCSL are
introduced; (2) To show how pCCSL specifications can augment SysML/MARTE
models to link together several models and refine the abstract specification; (3)
According to the semantics model of pCCSL, we present the transformation
process from MARTE/pCCSL to SHA, whose aim is to perform evaluation on
the alternative solutions with statistical model checking, which helps designers
expose the best solution. The resulting models are analyzed with Uppaal-smc.
The process is demonstrated on a simple case study of energy-aware building.

MARTE proposes a subprofile, called Performance Analysis Modeling
(PAM), dedicated to performance analysis. We think this contribution is an
important step for the integration of MARTE Time model with PAM models.
Future work shall consider a more extensive use of PAM, while pCCSL may be
kept as much as possible as a lower level intermediate semantic model to ease
the transformation from pure UML to other formal models.
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17. Deshpande, A., Godbole, D., Göllü, A., Varaiya, P.: Design and evaluation tools
for automated highway systems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.)
HS 1995. LNCS, vol. 1066, pp. 138–148. Springer, Heidelberg (1996). doi:10.1007/
BFb0020941

18. Espinoza, H., Dubois, H., Gérard, S., Medina, J., Petriu, D.C., Woodside, M.:
Annotating UML models with non-functional properties for quantitative analy-
sis. In: Bruel, J.-M. (ed.) MODELS 2005. LNCS, vol. 3844, pp. 79–90. Springer,
Heidelberg (2006). doi:10.1007/11663430 9

19. Fang, H., Shi, J., Zhu, H., Guo, J., Larsen, K.G., David, A.: Formal verification
and simulation for platform screen doors and collision avoidance in subway control
systems. STTT 16(4), 339–361 (2014)

http://dx.doi.org/10.1007/978-3-662-45231-8_13
http://www.erts2014.org/Site/0R4UXE94/Fichier/erts2014_1A1.pdf
http://www.erts2014.org/Site/0R4UXE94/Fichier/erts2014_1A1.pdf
http://dx.doi.org/10.1109/TSE.2014.2362755
http://arxiv.org/abs/1207.1272
http://dx.doi.org/10.1007/978-3-642-24310-3_7
http://dx.doi.org/10.1007/978-3-642-22110-1_27
http://dx.doi.org/10.1007/978-3-642-22110-1_27
http://dx.doi.org/10.1007/978-3-642-30561-0_4
http://dx.doi.org/10.1109/ISORC.2008.36
http://dx.doi.org/10.1007/BFb0020941
http://dx.doi.org/10.1007/BFb0020941
http://dx.doi.org/10.1007/11663430_9


132 D. Du et al.
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Abstract. We address the problem of automatically identifying what
local properties the agents of a Cyber Physical System have to satisfy to
guarantee a global required property φ. To enrich the picture, we con-
sider properties where, besides qualitative requirements on the actions
to be performed, we assume a weight associated with them: quantita-
tive properties are specified through a weighted modal-logic. We propose
both a formal machinery based on a Quantitative Partial Model Checking
function on contexts, and a run-time machinery that algorithmically tries
to check if the local behaviours proposed by the agents satisfy φ. The
proposed approach can be seen as a run-time decomposition, privacy-
sensitive in the sense agents do not have to disclose their full behaviour.

1 Introduction

The term Cyber-Physical Systems (CPS s) refers to a new generation of systems
that integrate the dynamics of physical processes with those of the software
and communication. Applications of CPSs include medical devices and systems,
assisted living, traffic control and safety, advanced automotive systems, process
control, or distributed robotics [17]. For instance, unmanned vehicles or drones
encompass both the physical and cyber worlds at the same time: software, sen-
sors, networking, and physical devices. CPSs are resource-constrained and need
a high degree of automation, as the two previous examples require in fact [7,17].

The goal of the paper is to describe a formal framework that allows for
opportunely finding out the properties that must be locally satisfied by each
component of a CPS (or simply agent in the following), to guarantee a global
required property φ representing a complex task a CSP has to satisfy. Such a
decomposition 〈φ1, . . . , φn〉 is algorithmically found and tried to be satisfied at
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run-time: each agent proposes a behaviour with the purpose to satisfy a sub-
task (i.e., a sub-formula, or sub-property, φi), thus trying to reduce the overall
complexity into several simpler sub-tasks. Each of them can be in turn solved
by more than an agent, i.e., φi can be further decomposed.

In addition, we consider quantitative aspects, in order to add to the picture
costs, execution times, rates and, in general, the non-functional aspects that are
typical of CPS. Thus, the question is not only whether a system satisfies a task,
e.g., the delivery of some packages by drones, but also if the cost of enforcing
this behaviour in terms of, e.g., the global energy consumption of drones, or a
time-limit to deliver the packages, is better than a desirable threshold t.

Sub-tasks are found through a Quantitative Partial Model-Checking (QPMC )
function on quantitative contexts. With such QPMC function, parts of a con-
current system can be gradually removed by transforming φ accordingly. With
respect to [15], we are now also able to accumulate (part of) the weight of
removed actions into k, which represents an amount of weight that will be
indeed spent to execute such removed specification; note that this removal does
not affect the validity of φ. Not all the weight can be extracted, since non-
deterministic branches may have different costs. However, such removal is any-
way useful to have an estimation on the maximum weight of the remaining part,
and to stop QPMC as soon as it goes beyond the imposed acceptance-threshold.
Such a k will be also heuristically used to predict the best behaviour among all
the possible ones of an agent. Note that, since every agent computes the QPMC
function on some of its possible different behaviours, it is not required to disclose
the “full” behaviour; hence, this approach also improves the privacy of agents.
At run-time, each agent proposes one of its behaviours that, once pushed into
a sub-formula φi, minimises k. An initiator agent collects all the proposals and
checks if φ is satisfied with a cost better than t by the behaviour of all the
agents, which contribute to a part of it. If not, the agents are required to change
behaviour and adapt to the already accepted behaviours, until a solution to φ is
found.

Privacy, complexity reduction, and a run-time approach are the key-points
of our approach. The Model Checking function is “partial”, hence it reduces the
complexity of satisfying φ “agent-by-agent”. This also preserves the privacy of
agents, which do not need to disclose their full behaviour, but they can propose
different alternatives at run-time. Agents can consequently change at run-time
transparently to the framework.

The paper is organised as follows: Sect. 2 presents the necessary background-
notions on c-semirings [2], the algebraic structure we use to parametrise different
cost/preference metrics. In Sect. 3.1, we extend the notion of contexts [11] by
presenting quantitative contexts, where actions are associated with a c-semiring
value. In Sect. 3.3 we present a quantitative Hennessy-Milner logic (i.e., c-HM
logic) to define properties (i.e., φ) on quantitative contexts. Finally, to conclude
the presentation of the formal side of the framework, in Sect. 3.4 we define the
QPMC function. Section 4 describes instead the run-time side of the framework:
it reports the pseudocode the agents have to implement to find all the single
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sub-behaviours. and to check if their composition satisfies φ. This section comes
with a drone package-delivery and other examples (Sect. 1). Section 5 reports the
related work, while Sect. 6 wraps up the paper with conclusions and future work.

2 C-Semirings

We introduce semirings, the core of the presented computational framework.

Definition 1 (Semiring [10]). A commutative semiring is a five-tuple K =
〈K,+,×,⊥,�〉 such that K is a set, �,⊥ ∈ K, and +,× : K×K → K are binary
operators making the triples 〈K,+,⊥〉 and 〈K,×,�〉 commutative monoids
(semigroups with identity), satisfying i) (distributivity) ∀a, b, c ∈ K.a× (b+ c) =
(a × b) + (a × c), and ii)(annihilator) ∀a ∈ A.a × ⊥ = ⊥.

Definition 2 (Absorptive semirings). Let S be a commutative semiring. An
absorptive semiring verifies the absorptiveness property: ∀a, b ∈ K.a+(a×b) = a,
which is equivalent to ∀a ∈ S.a + � = �.

Absorptive semirings are referred as simple, and their + operator is neces-
sarily idempotent [10]. Semirings where + is idempotent are tropical, or diods.

Definition 3 (C-semiring [2]). C-semirings are commutative and absorptive
semirings. Therefore, c-semirings are tropical semirings where � is an absorbing
element for +.

The idempotency of + leads to the definition of a partial ordering ≤K over the
set K (K is a poset). It is defined as a ≤K b if and only if a+ b = b, and + finds
the least upper bound (lub) in the lattice 〈K,≤K〉. This intuitively means that
b is “better” than a. Therefore, we can use + as an optimisation operator and
always choose the best available solution.

Some more properties can be derived on c-semirings [2]: (i) both + and ×
are monotone over ≤K , (ii) × is intensive (i.e., a × b ≤K a), (iii) × is closed
(i.e., a×b ∈ K), and (iv) 〈K,≤K〉 is a complete lattice. ⊥ and � are respectively
the bottom and top elements of such lattice. When also × is idempotent, (i) +
distributes over ×, (ii) × finds the greatest lower bound (glb, or 
) of the lattice,
and (iii) 〈K,≤K〉 is a distributive lattice.

∑
denotes the set-wise extension of +.

Some c-semiring instances are: boolean 〈{F ,T},∨, ∧,F ,T 〉1, fuzzy 〈[0, 1],
max,min, 0, 1〉, bottleneck 〈R+∪{+∞}, max,min, 0,∞〉, probabilistic 〈[0, 1],max,
×̂, 0, 1〉 (or Viterbi semiring), weighted 〈R+ ∪ {+∞},min, +̂,+∞, 0〉. Capped
operators stand for their arithmetic equivalent.

Although c-semirings have been historically used as monotonic structures
where to aggregate costs (and find best solutions), the need of removing values
has raised in local consistency algorithms and non-monotonic algebras using

1 Boolean c-semirings can be used to model crisp problems.
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constraints (e.g., [1]). A solution comes from residuation theory [4], a standard
tool on tropical arithmetic that allows for obtaining a division operator via an
approximate solution to the equation b × x = a.

Definition 4 (Division [1]). Let K be a tropical semiring. Then, K is residu-
ated if the set {x ∈ K | b × x ≤ a} admits a maximum for all elements a, b ∈ K,
denoted a ÷ b.

Since a complete2 tropical-semiring is also residuated, all the classical
instances of c-semiring presented above are residuated, i.e., each element in
K admits an “inverse”, which is unique in case ≤K is a total order. For
instance, the unique “inverse” a÷b in the weighted semiring is defined as follows:
a ÷ b = min{x | b+̂x ≥ a}, which is equal to 0 if b ≥ a, or a−̂b if a > b. Since all
the previous examples of c-semirings (e.g., weighted or fuzzy) are cancellative,
they are uniquely invertible as well:

Definition 5 (Unique invertibility [1]). Let K be an absorptive, invertible
semiring. Then, K is uniquely invertible iff it is cancellative, i.e., ∀a, b, c ∈ A.(a×
c = b × c) ∧ (c �= 0) ⇒ a = b.

Furthermore, it is also possible to consider several optimisation criteria at
the same time: the Cartesian product of c-semirings is still a c-semiring, and
even a lexicographic order can be modelled over multiple c-semirings [8].

3 Quantifying Properties in a Distributed Environment

In this section we focus on how we can describe the behaviour of distributed,
possible partially specified systems, as well as how to express quantitative prop-
erties/constraints on such distributed systems. To this aim, we propose a variant
of the notion of context, to enhance the one in [11] by adding a weight to tuples
of actions. This allows us to quantitatively specify and analyse the behaviour of
a system with some unknown parts, which have nevertheless to participate to
the satisfaction of a quantitative global-property on the whole system. Further-
more, we present a quantitative Hennessy-Milner logic, proposed in [15], thus,
we can specify a property on a tuple of actions, extending it to c-HMn. Finally,
we define a QPMC function allowing us to project such global constraint onto
local ones that have to be locally satisfied by the subcomponents of the system.

3.1 Quantitative Contexts

The notion of n-to-m quantitative context is an expression describing the partial
implementation of a system, denoted as C(X1, . . . , Xn), where C denotes the
known part of the system and/or how its components, X1, . . . , Xn, free variables
representing the unknown ones, work together, n is the number of unknown
2

K is complete if it is closed with respect to infinite sums, and the distributivity law
holds also for an infinite number of summands [1].
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components, and m is the cardinality of the output of their composition by C.
This notion enhances the one given in [11] by adding weights to tuples of actions.
Note that, when the dimension of the context is clear, we omit it from notation.

Definition 6 (Quantitative context). A quantitative context-system is a
structure C = (〈Cm

n 〉n,m, Act, K, 〈→K
n,m〉n,m) where 〈Cm

n 〉n,m is a set of n-to-
m tuple of n-to-m quantitative contexts; K = 〈K,+,×,⊥,�〉 is a c-semiring;
Act is a set of actions; Act0 = Act ∪ {0} where 0 �∈ Act is a distinguished
no-action symbol, Actn0 is the set of tuples of n actions in Act0, →K

n,m⊆
Cm

n ×((Actn0 ,K)×(Actm0 ,K))×Cm
n is the quantitative transduction-relation for

the n-to-m contexts satisfying (C, (ã, k), (0̃, h),D) ∈→K
n,m if and only if C = D

and ã = 0̃ for all contexts C,D ∈ Cm
n (h, k ∈ K), and 〈→K

n,m〉n,m is an {n,m}-
tuple of quantitative transduction-relations.

For (C, (ã, k), (b̃, h), C ′) ∈→K
n,m we usually write C

(b̃,h)−−−→
(ã,k)

C ′, leaving the

indices of → to be determined by the context. The informal interpretation is
that the context C takes as input the set of actions ã, of dimension n (cfr.
ã = 〈a1, . . . , an〉) performed with a weight k, and it returns as output b̃ of
dimension m (cfr. b̃ = 〈b1, . . . , bm〉) weighted by h, finally becoming C ′. If ã
is 0 (i.e., no action) then the context produces an output without consuming
any internal action; if b̃ is 0 then there is not any observable transition and we
omit the vector of outputs; if both ã and b̃ are equal to 0, then both the inter-
nal process and the external observer are not involved in the transduction. In
Definitions 7 and 8, we compose contexts by means of composition and product :

Definition 7 (Composition). Let C = (〈Cm
n 〉n,m, Act, K, 〈→K

n,m〉n,m) be a
quantitative context-system. A composition on C is a dyadic operation ◦ on con-
texts such that, whenever C ∈ Cm

n and D ∈ Cr
m, then D ◦ C ∈ Cr

n according to
the following rule:

C
(b̃,h)−−−→
(ã,k)

C′ D
(c̃,w)−−−→
(b̃,h)

D′

D ◦ C
(c̃,w)−−−→
(ã,k)

D′ ◦ C′

where ã = 〈a1, . . . , an〉, b̃ = 〈b1, . . . , bm〉, and c̃ = 〈c1, . . . , cr〉 are vectors of
actions, while k, h, w represent the weight of vector of actions ã, b̃, c̃ respectively.

The basic idea is that two contexts can be composed if the output of the first
one (cfr. C) is exactly the same in terms of (i) the tuple of performed actions,
(ii) its associated weight, with respect to the input of the second context (cfr.
D). In this way, the two contexts combine their actions in such a way that the
transduction of the composed context takes the input of C and its weight as
input, and it returns the output of D and its weight as output.

To compose n independent processes through the same context C ∈ Cm
n

we define an independent combination, referred as the product operator of n
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contexts D1 × . . . × Dn, where Di ∈ C1
mi

, i = 1, . . . , n and Di is an expansion
of the i’th subcomponent of C such that the cardinality m is exactly equal
to the total sum of each single cardinality mi associated with a context Di.
We consider asynchronous contexts, it is not required that all the components
X1, . . . , Xn contribute in a transition of the system C(X1, . . . , Xn), i.e., some
Xi can perform a null action (i.e., 0).

Definition 8 (Product). Let C = (〈Cm
n 〉n,m, Act, K, 〈→K

n,m〉n,m) be a context
system. A product on C is a context operation ×, such that whenever C ∈ Cm

n

and D ∈ Cs
r then C × D ∈ Cm+s

n+r . Furthermore, the transduction for a context
C × D are fully characterised by the following rule:

C
(b̃,h)−−−→
(ã,k)

C′ D
(d̃,s)−−−→
(c̃,w)

D′

C × D
(b̃d̃,h×s)−−−−−−→
(ãc̃,k×w)

C′ × D′

where juxtaposition of vectors ã = 〈a1, . . . , an〉 and c̃ = 〈c1, . . . , cr〉 is the vector
ãc̃ = 〈a1, . . . , an, c1, . . . , cr〉, and juxtaposition of vectors b̃ = 〈b1, . . . , bm〉 and
d̃ = 〈d1, . . . , ds〉 is the vector b̃d̃ = 〈b1, . . . , bm, d1, . . . , ds〉. Note that the weight
of the juxtaposition of two action-vectors is just the × of their weights.

The intuition behind this definition is that two contexts C and D take in input
ã and c̃ and return as output b̃ and d̃, respectively, at the same time and both of
them contribute to the evolution of the system, modelled as the product context
derived from C and D. The weight associated to the product are the product of
the weights of each tuple of actions. For the sake of readability, sometimes we
write the combined process C(X1, . . . , Xn) as a shorthand for C◦(X1×. . .×Xn).

3.2 Modelling GPA as Contexts

We show how it is possible to use quantitative contexts to model the behaviour
of quantitative process algebras, such as GPA [5]. In particular, transitions are
labelled by pairs (a, k) where k is a quantity associated to the effect a, that we
will use hereafter to model the behaviour of system’s agents (see Sect. 4.2). Let
us consider a fragment of GPA, i.e., the prefix, non deterministic choice (+),
and parallel (‖) operators.

Definition 9 (GPA syntax as contexts). The set P of GPA processes over a
countable set of transition labels Act and a semiring K is defined by the grammar:

P :: = 0 | (a, k)∗ | +(P, P ′) | ‖(P, P ′)

where a ∈ Act, and k ∈ K (the set of values in a semiring K). GPA(K) denotes
the set of GPA processes labelled with weights in K.

Process 0 describes inaction or termination; (a, k)∗ is a 0-to-1 quantitative con-
text that performs a with value k; +(P, P ′) is a 2-to-1 quantitative context that
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non deterministically behaves as either P or P ′; ‖(P, P ′) is a 2-to-1 quantitative
context that describes the process in which P and P ′ proceed concurrently when
they perform complementary actions, i.e., a, ā ∈ Act, and independently on all
the other actions. GPA processes operators and their semantics can be expressed
in terms of context C1

2 (see Table 1) with the help of additional operators: the
projection Πi

n and the identity In respectively describe the projection of the
behaviour of a system on a single component, and the inaction of a system.

Table 1. Semantics of a GPA [5] context system.

3.3 Multi-action C-Semiring Hennessy-Milner Logic (c-HMn)

The c-HMn formulas semantics is defined on a Multi-Labelled Transition-System.

Definition 10 (MLTS). A (finite) Multi-Labelled Transition-System (MLTS)
is a four-tuple MLTS = (S,Ln, K, T ), where i) S is the countable (finite) state-
space, ii) Ln is a finite set of transition labels, where each label is a vector of
labels in L: the label 〈a1, . . . , an〉 ∈ Ln and for all i = 1, . . . , n, ai ∈ L. iii)
K = 〈K,+,×,⊥,�〉 is a c-semiring used for the definition of transition weights,
and iv) T : (S × Ln × S) −→ K is the transition weight-function.

Definition 11 syntactically defines the correct formulas given over an MLTS.

Definition 11 (Syntax). Given an MLTS M = 〈S, Ln, K, T 〉, and let ã ∈ Ln,
the syntax of a formula φ ∈ ΦM is as follows, where k ∈ K:

φ :: = k | φ1 + φ2 | φ1 × φ2 | φ1 
 φ2 | 〈〈〈ã〉〉〉φ | [[[ã]]]φ
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The operators + and 
 (respectively the lub and glb derived from ≥K in K),
and × (still in the definition of K) are used in place of classical logic operators
∨ and ∧, in order to compose the truth values of two formulas together. The
truth values are all the k ∈ K. In particular, while false corresponds to ⊥, we
can have different degrees of true, where “full truth” is �. As a reminder, when
the × operator is idempotent, then × and 
 coincide (Sect. 2). Finally, we have
the two classical modal operators, i.e., “possibly” (〈〈〈 · 〉〉〉), and “necessarily” ([[[ · ]]]).

Table 2. The semantic interpretation of c-HM. We have
∑

(∅) = ⊥ and
�

(∅) = �.

The semantics of a formula φ is interpreted on a system of n-to-m quantitative
contexts, given on top of an MLTS M = (Cm

n , Actn0 ×Actm0 , K,→K
n,m). The aim is

to check the specification defined by φ over the behaviour of a weighted transition
system M that defines the behaviour of a quantitative context. While in [11] the
semantics of a formula computes the states U ⊆ Cm

n that satisfy that formula,
our semantics [[]]M : (ΦM × Cm

n ) −→ K (see Table 2) computes a truth value for
the same U . In particular, in the following we deal with n-ary contexts (Cn

0 ),
hence the set of labels is Ln = Actn0 . Note that we consider finite contexts Cm

n ,
i.e., they are defined over a finite MLTS, they are not recursive, and the contexts
composed with them are closed and finite as well. Hence, we consider only the
set of n-to-m quantitative contexts.

In Table 2 and in the following (when clear from the context), we omit M
from[[]]M for the sake of readability. The semantics is parametrised over a context
C ∈ Cm

n , which is used to consider only the transitions that can be fired at a
given step (labelled with a vector of actions ã).

In Definition 12 we rephrase the notion of satisfiability of a c-HMn formula
φ on a context C, by taking into account a threshold t:

Definition 12 (t-satisfiability, �t). A context C ∈ Cm
n quantitatively satisfies

a c-HMn formula φ with a threshold-value t, i.e., C �t φ, if and only if the
interpretation of φ on C is better/equal than t. Formally: C �t φ ⇔ t ≤K [[φ]]C .

This means that C is a model for a formula φ, with respect to a certain value
t, if and only if the weight corresponding to the interpretation of φ on C is better
or equal to t in the partial order ≤K defined in K.

Remark 1. Note that, if C does not satisfy a formula φ then [[φ]]C = ⊥. Conse-
quently, the only t such that C �t φ is t = ⊥. If [[φ]]C �= ⊥, then φ is satisfiable
with a certain threshold t �= ⊥.
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3.4 Quantitative Partial Model Checking

Here we present a QPMC function (Table 3) given with respect to the context
composition-operator. The kC in represents an amount of weight that is spent to
satisfy φ, by considering only the actions in C. Theorem 1 states that kC can be
extracted and then composed back with [[W(C, φ)]]P without changing [[φ]]C(P ):

Table 3. A QPMC function (i.e., W(C, φ)) for quantitative contexts; kC corresponds
to an amount of weight that can be extracted from φ considering the behaviour of C.

Theorem 1. Let C = (〈Cm
n 〉n,m, Act, K, 〈→K

n,m〉n,m) a quantitative context-
system, K a c-semiring K = 〈K,+,×,⊥,�〉 with k ∈ K and φ be a c-HMn

formula and C ∈ Cm
n a context, then, for any P ∈ Cn

0 , the following holds:
[[φ]]C(P ) = kC,φ ×[[W(C, φ)]]P .

Remark 2. kC,φ is extracted during the application of W(C, φ) (see Table 3), and
it can be useful, for instance, to immediately state that C(P ) ��t φ when already
kC,φ <K t (see Definition 12), without also computing [[W(C, φ)]] to obtain the
truth value of[[φ]]C(P ) (see Theorem 1). The extraction of kC,φ is correct. However,
for some formulas it can be further improved: for instance, if φ = φ1 × φ2 we
can extract a larger amount than what reported in Table 3, i.e., kC,φ1 × kC,φ2

instead of kC,φ1 +kC,φ2 Such optimisations deserve a different study and are out
of the scope of this paper, but planned as future work (see Sect. 6).

Example 1. Let us consider a simple example in which we have two agents A
and B that have to coordinate with the purpose to deliver two packages T
and Z, respecting while some quantitative constraints. Let us consider a policy
φ = φ1 +φ2, where φ1 and φ2 represent two distinct strategies to deliver the two
packages. Each (boxed) action is associated with a different weight, which can be
interpreted as the energy consumption demanded to deliver such a package, or a
cost in terms of capabilities to be spent in order to deliver it. The two formulas
are φ1 = [deliver T ]5 × [deliver Z]3 and φ2 = [deliver Z]6 × [deliver T ]4.

Let S(A,B) = ‖(A,B) be the considered system. By using the QPMC
function on contexts, and noting that the weight of parallel composition is
equal to the product of the energy consumption of each component, W(‖, φ) =

W(‖, φ1 + φ2) = ((k‖,φ1 ÷ k‖,φ) × W(‖, φ1)) + ((k‖,φ2 ÷ k‖,φ) × W(‖, φ2)), where
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W(‖, φ1) = (k‖,φ1
1

÷ k‖,φ1 )W(‖, φ1
1) × (k‖,φ2

1
÷ k‖,φ1 )W(‖, φ2

1),

W(‖, φ2) = (k‖,φ1
2

÷ k‖,φ2 )W(‖, φ1
2) × (k‖,φ2

2
÷ k‖,φ2 )W(‖, φ2

2),

φ1
1 = [(deliver T )]5, φ2

1 = [(deliver Z)]3, φ1
2 = [(deliver Z)]6, and φ2

2 =
[(deliver T )]4. We suppose that the system ‖(A,B) is able to perform either
deliver T with weight 3, or deliver Z with weight 6. Note that, at this step,
we do not know neither which component contributes to the system behaviour,
nor if the two components contribute with a different cost. Hence, we assume
that both components are able to deliver both packages (T and Z), and with the
same energy consumption: understanding the role of each agent is part of the
adaptation algorithms in Sect. 4. The previous formula is simplified as follows:

W(‖, φ) = (� × W(‖, φ1)) + (� × W(‖, φ2)) = W(‖, φ1) + W(‖, φ2) and

W(‖, φ1) = (3 ÷ 3)(((3 ÷ (3 � 3)) × ([deliver T, 0]5) ÷ 3)) � ((3 ÷ (3 � 3)) × ([0, deliver T ]5) ÷ 3)))

× (6 ÷ 3)(((6 ÷ (6 � 6)) × ([deliver Z, 0]3) ÷ 6)) � (((6 ÷ (6 � 6)) × ([0, deliver Z]3) ÷ 6))

= ((([deliver T, 0]5) ÷ 3) � (([0, deliver T ]5) ÷ 3)) × (3 × ((([deliver Z, 0]3) ÷ 6)

� (([0, deliver Z]3) ÷ 6)))

W(‖, φ2) = (6 ÷ 3)(((6 ÷ (6 � 6)) × ([deliver Z, 0]6) ÷ 6)) � (((6 ÷ (6 � 6)) × ([0, deliver Z]6) ÷ 6))

× (3 ÷ 3) × (((3 ÷ (3 � 3)) × ([deliver T, 0]4) ÷ 3)) � (((3 ÷ (3 � 3)) × ([0, deliver T ]4) ÷ 3))

= (3 × ((([deliver Z, 0]6) ÷ 6) � (([0, deliver Z]6) ÷ 6)) × ((([deliver T, 0]4) ÷ 3)

� (([0, deliver T ]4) ÷ 3)) and

k‖,φ = 3 + 6 = 3.

According to Theorem1, we need to show that [[φ]]‖(A,B) = k‖,φ ×[[W(‖, φ)]]A×B :

[[φ]]‖(A,B) = [[φ1]]‖(A,B) +[[φ2]]‖(A,B)

= ([[[deliver T ]5 × [deliver Z]3]]‖(A,B) +[[[deliver Z]6 × [deliver T ]4]]‖(A,B)

= (3 × 5) + (3 × 4) = 7 and

k‖,φ ×[[W(‖, φ) ]] A×B = 3 × ((3 × 5 ÷ 3) + (3 × 4 ÷ 3)) = 3 × (5 + 4) = 3 × 4 = 7.

4 Decomposition into Local Behaviours and Algorithms
for the Run-Time Satisfaction of φ

Let us consider a distributed system in which several agents A1, . . . , An have to
cooperate to reach a goal. We specify such a system as a context C(A1, . . . , An)
where A1, . . . , An, even though they know the presence of each other, each Ai has
to decide which behaviour wants to expose to the other in order to collaborate
one another to quantitatively satisfy (�t, see Definition 12) a system requirement,
expressed by a logic formula φ ∈ c-HMn.

In this section, we consider as context an n-ary version of the GPA parallel
operator, we denote with ‖n. The semantics interpretation of ‖n is equivalent to
the repeated composition of the binary parallel-operator, e.g., ‖3(A1, A2, A3) is
equivalent to ‖(A1, ‖(A2, A3))3.

3 For the sake of readability, we write ‖ in place of ‖2, i.e., omitting the apex.
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The run-time framework in Sect. 4.1 is able to identify which are the local
requirements each agent has to quantitatively satisfy in order to guarantee the
satisfaction of a global property φ. Formally:

∀Ai, i = 1, . . . , n (A1 �t1 φ1 × . . . × An �tn
φn ⇒ ‖n(A1, . . . , An) �t φ) (1)

where t1, . . . , tn are the thresholds of each φi with respect to Ai, i = . . . , n. The
algorithms in Sect. 4.1 will find an n-tuple 〈φ1, . . . , φn〉 such that Eq. 1 holds.

Definition 13 (Tuple-formulas). An n-tuple formula is 〈φ1, . . . , φn〉, where
each φi, i = 1, . . . , n, is a unary formula such that, for the context A1×. . .×An:

[[〈φ1, . . . , φn〉]]A1×...×An
=[[〈φ1〉]]A1 × . . . ×[[〈φn〉]]An

4.1 Algorithms

In this section we focus on the run-time side of the framework. Algorithms 1 and 2
show the pseudocode of the behaviour each agent needs to implement in order
to agree on the satisfaction of a given goal expressed by a c-HMn formula φ. An
example of the distributed computation, together with the sequence of messages
exchanges among agents, is represented by Fig. 1. Afterwards, in Sect. 4.2, a more
articulated example on package-delivery by drones is presented.

We suppose that a global property φ is received by agent A1, for instance
via an external input. We also suppose agent A1 alone is not able to satisfy φ
by keeping the cost below a desired threshold t, i.e., [[φ]]C(A1) � t. The first step

Algorithm 1. Pseudocode of the initiator agent.
Require: n = |{Agents}|, and a decomposed c-HMn formula 〈φ1, . . . , φn〉.
1: function Adaptation({Agents}, 〈φ1, . . . , φn〉)
2: for all Agenti=1..n ∈ {Agents} do
3: Send 〈φ1, . . . , φn〉 to Agenti

4: end for � 〈〈φi
1, . . . , φi

n〉, kAgenti
〉 is the reply from Agenti

5: if ∀φi, j = 1..n. |φj
i 
= φi| == 1 then � Each Agenti proposes a different φi

6: if kAgent1 × · · · × kAgentn ×[[φ′]]Agent1×···×Agentn ≥ t then

7: Send Ok to all Agenti � 〈φ1, . . . , φn〉 satisfied better than t
8: else
9: Adaptation({All Agents}, 〈φ1, . . . , φn〉) � Ask agents to change behaviour
10: end if
11: else
12: for all ∀φi, j = 1..n. |φj

i 
= φi| > 1 do � Find best Agentj for each clashed φi

13: for all j (i fixed) do
14: kbest = ⊥
15: if kAgentj

≥ kbest then

16: φ′
i = φj

i , Agentbest = Agentj � φ′ will be 〈φ′
1, . . . , φ′

n〉
17: end if
18: end for
19: {Agents} = {Agents} \ {Agentbest}
20: 〈φ1, . . . , φn−1〉 = 〈φ1, . . . , φn〉 − φi

21: end for
22: Compose partial solution φ′ with Adaptation({Agents}, 〈φ1, . . . , φk〉)
23: end if
24: end function
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is to contact all or some agents (such criterion is outside the scope of the paper)
in range of communication, to seek for their collaboration to satisfy φ.

Algorithm 1 describes the behaviour of the initiator agent A1, which has
initially received φ. A1 computes W(‖n, φ) and projects it (=↓) into n sub-
formulas obtaining a n-tuple formula 〈φ1, . . . , φn〉, where n − 1 is the number of
agents in range of communication, plus A1 itself is equal to a total of n agents
(lines 2–4 in Algorithm 1). Therefore, each φi (i = 1..n) represents the sub-goal
one of the agents needs to satisfy. More precisely, a φi can be also solved by more
than just a single agent, if Ai in turn asks for the collaboration of more agents in
its range of communication (see the example in Sect. 4.2). A1 sends 〈φ1, . . . , φn〉
to all its neighbouring agents. Then A1 collects all the replies from the contacted
agents: each reply consists in the partial model checking of one φi by using
one of the possible behaviours of an agent Aj : this is obtained by executing
Algorithm 2 for each agent (for more details see the description of Algorithm 2
in the following). The return value of Algorithm2 is a couple 〈φ′

i, kAj
〉. If each

Aj chooses a different φi, then A only needs to check if the overall behaviour
(made of different sub-behaviours) satisfies φ with a cost better than t, i.e.,
kA1 × · · · × kAn

×[[φ]]A1×...×An
≥ t (lines 5–7 in Algorithm 1). Otherwise, if φ is

not satisfied, the function in Algorithm1 is called again with the same n-tuple
formula 〈φ1, . . . , φn〉 (lines 8–10 in Algorithm 1): contacted agents will change
their behaviour by executing again Algorithm2.

The case more than one Aj proposes to satisfy the same φi is treated in the
rest of the pseudocode in Algorithm 1, i.e., from line 11 to line 23. For each
sub-formula φi of 〈φ1, . . . , φn〉 in conflict, the candidate agent with the best
extracted kAj

is selected (lines 13–18). This represents a decision taken through
a heuristics: k is an amount of weight that can be “safely” extracted from a
formula during its partial model checking (see Remark 2) without altering its
truth value (i.e., its cost). Hence, it does not represent the total cost to satisfy
φi, but a part of it.

Now we move to the description of Algorithm 2. In Algorithm 2, an agent
B (each of the Aj in Algorithm 1) receives 〈φ1, . . . , φn〉, selects one its possible
behaviours E (see next paragraph), and moves such description into φi, thus
applying W(φi, C(E)). Then, B sends the result of the QPMC function, i.e.,
〈φ′

i, kB〉, back to A, the initiator agent. The GPA process B is described as the
parallel composition of different procedures ‖N (B′, B′′, . . . BN ), the algorithm
picks the subset of Bjs that minimises the result kB of W(‖|T i|(Bj), φi) (lines
9–13 in Algorithm 2), according to the preference order in the chosen c-semiring,
for all the possible φi in 〈φ1, . . . , φn〉. As already introduced, kB,φi

represents a
minimal cost that indeed has to be paid in order to satisfy φi (considering only
the actions of B).

The subset is selected in the power-set of {B′, . . . , BN}, by restricting
to all subsets of cardinality l (lines 21–24 in Algorithm 2). This parame-
ter is initially set to 1, thus the first time returning only singleton subsets
{{B′}, . . . , {BN}}. The motivation behind this parameter is that B tries to
satisfy φi at best by first using as less actions as possible. After having tried
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Algorithm 2. Pseudocode for selecting a behaviour of agent B w.r.t.
〈φ1, . . . φn〉.
Require: Behaviour of ‖N (B′, B′′, . . . BN ), an adaptation level l (i.e., the number of Bj in paral-

lel), a set X of already discarded l-combinations, and an n-tuple formula 〈φ1, . . . φn〉
1: global l = 1 � adaptation level
2: global T = P({B′, B′′, . . . , BN }) � Powerset
3: global X = ∅ � discarded combinations
4:
5: function Bhv(〈φ1, . . . φn〉, B)
6: h, k = ⊥, φ, ψ = ⊥, U = ∅
7: for all ((T i ∈ T ) ∧ (T i 
∈ X) ∧ (|T i| = l)) do

8: E = ‖|T i|(Bj) s.t. Bj ∈ T i

9: for all φi ∈ 〈φ1, . . . , φn〉 do � The best k considering all φi

10: 〈ψi, hi〉 = W(C(E), φi) � W in Table 3
11: end for
12: if (hi ≥ k) then

13: kB,φi
= hi, φi = ψi, U = T i

14: end if
15: end for
16: X � U
17: if (|X| ==

(n
l

)
) then

18: l = l + 1, X = ∅
19: end if
20: return 〈φ1, . . . , φ′

i, . . . , φn〉, kB,φi
〉

21: end function
Ensure: kB,φi

is the best minimal cost extracted by W from B, an adaptation level l and all the
possible φi components of 〈φ1, . . . φn〉.

all the l-combinations (rejected by A), B increments l by one (e.g., with l = 2,
all ‖2(B′, B′′), . . . , ‖2(BN−1, BN ) are checked), since φi cannot be satisfied with
only smaller parts of B, and more concurrency needs to be considered.

Note that, in case an agent runs out of behaviours to propose, it can reply
with inaction 0. Then, it is up to the initiator to take a decision, e.g., fail and
stop, or fail and restart with a relaxed threshold.

Figure 1 depicts a possible sequence of messages exchanged among three
agents, A, B, and C, by using Algorithms 1 and 2. A is the initiator agent that
asks for the collaboration of neighbouring agents B and C; it sends 〈φ1, φ2, φ3〉
to both of them and A itself by executing Algorithm 1. All three of them run
Algorithm 2 and compute Bhv(〈φ1, φ2, φ3〉, ∗) (where ∗ is A/B/C). While A pro-
poses itself for the first sub-formula φ1, B and C clash on the second sub-formula
φ2. Between the two agents, A selects C because (we suppose) kC,φ ≥ kB,φ, and
asks again to B to propose a behaviour for the remaining sub-formula φ3. Then,
B accomplishes to this task and returns φ′

3. After gathering all the returned
formulas, i.e., φ′

1, φ′
2, and φ′

3, A finds out that kA,φ × kB,φ × kC,φ × [[φ′]] � t.
Therefore, φ is not satisfied with a threshold better than t. For this reason,
〈φ1, φ2, φ3〉 is sent again to A, B, and C. This time (see Fig. 1) the three agents
propose a behaviour to satisfy a different sub-formula, i.e., respectively φ3, φ2,
and φ1. A finds out that this time kA,φ ×kB,φ ×kC,φ ×[[φ′]] ≥ t. Thus, the formula
is satisfied with a cost better/equal than t: the property is satisfied, and A sends
an Ok message to let B and C behave according to the selected behaviour.
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The proposed algorithms extend the work in [3], where the collaboration
is possible only among two agents. Indeed, here we consider the interaction of
more than two agents and each agent has a partial (local) knowledge of the global
system, e.g., each agent knows and cooperates only with its neighbours. For a
complexity analysis of the algorithms, similar considerations can be drawn as
for [3]: the worst case depends on the exponential composition of the behaviours
in Algorithm 2, that is O

(
N
l

)
. However, indeed a solution to φ can be found in

fewer steps (further simplifications can be adopted, see Sect. 6).

4.2 A Delivery Example with Drones

We take inspiration from the drones and packets example presented in [19].
We suppose to have three available flying drones, which receive the task to
deliver two different packages at two different destinations. Besides satisfying
such “crisp” global goal, we also must ensure that the global battery consumption
is below a user-defined threshold t: this represents a quantitative requirement
that corresponds to a major concern in CPSs [7,17].

Let us enhance Example 1 by considering three drones, Drone1, Drone2, and
Drone3, instead of only A and B in Example 1. The scenario is represented in
Fig. 2, together with other agents (i.e., Drone4 and Drone5 ) whose role will be
explained in the following. The three drones need to coordinate by adapting their
behaviour one another with the purpose to deliver two packages T and Z (as in
Example 1). In the following of this example we adopt the weighted c-semiring,
i.e., 〈R+ ∪ {+∞},min, +̂,+∞, 0〉, to model battery consumption.

The actions a drone can perform are: {deliver T,deliver Z}. Each action is
associated with an energy cost: for instance, the consumption to move one pack-
age from a place to another. Suppose Drone1 behaves as the initiator (as A in
Fig. 1), while Drone2 and Drone3 are the only two agents in range of commu-
nication (as B and C in Fig. 1): they will be asked by Drone1 to collaborate
in order to deliver packages T and Z. The property φ to be satisfied and the
threshold t on the consumption are received by Drone1 as input (see Fig. 2).

We reuse the same φ = ([deliver T ]5 × [deliver Z]3) + ([deliver Z]6 ×
[deliver T ]4) we have proposed in Example 1 (the task is the same), while the
parallel computation now is S = ‖3(Drone1, Drone2,Drone3), where Drone1 =
+((deliver T, 2), (deliver Z, 7)), Drone2 = +((deliver T, 3), (deliver Z, 6)),
any, finally Drone3 = +((deliver T, 5), (deliver Z, 4)). Note that, the behav-
iour of each drone is described using the operators in Table 1. As the initiator
agent, Drone1 sends the decomposition of φ to Drone2, Drone3, and itself, as
represented in Fig. 1:

W(‖3, φ) = W(‖3, ([deliver T ]5 × [deliver Z]3) + ([deliver Z]6 × [deliver T ]4)).

If φ1 = [deliver T ]5 × [deliver Z]3 and φ2 = [deliver Z]6 × [deliver T ]4, then
W(‖3, φ) = ((k‖3,φ1 ÷ k‖3,φ) × W(‖3, φ1)) + ((k‖3,φ2 ÷ k‖3,φ) × W(‖3, φ2))

W(‖3, φ1) = (k‖3,φ1
1
÷ k‖3,φ1)W(‖3, φ1

1) × (k‖3,φ2
1
÷ k‖3,φ1)W(‖3, φ2

1)
W(‖3, φ2) = (k‖3,φ1

2
÷ k‖3,φ2)W(‖3, φ1

2) × (k‖3,φ2
2
÷ k‖3,φ2)W(‖3, φ2

2)
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Fig. 1. An example of messages exchanged between A (the initiator), and B and C.

where φ1
1 = [(deliver T )]5, φ2

1 = [(deliver Z)]3, φ1
2 = [(deliver Z)]6, and

φ2
2 = [(deliver T )]4. For each φj

i , Drone1 sends to its neighbouring drones, i.e.,
Drone2, and Drone3, a formula similar to Eq. 1, in which both actions deliver T
or deliver Z may be performed by one of the three drones.
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Fig. 2. The scenario in our package-delivery example: Drone1 is the initiator receiving
a property φ and a threshold t for its satisfaction. Four other drones help to satisfy φ.

As soon as Drone2 receives such request, it becomes the initiator agent
w.r.t. Drone4 and Drone5, asking for their collaboration in delivering package
T (Fig. 2): in fact, Drone2 has low battery (e.g., 1) and it is not able to move
package T until destination. Hence, Drone2 acts as the initiator and sends the
requirement to be satisfied, i.e., φ = [deliver T ]2 to Drone4 and Drone5. They
are both able to perform action deliver T with an energy consumption of 2
and 4 respectively. In this case the defined protocol allows Drone2, Drone4, and
Drone5 to adapt one another in order to deliver the package T by minimising
the overall energy consumption.

W(‖, φ) = (kdeliver T × �) ÷ kφ) × ([deliver T, 0]2 ÷ kdeliver T )

 (kdeliver T × �) ÷ kφ) × ([0, deliver T ]2 ÷ kdeliver T )

Then, both drones answer with kDrone4,φ = 2 and kDrone5,φ = 4. Then Drone2
selects Drone4 to cooperate with for delivering package T , with a total energy
consumption of 1×2 = 3 (as a reminder, + is min and × is the arithmetic plus).

Once Drone2 knows it is able to deliver T cooperating with Drone4 and
spending 3, both Drone2 and Drone3 reply to Drone1 by sending back their
preference. In particular, both Drone2 and Drone3 send [0, deliver T, 0]; Drone2
with kDrone2 = 1×(3×5÷5) = 6, and Drone3 with kDrone3 = 3×(5×5÷5) = 8.
Then, according to Algorithm1, between the two agents Drone1 selects Drone2
because kDrone2,φ ≥K kDrone3,φ (6 ≤ 8).

After temporarily deciding who delivers package T (i.e., Drone2), Drone1
simplifies the requirements asking for the satisfaction of action deliver Z only,
that is the remaining package. As in Fig. 1, the run-time framework asks only to
Drone3 to deliver Z. Drone3 is able to deliver Z spending 4, and this satisfies
φ2 and hence, φ. Then the protocol successfully ends.
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5 Related Work

In the literature, several works propose adaptation and negotiation protocols
that allow multiple agents to cooperate and reach a goal. In the following of this
section we briefly introduce some of them.

In [9,21] the authors analyse a selected list of design patterns for manag-
ing the coordination in the literature of self-organising systems. The work in [14]
deals with Security Adaptation Contracts (SAC s) consisting of a high-level spec-
ification of the mapping between the signature and the security policies of ser-
vices, plus some temporal logic restrictions and secrecy properties to be satisfied.
In [6] the authors provide a formal framework that unifies behavioural adaptation
and structural reconfiguration of components; this is used for statically reason-
ing whether it is possible to reconfigure a system. In [18] the authors focus on
automated adaptation of an agent’s functionality by means of an agent factory.
An agent factory is an external service that adapts agents, on the basis of a
well-structured description of the software agent. Structuring an agent makes it
possible to reason about an agent’s functionality on the basis of its blueprint,
which includes information about its configuration. In [12], Li et al. present an
approach for securing distributed adaptation. A plan is synthesized and executed,
allowing the different parties to apply a set of data transformations in a distrib-
uted fashion. In particular, the authors synthesise “security boxes” that wrap
services. Security boxes are pre-designed, but interchangeable at run time. In
[20], the AVISPA tool is run first to obtain the protocol of the composition, and
second to verify that it preserves the desired security properties. The objective of
the work in [16] is the definition of a process and tool-supported design frame-
work to develop self-adaptive systems, which consider Belief-Desire-Intention
agent models as reference architectures. The authors adopt an agent-oriented
approach to explicit model system goals in requirements specification and in
system architecture design.

Differently from all these works, in this paper we propose a run-time decom-
position of a property, which we believe is a good choice in case of highly dynamic
environments, as CPS. The novelty resides in proposing an algorithmic approach
that exploits a QPMC function in order to online select the behaviour of single
agents towards the satisfaction of a global property.

6 Conclusion

We have presented a formal and run-time framework where to let agents in a
CPS adapt to the behaviours of other agents, with the purpose to satisfy a global
property φ. Each agent contributes to the satisfaction of φ by satisfying a sub-
property. To reach this goal, a QPMC function is used to push the behaviour
of each agent into φ, thus (i) reducing the complexity of the satisfaction of φ
agent-by-agent, and (ii) preserving the privacy of agents, which do not need
to disclose their full behaviour, but they can propose different alternatives at
run-time. For these reasons, Quantitative PMC [11] proves to be a powerful
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tool to reduce the complexity of large and complex CPS. One more advantage is
that the decomposition of φ is accomplished at run-time: agents can consequently
change through time in a way transparent to the framework. Privacy, complexity
reduction, and a run-time approach are indeed the key-points of the proposal.

In the future we would like to manage infinite contexts by extending our logic
to deal with fix-points; to achieve this goal; possible suggestions could come from
[13]. This extension concerns more the logics and the QPMC function, since in
this paper we focus on the finite behaviour of agents. Finally, Algorithms 1 and 2
can be improved to reduce the complexity of the worst case, not proposing all the
possible behaviours, but refining the proposals by offering only the behaviours
“close” to the asked φ. Finally, we also aim to improve the QPMC function in
order to extract more weight (i.e., in order to refine the computation of kC,φ in
Table 3), and define heuristics for the computation of its satisfaction.
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LNCS (LNAI), vol. 8265, pp. 68–79. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-45114-0 6

9. Gardelli, L., Viroli, M., Omicini, A.: Design patterns for self-organising systems.
In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS
2007. LNCS (LNAI), vol. 4696, pp. 123–132. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-75254-7 13

10. Golan, J.: Semirings and Affine Equations Over Them: Theory and Applications.
Kluwer Academic Publisher, Dordrecht (2003)

11. Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of
contexts. J. Logic Comput. 1(6), 761–795 (1991)

12. Li, J., Yarvis, M., Reiher, P.: Securing distributed adaptation. Comput. Netw.
38(3), 347–371 (2002)

http://dx.doi.org/10.1007/3-540-44804-7_12
http://dx.doi.org/10.1007/978-3-642-45114-0_6
http://dx.doi.org/10.1007/978-3-642-45114-0_6
http://dx.doi.org/10.1007/978-3-540-75254-7_13
http://dx.doi.org/10.1007/978-3-540-75254-7_13


152 S. Bistarelli et al.

13. Lluch-Lafuente, A., Montanari, U.: Quantitative mu-calculus and CTL defined over
constraint semirings. TCS 346(1), 135–160 (2005)

14. Mart́ın, J.A., Martinelli, F., Pimentel, E.: Synthesis of secure adaptors. J. Log.
Algebr. Program. 81(2), 99–126 (2012)

15. Martinelli, F., Matteucci, I., Santini, F.: Semiring-based specification approaches
for quantitative security. In: Proceedings Thirteenth Workshop on Quantitative
Aspects of Programming Languages and Systems, QAPL. EPTCS, vol. 194, pp.
95–109 (2015)

16. Morandini, M., Penserini, L., Perini, A.: Towards goal-oriented development of
self-adaptive systems. In: Workshop on Software Engineering for Adaptive and
Self-managing Systems, SEAMS 2008, pp. 9–16. ACM (2008)

17. Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In: 2011
International Conference on Wireless Communications & Signal Processing, WCSP
2011, pp. 1–6. IEEE (2011)

18. Splunter, S., Wijngaards, N.J.E., Brazier, F.M.T.: Structuring agents for adap-
tation. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS 2001-2002.
LNCS (LNAI), vol. 2636, pp. 174–186. Springer, Heidelberg (2003). doi:10.1007/
3-540-44826-8 11

19. Talcott, C., Arbab, F., Yadav, M.: Soft agents: exploring soft constraints to model
robust adaptive distributed cyber-physical agent systems. In: Nicola, R., Hennicker,
R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 273–290. Springer,
Cham (2015). doi:10.1007/978-3-319-15545-6 18
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Abstract. The need to integrate large and complex functions into
today’s vehicle electronic control systems requires high performance com-
puting platforms, while at the same time the manufacturers try to reduce
cost, power consumption and ensure safety. Traditionally, safety isolation
and fault containment of software tasks have been achieved by either
physically or temporally segregating them. This approach is reliable but
inefficient in terms of processor utilization. Dynamic approaches that
achieve better utilization without sacrificing safety isolation and fault
containment appear to be of increasing interest. One of these approaches
relies on predictable data flow introduced in PharOS and Giotto. In
this paper, we extend the work on leveraging predictable data flow by
addressing the problem of how the predictability of data flow can be
proved formally for mixed criticality systems that run on multicore plat-
forms and are subject to failures. We consider dynamic tasks where the
timing attributes vary from one period to another. Our setting also allows
for sporadic deadline overruns and accounts for criticality during fault
handling. A user interface was created to allow automatic generation
of the models as well as visualization of the analysis results, whereas
predictability is verified using the Spin model checker.

1 Introduction

Automotive electronic control systems demand increasing computing power to
accommodate the ever-growing software functionality in modern vehicles. At
the same time, the trend in automotive electronic architectures is to allocate
this increasing computational load to a reduced number of physical processing
cores in an effort to reduce size, weight, and power consumption. These trends
lead to new design challenges where an increasing number of software-based
features must be grouped into tasks which must in turn be allocated to processing
cores. The tasks assigned to a given processor may reflect different levels of
safety-criticality (referred to as “mixed-criticality integration”). These types of
mixed-criticality systems need to meet the requirements of the software processes
sharing processors and resources.

c© Springer International Publishing AG 2017
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To ensure correct operation of a critical functionality that shares processing
resources with a less-critical functionality, the ISO 26262 standard for functional
safety of road vehicles [1] requires mechanisms for “freedom-from-interference”.
Accordingly, the mapping of tasks to cores and the scheduling must take into
account multiple factors such as criticality and balancing the workload while
ensuring freedom from interference and fault containment.

A system whose externally-observable behavior changes only when its inputs
(in terms of values or timestamps) change is said to be predictable [11]. Ensuring
the predictability of task sets with dynamic runtime attributes and executing
on multicore platforms with static analysis alone is very difficult due to the
interference caused by the delays for shared resources allocation. The challenge
gets even harder due to dynamic runtime and fault handling mechanisms.

Our paper introduces a formal framework for the predictability analysis of
mixed criticality task sets running on a multicore platform. The framework sup-
ports window scheduling and dynamic runtime of tasks, where the attributes
may vary from one window to another. It also supports fault-tolerance via run-
time fault handling mechanisms. In addition to the window-based predictable
data flow [6], we add support for the preservation of predictability even in cases
where the scheduling constraints are violated (deadline overruns). Using this
framework, we identify and implement a strategy for exhaustive verification of
predictability and freedom from criticality inversion. We observe that the ver-
ification can be reduced to the checking of a specific set of fixed “edge tasks”
by showing that these edge tasks never produce “tainted” (i.e., possibly not
trustworthy) output. A prototype implementation to facilitate model creation,
verification and result visualization is sketched.

The paper is organized as follows: Necessary background is discussed in
Sect. 2. Section 3 describes how predictability can be guaranteed through limited
observability. Sections 4 and 5 present, respectively, key parts of a formalization
of the systems we analyze and the verification approach. Section 6 sketches the
prototype and the case study we analyzed. Section 7 presents related work and
Sect. 8 concludes the paper.

2 Background

Freedom-from-interference in a mixed criticality real-time system can be
achieved in several ways. The most common approach segregates the different
criticality levels in such a way that they are guaranteed not to interfere (run-time
guarantee). Some examples of this kind of segregation include assigning each crit-
icality level to its own processor core, assigning a fixed (though not necessarily
equal) time slice to each criticality level, or a combination of the two.

The potential downside of the segregation of criticality levels is poor processor
utilization. If one set of segregated tasks finishes early, the spare processor time
cannot be given to another set of tasks. A common approach to setting up a task
set is to assign each task a period, budget and a priority. The task’s execution
start, end and duration may vary within the period. Such a variability comes
from several sources: inputs from the environment, sharing of the resources and
the internal behavior of the task.
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A potential problem with this approach, identified by Henzinger [11], is that
the times at which a task reads and writes data vary in relation to the start
of the period. The values visible to any given task T may change depending
on its execution time and the execution order of tasks supplying T with data.
Therefore, two correct executions may produce different outputs given identical
input (see Fig. 1(a)), which leads to a violation of predictability.

2.1 Criticality

Tasks can be defined as belonging to different criticality levels. Following the
work of [7], criticality does not need to be considered during regular (fault-
free) execution. It only needs to be taken into account when a fault occurs
and load-shedding must take place. Critical tasks must be prioritized over non-
critical tasks, as they represent behavior that must occur to preserve important
properties of the system.

Commonly, the most efficient algorithms for assigning task priorities, such
as Rate Monotonic Scheduling (RMS) and Earliest Deadline First (EDF), use
timing properties rather than criticality levels. Thus, a mixed strategy needs to
be set up to handle both timeliness and criticality correctly: one way of doing
this is through the use of zero-slack scheduling [7].

Criticality interacts with how faults are handled, as it is possible to be either
more lax or more strict with faults. For instance, critical tasks may be allowed
to miss their deadlines, whereas non-critical tasks would be terminated.

2.2 Zero-Slack Scheduling

The idea behind the zero-slack algorithm [7] is that the worst case execution
time (WCET) of a task is often much too pessimistic when compared with the
average case execution time. Any algorithm that seeks to ensure freedom from
criticality inversion by using the WCET of lower-criticality tasks will under-
utilize the processor. It is a much more efficient use of resources if tasks are
scheduled regardless of criticality until it becomes absolutely necessary to factor
criticality into a scheduling decision. Accordingly, tasks are scheduled in one
of two modes: “normal” and “critical”. In normal mode, criticality is ignored
and an optimal scheduling strategy is used, whereas in critical mode, higher-
criticality tasks are given priority. Tasks within a criticality level are scheduled
as in normal mode.

The system usually executes in normal mode. The mode changes to critical
when all remaining critical tasks must begin executing if they are to meet their
deadlines, assuming they consume their entire execution budgets. This time point
is called zero-slack instant. A version of this algorithm, known by Simplified
Zero-Slack (ZS), uses only two criticality levels. Priorities are assigned using
EDF in “normal mode”, however in “critical mode” all high-criticality tasks are
scheduled before all low-criticality tasks. Within a given criticality level, EDF is
still used.
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3 Predictability via Limited Observability

An alternative approach to manage tasks while ensuring predictability, by design,
has been defined in [6,12]. This approach focuses on synchronizing data access
so that a given task instance will always view the system as being in the same
state regardless of when it executes within a given period (limited observability).
This is achieved by introducing an additional constraint: each task instance must
execute in its entirety within a given time window. The start (baseline) and end
(deadline) of this window are defined according to the system clock, not the
task’s CPU time. A snapshot of the data values is captured at the baseline, so
that the task instance reads from this snapshot. Any values written by the task
are not communicated to other tasks until the deadline of such a task.

To illustrate how limited observability can be used to ensure predictability,
Fig. 1 shows a system with three tasks (left to right): T1, T2 and T3. Each task
passes its input unchanged to the output. The tasks have periods 14, 10 and 14
and budgets 4, 4 and 3 respectively. Priorities are T2 > T1 > T3.

Fig. 1. Predictability via limited observability.

We consider 2 different execution scenarios A and B for each observability
class (full and limited). Each execution scenario consists of 3 periods for each
task. Inputs (1, 2 and 3; on the left hand column of each execution) occur at
the exact same points in time for each execution. A displays one possible valid
execution with no task violating any constraint (budget or deadline), whereas
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in scenario B some tasks overrun, e.g. T1 overruns its budget during its first
period. The corresponding outputs are shown to the right of each execution.
Figure 1(a) does not use data access synchronization (i.e., limited observability):
although there is no change in the timing or value of inputs, the outputs of A
and B differ in both value and timing, as a task can hand over its output once its
execution is over without waiting for the period expiry. Figure 1(b) shows how
the example presented in Fig. 1(a) would behave under limited observability
achieved through data access synchronization. Regardless of being overrunning
or not, a task delivers its output at the end of its current period. This guarantees
that the output of a given task is always delivered at the same point in time. As
an example, in the execution B of Fig. 1(b) task T1 overruns but it still delivers
the output at the same point in time (end of first period) as in execution A.
The priority impact can be seen during the second execution period where T2
starts first as it is ready due its short period, after which T1 becomes ready but it
cannot preempt T2. T1 waits until the current execution of T2 terminates before
it starts running. Finally, T3 becomes ready and starts executing, however once
T2 becomes ready again it preempts it due to its higher priority. T3 resumes
early in the third period, but it gets preempted by T1 this time.

In general, predictability should reduce the need for testing compared to
the standard approach since the externally-observed behavior will not change.
Limited observability ensures system predictability in case no fault occurs. In
case of faulty behaviors, e.g. a deadline overrun, the system adapts its runtime to
amortize the faults while maintaining the limited observability, so that it might
end up being predictable despite the presence of faults (Sect. 4.2).

4 Formal Basis of Our Framework

This section introduces a formal description of the systems that can be modeled
and analyzed in our framework.

4.1 System Specification

The system application we consider consists of a set of components {T1, .., Tm},
each of which is a set of periodic tasks Tj = {T j

1 , .., T j
k}. Similarly, the system

platform is a set {C1, .., Cq} of homogeneous cores, each of which (Cj) is assigned
to one component (task set) Tj .

The tasks of a given component Tj will be scheduled by a real-time operating
system according to a scheduling function Sched given by:

Sched j : Tj × Tj × R≥0 → Tj

where R≥0 is the time domain. The function compares 2 tasks at a given time
instant and returns the task having priority at that time point. It is described
abstractly in order to be able to model both static and dynamic priority schedul-
ing algorithms. The scheduling policies we have modeled in this framework are:
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Earliest-Deadline First (EDF), Dynamic Deadline-Monotonic (DMS) and Sim-
plified Zero-Slack (ZS). Throughout this paper we will focus mainly on the ZS
policy as it enables to deal with faults and mixed-criticality, but DMS and EDF
are manipulated in the same way.

Since each component Tj can use two execution modes (normal and critical),
we distinguish two scheduling functions, Schedjn and Schedjc, to be applied in
normal and critical modes respectively. For the sake of simplicity, since compo-
nents behave in the same way and cores are identical (modular design) we will
only focus on one component T = {T1, .., Tn} running on one core C. Accord-
ingly, all the exponent notations (−j) related to the choice of a component will
be omitted. Among the tasks of a component, we identify Tc ⊆ T to be the set
of critical tasks.

Formally, each task is given by a period p, a budget b, a deadline d and
a criticality level c. Since it is not needed to distinguish between the period
and deadline of tasks in our context (assumed to have the same values), we omit
deadlines and just keep the period length which must be longer than the required
budget. The criticality level does not have an effect during regular operation, but
can be used in an overload or fault condition to prioritize tasks for load-shedding.
Following the window notion (Sect. 3) allowing for dynamic runtime, the task’s
attributes can vary from one period to another. Basically, a window represents
one release of the task execution. Formally, the notation wj

i = (p, b, c) states the
period, budget and criticality level of task Ti for the jth window. Accordingly, we
represent each task Ti by a sequence of windows Wi = (w1

i , w
2
i , ...) describing its

runtime. We denote the set of all potential windows by W, and assume that there
is no gap between windows i.e., the deadline of a window will be the baseline of
the next window. A task execution can be scheduled anywhere within a window.
The operating system stores a static lookup table containing all the possible
configurations (windows) for each task. To simplify notation, we use w.x to refer
to the attribute x within the window structure w.

Communication between tasks is aligned to the baselines and deadlines by the
operating system in a way that it is entirely transparent to the task. No matter
where the task is executing within its window, it will see an identical “snapshot”
taken at the baseline of the values in shared memory written by other tasks.
Any changes made after the task’s baseline will not be visible within the current
window. Similarly, any values written to shared memory by the task will not
become visible to other tasks until the deadline of the writing task. The writes
to the same memory location are applied in the order of the corresponding task
deadlines rather than when the data was actually written from the task point of
view. If a deadline and a baseline are coincident (i.e. a write and a read of the
same data in shared memory), the write is to happen before the read.

4.2 System Semantics

To simplify the semantics, we only focus on one component T = {T1, .., Tn}
running on one core since the rest of the system behaves in the same way using
the same execution rules, assuming there is no inter-component dependency.
First we introduce the following variables:
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– clk is a clock variable to track the global time.
– Mode = {Normal, Critical} is the set of execution modes, and mode is a

variable to store the current execution mode of the system.
– Status = {Waiting,Running,Overrun,Done} is the set of status values,

whereas status = [1..n] is an array used to store the current status of each
task. We assume that all the status values are assigned by the operating system
(assigned to the tasks), except status Done which is triggered by the task itself
once its execution is over.

– curW is an array variable storing the current window of each task.
– Rbudget is an array variable used to track the remaining budget of each task

during runtime.
– curT ime is an array clock variable to store the start time of each period for

each task. It will be used as a baseline to track when a period expires.
– curET is an array variable used to measure the CPU time acquired by each

task during each execution. Each variable will be set to the current time when
the corresponding task is scheduled.

– ExcessT is an array variable used to store the time point when a task starts
overrunning its deadline.

The semantics is given in terms of a timed transition system (TTS) 〈S, s0,→〉
[13] where S is a set of states, s0 is the initial state and”→” is the transition
relation. Formally, S = R≥0 × Mode × Statusn × Wn × R

n
≥0 × R

n
≥0 × R

n
≥0 × R

n
≥0,

s0 = (0, Normal,∀i status(Ti) = Waiting, ∀i curW (Ti) = w1
i , ∀i curT ime(Ti) =

0, ∀i Rbudget(Ti) = w1
i .b, ∀i curET (Ti) = 0, ∀i ExcessT (Ti) = 0) whereas tran-

sitions are given by rules Release1, Release2, Normal, Critical, Nrml2Crit,

Crit2Nrml and Overrun. We use notation [ ] to access to the internal structure
and values of each state. Updating a field, e.g. a task status, within a state s
leads to a new state s′ having the same values as s except for the modified field.
Initially, the system is in normal mode and tasks are waiting to be scheduled.
All clock variables are set to 0.

Scheduling. According to the current execution mode, the operating system
schedules one of the ready tasks (having status Waiting) using the appropriate
scheduling function, Schedn or Schedc.

Normal :

∀ s ∈ S, Ti ∈ T | s.mode = Normal, s.status(Ti) = Waiting
∧ ∀Tj ∈ T Schedn(Ti, Tj , s.clk) = Ti

s −→ s[status(Ti) := Running, curET (Ti) := clk]

Critical :

∀ s ∈ S, Ti ∈ Tc | s.mode = Critical, s.status(Ti) = Waiting
∧ ∀Tj ∈ Tc Schedc(Ti, Tj , s.clk) = Ti

s −→ s[status(Ti) := Running, curET (Ti) := clk]

In both rules, the task to be scheduled (Ti) potentially preempts another
task Tj (if Tj is already running). If so, the status of Tj needs to be updated
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to Waiting, and its actual remaining budget needs to be recalculated using the
previous value (Rbudget(Tj)) and the CPU time used from its last scheduling
time point until the preemption, i.e. Rbudget(Tj) = Rbudget(Tj) − (s.clk −
curET (Tj)). We don’t embed these statements in the scheduling rules just to
avoid duplicating the scheduling rules for two cases: 1) CPU is free; 2) there is a
lower priority task Tj currently running. The status of Ti is updated to Running
and the current time is recorded (curET (Ti) := clk) to keep track of how long
Ti has been running.

Mode Switches. When the zero-slack instant is reached, the execution mode
switches to Critical and only critical tasks are allowed to execute. Once all
critical tasks are satisfied in their current windows, the mode switches back to
Normal.

Nrml2Crit :

∀ s ∈ S, Ti ∈ Tc | s.mode = Normal, Tis.status(Ti) = Waiting
∧ s.curW (Ti).p + s.curT ime(Ti) − s.clk ≤ s.Rbudget(Ti)

s −→ s[mode := Critical]

Crit2Nrml :
∀ s ∈ S, Ti ∈ Tc | s.mode = Critical, s.status(Ti) �= Waiting

s −→ s[mode := Normal]

When the remaining time of the current window, calculated from the baseline
curT ime, is less than or equal to the remaining budget of a critical task the
mode switches to Critical. One can remark that we can predict the mode change
only for the current execution windows. When all critical tasks (Tc) are either
terminated or running, the execution mode switches back to Normal where tasks
will be scheduled accordingly using rules Normal and Critical.

Fault Handling. There are three possible failure modes that the system can
experience: task failure, budget violation and deadline violation.

Task Failure. Task failure is the most obvious failure mode: a task either incor-
rectly calculates its outputs or suffers other catastrophic failures e.g., unexpected
termination. Handling this type of faults is beyond the scope of this work.

Budget Violation. The execution budget defined in the configuration of the exe-
cution window represents the maximum amount of time that a task consumes in
correct operation. Exceeding this budget is considered a fault of the task itself
(incorrect operation) or of the system integrators (incorrect execution budget).

When a violation is detected, the operating system can take one of two
possible actions: either the budget violation is ignored or the offending task
is terminated. Ignoring the violation is possible as the task set should not be
designed to use 100% of the available processor time. Ideally, the overrun will
eventually be absorbed by the available slack (idle ticks) and the system will
return to normal. Terminating the task ensures that the assumptions made by
the operating system continue to hold, however the behavior of the system as a
whole could become wildly incorrect.



Formal Analysis of Predictable Data Flow 161

Deadline Overrun. A task must finish its execution before its deadline. Violating
the deadline is considered a fault, but not necessarily of the task in question: it
is possible that the task missed its deadline due to other tasks misbehaving, or
due to an incorrect configuration.

Deadline violation is more serious than budget violation and some compen-
satory actions must be taken. The simplest option is to terminate the offending
task. The other option is to delay the deadline until the task has finished exe-
cuting. In this case, the current deadline and the next baseline are delayed until
the task enters a completed state. The next deadline of the task experiencing
an overrun is not delayed, rather, the next window is shortened. This guaran-
tees that the overrunning task still sees the same snapshot of shared data at
its baseline. The operating system achieves this by delaying any task’s baseline
and deadline occurring during the overrun, except for the overrunning task, and
applies them in the same order in which they would normally occur after the
overrun has completed. The next windows of these tasks are also shortened in
the same way as for the overrunning task. In Fig. 2, task T2 violates its deadline
and causes a delay (dashed arrow). The baseline of task T1 occuring within
this overrun period is delayed as well. The deadline of T1 remains at the same
position relative to the original deadline (dotted arrow), with the effective size
of the window reduced appropriately.

Fig. 2. Overrun delays

By shortening subsequent windows, it is pos-
sible that a cascade of deadline violations will
be created. However, as illustrated in Fig. 3, the
slack present in the system should ideally allow
the overruns to be absorbed and allow the system
to return to normal operation. For this mecha-
nism to work, the system cannot operate under
full load. A safety margin must be included in the
system design, with more processor capacity avail-
able than is required by the tasks under normal
operation. The size of this safety margin would
depend on the allowable overrun.

Having all tasks meet their deadlines is a suf-
ficient condition for predictability, as shown by PharOS [6]. However, it is not
a necessary one: if the overrun can be absorbed such that the final outputs
still occur when they are supposed to, predictability can be preserved despite
schedulability being violated due to the overrun.

Overrun :

∀ s ∈ S, Ti ∈ T | s.status(Ti) ∈ {Waiting,Running}
∧ s.curT ime(Ti) ≥ s.curW (Ti).p

s −→ s[status(Ti) := Overrun, ∀Tj ∈ T ExcessT (Tj) := clk]

Rule Overrun describes when an overrun occurs. Basically, when a task
reaches the end of its current window curW (Ti).p (which coincides with the
deadline) before completion an (effective) overrun case is declared. The current
time clk is stored in variable ExcessT () of task Ti in order to calculate the
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overrun duration once the task execution is done. Moreover, in order to postpone
the deadlines and baselines occurring during the overrun, we also communicate
the overrun start to the other running tasks (∀Tj ∈ T ExcessT (Tj) := clk) so
that the current window of each task will be delayed as well (fake overrun) with
the same duration as for the overrunning task.

Through the release of a new window, the configuration of a task will be
updated according to rule Release1.

Release1 :

∀ s ∈ S, Ti ∈ T | s.status(Ti) = Done, s.ExcessT (Ti) = 0
∧ s.curW (Ti) = wx

i , s.curT ime(Ti) = s.curW (Ti).p
∧ ∀Tj ∈ T s.status(Tj) �= Overrun

s −→ s[status(Ti) := Waiting, curT ime(Ti) := clk, curET (Ti) := 0,
curW (Ti) := wx+1

i , Rbudget(Ti) := wx+1
i .b]

Release2 :

∀ s ∈ S, Ti ∈ T | s.status(Ti) = Done, s.ExcessT (Ti) > 0
∧ s.curW (Ti) = wx

i

s −→ s[curW (Ti) := wx+1
i , curW (Ti).p := wx+1

i .p − (clk − ExcessT (Ti)),
curT ime(Ti) := clk, curET (Ti) := 0, Rbudget(Ti) := wx+1

i .b,
status(Ti) := Waiting]

Rule Release1 describes the expiry of a window wx
i and the release of a

new window wx+1
i of a task Ti successfully executed during the previous window

wx
i , i.e. without missing its deadline (s.curT ime(Ti) = s.curW (Ti).p) and none

of the other tasks is currently overrunning its own deadline. The status as well
as the variables we introduced to monitor the task execution are reinitialized
accordingly. When the effective overrun of a task is over, all the other postponed
tasks will be released with their new windows. Rule Release2 describes how the
new window length of each task will be reduced with any overrun delay from the
previous window.

In both rules Release1 and Release2, one can remark that a task cannot
release a new window if any other task is overrunning. This ensures that all
deadlines and baselines occurring during an overrun are postponed until the
overrun terminates.

5 Verification

As long as the tasks complete before their deadlines, the system described in
Sect. 4 is predictable. This includes cases where execution budget violations
occur. Thus, a combination of task set and fault model which is free from dead-
line violations is said to be schedulable and, by design, predictable [6].

The more interesting cases are those where the task set is not always schedu-
lable. However, the task set could still be predictable: deadline violations could
be absorbed by utilizing idle processor time or output values of certain tasks
could be ignored in the given execution mode.
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In order to be able to inject faults intentionally and verify the system’s pre-
dictability accordingly, we extend the system model described in Sect. 4 with the
following:

– For each task window wj
i = (p, b, c), by how much (overrun o ∈ R≥0) the task

will exceed its budget should it enter a fault state, i.e. wj
i = (p, b, c, o).

– We also allow for a description to be added to each task to specify how the
input values are used to compute the outputs.

The final number of faults that can be absorbed depends on the length of
overruns and the free time slot (λ) of the processor, i.e.,

∑
i

∑
j wj

i .o ≤ λ. The
analysis of predictability is performed by exhaustively checking that for each
set of valid timestamped inputs, the system always produces the same set of
timestamped outputs — with all possible combinations of faults allowed by the
system configuration. The verification process either concludes that the system
is predictable, or provides a counterexample in which the predictability is not
preserved. The predictability can be analyzed using 2 approaches: direct and
indirect.

5.1 Direct Approach to Analyze Predictability

The most direct approach for checking the predictability considers all possible
sets of timestamped inputs, combines them with all possible failure modes, and
checks that the same set of timestamped outputs is always produced for each
respective set of inputs. This is not as daunting a task as it may first seem. The
tasks are periodic and the number of configurations is finite. The system will
eventually start to repeat previously-explored states at which point the search
can stop. Additionally, as the task behavior is assumed to be correct, the range of
possible inputs does not need to be fully examined. However, this approach still
consumes much time and resources as well as being not cheaply implementable
using Spin.

5.2 Indirect Approach to Analyze Predictability

As mentioned earlier, the system is predictable by design in no-fault cases. There-
fore, to verify predictability it is necessary to analyze which behaviors the sys-
tem exhibits when a fault occurs, and which of those behaviors will result in
a violation of the predictability. Our approach is based on the following three
observations and steps:

Inputs only Happen at Read Times. Each input/output has two parame-
ters: a data value and time. The data value is beyond the influence of the system
and is assumed to always be correct and valid. The timing of input arrival is
technically beyond the control of the system as well; however, the system con-
trols when it reads in the value of the input parameter. This is a reduction of
many possible cases to one: the input can arrive anywhere between reads, but all
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Fig. 3. Absorbing a deadline overrun

these scenarios are effectively equivalent to the input arriving at the read time.
If the system is predictable with inputs that are timestamped at the read time,
it is also predictable if the actual arrival times are used.

Only Monitor “edge” Task Timing. Every task set is assumed to have a
task for reading input and another for writing output; these two tasks are called
edge tasks. The edge tasks perform the input and output at their baselines
and deadlines, respectively. If either the input baseline or the output baseline
has to be moved to satisfy the data flow requirements, predictability is lost.
Consider, e.g., Fig. 3 where T1 is an input task, T3 is an output task and the
processing task T2 is overrunning. The overrun can be absorbed, thus neither the
baseline of the input task nor the deadline of the output task will be delayed. In
Fig. 3(a), even though the baseline of T2 gets delayed the input and output times
remain unchanged, so the predictability is not violated. However, in Fig. 3(b)
the predictability is violated as T1 reads its inputs at a later time, i.e., the new
baseline of T1 occurring during the overrun of T2 is delayed by the dashed
arrow until T2 completes.

To capture edge tasks, we introduce the following:

– We define each data x = (v, a) by a value v and an arrival time (stamp) a.
– The inputs and outputs of each task T , consisting each of a set of data, are

given by T.input and T.input respectively.
– We identify the tasks being as edges with T through function Edge(T ) = {Ti |

T.output ∩ Ti.input 
= ∅}.

In order to maintain the predictability guaranteed by design, one needs to main-
tain the same relative order between the baseline/deadline of the edge tasks. In
some cases, e.g. non critical settings, this can be achieved by just delaying the
deadline of the faulty task as well as the baseline of its edge tasks.

Flag Outputs of Forcibly Terminated Tasks. In the most permissive oper-
ating mode, where execution budget violations are ignored and deadline viola-
tions result in delays, checking data values is not necessary as the system guar-
antees correct data flow by eschewing timing enforcement. However, in a more
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restrictive mode that involves forced task termination, e.g. hard critical systems
or due to the non availability of processor free slots, the data values do need to
be checked. This is done by verifying whether a task that was terminated by the
operating system is involved in calculating a data value. If a terminated task was
involved anywhere in the chain, the output is no longer reliable because it is not
guaranteed whether the task completed the calculation successfully before being
terminated. To this end, we introduce a new status Forced which will be assigned
to any task once its misses its deadline. The termination rule is similar to rule
Overrun, which is applicable when s.curT ime(T ) ≥ s.curW (T ).p (deadline
missed) and updates the status of T in the following: status(T ) := Forced.

To check the involvement of the output of a terminated task in the calculation
of other tasks data, we add a “tainted” flag to data values as they are passed
between tasks. The flag is set when a task that is supposed to write a given value
is forcefully terminated, and it is propagated by all other data-dependent tasks.
If a tainted value is observed among the output, it results in a violation of the
predictability. To flag the output of tasks, we introduce the following:

– The involvement of data x in the calculation of the output of a task T is given
by predicate Involved(x, T ). Such a predicate can easily be derived from the
functional description of tasks.

– To taint the output of a task T once it is forcibly terminated, we introduce
Taint(T.output) as a predicate. Taint() is initially initialized to false, i.e.
∀T, Taint(T.output) = false.

– The flag function Flag(T ), used to propagate the taint from a forcibly termi-
nated task T to the output of its (descendent) edge tasks, is given by:

Flag(T ) =

{
Taint(T.output) := true If Edge(T ) = ∅

Or (∀Ti ∈ Edge(T ),∀x ∈ T.output ¬Involved(x, Ti))

(Taint(T.output) := true) ∧(Flag(Ti | ∀Ti ∈ Edge(T ))) Otherwise

The predictability violation can then simply be checked through the existence
of tainted outputs. Using model checking, we quantify over all system states S
by exploring all the tasks T . Formally, the predictability is preserved if for any
non forcibly terminated task the outputs are not tainted:

∀s ∈ S ∀T ∈ T , s.status(T ) 
= Forced ⇒ Taint(T.output) = false

6 Implementation and Application

Our system description has been modeled using the Promela language, allow-
ing for verification of predictability of arbitrary task sets. The usefulness of the
verifier lies in its ability to perform an exhaustive search. The verification exhaus-
tively explores all possible executions and checks for predictability violations. If
a system is not predictable, a counterexample demonstrating the violation is
provided. A graphical front end was created to simplify task set definition and
result parsing. This utility generates the required Promela model based on the
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parameters supplied by the user and pre-written skeleton code. It also parses the
counterexample trail files produced by the verifier into a graphical representation
of the task-to-processor assignment over time.

6.1 Spin Modifications

The counterexample trail files produced normally consist of the states and tran-
sitions visited by the verifier leading up to a state violating the predictabil-
ity. This allows a trail file to be “replayed” by Spin. Within the trail file, the
states are identified by their state numbers—a property internal to Spin that
cannot be relied upon or (easily) determined given the source Promela model.
The counterexample file becomes meaningless, as the state numbers cannot be
mapped to actual behavior of the system. Even if the trail file is replayed and
the source Promela statements displayed, they are meaningless to the user since
the Promela code is automatically generated.

To overcome this, we have extended Spin to support state annotations using
the existing Promela label syntax. Promela supports C-style labels (label:),
used as targets for goto statements as well as identifying special states (end,
progress, etc.). An additional special label type, annotation, is added. Any
text included in the label is attached to the state and propagated to the generated
verifier. The verifier, in turn, includes the text of these states in the trail files it
produces. Annotation labels are merged and lifted when state merging happens,
or within constructs that only produce one state (e.g., dstep) from a block of
Promela code. A list of all annotations that fall within a state is included in the
trail file in these cases. Meaningful data can now be extracted from the trail file.

6.2 Promela Model

The Promela model is divided into three parts: a set of tasks, the scheduler,
and the environment. The task code is entirely generated by the interface, based
on the user parameters. The scheduler and environment are mostly constant
between different task sets, with different sections enabled and disabled via pre-
processor macros depending on user inputs.

Each task is comprised of five blocks of Promela code, which are invoked
at the appropriate times: initialization, baseline, deadline, execution tick and
forced termination. Initialization code allows the task to push values to the
global descriptor table. Baseline and deadline code are called at each baseline
and deadline respectively. Execution tick (“run”) code is called once per every
scheduling tick that the task is assigned processor time. Finally, forced termina-
tion code is called when the task needs to be terminated unexpectedly. Regular
termination, if needed, is supposed to be handled by the run code.

The scheduler code is entirely deterministic—all non-deterministic choices
happen within the tasks, as it is assumed that the scheduler is fault-free. This
code is executed once per tick, and is responsible for updating task timing infor-
mation and choosing which tasks get assigned processor time.
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The environment consists mainly of the scheduler loop. It calls the task-
specific code and the scheduler code at the appropriate times. The environment
and scheduler together are meant to represent the operating system’s role.

6.3 Interface

A cross-platform Java GUI (Fig. 4) was created to simplify creating task sets and
modifying parameters. The interface allows users to enter task-specific code, as
well as general parameters such as number of cores and enforcement modes.
It then generates the final Promela model, automating certain repetitive tasks
(e.g., inserting a task identifier in the proper places) that are too complex for the
C pre-processor normally used by Spin for such purposes. Finally, if a trail file is
produced, the GUI generates a visualization showing how the defined tasks were
scheduled and when the predictability violation occurred. For further details
regarding the implementation, we refer readers to [14].

Fig. 4. The Java graphical interface.

6.4 Case Study: Active Safety Demo

To show the applicability of our framework, we have analyzed a realistic example
from the automotive domain. The most relevant parts of the task set description
are given in Table 1. Various system configurations have been analyzed—different
numbers of cores and allowable faults, along with different scheduling algorithms
and enforcement modes. The size of the state space and therefore both the
execution time and memory requirements increase as the number of permitted
faults increases, because each fault represents a non-deterministic choice that
needs to be made once per scheduling tick per task, causing a branch in the
search tree. The search tree becomes very broad with many faults, but the depth
remains tractable.

All optimizations performed by Spin when generating the verifier (e.g., state
merging) were enabled. The performance of the verifier on some representative
configurations can be seen in Fig. 5. The results shown are with critical tasks
permitted to fail. Each scheduling algorithm produced broadly similar results,
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Table 1. Parameters and data flow of the active safety demo task set, (C = Criti-
cality, W = Window Size, B = Budget, O = Overrun amount, on fault). See [14] for
descriptions of the values.

Task C W B O Values read Values written

AdaptiveCruise Hi 10 3 3 APP BPP CO CSS TD
VS

ABT APT

AutoSteering Hi 10 3 3 ASO LMP SWA AST

InputProcessing Hi 40 6 4 (Environment) APP ASO BPP CO
CSS LMP SWA SWT
TD VS

ManualBraking Lo 40 6 4 BPP MBT

ManualPropulsion Lo 40 6 4 APP MPT

ManualSteering Lo 40 6 4 SWA MST

OutputArbitration Hi 40 6 4 APP ABT APT ASO
AST BPP CO MBT
MPT MST SWT

BT COI PT SOI ST

OutputProcessing Hi 40 6 4 BT COI PT SOI ST (Environment)

so only the results for EDF are shown. The performance of both the verifier
itself and the visualization generation is very good on a modern system (Core i7,
16GB RAM), the entire process generally taking less than a second for a realistic
number of faults. Further analysis results are available in [14].

Fig. 5. Analysis results of the case study.

7 Related Work

In the literature, several frameworks for the predictability analysis of real-time
systems have been proposed [5,8–10,17]. However, only few proposals consider
multicore platforms and dynamic attributes of tasks.

The authors of [8] presented a model-based architectural approach for
improving the predictability of real-time systems. This approach is component-
based and utilizes automated analysis of task and communication architectures.
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The authors generate a runtime executive that can be analyzed using the MetaH
language and the underlying toolset. Such a work does not deal with multicore
or criticality.

Garousi et al. introduced a predictability analysis approach [10], for real-time
systems, relying on the control flow analysis of the UML 2.0 sequence diagrams as
well as the consideration of the timing and distribution information. The analysis
includes resource usage, load forecasting/balancing and dynamic dependencies.
Our work differs because it supports dynamic runtime and fault handling.

The authors of [3] introduced a compositional analysis enabling predictable
deployment of component-based systems running on heterogeneous multi proces-
sors. The system is a composition of software and hardware models according to
a specific operational semantics. Such a framework is a simulation-based analy-
sis, thus it cannot be used as a rigorous analysis means for critical systems.

The authors of [16] defined a predictable execution model for COTS (com-
mercial -off-the-shelf) based embedded systems. The goal is to control the use of
each resource in such a way that it does not exceed its saturation limit. However,
such a claim cannot always be maintained because of the non-determinism in
the behavior of tasks and their environment.

The authors of [4] introduced a predictability analysis framework for real
time systems given by a set of independent components running on a single core
platform. Data flow is abstracted using dependability whereas predictability is
compositionally analyzed through schedulability as a sufficient condition. How-
ever, simplifying the architecture to obtain a compositional analysis might not
be practical for modern COTS-based embedded systems.

In [15], the authors introduce data flow graphs as a scheduling means for
data flow within single core systems so that liveness and boundness are guar-
anteed. The schedulability analysis of data flow is then performed by translat-
ing data flow graphs to graph-based real-time tasks. A study of the applica-
bility of such a framework for multicore systems having dynamic runtime is
very interesting. In a similar way, the authors of [2] introduce a model of data
flow computation to overcome the restrictions of classical data flow graphs by
allowing dynamic changes during runtime. The dynamism of data flow graph
is expressed by 2 parameters: the number of data required (rate) for each flow
and the activation/deactivation of communications between the functional units.
Compared to that, our framework considers a static topology of the data flow
graph encapsulated within the dynamic runtime of tasks however the data flow
timeliness can vary in accordance with faults (overruns).

8 Conclusion

In this paper, we have introduced a formal framework and model checking based
approach for the predictability analysis of mixed criticality task sets running on
multicore platforms. The framework supports window scheduling and dynamic
tasks bahavior, and allows for failures to be handled at runtime. We formulated
a system description and modeled it in Promela. A GUI was implemented to



170 B. Madzar et al.

increase ease of use and Spin was extended to support the generation of visual-
izations. The analysis results for a realistic example are encouraging and suggest
that the approach might scale to industrial settings.

We greatly simplify the analysis by observing that only monitoring “edge”
tasks for delays and checking outputs for values tainted by terminated tasks is
needed. Interesting future work would be to model the data flow separately from
tasks behavior, in similar way to [2], to make our framework more flexible.
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Abstract. Reo is a channel-based exogenous coordination model in
which complex coordinators, called connectors, are compositionally built
out of simpler ones. In this paper, we present a new approach to model
connectors in Coq which is a proof assistant based on higher-order logic
and λ-calculus. The model reflects the original structure of connectors
simply and clearly. In our framework, basic connectors (channels) are
interpreted as axioms and composition operations are specified as infer-
ence rules. Furthermore, connectors are interpreted as logical predicates
which describe the relation between inputs and outputs. With such defi-
nitions provided, connector properties, as well as equivalence and refine-
ment relations between different connectors, can be naturally formalized
as goals in Coq and easily proved using pre-defined tactics.

Keywords: Coordination language · Reo · Coq · Reasoning

1 Introduction

Modern software systems are typically distributed over large networks of comput-
ing devices, and usually the components that comprise a system do not exactly
fit together as pieces of a jigsaw puzzle, but leave significant interfacing gaps
that must somehow be filled with additional code. Compositional coordination
models and languages provide a formalization of the “glue code” that intercon-
nects the constituent components and organizes the mutual interactions among
them in a distributed processing environment, and played a crucial role for the
success of component-based systems in the past decades.

As an example, Reo [3], which is a channel-based model for exogenous coordi-
nation, offers a powerful language for implementation of coordinating component
connectors. Connectors provide the protocols that control and organize the com-
munication, synchronization and cooperation among the components that they
interconnect. Primitive connectors, called channels in Reo, can be composed to
build complex connectors. Reo has been successfully applied in different appli-
cation domains, such as service-oriented computing and bioinformatics [7,18].
In recent years, verifying the correctness of connectors is becoming a critical
challenge, especially due to the advent of Cloud computing technologies. The
rapid growth of size and complexity of the computing infrastructures has made
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it more difficult to model and verify connector properties, and thus leads to less
confidence on the correctness of connectors.

Several works have been done for formal modeling and verifying connectors.
An operational semantics for Reo using Constraint Automata (CA) was pro-
vided by Baier et al. [6], and later the symbolic model checker Vereofy [5] was
developed, which can be used to check CTL-like properties. Besides, one attrac-
tive approach is to translate from Reo to other formal models such as Alloy
[12], mCRL2 [14], UTP [2,19], etc., which makes it possible to take advantage
of existing verification tools. A comparison of existing semantic models for Reo
can be found in [11].

In this paper, we aim to provide an approach to formally modeling and
reasoning about connectors using Coq. The basic idea of our approach is to
model the behavior of a connector by representing it as a logical predicate which
describes the relation among the timed data streams on the input and output
nodes, and to reason about connectors’ properties, as well as the equivalence and
refinement relations between connectors, by using proof principles and tactics
in Coq. Compared with existing approaches for verifying connectors’ properties
[5,13,14], using Coq is especially helpful when we take infinite behavior into con-
sideration. The coinductive proof principle makes it possible to prove connectors’
properties easily while it is difficult (sometimes impossible) for other approaches
(like model checking) because of the huge (or maybe infinite) number of states.

This is not a brand new idea, as we have already provided a solution for
modeling Reo in Coq in [15], where connectors are represented in a constructive
way, and verification is essentially based on simulations. We do believe that the
approach in this paper is reasonably different from its predecessor where Coq
seldom shows its real power. To be more specific, our new work has its certain
advantages comparing with [15] in the following aspects:

– Modeling Method: We use axioms to describe basic channels and their
composition operations, which is more natural on a proof-assistant platform
than the simulation-based approach in [15].

– Expression Power: Any valid Coq expression can be used to depict proper-
ties, which is obviously more powerful than just using LTL formulas in [15].
Furthermore, support for continuous time behavior is also possible in our app-
roach in this paper.

– Refinement and Equivalence Checking: In our framework, equivalence
and refinement relations can be proved among different connectors, while the
previous one is not capable of either equivalence or refinement checking.

The paper is organized as follows: After this general introduction, we briefly
summarize Reo and Coq in Sect. 2. Section 3 shows the notion of timed data
streams and some pre-defined auxiliary functions and predicates. Section 4
presents the formal modeling of basic channels and operators, as well as com-
plex connectors. Section 5 shows how to reason about connector properties and
equivalence (or refinement) relations in our framework. In Sect. 6, we concludes
with some further research directions. Full source codes can be found at [1] for
further reference.
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2 Preliminaries

In this section, we provide a brief introduction to the coordination language
Reo and Coq.

2.1 The Coordination Model Reo

Reo is a channel-based exogenous coordination model wherein complex coordina-
tors, called connectors, are compositionally built out of simpler ones [3]. Further
details about Reo and its semantics can be found in [3,4,6]. The simplest con-
nectors are channels with well-defined behavior such as synchronous channels,
FIFO channels, etc. Each channel in Reo has exactly two directed ends, with
their own identities. There are two types of channel ends: source ends and sink
ends. A source channel end accepts data into the channel. A sink channel end
dispenses data out of the channel.

Fig. 1. Five types of basic channels.

The graphical notations of some basic channels are presented in Fig. 1, and
their behavior can be interpreted as follows:

– Sync: a synchronous channel with one source end and one sink end. The pair
of I/O operations on its two ends can succeed only simultaneously.

– SyncDrain: a synchronous channel which has two source ends. The pair of
input operations on its two ends can succeed only simultaneously. All data
items written to this channel are lost.

– FIFOn: an asynchronous channel with one source end and one sink end, and
a bounded buffer with capacity n. It can accept data items from its source
end. The accepted data items are kept in the internal buffer, and dispensed
to the sink end in FIFO order. Especially, the FIFO1 channel is an instance
of FIFOn where the buffer capacity is 1.

– AsyncDrain: an asynchronous channel which has two source ends. The chan-
nel guarantees that the operations on its two ends never succeed simultane-
ously. All data items written to this channel are lost.

– LossySync: a synchronous channel with one source end and one sink end.
The source end always accepts all data items. If there is no matching output
operation on the sink end of the channel at the time that a data item is
accepted, then the data item is lost; otherwise, the channel transfers the data
item exactly the same as a Sync channel, and the output operation at the sink
end succeeds.
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Fig. 2. Operations of channel composition.

Complex connectors are constructed by composing simpler ones via the join
and hiding operations. Channels are joined together in nodes. The set of channel
ends coincident on a node is disjointly partitioned into the sets of source and
sink channel ends that coincide on the node, respectively. Nodes are categorized
into source, sink and mixed nodes, depending on whether all channel ends that
coincide on a node are source ends, sink ends or a combination of the two.
The hiding operation is used to hide the internal topology of a connector. The
hidden nodes can no longer be accessed or observed from outside. There are three
types of operations for channel composition: flow-through, merge and replicate.
Figure 2 provides the graphical representation of these operations.

2.2 The Proof Assistant Coq

Coq [9] is a widely-used proof assistant tool, where denotational formalizations
(e.g. theorem and hypothesis) and operational formalizations (e.g. functions and
algorithms) are naturally integrated. Moreover, it allows the interactive con-
struction of formal proofs. The formal language used in Coq is called Gallina,
which provides a convenient way to define both programming statements and
mathematical propositions, for example:

(* a variable definition *)
Variables a b: nat.
(* a simple non-recursive function *)
Definition inc(a:nat) := a + 1.
(* axioms don’t have to be proved *)
Axiom inc_ax: forall c:nat, inc(c) > c.
(* theorems rely on proving *)
Theorem inc_eq: forall c:nat, inc(c) = c + 1.
Proof.

(* interactive proving based on tactics *)
auto.

Qed.

As shown in this example, there are two rather different mode in Coq’s inter-
active shell. When we start Coq, we can write declarations and definitions in a
functional-programming mode. Then, when we start a Theorem, or Lemma, Coq
jumps into the proving mode. We need to write different tactics to reduce the
proving goal and finally finish the formal proof.

Furthermore, Coq is equipped with a set of well-written standard libraries.
For example, as used in this paper, List describes the widely-used finite list
structure, Stream provides a co-inductive definition of infinite lists, and Reals
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defines various operations and theorems on real numbers. Usually, quite a few
lemmas and theorems are pre-defined in such libraries, making it substantially
easier to prove our goals.

3 Basic Definitions

In this section, we briefly introduce the notion of timed data streams and some
pre-defined auxiliary functions and predicates in Coq, which are used in the
following sections for modeling connectors.

The behavior of a connector can be formalized by means of data-flows at its
sink and source nodes which are essentially infinite sequences. With the help of
the stream library in Coq, such infinite data-flows can be defined as timed data
streams:

Definition Time := R.
Definition Data := nat.
(*Inductive Data : Set :=

|Natdata : nat-> Data
|Empty : Data.*)

Definition TD := Time * Data.
Variable Input : Stream TD.
Variable Output : Stream TD.

In our framework, time is represented by real numbers. Benefit from the
completeness of real number system, we can express and carry out the effective
operation of a quantity at any precision request. The continuity of the set of real
numbers is sufficiently enough for our modeling approach. Also the continuous
time model is more appropriate since it is very expressive and closer to the
nature of time in the real world. Thus, the time sequence consists of increasing
and diverging time moments. For simplicity, here we take the natural numbers
as the definition of data, which can be easily expanded according to different
application domains. The Cartesian product of time and data defines a TD
object. We use the stream module in Coq to produce streams of TD objects.

Some auxiliary functions and predicates are defined to facilitate the repre-
sentation of axioms for basic channels in Reo. This part can be extended for
further use in different problems.

The terms “PrL” and “PrR” take a pair of values (a, b) that has Cartesian
product type A × B as the argument and return the first or second value of the
pair, respectively.

The following functions provide some judgment of time, which can make the
description of axioms and theorems for connectors more concise and clear. “Teq”
means that time of two streams are equal and “Tneq” has the opposite meaning.
“Tle” (“Tgt”) represents that time of the first stream is strictly less (greater)
than the second stream. The judgement about equality of data is analogous
to the judgement of time. The complete definition of these functions can be
found at [1].
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4 Formal Modeling of Basic Channels and Operators

In this section, we show how primitive connectors, i.e., channels, and operators
for connector composition are specified in Coq and used for modeling of complex
connectors. Then we can apply the tactics provided in Coq to reason about con-
nector properties. Basic channels, which can be regarded as axioms of the whole
framework, are specified as logical predicates illustrating the relation between
the timed data streams of input and output. When we need to construct a more
complex connector, appropriate composition operators are applied depending on
the topological structure of the connector.

4.1 Formal Modeling of Basic Channels

We use a pair of predicates to describe the constraints on time and data,
respectively, and their intersection to provide the complete specification of basic
channels. This model offers convenience for the analysis and proof of connector
properties. In the following, we present a few examples of the formal model of
basic channels.

The simplest form of a synchronous channel is denoted by the Sync channel
type. For a channel of the Sync type, a read operation on its sink end succeeds
only if there is a write operation pending on its source end. Thus, the time and
data of a stream flowing into the channel are exactly the same as the stream
that flows out of the channel1. The Sync channel can be defined as follows in
the Coq system:

Definition Sync (Input Output:Stream TD) : Prop :=
Teq Input Output /\ Deq Input Output.

The channel of type SyncDrain is a synchronous channel that allows pairs
of write operations pending on its two ends to succeed simultaneously. All writ-
ten data items are lost. Thus, the SyncDrain channel is used for synchronising
two timed data streams on its two source ends. This channel type is an impor-
tant basic synchronization building block for the construction of more complex
connectors. The SyncDrain channel can be defined as follows:

Definition SyncDrain (Input Output:Stream TD) : Prop :=
Teq Input Output.

The channel types FIFO and FIFOn where n is an integer greater than
0 represent the typical unbounded and bounded asynchronous FIFO channels.
A write to a FIFO channel always succeeds, and a write to a FIFOn channel
succeeds only if the number of data items in its buffer is less than its bounded
1 If we use α, β to denote the data streams that flow through the channel ends of a

channel and a, b to denote the time stream corresponding to the data streams, i.e.,
the i-th element a(i) in a denotes exactly the time moment of the occurrence of α(i),
then we can easily obtain the specifications for different channels, as discussed in
[17,19]. For example, a synchronous channel can be expressed as α = β ∧ a = b.
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capacity n. A read or take from a FIFO or FIFOn channel suspends until the
first data item in the channel buffer can be obtained and then the operation
succeeds. For simplicity, we take the FIFO1 channel as an example. This channel
type requires that the time when it consumes a data item through its source end
is earlier than the time when the data item is delivered through its sink end.
Besides, as the buffer has the capacity 1, time of the next data item that flows
in should be later than the time when the data in the buffer is delivered. We use
intersection of predicates in its definition as follows:

Definition FIFO1(Input Output:Stream TD) : Prop :=
Tle Input Output /\ Tle Output (tl Input)
/\ Deq Input Output.

For a FIFO1 channel whose buffer already contains a data element e, the
communication can be initiated only if the data element e can be taken via the
sink end. In this case, the data stream that flows out of the channel should get an
extra element e settled at the beginning of the stream. And time of the stream
that flows into the channel should be earlier than time of the tail of the stream
that flows out. But as the buffer contains the data element e, new data can be
written into the channel only after the element e has been taken. Therefore, time
of the stream that flows out is earlier than time of the stream that flows in. The
channel can be represented as the intersection of several predicates as follows:

Definition FIFO1e(Input Output:Stream TD)(e:Data) : Prop :=
Tgt Input Output /\ Tle Input (tl Output)
/\ PrR (hd Output) = e /\ Deq Input (tl Output).

In the following we choose Axiom to define LossySync and AsyncDrain
because it is easier to use the coinductive expression to specify their behavior.

A LossySync channel behaves the same as a Sync channel, except that a write
operation on its source always succeeds immediately. If a compatible read or take
operation is already pending on the sink of a LossySync channel, the written data
item is transferred to the pending operation and both succeed. Otherwise, the
write operation succeeds and the data item is lost. The LossySync channel can
be defined as follows:

Parameter LossySync: Stream TD -> Stream TD -> Prop.
Axiom LossySync_coind:

forall Input Output: Stream TD,
LossySync Input Output ->

(
(hd Output = hd Input /\ LossySync (tl Input)(tl Output))
\/
LossySync(tl Input) Output

).

AsyncDrain is analogous to SyncDrain except that it guarantees that the
pairs of write operations on the two channel ends never succeed simultaneously.
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Similarly it only has requirements on the time of the two streams on its opposite
ends, but it requires that the times of the two streams are always different. The
AsyncDrain channel can be defined as follows:

Parameter AsyncDrain: Stream TD -> Stream TD -> Prop.
Axiom AsyncDrain_coind:

forall Input1 Input2: Stream TD,
AsyncDrain Input1 Input2 ->

(~ PrL(hd Input1) = PrL (hd Input2) )
/\
( (

(PrL(hd Input1) < PrL (hd Input2)) /\
AsyncDrain (tl Input1) Input2
) /\
(
(PrL(hd Input1) > PrL (hd Input2)) /\
AsyncDrain Input1 (tl Input2)
)

).

Defining basic channels by intersection of predicates provides the following
benefits:

– Firstly, this makes the model intuitive and concise as each predicate describes
a simple order relation on time or data.

– Secondly, we can easily split predicates for proofs of different properties which
can make the proving process simpler.

4.2 Formal Modeling of Operators

We have just described the way to define channel types, by means of definitions in
Coq. Now we start defining the composition operators for connector construction.
There are three types of composition operators for connector construction, which
are flow-through, replicate and merge, respectively.

The flow-through operator simply allows data items to flow through the
junction node, from one channel to the other. We need not to give the flow-
through operator a specific definition in the Coq system. For example, while
we illustrate two channels Sync(A,B) and FIFO1(B,C), a flow-through operator
that acts on node B for these two channels has been achieved implicitly.

The replicate operator puts the source ends of different channels together
into one common node, and a write operation on this node succeeds only if all
the channels are capable of consuming a copy of the written data. Similar to
the flow-through operator, it can be implicitly represented by the structure of
connectors. For example, for two channels Sync(A,B) and FIFO1(C,D), we can
illustrate Sync(A,B) and FIFO1(A,D) in Coq instead of defining a function like
rep(Sync(A,B),FIFO1(C,D)) and the replicate operator is achieved directly by
renaming C with A for the FIFO1 channel.



180 X. Zhang et al.

The merge operator is more complicated. We consider merging two channels
AB and CD. When the merge operator acts on these two channels, it leads
to a choice of taking from the common node that delivers a data item out of
AB or CD. Similar to the definition of basic channels, we define merge as the
intersection of two predicates and use recursive definition here:

Parameter merge:
Stream TD -> Stream TD ->Stream TD -> Prop.
Axiom merge_coind:

forall s1 s2 s3:Stream TD,
merge s1 s2 s3-> (

~ (PrL(hd s1) = PrL(hd s2)) /\
(

(PrL(hd s1) < PrL(hd s2)) ->
((hd s3 = hd s1) /\ merge (tl s1) s2 (tl s3))

) /\ (
(PrL(hd s1) > PrL(hd s2)) ->
((hd s3 = hd s2) /\ merge s1 (tl s2) (tl s3))

)
).

Fig. 3. A connector consisting of a Sync channel and a FIFO1 channel.

Based on the definition of basic channels and operators, more complex con-
nectors can be constructed structurally. To show how a composite connector is
constructed, we consider a simple example as shown in Fig. 3, where a FIFO1
channel is attached to the sink end of a Sync channel. Assume AB is of type
Sync and BC is of type FIFO1, then we can construct the required connector by
illustrating Sync(A,B) and FIFO1(B,C). The configuration and the functional-
ity of the required connector can be specified using this concise method. Note
that the composition operations can be easily generalized to the case of multiple
nodes, where the modeling of connectors is similar. More examples can be found
in Sect. 5.

5 Reasoning About Connectors

After modeling a connector in Coq, we can analyse and prove important prop-
erties of the connector. In this section, we give some examples to elucidate how
to reason about connector properties and prove refinement/equivalence relations
between different connectors, with the help of Coq.
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5.1 Derivation of Connector Properties

The proof process of a property is as follows: the user states the proposition that
needs to be proved, called a goal, then he/she applies commands called tactics
to decompose this goal into simpler subgoals or solve it directly. This decompo-
sition process ends when all subgoals are completely solved. In the following, we
use some examples to illustrate our approach instead of giving all the complex
technical details.

Example 1. We first consider the connector given in Fig. 3, which consists of two
channels AB and BC with types Sync and FIFO1, respectively.

We use a and b to denote the time streams when the corresponding data
streams flow into and out of the Sync channel AB, and c to denote the time
stream for the data stream that flows out of the FIFO1 channel BC. Here we
can see that a flow-through operation has acted on the mixed node B. The time
when the stream flows into the FIFO1 channel BC is equal to the time when
the stream flows out of the Sync channel AB. The following theorem states the
property a < c for this connector. The connector is based on the axioms Sync
and FIFO1, which can be used as hypotheses for the proof of the theorem.

Theorem 1. ∀A,B,C. Sync(A,B) ∧ FIFO1(B,C) → T le(A,C).

In Coq, the theorem can be proved as follows:

Theorem test1: forall A B C,
Sync A B /\ FIFO1 B C -> Tle A C.

Proof.
intros. destruct H. destruct H0.
intro n. rewrite H. apply H0.

Qed.

First we give the Coq system a proposition test1 which needs to be proved.
The proposition is represented by a logical expression. Table 1 shows the detailed
proving steps and the feedback that the Coq system provides during the proof.

The advantages of using intersection of logical predicates to describe basic
channels have emerged while proving this example. After constructing the new
connector, we use “intros” to split conditions and conclusions. Then we can
use “destruct” to obtain the conditions for time and data separately, and make
the proving procedure much more convenient. Once the concrete conditions are
obtained, using “intro” contributes to comparing each time point in a sequence
element by element. Then by using “rewrite” H, we can make the proof a step
forward with known conditions of the comparison of time a and b, and finally
by “apply” H0 we can prove the goal. This is the implementation for reasoning
about the constructed connector. Note that proper selection of strategies and
tactics is essential for the proof of connector properties.

Example 2. In this example, we show a more interesting connector named alter-
nator which consists of three channels AB, AC and BC of type Syncdrain,
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Table 1. Steps and feedbacks for proving Theorem 1

Step Feedback

Theorem test1:
forall A B C,
Sync A B → FIFO1 B C →
Tle A C.

1 subgoal:
forall A B C,
Sync A B → FIFO1 B C → Tle A C

intros 1 subgoal: Tle A C
H : Sync A B; H0 : FIFO1 B C

destruct H 1 subgoal: Tle A C
H : Teq A B; H1 : Deq A B;
H0 : FIFO1 B C

destruct H0 1 subgoal: Tle A C
H : Teq A B; H1 : Deq A B;
H0 : Tle B C; H2 : Tle C (tl B) ∧ Deq B C

intro n 1 subgoal: PrL (Str nth n A) < PrL (Str nth n C)
H : Teq A B; H1 : Deq A B; H0 : Tle B C;
H2 : Tle C (tl B)∧ Deq B C

rewrite H 1 subgoal: PrL (Str nth n B) < PrL (Str nth n C)
H : Teq A B; H0 : Deq A B; H1 : Tle B C;
H2 : Tle C (tl B)∧Deq B C;n : nat

apply H0 No more subgoals

FIFO1 and Sync, respectively. With the help of this connector, we can get data
from node B and A alternatively at node C. By using the axioms for the basic
channels and operators of composition, we can get the connector as shown in
Fig. 4(b). The two channels AC and BC are merged together at node C. Before
the merge operation, the connector’s structure is as shown in Fig. 4(a), which is
useful in the reasoning about the alternator.

We first introduce some lemmas to facilitate the proof.

Lemma transfer_eq : forall s1 s2 s3 : Stream TD,
((Teq s1 s2) /\ (Teq s2 s3)) -> (Teq s1 s3).
Lemma transfer_eqtl : forall s1 s2 : Stream TD,
(Teq s1 s2) -> (Teq tl s1)) (tl s2)).
Lemma transfer_leeq : forall s1 s2 s3 : Stream TD,
((Tle s1 s2) /\ (Teq s2 s3)) -> (Tle s1 s3).
Lemma transfer_hdle : forall s1 s2 : Stream TD,
(Tle s2 s1) -> (PrL (hd s1) > PrL (hd s2)).

Here the replicate operation has been applied twice for the alternator: node
A becomes the common source node of Syncdrain (A,B) and FIFO1(A,C1), and
node B becomes the common source node of Syncdrain(A,B) and Sync(B,C2).
Let the time streams when the data streams flow into the two source nodes A
and B be denoted by a and b, and the time streams when the data streams
flow out of the channels FIFO1(A,C1) and Sync(B,C2) be denoted by c1 and
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Fig. 4. Alternator

c2, respectively. Theorem 2 specifies the property c2 < c1 ∧ c1 < tl(c2) of the
connector in Fig. 4(a). The connector is based on the axioms Sync, Syncdrain
and FIFO1. These three corresponding axioms are used as hypotheses for the
proof of this theorem.

Theorem 2 (subtest). ∀A,B,C1, C2.

SyncDrain(A,B) ∧ FIFO1(A,C1) ∧ Sync(B,C2) →
T le(C2, C1) ∧ T le(C1, tl(C2))

In Coq, the theorem can be proved as follows. Note that the formalizm is slightly
different from the previous one. By the section environment, Coq is able to
encapsulate hypothesises as assumptions of the theorem. So the two definitions
are exactly equivalent.

Section Alt.
Hypothesis D1: SyncDrain A B.
Hypothesis D2: FIFO1 A C1.
Hypothesis D3: Sync B C2.
Theorem subtest:

(Tle C2 C1) /\ (Tle C1 (tl C2)).

After constructing the connector in Fig. 4(a), we use “destruct” to obtain the
conditions for time and data, respectively. Since the goal we are going to prove is
an intersection of logical predicates, we use “split” to obtain the single subgoals
represented by logical predicates. Besides, “intros” contributes to comparing
each data in a sequence element by element. Then “rewrite” and “apply” are
used similarly for multiple times until the goal is proved finally. Concrete proof
steps and feedbacks are specified in Table 2.

The proof of Theorem 2 for the connector in Fig. 4(a) can be used to simplify
the proof for the following property of alternator.

An additional hypothesis is needed for the proof of alternator which merges
C1 and C2 into a common node C. Based on the three hypotheses for channels
and the additional hypothesis, the theorem of alternator is presented as the
following proposition which needs to be proved:
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Table 2. Steps and feedback

Step Feedback

Theorem subtest 1 subgoal: Tle C2 C1 ∧ Tle C1 (tl C2)

destruct D2 1 subgoal: Tle C2 C1 ∧ Tle C1 (tl C2)

H : Tle A C1; H0 : Tle C1 (tl A) ∧ Deq A C1

destruct D3 1 subgoal: Tle C2 C1 ∧ Tle C1 (tl C2)

H : Tle A C1; H0 : Tle C1 (tl A) ∧ Deq A C1;

H1 : Teq B C2; H2 : Deq B C2

destruct H0 1 subgoal: Tle C2 C1 ∧ Tle C1 (tl C2)

H : Tle A C1; H0 : Tle C1 (tl A);

H3 : Deq A C1; H1 : Teq B C2; H2 : Deq B C2

split 2 subgoals: Tle C2 C1; Tle C1 (tl C2)

H : Tle A C1; H0 : Tle C1 (tl A);

H3 : Deq A C1; H1 : Teq B C2; H2 : Deq B C2

intros n 2 subgoals: PrL (Str nth n C2) < PrL (Str nth n C1); Tle C1 (tl C2)

H : Tle A C1; H0 : Tle C1 (tl A); H3 : Deq A C1;

H1 : Teq B C2; H2 : Deq B C2; n : nat

rewrite ← H1 2 subgoals: PrL (Str nth n B) < PrL (Str nth n C1); Tle C1 (tl C2)

H : Tle A C1; H0 : Tle C1 (tl A); H3 : Deq A C1;

H1 : Teq B C2; H2 : Deq B C2; n : nat

rewrite ← D1 2 subgoals: PrL (Str nth n A) < PrL (Str nth n C1); Tle C1 (tl C2)

H : Tle A C1; H0 : Tle C1 (tl A); H3 : Deq A C1;

H1 : Teq B C2; H2 : Deq B C2; n : nat

apply H 1 subgoal: Tle C1 (tl C2)

H : Tle A C1; H0 : Tle C1 (tl A); H3 : Deq A C1;

H1 : Teq B C2; H2 : Deq B C2

intros n 1 subgoal: Tle C1 (tl C2)

H : Tle A C1; H0 : Tle C1 (tl A); H3 : Deq A C1;

H1 : Teq B C2; H2 : Deq B C2

rewrite ← D4 2 subgoals: PrL (Str nth n C1) < PrL (Str nth n (tl B)); Teq B C2

H : Tle A C1; H0 : Tle C1 (tl A); H3 : Deq A C1;

H1 : Teq B C2; H2 : Deq B C2; n : nat

rewrite ← D5 3 subgoals: PrL (Str nth n C1) < PrL (Str nth n (tl A)); Teq A B; Teq B

C2

H : Tle A C1; H0 : Tle C1 (tl A); H3 : Deq A C1;

H1 : Teq B C2; H2 : Deq B C2; n : nat

apply H0 2 subgoals: Teq A B; Teq B C2

H : Tle A C1; H0 : Tle C1 (tl A); H3 : Deq A C1;

H1 : Teq B C2; H2 : Deq B C2; n : nat

apply D1 1 subgoal: Teq B C2

H : Tle A C1; H0 : Tle C1 (tl A); H3 : Deq A C1;

H1 : Teq B C2; H2 : Deq B C2; n : nat

apply D3 No more subgoals.

Hypothesis D4: merge C1 C2 C.
Theorem test:
hd(C) = hd(C2) /\ merge C1 (tl C2) (tl C).
Proof.

destruct subtest. (* ... *)

Here we only present the first step which shows how a proven theorem can be
applied in another proof and omit the full details because of the page limitation.
And it greatly simplifies the process of proving the property of alternator.
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5.2 Refinement and Equivalence

A refinement relation between connectors which allows us to systematically
develop connectors in a step-wise fashion, may help to bridge the gap between
requirements and the final implementations. The notion of refinement has been
widely used in different system descriptions. For example, in data refinement
[8], the ‘concrete’ model is required to have enough redundancy to represent all
the elements of the ‘abstract’ one. This is captured by the definition of a surjec-
tion from the former into the latter (the retrieve map). If models are specified
in terms of pre and post-conditions, the former are weakened and the latter
strengthened under refinement [10]. In process algebra, refinement is usually
discussed in terms of several ‘observation’ preorders, and most of them justify
transformations entailing reduction of nondeterminism (see, for example, [16]).
For connectors, the refinement relation can be defined as in [19], where a proper
refinement order over connectors has been established based on the implication
relation on predicates.

Here we adopt the definition of refinement in [19]. Two connectors are equiv-
alent if each one of them is a refinement of the other. In the following, we show
two examples of such connector refinement and equivalence relations.

Example 3 (Refinement). Taking the two connectors in Fig. 5 into consideration,
connector Q is a refinement of connector P (denoted by P � Q).

Fig. 5. Example of connector refinement

We have mentioned that newly constructed connectors can be specified as
theorems. Given arbitrary input timed data stream at node A and output timed
data streams at nodes C, D, essentially connector Q is a refinement of another
connector P only if the behavior property of P can be derived from theorem
Q, i.e., the property of connector Q. Intuitively, connector P enables the data
written to the source node A to be asynchronously taken out via the two sink
nodes C and D, but it has no constraints on the relationship between the time of
the two output events. On the other hand, connector Q refines this behavior by
synchronizing the two sink nodes, which means that the two output events must
happen simultaneously. To be more precise, we use c,d to denote the time streams
of the two outputs and a to denote the time stream of the input. Connector P
satisfies condition a < c∧ a < d and connector Q satisfies a < c∧ a < d∧ c = d.



186 X. Zhang et al.

The refinement relation can be formally defined in Coq as:

Theorem refinement : forall A C D,
(exists B, (FIFO1 A B) /\ (Sync B C) /\ (Sync B D)) ->
(exists E, (Sync A E) /\ (FIFO1 E C) /\ (FIFO1 E D)).

To prove this refinement relation, we first introduce a lemma which is fre-
quently used in the proof.

Lemma 1 (Eq). ∀A,B: Stream TD. Sync (A,B) ⇔ A=B.

The lemma means that Sync(A,B) and A=B can be derived from each other.
Although this lemma seems to make the presence of Sync channels in connectors
redundant, it is not the case for most connectors. For example, if we consider
the alternator in Example 2, it can not accept any input data if we remove the
synchronous channel BC and use one node for it.

By using the axioms for the basic channels and the operators of composition,
we can obtain the two connectors easily. In the process of constructing the con-
nectors, the flow-through and replicate operations act once for each connector,
respectively.

Fig. 6. Proof steps flow chart

Figure 6 shows the flow chart for the proof steps of connector refinement in
this example.

We now show the specific tactics used in the proof of refinement P � Q for
connectors P and Q in this example. We need to find a timed data stream which
specifies the data-flow through node E of connector P, i.e., we need to find an
appropriate E that satisfies Sync(A,E) ∧ FIFO1(E,C) ∧ FIFO1(E,D).
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First we employ ‘intros’ to acquire a simpler subgoal ∃E0.Sync(A,E0) ∧
FIFO1(E0, C)∧FIFO1(E0,D). Then we assert that E = A. After using ‘split’,
we split the goal into two subgoals Sync (A, E) and FIFO1 (E, C) ∧ FIFO1 (E,
D). And by ‘rewrite’ H0 (H0: E = A), we replace the two subgoals with Sync
(A, A) and FIFO1 (E, C) ∧ FIFO1 (E, D), respectively.

Through ‘apply’ Lemma 1 (Eq), we have A = A in place of Sync (A, A).
Next the tactic reflexivity makes the subgoal A = A proved directly. Up to now,
the initial subgoal Sync (A, E) has been achieved.

Using ‘split’ again, the remaining unproven subgoal is split into two subgoals
FIFO1 (E, C) and FIFO1 (E, D). After destructing the precondition three times,
we succeed in obtaining three hypotheses: H: FIFO1 (A, x); H1: Sync (x, C); H2:
Sync (x, D). Assume x = C and then using tactics apply Eq and assumption,
assertion x = C is proved easily. Meanwhile, we get hypothesis H3: x = C.
Via Rewrite ←H3, we bring left in place of the right side of the equation H3:
x = C into FIFO1 (E, C) and have FIFO1 (E, x). Similarly, rewrite H0 and
further we get the result FIFO1 (A, x) which is exactly hypothesis H. By using
‘assumption’, the second subgoal is proved already. Using substantially the same
tactic steps, FIFO1 (E, D) can be proved. Finally, we have no more subgoals.
Note that there is a new tactic ‘reflexivity’ used in the proof, which is actually
synonymous with ‘apply refl equal’. We can use it to prove that two statements
are equal (Fig. 7).

Fig. 7. Example of connector equivalence

Example 4 (Equivalence). For the connector P in Example 3, we can add three
more basic channels to build a new connector R which is equivalent to Q. R can
be interpreted similarly based on basic channels and operators. We will omit
the details for its construction here and prove the equivalence between the two
connectors R and Q directly.

Equivalence relationship between the two connectors can be formalized as:

Theorem equivalence: forall A B C,
(exists E F G,

(Sync A E) /\ (FIFO1 E F) /\ (Sync F B) /\
(FIFO1 E G) /\ (Sync G C) /\ (SyncDrain F G)

) <->
(exists D,

(FIFO1 A D) /\ (Sync D B) /\ (Sync D C)
).
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The proof of this theorem has two steps. Firstly, we prove that the new
connector R is a refinement of connector Q. We hope to find an appropriate D
that satisfies

FIFO1(A,D) ∧ Sync(D,B) ∧ Sync(D,C)

Similar to Example 3, we first assert D = F , which leads to

FIFO1(A,F ) ∧ Sync(F,B) ∧ Sync(F,C)

From Lemma 1, we have Sync(A,E), or A = E. Therefore, FIFO1(E,F) can be
replaced by FIFO1(A,F). By adopting FIFO1(E,F) and FIFO1(E,G), we can
prove that the data sequences at F and G are equal. Similarly, data sequences
at C, G and F are also equal, wrt. Sync(G,C).

Further according to Sync(G,C) and Syncdrain(F,G), the time sequences at
F and C are proved equal. With the combination of relations on time and data
between F and C, we can draw the conclusion Sync(F,C).

Up to now, we present a proof for Sync(F,C) and FIFO1(A,F) by the deriva-
tion. Besides, Sync(F,B) is already declared in the assumptions. Consequently,
the refinement relation has been proved.

Secondly, we prove that connector Q is a refinement of connector R. We hope
to find appropriate timed data streams at E,F,G which satisfy

Sync(A,E) ∧ Sync(G,C) ∧ FIFO1(E,G) ∧ Sync(F,B)
∧ FIFO1(E,F) ∧ Syncdrain(F,G).

We can directly assume E = A, F = D and G = D. Now we only need to
prove Sync(A,A) ∧ Sync(D,C) ∧ FIFO1(A,D) ∧ Sync(D,B) ∧ FIFO1(A,D) ∧
Syncdrain(D,D), which can be easily derived from the assumptions.

6 Conclusion and Future Work

In this paper, we present a new approach to model and reason about connec-
tors in the Coq system. The model naturally preserves the original structure
of connectors. This also makes the connector description reasonably readable.
We implement the proof of properties for connectors using identified techniques
and tactics provided by Coq. Properties are defined in terms of predicates which
provide an appropriate description of the relation among different timed data
streams on the nodes of a connector. All the analysis and verification work are
based on the logical framework where basic channels are viewed as axioms and
composition operations are viewed as operators. As we can address the rela-
tion among different timed data streams, we can easily reason about temporal
properties as well as equivalence and refinement relations for connectors.

As some of the benefits of this approach are inherited from Coq, our approach
has also got some of its drawbacks as well. The main limitation is that the
analysis needs much more tactics and techniques when the constructor becomes



Reasoning About Connectors in Coq 189

large. In the future work, we plan to enhance our framework by two different
approaches. Firstly, we may try to encapsulate frequently-used proof patterns as
new tactics, which may reduce lots of repetitive work. After that, automation
methods may also help us to avoid tons of hand-written proof. For example, Coq
provides several auto tactics to solve proof goals. With proper configuration,
perhaps such tactics will work well in our framework. More attention is needed
to precisely evaluate how expressive this way is for modeling temporal properties.
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Abstract. Coordination languages emerged for programming interac-
tion protocols among components in component-based systems, in terms
of connectors. One such language is Reo. Reo facilitates compositional
construction of complex composite connectors out of simple primitive
ones. Unlike the behavior of connectors in other coordination languages,
the behavior of a connector in Reo may depend on whether its coordi-
nated components are ready for i/o. Such behavior is called “context-
sensitivity”, and its formalization—a nontrivial problem—has received
considerable attention from the community. In this paper, I study three
common and historically significant primitives in Reo—context-sensitive
LossySync, FIFOn, and LossyFIFOn—and prove that they have incon-
sistent informal semantics. Moreover, four major formal semantics of Reo
do not correspond with its foremost alternative informal semantics.

1 Introduction

Background. Coordination languages have emerged for programming inter-
action protocols among components. One significant such language is Reo [1].
Reo enables compositional construction of connectors. Connectors are software
entities that coordinate the interaction among components. Metaphorically, con-
nectors constitute the “glue” that “sticks” components together. In this paper,
I formally show that three common and historically significant Reo connectors
have ambiguous semantics. This has gone unnoticed for over ten years.

Figure 1 shows six example connectors in their usual graphical Reo syntax.
Briefly, a connector consists of channels, through which data items flow, and
nodes (with meaningless names a, b, c, and d), on which channel ends coincide.
Reo allows programmers to define their own channels, by need, with custom
data-flow semantics. Nodes, in contrast to channels, come in three predefined
flavors—source nodes, sink nodes, and mixed nodes—and have fixed data-flow
semantics. Source and sink nodes constitute the boundary nodes of a connector
and admit i/o operations from components: source nodes admit write opera-
tions, while sink nodes admit take operations. All i/o operations are blocking:
until a connector is ready to accept the data item to be written to a source node,
or until a connector is ready to offer a data item to be taken from a sink node,
c© Springer International Publishing AG 2017
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Fig. 1. Example connectors

a write or take on such a node remains pending. The context of a connector
is the collection of pending i/o operations on its boundary nodes. Mixed nodes
are used only for internal routing of data items (i.e., components cannot access,
or perform i/o operations on, mixed nodes). A connector with mixed nodes is a
composite; one without mixed nodes is a primitive. Section 2 provides details.

Connectors in Reo may exhibit context-sensitivity (also known as context-
dependency or as context-awareness). A context-sensitive connector is a connec-
tor whose set of admissible execution steps depends on the (un)availability of
pending i/o operations on its boundary nodes. A premier example of a context-
sensitive connector is LossySync in Fig. 1a. Whenever a component performs a
write on the source node of LossySync, if its sink node already has a pending
take, LossySync behaves as a classical synchronous channel: both the write and
the take synchronously complete, and the data item written to the source node is
taken from the sink node in one indivisible transaction (i.e., the data item atom-
ically flows from source to sink). In contrast, whenever a component performs a
write on LossySync’s source node, if its sink node does not have a pending take,
LossySync can still accept the data item (after which the write completes), but
because there is no component to offer the accepted data item to, LossySync has
no choice but to lose that data item; LossySync does not have an internal buffer.
The set of admissible execution steps of LossySync, thus, depends on whether its
sink node has a pending i/o operation—this is context-sensitivity.

If a connector is not context-sensitive, it is context-free. An example of a
context-free connector is FIFO1 in Fig. 1b. Unlike LossySync, FIFO1 has an inter-
nal 1-capacity buffer (initially empty). Whenever a component performs a write
on the source node of FIFO1, and if its buffer is empty, the write completes
(otherwise, the write remains pending until the buffer becomes empty), and the
written data item flows into the buffer. Whenever a component performs a take
on the sink node of FIFO1, and if its buffer is full, the take completes (otherwise,
the take remains pending until the buffer becomes full), and the previously writ-
ten data item flows out of the buffer. The set of admissible execution steps of
FIFO1, thus, depends only on the state of its buffer and not on its context—this
is context-freedomİt is straightforward to generalize FIFO1 to FIFOn, where n
denotes the capacity of its buffer.
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Fig. 2. Example composition axioms, graphically, where ∼ denotes congruence

Problem. Context-sensitivity is a powerful behavioral concept that has gained
considerable attention from the Reo community. A central research topic has
been to define “context-sensitive formal semantics” of Reo, which support
expressing context-sensitive behavior. But, although several such semantics have
been developed [6,7,11], one particular aspect of context-sensitivity has not
received due attention: the consistency of [composition axioms for context-sen-
sitive connectors] with [composition axioms for context-free connectors].

For instance, a typical example of a composition axiom for context-free con-
nectors states that the composition of FIFOn and FIFOm (by connecting the sink
of the former to the source of the latter) is congruent, in the algebraic sense, to
FIFOn+m [1–5]. Similarly, a premier example of a composition axiom for con-
text-sensitive connectors states that the composition of LossySync and FIFOn is
congruent to LossyFIFOn [6–8], a variant of FIFOn that loses written data items
if its n-capacity buffer is full. Figure 2 shows a graphical representation of these
axioms (for n = m = 1). A crucial question, then, is this: can these two axioms
constitute a consistent axiomatic system? Answering this question—the prob-
lem addressed in this paper—is imperative, to further advance (if the answer is
positive) or rebuild (if negative) Reo’s theoretical foundations.

Contribution. I prove that axioms X1 and X2a in Fig. 2 constitute an inconsis-
tent axiomatic system for Reo’s informal semantics. Moreover, four major formal
semantics of Reo [4–7] do not correspond with its foremost alternative informal
semantics (which does not have the inconsistency).

In Sect. 2, I describe preliminaries on Reo. In Sect. 3, I prove the inconsistency
result. In Sect. 4, I prove the non-correspondence results. In Sect. 5, I further
discuss these results and outline the available options.

2 Preliminaries

Reo is a language for compositional construction of interaction protocols among
components, manifested as connectors [1]. Connectors in Reo consist of channels
and nodes. Figure 1 shows examples. Every channel consists of two ends and a
constraint that relates the timing and the content of the data-flows through those
ends. A channel end has one of two types: source ends accept data, while sink
ends offer data. Figure 3 shows common and historically significant channels,
introduced already in the first journal paper on Reo [1].
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Fig. 3. Name, syntax, and semantics of common channels [1]. The syntaxes for fifo1,
fifo2, lossyfifo1, and lossyfifo2 indicate their number of buffered data items.

Channel ends coincide on nodes. Contrasting channels, every node behaves in
the same way: repeatedly, it nondeterministically selects an available data item
out of one of its coincident sink ends and replicates this data item into each of its
coincident source ends. A node’s nondeterministic selection and its subsequent
replication constitute one atomic execution step; nodes cannot temporarily store,
generate, or lose data items. A node with only coincident source ends is called
a source node; one with only coincident sink ends is called a sink node; one with
both coincident source ends and coincident sink ends is called a mixed node. Source
and sink nodes constitute the boundary nodes of a connector. As explained already
in Sect. 1, the boundary nodes of a connector admit i/o operations—writes and
takes—from components. In Fig. 1, I distinguish the white boundary nodes of a
connector from its shaded mixed nodes. In this figure, let symbols a, b, c, and d
range over nodes (as if they are meaningless names).

Before a connector makes a global execution step, usually instigated by pend-
ing i/o operations, its channels and its nodes must have reached consensus about
their individual behavior, to guarantee collective consistency of their local exe-
cution steps (e.g., a node cannot replicate a data item into the source end of a
fifon with an already full buffer). Once consensus is reached, data-flow emerges.

A primitive is a connector consisting of two boundary nodes and a channel
between them; a composite is any connector that is not a primitive. Figures 1a–c
show primitives for some of the channels in Fig. 3; Figs. 1d–f show example com-
posites. I write channel names in lowercase sans-serif font, while I write connector
names in camelcase sans-serif font, optionally followed by a list of its source nodes
and sink nodes, separated by a semicolon.
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Through composition, programmers can “join” simple connectors into com-
plex ones on their shared nodes. Essentially, the composition of two connectors
is their graph-theoretic union. Note that if a shared node is a sink node in one
connector, while it is a source node in another connector, that node becomes a
mixed node in the composition of those connectors. Textually, I use symbol ��
as a binary infix operator for composition, whose operands are connector names
(e.g., LossySync〈a; b〉 �� FIFO1〈b; c〉); because composition is associative and com-
mutative, I omit brackets in ��-expressions. Graphically, I use superimposition of
shared nodes to represent composition of primitives, such that every connector
graph denotes the composition of the primitives it consists of (e.g., Fig. 1f shows
the composition of three primitives).

Through abstraction, programmers can “hide” mixed nodes in composites,
making those nodes no longer amenable to further composition. Textually, I use
symbol ∃ as a binary prefix operator for abstraction, whose first operand is a
node name, and whose second operand is a connector name. Graphically, I draw
a box to represent abstraction, such that all mixed nodes inside such a box are
considered hidden (e.g., nodes b and c are considered hidden in Fig. 1f).

3 Inconsistency

This section consists of two subsections. In the first subsection, I informally
present an example that indicates that Reo’s informal semantics (for LossySync
and FIFOn) is ambiguous. The argumentation in this first subsection, which I
make formally precise in the second subsection, is based on the connectors in
Figs. 1d–f, henceforth referred to as Conn[1d], Conn[1e], and Conn[1f].

Example

I start with a general statement: intuitively, abstracting a connector’s mixed
nodes should not affect the observable data-flows through the boundary nodes of
that connector. Consequently, under the composition axioms informally stated
in Sect. 1 (and shown in Fig. 2), one should expect the observable data-flows
through the boundary nodes of Conn[1f] to be the same as those through the
boundary nodes of Conn[1d] and Conn[1e]. In particular, under the same (traces
of) write and take operations performed by their connected processes, Conn[1d],
Conn[1e], and Conn[1f] should lose the same written data items.

Figure 4a shows the execution tree of Conn[1d]. At the first level of the tree,
Conn[1d] has only one admissible execution step (Step 1): a write completes on
the source node, causing a data item to flow into the buffer of LossyFIFO1. In
Fig. 4a, this data-flow is highlighted by the purple region at the second level.
Importantly, LossyFIFO1 cannot lose this first written data item, because its
buffer is initially empty (as described in Fig. 3). After this first execution step,
Conn[1d] chooses one out of three admissible execution steps:
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Fig. 4. First three levels of execution trees of Conn[1d] and Conn[1e]

– (Step 2a) LossyFIFO1 accepts a data item written on its source node, but
because its buffer is full, LossyFIFO1 must lose that written data item.

– (Step 2b) The data item in the buffer of LossyFIFO1 flows out of that buffer,
past the mixed node, into the buffer of FIFO1. An external observer cannot
directly observe this execution step, because it involves no boundary nodes.

– (Step 2c) The parallel execution of both Step 2a and Step 2b.

Step 2a and Step 2c are truly possible only if the source node has a pending
write. If so, in fact, all three execution steps are possible, and Conn[1d] chooses
one out of them nondeterministically. The key observation to make here, then,
is that Conn[1d] can nondeterministically lose the second written data item.

Figure 4b shows the execution tree of Conn[1e]. At the first level of the tree,
Conn[1e] has only one admissible execution step (Step 1): a write completes
on the source node, causing a data item to flow past the mixed node, into the



(Context-Sensitivity In) Reo, Revisited 197

Fig. 5. Axioms for FIFO1, FIFO2, LossySync, LossyFIFO1, and LossyFIFO2

buffer of FIFO2. Just as LossyFIFO1 in Conn[1d], LossySync in Conn[1e] cannot
lose this first written data item. Subsequently, Conn[1e] chooses one out of three
admissible execution steps. This choice of Conn[1e], however, significantly differs
from the choice of Conn[1d]: because the 2-capacity buffer of FIFO2 in Conn[1e]
is not yet full—it contains only one data item—it still accepts any data item
offered through the mixed node. Consequently, whenever a second write on the
source node completes, LossySync is not allowed to lose the written data item
but must offer it through the mixed node to FIFO2 (filling the latter’s buffer).

To summarize, whereas Conn[1d] can nondeterministically lose the second
written data item, Conn[1e] cannot. This, then, indeed makes the informal seman-
tics of Conn[1f] ambiguous: after all, as argued for in the beginning of this sub-
section, one intuitively should expect the lossy behavior of Conn[1f] to be the
same as the lossy behavior of both Conn[1d] and Conn[1e].

Axioms and Result

The previous example indicates that Reo’s informal semantics (for LossySync
and FIFOn) is ambiguous. To make this intuition formally precise, first, Fig. 5
shows a little axiomatic system for FIFO1, FIFO2, LossySync, LossyFIFO1, and
LossyFIFO2, where symbol ∼ denotes congruence, in the algebraic sense. As
before, let symbols a, b, c, and d range over nodes, let symbol Ci range over
connectors, and let a /∈ Ci mean that node a does not occur in connector Ci.

Axiom X1 is an axiom of context-freedom (see also Sect. 1) [1,3,4]. This
axiom essentially assumes “weak semantic” (i.e., it abstracts from internal steps),
enforced by using abstraction in X1’s formulation. In contrast, a “strong(er)
semantics”, without abstraction, would distinguish [the composition of FIFOn
and FIFOm] from FIFOn+m (i.e., the former has an internal step where a data
item shifts from one buffer to the next, which the latter has not). Because Reo’s
informal semantics abstracts from internal behavior, we need weak semantics.
This is also reflected in the fact that showing soundness of X1 is a standard
example for new formal semantics of Reo (e.g., [2,5,6,8]).
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Axioms X2a/b are axioms of context-sensitivity (see also Sect. 1) [6,7].
Axiom X3 states that the composition of LossyFIFO1 and FIFO1 is incon-

gruent to LossyFIFO2. Note that X3 involves only context-free connectors. The
argumentation why X3 is valid follows the previous subsection. Basically, when-
ever LossyFIFO1 in the composite on the left-hand side of ∼ has a full buffer,
until the data item in this buffer is transferred into the buffer of FIFO1, data
items written on a are lost. Crucially, Reo’s informal semantics does not state
that the transfer of a data item from one buffer to the next must happen before
data items are accepted through a; only LossyFIFO1 makes the choice between
first-transferring and first-losing, nondeterministically. LossyFIFO2 on the right-
hand side, in contrast, never loses the second data item written on a. X3 is the
result of the high autonomy that primitives in Reo have: LossyFIFO1 and FIFO1
have too much autonomy for them to invasively influence each other’s behavior.

Finally, composition is associative (Y1), abstraction distributes over compo-
sition for unshared nodes (Y2a/b), and abstractions commute (Y3).

Intuitively, the following theorem formally establishes that connectors con-
sisting of LossySync and FIFOn can have ambiguous semantics. In terms of the
example in the previous subsection, note that Conn[1e] appears on line 2 in the
derivation in the upcoming proof, Conn[1d] on line 8, and Conn[1f] on lines 4–6.

Theorem 1. The axiomatic system in Fig. 5 is inconsistent.

Proof. Deduce:

1

2

3

4

5

6

7

8

9

LossyFIFO2〈a; d〉
∼ ∃b.(LossySync〈a; b〉 �� FIFO2〈b; d〉) {X2b}
∼ ∃b.(LossySync〈a; b〉 �� ∃c.(FIFO1〈b; c〉 �� FIFO1〈c; d〉)) {X1}
∼ ∃b.∃c.(LossySync〈a; b〉 �� (FIFO1〈b; c〉 �� FIFO1〈c; d〉)) {Y2a}
∼ ∃b.∃c.((LossySync〈a; b〉 �� FIFO1〈b; c〉) �� FIFO1〈c; d〉) {Y1}
∼ ∃c.∃b.((LossySync〈a; b〉 �� FIFO1〈b; c〉) �� FIFO1〈c; d〉) {Y3}
∼ ∃c.(∃b.(LossySync〈a; b〉 �� FIFO1〈b; c〉) �� FIFO1〈c; d〉) {Y2b}
∼ ∃c.(LossyFIFO1〈a; c〉 �� FIFO1〈c; d〉) {X2a}
�∼ LossyFIFO2〈a; d〉 {X3}

Thus: LossyFIFO2〈a; d〉 �∼ LossyFIFO2〈a; d〉. �	
The axiomatic system in Fig. 5 and Theorem 1 are general in the sense that

they are formulated at the syntactic level (i.e., in terms of connector names)
rather than at the semantic level (i.e., in terms of concrete objects for con-
nectors in a particular formal semantics). However, the axiomatic system and
Theorem 1 are also specific in the sense that they are formulated in terms of con-
crete primitives instead of in terms of abstract properties (e.g., “statefulness”,
“context-sensitivity”). Although LossySync and FIFOn are essential in Reo, which
justifies their axiomatization, lifting the axiomatic system from these concrete
primitives to abstract properties as a further generalization seems worth pur-
suing, such that the axiomatic system in Fig. 5 can be derived from such a
generalization. I leave such a generalization for future work.
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4 Unsoundness

To resolve the inconsistency in Reo’s informal semantics (Theorem 1), one should
withdraw one (or more) of the axioms in Fig. 5. For the Xi-axioms, because these
axioms involve concrete primitives, a withdrawal necessarily means the assertion
of a negation. For instance, the composition of two FIFO1 either is (X1) or is not
(X1) congruent to FIFO2; leaving this unspecified would result in an unworkable
situation where two implementations of Reo may behave differently.

Axioms X1 and X2a/X2b being well-established in the literature [1–8], then,
the foremost resolution of the inconsistency is to negate X3 into X3.

∃n2.(LossyFIFO1〈a; c〉 �� FIFO1〈c; d〉) ∼ LossyFIFO2〈a; d〉 (X3)

In this section, I study the consequences of this alternative informal semantics.
Specifically, I show that X3 is unsound in four major formal semantics of Reo.

With “formal semantics”, I mean a formalism (including composition/ab-
straction operations and congruence) plus objects in that formalism for the
behavior of primitives. (It is possible, thus, to define two different formal seman-
tics of Reo in the same formalism but with different objects for primitives [9].)

Notably, two of the four formal semantics considered in this section (those
based on timed data streams and constraint automata) do not support express-
ing context-sensitive behavior. In these formal semantics, thus, already axioms
X2a/b are unsound. This is well-known in the Reo community [6–8], though,
and not up for debate here. The actual issue identified in this section is that
also X3 is unsound in these two formal semantics. This is interesting, because
X3 involves only context-free connectors; unsoundness of X3 can, thus, not be
attributed to those semantics’ lack of support for context-sensitivity.

Timed Data Streams

Reo’s first formal semantics is based on timed data streams [2,4]. A timed data
stream for a node a is a pair (α,A) consisting of two infinite sequences—
“streams”—namely a data stream α of data items and a time stream A of
monotonically increasing real numbers. Let α(i) and A(i) denote the i-th
element in α and A, and let α′ and A

′ denote the tails of α and A (aka
their derivatives). Also, for time streams A and B, let A < B abbreviate for[
A(i) < B(i) for all i ≥ 0

]
.

Every timed data stream describes the observable data-flow through a node: a
timed data stream (α,A) for a node a states that data item α(i) flows through a
at time A(i), for all i ≥ 0. Using timed data streams, then, one can define
the semantics of a connector as a k-ary relation on timed data streams for its
boundary nodes. Figure 6 shows examples. Figure 6a, for instance, states that a
pair of timed data streams is in the relation for FIFO1, denoted by FIFO1�−−−→, iff the
data streams are equal (i.e., all data items written into a FIFO1 are eventually
taken out), and the time streams “alternate” (i.e., between every two consecutive
writes on the source node is a take on the sink node).
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Fig. 6. Timed data streams semantics of FIFO1, LossyFIFO1, and LossyFIFO2

Under their timed data stream semantics, two connectors are congruent iff
their relations are equal iff their relation’s predicates are logically equivalent.

To compute the timed data streams semantics of a composite, one can apela-
tional composition, denoted by ◦, to the relations for its constituent primitives,
by taking the conjunction of those relations’ predicates (composition), and by
existentially quantifying timed data streams for nonboundary nodes (abstrac-
tion). An example of such conjunctions and existential quantifications appears
in the proof of the following theorem. Arbab and Rutten [4], and Arbab [2], give
more details and examples of Reo’s timed data streams semantics.

Theorem 2. X3 is unsound in the timed data streams semantics.

Proof. By computing the conjunction of the predicates of
LossyFIFO1�−−−−−−→ and FIFO1�−−−→

under existential quantification of node c, derive the timed data streams seman-
tics of ∃c.(LossyFIFO1〈a; c〉 �� FIFO1〈c; d〉) as follows:

(α,A)
LossyFIFO1�−−−−−−→ ◦ FIFO1�−−−→ (δ,D)

≡ ∃(γ,C) : A(0) < C(0) ∧ α(0) = γ(0) ∧ (α′,A′)
LossyFIFO1′
�−−−−−−−→ (γ,C)

∧ C < D < C
′ ∧ γ = δ

≡ A(0) < D(0) ∧ α(0) = δ(0) ∧ ∃(γ,C) : (α′, a′)
LossyFIFO1′
�−−−−−−−→ (δ,C)

∧ C < D < C
′
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Fig. 7. Constraint automata semantics of FIFO1, LossyFIFO1, and LossyFIFO2

Compare the derived predicate to the predicate of
LossyFIFO2�−−−−−−→ in Fig. 6c, and

observe that it suffices to show that the existential quantification in the derived
predicate, in purple, is inequivalent to the predicate of

LossyFIFO2’�−−−−−−−→. Now, derive:

∃(γ,C) : (α′,A′)
LossyFIFO1′
�−−−−−−−→ (δ,C) ∧ C < D < C

′

≡ ∃(γ,C) : A(0) < C(0) ∧ � ∧ (α′,A′)
LossyFIFO1′
�−−−−−−−→ (δ,C) ∧ C < D < C

′

∨ . . . ∨ . . .

≡ ∃(γ,C) : A(0) < D(0) ∧ � ∧ (α′,A′)
LossyFIFO1′
�−−−−−−−→ (δ,C) ∨ . . . ∨ . . .

In this derivation, the dots (“. . .”) stand for two redundant—in this proof—
disjuncts. The differences between the derived predicate and (the first disjunct

in) the predicate of
LossyFIFO2’�−−−−−−−→, in purple, are � (vs. α(0) = δ′(0)) and

LossyFIFO1’�−−−−−−−→
(vs.

LossyFIFO2”�−−−−−−−→). This means that the second written data item can be lost
according to the former relation, whereas it is preserved according to the latter
relation. To make this formally precise, define the following timed data streams:

(
α̃

Ã

)
=

(
1,

0.1,
2,

0.2,
3,

0.3,
κ
K

) (
δ̃

D̃

)

=
(

1,
0.25,

3,
0.35,

λ
L

)

such that (κ,K)
LossyFIFO1�−−−−−−→ ◦ FIFO1�−−−→ (λ,L) (e.g., κ = λ = {i �→ 1 | i ≥ 0}

and K = {i �→ i + 4 | i ≥ 0} and L = {i �→ i + 4.5 | i ≥ 0}). Using the

previously derived predicates, then, conclude (α̃, Ã)
LossyFIFO1�−−−−−−→ ◦ FIFO1�−−−→ (δ̃, D̃),

but not (α̃, Ã)
LossyFIFO2�−−−−−−→ (δ̃, D̃), such that

LossyFIFO1�−−−−−−→ ◦ FIFO1�−−−→ �= LossyFIFO2�−−−−−−→. Thus,
the timed data streams semantics violate X3. �	

Constraint Automata

Reo’s second formal semantics is based on constraint automata [5]. A constraint
automaton is a tuple (Q,N ,−→, Q0) consisting of a set of states Q, a set of
nodes N , a transition relation −→ ⊆ Q × 2N × Q, and a set of initial states Q0.

Every transition q
N−→ q′ describes an execution step of a connector, where

data items synchronously flow through the nodes in N . As such, N is called
the synchronization constraint of the transition. Originally, in addition to a
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synchronization constraint, every transition in a constraint automaton also car-
ries a data constraint. Data constraints are logical assertions that specify which
particular data items may be observed on the nodes that participate in a tran-
sition. Because data constraints do not matter in what follows, however, I omit
them from the definitions (technically, I consider port automata [10]). Figure 7
shows examples. Figure 7a, for instance, states that initially, in its left-hand
state (empty buffer), the constraint automaton for FIFO1 can make a transition
in which a data item flows through node c (and into the buffer). In its right-hand
state (full buffer), the constraint automaton can make a transition in which a
data item flows (out of the buffer and) through node d. If there are multiple
transitions between the same two states, I draw only one arrow with multiple
labels, separated by a comma. In Fig. 7b, for instance, there are two transitions
from the right-hand state to the left-hand state, represented by one arrow.

Under their constraint automata semantics, two connectors are congruent if
their constraint automata are bisimilar. In the absence of data constraints, this
coincides with bisimilarity on transition systems labeled with node sets [10].

To compute the constraint automata semantics of a composite, one can apply
a join operation, denoted by ��, and a hide operation, denoted by ∃, to the con-
straint automata for its constituent primitives. Let A1 = (Q1,N1,−→1, Q0,1)
and A2 = (Q2,N2,−→2, Q0,2) be two constraint automata. The join of A1

and A2 is defined as (Q1 × Q2,N1 ∪ N2,−→��, Q0,1 × Q0,2), where −→�� is
the smallest relation induced by the following two rules:

q1
N1−−→1 q′

1 and q2
N2−−→2 q′

2

and N1 ∩ N2 = N2 ∩ N1

(q1, q2)
N1∪N2−−−−−→�� (q′

1, q
′
2)

q1
N1−−→1 q′

1 and q2 ∈ Q2

and N2 ∩ N1 = ∅
(q1, q2)

N1−−→�� (q′
1, q2)

(1)

plus a symmetric version of the right-hand rule. The hide of a in a con-
straint automaton A = (Q,N ,−→, Q0) is defined as (Q,N \ {n},−→∃, Q0,∃),
where −→∃ is the smallest relation induced by the following rules:

q1
{a}−−→ · · · {a}−−→ qk

N−→ qk+1 and N �= {a}
q1

N\{a}−−−−→∃ qk+1

q
N−→ q′ and N �= {a}

q
N\{a}−−−−→∃ q′

(2)

and where Q0,∃ = Q0 ∪ {q | q0 ∈ Q0 and q0
{a}−−→ · · · {a}−−→ q}. The idea is

that sequences of internal transitions after hiding a (i.e., {a}-labeled transitions
before hiding a) are merged with a non-internal transition, such that only non-
internal transitions remain. An example of joining and hiding appears in the
proof of the following theorem. Baier et al. [5] give more details and examples
of Reo’s constraint automata semantics.
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Theorem 3. X3 is unsound in the constraint automata semantics.

Proof. By applying the definitions of �� and ∃, derive the constraint
automata semantics of ∃c.(LossyFIFO1〈a; c〉 �� FIFO1〈c; d〉) as follows:

Compare the derived constraint automaton to the constraint automaton for

LossyFIFO2 in Fig. 7c, and observe that the former has transitions out of its
second state, in purple, that cannot be simulated by the latter (i.e., the second
written data item can be lost according to the former, whereas it is preserved
according to the latter); these two constraint automata are not bisimilar. Thus,
the constraint automata semantics violates X3. �	

Connector Coloring

Reo’s first context-sensitive formal semantics is based on connector coloring [7,8].
A coloring is a map from nodes to colors. A coloring table is a set of colorings.
A next function is a map from [coloring table, coloring]-pairs to coloring tables.

Every coloring c describes an execution step of a connector, where every
node a ∈ Dom(c) behaves according to color c(a). For instance,
means that a data item flows through a, where denotes the flow color.
Another color is the no-write color. This color is assigned to a node a if no data
item flows through a because a write to initiate such a flow is missing. The third
and last color is, symmetrically, the no-take color. A coloring table describes
the set of admissible execution steps of a connector in some internal state (cf.
states in constraint automata); a next function describes changes in such sets
as the internal state evolves (cf. transition in constraint automata). Figure 8
shows examples. Figure 8a, for instance, states that the coloring table for an
empty FIFO1, t1, has two colorings. The first coloring describes an execution step
where a data item flows through node c (into the buffer), while no data item flows
through node d, because d has no pending write (such a write should come from
the FIFO1 itself, but its buffer is empty); subsequently, FIFO1 behaves according
to coloring table t2. In figures, thus, the coloring tables referenced between square
brackets represent (images of) next functions. The second coloring in t1 states
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Fig. 8. Connector coloring semantics of FIFO1, LossyFIFO1, and LossyFIFO2

that a data item flows neither through c nor through d, because neither of these
nodes has a pending write. In figures, thus, the no-write color is drawn as
a dashed line with a triangle that points toward a sink node or away from a
source node; conversely, the no-take color is drawn as a dashed line with a
triangle that points away from a sink node or toward a source node. By these
drawing conventions, the arrows always point away from primitives that provide
a reason-for-no-flow, toward primitives that require a reason-for-no-flow.

Under their connector coloring semantics, two connectors are congruent if
their next functions, coloring tables, and colorings are equal.

To compute the connector coloring semantics of a composite, one can apply
join operations on coloring tables and next functions, denoted by · and ⊗.
Although hide operations have later been added [8], they violate axioms Y2a/b.
Let t1 and t2 be coloring tables. The join of t1 and t2 is defined as:

{c1 ∪ c2 | (c1, c2) ∈ t1 × t2 and
[
c1(a) = c2(a) for all a ∈ Dom(c1) ∩ Dom(c2)

]}
Let n1 and n2 be next functions. The join of n1 and n2 is defined as:

{(t1 · t2, c1 ∪ c2) �→ n1(t1, c1) · n2(t2, c2) | c1 ∪ c2 ∈ t1 · t2}
Graphically, due to how the no-write and no-take colors are represented, joining
essentially comes down to “matching flow and arrow directions”. (The details
are slightly more involved than this, but as the examples in this paper work also
without the flip-rule [7], I skip the details.) An example of joining appears in the
proof of the following theorem. Clarke et al. [7] and Costa [8] give more details
and examples of Reo’s connector coloring semantics.
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Theorem 4. X3 is unsound in the connector coloring semantics.

Proof. By applying the definitions of · and ⊗, and by ignoring mixed node
c (as a “poor man’s hide”), derive the connector coloring semantics of
∃c2.(LossyFIFO1〈a; c〉 �� FIFO1〈c; d〉). Two of the four resulting coloring
tables are:

Compare the derived coloring tables to coloring tables t5 and t6 in Fig. 8c.
Ignoring node c, observe that t5 contains exactly the same colorings as coloring
table t3,1. However, still ignoring c, observe that t6 contains neither of the two col-
orings in coloring table t4,1. In particular, both colorings in t4,1 state that node d
has no pending write, while there is no such coloring in t6 (nor can the flip-
rule [7] be used to recover such a coloring in t6). Consequently, the next function
for ∃c.(LossyFIFO1〈a; c〉 �� FIFO1〈c; d〉) and the next function for LossyFIFO2〈
a; d〉) are unequal. Thus, the connector coloring semantics violates X3. �	

Guarded Automata

Another major context-sensitive formal semantics of Reo is based on guarded
automata [6]. Guarded automata can be seen as an extension of constraint
automata, where every synchronization constraint on a transition is prefixed
with a guard γ. A guard is a boolean expression over nodes (notation: overlines
for negation, juxtaposition for conjunction). A guard states which nodes must,
and which nodes must not, have a pending i/o-operation for a transition to fire.
For instance, guard ac means that nodes a and c each must have a pending i/o
operation; guard ac means that a must, while c must not, have a pending i/o
operation. Figure 9 shows examples (cf. Fig. 7).

Fig. 9. Guarded automata semantics of LossyFIFO1, FIFO1, and LossyFIFO2

Under their guarded automata semantics, two connectors are congruent if
their guarded automata are bisimilar (cf. constraint automata bisimilarity [6]).
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The join and hide operations on constraint automata, �� and ∃, are extended
to handle guards as follows. In the premise of the left-hand rule in (1), N1

and N2 are prefixed with guards γ1 and γ2, while in its conclusion, N1 ∪ N2

is prefixed with guard γ1γ2. In the premise of the right-hand rule in (1), N1 is
prefixed with a guard γ1, while in its conclusion, N1 is prefixed with guard γ1γ

�
q2 .

Here, γ�
q2 stands for [the negation of [the disjunction of [the guards of the tran-

sitions from state q2]]]. Additionally, an extra condition “γ �⇒ ab” needs to
be satisfied in both rules; I mention this here for completeness, but refer to
Bonsangue et al. for details and a motivation [6, Definition 4.11 and Sect. 6.5].
In the premise of the rules in (2), {a} and N are prefixed with guards a and γ,
while in its conclusion, N \ {a} is prefixed with guard γ. Originally, the join
operation on guarded automata was split into two suboperations [6]: product and
synchronization. For simplicity, I merged these operations together. An example
of joining and hiding appears in the proof of the following theorem. Bonsangue
et al. [6] give more details and examples of Reo’s guarded automata semantics.

Theorem 5. X3 is unsound in the guarded automata semantics.

Proof. By applying the definitions of �� and ∃, derive the guarded
automata semantics of ∃c.(LossyFIFO1〈a; c〉 �� FIFO1〈c; d〉) as follows:

Compare this guarded automaton to the guarded automaton for LossyFIFO2
in Fig. 9c, and observe that the former has transitions out of its second state,
in purple, that cannot be simulated by the latter (i.e., the second written data
item can be lost according to the former, whereas it is preserved according to
the latter); these two guarded automata are not bisimilar. Thus, the guarded
automata semantics violates X3. �	

5 Discussion

I set out to study whether axioms for context-free and context-sensitive connec-
tors can yield a consistent axiomatic system. To this end, I axiomatized Reo’s
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informal semantics, including axioms for the common and historically signifi-
cant primitives FIFOn (context-free) and LossySync (context-sensitive). I sub-
sequently showed that the resulting axiomatic system (Fig. 5) is inconsistent
(Theorem 1). In practice, this makes programming connectors with LossySync
and FIFOn unworkable, as the semantics of such connectors can be ambiguous.

To resolve the inconsistency, one should withdraw one (or more) of the axioms
(Sect. 4). X1 and X2a/X2b being well-established in the literature [1–8], the
foremost resolution of the inconsistency is to negate X3 into X3. The resulting
alternative axiomatic system is, however, unsound in Reo’s four major formal
semantics—timed data streams, constraint automata, connector coloring, and
guarded automata—henceforth called “The Major Four” (Theorems 2–5). More-
over, as composition operations in other formal semantics of Reo are essentially
similar to those in The Major Four, I expect the alternative axiomatic system
to be unsound in most of these, too.

The unsoundness of X3 in The Major Four at the same time entails that
X3 is sound in these formal semantics. Consequently, some step other than
8–9 in the proof of Theorem 1 has to fail in each of The Major Four (other-
wise, ∼ is irreflexive). In the timed data streams semantics and the constraint
automata semantics, as they do not support context-sensitivity, axioms X2a/b
are unsound; steps 1–2 and 7–8 consequently fail. The connector coloring seman-
tics and the guarded automata semantics, in contrast, do support context-sensi-
tivity. On closer inspection, it turns out that axioms Y2a/b are unsound in these
two formal semantics. The details are intricate and beyond this paper’s scope.

(Aside: nothing is inherently wrong with, or inconsistent about, the for-
malisms of timed data streams/constraint automata/connector coloring/guard-
ed automata. X3 is unsound only in their current use as formal semantics of Reo.
An open question is whether one can construct new formal semantics using these
existing formalisms in which X3 is sound, by defining new—perhaps complexer—
objects for the behavior of primitives, different from the current ones. Jongmans
et al. have done something similar to this before [9].)

Beside negating X3, one can also negate X2a/b into X2a/b, thereby asserting
that the composition of LossySync and FIFO1 is incongruent to LossyFIFO1.
This, however, implies forsaking the notion of context-sensitivity. One can also
negate X1 into X1. This has the same consequence as negating X3: X1 is sound
in all formal semantics of Reo that I know of, so X1 is unsound. Moreover,
forsaking the composability of small buffers into large buffers seems undesirable.
Finally, one can withdraw one of the Yi-axioms. However, losing associativity
of composition, distributivity of abstraction, or commutativity of abstractions
seems unworkable—or at least highly impractical—in practice, too.

Summarizing, the Reo community has three options: a practically unwork-
able language (withdraw none/Y1/Y2a/b/Y3), a language without context-sen-
sitivity (withdraw X2a/b), or a language with context-sensitivity but whose
four major formal semantics do not correspond with the informal semantics
(withdraw X1/X3). The identification of these options is this paper’s main
contribution.
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Theory aside, the results presented in this paper have practical consequences,
too. Over the past years, progress has been made in compiling Reo connectors
into executable code, heavily based on their formal semantics. In one of its sim-
plest forms, the generated code is run as a distributed system of communicating
processes for all nodes and channels (essentially without abstraction). To reduce
communication overhead, an important class of optimizations works by compos-
ing certain nodes and channels already at compile-time (so that fewer processes
remain at run-time). In particular, it is more efficient to run one FIFOn instead
of (a distributed system of) n FIFO1. As a consequence of Theorem 1, however,
doing so is unsound (unless we consider a restricted subset of Reo). So, until the
inconsistency in Reo’s informal semantics is resolved, one cannot efficiently use
context-sensitive connectors for construction of real software systems in practice.

We should therefore rethink Reo’s informal semantics to remove the inconsis-
tency and develop corresponding formal semantics. Possible approaches include:

– Assert X3 instead of X3. To achieve this in Reo’s informal semantics, we may
dictate that every connector always makes internal steps until only observ-
able steps are possible, after every observable step. Formally, this should be
enforced by redefining the current abstraction operations.

– Allow FIFOn to accept a data item into its buffer and dispense a data item
out of its buffer in the same step. Moussavi et al. already presented a formal
semantics that supports this variant of FIFOn [11]. Curiously, however, axiom
X1 seems unsound in the guarded automata semantics for such a variant
of FIFOn. This needs to be studied in more detail.

Acknowledgments. I thank Farhad Arbab for his constructive comments on the
results in this paper, which helped me improve their presentation. I also thank the
anonymous reviewers for their very helpful comments.
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Abstract. Variants of the finite state machine (FSM) model have been
extensively used to describe the behaviour of reactive systems. In partic-
ular, several model-based testing techniques have been developed to sup-
port test case generation and test case executions from FSMs. Most such
techniques require several validation properties to hold for the under-
lying test models. In this paper, we propose an extension of the FSM
test model for software product lines (SPLs), named featured finite state
machine (FFSM). As the first step towards using FFSMs as test mod-
els, we define feature-oriented variants of basic test model validation
criteria. We show how the high-level validation properties coincide with
the necessary properties on the product FSMs. Moreover, we provide a
mechanised tool prototype for checking the feature-oriented properties
using satisfiability modulo theory (SMT) solver tools. We investigate the
applicability of our approach by applying it to both randomly generated
FFSMs as well as those from a realistic case study (the Body Comfort
System). The results of our study show that for random FFSMs over 16
independent non-mandatory features, our technique provides substantial
efficiency gains for the set of proposed validity checks.

Keywords: Formal modelling · Model validation · Software Product
Line · Finite State Machine

1 Introduction

Motivation. Different forms of finite state machines (FSMs) have been extensively
used as the fundamental semantic model for various behavioural specification lan-
guages and design trajectories. In particular, several test case generation tech-
niques have been developed for hardware and software testing based on FSMs;
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an overview of these techniques can be found in [7,16,18]. All FSM-based test-
ing techniques require the underlying test models to satisfy some basic validation
criteria such as connectedness and minimality.

Software Product Lines (SPLs) [19] are used for systematic reuse of artefacts
and are effective in mass production and customisation of software. However,
testing large SPLs demand substantial effort, and effective reuse is a challenge.
Model-Based Testing (MBT) approaches need to be adapted to the SPL domain
(see [26] for a survey of existing approaches).

There are a few recent attempts [23,33] to extend the FSM-based testing
techniques to SPLs, mostly using the delta-oriented approach to SPL modelling.
We are not aware of any prior work that addresses the basic test model validation
criteria for SPLs at the family-wide level. The present paper aims at bridging
this gap. To this end, we first propose a product-line extension of FSMs, named
Featured Finite State Machine (FFSM). An FFSM unifies the test models of the
valid product configurations in a family into a single model. Our aim is to extend
FSM-based test case generation techniques [27,31] to generate test suites for
groups of SPL products. As the first step to this end, we define feature-oriented
family-based validation criteria that coincide with the necessary conditions of
such test case generation techniques at the product level.

Our family-based validation criteria are implemented in a tool using Java and
the Z3 [25] tool. A case study from the automotive domain concerning the Body
Comfort System [20] was performed to show the applicability of our criteria and
tool. Our research question is: How large does an FFSM have to be in order to
save time in the validation of the FFSM instead of its valid product FSMs? To
this end, we performed an empirical study on randomly generated FFSMs with
various parameters. The results indicate that for random FFSMs with over 10
independent non-mandatory features, we have substantial efficiency gains for the
set of proposed validity checks.

Contributions. The main contributions of this paper are summarised below:

1. Proposing family-based validation criteria for FSM-based test models and
proving them to coincide with their product-based counterparts, and

2. Implementing efficient family-based validation techniques and investigating
their applicability by applying them to a large set of examples.

Also as a carrier for these contributions, we propose a feature-oriented extension
of FSMs.

Organisation. The remainder of this paper is organised as follows. Section 2
presents some preliminary notions and concepts regarding SPL testing and
FSMs. Section 3 describes the FFSM formalism, the proposed validation prop-
erties, and the associated theoretical results. Section 4 provides an overview of
the implementation used for property checking in Java and Z3. Section 5 illus-
trates the experimental study and the analysis of results. Section 6 provides an
overview of the related works and a comparison among the relevant approaches
in the literature. Section 7 concludes the paper and presents the directions of our
future work.
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2 Background

This section recapitulates the basic concepts and definitions of SPLs and FSMs
that we are going to use through the rest of the paper.

2.1 Software Product Lines

A feature is an atomic unit used to differentiate the products of an SPL. Let
F be the set of features. A product p is defined by a set of features p ⊆ F . The
feature structure can be represented by a feature diagram [29]. In a feature
diagram, some notational conventions are used to represent commonalities and
variabilities of an SPL (e.g., mandatory, optional, and alternative features).
To illustrate the concepts throughout the paper, we use the following SPL.

Example 1. The Arcade Game Maker (AGM) [30] can produce arcade games
with different game rules. The objective of the player in any game is to get more
points. Figure 1 shows the feature diagram of AGM. There are three alternative
features for the game rule (Brickles, Pong and Bowling) and one optional
feature (Save) to save the game.

Brickles[B]

Legend
        Mandatory Feature
        Optional Feature
        Alternative Feature

Collision[L]Movement[M]Bowling[W]Play[Y]

Services[V] Action[A]Rules[R]

Pong[N]Save[S]Pause[P]

Configuration[C]

Arcade Game Maker-AGM[G]

Fig. 1. AGM feature model (adapted from [30]).

In general, not all combinations of features are valid. Dependencies and con-
straints on feature combinations reduce the power set P(F ) of all potential fea-
ture combinations to a subset of valid products P ⊆ P(F ) [2,12]. A feature
constraint is a propositional formula generated by interpreting the elements of
the set F as propositional variables. We denote by B(F ) the set of all feature
constraints.

A product configuration ρ of a product p ∈ P is the feature constraint
that uses all features of F , where all features in p are true, i.e., ρ = (

∧

f∈p

f) ∧
(

∧

f /∈p

¬f). We denote by Λ the set of all valid product configurations. Given

a feature constraint χ ∈ B(F ), a product configuration ρ ∈ Λ satisfies χ
(denoted by ρ � χ), if the assertion ρ ∧ χ is not false.

Consider a feature model FM , let F be a set of features extracted from FM .
Given F = {Y, S}, we know from the FM that feature Play[Y ] is mandatory and
Save[S] is optional; an example feature constraint involving both features is (Y ∧
¬S) ∈ B(F ), which specifies the products in which Y is included and S is excluded.
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2.2 Finite State Machine

The classic Finite State Machine (FSM) formalism is often used due to its sim-
plicity and rigour for systems such as communication protocols and reactive
systems [7]. In this study, we use the following definition of FSM.

Definition 1. An FSM M is a 5-tuple (S, s0, I, O, T ), where S is a finite set of
states with the initial state s0, I is a finite set of inputs, O is a finite set
of outputs, and T is a set of transitions t = (s, x, o, s′) ∈ T , where s ∈ S is
the source state, x ∈ I is the input label, o ∈ O is the output label, and s′ ∈ S is
the target state.

Given an input sequence α = (x1, ..., xk), xi ∈ I, 1 ≤ i ≤ k, a path from state
s1 to sk+1 exists when there are transitions ti = (si, xi, oi, si+1) ∈ T , for each
1 ≤ i ≤ k. A path υ is a 5-tuple (s1, α, τ, β, sk+1), where

1. s1 ∈ S is the source state where the path begins,
2. α ∈ I∗ is the defined input sequence,
3. τ ∈ T ∗ is the transition sequence, i.e., τ = (t1, ..., tk),
4. β ∈ O∗ is the output result, i.e., β = (o1, ..., ok)
5. sk+1 ∈ S is the target state where the path ends.

Notation Ω(s) is used to denote all paths that start on state s ∈ S. ΩM is
used to denote Ω(s0).

Test case generation methods such as the Harmonised State Identification (HSI)
[27] method, and the Fault Coverage-Driven Incremental (P) [31] method require
FSMs with some of the semantic properties defined below.

Definition 2. The following validation properties are defined for FSMs:

1. Deterministic: if two transitions leave a state with a common input, then
both transitions reach the same state, i.e., ∀(s,x,o,s′),(s,x,o′,s′′)∈T • s′ = s′′;

2. Complete (required only by some algorithms): every state has one transition
for each input, i.e., ∀s∈S,x∈I • ∃o∈O,s′∈S • (s, x, o, s′) ∈ T ;

3. Initially Connected: there is a path to every state from the initial state,
i.e., ∀s∈S • ∃α∈I∗,τ∈T ∗,β∈O∗ • (s0, α, τ, β, s) ∈ ΩM ;

4. Minimal: all pairs of states are distinguishable, i.e., ∀sa,sb∈S •
∃(sa,α,τa,βa,s′

a)∈Ω(sa),(sb,α,τb,βb,s′
b)∈Ω(sb) • βa �= βb.

Example 2. There are six possible products that can be derived from the AGM
FM. The FSM M1 of the first configuration is presented in Fig. 2. This test
model is an abstracted version of the design model where observable events
are represented by inputs and the correspondent outputs. The inputs are in-
game commands, while the outputs 0 and 1 are abstract captured responses.
We selected the Pong[N] rule and discarded the Save[S] option represented by
ρ1 = (G ∧ V ∧ R ∧ C ∧ A ∧ M ∧ L ∧ Y ∧ P ∧ N ∧ ¬B ∧ ¬W ∧ ¬S) ∈ Λ. It is
straightforward to check that M1 is a deterministic, complete, initially connected
and minimal FSM.
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Pause GamePong GameStart Game
Start/1Exit/1

Pause/1Start/1

Exit/1

Exit/0
Pause/0

Start/0 Pause/0

Fig. 2. FSM of the first product configuration of AGM.

3 Featured Finite State Machines

A Featured Finite State Machine (FFSM) is an extension of a Finite State
Machine (FSM) by annotating states and transitions with feature constraints.

This Section presents the basic definitions for FFSMs, followed by the notion
of product derivation, and the high-level validation properties required for test
case generators.

3.1 Basic Definitions

The simplified syntax (with conditions) of an FFSM is defined as follows.

Definition 3. An FFSM is a 7-tuple (F,Λ,C, c0, Y,O, Γ ), where

1. F is a finite set of features,
2. Λ is the set of product configurations,
3. C ⊆ S × B(F ) is a finite set of conditional states, where S is a finite set

of state labels, B(F ) is the set of all feature constraints, and C satisfies the
following condition:

∀(s,ϕ)∈C • ∃ρ∈Λ • ρ � ϕ

4. c0 = (s0, true) ∈ C is the initial conditional state,
5. Y ⊆ I ×B(F ) is a finite set of conditional inputs, where I is the set of input

labels,
6. O is a finite set of outputs,
7. Γ ⊆ C×Y ×O×C is the set of conditional transitions satisfying the following

condition:

∀((s,ϕ),(x,ϕ′′),o,(s′,ϕ′))∈Γ • ∃ρ∈Λ • ρ � (ϕ ∧ ϕ′ ∧ ϕ′′)

The components of FFSM are self-explanatory; the above-given two condi-
tions ensure that every conditional state and every transition is present in at
least one valid product of the SPL. A conditional transition from conditional
state c to c′ with conditional input y and output o is represented by quadruple
t = (c, y, o, c′), or alternatively by c

y→
o

c′.

Example 3. Figure 3 shows the FFSM for the AGM SPL. The notation of a
conditional state in the model is s(ϕ) ≡ (s, ϕ) ∈ C, the transition line by
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x(ϕ)/o ≡(x,ϕ)→
o

∈ Y × O, and the operators of feature constraints are denoted by

& (and), || (or), and ! (not). Omitted feature conditions mean that the condition

is true, i.e., for states s ≡ (s, true) ∈ C, and transitions x→
o

≡(x,true)→
o

.

Start/1

Start/1

Start/1Start/1
Pause/1

Save(S)/1

Start/1

Pause/1
Save(S)/1

Save(S)/1

Pause/1
Pause(W)/1

Exit/1

Start/1

Start/1

Exit/0
Start/0

Save(B)/0

Pause/0

Save(N)/1

Exit/1

Start/0

Exit/0
Pause(!W)/1
Pause(W)/0

Save/0
Exit(!S)/0

Start/0
Save(S)/0

Exit(W&!S)/1
Exit(!W||S)/0

Start/1
Exit(S)/1

Pause(!W)/0

Start/1
Save Game(S)Pause Game

Pong(N)

Bowling(W)

Brickles(B)

Star t  Game

Fig. 3. FFSM for the AGM SPL.

Next, we define auxiliary definitions on FFSMs that are used to describe
transfer sequences; they are subsequently used in expressing the FFSM validation
properties.

Definition 4. Given a conditional input sequence δ = (y1, ..., yk), yi ∈ Y, 1 ≤
i ≤ k, a conditional path from conditional state c1 to ck+1 exists when there
are conditional transitions ti = (ci, yi, oi, ci+1) ∈ Γ , for each 1 ≤ i ≤ k. A
conditional path σ is a 6-tuple (c1, δ, ν, γ, ω, ck+1), where

1. c1 ∈ C is the conditional state where the path begins,
2. δ ∈ Y ∗ is the conditional input sequence,
3. ν ∈ Γ ∗ is the conditional transition sequence, i.e., ν = (t1, ..., tk),
4. γ ∈ O∗ is the output result, i.e., γ = (o1, ..., ok)
5. ω ∈ B(F ) is the resulting path condition, i.e., ω = (ϕ1, ...ϕk+1) ∧

(θ1, ..., θk), yi = (xi, θi), ci = (si, ϕi)
6. ck+1 ∈ C is the conditional state where the path ends.

Notation Θ(c) is used to denote the set of all conditional paths that start at
conditional state c ∈ C. ΘFF is used to denote Θ(c0).

We also define a valid transfer sequence that is used to transfer the machine
from one conditional state to another.

Definition 5. Given two conditional states c, c′ ∈ C, a conditional input
sequence δ ∈ Y ∗ is a valid transfer sequence if there are at least one path
(c, δ, ν, γ, ω, c′) ∈ Θ(c) and one product that satisfies the path condition, i.e.,
∃ρ∈Λ • ρ � ω.
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Example 4. Consider the FFSM of Fig. 3. Note that a transfer sequence
δ = (Start, Pause) of a conditional path (StartGame, δ, (StartGame

Start→
1

Brickles(B), Brickles(B) Pause→
1

PauseGame), (1, 1), (B), PauseGame) ∈ ΘFF

has a transfer condition ω = (B) and only two products can satisfy ω, namely,
ρ5 = (G ∧ V ∧ R ∧ C ∧ A ∧ M ∧ L ∧ Y ∧ P ∧ B ∧ ¬N ∧ ¬W ∧ ¬S) ∈ Λ and
ρ6 = (G∧V ∧R∧C∧A∧M∧L∧Y ∧P ∧B∧S∧¬N∧¬W ) ∈ Λ. Thus, ω is not sat-
isfied by valid product ρ1 = (G∧V ∧R∧C∧A∧M∧L∧Y ∧P ∧N∧¬B∧¬W ∧¬S).

3.2 Product Derivation

We define a product derivation operator, reminiscent of the operator in [4], that
is parameterised by feature constraints. Given a feature constraint, the product
derivation operator reduces an FFSM into an FSM representing the selection of
products.

Definition 6. Given a feature constraint φ ∈ B(F ) and an FFSM FF =
(F,Λ,C, c0, Y,O, Γ ), if exactly one product ρ ∈ Λ satisfies φ, i.e.,∃!ρ∈Λ • ρ �
φ, then the product derivation operator Δφ induces an FSM Δφ(FF ) =
(S, s0, I, O, T ), where:

1. S = {s|(s, ϕ) ∈ C ∧ ρ � (ϕ ∧ φ)} is the set of states;
2. s0 = s, c0 = (s, ϕ) ∈ C is the initial state;

3. T = {(s, x, o, s′)|(s, ϕ)
(x,ϕ′′)→

o
(s′, ϕ′) ∈ Γ ∧ ρ � (ϕ ∧ ϕ′ ∧ ϕ′′ ∧ φ)} is the set of

transitions.

The set of all valid products of FF is the set of all induced FSMs. Figure 3 shows
the FFSM generated for the AGM SPL that can induce six products. Using the
feature constraint φ = N ∧ ¬S the FFSM is projected into the FSM presented
in Fig. 2.

3.3 Validation Properties

To adopt FFSMs as test models, first, we need to validate the product-line-
based specification with properties used for FSMs. Next, we define the high-level
counterparts of the four basic properties, namely, determinism, completeness,
initially connected-ness, and minimality, and show that they coincide with the
aforementioned properties for their valid FSM products.1

Definition 7. An FFSM FF is deterministic if for all conditional
states when exists two enabled conditional transitions with the same input
for a product ρ, then both transitions lead to the same state, i.e.,
∀
(s,ϕ)

(x,ϕ′)→
o

(s′,ϕa),(s,ϕ)
(x,ϕ′′)→

o
(s′′,ϕb)∈Γ

• ∀ρ∈Λ • ρ � (ϕ ∧ ϕ′ ∧ ϕ′′ ∧ ϕa ∧ ϕb) ∨ s′ = s′′.

1 Due to space limitation proof sketches are provided below; detailed proofs
of correctness for these properties is available at http://ceres.hh.se/mediawiki/
Vanderson Hafemann.

http://ceres.hh.se/mediawiki/Vanderson_Hafemann
http://ceres.hh.se/mediawiki/Vanderson_Hafemann
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Next, we state and prove that an FFSM is deterministic when all its valid product
FSMs are deterministic.

Theorem 1. An FFSM FF is deterministic if and only if all derived product
FSMs Δφ(FF ) are deterministic.

Proof. We break the bi-implication in the thesis into two implications and
prove each by contradiction. For the implication from left to right, assume
that FFSM FF is deterministic, but there is a derived FSM Δφ(FF ) for a
product ρ which is non-deterministic; we obtain a contradiction. Let FFSM
FF = (F,Λ,C, c0, Y,O, Γ ) be deterministic and a derived FSM Δφ(FF ) =
(S, s0, I, O, T ) be non-deterministic for a product ρ ∈ Λ on state s ∈ S.
As Δφ(FF ) is non-deterministic, then by the negation of Definition 2 item 1
there is an input x ∈ I such that two transitions (s, x, o, s′), (s, x, o, s′′) ∈ T
reach different states s′ �= s′′. By Definition 6 item 3 if Δφ(FF ) has two
transitions (s, x, o, s′) and (s, x, o, s′′), then both were induced from condi-

tional transitions (s, ϕ)
(x,ϕ′)→

o
(s′, ϕa), (s, ϕ)

(x,ϕ′′)→
o

(s′′, ϕb) ∈ Γ of FF and

ρ � (ϕ ∧ ϕ′ ∧ ϕa ∧ ϕb). However, FF is deterministic and by Definition 7 the
condition ρ � (ϕ′ ∧ ϕ′′ ∧ ϕa ∧ ϕb) ∨ s′ = s′′ holds for all pairs of conditional
transitions, which is a contradiction as there is a pair of conditional transitions
that the negation of the condition ρ � (ϕ ∧ ϕ′ ∧ ϕa ∧ ϕb) ∧ (s′ �= s′′) also holds.

Likewise, for the implication right to left, assume that Δφ(FF ) is deter-
ministic for ρ, but FF is non-deterministic; we obtain a contradiction. Let
FF = (F,Λ,C, c0, Y,O, Γ ) be non-deterministic on conditional state (s, ϕ) ∈ C,
ρ |= ϕ, and Δφ(FF ) = (S, s0, I, O, T ) is deterministic for ρ. As FF is non-
deterministic, then by the negation of Definition 7 there is an input x ∈ I such

that two conditional transitions (s, ϕ)
(x,ϕ′)→

o
(s′, ϕa), (s, ϕ)

(x,ϕ′′)→
o

(s′′, ϕb) ∈ Γ are

satisfied by ρ � (ϕ ∧ ϕ′ ∧ ϕa ∧ ϕb) and reach different states s′ �= s′′. As ρ � φ
and by Definition 6 item 3 each transition of FF that satisfies φ is induced
to Δφ(FF ), thus (s, x, o, s′), (s, x, o, s′′) ∈ T . However, Δφ(FF ) is deterministic
and by Definition 2 item 1 the condition s′ = s′′ is true for all pairs of transi-
tions (s, x, o, s′), (s, x, o, s′′) ∈ T , which is a contradiction as there is a pair of
transitions (s, x, o, s′), (s, x, o, s′′) ∈ T such (s′ �= s′′). �

Definition 8. An FFSM FF is complete if for all conditional states in a
product there is an outgoing valid transition for each and every input, i.e.,
∀(s,ϕ)∈C • ∀ρ∈Λ • ∀x∈I• ρ � ϕ ∨ ∃

(s,ϕ)
(x,ϕ′′)→

o
(s′,ϕ′)∈Γ

• ρ |= ϕ′ ∧ ϕ′′.

Next, we state and prove that an FFSM is complete when all its valid product
FSMs are complete.

Theorem 2. An FFSM is complete if and only if all derived product FSMs are
complete.

Proof. We break the bi-implication in the thesis into two implications and prove
each by contradiction. For the implication left to right, assume that FFSM FF
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is complete, but there is a derived FSM Δφ(FF ) for a product ρ which is non-
complete; we obtain a contradiction. Let FFSM FF = (F,Λ,C, c0, Y,O, Γ ) be
complete and a derived FSM Δφ(FF ) = (S, s0, I, O, T ) be non-complete for a
product ρ ∈ Λ on state s ∈ S for input x ∈ I. As Δφ(FF ) is non-complete, then,
by the negation of Definition 2 item 2 there is no transition (s, x, o, s′) ∈ T on s
with input x. By Definition 8 if FF is complete, then for all products ρ ∈ Λ that
satisfies a conditional state (s, ϕ) ∈ C ∧ ρ |= ϕ and for all inputs x ∈ I there are

conditional transitions (s, ϕ)
(x,ϕ′′)→

o
(s′, ϕ′) ∈ Γ such ρ |= ϕ′ ∧ ϕ′′. However, by

Definition 6 item 3 every conditional transition (s, ϕ)
(x,ϕ′′)→

o
(s′, ϕ′) ∈ Γ in FF

that satisfies ρ � φ induces a transition (s, x, o, s′) ∈ T in Δφ(FF ), which is a
contradiction as Δφ(FF ) does not have a transition (s, x, o, s′) ∈ T on state s
for input x.

Likewise, for the implication right to left, assume that Δφ(FF ) is com-
plete for ρ, but FF is non-complete; we obtain a contradiction. Let FF =
(F,Λ,C, c0, Y,O, Γ ) be non-complete on conditional state (s, ϕ) ∈ C for input
x ∈ I, ρ |= ϕ, and Δφ(FF ) = (S, s0, I, O, T ) is complete for ρ. As FF is non-
complete, then by the negation of Definition 8 on conditional state (s, ϕ) ∈ C

there is no conditional transition (s, ϕ)
(x,ϕ′′)→

o
(s′, ϕ′) ∈ Γ with input x ∈ I for

FF , or it exists but is not satisfied ρ � ϕ′ ∧ ϕ′′. By Definition 6 item 3 if a

conditional transition (s, ϕ)
(x,ϕ′′)→

o
(s′, ϕ′) does not exist in FF , or it exists but

ρ � ϕ′ ∧ϕ′′, then there is no transition (s, x, o, s′) ∈ T induced in Δφ(FF ). How-
ever, Δφ(FF ) is complete and by Definition 2 item 2 for all states s ∈ S and for
all inputs x ∈ I there are transitions (s, x, o, s′) ∈ T , which is a contradiction as
there is no transition (s, x, o, s′) ∈ T in Δφ(FF ) for state s and input x. �

Definition 9. An FFSM FF is initially connected if there exist transfer
sequences from the initial conditional state to every conditional state for every
satisfiable product, i.e., ∀c=(s,ϕ)∈C •∀ρ∈Λ •ρ |= ϕ =⇒ ∃(c0,δ,ν,γ,ω,c)∈ΘF F

•ρ � ω.

Next, we state and prove that an FFSM is initially connected when all its valid
product FSMs are initially connected.

Theorem 3. An FFSM is initially connected if and only if all derived product
FSMs are initially connected.

Proof. We break the bi-implication in the thesis into two implications and
prove each by contradiction. For the implication left to right, assume that
FFSM FF is initially connected, but there is a derived FSM Δφ(FF ) for
a product ρ which is non-initially connected; we obtain a contradiction. Let
FFSM FF = (F,Λ,C, c0, Y,O, Γ ) be initially connected and a derived FSM
Δφ(FF ) = (S, s0, I, O, T ) be non-initially connected for a product ρ ∈ Λ on
state sk ∈ S. As Δφ(FF ) is non-initially connected, then, by the negation of
Definition 2 item 3 there is no path υ ∈ ΩΔφ(FF ) to sk from the initial state
s0. By Definition 9 if FF is initially connected, then there is a path σk ∈ ΘFF
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to every conditional state (sk, ϕk) ∈ C from the initial conditional state c0,
and ρ satisfies the path condition ω. However, by Definition 5 every conditional

transition (si, ϕi)
(xi,ϕ

′
i)→

o
(si+1, ϕi+1) ∈ Γ , 0 ≤ i ≤ k forms a path to reach

(sk, ϕk) which is satisfied by ρ. As ρ � φ, and by Definition 6 item 3 every condi-

tional transition (si, ϕi)
(xi,ϕ

′
i)→

o
(si+1, ϕi+1) ∈ Γ is induced to (si, xi, o, si+1) ∈ T

that forms a path to reach sk, which is a contradiction as there is no path for
υ ∈ ΩΔφ(FF ) to reach state sk.

Likewise, for the implication right to left, assume that Δφ(FF ) is initially
connected for ρ, but FF is non-initially connected; we obtain a contradiction.
Let FF = (F,Λ,C, c0, Y,O, Γ ) be non-initially connected on conditional state
(s, ϕ) ∈ C, ρ |= ϕ, and Δφ(FF ) = (S, s0, I, O, T ) is initially connected for ρ.
As FF is non-initially connected, then by the negation of Definition 9 there
is no path σ ∈ ΘFF to reach (sk, ϕk) from the initial conditional state c0.
By Definition 2 item 3 if Δφ(FF ) is initially connected, then there is a path
υ ∈ ΩΔφ(FF ) to reach every state s ∈ S from the initial state s0. As ρ � φ,
and by Definition 6 item 3 every transition (si, xi, o, si+1) ∈ T was induced from

a conditional transition (si, ϕi)
(xi,ϕ

′
i)→

o
(si+1, ϕi+1) ∈ Γ and ρ � ϕi ∧ ϕ′

i ∧ ϕi+1

that forms a path to reach (sk, ϕk), which is a contradiction as there is no path
σ ∈ ΘFF to reach (sk, ϕk). �

Definition 10. An FFSM FF is minimal if for all pairs of conditional states
of all satisfiable products there are common valid transfer sequences that distin-
guish both conditional states, i.e., ∀ca=(sa,ϕa),cb=(sb,ϕb)∈C • ∀ρ∈Λ • ρ � ϕa ∧ ϕb ⇒
∃(ca,δ,νa,γa,ωa,c′

a)∈Θ(ca),(cb,δ,νb,γb,ωb,c′
b)∈Θ(cb) • γa �= γb ∧ ρ � (ωa ∧ ωb).

Next, we state and prove that an FFSM is minimal when all its valid product
FSMs are minimal.

Theorem 4. An FFSM is minimal if and only if all derived product FSMs are
minimal.

Proof. We break the bi-implication in the thesis into two implications and prove
each by contradiction. For the implication left to right, assume that FFSM FF
is minimal, but there is a derived FSM Δφ(FF ) for a product ρ which is non-
minimal; we obtain a contradiction. Let FFSM FF = (F,Λ,C, c0, Y,O, Γ ) be
minimal and a derived FSM Δφ(FF ) = (S, s0, I, O, T ) be non-minimal for a
product ρ ∈ Λ on states sa, sb ∈ S. As Δφ(FF ) is non-minimal, then, by the
negation of Definition 2 item 4 there is no common input sequence α ∈ I∗ of two
paths υa ∈ Ω(sa), υb ∈ Ω(sb) that distinguish states sa and sb. By Definition 10
if FF is minimal, then for every pair of conditional states ca = (sa0 , ϕa0), cb =
(sb0 , ϕb0) ∈ C and for all products ρ ∈ Λ that satisfy the condition ϕa0 ∧ ϕb0

there are two paths with a common a distinguishing sequence δ ∈ Y ∗ and
ρ also satisfies both path conditions ωa ∧ ωb. However, by Definition 5 every

pair of conditional transitions (sai
, ϕai

)
(xi,ϕ

′
i)→

o
(sai+1 , ϕai+1), (sbi

, ϕbi
)

(xi,ϕ
′′
i )→

o′



220 V. Hafemann Fragal et al.

(sbi+1 , ϕbi+1) ∈ Γ , 0 ≤ i ≤ k of the distinguishing sequence δ is satisfied by
ρ. As ρ � φ, and by Definition 6 item 3 every pair of conditional transitions

(sai
, ϕai

)
(xi,ϕ

′
i)→

o
(sai+1 , ϕai+1), (sbi

, ϕbi
)

(xi,ϕ
′′
i )→

o′
(sbi+1 , ϕbi+1) ∈ Γ is induced to

(sai
, xi, o, sai+1), (sbi

, xi, o
′, sbi+1) ∈ T in Δφ(FF ) that distinguishes sa and sb,

which is a contradiction as there is no distinguishing sequence α ∈ I∗ for states
sa and sb.

Likewise, for the implication right to left, assume that Δφ(FF ) is min-
imal for ρ, but FF is non-minimal; we obtain a contradiction. Let FF =
(F,Λ,C, c0, Y,O, Γ ) be non-minimal on conditional state ca = (sa0 , ϕa0), cb =
(sb0 , ϕb0) ∈ C, ρ |= ϕ, and Δφ(FF ) = (S, s0, I, O, T ) is minimal for ρ.
As FF is non-minimal, then by the negation of Definition 10 there is no
common input sequence δ ∈ Y ∗ that distinguish conditional states ca and
cb. By Definition 2 item 4 if Δφ(FF ) is minimal, then there are two paths
with a common a distinguishing sequence α ∈ I∗ for every pair of states
sa and sb. As ρ � φ, and by Definition 6 item 3 every pair of transi-

tions (sai
, xi, o, sai+1), (sbi

, xi, o
′, sbi+1) ∈ T were induced from (sai

, ϕai
)

(xi,ϕ
′
i)→

o

(sai+1 , ϕai+1), (sbi
, ϕbi

)
(xi,ϕ

′′
i )→

o′
(sbi+1 , ϕbi+1) ∈ Γ and ρ satisfies both conditional

paths that distinguishes ca and cb, which is a contradiction as there is no distin-
guishing sequence δ ∈ Y ∗ for ca and cb. �


4 Implementation

It is well-known that feature models can be translated into propositional formu-
las; see, e.g., [2,10]. This translation enables mechanising the analysis of feature-
based specifications using existing logic-based tools, such as SAT solvers. In our
approach the Z3 tool [25] was used to check propositional formulas for FFSM
properties.

We implemented a tool in Java to parse and process FFSMs in an adapted
version of KISS format [14] and subsequently generate assertions in the SMT
format that correspond to the initial syntactical checks on the FFSM definition
(Definition 3) and the semantic FFSM validation properties in Sect. 3.3.

To check the initial FFSM conditions on the FFSM of Fig. 3, we: (i) trans-
form the feature model of Fig. 1 into a propositional formula; and (ii) generate
assertions to check feature constraints of conditional states and transitions. Sub-
sequently, we check the validity conditions on the generated propositional for-
mulae. The validation process is progressive, starting with validating conditional
states and transitions, and proceeding with checking determinism, completeness,
initially connected and then minimality.

Example 5. Figure 4 presents parts of the generated SMT files to check validity
of conditional states and completeness, where: (a) all features are declared as
Boolean variables: (b) the root mandatory and also the feature model propo-
sitional formula are asserted; (c) conditional states Brickles(B) and Save(S)
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are verified; and (d) a completeness check on the conditional state Save(S) for
input Pause is verified (see Fig. 3). To check conditional states we combine and
execute parts (a), (b), and (c), while to check completeness (a), (b), and (d) are
combined and executed. In the end, for every (check − sat) command we have
an answer that we connect back to Java.

In Z3, push and pop commands are used to temporarily set the context (e.g.,
with assertions), and once a verification goal is discharged the context can be
reset. The (check−sat) command is used to evaluate the assertions which returns
(sat or unsat). If a conditional state check yields unsat, then there is no product
that will ever have this state and hence, the FFSM is invalid.

(d)

(push)
(assert S)
(assert (and 
    (not (and W S))
    (not (and (not W) S))
) )
(check-sat)
(pop)
.
.
.

(c)(b)(a)

(assert G)
(assert (and
   (= A G)
   (= M A)
   (= L A)
   (= C G)
   (= R G)
   (= (or B N W) R)
   (not (and B N))
   (not (and B W))
   (not (and N W))
   (= V G)
   (= Y V)
   (= P V)
   (=> S V)
) )

(define-sort Feature () Bool)
(declare-const G Feature)
(declare-const A Feature)
(declare-const M Feature)
(declare-const L Feature)
(declare-const C Feature)
(declare-const R Feature)
(declare-const B Feature)
(declare-const N Feature)
(declare-const W Feature)
(declare-const V Feature)
(declare-const Y Feature)
(declare-const P Feature)
(declare-const S Feature)

(push)
(assert B)
(check-sat)
(pop)
(push)
(assert S)
(check-sat)
(pop)
.
.
.

Fig. 4. SMT file generated to check some conditional states and part of the
completeness property.

5 Experimental Study

To evaluate the applicability and the efficiency of our approach, we conducted
an experiment to evaluate and compare the time required to check properties of
FFSMs with the Product by Product (PbP) approach. Our research question is:
How large does an FFSM have to be in order to save time in validation of the
FFSM instead of its valid product FSMs? In the future, we plan to use the same
setup (extended with more case studies), to evaluate the test case generation
methods on FFSMs.

5.1 Experimental Setup

The setup of our experiment consists of generating random FFSMs varying the
number of conditional states from 8 to 70. Every FFSM uses different types
of feature models and the arrangement of the features (structure) defines the
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LED Power Window[LEDPW]

LED Central Locking System[LEDCLS]

LED Finger Protection[LEDFP]

Status LED[LED]Human Machine
Interface[HMI]

Legend
        Mandatory Feature
        Optional Feature
        Or Feature

Finger Protection[FP]Power Window[PW]Door System[DS]

Control Automatic Power Window[CAP]

Safety Function[SF]

Control Alarm System[CAS]

Remote Control Key[RCK]

Central Locking System[CLS]Security[SEC]

Alarm System[AS]

Automatic Locking[AL]

Interior Monitoring[IM]

Body Comfort System[BCS]

requires

requires

requires

Fig. 5. Reduced feature model of BCS.

OUTPUTS
out0 = nothing                        out1 = cls_locked=true           out2 = cls_locked=false          out3 = as_active=true     out4 = as_active=false
out5 = as_alarm=true             out6 = as_im_alarm=true;      out7 = as_alarm_was_detected=true;as_alarm=false;
out8 = as_alarm_was_detected=true;as_alarm=false;as_im_alarm=false                             out9 = as_active=false;as_alarm= false
out10= as_active=false;as_alarm=false;as_im_alarm=false

INPUTS
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in2 = key_pos_lock
in3 = key_pos_unlock
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s 1
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Fig. 6. FFSM for AS and CLS.

number of configurations. Initially, we manually inspected a large sample of
generated FFSMs, their underlying FSMs and their validation times.

We also modeled the Body Comfort System (BCS) that is used on the VW
Golf SPL [20] to reduce the threats to validity and contrast the results from
randomly generated (F)FSMs with their real-world counterparts. The original
BCS system has 19 non-mandatory features and can have 11616 configurations.
In order to manage its complexity, we picked a subset of the feature model (with-
out unresolved dependencies) with 13 non-mandatory features and 8 independent
features at the leafs of the feature model. (We plan to introduce hierarchy into
our models and treat the complete example in the future.)

Figure 5 shows the feature model of a selected part of features for the BCS.
Figure 6 shows the FFSM for a small part of this specification featuring the
Alarm System (AS) with an optional Interior Monitoring (IM) function; and
(ii) the Central Locking System (CLS) with an optional Automatic Locking
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(AL) function. This FFSM turns out to be deterministic, complete, initially
connected and minimal.

The implementation of our experiments is explained in Sect. 4. We also imple-
mented a random generator for feature models and (F)FSMs. We designed the
random generator to map features to conditional states of the FFSMs. The num-
ber of conditional states is hence designed to be proportional to the number of
features. We used FeatureIDE [32] to visualise and inspect the feature models
and gain insight into the complexity with respect to their structure. The run-
ning environment used Windows 7 (64 bit) on an Intel processor i5-5300U at
2.30 GHz.2

5.2 Analysis and Threats to Validity

The collected data after running our experiments is visualised in Fig. 7. The total
validation time is calculated in milliseconds, and we stopped our experiments
around 2 million milliseconds (approximately 30 min) for 68 non-mandatory fea-
tures when checking FFSMs.

As an immediate observation, we noticed that the number of non-mandatory
features is the dominant factor in the complexity of validation time in both
approaches. This was an early observation that was verified by inspecting several
data points and resulted in the way we visualised the data in Fig. 7.

Additionally, the FSM-based analysis (the product-by-product approach) is
very sensitive to the structure of the feature model: the number of independent
optional features (optional features appearing in different branches of the feature
model) play a significant role in the number of products and hence, the validation
time. Thus, we classified the FSM-based data regarding the relative number of
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Fig. 7. Execution time for each case per number of non-mandatory features.

2 The experiment package for Eclipse IDE can be found in http://ceres.hh.se/
mediawiki/Vanderson Hafemann.

http://ceres.hh.se/mediawiki/Vanderson_Hafemann
http://ceres.hh.se/mediawiki/Vanderson_Hafemann
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independent non-mandatory features in Fig. 7; the worst-case time is where all
the non-mandatory features are independent; the average case is where half of
the non-mandatory features are independent, and the best case is where all non-
mandatory features are dependent (form a line in the feature model).

To summarise, we conclude that for random SPLs with more than 16 indepen-
dent non-mandatory features, the FSM-based approach fails to perform within
a reasonable amount of time (e.g., ca. 30 min), while the FFSM-based approach
scales well (regardless of the feature model structure) for up to 70 non-mandatory
features.

Regarding our BCS case study, we have obtained similar results regarding the
difference between the FFSM and the FSM-based approaches. Namely, for the
resulting FFSM with 13 non-mandatory features (of which 8 are independent)
and 50 conditional states, the validation takes approx. 500 s (˜8 min) while for
its 384 configurations (FSMs) we have approx. 700 s (˜11 min). We expect the
scalability of the FFSM-based approach to improve if more structural aspects,
e.g., hierarchy, are taken into account. We plan to investigate this further in the
near future.

Our experiment has been limited mostly to random feature models and
(F)FSMs with a given mapping from feature models to FFSMs. We have only
included one realistic case-study for comparison. Both of these issues (the actual
structure of feature models and of FFSMs) are threats to the validity of our
results for real-world cases. We plan to mitigate this threat by analyzing a num-
ber of realistic case studies as a benchmark for our future research. Regarding
feature models, as our current results suggest, the FFSM-based approach is not
very sensitive to the structure of the feature model and hence, our results are not
likely to change much for realistic feature models. Regarding realistic FFSMs,
it is common that the flat (i.e., non-hierarchical) FFSMs are the result of the
composition of parallel features and hence, their number of states grows expo-
nentially with the number of independent non-mandatory features. Hence, for
realistic FFSMs, using the hierarchical structure in the validation process is
necessary for sustaining scalability.

6 Related Work

There have been several proposals for the behavioural modelling of SPLs in
the literature; we refer to [6,11,28] for recent surveys and Thüm et al.’s recent
survey [32] for a classification of different SPL analysis techniques. A number of
behavioural models proposed in the literature, e.g., these in [1,9,21] are based
on Finite State Machines or Labeled Transition Systems. They are mainly used
to provide the formal specification of SPLs and their formal verification using
model checking.

In Feature-Annotated State Machines, some approaches [10,15] (e.g. the
150% test model) propose a pruning-based approach to UML modelling of
SPLs, separating variability from the base models using mapping models. Sim-
ilar approaches [21,24] use Statecharts to model reusable components and in
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their approaches, the instances can also be derived syntactically by pruning.
Recent approaches [8,17] encode feature annotations into transition guards to
project model elements. In [17], the authors use model slicing to generate tests
for parts of the model to reduce complexity. In Featured Transition Systems [8],
model fragments are annotated with presence conditions, i.e., Boolean expres-
sions that define to which products a fragment belongs. However, in none of
these approaches, the authors deal with semantic issues in FSMs/LTSs, such as
the validation properties considered in our approach, and only verify the syntac-
tical correctness of possible valid products. Moreover, there is a sizable literature
focusing on product-based analysis techniques such as syntactic consistency, type
checking and model-checking of SPLs [1,3,32].

Our proposed test model and validation criteria can be classified as a family-
based and feature-oriented specification and analysis method. To our knowledge,
however, there only a few pieces of research that extend test models, test case
generation and test case execution to the family-based level; examples of such
work include earlier delta-oriented techniques such as [22,23,33] and feature-
oriented approaches [4,5,13]. However, the approach proposed in [4] exploits a
non-deterministic test case generation algorithm (with no fault model or finite
test suite) and hence, validation of test models is not an issue in their approach.
Thus, we are not aware of any prior study one extending the FSM-based test-
model validation techniques to the family-based setting.

7 Conclusion

In this paper, we presented the Featured Finite State Machine (FFSM) model as
a behavioural test model for software product lines (SPLs). Validation properties
were specified for adopting FFSMs as input models for test case generation
algorithms and we showed that they coincide with their corresponding properties
for the product FSM models. Moreover, a framework for validation of test models
using Java and Z3 was implemented.

We conducted an experimental study comparing the validation time of FFSM
properties with the accumulated time of validating all FSM product models
(both using randomly generated models and a case study for the Body Comfort
System). We found that checking collective FFSM models can save significant
amount of time for SPLs that have 16 or more independent non-mandatory
features.

As future work, we plan to use FFSMs to extend FSM-based test case gener-
ation methods to SPLs. Moreover, we plan to extend the FFSM model to Hier-
archical FFSMs (using concepts from Statecharts and UML State Machines) to
handle the state explosion problem identified in the case study and apply val-
idation (and test case generation) on hierarchical models. Also, in addition to
the validation issues, other aspects of the FFSM model can be explored such as
applicability, maintainability and the relation between semantic properties such
as determinism and minimality.
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Abstract. Self-adaptation enables component-based systems to evolve
by means of dynamic reconfigurations that can modify their architecture
and/or behaviour at runtime. In this context, we use adaptation policies
to trigger reconfigurations that must only happen in suitable circum-
stances, thus avoiding unwanted behaviours. A tool (cbsdr, standing for
Component-Based System Dynamic Reconfigurations) supporting both
the Fractal and FraSCAti component frameworks was developed, but the
testing of the robustness of new adaptation policies was not easy. This
is the reason to add to our implementation a new behavioural fuzzing
tool. While fuzzing consists of sending invalid data to a system under
test to find weaknesses that may cause a crash or an abnormal reaction,
behavioural fuzzing sends invalid sequences of valid data. Valid traces
are modified using fuzzing techniques to generate test cases that can be
replayed on a dummy system using the adaptation policies to be tested
while focusing on interesting regions of specific data sequences.

1 Introduction

Component-based systems can evolve at runtime using dynamic reconfigurations
that can modify their architecture and/or behaviour. A tool (cbsdr [1,2], stand-
ing for Component-Based System Dynamic Reconfigurations) supporting both
the Fractal [3] and FraSCAti [4] component frameworks was developed. This tool
uses adaptation policies based on temporal logic to trigger reconfigurations while
enforcing some temporal properties; this means that a specific reconfiguration
would only be performed if it does not make the system evolve in a configura-
tion that may violate the properties to be enforced. Reflection polices that would
generate a reaction when some properties are violated are also part of this tool.
In a nutshell, adaptation policies prevent anything bad to happen at the next
configuration, whereas reflection policies trigger a pertinent response when some-
thing bad has already happened. Nevertheless, the testing of the robustness of
new adaptation policies is complicated and time consuming, especially for large
systems that would require tailored settings to test specific policies.

Fuzz testing, or fuzzing [5], is a software testing technique that aims at
discovering weaknesses by inputting massive amounts of data (often random
and/or invalid). Behavioural fuzzing sends (invalid) sequences of valid data.
c© Springer International Publishing AG 2017
O. Kouchnarenko and R. Khosravi (Eds.): FACS 2016, LNCS 10231, pp. 231–237, 2017.
DOI: 10.1007/978-3-319-57666-4 14
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These sequences can either be generated from a model, like in [6], or by re-
engineering the result of a previous run of the system, namely its log files.
By using specificities of our reconfiguration model to generate the data to be
injected, we allow the tester to focus on specific regions of the sequence that
would enable adaptation policies to be tested.

We will briefly introduce the cbsdr project in Sect. 2 before presenting the
way we tackle the problem of the test of adaptation policies in Sect. 3. Finally,
Sect. 4 presents our conclusion and future work.

2 The cbsdr Project

We developed a prototype tool, contained in a java package named cbsdr,
supporting our reconfiguration model to run component-based systems with
dynamic reconfigurations. Using generic java classes, independent of any
component-based system framework, we can use our implementation to perform
reconfigurations on applications deployed using Fractal [3] or FraSCAti [4]. The
Fractal framework is based on a hierarchical and reflective component model.
Its goal is to reduce the development, deployment, and maintenance costs of
software systems in general1. FraSCAti is an open-source implementation of the
Service Component Architecture2 (SCA). It can be seen as a framework having
a Fractal base with an extra layer implementing SCA specifications. In [4], a
smart home scenario illustrates the capabilities and the various reconfigurations
of the FraSCAti platform.

Figure 1 shows the cbsdr interface displaying a given state of a component-
based system developed using Fractal (top frame). The left frame shows the
various states of the run under scrutiny, whereas the bottom frame can be used
to display various information such as the evolution of parameters of the model,
console output, or the outcome of reconfigurations performed.

This interface allows the monitoring of a component-based system and the
generation of (external) events during a run of cbsdr, but can also be used to
analyse the logs of a run already performed.

In addition to the above-mentioned functionalities, adaptation is performed
using reconfigurations triggered by temporal properties at runtime, as described
in [1]. This works as follows: (a) adaptation polices are loaded and applied using
a control loop, (b) temporal properties are evaluated and candidate reconfig-
urations (if any) are ordered by priority using fuzzy logic values embedded in
adaptation policies, (c) these reconfigurations are applied to the component-
based system model using our reconfiguration semantics to verify that corre-
sponding target configurations do not violate any of the properties to enforce,
and (d) the target configuration obtained using the reconfiguration with highest
priority that does not violate any of the properties to enforce is applied to the
component-based system using a protocol similar to the one described in [7].

1 http://fractal.ow2.org/tutorial/index.html.
2 http://www.oasis-opencsa.org/sca.

http://fractal.ow2.org/tutorial/index.html
http://www.oasis-opencsa.org/sca
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Fig. 1. Model of a component-based system displayed in our interface

The test and implementation of adaptation policies being feasible for small
systems can become complex and time consuming for larger ones, and may
require specific settings to put the system in the conditions enabling such policies.

3 Fuzz Testing of Adaptation Policies

Fuzz testing or fuzzing [5] is a software testing technique used to discover cod-
ing errors and security loopholes in software, operating systems or networks by
inputting massive amounts of (random) data, called fuzz, to the system in an
attempt to make it crash or at least misbehave. Behavioural fuzzing sends invalid
sequences of valid data. These sequences can either be generated from a model,
like in [6], or by re-engineering the result of a previous run of the system, namely
its log files. Since these tests are not performed during but after the run of the
system, they consists of offline fuzzing, instead of online fuzzing that would be
performed at runtime.

We chose to use the best of both approaches (model-based and trace-based
fuzz generation) by using specificities of our reconfiguration model to generate
the fuzz to be injected. In a nutshell, our reconfiguration model is based on
configurations that can be seen as a tuple 〈Elem,Rel〉, where Elem is made of
architectural sets containing elements such as components, (required of provided)
interfaces, parameters, etc. and Rel contains relations linking architectural ele-
ments, e.g., interfaces binding or wiring, components states (started or stopped),
parameters values, etc. We also use a set CP of configuration properties on the
architectural elements and the relations between them. These properties are
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specified using first-order logic formulae [8]. Therefore, the operational seman-
tics of a component-based system is defined by the labelled transition system
S = 〈C, C0,Rrun ,→, l〉 where C = {c, c1, c2, . . .} is a set of configurations, C0 ⊆ C
is a set of initial configurations, Rrun is a set of reconfigurations, → ⊆ C×Rrun×C
is the reconfiguration relation, and l : C → CP is a total interpretation function.

The cbsdr tool contains controllers using control loops to monitor the evo-
lution of a component-based system under scrutiny by regularly retrieving its
configuration. The sequence of all the configurations retrieved during a run con-
stitute a trace that can be modified either manually for the generation of very
specific test cases, or automatically for bulk generation of test cases using random
shuffling, duplication, and/or deletion of configurations. Such tests cases (called
below fuzzy logs) are obtained by transformations that can be automated using
a sub-package of cbsdr called cbsdr.fuzzy and referred below as Fuzzy Engine.

Reconfiguration
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System

Event 
Controller

Adaptation Policy 
Controller

Reflection 
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Event 
Handler Reflection
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Enforcement
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Fig. 2. cbsdr fuzzing architecture (Color figure
online)

The Fuzzy Engine tool is
integrated in the cbsdr devel-
opment as shows Fig. 2 where
light coloured entities are part
of the previous developments
and the elements of the fuzzing
tool are represented in darker
colours.

This informal representa-
tion of our implementation
displays three controllers: (a)
the event controller receives
events, stores them, and flushes
them after they have been sent
to a requester, (b) the reflection
controller sends events to the
event controller when a prop-
erty of a reflection policy is
violated, and (c) the adapta-
tion policy controller manages
dynamics reconfigurations trig-
gered by adaptation policies.
The reader interested by the interactions between these controllers is referred
to [1].

In addition, an event handler is used to receive events from an external source
and to send them to the event controller. All interactions with the component-
based system take place through the generic component-based system manage-
ment entity (gcbsm), a set of Java classes developed in such a way that they can
be used regardless of the framework used to design the component-based system
without modifying its code.

The gcbsm is mainly developed using abstract classes that are used for the
reification of other classes specially designed for the handling of Fractal [3] or
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FraSCAti [4] component frameworks. We just added to the gcbsm support for
another new component framework that we called dummy. This way, each time
the adaptation policy controller or the reflection controller requests the current
configuration, the gcbsm, when detecting a dummy component, requests the
corresponding configuration to the Fuzzy Engine instead of retrieving it from an
actual component-based system. Of course, the Fuzzy Engine must always be
initialized with a fuzzy log corresponding to the pertinent test case before usage.

We can automatically filter (or put aside for further examination) test cases
with an influence on an adaptation policy under test (APUT) by giving unique
names to reconfigurations triggered by the APUT. It is also possible to add an
additional reflection policy that stops the system (or take any other suitable
action) for each success or failure of a reconfiguration triggered by the APUT.

This way, our tool, which can be launched using the interface of Fig. 1, takes
fuzzy logs as input to simulate the run of a component-based system using a
dummy system. The output consists of a set of trace files containing a subset
of traces involving reconfigurations triggered by the APUT. Such traces can be
displayed using our interface to verify that the APUT behaves as intended.

As example, we can consider, as in the case study of [1], a component-based
system in charge of the location of an autonomous vehicle. To ensure reliability,
the position must be computed by using different techniques such as Wi-Fi or
GPS signals. When the power level of the vehicle decreases, it may be suitable
to remove, for example, the GPS software component to save energy, as long as
the other positioning systems keep providing accurate positions. Of course as the
batteries can be recharged, when the power level rise above a certain value, the
GPS component can be added back using the addgps reconfiguration operation.
Such a reconfiguration is triggered by an adaptation policy responsible for the
management of the GPS component. This policy, among other things, must take
into account the low utility of adding back the GPS component to the system
when the vehicle is in a tunnel where there is no GPS signal.

Fig. 3. Occurrences of the addgps reconfiguration
(Color figure online)

Starting from a trace of a
run of the system, we gen-
erated with our fuzz test
tool 1000 test cases that
were used to run the GPS
adaptation policy with a
dummy component-based sys-
tem. Among these tests, 203
were selected because they
were involving the addgps
reconfiguration operation.
The results are summarised
in Fig. 3, where the horizon-
tal and vertical axes represent

respectively the states number increasing over time and the cumulated num-
ber of occurrences of the addgps reconfiguration for each state. Vertical lines
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symbolise the entrance and exit of a tunnel where there is no GPS signal, plain
blue dots represent the successful application of the addgps reconfiguration, and
hollow red dots show that its application failed3.

These tests show that none of the addgps reconfiguration operations were
attempted inside the tunnel where there is no GPS signal, which is the way the
GPS adaptation policy was supposed to behave.

Finally, fuzzing makes the test and implementation of adaptation policies
easier by allowing the tester to focus on specific regions of the sequence of con-
figurations that would enable these policies. Also, as an interesting secondary
benefit, in the early stages of development of the Fuzzy Engine tool, by running
fuzz testing against some adaptation polices, we were able to identify and correct
several bugs in the cbsdr implementation.

4 Conclusion and Future Work

The work presented in [1,2] enables component-based systems dynamic recon-
figurations guided by adaptation policies. Whereas the test and implementation
of these policies were possible for small systems, this was complicated and time
consuming for larger systems as specific settings were required in order to put the
system in the conditions that would enable such policies. The usage of fuzzing
makes such tests easier by allowing the tester to focus on specific regions of the
sequence of configurations that would enable these policies.

As a future work, we are planning to perform more evaluations on various case
studies. We are also contemplating the possibility to integrate online fuzzing, as
in [9], to the cbsdr project. To do so, we would use fuzzy policies to generate
test cases at runtime, focusing on interesting regions of specific data sequences.
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Abstract. Self-adaptive systems are systems that automatically adapt
in response to environmental and internal changes, such as possible fail-
ures and variations in resource availability. Such systems are often real-
ized by a MAPE-K feedback loop, where Monitor, Analyze, Plan and
Execute components have access to a runtime model of the system and
environment which is kept in the Knowledge component. In order to pro-
vide guarantees on the correctness of a self-adaptive system at runtime,
the MAPE-K feedback loop needs to be extended with assurance tech-
niques. To address this issue, we propose a coordinated actor-based app-
roach to build a reusable and scalable model@runtime for self-adaptive
systems in the domain of track-based traffic control systems. We demon-
strate the approach by implementing an automated Air Traffic Control
system (ATC) using Ptolemy tool. We compare different adaptation poli-
cies on the ATC model based on performance metrics and analyze com-
bination of policies in different configurations of the model. We enriched
our framework with runtime performance analysis such that for any unex-
pected change, subsequent behavior of the model is predicted and results
are used for adaptation at the change-point. Moreover, the developed
framework enables checking safety properties at runtime.

Keywords: Self-adaptive system · Model@runtime · Performance
analysis · Cyber physical system · Air Traffic Control System

1 Introduction

The ubiquitous presence of software systems in everyday life, specially in safety-
critical domains like Healthcare and transportation, makes building reliable
cyber-physical systems (CPS) crucial. Moreover, to guarantee desirable behavior,
systems need to evolve in response to environmental and internal changes, such as
possible failures and variations in resource availability. Therefore, building reli-
able self-adaptive systems that are able to adjust their behavior in accordance
c© Springer International Publishing AG 2017
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with their perception of the environment and the system itself is an important
research topic [9,22].

A self-adaptive system is typically realized through one or a collection of
feedback loops that control adaptation of the core system. The MAPE-K feed-
back loop introduced in [17], is a common approach for realizing control feedback
loops where a loop consists of Monitor, Analyze, Plan and Execute components,
together with a Knowledge part, which contains information about the system
and its environment. To guarantee correctness and quality of the self-adaptive
systems, providing quality assurance techniques - in form of verification, vali-
dation and performance analysis- is a complicated and important issue. These
techniques not only have to be applied in off-line manner, but also need to be
used at runtime [8]. For instance, an abstract model of the system and the envi-
ronment can be kept as the model@runtime in the Knowledge component, be
updated periodically, and be analyzed for safety assurance, and also be used for
runtime optimization and (re-)planning.

In order to design reliable self-adaptive systems, a number of the state of the
art approaches benefits from the formal methods at the design time to assure the
correct behavior of systems [13,18,19,30,32] and the behavior of the MAPE-K
feedback loops [4,15]. In contrary, some approaches employ formal methods at
runtime [7,15] or attempt to provide efficient techniques for runtime verification
of systems [10–12]. However, a few of approaches have developed an integrated
framework for constructing the MAPE-K loops and formal models@runtime,
and providing runtime analysis techniques to detect or predict violation of the
system’s goals.

Here, we propose an actor-based [2,14,26] approach augmented with coor-
dination policies for constructing and analyzing self-adaptive track-based traffic
control systems. We create a total solution and build the MAPE-K feedback loop
together with the model@runtime, but the focus of this paper is on building and
analyzing the model@runtime. To this aim, we encapsulate the Analyze and Plan
components of the MAPE-K feedback loop as a coordinator, together with the
Knowledge component which keeps an updated actor-based model of the sys-
tem. Monitor and Execute components can smoothly be added using features
provided by our proposed implementation platform. It is noteworthy that the
presented model@runtime is executable benefiting from java-based definition of
the actors in the proposed implementation platform. The actor-based approach
is aligned with the structure of distributed self-adaptive systems with behavioral
adaptation. Loosely coupled actors as the units of concurrency, with asynchro-
nous message passing, and event-driven computation, are natural candidates for
modeling highly dynamic distributed systems. Moreover, in our problem domain,
track-based traffic control systems, we have a (multiple) centralized control which
is mimicked here as a coordinator. This enhances the properties of our interest
(fidelity), and it is easy to understand and build the model with the least needed
effort (usability).

The problem domain of the proposed framework, track-based traffic control
systems, is a class of traffic control systems in which the traffic is passed through
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pre-specified tracks and is coordinated by a controller, like railways and some air
traffic control systems. These systems follow a common structural and behavioral
pattern founded on the track-based configuration. In our model, actors repre-
sent the tracks and the moving objects are modeled as messages passing among
actors. Our model@runtime has to capture the current configuration which is
mainly the placement of messages within the model. The coordinator in our
model besides governing message passing between the actors, analyzes the cur-
rent configuration of the model, predicts the future configuration and makes a
plan for adaptation purpose. Modeling a coordinator with mentioned features,
separate from functionalities of the actors results in reusability.

To illustrate the applicability of the proposed approach, we model an Air
Traffic Control system (ATC), a large scale cyber-physical system, as our real-
world case study. Our ATC model is a simplified version of North Atlantic Orga-
nized Track System (NAT-OTS) [16], consisting of a set of transatlantic flight
routes, and can easily be generalized to other track-based traffic control systems
(e.g., railway systems). ATCs are responsible for managing the flow of the air
traffic and assuring the safe flight of the aircraft. ATC is a prototypical example
where people in charge are constantly dealing with various kinds of changes in
the environment and system, such as changes in weather, propagating delays,
strikes of the support staff, or unforeseen problems in the aircraft.

Different adaptation policies are implemented to check how changes in envi-
ronment can affect the performance of the system. Furthermore, we carry out a
mechanism in which the performance of the model is predicted using different
policies and the prediction results are used for switching between adaptation
policies at runtime.

Our proposed framework is implemented in Ptolemy [23], which is an actor-
oriented open source platform that provides an extensive actor library for mod-
eling, simulation and analysis of the system feedback loop, provides support for
connecting to the physical world and updating the model@runtime, and also
offers a graphical design environment that aids in visualization of the system
architecture.

Our contributions are summarized as follows.

1. Coordinated Actor-based model@runtime: Proposing a modular, reusable, and
executable coordinated actor-based model@runtime for track-based traffic
control systems,

2. ATC model@runtime: Developing executable model@runtime for automated
ATC as a real-world large scale cyber-physical system,

3. Performance Evaluation: Providing a framework for comparing different
adaptation policies and evaluating their impacts on the performance of the
system,

4. Runtime Prediction: Looking ahead through the model@runtime to explore
the future behavior of a model to predict property violations and select appro-
priate policy at change-points.

The rest of the paper is organized as follows: in Sect. 2, we provide a gen-
eral overview of track-based traffic control systems and introduce ATCs as our
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running example. Section 3 presents coordinated actor-based modeling approach
and shows how it can be used for building and analyzing model@runtime of
track-based traffic control systems, e.g. ATCs. In Sect. 4, Ptolemy platform is
introduced briefly and the implementation of an ATC in Ptolemy is explained.
Section 5 demonstrates analysis results of the implemented system under differ-
ent adaptation policies and runtime performance prediction. We describe related
work in Sect. 6, and compare the proposed approach with the previous studies.
Section 7 concludes the paper and outlines the future work.

2 Track-Based Traffic Control Systems

Transportation systems can be managed in different ways. We focus on those sys-
tems where the traffic can only move on certain tracks, like in railways, subways,
and even roads. Traffic control for such systems follow a common structural and
behavioral pattern. Tracks are generally divided into sub-tracks and the traffic
controller uses this structure to guarantee safety and improve performance.

Air traffic is not necessarily guided through predefined tracks, but the ATC
system in North Atlantic is based on an Organized Track System (OTS) which
follows the same pattern, and is the system we have studied 1. This pattern can
be further generalized, for example a network on chip (NoC) can be considered
as a track-based traffic control system in which a packet (moving object) is
transferred via a set of routers (sub-tracks).

To have a fully automated traffic control system, we need a control algorithm
for managing the traffic, taking into account the environment and congestion con-
ditions. This control algorithm has several decision making capabilities, including
accepting or rejecting traffic into a sub-track, and routing and rerouting traf-
fic. Based on the nature of a system, the control algorithm can be distributed
or centralized. For example, the control algorithm in NoC is distributed among
routers (sub-tracks). In [24], an actor model is used for modeling and analyzing
NoCs where each router (sub-track) is mapped into an actor and packets are
mapped into messages. Railway systems are examples of centralized traffic con-
trol systems. A controller knows the complete map of the traffic network with
the details of the current traffic. This knowledge is updated upon any change in
the system, and is used for online planning.

In our model, sub-tracks can be augmented with decision making abilities.
For example, based on the capacity of a sub-track, it can decide to allow or
reject a moving object to enter the sub-track. This way, the safety of a sub-
track (mutual exclusion) is wired in at design time. But this property can cause
deadlock and fatal problems that has to be avoided. In our framework we use a
centralized coordinator to manage the overall traffic and avoid deadlocks. The
framework can be customized based on different applications. In our current
implementation, the required time for a moving object to pass a sub-track is
computed by the controller based on the speed of the object and the length
1 This system is studied in collaboration with Isavia, the air traffic control company

in Iceland (http://www.isavia.is).

http://www.isavia.is
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of the sub-track. Furthermore, at a certain time, a sub-track is reserved as the
next sub-track of a moving object by the controller. This way collision is avoided
among objects that may request to enter into a sub-track simultaneously. If we
encounter a traffic blockage, the controller handles the situation by rerouting the
traffic objects, asking for changes in traffic speed, etc. We will show in the next
sections how coordinated actor model is used for modeling and analysis of these
cases. To this aim, we use ATC as a running example for easier explanation of
the modeling and the analysis approach.

Air Traffic Control System: ATC is a system equipped with supervision
instruments on the ground and the links for communication, which monitors
and controls flights along the airspace routes and operations in the airports [1].
In real-world, each aircraft has a predefined flight plan, which includes its flight
route (an ordered sequence of the sub-tracks to be traversed from the source to
the destination), speed of flight, and the initial fuel. The aircraft’s flight plan is
generated prior to its take off, but dynamic changes in the weather conditions,
delays in landing and taxiing, etc., requires some modifications in flight plans.
For safety concerns, while changing the original flight plan of an aircraft, several
parameters are carefully considered, for example loss of separation between two
aircraft has to be avoided, and the remaining fuel must be enough for safely
arrival to destination. A number of researches in the ATC domain, such as [3,5,6],
propose mathematical models and solutions for resolving congestion of air spaces,
to achieve the minimum delay and safe movement of the aircraft by taking the
rerouting decisions into account. According to [5], modeling rerouting decisions
is one of the greatest challenges in this field. The framework presented in this
paper (Fig. 3) addresses these challenges by modeling and runtime analysis of
ATC. The structure of North Atlantic Organized Track System (NAT-OTS) [16]
that we consider as our ATC model consists of a set of nearly parallel tracks,
positioned in the light of the prevailing winds to suit the traffic between Europe
and North America.

3 A Coordinated Actor Model for Self-adaptive
Track-Based Traffic Control Systems

To develop a self-adaptive system using the MAPE-K loop, a model is kept in the
Knowledge component, updated by the Monitor component, and analyzed by the
Analyze component. Based on the analysis results, the Plan component makes
decisions for adapting the system to the new configuration and the decisions
are sent to the managed system using the Execute component. To ensure the
correct behavior of self-adaptive systems despite the internal and environmental
changes, keeping its knowledge model updated at runtime is crucial.

Figure 1 illustrates our overall approach for modeling self-adaptive track-
based traffic control systems. As shown in Fig. 1, our proposed coordinated actor
model realizes three components of the MAPE-K loops, Knowledge, Plan, and
Analyze. Using this approach, the model of a self-adaptive system is divided
into two different parts, actors and a coordinator. The model@runtime encloses
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Fig. 1. Modeling self-adaptive track-based traffic control systems with coordinated
actor model

the actors in addition to the part of the coordinator which handles the mes-
sage delivery between the actors; and the Analyze and Plan components are the
decision making parts of the coordinator. Actors communicate via asynchronous
message passing, but unlike the original (Agha’s) actor model, although the sent
messages are immediately delivered to their target actors, the target actors do
not pick messages. Instead, an event is triggered for the coordinator upon any
message sending. The coordinator receives the event related to that message and
puts it into its internal buffer. The internal buffer of the coordinator is sorted
based on some predefined rules, e.g. an event with the least arrival time has the
highest priority. Upon choosing an event with the highest priority, the coordi-
nator can access the target actor, ask about its internal state, change the sent
message, drop it, or execute the target actor to pick the message and process it.
This way, the message passing among the actors is kept as the basic communi-
cation means in the target distributed system but message delivery policies are
integrated in the coordinator. This mechanism gives the coordinator the neces-
sary knowledge about the actors which is used in the decision making part. The
Analyze part of the coordinator is activated when the updated knowledge shows
some pre-specified changes. Analyze is capable of simply analyzing the acquired
knowledge or using complicated methods such as executing the model@runtime
to obtain new knowledge for predictive analysis (more details in Sect. 3.3). Then,
the results of analysis are passed to the Plan part to choose appropriate actions
for adapting the system (Managed Resources in Fig. 1).

3.1 Structure of Self-adaptive Track-Based Traffic
Control Systems Model

In our proposed model to describe a track-based traffic control system, an actor
is associated with each sub-track and the controller is modeled as a coordinator.
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Furthermore, the moving objects are modeled as messages, passed by (through)
the actors and messages carry the necessary information of moving objects, i.e.
traveling route, fuel, and speed. In addition to the track actors and a coordinator,
we distinguish the source and destination actors to model the source and the
destination of moving objects. The coordinator has a complete map of the track
network and current states of the sources and destinations of the traffic. The
knowledge of the coordinator is updated by occurrence of events that change
the internal state of the actors. These events can be environment changes in
sub-tracks, and arrival or departure of moving objects into/from sub-tracks. In
other words, upon accessing the actors by the coordinator, it polls their internal
states and updates its knowledge.

Using the described structure, different adaptation policies are encapsulated
in coordinators. In some traffic control systems, adaptation results in rerouting
of traffic, like in ATCs; and in some others it may result in rescheduling, like in
train control systems. In the following we will show how the rerouting of moving
objects are implemented for our ATC example.

3.2 Adaptation in ATC: Dynamic Reroute Planning

In our ATC model design in Sect. 4, routing an aircraft in the network of track
actors is modeled by a sequence of messages which are sent by adjacent track
actors. To implement rerouting policies, different algorithms can be considered,
affecting the performance of the system in different ways. In the following,
three different policies for ATCs are presented. Assume [T1, T2, T3, · · · , Tn] be
a sequence of sub-tracks which shows the flight route associated with the air-
craft A. In this sequence, T1 is the sub-track started from the source airport
and Tn is the destination airport. Now, when the aircraft A wants to leave T1

based on this flight route and the subsequent sub-track on its flight route (sub-
track T2) is unavailable (i.e. it is stormy or is dedicated to another aircraft), the
coordinator applies one of the following algorithms to reroute the aircraft A.

– Safer Route Policy (SRP): SRP finds the feasible shortest flight route from
T1 to Tn. A feasible flight route is a flight route which does not contain an
unavailable sub-track. If there is no such route, the shortest flight route with
the least number of unavailable sub-tracks is returned.

– Blocked Area Avoidance Policy (BAAP): Similar to the SRP, BAAP
tries to find the feasible shortest flight route from T1 to Tn. If there is no
such route, it finds the shortest route which does not pass a blocked area. As
shown in Fig. 2, a blocked area is a part of airspace in which all its sub-tracks
have been occupied and surrounded by other aircraft at time of rerouting the
aircraft A. In other words, an aircraft in a blocked area may hold its current
sub-track due to the high traffic around it for a long time. Hence, the aircraft
A probably would not be able to pass a sub-track in the blocked area if that
sub-track is selected as a part of the aircraft’s flight route. We consider three
arrangements of the aircraft in the airspace which form the blocked areas.
These arrangements are shown in Fig. 2. For instance, if four aircraft hold the
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Fig. 2. Three different arrangements of the aircraft in the airspace which form blocked
areas. The blocked areas containing unavailable sub-tracks are shown with the dotted-
rectangles. The blocked areas are avoided in the BAAP rerouting policy.

sub-tracks such that the left shape of Fig. 2 appears in the airspace, a blocked
area, shown by a dotted-rectangle, is formed. Since BAAP avoids areas with
higher traffic, it is expected to impose less flight duration comparing to SRP.

– Shrinking Search Policy (SSP): This policy employs a multi step searching
algorithm. At the first step, SSP tries to find a feasible shortest flight route
from T1 to Tn. If there is no such route, it tries to find a feasible shortest flight
route from T1 to Tn−1 and so on. If a route is not found, aircraft A holds its
position in T1 for some amount of time, attempts to continue flying based on
its initial flight route. Since SSP attempts to find the feasible shortest flight
route for the largest possible part of the flight route, it is expected to result
in less blocking probability for the aircraft in the airspace.

To improve the adaptation mechanism, one may enrich both planer and ana-
lyzer of the coordinator to select a rerouting policy from a pool of policies.
For instance, assume that the analyzer is enriched with the ability of detecting
blocked area in the whole airspace. This way, planer is able to use SRP as the
default rerouting policy but upon increasing the number of blocked areas to a
threshold, planer is informed to switch to BAAP to avoid passing the aircraft
from the blocked areas.

3.3 Adaptation in ATC: Runtime Performance Prediction

The main purpose of runtime performance prediction is predicting the subse-
quent behavior of the system after occurrence of any unexpected changes and
using the prediction results to adapt the system to the new configuration. To
this aim, the required performance metrics and safety issues of the system are
defined and a proper adaption takes place to fulfill them.

In the runtime performance prediction, the analyzer looks ahead through the
executable model@runtime to explore the future behavior of the model to predict
property violations. To this aim, upon detecting any safety violation or crossing
the thresholds of the performance metrics, the planner is triggered and tries to
adapt the system using its set of predefined prediction based adaptation poli-
cies. So, the models@runtime have to be augmented with techniques to record
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the states of the models at the change points (taking snapshots of models), look
ahead and backtrack as follows. In the coordinated actor model, the state of
the model is defined as the local states of actors along with the state of the
coordinator. The state of each actor is defined as the assigned values to its vari-
ables and the coordinator state is defined as the assigned values to its variables,
communicated messages between the actors together with the triggered events,
and the time. So, when a change happens (based on the coordinator knowledge),
state of the model is stored by the analyzer, and model proceeds with its exe-
cution to the end. At the final step, the values of performance metrics which
are gathered during the execution of the model are gathered by the analyzer.
These values are used by the planner part of the coordinator to choose the most
suitable adaptation policy for the change.

4 Coordinated Actor Model of ATC in Ptolemy

Ptolemy II is an actor-oriented open-source modeling framework. A Ptolemy
model is made up of actors that communicate through ports via message pass-
ing. Actors are implemented in Java with a well-defined interface, which includes
ports and parameters. Ports are communication points of actors and parameters
are used to configure the internal behavior. Parameter values can be changed
dynamically during the execution of model. In Ptolemy, the semantics of inter-
actions and communications of actors is defined by a Model of Computation
(MoC), implemented by a special component called a Director. Different MoCs
are implemented in Ptolemy which can be composed to yield heterogeneous mod-
els. Ptolemy is open-source and new MoCs can be created by extending or mod-
ifying existing MoC implementations. Heterogeneous hierarchical actor-oriented
design capabilities in Ptolemy provides a strong modeling and simulation toolkit
for CPS design [23]. One of the most widely used MoCs in Ptolemy is Discrete-
Event (DE). Actors governed by a DE director communicate via time-stamped
events (i.e. time-stamped messages of actors), where events are processed by each
actor in time-stamp order. Considering different MoCs in Ptolemy, we choose DE
for ATC model, because time-stamped events are natural for representing the
decision points in a track-based traffic control system.

Following the coordinated actor model presented in Sect. 3, we model coor-
dinator of ATCs as a new Ptolemy DE director, we call ATCDirector. Here,
airports and tracks are modeled using actors of Ptolemy and their interconnec-
tions showed by wiring of actors’ ports. The model of a simplified ATC model is
presented in Fig. 3. In this model traffic is passed from west to east. As shown in
Fig. 3, there is a network of tracks where each track is shown by a white aircraft.
To present a track which is associated to an aircraft, the distinct color of that
aircraft is used for that track. Tracks affected by thunderstorms are highlighted
with a red circle around them. As shown in Fig. 3, connections of a track to its
neighbors are illustrated as the output ports of the track and ids of its neigh-
bors are set as the parameter of the track. Arrival and departure airports are
also modeled by Ptolmey actors, shown by blocks with captions of Airport and
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Fig. 3. ATC model in Ptolemy (Color figure online)

Destination Airport in Fig. 3. ATCDirector of this model is shown as a green
rectangle with caption of the ATCDirector in Fig. 3.

To execute the ATC model, departure of the aircraft and weather changes
are simulated as follows. In this model flights are initialized by Arrival and
CSVReader actors. The Arrival actor is a discrete clock that determines the
departure time of aircraft. CSVReader reads flight plans and other detailed
information of the aircraft from a text file. In Fig. 3 three more actors are
implemented for simulating the weather condition changes, called TrackSelec-
tion, ChangeValue, and StormHandling. TrackSelection selects a track (with a
predetermined probability) and ChangeValue decides about how the weather
condition of the selected track must be changed. ChangeValue has the role of
both generating and removing storms. StormHandling applies the made decision
of ChangeValue on its target track. The ATC model also can be fed by real
values from real-world sensors using features of Ptolemy.

5 Safety Check and Performance Analysis

In this section, we study the effectiveness of our approach by evaluating and com-
paring various performance criteria for rerouting policies described in Sect. 3.2.
Our results show that applying runtime performance prediction improves the
performance metrics2.

2 The source code which is used for these experiments is uploaded in http://rebeca.
cs.ru.is/files/ATC.zip.

http://rebeca.cs.ru.is/files/ATC.zip
http://rebeca.cs.ru.is/files/ATC.zip
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5.1 The Experimental Settings

The performance metrics of the ATC are measured when an aircraft reaches
its destination. In our experiments, the performance metrics are the number of
aircraft arrived to their destinations, the number of missing aircraft (the aircraft
that are stuck in a traffic blockage in the airspace and cannot find a route to
their destinations using the rerouting policies), the number of aircraft blocked
in their source airports, the average delay of the aircraft in their source airports,
the average flight duration of the aircraft, and the throughput. Throughput is
defined as the number of aircraft arrived in their destination airports in a specific
period of time.

We assumed one unit of time for the takeoff/landing of an aircraft in addition
to passing a sub-track. An aircraft sends a request to enter into a sub-track 0.2
unit of time before its planned arrival time. If the aircraft is asked to stay in its
current sub-track, it waits for one more unit of time and sends a new request to
enter into the same sub-track again. In addition, we assume that each airport
has one runway and each sub-track can contain at most one aircraft at a time.

The ATC model in our experiments contains two source airports, eight desti-
nation airports and thirty tracks. There are fifty aircraft that intend to fly from
a north airport to one of the three south destination airports and the same num-
ber of aircraft plan to fly from the west airport to the five destination airports
in the east. The initial flight route of an aircraft is the shortest route from its
source airport to its destination. For each source airport, twenty batches of flight
plans are generated and each batch contains the flight plans for fifty aircraft.
The departure times of the aircraft, and the times of the weather changes are
produced using Poisson processes with parameters λ in {0.5, 2, 3.5} (the mean
interval time between two events) and 1 as μ, respectively.

5.2 Safety Checking

In the experiments, we check deadlock-freedom and a few safety issues. Deadlock
is detected if none of the aircraft in the airspace change their current sub-tracks
within a pre-determined time. This means that the aircraft are stuck in a traffic
blockage and cannot find a route to their destinations. As safety issues, the
separation between the aircraft, and safe rerouting in stormy weather are checked
and guaranteed by the model. A sub-track in our model denotes the minimum
separation between two aircraft, so, two aircraft must never be in a sub-track
at the same time. The guarantee of this property is built-in in the behavior of
the coordinator at design time. The coordinator never triggers a track actor to
process a new message (aircraft) while the track actor is handling a message
(another aircraft), neither when it is stormy. Also, the remaining fuel level of an
aircraft is checked as another safety issue of the ATC. If the fuel level becomes
less than a threshold, a notification is raised.
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Table 1. Performance metrics in the SRP, BAAP, SSP rerouting policies, Combined
Rerouting Policies (CRP), and the Runtime Performance Prediction (RPP)

Policy λ Throughput Number
of arrived
aircraft

Avg. flight
duration

Avg. delay
in source
airport

Number of
missing
aircraft

Aircraft
blocked in
the airport

SRP 0.5 0.65 39.60 10.43 14.39 16.94 43.45

2 0.60 44.73 9.84 4.59 16.28 38.98

3.5 0.45 65.52 8.95 1.91 10.26 24.21

BAAP 0.5 0.65 38.05 10.28 13.61 18.02 43.92

2 0.59 43.54 9.84 4.39 17.21 39.23

3.5 0.45 63.96 8.88 1.92 10.96 25.06

SSP 0.5 0.68 43.84 10.37 16.49 13.86 42.29

2 0.62 48.38 9.97 5.04 13.04 38.57

3.5 0.46 66.03 8.94 1.92 8.21 25.74

CRP 0.5 0.65 41.34 10.08 16.06 7.12 51.52

2 0.60 45.32 9.81 5.39 6.98 47.69

3.5 0.46 63.23 8.94 2.01 5.39 31.36

RPP 0.5 0.66 44.72 10.72 17.98 13.09 42.18

2 0.61 47.67 9.99 5.17 13.04 39.28

3.5 0.46 67.37 8.96 2.11 7.95 24.67

5.3 Performance Evaluation of Dynamic Reroute Planning

The model mentioned in Sect. 5.1 is executed 150 times per each value of λ
and the average of the performance metrics are calculated. Table 1 illustrates
the results of executing different rerouting policies under the above-mentioned
conditions. Setting the number of departing aircraft to a constant value (100), by
increasing the value of λ and increasing the total duration time of the simulation,
we expect increasing in the number of arrived aircraft. This is because of the
fact that increasing the value of λ results in making the traffic lighter, ends in
decreasing delays in the source airports and the flight durations.

Table 1 shows the performance metrics for SSP, BAAP, SRP, CRP and RPP.
In the CRP policy, the three basic rerouting policies are combined and used
dynamically according to a set of predefined policies. The number of missing
aircraft in all policies indicates that in our setting the deadlock is inevitable; the
reason is that we increase the crossovers of aircraft intentionally to be able to
see the differences among different policies. However, designing rerouting policies
without a deadlock is not impossible, but it is beyond the scope of this paper.
This table shows that the BAAP rerouting policy performs better than SSP
and SRP policies based on the metrics of average delay in the source airports
and the average flight duration. The SSP has a better performance in terms
of the number of missing aircraft in the sub-tracks and the number of blocked
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aircraft in the source airports. The cause is that SSP attempts to find the feasible
shortest flight route for the longest part of the flight route. However, as SSP is
a conservative policy in comparison with the other policies in finding a route,
it increases the average delay in the source airport. The reason is that it holds
an aircraft in its source airports until it finds a route for the rejected aircraft
holding their position in the sub-tracks. The BAAP policy reduces the average
flight duration, because if it cannot find a feasible shortest route for a rejected
aircraft, it tries to find a route, avoiding to pass the aircraft from the blocked
areas. When the aircraft are not allowed to pass from the blocked areas, they
rarely need to change their route and also hold the sub-tracks for a fewer time.
Consequently the average delay of the aircraft in the source airport decreases.

In our implementation of the CRP, the analyzer continuously monitors the
configuration of the model and the planner chooses a suitable rerouting policy
to be applied in that configuration. As an example, assume that the coordinator
starts rerouting the aircraft using the SRP policy. Upon detecting a blocked area
in the airspace, the coordinator switches to BAAP to reduce the flight durations
of aircraft by avoiding the blocked area. Moreover, if the number of rejected
arrivals to the sub-tracks passes a predefined threshold (that sets to 20 in our
experiments), and at least a number of the sub-tracks are occupied (10 in our
case), the coordinator will switch to SSP and decreases the airspace load by
restricting the number of takeoffs from the source airports. When a predefined
percentage of the aircraft arrive to their destinations (50% in our experiments),
the coordinator switches to its former policy and the aircraft blocked in the
source airport are permitted to takeoff. As shown in Table 1, CRP increases the
aircraft delay in ground but decreases the average flight duration and the number
of the missing aircraft.

The last row of Table 1, presents the performance evaluation results of rerout-
ing with runtime performance prediction. In our experiments the SSP policy is
the default rerouting policy of the coordinator. As shown in Table 1, SSP per-
forms better than BAAP in terms of the number of the missing aircraft but has
a higher average flight duration compared to BAAP. If a storm happens, the
runtime performance prediction method is applied; if the predicted number of
the missing aircraft using SSP exceeds 18 and its average delay in the airport
exceeds 13.61, the planner switches its routing policy to BAAP. Furthermore, if
the coordinator reroutes the aircraft using the BAAP rerouting policy, the pre-
dicted number of the missing aircraft becomes greater than 13.86, and the aver-
age delay in an airport becomes greater than 16.49, the coordinator switches to
SSP. As a result, the number of the missing aircraft decreases and consequently,
the number of the aircraft arrived at the destination airports increases.

6 Related Work

In this section we discuss the most related and recent state of the art in the
modeling and analysis of self-adaptive systems. At first, different approaches
in modeling feedback control loops are presented and then the applications of
formal verification methods in analyzing model@runtime are addressed.
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Modeling and analyzing feedback loop: Feedback loops are the most crucial
elements of self-adaptive systems which have to be modeled explicitly [27]. The
MAPE-K feedback loop is a widely used approach for realizing self-adaptive
systems. In order to model the MAPE-K loops, different solutions have been
proposed. ActiveFORM is introduced in [15] together with a tool for verifying
adaptation goals at runtime as well as the design time. It also provides possi-
bility of changing the system goals at runtime dynamically. ActiveFORM uses
timed automata to model each component of the MAPE-K loop and TCTL for
specifying properties of the adaptation behavior. To realize self-adaptation, pro-
vided models are transformed to codes which are executable on a virtual machine.
According to [28], dependencies between the MAPE components and the Knowl-
edge component in ActiveFORM are modeled by signal passing through timed
automata; thus, they are only available in an implicit form. Unlike ActiveFORM,
our approach does not focus on modeling and verifying MAPE-K loops and does
not provide Analyze and Plan components separately. Instead, our focus is on
analyzing the models@runtime. Furthermore, encapsulating Analyze and Plan
components in a coordinator makes our approach more faithful to the real-world
applications in our problem domain comparing to the timed automata.

Vogel et al. [27] presented EUREMA, a model-driven engineering approach
to specify and execute multiple feedback loops, runtime models and the depen-
dencies between the feedback loops and the adaptable software. The EUREMA
modeling language provides behavioral feedback loop diagram (FLD) to model
the feedback loop components and runtime models. It benefits from structural
layer diagram (LD) to describe the wiring of FLDs and adaptable software. For
executing feedback loops, EUREMA models are interpreted at runtime. Inter-
pretation impacts on the efficiency of the approach but the overhead is negli-
gible. Since our proposed model@runtime is executable, the Analyze activity of
the MAPE-K feedback loop is capable of predicting a property violation, while
EUREMA has not addressed this feature. EUREMA supports specifying multi-
ple feedback loops which is a part of our future work.

Another approach proposed in [20], introduces Feedback Control Definition
Language (FCDL) based on the actor model for modeling adaptable feedback
control loops (FCL). In FCL, sensors, actuators, filters, and decision mak-
ers are represented by actors. Different FCLs can be organized hierarchically
or coordinate with each other. Modeling, structural consistency checking, and
code generation using this approach is facilitated by ACTRESS toolkit [21].
ACTRESS transforms FCDL models into Promela models and verifies connec-
tivity and reachability properties of the FCLs using SPIN. As our approach uses
the Ptolemy platform, there is no need for more effort to generate executable
code, while in ACTRESS an executable application is provided through a set of
model-to-model transformation. Furthermore, unlike our approach, there is not
model@runtime in ACTRESS.

Multi-agent Abstract State Machine (ASM) is proposed in [4] for modeling
and verification of decentralized MAPE-K feedback loops at design time. In this
approach, computations of one loop can be distributed over several agents and
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the behavior of each MAPE-K loop component is specified by ASM transition
rules. In the proposed approach, a system exposes a number of MAPE-K loops,
one per each adaptation concern. The model is verified using AsmetaSMV tool
with the aim of detecting interferences between different feedback loops. This
approach models one MAPE-K loop per each adaptation concern, while in our
approach for each sub-system a MAPE-K loop is generated. Furthermore, unlike
ASM, our approach does not focus on verifying the MAPE-K feedback loops.
Instead it focuses on analyzing the model@runtime.

Model@runtime analysis: Forejt et al. [12] proposed an approach for incre-
mental runtime verification of Markov Decision Process (MDP) models which are
described in PRISM. In this approach, runtime changes are limited to vary para-
meters of PRISM models. The MDP of models are constructed incrementally by
inferring a set of states, needed to be rebuilt. The constructed MDPs are verified
using the incremental verification technique. Besides, QoSMOS is proposed in [7]
for the development of adaptive service-based systems. QoSMOS integrates a set
of pre-existing tools to model MAPE-K loop. It adapts system in a predictable
way by the aim of optimizing quality of service requirements. Model@runtime
is expressed in PRISM and is verified in the analysis step. Results of the veri-
fication are used to adapt the configuration of systems. Our coordinated actor
model is in a higher level of abstract comparing to the state-based model of
PRISM. This reduces the semantic gap between the model and the real-world
applications in our problem domain and increases the fidelity.

A parametric approach is presented in [10,11] for the runtime verification of
Discrete Time Markov Chains (DTMCs). In this method, probabilities of the
transitions are given as variables instead of constant values. Then, the model is
analyzed and a set of symbolic expressions is reported as the result. This way,
the verification at runtime is reduced to calculating the values of the symbolic
expressions by substituting real values of variables.

Designing a self-adaptive software as a dynamic software product line (DSPL)
is proposed in [13]. In this approach an instance of DSPL is chosen at run-
time considering the environmental changes. This approach separately models
common behavior of the products and each variation point by the parametric
DTMC. So, there is no need for the verification of each configuration separately.
In comparison with both of the above approaches, our actor-based model is more
reusable and easy to build comparing to the state-based models such as DTMCs.

Wuttke et al. in [31] worked on the effectiveness of developing frameworks to
compare and evaluate different adaptation policies, proposed for self-adaptation.
To this aim, the authors developed a Java-based simulator for comparing dif-
ferent adaptation policies in automated traffic routing. In addition to it, Weyns
et al. in [29] provided an implementation of the Tele Assistance systems and
compared the effect of different adaptation policies in this application.
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7 Discussion, Conclusion and Future Work

We proposed coordinated actor models for modeling and analyzing self-adaptive
track-based traffic control systems. The coordinator encompasses Analyze and
Plan components of the MAPE-K loop as well as managing interactions between
the actors. The proposed coordinated actor model is augmented with a run-
time performance prediction mechanism. Track-based traffic control systems
were targeted, as the widely used application domain in cyber-physical systems.
We designed an automated adaptive model for these systems which specialized
and implemented for ATCs. We used Ptolemy platform to design and analyze
model@runtime. Ptolemy enabled our proposed coordinated actor model to be
executed at runtime.

In a nutshell, we can describe the highlights of our approach as follows.

– Fidelity and usability of the model@runtime is built-in because of the actor-
based modeling. Compared to the analytical state-based models, actor-based
modeling decreases the semantic gap between the real-world and the model.
This makes the model more understandable and usable and easy to build for
software engineers. The level of abstraction can be tuned, and efficient analysis
techniques can be used.

– Concurrency, modularity and reusability are provided as the model@runtime
is based on actors.

– Scalability results from simplicity, usability and modularity of the approach.
In other words, model@runtime can be the model of a large scale self-adaptive
system. However, scalability suffers from the bottleneck produced by the coor-
dinator as the message passing between the actors is governed through the
coordinator in a centralized way. In our future work we will address this prob-
lem by having multiple coordinators.

– As actors in Ptolemy are implemented in Java, the step for transforming the
MAPE-K loop and model@runtime to code is already covered.

– The suggested framework allows defining any behavioral adaptation policies
which leads to high flexibility.

– The model leads to a correct by construction design because the coordinator
performs safety checks (e.g. to avoid collision), and enforces a set of time
constraints on handling the messages by the actors that prevent the aircraft
to enter a sub-track (and hence lose the safe distance) simultaneously.

The whole air space is divided into multiple air space regions and is con-
trolled by multiple air traffic controllers. As our future work, we will extend our
proposed architecture and model@runtime to capture the decentralized nature
of ATC when spread over different air space regions. We will develop multiple
coordinated actor models (multiple MAPE-K feedback loops) interacting with
each other. Moreover, we will define the formal semantics of the coordinated
actor model and extend our previous results [25] to provide formal verification
of the model@runtime.
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systems. In: Cámara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds.) Assurances for
Self-Adaptive Systems. LNCS, vol. 7740, pp. 30–59. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36249-1 2

12. Forejt, V., Kwiatkowska, M., Parker, D., Qu, H., Ujma, M.: Incremental run-
time verification of probabilistic systems. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 314–319. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35632-2 30

13. Ghezzi, C., Molzam Sharifloo, A.: Dealing with non-functional requirements for
adaptive systems via dynamic software product-lines. In: de Lemos, R., Giese,
H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Sys-
tems II. LNCS, vol. 7475, pp. 191–213. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35813-5 8

https://www.princeton.edu/~ota/disk3/1982/8202/8202.PDF
https://www.princeton.edu/~ota/disk3/1982/8202/8202.PDF
http://dx.doi.org/10.1007/978-3-540-68891-4_3
http://dx.doi.org/10.1007/978-3-540-68891-4_3
http://dx.doi.org/10.1007/978-3-319-08915-7_4
http://dx.doi.org/10.1007/978-3-319-08915-7_4
http://dx.doi.org/10.1007/978-3-642-36249-1_2
http://dx.doi.org/10.1007/978-3-642-35632-2_30
http://dx.doi.org/10.1007/978-3-642-35632-2_30
http://dx.doi.org/10.1007/978-3-642-35813-5_8
http://dx.doi.org/10.1007/978-3-642-35813-5_8


258 M. Bagheri et al.

14. Hewitt, C.: Description and theoretical analysis (using schemata) of planner: A
language for proving theorems and manipulating models in a robot. Technical
report, DTIC Document (1972)

15. Iftikhar, M.U., Weyns, D.: ActivFORMS: active formal models for self-adaptation.
In: Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2014, pp. 125–134 (2014)

16. International Civil Aviation Organization (ICAO): North atlantic operations and
airspace manual (2016)

17. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–
50 (2003)

18. Khakpour, N., Jalili, S., Talcott, C., Sirjani, M., Mousavi, M.: PobSAM: policy-
based managing of actors in self-adaptive systems. Electron. Notes Theor. Comput.
Sci. 263, 129–143 (2010). Proceedings of the 6th International Workshop on Formal
Aspects of Component Software (FACS 2009)

19. Khakpour, N., Jalili, S., Talcott, C., Sirjani, M., Mousavi, M.: Formal modeling of
evolving self-adaptive systems. Sci. Comput. Program. 78(1), 3–26 (2012). Special
Section: Formal Aspects of Component Software (FACS 2009)
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Abstract. In this case study, we apply the architecture-based design
approach to the control software of the CubETH satellite. Architec-
tures are a means for ensuring global coordination properties and thus,
achieving correctness of complex systems by construction. We illustrate
the following three steps of the design approach: (1) definition of a
domain-specific taxonomy of architecture styles; (2) design of the soft-
ware model by applying architectures to enforce the required proper-
ties; (3) deadlock-freedom analysis of the resulting model. We provide a
taxonomy of architecture styles for satellite on-board software, formally
defined by architecture diagrams in the BIP component-based frame-
work. We show how architectures are instantiated from the diagrams
and applied to a set of atomic components. Deadlock-freedom of the
resulting model is verified using DFinder from the BIP tool-set. We pro-
vide additional validation of our approach by using the nuXmv model
checker to verify that the properties enforced by the architectures are,
indeed, satisfied by the model.

1 Introduction

Satellites and other complex systems become increasingly software-dependent.
Even nanosatellites have complexity that can be compared to scientific instru-
ments launched to Mars. Standards exist for hardware parts and designs, and
they can be found as commercial off the shelf (COTS) components. On the con-
trary, software has to be adapted to the payload and, consequently, hardware
architecture selected for the satellite. There is not a rigorous and robust way to
design software for CubeSats1 or small satellites yet.

Flight software safety is of paramount importance for satellites. In harsh
radiation environments, performance of COTS components is often affected by
proton particles. For example, the I2C bus, which is commonly used in CubeSats
due to its low energy consumption and wide availability in COTS chips, is well
known in space community for its glitches. Although error correcting algorithms

1 CubeSat [15] is a standard for the design of nano- and picosatellites.
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are widely implemented across all subsystems and interfaces, the use of the bus
by the components requires careful coordination to ensure correct operation.
Needless to say, software correctness must be established before launch.

To the best of our knowledge, most flight software for university satellites is
written in C or C++, without any architectural thinking. A notable exception
is a recent effort at Vermont Tech to use SPARK, a variant of Ada amenable
to static analysis [14]. Other projects simply structure their code in C/C++
and then extensively test it, maybe using some analysis tools such as lint [26].
Others use SysML [34] to describe the system as a whole [33] and then check
some properties such as energy consumption. SysML can be a valid tool for
system engineering as a whole, but it is not rigorous enough to allow automatic
verification and validation of software behaviour.

Satellite on-board software and, more generally, all modern software systems
are inherently concurrent. They consist of components that—at least on the con-
ceptual level—run simultaneously and share access to resources provided by the
execution platform. Embedded control software in various domains commonly
comprises, in addition to components responsible for taking the control decisions,
a set of components driving the operation of sensing and actuation devices. These
components interact through buses, shared memories and message buffers, lead-
ing to resource contention and potential deadlocks compromising mission- and
safety-critical operations.

The intrinsic concurrent nature of such interactions is the root cause of the
sheer complexity of the resulting software. Indeed, in order to analyse the behav-
iour of such a software system, one has to consider all possible interleavings of
the operations executed by its components. Thus, the complexity of software
systems is exponential in the number of their components, making a posteriori
verification of their correctness practically infeasible. An alternative approach
consists in ensuring correctness by construction, through the application of well-
defined design principles [4,19], imposing behavioural contracts on individual
components [8] or by applying automatic transformations to obtain executable
code from formally defined high-level models [32].

Following this latter approach, a notion of architectures was proposed in [2] to
formalise design patterns for the coordination of concurrent components. Archi-
tectures provide means for ensuring correctness by construction by enforcing
global properties characterising the coordination between components. An archi-
tecture can be defined as an operator A that, applied to a set of components B,
builds a composite component A(B) meeting a characteristic property Φ. Com-
posability is based on an associative, commutative and idempotent architecture
composition operator ⊕: architecture composition preserves the safety properties
enforced by the individual architectures. Architecture styles [22,24] are families
of architectures sharing common characteristics such as the type of the involved
components and the characteristic properties they enforce. Architecture styles
define all architectures for an arbitrary set of components that satisfy some
minimal assumptions on their interfaces.
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The notion of architectures proposed in [2] is based on the Behaviour-Interac-
tion-Priority (BIP) [6] framework for the component-based design of concurrent
software and systems. BIP is supported by a tool-set comprising translators from
various programming models into BIP, source-to-source transformers as well as
compilers for generating code executable by dedicated engines. Furthermore, the
BIP tool-set provides tools for deadlock detection [7], state reachability analysis
and an interface with the nuXmv model checker [10]. In the CubETH project [31],
BIP was used to design logic for the operation of a satellite, executed on the on-
board computer [29]. Although some properties were shown a posteriori to hold
by construction, due to the use of a high-level modelling language instead of
plain C/C++ code, the BIP model was designed in an ad-hoc manner, without
consideration for any particular set of requirements.

In the case study presented in this paper, we have analysed the BIP model
obtained in [29] and identified a number of recurring patterns, which we for-
malised as architecture styles. We have identified a representative sub-system of
the CubETH control software, which has a complete set of functional require-
ments, and redesigned from scratch the corresponding BIP model using the archi-
tecture styles to discharge these requirements by construction. We have used the
DFinder tool to verify that the resulting model is free from deadlocks. Finally, we
provide additional validation of our approach by using the nuXmv model checker
to verify that the architectures applied in the design process do, indeed, enforce
the required properties.

The rest of the paper is structured as follows. Section 2 presents a brief
overview of BIP and the architecture-based design approach. Section 3 presents
the case study, the identified architecture styles, illustrates our approach through
the design of a corresponding BIP model and presents the verification process
and results. Section 4 discusses the related work. Section 5 concludes the paper.

2 Architecture-Based Design Approach

taken krowkrow

sleep free sleep

f1 b12 f12 b2 f2b1

B1 C12 B2

f1 b12 f12 f2b1 b2

Fig. 1. Mutual exclusion model in BIP

Our approach relies on the
BIP framework [6] for
component-based design of
correct-by-construction app-
lications. BIP provides a
simple, but powerful mech-
anism for the coordination
of concurrent components
by superposing three layers.
First, component behaviour
is described by Labelled Transition Systems (LTS) having transitions labelled
with ports. Ports form the interface of a component and are used to define its
interactions with other components. Second, interaction models, i.e. sets of inter-
actions, define the component coordination. Interactions are sets of ports that
define allowed synchronisations between components. An interaction model is
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Fig. 2. Flat and hierarchical BIP connectors

defined in a structured manner by using connectors [9]. Third, priorities are
used to impose scheduling constraints and to resolve conflicts when multiple
interactions are enabled simultaneously.

Figure 1 shows a simple BIP model for mutual exclusion between two tasks. It
has two components B1, B2 modelling the tasks and one coordinator component
C12. Initial states of the components are shown with double lines. The four
binary connectors synchronise each of the actions b1, b2 (resp. f1, f2) of the
tasks with the action b12 (resp. f12) of the coordinator.

Connectors define sets of interactions based on the synchronisation attributes
of the connected ports, which may be either trigger or synchron (Fig. 2a). If
all connected ports are synchrons, then synchronisation is by rendezvous, i.e.
the defined interaction may be executed only if all the connected components
allow the transitions of those ports (Fig. 2b), If a connector has at least one
trigger, the synchronisation is by broadcast, i.e. the allowed interactions are all
non-empty subsets of the connected ports comprising at least one of the trigger
ports (Fig. 2b). More complex connectors can be built hierarchically (Fig. 2c).

taken

free

f1 b12 f12 b2 f2b1

C12

b12 f12

Fig. 3. Mutual exclusion architecture

An architecture can be viewed as a
BIP model, where some of the atomic
components are considered as coordi-
nators, while the rest are parameters.
When an architecture is applied to a
set of components, these components are
used as operands to replace the parame-
ters of the architecture. Clearly, operand
components must refine the correspond-
ing parameter ones—in that sense, parameter components can be considered as
types.2 Figure 3 shows an architecture that enforces the mutual exclusion prop-
erty AG¬(cs1 ∧ cs2) on any two components with interfaces {b1, f1} and {b2, f2},
satisfying the CTL formula AG

(
fi → A[¬csi W bi]

)
, where csi is an atomic predi-

cate, true when the component is in the critical section (e.g. in the state work,
for B1, B2 of Fig. 1). Composition of architectures is based on an associative,
commutative and idempotent architecture composition operator ‘⊕’ [2]. If two

2 The precise definition of the refinement relation is beyond the scope of this paper.



264 A. Mavridou et al.

architectures A1 and A2 enforce respectively safety properties Φ1 and Φ2, the
composed architecture A1 ⊕ A2 enforces the property Φ1 ∧ Φ2, that is both
properties are preserved by architecture composition.

Although the architecture in Fig. 3 can only be applied to a set of precisely
two components, it is clear that an architecture of the same style—with n para-
meter components and 2n connectors—could be applied to any set of operand
components satisfying the above CTL formula. We use architecture diagrams [24]
to specify such architecture styles, as described in the next section. (See Fig. 6
in Sect. 3.1 for the diagram of the style generalising the architecture in Fig. 3.)

Modelling 
architecture 

styles

Requirements 
formulation & 
formalisation

Pre-design Design

Architecture 
application

Model 
verification

Verification

Fig. 4. Architecture-based design flow

The architecture-based
design approach consists of
the three stages illustrated
in Fig. 4. First, architecture
styles relevant for the appli-
cation domain—in our case,
nano- and picosatellite on-
board software—are identified and formally modelled. Ideally, this stage is only
realised once for each application domain. The remaining stages are applied for
each system to be designed. In the second, design stage, requirements to be satis-
fied by the system are analysed and formalised, atomic components realising the
basic functionality of the system are designed (components previously designed
for other systems can be reused) and used as operands for the application of
architectures instantiated from the styles defined in the first stage. The choice of
the architectures to apply is driven by the requirements identified in the second
stage. Finally, the resulting system is checked for deadlock-freedom. Properties,
which are not enforced by construction through architecture application, must
be verified a posteriori. In this case study, we illustrate all steps of this process,
except the requirement formalisation.

In the first stage, we use architecture diagrams [24] to model the architec-
ture styles identified in the case study. An architecture diagram consists of a
set of component types, with associated cardinality constraints representing the
expected number of instances of each component type and a set of connector
motifs. Connector motifs, which define sets of BIP connectors, are non-empty
sets of port types, each labelled as either a trigger or a synchron. Each port type
has a cardinality constraint representing the expected number of port instances
per component instance and two additional constraints: multiplicity and degree,
represented as a pair m : d. Multiplicity constrains the number of instances of
the port type that must participate in a connector defined by the motif; degree
constrains the number of connectors attached to any instance of the port type.

Cardinalities, multiplicities and degrees are either natural numbers or inter-
vals. The interval attributes, ‘mc’ (multiple choice) or ‘sc’ (single choice), specify
whether these constraints are uniformly applied or not. Let us consider, a port
type p with associated intervals defining its multiplicity and degree. We write
‘sc[x, y]’ to mean that the same multiplicity or degree is applied to each port
instance of p. We write ‘mc[x, y]’ to mean that different multiplicities or degrees
can be applied to different port instances of p, provided they lie in the interval.



Architecture-Based Design: A Satellite On-Board Software Case Study 265

For the specification of behavioural properties enforced by architecture styles,
as well as those assumed for the parameter components, we use the Computation
Tree Logic (CTL). We only provide a brief overview, referring the reader to the
classical textbook [3] for a complete and formal presentation. CTL formulas
specify properties of execution trees generated by LTSs. The formulas are built
from atomic predicates on the states of the LTS, using the several operators,
such as EX, AX, EF, AF, EG, AG (unary) and E[· U ·], A[· U ·], E[· W ·], A[· W ·] (binary).
Each operator consists of a quantifier on the branches of the tree and a temporal
modality, which together define when in the execution the operand sub-formulas
must hold. The intuition behind the letters is the following: the branch quantifiers
are A (for “All”) and E (for “Exists”); the temporal modalities are X (for “neXt”),
F (for “some time in the Future”), G (for “Globally”), U (for “Until”) and W (for
“Weak until”). A property is satisfied if it holds in the initial state of the LTS.
For instance, the formula A[p W q] specifies that in all execution branches the
predicate p must hold up to the first state (not including this latter), where the
predicate q holds. Since we used the weak until operator W, if q never holds, p
must hold forever. As soon as q holds in one state of an execution branch, p
need not hold any more, even if q does not hold. On the contrary, the formula
AG A[p W q] specifies that the subformula A[p W q] must hold in all branches at all
times. Thus, p must hold whenever q does not hold, i.e. AG A[p W q] = AG (p ∨ q).

3 Case Study

CubETH is a nanosatellite based on the CubeSat standard [15]. It contains the
following subsystems: EPS (electrical power subsystem), CDMS (command and
data management subsystem), COM (telecommunication subsystem), ADCS (atti-
tude determination and control subsystem), PL (payload) and the mechanical
structure including the antenna deployment subsystem.

This case study is focused on the software running on the CDMS subsystem
and in particular on the following subcomponents of CDMS: (1) CDMS status
that is in charge of resetting internal and external watchdogs; (2) Payload that
is in charge of payload operations; (3) three Housekeeping components that are
used to recover engineering data from the EPS, PL and COM subsystems; (4) CDMS
Housekeeping which is internal to the CDMS; (5) I2C sat that implements the
I2C protocol; (6) Flash memory management that implements a non-volatile
flash memory and its write-read protocol; (7) the s3 5, s3 6, s15 1 and s15 2
services that are in charge of the activation or deactivation of the housekeeping
component actions; (8) Error Logging that implements a RAM region that is
accessible by many users and (9) the MESSAGE LIBRARY, MEMORY LIBRARY and
I2C sat LIBRARY components that contain auxiliary C/C++ functions.

A high-level BIP model of the case-study is shown in Fig. 5. For the sake
of simplicity, we omit some of the connectors. In particular, we show the con-
nectors involving the HK to MEM, HK to I2C and HK to I2C NOFAIL interfaces
of the HK COM subsystem, but we omit the respective connectors involving the
other three Housekeeping subsystems. The MESSAGE LIBRARY, MEMORY LIBRARY,
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Fig. 5. The high-level interaction model

I2C sat LIBRARY, s3 5, s3 6, s15 1 and s15 2 components are atomic. The rest
are composite components, i.e. compounds.

The full BIP model of the case study can be found in the technical report [23].
It comprises 22 operand components and 27 architectures that were generated
from the architecture styles presented in the next subsection.

3.1 A Taxonomy of Architecture Styles for On-Board Software

We have identified 9 architecture styles from the BIP model obtained in [29].
In this section, we present 5 styles (all styles are presented in the technical
report [23]). Since the identified architecture styles represent recurring patterns
of satellite on-board software, the usage of the presented taxonomy is not limited
to this case-study. The identified styles can also be used for the design and
development of other satellite on-board systems.

For each architecture style, we have studied two groups of properties:
(1) assumed properties that the operand components must satisfy so that the
architecture can be successfully applied on them and (2) characteristic properties
that are properties the architecture imposes on the system. In this case study,
all characteristic properties are safety properties. Due to space limitations, in
the next subsections, for all architecture styles except for Mutual exclusion, we
omit their assumed properties. These can be found in the technical report [23].

The styles are specified by using architecture diagrams. Below, for the sake
of clarity, we omit the port type cardinality if it is equal to 1. The cardinality of
a component type is indicated right next to its name.

The Mutual Exclusion Style (Figure 6) generalises the architecture in Fig. 3.
It enforces mutual exclusion on a shared resource (see Sect. 2).
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Fig. 6. Mutual exclusion style

The unique—due to the cardinal-
ity being 1—coordinator component,
Mutex manager, manages the shared
resource, while n parameter compo-
nents of type B can access it. The mul-
tiplicities of all port types are 1, hence,
all connectors are binary. The degree
constraints require that each port instance of a component of type B be attached
to a single connector and each port instance of the coordinator be attached to
n connectors. The behaviours of the two component types enforce that once the
resource is acquired by a component of type B, it can only be released by the
same component. The assumed and characteristic properties of this style were
presented in Sect. 2.

The Client-Server Style (Figure 7) ensures that only one client can use a ser-
vice offered by the server at each time. It consists of two parameter component
types Server and Client with 1 and n instances, respectively. In the diagram of
Fig. 7, the Server provides two services through port types offer and offer2.
The Client has two port types use and use2. Since the cardinalities of offer
and offer2 are k and k′, respectively, each component instance of type Server
has k port instances of type offer and k′ port instances of type offer2. Simi-
larly, each component instance of type Client has m port instances of type use
and m′ port instances of type use2.

Fig. 7. Client-Server style

Two connector motifs connect
use (resp. use2) with offer (resp.
offer2). The multiplicity:degree con-
straints of offer and use are 1 : nm
and 1 : k, respectively. Since both
multiplicities are 1, all connectors are
binary. Because of the degree con-
straints, each port instance of use must be attached to k connectors, while
each port instance of offer must be attached to nm connectors, i.e. all port
instances of use are connected to all port instances of offer. An architecture
of this style is shown in Fig. 12.

The characteristic property of this style is ‘only one client can use a provided
service at each time’, formalised by the CTL formula:

∀ i, j � n,∀ p � k, AG
(¬Client [i].use[p] ∧ Client [j].use[p]

)
,

∀ i, j � n,∀ p � k, AG
(¬Client [i].use2 [p] ∧ Client [j].use2 [p]

)
.

The Action Flow Style (Figure 8) enforces a sequence of actions. It has one
coordinator component of type Action Flow Manager and n parameter compo-
nents of type B. The cyclic behaviour of the coordinator enforces an order on
the actions of the operands. In the manager’s behaviour, abi and aei stand for
“action i begin” and “action i end”.
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Fig. 8. Action flow style

Each operand component c of type
B provides nc

a port instances of type
actBegin and of type actEnd. Notice
that nc

a might be different for different
operands of type B. The cardinalities
of port types ab and ae are both equal
to N =

∑
c:B nc

a, where the sum is over
all operands of type B. The multiplic-
ity and degree constraints require that there be only binary connectors. An
architecture of this style is shown in Fig. 11.

The characteristic property of this style is the conjunction of (a) ‘on each
action flow’s execution, every action begins only after its previous action has
ended ’ (b) ‘on each flow execution, every action occurs at most once’ (c) ‘the
flow finishes only after the last action has ended ’, formalised by the following
CTL formulas, in which the index i denotes the position of an action in the
action flow. We consider the following mappings:

– from indices to components seqc : [1, N ] → C, where C is a set containing all
operands that execute an action;

– from indices to actions seqa : [1, N ] → A, where A is a set containing all
actions of the operands,

such that the action seqa(i) belongs to the component seqc(i).

∀1 < i � N, AG
(
start →

AX A
[¬B [seqc(i)].actBegin[seqa(i)] W B [seqc(i)].actEnd [seqa(i − 1)]

])
,

∀1 � i � N, AG
(
B [seqc(i)].actBegin[seqa(i)] →

AX A
[¬B [seqc(i)].actBegin[seqa(i)] W start

])
,

AG
(
start → AX A[¬finish W B [seqc(i)].actEnd [N ]

])
.

The Failure Monitoring Style (Figure 9) provides monitor components that
observe the state of other components. It consists of n coordinator components of
type Failure Monitor and n parameter components of type B1. The cardinality
of all port types is 1. Multiplicities and degrees require that each B1 component
instance be connected to its dedicated Failure monitor instance.

Fig. 9. Failure monitoring style

A B1 component may enter the fol-
lowing three states: NOMINAL, ANOMALY
and CRITICAL FAILURE. When in
NOMINAL state, the component is per-
forming correctly. If the component
cannot be reached, or if the engineer-
ing data is not correct the component
enters the ANOMALY state. If a fixed
time has passed in which the component has remained in ANOMALY, the compo-
nent enters the CRITICAL FAILURE state. An architecture of this style is shown
in Fig. 13.
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Fig. 10. Mode management style (component behaviour is shown for k=3)

The characteristic property of this style is ‘if a failure occurs, a finish happens
only after a resume or reset ’, formalised by the following CTL formula:

∀c � n, AG
(
B1 [c].fail → AX A

[¬B1 [c].finish W (B1 [c].resume ∨ reset)
])

.

The Mode Management Style (Figure 10) restricts the set of enabled actions
according to a set of predefined modes. It consists of one coordinator of type Mode
Manager, n parameter components of type B1 and k parameter components of
type B2. Each B2 component triggers the transition of the Mode Manager to a
specific mode. The coordinator manages which actions of the B1 components can
be executed in each mode.

Mode Manager has k states—one state per mode—a port type toMode with
cardinality k and k port types inMode with cardinality 1. Each port instance of
type toMode must be connected through a binary connector with the changeMode
port of a dedicated B2 component. B1 has k port types modeBegin with cardinal-
ity mc[0, 1]. In other words, a component instance of B1 might have any number
of port instances of types modeBegin from 0 until k. B1 has also a modeEnd port
type with cardinality k. mib stands for “mode i begin” and indicates that an
action that is enabled in mode i has begun its execution. mie stands for “mode
i end” and indicates that an action that is enabled in mode i has finished its
execution. Each inMode port instance of the Mode Manager must be connected
with the corresponding modeBegin port instances of all B1 components through
an n-ary connector. An architecture of this style is shown in Fig. 14.

The characteristic property of this style is ‘an action is only performed in a
mode where it is allowed ’, formalised by the following CTL formula:

∀i � k, AG
(
B1.m[i ]b → ModeManager .inMode[i]

)
.

3.2 BIP Model Design by Architecture Application

We illustrate the architecture-based approach on the CDMS status, MESSAGE
LIBRARY and HK PL components. In particular, we present the application of
Action flow, Mode management, Client-Server and Failure monitoring archi-
tectures to discharge a subset of CubETH functional requirements (Table 1).
We additionally present the result of the composition of Client-Server and Mode
management architectures. The full list of requirements is provided in [23].
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Table 1. Representative requirements for CDMS status and HK PL

ID Description

CDMS-007 The CDMS shall periodically reset both the internal and external
watchdogs and contact the EPS subsystem with a “heartbeat”

HK-001 The CDMS shall have a Housekeeping activity dedicated to each
subsystem

HK-003 When line-of-sight communication is possible, housekeeping
information shall be transmitted through the COM subsystem

HK-004 When line-of-sight communication is not possible, housekeeping
information shall be written to the non-volatile flash memory

HK-005 A Housekeeping subsystem shall have the following states: NOMINAL,
ANOMALY and CRITICAL FAILURE

Application of Action Flow Architecture. Requirement CDMS-007, pre-
sented in Table 1, describes the functionality of CDMS status. The corresponding
BIP model is shown in Fig. 11. Watchdog reset is an operand component, which
is responsible for resetting the internal and external watchdogs. CDMS status
ACTION FLOW is the coordinator of the architecture applied on Watchdog reset
that imposes the following order of actions: (1) internal watchdog reset; (2)
external watchdog reset; (3) send heartbeat and (4) receive result.

Fig. 11. Application of Action flow architecture

Application of Client-Server Architecture. Requirements HK-001 and
HK-003, presented in Table 1, suggest the application of the Client-Server
architecture on the HK PL, HK CDMS, HK EPS and HK COM housekeeping com-
pounds (Fig. 5). The four housekeeping compounds are the clients of the
architecture. In Fig. 12a, we show how Client-Server is applied on the HK
PL process component, which is a subcomponent of HK PL. HK PL process
uses the composeMessage and decodeMessage C/C++ functions of the
MESSAGE LIBRARY component to encode and decode information transmitted to
and from the COM subsystem. Thus, the MESSAGE LIBRARY is a server used by
the HK PL process client. To enhance readability of figures in Fig. 12a, we use
hexagons to group interaction patterns of components. The meaning of these
hexagons is explained in Fig. 12b.
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(a) Architecture application (b) Hexagons of Fig. 12a

Fig. 12. Application of Client-Server architecture

Application of Failure Monitoring Architecture. Requirement HK-005,
presented in Table 1, suggests the application of the Failure monitoring architec-
ture as shown in Fig. 13. The BIP model comprises the HK PL process operand
and the HK PL FAILURE MONITORING coordinator. The success port of HK PL
FAILURE MONITORING is connected with the mem res and I2C res TTC ports of
HK PL process. The failure port of HK PL FAILURE MONITORING is connected
with the I2C fail PL port of HK PL process. The HK PL process component
executes 6 actions in the following order: (1) start procedure; (2) ask Payload for
engineering data; (3) receive result from Payload or (in case of fail) abort; (4) if
line of sight communication is possible send data to COM, if line of sight commu-
nication is not possible make a write request to the memory; (5) depending on
action 4 either receive COM result or memory result and (6) finish procedure.

Fig. 13. Application of Failure monitoring architecture

Application of Mode Management Architecture. Requirements HK-003
and HK-004, presented in Table 1, suggest the application of a Mode manage-
ment architecture with two modes: (1) TTC mode, in which line of sight commu-
nication is possible and (2) MEMORY mode, in which line of sight communication is
not possible. The corresponding BIP model, shown in Fig. 14, comprises the HK
PL process, s15 1 and s15 2 operands and the Packet store MODE MANAGER
coordinator. During NOMINAL operation, the Payload subsystem is contacted
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Fig. 14. Application of Mode management architecture

to retrieve engineering data. Depending on the mode of Packet store MODE
MANAGER, those data is then sent to the non-volatile memory, i.e. mem write req
transition, or directly to the COM subsystem, i.e. ask I2C TTC transition. The
mode of Packet store MODE MANAGER is triggered by the s15 1, s15 2 services.

Composition of Architectures. The architecture composition was formally
defined in [2]. Here, we provide only an illustrative example. Combined applica-
tion of architectures to a common set of operand components results in merging
the connectors that involve ports used by several architectures. For instance,
Fig. 15 shows the composition of Client-Server and Mode management archi-
tectures. The HK PL process component is a sub-component of HK PL. The
application of the Client-Server architecture (Fig. 12) connects its port ask with
the port composeMessage of MESSAGE LIBRARY through the MES LIB-HK to I2C
interface with a binary connector. Similarly, the application of the Mode man-
agement architecture (Fig. 14) connects the same port with the port ask I2C TTC
of Packet store MODE MANAGER with another binary connector. The composi-
tion of the two architectures results in the two connectors being merged into the
ternary connector ask-ask I2C TTC-composeMessage (Fig. 15).

3.3 Model Verification

Recall (Sect. 2) that safety properties imposed by architectures are preserved by
architecture composition [2]. Thus, all properties that we have associated to the
CubETH requirements are satisfied by construction by the complete model of
the case study example, which is presented in [23].
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Fig. 15. Composition of Client-Server and Mode management architectures

Architectures enforce properties by restricting the joint behaviour of the
operand components. Therefore, combined application of architectures can gen-
erate deadlocks. We have used the D-Finder tool [7] to verify deadlock-freedom
of the case study model. D-Finder applies compositional verification on BIP
models by over-approximating the set of reachable states, which allows it to
analyse very large models. The tool is sound, but incomplete: due to the above
mentioned over-approximation it can produce false positives, i.e. potential dead-
lock states that are unreachable in the concrete system. However, our case study
model was shown to be deadlock-free without any potential deadlocks. Thus, no
additional reachability analysis was needed.

3.4 Validation of the Approach

The key advantage of our architecture-based approach is that the burden of ver-
ification is shifted from the final design to architectures, which are considerably
smaller in size and can be reused. In particular, all the architecture styles that
we have identified for the case study are simple. Their correctness—enforcing the
characteristic properties—can be easily proved by inspection of the coordinator
behaviour. However, in order to increase the confidence in our approach, we have
conducted additional verification, using nuXmv to verify that the characteristic
properties of the architectures are, indeed, satisfied. We used the BIP-to-NuSMV
tool3 to translate our BIP models into NuSMV—the nuXmv input language [10].

3 http://risd.epfl.ch/bip2nusmv.

http://risd.epfl.ch/bip2nusmv
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Table 2. Statistics of models and verification

Model Tool Components Connectors RSS Deadlocks Properties

CubETH D-Finder 49 155 - 0 -

Payload nuXmv 13 42 8851 0 9

I2C sat nuXmv 4 12 52 0 1

HK PL nuXmv 11 12 77274 0 5

HK EPS nuXmv 11 12 77274 0 5

HK COM nuXmv 11 12 77274 0 5

HK CDMS nuXmv 10 9 12798 0 5

Flash Memory nuXmv 6 15 44 0 3

CDMS status nuXmv 3 6 8 0 4

Error Logging nuXmv 2 2 2 0 1

RSS = Reachable State Space

Verification of the complete model with nuXmv did not succeed, running out
of memory after four days of execution. Thus, we repeated the procedure (BIP-
to-NuSMV translation and verification using nuXmv) on individual sub-systems.
All connectors that crossed sub-system boundaries were replaced by their cor-
responding sub-connectors. This introduces additional interactions, hence, also
additional execution branches. Since no priorities are used in the model, this
modification does not suppress any existing behaviour. Notice that the CTL
properties enforced by the presented architecture styles use only universal quan-
tification (A) over execution branches. Hence, the above approach is a sound
abstraction, i.e. the fact that the properties were shown to hold in the sub-
systems immediately entails that they also hold in the complete model. The
complete list of CTL formulas is presented in [23]. Table 2 presents the com-
plexity measures of the verification, which was carried out on an Intel Core i7 at
3.50 GHz with 16 GB of RAM. Notice that component count in sub-systems adds
up to more than 49, because some components contribute to several sub-systems.

4 Related Work

The European Space Agency (ESA) advocates a model-based design flow rather
than a document-centric approach. To this end, a series of funded research
initiatives has delivered interesting results that are worth mentioning. The
Space Avionics Open Interface Architecture (SAVOIR)4 project introduces the
On-board Software Reference Architecture (OSRA) [20] that imposes certain
structural constraints through the definition of the admissible types of software
components and patterns of interaction among their instances. The ASSERT
Set of Tools for Engineering (TASTE)5 [30] is more appropriate for the detailed

4 http://savoir.estec.esa.int/.
5 http://taste.tuxfamily.org/.

http://savoir.estec.esa.int/
http://taste.tuxfamily.org/
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software design and model-based code generation. In TASTE, the architectural
design is captured through a graphical editor that generates a model in the Archi-
tecture Analysis & Design Language (AADL). However, the AADL semantics
is not formally defined, which inhibits it from being used for rigorous design
or formal verification purposes. The Correctness, Modeling and Performance of
Aerospace Systems (COMPASS)6 toolset relies on an AADL variant with for-
mally defined semantics called SLIM and provides means for a posteriori formal
verification [13]. A formal semantics for the AADL has been defined in BIP,
along with a translation of AADL models into the BIP language [16]. The rig-
orous design approach based on correct-by-construction steps is applied in the
Functional Requirements and Verification Techniques for the Software Reference
Architecture (FoReVer)7 and the Catalogue of System and Software Properties
(CSSP) projects. The former initiative advocates a top-down design flow by
imposing behavioural contracts on individual components [8], while the latter
adopts our architecture-based design flow relying on BIP.

Although a number of frameworks exist for the specification of architec-
tures [25,28,35], model design and code generation [1,6,12,34], and verification
[11,17,21], we are not aware of any that combine all these features. In par-
ticular, to the best of our knowledge, our approach is the first application of
requirement-driven correct-by-construction design in the domain of satellite on-
board software, which relies on requirements to define a high-level model that
can be directly used to generate executable code for the satellite control [29].

BIP has previously been used for the design of control software. The appli-
cations closest to ours are the initial design of the CubETH [29] and the DALA
robot [5] control software. While the latter design followed a predefined software
architecture (in the sense of [4]), the former was purely ad-hoc. Neither was
driven by a detailed set of requirements.

In [18], the authors describe the interfacing of Temporal Logic Planning tool-
box (TuLiP) with the JPL Statechart Autocoder (SCA) for the automatic gen-
eration of control software. The TuLiP toolbox generates from statechart models
from high-level specifications expressed as formulas of particular form in the Lin-
ear Temporal Logic (LTL). SCA is then used to generate Python, C or C++ code
from the obtained statecharts. This approach is grounded in formal semantics,
it provides correctness guarantees through the automatic synthesis of control
behaviour. Furthermore, the transition through statecharts allows the use of
graphical tools to visualise the controller behaviour. However, it also has some
limitations. Most notably, it focuses exclusively on the synthesis of one controller
component and is not easily amenable to the holistic design of complete software
systems involving concurrent components.

6 http://compass.informatik.rwth-aachen.de/.
7 https://es-static.fbk.eu/projects/forever/.

http://compass.informatik.rwth-aachen.de/
https://es-static.fbk.eu/projects/forever/
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5 Conclusion and Future Work

Based on previous work [29], we have analysed the command and data man-
agement sub-system (CDMS) of the CubETH nanosatellite on-board software
(OBSW), concentrating primarily on safety and modularity of the software.
Starting from a set of informal requirements, we have used the architecture-
based approach [2] to design a BIP model of the CDMS sub-system. We have
illustrated the key steps of the BIP model design, discussed and evaluated the
verification and validation procedures.

The architecture-based approach consists in the application of a number of
architectures starting with a minimal set of atomic components. Each architec-
ture enforces by construction a characteristic safety property on the joint behav-
iour of the operand components. The combined application of architectures is
defined by an associative and commutative operator [2], which guarantees the
preservation of the enforced properties. Since, architectures enforce properties by
restricting the joint behaviour of the operand components, combined application
of architectures can lead to deadlocks. Thus, the final step of the design process
consists in verifying the deadlock-freedom of the obtained model. The key advan-
tage of this approach is that the burden of verification is shifted from the final
design to architectures, which are considerably smaller in size and can be reused.
This advantage is illustrated by our verification results: while model-checking of
the complete model was inconclusive, verification of deadlock-freedom took only
a very short time, using the D-Finder tool.

The main contribution of the presented work is the identification and formal
modelling—using architecture diagrams [24]—of 9 architecture styles, whereof 5
are presented in the paper (all styles are presented in the associated technical
report [23]). Architecture styles represent recurring coordination patterns: those
identified in the case study have been reused in the framework of a collaborative
project funded by ESA and can be further reused in other satellite OBSW.

The case study serves as a feasibility proof for the use of architecture-based
approach in satellite OBSW design. The modular nature of BIP allows itera-
tive design for satellites in development and component reuse for subsequent
missions. The automatic generation of C++ code provided by the BIP tool-set
enables early prototyping and validation of software functionality even before
the hardware platform is completely defined, also contributing to portability of
designs. Indeed, the only non-trivial action required in order to use a different
target platform is to recompile the BIP engine.

This case study opens a number of directions for future work. The most
immediate consists in studying optimisation techniques, such as [27] to reduce
the complexity overhead of the automatically generated models. In the frame-
work of the ESA project, we are currently developing a tool for the automatic
application and composition of architectures and a GUI tool for ontology-based
specification of user requirements. We plan to integrate these, together with
the BIP framework, into a dedicated tool-chain for OBSW design, providing
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requirement traceability and early validation. We also plan to expand our tax-
onomy of architecture styles and study the application of parametrised model
checking techniques for their formal verification. Finally, it would be interesting
to extend the architecture-based approach to real-time systems. Composability
of real-time architectures will require a notion of non-interference similar to that
used to ensure the preservation of liveness properties in [2].
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