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Preface

The increasing complexity of space vehicles such as satellites, and the cost reduction
measures that have affected satellite operators are increasingly driving the need for
more autonomy in satellite diagnostics and control systems. Current methods for
detecting and correcting anomalies onboard the spacecraft as well as on the ground
are primarily manual and labor intensive, and therefore, tend to be slow. Operators
inspect telemetry data to determine the current satellite health. They use various
statistical techniques and models, but the analysis and evaluation of the large volume
of data still require extensive human intervention and expertise that is prone to error.
Furthermore, for spacecraft and most of these satellites, there can be potentially
unduly long delays in round-trip communications between the ground station and
the satellite. In this context, it is desirable to have onboard fault-diagnosis system
that is capable of detecting, isolating, identifying or classifying faults in the system
without the involvement and intervention of operators. Toward this end, the principle
goal here is to improve the efficiency, accuracy, and reliability of the trend analysis
and diagnostics techniques through utilization of intelligent-based and hybrid-based
methodologies.

It is a well-recognized fact that an automated satellite health monitoring and fault
diagnosis system using advanced decision-support systems is the need of today’s
satellite ground support system. A system that can generate an early-warning to the
operator is well suited to satellite ground operations where the operators are already
overloaded with satellite command and control tasks. Due to recent advances in
computing technologies, health monitoring and fault diagnosis schemes for satel-
lites can be automated using advanced decision-support systems such as rule-based
expert systems and artificial intelligence (AI)-based methodologies. Soft computing
based on artificial neural-networks is witnessing an increasing use in such activities.

Toward this end, in this work we have developed, analyzed, and implemented
novel techniques to accurately monitor the telemetry data of the satellite’s ACS sys-
tem to pinpoint potential causes of actuator anomalies and failures and to facilitate
and optimize the operator resources to critical events for troubleshooting problems.
Different approaches have been investigated and developed for accurately predicting
actuator failures based on detection of abnormal and/or subtle deviations of the actu-
ators from their normal range in key variables/feature points. We believe this addi-
tional diagnostic capability combined with autonomous fault detection, diagnosis,
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and recovery technologies would be beneficial for existing and future-planned space
missions as well as for increasing the expected life span of current satellites or for
enhancing the future designs.

Conventionally, fault-tolerant control systems are achieved and ensured through
hardware redundancy, that is, by including redundant actuators and sensors in the
system. The control and measurement channels are generally made duplicated or
triplicated in hardware. The main disadvantage of physical redundancy is the addi-
tional cost and the corresponding increase in complexity of operation. Moreover, the
weight of the system and the maintenance requirements are subsequently increased.
Consequently, analytical redundancy approach, which makes use of the mathemat-
ical model of the system and relationships between sensor outputs and actuator
inputs, has been proposed and are increasingly being employed in complex control
systems.

In a large-scale complex system such as a satellite or a space vehicle not every
process or subsystem can be mathematically and accurately modeled. Therefore,
we will look at computationally intelligent architectures as alternative means for
representing the system. Neural networks have a great deal of potential in this area
since these networks can generate input/output mappings that can approximate any
nonlinear function with any desired degree of accuracy under certain mild assump-
tions. Additionally, neural networks have proven to be excellent pattern characteriz-
ers for both static and dynamically behaving patterns. One aspect of this work will
focus on developing neural networks methods for extracting and characterizing such
behavior patterns. A formal methodology is developed to allow the space vehicle to
make a wide variety of decisions and is capable of planning and executing diagnosis
activities autonomously.

There are essentially three distinct fault diagnosis approaches that one could
investigate:

� Techniques that use physics-based model of the satellite and use the traditional
techniques from the estimation and control domain to tackle the problem,

� Techniques that use artificial neural networks (ANN), fuzzy logic, and genetic
and evolutionary algorithms for model development and use those models along
with other intelligent networks for fault detection and isolation purposes, and

� Finally, there is a possibility to use a combination of the above two methodolo-
gies as a hybrid method for model development as well as fault diagnosis logic.

Building on methods presently available in several fields including system identi-
fication, robust and adaptive control, computational intelligence, and system health
monitoring, novel and innovative techniques have been investigated in this work
by developing new capabilities and by relaxing/removing the limitations of the
current state-of-the-art technology in fault diagnosis as they relate to nonlinear
systems. This interest is motivated by the fact that most available fault diagnosis
techniques lack the capability to handle incomplete and varying knowledge con-
cerning fault modes. The classical methods that consider such knowledge are inflex-
ible, and hence not suitable for complex systems such as satellites and spacecraft
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that are considered here. The approach proposed and the interest pursued here
are in integration of the analytical techniques with the computational intelligence
methodologies. By taking advantage of the efficient data-processing capabilities
of model-based approaches, and the capability of intelligent systems in handling
incomplete, less-formalized and even uncertain knowledge, an integrated and a
hybrid approach is envisaged to produce more flexible and practical solutions.
The proposed approach consists of hierarchical and distributed fault diagnosis sys-
tems whereby for each subsystem or component of our complex system, a sepa-
rate diagnoser module can be designed, tested and validated. In this way, the fault
analysis is enabled through insight into the physical and operational characteris-
tics of the system. The intelligent and high level-based methods are then capable
of organizing results from all fault diagnosis modules in a role of a supervisory
control. The proposed intelligence-based techniques will be used both locally and
globally.

This monograph is organized as follows. In Chapter 1, we will provide an
overview of the fault diagnosis literature in general and fault detection method-
ologies in particular. A more formal presentation of the fault diagnosis problem,
further details on the issues involved, and some of the methodologies developed
for fault diagnosis in the literature especially for fault isolation and identification
tasks are reviewed. Chapter 2 formally defines the fault diagnosis problem in non-
linear systems and presents a comprehensive literature review and analysis of dif-
ferent approaches to fault detection, isolation, and identification (FDII) of both lin-
ear and nonlinear systems. Both model-based and computational intelligence-based
approaches to fault diagnosis have been extensively reviewed and analyzed, and a
number of well-known methodologies within each framework are further demon-
strated and their respective pros and cons are cited. Chapter 3 demonstrates both
the series-parallel and the robust parallel structures of the hybrid nonlinear FDII
methodology under full-state measurement assumption, which is the core contri-
bution of this monograph. Chapter 3 also introduces a specific formulation of the
problem of FDII in nonlinear systems as a nonlinear parameter estimation problem
using the notion of parameterized fault models (PFMs). A short survey of vari-
ous model-based and computational intelligence-based nonlinear parameter estima-
tion techniques is also performed in this chapter. In Chapter 4, first the theory of
state estimation or filtering has been comprehensively reviewed in order to design
and develop a fault tolerant state estimator that enables FDII under partial-state
measurement conditions. A specific adaptive neural state estimator (NSE) is then
designed and its integration with the proposed hybrid FDII schemes are described
in this chapter. Chapter 5 explains the spacecraft attitude control system and reaction
wheel actuators to which the proposed fault diagnosis algorithms are applied. Sim-
ulation results demonstrating the effectiveness and validating the properties (such
as robustness) of the proposed FDII algorithms have also been proposed in this
chapter. Finally, concluding remarks and future research directions are included in
Chapter 6.

The funding for much of the research described in this monograph was provided
in part by the Natural Sciences and Engineering Research Council (NSERC) of
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Chapter 1
Introduction

There is an increasing demand for man-made dynamic systems to operate
autonomously in the presence of faults and failures in sensors, actuators, and/or
components. Fault detection and identification are essential components of an
autonomous system. Hence, a high demand exists for the development of intelligent
systems that are able to autonomously detect the presence and isolate the location
of faults occurring in different components of complex dynamic systems. Especially
faults in a control loop are of particular importance as they may instantly result in
instability of the controlled system. Thus, it is crucial that faults are efficiently and
timely detected and isolated while the system is in operation. This is essentially the
concept of online health monitoring though, in general, health monitoring may also
be performed offline using stored data in a post-processing capacity to determine if
the system overhaul is necessary. In general, autonomous online health monitoring
and fault diagnosis is essential for mission- and safety-critical systems as opposed
to fail-operational systems, where offline health monitoring and fault diagnosis is
usually sufficient – in order to perform maintenance. In this monograph, the main
focus is on developing a fault diagnosis (FD) methodology that enables online health
monitoring of nonlinear systems; however, the proposed approach can as well be
employed for offline monitoring purposes.

Furthermore, accurate identification of fault severities is an invaluable asset for
system maintenance and development of reliable autonomous recovery procedures.
More precisely, accurate estimation of severities in case of incipient faults allows
system operators and controllers to either very quickly schedule a maintenance ser-
vice for the faulty component, to switch to the redundant component if maintenance
is not possible, or intelligently plan and execute preemptive actions in advance, in
order to avoid catastrophic failures.

1.1 Statement of the Work

In this monograph, the problem of fault detection, isolation, and identification
(FDII) in nonlinear dynamic systems is addressed. A “fault” is considered as an
unpredicted or unexpected change of system behavior such that it either deteriorates

E. Sobhani-Tehrani, K. Khorasani, Fault Diagnosis of Nonlinear Systems Using
a Hybrid Approach, Lecture Notes in Control and Information Sciences 383,
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2 1 Introduction

the performance or demolishes the normal operation of the system. While the former
is usually called an incipient fault, the latter is usually referred to as a total failure.
A failure is usually the result of the progression of an incipient fault over time and
could lead to hazardous situations. Faults in a system are usually classified based
on their time behavior and their severity (i.e., their impact on system behavior).
From time behavior point of view, faults can be classified into the following two
categories:

• Intermittent faults: These faults persist for only a bounded period of time after
their initiation. It should be noted, however, that even upon their termination the
system may not behave in the same manner as before the fault initiation.

• Permanent faults: Once occurred, these faults exist forever unless the faulty
component is serviced/repaired or replaced by a redundant one, if possible.

As far as fault severity is concerned, the following three types of faults may occur
in a system depending on the system or the component being monitored:

• Mono-severity level faults (MSLF): These are faults that occur only at one
single state. For example, a stuck-closed fault in a valve can occur only in one
configuration. Other examples include stuck-open fault in valves, floating fault,
and hard-over failure (HOF) in electric motors.

• Finite multi-severity level faults (FMSLF): FMSLFs are basically comprised
of a set of MSLFs. Failure of a valve, which may be a two-state failure, being
either stuck-open or stuck-closed, is a good example of FMSLFs. Other examples
include HOF and float failure in actuators.

• Infinite severity level faults (ISLF): This type of faults can actually take place
over a continuum, infinite level of severities. Examples of ISLFs include loss
of effectiveness (LOE) and lock-in-place (LIP) in electric motors and almost all
types of sensor faults including bias, drift, loss of accuracy (LOA), freezing, and
sensor calibration error.

The MSLFs and FMSLFs usually occur abruptly, hence the name abrupt faults. On
the contrary, ISLFs usually develop (or grow) over time due to the wear and tear of
system components and thus are often called incipient faults.

A “fault diagnosis system” is a system that is able to detect the presence of
faults in the system under monitoring, determine their locations, and estimate their
severities. In other words, a fault diagnosis system is capable of performing the
three tasks of detection, isolation, and identification of faults, which are defined as
follows [1]:

• Fault detection: To make a binary decision whether everything is fine (nominal)
or something has gone wrong (off-nominal).

• Fault isolation: To determine the location of the fault, i.e., to identify which
component, sensor, or actuator has become faulty.

• Fault identification: To estimate the severity, type, or nature of the fault.
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The relative importance of the above three tasks highly depends on the application
and the system operator’s objective of having a fault diagnosis system. However, the
detection is essential for any practical system, isolation is almost equally important,
and identification is crucial for fault recovery and reconfiguration as well as health
monitoring and maintenance purposes. In this monograph, development of an inte-
grated FDII scheme that is able to simultaneously detect the presence, isolate the
location, and identify the severity of faults in the components of a nonlinear system
is investigated.

Inevitable presence of measurement noise and system disturbances deteriorates
the performance of an FDII scheme by generating false alarms. This is due to the
fact that detailed characteristics of noise and disturbances are unknown and thus
cannot be modeled accurately. Reduction of the sensitivity of the FDII system to
sensor noise and system disturbances does not necessarily solve the problem com-
pletely as it may be accompanied with insensitivity to faults and consequently too
many missed alarms. So, it is highly desired to increase the insensitivity to noise
and disturbances while keeping the FDII subsystem sensitive to faults. In this mono-
graph, the sensitivity of the proposed FDII to measurement noise and system distur-
bances will be investigated and a solution will be proposed to increase the robustness
of the FDII algorithm to measurement noise.

Furthermore, like many other existing FDII schemes, our initial FDII algorithm
development is based on the assumption of full-state measurement. However, in
many practical situations, either some of the system states are not available for mea-
surement or their measurements are costly and highly prone to noise. This drives the
need for FDII algorithms that are able to operate accurately under partial-state mea-
surement. As a result, the development of a state estimation technique that is robust
to occurrence of faults in the system will be investigated. The robust state estimator
will provide the FDII system with accurate and reliable estimates of unmeasured
system states, allowing detection, isolation, and identification of faults even with
partial-state measurements.

Eventually, the applicability of the developed algorithms will be verified for FDII
of a spacecraft’s attitude control subsystem (ACS). The ACS is composed of differ-
ent components such as sensors (e.g., horizon sensors, sun sensors, star trackers,
magnetometers) and actuators (e.g., reaction/momentum wheels, torque rods). The
proposed FDII algorithm can be applied for diagnosis of faults in any of the above
ACS components; however, our focus in this monograph will be on reaction wheel
actuators due to their vital role in maintaining and controlling the attitude of a three-
axis stabilized satellite.

1.2 Motivation of the Work

The consequences of faults can be extremely serious in terms of human fatali-
ties, environmental impact, and economic loss. Furthermore, the ever-increasing
demand for safer, secure, and reliable operation of safety-, business-, and mission-
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critical systems has essentially made fault tolerance in such systems extremely
important. In other words, there is a growing need for the so-called autonomous
fault-tolerant systems that are able to operate autonomously and reliably in pres-
ence of faults and failures in sensors, actuators, and components. Since FDII is an
essential component of an autonomous fault-tolerant system, a high demand exists
for the development of intelligent systems that are able to autonomously detect the
presence, isolate the location, and estimate the severity of faults present and occur-
ring in different components of a complex dynamic system while the system is in
operation.

Figure 1.1 depicts the role of FDII in a fault-tolerant control (FTC) system. As
shown in this figure, once a fault is detected and the corresponding faulty compo-
nent is located within the system, the FDII subsystem provides the reconfiguration
mechanism with accurate estimates of the fault severity in order to allow proper
reconfiguration or restructuring of the control system. If the estimated fault severi-
ties indicate a total loss of a component, then the redundant healthy/non-faulty com-
ponents are chosen to take role in system operation. Otherwise, in case of a partial
breakdown of a component (for example, loss of effectiveness in an actuator, a bias
in a sensor, etc.), either a pre-calculated controller is switched into the system or
some parameters of the controller are adjusted based on the fault severities, in order
to control the new situation. More precisely, the objective of an FTC system is to
modify the operation of the system based on its determined condition, which essen-
tially establishes a tight coupling between the health monitoring and diagnostics
subsystem and the adaptive controller.

Fig. 1.1 The role of FDII in an active fault-tolerant control (FTC) system

In an active approach to FTC design, online restructuring of the control system
or reconfiguration of the controller requires information on the location of faults
(or faulty components), their severities, and their impacts on system operation. The
task of FDII subsystem is to reliably and accurately acquire this information in
order to successfully achieve a smooth and reliable autonomous recovery (or fault
accommodation). For further details on this topic the readers are requested to refer to
the work of Yen and Ho [2], where the dependence between fault diagnosis (FD) and
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fault accommodation (FA) has been well described, and a model-based technique for
online fault diagnosis and accommodation (FDA) has also been presented.

Finally, it should be mentioned that even though in passive FTC design, detailed
information about the nature of faults is not essential for online reconfiguration of
the controller, the safety and reliability of these systems can still be considerably
improved and ensured through deployment of a reliable FDII subsystem.

On the other hand, accurate identification of fault severities is an invaluable
asset for system maintenance operations. Accurate estimation of fault severities
facilitates the early detection of incipient faults and the identification of out-
of-spec behaviors. This consequently allows system operators and controllers to
intelligently plan and execute a priori preemptive actions to avoid system break-
down, catastrophic failures, and mission abortion. Furthermore, recent interest of
aerospace industry in preventive maintenance (as opposed to corrective mainte-
nance) has called for a technological shift in system monitoring and maintenance
operations from traditional scheduled, time-based (or distance-based), fixed inter-
val maintenance practices (which tend to reduce system lifetime and increase sys-
tem down-time, resulting in loss of profit) to condition-based maintenance (CBM)
systems [3–7].

Figure 1.2, for example, depicts an overview of the Swedish maintenance ter-
minology standard SS-EN 13306 [7]. According to this standard, maintenance is
divided into corrective and preventive maintenance. With the corrective approach,
maintenance is performed after a breakdown or whenever an obvious fault has
occurred and is detected in the system. Depending on the functionality and criti-
cality of the failed component and the severity of the occurred fault, maintenance
action must be performed immediately; for others, the maintenance action can be
deferred in time.

Maintenance

Corrective 
Maintenance

Preventive 
Maintenance

Predetermined 
Maintenance

Condition Based 
Maintenance

Scheduled
Continuous or 

on-demand
Deferred Immediate

Fig. 1.2 Overview of the Swedish maintenance terminology standard SS-EN 13306 [7]
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On the contrary, maintenance is performed in the preventive approach in
order to prevent equipment breakdown by repairing, servicing, or exchanging the
failed/faulty component. It can be seen in Fig. 1.2 that in the Swedish standard, the
preventive maintenance has been divided into two categories including condition-
based and predetermined maintenance. The predetermined is scheduled in time-
based (or distance-based) fixed intervals, while the CBM can have dynamic or on-
demand intervals.

In CBM systems, maintenance actions are planned based on actual condition
(objective evidence of need) of a component obtained from in situ, non-invasive tests
and condition/health assessments [4]. In other words, the main idea behind CBM
systems is to estimate the health status of a component under operation with the
objective of deciding whether it is in need of maintenance or not, and if so at what
time do the maintenance actions need to be executed in order to avoid a breakdown
or malfunction. The degree of automation in assessing the health condition can vary
from human visual inspection to fully automated systems with sensors, diagnosis,
prognosis, and health monitoring modules.

The development pace in CBM systems has been increased over the past few
years. As a result, several products, standards, and standardization proposals have
been developed within the CBM technical community. One of the most important
of these standards is the open system architecture for condition-based maintenance
(OSA-CBM) [8], which was originally developed by an organization with the same
name, but is currently managed by the MIMOSA (Machinery Information Manage-
ment Open Systems Alliance) [9] standards body. The OSA-CBM has been devel-
oped as a de facto standard that encompasses all the components essential for a
functional CBM system. The OSA-CBM standard is a modular solution that divides
the CBM system into seven different layers including: (i) sensor module, (ii) sig-
nal processing module, (iii) condition monitoring module, (iv) health assessment
module, (v) prognostic module, (vi) decision support module, and (vii) presentation
module.

The diagnosis, prognosis, and health management (DPHM) [3] is thus a crucial
component of an autonomous CBM system. Diagnosis is essentially equivalent to
FDII and is responsible for estimating the current health state of a system through
the utilization of online sensing/measurement devices. Prognosis entails predicting
the future health state of a system and its components using the system’s current
health state and diagnostics information provided by the FDII subsystem, historical
failure rate data, and appropriate fault evolution models. A reliable prognosis tool
enables accurate prediction of fault evolution through accurate estimation of time-
to-failure (TTF) and remaining useful life (RUL) of a component. These two param-
eters constitute the prognostics information of a system, which make it feasible to
determine the future health state of the system and consequently provide indications
of failure precursors. This essentially allows in-advance planning of optimal main-
tenance schedules in order to maximize system up-time, minimize time-to-repair
(TTR), optimize maintenance costs, and avoid catastrophic failures. This can be
achieved through development of a maintenance scheduler that can generate optimal
maintenance schedules based on system prognostics information and future usage
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plans of the system, taking into account the maintenance team objectives and con-
straints such as the number of available support crews and the availability of parts
and resources needed to perform the required maintenance operation [3].

Figure 1.3 depicts an autonomous CBM system including the DPHM module and
the maintenance scheduler. The figure also demonstrates the role of FDII within the
DPHM module. As can be seen in the figure and as described above, FDII plays an
extremely important role in a CBM system. Any inaccuracies involved in the esti-
mation of system health state by the FDII subsystem will simply propagate across
the entire CBM system, which consequently deteriorates the overall performance
of the CBM system even with very precise prognosis and maintenance scheduler
algorithms.

Fig. 1.3 The role of FDII in DPHM module of a CBM system

In conclusion, the development of a reliable and accurate FDII subsystem is
extremely important for both FTC and CBM systems. The problem of FDII for lin-
ear systems has received considerable attention over the past three decades Therfore,
the majority of fault diagnosis methods are based on either linear system models or
linear approximation of nonlinear system models around an operating point. How-
ever, almost all practical systems operate around a wide dynamic operating range,
thus showing nonlinear behavior that cannot be accurately modeled with linear mod-
els. Therefore, it is necessary to design and develop FDII techniques that can tackle
dynamic nonlinear systems directly.

Furthermore, the fault isolation and identification problems in nonlinear sys-
tems are even more complex than the detection problem and thus have been less
investigated. More specifically, identification of fault severities in nonlinear sys-
tems has received considerably less attention in the literature. However, with the
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recent increasing demand for FTC and CBM systems, accurate estimation of fault
severities (i.e., fault identification) has become increasingly important.

Moreover, there is a lack of integration in the FDII approaches proposed in the
literature. More precisely, most of the proposed techniques address only the fault
detection and isolation (FDI) problem and tackle the fault identification issue using
a separate subsystem, which essentially makes the FDII subsystem structurally
more complex. Thus, an integrated FDII solution that can simultaneously perform
the three tasks of detection, isolation, and identification with minimum interaction
among the tasks is highly desirable.

1.3 Objectives of the Research

The objectives of this monograph is to develop an integrated FDII scheme for non-
linear systems that is robust to sensor noise and system disturbances, and is able
to operate even in presence of partial-state measurements. The FDII scheme should
not only be able to reliably detect the presence and isolate the location of anomalies
in nonlinear systems, but also accurately estimate their severities after their occur-
rence. Furthermore, the FDII subsystem should be robust with respect to system
disturbances and measurement noise, in order to minimize false alarms while the
system is under healthy mode of operation.

Moreover, the FDII system should be able to operate accurately enough even
in cases where some of the system states are not available for measurement (i.e.,
partial-state measurement). Thus, another objective of the research is to develop
a state estimation algorithm that can provide accurate estimates of the unmea-
sured states of the system even in presence of faults or anomalies (i.e. that is
robust to occurrence of faults), and can eventually be integrated into the FDII
subsystem.

Finally, the effectiveness of the developed integrated FDII scheme has to be ver-
ified and validated by applying it to diagnostics of a practical engineering system.
For this purpose, the integrated FDII scheme will be applied for detection, isolation,
and identification of faults in reaction wheel actuators of a satellite’s ACS in pres-
ence of measurement noise, satellite and reaction wheel disturbances, and partial
measurement of the states of the reaction wheel.

1.4 Literature Review

In the following, we will provide an overview of the fault diagnosis literature in
general and fault detection methodologies in particular. A more formal presenta-
tion of the FDII problem and some of the methodologies developed for FDII in the
literature, especially for fault isolation and identification tasks, will be provided in
Chapter 2.
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Development of autonomous FDII algorithms, and more specifically autonomous
FDI algorithms, has received considerable attention since the 1980s and 1990s. The
most traditional approach to FDI is primarily based on signal processing techniques
as applied to system measurements. This is generally achieved using either of the
following two approaches:

(i) Time domain limit checking and/or trend analysis by comparing the statistics of
the measurable states and outputs of the system with nominal operational limits
[1]. Dynamic trend analysis, also widely known as qualitative trend analysis
(QTA), is one of the most common trend analysis techniques for fault diagnosis
and classification [10]. The QTA technique involves the two steps of extraction
of the trends/features from the data and the interpretation of the trends to arrive
at meaningful conclusions about the state of the process. A large number of
methods have been developed in the literature for trend extraction and repre-
sentation including the fundamental work of Cheung and Stephanopoulos [11]
in developing a formal language for representing trends, a neural network-based
extraction of primitive trends [12], a fuzzified symbolic representation of trends
[13], and a wavelet-based method for the extraction of qualitative trends [14].
Trend interpretation has also received considerable attention since early 1990s
and as a result a number of methods have been developed for estimation of sim-
ilarity measures between extracted trends [10], also known as trend-matching
algorithms. Some of the proposed algorithms include the use of hidden Markov
models (HMM) for trend matching [15], dynamic time warping (DTW) for
similarity estimation [16], and most recently a fuzzy primitive-similarity-based
approach for the estimation of trend similarity and consequently a fuzzy infer-
ence framework for fault diagnosis [17].

(ii) Frequency or mixed time-frequency domain analysis of the time-series of sys-
tem states and outputs measured by system sensors. The most popular signal
processing algorithms that have been widely used for FDI purposes are the
discrete Fourier transform (DFT) and the discrete wavelet transform (DWT),
which extract frequency and time-frequency features from time-series data,
respectively. More specifically, DWT has been extensively used since mid
1990s as a feature extraction tool for fault diagnosis [18, 19] of machinery
components such as gearbox [20] and bearing [21, 22].

The major drawback of such signal processing techniques is that they do not
consider the dynamic interrelationship between the measured signals of the sys-
tem. This would essentially result in the generation of numerous false alarms by the
FDII subsystem. To overcome this drawback and reliably detect and isolate faults
(i.e., faulty components) in a system, some form of redundancy is required. The
redundancy is basically employed to perform consistency checks between multiple
measurements in the system that are mutually related.

Traditionally, redundancy and therefore fault diagnosis is achieved by using extra
hardware, which is known as hardware (or physical/parallel) redundancy approach
to fault diagnosis. In this approach, multiple lanes of a critical component such as
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an actuator (or a sensor) are used to control (or measure) a particular variable in the
system. Typically, a voting scheme is then applied to the hardware-redundant sys-
tem to perform consistency checks between signal levels and trends of the multiple
identical components, in order to decide if a fault has occurred and determine its
location. The hardware redundancy is commonly used in mission and safety-critical
systems such as digital fly-by-wire flight systems and nuclear reactors. Even though
hardware redundancy approach provides high performance and is known to be very
reliable, it comes at the expense of (i) extra equipment and maintenance cost, and (ii)
extra space required for the extra hardware, which can be of significant importance
for some applications (e.g., space applications). Furthermore, hardware redundancy
approach becomes impractical and unreliable in applications where identical dupli-
cation of some specific components is extremely difficult.

Consequently, another approach to create redundancy known as analytical redun-
dancy was introduced in the early 1970s by Beard [23], where instead of using extra
hardware the redundancy is supplied by an analytical (or a mathematical) model of
the component or the entire monitored process. Accordingly, fault diagnosis systems
that are based on analytical redundancy are often called model-based fault diagnosis
systems. The main advantage of the analytical redundancy-based approach is that no
additional hardware copies of a component are needed for realizing a fault diagnosis
algorithm.

Figure 1.4 depicts a general structure of the analytical redundancy-based versus
the hardware redundancy FDI as applied to the monitoring of a control system. In
the analytical redundancy approach, the mathematical relationship between differ-
ent variables within the system, imposed by the analytical model of the system,
serves as a reference point for fault diagnosis. More specifically, whenever sys-
tem measurements are violating these relationships, the presence of a fault (or a
faulty component) in the system is concluded. The violation from analytical rela-
tionships after the occurrence of faults is reflected in a set of signals known as
residuals. Thus, the residual signals should ideally (i.e., under no process and mea-
surement noise) be equal to zero when the system is healthy and should deviate
from zero when faults occur in the system. However, in presence of measurement
noise and system disturbances, the residual signal shall remain in the vicinity of zero
under healthy system conditions and diverge from zero neighborhood (i.e., exceed
certain threshold bounds around zero) when faults occur in the system. There-
fore, analytical redundancy-based fault diagnosis can be defined as the detection
and identification of faults in a system through evaluation and analysis of residual
signals.

The analytical model in an analytical redundancy-based FDI system can take
a variety of forms including ordinary differential equations, intelligent data-driven
models, and expert system models. Hence, analytical redundancy-based fault diag-
nosis can broadly be pursued in three distinct frameworks based on the way the
a priori knowledge about the system is being represented and utilized. The first
one is the mathematical model-based framework [1, 24–26], where a priori knowl-
edge of the system is represented by the system’s mathematical model derived
using physical principles. The second one is the learning-based (or computational
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Fig. 1.4 Analytical versus hardware redundancy-based FDI as applied to the monitoring of a
control system

intelligence-based) framework [3, 27], which relies heavily on the system’s his-
torical data and data-driven models of the system. References [28, 29] provide an
extensive comparison of the various methods within the above two frameworks.
Finally, the third framework includes the expert system-based (or fuzzy rule-based)
approaches to FDI [30–34], which use an expert’s knowledge of the system opera-
tion and its failure modes to obtain a qualitative model of the system.

As shown in Fig. 1.4, the analytical redundancy-based FDI, in general, consists of
two main stages: residual generation and residual evaluation (or decision-making).
This two-stage structure was first introduced in [35] and is currently widely accepted
by the fault diagnosis community. The residual generation stage aims at generating
residual signals using available input/output measurements from the monitored sys-
tem. As mentioned previously, the residual signal should stay close to zero when
no fault is present in the system, but should distinguishably diverge from the zero
neighborhood (specified by appropriate thresholds) when a fault occurs. Thus, the
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residual generation stage is essentially a procedure for extracting fault symptoms
from the system measurements.

In the residual evaluation stage, on the other hand, the generated residuals are
inspected for the fault signatures and fault presence is determined by applying a
decision rule. The decision rule may simply be a threshold test on the instantaneous
values or moving window averages of the residuals or it may consist of more com-
plex statistical methods such as generalized likelihood ratio (GLR) testing [36] or
sequential probability ratio test (SPRT) [37, 38].

Since 1980s, most of the research work in analytical redundancy-based fault
diagnosis is focused on the residual generation problem due to its higher impor-
tance, in the sense that well-designed residuals make residual evaluation process
fairly simple. As a result, most of the proposed FDI methods employ simple thresh-
old techniques for decision-making based on residuals. Frank and Ding [39] provide
a survey of the most widely used residual evaluation methods. However, some work
has also been reported in the literature on developing more advanced residual eval-
uation techniques using fuzzy logic [40] and, more recently, adaptive thresholds
[41, 42]. Since in this monograph we will use a simple, but widely used, threshold
testing technique for residual evaluation, we will focus on reviewing only residual
generation strategies that have been proposed in the literature.

Residual signal generation is generally achieved by comparing a measured signal
with its estimate, where the estimate is obtained through a priori information and
knowledge of the system being monitored. The a priori knowledge of the system
can take a variety of forms including mathematical models, historical data saved
into databases, and a set of rules stored in a rule base or knowledge base. Hence,
residual generation from system inputs and outputs can, in general, be achieved
using mathematical model-based, learning-based, and knowledge-based methods,
which employ physics-based mathematical models of the process, historical data of
the process measured by sensors, and human expert knowledge of the system and
its faults, respectively.

In general, the mathematical model-based residual generation approaches aim
at generating a set of residuals that reflect the discrepancies between the actual
behavior of a system and the expected behavior given by its model. To enable
fault isolation, usually a structured set of residuals is required, where each resid-
ual is affected only by a specific set of faults and remains insensitive or robust
to the other faults. Furthermore, to ensure the robustness of the FDI system with
respect to various sources of uncertainties such as perturbations/disturbances, mea-
surement noise, modeling inaccuracies, and unmodeled dynamics, the structured
set of residuals must be designed in a way that remains insensitive to these
uncertainties.

In general, three main model-based approaches are used to generate residuals.
The first is the observer-based (or filter-based or state estimation-based) methods
[24, 43], which consist of a model-based reconstruction of the system outputs from
sensor measurements (or a subset of system measurements), and defining the resid-
uals as the difference between the actual measurements and the model-based esti-
mates. The observer-based FDI techniques have been equally applied for both linear
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and nonlinear systems. The system outputs are estimated from the measurements by
using, for example, linear or nonlinear observers [44], sliding-mode observers [45],
and high-gain nonlinear observers [46] in a deterministic setting, and Kalman fil-
ters (including linear Kalman filter, extended Kalman filter (EKF), and unscented
Kalman filter (UKF) [47, 48]) [49] or receding horizon estimators (RHE) [50–53]
in a stochastic setting. While the output estimation error is defined as the residual in
the deterministic framework, the innovation sequence comprises the residual in the
stochastic case.

The second is the parity space approach [25, 54, 55], where the residual is gen-
erated using the so-called parity functions defined over a time window of system
input–output data. Parity space method is based on simple algebraic projections
and geometry, and the basic idea behind this method is to provide an appropriate
check of the parity or consistency of the various measurements within the moni-
tored system [25]. Reference [55] provides a comprehensive description of the par-
ity space method and reference [54] demonstrates its application to fault diagnosis
of an operating nuclear reactor. Parity space technique has also been successfully
applied to fault diagnosis of inertial navigation systems [56]. Although parity space
method has been primarily developed and applied for linear systems, it has been
recently applied for fault estimation of nonlinear systems [57]. Furthermore, it has
been shown in [58, 59] that the parity space approach is equivalent to the high-gain
observer-based method. However, it should be noted that the parity space method
is more sensitive to measurement noise and process noise (or disturbance) as com-
pared to observer-based methods, which are more robust to noise and disturbances
due to their closed-loop structure.

Finally, the third approach to residual generation is parameter estimation [26, 60].
This approach is based on the assumption that the faults are reflected in the physical
parameters of the system. Hence, in order to identify faults, the system parameters
are estimated online using well-known parameter estimation techniques. The resid-
uals in this approach are essentially the difference between the online estimates of
the system parameters and their corresponding values under fault-free conditions.
The parameter estimation approach was initially developed for linear systems due
to the availability of extremely well-known linear parameter estimation methods.
However, recent advances in nonlinear parameter estimation using, for example,
UKF and adaptive neural networks have made it possible to use parameter estima-
tion approach for FDII of nonlinear dynamic systems [53, 61].

An alternative approach to the model-based residual generation is the so-called
learning-based method, which has the potential to learn the plant model from his-
torical input–output data of the system. The learned data-driven model can then be
used to serve as the analytical model for residual generation. This approach becomes
increasingly more appealing for situations where high-fidelity mathematical model
of the monitored system does not exist or is extremely difficult to obtain. The
main challenge though is to ensure that sufficient amount of data from the healthy
operational mode of the system is available. References [62–64] provide detailed
surveys of fault diagnosis using learning-based methods, which are often called
computational intelligence-based methods, artificial intelligence-based methods,
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soft-computing approaches, or simply intelligent methods. According to the FDI
literature, artificial neural networks, fuzzy logic, and neuro-fuzzy systems are the
most widely used intelligent approaches to fault diagnosis. Wherever fuzzy logic
is employed, the availability of expert knowledge of the system encoded as a set
of fuzzy if-then rules is implicitly assumed. Whenever expert knowledge is not
available and the fuzzy rules are obtained using qualitative physics, neural net-
works are profoundly used for learning (or determining) the parameters of those
rules from historical input–output data of the system, hence the name neuro-fuzzy
systems.

As mentioned above, neural networks are among the most widely used intelligent
techniques for FDII. This is mainly due to their distinguished ability to approximate,
to an arbitrary level of accuracy, any continuous nonlinear function, given suitable
network parameters (or weights), architecture, and learning algorithm [65]. Indeed,
neural networks are able to learn nonlinear functions from examples. They have
the ability to make intelligent decisions even in cases where system data are cor-
rupted with noise. They also have a highly parallel structure, which is expected to
achieve a higher degree of fault-tolerance than conventional function approxima-
tion schemes and, last but not the least, they are readily applicable to multivariable
systems. Neural networks can also be applied to process condition/health monitor-
ing, where the focus is on identification of small irreversible changes (i.e., incipient
faults) in the process that may develop into bigger faults. Reference [3] takes a look
at the cutting-edge discipline of intelligent and in particular neural network-based
DPHM technologies for predictive maintenance or CBM of engineering systems.
Practical case studies of especially DPHM in rotating machinery are also provided
therein to illustrate the enabling technologies.

1.5 Proposed Fault Diagnosis Scheme

The FDII scheme proposed in this monograph is a nonlinear fault diagnosis method,
which is based on a synergy of multiple frameworks and approaches to fault diag-
nosis. This synergy takes place at various levels and can be described from different
perspectives. The first and possibly the most important aspect of this synergy is that
the proposed FDII technique is a hybrid solution, in the sense that it benefits from
both mathematical model of the system and the adaptive nature of intelligent tech-
niques, especially neural networks. In essence, the proposed hybrid framework to
FDII is an integration of the previously introduced model-based and computational
intelligence-based approaches to fault diagnosis.

The mathematical models employed in this hybrid solution involve models
of healthy as well as faulty operation of the system. More precisely, a multi-
parameterized fault model is defined and developed, which is basically a param-
eterized dynamic nonlinear model. The parameters of this model are called fault
parameters (FPs) and are defined in a way that a one-to-one correspondence can be
established between their values and the health state of the physical system
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components. Thus, the proposed FDII solution aims at an online estimation of the
fault parameters from system measurements (under full-state measurement assump-
tion) in order to determine the health state of the system. This essentially connects
the proposed method to the formerly mentioned parameter estimation approach to
fault diagnosis, which is based on the assumption that system component faults are
reflected in the physical system parameters. However, a modified version of the pro-
posed FDII method is also presented that is applicable to systems with partial-state
measurements. This leads us to the second aspect of the synergy, where not only the
fault parameters have to be estimated, but also the unmeasured states of the system.
In essence, a combination of online state and parameter estimation (also called dual
estimation) is developed to achieve FDII under partial-state measurement condition.
Since state estimation is achieved using a special type of adaptive filters, the pro-
posed FDII method can also be viewed as an integration of the filter-based and the
parameter estimation-based approaches to fault diagnosis.

The third aspect of the synergy is the use of multiple models to enable fault
isolation. Since early 2000, the multiple-model (MM) approach has become very
popular and widely applied for the estimation, health monitoring, and control of
dynamic systems (see references [66–68], respectively). The MM approach is based
on a set (or a bank) of models that represent possible patterns of system behavior or
system structure. The model set (or the bank of models) thus includes models corre-
sponding to healthy and faulty modes of the system. Usually one model in the bank
is associated to the healthy operational mode and the rest of the models correspond
to various possible fault scenarios in the system. However, multiple models associ-
ated to healthy operational mode can also co-exist in the bank if the system structure
changes during healthy operations. Nevertheless, the MM approach enables explicit
modeling of changes in the system behavior by “switching” from one model to
another. Changes in the system behavior may involve structural as well as paramet-
ric changes and may take place due to occurrence of faults and/or changes in the
system’s operating point.

The MM approach to fault diagnosis traditionally includes a finite number of
nonparametric models, which can essentially represent only a finite set of system
behavior. Following this, a bank of filters or state estimators is designed to operate
in parallel at each instant of time, where each filter is designed based on a par-
ticular model in the model set. This works absolutely well for systems with finite
number of fault severity levels (for example, stuck-closed and stuck-open failures
in control valves and hard-over and float faults in motor actuators). However, in
many engineering systems, occurrence of faults only degrades the performance of
a component, actuator, or sensor, and the degradation can take place with a con-
tinuum, infinite level of severities. Examples of these kinds of faults include loss-
of-effectiveness (LOE) and lock-in-place (LIP) faults in motor actuators and most
types of sensor faults such as bias, drift, loss of accuracy, and freezing. Many com-
ponent faults also fall into this category such as body damage fault in an aircraft.
Accurate and reliable severity identification of these faults, especially at early stages
of fault progression, is of utmost importance to avoid catastrophic failures, and also
to plan maintenance actions in advance and execute them in time.
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Ideally, the traditional MM-based approaches to fault diagnosis would be able to
accurately identify fault severities only if infinite number of models (or quantization
levels) coexist in the model bank, which makes them computationally unfeasible
and thus impractical. The fault diagnosis approach proposed in this monograph
resolves this practical problem by defining multiple parameterized fault models
(PFM), where the parameters can take essentially infinite number of values (i.e.,
the parameter values can vary over a continuum). Thus, the PFM set (or bank) is
implicitly unbounded.

Putting all the synergistic aspects together, we can assert that the FDII
methodology proposed in this monograph is a hybrid, multiple-model, dual
(state and parameter) estimation-based approach to fault diagnosis of nonlinear
systems.

1.6 Contributions of the Monograph

In this monograph, a novel fault detection, isolation, and identification (FDII)
methodology for nonlinear systems is proposed that possesses a number of noble
features, which distinguish it from most of the existing fault diagnosis techniques.
First, the proposed FDII solution provides an integrated framework to simultane-
ously detect, isolate, and identify (i.e., estimate the severity of) faults in the compo-
nents of a general nonlinear system. More precisely, while most of the standard FDII
approaches in the literature incorporate either two or three separate subsystems (or
subroutines) to accomplish the three tasks of detection, isolation, and identification,
our integrated solution enables us to accomplish the three tasks within a unified,
integrated module. More precisely, most of the FDII techniques traditionally consist
of three submodules: a residual generation module for detection, a residual post-
processing module for isolation, and an extra identification module for estimating
the severity of faults based on system measurements and the information provided
by FDI. Even though some of the more advanced FDII approaches in the literature
have merged the detection and isolation submodules into a single subsystem through
generation of special types of residual signals (for example, directional residuals),
they still use a separate module for fault identification.

Second, the proposed novel FDII methodology is a hybrid approach to nonlinear
fault diagnosis, which efficiently and effectively utilizes the a priori mathematical
model information of the system together with the adaptive and self-learning capa-
bilities of computational intelligent techniques within a unified framework. Even
though hybrid diagnostic methods are recently being more developed in the litera-
ture, but the domain of hybrid fault diagnosis still needs to be much further investi-
gated and explored.

The third innovative aspect of the proposed FDII methodology is its ability to
accurately and reliably estimate the severity of incipient faults in nonlinear systems.
In fact, there are very few fault diagnosis techniques in the literature that address the
problem of incipient fault identification in nonlinear systems since this domain of
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research, despite its undeniable importance, has received considerably less attention
as compared to fault detection and isolation.

The fourth novelty of this monograph is the development of two schemes of
the proposed hybrid nonlinear FDII technique, namely series-parallel and parallel,
which enable robustness of fault diagnosis with respect to measurement noise and
the closed-loop system transients due to changes in the control command inputs,
respectively. More specifically, the proposed series-parallel FDII scheme, though
being very sensitive to measurement noise, very quickly detects and isolates faults
(i.e., with a very short delay) and also exhibits robustness to the changes in the con-
trol command signal. Therefore, the series-parallel scheme is perfectly well suited
for monitoring of high signal-to-noise ratio (SNR) systems with frequent control
commanding and stringent safety- and reliability-related requirements on delays in
FDI. On the other hand, the parallel scheme is extremely robust to measurement
noise and it can very reliably perform FDI and very accurately estimate fault sever-
ities even in presence of large measurement noise. This makes the parallel scheme a
definitive choice for reliably monitoring systems with low SNR specifications. The
enhanced reliability of the parallel FDII scheme as compared to its series-parallel
counterpart is due to its rigorous fault isolation capability as well as the simplic-
ity of its fault isolation decision logic. It should be noted that the robust parallel
FDII scheme proposed in this monograph is an entirely new development in the
literature. On the other hand, the novel aspects of the series-parallel scheme as com-
pared to other two similar FDI methods proposed in the literature (Alessandri [69]
and Sobhani-Tehrani [70]) are (i) remarkably simpler neural network architecture
and adaptation laws, (ii) more solid fault isolation results due to the first-time use
of a bank of single-parameter fault models, and (iii) fault severity identification
capability.

The series-parallel and the robust parallel hybrid nonlinear FDII techniques dis-
cussed above, both rely on the availability of full-state measurements of the system.
The full-state measurement assumption is, in fact, very popular among most of the
nonlinear diagnostic methodologies proposed in the literature. However, there are
a few reasons – provided and discussed in detail in Chapter 4 – as to why this can
be a relatively restrictive assumption, which can possibly render a fault diagnosis
system designed based on this assumption impractical or unreliable. The fifth con-
tribution of this monograph essentially addresses this issue by extending the pro-
posed series-parallel and parallel FDII schemes to systems with partial-state mea-
surement. This is achieved through development and deployment of a fault-tolerant
observer (FTO) that estimates the states of the system using system input and out-
put signals (or measurements) even in presence of faults in system components. The
estimated states are then employed as inputs to the proposed FDII subsystem. If
some of the system states are directly measured, then the estimates of the unmea-
sured states – obtained from an essentially reduced-order FTO – together with the
actual measured states – obtained from sensors – comprise the inputs to the FDII
module. A fault-tolerant observer (FTO) terminology or notion is proposed in this
monograph for the first time in the literature, though a very similar concept has
been previously proposed and extensively investigated in the literature under the
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terminology of unknown input observers (UIO). The UIOs have the capability of
estimating the states in presence of unknown inputs. Thus, considering faults as
unknown inputs of the system, the UIOs may be employed to provide state estimates
that are decoupled from faults. However, in the literature, the UIOs have been mainly
developed within the context of robust control and robust fault diagnosis, where
modeling uncertainties and external disturbances – rather than faults – are modeled
as unknown inputs. Consequently, the objective in UIO design is to make the con-
trol system and fault diagnosis subsystem robust with respect to modeling errors
and external disturbances, which is basically different from the purpose of FTO as
described above.

The FTO method developed in this monograph is called the Kalman filter struc-
ture preserving neural state estimator (NSE). It should be noted, however, that the
structure/architecture of this NSE is not a novelty of this monograph and has been
borrowed from the optimal filtering and state estimation literature. Instead, it is
the new weight update laws of the NSE that comprise another contribution of this
monograph.

Finally, the application of the proposed algorithms to fault diagnosis in reaction
wheel actuators of spacecraft attitude control system (ACS) comprises the practical
– as opposed to theoretical – contribution of this monograph. Reaction wheels,
although being largely deployed on-board numerous modern satellites, are very sen-
sitive devices and are susceptible to various anomalies. Hence, there is high demand
for fault diagnosis algorithms to monitor these devices. As a result, fault detection
and isolation (FDI) in reaction wheels has been extensively investigated over the last
few years. However, they have entirely missed addressing incipient fault identifica-
tion or severity estimation in these devices, which thus can essentially be considered
as a practical contribution of this monograph.

1.7 Outline of the Monograph

This monograph is organized as follows. Chapter 2 formally defines the fault diag-
nosis problem in nonlinear systems and presents a comprehensive literature review
and analysis of different approaches to fault detection, isolation, and identifica-
tion (FDII) of linear and nonlinear systems. The model-based and computational
intelligence-based approaches to fault diagnosis have been extensively reviewed and
analyzed, and a number of well-known methodologies within each framework are
further demonstrated and their respective pros and cons are cited. Chapter 3 demon-
strates the series-parallel and the robust parallel structures of the hybrid nonlinear
FDII methodology under full-state measurement assumption, which is the core con-
tribution of this monograph. Chapter 3 also introduces a specific formulation of the
problem of FDII in nonlinear systems as a nonlinear parameter estimation problem
using the notion of parameterized fault models (PFMs). A short survey of vari-
ous model-based and computational intelligence-based nonlinear parameter estima-
tion techniques is also performed in this chapter. In Chapter 4, the theory of state
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estimation or filtering has been comprehensively reviewed initially in order to design
and develop a fault-tolerant state estimator that enables FDII under partial-state
measurement conditions. A specific adaptive neural state estimator (NSE) is then
designed and its integration with the proposed hybrid FDII schemes are described
in this chapter. Chapter 5 explains the spacecraft’s ACS and reaction wheel actua-
tors to which the proposed fault diagnosis algorithms are applied. Simulation results
demonstrating the effectiveness and validating the properties (such as robustness) of
the proposed FDII algorithms have also been proposed in this chapter. Finally con-
cluding remarks and future research directions are included in Chapter 6.



Chapter 2
Fault Detection and Diagnosis

In this chapter, we start with the formal definition and formulation of the fault detec-
tion and diagnosis problem in nonlinear systems. Then, desired attributes of a fault
diagnosis system and the rationale behind each attribute are discussed. A compre-
hensive survey and analysis of the literature on model-based and computational
intelligence (CI)-based approaches to fault diagnosis is then presented with indi-
vidual emphasis on the tasks of detection, isolation and identification. A number
of well-known methodologies within each approach are further demonstrated, and
their respective advantages and disadvantages are highlighted. Finally, the issue of
robustness in fault diagnosis is introduced and briefly discussed.

2.1 Problem Formulation

In this section, the problem of detecting, isolating, and identifying faults in a gen-
eral nonlinear system is formulated. Toward this end, consider a general nonlinear
dynamic system described by the following nonlinear discrete-time state-space rep-
resentation:

xk+1 = f (xk, uk) = Γ (xk)wk

yk = h (xk) + vk
(2.1)

where xk ∈ Rn is the system state vector, f : Rn × Rr → Rn, h : Rn → Rm

are smooth nonlinear vector-valued functions (or vector fields) on their respective
domains, uk ∈ Rr is the control input vector, yk ∈ Rm is the system output vector,
and wk and vk represent system disturbances and measurement noise, respectively.
The vector fields f and h represent the dynamics and output equation of the nominal
model of the system. The state-dependent function Γ(.) essentially represents the
channel over which the external disturbances are applied to the system. In many
systems this function is simply a matrix gain. It is assumed that all system states are
available for measurement. It is also assumed that disturbances and measurement
noise are bounded signals, that is

E. Sobhani-Tehrani, K. Khorasani, Fault Diagnosis of Nonlinear Systems Using
a Hybrid Approach, Lecture Notes in Control and Information Sciences 383,
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‖wk‖ ≤ Dmax, ‖vk‖ ≤ Nmax ∀k ∈ N (2.2)

Under full-state measurement assumption, the output equation in (2.1) can be
redefined as yk = Cxk + vk , where C is an n × n identity matrix.

In this monograph, we are concerned with diagnosis of faults that occur in
the components of the open-loop system. More precisely, even though the per-
formance of the proposed FDII technique will be assessed in an operational
closed-loop setting, we assume that no faults may occur in the system con-
troller. There are two main reasons for this assumption. First, modern control
systems are computer-controlled and are thus more reliable and less prone to
errors. Second, faults/errors that may occur in the controller software are usu-
ally handled using an entirely different error handling and accommodation mech-
anisms, which are mostly developed by researchers in the computer science
community.

As far as the open-loop system is concerned, the system under consideration can
be decomposed into three parts including sensors, actuators, and system dynam-
ics. Figure 2.1 shows this decomposition that is also often used in practice. As can
be observed from this figure, faults may occur in any of the three components of
the open-loop system as described below. Furthermore, the plant dynamics and the
sensor measurements are always affected by external system disturbances (or pro-
cess noises) and measurement noises, respectively. A reliable fault diagnosis sys-
tem should be able to distinguish faults from system disturbances and measurement
noise. More precisely, the fault diagnosis system must be robust to these uncertain-
ties while remaining sensitive to faults. The robustness of an FDII system to various
sources of uncertainties is of utmost importance, which will be further discussed in
Section 2.5. In the following, we will describe the various sources of faults in the
open-loop system.

w(t)

uc(t)

Control signal

Actuators Plant
Dynamics Sensors

Actuation signal Plant Outputs Measured Outputs

fA(t)
fc(t)

fs(t)

ua(t) yp(t) y(t)

ν (t)

Fig. 2.1 Decomposition of the open-loop system components and possible occurrence of faults
in them

(i) Sensor faults: Sensors are basically the output interface of a system to the
external world, and convey information about a system’s behavior and its internal
states. Therefore, sensor faults may cause substantial performance degradation of
all decision-making systems or processes that depend on data integrity for mak-
ing decisions. Such systems include, but not limited to, feedback control systems,
safety control systems, quality control systems, navigation systems, surveillance
and reconnaissance systems, state estimation systems, optimization systems, and
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particularly health monitoring and fault diagnosis systems. For example, in a feed-
back control system, sensors are used either to directly measure system states or to
generate state estimates for the feedback control law. Thus, the presence of faults in
sensors may deteriorate state estimates and consequently result in inefficient and/or
inaccurate control.

Common sensor faults/failures include: (a) bias; (b) drift; (c) performance degra-
dation (or loss of accuracy); (d) sensor freezing; and (e) calibration error [71].
Figure 2.2 depicts the effect of the above faults on system measurements.

Fig. 2.2 The effect of
various sensor faults on
system measurements [73]

Moreover, the mathematical representation of the above sensor faults is as
follows [71]:

yi (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi (t) ∀ t ≥ t0 No failure

xi (t) + bi ḃi (t) = 0, bi (tFi ) 	= 0 Bias
xi (t) + bi (t) |bi (t)| = ci t, 0 < ci << 1 ∀ t ≥ tFi Drift

xi (t) + bi (t) |bi (t)| ≤ b̄i , ḃt (t) ∈ L∞ ∀ t ≥ tFi Loss of accuracy

xi (tFi ) ∀ t ≥ tFi Sensor freezing

ki (t)xi 0 < k̄ ≤ ki (t) ≤ 1 ∀ t ≥ tFi Calibration error

(2.3)
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where tFi denotes the time of fault occurrence on the ith sensor and bi denotes
its accuracy coefficient such that bi ∈ [−b̄i , b̄i

]
where b̄i > 0. Furthermore, it is

seen that ki ∈ [k̄i , 1
]
,where k̄i > 0 denotes the minimum sensor effectiveness. We

can represent the above cases, except the freezing case, with the following general
mathematical model:

y = km x + B (2.4)

where Km is a positive definite diagonal matrix whose elements are slowly varying
within

[
k̄i , 1

]
and elements of vector B slowly vary within

[−b̄i , b̄i
]
.

(ii) Actuator faults: In many electromechanical or electrochemical systems,
control signals from the controller (for example, a microprocessor or a microcon-
troller) cannot be directly applied to the system. Actuators are needed to transform
control signals to proper actuation signals such as torques and forces to drive the sys-
tem. Actuators are thus the control effectors of a system. Therefore, consequences
of the occurrence of anomalies in system’s actuators may vary from higher energy
consumption (due to an incipient fault) to total loss of control (due to total failure of
an actuator).

Actuator faults are usually dependent on the actuator type. However, common
types of faults have been identified for specific types of actuators. For example, com-
mon faults in control valve actuators include stuck-open, stuck-closed, and abnormal
leakage. Another common set of actuator faults especially in servomotors include
(a) lock-in-place (LIP) or freezing; (b) float; (c) hard-over-failure (HOF); and (d)
loss of effectiveness (LOE) [72]. Figure 2.3 depicts the effect of these faults on the
actuation signal.

In the case of LIP faults, the actuator “freezes” at a certain condition and does not
respond to subsequent commands. Hard-over-failure is characterized by the actuator
moving to upper or lower position limit regardless of the command. The speed of

Fig. 2.3 Common types of
actuator faults [73]
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response is limited by the actuator rate limit. Float fault occurs when the actuator
“floats” with zero moment and does not contribute to the control authority. Loss of
effectiveness is characterized by lowering the actuator gain with respect to its nom-
inal value. Different types of actuator faults can be mathematically represented by:

ui
a(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ui
c(t) Absence of Faults/Failures

ki (t)ui
c(t) 0 < εi ≤ ki (t) < 1,∀ t ≥ tFi ; (LOE)

0 ∀ t ≤ tFi ; (Float)

ui
c(tFi ) ∀ t ≥ tFi ; (LIP)

ui min
∨

ui max ∀ t ≤ tFi ; (HOF)

(2.5)

where ui
a(t) denotes the actuation signal (or actuator output) from the ith actuator;

ui
c(t) is the control command signal (or actuator input) to the ith actuator; tFi denotes

the time of fault occurrence on the ith actuator; ki (t) ∈ [εi , 1] is the actuator effec-
tiveness coefficient of the ith actuator with εi > 0 being the minimum effectiveness;
and ui min and ui max are the lower and upper limits on the actuation level of the ith
actuator, respectively.

We can represent the above cases with the following mathematical model:

ui
a(t) = δi ki u

i
c(t) + (1 − δi )ūi (2.6)

where δi = 1, ki = 1 in the absence of faults/failures, δi = 1, 0 < ki < 1 in the
presence of LOE, and δi = 0 in other types of faults (i.e., float, LIP, and HOF) with
ūi being the position at which the actuator is locked.

(iii) Components faults: The component faults are usually represented as cases
where some condition changes in the system rendering the nominal dynamic equa-
tion of the system invalid. Component faults are also dependent on the system being
monitored. Some examples include power source (e.g., battery, solar arrays) failures
in satellites; leak in a tank in chemical systems or propulsion systems; body damage
(e.g., wing damage, control surface damage) faults in aerial vehicles; bearing faults
in rotational equipments (e.g., aircraft engines); friction faults due to lubricant dete-
rioration; and tooth breakage and crack in gears of a gearbox system (especially in
helicopters). Mathematical representation or modeling of these faults is sometimes
very difficult and extensive experimentation may be needed before constructing a
model. Yet, in general, component faults can be represented by a change in the sys-
tem’s state equation (i.e., a change in the nonlinear function f in Eq. 2.1), being
either a parametric change or a structural/functional change. We will further discuss
the important issue of fault modeling in Section 3.1.

Component faults may have minor to very severe consequences. For example, an
unexpected failure of the gearbox in a helicopter may cause significant economic as
well as fatal loss. Nonetheless, these types of faults usually occur due to wear and
tear of system components. Thus, it is extremely crucial to diagnose these faults at
early stages of component degradation in order to avoid catastrophic consequences.
Early diagnosis of incipient component faults allows performing timely, on-demand
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maintenance operations on the degraded component, which may also involve com-
ponent replacement.

Now that the general sources of faults in a general nonlinear dynamic system
given in Eq. 2.1 have been identified, the fault diagnosis problem can be stated as
follows:

Fault diagnosis is the problem of autonomously detecting the presence, isolating
the location, and identifying the type and severity of any of the three aforementioned
faults in a system. Our objective in this monograph is to simultaneously achieve
FDII within a unified framework. In this monograph, we will mainly focus on FDII
of component faults and actuator faults, since accurate FDII of incipient faults in
components and actuators of a system is vital for enhancement of the reliability and
safety of the system as well as fault prognosis and consequently condition-based
maintenance (CBM). In particular, the CBM technology has recently received con-
siderable attention from various industries and Original Equipment Manufacturers
(OEMs) such as Pratt & Whitney in aircraft engines, production chain of automo-
tive industry, etc. Nevertheless, the proposed FDII approach can be easily extended
to sensor and actuator faults, since they can also be represented by the fault models
developed in this monograph, which are described in Section 3.1.

2.2 Desired Attributes of a Fault Diagnosis System

A fault diagnosis system should ideally meet some general requirements. Some of
the most important desirable attributes of a diagnostic system are explained in the
following:

• Early detection and diagnosis: This refers to the capability of a diagnostic sys-
tem in detecting and isolating incipient faults. Early detection and isolation of
faults prior to their full manifestation into a failure is of utmost importance for
fault-tolerant control of safety-critical systems as well as CBM practices. While
being sensitive to incipient faults, the diagnostic system should keep false alarms
under healthy operational modes of the system minimized, which poses a major
challenge in achieving early detection capability.

• Isolability: This is the capability of a diagnostic system in distinguishing the
origins of a fault from other potential fault sources or to locate a faulty com-
ponent among various components of a system. While being absolutely nec-
essary for CBM, isolation capability is also crucial to obtain fault tolerance,
since proper counter-measures cannot be taken without knowing the source of
an anomaly in a system. Isolability of a fault does not depend only on the diag-
nostic system design, but also on the way the fault affects system outputs (i.e.,
fault observability). Moreover, various sources of uncertainties such as modeling
uncertainty/errors and system disturbances pose a serious challenge to achieve a
high degree of isolability. More precisely, a diagnostic system with a high degree
of isolability may be too sensitive to these uncertainties.
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• Fault identifiability: To estimate the severity, type or nature of the fault. While
being useful for fault accommodation purposes, fault identifiability is a defini-
tive requirement for fault prognosis and eventually CBM. Accurate fault iden-
tification is usually very difficult to achieve due to presence of measurement
noise, system disturbances, modeling uncertainties, and last but not the least,
coupling/interactions between potential fault sources in the monitored system.

• Robustness: Uncertainties are inevitable in practical settings. Therefore, robust-
ness to measurements noise, system disturbances, and modeling uncertainties is
one of the most highly desirable attributes of a diagnostic system intended for
practical implementations. Robustness essentially augments diagnostic system
reliability and effectiveness. Due to its utmost importance, the issue of robust-
ness of the fault diagnosis system is discussed in more details in Section 2.5.

• Novelty identifiability: Although the well-known, industry standard failure anal-
ysis tools such as FMEA (failure mode and effects analysis) and its recent exten-
sion FMECA (failure mode, effects, and criticality analysis) provide fruitful
information on potential failure modes within a system, their effects/impacts
upon the system as well as the probability of failure modes against the sever-
ity of their consequences (i.e., criticality analysis), there is still a chance of
novel anomalies occurring in the system. It is expected from a diagnostic sys-
tem not to wrongly classify novel malfunctions in the system as either an a priori
known type of malfunction or a healthy operational mode. While detection of
novel faults is relatively easy to achieve, isolation and identification of them is
extremely difficult to accomplish, since these faults cannot be modeled due to
their unknown nature.

• Multiple fault identifiability: This refers to the ability of a diagnostic system
to identify and correctly classify multiple faults that may even coexist in a sys-
tem. This is a rather difficult requirement mainly due to nonlinearities and cou-
pling/interactions that generally exist between the states and the potential fault
sources of a dynamical system. Another reason is that some faults in an engi-
neering system are extremely difficult to model because of their complexity.

• Explanation facility: A diagnostic system should be able to explain where a
fault originated and how it propagated in the system.

• Adaptability: The operating conditions of the system change due to disturbances
and environmental changes. Furthermore, the system components experience
performance degradation over time. Hence, a fault diagnosis should intelligently
adapt to these changes in order to maintain its diagnostic performance.

• Reasonable storage and computational requirements: Memory and compu-
tational requirements are the two fundamental characteristics of any algorithm
intended for online, real-time implementation. Diagnostic algorithms, especially
the ones intended for embedded on-board fault diagnosis, are by no means an
exception. Therefore, while designing a fault diagnosis system, it is necessary
to keep in mind that the computational and memory requirements must always
meet the specifications of the application, also including power consumption
specifications. Moreover, depending on the application, a reasonable compro-
mise between these two requirements should be made.
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2.3 A Review of Analytical Redundancy-Based FDI Approaches

In Chapter 1, two fundamentally distinct approaches to the general problem of
fault detection and isolation, namely the hardware redundancy-based and analyt-
ical redundancy-based approaches, were discussed and compared in details. Fur-
thermore, a general overview of some of the analytical redundancy-based meth-
ods was provided. In this section, however, we formally investigate the analytical
redundancy-based approaches and explore some of the well-known FDI techniques
proposed in the literature within each approach.

The investigation of various analytical redundancy-based diagnostic approaches
starts essentially with classifying them into different categories according to the
form of system information (or process knowledge) utilized within each approach.
In view of this, most of the existing FDI methodologies can essentially be divided
into model-based and CI-based approaches. In the former, the mathematical model
of the system is being used as an a priori source of information on the system
being monitored. However, the latter approach utilizes either quantitative histor-
ical data of the system or qualitative information on the system in the form of
if-then rules.

In this section, we investigate these two fundamentally and conceptually different
approaches to FDI and some of the specific FDI methods developed within each
approach will also be reviewed and analyzed.

2.3.1 Model-Based Approaches to FDI

In general, the model-based fault diagnosis approaches can be classified into two
mathematically distinct categories with respect to the dynamical model and the
online information/data that they use. These two categories include:

• Discrete-event system (DES) based approaches: These methods are pursued
whenever the behavior of the system being monitored can be modeled as a finite-
state machine (FSM) (or described as a discrete-event system) and the system
can be observed merely as a sequence of events. Techniques under this category
solve the diagnostics task by comparing the observed event sequence with the
discrete-event dynamics of the model. DES-based diagnostic methods are not of
interest in this monograph; however, a very good treatment of the subject can be
found in Lunze and Schroder [74, 75].

• Differential or difference equation model-based approaches: These methods
are used whenever the system being monitored can be represented by a mathe-
matical model in the form of a differential or difference equation and the system
outputs can be measured numerically. Since these systems are under consider-
ation in this monograph, the model-based portion of the proposed hybrid fault
diagnosis method falls under this category. Hence, the following sections are
focused on reviewing the literature along this line of research.
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Before proceeding with the literature review, it is worthwhile to mention that the
above two groups of model-based diagnostic methods differ significantly in terms
of their mathematical background and their associated diagnostic steps. This is due
to fundamental differences between the properties of the systems that they mon-
itor. For example, fault diagnosis approaches for continuous-variable systems are
usually decomposed into two steps: residual generation and residual evaluation (see
also Section 1.4), whereas in discrete-event systems, these steps cannot be defined
(because the notion of a difference between events is not defined [75]). Instead, the
DES-based diagnostic approaches check the consistency between the current system
behavior and the DES model in a different way [74].

A quick review of literature on fault diagnosis reveals that the three tasks of FDII
have not been equally investigated in the literature. This is partly due to the different
levels of complexity involved in each task. In general, fault isolation and especially
fault identification are more complicated than fault detection. Therefore, we need to
separately review the literature corresponding to each task.

2.3.1.1 Model-Based Fault Detection

Fault detection is essentially the first step of fault diagnosis. It basically detects the
presence of faults in the system. It is important to note that the detection of incipient
faults (or early detection of faults) is extremely crucial for the safety of the system
as well as efficient implementation of a CBM system. As was mentioned in Chapter
1, model-based fault detection is based on residual generation, where the residuals
are quantities that represent the inconsistency between the actual system behavior
and the mathematical model of the system.

Many residual generation methods have been proposed by various researchers
in the field, some of which were reviewed in Section 1.4. Among them, non-
linear observer-based residual generation has been the most extensively studied.
Observers are dynamical systems that estimate the states and consequently the
outputs of a process. An observer-based residual is simply the output estimation
error itself or a combination of the output estimation errors. Various nonlinear
observer design techniques have been used for observer-based residual generation,
since no single, universal, optimal nonlinear observer exists for all nonlinear sys-
tems. The existing nonlinear observers have to be designed usually under certain
assumptions on system structure, system inputs, and/or the degree of the system
nonlinearity.

In a deterministic framework, Frank et al. [44] provide a survey of the use of
nonlinear observers for fault detection and isolation. More specifically, Hammouri
et al. [43, 46] discuss the use of high-gain observers for fault detection of control
affine nonlinear systems. Besancon and Hammouri [76] studied the observer design
problem utilizing the solution of Riccati equation for Lipschitz nonlinear systems.
Seliger and Frank [77] proposed nonlinear unknown input observers (UIO) as an
extension of the linear UIO to a class of nonlinear systems. Ding and Frank [78]
and Yang and Saif [79] proposed the use of adaptive nonlinear observers for fault
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detection. Sreedhar et al. [80] designed fault detection for nonlinear systems based
on sliding-mode observer.

In a stochastic setting to observer-based fault detection, Alessandri et al. [81]
used extended Kalman filter (EKF) for detection of actuator faults in unmanned
underwater vehicles. Caliskan and Hajiyev [82] developed an EKF-based fault
detection algorithm for surface faults in aircrafts. Okatan et al. [83] developed a fault
detection algorithm for magnetometers and sun sensors of the attitude determination
and control subsystem of Low Earth Orbit (LEO) satellites using an approach for
checking the statistical characteristics of the EKF innovation sequence. Tudoroiu
et al. [84] used unscented Kalman filter (UKF) for fault detection in actuators of
satellite attitude control subsystem (ACS). Finally, Li and Kadirkamanathan [85]
developed a likelihood ratio approach based on particle filters [49] for fault diagno-
sis in nonlinear stochastic systems.

The second classical method to residual generation for fault detection is the par-
ity space approach, which relies on analytical redundancy relations (ARR) that link
a subset of selected variables of the system under consideration. The ARRs can be
automatically obtained from the model equations using various elimination algo-
rithms [58]. The ARRs can be separated into two parts. The first part depends
only on known (measured) variables, while the second one, namely evaluation
part, depends on the fault components. Parity residuals are generated by computing
online the known part of these relations. The residual value can be interpreted by
the evaluation part of the ARR [58]. Christophe et al. [58, 59] have proven that for
a class of nonlinear multi-input single-output (MISO) systems a relationship exists
between parity residuals and residuals generated by high-gain observers. The major
drawback of the parity space approach, however, is that the residuals are computed
using time derivatives of measured variables, which makes the approach very sen-
sitive to measurement noise and system disturbances. Thus, to make it useful in a
noisy environment, extra filtering and pre-processing are required. A good survey
on the applications of parity space approach to nonlinear system fault detection was
provided in Section 1.4.

2.3.1.2 Model-Based Fault Isolation

Once a fault is detected in a system, it should be followed by fault isolation which
will distinguish (or isolate) a particular fault from others or locate the faulty compo-
nent within the system. While a single residual signal is sufficient for fault detection,
fault isolation requires usually a set of residuals (or a residual vector). If a residual
vector can isolate all faults, it has the required fault isolability property.

Basically, there are two fundamental frameworks to create a residual set to enable
fault isolation, including structured residual set and directional residual set. Almost
all model-based fault-isolation methodologies can be classified into either of these
two frameworks. In the following, the overall concept of each framework is individ-
ually reviewed and some of the well-known model-based fault isolation techniques
within each framework are discussed.
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(A) Structured residual set: One approach to fulfill the fault isolation task is to
design a set of structured residuals, where each residual is designed to be sensitive
to a subset of faults, while remaining insensitive to the remaining ones. The design
procedure consists of two steps: the first step is to specify the sensitivity and insensi-
tivity relationships between residuals and faults according to the assigned isolation
task and the second is to design a set of residual generators according to the desired
sensitivity and insensitivity relationships [24].

The structured residuals can be designed in two conceptually different ways,
namely dedicated residual set and generalized residual set. These two schemes are
shown in Fig. 2.4 for an example of isolating three different faults { f1, f2, f3}.
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Fig. 2.4 Two schemes of structured residual set: (a) dedicated scheme and (b) generalized scheme
for an example of isolating three faults [24]

(A-1) Dedicated scheme of the structured residual set:
In the dedicated scheme, the following simple threshold logic [24] can be used

to make decision about the appearance of a specific fault:

ri (t) > Ti =⇒ fi (t) 	= 0; i ∈ {1, 2, . . . , L} (2.7)

where L is the total number of faults ( fi ) to be isolated and Ti (i = 1, 2, . . . , L) are
thresholds corresponding to residuals ri (i = 1, 2, . . . , L). The dedicated residual set
is very simple and all faults can be detected simultaneously; however, there is nor-
mally no design freedom left to achieve other desirable attributes of a fault diagno-
sis system such as robustness to various sources of uncertainties (i.e., measurement
noise, system disturbances, and modeling errors). As will be seen in Chapter 3 and
demonstrated in Chapter 5, some of the characteristics of the series-parallel FDII
scheme proposed in this monograph are similar to that of the dedicated scheme. In
particular, a portion of the fault isolation decision logic of the series-parallel scheme
is analogous to that of the dedicated scheme. Furthermore, both methods are equally
sensitive (or non-robust) to measurement noise.

Various fault isolation techniques have been developed in the literature under
the dedicated scheme. Clark [86], in his pioneering work, designed a dedicated
observer scheme (DOS) for sensor fault detection, which was actually (and surpris-
ingly) the original inspiration for the concept of dedicated residual set (or dedicated
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scheme). In DOS, an observer reconstructs all of the system outputs except one
(i.e., y j (t), j = 1, . . . ,m, j 	= i) using all of the system inputs and the only left-
out output, namely yi . Then, the difference between the estimate and the measure-
ment indicates the possibility of a fault in the ith sensor. If this technique is applied
for all m outputs of the system, namely yi , i = 1, . . . ,m, then a bank of m dedi-
cated observers are needed to monitor m sensors of the system. Chen and Saif [87]
recently extended Clark’s DOS to actuator fault isolation. Their scheme is able to
detect and isolate multiple actuator faults using a bank of r observers, where r is the
total number of actuators in the system under consideration.

Another very important group of fault isolation methods that essentially fall
under the dedicated scheme are the multiple-model (MM) approaches. Over the
past few decades, the use of multiple models has become very popular and widely
applied across various domains of research including state estimation, control, tar-
get tracking, and fault diagnosis of stochastic systems. In the literature, there are
mainly two types of MM algorithms, namely non-interacting MM and interact-
ing MM (IMM). Non-interacting MM approach was originally proposed by Mag-
ill [87] for optimal adaptive estimation of sampled linear stochastic processes. As
mentioned therein, the MM estimator is composed of a set of elemental estima-
tors and a corresponding set of weighting coefficients. However, the model-based
elemental filters independently operate in parallel at all times without any interac-
tion between them. Such an approach is not suitable for fault diagnosis problem
since it assumes that there are no mutual interactions among the multiple mod-
els, whereas in general, the system structure or parameters do indeed change as a
system component (as well as a sensor or an actuator) fails. Nonetheless, the MM
approach has also been developed for fault diagnosis in different engineering appli-
cations but mainly for the purpose of detection rather than isolation. For exam-
ple, see Laparo et al. [88] on leak detection in heat exchanger systems and Manke
and Maybeck [89] on sensor/actuator failure detection in the Vista F-16 fighter air-
craft. Furthermore, Alessandri et al. [81] used a bank of non-interacting extended
Kalman filters (EKF) for isolation of faults in actuators of unmanned underwater
vehicles.

The interacting multiple-model (IMM) approach, initially proposed by Blom and
Bar-Shalom [90] for state estimation of stochastic systems, presented a notable
advance to MM-based estimation (also see the book by Bar-Shalom et al. [91] for
more details on IMM and its application to tracking and navigation). The IMM
approach uses modal probabilities to weight the inputs and outputs of a bank of par-
allel filters at each instant of time. Furthermore, the IMM approach overcomes the
weakness of the non-interacting MM approach by explicitly modeling the abrupt
changes of the system by “switching” from one model to another in a probabilistic
manner. This approach is one of the most cost-effective adaptive estimation tech-
niques for systems involving structural as well as parametric changes [67].

Faults/failures usually create structural and parametric changes in the system.
Since the IMM approach explicitly models and effectively handles the structural
and/or parametric changes in the system, it presents a very promising and effec-
tive candidate approach for fault detection and isolation. Mehra et al. [92] and
Zhang and Xiao [67] independently and almost simultaneously proposed IMM
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approach for fault detection and diagnosis for the first time. The IMM-based
nonlinear fault diagnosis assumes that the system being monitored can be modeled,
at any time, sufficiently accurately by the following jump Markov hybrid nonlinear
system [67]:

x(k + 1) = f (k,m(k + 1), x(k), u(k)) + T (k,m(k + 1)), w(k,m(k + 1))

z(k) = g(k,m(k), x(k), u(k)) + v(k,m(k))
(2.8)

with x0 ∼ N (x̂0, P0); where the mode of the system at time k is selected by a
discrete process m(k) that is modeled as a discrete-time, L-state, first-order Markov
chain with transition probabilities πi j (k) given by:

πi j (k) = P
{
m j (k + 1)|mi (k)

}
,∀mi ,m j ∈ S (2.9)

where πi j (k) is the probability of the transition from mode i at time-step k to mode
j at time-step k+1 and

0 ≤ πi j (k) ≤ 1, i = 1, . . . , N ; j = 1, . . . , N ;
∑

j

πi j (k) = 1, i = 1, . . . , N (2.10)

where S = {m1,m2, . . . ,mL} is the set of all possible modes of the system including
healthy and various faulty modes and L is the total number of modes in S.

In IMM-based fault diagnosis, one mathematical model has to be designed per
mode in the set S. This is the so-called model set design step of the IMM approach.
This is the initial and a key step in IMM approach because the model set has to be
designed such that it represents as many system modes as possible. Therefore, the
design of a proper model set requires a priori knowledge of the potential system
faults/failures.

Once a model set is designed, a model-based recursive filter has to be designed
based on each model in the IMM model set in order to estimate system states. Var-
ious stochastic filtering techniques can be used for this purpose. The filter that has
been commonly used for nonlinear systems is the extended Kalman filter (EKF)
(see, for instance, Zhang and Xiao [67] and Tuduroiu and Khorasani [93]). More
recently, Tuduroiu et al. [84] developed an interactive bank of unscented Kalman
filters for fault detection and isolation in the reaction wheel actuators of the satellite
attitude control subsystem.

Each filter in the IMM bank recursively calculates a model-conditional estimate
of the system states and then these estimates are combined to obtain an overall
estimate, also called mixed estimate, of system states. The mixed estimates are cal-
culated using the so-called model (or mode) probabilities. It should be noted that the
model probabilities are different from transition probabilities introduced above. The
transition probabilities comprise a matrix that is a parameter of the IMM algorithm
and is usually set to a fixed value; however, the model probabilities comprise a vec-
tor (μi , i = 1, 2, . . . , N in Fig. 2.5) that is essentially part of the state vector of the
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Fig. 2.5 Block diagram of IMM-based FDI approach [67]

IMM algorithm and is recursively updated at each time-step of the algorithm opera-
tion. The model probabilities at each instant of time represent the probability of each
mode currently in effect. Therefore, the largest model probability indicates clearly
the mode in effect at that instant, hence fault is isolated. Furthermore, the value of
the largest model probability provides a quantitative measure of the confidence level
of IMM-based diagnoser in its decision, which is almost an exclusive property of
IMM-based fault diagnosis. This can definitely be considered as an advantage of
the IMM method, since the confidence information can be very effectively used for
information fusion in fault diagnosis systems comprising of more than one diag-
noser (or decision-maker). Figure 2.5 depicts the block diagram representation of
the IMM-based fault diagnosis algorithm.

(A-2) Generalized scheme of the structured residual set: The generalized
scheme for designing the structured residual consists of making each residual sen-
sitive to all but one faults [24], i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1(t) = R( f2(t), . . . , fL (t))
•
•
•

ri (t) = R( f1(t), . . . , fi−1(t), fi+1(t), . . . , fL (t))
•
•
•

rL (t) = R( f1(t), . . . , fL−1(t))

(2.11)
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The above set of residuals is defined as generalized residual set. If a bank of
observers is used for generation of all residuals in the generalized residual set (i.e.,
a bank of observer-based residual generators), the structure is known as the gen-
eralized observer scheme (GOS) (see survey paper of Frank [94] and Lunze and
Schroder [75] for application of GOS to sensor and actuator fault diagnosis of
discrete-event systems). The isolation in generalized scheme can be performed by
using the following logic [24]:

ri (t) ≤ Ti

r j (t) > Ti ∀ j ∈ {1, . . . , i − 1, i + 1, . . . , L}
}

⇒ fi (t) 	= 0 (2.12)

for i = 1,2,. . ., L.
The GOS-based FDI, depicted in Fig. 2.6 for both sensor and actuator fault detec-

tion and isolation, is more robust than DOS with respect to parameter uncertainties
and measurement noise. This is mainly due to the fact that in GOS, more than one
output yi is fed into the observers [94], as can also be seen in Fig. 2.6.
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Fig. 2.6 Generalized Observer Scheme (GOS) for (a) Sensor and (b) Actuator FDI

It will be seen in Chapter 3 and shown in Chapter 5 that the robust parallel
scheme of the hybrid nonlinear FDII approach proposed in this monograph exhibits
properties similar to the generalized scheme. More precisely, we will see that the
fault isolation decision logic of the proposed parallel scheme is very similar to that
of the generalized scheme and it is extremely robust to measurement noise.

(B) Directional residual set: An alternative approach to fault isolation is to
address the residual set generation problem within a geometric framework. More
precisely, we have to define a residual space as the space spanned by the resid-
ual vector and then achieve fault isolation through designing a directional residual
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vector, also called detection filters (see Beard [95] and Jones [96]). A directional
residual set is a vector that lies in a fixed and fault-specific direction (or subspace)
in the residual space, in response to that particular fault [24]. In mathematical nota-
tion, we want to have:

r (t | fi (t)) = βi (t)
li ; i = 1, 2, . . . , L (2.13)

where the constant vector 
li is the signature direction of the ith fault in the residual
space and βi is a scalar that depends on the fault size and dynamics [24]. A fault
is then isolated by determining the fault signature direction that is the closest to the
generated residual vector. Therefore, in order to isolate faults reliably (i.e., to reduce
incorrect isolation rate) there must be a one-to-one correspondence between fault
signatures and potential fault sources (i.e., each fault signature must be uniquely
associated with one fault).

Although directional residual set is simpler to implement (not necessarily to
design, which is more problem dependent) than the structured residual set and it
also provides more reliable fault isolation capability under ideal conditions, it is
really difficult to make it robust against various sources of uncertainties, especially
modeling errors and system disturbances.

A number of fault-isolation methods have been proposed in the literature within
the model-based directional residual generation framework. Fault detection filters
proposed by Beard [95] and Jones [96] (also known as Beard–Jones fault detection
filter) is one of the pioneering methods that has actually inspired the directional
residual concept. Being originally designed for FDI of linear systems, fault detection
filter is a Luenberger observer-based method, where the observer gain is chosen so
that the direction of the residual vector in the output residual space can be used to
identify the failed component. Note that in the Beard–Jones detection filter design,
faults are viewed as inputs and the residuals are viewed as outputs.

The Beard–Jones detection filter, developed following the directional residual set
concept, has also inspired the celebrated geometric approach to fault isolation which
indeed falls under the dedicated residual set category. Massoumnia [97] first pro-
posed a geometric formulation of the Beard–Jones fault detection filter problem for
linear systems using the concept of unobservability subspaces, which is a subspace
in the residual space that can be made “unobservable” via “output-reduction” and
“output-injection” leading to a quotient (observable) subsystem unaffected by all
faults except one. This approach is known in the literature as the geometric approach
to FDI. Later, Massoumnia et al. [98] proved that the basic necessary and sufficient
condition for the fault-isolation problem to be solvable is the existence of an unob-
servability subspace. The unobservability subspace can be determined by means of
a simple recursive algorithm. Massoumnia et al. [98] also showed that the geomet-
ric approach to FDI is the dual version of the problem of non-interacting control by
means of dynamic feedback.

De Persis and Isidori [99] extended Massoumnia’s geometric approach to non-
linear systems by proposing a differential-geometric approach that gives the neces-
sary and sufficient conditions for solving the problem of nonlinear FDI. Detailed
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description of their approach requires many background mathematical definitions
and concepts, which is out of the scope of this monograph, but the interested reader
can refer to the work of De Persis Isidori [99] for further details and information.
The background mathematical concepts and definitions can also be found in Isidori’s
book [100]. To put it in a nutshell, in a nonlinear geometric approach an unobserv-
ability distribution is computed by means of suitable algorithms, which results in a
coordinate transformation in the state and the output space of the system that induces
and “observable” quotient subsystem unaffected by all faults but one. Then, a fault
detection filter (i.e., a nonlinear observer) is designed for the quotient subsystem.

In mathematical notations, in the nonlinear geometric approach it is assumed that
the nonlinear system can be described by the following model:

ẋ = f (x) +
r∑

i=1

gi (x)ui +
L∑

i=1

li (x)mi + Γ(x)w

y = h(x)

(2.14)

where ui , i = 1, . . . , r ; mi , i = 1, . . . , L and w denote the input channels for
control purposes, the fault/malfunction signals whose occurrence has to be detected
and isolated and system disturbance signals, respectively. The objective is then to
find for each fault signal mi , i = 1, . . . , L , a quotient subsystem that is affected by
the fault signal mi and decoupled from other faults m j , j = 1, . . . , L; j 	= i (and,
if possible, decoupled from disturbance w to also achieve robustness with respect
to disturbance). The algorithm that verifies the existence of such a quotient sub-
system is a constructive algorithm that provides the state coordinate transformation
z = Φ(x) required for fault isolation. Once the coordinate transformation function
Φ(.) is found and applied to the system’s state-space equations, the new state-space
representation of the system in terms of the transformed coordinate z is obtained.
Then, a nonlinear observer is designed for estimating z, with the residual defined as
r = z − ẑ, where ẑ is the estimate from the observer.

The main power of the nonlinear geometric approach is in providing necessary
and sufficient conditions for the solution of fault-isolation problem, supported by
unprecedented rigorous mathematical proofs. Furthermore, under full-state mea-
surement conditions (i.e., the function h(.) in Eq. 2.14 is simply a unity matrix),
finding the coordinate transformation Φ(.) is fairly simple (though, this is not always
the case under partial-state measurement). However, it also possesses some draw-
backs. Its major drawback is lack of robustness to modeling errors. Since the trans-
formation Φ(.) is obtained based on system’s nominal equations, any discrepancies
between the actual system and its nominal model (due to unmodeled dynamics,
parameter uncertainties, parameter variations, etc.) may render the analytical results
invalid. To a lesser extent, the measurement noises will also affect the performance
of the geometric approach. As far as robustness to system disturbances are con-
cerned, sometimes little design freedom is left to decouple residuals from distur-
bances.
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2.3.1.3 Model-Based Fault Identification

Despite its undeniable importance, model-based fault identification has received less
attention from the research community as compared to model-based FDI. This is
especially true for nonlinear systems. Nonetheless, possibly the first formal effort
to estimate the severity of faults is in the seminal works of Isermann [26, 60]. In
his work it is assumed that faults are reflected in the physical parameters of the
system; hence, faults can be identified through online estimation of system param-
eters. However, the parameter estimation approach of Isermann was developed for
linear systems due to availability of very well-known linear parameter estimation
methods. More recently, Tan and Edwards [101] applied the concept of “equiva-
lent output estimation error injection” – proposed by Edwards [45] – to reconstruct
faults for linear systems using sliding-mode observers. Once again, however, their
approach was developed for linear systems.

Chen and Saif [87] recently extended the approach proposed by Tan and Edwards
[101] to actuator fault identification in a class of nonlinear systems. More specifically,
they modified the approach proposed by Tan and Edwards [101] in two ways. First,
instead of linear systems they consider a specific class of uncertain nonlinear systems.
Second, instead of reconstructing only faults, they reconstruct the inputs and the faults
at the same time. They estimate actuator faults using equivalent control method in the
sliding-mode observer design. Nevertheless, their approach also has two limitations.
First, it has been developed specifically for actuator faults and its application to iden-
tification of component faults in a nonlinear system has not been discussed. Second,
it is applicable only to a specific class of nonlinear systems rather than a general one.

One may also use multiple-model (MM) approach for fault identification, where
multiple models in the model bank correspond to different levels of fault severity.
However, this will introduce an inevitable quantization error in fault estimation. This
quantization error can be reduced as more models are used in the bank. But the use of
more models will increase the computational requirements of the algorithm. In order
to very precisely identify faults, ideally infinite number of models (or quantization
levels) should coexist in the model bank, which makes the approach computationally
unfeasible and thus impractical. The IMM approach, to a lesser extent has a similar
problem, though Zhang and Xiao [67] suggest that in the IMM approach, the magni-
tude (size) of a fault can be determined by the probabilistically weighted sum of the
fault magnitudes of the corresponding partial fault models. However, this idea has not
been well elaborated and, as was mentioned previously, the fine-tuning of the IMM
approach is not easy to accomplish especially if precise fault identification is required.
Zhang and Jiang [172] have also developed a two-stage adaptive Kalman filter (or a
dual Kalman filter) for simultaneous (or joint) state and fault parameter estimation,
which is applicable to identification of only actuator (not component) faults.

2.3.2 Computational Intelligence-Based Approaches to FDI

The model-based approaches to fault diagnosis rely on the analytic mathemati-
cal model of the process being monitored. This implies that the accuracy of the
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model has direct impact on diagnostic system performance and reliability. More
precisely, the more accurate the model, the more reliable will be the model-based
fault diagnosis scheme. However, for complex and uncertain systems, the deriva-
tion of high-fidelity mathematical models from physical principles can become very
complicated, time consuming, and even sometimes unfeasible (for instance, some
systems cannot be represented accurately enough by a lumped parameter system).
Moreover, even with the possibility of deriving a mathematical model using first
principles, obtaining accurate model parameter values may become a very tedious
job or even practically impossible due to proprietary issues regularly imposed by
OEMs and/or system integrators. Last but not the least, some systems exhibit uncer-
tain behaviors such as higher order dynamics and high-frequency oscillations, col-
lectively called unmodeled dynamics, which cannot be precisely modeled.

Mathematical methods in computational intelligence and learning theory – neural
networks, fuzzy-logic, neuro-fuzzy systems, and genetic algorithms – represent a
promising way of circumventing the above-mentioned modeling precision problems
in model-based fault diagnosis. Indeed, during the past decade, computational intel-
ligence (CI)-based fault diagnosis methods have been extensively developed and
successfully applied to various engineering systems. A number of survey papers and
books in the literature review the use of CI techniques in fault diagnosis. Among the
pioneers is the survey paper of Patton et al. [27] that outlines some of the residual
generation methods based upon artificial intelligence techniques, which integrate
both quantitative and qualitative knowledge of the system in fault diagnosis. More
recently, Palade et al. [102] published a book consisting of a set of papers review-
ing the main CI techniques and their applications to fault diagnosis. They have also
discussed the main advantages and disadvantages of each methodology. It is also
shown that hybrids of CI-based diagnostic techniques are often used in practice
to utilize their individual advantages and overcome their individual disadvantages.
Two other recent books, namely Korbics et al. [63] and Vashtsevanos et al. [3] also
review intelligent fault diagnosis methods.

Using CI-based techniques enables one to exploit both quantitative (numerical)
and qualitative (symbolic) information about the system being monitored. Qualita-
tive information is normally expressed in the form of Boolean or fuzzy if-then rules.
For systems represented by Boolean rules, causal reasoning and fault tree analysis
methods have been historically used particularly in aerospace and nuclear industries
(see Zampino [103] and the pioneering work of Crosetti [104], respectively). On
the other hand, fuzzy-logic is the right tool for fault diagnosis whenever the sys-
tem behavior is described by a set of fuzzy if-then relations derived either by an
expert or using qualitative physics. More details regarding the use of fuzzy models
for fault diagnosis can be found in Dexter [105] and Mendonca et al. [106]. The key
advantage of the qualitative CI-based approaches is that they can provide valuable
information for the system operators to identify the root cause of anomalies (i.e., the
series of events/anomalies that ended up a failure).

Though seemingly attractive, qualitative CI-based fault diagnosis methods also
suffer from a major drawback. In many engineering applications, deriving Boolean
and/or fuzzy if-then rules is by no means straightforward and requires extensive
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expert knowledge of the system. Instead, the knowledge that describes the sys-
tem behavior is contained in large quantitative datasets stored in databases. Neural
networks are ideal mathematical tools for such situations due to their universal
nonlinear function approximation property (Cybenko theorem; see Cybenko [107])
and their ability to learn and reproduce system behavior from quantitative system
datasets (i.e., historical system input–output data). Neural networks do indeed pro-
vide an excellent framework for identification of nonlinear systems (see the seminal
work of Narendra and Parthasarathy [65]).

All these properties make neural networks a promising tool for applications as
diverse as feature extraction, pattern recognition, clustering, classification, infor-
mation integration, and as mentioned above in system identification, which all can
effectively be applied for fault diagnosis and health monitoring. As a result, neural
networks have been extensively applied to fault diagnosis. In the following, we will
review three of the most commonly used neural network (NN)-based approaches to
fault diagnosis.

(I) Neural network-based pattern recognition approach to fault diagnosis:
In pattern recognition approaches, neural networks are used mainly for feature clas-
sification. In other words, the neural network is only used as a fault classifier. For
example, in Li et al. [108], the bearing vibration frequency features and time-domain
characteristics are applied to a neural network to build an automatic motor bearing
fault diagnosis machine. In these applications, neural networks are merely used to
examine the possibility of a fault or abnormal features in system measurements
and give a fault classification signal to declare the health state of the system. This
approach of using only system output measurements produces valid fault diagno-
sis results mainly for static systems or steady-state processes. However, this is not
usually the case for fault diagnosis of dynamic systems (especially nonlinear ones),
where a change in system inputs can also affect certain features of system outputs.
Therefore, the NN-based pattern recognition approach to fault diagnosis of nonlin-
ear dynamic systems can generate incorrect fault information while only the system
inputs have been changed. This problem has been resolved by the following second
approach to NN-based fault diagnosis.

(II) Neural network-based residual generation decision-making scheme:
This NN-based diagnostic scheme was initially proposed by Patton et al. [109].
In this scheme, depicted in Fig. 2.7, neural networks are utilized at two stages:
residual generation and decision-making (for fault isolation). At residual genera-
tion stage, neural networks are used as prediction models. An important feature of
a neural network-based prediction model is that it will automatically “learn” the
nonlinear system dynamics during the training process made over several train-
ing cycles, with training data coming from historical input–output data of the sys-
tem. Neural network-based prediction models have potential advantages over tra-
ditional prediction and estimation methods, including powerful nonlinear mapping
properties, noise tolerance, self-learning and self-adapting, and parallel processing
capabilities.

Various NN-based nonlinear system identification architectures can be used as
prediction model at residual generation stage. Three widely used architectures
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include nonlinear autoregressive exogenous (NARX) model neural networks, recur-
rent neural networks, and dynamic neural networks, as shown in Fig. 2.7. These
architectures differ in terms of the way dynamics have been introduced into the
network architecture. In the following, we will briefly review the literature on NN-
based identification of nonlinear dynamic systems.

A large body of literature has been dedicated to the identification of nonlinear
dynamic systems using neural networks. These efforts are justified by the following
four important features of neural networks, namely (i) their nonlinear characteristics
that make them suitable for dealing with nonlinear systems, (ii) their parallel and
pipeline processing characteristics that allow them to perform computations more
efficiently, (iii) their self-learning and self-adapting characteristics that are ideal for
adapting to different environmental conditions, and (iv) their tolerance to noise.

One may classify NN-based nonlinear dynamic system identification schemes
into four main categories. The first category utilizes tapped delay lines (TDL) along
with a static neural network in its structure. The TDLs are used to introduce dynam-
ics into the network by generating delayed inputs and outputs of the system that are
then fed to a static network as the regressor vector. The network then performs a
static nonlinear map on this regressor vector so that the desired output is obtained.
This model is called nonlinear autoregressive exogenous (NARX) model. For fur-
ther details, refer to Narendra and Parthasarathy [65].
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The second category is recurrent neural networks. In this approach, a dynamic
input–output representation is constructed using a recurrent structure. This method
has been investigated in Funahashi and Nakamura [110] and Ku and Lee [111].
More specifically, Funahashi and Nakamura [110] proved that the proposed recur-
rent neural network is capable of identifying any nonlinear dynamic system pro-
vided that the initial states of the network are chosen appropriately with respect to
the initial conditions of the system.

The third category is embedded dynamic neural networks. The embedded
dynamic neural networks are constructed by utilizing dynamic neurons whose
model is different from that of the static neurons. In the former, one or more
dynamic elements are utilized to obtain a specific dynamical input–output map.
Several dynamic neuron structures have been reported in the literature. Atiya and
Parlos [112] introduced a spatio-temporal neuron in which the conventional weight
multiplication operation was replaced by a linear filtering (an all zero filter) opera-
tion. Gamma neuron model was developed by Principe and Motter [113] for iden-
tification of nonlinear systems. The structure of the Gamma model is similar to the
TDL structure, but instead of using simple shift elements in the line, a first-order
linear filter is utilized to generate a dynamic input–output map. Yazdizadeh and
Khorasani [114] introduced an embedded dynamic neural network in which adap-
tive linear filters are augmented before the NN’s hidden-layer activation functions
in order to generate a dynamic input–output map. In this network, learning takes
place by adapting both the embedded linear filter parameters and the neural network
weights. The well-known time delay neural network (TDNN) was first introduced
by Waibel et al. [115] for phoneme recognition. In TDNN, each weight is associated
with a delay. The adaptive version of TDNN was introduced by Yazdizadeh [116]
for identifying two classes of nonlinear dynamic systems denoted as “the first” and
“the fourth” class of nonlinear systems by Narendra and Parthasarathy [65].

The fourth category of dynamic neural identifiers, which is proposed by Abdol-
lahi et al. [117], consists of a feed-forward static neural network architecture
cascaded/followed by a fixed stable linear filter. During the training/learning pro-
cess, neural network weights comprise the only adaptive parameters of the pro-
posed dynamic neural identifier and the parameters of the stable linear filter remain
unchanged.

In the second stage of the NN-based fault diagnosis scheme, namely decision-
making stage, a neural network-based classifier is used to partition the residual vec-
tor to patterns corresponding to different healthy and faulty modes of the system.
The NN-based classifier is trained to recognize complex features in residuals and
then generates fault detection and isolation information. The training can take place
in both supervised and unsupervised modes; however, supervised classifiers are gen-
erally more accurate. Nonetheless, they have a major disadvantage of requiring data
from all possible fault situations for classifier training. A supervised NN-based clas-
sifier trained using only fault-free situations cannot be expected to perform well for
faulty situations.

(III) Neural network-based multiple-model residual generation and classifi-
cation: This NN-based fault diagnosis scheme, originally proposed by Patton et al.
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Fig. 2.8 A generic neural network-based multiple-model fault detection and isolation scheme

[27], follows the idea of multiple-model based FDI scheme described in Section
2.3.1.2, where the mathematical models have been replaced by parallel NN-based
dynamic identifiers. This scheme, depicted in Fig. 2.8, also consists of two stages:
NN-based multiple-model residual generation and isolation decision-making. In the
former stage, each fault model in the residual generation block is a dynamic neural
network that identifies a class of system behavior. The dynamic neural identifiers
that were discussed in the previous NN-based fault diagnosis scheme are equiva-
lently applicable in here. The major difference is that, as opposed to residual gener-
ation decision-making scheme, the NN-based multiple-model scheme requires data
from all healthy and faulty situations at residual generation stage in order to be able
to learn all classes of system behavior. This can be considered as one of the main
drawbacks of the NN-based multiple-model approach.

In the isolation decision-making stage, the main task is to classify the gener-
ated residuals into a number of distinguishable patterns corresponding to different
healthy as well as faulty situations. Thus, another neural network is used for this
purpose based on the classification capability of neural networks. Once again, var-
ious NN-based classifier architectures and algorithms can be utilized at this stage.
These include multi-layer perceptron (MLP) network, radial basis function (RBF)
network, support vector machines (SVM), probabilistic neural networks (PNN), and
fuzzy neural networks for supervised classification; and competitive neural net-
works (e.g., Kohonen network, self-organizing maps (SOM)), and adaptive reso-
nance theory (ART) networks (i.e., ART-II, fuzzy-ART) for unsupervised classifi-
cation.
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The above-mentioned CI-based diagnostic methods use either qualitative or
quantitative information about a system in order to achieve fault diagnosis. Both
methodologies have been successfully applied to fault diagnosis of various engi-
neering systems; however, integrating both quantitative and qualitative information
can greatly enhance the diagnostic system performance and robustness. Such diag-
nostic systems are collectively called integrated computational intelligence-based
fault diagnosis systems. There are basically two main ideas within the integrated
CI-based framework. One is to generate residuals using NN-based methods and
then allocate the decision-making (or isolation decision-making) process to a fuzzy-
logic inference engine. This approach allows system operators to describe the sys-
tem behavior or the fault-symptom relationship with simple if-then rules.

The second integrated CI-based diagnostic concept, depicted in Fig. 2.9 from
Chen and Patton [24], revolves around using neural networks for two main pur-
poses: (i) residual generation using quantitative historical input–output data of the
system and (ii) learning (or determining) the parameters of the fuzzy model of the
system (i.e., the fuzzy if-then rules that qualitatively describe the system behavior)
from quantitative data of the system. This integration of quantitative and qualita-
tive knowledge of the system is accomplished through a neuro-fuzzy system (or a
fuzzy neural network) that makes it feasible to combine the learning ability of neu-
ral networks with the explicit knowledge representation of fuzzy-logic. According
to Patton et al. [27], a potential way of implementing a neuro-fuzzy system is to use
B-Spline neural networks. For further information on neuro-fuzzy modeling, refer
to Brown and Harris [118].
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Fig. 2.9 A conceptual structure of the integrated CI-based fault diagnosis [24]

Moreover, a trained neural network can be used to evaluate the reliability of infor-
mation provided by either quantitative or qualitative methods and decide which has
to be accordingly weighted in the information fusion, as depicted in Fig. 2.9.

2.4 Methodology Developed in This Monograph: Hybrid
Approach to FDII

The approach proposed in this monograph is essentially a hybrid approach to fault
diagnosis. More precisely, the proposed fault diagnosis methodology simultane-
ously exploits both the a priori mathematical model information of the system
and the nonlinear approximation and adaptation capability of neural networks.
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More specifically, mathematical model of the system is used as a basis for fault
modeling and isolation, and the capability of neural networks in adaptive nonlinear
function approximation is used as a basis for online fault severity identification.

Only a few fault diagnosis methodologies exist in the literature, which simulta-
neously take advantage of mathematical model of a system and the exclusive capa-
bilities of CI techniques, especially neural networks, in a hybrid framework. For
example, Alessandri [69] proposed a hybrid approach to fault detection in nonlinear
systems. In his work, fault detection and isolation is accomplished by means of a
bank of estimators, which provide estimates of parameters that describe actuator,
plant, and sensor faults. These estimators, also called finite-memory filters, perform
according to a receding-horizon strategy and are designed using nominal mathemat-
ical model of the system and the models of the failures. The problem of designing
such estimators for general nonlinear systems is solved by searching for optimal
estimation functions. These functions are approximated by feedforward neural net-
works and the problem is reduced to finding the optimal neural weights, hence the
name finite-memory neural filters. The learning process of the neural filters is split
into two phases: an offline initialization phase using any possible “a priori”’ knowl-
edge on the statistics of the random variables affecting the system states and an
online training phase for online optimization of neural weights.

In another example of hybrid approach to diagnostics, Xiaodong et al. [119] pre-
sented a robust fault detection and isolation scheme for abrupt and incipient faults in
nonlinear uncertain dynamic systems. The diagnostic architecture proposed therein
consists of a bank of N + 1 nonlinear adaptive estimators, where N is the number
of potential faults that may affect the nonlinear system. One of the nonlinear adap-
tive estimators is the fault detection and approximation estimator (FDAE) used to
detect faults. The remaining ones are fault-isolation estimators (FIEs) that are used
for isolation purposes only after a fault has been detected. Under normal operating
conditions (without faults), the FDAE is the only estimator monitoring the system.
Once a fault is detected, the bank of FIEs is activated and the FDAE adopts the mode
of approximating the fault function. The nominal mathematical model of the system
is explicitly used for designing both FDAE and FIEs. Furthermore, a key compo-
nent of FDAE is an online approximator, which, in presence of a fault, provides the
adaptive structure for online approximation of the unknown nonlinear fault function.
This is where the extreme capability of neural networks in adaptively representing
nonlinear multivariable functions is employed to implement the online approxima-
tor of FDAE.

Very recently, Talebi and Khorasani [120] presented a hybrid intelligent fault
detection and isolation scheme for a general nonlinear system using a neural
network-based observer. The proposed NN-based observer employs nominal math-
ematical model of the system in conjunction with two recurrent neural networks,
which are used to identify general unknown actuator and sensor faults. The distinct
advantage of their method is that, unlike many previous methods in the literature, it
does not rely on the availability of full-state measurements.

The above works, however, either have not addressed the important problem of
fault severity estimation (or fault identification) or have addressed it in a way that is
not of use to fault prognosis and consequently condition-based maintenance (CBM).
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More precisely, the approach proposed by Alessandri [69] is only a fault detection
and isolation method, leaving fault identification problem unsolved. On the other
hand, the approaches proposed by Xiaodong et al. [119] and Talebi and Khorasani
[120] estimate/identify the fault function that represents the overall impact of faults
on system states. Though estimating this overall impact is often sufficient for fault
accommodation (and thus achieving fault-tolerant control) and is also useful for
identifying actuator faults (especially, static actuators or actuators with negligible
dynamics), it is not appropriate for fault prognosis and CBM of system components.
The reason is that it is either impossible or extremely difficult to obtain fault trend
information for a specific system component from the aforementioned fault function
estimate.

The hybrid fault diagnosis approach presented in this monograph, however, is
able to detect, isolate, and identify the severity of faults in components of a general
nonlinear system within a unified, integrated framework. This is achieved through
the use of a bank of parameterized fault models and a corresponding bank of adap-
tive neural parameter estimators (NPEs) to estimate fault parameter (FP) vector and
thus fault severities. The nominal mathematical model of the system is used in both
PFM bank and NPE design, and neural networks are used in NPE design; hence
being a hybrid approach to fault diagnosis.

Finally, in order to achieve FDII under partial-state measurement, a separate non-
linear observer is designed to continuously estimate system states from inputs and
measurements even in presence of faults in system components. We call such an
observer a fault-tolerant observer (FTO) or a fault-tolerant state estimator (FTSE).
To the best of our knowledge, the FTO terminology proposed in this monograph
appears for the first time in the literature. A similar concept of fault tolerance in state
estimation has been investigated in the literature under the unknown input observer
(UIO) terminology. However, the UIOs have been developed and employed in the

unknown uncertainties such as modeling errors and external disturbances. In other
words, instead of faults, the modeling errors and external disturbances are modeled
as unknown inputs and the UIOs are designed in order to decouple the state esti-
mates from these uncertainties.

The FTSE method proposed in this monograph is a Kalman filter structure pre-
serving neural state estimator (NSE). It is a hybrid approach to nonlinear filtering,
since it utilizes both mathematical model of the system and the adaptive nonlinear
function approximation capability of neural networks. Chapter 4 discusses, in more
details, the proposed NSE and its integration with the proposed FDII method in
order to achieve fault diagnosis under partial-state measurement.

2.5 Robustness of FDI to Uncertainties

Model-based fault diagnosis (FD) approaches rely on the key assumption that a
perfectly accurate and complete mathematical model of the system under supervi-
sion is available. However, such assumption is usually not valid in practice since it

literature as a means of making fault diagnosis algorithms robust with respect to
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is difficult to obtain the necessary modeling accuracy required for construction of
reliable analytical redundancy-based FD architectures. Unavoidable modeling and
environmental uncertainties that arise due to modeling errors, parameter variations,
time variations, unknown external disturbances, and measurement noise deteriorate
the performance of the FD schemes by causing false alarms. This performance dete-
rioration can happen to an extent that makes the model-based FD scheme totally use-
less. This necessitates the development of FD algorithms, which have the ability to
reliably detect, isolate, as well as identify faults and failures in presence of various
sources of uncertainties. Such algorithms are referred to as robust fault diagnosis
algorithms.

To overcome the difficulties introduced by modeling and environmental uncer-
tainties, a model-based FDII has to be made robust, i.e., insensitive to uncertainty
[24]. However, merely reducing the sensitivity to uncertainties may not solve the
problem because such a sensitivity reduction may be undesirably accompanied by a
reduction of sensitivity to faults. Therefore, a more meaningful formulation of the
robust FDII problem is to increase the robustness to various sources of uncertainty
without losing sensitivity to faults. In other words, an FDII scheme that is designed
to provide satisfactory sensitivity to faults, associated with the necessary robustness
with respect to modeling and environmental uncertainties, is called a robust FDI
scheme.

The importance of robustness in model-based FDI has been widely recognized
by both academia and industry. More specifically, robust FDI for linear systems
has been extensively investigated by many researchers during the last two to three
decades. As a result, a number of methods have been proposed to tackle the linear
robust FDI problem [24] such as the UIO method [121], eigen-structure assignment
[122], and optimally robust parity relation methods [123].

Traditionally, the robust FDI problem for nonlinear dynamic systems has been
approached in two steps. The model is first linearized around an operating point, and
then robust linear FDI techniques are applied to generate residuals that are insensi-
tive to uncertainties but responsive to faults. This method only works well when the
linearization does not cause a large mismatch between linear and nonlinear models
and the system operates close to the specified operating point. As another alterna-
tive to robust nonlinear FDI, one might think of just simply increasing the threshold
levels of the residuals generated by the nonlinear FDI scheme and thus reducing
the number of false alarms. However, the increase in the threshold levels will at the
same time decrease the fault sensitivity of the FDI scheme.

This imposes a tradeoff between reducing the number of false alarms and the
number of missed alarms (i.e., missing to detect the presence of an actually occurred
fault). A reliable solution to such a trade-off problem is not trivial in practice espe-
cially due to the nonlinear behavior of the system dynamics and the presence of
different sources of unknown uncertainties. Therefore, there is a high demand for
development of techniques that make the nonlinear FDII problem robust to mod-
eling and environmental uncertainties to remarkably reduce the number of false
alarms when the nonlinear system is under healthy mode of operation, while reliably
diagnosing faults or failures.
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However, the problem of robust FDII for nonlinear systems has not been investi-
gated as extensively as its linear counterpart. In particular, very few works have been
reported in the literature on robust fault isolation and severity identification – rather
than just detection – for nonlinear systems. Some examples of robust fault detection
and isolation (but not identification) techniques for uncertain nonlinear systems can
be found in the works of Xiaodong et al. [119], Talebi and Khorasani [120], Chen
and Saif [87], and Wu and Saif [124].

In this monograph, we address the robustness of FDII with respect to external dis-
turbances and particularly measurement noise. Robustness of FDII to measurement
noise is of utmost importance especially in applications with low SNR. Robustness
in the analytical redundancy-based framework to FDII is, in general, achieved by
either making the residual generation process or the residual evaluation process
insensitive to uncertainties. In this monograph, we adopt the former approach by
reconfiguring the architecture of the proposed FDII scheme from series-parallel
into parallel. The robustness of the parallel FDII scheme will be further explained
in Chapter 3 and demonstrated in Chapter 5.

2.6 Conclusions

In this chapter, the problem of fault detection, isolation, and identification (FDII)
in nonlinear systems was defined and formulated. Potential sources of faults in an
open-loop system were also introduced including actuator, sensor, and component
faults, and some common types of faults were identified. Simple mathematical mod-
els of common types of sensor and actuator faults were also presented.

Based upon the formal definition of the FDII problem, various analytical
redundancy-based fault diagnosis approaches and methodologies in the literature
were reviewed. Based on the a priori source of information on the system being
used for diagnostic purposes, these approaches were divided into two categories,
namely model-based and computational intelligence (CI)-based. While the model-
based approaches exploit the mathematical model of the system for FDII design,
the CI-based approaches use quantitative data or qualitative information (i.e., if-then
rules) or a combination of both.

The literature on model-based approaches to fault diagnosis was reviewed sep-
arately for the three tasks of detection, isolation and identification. The reason for
this individual investigation was the different levels of complexity associated with
each task and the varying number of contributions within each domain. Specifically,
model-based fault-isolation methods were very comprehensively reviewed and ana-
lyzed in terms of the concepts behind each method. Furthermore, some examples of
FDI techniques developed based on those concepts were also mentioned and ana-
lyzed. Even though being less investigated and researched in the literature, some
recent efforts in model-based fault identification or severity estimation were also
reviewed.
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For the CI-based diagnostic approaches, the literature survey was not separated
based on the specific task in the FDII problem, since such a distinction can hardly
be made within the CI-based fault diagnosis domain. Instead, some extensively used
concepts and schemes to achieve fault diagnosis without having a mathematical
model of the system were introduced. More precisely, methods that use quantitative
data of the system for residual generation based on the learning capability of neural
networks were extensively reviewed. Diagnostic methodologies that use qualitative
information of the system (mainly in the form of if-then rules) were also explored,
which are mostly based on fuzzy-logic theory. Furthermore, a general scheme for
integrating both quantitative data and qualitative information of the system for fault
diagnosis purposes was proposed. It was shown that this integrated scheme consists
of various techniques from CI domain such as neural networks, fuzzy systems, and
neuro-fuzzy systems.

Eventually, the proposed approach to fault diagnosis in this monograph was
reviewed, which is essentially a hybrid approach to FDII. It is called hybrid in the
sense that both a priori mathematical model information of the system and the adap-
tive nonlinear function approximation capability of neural networks are simultane-
ously used to accomplish FDII. It was mentioned that the hybrid approach to fault
diagnosis is relatively new to the research community and actually few works have
been reported in the literature following this approach (which were also reviewed in
this chapter). However, it is certainly a very promising approach and sounds to be
the inevitable choice of future in the fault diagnosis domain.



Chapter 3
Proposed FDII for Nonlinear Systems
with Full-State Measurement

In this monograph, a new integrated solution to the problem of fault detection, isola-
tion and identification (FDII) for nonlinear systems is proposed. The proposed fault
diagnosis methodology benefits from both a priori mathematical model information
of the system and the nonlinear function approximation and adaptation capability of
neural networks in a hybrid framework. More specifically, mathematical model of
the system is used to construct a bank of parameterized fault models, which enables
fault isolation.

As mentioned earlier in Chapter 2, the idea of using a bank of estima-
tors/observers/models for fault detection and isolation has been previously pursued
in the literature by many researchers (see, for example, Mehra et al. [92], Zhang
and Xiao [67], Alessandri [69], Tudoroiu and Khorasani [93], and Tudoroiu et al.
[84] in chronological order). However, they have neither addressed the problem
of fault severity identification, nor performed a comprehensive robustness analy-
sis with respect to measurement noise, which considerably affects the performance
of FDII algorithms in real-world applications.

Once a bank of PFMs is constructed, a corresponding bank of neural parameter
estimators (NPEs) is designed to estimate fault parameters (FPs), and thus accom-
plish fault identification. Therefore, even in terms of methodology, the proposed
hybrid fault diagnosis approach can be viewed as an integration of multiple-model
(MM) method and parameter estimation method, two well-known fault diagnosis
methods that were extensively reviewed in Chapters 1 and 2.

Furthermore, two NPE structures, namely series-parallel and parallel, are pro-
posed with their respective fault isolation policies, where each structure shows an
exclusive set of desirable properties. For example, the proposed parallel scheme
is extremely robust to measurement noise, hence making it suitable for low SNR
applications. On the other hand, the series-parallel scheme displays very fast con-
vergence rates desirable for systems requiring short delay in fault diagnosis. Thus,
the choice of the appropriate FDI structure really depends on the specifications and
requirements of the specific problem at hand.

The robust parallel FDII scheme proposed in this monograph is an entirely novel
development in the literature. On the contrary, Alessandri [69] and Sobhani-Tehrani
et al. [70] have previously developed FDI techniques similar to the series-parallel
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scheme. However, the series-parallel scheme proposed in this monograph pos-
sesses the following three novelties: (i) more solid fault isolation results due to the
first-time use of a bank of single-parameter fault models (Eq. 3.7 in Section 3.1)
extracted from the multi-parameter fault model (Eq. 3.3 of Section 3.1) employed
by Alessandri [69]; (ii) remarkably simpler neural network architecture and adapta-
tion laws than those employed by Alessandri [69] and Sobhani-Tehrani et al. [70],
which makes the proposed methodology more suitable for real-time implementa-
tion; and (iii) fault identification capability – the simulation results presented in
Alessandri [69] do not demonstrate such capability.

The series-parallel and robust parallel FDII schemes, presented in this chapter,
are developed based on the availability of full-state measurements. Nonetheless, the
extension of the two FDII schemes to partial-state measurement conditions has also
been partially achieved through the use of a hybrid fault-tolerant state estimator,
which is the subject of Chapter 4.

In this monograph, we make the following assumptions regarding the system
states and the occurrence of faults in the system, which comprise the basis for fault
diagnosis design, development, and verification:

Assumption (i) The control input signals and the state vector remain bounded
prior to and after the occurrence of a fault.

Assumption (ii) The faults do not occur at the same time; i.e., at each instant
of time only one fault may occur in the system. This is a very reasonable assump-
tion since it is very unlikely that two faults occur precisely at the same time. Note
that this does not exclude existence of concurrent faults in the system. More pre-
cisely, two faults may overlap each other. Since there is always some delay in the
fault diagnosis, a more practical assumption should be as follows: once a fault has
occurred in the system, a second fault would not occur in a time period equal to the
delay in diagnosing the first fault. Although the probability of such an assumption
not being true is not zero, but is infinitely small due to the very short duration of
the fault diagnosis delay relative to the life time of the system or component being
monitored.

Assumption (iii) The time variation of fault severities is “slow” compared to the
dynamics of the system states. The rationale behind this assumption will be clarified
in Section 3.2. Yet, this is a reasonable assumption for most engineering systems.
Because for abrupt faults, once they occur it is not likely that their severity changes
over time and for incipient faults, since they usually occur due to the wear and tear
of system components, the fault growth rates are often much slower than system
dynamics.

3.1 Fault Modeling and Health Indicator Parameters

Generally speaking, different models of a faulty system may be constructed. Conse-
quently, a number of perspectives and concepts on fault modeling have been devel-
oped by different researchers in the field. For example, Patton et al. [27] and Korbicz
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et al. [125] developed computational intelligence (CI)-based, data-driven models of
a faulty system. They used dynamic neural networks to identify full system dynam-
ics including nominal and faulty dynamics, under different fault scenarios. The
major drawback of their fault modeling approach is that data from different fault
scenarios is required to train the CI-based models, while such data does not usually
exist in practice. One way to resolve this problem is to inject faults into a simu-
lation model of the system and generate faulty data using the simulator. However,
this applies only to situations where a high-fidelity simulator of the system is either
available or easy and cost-effective to develop.

Mathematical modeling techniques have also been extensively applied to model
faults and/or faulty systems. In Section 2.1, simple mathematical models of sensor
and actuator faults/failures were presented in Eqs. 2.3–2.6, respectively. However,
as discussed in Gertler [126], most practical faults are nonlinear functions of system
states and inputs. For example, the magnitude of certain faults in a thermal system
or a chemical process is, in general, a nonlinear function of the pressure and the
temperature. Consequently, more general mathematical formulations of fault mod-
els have also been proposed in the literature. For example, Xiaodong et al. [119]
describe a general multivariable nonlinear dynamic system, with full-state measure-
ment, by the following differential equation:

ẋ = f (x, u) + η(x, u, t) + B(t − T0)φ(x, u)

y = x
(3.1)

where x ∈ �n is the state vector of the system; u ∈ �r is the control input vector;
f, φ: �n × �r → �n and η: �n × �r × �+ → �n are smooth vector fields; and
B(t − T0) is a matrix function representing the time profiles of the faults, where
T0 denotes the unknown fault occurrence time. The vector fields f, η, and φ rep-
resent the dynamics of the nominal model, the modeling uncertainty (including
external disturbances as well as modeling errors), and the change in the system
dynamics due to a fault, respectively. Thus, as can be seen in Eq. 3.1, faults have
been modeled as an unknown nonlinear function of the system states and inputs that
affects the nominal system dynamics. More precisely, from a qualitative viewpoint,
the term B(t − T0)φ(x, u) represents the deviation in the system dynamics due to
a fault.

The matrix B(t − T0) characterizes the time profile of a fault that occurs at some
unknown time T0 and is defined in Xiaodong et al. [119] as follows:

B(t − T0) = diag[B1(t − T0), . . . ,Bn(t − T0)]

where Bi : � → � is a function representing the time profile of a fault affecting the
ith state equation, for i = 1, 2, . . ., n; and modeled as follows:

Bi (t − T0) =
{

0 ∀t < T0

1 − e−λi (t−T0) ∀t ≥ T0
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where the scalar λi > 0 denotes the unknown fault evolution rate. While small
values of λi characterize slowly developing or incipient faults, large values of λi

make function Bi approach a step function and thus model abrupt faults.
The model in Eq. 3.1 allows characterization of additive and multiplicative

faults as well as more general nonlinear faults. However, it represents only the
overall impact of faults on system states, which, even though being useful for
fault accommodation purposes, is of limited use for fault prognosis and CBM of
system components. The reason is that, in general, it is very difficult to estab-
lish a one-to-one correspondence between the nonlinear fault function φ and the
health state of the actual physical components – except actuators – of the system.
Indeed, the proposed model is useful for fault severity estimation and prognosis
of only system actuators. For example, the model used by De Persis and Isidori
[99] (given in Eq. 2.13), which is very suitable for isolation as well as identifica-
tion of actuator faults, is actually a special case of the model in Eq. 3.1 with Bi

being a step function and the nonlinear function φ being a superposition of bilinear
terms.

Talebi and Khorasani [120] have recently generalized the model in Eq. 3.1 to the
case of sensor faults and extended it to systems with partial-state measurement as
follows:

⎧
⎨

⎩

ẋ = f (x, u) + ηx (x, u, t) + φa(x, u, t)

y = Cx + ηy(x, u, t) + φs(x, u, t)
(3.2)

where ηx : �n × �r × �+ → �n represents the plant unmodeled dynamics and
disturbances, ηy : �n × �r × �+ → �m is the sensor modeling uncertainties
and noise; and φa : �n × �r × �+ → �n is the unknown actuator faults, φs :
�n × �r × �+ → �m represents the unknown sensor faults. Nonetheless, although
being more general, it has the same disadvantage of the model in Eq. 3.1 for fault
identification of system components (other than sensors and actuators).

In this monograph, following the pioneering work of Isermann [60] on fault
diagnosis of linear systems and more recent work of Alessandri [69] on fault
detection and isolation of nonlinear systems, it is assumed that the system com-
ponent faults are reflected in the physical system parameters. Some examples of
these physical parameters include friction, torque gain, damper coefficient, etc.
Furthermore, we use the notion of fault parameters (FPs), which was first intro-
duced in Alessandri [69], to parameterize the a priori known mathematical model
of the system with unknown parameters that actually represent faults in system
components.

We assume that the occurrence of faults in the system can be represented by
changes in the FPs that affect, in one way or the other, the actual physical parameters
of the mathematical model of the system. In other words, the FPs shall be defined in
a way that a one-to-one correspondence can be established between their values and
the health state of the physical system components. Consequently, the faulty sys-
tem can be described by the following discrete-time parameterized nonlinear fault
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model, called multi-parameter fault model (the discrete-time model of the system
is used, since the proposed hybrid FDII algorithm is developed in a discrete-time
framework):

Ω :

⎧
⎨

⎩

xk+1 = f (xk, uk, αk) + Γ(xk)wk

yk = h(xk) + vk

(3.3)

where the vector fields f : �n ×�r ×�+ and h : �n → �m , respectively, represent
the nominal system dynamics and output measurement channel; k is the discrete-
time step; αk ∈ �L (or αk : �+ → �L ) denotes the time-dependent FP vector
containing L elements; wk and vk denote external disturbances and measurement
noise, respectively; and the nonlinear function Γ(xk) represents the generally state-
dependent channel through which the external disturbances act upon the system.
Since the robustness of FDII to modeling errors is not investigated in this mono-
graph, a term corresponding to modeling errors is not incorporated in Eq. 3.3. It
should be noted that under full-state measurement assumption of this chapter, the
nonlinear vector-valued function h becomes essentially an n × n identity matrix.

Furthermore, αk = αH implies the absence of faults in the system, i.e., healthy
mode of operation. The value of αH depends on the way the FP vector affects the
physical system parameters in Eq. 3.3; usually being either additive or multiplica-
tive. The representation adopted in this monograph is the additive form, hence mak-
ing αH = [0]L×1.

It should be noted that the time-dependent FP vector αk can also, in general, be
a function of system states and inputs. However, in this monograph, without loss
of generality we assume that it is only a function of time. Indeed, it can be easily
shown that the model in Eq. 3.3 is equivalent to the state- and input-dependent fault
function models given in Eqs. 3.1 and 3.2.

Consider the model in Eq. 3.3. Let us add and subtract to and from the right-
hand side of the state equation the nominal state dynamics of the system with αk =
αH ; i.e.,

Ω :

{
xk+1 = f (xk, uk, αk) + Γ(xk)wk + f (xk, uk, αH ) − f (xk, uk, αH )

yk = h(xk) + vk

(3.4)

By re-arranging the terms, we have:

Ω :

{
xk+1 = f (xk, uk, αH ) + Γ(xk)wk + f (xk, uk, αk) − f (xk, uk, αH )

yk = h(xk) + vk

(3.5)

By replacing the term f (xk, uk, αk) − f (xk, uk, αH ) with the function
φ(xk, uk, αk), we have:
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Ω :

{
xk+1 = f (xk, uk, αH ) + Γ(xk)wk + φ(xk, uk, αk)

yk = h(xk) + vk

(3.6)

Neglecting the terms corresponding to the modeling errors in Eqs. (3.1) and (3.2),
one can easily see that they are equivalent to the model in Eq. 3.6, especially that
in absence of faults in the system (i.e., healthy operational mode of the system) we
have:

φ(xk, uk, αk)|αk=αH = f (xk, uk, αH ) − f (xk, uk, αH ) ≡ 0

The fault model in Eq. 3.3, with output equation as yk = xk + vk due to full-
state measurement assumption, enables us to state the problem of fault diagnosis for
nonlinear systems in the form of an online nonlinear parameter estimation problem,
where the unknown FPs are being estimated using system inputs and measurements.
If all of the system states were not available for measurement, then the fault diag-
nosis problem shall be stated as an online dual estimation (i.e., state and parameter
estimation) problem.

Within the proposed fault diagnosis framework, fault detection can be accom-
plished by simply comparing the estimated FP vector against αH . However, for
fault isolation and fault severity estimation purposes, a bank of parameter estima-
tors is proposed, where each estimator is designed based on a single-parameter fault
model.

Consider the multi-parameter fault model of Eq. 3.3 with L fault parameters.
We extract L single-parameter fault models, Ωi , i = 1, . . . , L , from model (3.3) as
follows:

Ωi :

{
xk+1 = f (xk, uk, α

i
k) + Γ(xk)wk

yk = h(xk) + vk
; i = 1, . . . , L (3.7)

A bank of L parameter estimators may then be designed based on each single-
parameter fault model in Eq. 3.7, where the ith parameter estimator will essentially
estimate the ith fault parameter, namely αi

k . It should be noted that the extraction of
single-parameter fault models from the multi-parameter fault model to enable fault
isolation is unprecedented in the literature.

3.2 FDII using Parameter Estimation

The formulation of the fault diagnosis problem presented in the previous section
necessitates developing appropriate nonlinear parameter estimation techniques to
accomplish FDII objectives. The use of parameter estimation approach for fault
diagnosis has been previously reviewed in the monograph. Hence, we focus on the
nonlinear parameter estimation problem itself and very briefly review some of its
potential solutions.
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The problem of parameter estimation, in its most general form, is defined as
follows (with slight modification from Bar-Shalom et al. [91]):

The term parameter is used to designate a quantity (scalar or vector-valued) that
is assumed to be time invariant. If it does change with time, it can be designated
(with a slight abuse of language) as a “time-varying parameter,” but its time varia-
tion must be “slow” compared to the state variables of a system. Then the problem
of estimating a parameter p is the following. Given the measurements

y j = G( j, u j , w j , p) j = 1, . . . , k (3.8)

made in presence of the known exogenous (or control) inputs u j and unknown dis-
turbances (noises) w j , find a function of the k observations and control inputs

p̂k = P̂
(
k, Zk

1

)
(3.9)

that estimates the value of p in some sense, where the measurements and observed
exogenous (or known control) inputs from the current time-step k all the way to the
initial moment are denoted compactly as

Zk
1 = {y j , u j

}k

j=1 (3.10)

The function P̂ in Eq. 3.9 is called the parameter estimator function. The value
of this function p̂k is the parameter estimate. The vector-valued function G is the
observation function, which, in case of a general nonlinear dynamic system (given
in Eq. 2.1) with full-state measurement becomes equivalent to the system’s state
dynamics (i.e., the vector-valued function f in Eq. 3.3). It is thus the linearity or
nonlinearity of the function G with respect to the parameter p (or equivalently, the
function f in Eq. 3.3, with full-state measurement, with respect to FP vector αk) that
determines the linearity or nonlinearity of the parameter estimation problem.

The above definition justifies the necessity of the Assumption (iii) of FDII, stated
at the beginning of this chapter, for the FP estimation problem to be solvable. Fur-
thermore, the above definition suggests that the solution to the problem of estimat-
ing the FP vector αk – and thus solving the FDII problem – is a parameter estimator
function Â as a function of system observations/measurements, control inputs, and
time, whose value at each instant of time determines the FP estimate α̂k ; i.e.,

α̂k = Â
(
Y k

1 ,U
k
1 , k
)

(3.11)

where Y k
1 = {y j }k

j=1 and U k
1 = {u j }k

j=1 are respectively the system measurements
and control inputs from the initial moment to the current time-step k. The estimator
function Â is called fault parameter function (FPF) throughout this monograph. It
should be noted that the FPF in Eq. 3.11 requires the entire past observed data. Such
a formulation of the parameter estimator function is useful only for finite-horizon
problems such as finite-horizon tracking problem. Therefore, it is impractical and
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computationally unfeasible for infinite-horizon problems such as online monitoring
and fault diagnosis, since the dimension of the input space of the estimator function
increases linearly in time. Therefore, we need to limit the memory of the estimator to
a fixed, limited number of previous measurements and control inputs. Here, at each
time-step k, we take the measurements and control signals from only the previous
time-step k-1. Thus, we have:

α̂k = Â(yk−1, uk−1, k) (3.12)

There are two fundamental approaches one can use for estimating a parameter:

(i) Nonparametric (or distribution free) approaches: There is a true unknown
value p0 for the parameter, which does not obey a specific distribution. These
are also called the non-Bayesian or Fisher approaches.

(ii) Parametric random approaches: The parameter is a realization of a random
variable with an a priori known probability distribution function (PDF). These
are also called Bayesian approaches.

However, the FP vector does not have any a priori known PDF because faults in
a system, in general, do not occur according to a specific distribution (or stochastic
model). Therefore, the problem of nonlinear FP vector estimation has to be solved
using a non-parametric or non-Bayesian approach.

3.2.1 Conventional Linear and Nonlinear Parameter Estimation

In this section, we will very briefly mention some of the conventional non-Bayesian
parameter estimation methods applicable to both linear and nonlinear parameter
estimation problems. For further details, refer to Bar-Shalom et al. [91] and Haykin
[49]. These methods include:

(a) Maximum Likelihood Estimator (MLE): This method maximizes the so-
called likelihood function (LF) of the parameter, namely Λz(p) = P(Z |p), defined
as the PDF of the measurements conditioned on the parameter; i.e.,

p̂M L (Z ) = arg max
p

Λz(p) = arg max
p

P(Z |p) (3.13)

where the LF is a measure of how “likely” a parameter value is given the obtained
observations [91]. The likelihood function serves as a measure of the evidence from
the data [91]. Maximum likelihood estimator has been extensively used for linear
parameter estimation. The use of MLE for nonlinear parameter estimation essen-
tially entails solving a nonlinear optimization (maximization) problem, which can-
not often be solved analytically and thus should be solved approximately. However,
most conventional searching algorithms are likely to converge to local maxima. Nev-
ertheless, the genetic algorithm (GA) poses as a good candidate for solving the
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nonlinear MLE problem, since it tends to find the globally optimal solution without
being trapped at local minima. For example, Abutaleb [127] applied GA to MLE
of the parameters of a nonlinear system in a noisy environment. For pure GA-based
nonlinear parameter estimation, refer to Yao and Sethares [128].

Singer [129] proposed another approach to solving the nonlinear MLE problem
through the use of Monte Carlo simulations; hence the name simulated maximum
likelihood (SML). Nonetheless, both GA-based MLE and SML are computationally
extensive, which makes them inappropriate for real-time, online FP vector estima-
tion required to accomplish FDII of nonlinear systems.

(b) Least-Squares Estimator (LSE) [91]: In Eq. 3.8, assume that the unknown
disturbances (noises) appear in additive form; thus,

y j = G( j, u j , p) + w j j = 1, . . . , k (3.14)

Then, the LSE method minimizes the cumulative squared of the estimation error
as a function of the parameter p; i.e.,

p̂L S
k = arg min

p

⎧
⎨

⎩

k∑

j=1

∥
∥y j − G( j, u j , p)

∥
∥2

⎫
⎬

⎭
(3.15)

If the function G is linear in p, then one has linear LS problem. Accordingly, a
nonlinear function G results in the nonlinear LS problem. It should be emphasized
that the LSE coincides with the MLE if the measurement/process noises w j are
independent and identically distributed zero-mean Gaussian random variables; i.e.,
w j ∼ N (0, σ 2) [91].

Once again, the use of cumulative error over the entire past observed data makes
LSE inappropriate for infinite-horizon problems such as online FDII. However, a
useful feature of the LSE is that it can be rewritten in recursive form, which is useful
for sequential, online processing. Recursive Least Squares (RLS) is commonly used
for parameter estimation of linear systems (see Houacine [130]). For application of
RLS to nonlinear systems, see Haupt et al. [131], where the authors have developed
an optimal iterative algorithm for discrete nonlinear least-squares estimation.

(c) Kalman Filter-based Estimation: The celebrated Kalman filter (KF) [49],
rooted in the state-space representation of dynamic systems, provides an optimal
(in the sense of minimum variance) recursive solution to the problem of parameter
estimator under the hypotheses of Gaussian measurement and process noises and
the linearity of state and measurement equations. The KF is also capable of optimal
dual estimation for linear systems, in which both the states of the dynamic system
and its parameters are simultaneously estimated, given only noisy observations. It
should be noted that the KF-based parameter estimators are distribution-free (or
non-parametric) only with respect to the unknown parameters that need to be esti-
mated, but they all depend on the Gaussian distribution assumption of system states
as well as process and measurement noises.
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Two extensions of the KF to nonlinear systems include the extended Kalman
filter (EKF) and the unscented Kalman filter (UKF). For complete mathematical
description of the EKF and the UKF algorithms, refer to Haykin [49]. The EKF
is being extensively used as an industry standard technique for recursive parame-
ter estimation, state estimation, and dual estimation of nonlinear systems. However,
it suffers from suboptimal performance and sometimes divergence due to errors
introduced by “first-order” approximation of the true nonlinear dynamics. Although
“second-order” versions of the EKF exist, their increased implementation and com-
putational complexity tend to prohibit their use.

The UKF algorithm addresses the “first-order” approximation issue of the EKF
through the use of unscented transformation (UT). The UT is a method for calcu-
lating the statistics of a random variable that undergoes a nonlinear transformation
(Julier and Uhlmann [48]). From Julier et al. [132], it is known that UKF can predict
the state estimate and error covariance to the fourth order accuracy while the EKF
only predicts with accuracy up to the second order for the state estimate and fourth
order for the error covariance. Another advantage of the UKF is its ease of imple-
mentation. In contrast to the EKF, the UKF algorithm does not require calculation
of the Jacobian matrices that could sometimes lead to implementation difficulties.

Despite its clear advantages over the EKF, the UKF algorithm also possesses a
major implementation difficulty. It has more number of parameters than the EKF,
which makes the UKF relatively difficult to tune. This is due to the three extra
parameters associated with the unscented transform. While some guidelines exist
on how to choose these parameters, the optimal values are problem dependent, and
optimal parameter selection method is not fully explored [49].

Nevertheless, both the EKF and the UKF algorithms suffer from a common lim-
itation. Both algorithms make a Gaussian assumption on the probability density
function of the process and measurement noises, and the states of the system. How-
ever, the Gaussian assumption is not valid for certain problems and applications,
and thus the UKF and the EKF cannot be applied with confidence. Moreover, the
author’s numerous experiences with both the EKF and the UKF in different state
estimation and fault diagnosis applications have revealed that it is sometimes very
time-consuming and difficult to optimally tune the two algorithms. Thus, one needs
to resort to algorithms that are more powerful in dealing with nonlinearities and
non-Gaussian situations and are also easier to tune. Neural networks provide such
an alternative strategy that can resolve the above-mentioned limitations of the KF-
based algorithms.

3.2.2 Neural Network-Based Parameter Estimation

To overcome the aforementioned limitations and/or shortcomings, we choose multi-
layer feed-forward (static) neural networks for parameter estimation. The neural net-
works are a promising alternative to the conventional parameter estimation methods
due to: (i) their universal function approximation property that allows approximating



3.3 FDII using Series-Parallel Architecture of Neural Parameter Estimators 61

any continuous, multivariate nonlinear function to any desired degree of accuracy;
(ii) their ability to approximate unknown nonlinear functions without any explicit
functional or distribution assumption for the underlying model (such as the Gaussian
distribution assumption of the KF-based methods); and (iii) the availability of effec-
tive, well-studied, and well-understood online adaptation (or weight optimization)
algorithms, which make the adaptation algorithm fairly simple to tune. The neural
weight adaptation algorithms are so well-established that even numerous modifi-
cations and enhancements to the basic algorithms have also been proposed in the
literature.

Consequently, in this monograph, neural parameter estimators (NPEs) are devel-
oped for adaptively estimating the FPF, and thus to estimate the FP vector. We pro-
pose two NPE schemes, namely series-parallel and parallel that differ mainly in
terms of structure. These terminologies are borrowed from the system identification
literature (see Narendra and Parthasarathy [65]). To accomplish fault isolation, we
develop a bank of L NPEs, where each NPE in the bank is designed according to one
of the L single-parameter fault models in Eq. 3.7. Hence, the ith NPE in the bank is
responsible for estimating the ith fault parameter αi

k , for i = 1, . . . , L . It should be
noted, however, that the idea of developing a bank of NPEs is entirely independent
from the NPE structure, being “series-parallel” or “parallel.” Nonetheless, the fault
isolation decision logic depends on the NPE structure being used, as will be shown
in the following sections.

3.3 FDII using Series-Parallel Architecture of Neural Parameter
Estimators

Figure 3.1 depicts the structure of a bank of series-parallel NPEs designed and
developed to simultaneously achieve the three objectives: fault detection, isola-
tion, and fault severity estimation. As can be seen in this figure, residual signals
r i

k, i = 1, . . . , L and the FP estimates α̂i
k, i = 1, . . . , L comprise the outputs of

the series-parallel scheme and the three tasks of FDII are achieved by examining all
these quantities. Fault detection and isolation (FDI) decision logic of this scheme
are presented in Section 3.3.2.

The series-parallel structure is composed of two major subsystems: (1) the
feed-forward (static) neural networks (FFNN) (i.e., the NPEs) utilized to adap-
tively approximate nonlinear FP estimation functions and (2) the nonlinear single-
parameter fault models given in Eq. 3.7 utilized for state/output estimation (or pre-
diction) based on FP estimates. Accordingly, at each time-step k, the following two
set of calculations are performed associated with each NPE in the bank:

(1) Calculation of FP estimates:

α̂i
k−1,k = g

(
ȳk,W i

k , V i
k

)
; i = 1, . . . , L (3.16)

and
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Fig. 3.1 Series-Parallel scheme of the proposed hybrid FDII approach

ȳk = [yk−1 uk−1
]T

(3.17)

where α̂i
k−1,k is the estimate of the ith fault parameter at time k − 1 calculated at

time k; k; W i
k , V i

k are respectively the output and the hidden-layer weight matrices
of the ith NPE; ȳk is the input vector of all NPEs; and g is the nonlinear mapping
implemented by a single hidden-layer FFNN with linear activation functions for the
neurons at the output layer and the nonlinear activation functions for the neurons at
the hidden-layer. Thus,

g
(
ȳk,W i

k , V i
k

) = W i
kσ
(
V i

k ȳk
)

(3.18)

where σ (.) is the activation function of the hidden-layer neurons that is usually set
to be a sigmoidal function:

σ j
(
V i

k ȳk
) = 2

1 + exp(−2 V i
k j

ȳk)
− 1 (3.19)

where V i
k j

is the jth row of V i
k and σ j (V i

k ȳk) is the jth element of σ (V i
k ȳk).



3.3 FDII using Series-Parallel Architecture of Neural Parameter Estimators 63

(2) State/Output estimation (or prediction) based on FP estimates: In this
step, the states and consequently the outputs of the system are estimated (or pre-
dicted) using the known part of the single-parameter fault models in Eq. 3.7 (i.e.,
without unknown external disturbances wk and measurement noise vk) and based on
the FP vector estimate from Step 1, namely α̂k−1,k . Hence,

⎧
⎪⎨

⎪⎩

x̂ i
k = f

(
xk−1, uk−1, α̂

i
k−1,k

)

; i = 1, . . . , L

ŷi
k = x̂ i

k

(3.20)

where xk−1 = yk−1 are the measured states of the system.

3.3.1 Weight Update Laws of the Series-Parallel Scheme

The weights of NPEs are updated with the objective of minimizing the weighted L2

norm of the instantaneous output estimation error vector defined as:

ỹi
k = yk − ŷi

k ; i = 1, . . . , L (3.21)

Thus, the objective function, at time-step k, of the ith NPE is the instantaneous
output error:

J i
k = 1

2

∥
∥ỹi

k

∥
∥2

Q = 1

2
ỹi

k
T Qỹi

k (3.22)

where Q ∈ �n×n is the estimation error weight matrix.
The weights of NPEs are updated using the well-known gradient descent (GD)

algorithm:

W i
k+1 = W i

k − ηi
w

(
∂ J i

k

∂W i
k

)

; i = 1, . . . , L

V i
k+1 = V i

k − ηi
v

(
∂ J i

k

∂V i
k

)
(3.23)

where ηi
w, η

i
v > 0; i = 1, . . . , L are the learning rates.

In order to precisely derive the weight update laws, let us define for i = 1, . . . , L:

net i
vk

= V i
k ȳk (3.24)

net i
wk

= W i
kσ (V i

k ȳk) (3.25)
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Thus, the partial derivatives ∂ J i
k/∂W i

k ,∂ J i
k/∂V i

k can be computed according to
the following equations:

∂ J i
k

∂W i
k

= ∂ J i
k

∂net i
wk

∂net i
wk

∂W i
k

(3.26)

∂ J i
k

∂V i
k

= ∂ J i
k

∂net i
vk

∂net i
vk

∂V i
k

(3.27)

where

∂ J i
k

∂net i
wk

= ∂ J i
k

∂ ỹi
k

∂ ỹi
k

∂ ŷi
k

∂ ŷi
k

∂ x̂ i
k

∂ x̂ i
k

∂α̂i
k−1,k

∂α̂i
k−1,k

∂net i
wk

= −ỹiT

k Q
∂ x̂ i

k

∂α̂i
k−1,k

∂α̂i
k−1,k

∂net i
wk

(3.28)

∂ J i
k

∂net i
vk

= ∂ J i
k

∂ ỹi
k

∂ ỹi
k

∂ ŷi
k

∂ ŷi
k

∂ x̂ i
k

∂ x̂ i
k

∂α̂i
k−1,k

∂α̂i
k−1,k

∂net i
vk

= −ỹiT

k Q
∂ x̂ i

k

∂α̂i
k−1,k

∂α̂i
k−1,k

∂net i
vk

(3.29)

∂net i
wk

∂W i
k

= σ (V i
k ȳk),

∂net i
vk

∂V i
k

= ȳk (3.30)

The partial derivative ∂ x̂ i
k/∂α̂

i
k−1,k ; i = 1, . . . , L is calculated using the ith state

estimation equation of Eq. 3.20 as follows:

∂ x̂ i
k

∂α̂i
k−1,k

= ∂ f
(
xk−1, uk−1, α̂

i
k−1,k

)

∂α̂i
k−1,k

(3.31)

which is essentially the Jacobian of the vector-valued function f with respect to
the scalar parameter α̂i

k−1,k . However, it should be noted that it is not necessary to
calculate the Jacobian matrix of the system with respect to the states, which is an
advantage from the implementation point of view.

Finally, the well-known standard back-propagation (BP) algorithm is used to cal-
culate the partial derivatives ∂α̂i

k−1,k / ∂net i
wk
, ∂α̂i

k−1,k / ∂net i
vk

for i = 1, . . . , L . Due
to the linearity of the output layer of the NPEs, we simply have

∂α̂i
k−1,k

∂ i
wk

= 1 (3.32)

and taking into account the sigmoidal activation functions of the hidden-layer of the
NPEs, we have:

∂α̂i
k−1,k

∂net i
vk

= W i
k (I − Λ(V i

k ȳk)) (3.33)
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where Λ(V i
k ȳk) = diag

⌊
σ 2

j (V i
k j

ȳk)
⌋

, j = 1, . . . , Si ; and Si is the number of neu-

rons in the hidden-layer of the ith NPE and V i
k j

is, once again, the jth row of V i
k .

3.3.2 FDI Decision Logic of the Series-Parallel Scheme

To formulate the FDI decision logic, we need to define a set of residual vectors as –
a total of L residual vectors can be defined; one per state estimator in the bank:

r i
k = yk − ŷi

k ; i = 1, . . . , L (3.34)

Given Assumption (ii), the fault detection and isolation (FDI) decision logic for
the series-parallel scheme is quite straight-forward and can be stated as follows:

(
C F

k , T C
F

) =
{

(i, k.Ts)
∣
∣
∣

∣
∣
∣r

i, j
k

∣
∣
∣ ≤ δ j ∧ ∣∣α̂i

k − αi
H

∣
∣ > εi

}

l = 1, . . . , L; l 	= i ; j = 1, . . . , n
(3.35)

where |r i, j
k | is the absolute value of the jth element of the residual vector correspond-

ing to the ith NPE in the bank; δ j ; j = 1, . . . , n denote the thresholds associated
to the output (or state) residuals of the NPEs; εi ; i = 1, . . . , L denote the thresh-
olds corresponding to the FP estimate of the ith NPE in the bank; C F

k specifies at
each instant of time (the index of) the faulty component(s) (or the health state of the
system); Ts is the sampling time of the system; αi

H is the value of the ith FP under
nominal, healthy conditions (which is “zero” for additive FPs and “one” for multi-
plicative FPs); and T C

F represents the detection and isolation time of the occurred
fault(s). Under healthy conditions, C F

k should ideally (i.e., under perfect detection)
be an empty set (i.e.,C F

k = ∅). On the other hand, in presence of only one faulty
component in the system, C F

k should ideally (i.e., under perfect isolation) belong to
the set {1, . . . , L}. However, in case of imperfect isolation, C F

k would be a subset of
the set {1, . . . , L}, consisting of more than one elements.

It should be noted that, as opposed to the thresholds εi ; i = 1, . . . , L , the thresh-
olds δ j ; j = 1, . . . , n are common (or equal) across all NPEs in the bank. As men-
tioned at the beginning of Section 3.3 and can also be seen from the FDI decision
logic in Eq. 3.35, the residual signals and the FP estimates α̂i

k ; i = 1, . . . , L are
examined in the series-parallel scheme to detect the presence and isolate the location
of faults in the monitored system. Once a fault is detected and the faulty component
is isolated, the severity of the fault is essentially the value of the corresponding FP

estimate, namely α̂
C F

k
k−1,k .

Finally, the FDI decision logic of the series-parallel scheme shows resemblance
with that of the dedicated observer scheme (DOS) presented in Section 2.3.1.2. In
particular, careful comparison of Eqs. 3.35 and 2.7 clearly reveals a partial equiv-
alence between the two FDI decision logics; except that the residuals in the FDI
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decision rule of the DOS are replaced by the FP estimates in the last condition of
the FDI decision rule of the series-parallel scheme.

3.3.2.1 Threshold Selection Criteria

In the series-parallel scheme, fault detection can be ensured if the well-known
worst-case noise/disturbance analysis is employed for assigning the thresholds
δ; j = 1, . . . , n in Eq 3.35. However, this does not guarantee that the fault iso-
lation will be perfectly achieved. More precisely, the ith FP estimate α̂i

k−1,k is not
perfectly decoupled from all fault sources but the ith one (i.e., the fault sources
j = 1, . . . , i − 1, i + 1, . . . , L). In fact, there is always a weak impact from the
fault sources j = 1, . . . , i − 1, i + 1, . . . , L on the ith FP estimate α̂i

k−1,k , as will
be demonstrated using simulations in Section 5.5.1. However, this weak impact can
be resolved by properly setting the thresholds εi ; = 1, . . . , L . A good rule of thumb
that augments the reliability of FDII and ensures the safety of the system is to select
the thresholds εi ; = 1, . . . , L in a way that the occurrence of the ith fault with a
severity level below its respective threshold εi does not significantly deteriorate the
closed-loop system performance.

3.4 Robust FDII Using Parallel Architecture of NPEs

The series-parallel scheme developed in the previous section possesses several
advantages including simple FDI decision logic (as discussed earlier) and fast con-
vergence (which will be demonstrated in Section 5.5.1). It should be noted that
fast convergence essentially results in short FDI delay. However, as mentioned pre-
viously, it may incorrectly isolate faults particularly when there is a strong cou-
pling between two fault sources. Furthermore, as will be illustrated in the simulation
results of Section 5.5.2, the series-parallel scheme suffers from lack of robustness
to measurement noise. In particular, measurement noise significantly the fault isola-
tion and identification performance of the series-parallel scheme. This is due to the
fact that measurement noise directly propagates through the network, thus directly
affecting the FP estimates as can be observed from Fig. 3.1. As mentioned in Sec-
tion 2.3.1.2, the sensitivity to measurement noise is also an inherent property of the
DOS FDI method. This, once again, emphasizes the similarity of the properties of
these two methods.

The sensitivity of the series-parallel scheme to measurement noise makes it
impractical and unreliable for fault diagnosis in low SNR applications. The parallel
scheme developed in this section intelligently resolves this issue by feeding back
the estimated rather than the measured outputs to the NPE input. This slight restruc-
turing of the series-parallel scheme makes the measurement noises to be filtered out
in the NPE weight adaptation process of the parallel FDII scheme, hence making
it extremely robust to measurement noise. The extreme insensitivity of the FDII
performance of the parallel scheme to measurement noise will be demonstrated in
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Section 5.5.4. The schematic of the robust parallel structure of the proposed hybrid
FDII methodology is shown in Fig. 3.2.
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Fig. 3.2 Parallel scheme of the proposed hybrid FDII approach

Furthermore, using a special formulation of the FDI decision logic, the paral-
lel scheme allows fault isolation to be perfectly achieved in contrast to the series-
parallel scheme. The reason for perfect isolation in the parallel scheme is that, as
opposed to the series-parallel structure, the only signal common among the inputs
of all state estimators (or predictors) and the NPEs in the bank is the control input
signal. More precisely, each NPE and state estimator in the bank utilizes its own
state estimate (or prediction), which automatically enforces a structural decoupling
between the units. Clearly, this restructuring also has a disadvantage of slower con-
vergence rate for the state estimators and the NPEs of the parallel scheme as com-
pared to its series-parallel counterpart. This slower convergence rate causes longer
fault diagnosis delays and makes the parallel scheme sensitive to transients of the
closed-loop system (due to changes in the control command). More precisely, while
the state estimates from the series-parallel scheme very quickly converge to the
measured states and thus it is extremely robust to closed-loop system transients, the
parallel scheme generates false alarms during the transients until the closed-loop
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system stabilizes at the steady state. All of the above-mentioned characteristics
of each FDII scheme are further demonstrated and verified in Chapter 5 using
simulations.

The NPE calculations and weight adaptation laws of the parallel structure remain
essentially similar to that of the series-parallel scheme with only slight modifica-
tions; however, the FDI decision logics of the two are a bit different. These changes
and differences are reflected in the following.

Since instead of the actual measurements, the output estimates (or predictions)
are fed back to the NPEs and the state estimators, yk−1 in Eq. 3.17 should be
replaced by ŷi

k−1 and xk−1 (equal to yk−1 under full-state measurement assump-
tion) in Eq. 3.20 must be replaced also by x̂ i

k−1 both for i = 1, . . . , L . Hence, for
the robust parallel FDII scheme we have:

α̂i
k−1,k = g

(
ȳi

k,W I
k , V i

k

)
; i = 1, . . . , L (3.36)

and

ȳi
k = [x̂ i

k−1 uk−1
]T

; i = 1, . . . , L (3.37)

Moreover,

⎧
⎨

⎩

x̂ i
k = f

(
x̂ I

k−1, uk−1, α̂
i
k−1,k

)
; i = 1, . . . , L

ŷi
k = x̂ i

k

(3.38)

3.4.1 Weight Update Laws of the Robust Parallel Scheme

Once the above adjustments are applied to Eqs 3.20 and 3.17, the weight update
laws remain practically intact, since they are written in terms of ȳk in Eq. 3.17,
which represents the input vector of the NPEs. The only required adjustment to the
weight update laws of the series-parallel scheme that may need to be explicitly re-
emphasized is in Eq. 3.31. For the robust parallel structure, this equation should be
reinstated for i = 1, . . . , L as follows:

∂ x̂ i
k

∂α̂i
k−1,k

= ∂ f
(
x̂ i

k−1, uk−1, α̂
i
k−1,k

)

∂α̂i
k−1,k

(3.39)

3.4.2 Fault Isolation Policy of the Parallel Scheme

Once again, we need to define a set of L residual vectors – one per state estimator in
the bank – as follows:
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r i
k = yk − ŷi

k ; i = 1, . . . , L (3.40)

In sequel, the FDI decision strategy can be stated as follows:

(
C F

k , T C
F

) =
{

(i, kTs) |
∣
∣
∣r

i, j
k

∣
∣
∣ ≤ δ j ∧

∣
∣
∣r

l, j
k

∣
∣
∣ > δ j ; l = 1, . . . , L;

l 	= i ; j = 1, . . . , n

}

(3.41)

where r i, j
k denotes the jth element of residual vector r i

k and δ j ; j = 1, . . . , n are
the thresholds corresponding to the state residuals of the NPEs. It should be noted
that the thresholds δ j ; j = 1, . . . , n are common (or equal) across all NPEs in
the bank. The above fault isolation policy states that the fault model with residu-
als within the threshold bounds is actually the current active mode of the system.
In the parallel scheme, threshold values are determined using the worst-case distur-
bance/noise analysis. Once the fault source is isolated, the severity of the fault is
essentially the value of the corresponding FP estimate. It should be noted that the
FDI decision logic of the robust parallel scheme is simpler to implement than that
of the series-parallel scheme. This can be simply observed by comparing Eq. 3.41
with Eq. 3.35. As can be seen from those equations, the FDI logic of the parallel
scheme has only n parameters to be specified corresponding to the residual thresh-
olds δ j ; j = 1, . . . , n, with n being the order of the monitored system. On the other
hand, in the series-parallel scheme n + L parameters need to be specified, where in
addition to the residual thresholds, the thresholds associated to FPs εi ; i = 1, . . . , L
have to also be determined; L being the number of faults modeled in the system.
Interestingly, the simplicity of the FDI logic of the robust parallel scheme comes
along with solid fault isolation capability. This is intrinsic to the parallel scheme,
where fault isolation is essentially enforced in its structure. This was already dis-
cussed in more details in Section 4.1 (pages 67 and 68), and is also demonstrated
through simulations in Chapter 5.

3.5 Conclusions

The hybrid nonlinear fault detection, isolation, and identification (FDII) approach
proposed in this monograph was presented in this chapter. In order to achieve fault
identification, faults were modeled through parameterization of the nominal mathe-
matical model of the system with a set of fault parameters (FPs), where each FP is
an indication of a particular fault in the system. It was explained, however, that
such a multi-parameter fault model does not allow fault isolation. Hence, a set
of single-parameter fault models were extracted from the multi-parameter ones in
order to achieve fault isolation. Once the set of single-parameter fault models were
derived, the problem of FDII in nonlinear systems was formulated as an on-line
nonlinear parameter estimation problem with FPs as the unknown parameters that
need to be estimated. Various nonlinear parameter estimation methods were then
reviewed and a solution based on neural networks was then proposed. The universal
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function approximation capability of neural networks and the availability of well-
established and well-understood weight adaptation laws were the rationales behind
choosing neural networks for solving the online nonlinear parameter estimation
problem.

Hence, the core of the proposed hybrid nonlinear FDII solution was a bank
of adaptive neural parameter estimators (NPE), where each NPE in the bank was
designed based on a separate single-parameter fault model. At each instant of time,
the NPEs provide estimates of the unknown FPs, which in conjunction with the out-
put residuals determine the health state of the system being monitored. The residuals
were defined as the difference between the actual measurements and the output esti-
mates (or predictions) generated by the single-parameter fault models using their
respective FP estimates from the NPEs. The FP estimation was based on online
minimization of instantaneous output estimation error.

Under full-state measurement assumption, two NPE structures including the
series-parallel and the parallel were proposed and their respective FDI decision log-
ics and weight update laws were derived. Each FDII scheme was shown to exhibit
an exclusive set of desirable attributes. More specifically, it was discussed that the
FDII performance of the parallel scheme is extremely robust to measurement noise,
hence making it suitable for health monitoring of systems with even very low SNR
values. Furthermore, it was discussed that the smaller number of thresholds makes
the FDI decision logic of the parallel scheme simpler than that of the series-parallel
scheme. On the contrary, it was discussed that the series-parallel scheme displays
fast convergence rates and is very robust to the closed-loop system transients, which
are due to changes in the control command signal. Hence, the series-parallel scheme
is desirable for (high SNR) systems requiring very short delays in fault diagno-
sis and/or systems requiring frequent commanding. In practice, the choice of the
appropriate FDII scheme is imposed by the specifications and the requirements of
the specific problem at hand. Furthermore, simple neural network architecture and
straightforward weight adaptation laws make both proposed FDII schemes suitable
for real-time implementation of online health monitoring systems. It should be noted
that the robust parallel FDII scheme is a major contribution of this monograph, being
proposed for the first time in the literature. Furthermore, the novelty aspects of the
series-parallel scheme were also mentioned in this chapter.



Chapter 4
Proposed FDII for Nonlinear Systems
with Partial State Measurement

Similar to many of the existing fault diagnosis methods, the two FDII schemes
developed in the previous chapter relied on the availability of full-state measure-
ments. However, even with recent advances in sensor and instrumentation tech-
nology, all the states of a dynamical system may not be directly measurable. This
might be due to unavailability of operational, accurate, or reliable (on-board) sen-
sors for measurement of some specific physical variables. For example, the state of
charge (SOC) in batteries – employed almost everywhere from portable electronics
to hybrid electric vehicles (HEV) – cannot be directly measured while the battery
is in operation. Some experimental methods certainly exist for measuring the SOC,
but such measurements have to be taken under a controlled experimental setup and
cannot be achieved while the battery provides power to the system (i.e., laptop,
HEV, etc.).

Furthermore, sensors are often prone to permanent or intermittent faults/failures.
This essentially makes their measurements at least temporarily unavailable. For
example, sensors regularly require recalibration after certain amount of time after
deployment due to bias or drift. Until the recalibration is performed, both the control
system and the fault diagnosis subsystem are expected to continue their operation in
order to monitor, ensure, and maintain the safety of the entire system. Even for sys-
tems where complete shutdown is possible, economic loss due to system shutdown
is irrefutable. Finally, it should also be noted that for some sensors, the amount
of measurement noise can be relatively high and also the measurement noise and
sensor accuracy may well depend on the dynamic range of the variable being mea-
sured. For example, sensors for measuring electrical current usually exhibit vary-
ing level of accuracy over different ranges of the current. Therefore, the reliability
of measurements from these sensors changes accordingly. In conclusion, to aug-
ment the reliability of control and health monitoring systems, one needs to esti-
mate system states that are either intrinsically non-measurable or have temporar-
ily or permanently turned out to be non-measurable due to occurrence of sensor
faults/failures.

As mentioned previously, both the series-parallel and the parallel FDII schemes
proposed in Chapter 3 rely on full-state measurements. More precisely, state
measurements comprise the inputs to the FDII subsystem. Consequently, any
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inaccuracies in state measurements eventually affect diagnostic performance. When
some of the system states are not directly measurable (or may temporarily become
non-measurable) then their corresponding estimates shall be provided to the FDII
unit. Therefore, the accuracy of state estimates becomes crucial for successful and
reliable fault diagnosis just as the accuracy of the measurements in full-state mea-
surement condition.

Furthermore, the state estimates should be accurate not only during healthy oper-
ational mode of the system to avoid false alarms, but also during faulty periods.
Here, “faulty periods” corresponds to periods of fault presence in system compo-
nents and/or actuators assuming that sensor faults would not occur. The inaccuracy
of state estimates during faulty periods may cause faults to be missed (i.e., misdetec-
tion), or more likely to be incorrectly isolated and/or inaccurately identified. Thus,
it is crucial for the state estimators or observers to accurately estimate unmeasured
system states using inputs and available sensor measurements even in presence of
faults in the system. In other words, the state estimator or observer must be fault-
tolerant. It is important to note that, to the best of our knowledge, the terminology
of fault-tolerant observer (FTO) has been introduced in this monograph for the first
time in the literature, though the concept has been previously proposed and fairly
well investigated under the terminology of unknown input observers (UIO), which
will be further discussed in Section 4.3.

In the following, first it is assumed that a FTO exists that can accurately esti-
mate unmeasured system states in both presence and absence of faults. Based on
this assumption, the extension of the series-parallel and parallel FDII schemes to
systems with partial-state measurements is presented. Then, the rest of the chapter
will be focused on developing a FTO that essentially enables this extension.

4.1 FDII Using the Series-Parallel Scheme Under Partial-State
Measurements

Figure 4.1 depicts a block diagram representing the extension of the series-parallel
FDII scheme to partial-state measurement conditions. As shown in this figure and
described above, this extension is based upon integration of the hybrid NPEs of the
series-parallel scheme with a FTO.

Let us first assume that the system states can be divided into measured and
unmeasured states as follows:

x = [xm xunm] = [y xunm] (4.1)

where xm denotes the subset of system states directly measured by sensors
(i.e., system outputs) and xunm represents the subset of unmeasured states of the
system.

Then, as can be seen from Fig. 4.1, the measured states xm
k = yk are fed directly

to the series-parallel FDII scheme, while the unmeasured states are first estimated
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by the FTO using system inputs and output measurements and then these estimates
x̂ unm

k are fed as inputs to the bank of NPEs of the FDII module. Accordingly, the
equations, the NPE update laws, and the FDI decision logic of the series-parallel
FDII scheme have to be slightly modified as follows:

(i) In Eq. 3.17, yk−1 must be replaced by
[
xm

k−1 x̂ unm
k−1

]
; hence,

yk = [[xm
k−1 x̂ unm

k−1

]
uk−1

]T
(4.2)

(ii) In Eq. 3.20, xk−1 must be replaced by
[
xm

k−1 x̂ unm
k−1

]
; hence,

⎧
⎨

⎩

x̂ i
k = f

([
xm

k−1 x̂ unm
k−1

]
, uk−1, α̂k−1,k

)

ŷi
k = x̂ i

k

i = 1, . . . , L (4.3)
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(iii) The instantaneous output estimation error of the NPEs in Eq. 3.21 must also
be redefined as follows:

ỹi
k = [xm

k−1 x̂ unm
k−1

]− ŷi
k ; i = 1, . . . , L (4.4)

Eventually, (iv) the residual vectors corresponding to the L NPEs in the bank
given in Eq. 3.21 should be redefined as follows:

r i
k = [xm

k−1 x̂ unm
k−1

]− ŷi
k ; i = 1, . . . , L (4.5)

The rest of the equations for the weight update laws and the FDI decision logic
remain essentially the same as the ones given in Chapter 3 for the series-parallel
FDII scheme.

4.2 FDII Using the Parallel Scheme Under Partial-State
Measurements

FDII using the parallel scheme can be accomplished under partial-state mea-
surements using exactly the same principle as the one described for the series-
parallel scheme. More specifically, a FTO is integrated with the parallel NPEs
to achieve FDII under partial availability of system states, as depicted in
Fig. 4.2.

It is important to note that Fig. 4.2 looks exactly the same as Fig. 4.1, except
for the internal structure of the two FDII schemes, which has not been shown in
these two figures. More precisely, the difference between the two figures is inter-
nal to the FDII blocks and in the way the vector [xm

k−1 x̂ unm
k−1 ] is being used within

each scheme. Equations 4.2–4.5 essentially described how the vector [xm
k−1 x̂ unm

k−1 ]
affects (or is being used in) the equations governing the series-parallel scheme. For
the robust parallel scheme, however, the changes (i) and (ii), mentioned for the
series-parallel scheme in Eqs. 4.2 and 4.3, are not required and the Eqs. 3.36–3.38
still remain valid even under partial-state measurements. Indeed, for the robust par-
allel scheme, only the instantaneous output estimation error and the residual vector
have to be redefined as exactly the same way shown for the series-parallel scheme
in Eqs. 4.4 and 4.5, respectively.

The aforementioned FDII schemes under partial-state measurements (depicted in
Figs. 4.1 and 4.2) consist of two main modules, namely the hybrid NPEs and a FTO.
The design and development of hybrid NPEs was the subject of Chapter 3 and both
series-parallel and parallel NPE schemes were thoroughly treated in that chapter.
Hence, the focus of the rest of this chapter is on the design and development of a
FTO, which enables FDII under partial-state measurements.
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4.3 Fault-Tolerant State Estimation

To the best of our knowledge, the terminology of fault-tolerant observer (FTO) is
introduced in this monograph for the first time in the literature, though a similar con-
cept has been previously proposed and fairly well investigated under the terminol-
ogy of unknown input observers (UIO). The UIOs have the capability of estimating
the system states in presence of unknown inputs. The unknown inputs may include
certain immeasurable input signals of the system, uncertainties of certain parame-
ters of the system, modeling errors, external/environmental disturbances, and even
faults.

Many researchers have successfully designed and developed a variety of UIOs
for both linear and nonlinear systems. For example, Darouach et al. [133] presented
a full-order Luenberger observer for linear systems with unknown inputs. According
to the UIO literature, one of the first direct extensions of the linear UIO to the
nonlinear case was proposed by Wunnenberg [134]. His approach was referred to
as the NUIO (nonlinear UIO) and was applicable to a specific class of nonlinear
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systems, where nonlinearity is a function of only inputs and outputs. However, this
class of nonlinear systems is rather limited and many physical systems cannot be
modeled as such. Moreover, it is extremely difficult to transform a general nonlinear
system into this form.

In other efforts to nonlinear UIO, Koenig and Mammar [135] designed a reduced-
order nonlinear UIO for robust fault detection in a class of nonlinear systems, where
both linear and nonlinear terms are present. Their approach essentially extends the
UIO-based robust fault diagnosis in linear systems to nonlinear systems. Pertew
et al. [136] developed an unknown input observer for nonlinear systems using
H∞ approach. However, they consider modeling errors and system disturbances
as unknown inputs, thus designing a robust rather than a fault-tolerant observer.
More recently, Koenig [137] developed a nonlinear observer for a descriptive type
of nonlinear systems with unknown inputs based on linear matrix inequality (LMI)
approach. Finally, in a very recent work, Mondal et al. [138] proposed a full-order
Luenberger-like UIO for a class of nonlinear systems with both linear and nonlinear
terms, whose nonlinear function satisfies Lipschitz conditions. Once again, how-
ever, the proposed UIO is indeed a robust observer with potential applications in
robust control.

Considering faults as unknown inputs to the system, the UIOs can be designed to
provide state estimates that are decoupled from faults. Nonetheless, as implied by
the above short survey, in almost all of the UIOs that have been developed within
the robust control and robust fault diagnosis literature, the modeling uncertainties
and external disturbances – rather than faults – are modeled as unknown inputs.

clearly different from the FTO design objective described at the beginning of this
chapter.

In this monograph, the UIOs are not utilized to design an FTO. In fact, instead
of a deterministic approach to state estimation often known as “observer design”, a
stochastic approach to state estimation is followed, better known as filter design or
simply filtering. Moreover a hybrid approach to FTO design is followed by simul-
taneously exploiting the model-based optimal filtering theory and the self-adapting
and self-learning capabilities of computational intelligence (CI) techniques espe-
cially neural networks to achieve fault tolerance in state estimation.

Hence, we first start defining the state estimation (or filtering) problem in nonlin-
ear dynamical systems. We then review the optimal filtering theory within two sepa-
rate frameworks, namely probabilistic and statistical, and investigate a few methods
within each. We will then explore how the exclusive capabilities of CI techniques
are employed within each framework to solve the nonlinear filtering problem. Even-
tually, a fault-tolerant state estimation solution based on the prediction-correction
structure of the Kalman filter, and the adaptive learning and nonlinear approxima-
tion capability of neural networks will be presented. The proposed solution is called
the Kalman filter structure-preserving neural state estimator (NSE). It should be
noted, however, that the structure of the proposed NSE solution has been taken

Therefore, the objective had been to make the control and/or fault diagnosis
robust with respect to modeling errors and external disturbances. This issystem
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from the robust optimal filtering literature and is not a contribution of this mono-
graph. Rather, the novel recursive weight update laws of the NSE comprise one of
the contributions of this monograph. Furthermore, the use of this NSE as a FTO has
not been previously reported in the literature.

4.4 State Estimation of Nonlinear Dynamical Systems

The problem of estimating the states of a stochastic dynamical system from noisy
observations is of central importance in engineering. The optimum estimation has
been a focus of research in signal processing and control since the pioneering works
of Weiner [139] and Kolmogorov in 1950s [140]. However, our purpose is not to
give a historical account of the development of the estimation theory. Thus, we
will focus on the definition of the state estimation problem and demonstrate the two
fundamentally different mathematical frameworks for solving this problem. We will
also show how the exclusive nonlinear approximation capability of neural networks
can be exploited as a tool for nonlinear estimation within each framework.

Problem Definition [49, 140]: Consider the discrete-time stochastic dynamical
system described by the stochastic vector difference equation:

xk+1 = f (xk) + Γ(xk)wk ≡ F(xk, wk), k = 0, 1, . . . (4.6)

where xk ∈ �n is the state vector at time-step k, f : �n → �n is a vector field rep-
resenting the nominal nonlinear system dynamics; {wk, k = 0, 1, . . .} denotes the
process noise sequence (or external disturbance from control engineering perspec-
tive); Γ is a vector-valued function representing the state-dependent channel through
which the process noise affects the system states; and f is a vector-valued function
representing the collective effect of the system dynamics and the process noise on
the evolution of system states in time. The distribution of the initial condition x0 is
assumed to be given and is independent from wk . Let the discrete, noisy, m-vector
observations (measurements) yk be given by

yk = h(xk) + νk, k = 1, 2, . . . (4.7)

where h : �n → �m denotes the system measurement function and {vk, k =
0, 1, . . .} is the m-dimensional measurement noise sequence. For simplicity, pro-
cess noise wk and measurement noise vk are assumed to be independent. Gener-
ally, in the optimal filtering theory (and in here as well), without loss of general-
ity, it is initially assumed that there is no control input uk acting on the system.
It should be noted that this assumption will not alter the generality of the prob-
lem and its solution since we always have a complete knowledge of the control
input.

Let Y l
1 = {y1, . . . , yl} be the sequence of observations (or measurements)

from system sensors. Given a realization of the sequence of observations, the
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discrete-time estimation problem consists of computing an estimate of xk based on
observations Yl . If k < l, the problem is called the discrete-time smoothing problem;
if k = l, it is called the discrete-time filtering problem; and if k > l, it is called the
discrete-time prediction problem.

Since most of the health monitoring and FDII systems (especially on-board FDII
systems) aim at online monitoring and identification of the present health state of
the system on the basis of current observations and available data, the state estima-
tion problem of interest to FDII is essentially a filtering problem. Hence, in sub-
sequent sections we exclusively focus on the filtering problem as a special case
of the state estimation problem. Also, we describe the two different mathematical
frameworks for solving the filtering problem, namely probabilistic and statistical
frameworks.

4.4.1 Probabilistically Inspired Approaches to Nonlinear Filtering

This framework is adopted whenever the probability density functions of all the
random variables in the system are exactly known. This knowledge enables one
to completely describe the uncertainty in the process and measurement noises as
well as the initial state of the system. Thus, all filtering methodologies developed
within this framework assume that the process noise wk and measurement noise vk

of Eqs. 4.6 and 4.7 are both white Gaussian noise sequences; i.e., wk ∼ N (0, Qk)
and vk ∼ N (0, Rk), where Qk, Rk > 0 are positive definite covariance matrices
of process and measurement noises, respectively. The estimation (or filtering) prob-
lem in probabilistic framework is usually formulated in terms of some optimality
criteria such as maximum likelihood (Bayesian), minimum variance or minimum
mean-square error, etc.

It is well-known in the estimation literature that the conditional probability den-
sity function of xk given observation sequence Y k

1 = {y, . . . , yk}, which is written
as p(xk |Y k

1 ), is the complete optimal solution to the filtering problem. The reason is
that this conditional density contains all the necessary statistical information about
xk that exists in the available observations and the initial condition p(x0).

In the special case of linear filtering problem, where functions f and h in Eqs
4.6 and 4.7 are linear (i.e., f,h are matrices of dimensions [n × n] [m × n], respec-
tively), the proposed conditional probability density is Gaussian. This is due to the
fact that linear transformation of a Gaussian random variable is always Gaussian
(see Papoulis and Pillai [141]). Therefore, the state of the system can be com-
pletely represented by its mean vector and covariance matrix. Then, the optimal
solution to the filtering problem would be the Kalman filter, which gives the recur-
sive equations of the evolution of the conditional mean, as the optimal estimate, and
the covariance matrix, as a representative of our confidence in the accuracy of the
estimates. Nonetheless, the situation is far more difficult in the general nonlinear
case. This is mainly due to the fact that the nonlinear transformation of a Gaus-
sian random variable is not necessarily Gaussian. Therefore, the conditional density
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function cannot in general be characterized by a finite set of parameters like mean
and covariance. In other words, in the linear filtering problem the dimension of filter
state space (i.e., filter order) is finite and the elements of the mean vector and the
covariance matrix comprise the states of the filter. However, in the nonlinear case
the filter order is infinite, that is the whole conditional density function needs to be
estimated.

Although the conditional density function provides the complete solution to the
optimal filtering problem, it should still be decided what statistics, like the mode,
the mean or the median, of that density function should be regarded as the best
state estimate. To answer this question, it is necessary to define a criterion that will
allow comparing different possible estimates. Clearly, the best criterion would be
the estimation error defined as

x̃k = xk − x̂k (4.8)

Apparently, a good estimate would be the one with a small estimation error or a
small statistical measure of the error. So we need to define a loss or cost function
J (x̃k) in terms of the estimation error. A very well-known cost (or loss) function in
the literature is the quadratic form given as follows:

J (x̃k) = x̃ T
k Sx̃k (4.9)

where S ≥ 0 is a positive semi-definite matrix. The estimate that minimizes the
average or expected loss, E{J (x̃k)}, for a quadratic cost function given in (4.9) is
called the minimum variance or minimum mean-square error estimate. It can be
shown (see Jazwinski [140]) that the conditional mean of the state vector, namely
E{xk |Y k

1 }, is the minimum variance estimate for all filtering problems, regardless of
the conditional probability density function of the state p(xk |Y k

1 ). Thus the optimal
estimate, in the sense of minimum error variance is as follows:

x̂k = E{xk |Y k
1 } (4.10)

It should be noted that the minimum variance estimate given in above is an unbi-
ased estimate.

Based on the discussions so far, it can be concluded that in the probabilistic
approach to filtering, the main objective is to determine the conditional density func-
tion of the state p(xk |Y k

1 ), based on which the optimal estimate (the mean, the mode,
the median, etc.) can be calculated for any desired loss function. However, as was
previously mentioned, determination of the equations of evolution of the probability
density function in general entails the derivation of the update equations of a filter
with infinite-dimensional state space, except for some special cases like filtering of
linear systems with Gaussian distributions. Thus, in general, it is not computation-
ally feasible to determine the equations of evolution of p(xk |Y k

1 ). As an approximate
remedial solution, however, one may directly use the conditional mean instead of
the conditional density function and try to find its equations of evolution to end up



80 4 Proposed FDII for Nonlinear Systems with Partial State Measurement

with the minimum variance estimate of the state. Further details of this approach are
out of the scope of this monograph, but the interested reader may refer to Jazwinski
[140] and Haykin et al. [142].

In the next section, the statistical approach to the filtering problem and its con-
nection with the probabilistic framework will be presented. Moreover, it will be
shown how the statistical framework has inspired the use of neural networks in the
nonlinear estimation or filtering problem.

4.4.2 Statistically Inspired Approaches to Nonlinear Filtering

In the discrete-time filtering problem defined in Section 4.4, the process noise wk

and the measurement noise vk can be considered simply as errors of unknown nature
instead of random variables with predefined distributions. Now assuming x̄0 as an
a priori estimate of the initial state x0, we wish to estimate the state sequence
{x0, . . . , xN } based on the observation sequence {y0, . . . , yN } so that the errors in
the state and observations are small. Taking the classical least-squares approach, the
objective is to minimize the cost function JN , given in the following, with respect
to {x0, . . . , xN ;w0, . . . , wN }

JN = 1

2
‖x0 − x̄0‖2

p0
+ 1

2

N∑

k−1

‖yk − h(xk)‖2
Rk

+ 1

2

N∑

k−1

‖wk‖2
Qk

(4.11)

subject to the constraint

xk+1 = F(xk, wk), k = 0, 1, . . . , N − 1 (4.12)

where F is the vector-valued function in Eq. 4.6 and p0, Rk , and Qk are some posi-
tive definite weighting matrices; quantitatively representing our belief in the a priori
estimate of the initial condition, the measurement equation (i.e., Eq. 4.7), and the
nominal noise-free dynamic system model (i.e., Eq. 4.6 without the additive pro-
cess noise), respectively. The last term in Eq. 4.11 is an indication of our belief in
the nominal model of the dynamic system since the process noise wk may represent
an error in modeling the dynamics of the system states (see Eq. 4.6).

It is evident from Eq. 4.11 that the minimization of the cost JN requires all
observations up to time N; thus the memory as well as computational requirements
of solving the least-squares minimization is growing linearly with time making it
unfeasible for real-time implementations. One way to overcome this drawback is
to solve the minimization of JN in a recursive form, which is called the recursive
least-squares. In this procedure, the minimization of JN+1 would be done based on
the current observation yN+1 and the solution to the minimization problem of JN ,
namely x̂N . In other words, an evolution equation of x̂k would be derived in the form
of a difference equation with the current observation yk as a forcing term. As will
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be further discussed in Sections 4.6.2 and 4.7, this constitutes one of the conceptual
inspirations for the structure of the neural state estimator (or neural filter) originally
proposed by Parisini and Zoppoli [145], which is enhanced and employed as a FTO
in this monograph.

However, another way of resolving the computational limitation of the original
least-squares is through limiting the filter memory to a window of size N containing
only the last N observations Y k

k−N+1 = {yk−N+1, . . . , yk}. This concept of limited
memory filtering was originally proposed and rigorously derived in the late 1960s
by Jazwinski [146]. However, his main intention was to solve the problem of filter
divergence in the extended Kalman filter (EKF) in presence of modeling uncer-
tainties. Nevertheless, the concept of limited (or finite) memory filtering has later
been followed by many researchers in the field. For example, Houacine [130] pro-
posed regularized fast recursive least-squares algorithms for finite-memory filtering;
Manolakis et al. [143] also proposed efficient recursive least-squares algorithms for
finite-memory adaptive filtering; and Niedzwiecki [144] proposed a multiple-model
approach to finite-memory adaptive filtering.

Before concluding this section, it is necessary to explain the connection between
the probabilistic and the statistical frameworks. This necessity comes from the fact
that although statistical approach is conceptually and theoretically simpler than the
probabilistic one, the meaning and interpretation of its results are more difficult.
Hence, once a probabilistic interpretation of the statistical methods is made, they
can be considered as formal approaches to the estimation problem. This connection
was first established implicitly by Jazwinski in his book [140], where it is mentioned
that the discrete least-squares approach is equivalent to maximizing the conditional
probability density function

p (x0, . . . , xN | y1, . . . , yN ) (4.13)

with respect to {x0, . . . , xN }, provided that Γ in Eq. 4.6 is independent of the state
vector xk . This is obviously the case for simple additive process noise assumption,
which is a valid assumption for many practical systems (i.e., in many systems the
channel over which the disturbance affects the system states can be modeled as
simply a gain). In the probabilistic framework, the estimation based on the maxi-
mization of (4.13) is called joint maximum likelihood (Bayesian) estimation. Fur-
thermore, the maximum likelihood (Bayesian) estimate is the same as the minimum
variance estimate, proposed in Section 4.4.1, provided that the density function of
the state is unimodal and concentrated near the mode, as in for example, the Gaus-
sian distribution.

4.5 Model-Based State Estimation

The renowned Kalman filter provides a model-based recursive solution to the
linear optimal filtering problem. It is, in fact, the minimum mean-square (variance)
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estimator of the states of a linear dynamical system. However, most physical sys-
tems are inherently nonlinear in nature. As a result, a number of extensions of the
Kalman filter to dynamical systems with nonlinear model have been proposed in the
literature. The EKF is basically the most well-known and industry standard tech-
nique for nonlinear filtering. The EKF extends the use of Kalman filter to nonlin-
ear systems through a linearization procedure that involves calculating the Jacobian
matrix of the system. However, unlike its linear counterpart, it is not an optimal
estimator. In addition, the EKF may quickly diverge if the initial state estimation
error is relatively large. More importantly, any modeling errors or parameter varia-
tions in the system may make the EKF to quickly diverge, due to the linearization
procedure.

The unscented Kalman filter (UKF) is a more recent extension of the Kalman
filter to nonlinear systems. Instead of linearization, the UKF uses a deterministic
sampling technique known as the unscented transform to extend the KF to nonlinear
dynamic systems. Both the EKF and the UKF algorithms were referred to on vari-
ous occasions in Chapters 1–3 of the monograph (e.g., state estimation for residual
generation in nonlinear systems, nonlinear parameter estimation, etc.). Accordingly,
their corresponding references in the literature were also provided. Nevertheless,
Haykin [49] provides the details of the two techniques and very well describes the
specific advantages and disadvantages of each.

The point that must be strongly emphasized is that the model-based filtering
methods such as the EKF and the UKF, though being very well suited for state
estimation, do not provide good candidates for implementing a FTO. The reason is
that the filter equations are all based on the nominal mathematical model of the
system, while faults, in general, render these equations invalid. Therefore, once
a fault occurs, the filter equations are no longer valid for the faulty system. Fur-
thermore, there is usually no design freedom left in the EKF and the UKF equa-
tions to compensate for this model mismatch during the faulty periods. In fact, the
UKF and especially the EKF are not even robust to system parameter variations, let
alone faults, and very quickly diverge as parameter variations take place. In the next

4.6 Learning and Computational Intelligence-Based State
Estimation

So far, the principles of optimal filtering and some of the frameworks for its solu-
tion are provided. Our goal in this section is to investigate the possible ways of
incorporating neural networks as a tool in the solution of the optimal filtering
problem, in general, and in addressing the robustness issue of filters, in particular.

sections, the exclusive capabilities of computational intelligence techniques and
particularly neural networks are employed to address the issue of filter robustness
to faults (and/or parameter variations).
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Computational intelligence and learning-based techniques such as neural networks
deal with “approximation” of nonlinear functions or mappings. Equipped with the
universal approximation theorem, neural networks have been largely and success-
fully applied to the problem of nonlinear system identification, which is similar to
the state estimation problem.

These excellent results may be attributed to the three important features of neu-
ral networks, namely, (i) their nonlinear characteristics that make them suitable for
dealing with nonlinear systems, (ii) their parallel and pipeline processing char-
acteristics that allow them to perform different tasks more efficiently, and most
importantly, (iii) their self-learning and self-adapting capabilities that are ideal for
adapting to different and possibly unseen environmental conditions (for example,
occurrence of faults).

The investigation of the use of neural networks in adaptive filtering is carried out
separately for the probabilistic and statistical frameworks. Moreover, the inspira-
tions for each method together with its advantages and drawbacks will be explained.
Finally, the neural state estimation method proposed by Parisini and Zoppoli [145]
will be taken for real-time, online implementation of a FTO. The supporting argu-
ments for selecting this specific method will also be provided.

4.6.1 Probabilistically Inspired Approaches to Neural
Network-Based Filtering

Inspired by the probabilistic approach to nonlinear filtering – described in
Section 4.4.1 – and the universal function approximation capability of artificial neu-
ral networks, Lo [147] proposed a synthetic approach to optimal filtering prob-
lem. As was mentioned in Section 4.4.1, the optimal solution to the filtering
problem would be a filter with the conditional density function as its state. It
was then argued that since, in general, the conditional density function cannot be
parameterized by a finite number of parameters, the filter state would be infinite-
dimensional and thus computationally unfeasible. Even if the filter parameters are
finite, the analytical derivation of filter equations is, in general, a difficult problem
to solve, except for the Gaussian case, where the EKF and the UKF are the typical
solutions.

As briefly mentioned in Section 4.4.1, one way to overcome this situation is
to consider the conditional mean (or any other desired statistics of the conditional
density function) as the final solution to the filtering problem. Then, the output
of the conditional mean function is used as a point estimate of the state. How-
ever, it is still, in general, difficult to derive the analytical filter equations for such
an estimator. Hence, approximations to the equations of evolution of the condi-
tional mean are required. In particular, we seek an estimate μ̂ of the conditional
mean μ(.) = E

[
xk |Y k

k−m+1

]
that enables us to calculate the plug-in estimate of

xk as x̂k = μ̂(Y m
k ), where Y k

k−m+1 = [yk−m+1, . . . yk−1, yk]T denotes the last m
observations/measurements of the system.
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This is conceptually the main probabilistic point of the method proposed by Lo
[147]. Note that it has been implicitly assumed that the filter memory is limited
because of practical considerations. Lo tried to estimate the conditional mean by a
recurrent multi-layer perceptron (RMLP) neural network. The two main results of
his work can be stated as follows [147]:

Consider the n-dimensional random state process xk and m-dimensional obser-
vation process yk for k = 0, . . . , T . Then, defining x̂k as the network output at time
k, we have:

R.1) Given ε > 0, there exists a sufficiently large RLMP such that

1

T

T∑

k=1

E
[∥
∥x̂k − E

[
xk |Y k

1

]∥
∥2
]
< ε (4.14)

where Y k
1 = {y1, . . . , yk} are the network inputs in the given order.

R.2) If the RMLP has one hidden layer of fully interconnected neurons and the
network output is written as x̂k(N ) to indicate its dependency on N, then

x̃(N ) = min
w

1

T

T∑

k=1

E
[∥
∥x̂k(N ) − E[xk |Y k

1 ]
∥
∥2
]

(4.15)

is monotonically decreasing and it converges to 0 as N approaches to infinity. In
Eq. 4.15, w is the set of parameters (or weights) of the neural filter.

The above results state that the proposed RMLP architecture is sufficiently flex-
ible to approximate the desired conditional mean function in mean-square sense
to an arbitrary degree of accuracy over any given finite set of time-steps. Also,
the neural filter converges to the minimum variance estimate (i.e., the condi-
tional mean E

[
xk |Y k

1

]
), as the number of fully interconnected hidden neurons

increases.
The synaptic weights of such a neural filter are determined by training the

network using the input/output data. In other words, the realizations of xk and
yk are utilized to synthesize the neural filter. Since these realizations are often
collected from actual experiments, no specific assumptions are required regard-
ing the mathematical models (4.6) and (4.7), or the distribution of the random
variables. Therefore, a clear advantage of this method is that no a priori knowl-
edge of the state and observation equations is required other than having suf-
ficient data to properly train the RMLP network via dynamic backpropagation
(DBP) (see Werbos [148]). Furthermore, unlike many probabilistic approaches,
no assumptions such as the states being Markovian or the process and mea-
surement noises being Gaussian are anymore required. Lo [147] showed that
his neural filter is significantly superior to the EKF using two types of nonlin-
ear systems as test cases. However, his work also suffers from the following
drawbacks:
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1. The optimization or training methods used are not well suited for the incremental
learning required in a non-stationary or time-varying environment (due to, for
example, occurrence of faults).

2. The operating time, T, of the filter is not always known beforehand in many
applications (for example, online health monitoring and diagnosis).

Clearly, these drawbacks significantly confine the application of this neural filter
to FTO design and consequently to online FDII under partial-state measurement.

4.6.2 Statistically Inspired Approaches to Neural Network-Based
Filtering

In view of the shortcomings of the Lo’s work mentioned above, this section presents
two statistically inspired neural filters that are more compatible with the require-
ments and specifications of the FTO.

The first one is the so-called finite-memory neural estimator originally proposed
by Alessandri et al. [149]. This neural filter is basically a least-squares limited mem-
ory filter. Assuming a nonlinear dynamical system governed by Eqs. 4.6 and 4.7
and with known control inputs uk , the filter design starts with considering the non-
quadratic generalization of the classical least-squares loss criterion (or cost function)
evaluated over the finite length of a sliding window in order to limit the memory of
the filter

Jk =χ (∥∥x̂k−N ,k − x̂k−N ,k−1

∥
∥
)+

k∑

i=k−N

ϕ
[∥
∥yi − (h (x̂i,k

)+ v̂i,k
)∥
∥
]

+
k∑

i=k−N

ϕ1
(∥
∥v̂i,k

∥
∥
)+

k∑

i=k−N+1

ψ
[∥
∥x̂i,k − F

(
x̂i−1,k, ŵi−1,k,ui−1

)∥
∥
]

+
k−1∑

i=k−N

ψ1
(∥
∥ŵi,k

∥
∥
)
, k = N , N + 1, . . .

(4.16)

where N ≥ 1 is the number of measurements made within the sliding window and
x̂i,k , ŵi,k, and v̂i,k are the estimates of the states, the process noise, and the measure-
ment noise, at time-step k, respectively. The estimates are obtained using the mea-
surements Y k

k−N = {Yk−N , . . . ,Yk}, the control inputs U k−1
k−N = {uk−N , . . . , uk−1},

and the a priori estimate of x̂k−N , (i.e., x̂k−N ,k−1). The scalar functions χ , ϕ, ϕ1,
ψ , and ψ1 are increasing functions for positive values of their arguments, all equal
to zero at zero values of their respective arguments; i.e., χ (0) = ϕ(0) = ϕ1(0) =
ψ(0) = ψ1(0) = 0. These functions have to be regarded as penalty functions by
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which we express our confidence in the a priori estimate X̂k−N ,k−1, in the observa-
tion model (Eq. 4.7), in the state equation model (Eq. 4.6), and in the magnitudes of
the measurement and the process noises, respectively.

Defining the information vector at time-step k, based on which the new estimates
will be evaluated, as

I N
k = col(x̂k−N ,k−1,Yk−N , . . . , uk−N , . . . , uk−1) (4.17)

and considering estimation functions of the form x̂i,k = μi,k(I k
N ), x̂i,k = ξi,k(I k

N ),
v̂i,k = ηi,k(I N

k ), Alessandri et al. [149] state the nonlinear state estimation problem
as that of finding the optimal estimation functions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X̂0
i,k = μ0

i,k

(
I k

N

)
, i = k − N , . . . , k

Ŵ 0
i,k = ξ 0

i,k

(
I k

N

)
, i = k − N , . . . , k − 1

v̂0
i,k = η0

i,k

(
I N
k

)
, i = k − N , . . . , k

(4.18)

that minimize the cost function in Eq. 4.16 for k = N , N + 1, . . . .
However, the solution to the above statement of the filtering problem entails solv-

ing a nonlinear non-quadratic functional optimization problem (see Zoppoli et al.
[150]), in which the unknowns are the optimal estimation functions. Clearly, such
a functional optimization problem cannot, in general, be solved analytically. How-
ever, the universal function approximation capability of neural networks is utilized
to resolve this issue in an approximate way. More precisely, to make the optimiza-
tion feasible for online applications, the optimal estimation functions in Eq. 4.18
are approximated by the MLP neural networks, thus reducing the functional opti-
mization problem to a nonlinear programming problem (i.e., the optimization of
the neural weights). A simplified structure of the optimal estimation functions in
Eq. 4.18 is also derived in order to make them appropriate for the use of nonlinear
approximators such as neural networks. The simplification is based on the global
implicit function theorem [149]. Further details of this proposition can be found
therein. Finally, the finite-memory state estimation problem is reinstated as that of
finding the following suboptimal neural estimation functions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x̂k−N = μ̃k−N
(
I k

N ,W 1
k−N

)

ŵi = ξ̃i
(
x̂i ,Y k

i+1,U
k−1
i ,W 2

i

)
, i = k − N , . . . , k − 1

v̂i = η̃i
(
x̂i , yi ,W 3

i

)
, i = k − N , . . . , k

(4.19)

where W 1
k−N , W 2

i , i = k − N , . . . , k − 1 and W 3
i , i = k − N , . . . , k are the

set of parameters (or weights) of the suboptimal neural estimation functions and
Y k

i+1 = {yi+1, . . . , yk}. Careful comparison of Eqs. 4.18 and 4.19 indicates that the
suboptimal estimation functions differ from the optimal ones in two ways: (i) due to
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the aforementioned simplification, the dimension of the input spaces of the optimal
estimation functions are reduced in the suboptimal ones, thus making them simpler
to be approximated by neural estimators (the curse of dimensionality); and (ii) the
suboptimal estimation functions are now parameterized, where the optimal parame-
ters, rather than the functions, have to be found as a solution to the filtering problem.
Figure 4.3 depicts the suboptimal finite-memory neural state estimator for a sliding
window of N = 2.
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Fig. 4.3 The block diagram of the finite-memory neural state estimator [149] for sliding window
of length N=2

The weight optimization (or training) of the neural approximating functions in
Eq. 4.24 is achieved in two phases: 1) optimization at time-step k = N , which
is called off-line initialization (OFI) procedure, and 2) optimization at time-steps
k = N + 1, N + 2, . . ., which is called the online adaptation (ONA) procedure.
The OFI is used to exploit all a priori available information on the statistics of
the random variables in the system, like the initial state x0 and the process and the
measurement noises. During the ONA phase, the neural weights will be confirmed
(in case of a known stationary environment) or adapted (in case of a stochastic non-
stationary environment such as occurrence of faults).

Alessandri et al. [149] have also shown through numerous simulations that the
finite-memory neural filter described in above significantly outperforms the EKF
filter, especially in presence of variations in nominal system parameters. In other
words, the finite-memory neural filter is much more robust to model parameter vari-
ations than the EKF. Hence, it can be considered as a potential solution to the FTO
design problem. Nonetheless, this filtering technique has not been selected for FTO
implementation in this monograph due to the following four reasons:

1. It is computationally heavy due to a relatively large number of neural filters
required to implement the filter. This can also be seen from Fig. 4.3, where the
scheme consists of six neural filters for a window length of only N = 2.

2. The large number of neural filters also makes the fine-tuning of the finite-
memory filter time-consuming and complicated.
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3. The filter optimization involves two phases, where each stage usually requires a
specific set of parameter values. This makes the number of algorithm parameters
bigger and thus the tuning of the algorithm even more difficult.

4. Although the window length often considerably affects filter performance, there
are no rigorous guidelines as to how to set its value.

The above limitations enforce us to resort to another slightly less powerful, yet
computationally simpler, neural state estimation method proposed by Parisini and
Zoppoli [145]. This solution is basically inspired by the solution to the linear
quadratic (LQ) optimal control or estimation problem in a statistical context. It is
well known that under the LQ assumptions, the optimal least-squares estimate x̂ o

k of
the states xk of a linear dynamical system can be obtained by the following recursive
equation, called linear recursive least-squares (RLS)

⎧
⎨

⎩

x̂ o
k = x−

k + Kk
(
yk − Hk x−

k

)
, k = 0, 1, . . . , N − 1

x−
0 = E {x0}

(4.20)

where x−
k is the one-step state prediction and Kk is a time-varying gain matrix deter-

mined at each time-step by means of a suitable model-based recursive equation.
Indeed, the optimal linear least-squares minimizes the cost function

Jk = ‖x0 − x0‖2
M +

N∑

k=0

‖yk − Hk xk‖2
Vk

+
N∑

k=1

‖xk − Ak−1xk−1‖2
Tk−1

(4.21)

with respect to {x0, . . . , xN }, where x0 is an a priori estimate of the initial state x0;
and M, Vk , and Tk−1 are positive definite symmetric matrices. It should be noted that
the cost in (4.21) is a special case of the more general cost function given in (4.11)
with linear dynamic model equations.

It should also be noted that the optimal linear RLS is actually the statistical
counterpart of the standard Kalman filter that was originally developed in the
probabilistic framework to optimal filtering. Indeed, a very interesting relationship
exists between the two filters. More specifically, if the matrix M in Eq. 4.21
is chosen as the inverse of the initial covariance matrix; Vk and Tk in Eq. 4.21
are selected as the inverse of the measurement noise covariance and the process
noise covariance, respectively; and the initial state and the noises are mutually
independent and Gaussian, the linear RLS estimator and the Kalman filter would
be equivalent to each other.

4.7 Kalman Filter Structure-Preserving Neural State
Estimator (NSE)

To solve the filtering problem for nonlinear dynamical systems, Parisini and Zoppoli
[145] used the so-called concept of linear structure-preserving principle (LISP),
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which is designed to imitate the structure of an optimal linear RLS or similarly the
standard Kalman filter. It can briefly be stated as follows [145]:

Once the LQ structure has been found, maintain the same linear structure that
implements the solution to the LQ problem. Then: (a) replace the linear state equa-
tion and the linear observation channel with the ones appearing in the original non-
LQ problem and (b) replace the filter gain matrix with a nonlinear mapping, which
becomes the unknown of the new non-LQ problem.

Thus, the linear state prediction (as well as measurement prediction) is replaced
by a nonlinear one, using the exact nonlinear dynamics of the system. Further-
more, the filter gain matrix is replaced by a parameterized nonlinear function that
is a function of the prediction error. For the parameterized nonlinear function,
we use an MLP neural network with neural weights as the parameters that are
continuously adapted; hence the name Kalman filter structure-preserving neural
state estimator (NSE). To sum up, the recursive state equations of the NSE are as
follows:

⎧
⎨

⎩

Prediction Step: x̂−
k = f (x̂k−1, uk−1)

Correction Step: x̂k = x̂−
k + g

(
e−

k ,W obs
k , V obs

k

) (4.22)

With the output equation defined as:

ŷk = h(x̂k) = H.x̂k (4.23)

where e−
k = yk − y−

k = yk − h(x̂−
k ) is the prediction error; g(e−

k ,W obs
k , V obs

k ) is
a multilayer feed-forward neural network with prediction error e−

k as the input and
with sigmoidal activation functions for the hidden-layer neurons and linear neurons
in the output layer. The parameters W obs

k and V obs
k denote the weights of the output

and hidden layers of the network, respectively.
The recursive equation of the NSE, given in Eq. 4.22, can also be compactly

written as follows:

x̂k = f (x̂k−1, uk−1) + g
(
e−

k ,W obs
k , V obs

k

)
(4.24)

The block diagram representation of the Kalman filter structure-preserving NSE
is shown in Fig. 4.4. The only assumption made in this scheme is that the process
and measurement noise are zero mean, i.i.d., and mutually independent. Parisini and
Zoppoli [145] applied this neural filter to a subclass of target motion analysis prob-
lems. Simulation results presented therein revealed that this neural filter outperforms
the EKF algorithm especially in presence of model uncertainties or model parame-
ter variations. The results showed significant performance gains over the EKF filter,
particularly in situations where the EKF diverges due to numerical instability of
the covariance matrix. The other advantage of this recursive scheme is that it does
not have the computational complexity issues of the Lo’s approach [147] in cases
where the observation period is too large or has essentially no a priori bound like the
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Fig. 4.4 The Kalman filter structure preserving neural state estimator (NSE) redrawn with modi-
fications from [145]

online health monitoring and fault diagnosis applications. It is extremely important
to note that the structure/architecture of the developed NSE is not a novelty of this
monograph and has been borrowed from Parisini and Zoppoli [145]. However, the
development of new weight update laws for the NSE comprises another contribution
of this monograph, which is the subject of the next section.

4.7.1 Update Laws for the NSE: Recursive On-Line
Backpropagation

Parisini and Zoppoli [145] update the neural filter weights using the standard back-
propagation algorithm according to the following procedure. At time-step k + 1, a
nonlinear optimization is performed on the set of weights W obs

k=1, V obs
k+1, while freez-

ing the set of k previously computed weights {W obs
i , V obs

i }k
i=1. However, this opti-

mization philosophy may result in suboptimal performance or even filter divergence
due to presence of feedback in the proposed NSE architecture (as can be seen in
Fig. 4.4, where the neural network output is fed back to its input after passing
through system dynamics).

In order to adapt closed-loop discrete-time dynamical systems (for example,
closed-loop nonlinear controllers and nonlinear infinite impulse response (IIR) fil-
ters) using steepest descent, a partial derivative of the associated dynamical system
must be calculated. Due to presence of feedback in a dynamical system, the calcula-
tion of this derivative can be quite complex. However, Piche [171] showed that the
ordered partial derivative, which is a partial derivative whose constant and vary-
ing terms are defined using ordered set of equations, provides a mathematical tool
for easily finding derivatives of complex dynamical systems. The ordered partial
derivative is further explained in Appendix A.
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The neural state estimator depicted in Fig. 4.4 is essentially a closed-loop non-
linear dynamical system. Hence, instead of the standard backpropagation algorithm,
steepest descent algorithms based on the ordered partial derivatives have to be
employed for obtaining the most accurate weight update laws of the NSE. This
essentially enhances the accuracy, reliability, and robustness of the neural state esti-
mator.

As demonstrated by Piche [171], two class of steepest descent adaptation (or
training) algorithms based on ordered partial derivatives can be derived for a general
closed-loop nonlinear discrete-time dynamical system with standard representation
shown in Fig. 4.5. These include: (i) epochwise training algorithms and (ii) online
training algorithms. An epochwise training algorithm is any algorithm in which the
adaptation takes place after each epoch or after a number of epochs, where an epoch
is an iteration to iteration cycling of a discrete-time dynamical system from initial
to final iteration (i.e., k = k f ).

z−1

z−1

z−1

z−1

z−1

z−1

z−1

f (R
k
, Y

k
, W

k
(i)) ykuk

yk−1

yk−2

uk−1

uk−J

yk−M

Fig. 4.5 The standard
representation of a
closed-loop nonlinear
dynamical system [171]

Epochwise systems are encountered much more frequently in control applica-
tions than in filtering applications. Furthermore, the error function in epochwise
systems is usually defined as the cumulative error between the desired values and
the outputs of the adaptive dynamical system as follows:

E =
k f∑

k=0

1

2
(dk − yk)T(dk − yk) (4.25)
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where kf is the terminal time; dk is the desired response; and yk is the output of the
adaptive closed-loop nonlinear dynamical system as depicted in Fig. 4.5.

Utilizing steepest descent, epochwise algorithms update the weights using [171]:

W (i + 1) = W (i) − η
∂+E

∂W (i)
(4.26)

where η is the learning rate; i is the index of the current epoch; and ∂+E / ∂W (i)
is the ordered partial derivative of the error in Eq. 4.24 with respect to the weight
vector at the ith epoch. Nonetheless, the epochwise adaptation algorithms are not
suitable for real-time implementation of adaptive filters. Hence, these algorithms are
not of interest for derivation of update laws for the neural state estimator required
for online FDII under partial-state measurements.

On the other hand, online training algorithms can be used for both adaptive con-
trol and filtering applications [171]. In adaptive control and filtering applications,
online training allows a controller or a filter to either adapt to unknown plant char-
acteristics or track slow changes in plant dynamics. Online training also enables
real-time implementation of adaptive controllers and filters. In online adaptation
algorithms, the error is usually defined at each iteration as the instantaneous error
between the desired response and the output of the adaptive system:

ek = 1

2
(dk − yk)T(dk − yk) (4.27)

where k is the current time-step (or iteration) of the discrete-time dynamical system.
Using the error in Eq. 4.26, the online training algorithms update the weights at
each time-step k. However, the calculation of the exact ordered partial derivative
of the error with respect to the weight vector (i.e., error gradient) is not possible.
Instead, an approximation of the error gradient must be used to update the weights.
Therefore, the online update rule at time-step k is expressed as [171]:

Wk+1 = Wk − η
∂̂+Ek

∂Wk
(4.28)

where ∂̂+Ek / ∂Wk is the approximate error gradient.
According to Piche [171], two versions of online training algorithms exist

including: (i) online backsweep algorithm and (ii) online recursive algorithm.
Among the two, the online recursive algorithm can be used to adapt the weights
of the neural network IIR filters and controllers. Using the online recursive algo-
rithm for the standard representation of a closed-loop nonlinear dynamical system,
depicted in Fig. 4.5, the approximate error gradient in Eq. 4.27 can be calculated as
follows [171]:
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∂̂+Ek

∂Wk
= −(dk − yk)T ∂̂

+yk

∂Wk
(4.29)

where the approximate output derivative ∂̂+yk / ∂Wk is recursively calculated as:

∂̂+yk

∂Wk
= ∂yk

∂Wk
+

M∑

m=1

βm ∂yk

∂yk−m

̂∂+yk−m

∂Wk−m
(4.30)

where 0 < β < 1.
Since recursive learning is well-suited for real-time applications such as online

health monitoring and FDII, in this monograph, the recursive online backpropaga-
tion algorithm based on Eqs. 4.28 and 4.29 is used to derive the weight update laws
of the Kalman filter structure-preserving NSE.

First, let us define the observer error as:

eobs
k = yk − ŷk (4.31)

where yk denotes the outputs (i.e., the measured states) of the system and ŷk are the
output estimates from the FTO (i.e., the NSE). Then, using the observer error in
Eqs. 4.31 and 4.23, the cost function of the NSE is defined as:

J obs
k = 1

2

∣
∣
∣
∣eobs

k

∣
∣
∣
∣2 = 1

2
||yk − ŷk ||2 = 1

2
||yk − h(x̂k)||2 (4.32)

Utilizing the online training algorithm, given in Eq. 4.27, the weights of the NSE
must be updated as follows:

W obs
k+1 = W obs

k − ηobs
w

⎛

⎝
̂∂+ J obs

k

∂W obs
k

⎞

⎠

V obs
k+1 = V obs

k − ηobs
v

⎛

⎝
̂∂+ J obs

k

∂V obs
k

⎞

⎠

(4.33)

where W obs
k and V obs

k are respectively the output layer and hidden layer weights of
the NSE and ηobs

w and ηobs
v are the learning rates corresponding to the output layer

and hidden layer, respectively.
Using Eq. 4.32, the approximate gradient of the cost function with respect to

output layer weights W obs
k can be calculated as follows:
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̂∂+ J obs
k

∂W obs
k

= −eobs
k · ∂h(x̂k)

∂ x̂k
· ∂̂

+ x̂k

∂W obs
k

= −eobs
k · H · ∂̂

+ x̂k

∂W obs
k

= −eobs
k ·

n∑

j=1

h j

̂
∂+ x̂ j

k

∂W obs
k

(4.34)

Similarly, the approximate gradient of the cost function with respect to hidden
layer weights V obs

k can be calculated as follows:

̂∂+ J obs
k

∂V obs
k

= −eobs
k · ∂h(x̂k)

∂ x̂k
· ∂̂

+ x̂k

∂V obs
k

= −eobs
k · H · ∂̂

+ x̂k

∂V obs
k

= −eobs
k ·

n∑

j=1

h j

̂
∂+ x̂ j

k

∂V obs
k

(4.35)

Now, utilizing the online recursive algorithm in Eq. 4.30 for the Kalman filter
structure-preserving NSE, depicted in Fig. 4.4, we have:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

̂
∂+ x̂ j

k

∂W obs
k

=
̂
∂ x̂ j

k

∂W obs
k

+ β
∂ x̂ j

k

∂ x̂k+1

∂̂+ x̂k−1

∂W obs
k−1

̂
∂+ x̂ j

k

∂V obs
k

=
̂
∂ x̂ j

k

∂V obs
k

+ β
∂ x̂ j

k

∂ x̂k+1

∂̂+ x̂k−1

∂V obs
k−1

; j = 1, . . . , n (4.36)

where x̂k ∈ Rn is the estimate of the state vector of the system at time-step k,
x̂ j

k is the estimate of the jth state of the system, and, once again, 0 < β < 1. It
is important to note that M in Eq. 4.30 is equal to 1 in Eq. 4.36 of the Kalman
filter structure-preserving NSE. This is due to the fact that in the NSE architecture,
only the last state estimate generated at the output of the NSE, namely x̂k−1, is fed
back to the NSE input, as can also be seen from Fig. 4.4. Furthermore, it is very
important to note that Eq. 4.36 is a recursive equation. More precisely, the terms
∂̂+ x̂k−1 / ∂W obs

k−1 and ∂̂+ x̂k−1 / ∂V obs
k−1 on the right-hand side of Eq. 4.36 are indeed

the previously calculated values (i.e., calculated at time-step k-1) of the approximate
ordered partial derivatives ∂̂+ x̂k / ∂W obs

k and ∂̂+ x̂k / ∂V obs
k on the left-hand side of

Eq. 4.36, respectively.
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The terms ∂+ x̂k / ∂W obs
k and ∂+ x̂k / ∂V obs

k are the partial derivatives of the neural
network output at time-step k with respect to its weights used at time-step k. Hence,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ x̂ j
k

∂W obs
k

= ∂g j
(
e−

k ,W obs
k , V obs

k

)

∂W obs
k

∂ x̂ j
k

∂V obs
k

= ∂g j (e−
k ,W

obs
k ,V obs

k )
∂V obs

k

; j = 1, . . . , n (4.37)

These two terms can be easily calculated using the standard backpropagation
(BP) algorithm as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂g j
(
e−

k ,W obs
k , V obs

k

)

∂W obs
k

= σ
(
V obs

k · e−
k

)

∂g j
(
e−

k ,W obs
k , V obs

k

)

∂V obs
k

=
(

W obs
k j

· (I − Λ
(
V obs

k · e−
k

)))T
· e−

k

; j = 1, . . . , n

(4.38)
Furthermore, the term ∂ x̂k / ∂ x̂k−1 in Eq. 4.36 is defined as follows:

∂ x̂ j
k

∂ x̂k−1
�
[
∂ x̂ j

k

∂ x̂1
k−1

, . . . ,
∂ x̂ j

k

∂ x̂ i
k−1

, . . . ,
∂ x̂ j

k

∂ x̂ n
k−1

]

; j = 1, . . . , n (4.39)

where ∂ x̂ j
k / ∂ x̂ i

k−1; j = 1, . . . , n; i = 1, . . . , n is the (j,i) element of the above
matrix. Consider the Jacobian matrix of the nonlinear system in Eq. 4.6 defined as:

Fk−1 = ∂ f (x̂k, uk)

∂ x̂1
k−1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂ f1 (x̂k, uk)

∂ x̂1
k−1

. . .
∂ f1 (x̂k, uk)

∂ x̂ n
k−1

...
. . .

...
∂ fn (x̂k, uk)

∂ x̂1
k−1

. . .
∂ fn (x̂k, uk)

∂ x̂ n
k−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.40)

with the (j,i) element of the Jacobian matrix is defined as follows:

F ji
k−1 = ∂ f j (x̂k, uk)

∂ x̂ i
k−1

; j = 1, . . . , n; i = 1, . . . , n; i = 1, . . . , n (4.41)

Then, the (j,i) element of the matrix in Eq. 4.39 – and correspondingly in Eq. 4.36
– can be calculated as follows, using the definition of the Jacobian matrix in Eq. 4.41
in conjunction with Eq. 4.24:

∂ x̂ j
k

∂ x̂ i
k−1

= F ji
k−1 + W obs

k j
· (I − Λ

(
V obs

k · e−
k

)) ∂e−
k

∂ x̂ i
k−1

(4.42)
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where the term W obs
k j

· (I − Λ(V obs
k · e−

k )) on the right-hand side of Eq. 4.42 is
the partial derivative of the neural network output with respect to its input, which
is obtained using the standard backpropagation algorithm. Furthermore, the par-

tial derivative ∂e−
k

∂ x̂ i
k−1

on the right-hand side of Eq. 4.42 can simply be calculated as

follows:

∂e−
k

∂ x̂ i
k−1

= ∂
(
yk − h

(
x̂−

k

))

∂ x̂ i
k−1

= −∂h
(
x̂−

k

)

x̂−
k

· ∂ x̂−
k

∂ x̂ i
k−1

(4.43)

where ∂h(x̂−
k )/x̂−

k = H , assuming the linearity of the output equation.

4.8 Conclusions

The objective of this chapter was to extend the applicability of the two FDII schemes
proposed in Chapter 3 under full-state measurement assumptions, to systems with
partial-state measurement. In order to accomplish this goal, we introduced the
notion of fault-tolerant observer (FTO) that enables accurate estimation of unmea-
sured states of the system even in presence of faults or anomalies in the system. It
was mentioned that such a fault-tolerant state estimator allows us to directly use the
same FDII schemes proposed in Chapter 3, but this time with the estimates of the
unmeasured states of the system rather than the actual measurements. Needless to
say, the measured states would directly be used as inputs to the FDII scheme. Two
FDII schemes under partial-state measurements were proposed, which consist of
the integration of the series-parallel and the parallel hybrid NPEs and the FTO. The
respective modifications in the weight update laws of both NPE schemes due to this
integration were also highlighted.

As far as the design of the FTO is concerned, it was noted that in the literature
a similar concept has been extensively pursued under the notion of unknown input
observers (UIO). Some of the works in the literature on UIO design for nonlinear
systems were reviewed. It was argued, however, that the UIOs have been mainly
designed within the context of robust fault diagnosis, in which modeling uncertain-
ties and external disturbances – rather than faults – are modeled as unknown inputs.
Hence, instead of UIOs, a stochastic approach to state estimation, better known as
filtering, was selected to design and develop the FTO. More specifically, a hybrid
approach to FTO design was taken, which simultaneously exploits the model-based
optimal filtering theory and the self-adapting and self-learning capabilities of neural
networks to achieve fault tolerance in state estimation.

First, the state estimation (or filtering) problem in nonlinear dynamical systems
was defined. Then, two distinct frameworks to optimal filtering theory, namely prob-
abilistic and statistical, were reviewed and some of the well-known, important meth-
ods within each framework were mentioned and analyzed. The exclusive capabilities
of CI techniques as employed within each framework were then explored. Even-
tually, a fault-tolerant state estimation solution based on the prediction-correction



4.8 Conclusions 97

structure of the Kalman filter, and adaptive learning and nonlinear approximation
capability of neural networks was presented, which is known as the Kalman fil-
ter structure preserving neural state estimator (NSE). It was noted that the use of
this NSE as a FTO is a novelty of this monograph, while the structure of the NSE
solution itself has been taken from the robust optimal filtering literature. However,
instead of the standard backpropagation algorithm, a novel recursive weight update
law for the NSE was derived based on the online recursive backpropagation algo-
rithm and the concept of ordered partial derivatives. It was argued that the use of
the standard backpropagation algorithm to adapt the weights of the NSE results
in suboptimal performance due to presence of feedback in the NSE architecture.
More precisely, the newly developed weight update laws based on the ordered par-
tial derivatives enhance the accuracy and robustness of the neural state estimator.
Hence, this novel weight adaptation algorithm constitutes another contribution of
this monograph.



Chapter 5
Application to a Satellite’s Attitude Control
Subsystem

Like many other man-made dynamical systems, spacecraft are potentially subjected
to unexpected anomalies and failures in subsystems and components during their
mission lifetime. Future generations of spacecraft need to show proper reaction to
unexpected events such as component/subsystem failures or environmental interac-
tions. Most currently used spacecraft controllers react to different situations accord-
ing to some, often, hard-coded routines. This is impractical when the spacecraft
is facing an unexpected event. On the other hand, the probability of fault occur-
rence increases with the time needed to accomplish the mission. Hence, the devel-
opment of technologies that enable the spacecraft to automatically detect, isolate,
identify, and eventually respond and recover from (unexpected) faults/failures in its
components, subsystems, or mission goals is highly desirable. The main goal of an
autonomous operation should be to maintain the spacecraft’s safety and to perform
the critical functions in priority.

Current methodologies that are utilized in health monitoring of Earth-orbiting
satellites and space probes rely heavily on the ground support and operations. Space-
craft telemetry from the orbiting satellites is regularly down-linked to ground sta-
tions at appropriate locations and times. At the ground station the trained operators
will then evaluate and analyze a significant amount of data in order to determine
the current state as well as the health status of the satellite. This is clearly a time-
consuming, labor-intensive operation that is significantly prone to various human-
initiated errors and misjudgments. Therefore, autonomy in satellite diagnostics and
health monitoring is highly desirable in order to have a more efficient and effec-
tive operation for all the existing as well as future satellite missions. This autonomy
can, in general, be achieved in two ways: (i) onboard the satellite using an embed-
ded fault diagnosis system that identifies presence of anomalies and reports them
to satellite controllers for recovery and/or reconfiguration and (ii) through a deci-
sion support system that can provide informative advise to the operational people
regarding the health of the satellite subsystems and components and in them.

The distance may be the most significant factor that makes the existence of
an onboard autonomy more demanding. The farther the spacecraft is from the
ground, the less knowledge is available about its present environment. Also, the dis-
tance causes huge delays in communication between the ground and the spacecraft,

E. Sobhani-Tehrani, K. Khorasani, Fault Diagnosis of Nonlinear Systems Using
a Hybrid Approach, Lecture Notes in Control and Information Sciences 383,
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especially for deep space probes. Fortunately, recent advances in computer hardware
and computational techniques have allowed for more tasks to be accomplished
onboard the space vehicles. Many of the ground activities such as navigation and
maneuver planning; command planning and sequencing; and fault diagnosis and
recovery can, to a large extent, be accomplished autonomously onboard spacecraft.
More specifically, onboard diagnostics enables detection and diagnosis of spacecraft
faults in a relatively short period of time, which consequently allows the spacecraft
to reschedule its mission and re-allocate its resources to still maintain as many mis-
sion objectives as possible.

In conclusion, the advantages of autonomous, especially onboard, health moni-
toring, and fault diagnosis and recovery may be summarized as follows:

• It enables short fault diagnosis delays and consequently faster response times
under both normal and faulty situations.

• Significantly reduces the cost of ground-based operations and support especially
for long-duration missions.

• Eliminates the long round-trip delays due to large distance between the space-
craft – especially deep space probes – and the ground.

• Allows continuous operations even in loss of communication with the ground
due to the unpredictable events and environment around the space vehicle.

5.1 Spacecraft Subsystems

Satellites are complex engineering systems consisting of various electrical, elec-
tromechanical, mechanical, and thermal components/subsystems that continuously
interact and cooperate with each other to maintain and successfully accomplish
satellite mission objectives.

Monolithic spacecraft are typically divided into seven subsystems including
command and data handling (C&DH), attitude determination and control (ADCS),
orbital control, navigation and orbital control power, telemetry and telecommand
(T&TC), thermal, and propulsion subsystems. Each subsystem is responsible for
performing a specific set of functions. Furthermore, many of these subsystems
always communicate with each other to collectively ensure the execution of satellite
commands. A highly simplified, yet informative, block diagram of the space seg-
ment (counter to ground segment) of a satellite mission, including payload instru-
ments and satellite bus with its associated subsystems is shown in Fig. 5.1. Extensive
details to each subsystem can be found in the renowned book of Wertz and Larson
[151], known as the Bible of spacecraft mission analysis and design, and also in
Brown [152].

Because of the aforementioned complexity of satellite systems, diverse set of
diagnostic autonomy requirements and specifications are often set for a satellite at
different levels of abstraction. Hence, to be able to effectively and efficiently address
the problem of autonomous fault diagnosis and recovery in spacecraft, one may
consider the following hierarchical decomposition of the problem into three levels:
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Fig. 5.1 A simplified block diagram of the space segment of a satellite, drawn with a number of
modifications from Brown [152]

(i) Component level: This involves detection and diagnosis of faults and failures
in sensors, actuators, and internal system components of a satellite;

(ii) Subsystem level: This involves dealing with the sequencing of commands and
events in between the satellite subsystems (such as the attitude control subsys-
tem (ACS), propulsion, thermal, GNC, communication, power, etc.) and the
impact of faults at this level; and

(iii) Mission level: This involves all the activities that are related to the overall mis-
sion safety and objectives/goals that lead to re-scheduling and/or re-planning
of the satellite mission – if needed – due to the occurrence of faults/failures.

Indeed, the hierarchical FDIR concept is being currently pursued by most of
the world’s renowned space agencies. For example, European Space Agency has
put into place their own hierarchical FDIR architecture, consisting of four lev-
els, to support the overall spacecraft system autonomy during both normal oper-
ations (nominal autonomy) and off-nominal operations (failure case autonomy)
[153]. More recently, Barua and Khorasani [154] developed an intelligent model-
based hierarchical fault diagnosis technique for satellite formations that essentially
extends the hierarchical diagnostic concept to formation flying of multiple satellites.
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Going back to the three-level architecture mentioned above, the behavior of a
satellite at mission level – the highest level of the proposed diagnostic hierarchy –
can be modeled as a discrete-event system (DES). Thus, DES-based diagnostic
methods using finite state automata (see for example, [156] and [157]) show great
potential for fault diagnosis at this level. One of the most important and success-
ful applications of DES-based autonomous fault diagnosis is in the NASA’s Deep
Space One mission [158].

Numerous fault diagnosis methods are applicable to the lowest level of the hier-
archy (i.e., the component level). In fact, most of the reviewed (in Chapters 1 and 2)
diagnostic techniques in the literature including both model-based and computa-
tional intelligence-based approaches have the potential to be applied for satellite
fault diagnosis at the component level. Among various existing contributions in
the literature, one may refer to the works of Talebi and Khorasani [159] on fault
detection and isolation of magnetorquer type actuators of satellite ACS using an
intelligent robust FDI scheme; Tudoroiu and Khorasani [93] on fault detection and
diagnosis of satellite ACS using an interactive multiple model approach; Tao et al.
[160] on fault detection, isolation and recovery of satellite orbital control system
(OCS) using a parameter estimation-based approach; and Wu and Saif [161] on fault
diagnosis of a satellite system with flexible appendages using a robust observer-
based methodology.

5.2 Satellite Attitude Control Subsystem (ACS)

In this monograph, our focus is on testing and validating the proposed hybrid FDII
methodology for fault diagnosis of reaction wheel actuators of the satellite ACS.
Attitude control deals with the orientation of a spacecraft with respect to a desired
reference frame. The attitude control task can basically be divided into three sub-
tasks: (i) attitude determination, which is done with the help of attitude sensors such
as gyros, star trackers, and sun sensors; (ii) attitude correction, which is achieved
by torques applied to the satellite body and generated by actuators such as reaction
wheels, momentum wheels, control moment gyros, magnetic torquers, sometimes
thrusters; (iii) attitude control, which is software-based algorithm that essentially
the magnitude and direction of torque to be applied to the satellite in response to an
attitude command or in compensation of attitude disturbances.

5.2.1 Fault Diagnosis in Satellite ACS

Faults in a satellite’s attitude control system (ACS) due to malfunctions in compo-
nents, actuators, or sensors, could result in higher energy consumption, loss of con-
trol, and eventually mission abortion. Faults may, in general, result from unexpected
interferences or gradual aging of the ACS components, actuators, and/or sensors. In
order to increase the energy efficiency, ensure the equipment safety, and enhance
the reliability and overall fault tolerance of any space-based mission, it is necessary



5.2 Satellite Attitude Control Subsystem (ACS) 103

to develop robust fault diagnosis techniques for components, actuators, and sensors
of the ACS so that remedial actions are taken as soon as possible.

Faults in actuators require special attention due to their direct impact on and
determining role in the satellite station-keeping and attitude control. Moreover,
long-time experience with ACS actuators in different satellite missions has revealed
that they are highly prone to faults and malfunctions.

Current methods for detecting and correcting anomalies onboard a satellite and
on the ground are primarily based on simple limit checking and trend analysis tech-
niques, which are not reliable and are error-prone. On the other hand, anomaly
detection based on manual telemetry data analysis is very time-consuming and
subject to human mistakes. It should be noted, however, that satellite monitoring
and diagnostics can be automated without compromising reliability using advanced
decision support systems that utilize model-, rule-, and intelligent-based method-
ologies. The development of more reliable automatic health monitoring and fault
diagnosis tools is even more crucial for satellite constellation and formation flying
(FF) missions due to the much larger amount of telemetry data (because of multiple
number of satellites) and due to the stringent constraints that are imposed by the con-
stellation or FF mission requirements. In the past few years, a significant number of
model-based and computational intelligence-based approaches have been proposed
by research community for fault diagnosis in satellite ACS subsystem, in general,
and actuators and sensors, in particular. Some of these were already mentioned at the
end of Section 5.1. For few other references especially on fault diagnosis of reaction
wheel actuators of ACS, refer to Talebi and Patel [162] using an intelligent detection
and recovery scheme, Li et al. [163] for a dynamic neural network-based method,
and Meskin and Khorasani [164] based on the nonlinear geometric approach.

Despite their own contributions, almost all of the above work have three limita-
tions in common: (i) they have not addressed the problem of fault severity estima-
tion in reaction wheels, which could be very beneficial to avoid catastrophic failures;
(ii) none of them have performed a comprehensive robustness analysis with respect
to measurement noise; and (iii) most of them assume full-state measurements. In
this chapter, we intend to first validate the hybrid FDII methodology proposed in
Chapter 3 by applying it to fault diagnosis of reaction wheels of ACS. This essen-
tially allows us to also address the first two limitations mentioned above. Second, we
consider partial-state measurements from the reaction wheel to test and validate the
fault-tolerant observer (FTO) proposed in Chapter 4 and, at the same time, address
the third limitation above of the existing methods.

5.2.2 Satellite Attitude Dynamics

Prior to fault diagnosis design and implementation, we need to develop mathemat-
ical models of ACS with reaction wheels as actuators. These models are needed
for two purposes: (i) to simulate the satellite ACS and be able to inject and simu-
late faults and (ii) to use some of the models for fault diagnosis design since the
proposed hybrid FDII method also utilizes the mathematical model of the system
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being monitored. Hence, we start by developing an ACS simulator by modeling and
design of various elements of the ACS closed-loop system. It should be noted that
the materials corresponding to modeling presented in this and/or the subsequent
sections are gathered from various references from [151–165]. In the following, we
naturally start with modeling the satellite’s attitude dynamics.

The attitude dynamics of a rigid body satellite controlled by reaction wheels
and thrusters can in general be described by the following nonlinear differential
equation:

Isat�̇ +� × (Isat� + Irwωrw) + τrw + τT hruster = τdist (5.1)

where Isat , Irw denote the inertia of the satellite and the reaction wheels, respec-
tively; � = [� x � y � z]T denotes the angular velocity vector of the satellite; and
�rw is the angular velocity (or speed) of the reaction wheel(s). It should be noted
that for the rest of this monograph, the wheel speed �rw is represented without its
subscript simply as � , not to be confused with the satellite’s angular velocity that
is always represented by � or any of its components, namely, � x , � y , or � z .
The inputs τrw, τdist , and τT hruster , respectively, represent the torque vectors exerted
on the satellite body by reaction wheels, external disturbances, and attitude control
thrusters. Here, we assume that no thrusters are employed for attitude control, hence
τT hruster = 0.

Moreover, assume that the spacecraft body-fixed frame is aligned with the prin-
cipal axes (for the definition of the spacecraft principal axes reference frame refer to
Appendix B), in which case the products of inertia are zero. Three reaction wheels
exist in the ACS, one per each principal axis (assuming alignment of the spacecraft’s
body-fixed frame and the principal axes); and the components of the reaction wheel
Inertia matrix are very small compared to that of the satellite Inertia matrix, namely
Iw << Isat . We may then expand the attitude vector differential equations in (5.1)
in discrete-time form as follows:

� x
k = kxx (� y

k−1�
z
k−1) + T x

k /I xx
sat

�
y

k = kyy(� z
k−1�

x
k−1) + T y

k /I yy
sat

� z
k = kzz(�

x
k−1�

y
k−1) + T z

k /I zz
sat

(5.2)

where k is the discrete time-step; I xx
sat , I yy

sat , and I zz
sat are the diagonal elements of

the spacecraft’s Inertia matrix; and T x
k , T y

k , T z
k denote the instantaneous net torques

exerted on the principal axes of the satellite body (x-, y-, and z-axis) due to combined
effect of external disturbances and reaction torques exerted by the wheels; hence,

T x
k = τ dist x

k − τwx
k

T y
k = τ

disty
k − τ

wy
k

T z
k = τ distz

k − τwz
k

(5.3)
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and the coefficients kxx , kyy, kzz , are given by

kxx = I yy
sat − I zz

sat

I xx
sat

, kyy = I zz
sat − I xx

sat

I yy
sat

, kzz = I xx
sat − I yy

sat

I zz
sat

(5.4)

It should be noted that the components of the satellite angular velocity with
respect to the inertial reference frame �N (see Appendix B for the definition of
this frame), namely � x

k ,�
y

k ,�
z
k , are expressed in the spacecraft fixed/body ref-

erence frame �B (see Appendix B) and are measured by gyroscopes installed in
strap-down systems. Also, in order to implement an attitude control law it is more
convenient to use an orbital rotating frame attached to the orbit, such as the RPY
(Roll, Pitch, Yaw) frame, also called orbital frame (see Appendix B). It is also very
important to note that if spacecraft attitude is represented with respect to the non-
rotating inertial reference frame �N , then the attitude commands even under no
slew-maneuvering (i.e., a maneuver to change the orientation of a satellite) should
always be non-zero, time-varying signals in order to compensate the effect of satel-
lite rotation around the Earth. While representing spacecraft’s attitude with respect
to the rotating orbital reference frame automatically solves this problem and makes
attitude commands more comprehensible; i.e., under no slew-maneuvering (or atti-
tude stabilization) the attitude commands are zero and spacecraft slew-maneuvering
can be commanded by simply one or a series of step functions.

In general, the instantaneous attitude of a spacecraft can be described or
represented in various ways. However, the Euler angles are the most visually com-
prehensible set of attitude parameters and have been commonly used in attitude rep-
resentation of rigid bodies including satellites. The Euler angles (ϕ, θ, ψ) consist
of three successive rotation angles that can describe the orientation of any rotating
object, in general, and a satellite, in particular. The rotations may occur about any of
three orthogonal axes, but there cannot be two rotations about the same axis in a row.

The order of the rotations, however, is very important to the orientation and the
most commonly used order is the asymmetric 3-2-1 rotations, which correspond to
Yaw–Pitch–Roll rotations also commonly used in the aircraft dynamics. This asym-
metric set of Euler angles is used since there are no repeated rotations. However,
it has singularities whenever the Pitch angle (θ ) has a value of ±90◦, which limits
the applicability of Euler angles description to only small rotations. It should be
noted though that the singularity at a specific angle is an inherent property of Euler
representation regardless of the sequence of rotations. The main advantage of the
Euler angles, however, is the ability to clearly visualize the orientation of the vehi-
cle as it undergoes a series of rotations. The 3-2-1 Euler angle rotation sequence is
equivalent to the following direction cosine matrix:

[C(ϕ, θ, ψ)] =
⎡

⎣
cos θ cosψ cos θ sinψ − sin θ

sinϕ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ cosψ sinϕ cos θ
cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinϕ − sinϕ cosψ cosϕ cos θ

⎤

⎦

(5.5)

The Euler angles could be obtained from the rotation matrix by using the follow-
ing set of nonlinear inverse transformations:
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ϕ = atan

(
C23

C33

)

θ = −asin(C13)

ψ = atan

(
C12

C11

)
(5.6)

To avoid the singularities in the Euler angles (ϕ, θ, ψ), the satellite dynamics has
to be expressed in the quaternion representation. Defining the unit quaternion set as:

q(t) = [q0(t) q1(t) q2(t) q3(t)]T = [q0(t) 
q13(t)]T (5.7)

where the first quaternion q0(t) component represents the scalar component and the
last three components [q1(t), q2(t), q3(t)]T represent the quaternion vector 
q13. To
formally define the quaternions, let us denote the unit vector along the Euler axis as

λ = [λ1 λ2 λ3]T, where λi are the direction cosines of the Euler axis relative to
the axes of the inertial reference frame �N . Then, the four elements of the quaternion
set are defined as:

q0(t) = cos(Θ/2)

q1(t) = λ1 sin(Θ/2)

q2(t) = λ2 sin(Θ/2)

q3(t) = λ3 sin(Θ/2)

(5.8)

where Θ represents the principal rotation angle about the Euler axis given by:

Θ = acos(
C11 + C22 + C33 − 1

2
) (5.9)

and

λ1 = C23 − C32

2 sin Θ

λ2 = C31 − C13

2 sin Θ

λ1 = C12 − C21

2 sin Θ

(5.10)

where Ci j is the element on the ith row and jth column of the direction cosine matrix
for i, j = 1, 2, 3. For the unit quaternion representation, the quaternion parameters
are constrained to form a hypersphere given by the following equation:


q13
T
q13 + q0

2 = 1 (5.11)
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Due to lack of singularities, the quaternion representation is useful for both small
and large rotations (i.e., satellite slew-maneuvers). The direction cosine matrix can
also be obtained from the quaternion parameters as follows:

[Cq ] =
⎡

⎣
q0

2 + q1
2 − q2

2 − q3
2 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q0
2 − q1

2 + q2
2 − q3

2 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) q0

2 − q1
2 − q2

2 + q3
2

⎤

⎦ (5.12)

Since direction cosine matrix of a specific rotation is always unique, by com-
paring Eqs. 5.5 and 5.11, one can obtain the static nonlinear transformation from
quaternion to Euler angles:

ϕ = atan

[
C23

C33
= atan

] [
2 (q2q3 + q0q1)

q0
2 − q1

2 − q2
2 + q3

2

]

)

θ = −asin (C13) = −asin (2 (q1q3 + q0q2))

ψ = atan

[
C12

C11
= atan

] [
2 (q1q2 + q0q3)

q0
2 − q1

2 − q2
2 + q3

2

]
(5.13)

The quaternion kinematics differential equations are given by:

q̇(t) =

⎡

⎢
⎢
⎣

q̇0(t)
q̇1(t)
q̇2(t)
q̇3(t)

⎤

⎥
⎥
⎦ =

[
q̇0(t)

̇q13(t)

]

= 1

2

⎡

⎢
⎢
⎣

0 −� x −� y −� z

� x 0 � z −� y

� y −� z 0 � x

� z � y −� x 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

q0(t)
q1(t)
q2(t)
q3(t)

⎤

⎥
⎥
⎦ (5.14)

or, equivalently

q̇(t) =

⎡

⎢
⎢
⎣

q̇0(t)
q̇1(t)
q̇2(t)
q̇3(t)

⎤

⎥
⎥
⎦ =

[
q̇0(t)

̇q13(t)

]

= 1

2

⎡

⎢
⎢
⎣

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0
� x (t)
� y(t)
� z(t)

⎤

⎥
⎥
⎦ (5.15)

The kinematics differential equation in (5.15) essentially connects the space-
craft’s attitude to its angular velocity vector � = [� x � y � z]T, which is
obtained from gyroscope measurements. It should be noted that � represents the
angular velocity of the body-fixed frame with respect to the inertial frame �B

N .
However, the quaternion components represent orientation/attitude of the satellite
body-fixed frame with respect to the orbital frame. Thus, we need to calculate the
angular velocity of the body-fixed frame with respect to the orbital frame, namely
�B

0. Consider the following general equation from vector calculus:

�B
N = �B

O +�O
N = �B

O + RO
B

⎡

⎣
0

−nc

0

⎤

⎦ (5.16)



108 5 Application to a Satellite’s Attitude Control Subsystem

where nc is the orbital frequency of the satellite given by:

nc =
√
μ

Rc
3

(5.17)

where μ represents the gravitational parameter of the Earth, and Rc is the distance
from the center of the Earth and the satellite.

Finally, RB
O is the rotation matrix transforming any vector represented in orbital

frame to a vector in body-fixed frame and can be obtained from the quaternion
set, which is actually the direction cosine matrix corresponding to the quaternion
set representing the orientation of the body-fixed frame with respect to the orbital
frame. Therefore, we have:

�B
O = �B

N +
⎡

⎣
q0

2 + q1
2 − q2

2 − q3
2 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q0
2 − q1

2 + q2
2−q2

3 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) q0

2 − q1
2 − q2

2 + q3
2

⎤

⎦

⎡

⎣
0
nc

0

⎤

⎦

(5.18)

Using the above equation and the angular speeds of the satellite measured by
all three Gyros, we can calculate the angular velocity of the body-fixed frame with
respect to the orbital frame as follows:

�B
O =

⎡

⎣
� x

� y

� z

⎤

⎦+ nc

⎡

⎣
2(q1q2 + q0q3)

1 − 2(q1
2 + q3

2)
2(q2q3 − q0q1))

⎤

⎦ (5.19)

5.2.2.1 Dynamic Modeling of Reaction Wheel Actuators

The selection of reaction wheels for attitude control is well justified due to their
popularity in active satellite attitude control. The ACS can be considered as a
MIMO control system. A high-fidelity nonlinear model of a reaction wheel has
been obtained from Bialke [166] and has been integrated into the ACS dynamics.
This high-fidelity model is also required for enhancing the robustness of the FDII
schemes proposed in this monograph with respect to modeling errors. A block dia-
gram representation of this high-fidelity reaction wheel model is shown in Fig. 5.2.

The reaction wheels considered in this monograph are ITHACO “type A” reac-
tion wheels that are currently being manufactured by Goodrich Corporation. The
values of model parameters for this type of wheel are also obtained from Bialke
[166] and are given in Table 5.2. Closed-loop ACS simulation results verified the
validity of this parameter selection (refer to the torque levels in Fig. 5.10 presented
in Section 5.4.1, where the torque levels are consistent with nominal torque levels
of ITHACO “type A” wheels).

Each reaction wheel consists of several internal and external loops that have to
be integrated to yield an accurate overall high-fidelity model of the wheel, which is
highly nonlinear especially at high speeds of the wheel. The following loops play an
important role in the dynamics of each reaction wheel (refer to Fig. 5.2 and reference
[166] for further details):
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Fig. 5.2 A detailed block diagram of a high-fidelity reaction wheel model [166]

(i) The negative feedback-EMF torque-limiting loop τE M F due to low bus voltage,
Vbus , condition that may limit the motor torque at high speeds due to increas-
ing back-EMF voltage gain ke of the motor. Note the nonlinear relationship
between Ibus and Vbus (i.e., the current and the voltage of the bus).

Ibus =
(

1

Vbus − 1

)
(
Im

2 RB + 0.04|Im |Vbus + Pq + ω Imke
)

(5.20)

As can also be observed from Eq. 5.20, the motor current of the wheel is a
highly nonlinear function of the bus current Ibus . Consequently, motor current
of the wheel becomes a highly nonlinear function of the bus voltage Vbus .

(ii) The negative feedback viscous and Coulomb frictions generated in bearings.
Viscous friction is generated due to the bearing lubricant and it has a strong
sensitivity to temperature T. The bilinear dependence between temperature,
reaction wheel angular speed, and the viscous torque is given by:
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τv = (0.0049 − 0.00002(T + 30))ω (5.21)

(iii) Coulomb friction is caused by friction within bearings and is independent of
the wheel speed and temperature, and therefore is primarily of interest as a
disturbance source.

(iv) The negative feedback speed limiter loop that prevents the flywheel from
reaching unsafe speeds.

(v) The motor torque control is included since the motor driver is essentially a
voltage-controlled current source with a gain Gd. The motor has a torque con-
stant gain Kt, which delivers a torque proportional to the current driver. Thus,
to inject faults in the motor current to validate and test the FDII algorithms, one
may simply change the torque constant gain Kt. This is basically an alternative
way of representing unexpected changes in motor current value.

(vi) The torque noise disturbance τnoise is a very low frequency torque variation
from bearings due to lubricant dynamics. The torque noise is modeled as a
sine wave having a high-pass filter frequency wn

τnoise = Jwθnoisewn
2 sin(wnt) (5.22)

where θnoise represents the torque noise angle.

Few remarks on the reaction wheel (RW) model:

• The speed limiter and the EMF torque-limiting loops use three discontinuous
Heaviside step functions to enable the high-gain negative feedback Ks, when the
reaction wheel exceeds an established speed threshold ωs, to eliminate the volt-
age drop when the power is not being drawn from the bus during a deceleration
since the energy is being removed from the wheel.

• The EMF torque-limiting loop could be controlled by the voltage feedback
gain, Kf.

• The torque-command voltage is restricted to be within ±5 V. Therefore, a satura-
tion block is incorporated into the closed-loop ACS simulator after the controller
to limit the control signal within these bounds.

It is important to note that the reaction wheel model depicted in Fig. 5.2 consists
of a few discontinuous functions such as the Heaviside functions, the sign func-
tion, and the absolute value functions that essentially make the entire reaction wheel
model discontinuous. However, an analytical approximation of the reaction wheel is
required specifically for designing the fault-tolerant observer (FTO), which requires
calculation of the Jacobian matrix of the system. Hence, all discontinuities in the
model need to be approximated by appropriate analytical functions. For this pur-
pose, one or combinations of parameterized sigmoidal functions are employed to
approximate the discontinuous functions to an arbitrarily level of accuracy. These
parameterized sigmoidal functions are of the following form:
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sigmoid(x) = 1

1 + eax
(5.23)

where a � 1 determines the accuracy of the approximation. The larger the value
of this parameter, the more accurate will be the approximation; however, very large
values of a may also cause numerical singularities particularly in calculating the
Jacobian matrix of the system. In this monograph, a value of a = 10 has been
selected to achieve a sufficiently accurate approximation. In the model shown in
Fig. 5.2, the Heaviside functions Hb and Hf can be approximated as follows:

Hb(l) ∼= 1

1 + exp(−al)
(5.24)

H f (V ) ∼= 1

1 + exp(aV )
(5.25)

The sign function and the absolute value function can also be approximated as
follows:

sign(ω) = 1 − exp(−aω)

1 + exp(−aω)
(5.26)

abs(keω) = 1 − exp(−akeω)

1 + exp(−akeω)
keω (5.27)

It should be noted that the approximation (5.27) of the absolute value function
is not in fact necessary, since the derivative of the absolute value function can, in
general, be calculated as:

d

dx
sign(x) =

⎧
⎪⎨

⎪⎩

1, i f x > 0

−1, i f x < 0

0, i f x = 0

(5.28)

where the inherently undefined value of the derivative at x = 0 is intentionally set
to zero. Eventually, the Heaviside function Hs can be approximated as follows:

Hs(ω) = 1

1 + exp(−a(ω − ωs))
+ 1

1 + exp(a(ω + ωs))
(5.29)

In conclusion, the mathematical state-space representation of the analytical
model of the reaction wheel employed in both FDII and FTO designs may now
be expressed as follows:

İm = Gdωd ( f3(ω, Im) − f5(ω)) − ωd Im + Gdωd VComm

ω̇ = 1

JW

[
f1(ω) + Kt Im( f2(ω) + 1) − τvω − τc f4(ω) + τnoise

] (5.30)
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in which:

f1(ω) = C sin
Nt

2
ω

f2(ω) = B sin3Ntω

f3(ω, Im , Vbus ) = exp(−aV (ω, Im , Vbus ))

1 + exp(−aV (ω, Im , Vbus ))
V (ω, Im , Vbus )

f4(ω) = 1 − exp(−aω)

1 + exp(−aω)

f5(ω) = Ks (ω − ωs f4(ω))

2

(
1

1 + exp(−a(ω − ωs ))
+ 1

1 + exp(a(ω + ωs ))

)

V (ω, Im , Vbus ) = k f

[

Vbus − 6 − 1

1 + exp(−aIbus )
(1 + Rin Ibus ) − 1 − exp(−akeω)

1 + exp(−akeω)
keω

]

(5.31)

where f1 and f2 are functions due to motor disturbances; f3 is derived from the
EMF torque-limiting block; f4 is a sigmoidal function replacing the discontinuous
sign function in the Coulomb friction block; f5 represents the speed limiter block;
and VComm is the torque-command voltage generated by the attitude controller. As
can be seen from Eqs. 5.30 and 5.31, the reaction wheel model is a second-order
highly nonlinear model with motor current and wheel speed as the states and the
command-torque voltage as the input.

Furthermore, since the proposed FDII algorithm is developed based on a discrete-
time model of the system being monitored, the analytical nonlinear model of
Eq. 5.30 was discretized using Euler’s backward difference method with a sam-
pling time of TS = 50 ms. This value of the sampling time ensures the validity of the
Nyquist–Shannon sampling theorem for the linearized model of the reaction wheel.
More precisely, the fastest changing signal within the reaction wheel is the motor
current corresponding to electrical, as opposed to, mechanical subsystems of the
wheel. The bandwidth of the motor current is limited by the frequency ωd in the
transfer function between the torque-command voltage and the motor current in the
linearized model of the reaction wheel. This transfer function and its associated fre-
quency, namely ωd , can also be observed in the “motor torque control” block of the
wheel model depicted in Fig. 5.2. The value of ωd is given in Table 5.2 as 9 rad/s,
which is equivalent to 9/2π ∼= 1.43HZ . By selecting the sampling frequency to be
14 times of the bandwidth of the current signal, the sampling frequency becomes
almost equal to 20 Hz, which is equivalent to TS = 50 ms.

It should be emphasized that the analytical approximation model of the reac-
tion wheel given in Eqs. 5.30 and 5.31 is utilized only for FDII and FTO design.
For fault injection and simulation as well as data generation purposes, the original
continuous-time discontinuous model of the reaction wheel presented in Fig. 5.2 is
used in the closed-loop ACS simulator.

Validation of the discrete-time analytical model of the reaction wheel: The
discrete-time analytic approximation of the reaction wheel model needs to be vali-
dated against the original continuous-time discontinuous model prior to its use for
FDII and FTO design purposes. Hence, the two reaction wheel models are run in
parallel with the same torque-command voltage as given in the following:
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VComm(t) = 3 sin(t) + 2 sin(4t) + v(t) (5.32)

where v(t) is sampled from a random process with uniform distribution over the
interval [−0.5, 0.5]. Thus,

− 0.5 ≤ v(t) ≤ 0.5, ∀t ε �+ (5.33)

The command voltage in Eq. 5.32 is selected in order to first span the entire
possible range of the torque-command voltage (i.e., ±5 V) and second to stimulate
(or excite) the internal modes of the reaction wheel using a random input signal
v(t). Furthermore, the frequencies of the sinusoids in Eq. 5.32 are set to 1 and
4 rad/s, which are considerably smaller than the bandwidth of the motor current
signal imposed by the value of ωd = 9 rad/s.

Furthermore, the model has been validated at both high and low speeds of the
wheel, especially that the reaction wheel performance and characteristics are highly
dependent on the speed of the wheel. Figure 5.3 depicts the validation results for
the states of the reaction wheel (i.e., current and speed) as well as the reaction
torque generated by the wheel. In theory, comparing the results for current and speed
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Fig. 5.3 Validation of the discrete-time analytic model of the RW in response to the torque-
command voltage given in Eq. 5.32 at low speeds of the wheel
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would have been sufficient to verify the validity of the discrete-time analytic model
(remember that the states of a system carry all the information about that system).
However, due to the extreme importance of the generated reaction torque by the
wheel (note that reaction wheel is the actuator of ACS), the validation results are
also depicted for reactions torque.

The results of Fig. 5.3 clearly indicate that the discrete-time analytic model of
Eqs. 5.30 and 5.31 very closely matches the continuous-time discontinuous model
of Fig. 5.2 at low speeds of the wheel. The same conclusion can be drawn from
Fig. 5.4 at high speeds of the wheel. In this figure, the back-EMF signal of the two
models has also been shown and compared due to its importance at high speeds of
the wheel.
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command voltage given in Eq. 5.32 at high speeds of the wheel

5.2.3 Mathematical Modeling of External Attitude Disturbances

The attitude control subsystem of an Earth-orbiting satellite must tolerate the typical
external disturbance torques due to the gravity-gradient effects, the Earth’s magnetic
field, aerodynamic torques (dominant in low-altitude orbits), and solar radiation
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torque. Furthermore, the robustness of the FDII subsystem to these external distur-
bances has to be investigated, ensured, and verified. Otherwise, the FDII subsystem
would generate false alarms due to the presence of these disturbances. Therefore,
all these environmental disturbances need to be modeled and properly incorporated
into the ACS simulator to be able to evaluate the robustness of the proposed FDII
algorithms with respect to them. As a result, the following mathematical models of
these disturbances are obtained from Wertz and Larson [151] and are incorporated
into the ACS simulator.

5.2.3.1 Gravity-Gradient Torque

Gravity-gradient torque is primarily influenced by spacecraft inertias and orbit alti-
tude. The worst-case gravity-gradient torque is estimated as:

τg = 3μ

2R3

∣
∣
∣I xx

sat − I yy
sat

∣
∣
∣Sin2θ (5.34)

where θ is the maximum deviation in the local-vertical pointing (in radians); μ is the
Earth’s gravity constant in m3/s2; R is the orbit radius in meters; I yy

sat is the moment
of inertia of the satellite about y-axis in kg.m2; and I xx

sat is the moment of inertia
about x-axis in kg.m2.

5.2.3.2 Magnetic Torque

Magnetic torque is primarily influenced by orbit altitude, residual spacecraft mag-
netic dipole and the orbit inclination. The worst-case magnetic torque is estimated
as:

τm = Dr Em f (5.35)

where Dr is the residual dipole of the satellite in amp-turn.m2, Em f = 2 M
R3 is the

Earth’s magnetic field in Tesla, M is the magnetic moment of the Earth in Tesla.m3,
and R is the orbit radius or radius from the dipole (Earth) center to the satellite (in
meter).

5.2.3.3 Aerodynamic Torque

Aerodynamic torque is primarily influenced by orbit altitude, spacecraft geometry,
and the location of the center of gravity of the spacecraft. The worst-case aerody-
namic torque is estimated as:

τa = Faero (C pa−Cg) (5.36)

where Faero = 0.5
⌊
ρCD AaeroV 2

⌋
is the aerodynamic force; ρ is the atmospheric

density in kg/m3; CD is the drag coefficient; which is between 2 and 2.5; Aaero is
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the surface area for aerodynamic pressure in m2; V is the satellite velocity; c pa is
the center of aerodynamic pressure; and c g is the center of gravity.

5.2.3.4 Solar Radiation Torque

Solar radiation torque is primarily influenced by spacecraft geometry; spacecraft
surface reflectivity and the location of the center of gravity of the spacecraft. The
worst-case solar radiation torque is estimated as:

τ s = Fsolar (C ps−C g) (5.37)

where in the force Fsolar = Fs
c As(1 + r )cosis ; Fs is the solar constant; c is the speed

of light in m/s; As is the surface area for solar radiation in m2; r is the coefficient of
reflectivity; is is the Sun incidence angle; c ps is the location of the center of solar
pressure; and c g is the center of gravity. Coefficient of reflectivity r is a number
between 0 and 1 with usual value of 0.6 for most of the satellites. However, in order
to consider the worst-case scenario, we selected the maximum possible value of 1
in the simulations.

The values of the entire set of parameters of the environmental models (i.e., the
environmental parameters) are provided in Table 5.1. It is important to note that
some of these parameters are universal constants but some are specific to the LEO
satellite that has been simulated.

Table 5.1 Parameters of the attitude disturbance models used in the ACS simulations

Parameter Description Units Value

ρ Atmospheric density kg/m3 1.04 × 10−13

Aaero Contact surface area for aerodynamic m2 1
pressure

As Contact surface area for solar radiation m2 1
CD The drag coefficient – 2.2
C pa The center of aerodynamic pressure – 0.1
cg The center of gravity – 0
cps The center of solar pressure – 0.1
cD The drag coefficient – 2.2
M Magnetic moment of earth T.m3 7.96 × 1015

Dr Residual Dipole of the satellite Amp-turn.m2 0.8
Fs Solar constant W/m2 1366
r Reflectance factor – 1
θ Maximum deviation in the local-vertical rad 1.74 × 10−4

pointing
is Incidence angle deg 0
Tgrg max The maximum gravity gradient torque Nm 7.4119 × 10−6

Taero max Maximum aerodynamic drag torque Nm 6.4617 × 10−7

Tmgn max Maximum magnetic torque Nm 3.7694 × 10−5

Tsolar max Maximum Solar radiation torque Nm 9 × 10−7
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5.3 Attitude Control

There are various techniques to control the attitude of a spacecraft including passive
methods such as spin stabilization and gravity gradient and active methods such as
momentum bias and three-axis (3-axis) attitude stabilization. The criteria for choos-
ing a specific attitude control technique mainly depend on accuracy requirements,
specifications as well as the budget of the ACS. The 3-axis active attitude control
technique, though being costly, is the most precise technique among the others. It
is also the most common attitude control technique in modern satellites. Therefore,
in this monograph, this control technique is employed to stabilize the attitude of the
satellite. For further details on each attitude control technique refer to Wertz and
Larson [151] and Sidi [167].

5.3.1 Three-Axis Active Attitude Control Design

The spacecraft attitude control is achieved using three reaction wheels that gener-
ate control torques τwx , τwy, τwz about the three principal axes of the satellite. The
torque vector appears explicitly in the attitude dynamics of the satellite given in Eq.
3.3. We have developed and implemented variable structure control (VSC) strategy
[168–170] for attitude control, which performs extremely well in the presence of
an ideal reaction wheel model (i.e., a simple gain factor). However, as soon as we
inject the nonlinear dynamics of the reaction wheel into the attitude control loop,
the VSC controller fails to stabilize and control the spacecraft slew-maneuvers.
The same phenomenon was observed using linear state-feedback control strategy
designed based on the linearized attitude dynamics of the satellite.

Interestingly, however, we designed and implemented a decentralized PID con-
trol strategy that performs extremely well for both attitude regulation and tracking
even in the presence of nonlinear reaction wheel dynamics and physical constraints
on control signal (i.e., control signal saturation). All of the above-mentioned con-
trol strategies were designed based on the quaternion representation of satellite atti-
tude (i.e., using quaternion-based kinematics differential equations) in order to avoid
dynamic singularities of the Euler representation.

In both VSC and state-feedback control strategies, the attitude control error
eatt = [e1 e2 e3]T was defined based on the quaternions as follows:

eatt =
⎡

⎣
q0c q3c −q2c −q1c

−q3c q0c q1c −q2c

q1c q2c q3c −q1c

⎤

⎦

⎡

⎢
⎢
⎣

q1

q2

q3

q0c

⎤

⎥
⎥
⎦ (5.38)

where qic, qi ; i = 0, 1, 2, 3 are the commanded and current attitude quaternions,
respectively. The PID control design based on the quaternion error given above,
however, will require MIMO PID controllers that are not straightforward to design
and tune. Thus, to simplify the PID parameter tuning, the attitude error in PID
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control is defined based on the Euler angles. Three separate decentralized PID con-
trollers are designed for each angle. A quaternion to Euler angle transformation is
needed to close the loop. This nonlinear transformation is, in fact, given in Eq. 5.13.
This equation allows us to obtain the Euler angles from the quaternions. This would
not impose singularity problems because of the static nature of this transformation.
More precisely, the quaternion kinematics differential equations are still integrated
to obtain the quaternions. Thus, no dynamic singularities will occur in the closed-
loop attitude control system.

Furthermore, the above-mentioned definition of control error in the PID con-
trol strategy design also enables better visualization of the satellite maneuver con-
trol commands. To take the actuator saturation into account, saturation blocks were
applied to the outputs of the PID controllers. Accuracies in the order of less than
5 mdeg can be achieved for theeaxes using this decentralized PID control strategy.
Figure 5.5 depicts the block diagram representation of the closed-loop ACS subsys-
tem that has been developed in this monograph.

Fig. 5.5 Closed-loop 3-axis stabilized attitude control subsystem (ACS) of the spacecraft

5.4 Simulation Results of 3-Axis Stabilized ACS

In this section, we present attitude stabilization as well as slew-maneuvering capa-
bilities of the ACS under healthy (or nominal) mode of operation and in the pres-
ence of external disturbances, reaction wheel dynamics, and control (or equivalently
actuation) signal saturation. As mentioned previously, Tables 5.2 and 5.1 show the
model parameter values used in ACS simulations for the components of ACS and
the environmental disturbances, respectively.

5.4.1 Three-Axis Attitude Stabilization

We first start with the attitude regulation capability of the ACS, where the asymp-
totic stability of the satellite attitude is shown in response to a non-zero initial atti-
tude, no attitude commands, and in the presence of environmental disturbances.
The evolution of the Euler angles under such scenario can be seen in Figs. 5.6
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Table 5.2 The closed-loop ACS parameters including parameters of the RW model, the satellite
attitude dynamics and the controller, used in the simulations

Parameter Description Units Value

Jxx Satellite inertia about x-axis N.m.s2 450
J yy Satellite inertia about y-axis N.m.s2 200
Jzz Satellite inertia about z-axis N.m.s2 440
Jw Wheel inertia N.m.s2 0.0077
Gd RW driver gain A/V 0.19
Kt Motor torque constant N.m/A 0.029
ke Motor Back-EMF V/rad/s 0.029
ks Overspeed circuit gain V/rad/s 95
kf Voltage feedback gain V/V 0.5
ωs Overspeed circuit threshold rad/s 690
τc Coulomb friction N.m 0.002
N Number of motor poles – 36
Rin Input resistance Ω 2
ωd Frequency rad/s 9
Kp PID proportional coefficient – 100
KI PID integral coefficient s−1 2
KD PID derivative coefficient s 4000
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Fig. 5.6 Transient of Euler angles (Yaw–Pitch–Roll) for 3-axis attitude stabilization at low speeds
of reaction wheel actuators
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and 5.7. More specifically, Fig. 5.6 shows that the three Euler angles asymptotically
approach to zero starting from non-zero initial conditions. It can be seen from this
figure that the settling time of the closed-loop ACS is about 8.3 min. Figure 5.7
depicts the Euler angles at steady state. It can be seen from this figure that the
attitude stabilization error is in the order of less than 5 mdeg. Figure 5.8 shows the
same attitude stability property for the quaternions.
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Fig. 5.7 Euler angles zoomed around the steady state for 3-axis attitude stabilization at low speeds
of reaction wheel actuators

Figures 5.9 and 5.10 show the control signals and the reaction torques generated
by the reaction wheels, respectively. As can be seen in these figures, even though
the control signal has got saturated over some time intervals, but the ACS performs
very well. Furthermore, the magnitude of the reaction torques is consistent with
the nominal specifications of the ITHACO ‘type A’ reaction wheels mentioned in
specification sheets of this wheel.

Figures 5.11 and 5.12 depicts the spacecraft’s body angular rates during the tran-
sient and steady state, respectively. The variations in satellite angular rates during
the transient are due to satellite rotations until it reaches a stable attitude. However,
it can be seen from Fig. 5.12 that during steady state, the angular velocity of the
satellite around the y-axis does not converge to zero and instead it converges to a
non-zero value almost equal to −1.1 × 10−3(rad/s). This is, indeed, due to the satel-
lite rotation around the Earth and that specific value is actually the speed of that
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Fig. 5.12 Body angular rates of the satellite in the orbit reference frame during the steady state of
attitude stabilization

rotation (or orbital frequency of the satellite nc), which is dependent on satellite
altitude in the orbit and is given by Equation (5.17). This observation is also con-
sistent with Eq. 5.18, where the term −nc appears on the right-hand side of the
equation.

Figures 5.13 and 5.14 depict the angular speeds of the three reaction wheels
and the motor currents of the three wheels, respectively. Eventually, the cumulative
effect (or torque) of different external attitude disturbances is depicted in Fig. 5.15
for one complete orbit of the satellite.

In order to investigate the slew-maneuvering capability of the ACS, the satellite
was commanded to perform three slew-maneuvers within almost half of an orbit
period. Therefore, the attitude of the satellite was commanded at three different
times within this period of time. The attitude commands were sent to all the three
Euler angles simultaneously. Figures 5.16–5.18 respectively represent the evolution
of Yaw, Pitch, and Roll angles versus their commanded values. It can be easily seen
from these figures that all the commanded attitudes have been perfectly achieved by
the ACS. The response of other major quantities/variables of the ACS, including the
quaternions, the control signals, the reaction torques generated by the wheel actu-
ators, the spacecraft body rates, and the speeds and current of the reaction wheels,
to the three slew-maneuvers are depicted in Figs. 5.19, 5.20, 5.21, 5.22, 5.23, and
5.24, respectively.
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Fig. 5.15 Environmental attitude disturbances over one orbit of the satellite
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Fig. 5.23 The speeds of the three reaction wheels in response to three slew-maneuvers

0 500 1000 1500 2000 2500 3000 3500
–1

0

1

I z
 (

A
)

0 500 1000 1500 2000 2500 3000 3500
–1

0

1

I y
 (

A
)

0 500 1000 1500 2000 2500 3000 3500
–1

0

1

I x
 (

A
)

time (sec)

Fig. 5.24 The motor current of the three reaction wheels in response to three slew-maneuvers
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5.4.2 Characterization of Possible Fault Scenarios in Reaction
Wheels

In order to be able to develop the FDII algorithms and to inject faults in the ACS, the
potential sources of anomalies in the reaction wheels have to be identified. Exten-
sive experimental experience with reaction wheels onboard different satellite mis-
sions has revealed that the following potential failures may occur in these attitude
actuators:

(i) Unexpected changes in the bus voltageVbus (i.e., bus voltage drop) and
(ii) Unexpected changes in the motor current, which can be represented (or mod-

eled) by changes in the motor torque constant Kt .

5.5 Simulation Results for FDII with Full-State Measurements

In this section, we present simulation results of FDII in reaction wheel actuators of
ACS subject to faults in motor current and bus voltage and under the availability
of full-state measurements. It is very important to note that for FDII purposes, the
reaction wheel itself, though being an actuator of ACS, is considered as the system
being monitored. More precisely, the second-order nonlinear model of the reac-
tion wheel acts as the system (or plant) under consideration and consequently the
wheel’s signals, namely voltage, current, and speed, comprise the inputs of the FDII
subsystem. Therefore, the satellite attitude model and controller are used to pro-
vide a near-realistic simulation of reaction wheel operation in a closed-loop ACS
operation and they are not used in FDII design.

As mentioned previously, three identical reaction wheels are used in a 3-axis
stabilized satellite for attitude control. According to the aforesaid philosophy of
monitoring the wheels, one FDII modules need to be dedicated to each reaction
wheel, thus requiring a total of three FDII modules for health monitoring of the
whole reaction wheel assembly of the ACS. Since it is assumed that the reaction
wheels are identical, their corresponding FDII modules would also be essentially
identical. Hence, in this section we show the results of FDII for only one of the
wheels in ACS, corresponding to the Pitch axis. The simulation data, however, are
obtained from the closed-loop ACS simulation of a 3-axis stabilized LEO satellite.
The simulations are carried out for 6000 s (or 100 min) of ACS operation, which
is just slightly larger than the period of the simulated LEO satellite (the simulated
LEO satellite was in an altitude of 586.91 km with an orbit period of 96.4144 min).

Intermittent time-varying faults are injected into two of the reaction wheel com-
ponents, namely motor current and bus voltage. Faults in motor current are modeled
and injected as variations in motor torque gain Kt . Faults in bus voltage are modeled
and injected as drops in the voltage of the power bus Vbus in Eqs. 5.30 and 5.31. In
consequence, two fault parameters (FPs) are defined that affect the bus voltage and
the motor gain in additive form. Therefore, the multi-parameterized fault model is
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obtained by replacing Vbus in Eqs. 5.30 and 5.31 by Vbus + α1 and replacing Kt in
Eq. 3.30 by Kt + α2, where α1 and α2 are unknown fault parameters that indicate
possible presence of faults in bus voltage and motor current, respectively. Due to
additive formulation of the above fault parameters, the value of α1 and α2 at healthy
nominal conditions is essentially zero.

The following intermittent time-varying fault in motor current is injected into the
reaction wheel on the Pitch axis as a sinusoidal variation in the motor torque gain
Kt of that wheel:

Kt (t) =

⎧
⎪⎪⎨

⎪⎪⎩

knom
t , t < 1000

knom
t − 0.02 sin

(
2π(t−1000)

3000

)
, 1000 ≤ t ≤ 4250

knom
t , 4250 < t ≤ 6000

(5.39)

where knom
t = 0.029 is the nominal value of the motor torque gain.

Time-varying bus voltage faults are injected and simulated as a sequence of
instantaneous drops in the voltage of the power bus. Two types of faults are con-
sidered for the bus voltage including low-severity (or incipient) and high-severity
faults that basically differ in terms of the severity of the voltage drop. Low-severity
bus voltage faults include scenarios where the drop in the bus voltage is below 4 V.
These faults only cause higher power consumption in the ACS by making the wheel
operate at a higher current. The low-severity faults will not make the ACS system
unstable or out of control. The following sequence of low-severity bus voltage faults
are injected over different time intervals in the reaction wheels of ACS (it is impor-
tant to note that since the power bus is common to all loads in a satellite such as
actuators, sensors, and payload instrumentation, bus voltage faults are also essen-
tially common to all the three reaction wheels of the ACS):

Vbus(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

V nom
bus , 0 ≤ t < 1000

V nom
bus − 1, 1000 ≤ t < 2240

V nom
bus − 4, 2240 ≤ t < 3100

V nom
bus − 3.5, 3100 ≤ t < 4390

V nom
bus − 2.5, 4390 ≤ t < 5100

V nom
bus , 5100 ≤ t ≤ 6000

(5.40)

where V nom
bus = 24 V is the value of bus voltage under healthy operational mode.

The presence of high-severity bus voltage faults (i.e., drops of more than 5 V
in the bus voltage) makes the ACS system unstable and the satellite starts tumbling
upon occurrence of these faults. The following sequence of high-severity bus voltage
faults are injected into the ACS subsystem:
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Vbus(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

V nom
bus , 0 ≤ t < 1000

V nom
bus − 6, 1000 ≤ t < 2240

V nom
bus − 9.4, 2240 ≤ t < 3100

V nom
bus − 5.3, 3100 ≤ t < 4390

V nom
bus − 7.8, 4390 ≤ t < 5100

V nom
bus , 5100 ≤ t ≤ 6000

(5.41)

In the following sections, we assume that full-state measurements are available
from reaction wheels. More specifically, we assume that both current and speed
of the wheel are measured with appropriate sensors and are available for fault
diagnosis. We will first test the diagnostic performance of the series-parallel FDII
scheme under the aforementioned fault scenarios and then analyze its robustness
with respect to measurements noise. Then, the same procedure is performed for the
robust parallel FDII scheme.

All FDII validation results are obtained with Gaussian random noises for the
current and speed measurements. The nominal levels (or intensities) of measure-
ment noise for both state (i.e., current and speed) measurements are given in noise
variance and noise power (in dB) in Table 5.3 and in terms of signal-to-noise ratio
(SNR) in dB in Table 5.4. The definition of noise variance is clear. The other two
indices are defined as follows:

Power of the noise (dB):

Pv(dB) = 10 × log10

(
1

T

∫ T

0
|v(t)|2 dt

)

∼= 10 × log10

(
1

T

T |Ts∑

k=0

|vk |2
)

(5.42)

Signal-to-Noise Ratio (dB):

SNR(dB) = 10 × log10

(
Psignal

Pv

)

∼= 10 × log10

⎛

⎜
⎜
⎜
⎝

T |Ts∑

k=0
|xk |2

T |Ts∑

k=0
|vk |2

⎞

⎟
⎟
⎟
⎠

(5.43)

Table 5.3 Specifications of the various measurement noise levels used in the simulations

Noise level/intensity Measured variable Variance σ 2
ν Power Pν (dB)

Nominal Current (ν1) 2 × 10−8 −77
Speed (νω) 0.009647 −10.16

Medium (in robustness analysis) Current (ν1) 2 × 10−6 −57
Speed (νω) 0.9647 −0.16

High (in robustness analysis) Current (ν1) 2 × 10−5 −47
Speed (νω) 9.6470 9.84



5.5 Simulation Results for FDII with Full-State Measurements 133

Table 5.4 Signal-to-noise ration (SNR) corresponding to the various noise intensities in Table 5-3
and calculated for different fault scenarios

Fault scenario

Measured Motor Low-severity High-severity
Noise level/intensity variable current fault Vbus fault Vbus fault

Nominal Current (νI) 75.00 dB 74.57 dB 73.66 dB
Speed (νω) 75.00 dB 74.76 dB 73.72 dB

Medium Current (νI) 55.00 dB 54.57 dB 53.66 dB
(in robustness analysis) Speed (νω) 55.00 dB 54.76 dB 53.72 dB

High Current (νI) 45.00 dB 44.57 dB 43.66 dB
(in robustness analysis) Speed (νω) 45.00 dB 44.76 dB 43.72 dB

where T is a specific period of time. In this monograph, T was set to be the orbit
period.

The “nominal” noise intensity, which is a set based on the typical noise levels
of current and speed sensors available in the market, is a minimal noise level con-
sidered for the initial performance evaluation of the FDII schemes. However, two
larger levels of noise – as compared to the nominal one – were also used to perform
robustness analysis of the FDII schemes with respect to measurement noise. These
noise levels are identified in Tables 5.3 and 5.4 as “medium” and “high” noise levels.
The three aforementioned indices of noise intensity for these two noise levels are
also given in Tables 5.3 and 5.4. It is very important to note that the measurement
noise power and the SNR of the “medium” and “high” noise levels are, respectively,
100 and 1000 times larger than that of the “nominal” noise conditions.

It is important to note that the SNR index is provided in a separate table from
the variance and the power. The reason is that as can be seen from the definition
of SNR, the value of SNR not only depends on the noise intensity, but also on the
actual signal being measured. As a result, the SNR value would be dependent on
the specific fault scenario being considered. Therefore, the SNR values correspond-
ing to the three noise levels (i.e., nominal, medium, and high) are mentioned in a
separate table (i.e., Table 5.4) for each fault scenario.

Indices of fault identification performance evaluation: Once a fault is cor-
rectly isolated, the FP estimate corresponding to the isolated fault can be taken as
the indicator of the fault severity for fault identification purposes. In order to quanti-
tatively assess the accuracy of fault identification, a number of performance indices
have been used in this monograph that are based on evaluating the accuracy of FP
estimates. These performance indices are basically average performance measures
of the FP estimation error defined as:

ea
k = αi

k − α̂i
k (5.44)

where i is the index of the detected and isolated fault. The performance indices
defined based on the above error include the root mean square of the error (RMSE),
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the mean of the error (ME), and the standard deviation of the error (STDE). These
performance indicators are calculated as follows:

RMSE : rmsα =
√
√
√
√ 1

N

N∑

k=1

[
eαk
]2

(5.45)

ME : ēα = 1

N

N∑

k=1

eαk (5.46)

STDE : σα =
√
√
√
√ 1

N − 1

N∑

k=1

[
eαk − ēα

]2
(5.47)

It should be noted that these performance indices are used for all FDII simulation
results throughout this chapter.

5.5.1 Simulation Results for FDII Using the Series-Parallel
Scheme

The series-parallel FDII scheme was applied to detect, isolate, and identify the
aforementioned faults in the reaction wheel of the Pitch axis. Since two faults are
considered in the reaction wheels, the bank of NPEs essentially consists of two
NPEs: one NPE for FDII of Vbus fault and another for FDII of Kt fault. Two one-
hidden-layer feed-forward neural networks with four neurons in the hidden layer
and one neuron in the output layer are used as NPEs. Sigmoidal activation functions
were used for the neurons in the hidden layer, while linear neurons were used at the
output layer. Neural network learning rates were selected as,

[
η1
w η

1
v

] = [
1 10−4

]

and
[
η2
w η

2
v

] = [
10−4 10−7

]
for the first and the second NPE in the bank of the

series-parallel FDII scheme, respectively.

5.5.1.1 FDII of Motor Current Faults

In this section, the results of FDII in presence of the time-varying intermittent fault
in the motor current over the time period t ε [1000 4250] s – given in Eq. 5.39 –
are depicted. The measured speed and current of the reaction wheel and their esti-
mates obtained from the two NPEs of the series-parallel FDII scheme are depicted
in Fig. 5.25. As can be seen from the figure, the results of the NPE for bus voltage
fault are depicted on the left column and the results of the NPE for motor current
fault are depicted on the right column. It is important to note that this convention is
used throughout this chapter. These figures clearly show an extremely close match
between the measured states and their corresponding estimates for both NPEs. Note
also the effect of the faults on the states of the reaction wheel.

Figure 5.26 shows the residuals corresponding to the two NPEs in the bank.
It is important to note that each NPE consists of two residual signals: (i) current
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Fig. 5.25 The estimated versus measured states using the series-parallel FDII scheme in presence
of a time-varying fault in motor current over the time period t ε [1000 4250] s

residual and (ii) speed residual. These residuals are defined as r1
1 = Ik − Î α1

k and
r1
ω = ωk − ω̂α1

k for the first NPE (i.e., the NPE for the FDII of Vbus faults) and
r2

1 = Ik − Î α2
k and r2

ω = ωk − ω̂α2
k for the second NPE (i.e., the NPE for the FDII of

Kt faults).
As was mentioned in Chapter 3, the residual thresholds must be set using the

worst-case disturbance and noise analysis during the healthy period. Using this
method, the residual thresholds are set to be almost four times bigger than the max-
imum effect of system noise and disturbances on the residual signal during healthy
mode of operation. Accordingly, the threshold values were set to δI = δ1 = 10−3(A)
for the current residual and δω = δ2 = 10 (rpm) for the speed residual. It should be
noted that the residual thresholds are the same for all NPEs in the bank. It is also
important to note that since the residual thresholds are set using the worst-case dis-
turbance and noise analysis during healthy operations, the value of these thresholds
may be changed if noise intensities are changed in the system. This issue will be
further clarified in the robustness analysis section.

Figure 5.27 depicts the estimated versus actual values of the fault parameters α1

and α2 representing faults in Vbus and Kt , respectively. As can be seen in this fig-
ure, the fault parameters are very well estimated by the NPEs during both healthy
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Fig. 5.26 The residuals of the two NPEs of the series-parallel FDII scheme in presence of a
time-varying fault in motor current over the time period t ∈ [1000 4250] s

and faulty periods. The FDI decision logic of the series-parallel scheme requires
thresholds to be defined for FP estimates, as described in Chapter 3. The crite-
rion for selecting FP thresholds was also mentioned in Chapter 3. Using that cri-
terion, we select the thresholds to be ε1 = 0.5 V for α1 and ε2 = 3 × 10−3 for α2

that accounts for almost 10.35% change in motor torque gain. It has been verified,
through numerous simulations of the closed-loop ACS subsystem, that bus voltage
faults with severity levels below 0.5 V and motor torque gain variations in the order
of 10% will not considerably degrade the closed-loop ACS performance; hence the
reliability and safety of the satellite is ensured and maintained. Indeed, the effect of
such minor faults on the ACS system is a very slight increase in power consumption
of the reaction wheels. It is also very important to note that as opposed to residual
thresholds the FP thresholds always remain unchanged regardless of the noise or
disturbance levels in the system. Instead, the FP thresholds are determined once at
the design time and based on the inherent characteristics of the closed-loop system
and the impact of each specific fault on the closed-loop system performance. In con-
clusion, throughout this monograph, the FP thresholds are kept equal to the values
mentioned above, namely ε1 = 0.5 V for α1 and ε2 = 3 × 10−3 for α2.

It can be seen from Fig. 5.27 that the estimate of the bus voltage FP has been
incorrectly deviated from zero (though within threshold bounds) in presence of a
fault in motor current. It is very important to keep in mind that this phenomenon
will be observed for most of the fault scenarios and using both FDII schemes.
Nevertheless, it should be noted that the FP estimates are not direct indicators for
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Fig. 5.27 The estimated versus actual FPs using the series-parallel FDII scheme in presence of a
time-varying fault in motor current over the time period t ε [1000 4250] s

fault detection and isolation. More precisely, first the FDI decision logic of each
algorithm is applied to find out the health state of the system. Once the health state
of the system is determined and in case of presence of a fault the faulty component
(or the fault source) is isolated, then the estimate of FP corresponding to the isolated
fault is taken as an indicator of the fault severity.

Therefore, prior to interpreting the FP estimates, one has to obtain and analyze
the results from the FDI decision logic for fault detection and isolation and then
use the appropriate FP estimate for fault identification. The health state of the reac-
tion wheel is determined using the FDI decision logic of the series-parallel scheme
given in Eq. 3.35. The health state is depicted in Fig. 5.28. Because of considering
two types of potential faults in the wheels, the health state can basically take three
possible values including “0 for healthy,” “1 for faults in bus voltage,” and “2 for
faults in motor current.” However, it is also possible, though very rarely, that the
FDI decision logic incorrectly indicates simultaneous presence of the two faults (it
is said “incorrectly” because in this monograph it is assumed that faults do not occur
concurrently). Therefore, the health state value equal to 3 is reserved for simultane-
ous presence of two faults. More precisely, whenever the health state is determined
to be 3, it implies the existence of both faults has been determined by the FDII
subsystem.
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Fig. 5.28 The health state of the RW using the series-parallel FDII scheme in presence of a
time-varying fault in the motor current over the time period of t ∈ [1000 4250] s

A number of observations can be made from Fig. 5.28 as follows:

• The injected motor current fault has been correctly detected and isolated for the
most of the faulty period.

• Only few false alarms are observed during the healthy period, namely prior to
fault occurrence and after fault removal (or disappearance). It is also very impor-
tant to note the robustness of the series-parallel FDII scheme to the transients of
the closed-loop ACS system (i.e., the time it takes for the attitude to be stabilized,
which is almost around 8 min or 500 s). It can be clearly seen from the figure
that during the transient period (i.e., the first 500 s) there are only very few false
alarms for a very short period of time. Being extremely robust to closed-loop sys-
tem transients is indeed a notable advantage and capability of the series-parallel
FDII scheme.

• The first detection and isolation of the injected fault has taken place in only 54.3 s
after fault occurrence. However, it was not persistent and some few missed alarms
are observed until t = 1282.3 s, where the fault has been persistently detected.
Therefore (a pessimistic) value of fault diagnosis delay is 282.3 s.

• A 100 s period of missed alarms over the period t ∈ [2465 2565] is also
observed. It should be noted that these missed alarm occur around the zero-
crossing of the fault parameter corresponding to the motor current, as can be
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seen in the actual FP of Fig. 5.27. Hence, these missed alarms are, in fact, very
reasonable because the fault is extremely small in that period and the system
actually becomes momentarily healthy while the actual FP crosses zero value.

• Fault removal or disappearance has been persistently detected almost 13 s ahead
of the actual fault removal (i.e., t = 4237 s as compared to 4250 s).

Now that the motor current fault has been correctly isolated, the FP estimate
corresponding to this fault, namely α̂2 (see Fig. 5.27) can be taken to identify the
fault severity. It should be noted that based on the isolation results, the bus voltage
FP estimate, namely α̂1 has to be neglected during the faulty period. The accuracy
of motor current fault identification has been assessed using the aforementioned
performance indices and the results are shown in Table 5.5. It can be clearly seen
from this table that the motor current fault parameter (or the motor current fault
severity) has been very accurately estimated with average errors in the order of less
than 10−4 and standard deviations in the order of less than 10−3, while the injected
fault severity was varying between –0.02 and 0.02.

Table 5.5 The performance indices of motor current fault identification using the series-parallel
FDII scheme in presence of intermittent motor current fault and with nominal noise levels

Pre-fault period Faulty period Post-fault period
t ∈ [0 1000] s t ∈ [1000 4250] s t ∈ [4250 6000] s

RMSE 6.2663 × 10−4 6.3787 × 10−4 5.9962 × 10−4

ME −3.4188 × 10−5 4.4874 × 10−6 5.2092 × 10−5

STDE 6.2571 × 10−4 6.3786 × 10−4 5.9737 × 10−4

5.5.1.2 FDII of Incipient, Low-Severity Bus Voltage Faults

In this section, the results of FDII using the series-parallel scheme in presence
of the sequence of low-severity bus voltage faults over the time period t ∈
[1000 5100] s – given in Eq. 5.40 – are depicted. The measured speed and cur-
rent of the reaction wheel and their estimates obtained from the two NPEs of the
series-parallel FDII scheme are compared in Fig. 5.29. This figure shows a very
close match between the measured states and their corresponding estimates from
“the NPE for Vbus fault.” The current estimates from the other NPE do not match
the measurements over the faulty periods. This is reasonable because the results are
obtained in presence of bus voltage fault, so only “the NPE for Vbus fault” has gen-
erated matching estimates for both of the states. Finally, note the effects of the bus
voltage fault on the states of the reaction wheel.

Figure 5.30 shows the residuals of the two NPEs. As expected from the state
estimates shown in Fig. 5.29, only the two residuals of “the NPE for Vbus fault”
remain within their corresponding thresholds. Since these results were obtained
with nominal noise levels, the residual thresholds are essentially the same as the
ones used for the motor current FDII in the previous section. As can be observed
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Fig. 5.29 The estimated versus measured states using the series-parallel FDII scheme in presence
of a sequence of low-severity bus voltage faults over the time period of t ∈ [1000 5100] s

from Fig. 5.30, both residuals of “the NPE for Vbus fault” have remained within their
specified threshold bounds, except for the current residual, where it has temporarily
exceeded its corresponding threshold for a few times during the simulation period.
These include once at the very beginning of the simulations due to closed-loop sys-
tem transients and five times during the faulty period due to transients imposed by
bus voltage fault initiation, change in the fault severity, and finally the fault removal.

As far as the residuals of “the NPE for Kt fault” are concerned, it can be seen
from Fig. 5.30 that the current residual has exceeded its threshold for the entire
period of the presence of the bus voltage fault in the reaction wheel. Once again,
this correctly indicates that the fault model assigned to faults in motor current does
not match the observations/measurements when a bus voltage fault is present in
the system. Figure 5.31 is shown merely to provide a zoomed view of the current
residual of “the NPE for Kt fault.”

Figure 5.32 depicts the estimated versus actual values of the fault parameters α1

and α2 representing faults in vbus and k1, respectively. As can be seen in this figure,
the fault parameters are accurately estimated by the NPEs during both the healthy
and faulty periods. More specifically, the bus voltage fault has been very precisely
identified across all injected fault severity levels, including minor incipient faults
such as 1 V drop in the bus voltage.
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Fig. 5.30 The residuals of the two NPEs of the series-parallel FDII scheme a sequence of low-
severity bus voltage faults over the time period t ∈ [1000 5100] s

It should be noted that even though in this fault scenario both FP estimates are
accurate (i.e., α̂2 is also very close to zero in presence of a fault in bus voltage
and in absence of a fault in motor current), always only one of the FP estimates
should be taken into account for fault identification, and that is the FP estimate
that corresponds to the detected and isolated fault. Hence, first the health state of
the system has to be determined using the FDI decision logic of the series-parallel
scheme and then the FP estimate corresponding to the isolated fault has to be taken
as the fault severity. The same logic shall be applied to the parallel FDII scheme.

Figure 5.33 depicts the health state of the reaction wheel obtained by applying
the FDI decision logic of Eq. 3.35 for the series-parallel scheme.

A number of observations can be made from Fig. 5.33 as follows:

• The injected sequence of low-severity (or incipient) bus voltage faults has been
correctly detected and isolated for almost the entire period of bus voltage fault
presence.

• There are very few false alarms prior to fault occurrence, which last only for
29.3 s after the beginning of simulations. Compared to the settling time of the
closed-loop ACS system (which is equal to almost 500 s), this reveals that the
series-parallel FDII scheme is extremely robust to the transients of the closed-
loop ACS. Also, note that no false alarms are observed after fault removal.
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Fig. 5.31 The residuals of the two NPEs of theseries-parallel FDII scheme in presence of a
sequence oflow-severity bus voltage faults over the time period t ∈ [1000 5100] s; zoomed in for
the current residual of ‘the NPE for Kt fault’

• The delay in fault detection and isolation is only 2.1 s.
• A sequence of intermittent missed alarms is also observed during the faulty

period with short durations of 21, 13.5, and 12 s, respectively. It should be noted
that these missed alarms are indeed due to changes in the severity of the injected
bus voltage fault.

• Fault removal or disappearance has been perfectly detected at t = 5100.05 s,
practically with no delay.

Now that the bus voltage fault has been correctly isolated, the FP estimate cor-
responding to this fault, namely α̂1 (see Fig. 5.32) must be taken as a measure of
fault severity. On the other hand, the motor current FP estimate, namely α̂2 has to be
neglected during the faulty period. The accuracy of bus voltage fault identification
has been assessed using the aforementioned performance indices and the results are
shown in Table 5.6. It should be noted that all tables corresponding to bus voltage
fault scenarios possess two extra rows as compared to the motor current fault sce-
narios. One of them shows the actual injected bus voltage drop for the healthy as
well as different faulty periods and the other row shows the mean (or average) of the
estimated drop over the same periods. The “average of estimated drop” is basically
defined as:
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Fig. 5.32 The estimated versus actual FPs using the series-parallel FDII scheme in presence of a
sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s

α̂2 = 1

N

N∑

k=1

α̂2
k (5.48)

The reason for using these two extra rows in case of bus voltage fault is that, as
opposed to motor current faults, the bus voltage faults are piecewise constant. So,
for healthy as well as faulty periods the fault severity can be represented by a single
number. In consequence, the “average of estimated drop” can directly represent the
estimated drop over each period by a single number. It should be noted, however,
that using the above-mentioned definition of the “average of estimated drop” and
because of the piecewise constant nature of the injected bus faults, the ME index
becomes essentially the difference between the “actual vbus drop” and the “average
of estimated drop”; i.e.,

ME = Actural Vbus drop − Average of estimated drop

It can be clearly seen from Table 5.6 that the bus voltage fault parameter (or the
bus voltage fault severity) has been precisely estimated with average errors in the
order of less than 10−2 V (or 10 mV) in “pre-fault period,” less than 2 × 10−3 V
(or 2 mV) during all faulty periods, and less than 3 × 10−3 (or 3 mV) in “post-fault
period,” while the actual injected faults are all in the order of Volts (i.e., 1–4 V).
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Fig. 5.33 The health state of the RW using the series-parallel FDII scheme in presence of a
sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s

Table 5.6 The performance indices of fault identification using the series-parallel FDII scheme in
presence of low-severity bus voltage fault and with nominal noise levels

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period
period [1000, [2240, [3100, [4390, [5100,
[0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Actual 0 −1 −4 −3.5 −2.5 0
Vbus drop

Average of −9.07 × 10−3 −1.00 −4.00 −3.50 −2.50 −2.17 × 10−3

estimated
drop

RMSE 1.49 × 10−2 1.05 × 10−3 1.12 × 10−3 1.19 × 10−3 1.12 × 10−3 2.91 × 10−3

ME 9.07 × 10−3 1.50 × 10−3 1.06 × 10−3 1.18 × 10−3 1.11 × 10−3 2.17 × 10−3

STDE 1.20 × 10−2 5.14 × 10−5 3.72 × 10−4 1.53 × 10−4 1.95 × 10−4 1.94 × 10−3

Furthermore, standard deviations are extremely small and are in the order of less
than 4 × 10−4 V (or 400 μV) during faulty periods, less than and 1.5 × 10−2 (or
15 mV) in “pre-fault period,” and less than 3×10−3 (or 3 mV) in “post-fault period.”
All these performance indices clearly indicate that the series-parallel FDII scheme is
extremely capable of accurately identifying fault severities, especially under “nom-
inal” noise levels.
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5.5.1.3 FDII of High-Severity Bus Voltage Faults

In this section, the results of FDII in presence of the sequence of high-severity bus
voltage faults over the time period t ∈ [1000 5100] s – given in Eq. 5.41 – are
depicted. The measured speed and current of the reaction wheel and their estimates
obtained from the NPEs of the series-parallel FDII scheme are shown in Fig. 5.34.
“The NPE for Vbus fault” generates state estimates very close to their respective
measurements. However, the current estimate from “the NPE for Kt fault” does not
match the measurements over the faulty periods. This is reasonable, since the results
are obtained in presence of faults in the bus voltage. Finally, note the effect of the
high-severity bus voltage faults on the states of the reaction wheel.
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Fig. 5.34 The estimated versus measured states using the series-parallel FDII scheme in presence
of a sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s

Figure 5.35 shows the residuals of the two NPEs. As was expected from the
state estimates shown in Fig. 5.34, only the two residuals of “the NPE for Vbusfault”
remain within their corresponding thresholds. Since these results were obtained with
“nominal” noise levels, the residual thresholds are essentially the same as the ones
used for motor current and low-severity bus voltage FDII in the previous sections.
As can be observed from Fig. 5.35, both residuals of “the NPE for Vbus fault” have
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Fig. 5.35 The residuals of the two NPEs of the series-parallel FDII scheme in presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s; zoomed in
for the current residual of “the NPE for Kt fault”

remained within their specified threshold bounds, except for the current residual,
where it has temporarily exceeded its corresponding threshold for a few times during
the simulation period.

Similar to the case of low-severity bus voltage faults, these are due to tran-
sients caused by bus voltage fault initiation, change in the fault severity, and finally
the fault removal. It should be noted that the current residual of the “the NPE
for Kt fault” has been zoomed in on the y-axis in Fig. 5.35 in order to obtain a
better visualization of this residual threshold exceeding the threshold. The orig-
inal figure (without zooming for the current residual) is shown in Fig. C.1 of
Appendix C.

Figure 5.36 depicts the estimated versus actual values of the fault parame-
ters α1 and α2. As can be seen in this figure, the fault parameters are accu-
rately estimated by the NPEs during both healthy and faulty periods. More
specifically, the bus voltage fault has been very precisely identified across all
injected fault severity levels. Figure 5.37 depicts the health state of the reaction
wheel obtained by applying the FDI decision logic of Eq. 3.35 for the series-parallel
scheme.
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Fig. 5.36 The estimated versus actual FPs using the series-parallel FDII scheme in presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s

A number of observations can be made from Fig. 5.37 as follows:

• The injected sequence of high-severity bus voltage faults has been very well
detected and isolated for almost the entire faulty period.

• There are very few false alarms prior to fault occurrence, which last only for
29.5 s after the beginning of simulations (compare to 29.3 s for low-severity bus
voltage faults). Once again, this reveals that the series-parallel FDII scheme is
extremely robust to the transients of the closed-loop ACS.

• The delay in fault detection and isolation has been increased from 2.1 s for low-
severity faults to 25.5 s for high-severity faults; however, it is still quite tolerable
considering the rather slow dynamics of the satellite attitude.

• A sequence of intermittent missed alarms is also observed during the faulty
period with short durations of 24, 8, and 16.5 s, respectively. It should be noted
that these missed alarms are indeed due to changes in the severity of the injected
bus voltage faults.

• As opposed to the low-severity case (where fault removal or disappearance was
perfectly detected with no delay), in the presence of high-severity bus voltage
faults, false alarms are observed even after fault removal. Indeed, the fault disap-
pearance has been first correctly detected for 2 s after the actual fault removal
time (i.e., 5100 s), but then a steady false alarm is observed for almost 96 s.
Thereafter, fault removal has been persistently detected.
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Fig. 5.37 The health state of the RW using the series-parallel FDII scheme in presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s

The accuracy of bus voltage fault identification has been assessed using the afore-
mentioned performance indices and the results are shown in Table 5.7. It can be
clearly seen from this table that the bus voltage fault parameter (or the bus voltage
fault severity) has been precisely estimated with average errors, once again, in the
order of less than 10−2 V (or 10 mV) in the “pre-fault” period, less than 2×10−3 V

Table 5.7 The performance indices of fault identification using the series-parallel FDII scheme in
presence of high-severity bus voltage fault subject to nominal noise levels

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period
period [1000, [2240, [3100, [4390, [5100,
[0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Actual 0 −6 −9.4 −5.3 −7.8 0
Vbus drop

Average of −9.07 × 10−3 −6.001 −9.402 −5.301 −7.801 −7.48 × 10−2

estimated drop
RMSE 1.49 × 10−2 1.41 × 10−3 1.78 × 10−3 1.52 × 10−3 1.58 × 10−3 2.92 × 10−1

ME 9.07 × 10−3 1.34 × 10−3 1.71 × 10−3 1.49 × 10−3 1.43 × 10−3 7.48 × 10−2

STDE 1.18 × 10−2 4.60 × 10−4 5.06 × 10−4 3.31 × 10−4 6.87 × 10−4 2.83 × 10−1
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(or 2 mV) during all faulty periods, and less than 8 × 10−2 (or 80 mV) in the “post-
fault” period, while the actual injected faults are all in the order of a few Volts (i.e.,
5.3–9.4 V). The mean error in the “post-fault” period is clearly larger than in case of
low-severity faults, which can also be easily observed by comparing the “post-fault”
period of Figs. 5.32 and 5.36. Furthermore, the standard deviations are extremely
small and are in the order of less than 7 × 10−4 V (or 700 μV) during faulty periods
and less than and 1.5 × 10−2 (or 15 mV) in the “pre-fault” period. The considerable
increase of the STDE during the “post-fault” period, from less than 3 mV in case of
low-severity faults to more than 280 mV in case of high-severity faults is indeed due
to the relatively long transient period of bus voltage FP estimate, as can be seen in
Fig. 5.36. All performance indices given in Table 5.7 clearly indicate that the series-
parallel FDII scheme is extremely capable of precisely identifying high-severity bus
voltage faults, especially under “nominal” noise levels.

5.5.2 Robustness Analysis of the Series-Parallel FDII Scheme
with respect to Measurement Noise

In this section, the robustness of the series-parallel FDII scheme with respect to
measurement noise is extensively analyzed and investigated. Toward this objective,
the simulations in the previous sections, which were carried out under “nominal”
noise level, are repeated again with higher levels of noise, namely “medium” and
“high” noise levels in reaction wheel’s current and speed measurements according
to Tables 5.3 and 5.4. Then, the robustness of the series-parallel scheme in both FDI
and fault severity estimation subject to different noise levels are compared using the
health state variable C F

k and the FP estimation performance indices (i.e., RMSE,
ME, and STDE), respectively. It should be noted that the robustness analysis is
performed separately for each fault scenario. It is important to note that the state
estimates and the residuals of the NPEs are not depicted throughout the robustness
analysis section. Instead, they are shown in Appendix C.

5.5.2.1 FDII of Motor Current Faults

In the following, the robustness of the series-parallel FDII scheme is analyzed in
the presence of the intermittent time-varying motor current fault given in Eq. 5.39,
subject to (A) medium level of measurement noise (i.e., SNR = 55 dB for both cur-
rent and speed) and (B) high level of measurement noise (i.e., SNR = 45 dB for both
current and speed).

(A) Medium level/iIntensity of measurement noise (SNR = 55 dB): The state
estimates and the residuals corresponding to the NPEs for Vbus and Kt faults are
shown in Figs. C.2 and C.3 of Appendix C, respectively. As can be seen from
Fig. C.3, the residual thresholds are set to δI = δ1 = 8 × 10−3(A) for the cur-
rent residual and δω= δ2 = 80 (rpm) for the speed residual. This shows eight times
increase in both current and speed residual thresholds as compared to the case of
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“nominal” noise level. This is due to the fact that the residual thresholds are set
using the worst-case disturbance and noise analysis during healthy operations.

Figure 5.38 depicts the FP estimates versus their actual values. As can be
observed from this figure, the increased level of noise has a considerable impact
on the motor current FP estimate, i.e., α̂2. Indeed, the motor current FP estimate
shows very large oscillations (or variance) during both healthy and faulty periods.
The magnitude of these oscillations is so high that the motor current FP estimate
frequently exceeds its corresponding threshold.
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Fig. 5.38 The estimated versus actual FPs using the series-parallel FDII in presence of motor
current fault over the period t ∈ [1000 4250] s, subject to medium noise level (SNR=55 dB)

Figure 5.39 shows the health state of the reaction wheel in presence of the time-
varying intermittent fault in motor current over the time period t ∈ [1000 4250] s
and subject to medium noise level. As can be clearly seen from this figure, the health
state of the system frequently oscillates between 0 (i.e., healthy) and 2 (i.e., fault in
the motor current) during both “pre-fault” and “post-fault” periods, thus creating
a large number of false alarms. These frequent oscillations in the health state of
the reaction wheel (or frequent false alarms) are indeed due to the above-mentioned
large oscillations in the motor current FP estimate, which are in turn due to high level
of measurement noise. Furthermore, the period of missed alarms has been increased
from 100 s (i.e., t ∈ [2465 2565] in Fig. 5.28) in case of “nominal” noise level to
almost 600 s in case of “medium” noise level (i.e., t ∈ [2300 2900] in Fig. 5.39). In
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Fig. 5.39 The health state of the RW using the series-parallel FDII scheme in the presence of motor
current fault over the period t ∈ [1000 4250] s, subject to medium noise level (SNR=55 dB)

conclusion, the increase in the level of measurement noise considerably deteriorates
the detection and isolation performance of the series-parallel FDII scheme.

One way of significantly reducing the false alarms is to apply a simple Moving-
Window Mean Filter (MWMF) to the motor current FP estimate. The mathematical
representation of this filtering technique is as follows:

α̂
2 f ilt
k = 1

N f ilt

k2∑

k=k1

α̂2
k ; ∀ k1 ≤ k ≤ k2

k1 = j.N f ilt + 1; k2 = ( j + 1).N f ilt ; j = 0, 1, . . .

(5.49)

where α̂2 f ilt
k denotes the filtered motor current FP estimate and N f ilt denotes the

fixed window length of the MWMF in terms of the number of time steps. It can
be inferred from the above formulation of MWMF that the filtered motor current
FP estimate, namely α̂2 f ilt

k , is piecewise constant. The use of moving average fil-
tering instead of MWMF has also been investigated in this monograph. However,
the MWMF outperforms the moving average filter even though the latter produces
smooth – as opposed to piecewise constant – results for the motor current FP
estimate.
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Fig. 5.40 Moving-window filtered version of the estimated motor current FP versus its actual
value using the series-parallel FDII scheme in the presence of motor current fault over the time
period t ∈ [1000 4250] s, subject to medium noise level (SNR=55 dB)

The result of filtering the motor current FP estimate is shown in Fig. 5.40. It can
be clearly seen in this figure that the filtered motor current FP estimate is much
smoother than the non-filtered one shown in Fig. 5.38. Clearly, the use of a window-
based filter introduces a delay in fault diagnosis. After numerous testing of MWMF
with various window lengths, the best filtering result was achieved using a win-
dow length of N f ilt = 400 time steps. Therefore, considering the sampling time of
TS = 50 ms, the additional delay in diagnosis introduced due to filtering is equal to
only 400 × Ts = 20 s. This additional delay in fault diagnosis is quite tolerable con-
sidering that many of the false alarms as well as missed alarms have been removed
using the filtered FP, as can be seen from Fig. 5.41.

(B) High Level/Intensity of Measurement Noise (SNR = 45 dB): The state
estimates and the residuals corresponding to the NPEs for Vbus and Kt faults are
shown in Figs. C.4 and C.5 of Appendix C, respectively. As can be seen from
Fig. C.5, the residual thresholds are set to δI = δ1 = 0.03(A) for the current resid-
ual and δω=δ2 = 200 (rpm) for the speed residual. This shows almost three times
increase in current and speed residual thresholds as compared to the case of “nom-
inal” noise level. Once again, this is due to the fact that the residual thresholds are
set using the worst-case disturbance and noise analysis during healthy operations.

Figure 5.42 depicts the FP estimates versus their actual values. As can be
observed from this figure, the “high” level of measurement noise has a very large
impact on the motor current FP estimate, i.e., α̂2. Indeed, the motor current FP
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Fig. 5.41 The health state of the RW using the series-parallel FDII scheme in presence of motor
current fault over the time period t ∈ [1000 4250] s, subject to medium noise level (SNR=55 dB)
and with moving-window mean filtering of the motor current FP estimate

estimate shows very large oscillations (or variance) during both healthy and faulty
periods. Consequently, the motor current FP estimate frequently and largely exceeds
its corresponding threshold. The magnitude of these oscillations is so high that fil-
tering the motor current FP estimate using the MWMF cannot reduce the impact
of measurement noise on the FDII performance. Furthermore, the bus voltage FP
estimate intermittently exceeds its corresponding threshold over the time period
t ∈ [3100 3400] s, which is incorrect since there is no fault in the bus voltage.
Therefore, the series-parallel FDII scheme completely fails to diagnose and iden-
tify motor current faults in the presence of “high” measurement noise levels (or low
SNR values).

The three performance indices of fault identification, namely RMSE, ME and
STDE corresponding to the motor current FP estimate subject to various noise levels
are compared in Tables 5.8, 5.9, and 5.10, respectively. The performance indices are
compared over three time periods, namely “Pre-fault period,” “Faulty period,” and
“Post-fault period.” It can be seen from these tables that across all time periods, the
increase in the level of measurement noise has created a significant increase in all
three performance indices. For example, it can be observed from Table 5.8 that a
change in SNR by a factor of 1000 (i.e., from the “nominal” to the “high” noise
level) results in changes in the RMSE index by factors of 27, 46, and 89 over the
“Pre-fault period,” “Faulty period,” and “Post-fault period,” respectively.
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Fig. 5.42 The estimated versus actual FPs using the series-parallel FDII in the presence of motor
current fault over the time period t ∈ [1000 4250] s, subject to high noise level (SNR=45 dB)

Table 5.8 Comparison of the RMSE of the motor current FP estimation using the series-parallel
FDII scheme subject to various noise levels and in presence of intermittent motor current fault

Noise Pre-fault period Faulty period Post-fault period
level (SNR) t ∈ [0 1000] s t ∈ [1000 4250] s t ∈ [4250 6000] s

Nominal (75 dB) 6.2663 × 10−4 6.3787 × 10−4 5.9962 × 10−4

Medium (55 dB) 4.6380 × 10−3 4.6157 × 10−3 5.8943 × 10−3

Filt.:(2.1292 × 10−3 Filt.:(2.2368 × 10−3 Filt.:(2.1813 × 10−4

High (45 dB) 1.7037 × 10−2 2.9358 × 10−2 5.3681 × 10−2

The sensitivity of the ME index with respect to measurement noise is even worse
than that of the RMSE index. As can be observed from Table 5.9, a change in SNR
by a factor of 1000 results in increase of the ME index by factors of 95, 930, and 69
over the “Pre-fault period,” “Faulty period,” and “Post-fault period,” respectively.

Finally, as can be observed from Table 5.10, a 1000 times increase in the level of
measurement noise causes 26, 45, and 90 times increase in the standard deviation of
the fault identification error over the “Pre-fault period,” “Faulty period,” and “Post-
fault period,” respectively.
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Table 5.9 Comparison of the ME of the motor current FP estimation using the series-parallel FDII
scheme subject to various noise levels and in presence of intermittent motor current fault

Noise Pre-fault period Faulty period Post-fault period
level (SNR) t ∈ [0 1000] s t ∈ [1000 4250] s t ∈ [4250 6000] s

Nominal (74 dB) −3.4188 × 10−5 4.4874 × 10−6 5.2092 × 10−5

Medium (54 dB) −1.6480 × 10−4 −5.5290 × 10−4 −3.0165 × 10−4

Filt.:(−1.6464 × 10−4 Filt.:(−5.6718 × 10−4 Filt.:(−3.0607 × 10−5

High (44 dB) −3.2413 × 10−3 −4.1785 × 10−3 −3.5906 × 10−3

Table 5.10 Comparison of the STDE of FP estimation using the series-parallel FDII scheme
subject to various noise levels and in presence of intermittent motor current fault

Noise Pre-fault period Faulty period Post-fault period
level (SNR) t ∈ [0 1000] s t ∈ [1000 4250] s t ∈ [4250 6000] s

Nominal (74 dB) 6.2571 × 10−4 6.3786 × 10−4 5.9737 × 10−4

Medium (54 dB) 4.6350 × 10−3 4.5825 × 10−3 5.8866 × 10−4

Filt.:(2.1229 × 10−3 Filt.:(2.1637 × 10−3 Filt.:(2.1597 × 10−3

High (44 dB) 1.6726 × 10−2 2.9060 × 10−2 5.3561 × 10−2

5.5.2.2 FDII of Low-Severity Bus Voltage Faults

In the following, the robustness of the series-parallel FDII scheme is analyzed in
presence of the intermittent sequence of low-severity bus voltage faults given in
Eq. 5.40, subject to (A) medium level of measurement noise (i.e., SNR = 54.57 dB
for the motor current and SNR = 54.76 dB for the speed of the wheel) and (B)
high level of measurement noise (i.e., SNR = 44.57 dB for the motor current and
SNR = 44.76 dB for the speed of the wheel).

(A) Medium level/intensity of measurement noise (current SNR = 54.57 dB
and speed SNR = 54.76 dB): The state estimates and the residuals corresponding
to the NPEs for Vbus and Kt faults are shown in Figs. C.6 and C.7 of Appendix C,
respectively. Similar to the case of FDII of motor current faults subject to “medium”
noise level, the residual thresholds are set to δI = δ1 = 8 × 10−3(A) for the current
residual and δω = δ2 = 80 (rpm) for the speed residual, as can be seen from Fig. C.7.

Figure 5.43 depicts the FP estimates versus their actual values. As can be
observed from this figure, even though the increased level of noise does not affect
the bus voltage FP estimate, it has a considerable impact on the motor current FP
estimate. Indeed, the motor current FP estimate shows very large oscillations (or
variance) during both healthy periods and in presence of fault in the bus voltage.
The magnitude of these oscillations is so high that the motor current FP estimate
frequently exceeds its corresponding threshold even though no faults exist in the
motor current.
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Fig. 5.43 The estimated versus actual FPs using the series-parallel FDII in the presence of a
sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
medium noise level (surrent SNR = 54.57 dB and speed SNR = 54.76 dB)

Figure 5.44 shows the health state of the reaction wheel. As can be clearly seen
from this figure, the health state of the system frequently oscillates between 0 (i.e.,
healthy) and 2 (i.e., fault in the motor current) during both “pre-fault” and “post-
fault” periods, thus creating a large number of false alarms. These frequent oscilla-
tions in the health state of the reaction wheel (or frequent false alarms) are indeed
due to the above-mentioned large oscillations in the motor current FP estimate,
which are in turn due to high level of measurement noise.

Once again, many of these false alarms can be removed by filtering the current
FP estimate using the MWMF filtering technique. The result of this filtering on the
current FP estimate can be seen in Fig. 5.45.

The identified health state of the reaction wheel using the filtered FP estimate is
also shown in Fig. 5.46. Note that many of the false alarms in both “pre-fault” and
“post-fault” periods have been removed using the filtered FP, as can be seen from
Fig. 5.46.

(B) High level/intensity of measurement noise (current SNR = 44.57 dB and
speed SNR = 44.76 dB): The state estimates and the residuals corresponding to
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Fig. 5.44 The health state of the RW using the series-parallel FDII scheme in the presence of a
sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
medium noise level (surrent SNR = 54.57 dB and speed SNR = 54.76 dB)

the NPEs for Vbus and Kt faults are shown in Figs. C.8 and C.9 of Appendix C,
respectively. Note that the values of the residual thresholds essentially remain equal
to the values used for FDII of the motor current fault subject to “high” noise level
(i.e., δI = δ1 = 0.03(A) for the current residual and δω= δ2 = 200 (rpm) for the
speed residual). Indeed, it is very important to note that the value of the residual
thresholds for the series-parallel FDII scheme is dependent only on the measure-
ment noise (as well as disturbance) level and is irrelevant to the fault that is injected
into the system.

Figure 5.47 depicts the FP estimates versus their actual values, where the MWMF
filter has already been applied to the motor current FP estimate. It can be easily
seen from this figure that the motor current FP estimate exceeds its corresponding
threshold at many points during both healthy and faulty periods.

The health state of the reaction wheel identified by the series-parallel FDII
scheme using the filtered FP estimate is shown in Fig. 5.52. Note that for most of
the “pre-fault” and “post-fault” periods the health state of the wheel is incorrectly
detected as being faulty (i.e., presence of a fault in the motor current). Hence, for
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Fig. 5.45 Moving-window filtered version of the estimated motor current FP versus its actual
value using the series-parallel FDII scheme in the presence of a sequence oflow-severity bus
voltage faults over the time period t ∈ [1000 5100] s, subject to medium noise level (current
SNR = 54.57 dB and speed SNR = 54.76 dB)

most of these two periods, the series-parallel FDII scheme generates false alarms.
Moreover, a number of misidentifications of the health state of the wheel can also
be observed over the time period t ∈ [1000 2000] s. More specifically, the health
state of the wheel is identified as being 3 for a few points within that period, which
wrongly indicates simultaneous presence of both bus voltage and motor current
faults. In conclusion, the “high” level of measurement noise has significantly dete-
riorated the FDI performance of the series-parallel FDII scheme.

The three performance indices of fault identification, namely RMSE, ME, and
STDE corresponding to the bus voltage FP estimate subject to various noise levels
are compared in Tables 5.11, 5.12, and 5.13, respectively. Due to the piecewise
constant nature of bus voltage faults, the performance indices are compared over
six time periods including two healthy periods, namely “Pre-fault” and “Post-fault”
periods, and four faulty periods each corresponding to a specific value of the bus
voltage drop (or severity of the bus voltage fault). It can be seen from the three
tables that across almost all time periods, the increase in the level of measurement
noise has created a slight increase in all performance indices. The only exception
is the “post-fault” period, where the ME index decreases as the measurement noise
level increases, as can be seen from Table 5.12.
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Fig. 5.46 The health state of the RW using the series-parallel FDII scheme in the presence of
a sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100 s subject
to medium noise level (current SNR = 54.57 dB and speed SNR = 54.76 dB) and with moving-
window mean filtering of the motor current FP estimate

It should be noted that the sensitivity of the bus voltage fault identification to
measurement noise is much less than that of the motor current fault identification.
This is due to the fact that the bus voltage FP estimate is much more robust than
the motor current FP estimate with respect to measurement noise. Nevertheless, as
mentioned above, the detection and isolation (or FDI) performance of the series-
parallel scheme is very sensitive to measurement noise.

5.5.2.3 FDII of High-Severity Bus Voltage Faults

In the following, the robustness of the series-parallel FDII scheme is analyzed in
presence of the intermittent sequence of high-severity bus voltage faults given in
Eq. 5.41, subject to (A) medium level of measurement noise (i.e., SNR = 53.66 dB
for the motor current and SNR = 53.72 dB for the speed of the wheel) and (B)
high level of measurement noise (i.e., SNR = 43.66 dB for the motor current and
SNR = 43.72 dB for the speed of the wheel).
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Fig. 5.47 The estimated versus actual FPs using the series-parallel FDII in the presence of a
sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
high noise level (current SNR = 44.57 dB and speed SNR = 44.76 dB)

(A) Medium level/intensity of measurement noise (current SNR = 53.66 dB
and speed SNR = 53.72 dB): The state estimates and the residuals corresponding
to the NPEs for Vbus and Kt faults are shown in Figs. C.10 and C.11 of Appendix C,
respectively. Needless to say, the residual thresholds corresponding to the “medium”
noise level are δI = δ1 = 8×10−3(A) for the current residual and δω= δ2 = 80 (rpm)
for the speed residual, as can be seen from Fig. C.11.

Figure 5.49 depicts the FP estimates versus their actual values, where the MWMF
filter has already been applied to the motor current FP estimate. It can be easily
seen from this figure that the motor current FP estimate exceeds its corresponding
threshold at only few points during both healthy and faulty periods.

Figure 5.50 shows the health state of the reaction wheel in presence of the high-
severity bus voltage faults and subject to “medium” noise level. As compared to
the result of “nominal” noise level depicted in Fig. 5.37, a number of additional
false alarms are now generated by the series-parallel FDII scheme especially in
“pre-fault” and “post-fault” periods. These false alarms are due to sensitivity of the
series-parallel scheme to measurements noise.
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Fig. 5.48 The health state of the RW using the series-parallel FDII scheme in the presence of a
sequence oflow-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
high noise level (current SNR = 44.57 dB and speed SNR = 44.76 dB)

Table 5.11 Comparison of the RMSE of the bus voltage FP estimation using the series-parallel
FDII scheme subject to various noise levels and in presence of a sequence of low-severity bus
voltage faults

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period

Noise period [1000, [2240, [3100, [4390, [5100,
level [0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Nominal 1.49 × 10−2 1.05 × 10−3 1.12 × 10−3 1.19 × 10−3 1.12 × 10−3 2.91 × 10−3

Medium 1.68 × 10−2 9.41 × 10−3 4.01 × 10−3 4.11 × 10−3 4.34 × 10−3 8.82 × 10−3

High 2.80 × 10−2 2.83 × 10−2 1.18 × 10−2 1.41 × 10−2 9.01 × 10−3 1.15 × 10−2

(B) High level/intensity of measurement noise (current SNR = 43.66 dB and
cpeed SNR = 43.72 dB): The state estimates and the residuals corresponding to
the NPEs for Vbus and Kt faults are shown in Figs. C.12 and C.13 of Appendix C,
respectively. Note that the values of the residual thresholds corresponding to the
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Table 5.12 Comparison of the ME of the bus voltage FP estimation using the series-parallel FDII
scheme subject to various noise levels and in presence of a sequence of low-severity bus voltage
faults

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period

Noise period [1000, [2240, [3100, [4390, [5100,
level [0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Nominal 9.07 × 10−3 1.34 × 10−3 1.71 × 10−3 1.49 × 10−3 1.43 × 10−3 7.48 × 10−2

Medium 8.97 × 10−3 1.29 × 10−3 1.45 × 10−3 1.62 × 10−3 1.38 × 10−3 1.45 × 10−3

High 7.90 × 10−3 1.62 × 10−3 2.28 × 10−3 2.48 × 10−3 1.71 × 10−3 −9.17 × 10−5

Table 5.13 Comparison of the STDE of the bus voltage FP estimation using the series-parallel
FDII scheme subject to various noise levels and in presence of a sequence of low-severity bus
voltage faults

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period

Noise period [1000, [2240, [3100, [4390, [5100,
level [0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Nominal 1.18 × 10−2 4.60 × 10−4 5.06 × 10−4 3.31 × 10−4 6.87 × 10−4 2.83 × 10−3

Medium 1.42 × 10−2 9.32 × 10−3 3.74 × 10−3 3.78 × 10−3 4.11 × 10−3 8.71 × 10−3

High 2.68 × 10−2 2.84 × 10−2 1.16 × 10−2 1.11 × 10−2 8.85 × 10−3 1.55 × 10−2

“high” noise level are δI = δ1 = 0.03(A) for the current residual and δω= δ2 = 200
(rpm) for the speed residual, as can be seen from Fig. C.13.

Figure 5.51 depicts the FP estimates versus their actual values, where the MWMF
filter has already been applied to the motor current FP estimate. It can be easily
seen from this figure that the motor current FP estimate exceeds its corresponding
threshold at many points during both healthy and faulty periods. Furthermore, note
that the bus voltage FP estimate has wrongly exceeded its corresponding threshold
for the entire “post-fault” period.

The health state of the reaction wheel identified by the series-parallel FDII
scheme using the filtered FP estimate is shown in Fig. 5.52. Note that for most
of the “pre-fault” and “post-fault” periods the health state of the wheel is incor-
rectly detected as being faulty. More specifically, there are many false alarms in
the “pre-fault” period that wrongly indicate the presence of fault in the motor cur-
rent and the false alarms in the “post-fault” period indicate either the presence of
motor current fault or simultaneous presence of both motor current and bus voltage
faults (i.e., the health state is equal to 3). Surprisingly, the FDI performance of the
series-parallel scheme during the faulty periods (i.e., presence of high-severity bus
voltage faults) is practically unchanged as compared to Fig. 5.37 for the “nom-
inal” noise level. Nonetheless, the FDI performance of the series-parallel FDII
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Fig. 5.49 The estimated versus actual FPs using the series-parallel FDII in the presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
medium noise level (current SNR = 53.66 dB and speed SNR = 53.72 dB)

scheme has been significantly deteriorated (i.e., generation of many false alarms
during “pre-fault” and “post-fault” periods) due to the “high” level of measurement
noise.

The three performance indices of fault identification, namely RMSE, ME, and
STDE corresponding to the bus voltage FP estimate subject to various noise lev-
els are compared in Tables 5.14, 5.15, and 5.16, respectively. It can be seen from
the three tables that, other than a few exceptions, the increase in the level of mea-
surement noise creates a slight increase in the performance indices. The increase
of the performance indices is more significant for the STDE index during the
faulty periods. Furthermore, it should be noted that in the “post-fault” period, the
“high” level of noise has created a very large increase in all three performance
indices.

In conclusion, the above robustness analysis reveals that the series-parallel FDII
scheme is very sensitive to measurement noise, especially in fault detection and
isolation. More specifically, subject to high levels of measurement noise, the series-
parallel FDII scheme generates many false alarms. Furthermore, while the bus volt-
age fault identification is slightly sensitive to the measurement noise level, the motor
current fault identification performance significantly deteriorates in the presence of
high noise levels.
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Fig. 5.50 The health state of the RW using the series-parallel FDII scheme in the presence of a
sequence ofhigh-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
medium noise level (current SNR = 53.66 dB and speed SNR = 53.72 dB)

5.5.3 Simulation Results for FDII Using the Parallel Scheme

The parallel FDII scheme was applied to detect, isolate, and identify the aforemen-
tioned motor current and bus voltage faults in the reaction wheel of the Pitch axis.
Similar to the series-parallel scheme, the bank of NPEs consists of two NPEs; one
NPE for FDII of Vbus fault and one NPE for FDII of Kt fault. Two one-hidden-
layer feed-forward neural networks with four neurons in the hidden layer and one
neuron in the output layer are used as NPEs. Sigmoidal activation functions were
used for the neurons in the hidden layer, while linear neurons were used at the out-
put layer. Neural network learning rates were selected as, [η1

w η
1
v] = [0.7 0.7] and

[η2
w η

2
v] = [5 × 10−8 5 × 10−8] for the first and the second NPE in the bank of the

parallel FDII scheme, respectively.

5.5.3.1 FDII of Motor Current Faults

In this section, the results of FDII in presence of the time-varying intermittent fault
in motor current over the time period t ∈ [1000 4250] s – given in Eq. 5.39 – are
depicted. The measured speed and current of the reaction wheel and their estimates
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Fig. 5.51 The estimated versus actual FPs using the series-parallel FDII in the presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
high noise level (current SNR = 43.66 dB and speed SNR = 43.72 dB)

obtained from the two NPEs of the parallel FDII scheme are depicted in Fig. 5.53.
Only “the NPE for Kt fault” shows a close match between the measured and the
estimated values of both states of the reaction wheel during both healthy and faulty
periods. However, “the NPE for Vbus fault” fails to correctly estimate the speed of
the wheel during the faulty period. This was expected since the motor current fault
was injected into the reaction wheel.

Figure 5.54 shows the residuals corresponding to the two NPEs in the bank. As
was mentioned in Chapter 3, the residual thresholds must be set using the worst-
case disturbance and noise analysis during the healthy period. Using this method,
the residual thresholds are set to be almost four times bigger than the maximum
effect of system noise and disturbances on the residual signal during healthy mode of
operation. Accordingly, the threshold values were set to δI δ

1 = 0.025(A) = 25(mA)
for the current residual and δω = δ2 = 200 (rpm) for the speed residual. It should be
noted that the residual thresholds are the same for all NPEs in the bank.

The health state of the reaction wheel is determined using the FDI decision logic
of the parallel scheme given in Eq. 3.41. As opposed to the series-parallel scheme,
the FP estimates are not required for fault detection and isolation in the parallel
scheme and they are only used for fault identification. The health state is depicted
in Fig. 5.55. A number of observations can be made from this figure as follows:
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Fig. 5.52 The health state of the RW using the series-parallel FDII scheme in the presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
high noise level (current SNR = 43.66 dB and speed SNR = 43.72 dB)

Table 5.14 Comparison of the RMSE of the bus voltage FP estimation using the series-parallel
FDII scheme subject to various noise levels and in presence of a sequence of high-severity bus
voltage faults

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period

Noise period [1000, [2240, [3100, [4390, [5100,
level [0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Nominal 1.49 × 10−2 1.41 × 10−3 1.78 × 10−3 1.52 × 10−3 1.58 × 10−3 2.92 × 10−1

Medium 1.68 × 10−2 4.2 × 10−3 4.60 × 10−3 1.28 × 10−2 4.53 × 10−3 2.90 × 10−1

High 2.80 × 10−2 1.21 × 10−2 1.29 × 10−2 1.99 × 10−2 1.11 × 10−2 2.72

• The injected motor current fault has been correctly detected and isolated for the
most of the faulty period. The only exceptions are the missed alarms over two
time periods: t ∈ [2686.5 2741] s and t ∈ [4151 4201] s, which are both less
than 60 s.
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Table 5.15 Comparison of the ME of the bus voltage FP estimation using the series-parallel FDII
scheme subject to various noise levels and in presence of a sequence of high-severity bus voltage
faults

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period

Noise period [1000, [2240, [3100, [4390, [5100,
level [0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Nominal 9.07 × 10−3 1.34 × 10−3 1.71 × 10−3 1.49 × 10−3 1.43 × 10−3 7.48 × 10−2

Medium 8.97 × 10−3 1.62 × 10−3 2.10 × 10−3 1.98 × 10−3 1.69 × 10−3 7.29 × 10−2

High 7.90 × 10−3 2.19 × 10−3 2.89 × 10−3 3.45 × 10−3 2.26 × 10−3 −2.52

Table 5.16 Comparison of the STDE of the bus voltage FP estimation using the series-parallel
FDII scheme subject to various noise levels and in presence of a sequence of high-severity bus
voltage faults

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period

Noise period [1000, [2240, [3100, [4390, [5100,
level [0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Nominal 1.18 × 10−2 4.60 × 10−4 5.06 × 10−4 3.31 × 10−4 6.87 × 10−4 2.83 × 10−1

Medium 1.42 × 10−2 3.88 × 10−3 4.90 × 10−3 1.27 × 10−2 4.2 × 10−3 2.81 × 10−1

High 2.69 × 10−2 1.19 × 10−2 1.25 × 10−2 1.96 × 10−2 1.09 × 10−2 1.03

• As opposed to the series-parallel scheme, the parallel FDII is very sensitive to
closed-loop system transients. This can be observed from the false alarms prior
to fault occurrence in the time period t ∈ [0 374] s and after fault removal (or
disappearance) in the time period t ∈ [4250 4499] s. Hence, the false alarms
due to closed-loop system transients extend for 374 s in the “pre-fault” period and
for almost 250 s in the “post-fault” period. Indeed, as was mentioned in Chap-
ter 3, the sensitivity to closed-loop system transients is a fundamental disadvan-
tage of the parallel FDII scheme. This lack of robustness to closed-loop system
transients is due to the slow convergence rate of the parallel FDII scheme, as
can be observed from the speed estimates of “the NPE for Vbus fault” over the
“pre-fault” and “post-fault” periods.

• The first detection and isolation of the injected fault has persistently taken place
at t = 1108.2 s. Therefore, the value of fault diagnosis delay is 108.2 s. Hence,
the parallel scheme is faster in persistence FDI of the motor current fault than
the series-parallel scheme. Note that the first detection of the motor current fault
using the series-parallel scheme took only 54.3 s; however, the persistence detec-
tion and isolation took place in 282.3 s, which is more than twice bigger than the
delay of the parallel scheme.

Once a fault has been detected and isolated, the fault severity can be estimated
using the FP estimates. Figure 5.56 depicts the estimated versus actual values of the
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Fig. 5.53 The estimated versus measured states using the parallel FDII scheme in the presence of
a time-varying fault in motor current over the time period t ∈ [1000 4250] s

fault parameters. It is very important to note that at each instant of time, the value of
the fault parameter that corresponds to the isolated fault must be taken as a measure
of fault severity. If the health state of the system is identified as being healthy, both
fault parameters must be taken into account. Hence, since the health state of the reac-
tion wheel has never been identified as 1 (i.e., fault in the bus voltage) in Fig. 5.55,
the bus voltage FP estimate in Fig. 5.56 should always be neglected. Moreover, note
the transient in the motor current FP estimate at the beginning of the “pre-fault” and
“post-fault” periods, which are due to the aforementioned impact of the closed-loop
system transients on the performance of the parallel FDII scheme.

The accuracy of motor current fault identification has been assessed using the
three performance indices and the results are shown in Table 5.17. It can be clearly
seen from this table that the motor current severity has been very accurately esti-
mated with average errors in the order of less than 5 × 10−5 and standard deviations
in the order of less than 4 × 10−4, while the injected fault severity was varying
between –0.02 and 0.02. It is important to note that the parallel scheme is slightly
more accurate than the series-parallel scheme in identifying the severity of the motor
current faults.
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Fig. 5.54 The residuals of the two NPEs of the parallel FDII scheme in the presence of a time-
varying fault in motor current over the time period t ∈ [1000 4250] s

5.5.3.2 FDII of Low-Severity Bus Voltage Faults

In this section, the results of FDII using the parallel scheme in presence of
the sequence of low-severity bus voltage faults over the time period t ∈
[1000 5100] s – given in Eq. 5.40 – are depicted. The measured speed and cur-
rent of the reaction wheel and their estimates obtained from the two NPEs of the
parallel FDII scheme are compared in Fig. 5.57. This figure shows a very close
match between the measured values and the estimates of both states from only “the
NPE for Vbus fault.” More specifically, the current estimates from “the NPE for Kt

fault” do not match the measurements especially over the faulty periods. This is rea-
sonable because the results are obtained in the presence of bus voltage fault, so only
“the NPE for Vbus fault” has generated matching estimates for both of the states.
Finally, note the transient of the speed estimate from “the NPE for Vbus fault” at the
beginning of the simulations.

Figure 5.58 shows the residuals of the two NPEs of the parallel scheme. As
expected from the state estimates shown in Fig. 5.57, only the two residuals of
“the NPE for Vbus fault” remain within their corresponding thresholds. The resid-
ual thresholds are essentially the same as the ones used for the motor current FDII
using the parallel scheme presented in the previous section. As can be observed
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Fig. 5.55 The health state of the RW using the parallel FDII scheme in the presence of a time-
varying fault in motor current over the time period of t ∈ [1000 4250] s

from Fig. 5.58, both residuals of “the NPE for Vbus fault” have remained within their
specified threshold bounds, except for the current residual, where it has sporadically
exceeded its corresponding threshold for a few times during the simulation period.
These include once at the very beginning of the simulations due to closed-loop sys-
tem transients and five times during the faulty period due to transients imposed by
bus voltage fault initiation, change in the fault severity, and finally the fault removal.
Furthermore, as compared to the series-parallel scheme, it takes a longer time for
the speed residual of the parallel scheme to converge to within its threshold bounds
after the initiation of the simulation.

As far as the residuals of “the NPE for Kt fault” are concerned, it can be seen
from Fig. 5.30 that the current residual has exceeded its threshold for the entire
period of the presence of the bus voltage fault in the reaction wheel.

Figure 5.59 depicts the health state of the reaction wheel obtained by applying
the FDI decision logic of Eq. 3.41 for the parallel scheme. A number of observations
can be made from this figure as follows:

• The injected sequence of low-severity (or incipient) bus voltage faults has been
correctly detected and isolated for almost the entire period of bus voltage fault
presence.
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Fig. 5.56 The estimated versus actual FPs using the parallel FDII scheme in the presence of a
time-varying fault in motor current over the time period t ∈ [1000 4250] s

Table 5.17 The performance indices of motor current fault identification using the parallel FDII
scheme in presence of intermittent motor current fault and subject to nominal noise levels

Pre-fault period Faulty period Post-fault period
t ∈ [0 1000] s t ∈ [1000 4250] s t ∈ [4250 6000] s

RMSE 3.5848 × 10−4 3.866 × 10−4 3.9839 × 10−4

ME 1.9183 × 10−5 −3.3165 × 10−5 4.9591 × 10−5

STDE 3.5799 × 10−4 3.8518 × 10−4 3.9530 × 10−4

• A number of false alarms exist prior to fault occurrence, which last for 380.1 s
after the start of the simulations. Compared to the settling time of the closed-loop
ACS system (which is equal to almost 500 s), this reveals that the parallel FDII
scheme is sensitive to the transients of the closed-loop ACS. Moreover, note that
two short-duration false alarms are also observed after fault removal including:
(i) a false alarm indicating motor current fault for almost 6 s over the period
t ∈ [5100.30 5106.9] s and (ii) a false alarm indicating bus voltage fault for
almost 31 s over the period t ∈ [5115.4 5146] s.
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Fig. 5.57 The estimated versus measured states using the parallel FDII scheme in the presence of
a sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s

• The delay in fault detection and isolation is only 4.2 s, which is twice bigger than
that of the series-parallel scheme.

• A sequence of intermittent missed alarms is also observed during the faulty
period with very short durations of 8, 2, and 4.5 s, respectively. It should be noted
that these missed alarms are indeed due to changes in the severity of the injected
bus voltage fault. It is important to note that the durations of the missed alarms of
the parallel scheme are shorter than those of the series-parallel scheme, namely
21, 13.5, and 12 s.

• Fault removal or disappearance has been perfectly detected at t = 5100.05 s, prac-
tically with no delay. However, there are a few short duration of false alarms,
which were mentioned in the above.

Figure 5.60 depicts the estimated versus actual values of the fault parameters.
Now that the bus voltage fault has been correctly isolated, the FP estimate corre-
sponding to this fault, namely α̂1 (see Fig. 5.60) must be taken as a measure of fault
severity. As can be seen in Fig. 5.60, the bus voltage fault has been very precisely
identified across all injected fault severity levels, including minor incipient faults
such as 1 V drop in the bus voltage. Once again, note the transient of the bus voltage
FP estimate at the start of the simulation.
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Fig. 5.58 The residuals of the two NPEs of the parallel FDII scheme in presence of a sequence of
low-severity bus voltage faults over the time period t ∈ [1000 5100] s

The accuracy of the bus voltage fault identification has been assessed using the
aforementioned four performance indices and the results are shown in Table 5.18.
It can be clearly seen from Table 5.18 that the bus voltage fault severity has been
accurately estimated with average errors in the order of less than 10−1 V (or 100 mV)
in “pre-fault period,” less than 3 × 10−2 V (or 30 mV) during all faulty periods, and
30.4 mV in “post-fault period,” while the actual injected faults are all in the order of
Volts (i.e., 1–4 V). Furthermore, the standard deviations are relatively small and are
in the order of less than 4 × 10−2 V (or 40 mV) during faulty periods, in the order of
5 × 10−2 V (or 50 mV) in “pre-fault period,” and less than 3 × 10−2 (or 30 mV) in
“post-fault period.” All these performance indices clearly indicate that the parallel
FDII scheme is capable of accurately identifying fault severities, especially under
“nominal” noise levels. Nonetheless, the parallel scheme is less accurate than the
series-parallel scheme in identifying the low-severity bus voltage faults.

5.5.3.3 FDII of High-Severity Bus Voltage Faults

In this section, the results of FDII in presence of the sequence of high-severity bus
voltage faults over the time period t ∈ [1000 5100] s – given in Eq. 5.41 – are
depicted. The measured speed and current of the reaction wheel and their estimates
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Fig. 5.59 The health state of the RW using the parallel FDII scheme in presence of a sequence of
low-severity bus voltage faults over the time period t ∈ [1000 5100] s

obtained from the NPEs of the parallel FDII scheme are shown in Fig. 5.61. “The
NPE for Vbus fault” generates state estimates very close to their respective measure-
ments. However, the current estimate from “the NPE for Kt fault” does not match its
respective measurement over the faulty periods. This is reasonable, since the results
are obtained in the presence of high-severity faults in the bus voltage.

Figure 5.62 shows the residuals of the two NPEs. As was expected from the state
estimates shown in Fig. 5.61, only the two residuals of “the NPE for Vbus fault”
remain within their corresponding thresholds except for a few times in the current
residual. These are due to transients caused by the initiation of the bus voltage fault,
the change in the fault severity, and finally the fault removal. It should be noted that
the arguments previously mentioned for the low-severity bus voltage faults are as
well applicable to the high-severity bus voltage faults.

Figure 5.63 depicts the health state of the reaction wheel obtained by applying
the FDI decision logic of the parallel scheme given in Eq. 3.41. A number of obser-
vations can be made from this figure as follows:

• The injected sequence of high-severity bus voltage faults has been correctly
detected and isolated for almost the entire period of bus voltage fault presence.
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Fig. 5.60 The estimated versus actual FPs using the parallel FDII scheme in presence of a sequence
of low-severity bus voltage faults over the time period t ∈ [1000 5100] s

Table 5.18 The performance indices of fault identification using the parallel FDII scheme in
presence of low-severity bus voltage fault and subject to nominal noise levels

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty
period period period period Post-fault

Pre-fault [1000, [2240, [3100, [4390, [5100,
[0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Actual 0 −1 −4 −3.5 −2.5 0
Vbusdrop

Average of 0.0885 −0.9715 −3.9854 −3.4889 −2.5210 −0.0304
Estimated drop

RMSE 0.1024 0.0346 0.0363 0.0401 0.0358 0.0406
ME −0.0885 −0.0285 −0.0146 −0.0111 0.0210 0.0304
STDE 0.0516 0.0196 0.0332 0.0385 0.0289 0.0268

• A number of false alarms exist prior to fault occurrence, which last for 380 s
after the start of the simulations. This, once again, reveals that the parallel FDII
scheme is sensitive to the transients of the closed-loop ACS. Moreover, some
false alarms exist after fault removal, which last for almost 225 s until t = 5325 s.
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Fig. 5.61 The estimated versus measured states using the parallel FDII scheme in presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s

• The delay in fault detection and isolation is only 8.5 s, which is twice bigger
than the delay of the parallel scheme in detecting and isolating low-severity bus
voltage faults.

• A sequence of intermittent missed alarms is also observed during the faulty
period with very short durations of 8, 8, and 7.5 s, respectively. It should be noted
that these missed alarms are indeed due to changes in the severity of the injected
bus voltage fault.

Figure 5.64 depicts the estimated versus actual values of the fault parameters α1

and α2. The accuracy of the parallel scheme in identifying the high-severity bus
voltage faults has been assessed using the aforementioned performance indices and
the results are shown in Table 5.19. It can be clearly seen from this table that the bus
voltage fault severity has been precisely estimated with average errors, once again,
in the order of less than 10−1 V (or 100 mV) in the “pre-fault” period, less than
6.5×10−2 V (or 65 mV) during all faulty periods, and in the order of 3.5×10−2 (or
35 mV) in the “post-fault” period, while the actual injected faults are all in the order
of a few Volts (i.e., 5.3–9.4 V).
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Fig. 5.62 The residuals of the two NPEs of the parallel FDII scheme a sequence of high-severity
bus voltage faults over the time period t ∈ [1000 5100] s

All performance indices given in Table 5.19 clearly indicate that the parallel FDII
scheme is capable of accurately identifying high-severity bus voltage faults, espe-
cially under “nominal” noise levels.

5.5.4 Robustness Analysis of the Parallel FDII Scheme
with respect to Measurement Noise

In this section, the robustness of the parallel FDII scheme with respect to measure-
ment noise is extensively analyzed and investigated. Hence, the simulations that
were carried out for the parallel scheme subject to the “nominal” noise level are
repeated again with higher levels of noise, namely “medium” and “high” noise lev-
els, according to Tables 5.3 and 5.4. Then, the performance of the parallel FDII
scheme in terms of FDI and fault severity estimation subject to different noise lev-
els are compared using the health state variable C F

k and the FP estimation perfor-
mance indices (i.e., RMSE, ME, and STDE), respectively. It should be noted that
the robustness assessment of the parallel FDII scheme is performed separately for
each fault scenario.
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Fig. 5.63 The health state of the RW using the parallel FDII scheme in presence of a sequence of
high-severity bus voltage faults over the time period t ∈ [1000 5100] s

5.5.4.1 FDII of Motor Current Faults

In the following, the robustness of the parallel scheme is analyzed in the presence
of the intermittent time-varying motor current fault given in Eq. 5.39, subject to (A)
medium level of measurement noise (i.e., SNR = 55 dB for both current and speed)
and (B) high level of measurement noise (i.e., SNR = 45 dB for both current and
speed).

(A) Medium level/intensity of measurement noise (SNR = 55 dB): The state
estimates and the residuals corresponding to the NPEs for Vbus and Kt faults are
shown in Figs. C.14 and C.15 of Appendix C, respectively. As can be seen from
Fig. C.15, the residual thresholds are set to δI = δ1 = 0.025(A) = 25(mA) for
the current residual and δω = δ2 = 200 (rpm) for the speed residual. Hence, both
current and speed residual thresholds are kept equal to their respective values under
the “nominal” noise level. It should be noted that, as opposed to the series-parallel
scheme, the residual thresholds of the parallel scheme are much less dependent on
the noise level. This is indeed due to the fact that the parallel FDII scheme is very
robust to measurement noise.

Figure 5.65 shows the health state of the reaction wheel in presence of the inter-
mittent time-varying motor current fault over the time period t ∈ [1000 4250] s
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Figure 5.64 The estimated versus actual FPs using the parallel FDII scheme in presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s

and subject to the “medium” noise level. By comparing Figs. 5.65 with 5.55, one
can easily see that even an increase of SNR with a factor of 100 does not practically
deteriorate (or only very slightly deteriorates) the FDI performance of the parallel
scheme. The slight deteriorations in the FDI performance due to the increased level
of measurement noise include the following: (i) the duration of the false alarms in
the “pre-fault” period due to transients of the closed-loop ACS has been extended
from 374 s (under the “nominal” noise level) to 385 s and (ii) the false alarms in the
“post-fault” period has been extended up to t = 4520 s as compared to t = 4499 s
under the “nominal” noise level. Nevertheless, the FDI delay has been reduced to
100 s as compared to 108.2 s under the “nominal” noise level.

Figure 5.66 depicts the FP estimates versus their actual values. As can be
observed from this figure, the increased level of noise has a very small impact on
the motor current FP estimate, i.e., α̂2. In particular, comparing Figs. 5.66 with 5.56
reveals that even with the increase of SNR with a factor of 100, the motor current
FP estimate remains practically unchanged.

(B) High Level/Intensity of Measurement Noise (SNR = 45 dB): The
state estimates and the residuals corresponding to the NPEs for Vbus and Kt faults
are shown in Figs. C.16 and C.17 of Appendix C, respectively. As was mentioned
previously, the residual thresholds of the parallel scheme remain unchanged due to
the robustness of the parallel scheme, and are thus equal to δI = δ1 = 0.025(A) =
25(mA) for the current residual and δω = δ2 = 200 (rpm) for the speed residual.
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Table 5.19 The performance indices of fault identification using the parallel FDII scheme in
presence of high-severity bus voltage fault and subject to nominal noise levels

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty
period period period period Post-fault

Pre-fault [1000, [2240, [3100, [4390, [5100,
[0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Actual 0 −6 −9.4 −5.3 −7.8 0
Vbusdrop

Average of 0.0885 −5.9555 −9.3823 −5.2858 −7.7389 −0.0348
Estimated drop

RMSE 0.1024 0.0831 0.0314 0.0462 0.0639 0.0532
ME −0.0885 −0.0445 0.0177 −0.0142 −0.0611 0.0348
STDE 0.0516 0.0701 0.0206 0.0440 0.0186 0.0401
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Fig. 5.65 The health state of the RW using the parallel FDII scheme in the presence of motor
current fault over the period t ∈ [1000 4250] s, subject to medium noise level (SNR = 55 dB)

Figure 5.67 shows the health state of the reaction wheel in presence of the inter-
mittent time-varying motor current fault over the time period t ∈ [1000 4250] s
and subject to the “high” noise level. Once again, comparing Figs. 5.67 with 5.55
reveals that even an increase of SNR with a factor of 1000 has a relatively small
impact on the FDI performance of the parallel scheme. As compared to the case
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Fig. 5.66 The estimated versus actual FPs using the parallel FDII in the presence of motor current
fault over the period t ∈ [1000 4250] s, subject to medium noise level (SNR = 55 dB)
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Fig. 5.67 The health state of the RW using the parallel FDII scheme in the presence of motor
current fault over the period t ∈ [1000 4250] s, subject to high noise level (SNR = 45 dB)
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of “nominal” noise level depicted in Fig. 5.55, the deteriorations in the FDI perfor-
mance due to the “high” noise level include the following: (i) the duration of the
false alarms in the “pre-fault” period due to transients of the closed-loop ACS has
been extended from 374 s (under the “nominal” noise level) to 465 s and (ii) the
false alarms in the “post-fault” period has been extended up to t = 4600 s as com-
pared to t = 4499 s under the “nominal” noise level, and finally (iii) the FDI delay
been increased from 108.2 s under the “nominal” noise level to 120.4 s under the
“high” noise level. Nonetheless, the above-mentioned deteriorations are negligible
as compared to those observed for the series-parallel scheme.

Figure 5.68 depicts the FP estimates versus their actual values. As can be
observed from this figure, the increased level of noise has a small impact on the
motor current FP estimate especially at the steady state of both “pre-fault” and
“post-fault” periods. More specifically, comparing Figs. 5.68 with 5.56 reveals that
the motor current FP estimate slightly deteriorates even with an increase of SNR
with a factor of 1000.

The three performance indices of fault identification, namely RMSE, ME, and
STDE corresponding to the motor current FP estimate subject to various noise levels
are compared in Tables 5.20, 5.21, and 5.22, respectively. It can be clearly seen from
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Fig. 5.68 The estimated versus actual FPs using the parallel FDII in the presence of motor current
fault over the time period t ∈ [1000 4250] s, subject to high noise level (SNR = 45 dB)
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Table 5.20 Comparison of the RMSE of the motor current FP estimation using the parallel FDII
scheme subject to various noise levels and in presence of intermittent motor current fault

Noise Pre-fault period Faulty period Post-fault period
level (SNR) t ∈ [0 1000] s t ∈ [1000 4250] s t ∈ [4250 6000] s

Nominal (75 dB) 3.5848 × 10−4 3.866 × 10−4 3.9839 × 10−4

Medium (55 dB) 4.1429 × 10−4 3.8274 × 10−4 3.7182 × 10−4

High (45 dB) 3.6911 × 10−4 4.2064 × 10−4 4.1193 × 10−4

Table 5.21 Comparison of the ME of the motor current FP estimation using the parallel FDII
scheme subject to various noise levels and in presence of intermittent motor current fault

Noise Pre-fault period Faulty period Post-fault period
Level (SNR) t ∈ [0 1000] s t ∈ [1000 4250] s t ∈ [4250 6000] s

Nominal (75 dB) 1.9183 × 10−5 −3.3165 × 10−5 4.9591 × 10−5

Medium (55 dB) −7.0704 × 10−5 −1.2692 × 10−5 5.7889 × 10−5

High (45 dB) −8.1501 × 10−5 −1.9495 × 10−5 −1.0237 × 10−5

Table 5.22 Comparison of the STDE of FP estimation using the parallel FDII scheme subject to
various noise levels and in presence of intermittent motor current fault

Noise Pre-fault period Faulty period Post-fault period
level (SNR) t ∈ [0 1000] s t ∈ [1000 4250] s t ∈ [4250 6000] s

Nominal (75 dB) 3.5799 × 10−4 3.8518 × 10−4 3.9530 × 10−4

Medium (55 dB) 4.0824 × 10−4 3.8253 × 10−4 3.6730 × 10−4

High (45 dB) 3.6002 × 10−4 4.2019 × 10−4 4.1194 × 10−4

the three tables that the order of the performance indices has remained unchanged
across all time periods even with the increase in the level of measurement noise. For
instance, the RMSE index in Table 5.20 has remained in the order of 10−4 for all
noise levels across all time periods.

The only significant exception is the “pre-fault” period of Table 5.21, where the
ME index has been increased with a factor of almost 3.7 due to the increase of SNR
with a factor of 100 (i.e., comparing the ME index under the “medium” noise level
with that of the “nominal” noise level). Moreover, the ME index has been increased
with a factor of almost 4.27 due to the increase of SNR with a factor of 1000 (i.e.,
“high” noise level). Similar to the RMSE index, the STDE index has also remained
in the order of 10−4 for all noise levels across all time periods, as can be observed
from Table 5.22.

In conclusion, the performance of the parallel scheme in detection, isolation, and
identification of motor current faults is very robust to measurement noise.
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5.5.4.2 FDII of Low-Severity Bus Voltage Faults

In the following, the robustness of the parallel FDII scheme is analyzed in pres-
ence of the intermittent sequence of low-severity bus voltage faults given in Eq.
5.40, subject to (A) medium level of measurement noise (i.e., SNR = 54.57 dB
for the motor current and SNR = 54.76 dB for the speed of the wheel) and (B)
high level of measurement noise (i.e., SNR = 44.57 dB for the motor current and
SNR = 44.76 dB for the speed of the wheel).

(A) Medium level/intensity of measurement noise (current SNR = 54.57 dB
and speed SNR = 54.76 dB): The state estimates and the residuals corresponding
to the NPEs for Vbus and Kt faults are shown in Figs. C.18 and C.19 of Appendix C,
respectively. Similar to the case of FDII of motor current faults subject to “medium”
noise level, the residual thresholds of the parallel scheme are set to δI = δ1 =
8 × 10−3 (A) for the current residual and δω= δ2 = 80 (rpm) for the speed residual,
as can be seen from Fig. C.19.

Figure 5.69 shows the health state of the reaction wheel. As compared to the
case of “nominal” noise level depicted in Fig. 5.59, the deteriorations in the FDI
performance due to the “medium” noise level are practically negligible and include:
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Fig. 5.69 The health state of the RW using the parallel FDII scheme in presence of a sequence of
low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to medium noise
level (current SNR = 54.57 dB and speed SNR = 54.76 dB)
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(i) the duration of the false alarms in the “pre-fault” period due to the transients of
the closed-loop ACS have been extended from 380.1 s (under the “nominal” noise
level) to 411 s; (ii) the FDI delay has been very slightly increased from 4.2 s under
the “nominal” noise level to 4.5 s under the “medium” noise level; and (iii) the dura-
tion of the last missed alarm during the “faulty” period (among the three missed
alarms in that period) has been very slightly increased from 4.5 s under the “nom-
inal” noise level to 5 s under the “medium” noise level. Furthermore, it should be
noted that the health state in the “post-fault” period does not show any significant
change to the increased level of measurement noise. One can clearly observe that
the above-mentioned deteriorations are negligible as compared to those observed
for the series-parallel scheme, thus confirming the extreme robustness of the paral-
lel scheme to measurement noise.

Figure 5.70 depicts the estimated versus actual values of the fault parameters
under the “medium” noise level. As can be observed from this figure, the increased
level of noise has a very small impact on the bus voltage FP estimate, i.e.,α̂1. More
specifically, comparing Figs. 5.70 with 5.60 reveals that even with the increase
of SNR with a factor of 100, the bus voltage FP estimate remains practically
unchanged.
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Fig. 5.70 The estimated versus actual FPs using the parallel FDII in presence of a sequence of
low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to medium noise
level (current SNR = 54.57 dB and speed SNR = 54.76 dB)
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(B) Highlevel/intensity of measurement noise (current SNR = 44.57 dB and
speed SNR = 44.76 dB): The state estimates and the residuals corresponding to the
NPEs for Vbus and Kt faults are shown in Figs. C.20 and C.21 of Appendix C, respec-
tively. As was mentioned previously, the residual thresholds of the parallel scheme
remain unchanged due to the robustness of the parallel scheme, and are thus equal
to δI =δ1=0.025(A)=25(mA) for the current residual and δω= δ2 = 200 (rpm) for
the speed residual.

Figure 5.71 shows the health state of the reaction wheel in presence of the
sequence of low-severity bus voltage faults – given in Eq. 5.40 – and subject to
the “high” noise level. As compared to the case of “nominal” noise level depicted
in Fig. 5.59, small deteriorations can be observed in the FDI performance due to the
“high” noise level, including: (i) the duration of the false alarms in the “pre-fault”
period due to the transients of the closed-loop ACS have been extended from 380.1 s
(under the “nominal” noise level) to 516 s; (ii) the health state in the “post-fault”
period shows false alarms for almost 190 s after fault removal as compared to 46 s
under the “nominal” noise level; (iii) the FDI delay has been very slightly increased
from 4.2 s under the “nominal” noise level to 5.1 s under the “high” noise level; and
(iv) the duration of the first and the last missed alarm during the “faulty” period
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Fig. 5.71 The health state of the RW using the parallel FDII scheme in presence of a sequence of
low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to high noise level
(current SNR = 44.57 dB and speed SNR = 44.76 dB)
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(among the three missed alarms in that period) has been very slightly increased
from 8 to 4.5 s under the “nominal” noise level to 9.5 and 6 s under the “high” noise
level, respectively. However, considering the increase of SNR with a factor of 1000,
one can easily conclude that the FDI performance of the parallel scheme is very
slightly sensitive to measurement noise. Moreover, the above-mentioned deteriora-
tions are negligible as compared to those observed for the series-parallel scheme,
thus confirming the robustness of the parallel scheme with respect to measurement
noise.

Figure 5.72 depicts the estimated versus actual values of the fault parameters
under the “high” noise level. As can be observed from this figure, the increased
level of noise has a small impact on the bus voltage FP estimate, i.e.,α̂1. More
specifically, comparing Figs. 5.72 with 5.60 reveals that transient period of the bus
voltage FP estimate becomes slightly longer due to the increase of SNR with a
factor of 1000.

The three performance indices of fault identification, namely RMSE, ME, and
STDE corresponding to the bus voltage FP estimate subject to various noise levels
are compared in Tables 5.23, 5.24, and 5.25, respectively. It can be clearly seen
from the three tables that no significant increase has occurred in the order of the
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Fig. 5.72 The estimated versus actual FPs using the parallel FDII in presence of a sequence of
low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to high noise level
(current SNR = 44.57 dB and speed SNR = 44.76 dB)
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Table 5.23 Comparison of the RMSE of the bus voltage FP estimation using the parallel FDII
scheme subject to various noise levels and in presence of a sequence of low-severity bus voltage
faults

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period

Noise period [1000, [2240, [3100, [4390, [5100,
level [0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Nominal 1.1024 0.0346 0.0363 0.0401 0.0358 0.0406
Medium 0.0752 0.0586 0.0496 0.0253 0.0369 0.0256
High 0.0803 0.0586 0.0504 0.0489 0.0371 0.0361

Table 5.24 Comparison of the ME of the bus voltage FP estimation using the parallel FDII scheme
subject to various noise levels and in presence of a sequence of low-severity bus voltage faults

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period

Noise period [1000, [2240, [3100, [4390, [5100,
level [0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Nominal −0.0885 −0.0285 −0.0146 −0.0111 0.0210 0.0304
Medium −0.0451 −0.0435 −0.0062 −0.0156 −0.0142 0.0140
High −0.0689 −0.0376 3.64×10−4 −0.0096 0.0058 −0.0112

Table 5.25 Comparison of the STDE of the bus voltage FP estimation using the parallel FDII
scheme subject to various noise levels and in presence of a sequence of low-severity bus voltage
faults

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period

Noise period [1000, [2240, [3100, [4390, [5100,
level [0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Nominal 0.0516 0.0196 0.0332 0.0385 0.0289 0.0268
Medium 0.0602 0.0392 0.0492 0.0199 0.0340 0.0215
High 0.0142 0.0450 0.0504 0.0479 0.0367 0.0343

performance indices across all time periods even with the increase of the level of
measurement noise with factors of 100 and 1000.

Hence, it can be concluded that the performance of the parallel scheme in detec-
tion, isolation, and identification of low-severity bus voltage faults is very robust to
measurement noise.

5.5.4.3 FDII of High-Severity Bus Voltage Faults

In the following, the robustness of the parallel FDII scheme is analyzed in presence
of the intermittent sequence of low-severity bus voltage faults given in Eq. 5.40,
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subject to (A) medium level of measurement noise (i.e., SNR = 53.66 dB for the
motor current and SNR = 53.72 dB for the speed of the wheel) and (B) high
level of measurement noise (i.e., SNR = 43.66 dB for the motor current and
SNR = 43.72 dB for the speed of the wheel).

(A) Medium level/intensity of measurement noise (current SNR = 53.66 dB
and speed SNR = 53.72 dB): The state estimates and the residuals corresponding
to the NPEs for Vbus and Kt faults are shown in Figs. C.22 and C.23 of Appendix C,
respectively. Needless to say, the residual thresholds of the parallel scheme remain
as δI = δ1 = 8 × 10−3 (A) for the current residual and δω= δ2 = 80 (rpm) for the
speed residual, as can be seen from Fig. C.23.

Figure 5.73 depicts the health state of the reaction wheel in presence of the
sequence of high-severity bus voltage faults – given in Eq. 5.41 – and subject to the
“medium” noise level. As compared to the case of “nominal” noise level depicted in
Figs. 5.63 and 5.59, minor deteriorations can be observed in the FDI performance
of the parallel scheme due to the “medium” noise level, including: (i) the duration
of the false alarms in the “pre-fault” period due to the transients of the closed-loop
ACS have been extended from 380 s (under the “nominal” noise level) to 411 s;
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Fig. 5.73 The health state of the RW using the parallel FDII scheme in presence of a sequence of
high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to medium noise
level (current SNR = 53.66 dB and speed SNR = 53.72 dB)
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(ii) the FDI delay has been very slightly increased from 8.5 s under the “nomi-
nal” noise level to 10 s under the “medium” noise level; and (iii) the false alarms
in the “post-fault” period have been extended up to t = 5387 s as compared to t
= 5325 s under the “nominal” noise level (i.e., 62 s extension in the period of false
alarms after fault removal). Finally, it should be noted that the durations of the three
missed alarms during the “faulty” period have remained precisely equal to those
under the “nominal” noise level. One can clearly observe that the above-mentioned
deteriorations are negligible as compared to those observed for the series-parallel
scheme.

Figure 5.74 depicts the estimated versus actual values of the fault parameters
under the “medium” noise level. Comparing Figs. 5.74 with 5.64 reveals that the
bus voltage FP estimate remains practically unchanged even with the increase of
SNR with a factor of 100.

(B) High l evel/intensity of measurement noise (current SNR = 43.66 dB and
speed SNR = 43.72 dB): The state estimates and the residuals corresponding to the
NPEs for Vbus and Kt faults are shown in Figs. C.24 and C.25 of Appendix C, respec-
tively. As was mentioned many times in the previous sections, the residual thresh-
olds of the parallel scheme remain unchanged due to the robustness of the parallel
scheme, and are thus equal to δI = δ1 = 0.025(A) = 25(mA) for the current
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Fig. 5.74 The estimated versus actual FPs using the parallel FDII in presence of a sequence of
high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to medium noise
level (current SNR = 53.66 dB and speed SNR = 53.72 dB)
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residual and δω= δ2 = 200 (rpm) for the speed residual, as can be observed from
Fig. C.25.

Figure 5.75 depicts the health state of the reaction wheel in presence of the
sequence of high-severity bus voltage faults – given in Eq. 5.41 – and subject to
the “high” noise level. As compared to the case of “nominal” noise level depicted
in Fig. 5.63 and 5.59, minor deteriorations can be observed in the FDI performance
of the parallel scheme due to the increase of the noise level (or SNR) with a fac-
tor of 1000, including: (i) the duration of the false alarms in the “pre-fault” period
due to the transients of the closed-loop ACS been extended from 380 s (under the
“nominal” noise level) to 455 s; (ii) the FDI delay has been slightly increased from
8.5 s under the “nominal” noise level to 12 s under the “high” noise level; (iii)
the false alarms in the “post-fault” period have been extended up to t = 5400 s
as compared to t = 5325 s under the “nominal” noise level (i.e., 75 s extension in
the period of false alarms after fault removal); and finally (iv) the durations of the
three missed alarms during the “faulty” period have been slightly increased from
8, 8, and 7.5 s under the “nominal” noise level to 9, 10, and 9.5 s under the “high”
noise level, respectively. One can clearly observe that the above-mentioned dete-
riorations are insignificant as compared to those observed for the series-parallel
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Fig. 5.75 The health state of the RW using the parallel FDII scheme in presence of a sequence
of high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to high noise
level (current SNR = 43.66 dB and speed SNR = 43.72 dB)
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scheme and considering the increase of the SNR with a factor of 1000. Hence,
the FDI performance of the parallel scheme is robust with respect to measurement
noise.

Figure 5.76 depicts the estimated versus actual values of the fault parameters
under the “high” noise level. Comparing Figs. 5.76 with 5.64 reveals that the
bus voltage FP estimate remains practically unchanged, except for a very small
increase of the transient period, even with the increase of SNR with a factor
of 1000.

The three performance indices of fault identification, namely RMSE, ME, and
STDE corresponding to the bus voltage FP estimate subject to various noise levels
are compared in Tables 5.26, 5.27, 5.28 and 5.23, respectively. It can be clearly
seen from the three tables that no significant increase has occurred in the order of
the performance indices across all time periods even with the increase of SNR with
factors of 100 and 1000.

Therefore, similar to the case of low-severity bus voltage faults, it can be con-
cluded that the performance of the parallel scheme in detection, isolation, and iden-
tification of high-severity bus voltage faults is robust to measurement noise.
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Fig. 5.76 The estimated versus actual FPs using the parallel FDII in presence of a sequence of
high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to high noise level
(current SNR = 43.66 dB and speed SNR = 43.72 dB)



5.6 Simulation Results for FDII with Partial-State Measurement 193

Table 5.26 Comparison of the RMSE of the bus voltage FP estimation using the parallel FDII
scheme subject to various noise levels and in presence of a sequence of high-severity bus voltage
faults

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period

Noise period [1000, [2240, [3100, [4390, [5100,
level [0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Nominal 0.1024 0.0831 0.0314 0.0462 0.0639 0.0532
Medium 0.0752 0.0710 0.0292 0.0573 0.0493 0.0757
High 0.0803 0.0664 0.0267 0.0459 0.0463 0.0528

Table 5.27 Comparison of the ME of the bus voltage FP estimation using the parallel FDII scheme
subject to various noise levels and in presence of a sequence of high-severity bus voltage faults

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period

Noise period [1000, [2240, [3100, [4390, [5100,
level [0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Nominal −0.0885 −0.0445 0.0177 −0.0142 −0.0611 0.0348
Medium −0.0451 −0.0074 0.0114 0.0179 −0.0269 0.0680
High −0.0689 −0.0280 −0.0034 0.0244 −0.0093 0.0327

Table 5.28 Comparison of the STDE of the bus voltage FP estimation using the parallel FDII
scheme subject to various noise levels and in presence of a sequence of high-severity bus voltage
faults

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period

Noise period [1000, [2240, [3100, [4390, [5100,
level [0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Nominal 0.0516 0.0701 0.0206 0.0440 0.0186 0.0401
Medium 0.0602 0.0706 0.0269 0.0545 0.0413 0.0334
High 0.0412 0.0602 0.0265 0.0388 0.0454 0.0415

5.6 Simulation Results for FDII with Partial-State Measurement

In this section, the performance of both series-parallel and parallel FDII schemes
in diagnosing the motor current and bus voltage faults is evaluated under partial-
state measurements of the reaction wheel. More precisely, it is assumed that only
the speed of the wheel is measured by an appropriate sensor and the current must
be estimated using the neural state estimator (NSE) presented in Chapter 4. This is
a reasonable assumption, since current sensors are often more sensitive than speed
sensors. Furthermore, current sensors are usually more prone to measurement inac-
curacies and faults as compared to speed sensors. For instance, most current sensors
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maintain their specified precision over only a certain dynamic range of currents and
their accuracy deteriorates beyond that range.

In the following, first the performance of the NSE (depicted in Fig. 4.4) in esti-
mating the motor current from speed measurements is assessed under healthy con-
ditions of the reaction wheel. For the sake of completeness, the performance of the
NSE under healthy conditions is evaluated at both low and high speeds of the wheel.
Then, the state estimation performance of the NSE is evaluated in presence of faults
in the reaction wheel in order to assess the fault-tolerance capability of the NSE.
The fault scenarios considered for this purpose are precisely the same as the motor
current fault and the low-severity and high-severity bus voltage faults given in Eqs.
5.39–5.41, respectively. It is very important to note that the NSE used in the simu-
lations consists of a one-hidden-layer feedforward neural network with one neuron
in the input layer, four neurons in the hidden layer, and two neurons in the output
layer. Sigmoidal activation functions are used for the neurons in the hidden layer,
while linear neurons are used in the output layer. The parameters of the NSE are set
to ηobs

w = ηobs
v = 10−3 for the learning rates of the output and hidden layer weights

and the parameter β in Eq. 4.36 is set to 0.1.
Finally, the performance of the two proposed FDII schemes, namely the series-

parallel and the parallel, are evaluated in presence of the same fault scenarios uti-
lized under full-state measurements but this time using the estimate of the motor
current (obtained from the NSE) instead of its measurement. In other words, the
fault diagnosis performance of the integration of the hybrid NPEs and the FTO
(i.e., the Kalman filter structure preserving NSE) depicted in Figs. 4.1 and 4.2 are
assessed under partial-state measurements of the reaction wheel. The parameter val-
ues of the NPEs and the NSE used in the simulations are exactly the same as the
values mentioned in above.

5.6.1 State Estimation Under Healthy Conditions

As was mentioned above, the state estimation performance of the NSE under healthy
conditions is evaluated at both low and high speeds of the wheel.

5.6.1.1 Three Satellite Slew-Maneuvers at Low Speeds of the Wheel

First, the ability of the NSE in estimating the motor current of the reaction wheel
using only speed measurement is assessed under healthy conditions at low speeds
of the wheel (i.e., around 40 rpm) and subject to three slew-maneuvers of the satel-
lite. As can be observed from Fig. 5.77, both current and speed estimates very
closely match their respective measurements. In particular, the current estimate
quickly converges to its actual value even with a relatively large initial estimation
error.

Nevertheless, the initial current estimation error cannot be observed in Fig. 5.77
due to the scales of the axes. In order to obtain a better view and more details of the
situation, the graph of current estimate versus its actual value is separately zoomed
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Fig. 5.77 The current and speed estimates from the full-order FTO versus their actual values using
only speed measurements subject to 3 satellite slew-maneuvers at low speeds of the wheel

in on the y-axis as well as the time axis (for the first 2 s of the simulation), as depicted
in Fig. 5.78. In the bottom graph of this figure, one can easily see the fast conver-
gence rate of the current estimates even in the presence of almost 0.3 (A) initial
estimation error.

5.6.1.2 One Slew-Maneuver of the Satellite at High Speeds of the Wheel

In this section, the ability of the NSE in estimating the motor current is assessed
under healthy conditions of the reaction wheel at high speeds of the wheel (i.e.,
around 570 rpm) and subject to one slew-maneuver of the satellite. As can be
observed from Fig. 5.79, both current and speed estimates very closely match their
respective measurements.

In particular, the current estimate quickly converges to its actual value even
with a relatively large initial estimation error. However, this convergence cannot
be observed in Fig. 5.79. Hence, similar to the previous case, the graph of the cur-
rent estimate versus its actual value is zoomed in on both y-axis and time axis (for
the first 3 s of the simulation), as depicted in Fig. 5.80. It can be clearly observed
in the bottom graph of this figure that the current estimate quickly converges to its
actual value even in the presence of approximately 0.3 (A) initial estimation error. In
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Fig. 5.78 The current estimate from the full-order FTO versus its actual value using only speed
measurements subject to 3 satellite slew-maneuvers at low speeds of the wheel; top figure: zoomed
in on the y-axis, bottom figure: zoomed in on the time-axis for the first 2 s
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Fig. 5.79 The current and speed estimates from the full-order FTO versus their actual values using
only speed measurements subject to 1 slew-maneuver of the satellite at high speeds of the wheel
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Fig. 5.80 The current estimate from the full-order FTO versus its actual value using only speed
measurements subject to 1 slew-maneuver of the satellite at high speeds of the wheel; top figure:
zoomed in on the y-axis, bottom figure: zoomed in on the time-axis for the first 3 s

conclusion, under nominal healthy conditions, the Kalman filter structure preserv-
ing NSE is capable of precisely estimating the motor current of the reaction wheel
from only speed measurements at both low and high speeds of the wheel.

5.6.2 State Estimation in Presence of Faults

The objective of this section is to evaluate the fault-tolerance capability of the NSE.
Therefore, the performance of the NSE in estimating the motor current is assessed
in presence of faults in the motor current as well as the bus voltage of the reaction
wheel. The fault scenarios considered include the motor current fault in Eq. 5.39
and the low-severity and high-severity bus voltage faults given in Eqs. 5.40 and
5.41, respectively.

5.6.2.1 State Estimation in Presence of Motor Current Fault

First, the intermittent time-varying motor current fault given in Eq. 5.39 is injected
into the reaction wheel and the NSE is used to estimate the motor current based
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on only the speed measurements. Due to its special importance, only the current
estimate versus its actual value is depicted in Fig. 5.81. The speed estimate versus its
actual value is shown in Fig. C.26 of Appendix C. It can be observed from Fig. 5.81
that the current estimate very closely matches its actual value even in presence of
the motor current fault over the time period t ∈ [1000 4250] s. Hence, the NSE is
robust (or tolerant) to faults in the motor current.
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Fig. 5.81 The current estimate from the full-order FTO versus its actual value using only speed
measurements in presence of a time-varying fault in motor current over the time period of t ∈
[1000 4250] s

5.6.2.2 State Estimation in Presence of Low-Severity Bus Voltage Faults

In this section, the intermittent sequence of low-severity bus voltage faults given
in Eq. 5.40 is injected into the reaction wheel and the NSE is used to estimate the
motor current based on the speed measurements. The speed estimate versus its actual
value is depicted in Fig. C.27 of Appendix C. Moreover, the current estimate versus
its actual value is shown in Fig. 5.82.

It can be clearly seen from Fig. 5.82 that as the severity of the bus voltage
faults increases, the motor current estimates become less accurate. More specifi-
cally, the motor current estimates are more deviated from their actual values over
the second and the third faulty periods (where the bus voltage drops are 4 and 3.5 V,
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Fig. 5.82 The current estimate from the full-order FTO versus its actual value using only speed
measurements in presence of a sequence of low-severity bus voltage faults over the time period
t ∈ [1000 5100] s

respectively) as compared to the other two faulty periods (i.e., 1 V drop in the first
faulty period and 2.5 V drop in the last faulty period) as well as the healthy period.
Nevertheless, the current estimates are yet accurate enough to be used as inputs to
the FDII schemes without causing problems in fault diagnosis, as will be demon-
strated later in the text.

5.6.2.3 Estimation in Presence of High-Severity Bus Voltage Faults

In this section, the intermittent sequence of high-severity bus voltage faults given in
Eq. 5.41 is injected into the reaction wheel and the NSE is used to estimate the motor
current based on the speed measurements. The speed estimate versus its actual value
is depicted in Fig. C.28 of Appendix C. Furthermore, the current estimate versus its
actual value is shown in Fig. 5.83.

Once again, it can be clearly observed from Fig. 5.83 that under high-severity
levels of the bus voltage fault, the NSE fails to accurately estimate the motor current.
More specifically, in the second and the last faulty periods (corresponding to 9.4 and
7.8 V drop in bus voltage, respectively), the current estimates are completely biased.
Hence, it can be concluded that the NSE is robust (or tolerant) with respect to bus
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Fig. 5.83 The current estimate from the full-order FTO versus its actual value using only speed
measurements in presence of a sequence of high-severity bus voltage faults over the time period
t ∈ [1000 5100] s

voltage faults only within a certain bound on the bus voltage fault severity. Based
on the simulation results presented in above, this bound is within zero to 6 V drop
in the bus voltage. Therefore, presence of bus voltage faults with severity levels
beyond 6 V make the NSE unable to accurately estimate the reaction wheel current
using only wheel speed measurements.

5.6.3 FDII Using Estimates of the Current from the NSE

In this section, the performance of the two proposed FDII schemes, namely the
series-parallel and the parallel, is evaluated in the presence of the three fault sce-
narios mentioned above (and given in Eqs. 5.39–5.41) and based on only speed
measurements. Hence, due to unavailability of current measurements, the estimate
of the motor current obtained from the NSE is fed as an input to the FDII schemes.
In the following, the performance of the proposed FDII schemes under partial-state
measurements (i.e., only speed measurements from the reaction wheel) is evaluated
separately in presence of each fault scenario. Furthermore, it should be noted that all
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the simulation results presented in the following are obtained under the “nominal”
noise level.

5.6.3.1 FDII of Motor Current Faults Using the Series-Parallel Scheme

In this section, the results of FDII using the series-parallel scheme in presence of the
intermittent time-varying motor current fault – given in Eq. 5.39 – under the partial-
state measurements of the reaction wheel are presented. The results are obtained
utilizing the speed measurements from the sensors and the motor current estimates
from the NSE.

The residuals corresponding to the NPEs for Vbus and Kt fault is depicted in
Fig. C.29 of Appendix C. These residuals are obtained using Equation (4.5) for the
case of partial state measurements (i.e., the measurement of only the speed of the
wheel). The residual thresholds are essentially the same as the ones used for the
series-parallel scheme under the full-state measurement assumption and subject to
the “nominal” noise level.

Figure 5.84 depicts the estimated value of the fault parameters, generated by the
series-parallel scheme under partial-state measurements, versus their actual values.
The FP thresholds are also set equal to the values of the FP thresholds utilized for
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Fig. 5.84 The estimated versus actual FPs using the series-parallel FDII scheme in presence of
a time-varying fault in motor current over the time period t ∈ [1000 4250] s under partial-state
measurements (i.e., measured speed and estimated current from the FTO)
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the series-parallel scheme under the full-state measurement assumption. As com-
pared to the result of full-state measurements depicted in Fig. 5.27, one can easily
observe that the performance of the series-parallel scheme in estimating the FPs has
remained practically unchanged. This is mainly due to the fact that the NSE is robust
(or tolerant) with respect to faults in the motor current.

Figure 5.85 depicts the health state of the reaction wheel under partial-state mea-
surements. As compared to the similar result under full-state measurements depicted
in Fig. 5.28, the following observations can be made:

(i) The fault diagnosis delay has been increased from 54.3 s under full-state mea-
surements to 65 s under partial-state measurements.

(ii) The time of persistently detecting the motor current fault removal (or disap-
pearance) has been changed from t = 4237 s under full-state measurements to
t = 4245 s under partial-state measurements.

(iii) The number of missed alarms has been slightly increased under full-state mea-
surements. More precisely, a number of new missed alarms can be observed
over the time periods t ∈ [2408 2580] and t ∈ [3900 4080] s.
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Fig. 5.85 The health state of the RW using the series-parallel FDII scheme in presence of a
time-varying fault in motor current over the time period of t ∈ [1000 4250] s under partial-state
measurements (i.e., measured speed and estimated current from the FTO)
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Nevertheless, the above deteriorations in the FDI performance of the series-
parallel scheme due to partial-state measurements are insignificant. Therefore, it
can be concluded that the detection and isolation performance of the series-parallel
scheme is practically unchanged under partial-state measurements.

Finally, Table 5.29 shows the three performance indices of fault identification,
namely RMSE, ME, and STDE, corresponding to the severity estimation of the
motor current fault using the series-parallel scheme under partial-state measure-
ments. As compared to its counterpart under full-state measurements (i.e., Table
5.5), it can be easily concluded that the partial availability of the states has not sig-
nificantly affected the fault identification performance of the series-parallel scheme
across almost all time periods. The only exception includes the ME index over the
“pre-fault” period, which has been increased by almost a factor of 3.1 under partial-
state measurements.

Table 5.29 The performance indices of motor current fault identification using the series-parallel
FDII scheme in presence of intermittent motor current fault and under partial-state measurements
(i.e., measured speed and estimated current from the FTO)

Pre-fault period Faulty period Post-fault period
t ∈ [0 1000] s t ∈ [1000 4250] s t ∈ [4250 6000] s

RMSE 5.7919 × 10−4 5.9243 × 10−4 6.2504 × 10−4

ME 1.0531 × 10−4 9.6095 × 10−6 7.8485 × 10−6

STDE 5.6955 × 10−4 5.9236 × 10−4 6.2500 × 10−4

Nonetheless, it can be concluded from the above results that the performance of
the series-parallel scheme in conjunction with the NSE in diagnosing faults in the
motor current under partial-state measurements is very similar to that of the series-
parallel scheme alone under full-state measurements. It should also be noted that
this conclusion is valid for a relatively wide range of fault severities in the motor
current.

5.6.3.2 FDII of Motor Current Faults Using the Parallel Scheme

In this section, the results of FDII using the parallel scheme in presence of the inter-
mittent time-varying motor current fault – given in Eq. 5.39 – under the partial-state
measurements of the reaction wheel are presented. The results are obtained utilizing
the speed measurements from the sensors and the motor current estimates from the
NSE.

The residuals corresponding to the NPEs for Vbus and Kt fault is depicted in
Fig. C.30 of Appendix C. These residuals are obtained using Eq. 4.5 for the case of
partial-state measurements. The residual thresholds are essentially the same as the
ones used for the parallel scheme under the full-state measurement assumption.

As was mentioned previously, the health state in the parallel scheme is obtained
using only the residual signals and the FP estimates are needed only to identify the
severity of a detected and isolated fault. Hence, the health state is depicted prior to
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Fig. 5.86 The health state of the RW using the parallel FDII scheme in presence of a time-varying
fault in motor current over the time period of t ∈ [1000 4250] s under partial-state measurements
(i.e., measured speed and estimated current from the FTO)

the FP estimates in the parallel scheme. Figure 5.86 depicts the health state of the
reaction wheel under partial-state measurements. As compared to the similar result
under full-state measurements depicted in Fig. 5.55, the following observations can
be made:

(i) Surprisingly, the fault diagnosis delay has been reduced from 108.2 s under
full-state measurements to 105 s under partial-state measurements.

(ii) The time of persistently detecting the motor current fault removal (or disap-
pearance) has been changed from t = 4499 s under full-state measurements to
t = 4507 s under partial-state measurements.

(iii) Surprisingly, the duration of false alarms due to the transients of the closed-
loop ACS has been reduced from 374 s under full-state measurements to 365 s
under partial-state measurements.

Therefore, it can be clearly seen that the detection and isolation performance of
the parallel scheme is by no means affected by the partial availability of states.

Figure 5.87 depicts the estimated value of the fault parameters, generated by
the parallel scheme under partial-state measurements, versus their actual values. As
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Fig. 5.87 The estimated versus actual FPs using the parallel FDII scheme in presence of a time-
varying fault in motor current over the time period t ∈ [1000 4250] s under partial-state mea-
surements (i.e., measured speed and estimated current from the FTO)

compared to the result of full-state measurements depicted in Fig. 5.56, one can
easily observe that the performance of the series-parallel scheme in estimating the
FPs has remained practically unchanged. This is mainly due to the fact that the NSE
is robust (or tolerant) with respect to faults in the motor current.

Finally, Table 5.30 shows the three performance indices of fault identification,
namely RMSE, ME, and STDE, corresponding to the identification of the motor
current fault using the parallel scheme under partial-state measurements. As com-
pared to its counterpart under full-state measurements (i.e., Table 5.17), it can be

Table 5.30 The performance indices of motor current fault identification using the parallel FDII
scheme in presence of intermittent motor current fault and under partial-state measurements (i.e.,
measured speed and estimated current from the FTO)

Pre-fault period Faulty period Post-fault period
t ∈ [0 1000] s t ∈ [1000 4250] s t ∈ [4250 6000] s

RMSE 3.8713 × 10−4 4.6638 × 10−4 3.8081 × 10−4

ME 1.0637 × 10−5 −4.1341 × 10−5 7.6425 × 10−5

STDE 3.8701 × 10−4 4.6455 × 10−4 3.7307 × 10−4
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clearly seen that the partial availability of the states has a very small impact on the
fault identification performance of the parallel scheme across all time periods.

5.6.3.3 FDII of Low-Severity Bus Voltage Faults Using the Series-Parallel
Scheme

In this section, the results of FDII using the series-parallel scheme in presence of the
intermittent sequence of low-severity bus voltage faults – given in Eq. 5.40 – under
the partial-state measurements of the reaction wheel are presented. The results are
obtained utilizing the speed measurements from the sensors and the motor current
estimates from the NSE. The residuals corresponding to the NPEs for Vbus and Kt

fault is depicted in Figs. C.31 and C.32 of Appendix C. As was mentioned previ-
ously, these residuals are obtained using Eq. (4.5).

Figure 5.88 depicts the estimated fault parameters, generated by the series-
parallel scheme under partial-state measurements, versus their actual values. As
compared to the result of full-state measurements depicted in Fig. 5.32, the per-
formance of the series-parallel scheme in estimating the FPs is slightly deteriorated
especially over the time periods with higher severity of the bus voltage fault. This
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Fig. 5.88 The estimated versus actual FPs using the series-parallel FDII scheme in presence
of a sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s under
partial-state measurements (i.e., measured speed and estimated current from the FTO)
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is mainly due to the fact that the performance of the NSE in estimating the motor
current deteriorates as the severity of the bus voltage fault increases.

Figure 5.89 depicts the health state of the reaction wheel under partial-state mea-
surements. As compared to the similar result under full-state measurements depicted
in Fig. 5.33, it can be clearly concluded that the detection and isolation performance
of the series-parallel scheme is practically unchanged due to the partial availability
of the states. The only deterioration in the performance of the series-parallel scheme
is in the duration of the three missed alarms during the faulty period, which have
been slightly increased from 21, 13.5, and 12 s under full-state measurements to 25,
15, and 15 s under partial-state measurements, respectively.

Finally, Table 5.31 shows the three performance indices of fault identification,
namely RMSE, ME, and STDE, corresponding to the estimation of the bus voltage
fault severity using the series-parallel scheme under partial-state measurements. As
compared to its counterpart under full-state measurements (i.e., Table 5.6), it can be
clearly seen that the partial availability of the states has slightly affected the iden-
tification performance of the series-parallel scheme across almost all time periods,
especially over the second, the third, and the fourth faulty periods, where the sever-
ity of the bus voltage fault is relatively high. It is important to note that over the
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Fig. 5.89 The health state of the RW using the series-parallel FDII scheme in presence of a
sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s under partial-
state measurements (i.e., measured speed and estimated current from the FTO)
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Table 5.31 The performance indices of fault identification using the series-parallel FDII scheme
in presence of low-severity bus voltage fault and under partial-state measurements (i.e., measured
speed and estimated current from the FTO)

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period
period [1000, [2240, [3100, [4390, [5100,
[0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Actual 0 −1 −4 −3.5 −2.5 0
Vbusdrop
Average of −0.0018 −1.0108 −4.0813 −3.5621 −2.4623 −1.3808 × 10−4

estimated drop
RMSE 0.0020 0.0178 0.0825 0.0637 0.0403 1.5463 × 10−4

ME 0.0018 0.0108 0.0813 0.0621 −0.0377 −1.3808 × 10−4

STDE 7.7438 × 10−4 0.0141 0.0140 0.0141 0.0144 6.9597 × 10−5

healthy periods (i.e., the “pre-fault” and the “post-fault” periods) as well as the first
faulty period with low-severity bus voltage fault, the identification performance of
the series-parallel scheme has not been deteriorated.

In conclusion, while the performance of the series-parallel scheme in detecting
and isolating the low-severity bus voltage faults has not been practically affected
due to partial availability of the states, the identification (or fault severity estimation)
performance has been deteriorated especially over the faulty periods with higher bus
voltage fault severities.

5.6.3.4 FDII of Low-Severity Bus Voltage Faults Using the Parallel Scheme

In this section, the results of FDII using the parallel scheme in presence of the
intermittent sequence of low-severity bus voltage faults – given in Eq. 5.40 – under
the partial-state measurements of the reaction wheel are presented. The results are
obtained utilizing the speed measurements from the sensors and the motor current
estimates from the NSE. The residuals corresponding to the NPEs for Vbus and Kt

fault is depicted in Fig. C.33 of Appendix C. As was mentioned previously, these
residuals are obtained using Equation (4.5).

Figure 5.90 depicts the health state of the reaction wheel under partial-state mea-
surements. As compared to the similar result under full-state measurements depicted
in Fig. 5.59, the following observations can be made:

(i) Surprisingly, the fault diagnosis delay is very slightly decreased from 4.2 s
under full-state measurements to 4 s under partial-state measurements.

(ii) The time of persistently detecting the motor current fault removal (or disap-
pearance) has been changed from t = 5146 s under full-state measurements to
t = 5142.5 s under partial-state measurements.
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Fig. 5.90 The health state of the RW using the parallel FDII scheme in presence of a sequence
of low-severity bus voltage faults over the time period t ∈ [1000 5100] s under partial-state
measurements (i.e., measured speed and estimated current from the FTO)

(iii) The duration of false alarms due to the transients of the closed-loop ACS
has been reduced from 380.1 s under full-state measurements to 357 s under
partial-state measurements.

Therefore, it can be clearly seen that the detection and isolation performance of
the parallel scheme is even very slightly enhanced using the motor current estimates
from the NSE rather than the actual measurements of the current. Nevertheless, this
is not true for the fault identification performance of the parallel scheme, as can
be observed from Fig. 5.91. In this figure, the estimated value of the fault parame-
ters, generated by the parallel scheme under partial-state measurements, is depicted
versus their actual values. As compared to the result of full-state measurements
depicted in Fig. 5.60, one can easily observe that the identification performance of
the parallel scheme is deteriorated especially over the time periods where the sever-
ity of the bus voltage fault is relatively high.

Table 5.32 shows the three performance indices of fault identification, namely
RMSE, ME, and STDE, corresponding to the identification of the bus voltage fault
severity using the parallel scheme under partial-state measurements. As compared to
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Fig. 5.91 The estimated versus actual FPs using the parallel FDII scheme in presence of a sequence
of low-severity bus voltage faults over the time period t ∈ [1000 5100] s under partial-state
measurements (i.e., measured speed and estimated current from the FTO)

Table 5.32 The performance indices of fault identification using the parallel FDII scheme in
presence of low-severity bus voltage fault and under partial-state measurements (i.e., measured
speed and estimated current from the FTO)

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period
period [1000, [2240, [3100, [4390, [5100,
[0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Actual drop 0 −1 −4 −3.5 −2.5 0
Average of estimated drop 0.0672 −0.9892 −4.2020 −3.7045 −2.4302 −0.0320
RMSE 0.0949 0.0949 0.2117 0.2088 0.0936 0.0371
ME −0.0672 −0.0181 0.2020 0.2045 −0.0698 0.0320
STDE 0.0670 0.0334 0.0635 0.0421 0.0624 0.0188

its counterpart under full-state measurements (i.e., Table 5.18), it can be clearly seen
that the partial availability of the states has affected the identification performance
of the parallel scheme across almost all time periods, especially over the second,
the third, and the fourth faulty periods, where the severity of the bus voltage fault is
relatively high.
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In conclusion, similar to the series-parallel scheme, the performance of the paral-
lel scheme in detecting and isolating the low-severity bus voltage faults has not been
practically affected due to partial availability of the states; however, the identifica-
tion (or fault severity estimation) performance has been deteriorated especially over
the faulty periods with higher bus voltage fault severities. For example, the fault
severity over the second faulty period is estimated as 4.20 V, while the actual drop
of the bus voltage is 4 V. It is important to note that the amount of the deterioration
in fault identification of the parallel scheme is higher than that of the series-parallel
scheme.

5.6.3.5 FDII of High-Severity Bus Voltage Faults Using the Series-Parallel
Scheme

In this section, the results of FDII using the series-parallel scheme in presence of
the intermittent sequence of high-severity bus voltage faults – given in Eq. 5.41 –
under the partial-state measurements of the reaction wheel are presented. The results
are obtained utilizing the speed measurements from the sensors and the motor cur-
rent estimates from the NSE. The residuals corresponding to the NPEs for Vbus and
Kt fault is depicted in Figs. C.34 and C.35 of Appendix C. Needless to say, these
residuals are obtained using Eq. 4.5.

Figures 5.92 and 5.93, respectively, represent the estimated fault parameters and
the health state of the reaction wheel, generated by the series-parallel scheme under
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Fig. 5.92 The estimated versus actual FPs using the series-parallel FDII scheme in presence
of a sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s under
partial-state measurements (i.e., measured speed and estimated current from the FTO)
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Fig. 5.93 The health state of the RW using the series-parallel FDII scheme in presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s under partial-
state measurements (i.e., measured speed and estimated current from the FTO)

partial-state measurements. As compared to the results of full-state measurements
depicted in Fig. 5.36 and 5.37, the performance of the series-parallel scheme in
both fault isolation and fault parameter estimation has been significantly deterio-
rated especially over the time periods with severities beyond 6 V. More specifically,
the number of short-duration missed alarms has been clearly increased especially
over the third faulty period. Furthermore, even though the presence of the bus volt-
age fault has been correctly detected and isolated over the second faulty period
(see Fig. 5.93), the fault severity has been wrongly estimated as 12.54 V while
the actual value of the bus voltage drop is 9.4 V, as can be seen from Table 5.33.
This is equivalent to almost 33.5% error in fault identification (or severity estima-
tion). Similarly, the bus voltage fault has been correctly detected and isolated over
the fourth faulty period; however, while the actual value of the bus voltage drop is
7.8 V, the severity of the fault is estimated as 8.75 V, which is equivalent to almost
12.25% error in fault identification. It is important to note that the performance
deteriorations in the FDII of the high-severity bus voltage faults are due to the fact
that the performance of the NSE in estimating the motor current from speed mea-
surements significantly deteriorates as the severity of the bus voltage fault exceeds
beyond 6 V.

In conclusion, the performance of the series-parallel scheme in FDII of high-
severity bus voltage faults significantly deteriorates as the severity of the fault
increases. It should also be noted that the deterioration in the performance is more
significant for fault identification rather than fault detection and isolation (FDI).
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Table 5.33 The performance indices of fault identification using the series-parallel FDII scheme
in presence of high-severity bus voltage fault and under partial-state measurements (i.e., measured
speed and estimated current from the FTO)

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period
period [1000, [2240, [3100, [4390, [5100,
[0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Actual Vbusdrop 0 −6 −9.4 −5.3 −7.8 0
Average of estimated −0.0017 −6.1876 −12.5473 −5.4336 −8.7350 3.0516

drop
RMSE 0.0018 0.1888 3.1474 0.1355 0.9352 3.2581
ME 0.0017 0.1876 3.1473 0.1336 0.9350 −3.0516
STDE 7.2735 × 10−4 0.0208 0.0210 0.0222 0.0220 1.1416

5.6.3.6 FDII of High-Severity Bus Voltage Faults Using the Parallel Scheme

In this section, the results of FDII using the parallel scheme in presence of the
intermittent sequence of high-severity bus voltage faults – given in Eq. 5.41 – under
the partial-state measurements of the reaction wheel are presented. The results are
obtained utilizing the speed measurements from the sensors and the motor current
estimates from the NSE. The residuals corresponding to the NPEs for Vbus and Kt

fault is depicted in Fig. C.36 of Appendix C. Once again, the residuals are obtained
using Eq. 4.5.

Figures 5.94 and 5.95, respectively, represent the health state of the reaction
wheel and the estimated fault parameters versus their actual values, generated by the
parallel scheme under partial-state measurements. As compared to the results of full-
state measurements depicted in Figs. 5.63 and 5.64, the performance of the parallel
scheme in both fault isolation and fault parameter estimation has been clearly deteri-
orated especially over the time periods with severities beyond 6 V. More specifically,
the following deteriorations are observed:

(i) The duration of the false alarms due to the transients of the closed-loop ACS
has been slightly increased from 380 s under full-state measurements to 390 s
under partial-state measurements.

(ii) The fault diagnosis delay has been slightly increased from 8.5 s under full-state
measurements to 12 s under partial-state measurements.

(iii) As far as the detection and isolation performance of the parallel scheme is
concerned, the second faulty period is completely missed, as can be observed
from Fig. 5.94. Furthermore, the third faulty period is missed for the first 620 s
(i.e., over the time period t ∈ [3100 3720] s), but is later correctly detected
and isolated. Finally, the fourth faulty period is correctly detected and isolated
for only the first 75 s and is then missed until the end of the faulty period (i.e.,
up to fault removal time). Hence, it can be concluded that the parallel scheme
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Fig. 5.94 The health state of the RW using the parallel FDII scheme in presence of a sequence
of high-severity bus voltage faults over the time period t ∈ [1000 5100] s under partial-state
measurements (i.e., measured speed and estimated current from the FTO)
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Fig. 5.95 The estimated versus actual FPs using the parallel FDII scheme in presence of a sequence
of high-severity bus voltage faults over the time period t ∈ [1000 5100] s under partial-state
measurements (i.e., measured speed and estimated current from the FTO)
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is indeed unable to detect and isolate high-severity bus voltage faults under
partial-state measurements.

(iv) Since the high-severity bus voltage faults with severities beyond 6 V are not
detected and isolated, there is no point of discussing the impact of the par-
tial availability of the states on the identification performance of the paral-
lel scheme. Nonetheless, Table 5.34 shows the accuracy of fault identification
based on the three performance indices, namely RMSE, ME, and STDE. It can
be clearly observed from this table that over the second faulty period, the fault
severity has been wrongly estimated as 17.06 V while the actual value of the
bus voltage drop is only 9.4 V, which is almost equivalent to 81.5% error in
fault identification (or severity estimation). Similarly, while the actual value of
the bus voltage drop over the fourth faulty period is 7.8 V, the severity of the
fault is estimated as 10.12 V, which is equivalent to almost 30% error in fault
identification.

Table 5.34 The performance indices of fault identification using the parallel FDII scheme in
presence of high-severity bus voltage fault and under partial-state measurements (i.e., measured
speed and estimated current from the FTO).

1st Faulty 2nd Faulty 3rd Faulty 4th Faulty Post-fault
Pre-fault period period period period period
period [1000, [2240, [3100, [4390, [5100,
[0, 1000] s 2240] s 3100] s 4390] s 5100] s 6000] s

Actual Vbusdrop 0 −6 −9.4 −5.3 −7.8 0
Average of estimated drop 0.0794 −6.4739 −17.0594 −5.7759 −10.1156 −0.1469
RMSE 0.1084 0.4915 7.7383 0.4864 2.3450 0.1583
ME −0.0794 0.4739 7.6594 0.4759 2.3156 0.1469
STDE 0.0738 0.1304 1.1024 0.1007 0.3704 0.0591

In conclusion, the performance of the parallel scheme in FDII of high-severity
bus voltage faults drastically deteriorates as the severity of the fault increases. It
is important to note that this deterioration in the FDII of high-severity bus voltage
faults under partial state measurements is more significant in the parallel scheme
than the series-parallel scheme.

5.7 Conclusions

In this chapter, the proposed FDII methodology was employed for fault diagnosis
of reaction wheel actuators of the attitude control subsystem (ACS) of a 3-axis sta-
bilized LEO satellite. To be able to properly verify and validate the effectiveness
of the proposed FDII techniques, first a high-fidelity ACS simulator of a 3-axis
stabilized satellite was developed. The ACS simulator consisted of the nonlinear
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model of the spacecraft attitude dynamics, a high-fidelity nonlinear model of reac-
tion wheels, and the mathematical models of environmental disturbances acting
upon the satellite. Furthermore, a decentralized PID control strategy was designed
to stabilize the spacecraft attitude, and thus provide the necessary framework for
validating the FDII algorithm.

Following the convergence verification of the ACS for both attitude stabiliza-
tion and slew-maneuvering, faults were characterized and then injected in one of
the reaction wheels of the ACS – associated to the Pitch axis. The faulty ACS sys-
tem was simulated in order to generate faulty data of the closed-loop ACS. It was
assumed that the reaction wheel actuators are prone to two different types of faults
including faults in the bus voltage and faults in the motor current. Faults in the motor
current were modeled and injected intermittently as time-varying variations in the
reaction wheel’s motor torque gain. The fault injection model used for motor cur-
rent faults enabled us to assess the performance of the proposed FDII schemes in
presence of a continuum of fault severities from very minor, incipient faults (due to,
for instance, wear and tear of the motor) to up to 70% reduction in the motor torque
gain. On the other hand, faults in the bus voltage were modeled and injected as
a sequence of intermittent drops in the voltage of power bus. Both low-severity (or
incipient) and high-severity faults were considered for the bus voltage. Low-severity
bus voltage faults correspond to drops in the voltage up to 4 V. The low-severity bus
voltage faults do not de-stabilize the ACS system; however, they make the wheel
operate at higher currents and thus increase power consumption by the reaction
wheel. On the other hand, the high-severity bus voltage faults make the closed-loop
ACS unstable, and thus the satellite starts tumbling between ±90◦ once the severity
of the bus voltage fault exceeds beyond 4 V.

Numerous simulation results were presented for evaluating the performance of
the proposed fault diagnosis schemes in detecting, isolating, and identifying faults
in the reaction wheels of the ACS and in the presence of external disturbances and
measurement noise. The simulation results demonstrated the effectiveness of the
proposed fault diagnosis schemes. Numerous qualitative and quantitative observa-
tions were made in Chapter 5 regarding the performance capabilities of each FDII
scheme. Furthermore, a comprehensive analysis was performed on the robustness
of the two FDII schemes with respect to measurement noise. It was observed that
the FDII performance of the parallel scheme is extremely robust to measurement
noise, hence making it suitable for health monitoring of systems with even very
noisy sensors (i.e., very low SNR). On the contrary, the series-parallel scheme was
very sensitive to measurement noise. Instead, it displayed fast convergence rates and
was very robust to closed-loop system transients. Hence, the series-parallel scheme
is desirable for (high-SNR) systems requiring very short delays in fault diagno-
sis and/or systems requiring frequent commanding. In practice, the choice of the
appropriate FDII scheme is imposed by the specifications and the requirements of
the specific problem at hand.

Finally, the performance of the FDII schemes under partial-state measurements
was validated using simulations. It was assumed that only the speed of the wheel is
measured and the motor current was estimated from the speed measurements using
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the neural state estimator (NSE). First, the performance of the NSE was verified
under the nominal healthy conditions of the reaction wheel. More specifically, it
was shown that the motor current estimates generated by the NSE very quickly con-
verge to their actual values even in presence of a relatively large initial estimation
error. Then, faults were injected into the reaction wheel and the performance of
the NSE was evaluated over the faulty periods in order to verify the robustness (or
tolerance) of the NSE with respect to faults. It was shown that the NSE is com-
pletely tolerant with respect to the motor current faults. However, the performance
of the NSE deteriorates as the severity of the bus voltage faults increases. More
precisely, it was concluded that the NSE is robust (or tolerant) to bus voltage faults
with severities below 6 V. Beyond that severity level, the motor current estimates
start to significantly deviate from their actual values. Numerous observations and
conclusions were made regarding the performance capabilities of the FDII schemes
under partial-state measurements using the NSE for estimating the unmeasured state
of the reaction wheel (i.e., the motor current). In summary, it was concluded that
the performance of both FDII schemes remain practically unchanged in the pres-
ence of both motor current faults (over a wide range of severities) and bus voltage
faults with severities below 6 V. However, the identification (or severity estimation)
performance of the series-parallel scheme as well as the overall performance (i.e.,
including detection, isolation, and identification performance) of the parallel scheme
significantly deteriorates as the severity of the bus voltage faults exceeds 6 V.



Chapter 6
Conclusions

In this monograph, the problem of fault diagnosis in components and actuators of
nonlinear systems was considered. A fault diagnosis system at its best must be able
to not only detect the presence and isolate the location of faults in a system but also
identify them (i.e., estimate their severities) once they are detected and isolated.
Hence, a diagnostic system is also equivalently called a fault detection, isolation,
and identification (FDII) system. While the importance of fault detection and isola-
tion (FDI) is evident for health monitoring of engineering systems, the importance of
fault identification has not been equally recognized in the literature. Consequently,
fewer theoretical and practical contributions in the domain of fault identification or
severity estimation exist in the literature, especially for nonlinear systems. How-
ever, it was shown in Chapter 1 that identification of fault severities is a corner-
stone to fault prognosis and subsequently to develop a condition-based maintenance
(CBM) system. Furthermore, it was shown that the accurate fault identification is an
invaluable asset for fault tolerant control systems, in general, and is a necessity for
implementing active fault accommodation and recovery procedures, in particular.

In view of these substantiations and the ever-increasing demand for both
autonomous fault tolerant control of safety-critical (and mission-critical) systems
and CMB in especially mass-producing industries and OEMs, in this monograph
a novel integrated hybrid solution to the problem of fault diagnosis for compo-
nents of nonlinear systems has been presented. Unlike most existing fault diag-
nosis techniques, the proposed solution is able to simultaneously detect, isolate,
and identify the severity of faults in system components within a single unified
diagnostic module. The developed FDII solution takes advantage of both a priori
mathematical model information of the system and the adaptive nonlinear approx-
imation capability of computational intelligence techniques especially neural net-
works. In Chapter 2, a comprehensive survey and analysis of the two major analyt-
ical redundancy-based approaches to fault diagnosis, namely the model-based and
the computational intelligence (CI)-based approaches, was presented, which differ
mainly in terms of the form of a priori knowledge or information being employed
for diagnosis. Furthermore, some of the diagnostic methodologies were presented
in order to describe as to how the three tasks of detection, isolation, and identi-
fication are achieved within each framework. Once again, it should be noted that
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the FDII methodology that has been proposed in this monograph is an integrated
hybrid approach that simultaneously exploits the benefits of both model-based and
CI-based approaches.

In order to achieve fault identification, faults were modeled through parameteri-
zation of the nominal mathematical model of the system with a set of fault parame-
ters (FPs), where each FP is an indication of a particular fault in the system. It was
discussed, however, that such a multi-parameter fault model is not sufficient for
fault isolation. Hence, to enable fault isolation, a set of single-parameter fault mod-
els were extracted from the multi-parameter ones. Once the set of single-parameter
fault models were derived, the problem of FDII in nonlinear systems was formu-
lated as an online nonlinear parameter estimation problem with FPs as the unknown
parameters to be estimated. Various nonlinear parameter estimation methods were
then reviewed in Chapter 3 and a solution based on neural networks was then pro-
posed. The rationale for choosing neural networks for online nonlinear parameter
estimation has been their universal function approximation capability and the avail-
ability of well-established and well-understood weight adaptation laws.

Therefore, the core of the proposed hybrid nonlinear FDII solution is a bank
of adaptive neural parameter estimators (NPE), where each NPE in the bank was
designed based on a separate single-parameter fault model. At each instant of time,
the NPEs provide estimates of the unknown FPs, which in conjunction with the out-
put residuals determine the health state of the system being monitored. The residuals
were defined as the difference between the actual measurements and the output esti-
mates (or predictions) generated by the single-parameter fault models using their
respective FP estimates from NPEs. It should be noted that the actual FP values
are essentially unknown, so their estimates have to be used for predictions. The
fault parameter estimation was based on online minimization of instantaneous out-
put estimation error.

First, subject to the availability of full-state measurements, two NPE structures,
namely series-parallel and parallel, have been proposed and their respective FDI
decision logics and weight update laws have been provided in Chapter 3. Each
FDII scheme was shown to exhibit an exclusive set of desirable attributes. Fur-
thermore, simple neural network architecture and straightforward weight adaptation
laws make both proposed FDII schemes suitable for real-time implementation of
online health monitoring systems. It should be noted that the robust parallel FDII
scheme is a major contribution of this monograph, being proposed for the first time
in the literature. Furthermore, the novelty aspects of the series-parallel scheme have
also been mentioned in Chapters 1–3.

In Chapter 4, the proposed FDII schemes were extended to systems with partial
state measurement. The practical significance and motivations of such an extension
were discussed in Chapter 4. The notion of fault-tolerant observer (FTO) was intro-
duced, which enables estimating the unmeasured states of the system even in the
presence of faults in the system. In other words, state estimates from an FTO are
robust to faults. In order to systematically design an FTO, the literature on opti-
mal filtering and state estimation was extensively reviewed and analyzed. Accord-
ingly, a Kalman structure preserving neural state estimator (NSE) was designed and
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developed that adaptively estimates system states by constantly minimizing instan-
taneous observation error. The self-adapting and self-learning capability of neural
networks has been exploited in the proposed NSE in order to achieve robustness
with respect to faults. Due to the presence of output feedback in the architecture of
the NSE and online nature of the proposed FTO, the update laws were derived using
the online recursive backpropagation algorithm. The details of the weight update
laws have been provided in Chapter 4.

Finally, the proposed FDII methodology was employed for fault diagnosis of
reaction wheel actuators of the attitude control subsystem (ACS) of a three-axis
stabilized LEO satellite. While taking the extremely important role of stabilizing
the attitude of a satellite, reaction wheels are sensitive devices that are vulnerable
to different sources of faults. Therefore, the existence of a reliable fault diagnosis
system that constantly monitors the health state of these actuators is crucial espe-
cially for autonomous satellite operations. To be able to properly verify and validate
the effectiveness of the proposed FDII techniques, first a high-fidelity ACS simula-
tor of a three-axis stabilized satellite was developed. The ACS simulator consisted
of the nonlinear model of the spacecraft attitude dynamics, a high-fidelity nonlin-
ear model of reaction wheels, and the mathematical models of environmental dis-
turbances acting upon the satellite. Furthermore, a decentralized PID control strat-
egy was designed to stabilize the spacecraft attitude and thus provide the necessary
framework for validating the FDII algorithm.

Following the convergence verification of the ACS for both attitude stabiliza-
tion and slew maneuvering, faults were characterized and then injected in one of
the reaction wheels of the ACS – associated to the pitch axis. The faulty ACS sys-
tem was simulated in order to generate faulty data of the closed-loop ACS. It was
assumed that the reaction wheel actuators are prone to two different types of faults
including faults in the bus voltage and faults in the motor current. Faults in the motor
current were modeled and injected intermittently as time-varying variations in the
reaction wheel’s motor torque gain. The fault injection model used for motor cur-
rent faults enabled us to assess the performance of the proposed FDII schemes in the
presence of a continuum of fault severities from very minor, incipient faults (due to,
for instance, wear and tear of the motor) to up to 70% reduction in the motor torque
gain. On the other hand, faults in the bus voltage were modeled and injected as a
sequence of intermittent drops in the voltage of power bus. Both low-severity (or
incipient) and high-severity faults were considered for the bus voltage.

Numerous simulation results were presented for evaluating the performance of
the proposed fault diagnosis schemes in detecting, isolating, and identifying faults
in the reaction wheels of the ACS and in the presence of external disturbances and
measurement noise. The simulation results demonstrated the effectiveness of the
proposed fault diagnosis schemes. Numerous qualitative and quantitative observa-
tions were made in Chapter 5 regarding the performance capabilities of each FDII
scheme. Furthermore, a comprehensive analysis was performed on the robustness
of the two FDII schemes with respect to measurement noise. It was observed that
the FDII performance of the parallel scheme is extremely robust to measurement
noise, hence making it suitable for health monitoring of systems with even very
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noisy sensors (i.e., very low SNR). On the contrary, the series-parallel scheme was
very sensitive to measurement noise. Instead, it displayed fast convergence rates and
was very robust to closed-loop system transients. Hence, the series-parallel scheme
is desirable for (high SNR) systems requiring very short delays in fault diagno-
sis and/or systems requiring frequent commanding. In practice, the choice of the
appropriate FDII scheme is imposed by the specifications and the requirements of
the specific problem at hand.

Finally, the performance of the FDII schemes under partial-state measurements
was validated using simulations. It was assumed that only the speed of the wheel
is measured and the motor current was estimated from the speed measurements
using the neural state estimator (NSE). First, the performance of the NSE was veri-
fied under the nominal healthy conditions of the reaction wheel. More specifically,
it was shown that the motor current estimates generated by the NSE very quickly
converge to their actual values even in the presence of a relatively large initial esti-
mation error. Then, faults were injected into the reaction wheel and the performance
of the NSE was evaluated over the faulty periods in order to verify the robustness
(or tolerance) of the NSE with respect to faults. It was shown that the NSE is com-
pletely tolerant with respect to the motor current faults. However, the performance
of the NSE deteriorates as the severity of the bus voltage faults increases. More pre-
cisely, it was concluded that the NSE is robust (or tolerant) to bus voltage faults with
severities below 6 V. Beyond that severity level, the motor current estimates start to
significantly deviate from their actual values. Numerous observations and conclu-
sions were made regarding the performance capabilities of the FDII schemes under
partial-state measurements using the NSE for estimating the unmeasured state of
the reaction wheel (i.e., the motor current). In summary, it was concluded that the
performance of both FDII schemes remain practically unchanged in the presence
of both motor current faults (over a wide range of severities) and bus voltage faults
with severities below 6 V. However, the identification (or severity estimation) per-
formance of the series-parallel scheme and the overall performance (i.e., including
detection, isolation, and identification performance) of the parallel scheme signifi-
cantly deteriorates as the severity of the bus voltage faults exceeds 6 V.

A large number of potential future research directions can be envisaged for this
monograph due to the widespread applicability of fault diagnosis, prognosis, and
health management (DPHM) technologies across various science and engineering
applications, in general, and the divers set of mathematical tools and methodologies
employed in the design of proposed FDII approach, in particular. Nonetheless, the
future research directions can basically be classified into two distinct categories:
(i) future research directions with short to medium-term objectives and (ii) future
research directions with medium to long-term objectives. In the following, we will
discuss and investigate each category of future research directions separately:

(i) Future research with short to medium-term objectives: This future research
direction aims at further enhancing the capabilities of the FDII methodology
proposed in this monograph. These enhancements may take place at various
levels and from different perspectives. Some examples include:
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• Extending the mathematical merit and rigor of the proposed FDII approach.
More specifically, derivation of mathematical proofs and isolability condi-
tions for the fault isolation decision logic of both the series-parallel and
the parallel FDII schemes. Rigorous derivation of convergence proofs for
fault parameter estimation can also be envisaged as a future work, which is
compounded due to nonlinearity of the problem, black-box nature of neural
networks, and the inherent coupling between estimation and adaptation of
neural filters.

• Derivation of formal and analytical results/proofs for robustness of the par-
allel FDII scheme with respect to measurement noise.

• Extending the robustness of the proposed FDII to other sources of uncertain-
ties, especially modeling errors.

• Derivation of a concrete mathematical proof for the convergence of the pro-
posed FTO under certain severity levels of faults in the system,

• Enhancing the capability of FDII under partial-state measurement. As was
observed in the simulation results for fault diagnosis in reaction wheels, the
proposed FTO becomes less accurate under bus voltage faults, in general,
and completely fails to correctly estimate system states in the presence of
high severity levels of bus voltage fault. So, enhancements are required to
address these shortcomings. This can be accomplished in two ways: (i) by
investigating the robustness of the proposed FTO to a general set of fault
scenarios and to make it robust to higher levels of fault severities and (ii)
to collaboratively perform fault tolerant state estimation in concurrence with
fault parameter estimation. This idea is, in essence, very similar to the dual
estimation problem (or joint state and parameter estimation problem) in the
Kalman filtering literature (see Haykin [49]).

(ii) Future research with medium to long-term objectives: This future research
direction aims at improving the technological merit of the proposed FDII
methodology and bringing it to the next level of technological development,
with the objective of addressing the ever-increasing demands of modern engi-
neering systems. Examples of such technological shifts include:

• Fault prognosis,
• Condition-based maintenance (CBM),
• Active fault-tolerant control,
• Fault diagnosis, recovery, and accommodation
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Appendix A
Ordered Partial Derivatives

For adapting discrete-time dynamical systems and, in particular, to update the
weights of a neural network with dynamic elements using steepest descent, a par-
tial derivative of the associated dynamical system must be calculated. Because a
dynamical system contains feedback, the calculation of this derivative can be quite
complex. The ordered partial derivative, which is a partial derivative whose constant
and varying terms are defined using ordered set of equations, provides a mathemat-
ical tool for easily finding derivatives of complex dynamical systems (From Piche
[171]).

To define the ordered derivative, the concept of an ordered set of equations must
first be introduced. Let {z1, ..., zi , ..., z j , ..., zn} be a set of n equations. This set of
equations is defined to be an ordered set of equations if each variable zi is a function
only of the variables {z1, ..., zi−1}. Thus, the equation for any variable of an ordered
set of equations can be written as

zi = fi (z1, . . . , zi−1) (A.1)

Because of the ordered nature of this set of equations, the variables {z1, ..., zi−1}
must be calculated before zi can be computed. As an example, thefollowing three
equations form an ordered set of equations:

z1 = 1

z2 = 3z1

z3 = z1 + 2z2

(A.2)

When calculating a partial derivative, it is necessary to specify which variables
are held constant and which are allowed to vary. Typically, if this is not specified,
it is assumed that all variables are held constant except those terns appearing in the
denominator of the partial derivative. This is the convention adopted in this paper;
thus, the partial derivatives of z3 with respect to z1, ∂ z3

∂ z1
, is 1.
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An ordered partial derivative is a partial derivative whose constant and varying
terms are determined using an ordered set of equations. The constant terms of the
ordered partial derivative of zj with respect to zi, which is denoted as ∂+z j

∂ zi
in order

to distinguish it from an ordinary partial derivative, are {z1, ..., zi−1}. The vary-
ing terms are {zi , ..., z j , ..., zn}. Using mathematical notation, the ordered partial
derivative is defined as:

∂+z j

∂ zi
= ∂ z j

∂ zi

∣
∣{z1,...,zi−1} (A.3)

Using this definition, the following two properties of the ordered derivative can
easily be shown

∂+zi+1

∂ zi
= ∂ zi+1

∂ zi
(A.4)

and

∂+z j

∂ zi
= 0 i f j < i (A.5)

When j > i +1, the ordered derivative is found using either of the following two
chain rule expansions:

∂+z j

∂ zi
= ∂ z j

∂ zi
+

j−1∑

k=i+1

∂+z j

∂ zk

∂ zk

∂ zi
(A.6)

and

∂+z j

∂ zi
= ∂ z j

∂ zi
+

j−1∑

k=i+1

∂ z j

∂ zk

∂+zk

∂ zi
(A.7)

As an example, applying either the first (Eq. A.6) or the second (Eq. A.7) chain
rule expansions to the ordered set of equations given in (A.2), the ordered partial
derivative of z3 with respect to z1, ∂

+z3
∂ z1

is 7.



Appendix B
Attitude Reference System
and Coordinate Frames

In general, to determine a satellite’s attitude with respect to another body, a reference
system must be used. While any reference system will provide valid answers if
it is applied consistently, it is desirable to choose a convenient reference frame.
An appropriate reference frame simplifies calculations and reduces the obscuring
of physical theory by numerous algebraic/geometrical transformations. Throughout
this chapter, the following four reference frames are utilized. It is important to note
that the x, y, and z notation that may have been used in each frame of reference is
independent of the other reference frames (Wertz [151]).

(1) Spacecraft fixed/body reference frame �B: The body frame is a body-fixed
frame of reference. Its origin is located at the spacecraft center of mass and its
orientation is based on the spacecraft geometry. For example, as depicted in Fig. B.1,
the x and y axes are along the two coordinates of the solar panels on the bottom side
of the satellite and the z axis is along the height and completes the orthogonal triad.

x

y

z

Fig. B.1 Spacecraft fixed/body reference frame
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(2) Spacecraft principal axes reference frame: The principal frame is a body-
fixed frame of reference. Its origin is located at the spacecraft’s center of mass and
its orientation is along the principal directions of the satellite body. Note that the
principal directions are the eigenvectors of the spacecraft’s Inertia matrix and that
the dynamic equations can be expressed more conveniently in this frame.

(3) Orbital reference frame (RPY frame): The orbital reference frame is shown
in Fig. B.2. As can be seen in this figure, it is the well-known Earth-pointing refer-
ence system where the x-axis (Roll) is perpendicular to nadir and along the satellite’s
velocity vector (i.e., tangential to the orbit), the z-axis (Yaw) points towards the cen-
ter of the Earth, and the y-axis (Pitch) is perpendicular to the orbit plane with positive
direction towards south pole completing the orthogonal right-hand triad. It should
be noted that the RPY frame is a rotating frame with the speed of rotation equal to
the satellite’s rotation speed around the Earth. Representing the attitude of a satellite
with respect to the rotating orbital frame makes the design and implementation of
an attitude control law much more convenient.

Roll Axis

Pitch Axis

Yaw Axis

Roll Axis

Yaw Axis

Pitch Axis

y

z

z

x

y

x

Fig. B.2 Orbital reference frame or RPY (Roll–Pitch–Yaw) frame

(4) Inertial (Earth-fixed) reference frame: This is the non-rotating Earth-fixed
frame that has its origin located at the center of the Earth. As shown in Fig. B.3, its
x-axis points through the Greenwich Meridian in the equatorial plane, z-axis is in the
same direction as the Earth’s rotation axis, and its y-axis completes the right-hand
triad.
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x

y

z

Greenwich
Meridian

Equator

Fig. B.3 Inertial (or Earth-fixed) reference frame



Appendix C
Extra Figures of FDII Results

In this appendix, the reaction wheel states and their estimates from the hybrid FDII
schemes under various fault scenarios and noise levels are depicted.
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Fig. C.1 The residuals of the two NPEs of the series-parallel FDII scheme in presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s
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Fig. C.2 The estimated versus measured states using the series-parallel FDII scheme in presence
of motor current fault over the time period t ∈ [1000 4250] s, subject to medium noise level
(SNR = 55 dB)
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Fig. C.3 The residuals of the two NPEs of the series-parallel FDII scheme in presence of motor
current fault over the period t ∈ [1000 4250] s, subject to medium noise level (SNR = 55 dB)



Appendix C 243

0 2000 4000 6000
0.4

0.5

0.6

0.7

0.8

0.9

1
The NPE for Vbus Fault

C
ur

re
nt

 (
A

)

Measured

Estimate

0 2000 4000 6000
0.4

0.5

0.6

0.7

0.8

0.9

1
The NPE for Kt Fault

C
ur

re
nt

 (
A

)

Measured

Estimate

0 2000 4000 6000
2000

3000

4000

5000

6000

7000

time (Sec)

S
pe

ed
 (

rp
m

)

Measured

Estimate

0 2000 4000 6000
2000

3000

4000

5000

6000

7000

time (Sec)

S
pe

ed
 (

rp
m

)
Measured

Estimate

Fig. C.4 The estimated versus measured states using the series-parallel FDII scheme in pres-
ence of motor current fault over the time period t ∈ [1000 4250] s, subject to high noise level
(SNR = 45 dB)
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Fig. C.5 The residuals of the two NPEs of the series-parallel FDII scheme in presence of motor
current fault over the time period t ∈ [1000 4250] s, subject to high noise level (SNR = 45 dB)
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Fig. C.6 The estimated versus measured states using the series-parallel FDII scheme in presence
of a sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject
to medium noise level (current SNR = 54.57 dB and speed SNR = 54.76 dB)

0 2000 4000 6000
–0.02

–0.01

0

0.01

0.02
The NPE for Vbus Fault

0 2000 4000 6000
–0.2

–0.15

–0.1

–0.05

0

The NPE for Kt Fault

0 2000 4000 6000
–150

–100

–50

0

50

100

150

time (Sec)

0 2000 4000 6000
–150

–100

–50

0

50

100

150

time (Sec)

C
ur

re
nt

 R
es

id
ua

l: 
r2 

(A
) 

I

C
ur

re
nt

 R
es

id
ua

l: 
r1 

(A
) 

I
S

pe
ed

 R
es

id
ua

l: 
r1 

(r
pm

) 
ω

S
pe

ed
 R

es
id

ua
l: 

r2 
(r

pm
) 

ω

Fig. C.7 The residuals of the two NPEs of the series-parallel FDII scheme in presence of a
sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
medium noise level (current SNR = 54.57 dB and Speed SNR = 54.76 dB)
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Fig. C.8 The estimated versus measured states using the series-parallel FDII scheme in presence
of a sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject
to high noise level (current SNR = 44.57 dB and speed SNR = 44.76 dB)
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Fig. C.9 The residuals of the two NPEs of the series-parallel FDII scheme in presence of a
sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
high noise level (current SNR = 44.57 dB and speed SNR = 44.76 dB)
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Fig. C.10 The estimated versus measured states using the series-parallel FDII scheme in presence
of a sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject
to medium noise level (current SNR = 53.66 dB and speed SNR = 53.72 dB)
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Fig. C.11 The residuals of the two NPEs of the series-parallel FDII scheme in presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
medium noise level (current SNR = 53.66 dB and speed SNR = 53.72 dB)
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Fig. C.12 The estimated versus measured states using the series-parallel FDII scheme in presence
of a sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject
to high noise level (current SNR = 43.66 dB and speed SNR = 43.72 dB)
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Fig. C.13 The residuals of the two NPEs of the series-parallel FDII scheme in presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
high noise level (current SNR = 43.66 dB and speed SNR = 43.72 dB)
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Fig. C.14 The estimated versus measured states using the parallel FDII scheme in presence
of motor current fault over the time period t ∈ [1000 4250] s, subject to medium noise level
(SNR = 55 dB)
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Fig. C.15 The residuals of the two NPEs of the parallel FDII scheme in presence of motor current
fault over the period t ∈ [1000 4250] s, subject to medium noise level (SNR = 55 dB)
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Fig. C.16 The estimated versus measured states using the parallel FDII scheme in presence
of motor current fault over the time period t ∈ [1000 4250] s, subject to high noise level
(SNR = 45 dB)
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Fig. C.17 The residuals of the two NPEs of the parallel FDII scheme in presence of motor current
fault over the time period s, subject to high noise level (SNR = 45 dB)



250 Appendix C

0 2000 4000 6000
0.5

0.6

0.7

0.8

0.9

1

The NPE for Vbus Fault
C

ur
re

nt
 (

A
)

0 2000 4000 6000
0.5

0.6

0.7

0.8

0.9

1

C
ur

re
nt

 (
A

)

Measured

Estimate

The NPE for Kt Fault

Measured

Estimate

0 2000 4000 6000
4500

5000

5500

6000

time (Sec)

S
pe

ed
 (

rp
m

)

0 2000 4000 6000
4500

5000

5500

6000

time (Sec)

S
pe

ed
 (

rp
m

)

Measured

Estimate
Measured

Estimate

Fig. C.18 The estimated versus measured states using the parallel FDII scheme in presence of
a sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
medium noise level (current SNR = 54.57 dB and speed SNR = 54.76 dB)
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Fig. C.19 The residuals of the two NPEs of the parallel FDII scheme in presence of a sequence of
low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to medium noise
level (current SNR = 54.57 dB and speed SNR = 54.76 dB)
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Fig. C.20 The estimated versus measured states using the parallel FDII scheme in presence of
a sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
high noise level (current SNR = 44.57 dB and speed SNR = 44.76 dB)
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Fig. C.21 The residuals of the two NPEs of the parallel FDII scheme in presence of a sequence of
low-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to high noise level
(current SNR = 44.57 dB and speed SNR = 44.76 dB)
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Fig. C.22 The estimated versus measured states using the parallel FDII scheme in presence of
a sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
medium noise level (current SNR = 54.57 dB and speed SNR = 54.76 dB)
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Fig. C.23 The residuals of the two NPEs of the parallel FDII scheme in presence of a sequence of
high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to medium noise
level (current SNR = 53.66 dB and speed SNR = 53.72 dB)
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Fig. C.24 The estimated versus measured states using the parallel FDII scheme in presence of
a sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to
high noise level (current SNR = 44.57 dB and speed SNR = 44.76 dB)
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Fig. C.25 The residuals of the two NPEs of the parallel FDII scheme in presence of a sequence
of high-severity bus voltage faults over the time period t ∈ [1000 5100] s, subject to high noise
level (current SNR = 43.66 dB and speed SNR = 43.72 dB)
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Fig. C.26 Speed estimate from the full-order FTO versus its actual value using only speed
measurements in presence of a time-varying fault in motor current over the time period of
t ∈ [1000 4250] s
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Fig. C.27 Speed estimate from the full-order FTO versus its actual value using only speed
measurements in presence of a sequence of low-severity bus voltage faults over the time period
t ∈ [1000 5100] s
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Fig. C.28 Speed estimate from the full-order FTO versus its actual value using only speed
measurements in presence of a sequence of high-severity bus voltage faults over the time period
t ∈ [1000 5100] s
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Fig. C.29 The residuals of the two NPEs of the series-parallel FDII scheme in presence of a
time-varying fault in motor current over the time period t ∈ [1000 4250] s under partial-state
measurements (i.e., measured speed and estimated current from the FTO)
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Fig. C.30 The residuals of the two NPEs of the parallel FDII scheme in presence of a time-varying
fault in motor current over the time period t ∈ [1000 4250] s under partial-state measurements
(i.e., measured speed and estimated current from the FTO)
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Fig. C.31 The residuals of the two NPEs of the series-parallel FDII scheme in presence of a
sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s under partial-
state measurements (i.e., measured speed and estimated current from the FTO)
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Fig. C.32 The residuals of the two NPEs of the series-parallel FDII scheme in presence of a
sequence of low-severity bus voltage faults over the time period t ∈ [1000 5100] s under partial-
state measurements (i.e., measured speed and estimated current from the FTO); zoomed in for the
current residual of “the NPE for Kt fault”
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Fig. C.33 The residuals of the two NPEs of the parallel FDII scheme in presence of a sequence
of low-severity bus voltage faults over the time period t ∈ [1000 5100] s under partial-state
measurements (i.e., measured speed and estimated current from the FTO)
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Fig. C.34 The residuals of the two NPEs of the series-parallel FDII scheme in presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s under partial-
state measurements (i.e., measured speed and estimated current from the FTO)
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Fig. C.35 The residuals of the two NPEs of the series-parallel FDII scheme in presence of a
sequence of high-severity bus voltage faults over the time period t ∈ [1000 5100] s under partial-
state measurements (i.e., measured speed and estimated current from the FTO); zoomed in for the
current residual of “the NPE for Kt fault”
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Fig. C.36 The residuals of the two NPEs of the parallel FDII scheme in presence of a sequence
of high-severity bus voltage faults over the time period t ∈ [1000 5100] s under partial-state
measurements (i.e., measured speed and estimated current from the FTO)
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