
Eric Bodden
Mathias Payer
Elias Athanasopoulos (Eds.)

 123

LN
CS

 1
03

79

9th International Symposium, ESSoS 2017
Bonn, Germany, July 3–5, 2017
Proceedings

Engineering
Secure Software
and Systems

Lecture Notes in Computer Science 10379

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Eric Bodden • Mathias Payer
Elias Athanasopoulos (Eds.)

Engineering
Secure Software
and Systems
9th International Symposium, ESSoS 2017
Bonn, Germany, July 3–5, 2017
Proceedings

123

Editors
Eric Bodden
University of Paderborn
Paderborn
Germany

Mathias Payer
Purdue University
West Lafayette
USA

Elias Athanasopoulos
University of Cyprus
Nicosia
Cyprus

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-62104-3 ISBN 978-3-319-62105-0 (eBook)
DOI 10.1007/978-3-319-62105-0

Library of Congress Control Number: 2017944218

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

It is our pleasure to welcome you to the proceedings of the 9th International Sympo-
sium on Engineering Secure Software and Systems (ESSoS 2017), co-located with the
conference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA 2017). ESSoS is part of a maturing series of symposia that attempts to bridge
the gap between the software engineering and security communities with the goal of
supporting secure software development. The parallel technical sponsorship from
ACM SIGSAC (the ACM interest group in security) and ACM SIGSOFT (the ACM
interest group in software engineering) demonstrates the support from both commu-
nities and the need for providing such a bridge.

Security mechanisms and the act of software development usually go hand in hand.
It is generally not enough to ensure correct functioning of the security mechanisms
used. They cannot be blindly inserted into a security-critical system, but the overall
system development must take security aspects into account in a coherent way.
Building trustworthy components does not suffice, since the interconnections and
interactions of components play a significant role in trustworthiness. Lastly, while
functional requirements are generally analyzed carefully in systems development,
security considerations often arise after the fact. Adding security as an afterthought,
however, often leads to problems. Ad hoc development can lead to the deployment of
systems that do not satisfy important security requirements. Thus, a sound methodol-
ogy supporting secure systems development is needed. The presentations and associ-
ated publications at ESSoS 2017 contributed to this goal in several directions: first, by
improving methodologies for secure software engineering (such as flow analysis and
policy compliance). Second, with results for the detection and analysis of software
vulnerabilities and the attacks they enable. Finally, for securing software for specific
application domains (such as mobile devices and access control).

The conference program featured two keynotes by Konrad Rieck (TU Braun-
schweig) and Cristiano Giuffrida (VU Amsterdam), as well as research and idea papers.
In response to the call for papers, 32 papers were submitted. The Program Committee
selected 12 full-paper contributions, presenting new research results on engineering
secure software and systems. In addition, three idea papers were selected, giving a
concise account of new ideas in the early stages of research. Many individuals and
organizations contributed to the success of this event. First of all, we would like to
express our appreciation to the authors of the submitted papers and to the Program
Committee members and external reviewers, who provided timely and relevant
reviews. Many thanks go to the Steering Committee for supporting this series of
symposia, and to all the members of the Organizing Committee for their tremendous
work and for excelling in their respective tasks. We owe gratitude to ACM
SIGSAC/SIGSOFT and LNCS for continuing to support us in this series of symposia.

Finally, we thank the sponsors ERNW, genua, Huawei, Rohde & Schwarz Cyberse-
curity, and VMRay for generously supporting the ESSoS and DIMVA conferences
this year.

May 2017 Eric Bodden
Mathias Payer

Elias Athanasopoulos

VI Preface

Organization

Program Committee

David Aspinall University of Edinburgh, UK
Domagoj Babic Google Inc., USA
Alexandre Bartel University of Luxembourg, Luxembourg
Amel Bennaceur The Open University, UK
Stefan Brunthaler Paderborn University, Germany
Will Enck NC State University, USA
Michael Franz University of California, Irvine, USA
Christian Hammer University of Potsdam, Germany
Michael Hicks University of Maryland, USA
Trent Jaeger The Pennsylvania State University, USA
Vassilis P. Kemerlis Brown University, USA
Johannes Kinder University of London, UK
Byoungyoung Lee Purdue University, USA
Yang Liu University of Oxford, UK
Ben Livshits Imperial College London, UK
Clémentine Maurice Technical University Graz, Austria
Andy Meneely Rochester Institute of Technology, USA
Mira Mezini Technical University Darmstadt, Germany
Alessandro Orso Georgia Tech, USA
Christina Pöpper New York University Abu Dhabi, UAE
Awais Rashid Lancaster University, UK
Kaveh Razavi Vrije Universiteit Amsterdam, The Netherlands
Tamara Rezk Inria, France
Angela Sasse University College London, UK
Zhendong Su University of California, Davis, USA
Melanie Volkamer Karlstad University, Sweden
Xiangyu Zhang Purdue University, USA

Contents

SEQUOIA: Scalable Policy-Based Access Control for Search Operations
in Data-Driven Applications . 1

Jasper Bogaerts, Bert Lagaisse, and Wouter Joosen

A Voucher-Based Security Middleware for Secure Business Process
Outsourcing . 19

Emad Heydari Beni, Bert Lagaisse, Ren Zhang, Danny De Cock,
Filipe Beato, and Wouter Joosen

LASARUS: Lightweight Attack Surface Reduction for Legacy
Industrial Control Systems . 36

Anhtuan Le, Utz Roedig, and Awais Rashid

Exploring the Relationship Between Architecture Coupling
and Software Vulnerabilities . 53

Robert Lagerström, Carliss Baldwin, Alan MacCormack,
Dan Sturtevant, and Lee Doolan

Natural Language Insights from Code Reviews that Missed a Vulnerability:
A Large Scale Study of Chromium . 70

Nuthan Munaiah, Benjamin S. Meyers, Cecilia O. Alm, Andrew Meneely,
Pradeep K. Murukannaiah, Emily Prud’hommeaux,
Josephine Wolff, and Yang Yu

Idea: Optimized Automatic Sanitizer Placement . 87
Gebrehiwet Biyane Welearegai and Christian Hammer

FPRandom: Randomizing Core Browser Objects to Break Advanced
Device Fingerprinting Techniques . 97

Pierre Laperdrix, Benoit Baudry, and Vikas Mishra

Control What You Include!: Server-Side Protection Against
Third Party Web Tracking . 115

Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk

Idea-Caution Before Exploitation: The Use of Cybersecurity Domain
Knowledge to Educate Software Engineers Against Software
Vulnerabilities . 133

Tayyaba Nafees, Natalie Coull, Robert Ian Ferguson,
and Adam Sampson

http://dx.doi.org/10.1007/978-3-319-62105-0_1
http://dx.doi.org/10.1007/978-3-319-62105-0_1
http://dx.doi.org/10.1007/978-3-319-62105-0_2
http://dx.doi.org/10.1007/978-3-319-62105-0_2
http://dx.doi.org/10.1007/978-3-319-62105-0_3
http://dx.doi.org/10.1007/978-3-319-62105-0_3
http://dx.doi.org/10.1007/978-3-319-62105-0_4
http://dx.doi.org/10.1007/978-3-319-62105-0_4
http://dx.doi.org/10.1007/978-3-319-62105-0_5
http://dx.doi.org/10.1007/978-3-319-62105-0_5
http://dx.doi.org/10.1007/978-3-319-62105-0_6
http://dx.doi.org/10.1007/978-3-319-62105-0_7
http://dx.doi.org/10.1007/978-3-319-62105-0_7
http://dx.doi.org/10.1007/978-3-319-62105-0_8
http://dx.doi.org/10.1007/978-3-319-62105-0_8
http://dx.doi.org/10.1007/978-3-319-62105-0_9
http://dx.doi.org/10.1007/978-3-319-62105-0_9
http://dx.doi.org/10.1007/978-3-319-62105-0_9

Defeating Zombie Gadgets by Re-randomizing Code upon Disclosure 143
Micah Morton, Hyungjoon Koo, Forrest Li, Kevin Z. Snow,
Michalis Polychronakis, and Fabian Monrose

KASLR is Dead: Long Live KASLR. 161
Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard

JTR: A Binary Solution for Switch-Case Recovery 177
Lucian Cojocar, Taddeus Kroes, and Herbert Bos

A Formal Approach to Exploiting Multi-stage Attacks Based
on File-System Vulnerabilities of Web Applications 196

Federico De Meo and Luca Viganò

A Systematic Study of Cache Side Channels Across AES
Implementations . 213

Heiko Mantel, Alexandra Weber, and Boris Köpf

Idea: A Unifying Theory for Evaluation Systems . 231
Giampaolo Bella and Rosario Giustolisi

Author Index . 241

X Contents

http://dx.doi.org/10.1007/978-3-319-62105-0_10
http://dx.doi.org/10.1007/978-3-319-62105-0_11
http://dx.doi.org/10.1007/978-3-319-62105-0_12
http://dx.doi.org/10.1007/978-3-319-62105-0_13
http://dx.doi.org/10.1007/978-3-319-62105-0_13
http://dx.doi.org/10.1007/978-3-319-62105-0_14
http://dx.doi.org/10.1007/978-3-319-62105-0_14
http://dx.doi.org/10.1007/978-3-319-62105-0_15

SEQUOIA: Scalable Policy-Based Access
Control for Search Operations
in Data-Driven Applications

Jasper Bogaerts(B), Bert Lagaisse, and Wouter Joosen

imec-DistriNet, KU Leuven, 3001 Leuven, Belgium
{jasper.bogaerts,bert.lagaisse,wouter.joosen}@cs.kuleuven.be

Abstract. Policy-based access control is a technology that achieves
separation of concerns through evaluating an externalized policy at
each access attempt. While this approach has been well-established for
request-response applications, it is not supported for database queries of
data-driven applications, especially for attribute-based policies. In par-
ticular, search operations for such applications involve poor scalability
with regard to the data set size for this approach, because they are influ-
enced by dynamic runtime conditions. This paper proposes a scalable
application-level middleware solution that performs runtime injection of
the appropriate rules into the original search query, so that the result set
of the search includes only items to which the subject is entitled. Our
evaluation shows that our method scales far better than current state of
practice approach that supports policy-based access control.

1 Introduction

Access control is a crucial security measure constraining actions that sub-
jects (e.g., users) can perform on resources. To manage this, several requirements
must be taken into account. These include the ability to specify fine-grained rules
and support for separation of concerns [6], which enables application developers
to delegate security management responsibilities.

A combination of policy-based and attribute-based access control satis-
fies these requirements. Policy-based access control externalizes access control
from the application code and has a policy engine evaluation at each access
attempt [21]. This technology provides separation of concerns and increases
application modularity. Attribute-based access control supports attributes to be
assigned to subjects, actions, resources and the environment. These attributes
are compared to each other and to concrete values to determine if access is per-
mitted [11]. This supports specification of fine-grained rules such as “a document
can be read by its creator at any time, and by members of the IT department
during working hours”. XACML [14] is considered the de-facto standard policy
language for policy-based, attribute-based access control, with characteristics
such as policy trees and multi-valued logic.

Because databases hold a crucial position within IT infrastructures, support
for properties such as the ability to enforce fine-grained rules and separation
c© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 1–18, 2017.
DOI: 10.1007/978-3-319-62105-0 1

2 J. Bogaerts et al.

Fig. 1. The a posteriori filter app-
roach evaluates an externalized policy
for each item of the result set.

Fig. 2. The rewriting approach takes
into the access control policy as part of
the query.

of concerns is essential for database operations performed by data-driven appli-
cations as well. However, existing approaches generally scale insufficiently with
regard to the database size.

Access control techniques integrated in database systems fall short for
three reasons. First, they require database administrators to be involved in the
specification of the policies, thereby violating the separation of concerns. Second,
contemporary applications are designed according to a multi-tier architecture.
This results in applications that perform queries on behalf of the subject without
the latter being identified to the database, which only supports access to be
constrained for individual applications instead of for subjects [20]. Third, in
large scale deployments such as cloud applications, subjects are managed at the
application level and not by the identity management system of the database.

In contrast, access control techniques in the application, such as an a poste-
riori filter approach can support externalized policies, but evaluate them for each
item that is part of the search result (i.e., the resources). This approach filters
out any item to which the subject is not entitled based on a policy evaluation,
as illustrated in Fig. 1. While this approach supports separation of concerns, as
security administrators can manage policies independently from the application,
it does not scale with an increasing result set. This is true especially for large
attribute-based policies [22].

This paper takes an alternative approach that performs runtime injection of
the appropriate access rules into the search query based on the context in which
subjects perform the search operation. It is illustrated in Fig. 2. The approach
leverages the filtering system of the underlying database to select only items
to which the subject is entitled. Using this approach, we support separation
of concerns, the ability to specify attribute-based policies, and can scale with
regard to the database size. This paper presents the following contributions:

– A set of well-defined transformation rules that rewrites STAPL policies [2],
which are similar to XACML [14], into search queries for RDBMSes.

– An architecture and evaluation of Sequoia, an application-level middleware
that transforms and executes search queries for data-driven applications.

SEQUOIA: Scalable Policy-Based Access Control for Search Operations 3

This paper is organized as follows: Sect. 2 describes supporting technologies
and discusses the state of the art. Section 3 elaborates on the architecture of
Sequoia that enables query rewriting. Section 4 discusses how STAPL policies
can be transformed to a query expression. Section 5 provides an evaluation of a
prototype of Sequoia. Section 6 concludes the paper.

2 Background and Related Work

This section discusses the background that serves as a basis for the remainder
of the paper. First, it discusses the supporting technologies, such as XACML
and STAPL, and provides further analysis of the problem. Next, it elaborates
on related database access control technologies.

Supporting technologies. Access control policies can be externalized from the
application into a separate artifact that is evaluated by a specialized engine at
each access attempt [21]. As opposed to in-code access control, this approach,
called policy-based access control, increases modularity, avoids application rede-
ployment when a policy is modified, and provides separation of concerns.

XACML [14] is a framework and policy language that supports policy-
based access control. It also supports the specification of attribute-based policies,
which enables fine-grained rule specification. Attribute-based policies support
attributes assigned to subjects, resources, actions and the environment that are
compared to each other and to concrete values in expressions. Attributes are
substituted by concrete values at each access attempt to determine if access is
permitted.

The basic elements of a XACML policy are policy components and rules1.
Rules have a condition expression, and policy components have a target expres-
sion2. An expression evaluates to true, false, or leads to an error (e.g., when
an attribute could not be retrieved). Expressions compare attributes or com-
bine other expressions with logical operators (i.e., and, or, not). Whenever an
expression evaluates to false for a rule or policy component, that element is
not applicable. Elements that are not applicable are not taken into account
in the evaluation decision. For example, rule r1 of Fig. 3 is not applicable for
a subject with org=bankA that performs a view action on a resource with
is private=true and destination org=bankB. However, the targets of p1 and
p2 are applicable for this access attempt.

Besides a condition, rules also specify an effect (i.e., permit or deny) that
is taken into account when the condition of the rule is applicable. As a result,
policy elements evaluate to permit, deny, not applicable or an error (called inde-
terminate in XACML).

1 XACML differentiates between policy sets and policies, but for brevity we make no
distinction in this paper.

2 Rules can also have targets, but a conjunction with their condition is semantically
equivalent, so we disregard this.

4 J. Bogaerts et al.

Fig. 3. Example of a XACML-like policy. Policy component p1 has a deny overrides
combining algorithm and a target expression that specifies its children are only relevant
for view actions. Components p2 and p3 have a permit overrides and first applicable
combining algorithm, respectively, and child rules. Dashes indicate empty expressions.

A policy component evaluation can yield multiple, possibly conflicting deci-
sions (e.g., when multiple rules are applicable). This is resolved by using com-
bining algorithms. This paper focuses on permit overrides (in which a permit
decision overrides other decisions of direct children in the component), deny
overrides and first applicable (in which the first applicable rule determines the
final decision). For example, p1 in Fig. 3 has a deny overrides algorithm, meaning
that if p3 evaluates to deny, then p1 evaluates to deny regardless of the decision
of p2 or p4. Policy components have either rules or other policy components as
children, thus forming policy trees. When their target expressions are applicable,
their child elements are also evaluated to come to a policy decision.

This paper uses STAPL [2] policies as a basis for transformation. STAPL is a
framework and policy language that closely resembles XACML, but which offers
more ease of use and a slightly better evaluation performance. Any XACML
policy can generally be converted to a STAPL policy, and STAPL policies can
similarly be expressed in XACML. Hence, the transformation process applied in
this paper is also applicable for XACML policies.

Figure 3 illustrates a small example policy of an industry case study that
motivated this work [7]. Here, if the action that is performed is “view” (e.g., as
is the case in a search operation), subjects can access documents depending on
their department, whether they have created it or were addressed, and so on. For
example, a subject of the sales department can view invoices if the organization
to which he/she belongs was addressed (rules 1, 5 and 7), unless it involves a
confidential invoice (rule 6).

While both XACML and STAPL support fine-grained specification of access
rules, their policy evaluation process also involves a considerable overhead [22].
For traditional request-response applications, this overhead is in many cases
acceptable. When the policy is evaluated for a large set of resources such as for
search operations on a database, however, this can become an impeding factor.

Related work. Because of its importance, a lot of prior research has focused
on database security [3]. This paper focuses on row-level access control [3]
that follows the Truman model3 [19]. In this regard, there generally exist three
approaches to provide scalable search queries on databases.
3 In a Truman model, queries are transparently modified to restrict access of a subject

to database items.

SEQUOIA: Scalable Policy-Based Access Control for Search Operations 5

The first approach involves techniques generally classified under the term
“Fine-Grained Access Control (FGAC)” [19]. FGAC uses query rewriting tech-
niques [1,5,8,10,15,19] to provide database security. This is typically performed
using rules that are specified in the native query language of the target database
and may be realized through the creation of views. While this approach scales
with regard to the size of the result set, it also has some issues. In particular,
since rules are specified in the native query language, they at least partly violate
the principle of separation of concerns [6], because the database administrator
must help specify the policies. Worse, this approach generally assumes a two-tier
architecture in which subjects directly query the database and can be identified
accordingly. Contemporary applications are typically designed according to a
multi-tier architecture, and generally perform queries on behalf of the subject
without identifying them to the database [20]. This only supports access control
to filter based on accessing applications. Moreover, in large-scale deployments
such as cloud applications, subjects are typically managed at the application
level, and not by the identity management system of the database. Our app-
roach does not suffer these issues due to substitution of subject properties in the
query and the support for externalized policies that are rewritten.

A second approach involves configuring the access control component that
is used by the database based on an external policy. Compared to the previous
approach, this does support separation of concerns. Notable examples for this
approach are MyABDAC [12] and a recent system proposed by Mutti et al [13].
MyABDAC uses XACML policies to generate access control lists for the under-
lying database system. These can then be employed to constrain access. While
this approach maintains separation of concerns, it also assumes a two-tier archi-
tecture and hence suffers the same issues as the first approach. Moreover, it does
not scale well with regard to the size of the database. Mutti et al. introduce a
system that extends SQLite for SELinux support. While this system scales, it
requires specification of database hooks and supports only lattice-based policies,
which are not as fine-grained as XACML policies supported by our approach.

A third approach involves evaluating the access control policy for each of the
items in the result set of a search query. Bouncer [16] takes this approach for
the CPOL trust management system. While this approach supports separation
of concerns and the specification of fine-grained policies, it can also introduce
a considerable overhead when the size of the search result set increases. This is
especially true for fine-grained rules, typically included in attribute-based poli-
cies [22]. Our approach does not suffer from this problem.

This paper pursues an approach that uses query rewriting by using an exter-
nalized policy that is injected at runtime as part of the search query. This app-
roach scales with regard of the result set and regards the separation of concerns
principle. Also, it does not require DBMS modification. This approach has also
been explored by Axiomatics Data Access Filter [18]. Compared to them, this
work focuses on the transformation process, including conversion of XACML
concepts such as policy trees, combining algorithms and multi-valued logic to a
database query. Moreover, we present a thorough evaluation of the approach.

6 J. Bogaerts et al.

Besides access control techniques, several other security measures can secure
search queries on database systems. In particular, secure query processing [24]
and homomorphic encryption [9] aim at supporting queries on an encrypted
data set. While these measures have several issues such as performance and fine-
grainedness of the data set, they can be used complementary to our approach.

Lastly, this research was also influenced by related work done in the enforce-
ment of usage control. In particular, Pretschner et al. [17] have presented an
architecture that enforces usage control policies in a distributed system, with
an emphasis of reducing policy enforcement overhead. In contrast, our approach
does not focus on distributed evaluation for enforcing policies.

3 Sequoia Architecture

This section describes an application-level solution that supports access control
on database search operations in data-driven applications. The solution provides
scalability, expressiveness and separation of concerns. In order to comply with
these requirements, we employ a policy-based, attribute-based access control sys-
tem as a basis for the access control rules that must be supported. Since XACML
is considered the de-facto standard for such access control systems, we use its
language model as a basis for the transformation. We use a rewriting approach
that involves transforming the policy to a query. The transformation process
must cope with fundamental issues to support STAPL policy conversion. In par-
ticular, characteristics such as policy trees, multi-valued logic and combining
algorithms must be translated to a semantically equivalent query expression.

Scope. This paper analyzes the query rewriting approach for relational data-
bases. We expect resources to be represented as the rows of (one or more)
tables and their corresponding attributes as the columns of these tables. These
resources are referred to as items. We assume that all attributes of the resources
referred to in the policy are stored in the database. In addition, the database
schema is expected to provide proper mapping of the attributes onto columns.

Overview. Figure 4 provides an overview of the architecture. The Sequoia mid-
dleware operates between the application layer and the database. Whenever the

Fig. 4. The rewriting approach reduces, transforms and translates the policy and com-
bines it with the original search parameters into a query.

SEQUOIA: Scalable Policy-Based Access Control for Search Operations 7

application queries the database, the middleware intercepts the query and per-
forms run-time injection of the appropriate access rules that are combined with
the original search parameters in a query. The composed query reflects only rel-
evant rules for the subject and ensures that only the items to which the subject
is entitled (i.e., those permitted if the policy is evaluated for each item of the
original search result) are returned.

The policy semantics are preserved throughout the transformation process.
The result set for executing the transformed query is equivalent to the set of
items permitted when performing a policy evaluation on each item resulting
from the original query. To support this, the middleware uses four components:
the reducer, transformer, translator and composer.

Reducer. This component obtains the relevant attribute values associated with
the acting subject, action and environment. Next, similar to [18], it performs
a partial substitution and evaluation of all expressions in the policy that do
not refer to any resource attributes (which will be queried in the database).
This enables pruning of the policy for rules and policy components that always
evaluate to true or false. The reduction minimizes the query that is generated and
eliminates the need for subject attributes to be stored in the same database as the
resources that are searched. For example, consider the policy in Fig. 3 reduced
for the view action and a subject with id=51, dptmt=sales and org=bankA. This
is shown in Fig. 5. The policy is significantly smaller, which avoids redundant
checks and simplifies the final query.

Fig. 5. Reduction of Fig. 3 for a subject with id=51, dptmt=sales and org=bankA.

Transformer. This component transforms the policy to a boolean expression
that can be translated to the query language and combined with search para-
meters at a later stage. Due to policy reduction, no attributes associated with
the subject, action or environment should be left in the policy as they were
substituted with the relevant values.

The transformation must be equivalent for permit decisions. This means
that whenever a policy evaluation leads to a permit decision for a certain item,
the corresponding boolean expression evaluation must also be true. In contrast,
if the evaluation of a policy leads to a not applicable or deny decision, its
corresponding expression must evaluate to false. This also filters out any items

8 J. Bogaerts et al.

for which the evaluation is indecisive. If an error occurs during the evaluation of
the boolean expression, the search query must be aborted altogether4.

For example, consider again Fig. 5 the reduced policy. The transformation of
this policy for the acting subject results in boolean expression [resource.is pri-
vate ∧ (resource.destination org== ‘bankA’ ∨ resource.creator id == ‘51’)] ∧
[resource.type == ‘invoice’ ∧ ¬resource.confidential]. This expression is only
satisfied for items to which the subject is entitled.

Transformation of STAPL policies is not trivial. In particular, we need to take
into account policy trees, multi-valued logic and combining algorithms when a
policy is transformed to a single expression. For this reason, we elaborate on this
in more detail in Sect. 4.

Translator. This component translates the expression that resulted from the
transformation to the query language of the database to which it is submitted.
This involves two tasks. First, the syntax of the expression is translated to the
syntax of the query language for the target database. Second, all attributes
referenced in the expression are translated to column references in the database.

While the first task is generally straightforward because SQL supports
boolean expressions equivalent to the ones to which we transformed, an attribute-
to-schema mapping is required for the second task. This mapping describes how
attributes are mapped onto the columns corresponding to tables in the data-
base. In some cases, some of the attributes associated with the resource could
be stored in a different table than the one that is queried. As a consequence,
the mapping enables the translator to cope with the complexity of the database
schema and can indicate which joins are required in the search query. The table
that is being queried is the base table from which joins to auxiliary tables are
accommodated.

Composer. This component combines search parameters of the original query
with the translated access rules. For example, the transformation of the policy
of Fig. 5 was previously translated to database-specific syntax. This is now com-
bined with the query using an and -operator. Also, any required join operations
are injected in the search query.

4 Transformation

This section addresses the second step in the approach outlined in the previous
section. It performs the transformation of characteristics such as policy trees,
multi-valued logic and combining algorithms to a boolean expression. To achieve
a boolean expression, we iterate over two steps until the policy consists of a single
policy component with a permit overrides algorithm, no target and only rules
as children. We call this a flat component. Figure 6 shows an overview of the
process. Figure 7 illustrates an example.
4 In this transformation, we do not consider extended indeterminate decisions that

are defined in XACML 3.0. Contrary to request-response applications, errors can
not always be gracefully handled for individual data rows.

SEQUOIA: Scalable Policy-Based Access Control for Search Operations 9

Fig. 6. Transformation process
overview

Fig. 7. Policy transformation example

As a first step, we transform every component in the policy tree that has
only rules as children (i.e., a leaf component) to an equivalent flat component.
Also, we conjunct the target expression of each transformed policy component
with the condition expressions of all of its child rules. For this, the original
combining algorithm determines how the transformation is performed to retain
semantic equivalence. As a second step, we regard every node component, i.e.
components with only flat components as children. We pull up all rules of the
children of these node components and transform them to a policy component
with a permit overrides algorithm. Similar to the first step, semantic equiva-
lence is retained through transformation methods that differ for each combining
algorithm. By iterating over these steps, the policy tree is gradually flattened to
result in a single, flat component containing only rules. A boolean expression is
then created as disjunction of the conditions of all permit rule children. Figure 7
illustrates the transformation process applied on a policy. As the figure shows,
the policy is gradually transformed to a single component in bottom-up fashion.

The boolean expression is semantically equivalent to the original with regard
to the permit decision. In other words, if the policy evaluates to permit, the
boolean expression evaluates to true. For not applicable and deny decisions in
the policy, the boolean expression evaluates to false. If an error occurs (e.g., an
attribute value could not be retrieved), the search query will be aborted. We
have developed a formal proof that the transformation process maintains the
semantics of the policy when these equivalence rules are taken into account [4].
Note that Turkmen et al. [23] also developed a flattening process for policies, but
focus on policy analysis, while our approach is optimized for database queries.

In the remainder of this section, we elaborate on the two steps that are
iterated over during the transformation process. Section 5 evaluates a Sequoia
prototype that employs this process for generating queries from STAPL policies.

10 J. Bogaerts et al.

Step 1: Transforming Leaf Components

This step transforms all leaf components (i.e., policy components with only rules
as children) into flat components. In order to retain semantic equivalence, this
requires a different transformation approach depending on the combining algo-
rithm of the component. For example, consider component p3 from Fig. 5. When
this component is transformed to a flat component, the condition of rule r7 is
transformed so that it evaluates to false if either r5 or r6 is applicable.

As a first part of this step, for each rule, the target expression is included
in conjunction with the condition of that rule. This is done regardless of the
combining algorithm. Next, we perform a transformation that depends on the
combining algorithm of the component5.

For first applicable components, a permit rule is applicable only if none
of the deny rules that precede it are applicable. Consequently, we can transform
a permit rule by conjunction of its original condition with the negation of con-
ditions of its preceding deny rules. The deny rules of the original component
can then be included without modification. More formally, the condition of each
permit rule ri of the original leaf component P is transformed as follows:

cond(ri) ∧
∧

rj∈pre(ri,P)

¬cond(rj)

In which cond indicates the condition of a rule, and pre the set of all preceding
deny rules in the same component P .

For deny overrides components any applicable deny rule overrides other
decisions. Consequently, the transformation of a permit rule conjuncts the orig-
inal condition with the negation of all of the deny rule conditions of the original
component. Similar to the first applicable transformation approach, deny rules
are included without modification. More formally, the condition of each permit
rule ri of the original leaf component P is transformed as follows:

cond(ri) ∧
∧

rj∈deny(P)

¬cond(rj)

With deny the set of all deny rules in the same component P as the given rule.
For permit overrides components, no further transformation is required as

it already is a flat component after conjunction of conditions with the target.
Consider components p2 and p3 from Fig. 5 as an example of the app-

roach. In this example, rules r1, r2 and r4 are rewritten to conjunct target
“resource.is private” as an additional constraint for their conditions. For p3, on
the other hand, r7 is transformed to contain a negation of conditions of r5 and
r6. Also, r5 and r6 are included in the result without modification. This results
in a permit overrides component with permit rule “resource.type == ‘invoice’ ∧
¬ resource.confidential” and original deny rules r5 and r6.

5 For brevity, we do not elaborate on approaches for minimizing the generated expres-
sion in this paper.

SEQUOIA: Scalable Policy-Based Access Control for Search Operations 11

Step 2: Pulling Up Flat Components Rules

This step involves all policy components that only have flat components as chil-
dren. The policy components for which all child components satisfy these require-
ments are called node components. In this step, we transform the rules of all child
components, and include them as direct children of the node component. We also
change the node component combining algorithm to permit overrides.

The transformation approach for pulling up flat component rules to be com-
bined at a higher level in the policy tree differs from the one introduced in
step 1. In particular, it takes into account how rules of one child component
affect the decision process at the level of the node component. For example,
consider p1 in Fig. 5. A deny rule such as r5 can affect the decision process even
if r1 is applicable, because the deny decision that may stem from r5 overrides
any permit decision due to the deny overrides of p1.

In order to pull up the rules associated with flat components, the transfor-
mation method needs to ensure that the result has the same semantics as the
original policy component. Hence, the transformed rules must take into account
their original condition, but may also include conditions of rules from other child
components of the node component.

If the node component has a first applicable algorithm, all of the deny rules
of preceding child components are taken into account when a permit rule of a
certain child component is transformed. Consequently, the generated rule cannot
be applicable if a deny rule of a preceding child component was applicable. This
is done by generating a permit rule that has the condition of the original permit
rule in conjunction with the negation for each deny rule of preceding components.
Similar to the previous step, the deny rules are included without modification.
More formally, the condition of each permit rule ri of a child component is
transformed as follows:

cond(ri) ∧
∧

rj∈preco(ri)

¬cond(rj)

In which preco reflects all deny rules from policy components of the given rule’s
ancestor that precede its parent. Deny rules are included in the result without
modification. Note that if a deny rule of preco is applicable, it can still be
overridden by a permit rule condition of its own component.

If the node component has a deny overrides algorithm, the permit rules
of all child components are combined in a single, unified permit rule. All deny
rules are again included without modification. The unified rule must ensure
two properties. First, at least one permit rule of the child components must
be applicable in order for the unified rule to be applicable. Second, for each
child component, if no permit rule is applicable in that child, then its deny
rules must not be applicable. Otherwise, the unified rule is also not applicable.
The first property ensures that the not applicable decision is propagated during
the flattening of the policy tree. The second property ensures that if a child
component leads to a deny decision, then the evaluation of its parent component
will also lead to a deny decision because of the deny overrides algorithm of the

12 J. Bogaerts et al.

node component. In this case, the unified rule can not be applicable, while a
deny rule is. The unified permit rule has a condition that is a conjunction of a
clause of all permit rule conditions appl, and all component clauses comp. Here,
appl ensures the first property and the component clauses ensure the second
property of the unified rule. More formally, we describe this as

appl(P) :=
ri∈permits(P)∨

cond(ri)

In which permits retrieves all permit rules of the given policy component and all
its children. Similarly, denies fetches deny rules of a component and its children.
For each child component PC , component clause comp is constructed as

comp(PC) := (
ri∈permits(PC)∨

cond(ri)) ∨
∧

ri∈denies(PC)

¬cond(ri)

If a node component has a permit overrides algorithm, all rules of its
children are included without modification.

For example, consider again component p1 from Fig. 5. In order to be per-
mitted, the following expression must be satisfied for a evaluation request:
“[resource.is private ∧ (resource.destination org== ‘bankA’ ∨ resource.crea-
tor id == ‘51’)] ∧ [resource.type == invoice ∧ ¬resource.confidential]”. Here,
the unified rule was simplified by applying common logical reduction techniques.

Flat Component to Boolean Expression

The transformation steps are repeated until a single, flat component is resulted.
Finally, the flat policy component is converted to a boolean expression by con-
structing a disjunction of all permit rule conditions of the flat policy component.
If none of the permit rule conditions are applicable, the boolean expression will
evaluate to false, and the database item for which the expression was evalu-
ated will not be included in the result set. This maintains the original policy
semantics because each transformation step ensures that a permit rule of the
transformation is only applicable if it was not overridden by a deny decision. A
formal equivalence proof is given in [4].

5 Performance Evaluation

As discussed earlier in this paper, the a posteriori filter approach for support-
ing policy-based access control for search operations on databases becomes pro-
hibitive with regard to performance when the size of the search result set is
large. To resolve this, we have presented an alternative approach that uses query
rewriting to reduce the overhead of access control. This section evaluates an
implementation of the rewriting approach discussed in Sects. 3 and 4 for trans-
formations from STAPL [2] policies to relational databases, and compares it to
the a posteriori filter approach that was illustrated in Fig. 1.

SEQUOIA: Scalable Policy-Based Access Control for Search Operations 13

We evaluate five aspects. First, we discuss scalability of the rewriting app-
roach compared to the a posteriori filter. Second, we evaluate the overhead intro-
duced by the rewriting approach. Third, we discuss the impact of policy size for
different combining algorithms. Fourth, we inspect the performance impact of
the amount of evaluated attributes. Fifth, we also determine the impact of the
proportion of permitted items on performance.

Setup. The evaluation was performed on a Dell OptiPlex 755 computer with
Intel Core 2 Duo 3 GHz processor and 4 GB internal memory using Ubuntu 15.10
as an operating system and performing all database requests using JDBC to a
MariaDB6 database with caching disabled as much as possible. All queries were
performed locally (i.e., no network traffic was involved). We repeated all tests
10000 times after 100 warmups and took the mean values for processing times.

Scalability. As a first part of the evaluation, we have assessed the scalability
of the rewriting approach with regard to the size of the search result set. To do
this, we have compared how the approach performs with regard to a posteriori
filter, which was illustrated in Fig. 1. The test evaluated the total processing
time required to perform the search query together with determining what items
must be part of the result set. We did this based on an extensive policy that
was inspired by an industry case study [7] that motivated this work and that
contains 32 policy components and 63 rules that regard 33 attributes7.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

0 10000 20000 30000 40000 50000

Database size (# elements)

T
ot

al
 p

ro
ce

ss
in

g
ti

m
e

(m
s)

Approach A posteriori filter Rewriting

Fig. 8. Comparison of processing times for an increasing data set size. Lower is better.

The results are shown in Fig. 8. They demonstrate the processing times
involved with both approaches for a subject that is entitled to about 40% of
6 https://mariadb.org/.
7 This policy can be found at https://github.com/stapl-dsl/stapl-examples/blob/

master/src/main/scala/stapl/examples/policies/EdocsPolicy.scala.

https://mariadb.org/
https://github.com/stapl-dsl/stapl-examples/blob/master/src/main/scala/stapl/examples/policies/EdocsPolicy.scala
https://github.com/stapl-dsl/stapl-examples/blob/master/src/main/scala/stapl/examples/policies/EdocsPolicy.scala

14 J. Bogaerts et al.

the items. As the figure shows, the rewriting approach performs far better than
the a posteriori filter. We only performed evaluation for the latter for up to 25000
items, because measuring it involved too much processing time for repeated tests.
In contrast, the rewriting approach requires considerably less processing time
with regard to the database size. For example, the same test for a data set of a
million items had a processing time of 4037 ms. This included the serialization
of the items in the result set in Java data structures, which amounted to 67% of
the query processing time on average. Consequently, we can conclude that the
rewriting approach scales well with an increasing data set.

0

20

40

60

80

1000 2000 4000 8000 10000 15000 20000 25000 50000

Database size (# elements)

To
ta

l p
ro

ce
ss

in
g

ti
m

e
(m

s)

Processing time Query processing
Transformation

Reduction

Fig. 9. Transformation overhead
analysis. The processing times for
reduction and transformation steps
remain constant, whereas query
processing times increase with the
amount of data items.

0

20

40

60

80

0 10 20 30 40 50 60

Policy size (# policy elements)

To
ta

l p
ro

ce
ss

in
g

ti
m

e
(m

s)

Type A posteriori filter DO FA PO

Fig. 10. The processing time in func-
tion of the policy depth for first
applicable (FA), deny overrides (DO),
permit overrides (PO) policies and the
a posteriori filter. Lower is better.

Overhead. As a second part of the evaluation, we inspected the overhead
involved with the different steps of the rewriting process. We have done this
for an increasing search result size in a same test setup as the scalability test.

Figure 9 shows the overhead of different transformation steps in the rewriting
approach. The figure shows that the policy reduction and transformation steps
remain constant and are dominated by the query processing for larger result
sets. The overhead for the policy reduction and transformation steps depends on
the subject. For some subjects, for example, the transformation step amounts to
less than 1 ms.

Because overhead of the transformation steps remain constant, the query
processing time becomes the dominant factor in the total processing time as
the size of the database increases. In the a posteriori filter approach, the time
required for policy evaluation on each element is the dominating factor for the
processing time. Also, note that the result of the transformation can be cached for
each subject, which reduces the overall processing time for subsequent searches.

Policy size impact. As a third part of the evaluation, we have assessed the
impact of the size of the policy on the processing time of the rewriting approach.

SEQUOIA: Scalable Policy-Based Access Control for Search Operations 15

15

30

45

60

75

90

10 20 30 40 50

Number of attributes involved

To
ta

l p
ro

ce
ss

in
g

ti
m

e
(m

s)

Approach A posteriori filter Rewriting

Fig. 11. Processing time in function
of the number of involved attributes.
Lower is better.

20

40

60

80

0 25 50 75 100

Proportion of permitted items (%)

To
ta

l p
ro

ce
ss

in
g

ti
m

e
(m

s)

Approach A posteriori filter Rewriting

Fig. 12. Impact of the proportion of
permitted items on processing times.
Lower is better.

We evaluate this for the deny overrides, permit overrides and first applicable
combining algorithms.

The test generated policies for varying policy depths, i.e., numbers of nodes on
the path from the root policy component to the leaf-level components. For each
depth, the policy contains 2d+1 − 1 policy elements, 2d of which are rules. Each
component has two children and the same combining algorithm. Leaf components
all have one permit and one deny rule. The test was performed on 1000 elements.

Figure 10 shows the processing time for the rewriting approach for different
combining algorithms and the a posteriori filter when the depth of the policy tree
increases. For the a posteriori filter, we have plotted the mean evaluation time
for the three policy types, as they had similar processing times. As expected,
total processing times increase due to an increasing number of policy elements.
The deny overrides algorithm performs worst for the rewriting approach. This
is because the transformation introduces inevitable redundancy in the query to
maintain original semantics. This test, however, involves the worst-case scenario
for a large policy. Moreover, a posteriori filtering still exceeds the query rewriting
approach for an extensive policy. The largest proportion of the overhead is due
to policy transformation, which amounts to about 85% of the total time for deny
overrides components in the rewriting approach.

The permit overrides transformations, on the other hand, perform best
because the transformation does not need to take into account the conditions of
any deny rules.

Attribute impact. As a fourth part of the evaluation, we investigated the
impact that the amount of attributes involved in the evaluation had on the
processing time of the secured search query. To determine this, we generated sev-
eral policies that require n resource attributes to be evaluated prior to resorting
to a decision, with n ranging from 5 up to 50 attributes. The test was performed
on a data set of 1000 items, from which 50% are part of the final result.

Figure 11 shows that the rewriting approach performs better than the a poste-
riori filter, while difference in processing times is fairly constant. The a posteriori
filter has higher overhead because all items are fetched and evaluated. For the

16 J. Bogaerts et al.

rewriting approach, the curve is explained due to the time required to perform
the transformation (up to 78% of the total time) and the overall impact of the
amount of attributes seems limited for the amount of attributes involved.

Result size impact. As the last part of the evaluation, we measured the impact
on the processing time of the proportion of items that are part of the permitted
result set. This test considers the processing time for an increasing percentage
of items of the data set to which the subject is entitled. For this test, we used
the same setup as for the attribute impact evaluation.

Figure 12 demonstrates that the processing time for the a posteriori filter
approach remains fairly constant, because it needs to evaluate all items regardless
of the proportion of permitted items. In contrast, the rewriting approach has a
processing time that is directly proportional to the amount of items that are
permitted. In other words, if a subject is entitled to a smaller proportion of the
data set, the rewriting approach will perform better than if he/she is entitled to
a large proportion. For example, if a subject is entitled to 25% of the items, the
processing time will be smaller than if he/she is entitled to 75% of the items. In
all cases however, the rewriting approach performs significantly better than the
a posteriori filter.

Summary. The evaluation indicates that the rewriting approach performs far
better than the a posteriori filter, because it scales well with regard to the result
set size and the number of attributes evaluated. Moreover, the approach performs
even better when a subject is entitled to a smaller proportion of the data set,
which is common in contemporary applications.

6 Conclusion

This paper presented an application-level middleware that supports scalable
policy-based access control for search queries on relational databases. It does
this in a manner that also supports expressive policies and separation of con-
cerns. Because the de-facto standard for policy-based, attribute-based languages
is XACML, this paper also elaborated on a method that transforms policies with
a similar model to a boolean query expression that can be translated and com-
bined with the search parameters. The evaluation shows that our approach per-
forms far better than the current state of practice. As a result, we can conclude
that this work constitutes an important step for maturation of both policy-based
access control and database access control using application-level middleware.

References

1. Oracle Virtual Private Database (VPD). http://docs.oracle.com/cd/B28359 01/
network.111/b28531/vpd.htm. Accessed 9 Sept 2016

2. Simple Tree-structured Attribute-based Policy Language (STAPL), June 2016.
https://github.com/stapl-dsl. Accessed 26 Sept 2016

http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm
http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm
https://github.com/stapl-dsl

SEQUOIA: Scalable Policy-Based Access Control for Search Operations 17

3. Bertino, E., Sandhu, R.: Database security-concepts, approaches, and challenges.
IEEE Trans. Dependable Secur. Comput. 2(1), 2–19 (2005)

4. Bogaerts, J., Lagaisse, B., Joosen, W.: Transforming XACML policies into database
search queries. Technical report, KU Leuven (2017)

5. Carminati, B., Ferrari, E., Cao, J., Tan, K.L.: A framework to enforce access control
over data streams. ACM TISSEC (2010)

6. De Win, B., Piessens, F., Joosen, W., Verhanneman, T.: On the importance of the
separation-of-concerns principle in secure software engineering. In: Application of
Engineering Principles to System Security Design (2002)

7. Decat, M., Bogaerts, J., Lagaisse, B., Joosen, W.: The e-document case study:
functional analysis and access control requirements. Technical report, KU Leuven
(2014)

8. Franzoni, S., Mazzoleni, P., Valtolina, S., Bertino, E.: Towards a fine-grained access
control model and mechanisms for semantic databases. In: IEEE International
Conference on Web Services, ICWS 2007, pp. 993–1000. IEEE (2007)

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, vol. 9,
pp. 169–178 (2009)

10. Grummt, E., Müller, M.: Fine-grained access control for EPC information services.
In: Floerkemeier, C., Langheinrich, M., Fleisch, E., Mattern, F., Sarma, S.E. (eds.)
IOT 2008. LNCS, vol. 4952, pp. 35–49. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78731-0 3

11. Hu, V.C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R., Scarfone,
K.: Guide to Attribute Based Access Control (ABAC) Definition and Considera-
tions. NIST Special Publication (2014)

12. Jahid, S., Gunter, C.A., Hoque, I., Okhravi, H.: MyABDAC: compiling XACML
policies for attribute-based database access control. In: Proceedings of the First
ACM Conference on Data and Application Security and Privacy, pp. 97–108. ACM
(2011)

13. Mutti, S., Bacis, E., Paraboschi, S.: SeSQLite: security enhanced SQLite: manda-
tory access control for android databases. In: Proceedings of the 31st Annual Com-
puter Security Applications Conference, pp. 411–420. ACM (2015)

14. OASIS: eXtensible Access Control Markup Language (XACML) Standard, Version
3.0 (2013). http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

15. Olson, L.E., Gunter, C.A., Cook, W.R., Winslett, M.: Implementing reflective
access control in SQL. In: Gudes, E., Vaidya, J. (eds.) DBSec 2009. LNCS, vol.
5645, pp. 17–32. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03007-9 2

16. Opyrchal, L., Cooper, J., Poyar, R., Lenahan, B., Zeinner, D.: Bouncer: policy-
based fine grained access control in large databases. Int. J. Secur. Appl. 5, 1–16
(2011)

17. Pretschner, A., Hilty, M., Basin, D.: Distributed usage control. Commun. ACM
49, 39–44 (2006)

18. Rissanen, E.: Fine-grained relational database access-control policy enforcement
using reverse queries. US Patent 9,037,610, 19 May 2015

19. Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extending query rewriting tech-
niques for fine-grained access control. In: SIGMOD. ACM (2004)

20. Roichman, A., Gudes, E.: Fine-grained access control to web databases. In: Sym-
posium on Access Control Models and Technologies. ACM (2007)

21. Samarati, P., Vimercati, S.C.: Access control: policies, models, and mechanisms.
In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 137–196.
Springer, Heidelberg (2001). doi:10.1007/3-540-45608-2 3

http://dx.doi.org/10.1007/978-3-540-78731-0_3
http://dx.doi.org/10.1007/978-3-540-78731-0_3
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://dx.doi.org/10.1007/978-3-642-03007-9_2
http://dx.doi.org/10.1007/3-540-45608-2_3

18 J. Bogaerts et al.

22. Turkmen, F., Crispo, B.: Performance evaluation of XACML PDP implementa-
tions. In: Proceedings of the 2008 ACM Workshop on Secure Web Services (2008)

23. Turkmen, F., Hartog, J., Ranise, S., Zannone, N.: Analysis of XACML policies
with SMT. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp.
115–134. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46666-7 7

24. Wang, S., Agrawal, D., Abbadi, A.: A comprehensive framework for secure query
processing on relational data in the cloud. In: Jonker, W., Petković, M. (eds.)
SDM 2011. LNCS, vol. 6933, pp. 52–69. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23556-6 4

http://dx.doi.org/10.1007/978-3-662-46666-7_7
http://dx.doi.org/10.1007/978-3-642-23556-6_4
http://dx.doi.org/10.1007/978-3-642-23556-6_4

A Voucher-Based Security Middleware
for Secure Business Process Outsourcing

Emad Heydari Beni1(B), Bert Lagaisse1, Ren Zhang2, Danny De Cock2,
Filipe Beato2, and Wouter Joosen1

1 imec-Distrinet, KU Leuven, Leuven, Belgium
{emad.heydaribeni,bert.lagaisse,wouter.joosen}@cs.kuleuven.be

2 imec-COSIC, KU Leuven, Leuven, Belgium
{ren.zhang,danny.decock,filipe.beato}@esat.kuleuven.be

Abstract. Business Process Outsourcing (BPO) enables the delegation
of entire business processes to third party providers. Such scenarios
involve communication between federated and heterogeneous workflow
engines. However, state-of-the-art workflow engines fall short of a dis-
tributed authorisation mechanism for this heterogeneous, federated BPO
setting.

In a cross-organisational context, the security requirements involve
(i) delegation and verification of privileges in a confidential manner,
(ii) secure asynchronous operations during the long-term workflows even
when the users are logged-off, and (iii) controlling access to interfaces of
the different workflow engines involved.

To address these challenges, we present a voucher-based authorisation
architecture and middleware. We extended the WF-Interop [2] middle-
ware with a security module to support this authorisation architecture.
We further validated our contributions by prototyping a billing workflow
case study on top of the extended WF-Interop middleware and evaluated
the performance overhead of the security extensions to the middleware.

Keywords: Security middleware · Authorization · Business process

1 Introduction

Software service providers are evolving towards a Business Process Outsourcing
(BPO) model. BPO refers to delegation of entire business processes to third party
providers. Providers take over the complete business functions and are free to
choose the implementations; consumers only receive the results of processes [2,
6,11,25].

For example, accounting departments of many companies outsource their
billing processes to external service providers. These processes comprise activities
such as documenting, shipment and payment. For instance, (1) an accounting
manager submits an order to send some bills by the end of the month. (2) The
billing process gets started at the provider’s side by the accounting department.
The service provider takes over the entire process. (3) They print and package
c© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 19–35, 2017.
DOI: 10.1007/978-3-319-62105-0 2

20 E.H. Beni et al.

the bills. Afterwards, (4) they start a delivery process at a shipping company.
The accounting department periodically inspects the running processes at the
provider for progress updates to know the current status of the bills (e.g. sent,
resent, paid, etc.).

Supplier

Financier

Buyer
(1)

(2)

(3)
(5)

(7)

1. The buyer purchases some products.
2. The supplier delivers the products with invoices.
3. The buyer starts a reverse factoring process.
4. The financier asks for the supplier's decision.
5. The supplier confirms the process.
6. The financier makes an early payment to the supplier.
7. The buyer pays back on a due date.(6)

(4)

Fig. 1. Reverse Factoring (RF)

Reverse Factoring (RF) in the FinTech sector is another example of such a
process. Reverse Factoring enables companies to pay their bills on time with
assistance of financiers (also called brokers), see Fig. 1. In brief, (1) a buyer
purchases some products from a supplier; (2) the supplier sends a bill to the buyer
with a due date; the buyer wants to pay the bill on time to ensure their business
continuity; (3) they therefore request a financier to get financial assistance; (4,
5) the financier evaluates the request in first place; then they negotiate with
the supplier for their decision. If all parties reach an agreement on this process,
(6) the financier pays the buyer’s bill before its due date; and instead, (7) the
buyer will pay the bill to the financier with an extended due date, perhaps with
interest. Buyer companies tend to employ BPO in order to outsource the entire
process to a provider (a broker/financier) to be able to concentrate on their core
business. The Reverse Factoring scenario is the running example in this section.

Each of the business processes gets executed over different workflow engines
located in different companies. These heterogeneous workflow engines have their
own business-specific security mechanisms to protect their sensitive data and
control the access rights. The diversity of technologies used in workflow man-
agement systems across the BPO parties introduces interoperability issues with
respect to service computing in general, and security in particular. Heydari et al.
[2] outlines the common patterns among such BPO scenarios as follows.

– Multiple parties are involved in BPO model, resulting in federated, heteroge-
neous workflow engines.

– Outsourced processes are long running workflows, e.g. taking days or weeks
to be completed.

– Occasionally, the client parties inspect the progress of outsourced processes.

On the one hand, most of the security mechanisms in workflow engines
are used to meet the intra-organisational requirements, e.g. Role Based Access
Control (RBAC) [9]. On the other hand, the federated, cross-organisational
approaches in more general context (e.g. WS-Trust [19]) do not particularly take

A Voucher-Based Security Middleware for Secure BPO 21

all of the process outsourcing characteristics into account. Such characteristics
include hierarchical and iterative delegation of privileges, human-involvement,
organisational confidentiality, long-running workflows or asynchronous opera-
tions without active sessions (see Fig. 2).

Buyer
engine

Financier
engine

Delegations

Start a RF process

Weeks/days

Delegation of the
authorised actions

to be performed on suppliers

Supplier
engine

Authorised
actions

Performing an action

Privilege delegation

Fig. 2. Reverse Factoring (RF)

The scope and contribution of this paper is a security architecture and mid-
dleware that support following authorisation requirements and features in a BPO
setting with federated, heterogeneous workflow engines.

1. Delegation and validation of all or subsets of authorised privileges (access
rights) to other involved people or executing, federated workflow engines. For
example, an accounting manager (buyer company) delegates the progress
inspection privilege to an accountant; or an accounting workflow engine dele-
gates a subset of its BPO functional rights (e.g. starting a process at a seller)
to a financier engine.

2. Secure asynchronous operations during long-term workflows even when the
users are logged off. For example, an accounting engine in a buyer com-
pany may require to perform an action (e.g. start/inspect a process) when
the accountant is not logged in and there is no actual session available in
the execution context of the engine. Therefore, there should be a way for the
buyer’s engine to authenticate against the financier’s engine and perform the
authorised actions.

3. Controlling access to interfaces of workflow engines in the context of BPO. For
example, when an accounting manager starts a Reverse Factoring process,
an accountant should not be able to cancel the process, but only inspect it.
That constraint should be reflected to the accounting workflow engine by the
application interface (API) of the financier’s workflow engine.

To address these requirements, we present an access and enforcement mech-
anism as an integral part of the BPO model and middleware. This system works
with vouchers (also called tokens or assertions), i.e. a digital representation of a
claim or set of claims which has been certified by a particular entity [22]. Vouch-
ers establish a decentralised authorisation management that aims to provide
trust and security assurance to the involved parties in BPO scenarios.

To validate the voucher system, we implemented a security module for the
WF-Interop middleware [2], i.e. a middleware interfacing heterogeneous and fed-
erated workflow engines in a unified RESTful architecture to support the BPO

22 E.H. Beni et al.

use cases. The security module enables BPO consumers and providers (1) to
manage (i.e. produce or delegate) security vouchers and (2) to verify the privi-
leges and integrity of vouchers for each service call.

Furthermore, WF-Interop has a hypermedia-driven application interface,
meaning that it enables the service consumers to discover the capabilities of
underlying workflow engines by offering pointers to the next possible actions
upon each service invocation. For example, if a consumer, via WF-Interop, starts
a workflow instance in a Ruote [17] engine, WF-Interop embeds hyperlinks of
other related actions such as pause and abort in the response. The capabil-
ity propositions are based on the underlying engine, the type, the state of the
process, and most importantly, the access right of the entity identity. Hence the
security module securely controls the consumer-specific action propo-
sitions based on the voucher content.

The rest of this paper is structured as follows. Section 2 describes the neces-
sary background about business processes and BPO, as well as an overview of
related work in the authorisation domain. Section 3 introduces a voucher-based
architecture to achieve secure BPO. Section 4 validates the aforementioned con-
cepts and the security extensions to the WF-Interop middleware by a billing
workflow case study. Section 5 evaluates the WF-Interop extensions in terms of
performance. Section 6 concludes this paper.

2 Background and Related Work

In this section, we present a brief overview of workflows1 and Business Process
Outsourcing (BPO). Afterwards, the WF-Interop [2] middleware is described,
including the key interfaces and hypermedia-driven architecture. In addition,
the related work in the domain of security protocols and frameworks for authen-
tication and authorisation are presented.

2.1 Background on BPO and WF-Interop

A business process is a group of activities that, once completed, will accomplish
an organisational goal. For example, when you purchase a product online, you
start a business process of purchase. This business process contains activities
such as order placement, bank transfer, inventory checks and shipment. Once all
are completed, you receive the product (the main goal).

A process definition is a representation of what is intended to happen [5],
described by a business process modelling language such as BPMN. It contains
a sequence of activities showing the order, relationships and semantics of the
business process. Workflow engines execute the activities of process definitions.
For each round of execution, an instance of a definition is created, holding a set
of context-specific variables. Business Process Outsourcing (BPO) refers to dele-
gation of entire business process to third party providers. Process definitions get
deployed, instantiated and then executed entirely by different workflow engines.
1 In this paper, we use the terms business process and workflow interchangeably.

A Voucher-Based Security Middleware for Secure BPO 23

WF-Interop is a middleware interfacing heterogeneous and federated work-
flow engines in a unified RESTful architecture aiming at facilitating BPO.
Heydari et al. [2] describes WF-Interop, which has three interfaces: (i) deploy-
ment, i.e. enabling consumers to manage process definitions; (ii) activation, i.e.
enabling consumers to activate process instances; (iii) progress monitoring, i.e.,
enabling them to monitor the progress of running instances. Accordingly, all
workflow activities are delegated to the third parties and the level of communi-
cation of BPO clients is limited to coarse-grained interactions provided by the
interfaces.

Hypermedia-driven interfaces in BPO. WF-Interop interfaces leverage well-
known principles such as Hypermedia as the Engine of Application State
(HATEOAS). In brief, when a BPO consumer calls a service function from one
of the WF-Interop interfaces, WF-Interop embeds some navigational informa-
tion (a set of links) in the response. For example, the Ruote workflow engine
supports a set of functionalities on process instances such as start, get, pause,
resume and abort. A BPO consumer calls the start functionality (from the
activation interface) of WF-Interop. The WF-Interop middleware acts as a
facade to several workflow engines and provides a uniform, coherent abstraction
for consumers. Therefore, for this request it uses the built-in adapter for Ruote
and starts a process. The process instantiation is an asynchronous service call,
meaning that WF-Interop responds to the request initiator earlier than the com-
plete process instantiation. In the body of the response, it embeds {get, abort}
as the relevant navigational links. If the consumer calls the get function for that
process instance after a while (when the process is instantiated), WF-Interop
proposes {get, abort, pause} in the response. The capability propositions of
WF-Interop are based on the underlying engine, the type, and the state of the
process.

2.2 Related Work

Workflow engines support different access control models. Role-Based Access
Control (RBAC) [9] is an access control mechanism that comprises users’ roles
and privileges. Attribute-Based Access Control (ABAC) [13] employs a more flex-
ible paradigm by use of policies combining attributes and producing boolean logic
outcomes. Business processes benefit from these mechanisms for authorisation
of users’ actions and restricting the access to resources in an intra-organisational
context [3,23]. WS-HumanTask [10] has an emphasis on the human-involvement
in business processes by providing roles illustrating actions that users can per-
form on tasks. Other approaches to access control for resources in a workflow
context are studied in [18]. Considering the delegation of roles and access rights,
some studies presented delegation models and frameworks for RBAC [24,26];
moreover, an extensive comparison of delegation models in a business context
is provided in this review [21]. Most of these works did not take the cross-
organisational characteristics of business process outsourcing into account.

WS-Trust [19] introduces a Security Token Service responsible for issuing
tokens. It establishes a broker trust relationship among participants involved in

24 E.H. Beni et al.

distributed systems. Recently the state of practice has moved towards the OAuth
2.0 authorisation framework [12]. Through different flows, OAuth2 enables third
party applications to have limited authorised access to services on behalf of
the resource owners by providing access tokens. To harden the authorisation
mechanism presented in OAuth2, OpenID Connect [20] adds an identity layer
on top of the OAuth2 protocol in order to provide authentication.

Another improvement is to employ Macaroons [4] to structure each OAuth2
token. Macaroons embed caveats (i.e. that defines specific authorisation require-
ments), as well as attenuation and contextual confinement of authorisation
requests. The proof-carrying characteristic of Macaroons is based on an HMAC-
based construction inspired by Merkle-Damg̊ard hash function.

In the public-key-based area, SPKI/SDSI [8] employs name and namespace
certificates to define identities, and authorisation certificates (delegatable by
subjects) to define what each principal is allowed to do. To perform an action
on a secure api, a certificate chain needs to be provided by the subjects.

All of the given mechanisms focus on authorisation and authentication of
parties in a generic context which can be applied to business processes in general
and BPO in particular. But most of the mechanisms support some or none of
the cross-organisational characteristics of a BPO context with federated workflow
engines. For example, the lacking characteristics include hierarchical structure of
authorisation, confidential assertions, long-running workflows with asynchronous
operations, and secure proposition filtering of HATEOAS which is used in the
BPO middleware.

3 Secure BPO

In this section, we describe a security architecture and middleware for the three
requirements defined in Sect. 1:

1. Delegation and validation of access rights using a voucher-based approach.
2. Secure asynchronous operations by workflow engines when the executing user

is logged-off.
3. Secure filtering of HATEOAS propositions in BPO APIs.

The features of this security architecture are implemented as extension to
the WF-Interop middleware and are applied to the communication between het-
erogeneous and federated workflow engines. In Sect. 3.1, we present the voucher
structure, as well as how it facilitates the delegation and verification of privi-
leges. In Sect. 3.2, the secure asynchronous operations are described. The secure
filtering of HATEOAS propositions is explained in Sect. 3.3.

3.1 Delegation and Validation of Access Rights

We present a voucher-based authentication and authorisation protocol that
establishes an architecture aiming to provide delegation and validation of access

A Voucher-Based Security Middleware for Secure BPO 25

rights in BPO scenarios. In this subsection, we describe (i) the structure of a
voucher; (ii) the procedure of voucher delegations; (iii) the voucher verification
steps; and lastly (iv) the renewal procedures.

Voucher Structure. “A claim is a statement that something is the case, without
being able to give proof” [1]. A voucher (also called token or assertion) is a digital
representation of a claim or set of claims which has been certified by a particular
entity2 [22]. In addition to the non-repudiation3 characteristic common among
similar works [15], our vouchers contribute a set of features:

– Hierarchical structure. A voucher owner can delegate a subset of his claims
to a new subject by creating a new voucher with less or equal validity period.
The parent vouchers are embedded within a child voucher. Therefore, the
verifiable iteration of parents provides a chain of trust.

– Confidentiality. The subject cannot learn anything from the parent vouchers
because all of the parent vouchers are protected by hybrid encryption4.

– Stateless. The identity provider and servers store no information about ses-
sions and delegations (parent vouchers).

According to the JSON web tokens (JWT) [15] representation, there are
three types of claims: registered, public and private.

Listing 1.1. Voucher payload

{
parent : Enc (parent vouchers) ,
j t i : a voucher unique i d e n t i f i e r ,
i s s : the i s s u e r i d en t i t y ,
sub : the sub j e c t i d en t i t y ,
i a t : the i s s u i n g time ,
exp : the exp i r a t i on time
wf i : the workflow i d e n t i f i e r ,
wei : the eng ine i d e n t i f i e r ,
a c t i on s : the l i s t o f a l lowed ac t i on s

}

The registered and public claims are predefined in the standard [15], e.g.
jti, iss, sub, iat and exp (see Listing 1.1). We extended the representation
by adding extra fields such as parent, wfi, wei and actions in the form of
private claims. The parent field is the issuer’s voucher encrypted using a hybrid
encryption scheme with the public key of an identity provider (WF-Interop).
The wfi and wei are the unique identifiers of the workflow and the responsible

2 In BPO, entity can be a person, a group, a department or a workflow engine.
Attributes of an entity can be an email address, a public key or a randomly generated
value.

3 Using cryptographic signatures the integrity of the voucher and the authenticity of
the issuer are guaranteed.

4 This scheme is a mix of a public-key cryptosystem with a symmetric-key crypto
system, e.g. OpenPGP.

26 E.H. Beni et al.

workflow engine. Lastly, the actions field is a list of permitted actions that the
subject is able to execute.

The JWT representation [15] has three segments: a header, a payload and a
signature. Listing 1.1 represents the payload of a voucher. The header describes
the cryptographic operations applied to the JWT [14] token, e.g. the scheme used
in signatures. The third segment is the cryptographic signature as the vouchers
are secured.

In summary, we employed the JWT standard representation with extension
of embedded parent vouchers and BPO related fields as private claims.

Voucher Delegations. In this subsection, we describe an approach for delega-
tion of vouchers. The key differentiators are decentralised voucher generation,
iterative delegations and user-owned cryptographic keys.

In our running example, we use fictional characters: Alice, Bob and Carol.
Each of the actors owns a pair of public-key cryptographic keys5 (pk, sk)
for voucher-based functionalities and a secret for authentication against WF-
Interop. WF-Interop is aware of the public keys (Pk’s), the secrets, the workflow
engines, and the workflows with all set of possible actions. The public keys of
the users are known to WF-Interop, however the private keys are only known to
the users. In addition, WF-Interop has its own pair of public and private keys.
The public key is broadcasted to all actors. Figure 3 illustrates voucher creation,
voucher usage and voucher delegation:

1. Voucher creation. Alice wants to create a voucher for Bob. (i) She creates a
voucher Vab by adding some claims including permitted actions (e.g. starting
a payment process), and (ii) signs it using her Sk. (iii) Afterwards, she sends
the voucher to Bob via WF-Interop over a secure channel. WF-Interop checks
the identifier of the voucher because the voucher might have been revoked by
the issuer. In other words, WF-Interop only stores the identifiers of revoked
vouchers.

2. Voucher usage. Bob wants to perform an action on a secure workflow engine
which is authorised by Alice using the voucher Vab. (i) He sends the execution
request to the engine via WF-Interop along with his secret and the voucher.
Before execution, (ii) WF-Interop verifies the authenticity of Vab and validates
that whether Bob’s claim to perform the action is available in the voucher
(refer to Sect. 3.1). (iii) Then it executes the actual request.

3. Voucher Delegation. Bob wants to delegate a subset of the permitted actions
from his voucher Vab to Carol. (i) He creates a voucher Vbc and adds some of
his claims to it. (ii) He encrypts the Vab with the public key of WF-Interop
using hybrid encryption and embeds it in the Vbc as the parent voucher. His
confidentiality is protected as she is not able to see the complete set of his
claims within Vab. (iii) Afterwards, he sends Vbc to Carol via WF-Interop over
a secure channel. The validity period of the vouchers are less than (or equal
to) the validity of the parent vouchers.

5 Using a public key (pk), one can either encrypt a message or verify a signature and
with a private key (sk) one can either decrypt or sign a message.

A Voucher-Based Security Middleware for Secure BPO 27

(1) Voucher creation

(2) Voucher usage

(3) Voucher delegation

1. Alice wants to generate a voucher for Bob.
2. Bob wants to use his voucher (Vab)
3. Bob wants to delegate a subset of his claims to

Carol.

Fig. 3. Voucher creation, usage, and delegation

In a BPO context, iterative and hierarchical delegation of vouchers is
unavoidable. For example, an accounting director may delegate her executive
tasks to the other employees; or a BPO provider engine may need to again out-
source some part of the process to another provider’s engine for special services.

Voucher Verifications. The WF-Interop security component verifies the valid-
ity of the vouchers upon usage (e.g. see Fig. 3 when Bob wants to use his voucher).
Obviously, a voucher must contain the claim to access a resource that the request
initiator wants to have access to. Besides, the verification procedure encompasses
three more criteria:

28 E.H. Beni et al.

– Chain of trust. WF-Interop is able to decrypt the embedded parent vouchers
and verify the signatures. The issuer of the child voucher must be the subject
of the parent voucher.

– Monotone decreasing access rights. Every child voucher must contain less/e-
qual claims than/to the chain of parents, meaning that there must be no
unknown claim in the set of claims.

– Identity assertions. The identity of the issuer must be the subject of the
parent voucher. Moreover, the provided secret adds a layer of authentication
to the verification of the subject.

Ultimately if the verification process succeeds, the delegatee gains access to
the requested resource on behalf of the delegator, e.g. starting an invoice delivery
process by Carol.

Voucher Renewal. Vouchers have a validity period which is set by the issuer.
A BPO provider’s voucher may expire before completing the business process,
e.g. a problem in the delivery of a bill may slow down a billing process. In such
a case, the subject requests the issuer(s) to renew the voucher.

Assume that Carol wants her voucher (Vbc) to be renewed. Vbc is issued by
Bob; and Vab, as the parent of Vbc, is issued by Alice iteratively. (1) Carol sends
a renewal request to WF-Interop along with Vbc and her secret; (2) WF-Interop
authenticates Alice using the provided secret; (3) then it recursively checks the
expiration time of the parents’ vouchers (Vab). If Bob’s Vab, as the first parent
voucher, is still valid, it sends a renewal request to him. Otherwise, the request
will be sent to Alice. (4) The responsible issuer creates a new voucher and sends
it back to Carol via WF-Interop.

3.2 Secure Asynchronous Operations

Sometimes workflow engines perform BPO actions on external workflow engines
when the responsible user is not logged in. For example, there might be a timer in
the business process to start an instance at the service provider in the future; or
the client process inspects the progress of the outsourced workflow periodically
every 2 h; or the logged-in person is not the person with the right authority to
continue the execution. That means that the subject has no authenticated session
in the workflow engine at the time of a service invocation because the outsourced
processes are typically long running; in other words, the client workflow engine
cannot authenticate against the BPO provider engine to perform the authorised
actions.

There are two options to address this issue using vouchers. (i) The workflow
engine keeps the vouchers in the running process instance and impersonates the
subject at the execution time. In a more restricted case, (ii) the responsible
person may delegate a set of his access rights by creating a new child voucher
to the executing workflow engine or a person in charge for a specific amount of
time as described in Sect. 3.1.

A Voucher-Based Security Middleware for Secure BPO 29

3.3 Secure HATEOAS Filtering

As described in Sect. 2.1, WF-Interop comprises a set of hypermedia-driven inter-
faces which are based on a principle called Hypermedia as the Engine of Appli-
cation State (HATEOAS) [2]. In brief, when a client accesses a resource at the
provider’s workflow engine, WF-Interop proposes a set of related resources to the
request initiator based on the (1) underlying workflow engine, (2) the type and
(3) the state of the running process instance. For example, when an accounting
manager starts a Reverse Factoring process, the accounting workflow engine
receives navigational information of the related resources such as pause, inspect
and cancel. In this case, an accountant should only be able to inspect the
progress without being able to cancel the process.

Client
Engine

Provider
Engine

Delegations
Secure
filtering

HATEOAS

BPO-Interop
internals

B
P
O
-I
n
te
ro
p

Fig. 4. Secure HATEOAS filtering

As illustrated in Fig. 4, the HATEOAS component retrieves the related
resources from the storage mechanism of WF-Interop upon each action execution
on the provider’s workflow engine. Clients enable the secure filtering component
to filter out the unauthorised resources by passing along their vouchers to the
BPO interfaces of WF-Interop. In other words, a client only receives a set of per-
mitted resources, which are securely included in the given voucher, as HATEOAS
propositions.

4 Validation and Illustration

As a validation of the principles and architecture of the voucher-based authen-
tication and authorisation in a BPO context, we prototyped an accounting
workflow with an outsourced billing workflow on top of the WF-Interop mid-
dleware [2]. The goal of this validation is to illustrate a decentralised, cross-
organisational authorisation mechanism to support long-term remote interac-
tions between heterogeneous workflow technologies.

To implement the accounting case study, we employed the jBPM workflow
engine for the accounting process and the Ruote workflow engine for the billing
process. They communicate via the WF-Interop middleware (see Fig. 6). Figure 5
illustrates a simplified accounting workflow responsible for starting a process at a

30 E.H. Beni et al.

Voucher
delegation

Start
a billing process

Secret Key
Select

a set of actions

Inspect
the progress

A
cc

ou
nt

in
g

D
el

eg
at

io
ns

+

Voucher
delegation

+

valid
 voucher? bill paid?

yesyes

nono

Create
and sign the

voucher

 Voucher
information

1 2

Fig. 5. Outsourcing a billing process in jBPM workflow engine.

billing provider (not shown in the figure) and inspecting the progress periodically,
as well as a subprocess for creation or delegation of the vouchers.

The accountant is the business owner holding a voucher (Va). (1) He delegates
some privileges to the billing provider by creating a voucher (Vab) (e.g. by adding
a claim enabling the billing provider to start a process at his trusted package
delivery service.). Then he starts a billing process at the billing provider by
providing Va and Vab. Using Va WF-Interop authorises the action and passes
the Vab to the billing provider for further BPO interactions in the future. (2) In
the second stage, the client workflow engine is responsible to track the progress
of the billing process which may take weeks. To start the periodic progress
inspection, the workflow engine needs to have a voucher in order to be authorised
against WF-Interop. Therefore, the accountant delegates the progress inspection
privilege as a claim by creating a voucher Vae for the responsible workflow engine.
Then the workflow engine performs the inspection by passing Vae to WF-Interop.
As long as the voucher is still valid (not rejected by WF-Interop because of the
validity period or voucher revocation), it inspects the progress. As soon as the
voucher is expired, the voucher must be renewed by the accountant.

The main goal of this validation is to show (i) that the BPO client (account-
ing workflow) creates a voucher for delegation of a subset of their resources
to the BPO provider for further usage; (ii) hierarchical, intra-organisational
voucher delegations among entities (e.g. between the accountant and the work-
flow engine); (iii) secure asynchronous and impersonated operations when the
business owner is offline (e.g. the periodic progress inspections by the workflow
engine when the accountant is not logged in). (iv) The WF-Interop HATEOAS
propositions within responses (not shown in the figure) are limited to the exist-
ing claims inside the vouchers (e.g. upon each invocation, the workflow engine
is informed that it can only execute the progress inspection).

Furthermore, WF-Interop performs the verification procedure on the dele-
gated actions based on the given vouchers. In other words, it stores no infor-
mation about the access rights of the delegatees in order to be stateless and to
respect organisational confidentiality according to the specific structure of the
vouchers as described in Sect. 3.1.

A Voucher-Based Security Middleware for Secure BPO 31

5 Performance Evaluation

In this subsection, we evaluate the performance impact of vouchers with vary-
ing number of delegations. More precisely, we evaluate the progress inspection
requests on an outsourced process.

Set-up. To evaluate the performance overhead of vouchers, we implemented a
security interceptor on top of the REST interfaces of the WF-Interop middle-
ware. Since the voucher verification is the most recurring routine compared to
the other activities, the progress inspection on the Ruote workflow engine is
the target of this evaluation. Both the WF-Interop middleware and the security
interceptor are written in Java using Spring Boot. The cryptographic schemes
employed in the set-up for the hybrid encryption of parent vouchers are based
on both RSA or Elliptic Curve (EC) cryptography in separate experiments, inte-
grated with AES symmetric encryption algorithm. Voucher signatures are also
implemented using RSA or EC6.

Fig. 6. Outsourcing a billing process. Fig. 7. Performance evaluation set-up.

As illustrated in Fig. 7, a client sends a request to a Ruote workflow engine via
the WF-Interop middleware to inspect the progress of a process. The procedure
contains three sub-routines: (1) voucher verification, (2) process inspection and
(3) HATEOAS filtering. We executed the procedure 500 times for different cases:
using no voucher, as well as using vouchers with 1 to 6 delegations.

As illustrated in Fig. 8, the process inspection (baseline) has constant exe-
cution time of 5.27 ms. The HATEOAS filtering has low impact of maximum
2.99 ms with six delegations. Therefore, the main performance overhead is on
6 The RSA-based hybrid encryption is based on RSA/OAEP with AES/GCM, SHA-

256 and MGF1 padding. The EC-based hybrid encryption is based on ECIES with
AES/CBC, HMAC-SHA256, KDF2 and ECSVDP-DH (Elliptic Curve Secret Value
Derivation Primitive [7,16]). The RSA-based signature algorithms are based on
RS256 and RS512 and the EC-based ones are ES256, ES384 and ES512 [15].

32 E.H. Beni et al.

Fig. 8. The setup employs 4096 bits
key size for RSA-based hybrid encryp-
tion and voucher signatures.

Fig. 9. Different setups employ various
hybrid encryption and signature algo-
rithms for voucher verification.

voucher verification. Considering a growing number of delegations, the signature
verification of vouchers, as well as decryption and verification of parent vouchers
are the main reasons for the performance overhead.

Results. The experiment results which are presented in Fig. 8 shows the worst-
case scenario because we employed a set of strong encryption schemes with large
key lengths. We also evaluated the overhead against the fastest WF-Interop func-
tion (namely process inspection). In a BPO context, these performance results
can be considered low as the number of delegations rarely becomes six. The total
response time of 282.73 ms is still acceptable in a BPO context.

We further evaluated the same experiments with different key lengths using
RSA-based hybrid encryption, or Elliptic Curve integrated encryption scheme
(ECIES) with various signature algorithms (see Fig. 9). The results show that the
execution time of voucher verification is considerably improved from 274.47 ms
to 81.92 ms in the case of 6 delegations. The detailed experiment results are
provided in the appendix.

6 Conclusion and Future Work

In this paper, we presented a voucher-based authorisation architecture and mid-
dleware for BPO. Vouchers enable federated workflow systems to iteratively
delegate all or subsets of claims to different entities. Nested vouchers protect
the confidentiality of the parent issuers by using hybrid encryption, which is
important in a cross-organisational context. Moreover, vouchers facilitate the
asynchronous BPO operations in long-running workflows when the authorised
subject has no active session in the workflow engine. We employed vouchers to fil-
ter the Hypermedia as the Engine of Application State (HATEOAS) propositions
using an interceptor pattern in the WF-Interop middleware. We implemented a
security module for the middleware and, on top of it, validated the architecture

A Voucher-Based Security Middleware for Secure BPO 33

by prototyping a billing workflow case study. Furthermore, the evaluation showed
that the measured performance overhead is acceptable in a BPO context.

The current centralised approach suffers from a single point of failure issue,
but on the other hand, some of the important security controls such as voucher
revocation and context-sensitive delegations can practically be employed in the
current design. Our future work includes moving towards a decentralised archi-
tecture, and addressing potential limitations such as key management issues,
context-sensitive and fine-grained controls on delegations by resource owners in
that setting.

A Appendix

See Tables 1 and 2.

Table 1. The setup employs 4096 bits key size for RSA-based hybrid encryption and
voucher signatures. Execution times (ms) are as follows.

Number of delegations 0 1 2 3 4 5 6

Process inspection 5.27 5.27 5.27 5.27 5.27 5.27 5.27

Voucher verification 0 28.28 73.02 117.36 164.26 214.22 274.47

Hateoas filtering 0.27 0.27 0.27 0.39 0.99 1.16 2.99

Total 5.54 33.82 78.56 123.02 170.52 220.65 282.73

Table 2. Different setups employ various hybrid encryption and signature algorithms
for voucher verification. Execution times (ms) are as follows.

Number of delegations 1 2 3 4 5 6

ECIES P-256 - ES256 27.63 28.89 30.31 32.87 36.79 42.68

ECIES P-384 - ES384 33.28 35.30 40.29 46.50 53.82 64.07

ECIES P-521 - ES512 35.19 39.30 46.77 56.21 66.26 81.92

RSA 2048 bits - RS256 24.48 32.61 39.02 47.13 57.45 72.30

RSA 4096 bits - RS512 28.28 73.02 117.36 164.26 214.22 274.47

References

1. ITU-T: Baseline identity management terms and definitions, X.1252 (2010)
2. Beni, E.H., Lagaisse, B., Joosen, W.: WF-Interop: adaptive and reflective rest

interfaces for interoperability between workflow engines. In: Proceedings of the
14th International Workshop on Adaptive and Reflective Middleware, p. 1. ACM
(2015)

34 E.H. Beni et al.

3. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authoriza-
tion constraints in workflow management systems. ACM Trans. Inf. Syst. Secur.
(TISSEC) 2, 65–104 (1999)

4. Birgisson, A., Politz, J.G., Erlingsson, U., Taly, A., Vrable, M., Lentczner, M.:
Macaroons: cookies with contextual caveats for decentralized authorization in the
cloud (2014)

5. Coalition, W.M.: Terminology and glossary. WFMC Document WFMCTC-1011,
Workflow Management Coalition, Avenue Marcel Thiry 204, 1200 (1996)

6. Dayasindhu, N.: Information technology enabled process outsourcing and reengi-
neering: case study of a mortgage bank. In: AMCIS 2004 Proceedings, p. 437 (2004)

7. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

8. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI
certificate theory (IETF RFC 2693) (1999)

9. Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based access control (RBAC): Features
and motivations. In: Proceedings of 11th Annual Computer Security Application
Conference, pp. 241–48 (1995)

10. Ford, M., Endpoints, A., Keller, C., Kloppmann, M., König, D., Leymann, F.,
Müller, R., Pfau, O.G.: Web services human task (WS-HumanTask), v1.0 (2007)

11. Halvey, J.K., Melby, B.M.: Business Process Outsourcing: Process, Strategies, and
Contracts. Wiley, New York (2007)

12. Hardt, D.: The OAuth2 authorization framework (2012)
13. Hu, V.C., Ferraiolo, D., et al.: Guide to attribute based access control (ABAC)

definition and considerations (draft). NIST Special Publication 800(162) (2013)
14. Jones, M., Bradley, J., Sakimura, N.: JSON web signature (JWS). Technical report

(2015)
15. Jones, M., Bradley, J., Sakimura, N.: JSON web token (JWT). Technical report

(2015)
16. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
17. Mettraux, J., Kalmer, K., Meyers, R., de Mik, H., Kohlbecker, A., et al.: Ruote-a

ruby workflow engine
18. Muller, J., Mulle, J., von Stackelberg, S., Bohm, K.: Secure business processes in

service-oriented architectures-a requirements analysis. In: 2010 IEEE 8th European
Conference on Web Services (ECOWS), pp. 35–42. IEEE (2010)

19. Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., Granqvist, H.: Oasis WS-Trust
1.4. Specification Version 1, pp. 41–45 (2008)

20. Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., Mortimore, C.: Openid
connect core 1.0. The OpenID Foundation, p. S3 (2014)

21. Schefer-Wenzl, S., Bukvova, H., Strembeck, M.: A review of delegation and
break-glass models for flexible access control management. In: Abramowicz, W.,
Kokkinaki, A. (eds.) BIS 2014. LNBIP, vol. 183, pp. 93–104. Springer, Cham
(2014). doi:10.1007/978-3-319-11460-6 9

22. Van Alsenoy, B., De Cock, D., Simoens, K., Dumortier, J., Preneel, B.: Delegation
and digital mandates: legal requirements and security objectives. Comput. Law
Secur. Rev. 25(5), 415–431 (2009)

23. Wainer, J., Barthelmess, P., Kumar, A.: W-RBAC a workflow security model incor-
porating controlled overriding of constraints. Int. J. Coop. Inf. Syst. 12(04), 455–
485 (2003)

24. Wainer, J., Kumar, A.: A fine-grained, controllable, user-to-user delegation method
in RBAC. In: Proceedings of the Tenth ACM Symposium on Access Control Models
and Technologies, pp. 59–66. ACM (2005)

http://dx.doi.org/10.1007/978-3-319-11460-6_9

A Voucher-Based Security Middleware for Secure BPO 35

25. Wüllenweber, K., Beimborn, D., Weitzel, T., König, W.: The impact of process
standardization on business process outsourcing success. Inf. Syst. Front. 10(2),
211–224 (2008)

26. Zhang, L., Ahn, G.J., Chu, B.T.: A rule-based framework for role-based delegation
and revocation. ACM Trans. Inf. Syst. Secur. (TISSEC) 6(3), 404–441 (2003)

LASARUS: Lightweight Attack Surface
Reduction for Legacy Industrial Control Systems

Anhtuan Le(B), Utz Roedig, and Awais Rashid

Security Lancaster Institute, Lancaster University, Lancaster, UK
a.le@lancaster.ac.uk

Abstract. Many operational Industrial Control Systems (ICSs) were
designed and deployed years ago with little or no consideration of secu-
rity issues arising from an interconnected world. It is well-known that
attackers can read and write sensor and actuator data from Program-
mable Logic Controllers (PLCs) as legacy ICS offer little means of protec-
tion. Replacing such legacy ICS is expensive, requires extensive planning
and a major programme of updates often spanning several years. Yet
augmenting deployed ICS with established security mechanisms is rarely
possible. Legacy PLCs cannot support computationally expensive (i.e.,
cryptographic) operations while maintaining real-time control. Intrusion
Detection Systems (IDSs) have been employed to improve security of
legacy ICS. However, attackers can avoid detection by learning accept-
able system behaviour from observed data. In this paper, we present
LASARUS, a lightweight approach that can be implemented on legacy
PLCs to reduce their attack surface, making it harder for an attacker to
learn system behaviour and craft useful attacks. Our approach involves
applying obfuscation to PLC data whenever it is stored or accessed
which leads to a continuous change of the target surface. Obfuscation
keys can be refreshed depending on the threat situation, striking a bal-
ance between system performance and protection level. Using real-world
and simulated ICS data sets, we demonstrate that LASARUS is able to
prevent a set of well-known attacks like random or replay injection, by
reducing their passing rate significantly—up to a 100 times.

1 Introduction

Industrial Control Systems (ICSs) are used to monitor and control systems such
as power plants, power grids, water treatment plants, oil refineries and gas distri-
bution networks. Many ICS are legacy systems and offer little means of protec-
tion. Specifically, attackers are able to read and write sensor and actuator data
of Programmable Logic Controllers (PLCs) in much the same way as the oper-
ator of the plant does (see, e.g., [1,2]). Thus, an attacker is able to inject false
command instructions to control the physical process (managed by the PLCs),
while at the same time injecting false response packets to mislead remote mon-
itoring stations and operators. Such Man-In-The-Middle (MitM) attacks can
enable attackers to: steal physical resources (oil, gas, water); alter production
processes or bypass safety procedures, all the while leaving remote operators
c© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 36–52, 2017.
DOI: 10.1007/978-3-319-62105-0 3

LASARUS: Lightweight Attack Surface Reduction 37

blind to such actions [3]. Attackers may also hide their activities from operators
for a long time by falsifying data carefully, based on long-term observation of
normal behaviour before starting an attack. The security vulnerabilities of ICS
have been demonstrated by a number of high profile attacks such as Maroochy
water services (2000), Stuxnet (2007), Turkish pipeline (2008), and the German
steel mill (2014) [4].

Many ICS services need to be operated in real time, which restricts the per-
formance latency within a strong bound. For example, according to IEC 61850
(reference architecture for electric power systems), the latency bound for fault
isolation and protection services is 3 ms [4]. On the other hand, applying access
control and cryptographic solutions can create significant delay, for instance, the
latency of applying a 1024 bit DSA algorithm in an average system is 14.9 ms
while that of applying the 2048 bit RSA is 61.04 ms [4]. The delay created by
cryptographic solutions may exceed largely from the required bounds, which will
disable certain ICS real-time operations. Therefore, augmenting legacy ICS with
well known access control and cryptographic protocols to address the aforemen-
tioned issues is rarely possible as the required major system upgrades are not
feasible to satisfy such performance requirements. In many cases, ICS are in
operation for more than 20 years and it is not possible to augment these systems
as necessary. Replacement of the entire control infrastructure is also often not
possible as it is too costly and would require system shutdown for lengthy peri-
ods. Finally, in many cases, real-time control requirements make it impossible
to use time consuming cryptographic procedures.

A number of Intrusion Detection Systems (IDSs) have been proposed, e.g.,
[1,5,6]. However, capable attackers can study system behaviour over long periods
and manipulate the system state such that it still falls within acceptable bounds
not detected by the IDS [7]. In a worst-case scenario, the attacker may have
all past system data and the same detection algorithm available and can craft
attacks that are undetectable.

As current legacy ICS give an attacker too much information, in this paper we
focus on reducing their attack surface in order to make it harder for an adversary
to carry out a successful attack. Our proposed approach, LASARUS, is designed
to operate under real-world constraints in ICS environments, namely:

– Deployment of sophisticated access control and cryptographic solutions is not
possible due to architectural and resource constraints.

– The approach must be implementable using available functionality in legacy
PLCs.

– The approach must be lightweight so as not to compromise the real-time
properties of an ICS.

LASARUS involves the use of an obfuscation key Kd to obfuscate data
deposited in the data block of a PLC, with the obfuscation pattern changing
on a per session basis. The obfuscation key Kd is shared between all components
that have to access the data block (i.e. shared between operator and PLC). The
obfuscation key is updated periodically whereby the frequency of key updates is

38 A. Le et al.

determined by system needs. The obfuscation function is a simple XOR opera-
tion, making it possible to be implemented by existing legacy PLC programming
frameworks while fast and lightweight enough to limit the latency and processing
overhead so as not to compromise real-time PLC operations.

The novel contributions of this paper are as follows:

– We propose a lightweight approach to reduce the attack surface of legacy ICS
that can be implemented on legacy PLCs.

– We demonstrate the effectiveness of the approach by evaluating it against
three types of attacks: (i) injecting random values; (ii) replaying eavesdropped
values; (iii) injecting estimated values. We show that adding LASARUS to a
legacy ICS can help to reduce the probability of these attacks to bypass an
IDS (even one using a simple algorithm) significantly, up to a 100 times.

– We provide an analysis of security and usability trade-offs of LASARUS, sup-
porting system configuration decisions so that the additional security features
introduced by LASARUS do not compromise operation.

The structure of the paper is as follows. Section 2 presents the background on
ICS and related work on ICS security. Section 3 describes the Man-In-The-Middle
(MitM) attacks that are the focus of our approach. Section 4 introduces the
proposed approach while Sect. 5 shows the evaluation and presents a discussion
of the insights. Finally, Sect. 6 concludes the paper.

2 Background and Related Work

2.1 Industrial Control Systems

ICSs are used to control physical processes in a range of critical infrastructure
such as, power plants, water works, oil refineries and gas distribution. Program-
mable Logic Controllers (PLCs) are used at the heart of any ICS to implement
control logic, interacting with sensors and actuators. PLCs store data computed
by the control process, sent to actuators and obtained from sensors locally, often
referred to as “data block”1. Data in the data block is used to control the PLC
behaviour and, thus, the physical process. The data block is also accessed exter-
nally by other ICS equipment, including management systems and other PLCs.
For example, an operator console will fetch data from the PLC’s data block to
visualise system state. A historian, a database to store long-term process data,
will fetch data periodically from the data block. In a Supervisory Control and
Data Acquisition (SCADA) system other PLCs may obtain data from the data
block to facilitate complex distributed control tasks.

Although ICSs are used to control many critical infrastructures, their security
is rarely considered properly. A reason can be found in their historic develop-
ment. In the past, ICS were air-gapped systems using specialist system parts,

1 This term is used for Siemens PLC equipment but a similar data construct is used
by other vendors too.

LASARUS: Lightweight Attack Surface Reduction 39

including software and hardware, with which only few people were familiar.
Thus, attacks were unlikely as physical presence of highly skilled personnel was
required. Today this situation has changed. To improve operational efficiency,
ICS are now connected to enterprise systems and, in many cases, also to the
Internet [8]. Also, the systems are easier to use and to program, and knowledge
to interact with these computer systems is much more widespread. Attacks are,
therefore, now more likely and ICS security must step up.

2.2 Security of ICS

Apart from real world reported ICS attacks, recent research has also highlighted
various potential threats to ICS. For instance, Stouffer et al. [9] present a wide
range of probable adversaries – from inexperienced attackers utilising pre-written
scripts through to complex and organised Advanced Persistent Threats (APT),
which are crafted carefully aiming at system manipulation over long period of
time. Morris and Gao [10] describe 17 attacks on ICS, grouping them into four
main types, namely: reconnaissance attacks, response and measurement injection
attacks, command injection attacks, and denial of service attacks. MitM attacks
in ICSs are also discussed widely in the literature, and shown to be feasible in
testbed environments, for instance, see [11,12]

Although security mechanisms are well developed for other IT systems, these
cannot be simply transferred to the ICS domain [2,13]. A number of intru-
sion detection systems (IDS), specific to ICS, have been proposed. For instance,
Sainz et al. [6] apply modal interval analysis to derive suitable envelopes, includ-
ing upper and lower bounds for values according to time, in order to check the
veracity of the data. Hadziosmanovic et al. [5] model logged data using an autore-
gressive model to predict the next value to detect potential tampering. Almalawi
et al. [1] introduce a detection approach, which first clusters the process para-
meters to identify the normal and critical states of the system. They then apply
data mining techniques to extract the proximity-based detection rules from such
states. Given that the MitM attacker may have access to the logged data as
much as the operator does, the attacker can also predict the next value with
similar accuracy. Therefore, such attacks may not be readily detected by IDSs.

As discussed earlier, augmenting deployed ICS with well known access con-
trol and cryptographic protocols is not feasible due to the cost of updating the
infrastructure or constraints arising from real-time properties. Therefore, any
security solution needs to be lightweight and must require little change to be
compatible with existing parts of the system. Existing research on Moving Tar-
get Denfense (MTD) has considered the problem of reducing the attack surface of
systems. Davidson and Andel [14] are among the first to point out the feasibility
and effectiveness of applying MTD to ICS security. However, to the best of our
knowledge, there has been no attempt to design such a system so far. LASARUS
can thus be seen as a concrete instantiation of such an MTD approach.

40 A. Le et al.

3 Problem Definition

3.1 Threat Model

Figure 1 shows a simplified MitM attack in ICS. As shown, the physical system
communicates with the PLC through its actuators and sensors. The PLC controls
the physical side based on parameters received from the system operator. The
state of the physical system is reported to and recorded by the PLC. State
information is also transmitted periodically to the operator who observes the
system and may tune parameters in response. In practice the control side may
be connected to multiple PLC and multiple physical systems at the same time.
However, for simplification we consider here a single PLC and operator.

The MitM attacker is able to interact with the PLC in a fashion similar
to that of the operator. He can request recorded physical system state logged
by the PLC and can inject operation parameters into the PLC. He may also
simply modify data passed between operator and PLC without direct manipula-
tion of the PLC’s data block. Such attacks can be implemented using a variety
of techniques. For example, by uploading malicious control logic to gain con-
trol of devices that the PLC manages [15]; compromising Address Resolution
in the network to manipulate communication between operator and PLC [9];
or eavesdropping on the communication followed by analysing and altering its
contents [16].

Attacker

Sending commands

Getting logged data

Inject falsified
command

Inject falsified
data

Control side

Operator

Check
anomaly in
logged data

received

PLC

Physical side

Sensors

ActuatorsData
block

Fig. 1. ICS Man-In-The-Middle (MitM) attack model.

3.2 Example ICS

We consider an ICS used to control a water tank as typical example to illustrate
MitM attacks. We also use this example application later for our evaluation. The
physical system in this particular example is a water system, which consists of:
a tank, a pump to fill the tank and a sensor to record water level. The PLC
controls the pump according to the following parameters set by the operator:
HH, H, LL, L [17]. HH and LL are two alarm values. If the water level rises
higher than HH or falls lower than LL, the operator will raise an alarm. H and

LASARUS: Lightweight Attack Surface Reduction 41

L are the two values to control the pump. If the water level is higher than H,
the pump will need to be turned off. If it falls lower than L, the pump will need
to be turned on. These operation parameters submitted to the PLC are stored
in the data block. The filling level is read periodically and these readings are
stored as well in the PLC’s data block. Filling levels are requested periodically
by the operator from the data block to monitor the process.

The system can be attacked by injecting false values into the data block. For
example, Morris et al. [18] have shown that simple replay attacks (storing a pre-
vious value as the next value in the data block) are only detected in 12% of cases.
Improved attacks by Morris et al. [10] simulate the value trend and estimate the
next value, making the detection accuracy even worse. If the attacker can collect
a significantly large sample of data and apply robust techniques to learn the
pattern, the chances to bypass the detection system are likely to be even higher.
In the worst case, when the attacker knows and applies the algorithm that the
system uses to check the data, he can always inject a legal value into the system
and the attack will go undetected. The operator will loose control of the system
while thinking that everything is in order.

Obviously, anomaly detection can be improved but the attacker can adjust
accordingly. As operational parameters and sensor readings are available to the
operator and attacker via the data block, the problem remains.

4 Lightweight Attack Surface Reduction with LASARUS

As the problem arises from the large attack surface easily accessible to the
attacker, we propose an approach whereby data maintained in a PLC’s data
block is obfuscated, with the obfuscation pattern changing on a per session
basis. An obfuscation key Kd is used to obfuscate data deposited in the data
block. Likewise, data obtained from the data block must be de-obfuscated using
Kd. The obfuscation key Kd is shared between all components that have to
access the data block (i.e. shared between operator and PLC). The obfuscation
key is updated periodically whereby the frequency of key updates is determined
by system needs (we discuss this aspect in detail in our evaluation for a specific
application case). The obfuscation function is a simple XOR operation. We chose
this simple approach as obfuscation can then be implemented by existing legacy
PLC programming frameworks and processing overhead is limited as required
for real-time PLC operations.

We aim at manipulating the data block in a PLC such that an attacker has
a limited view on system behaviour. The attacker should not be able to learn
acceptable value ranges in order to craft sophisticated attacks by injecting seem-
ingly acceptable values. In order to do so, we assume that there is a shared secret
key K between the PLC and other system components (such as the operator).
This key can be stored at a specific memory address in the PLC which cannot
be written to or read by any other party. We assume that this key is valid over
a long time. The issue of key distribution is beyond the scope of this paper.
However, other research has tackled this question, e.g., [19].

42 A. Le et al.

As shown in Fig. 2, the shared secret K is used to calculate a session key Kd

for each session d. Kd is used within each session to obfuscate data in the PLC’s
data block. A session is active for an agreed duration Ts and, after this time
elapses, a new session key will be used. Note that we can generate this new key
right after the last logging cycle of the session instead of waiting until session
ends. As the logging frequency is considerably longer (e.g., 10 s) compared to the
time needed to generate a key (e.g., under a millisecond using hash), generating
a new session key right after the last logging cycle will eliminate the impact of
any delay it may cause. Session keys are generated based on a time stamp Td

and the shared secret K. Therefore, session keys do not need to be distributed;
they are computed by all involved ICS components based on the same time base.
It is feasible to follow this approach in an ICS context as components require
tight time synchronisation to facilitate real-time control operations. An attacker
can disrupt time synchronisation; however, this will generally lead to system
faults which are immediately obvious. Also, manipulating time synchronisation
will lead to de-synchronisation of obfuscation keys which will lead to parts of
the ICS not being able to access data which is also immediately detectable. The
timestamp for session d is calculated as Ts ·(d−1). The session key Kd for session
d is calculated as: Kd = hash(K ⊕ Td).

Fig. 2. Obfuscating the logged values using the session key to prevent MitM attacks.

The obfuscation pattern changes in every session, though the real physical
values may remain the same. A Man-In-The-Middle who does not know the
shared key and time reference will not be able to generate useful values for an
attack.

Assume that for session d, the physical values are Vd1, Vd2, Vd3, ..., Vdn. The
PLC will store the obfuscated representation of these values, V ′

d1, V
′
d2, V

′
d3, ...,

V ′
dn, in which:

V ′
dm = Vdm ⊕ Kd, m = 1, 2, ..., n

LASARUS: Lightweight Attack Surface Reduction 43

When the control side receives data from session d, it will use the session key
Kd to obtain the original values:

Vdmcheck = V ′
dm ⊕ Kd = Vdm ⊕ Kd ⊕ Kd = Vdm, m = 1, 2, ..., n

These original values may be used to detect if any anomaly is present in
the physical system. For an attacker, it will be challenging to predict which
obfuscated values to inject such that an anomaly detection system (even a very
simple one) does not trigger an alarm.

5 Evaluation

We evaluate the effectiveness of LASARUS on three types of attacks: (i) inject-
ing random values; (ii) replaying eavesdropped values; (iii) injecting estimated
values. These three attack scenarios are the best options for a MiTM attacker
to bypass the defense system as shown in other work [10,17].

5.1 Evaluation Scenario and Datasets

We use the water storage tank dataset from [18]. The dataset was recorded
from a water tank ICS testbed under normal and attack conditions. It contains
attributes such as pump states, the automatic thresholds for turning the pump
on/off or raising alarm, the physical water level, the response time of the PLC,
and so on. We use only the water level attribute as test value in our experi-
ment which is sampled every 11.5 s. We pre-processed the data to exclude values
recorded under attack, only using data from normal operation conditions. We
use 10044 water level values collected over a duration of approximately 32 h for
our experiments. We refer to this real-world dataset as Set-Real.

We assume that the attackers have the ability to learn patterns from the
eavesdropped data, so we are also interested in seeing whether the obfuscated
data contains patterns that can be manipulated. Therefore, we generate three
artificial datasets with clear patterns: Set-Linear: the water level is a function
of the time and pump velocity; Set-Repeated: a range of the Set-Real is chosen
and repeated continuously; Set-Constant: all values are constant, e.g., when the
system is inactive and the logged water values are not changed.

5.2 Experiment Setup

Session Duration. Obfuscation keys Kd change after a time period (the session
duration Ts). In our experiments we use the following configurations for Ts:
Ts = 10 s; Ts = 250 s and Ts = 500 s. The PLC will use the session key to
obfuscate the sampling water level and record to a data block. The operator will
use the session key to transform values back to the real physical water level.

44 A. Le et al.

Intrusion Detection. We assume that the control side (the operator) employs a
means to detect intrusions. We assume the following two detection rules:

– Rule-Simple (R-S): This rule checks whether the water level is within a believ-
able range. We assume the range to be between 20% and 80% of tank capac-
ity. This rule is named simple because it does not involve any particular data
learning algorithm.

– Rule-Advanced (R-A): This rule checks whether the water level falls into a
legitimate envelope, which is not 10% higher or 10% lower than the true value.
We assume here a prediction algorithm is in place which can estimate true
values. This rule is called advanced because it emulates a more sophisticated
intrusion detection mechanism.

These rules are used to demonstrate how LASARUS supports an existing
IDS.

Random Attack. We assume two attack conditions which differ regarding the
attacker’s knowledge of data obfuscation being in place or not:

– Normal Range Random (NRR) attack: The attacker does not know that
obfuscation is used. Random value generation assumes values should fall in
the normal data range of water values.

– Obfuscated Range Random (ORR) attack: The attacker knows that obfus-
cation is used. The attacker generates values falling in the range of the valid
obfuscated data range.

Replay Attack. The attacker can choose to replay data differently to bypass the
system. For Set-Real, the attacker is able to capture a value (obfuscated or not)
and use this value for replay. For Set-Linear, Set-Repeated, Set-Constant, the
attacker can replay a set of values in the pattern that he learnt.

5.3 Results and Discussions

Dataset Observation. Figure 3 illustrates the first 250 values of the dataset S-
Real. Figure 3a shows the real water level, while Fig. 3b–d shows the obfuscated
values with session duration Ts = 10 s, 250 s, and 500 s respectively. As can be
seen, when values are similar, their obfuscated counterparts will also be similar
if transformed with the same key. When the keys are updated for every value
(Ts = 10 s), the transformed values fluctuated strongly as shown in Fig. 3b, which
makes it hard for an attacker to predict future values. On the other hand, all the
obfuscated datasets have a large standard deviation at about 1200 (compared
with 8.48 of the original dataset), with the values spread over a large range
from about −2100 to 2100, which indicates such datasets are not stable. The
initial observations of the dataset shows it would be much more difficult for
the attackers to inject a legal value into the obfuscated datasets compared with
injecting into the original dataset.

LASARUS: Lightweight Attack Surface Reduction 45

Fig. 3. The first 250 values of the water level dataset S-Real and the obfuscated datasets
with Ts = 10 s, 250 s, and 500 s.

Random Attack. We now investigate the effectiveness of the two types of random
attacks previously described. For each type of the random attack (NRR, ORR),
we generate random values in the [Min Max] range for every entry in the dataset
and check if these are detected by the two detection rules (R-S, R-A).

Table 1a shows the passing rates of the two types of random attacks. We first
apply the random attacks on the original dataset without obfuscation in place.
The results show that R-S cannot detect either of the random attacks because
all the injected values fall in the legitimate data range [20, 80]. R-A improves the
detection ability significantly, which lets the passing rates fall to values between
10.91% and 12.33%. LASARUS, however, reduces the passing rate even more,
which is less than 2% if using R-S, and less than 0.25% if using R-A to detect the
attacker. With the same detection technique, the obfuscated solutions are about
100 times more effective when compared with the non-obfuscated solution.

The length of the session key does not affect the passing rate. This is because
after being obfuscated, the range and the standard deviation of the dataset values
are similar, which create similar results when dealing with the random attacks.

Replay Attack. Next we investigate the effectiveness of replay attacks. First, we
select a random time at which to initiate the attack. From that time till the end
of the dataset, we replace the water level value with the selected replay value. We
then check the modified dataset using the two detection rules to measure how
long it takes to detect the attacker. We run 1000 attacks for each experiment.

Table 1b shows the time to detect the replay attacker for each setting. For the
original dataset (no obfuscation), R-S cannot detect the replay attacker because

46 A. Le et al.

Table 1. Improvements of reducing passing rates and detection time when combining
LASARUS to IDS algorithms.

any replayed value will fall into the legitimate value range of [20, 80]. Using R-A
the system can catch the replay attacker after 6209 s (approx. 2 h), on average.
In the worst-case scenario, it will take 28354 s (almost 8 h).

Table 1b shows that the shorter the time to change the session key, the quicker
the defense system can point out the anomaly on the dataset. The time to detect
a replay attacker depends on when the attack is initiated. If the attack is initiated
at the beginning of a session, it is likely to be undetected until a new key is
replaced. On the other hand, when the attack is initiated at the end of a session,
it will be spotted quickly when a new key is used.

Table 1b also shows the maximum time that is required to detect a replay
attacker. If using R-S, the maximum time is approx. twice the session length.
This is because the XOR function applied on the value will likely jump out of
the legal range [20, 80] after two key changes. While using R-A, the maximum
time to detect a replay attacker is only approx. the length of the session. This
is due to the checking range of R-A being much narrower compared with R-S,
which helps to detect the attacker right after changing the session key.

Attacks on Data with Patterns. Once the attackers find the pattern, the best
chance they have to bypass the system is to do the replay attack which inject
data following the found pattern. Figure 4 illustrates the differences between the
original and obfuscated datasets of the three most common patterns.

Figure 4a compares the pattern of a linear rising water level in Set-Linear
with its obfuscated versions. The figure clearly shows that a linear original value
will not lead to similar pattern on the transformed value. The flat lines present
in the obfuscated figures are due to the similarity of the original values.

Figure 4b presents the repeated pattern in Set-Repeated and its obfuscations.
When the session length is smaller than the length of the pattern, the obfuscated
datasets are not repeated like the original pattern. This is because different keys
were applied in the same dataset. However, when the session is longer than
the pattern duration, the repeated real values XORing with the same session
key create repeated obfuscated values. Nevertheless, unlike in the original Set-
Repeated, the pattern in the obfuscated set does not repeat over more than one
session due to the session key change.

LASARUS: Lightweight Attack Surface Reduction 47

Fig. 4. Patterns of the three data sets.

Figure 4c shows the comparisons between the original patterned dataset Set-
Constant and the obfuscated values when the original data is constant. As can be
seen, a transformed constant value will also be constant given the same obfusca-
tion key. When the session key is not changed, a replay attack will be successful
for any detection algorithm. However, at the moment when the session key is
changed (or the starting of a new session), the attackers will likely fail as they
cannot predict the next value.

The experiments show that replay attacks on patterned dataset will not be
successful in multiple sessions. In Fig. 5, we illustrate the passing possibility of
such attack within one session. The linear pattern of Set-Linear does not help
the attacker to increase the chance to bypass the system. On the other hand,
repeated pattern of Set-Repeated can create repeated patterns of obfuscated
dataset, which helps the replay attack to be successful after the first cycle of the
pattern. The worst case for the detection system happens with Set-Constant,
where the attacker only fails in the first sampling time of the session. However,

fail pass

Within one session

Set-Linear

Set-Repeated

Set-Constant

Sampling time to log to the data block

start end
new

session

Fig. 5. Comparison of passing rate in one session for the three pattern sets.

48 A. Le et al.

protecting the constant dataset from the replay attack is also a challenge for any
other defending mechanisms. If the system operator knows that their dataset
contains patterns, s/he can adjust the session duration to interrupt the pattern in
the obfuscated set. For example, if the data is a repeated pattern (not constant),
setting the session duration smaller than the pattern’s length eliminates the
chance of replay attacks. If the system operator cannot do so, s/he will face the
risk of not detecting the attackers at some points in the session. However, the
attacker will always fail at the beginning of a new session.

5.4 Possible Attacks on Obfuscation Keys

The previous sections show that common injection attacks on the obfuscated
dataset are not effective. However, attackers may aim to expose the session
and, ultimately, secret keys instead. Once the key is revealed, an attacker can
transform between obfuscated and normal values to inject accurate data values.
We are aware of two fundamental approaches (see Fig. 6) to obtain session keys
with we detail here. The first method does not rely on any information about the
data values; it is agnostic to the data obfuscated with the session key. The second
method, which converges much faster, uses known information about obfuscated
values. For example, in an ICS context the range of valid values may be known
which limits the search space to find the session key.

Fig. 6. Examples of methods to expose Kd

Session Key Extraction Without Data Insight. Assume that in session d, an
attacker has knowledge of the set of all potential real water values W . He also
obtains a sequence of obfuscated values V ′

di, V
′
di+1, ..., V

′
dn. The first method to

expose the session key is to compute a set KPdj for each V ′
dj , j = i, i + 1, .., n,

in which KPdj = {KPdj
k |KPdj

k = V ′
dj ⊕ Wk,∀k ∈ W}. As W contains all possible

values, ∃Wm ∈ W : Wm = Vdj as a result KPdj
m = Wm ⊕ V ′

dj = Vdj ⊕ Vdj ⊕Kd =
Kd. The attacker knows that Kd is contained in every KPdj set. An attacker
can derive Kd from the intersection of all these sets (see Fig. 6a). The number of
candidate session keys in the intersection reduces with the number of collected

LASARUS: Lightweight Attack Surface Reduction 49

obfuscated values. The intersection will contain a single element (the session
key) when enough obfuscated values are observed by the attacker.

Session Key Extraction with Data Insight. The second method relies on knowl-
edge of the physical process behind the data. For example, it might be known
that a value will be in a particular range (e.g., the filling level of a tank). More
detailed information, such as process behaviour over time, might also be avail-
able. This knowledge can be used to further reduce the search space for the
session key leading to faster exposure of the obfuscation key. The search space
of potential keys is reduced recursively (see Fig. 6b), using the following steps.

Step 1. Using the first obfuscated value V ′
di, compute KPdi. Now the attacker

has KP = KPdi, which contains all potential Kd.
Step 2. Compute V di+1 from KP and V ′

di+1, in which V di+1 =
{V di+1

k |V di+1
k = V ′

di+1 ⊕ KPk,∀k∈KP}. KP contains all the potential
Kd and ∃m ∈ KP : KPm = Kd. We have V di+1

m = V ′
di+1 ⊕ KPm = Vdi+1 ⊕

Kd ⊕ Kd = Vdi+1. So attackers know that V di+1 contains Vdi+1.
Step 3. Vdi+1 represents the real value. Now constraints using process knowl-

edge (e.g., legitimate value ranges) can be applied. The attacker can use these
constrains to eliminating all the unsatisfied values in the V di+1 set. The size of
KP will also be reduced by tracing back from the reduced V di+1.

Step 4. Step 2 is repeated with the reduced KP and the obfuscated V ′
di+2.

Discussion. Once the session key is exposed, an attacker can perform a dictio-
nary attack to retrieve the secret key. To do so, Td must also be exposed. The
attacker can XOR all the dictionary values with Td and hash these. The hashed
results are then compared with Kd and a match will reveal the secret key.

Thus, attacks with the aim to expose session keys are reasonable, but note
that such attacks cannot bypass the system longer than one session duration.
This is because in the session interchange time, the attackers do not have time
for collecting enough data to expose the next session key, while they still need
to inject the falsified values. If they do not inject anything, the real states of
the physical system will be revealed to the system operators, who will spot the
abnormal changes and detect the attacks. If they inject without knowing the
session key, the chance of success is very low. Therefore, the session interchange
time is likely the time that the attackers will be detected. Besides, exposed
session keys should not lead to an exposed secret key if it is complex enough.
Secret keys may also be renewed from time to time.

5.5 System Configuration Options

We have shown that the shorter the Ts, the smaller the attack surface and the
impact of attacks on patterned data or session keys. However, such reductions
commonly come with cost. We next consider the trade-off between security and
usability to ensure that the security does not compromise operation.

50 A. Le et al.

Cost Consideration. The overheads created by LASARUS, C, are the com-
bination of the obfuscating cost, Co, and the key refreshing cost, Ck. We will
consider such overhead in a time T. The period to log the physical value is Tl;
the cost for running each XOR operator is x; the period to refresh the session
key is Ts; the cost for generating a session key is y. The system will process
approximately T/Tl obfuscating operating, so we will have:

Co =
T

Tl
· x

The key will be refreshed T/Ts over time T, so we have:

Ck =
T

Ts
· y

Overall, the total overhead will be:

C = Co + Ck =
T

Tl
· x +

T

Ts
· y (1)

Note that costs x and y are computable and constant for a specific PLC.
Besides, Tl is set according to specific ICS applications so we will not consider
varying Tl for security purposes. As a result, from Eq. (1), only T and Ts will
have an effect on C.

We illustrate the relations between the factors in Fig. 7a, which shows that
the shorter the Ts, the higher the overhead. If we know the specific values of
x, y, T and Tl, and given the cut out point of cost, which means the maximum
cost we can afford, we can derive the value of Ts. Such values are the intersections
between the cost lines and the constant vertical lines, which represent Ts. The
overall time T to run the system also affects the cost. The longer it runs, the
more overhead it will create. That suggests the operator to stop LASARUS when
the resource is limited, or to run it only when there is a risk.

System Configuration Consideration. The main factor that can be config-
ured to control the trade-off is Ts. We illustrate the way that an operator can
configure Ts in Fig. 7b. The red line indicates the harm that the attacker can
create over time while the blue line shows the overhead that LASARUS adds.
Assume that the operators have a maximum of cost that they can afford, rep-
resented by the cost cut out line. On the other hand, they need to protect their
system from damage by the undetected attacker, represented by the harm cut
out line. In order to satisfy these cost-harm trade-offs, Ts should be larger than
TsMinCost to save cost, and smaller than TsMaxHarm to prevent harm.

Note that cost and harm are not necessary correlated in the system, so
TsMinCost may not always be smaller than TsMaxHarm. Figure 7b illustrates the
case when TsMinCost < TsMaxHarm. In this case, when Ts falls into the [TsMinCost,
TsMaxHarm] range, the conditions of cost and harm are always satisfied. As a
result, operator can always configure Ts to have a value between these two points.

LASARUS: Lightweight Attack Surface Reduction 51

Fig. 7. Cost consideration with Ts and T (Color figure online)

The intersection point of the cost (blue line) and harm (red line) is the optimal
value of Ts to balance the cost and security need.

There may be cases where TsMinCost > TsMaxHarm, whereby any implementa-
tion of Ts will exceed either cost or harm. When that happens, the operator can
consider other configurations such as lowering T to save cost, or using stronger
detection mechanisms, to detect the attackers faster and lower the harm.

6 Conclusion

We have designed and experimented with LASARUS, a system to continuously
obfuscate data stored or accessed from a PLC in order to reduce the attack
surface of legacy ICS. We show that LASARUS represents a significant challenge
for attackers, decreasing the passing rate of attacks by up to 100 times with even
simple detection systems. We also show that our obfuscated solution hides the
patterns in the original data effectively, which stops the attackers from learning
and predicting the next values successfully. We have also analysed the trade-off
between security and cost by adjusting the length of the session, which adds
more flexibility for the system operator. In future work, we plan to implement
and evaluate LASARUS on a real-world ICS testbed available to us [20].

Acknowledgements. Supported by EPSRC/Chist-Era grant: EP/N021657/1.

References

1. Almalawi, A., Fahad, A., Tari, Z., Alamri, A., AlGhamdi, R., Zomaya, A.Y.: An
efficient data-driven clustering technique to detect attacks in SCADA systems.
IEEE Trans. Inf. Forensics Secur. 11(5), 893–906 (2016)

2. Antrobus, R., Frey, S., Green, B., Rashid, A.: SimaticScan: towards a specialised
vulnerability scanner for industrial control systems. In: Proceedings of the 4th
International Symposium on ICS and SCADA Cyber Security Research (ICS-CSR
2016) (2016)

52 A. Le et al.

3. Jardine, W., Frey, S., Green, B., Rashid, A.: Selective non-invasive active mon-
itoring for ICS intrusion detection. In: Proceedings of the 2nd ACM Workshop
on Cyber-Physical Systems Security and Privacy, CPS-SPC@CCS 2016, Vienna,
Austria, pp. 23–34, 28 October 2016

4. Colbert, E.J.M., Kott, A.: Cyber-security of SCADA and Other Industrial Control
Systems. Advances in Information Security. Springer, Cham (2016)

5. Hadziosmanovic, D., Sommer, R., Zambon, E., Hartel, P.H.: Through the eye of
the PLC: semantic security monitoring for industrial processes. In: Proceedings of
the 30th Annual Computer Security Applications Conference, ACSAC 2014, New
Orleans, LA, USA, pp. 126–135, 8–12 December 2014

6. Sainz, M., Armengol, J., Vehi, J.: Fault detection and isolation of the three-tank
system using the modal interval analysis. J. Process Control 12(2), 325–338 (2002)

7. Evans, D., Nguyen-Tuong, A., Knight, J.: Effectiveness of moving target defenses.
In: Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S. (eds.) Moving
Target Defense, pp. 29–48. Springer, New York (2011)

8. Infracritical: Project SHINE findings report (2014). http://www.slideshare.net/
BobRadvanovsky/project-shine-findings-report-dated-1oct2014. Accessed 12 Apr
2016

9. Stouffer, K., Falco, J., Scarfone, K.: Guide to industrial control systems (ICS)
security. NIST Special Publication 800(82), p. 16 (2011)

10. Morris, T., Gao, W.: Industrial control system cyber attacks. In: Proceedings of
the 1st International Symposium on ICS and SCADA Cyber Security Research,
pp. 22–29. BCS (2013)

11. Maynard, P., McLaughlin, K., Haberler, B.: Towards understanding Man-In-The-
Middle attacks on IEC 60870-5-104 SCADA networks. In: Proceedings of the 2nd
International Symposium on ICS and SCADA Cyber Security Research, pp. 30–42.
BCS (2014)

12. Yang, Y., Jiang, H.T., McLaughlin, K., Gao, L., Yuan, Y.B., Huang, W., Sezer,
S.: Cybersecurity test-bed for IEC 61850 based smart substations. In: 2015 IEEE
Power and Energy Society General Meeting, pp. 1–5. IEEE (2015)

13. Mahan, R.E., Fluckiger, J.D., Clements, S.L., Tews, C.W., Burnette, J.R., Goran-
son, C.A., Kirkham, H.: Secure data transfer guidance for industrial control and
SCADA systems. Pacific Northwest National Lab (PNNL) Report (2011). http://
www.pnnl.gov/main/publications/external/technical reports/PNNL-20776.pdf.
Accessed 4 Jan 2016

14. Davidson, C., Andel, T.: Feasibility of applying moving target defensive techniques
in a SCADA system. In: 11th International Conference on Cyber Warfare and Secu-
rity, ICCWS 2016, p. 363. Academic Conferences and Publishing Limited (2016)

15. McLaughlin, S., McDaniel, P.: Specification-based payload generation for program-
mable logic controllers. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, pp. 439–449. ACM (2012)

16. Krutz, R.L.: Securing SCADA Systems. Wiley, Hoboken (2005)
17. Gao, W., Morris, T., Reaves, B., Richey, D.: On SCADA control system command

and response injection and intrusion detection. In: eCrime Researchers Summit
(eCrime), pp. 1–9. IEEE (2010)

18. Morris, T.H., Thornton, Z., Turnipseed, I.: Industrial control system simulation
and data logging for intrusion detection system research (2015)

19. Rezai, A., Keshavarzi, P., Moravej, Z.: Key management issue in SCADA networks:
a review. Eng. Sci. Technol. Int. J. 20, 354–363 (2017)

20. Green, B., Frey, S.A.F., Rashid, A., Hutchison, D.: Testbed diversity as a funda-
mental principle for effective ICS security research. In: SERECIN (2016)

http://www.slideshare.net/BobRadvanovsky/project-shine-findings-report-dated-1oct2014
http://www.slideshare.net/BobRadvanovsky/project-shine-findings-report-dated-1oct2014
http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-20776.pdf
http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-20776.pdf

Exploring the Relationship Between
Architecture Coupling and Software

Vulnerabilities

Robert Lagerström1,2(&), Carliss Baldwin2, Alan MacCormack2,
Dan Sturtevant3, and Lee Doolan3

1 KTH Royal Institute of Technology, Stockholm, Sweden
robertl@kth.se

2 Harvard Business School, Boston, USA
3 Silverthread Inc., Boston, USA

Abstract. Employing software metrics, such as size and complexity, for pre-
dicting defects has been given a lot of attention over the years and proven very
useful. However, the few studies looking at software architecture and vulnera-
bilities are limited in scope and findings. We explore the relationship between
software vulnerabilities and component metrics (like code churn and cyclomatic
complexity), as well as architecture coupling metrics (direct, indirect, and cyclic
coupling). Our case is based on the Google Chromium project, an open source
project that has not been studied for this topic yet. Our findings show a strong
relationship between vulnerabilities and both component level metrics and
architecture coupling metrics. 68% of the files associated with a vulnerability are
cyclically coupled, compared to 43% of the non-vulnerable files. Our best
regression model is a combination of low commenting, high code churn, high
direct fan-out within the main cyclic group, and high direct fan-in outside of the
main cyclic group.

Keywords: Security vulnerabilities � Software architecture � Metrics

1 Introduction

Cyber security incidents and software vulnerabilities cause big problems with
increasing societal impact. Both individual home users and large corporations face
similar problems with exploited software vulnerabilities leading to loss in confiden-
tiality, integrity, and availability, and at the end of the day - time and money. Many
seem to agree that software architecture complexity is a key issue when it comes to
software vulnerabilities. Quoting a well-cited blog post by Bruce Schneier1 “The worst
enemy of security is complexity”. The basic argument is that poorly designed and
maintained software systems tend to embed highly complex code and architectures,
which in turn increase the likely occurrence of vulnerabilities waiting to be exploited.
However, few studies have explored the relationship of complexity to vulnerabilities
and the findings to this point are inconclusive [1, 2] and far from generalizable.

1 www.schneier.com/essays/archives/1999/11/a_plea_for_simplicit.html.

© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 53–69, 2017.
DOI: 10.1007/978-3-319-62105-0_4

http://www.schneier.com/essays/archives/1999/11/a_plea_for_simplicit.html

Some existing studies of software vulnerabilities include direct coupling as a
predictive variable, e.g. [3–5]. However, to our knowledge, other coupling measures
such as indirect coupling and cyclic coupling have not been tested in relation to
vulnerabilities. These measures have been shown to affect other software performance
outcomes such as defects e.g. [6], productivity e.g. [7], and maintenance cost e.g. [8].
Our theory is that this is also the case for software vulnerabilities.

In this paper, we measure (and visualize) the Google Chrome software architecture
and explore the correlation between software vulnerabilities and component-level
metrics and different architecture coupling measures. Our component metrics include:
code churn, source lines of code, cyclomatic complexity, and comment ratio. Our
coupling measures fall into three categories: direct coupling (fan-in & fan-out), indirect
coupling (fan-in & fan-out), and cyclic coupling. Studying 16,268 C-files of the March
2016 Chrome release and linking them to 290 files that were changed in order to fix
185 vulnerabilities, we found that both component metrics and the different coupling
measures are significantly correlated with vulnerabilities. However, due to limitations
of the sample, when testing a set of regression models, we could not untangle the
impact of the different coupling measures.

Our main contribution in this paper is to add new findings to the work on software
metrics and vulnerabilities, bringing the field closer to generalizable and conclusive
results. To this end, we focus on the Chromium project, which has not been studied
from the perspective of vulnerabilities. Our correlations are both strong and significant.
They indicate that architectural coupling measures might be used in addition to
component-level metrics to improve vulnerability prediction models, although this
needs additional exploration.

The rest of this paper is organized as follows: Sect. 2 presents related work in three
areas; software metrics and defects, software metrics and vulnerabilities, and impact of
architectural coupling on different performance measures. In Sect. 3 we describe our
measures of complexity and coupling. The Chromium project is described in Sect. 4,
followed by our analysis of Chrome and software vulnerabilities in Sect. 5. Our study
and potential future work are discussed in Sect. 6. Section 7 concludes the paper.

2 Related Work

For purposes of exposition, we have divided related work in three categories: studies
relating software metrics and defects; studies relating software metrics and vulnera-
bilities; and studies relating architecture coupling measures to different performance
outcomes.

2.1 Software Metrics and Defects

Numerous studies have looked at the relationship between software metrics and
defects. We discuss those that use measures most closely related to the ones we test.
For the interested reader [9, 10] present comprehensive literature studies on this topic.

54 R. Lagerström et al.

In [11] Kitchenham et al. found that the number of files used by a given file, a
coupling measure we label “direct fan out,” is associated with defects, although source
lines of code, a code measure, was a stronger indicator. A similar study by Basili et al.
[12] found the opposite: that coupling measures were better able to predict faults
traditional code metrics, such as lines of code. In [13], Nagappan and Ball showed that
code churn, a relative measure of change in a file, is an early indicator of defect density.
Schröter et al. looked at usage dependencies, a form of coupling between components
and showed that these are good predictors of defects [14]. Zimmermann and Nagappan
studied network measures of coupling, such as density and centrality, for defect pre-
diction and found that these perform better than other complexity metrics [15]. Steff
and Russo then showed that dependency changes are strong defect indicators [16].

From these and other studies, it appears that both coupling measures and
component-level metrics have proven successful in defect prediction. Since vulnera-
bilities are a special class of defects, our working hypothesis is that the coupling
measures and code metrics should also predict vulnerabilities.

2.2 Software Metrics and Vulnerabilities

While much attention has been paid to defects, less work has been done to examine the
relationship between coupling measures and code metrics and vulnerabilities. How-
ever, elevated concerns about cyber security have brought more attention to this topic.

Neuhaus et al. studied the Mozilla project and found correlation between vulner-
abilities and include statements [17]. In [18], the same authors used Red Hat to
investigate the correlation between package dependencies and vulnerabilities. Zim-
mermann et al. also found weak correlation between a set of software metrics and
vulnerabilities [19]. Nguyen and Tran used dependency graphs to look at vulnerabil-
ities in the Mozilla Firefox Javascript Engine [20]. Shin et al. investigated the same
codebase, but focused on complexity metrics [3]. Moshtari et al. [5] replicated and
extended this work by including a more complete set of vulnerabilities and looking at
more software applications, including Eclipse, Apache Tomcat, Firefox, Linux Kernel,
and OpenSCADA. They concluded that their software (complexity) metrics are good
predictors of vulnerabilities. Chowdhury and Zulkernine [21] investigated the relation
between complexity, coupling, cohesion, and vulnerabilities in Mozilla Firefox. They
were able to predict a majority of the files associated with vulnerabilities with tolerable
false positive rates. Hovsepyan et al. [22] looked at design churn as a predictor of
vulnerabilities in ten Android applications and found a statistically significant rela-
tionship between design churn and vulnerabilities in some but not all applications.

Morrison et al. [2] did not find any significant relation between complexity and
vulnerabilities in their study of Microsoft products. They suggested that a set of
security-specific metrics might be needed in vulnerability prediction models. Shin and
Williams 1 similarly found the relationship between software complexity and vulner-
abilities to be weak, and also recommended that new complexity metrics be developed
for understanding security related defects.

The studies on software vulnerabilities and various metrics provide a mixed picture
of the relationship. Most find some correlation or predictability, but some don’t and the

Relationship Between Architecture Coupling and Software Vulnerabilities 55

overall findings are weak. Most agree that there is a need to continue exploring this
topic. We note that studies to date have not looked at architectural measures in con-
junction with code-level complexity metrics. In most cases, coupling is omitted as a
predictive variable: when included it is limited to direct coupling.

2.3 Coupling Metrics for Outcome Prediction

In [23] MacCormack et al. used indirect coupling and cyclic coupling to measure
modularity and show that modular organizations produce modular software products,
verifying the so-called mirroring hypothesis. Sturtevant [7] and Akaikine [8] also
studied indirect and cyclic coupling in two separate cases. They found significant
differences in defect density, defect resolution time, and developer productivity as a
function of coupling measures.

Baldwin et al. present empirical work using 1,286 software releases from 17 dif-
ferent software applications showing that most of the software systems contain one
large cyclic group of interdependent files (high cyclic coupling/high levels of indirect
coupling), calling it the Core [24]. Heiser et al. [25] studied cyclic coupling and indirect
coupling (using the suggested method in [24]) for organizational transformation
planning in a development organization. In [26], they used the same methodology to
develop a strategy to prioritize software feature production.

MacCormack and Sturtevant looked at the impact of coupling (indirect and cyclic)
on software defect related activity [6]. Lagerström et al. used cyclic and indirect
coupling in a biopharmaceutical case to visualize and measure modularity in an
enterprise architecture [27]. In subsequent work, the same authors showed that it was
more costly to change software applications with many cyclic dependencies than those
with few or no cyclic dependencies [28, 29].

In summary, software metrics have been successful in studies predicting the
location of general defects. Work on vulnerabilities, however, is not as extensive or as
conclusive, although there have been promising findings. Moreover, coupling measures
have not been widely used in vulnerability studies, although they known to be cor-
related with other performance measures including defects. In this paper, we aim to
explore software metrics including architecture coupling measures in relation to soft-
ware vulnerabilities by studying the Google Chrome codebase.

3 Measuring Component and Architecture Coupling Metrics

As noted in the previous section software metrics have been used as predictors of
behavior in many studies. We focus on the most common and widely used component
metrics, as well as a set of architectural coupling measures.

3.1 Software Component Metrics

The most common and also the simplest software metrics is measuring source lines of
code (SLOC), basically counting the number of lines in a software file not including

56 R. Lagerström et al.

comments. This is a measure of size and has been shown to predict defects, cost and
complexity e.g. [30, 31].

In 1976 McCabe proposed the cyclomatic complexity (MCCABE) measure [32]. It
is now one of the most common complexity metrics used in software studies [9].
Basically, the McCabe metric counts the number alternative execution paths that can be
followed as a program executes. Alternative paths through a procedure result from
conditional branching statements (if statement, switch/case statement, while loops, et
cetera). McCabe scores may be calculated for procedures (called functions in C or C+
+) or class methods. We calculate cyclomatic complexity for all functions and methods
within a C-file, and then use the maximum figure observed within that file. In prior
work, McCabe scores have been predictive of higher defect rates and lower
productivity.

The comment ratio (COMMR) is a measure of how well commented the source
code is. It is a comments-to-code ratio rather than a pure count of number of comment
lines. This measure is also frequently used when analyzing software, e.g. [33]. How-
ever, there is no theoretical prediction as to correlation of comments to complexity or
defects (i.e. complex or defective code may generate many comments or few
comments).

Code churn (CHURN) measures the activity within each file in terms of number of
lines of code being added, modified, or deleted. This metric is also frequently used in
software studies, especially for defect prediction e.g. [13]. Recently it has proved
predictive in some vulnerability studies e.g. [3].

3.2 Architecture Coupling Measures

Files in a software can be coupled in different ways: directly, indirectly, or cyclically.
Figure 1(1) represents the base case, in which the files are not coupled to any other

files. In Fig. 1(2), file A is directly coupled with files B and C, i.e. B and C depend on
A, but A does not depend on B and C. Thus A has a direct fan-in (DFI) of two and a
direct fan-out (DFO) of zero. Modular systems theory predicts that files with higher
levels of direct coupling are more defect prone, given the difficulty assessing the
potential impact of changing the coupled files on the dependent files [34]. Hence we
predict that coupled files would be more likely to contain vulnerabilities than a similar
file with no coupling (e.g., as indicated in Fig. 1(1)). Support for such a relationship is
found in empirical studies of software, in which the components are source files or
classes, and dependencies denote use relationships between them [3].

Figure 1(3) depicts a more complex set of relationships between software files.
File A is directly coupled to B and is indirectly coupled to files C and D (through B).
That is, A has an indirect fan-in (IndFI) of three and an indirect fan-out (IndFO) of
zero. In this architecture, changes may propagate between files that are not directly
connected, via a “chain” of dependencies. While indirect coupling relationships are
likely to be weaker than direct coupling relationships, the former are not as visible to a
software developer, hence may be overlooked and more likely to produce unintended
system behaviors. Measures of indirect coupling have been shown to predict both the

Relationship Between Architecture Coupling and Software Vulnerabilities 57

number of defects and the ease (or difficulty) with which a software system can be
adapted 635.

Figure 1(4) illustrates a third pattern of coupling between files, called cyclic cou-
pling (CYCLIC) 3637. In this architecture, A is coupled with C, C is coupled with B,
and B is coupled with A. These files form a cyclic group – a group of files that are
mutually interdependent. In contrast to Fig. 1(3), there is no ordering of these files,
such that one can be changed (or developed) before the others. Rather, files in cyclic
groups must often be changed concurrently, to ensure that they continue to work
together effectively. When cyclic groups are large, this presents a significant challenge,
increasing the likelihood of defects [35], and possibly vulnerabilities. We measure
cyclic coupling as whether a file belongs to the largest cyclic group in the architecture
or not, as explained in [24].

The patterns described above represent related, but conceptually distinct, patterns of
coupling that exist between files. We note however, that measures of these different
types are likely to be correlated. Specifically, files with high levels of direct coupling
are, all else being equal, more likely to have high levels of indirect coupling. And files
with high levels of indirect coupling are, all else being equal, more likely to be
members of cyclic groups. It will be important to be sensitive to these issues in our
empirical tests.

Table 1 presents the different types of metrics we use. It differentiates between
component level metrics (source lines of code, cyclomatic complexity, commenting
ratio, and code churn) and the architectural coupling measures, (direct coupling,
indirect coupling, and cyclic coupling).

Fig. 1. Different coupling relationships between software files.

58 R. Lagerström et al.

4 The Chromium Project

The Google Chromium project2 is an open source web-browser project from which the
Chrome browser gets its source code. It is mainly written in C++ and is available for
multiple platforms such as Linux, OS X 10.9 and later, Windows 7 and later, and iOS.
The earliest version was released late 2008, while the first stable non-beta version
(5.0.306.0) was released in early 2010. Our main focus in this study is the March 31st
2016 version called 50.0.2661.57.

4.1 Chrome Metrics and Coupling

We have measured the Chrome software architecture in terms of traditional software
metrics; source lines of code (SLOC), cyclomatic complexity (MCCABE), commenting
ratio (COMMR), and the amount of activity (CHURN) spent in each file to fix “regular”
defects (not vulnerabilities). We also calculated the different coupling measures; direct
(DFI & DFO), indirect (IndFI & IndFO), and cyclic (CYCLIC). All metrics and the
architecture visualization (Fig. 2) were derived using a commercial analysis tool from
Silverthread3 and each metric is explained in Sect. 3. All variables are measured as
positive integers, except COMMR which is a positive rational number and CYCLIC
which is a binary (1/0) number.

The binary cyclic coupling metric indicates whether a file belongs to the largest
cluster of cyclically dependent files (1) or not (0). The largest cyclic group is labeled
the Core in Fig. 2: it contains 44% of the files in the codebase. The next largest cyclic
group is much smaller containing only 118 files. How this cluster is derived is
explained in detail in [24]. In Table 2 all metrics are presented with their real numbers.
Due to the nature of our data all variables (except the binary CYCLIC variable) are
converted to their natural logarithms (LN) in calculating correlations (Table 4) and in
our regression models (Table 5).

Our dependent variable (VULN, 1/0) has a value of one if the file in question was
changed to fix a defect classified as a vulnerability, and zero otherwise.

In an attempt to untangle the coupling measures relation to vulnerabilities we have
also used direct coupling within the main cyclic group (DFIxC & DFOxC) and outside
of this group (DFIxNoC & DFOxNoC).

Table 1. Component-level and architecture coupling metrics used in this study.

Component-level metrics Architecture coupling metrics

Source lines of code (SLOC) Direct coupling (DFI & DFO)
Cyclomatic complexity (MCCABE) Indirect coupling (IndFI & IndFO)
Commenting ratio (COMMR) Cyclic coupling (CYCLIC)
Code churn (CHURN)

2 https://www.chromium.org.
3 https://silverthreadinc.com.

Relationship Between Architecture Coupling and Software Vulnerabilities 59

https://www.chromium.org
https://silverthreadinc.com

Fig. 2. A visualization of the Google Chrome 2016 software architecture showing all direct
dependencies and sorted by different coupling categories. This figure shows the full set of files
associated with Chrome, thus a larger number of files than what is used in our analysis. The
Silverthread analysis tool produced the figure, see [6] for more information. The coupling
categories shown in the figure are based on the number of indirect fan-in and fan-outs, where; the
“Shared” group contains files that have high fan-in and low fan-out, “Core” is the largest cyclic
group with both high fan-in and fan-out, “Peripheral” files have low indirect coupling, the
“Control” group has low fan-in and high fan-out, and the “Singletons” have no coupling at all.

Table 2. Descriptive statistics for 2016 Google Chrome metrics.

2016/n = 16,268 Max Min Mean Median St. dev

VULN 1 0 0.02 0 0.13
SLOC 69,702 0 196.18 79 854.61
MCCABE 868 0 9.13 5 20.13
COMMR 39 0 0.33 0.17 0.88
CHURN 634,536 1 883.40 249 5,734
DFI 9,381 1 6.09 2 76.97
DFO 355 1 15.69 12 16.05
IndFI 49,570 1 22,996 23 24,705
IndFO 29,949 1 27,227 29,314 7,554
CYCLIC 1 0 0.44 0 0.50

60 R. Lagerström et al.

4.2 Chrome Vulnerabilities

We collected the Google Chrome related vulnerabilities using the bug Tracker system4

used by the developers in the Chromium project. In Tracker, bugs classified as vul-
nerabilities are registered with both their external CVE5 ID and the internally used bug
ID. (CVE, which stands for Common Vulnerabilities and Exposures, is a published list
of security vulnerabilities that provides unique IDs for publicly known security issues.
Some CVEs are associated with multiple internally defined bugs.)

We then used the internal bug IDs to track the files in the Chrome architecture that
were changed in order to fix each vulnerability-classified bug. We did this by extracting
the commits that specified fixing a vulnerability bug that was tagged with the internal
bug ID.

As noted in [36] many CVEs are associated with external projects, thus not
identifiable using the Chrome commits. Nguyen and Massacci claim that two thirds of
the Chrome vulnerabilities are unverifiable due to this issue, which seems to be in line
with our findings. We found 1,063 unique CVEs (on April 14th, 2016) associated with
1,070 bugs in the Chrome bug Tracker. Going through the commits gave us 407 bugs
associated with 390 CVEs, which were fixed by patching 965 C- & header-files.

The architecture displayed in Fig. 2 contains the complete Google Chrome archi-
tecture as of March 31st, 2016, including both C-files and header files. These in turn
were associated with 288 CVEs corresponding to 294 internal vulnerability bugs fixed
by modifying 621 files. At this point, we excluded the header-files since these come
hand in hand with the C-files and are thus associated with the same bugs and CVEs. In
doing so we found only nine non-redundant CVEs and vulnerability bugs, and
decreased the total number of files for analysis by 32,418 files.

The 2016 Chrome architecture contains a directory called “third_party/WebKit”
which is a recently (2015) merged set of files from another vendor (Apple). From an
architectural coupling perspective this directory, and its recent bulk merge, creates a

Table 3. CVE and Chrome file data leading to our analysis set of files.

CVEs Bugs Vuln. files Total files

Total contained in tracker 1,063 1,070 Not known Not appl.
C- & h-files fixed by Google commits 390 407 965 Not appl.
Found for March 2016 architecture 288 294 621 63,847
Subtract:
h-files 9 9 223 32,418
third_party/WebKit 94 95 108 3,015
Missing data 0 0 0 12,146
Final:
Analysis sample 185 190 290 16,268

4 http://bugs.chromium.org/p/chromium/issues/.
5 https://cve.mitre.org/

Relationship Between Architecture Coupling and Software Vulnerabilities 61

http://bugs.chromium.org/p/chromium/issues/
https://cve.mitre.org/

situation where most of the directory is not a part of the overall architectural structure.
It has its own special structure that is not representative of the rest of the system. To
avoid mixing systems with different histories and structure, we excluded this directory
as well. Ninety-four CVEs were associated with this directory. Finally, one of our key
variables, code churn (CHURN), had missing data for many of the C-files. Dropping
these files did not reduce the CVE count, but did reduce the number of files by 12,146
to 16,268.

In summary, our final dataset contains 185 unique CVEs associated with 190
vulnerability bugs fixed in patches of 290 C-files, and the total C-file set to compare
with is 16,268. The numbers for this data cleanse are detailed in Table 3.

5 Chrome Metrics and Vulnerable Files

In this section we explore the relationship between software component metrics and
different architecture coupling metrics in vulnerability-associated files of the Google
Chrome architecture from 2016.

5.1 Findings

Table 4 presents a correlation matrix for the variables we study. As indicated, we have
taken the natural logarithm of each variable except the binary variable CYCLIC. From
the table, we can see that CHURN is highly correlated with source lines of code
(SLOC), cyclomatic complexity (MCCABE), and direct fan-out (DFO). That is, files
that are associated with many changes in general (excluding vulnerability bug changes)
also have more source lines of code, higher cyclomatic complexity, and a higher
number of direct fan-out dependencies. Further, we see that all of our software metrics,
including the different types of coupling, are significantly correlated with vulnerability
bug files (VULN). Namely, files that have been changed a lot, that have a low comment
ratio, many source lines of code, high cyclomatic complexity, and high coupling are all
associated with vulnerability bugs.

Unfortunately, due to the high correlation between variables we can’t include them
all in the same regression model. For the metrics code churn, source lines of code,
cyclomatic complexity, and direct fan-out we basically need to choose one to include in
the regression. Code churn has been proven before to be a good predictor (see e.g. [3])
and it also has the highest correlation with our VULN variable. Therefore, we chose to
include CHURN in our regression models and not the others.

Model 1 in our regression contains three traditional software metrics used in defect
and vulnerability prediction; code churn, comment ratio, and direct fan-in. This is a
good starting model since these all have been used successfully before. As can be seen
in Table 5 all three variables significantly contribute to our model. Since we want to
explore coupling further, Model 2 tests whether indirect fan-in (IndFI) and indirect
fan-out (IndFO) add any explanatory power over DFI. Model 3 looks at cyclic cou-
pling (CYCLIC) instead of IndFI and IndFO. So far, we can see that the indirect
coupling metrics perform better together with code churn and commenting ratio

62 R. Lagerström et al.

compared to direct and cyclic coupling. This is not surprising since it is a more coarse
grained metric that includes more information than both cyclic and direct coupling.

In Model 4 and 5 we test if direct fan-in and fan-out within the main cyclic group
and outside this group adds any explanatory power. Again, due to the correlation
among the measures, we have to divide our direct coupling measures from each other.
DFI within the cyclic files (DFIxCyc) is tested in Model 4 and DFO within the cyclic
files (DFOxCyc) in Model 5. Our best model seems to be the one including code churn,
comment ratio, direct fan-out within the cyclic group (DFOxCyc) together with direct
fan-in within the non-cyclic group (DFIxNoCyc), that is Model 5. Meaning that files
that are cyclically coupled together in a large co-dependent network with a high degree
of direct fan-out coupling and files that are not in this large cyclic group but have a high
degree of direct fan-in coupling (the group in Fig. 2 called Shared), and with many
changes in the past and a low commenting ratio – are more likely to contain
vulnerabilities.

These results are in line with related work and this is where we are at with vul-
nerability prediction today.

Table 4. Correlation table for vulnerability bugs and complexity metrics in the 2016 Google
Chrome software architecture.

Fig. 3. Vulnerability associated files in the Cyclic and Non-cyclic groups.

Relationship Between Architecture Coupling and Software Vulnerabilities 63

5.2 Use of Different Sets of Data Available

As mentioned in the data section our dataset only represents a subset of the files in the
2016 March release of Google Chrome. We have run all analyses on the different
subsets (cf. Table 3) as a robustness check, there are some variance but the main story
looks similar.

One could argue that vulnerabilities from e.g. 2010 can’t be analyzed based on an
architecture from 2016. As a robustness check we have also looked at the 2010
architecture (the first stable release of Chrome). We also divided our vulnerability data
in two equally large sets and looking at the older half of vulnerabilities for the 2010
architecture, and the younger half of vulnerabilities for the 2016 architecture.

The correlations and regressions with the 2010 and 2016 architecture and all vul-
nerability bugs, as well as the division of bugs between 2010 and 2016 look fairly
similar. We did lose some power when dividing the bug dataset between the archi-
tectures, this had us chose the architecture associated with most vulnerabilities, that is
the 2016 architecture and all vulnerability related bugs.

If we compare Table 2 (2016 Chrome stats.) and Table 6 (2010 Chrome stats.) we
can see that some of the software metrics have changed, e.g. the comment ratio and
direct fan-in and fan-out. Although the maximum values have significant increases, the
differences when considering the means or medians are not that large. For cyclomatic
complexity and code churn the means actually went down between 2010 and 2016. The
main differences can be seen in the coupling measures for indirect fan-in and fan-out,
where the means increased from 3,000–4,000 to 23,000–27,000. This is related to the
considerable increase in size of the main cyclic group of dependent files, the “Core” in
2010 contained 4,049 files and in 2016 it had grown to 24,258 files.

Table 5. Binary logistic regression for vulnerability bug files in 2016 Chrome architecture.

VULN Model 1 Model 2 Model 3 Model 4 Model 5

COMMR −1.003** −.880* −.878* −.993** −.714*
CHURN .861*** .874*** .876*** .859*** .805***
DFI .215***
IndFI .063***
IndFO .004
CYCLIC .568***
DFIxC .216***
DFOxC .286***
DFIxNoC .137 .381**
Constant −9.683*** −9.999*** −9.869*** −9.647*** −9.710***
Chi-square 531.038*** 538.206*** 534.718*** 531.613*** 553.748***
Cox&Snell R2 0.032 0.033 0.032 0.032 0.033
Nagelkerke R2 0.197 0.199 0.198 0.197 0.205

n = 16,268, * p < 0.05, ** p < 0.01, and ***p < 0.001

64 R. Lagerström et al.

Regarding the visualization of the architecture seen in Fig. 4 one can conclude that
the 2010 and 2016 architectures look very similar in terms of coupling. For both
architectures we have a large “Core” (that is, a large cyclic group where everyone
depends on one another). In 2010 the Core was 33% of the architecture and in 2016
38%, thus even though this group of files grew considerably in number, it grew in
proportion to the rest of the codebase. Both architectures also have large Control
groups (files with high indirect fan-out and low indirect fan-in), and small groups of
Shared files (files with high indirect fan-in and low indirect fan-out), Peripheral files
(low indirect coupling), and Singletons (no coupling). This architectural similarity we
interpret as an indication that our coupling measures are comparable with vulnerabil-
ities for either architecture as long as the file associated with the vulnerability bug is
present in the architecture.

6 Discussion and Future Work

Our work is the first study to use the Google Chromium project to explore the rela-
tionship between software metrics and vulnerabilities. As such it adds evidence to the
total body of knowledge on this topic, which is still fairly unexplored (especially in
comparison with the relationship between software metrics and generic defects).

The main weakness in our study we believe is that, because of their high level of
collinearity, the different coupling measures have essentially equal predictive power in
our regressions. The component-level metrics—source lines of code, code churn,
cyclomatic complexity—are also highly correlated with each other and with direct
fan-out. For this reason, we are unable (in this codebase) to tease apart the separate
contribution of conceptually distinct, but empirically indistinguishable, types of com-
plexity on vulnerability. Hopefully, we (or others) can explore these questions further
using other software architectures in order to better understand the linkages between
complexity, coupling and vulnerabilities.

We are not alone in having difficulty determining the relationship between software
metrics and vulnerabilities. As reported in the section on related work, other studies
also report weak power or non-statistically significant variables e.g. [1, 2]. Prediction
models report either too many false positives or low precision. Thus this seems to be a
generally difficult area to research.

Statistical problems, like collinearity, make it difficult to identify the causal
mechanisms linking complexity and coupling with vulnerabilities. However, most
studies are able to report valid correlations. Thus a growing body of collective evidence
shows that variables like size, complexity, code churn, and coupling are associated with
and thus likely to increase the incidence of vulnerabilities. The correlations reported in
Table 4 and the regressions in Table 5 indicate a significant relation between vulner-
able files, traditional software metrics and coupling measures, hence add to this
mounting body of evidence. However, future work is needed.

Many studies present vulnerability prediction models with a large set of variables.
However, very few describe the details of the variables included. What variables do
actually contribute to the prediction model and which do not? This is especially
interesting for architecture coupling and component complexity, since some of the

Relationship Between Architecture Coupling and Software Vulnerabilities 65

papers we have studied report these as good predictors e.g. [3] while other say it shows
weak or no relation to vulnerabilities e.g. [1, 2]. In general it would have been inter-
esting to get this information from all studies, in e.g. the form of a correlation table or
detailed prediction models.

As indicated, our findings on the relationship between of software metrics and
vulnerabilities are mixed. Thus, future work is very much needed. First, we believe
doing more studies in general on this topic is necessary. So far, there are few studies
and thus few software systems have been investigated. For generalizability, more work
is needed, including not only open source projects but also commercial software.
Secondly, we have only found one study that compares general defects and vulnera-
bilities using the same data set. Camilo et al. [37] also studied the Google Chromium
project and found “that bugs and vulnerabilities are empirically dissimilar groups,
warranting the need for more research targeting vulnerabilities.” More studies of this
kind are necessary. Specifically we would like to be able to say what the main dif-
ferences between a vulnerability bug and regular bug are in terms of complexity, size,
code churn, commenting, and coupling. This could help us build more accurate pre-
diction models.

7 Conclusions

Managing software vulnerabilities has become one of the top issues in today’s society.
Previous research on software defects, and to some extent vulnerabilities, showed that
component level metrics (e.g. complexity and code churn) and architecture measures
(e.g. coupling) can be good predictors of where problems are likely to occur. In this
study we studied the Google Chromium project and found that all our metrics, both
component and architecture level, are highly correlated with files that have been

Table 6. Descriptive statistics for complexity met-
rics in Google Chrome 2010.

Fig. 4. Google Chrome 2010 software
architecture showing a large cyclic
cluster (here called the core) and other
similar features as the 2016 version.

66 R. Lagerström et al.

patched in order to fix vulnerability classified bugs. We also set out to test whether
different software architecture coupling measures were correlated with a higher inci-
dence of vulnerabilities. In our tests we found it difficult to conclusively distinguish
between our different measures of coupling, but the indication is that indirect coupling
performs better than direct coupling, and the best model is a combination of cyclic
coupling and direct coupling. We strongly believe that the indications in our study
together with other related research show that software metrics of different kinds can be
very helpful in locating vulnerabilities, but that more work is needed.

References

1. Shin, Y., Williams, L.: Is complexity really the enemy of software security?. In: Proceedings
of the 4th ACM Workshop on Quality of Protection, pp. 47–50 (2008)

2. Morrison, P., Herzig, K., Murphy, B., Williams, L.: Challenges with applying vulnerability
prediction models. In: Proceedings of the 2015 Symposium and Bootcamp on the Science of
Security, p. 4 (2015)

3. Shin, Y., Meneely, A., Williams, L., Osborne, J.A.: Evaluating complexity, code churn, and
developer activity metrics as indicators of software vulnerabilities. IEEE Trans. Software
Eng. 37(6), 772–787 (2011)

4. Walden, J., Stuckman, J., Scandariato, R.: Predicting vulnerable components: software
metrics vs text mining. In: IEEE 25th International Symposium on Software Reliability
Engineering, pp. 23–33 (2014)

5. Moshtari, S., Sami, A., Azimi, M.: Using complexity metrics to improve software security.
Comput. Fraud Secur. 5, 8–17 (2013)

6. MacCormack, A., Sturtevant, D.: Technical debt and system architecture: the impact of
coupling on defect-related activity. J. Syst. Software 120, 170–182 (2016)

7. Sturtevant, D.J.: System design and the cost of architectural complexity. Doctoral
dissertation, Massachusetts Institute of Technology (MIT) (2013)

8. Akaikine, A.: The impact of software design structure on product maintenance costs and
measurement of economic benefits of product design. Master thesis, Massachusetts Institute
of Technology (MIT) (2010)

9. Catal, C., Diri, B.: A systematic review of software fault prediction studies. Expert Syst.
Appl. 36(4), 7346–7354 (2009)

10. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review on
fault prediction performance in software engineering. IEEE Trans. Software Eng. 38, 1276–
1304 (2012)

11. Kitchenham, B., Pickard, L., Linkman, S.: An evaluation of some design metrics. Software
Eng. J. 5(1), 50–58 (1990)

12. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics as
quality indicators. IEEE Trans. Software Eng. 22, 751–761 (1990)

13. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect density.
In: Proceedings of the 27th International Conference on Software Engineering (ICSE),
pp. 284–292 (2005)

14. Schröter, A., Zimmermann, T., Zeller, A.: Predicting component failures at design time. In:
Proceedings of the ACM/IEEE International Symposium on Empirical Software Engineer-
ing, pp. 18–27 (2006)

Relationship Between Architecture Coupling and Software Vulnerabilities 67

15. Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on dependency
graphs. In: Proceedings of the 30th International Conference on Software Engineering
(ICSE), pp. 531–540 (2008)

16. Steff, M., Russo, B.: Measuring architectural change for defect estimation and localization.
In: Proceedings of the International Symposium on Empirical Software Engineering and
Measurement, pp. 225–234 (2011)

17. Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.: Predicting vulnerable software
components. In: ACM Conference on Computer and Communications Security (CCS),
pp. 529–540 (2007)

18. Neuhaus, S., Zimmermann, T.: The beauty and the beast: vulnerabilities in red hat’s
packages. In: Proceedings of the Annual Technical Conference on USENIX, p. 30 (2009)

19. Zimmermann, T., Nagappan, N., Williams, L.: Searching for a needle in a haystack:
predicting security vulnerabilities for windows vista. In: Proceedings of the International
Conference on Software Testing, Verification & Validation, pp. 421–428 (2010)

20. Nguyen, V.H., Tran, L.M.: Predicting vulnerable software components with dependency
graphs. In: Proceedings of the 6th International Workshop on Security Measurements and
Metrics, pp. 3:1–3:8 (2010)

21. Chowdhury, I., Zulkernine, M.: Using complexity, coupling, and cohesion metrics as early
indicators of vulnerabilities. J. Syst. Archit. 57(3), 294–313 (2011)

22. Hovsepyan, A., Scandariato, R., Steff, M., Joosen, W.: Design churn as predictor of
vulnerabilities? Int. J. Secure Software Eng. 5(3), 16–31 (2014)

23. MacCormack, A., Baldwin, C., Rusnak, J.: Exploring the duality between product and
organizational architectures: a test of the “mirroring” hypothesis. Res. Policy 41(8), 1309–
1324 (2012)

24. Baldwin, C.A., MacCormack, A., Rusnak, J.: Hidden structure: using network methods to
map system architecture. Res. Policy 43(8), 1381–1397 (2014)

25. Heiser, F., Lagerström, R., Addibpour, M.: Revealing hidden structures in organizational
transformation – a case study. In: Persson, A., Stirna, J. (eds.) CAiSE 2015. LNBIP, vol.
215, pp. 327–338. Springer, Cham (2015). doi:10.1007/978-3-319-19243-7_31

26. Lagerström, R., Addibpour, M., Heiser, F.: Product feature prioritization using the hidden
structure method: a practical case at Ericsson. In: Proceedings of the Portland International
Center for Management of Engineering and Technology (PICMET) Conference. IEEE,
September 2016

27. Lagerström, R., Baldwin, C., MacCormack, A., Dreyfus, D.: Visualizing and measuring
enterprise architecture: an exploratory biopharma case. In: Grabis, J., Kirikova, M.,
Zdravkovic, J., Stirna, J. (eds.) PoEM 2013. LNBIP, vol. 165, pp. 9–23. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41641-5_2

28. Lagerström, R., Baldwin, C., MacCormack, A., Dreyfus, D.: Visualizing and measuring
software portfolio architecture: a flexibility analysis. In: Proceedings of the 16th
International DSM Conference (2014)

29. MacCormack, A., Lagerström, R., Dreyfus, D., Baldwin, C.: Building the agile enterprise: IT
architecture, modularity and the cost of IT change. Harvard Business School Working Paper,
No. 15-060, (2015) (revised August 2016)

30. Albrecht, A.J., Gaffney, J.E.: Software function, source lines of code, and development effort
prediction: a software science validation. IEEE Trans. Software Eng. 6, 639–648 (1983)

31. Kan, S.H.: Metrics and Models in Software Quality Engineering. Addison-Wesley Longman
Publishing Co., Inc., Boston (2002)

32. McCabe, T.J.: A complexity measure. IEEE Trans. Software Eng. 4, 308–320 (1976)
33. Aggarwal, K.K., Singh, Y., Chandra, P., Puri, M.: Sensitivity analysis of fuzzy and neural

network models. ACM SIGSOFT Software Eng. Notes 30(4), 1–4 (2005)

68 R. Lagerström et al.

http://dx.doi.org/10.1007/978-3-319-19243-7_31
http://dx.doi.org/10.1007/978-3-642-41641-5_2

34. Simon, H.A.: The architecture of complexity. Proc. Am. Philos. Soc. 106, 467–482 (1962)
35. Sosa, M., Mihm, J., Browning, T.: Linking cyclicality and product quality. Manufact. Serv.

Oper. Manage. 15(3), 473–491 (2013)
36. Nguyen, V.H., Massacci, F.: The (un) reliability of NVD vulnerable versions data: an

empirical experiment on google chrome vulnerabilities. In: Proceedings of the 8th
ACM SIGSAC Symposium on Information, Computer and Communications Security,
pp. 493–498. ACM (2013)

37. Camilo, F., Meneely, A., Nagappan, M.: Do bugs foreshadow vulnerabilities? A study of the
chromium project. In: Proceedings of the 12th IEEE/ACM Working Conference on Mining
Software Repositories (MSR), pp. 269–279. IEEE (2015)

Relationship Between Architecture Coupling and Software Vulnerabilities 69

Natural Language Insights from Code Reviews
that Missed a Vulnerability

A Large Scale Study of Chromium

Nuthan Munaiah1(B), Benjamin S. Meyers1, Cecilia O. Alm2,
Andrew Meneely1, Pradeep K. Murukannaiah1, Emily Prud’hommeaux2,

Josephine Wolff2, and Yang Yu3

1 B. Thomas Golisano College of Computing and Information Sciences,
Rochester Institute of Technology, Rochester, NY 14623, USA

{nm6061,bsm9339,axmvse,pkmvse}@rit.edu
2 College of Liberal Arts, Rochester Institute of Technology,

Rochester, NY 14623, USA
{coagla,emilypx,jcwgpt}@rit.edu

3 Saunders College of Business, Rochester Institute of Technology,
Rochester, NY 14623, USA
yyu@saunders.rit.edu

Abstract. Engineering secure software is challenging. Software devel-
opment organizations leverage a host of processes and tools to enable
developers to prevent vulnerabilities in software. Code reviewing is one
such approach which has been instrumental in improving the overall qual-
ity of a software system. In a typical code review, developers critique a
proposed change to uncover potential vulnerabilities. Despite best efforts
by developers, some vulnerabilities inevitably slip through the reviews.
In this study, we characterized linguistic features—inquisitiveness, senti-
ment and syntactic complexity—of conversations between developers in
a code review, to identify factors that could explain developers missing
a vulnerability. We used natural language processing to collect these lin-
guistic features from 3,994,976 messages in 788,437 code reviews from
the Chromium project. We collected 1,462 Chromium vulnerabilities to
empirically analyze the linguistic features. We found that code reviews
with lower inquisitiveness, higher sentiment, and lower complexity were
more likely to miss a vulnerability. We used a Näıve Bayes classifier to
assess if the words (or lemmas) in the code reviews could differentiate
reviews that are likely to miss vulnerabilities. The classifier used a sub-
set of all lemmas (over 2 million) as features and their corresponding
TF-IDF scores as values. The average precision, recall, and F-measure
of the classifier were 14%, 73%, and 23%, respectively. We believe that
our linguistic characterization will help developers identify problematic
code reviews before they result in a vulnerability being missed.

1 Introduction

Vulnerabilities in software systems expose its users to the risk of cyber attacks.
The onus of engineering secure software lies with the developers who must assess
c© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 70–86, 2017.
DOI: 10.1007/978-3-319-62105-0 5

Natural Language Insights from Code Reviews that Missed a Vulnerability 71

the potential for an attack with each new line of code they write. Over the years,
software development teams have transitioned toward a proactive approach to
secure software engineering. Modern day software engineering processes now
include a host of security-focused activities from threat modeling during design
to code reviews, static analysis, and unit/integration/fuzz testing during devel-
opment. The code review process, in particular, has been effective in uncovering
a wide variety of flaws in software systems, [27] to vulnerabilities [7,9,29]. Code
reviews have now become such an essential part of software development lifecycle
that large software development organizations like Google [13] and Microsoft [25]
mandate code review of every change made to the source code of certain projects.

Developers make mistakes. Code reviews provide an opportunity for these
mistakes to be caught early, preventing them from becoming an exploitable vul-
nerability. Done in an systematic way, code reviews have the potential to uncover
almost all defects in a software system [14].

Code reviews contain a wealth of information from which one can gain valu-
able insights about a software system and its developers. Conversations between
developers participating in a code review often represent instances of construc-
tive criticism and a collaborative effort to improve the overall quality of the
software system. However, in some cases, the same conversations could con-
tain clues to indicate potential reasons for a mistake, such as a vulnerability,
to have been missed in the review. As with software development, code reviews
involve humans—the developers. Developers participating in code reviews could
exhibit a wide variety of socio-technical behaviors; some developers may be ver-
bose, inquisitive, overly opinionated, and security-focused, while others may be
succinct, cryptic, and uncontroversial. The natural language analysis of code
review conversations can help identify these intrinsic (linguistic) characteristics
and understand how they may contribute to the likelihood of a code review
missing a vulnerability. Furthermore, we can use automated natural language
processing techniques to identify these characteristics on a massive scale aiding
developers by highlighting problematic code reviews sooner.

Our goal in this study is to characterize the linguistic features that contribute
to the likelihood that a code review has missed a vulnerability. We empirically
analyzed 3,994,976 messages across 788,437 code reviews from the Chromium
project. We addressed the following research questions:

RQ1 Feedback Quality Do linguistic measures of inquisitiveness, sentiment,
and syntactic complexity in code reviews contribute to the likelihood that a
code review has missed a vulnerability?

RQ2 Lexical Classifier Can the words used differentiate code reviews that
have missed a vulnerability?

The remainder of this paper is organized as follows: we begin with brief sum-
mary of prior literature closely related to ours in Sect. 2. In Sect. 3, we describe
the approach used to obtain the data from a variety of sources, collect various
metrics from the data, and statistically analyze the metrics. We present our
results in Sect. 4, highlight some of the limitations in Sect. 5, and conclude the
paper with a brief summary in Sect. 6.

72 N. Munaiah et al.

2 Related Work

Code reviews are used widely in the software engineering field with the goal of
improving the overall quality of software systems. Despite the popularity and
evidence justifying the benefit of code reviews [5,27], some research suggests
that code reviews are not always carried out properly, diminishing their utility
in the software development cycle [14,15]. The focus of prior research on code
reviews has been to understand attributes of code reviews that express their
usefulness [8] and identify aspects of the code review process that enable timely
conclusion of reviews [4]. While some studies from prior literature [5,16,29] have
questioned the effectiveness of code reviews in finding vulnerable code, these
studies do not provide an insight into the factors that may have led to the code
reviews missing vulnerabilities.

Bosu and Carver [7], who found evidence to support the notion that code
reviews are effective at uncovering vulnerabilities, used text mining techniques
to compile a list of keywords related to various types of vulnerabilities. Using a
similar approach, Pletea et al. [35] performed sentiment analysis of comments on
GitHub pull requests and found that security-oriented comments were typically
more negative. Guzman et al. [22] performed similar analysis but with correlating
sentiment in commit messages with social and environmental factors. While these
studies present interesting findings, they still do not explain why code reviews
often overlook vulnerabilities. To address this question, we not only use sentiment
analysis and lexical information, but also explore more complex natural language
processing approaches for analyzing code reviews at the structural and word
frequency distribution level. To the best of our knowledge, our work is one of
the first to attempt analyses of this nature, especially in the context of a large-
scale data set of 788,437 code reviews from the Chromium project.

3 Methodology

In the subsections that follow, we describe the methodology used in the empirical
analysis. At a high-level, our methodology may be organized into three steps:
(1) data collection, (2) metric collection, and (3) statistical analysis.

3.1 Data Collection

Data Sources. The data set used in the empirical analysis is a collection of
code reviews with their associated messages and metadata (bug and vulnerability
identifiers), which was obtained from a variety of managed sources. The code
reviews, specifically, the messages posted by reviewers, were the central pieces of
information in our data set. The Chromium project uses Rietveld1 to facilitate
the code review process. We used Rietveld’s RESTful API to retrieve all code
reviews (2008–2016) for the Chromium project as JSON formatted documents.

1 https://codereview.chromium.org/.

https://codereview.chromium.org/

Natural Language Insights from Code Reviews that Missed a Vulnerability 73

A typical code review in the Chromium project is created when a developer
wishes to have changes to the source code integrated with the Chromium reposi-
tory. The group of files changed is called a patchset. A code review may have one
or more patchsets depending on the changes the developer had to implement to
address the comments in the code review. In retrieving the code reviews, we also
retrieved any associated patchsets. The patchsets were used to identify the files
that were reviewed and those that were committed as part of the code review.

The goal in our study is to characterize the linguistic features of code reviews
and their relationship with the likelihood of missing a vulnerability. A code
review is said to have missed a vulnerability if at least one of the files reviewed
was later fixed for a vulnerability. Therefore, the key piece of information needed
in the analysis is a mapping between code reviews and vulnerabilities. In the
Chromium project, the association between code reviews and vulnerabilities
is achieved through an issue tracking system. The Chromium project tracks
bugs using Monorail.2 The report of bugs that resulted in the resolution of
a vulnerability have the Common Vulnerabilities and Exposure (CVE) iden-
tifier of the vulnerability as a label. We used the bulk export feature sup-
ported by Monorail’s web interface to download, in CSV format, a list of all
bugs in the Chromium project. All code reviews that have bugs associated with
them are expected to have the bug identifier(s) mentioned (using the template:
BUG=<bug id>,<bug id>) in the description of the reviews. We parsed the code
review description to identify the bug(s) that were associated with a code review.

We compared the vulnerabilities obtained from Monorail to those obtained
from the National Vulnerability Database (NVD3) to ensure completeness. We
found a small set of vulnerabilities that were resolved by the Chromium project
team but no record of a mapping between the vulnerability and a bug existed
in Monorail. We manually identified the mapping between the vulnerability and
bug using posts from the Chrome Releases Blog4 and the references list from
the vulnerability report on NVD.

Data Annotations. The code reviews in our data set were annotated with
labels to enable us to group reviews into categories that were relevant to our
empirical analysis. In the subsections that follow, we introduce these labels and
describe the approach we used to assign those labels to code reviews.

(1) Code Reviews that Fixed Vulnerabilities - We used the label fixed vulnera-
bility to identify code reviews that facilitated the review of a fix for a vulner-
ability. In our data set, we annotated all code reviews that were associated
with a bug that resolved a vulnerability with the fixed vulnerability label.
The fixed vulnerability code reviews were crucial in identifying the files that
were reviewed (and possibly committed) in resolving a vulnerability. Intu-
itively, the fixed vulnerability code reviews represent the conversations that

2 https://bugs.chromium.org/p/chromium.
3 https://nvd.nist.gov/.
4 https://chromereleases.googleblog.com/.

https://bugs.chromium.org/p/chromium
https://nvd.nist.gov/
https://chromereleases.googleblog.com/

74 N. Munaiah et al.

the developers should have had in the past to potentially discover and resolve
vulnerabilities.

(2) Code Reviews that Missed Vulnerabilities - We used the label missed vul-
nerability to identify code reviews that potentially missed a vulnerability.
We identify missed vulnerability code reviews by searching for code reviews
that reviewed a file that was later fixed for a vulnerability. In our study, We
followed a two step process to identify missed vulnerability code reviews:
Step 1 For each fixed vulnerability code review, identify all files committed.
Step 2 For each committed file, identify all code reviews, created before the

review in question, that included the file.
Intuitively, the missed vulnerability code reviews represent the missed oppor-
tunities in which vulnerabilities could have been discovered. We base our
intuition on prior research by Meneely et al. [30], who found that vulnera-
bilities tend to exist in software for over two years before being discovered.
While no single code review can be blamed for missing a vulnerability, we
believe that, in aggregate, the missed vulnerability code reviews constitute
an opportunity in which the vulnerability could have been discovered.

(3) Neutral Code Reviews - We used the label neutral to identify code reviews
that neither reviewed the fix for a vulnerability nor missed a vulnerability.
The neutral code reviews serve as the control group in our analysis. The
choice of using the generic label “neutral” is intentional; one cannot defini-
tively say that a code review did not miss a vulnerability since there may be
latent vulnerabilities in the source code that are yet to be discovered [30].
Intuitively, the set of neutral reviews could potentially include those reviews
in which reviewers may have overlooked a vulnerability.

Summary. The data set used in the empirical analysis consists of 788,437
code reviews containing a total of 3,994,976 messages posted by 8,119 distinct
participants. On average, each review had 2 participants, reviewed 9 files, had 6
messages, and lasted 67 days. The data set also includes 436,191 bugs and 1,462
vulnerabilities. Among the code reviews, 877 were labeled as fixed vulnerability,
92,030 were labeled as missed vulnerability and 695,530 were labeled as neutral.

3.2 Metric Collection

In the subsections that follow, we describe the metrics used to address the
research questions and the approaches used to extract these metrics. All metrics
are defined at the message level; however, we aggregate them at the review level
for empirical analysis. We used the Natural Language Toolkit (NLTK) [6], the
Stanford CoreNLP [26], and the Speech Processing & Linguistic Analysis Tool
(SPLAT) [32] in collecting these metrics from the code review messages.

Inquisitiveness. Uncovering security flaws in a software system involves a spec-
ulative thought process. A reviewer must consider the possibility that even the
most unlikely scenario could have an impact on the piece of code being reviewed.

Natural Language Insights from Code Reviews that Missed a Vulnerability 75

The inquisitiveness metric is an attempt to quantify this speculative type of con-
versation in code reviews.

The inquisitiveness metric is estimated by counting the number of ques-
tions in a code review message. We have used a näıve approach to estimate the
value of this metric by the frequency of the symbol “?” in the message text.
The assumption here is that the number of questions in a message is correlated
with the number of occurrences of “?”. We validated this assumption by manu-
ally counting the number of questions in a sample of 399 code review messages
obtained by random stratified sampling of messages with zero, one, and more
than one occurrences of the symbol “?”. In the manual analysis, we not only
looked for the “?” symbol but also read the content of the messages to consider
sentences phrased as a question but not terminated by “?”. For instance, here
is an excerpt from a message that contains a question (terminated by “?”) and
a sentence that is phrased as a question but without being terminated by “?”:
“I’m not sure ... immutable. Is it OK ... is called? If it’s OK, why we don’t ...
of MIDIHost.”. We used Spearman’s rank correlation co-efficient (ρ) to quan-
tify the correlation between the manually estimated number of questions and
the number of occurrences of the symbol “?”. We found a strong, statistically
significant (p-value � 0.01), positive correlation with ρ = 0.93.

In our approach to calculating the inquisitiveness metric, we used NLTK to
tokenize the data (i.e. break up sentences into words, separating out punctu-
ation marks) and to compute the frequency of “?”. In the manual analysis of
the 399 code review messages, we found that the inquisitiveness metric tends
to over-estimate the actual number of questions in cases when a single ques-
tion is terminated with multiple question marks or when a URL is incorrectly
terminated at the “?” by the NLTK tokenizer. The inquisitiveness metrics also
misses questions if they are not terminated by “?”. We, however, found only a
few instances of these cases in our manual analysis.

We chose to use the seemingly simplistic approach rather than more sophis-
ticated ones such as regular expressions or syntactic parse trees because, unlike
traditional natural language, code review messages tend to be informal and,
sometimes, fragmented. Furthermore, the notion of a question in code review
messages tends to go beyond the message itself, requiring additional context
such as the line of source code that the sentence in a message is associated with.

The number of questions is likely to be positively correlated with the size
of the message. We accounted for this likelihood by expressing the metric as
inquisitiveness per sentence in the message. We used Stanford CoreNLP to split
a message into sentences to count the number of sentences.

Sentiment. Conversations about the security of a software system tend to
have a non-neutral sentiment [35]. The sentiment group of metrics is an attempt
to capture the sentiment associated with code review messages. Each of the
sentiment metrics is calculated as the proportion of sentences in a code review
message exhibiting that sentiment. We used proportion of sentences, rather than
the actual number of sentences, to control for message size.

76 N. Munaiah et al.

We used the sentiment analysis model [39] from the Stanford CoreNLP to
identify the sentiment expressed in sentences. The model uses information about
words and their relationships to classify sentences into one of five sentiment
classes: very positive, positive, neutral, negative, and very negative. In our study,
we merge very negative and negative into a single negative class and very posi-
tive and positive into a single positive class. Furthermore, we do not consider the
neutral sentiment in the analysis of the sentiment metrics. In effect, we only con-
sider the positivity (proportion of positive sentiment sentences) and negativity
(proportion of the negative sentiment sentences) in the analysis.

Term-Frequency Inverse-Document-Frequency (TF-IDF). Widely used
in the field of information retrieval [38], TF-IDF is a measure of the relative
importance of a term (word) within a document with the term’s frequency (TF)
in that document normalized by its frequency in the corpus to which that doc-
ument belongs (inverse document frequency, IDF). In our data, a single code
review is a document and the corpus is the collection of all code reviews.

There are many ways to calculate TF-IDF. We have used the approach imple-
mented by the TextCollection5 class of NLTK to compute the TF-IDF metric.
In this approach, the TF-IDF of a term (t) in a document (d) is computed as
tf -idf(t,d) = tf(t,d) × dft, where tf(t,d), the term frequency, is the ratio of the
frequency of the term t (in document d) to the total number of terms in d and
dft, the document frequency, is the natural logarithm of the ratio of the number
of documents in the corpus to the number of documents containing the term t.

As with the inquisitiveness metric, we used NLTK to tokenize code review
messages, but we perform a key preprocessing of the tokens before computing
the TF-IDF: map token to base form, or lemma. We compute the TF-IDF of
lemmas instead of tokens to account for morphological variation (i.e., suffixes we
add to words to express different grammatical functions); the words compiles,
compiling and compiled, for instance, are all forms of the lemma compile.

Syntactic Complexity. Software engineers participating in a code review are
required to process a considerable amount of information in reviewing a piece of
code. The structural complexity of the language used in code review messages
could lead a developer to misunderstand a comment and consequently intro-
duce a spurious change. The syntactic complexity group of metrics is aimed at
quantifying the complexity that may be in code review messages.

A variety of metrics have been proposed to quantify the syntactic complex-
ity of natural language sentences. While some of these metrics focus simply on
sentence or utterance length [34] or on part of speech information, others use
information about the structure of sentences that can be extracted from syn-
tactic parses or trees. In particular, there are several parse-based measures of
complexity relying on the assumption that deviations from a given language’s
typical branching structure (in the case of English, right branching) are indica-
tive of higher complexity [18,42]. In our study, we use three measures of syntactic
5 http://www.nltk.org/api/nltk.html#nltk.text.TextCollection.

http://www.nltk.org/api/nltk.html#nltk.text.TextCollection

Natural Language Insights from Code Reviews that Missed a Vulnerability 77

complexity to quantify the complexity of code review messages: (1) Yngve score
(2) Frazier score, and (3) propositional density. We describe the three metrics
in greater detail below. The implementation of these metrics, which are adapta-
tions of the algorithms described in Roark et al. [37] and Brown et al. [10], have
been borrowed from the previously mentioned open-source tool SPLAT [32].

– Yngve Score: The Yngve score [42] is a measure of syntactic complexity that
is based on cognitive load [28,40], specifically on the limited capabilities of
the working memory [2,3,33]. The Yngve score is computed using the tree
representation of a sentence obtained by syntactically parsing the sentence.
The tree is scanned using a pushdown stack in a top-down, right-to-left order.
For every level of the tree, branches are labeled starting with 0 for the right-
most branch and incrementing by 1 as the parse progresses toward the left
branch. Each word is then assigned a word score by summing up the labels
for each branch in the path from the root node to the word (leaf node) as
seen in Fig. 1.
We used the Stanford CoreNLP in conjunction with NLTK to obtain syn-
tactic parse trees for code review messages. In this study, we use the mean
Yngve score over all words in a sentence. The Yngve score is then averaged
for each sentence in a message and for each message in a code review. See
Table 1 for sample Yngve scores.

– Frazier Score: The Frazier score is similar to the Yngve score with one key
distinction: while Yngve score is a measure of the the breadth a syntactic
tree, Frazier score measures of the depth of the tree [37]. The Frazier score
emphasizes embedded clauses (sub-sentences) based on the notion that the
number of embedded clauses is associated with greater complexity [18–21].
The algorithm to compute the Frazier score of a sentence is similar to that
used to compute its Yngve score. Starting with the leftmost leaf node, each
branch leading up to the root of an embedded clause (sentence node) is labeled
as 1, with the exception of the branch on the uppermost level of the tree that
leads directly to the sentence node, which is labeled as 1.5. This process is
repeated for every leftmost leaf node. Labeling stops when the path upward
from the leaf node reaches a node that is not the leftmost child of its parent,
as shown with dotted lines in Fig. 1.

– Propositional Density: The propositional density metric (often referred to
as p-density) is a socio-linguistic measure of the number of assertions in a

Table 1. Sample sentences with syntactic complexity scores

Sentence Yngve Frazier p-density

This CL will add a new H264 codec to the SDP
negotiation when H264 high profile is supported

2.056 0.722 0.278

There is a 3.9% decrease in initial load time observed 1.500 0.750 0.200

Fixed as spec says 0.750 1.500 0.750

Lgtm then 0.500 1.750 0.500

78 N. Munaiah et al.

Fig. 1. Parse tree with Yngve (Y) and Frazier (F) scores on the solid and dotted lines,
respectively. Word scores are boxed, with the mean score for the sentence to the right.

sentence. For example, Chomsky’s famous sentence “colorless green ideas
sleep furiously [12]” makes two assertions: (1) colorless green ideas sleep,
and (2) they do it furiously. Part-of-speech tags and word order are used to
determine likely propositions, and a series of rules is applied to determine
how many propositions are expressed in a sentence [10]. After propositions
have been identified, p-density is simply the ratio of the number of expressed
propositions in a sentence to the number of words in that sentence.

Although sentence length can serve as a proxy for syntactic complexity, we
chose to use more sophisticated metrics because these metrics take the struc-
ture of the sentence into consideration. We did, however, assess the correla-
tion between our complexity metrics, aggregated at the message level, and mes-
sage length, expressed as number of words. We found a statistically significant
(p-value � 0.01) positive correlation (Spearman’s ρ = 0.69) between Yngve
score and message length. We normalized the Yngve score metric using mes-
sage length to account for this correlation. The other two syntactic complexity
metrics, Frazier score and propositional density, were not significantly correlated
with message length in our data.

3.3 Analysis

In the subsections that follow, we describe the various statistical methods used
in the empirical analysis of the metrics proposed in our study. All statistical
tests were executed with R version 3.2.3 [36].

Correlation. We used Spearman’s rank correlation coefficient (ρ) to assess the
pairwise correlation between the various metrics that were introduced earlier.
We considered two metrics to be strongly correlated if |ρ| >= 0.70 [24].

Natural Language Insights from Code Reviews that Missed a Vulnerability 79

Association. We used the non-parametric Mann-Whitney-Wilcoxon (MWW)
test for association between the various metrics and the code reviews that missed
a vulnerability. We assume statistical significance at α = 0.05. We compare mean
of the populations to assess if the value of a metric tends to be higher or lower
between two populations (neutral and missed vulnerability code reviews).

Classification. To assess if the words used in code reviews can be a differen-
tiator between neutral and missed vulnerability code reviews, we built a Näıve
Bayes classifier with lemmas of the words from code reviews as features and
their corresponding TF-IDF as values. A typical code review could have hun-
dreds of distinct lemmas; to constrain the number of features in the model, we
used the criteria described below to filter the lemmas before attempting to build
the classifier.

(1) We only considered alphanumeric lemmas that were fewer than 13 characters
in length. We chose 13 characters to be a reasonable limit for lemma length
because over 99% of the all words in the Brown [17], Gutenberg [23], and
Reuters [1] natural language data sets are fewer than 13 characters in length.

(2) We only considered the top ten lemmas, ordered by the TF-IDF values, in
each code review. In other words, we only considered the ten most important
lemmas in code reviews.

In addition to constraining the number of features, we also had to constrain
the number of observations (code reviews) in the data set used to build the
classifier. We used random sampling to select 5% of neutral and 5% of missed
vulnerability code reviews. We repeated the random sampling to generate ten
(possibly) different data sets to be used to build the classifier. We used the
information gain [41] metric to assess the relevance of features in differentiating
the code reviews and removed all features with a zero information gain. We
then used the relevant features to train and test a Näıve Bayes classifier using
10×10-fold cross validation. We used SMOTE [11] to mitigate the impact of the
imbalance in the number of neutral and missed vulnerability code reviews on the
performance of the classifier. We used precision, recall and F-measure metrics
to assess the performance of the classifier.

4 Results

In the subsections that follow, we address our research questions through the
empirical analysis of our metrics.

4.1 RQ1 Feedback Quality

Question: Do linguistic measures of inquisitiveness, sentiment, and syntactic
complexity in code reviews contribute to the likelihood that a code review has
missed a vulnerability?

80 N. Munaiah et al.

We began the analysis by evaluating the correlation between the metrics
themselves to understand if any of the metrics were redundant due to high cor-
relation. The correlation analysis did not reveal any strong correlations between
the metrics and the highest value of |ρ| was 0.45, between inquisitiveness and
Yngve score metrics. We then used the MWW test to assess the strength of
association between the metric and the likelihood of a code review missing a
vulnerability. The results are shown in Table 2, with all associations statistically
significant at least p-value < 0.01. Shown in Fig. 3 in the Appendix are the
comparative box plots of the inquisitiveness, sentiment, and complexity metrics.

Table 2. Mann-Whitney-Wilcoxon (MWW) test outcome for association between the
linguistic measures and the likelihood of a code review missing a vulnerability

Metric p-value Meanneutral Meanmissed

Inquisitiveness 3.28e−12 0.1785 0.1711

Negativity < 2.2e−16 0.3707 0.4091

Positivity < 2.2e−16 0.0625 0.0783

Yngve score < 2.2e−16 0.0498 0.0442

Frazier score 0.0031 0.8568 0.8548

Propositional density 1.77e−124 0.2634 0.2708

These results reveal some interesting insights into the nature of code reviews
that have missed vulnerabilities. First, the lower inquisitiveness values in code
reviews that missed a vulnerability suggest that the participants in these reviews
may not have been as actively trying to unearth flaws. The approach to uncover-
ing security vulnerabilities requires review participants to question the behavior
of the code being reviewed in scenarios that are unlikely but still plausible.

Code reviews with lower inquisitiveness i.e. fewer questions per sentence
tend to miss vulnerabilities.

Secondly, participants in code reviews that missed vulnerabilities expressed a
higher degree of both positive and negative sentiment. The higher negativity in
code reviews that missed a vulnerability confirms the results observed by Pletea
et al. [35] in security-specific discussions in GitHub pull requests. However, the
higher positivity in code reviews that missed a vulnerability is interesting because
it seems that the conversation may have started on a negative sentiment but
culminated on a positive sentiment, or vice versa. We may have to chronologically
analyze messages to better understand the evolution of sentiment.

Code reviews with higher sentiment, regardless of the polarity of that sen-
timent, tend to miss vulnerabilities.

Natural Language Insights from Code Reviews that Missed a Vulnerability 81

Lastly, the complexity metrics, specifically Yngve and Frazier scores, show
that code reviews that missed a vulnerability tend to be less complex. While the
result may seem counterintuitive, the lack of complexity could be an indicator
that the code review conversation may be lacking substance. The propositional
density metric, on the other hand, is higher for code reviews that missed a
vulnerability indicating that those code reviews tend to have more assertions.

Code reviews with lower complexity in terms of Yngve and Frazier and
higher complexity in terms of propositional density tend to miss vulnerabil-
ities.

4.2 RQ2 Lexical Classifier

Question: Can the words used differentiate code reviews that have missed a vul-
nerability?

In RQ1, we found that the inquisitiveness, sentiment, and syntactic complex-
ity in code reviews are associated with the likelihood of a code review missing
a vulnerability. In this research question, however, we wanted to understand if
the words used in the code reviews itself was different between reviews that were
neutral and those that missed a vulnerability.

We computed the TF-IDF of the lemmas of the words used in a code review,
and using these features, built a classifier to identify code reviews as neutral
or missed vulnerability. Each random sample of data used to build the classi-
fier contained 39,377 code reviews and an average of 25,652 features. Shown in
Table 3 is the total number of features and the number of those features deemed
relevant (i.e. non-zero information gain) in each of the ten random samples.

Table 3. Number of relevant features in each of the ten randomly sampled sets of code
reviews

Sample set 1 2 3 4 5 6 7 8 9 10

Features 25,636 25,535 25,456 25,550 25,761 25,805 25,592 25,709 25,651 25,827

Relevant 1,092 889 959 885 910 1,012 986 910 1,091 898

We incrementally selected increasing number of relevant features to build
and evaluate the performance of a Näıve Bayes classifier. Figure 2 shows the
distributions of precision, recall, and F-measure obtained from each of the ten
random samples for varying number of relevant features selected. As seen in the
figure, the classifier built with 18 relevant features performs the best in terms of
F-measure. The average precision, recall, and F-measure of the best performing
classifier was 14%, 73%, and 23%, respectively. We note that, in classifying code
reviews that are likely to miss a vulnerability, a higher recall is desired even at
the cost of lower precision [31] since the cost of revisiting a few misclassified
reviews is relatively small when compared to the cost of a missed vulnerability.

82 N. Munaiah et al.

Precision Recall F−measure

12%

14%

16%

18%

20%

25%

50%

75%

14%

16%

18%

20%

22%

24%

3 5 7 9 18 36 72 14
4

25
0 3 5 7 9 18 36 72 14
4

25
0 3 5 7 9 18 36 72 14
4

25
0

Features

M
et

ri
c

V
al

u
e

Distribution of Classifier Performance Metrics for Varying Number of Features

Fig. 2. Distribution of classifier performance metrics—precision, recall, and F-
measure—obtained from ten random samples of code reviews for varying number of
relevant features used in training the classifier

The ability of our classifier to differentiate between neutral and missed vul-
nerability code reviews indicates that the distribution of words used in these
two types of code reviews is indeed different. In a code review framework, such a
classifier could be used to identify code reviews that are potentially missing vul-
nerabilities. The development team could then revisit these flagged code reviews
to ensure that the necessary steps are taken to uncover any latent vulnerabilities.

Yes. The accuracy of our classifier indicates that the words used in code
review can be a differentiator between neutral and missed vulnerability code
reviews.

5 Limitations

The scale of our data set posed certain computational limitations, specifi-
cally in the process of building a lexical classifier. We used the lemma of
words in the code review as features in the lexical classifier, however, our
data set contains 2,089,579 unique lemmas obtained through lemmatization of
2,197,114 unique words. An attempt to build a classifier using the entire data set
788, 437 × 2, 089, 579 seemed intractable. We overcame this limitation by filter-
ing lemmas by length and non-alphanumeric characters, by randomly sampling
a small percentage of code reviews, and by selecting the top 10 lemmas by their
relative importance. We mitigated the arbitrariness in the sampling process by
repeating it ten times and averaging the results.

The sentiment analysis model that we used was trained with movie reviews
and may have misclassified sentences since code reviews tend to have variable
names or other artifacts that could skew the analysis. A mitigation could be to
train the sentiment analysis model with a sufficiently large sample of manually
classified code review messages.

Natural Language Insights from Code Reviews that Missed a Vulnerability 83

The default parser used to parse the syntax of sentences in Stanford CoreNLP
is based on Probabilistic Context-Free Grammar (PCFG). In our initial of analy-
sis, the parser would timeout when parsing long code review messages. In the
subsequent analyses, we have used a faster but marginally less accurate Shift-
Reduce Constituency Parser (SR). We do not believe that the use of the SR
parser may have had an impact on any downstream operations performed on
the syntactic parse trees.

6 Summary

In this study, we used natural language processing to characterize linguistic
features—inquisitiveness, sentiment and syntactic complexity—in conversations
between developers participating in a code review. We collected these features
from 3,994,976 messages spread across 788,437 code reviews from the Chromium
project. We collected 1,462 vulnerabilities and identified code reviews that had
the opportunity to prevent the vulnerability in the past. We then used asso-
ciation analysis to evaluate if the linguistic features proposed were associated
with the likelihood of code reviews missing a vulnerability. We found that code
reviews with lower inquisitiveness, higher sentiment, and lower complexity were
more likely to miss a vulnerability. In addition to the linguistic features, we com-
puted the relative importance measure—TF-IDF—of 2,089,579 unique lemmas
obtained from words in code reviews messages. We used a subset of the lemmas
as features to build a Näıve Bayes classifier capable of differentiating between
code reviews that are neutral and those that had missed a vulnerability. The
average precision, recall, and F-measure of the classifier were 14%, 73%, and
23%, respectively.

We believe that our characterization of the linguistic features and the clas-
sifier will help developers identify potentially problematic code reviews before a
vulnerability is missed.

A Comparing Distribution of Inquisitiveness, Sentiment
and Complexity Metrics

The comparison of the distribution of inquisitiveness, sentiment and complexity
metrics for neutral and missed vulnerability code reviews is shown in Fig. 3.

84 N. Munaiah et al.

Inquisitiveness

0.01

1.00

Neu
tra

l

M
iss

ed
 V

ul
ne

ra
bi

lity

Negativity

0%

25%

50%

75%

100%

Neu
tra

l

M
iss

ed
 V

ul
ne

ra
bi

lity

Positivity

0%

25%

50%

75%

100%

Neu
tra

l

M
iss

ed
 V

ul
ne

ra
bi

lity

Yngve Score

1e−04

1e−02

1e+00

Neu
tra

l

M
iss

ed
 V

ul
ne

ra
bi

lity

Frazier Score

0.0

0.5

1.0

1.5

2.0

Neu
tra

l

M
iss

ed
 V

ul
ne

ra
bi

lity

Propositional Density

0.00

0.25

0.50

0.75

1.00

Neu
tra

l

M
iss

ed
 V

ul
ne

ra
bi

lity

Comparing Distribution of Various Metrics

Review Type

M
et

ri
c

V
al

u
e

(V
ar

yi
n

g
 S

ca
le

s)

Fig. 3. Comparing the distribution of inquisitiveness, sentiment and complexity metrics
for neutral and missed vulnerability code reviews

References

1. Reuters-21578, Distribution 1.0. http://kdd.ics.uci.edu/databases/reuters21578/
reuters21578.html

2. Baddeley, A.: Recent developments in working memory. Curr. Opin. Neurobiol.
8(2), 234–238 (1998)

3. Baddeley, A.: Working memory and language: an overview. J. Commun. Disord.
36(3), 189–208 (2003)

4. Baysal, O., Kononenko, O., Holmes, R., Godfrey, M.W.: The influence of non-
technical factors on code review. In: 2013 20th Working Conference on Reverse
Engineering (WCRE), pp. 122–131, October 2013

5. Beller, M., Bacchelli, A., Zaidman, A., Juergens, E.: Modern code reviews in open-
source projects: which problems do they fix? In: Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, New York, NY, USA, pp.
202–211. ACM, New York (2014)

6. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing
Text with the Natural Language Toolkit. O’Reilly Media Inc, Sebastopol (2009)

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

Natural Language Insights from Code Reviews that Missed a Vulnerability 85

7. Bosu, A., Carver, J.C.: Peer code review to prevent security vulnerabilities: an
empirical evaluation. In: 2013 IEEE Seventh International Conference on Software
Security and Reliability Companion, pp. 229–230, June 2013

8. Bosu, A., Greiler, M., Bird, C.: Characteristics of useful code reviews: an empiri-
cal study at microsoft. In: 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories, pp. 146–156, May 2015

9. Bosu, A., Carver, J.C., Hafiz, M., Hilley, P., Janni, D.: Identifying the character-
istics of vulnerable code changes: an empirical study. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2014, New York, NY, pp. 257–268. ACM, New York (2014)

10. Brown, C., Snodgrass, T., Kemper, S.J., Herman, R., Covington, M.A.: Automatic
measurement of propositional idea density from part-of-speech tagging. Behav. Res.
Methods 40(2), 540–545 (2008)

11. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

12. Chomsky, N.: Syntactic Structures. Mouton, The Hague (1957)
13. Chromium: Chromium OS developer’s guide (2017). https://www.chromium.org/

chromium-os/developer-guide
14. Ciolkowski, M., Laitenberger, O., Biffl, S.: Software reviews: the state of the prac-

tice. IEEE Software 20(6), 46–51 (2003)
15. Czerwonka, J., Greiler, M., Tilford, J.: Code reviews do not find bugs: how the

current code review best practice slows us down. In: Proceedings of the 37th Inter-
national Conference on Software Engineering, ICSE 2015, vol. 2, pp. 27–28. IEEE
Press, Piscataway (2015). http://dl.acm.org/citation.cfm?id=2819009.2819015

16. Edmundson, A., Holtkamp, B., Rivera, E., Finifter, M., Mettler, A., Wagner, D.:
An empirical study on the effectiveness of security code review. In: Jürjens, J.,
Livshits, B., Scandariato, R. (eds.) ESSoS 2013. LNCS, vol. 7781, pp. 197–212.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36563-8 14

17. Francis, W.N., Kucera, H.: A standard corpus of present-day edited American
English, for use with digital computers. Coll. Engl. 26(4), 267 (1965)

18. Frazier, L.: Syntactic complexity. In: Dowty, D.R., Karttunen, L., Zwicky, A.M.
(eds.) Natural Language Parsing, pp. 129–189. Cambridge University Press (CUP),
Cambridge (1985)

19. Frazier, L.: Sentence Processing: A Tutorial Review (1987)
20. Frazier, L.: syntactic processing: evidence from Dutch. Nat. Lang. Linguist. Theor.

5(4), 519–559 (1987)
21. Frazier, L., Taft, L., Roeper, T., Clifton, C., Ehrlich, K.: Parallel structure: a source

of facilitation in sentence comprehension. Mem. Cogn. 12(5), 421–430 (1984)
22. Guzman, E., Azócar, D., Li, Y.: Sentiment analysis of commit comments in GitHub:

an empirical study. In: Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, NY, pp. 352–355. ACM, New York (2014)

23. Hart, M.S., Austen, J., Blake, W., Burgess, T.W., Bryant, S.C., Carroll, L.,
Chesterton, G.K., Edgeworth, M., Melville, H., Milton, J., Shakespeare, W., Whit-
man, W., Bible, K.J.: Project Gutenberg Selections. Freely available as a Corpus
in the Natural Language ToolKit. http://www.nltk.org/nltk data/#25

24. Hinkle, D.E., Wiersma, W., Jurs, S.G.: Applied Statistics for the Behavioral Sci-
ences. Houghton Mifflin, Boston (2002)

25. Lipner, S.: The trustworthy computing security development lifecycle. In: 20th
Annual Computer Security Applications Conference, pp. 2–13, December 2004

https://www.chromium.org/chromium-os/developer-guide
https://www.chromium.org/chromium-os/developer-guide
http://dl.acm.org/citation.cfm?id=2819009.2819015
http://dx.doi.org/10.1007/978-3-642-36563-8_14
http://www.nltk.org/nltk_data/#25

86 N. Munaiah et al.

26. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.:
The Stanford CoreNLP natural language processing toolkit. In: Association for
Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014)

27. Mäntylä, M.V., Lassenius, C.: What types of defects are really discovered in code
reviews? IEEE Trans. Software Eng. 35(3), 430–448 (2009)

28. Mayer, R.E., Moreno, R.: Nine ways to reduce cognitive load in multimedia learn-
ing. Educ. Psychol. 38(1), 43–52 (2003)

29. McGraw, G.: Software security. IEEE Secur. Priv. 2(2), 80–83 (2004)
30. Meneely, A., Srinivasan, H., Musa, A., Tejeda, A.R., Mokary, M., Spates, B.: When

a patch goes bad: exploring the properties of vulnerability-contributing commits.
In: 2013 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, pp. 65–74, October 2013

31. Menzies, T., Menzies, A., Distefano, J., Greenwald, J.: Problems with precision:
a response to “comments on ‘data mining static code attributes to learn defect
predictors’”. IEEE Trans. Softw. Eng. 33(9), 637–640 (2007). doi:10.1109/TSE.
2007.70721. ISSN: 0098-5589

32. Meyers, B.S.: Speech processing & linguistic analysis tool (SPLAT). https://
github.com/meyersbs/SPLAT

33. Miller, G.: Human memory and the storage of information. IRE Trans. Inf. Theor.
2(3), 129–137 (1956)

34. Miller, J.F., Chapman, R.S.: The relation between age and mean length of utter-
ance in morphemes. J. Speech Lang. Hear. Res. 24(2), 154–161 (1981)

35. Pletea, D., Vasilescu, B., Serebrenik, A.: Security and emotion: sentiment analysis
of security discussions on GitHub. In: Proceedings of the 11th Working Conference
on Mining Software Repositories, MSR 2014, NY, pp. 348–351. ACM, New York
(2014)

36. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2015). https://www.R-project.
org/

37. Roark, B., Mitchell, M., Hosom, J., Hollingshead, K., Kaye, J.: Spoken language
derived measures for detecting mild cognitive impairment. Trans. Audio Speech
Lang. Proc. 19(7), 2081–2090 (2011)

38. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Inf. Process. Manage. 24(5), 513–523 (1988)

39. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts,
C.: Recursive deep models for semantic compositionality over a sentiment treebank.
In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, October 2013

40. Sweller, J., Chandler, P.: Evidence for cognitive load theory. Cogn. Instr. 8(4),
351–362 (1991)

41. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text catego-
rization. In: ICML, vol. 97, pp. 412–420 (1997)

42. Yngve, V.H.: A Model and an Hypothesis for Language Structure, vol. 104, pp.
444–466. American Philosophical Society (1960)

http://dx.doi.org/10.1109/TSE.2007.70721
http://dx.doi.org/10.1109/TSE.2007.70721
https://github.com/meyersbs/SPLAT
https://github.com/meyersbs/SPLAT
https://www.R-project.org/
https://www.R-project.org/

Idea: Optimized Automatic Sanitizer Placement

Gebrehiwet Biyane Welearegai(B) and Christian Hammer

University of Potsdam, Potsdam, Germany
welearegai@uni-potsdam.de, hammer@cs.uni-potsdam.de

Abstract. Sanitization is a primary defense mechanism against injec-
tion attacks, such as cross-site scripting (XSS) and SQL injection. Most
existing research on sanitization focuses on vulnerability detection and
sanitization correctness, leaving the burden of sanitizer placement with
the developers. However, manual sanitizer placement is complex in realis-
tic applications. Moreover, the automatic placement strategies presented
in the literature do not optimize the number of sanitizer positions, which
results in inconsistent multiple-sanitization errors and duplicated code
in our experience.

As a remedy this paper presents an optimized automatic sanitizer
placement to reduce the number of positions where sanitization is
required. To that end, we analyze the dataflow of a program via sta-
tic analysis. We optimize the number of sanitizer positions by prefer-
ring nodes common to multiple paths as sanitizer positions. Our evalu-
ation displays equal sanitization coverage as previous approaches with
a reduced number of sanitizers, and reduces the number of sanitization
errors to 0.

Keywords: Vulnerability · Sanitization · Automatic sanitizer place-
ment

1 Introduction

Web applications are often vulnerable to script injection attacks, such as cross-
site scripting (XSS) and SQL injection. XSS vulnerabilities allow an attacker
to inject client-side scripting code into the output of an application which is
then sent to another users web browser [1]. The scripting code can be crafted to
send sensitive data, such as user login credentials, credit card numbers, to a third
party when executed in the browser. Likewise, SQL injection vulnerabilities allow
an attacker to execute malicious SQL statements that violate the application’s
desired data integrity or confidentiality policies [2]. The predominant first-line
approach to prevent such attacks is sanitization, the practice of encoding or
filtering untrusted inputs of an application. Existing research on sanitization
mainly deals with vulnerability detection [3,4]. These approaches assume that
an application is secure if sanitization is applied on all paths from sources to
sinks. However, this does not always hold as the sanitization process itself might
be buggy or incomplete. This triggered a line of research on sanitizer correctness
c© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 87–96, 2017.
DOI: 10.1007/978-3-319-62105-0 6

http://orcid.org/0000-0002-5983-4603
http://orcid.org/0000-0001-5955-3732

88 G.B. Welearegai and C. Hammer

1 main() {

2 exchange = getSource();

3 func1(exchange);

4 func2(exchange);

5 }

6 func1(exchange) {

7 exchange.getIN();

8 }

9 func2(exchange) {

10 exchange.getIN();

11 }

Fig. 1. Path decomposition due to flow-insensitivity (code and its data flow graph)

[4,5]. Yet, having correct sanitizers is not enough to completely mitigate scripting
attacks; the sanitizers must also be placed correctly.

Sanitizer placement depends on how input data is being used [6], where it
originates from [7] and the context in which it is rendered [6,8]. Hence, manual
sanitizer placement is difficult and error prone [4,5]. On top of missing saniti-
zation, common errors are inconsistent sanitization (mismatch of sanitizer and
context) and inconsistent multiple sanitization (sanitizers may not be idempo-
tent) [9]. This motivated research on automatic sanitizer placement [6,8,9].

Automatic sanitizer placement techniques assume that the individual sani-
tizers are correct, and that the mapping of sanitizers to their contexts [8,9] or
source and sink policy [6] is given. The goal of the automatic placement strat-
egy is to place sanitizers on every program path between an untrusted input
and a possibly scriptable output of an application while preventing errors due
to inconsistent sanitization and inconsistent multiple sanitization. Currently, the
automatic placement techniques strive for this goal but do not try to optimize the
number of sanitizer calls in the code. In the worst case each path in the code may
have its own call to an appropriate sanitizer. However, due to the flow-insensitive
points-to-analysis characteristics, a single runtime path can be decomposed into
several paths that may lead to inconsistent multiple sanitization. Assuming the
policy of Fig. 1 does not allow to put a sanitizer at node n6, nodes n4 and n5 are
selected as sanitizer positions according to existing research. However, at run-
time these two nodes are being executed subsequently, i.e. the value in exchange
is being sanitized twice. Our experiments (cf. Sect. 4) display an error rate of
20% for the non-optimized algorithm, i.e., 20% of all sanitizers might suffer
from erroneous inconsistent multiple sanitization. An alternative approach that
does not suffer from the shortcomings of flow-insensitivity analysis would be to
dynamically taint untrusted input data at runtime and to propagate these taints
during computation, but this may incur significant runtime overheads.

In this paper, we propose an optimized automatic sanitizer placement tech-
nique by statically analyzing the flow of tainted data. This analysis takes a
dataflow graph and the sanitization policy, that specifies the mapping of sani-
tizers with respect to source and sink combinations, as input. The goal is, then,

Idea: Optimized Automatic Sanitizer Placement 89

to automatically find sanitizer positions satisfying sanitization correctness, i.e.,
every value that flows from a source to a sink must have the given type of sanitizer
applied exactly once. Our placement technique uses static node-based analysis,
and nodes that are common to several paths requiring the same sanitizer type
are proposed as the best candidate for optimized sanitizer positions. For the
data flow graph in Fig. 1, our optimized approach selects node n1 as sanitization
position, thus eliminating multiple sanitization and code duplication. Our evalu-
ation (in Sect. 4) shows that the reduction of sanitizers due to this optimization
reduces or eliminates the sanitization errors of previous approaches.

2 Sanitizer Placement Overview

This section presents background on dataflow graphs and sanitization policies
which are the input to the sanitization placement problem, followed by a clari-
fication of the placement problem.

2.1 Dataflow Graph and Sanitization Policy

A dataflow graph is a static representation of a program where nodes represent
statements/predicates and edges indicate data dependencies. When the program
performs a computation, values may only flow according to the data dependence
edges. To guarantee a secure flow of data, we require a sanitization policy that
defines an appropriate sanitizer for values that flow from a given source to a
given sink. The policy is usually given in the form of a table where sources and
sinks are displayed in rows and columns and sanitizers are given as the entries
[6]. Throughout this paper, we use the dataflow graph and its sanitization policy
in Fig. 2 as an example. Source types (©,�) are shown in the rows and sink
types (�,�,�,�) are shown in the columns. � represents data sources and sinks
that are irrelevant for security. We use metavariables P , I and O to range over
policies, sources and sinks, respectively. Particularly, we write P (I,O) for the
entry in policy P for the source I and sink O. For instance, for the policy P in
Fig. 2, data originating from source type © going to sink type � should have
sanitizer S1 applied to it. If data that flow from source type I to sink type O
does not require sanitization, we represent its policy as P (I,O) =⊥.

2.2 Sanitizer Placement Problem

The challenge of sanitizer placement is to identify an appropriate sanitizer and
its position in the source code in order to prevent untrusted data flowing from a
source to a sink with dangerous scripts to be injected in the sink context. This
problem arises as the result of the source, sink and context-sensitivity property
of sanitization placement [6–8]. In large applications, with a multitude of nodes
and paths, manual sanitizer placement is hard to get right. Consequently, an
automatic decision procedure is required whose goal is to ensure correct saniti-
zation of data in an application given its dataflow graph and sanitization policy,
i.e., according to the correctness definition [6] (Definition 1).

90 G.B. Welearegai and C. Hammer

Fig. 2. Dataflow graph example (sources on top, sinks at bottom) and sanitization
policy

Definition 1. Given a dataflow graph G = 〈N,E〉, sanitization for the graph
is valid for a policy P , if for all source nodes s and all sink nodes t:

– if P (s, t) = S, then every value that flows from source node s to sink node t
has sanitizer S applied exactly once, and no other sanitizer is applied.

– if P (s, t) =⊥, then every value that flows from source node s to sink node t
has no sanitizer applied.

The reason why sanitizers must be applied only once on a single path is
that they are not necessarily idempotent [3]. Specifically, applying a sanitizer
several times on a path may lead to inconsistent multiple sanitization errors [9].
However, untrusted input may be coming from a source in multiple contexts,
which implies different sanitizers might be required within a single path leading
to a sink. For this type of situation, multiple (potentially nested) sanitizers are
modeled as a single (composite) sanitizer [6].

3 Our Approach

To solve the sanitizer placement problem, we propose two types of static node-
based strategies: a less-optimized and a fully-optimized solution. The less-op-
timized solution optimizes the number of sanitizer positions only when there
is a common node for all paths from a source to a sink. Other than that, it
follows the same approach as Livshits et al. [6]. The fully-optimized solution,
however, always reduces the number of sanitizer positions by selecting nodes
common to many paths requiring the same sanitizer as a sanitization positions.
This optimization removes code duplication and the occurrence of inconsistent
multiple-sanitization error that could appear as the result of flow-insensitive
static analysis. Due to space limitation, we present detailed explanations only for
the fully-optimized solution. However, the result of both approaches is evaluated
in Sect. 4.

Idea: Optimized Automatic Sanitizer Placement 91

Table 1. Si-possible and Si-exclusive nodes for Fig. 2

Sanitizers Possible Exclusive

S1 1, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17 3, 7, 8, 9, 11, 12, 13

S2 2, 5, 10, 14, 16, 17 5, 10, 14

S3 1, 2, 4, 6, 15, 19 19

S4 1, 4, 15, 18 ∅
⊥ 2, 6, 15, 18 ∅

3.1 Fully Optimized Approach

For i, j ranging from 1 to k where k is the number of sanitizer types, a node
n is called Si-possible if it is found on a path from source s to sink t that
requires sanitizer Si, i.e., P (s, t) = Si. This implies that at least some of the
data traversing from source s to sink t through node n needs to be sanitized
with sanitizer Si. Likewise, a node n is called Si-exclusive if it is Si-possible and
not Sj-possible for all i �= j [6].

Definition 2. Node n ∈ N is Si-possible if there is a source node s and a sink
node t such that n is on a path from s to t and P (s, t) = Si.

Definition 3. Node n ∈ N is Si-exclusive if it is Si-possible and for all source
nodes s and sink nodes t, if n is on a path from s to t, then P (s, t) = Si.

For the dataflow graph example (Fig. 2), the possible and exclusive nodes for
sanitizers S1, S2, S3, S4 and ⊥ are given in Table 1. According to the correctness
definition (Definition 1), sanitizer nodes must be selected from the Si-exclusive
sets. However, sanitizer S4 has no exclusive nodes, hence values flowing from
source type © to sink type � cannot be sanitized statically. This is due to the
inability of static analysis to identify the source and/or destination of input data
at nodes that are not exclusive to a sanitizer type. Additionally the correctness
definition prohibits placing the same sanitizer more than once on a single path.
Hence, our solution selects the node that provides most optimal placement if
there is more than one exclusive node on a single path.

In addition to the Si-possible and Si-exclusive sets, we need the following
definitions to elaborate our approach.

Definition 4. The Si-node-frequency for a node n ∈ N is the number of paths
through n that satisfy P (s, t) = Si, for a source node s and a sink node t.

Definition 5. Node n ∈ N is Si-exclusive-pj-previous if it is Si-exclusive and
it is found on any of the paths traversed before path pj during the depth first
path search of path analysis.

Definition 6. Node n ∈ N on a path pj is Si-exclusive-pj-exclusive if it is
Si-exclusive and not Si-exclusive-pj-previous.

92 G.B. Welearegai and C. Hammer

Definition 7. Node n ∈ N is called the Si-position if it is selected to be sani-
tization node for sanitizer Si.

Definition 8. Si-backtracking-map collects the mapping of Si-position nodes,
at every path iteration, to paths requiring sanitizer Si.

For each path pj our fully-optimized placement algorithm traverses the Si-
exclusive-pj-exclusive nodes and selects the last node on that path with max-
imum Si-node-frequency as the temporary1 Si-position. However, more than
one sanitizer could be included on a single path with this strategy alone, which
violates the correctness definition (Definition 1). To resolve this problem, we
consider three conditions based on the number of previously identified sanitizer
position nodes Si on the current path pj .

First, if there is no Si-position on pj , we apply the strategy described above
and add pj into the Si-backtracking-map.

Second, there is exactly one Si-position on pj . Thus the current path pj
already has a Si-position node, hence we do nothing. However, that Si-position
node might be removed later due to backtracking in which case pj would lack a
sanitizer. For this reason, pj is entered into a map of skipped paths which will
be re-added to the iteration if its corresponding Si-position node is removed.

Third, when there is more than one Si-position node on pj , we backtrack
to find the paths that provided these nodes and assign a different sanitization
node for all except one path. To select that one, we consider the intersection of
the current path with all paths that have provided the Si-position nodes causing
multiple sanitization errors. Then, taking two intersection sets at a time starting
from the sink, we compare the number of incoming edges to the top node in the
bottom intersection set with the number of outgoing edges from the bottom
node in the top intersection set. After that, the path whose Si-position node in
the intersection set had the lower number is removed and another intersection
set is compared with the one that had the higher number. When all intersection
sets are considered, only the path that results in the maximum number remains
and serves as the source of Si-position for the current path, as well. The reason
behind this is that if the Si-position node is removed with the path, we have to
apply Si at all its previous/next nodes depending on its relative position in the
two intersection sets. Thus, it is preferable to remove the ones that have lower
in-/out-degrees. Lastly, these removed paths as well as the skipped paths that
contain these removed Si-positions are again included to the path iteration to
select another Si-position node.

To exemplify our fully-optimized solution, we use the Si-exclusive graph
shown in Fig. 3. The path numbers in the graph indicate the iteration order
during the analysis to find a single Si-position node on every path. For p1 n3 is
selected as sanitization node according to the first condition since it has node
frequency 3. Path p2 already contains n3 (second condition). Next, node n8 is
selected as Si-position for p3 (first condition).

1 The Si-position for path pj can be changed later due to backtracking.

Idea: Optimized Automatic Sanitizer Placement 93

Fig. 3. Si-exclusive graph example for fully-optimized solution explanation

The fourth iteration results in backtracking, as p4 contains two sanitization
nodes: n3 and n8. From the intersection of p4 with p3, we get the top node n5

and from the intersection of p4 with p1 we get the bottom node n3. Comparing
the out-degree of n3 (3 edges) with in-degree of n5 (2 edges), n3 is chosen to
remain sanitizer node. Finally n4 is selected as new sanitization node for path
p3 (subpath excluding n5 and n8) using condition one. Placing Si at nodes n3

and n4 is sufficient to sanitize all values that flow along these paths.
In the end, the Si-position nodes using our fully-optimized solution for the

dataflow graph and the policy in Fig. 2 are: S1 at nodes n11, n8, n9, S2 at node
n5 and S3 at node n19. S4 and ⊥ have no exclusive node, hence sanitization is
not statically possible. Using our less-optimized solution, n12 and n13 would be
selected for S1 instead of n8, similar to previous approaches [6].

4 Evaluation

We evaluate our approaches using WALA [10] on an application whose call graph
consists of 15,214 nodes, 119,026 edges, 14,070 methods, and 724,806 bytes. San-
itization coverage, sanitization errors, the number of sanitizer positions and time
taken by the analyses are used as evaluation parameters. The sanitization cover-
age indicates the ratio of untrusted inputs passed through the correct sanitizers.
The sanitization errors are multiple sanitization errors due to WALA’s flow-
insensitive pointer analysis that decomposes one path to multiple paths. Table 2
reports the result of the fully-optimized and less-optimized approaches on a Mac-
Book Pro with a 2.9 GHz Intel Core i7 processor and 16 GB RAM. N in the first
column indicates a call-string based context-sensitivity parameter. The ratio of
sanitization errors is relative to the required correct sanitizer positions.

Maximum sanitization coverage was achieved for N = 2 for both approaches,
and we took that for comparison as missing sanitization may have devastating
effects. The missing 10% are caused by paths lacking sanitizer-exclusive nodes.
However, for these paths runtime tracking of input data can be applied instead
of static sanitizer placement [6]. For example, in Fig. 2 one might want to add

94 G.B. Welearegai and C. Hammer

Table 2. Results of placement approaches

Fully-optimized Less-optimized

Sanitization Analysis Sanitization Analysis

N Coverage Errors Numbers Time (m) Coverage Errors Numbers Time (m)

1 50 % 0% 5 2:31 50 % 20% 8 2:40

2 90 % 0% 9 2:09 90 % 40 % 14 2:01

3 80 % 0% 8 2:44 90 % 40 % 14 2:42

4 80 % 0% 9 4:46 90 % 40 % 14 5:19

5 90 % 0% 9 9:30 90 % 40 % 14 9:02

code that registers whether data was flowing to node 15 from node 4 or from
node 6. Then in node 18 one would be able to decide whether sanitizer S4 needs
to be applied (flow from 4) or not (flow from 6).

As expected, the number of sanitizer positions is reduced for the fully-
optimized approach since it always attempts to find common nodes for paths
that require the same sanitizer type. Unlike the less-optimized approach, which
is only slightly more precise than previous work [6], the fully-optimized approach
does not result in sanitization errors. The analysis time is almost identical for
each context-sensitivity value N . But the less-optimized solution can provide its
maximum coverage at a lower value of N , hence analysis time could be lower.

Note that the less-optimized solution follows exactly the same approach as
Livshits et al. [6] in its non-optimized variant. Hence, the evaluation of the fully-
optimized solution with respect to the less-optimized solution also elaborates
on how our fully-optimized solution resolves the multiple sanitization error and
code duplication problems of existing research. The correctness (sanitization
coverage) of both our solutions is in sync with Livshits et al. [6], since we use the
same node-based static analysis approach, i.e., every piece of data which flows
through a path that has at least one exclusive node is sanitized. This has been
confirmed using several test cases although we use only one application for a final
evaluation. The optimality of the fully-optimized approach is also confirmed in
a similar way, i.e., it finds the least sufficient number of sanitizer positions.

To the best of our knowledge, previous research does not consider optimiza-
tion of sanitizer placement and this paper is the first to report that such an
optimization has benefits beyond code clone elimination, namely a reduction in
the sanitization error rate.

5 Related Work

The automatic sanitizer placement of Livshits et al. [6] is closely related to our
approach. They propose two solutions: a static node-based solution, and an edge-
based solution based on static analysis and runtime taint tracking. The former
is similar to ours but does not attempt to optimize the number of sanitizer

Idea: Optimized Automatic Sanitizer Placement 95

positions. Another research that shares our goal is presented by Samuel et al.
[8]. They provide static type inference-based approach to automatically apply
sanitizers. It is unclear whether type inference based analysis is scalable as they
focus on a small program (less than 4000 lines of code) in Google Closure. Saxena
et al. [9] propose SCRIPTGARD that can detect and repair incorrect placement
of sanitizers in ASP.NET applications. SCRIPTGARD assumes that develop-
ers have manually applied context-sensitive sanitization correctly. A dynamic
analysis detects and auto-corrects context-inconsistency errors in sanitization.
In contrast, our approach can correctly apply sanitizers in an application com-
pletely lacking developer-supplied annotations. Additionally, we leverage static
analysis in order to eliminate runtime overhead of dynamic analysis.

6 Conclusion

This paper presents an automatic sanitizer placement mechanism that optimizes
the number of sanitizer positions. Due to the reduced number of sanitizer posi-
tions we did not experience any inconsistent multiple sanitization errors. Hence,
the fully-optimized algorithm is a valuable solution for real world applications.
However, in some cases runtime information is required to identify the valid
sanitizer type. Thus, a hybrid analysis that leverages runtime tracking in such
situations is proposed to guarantee full sanitization coverage.

Acknowledgements. This work was supported by the German Federal Ministry of
Education and Research (BMBF) through the project SimoBA (16KIS0440).

References

1. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross-site
scripting prevention with dynamic data tainting and static analysis. In: Proceed-
ings of Network and Distributed System Security, p. 12 (2007)

2. Halfond, W., Viegas, J., Orso, A.: A classification of SQL-injection attacks and
countermeasures. In: IEEE International Symposium on Secure Software Engi-
neering (ISSSE), pp. 13–15. IEEE (2006)

3. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages.
In: 15th USENIX Security Symposium, pp. 179–192 (2006)

4. Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C.,
Vigna, G.: Saner: composing static and dynamic analysis to validate sanitization
in web applications. In: Symposium on Security and Privacy, pp. 387–401 (2008)

5. Hooimeijer, P., Livshits, B., Molnar, D., Saxena, P., Veanes, M.: Fast and pre-
cise sanitizer analysis with BEK. In: 20th USENIX Conference on Security, p. 1.
USENIX Association (2011)

6. Livshits, B., Chong, S.: Towards fully automatic placement of security sanitizers
and declassiefiers. In: ACM SIGPLAN Notices, pp. 385–398. ACM (2013)

7. Weinberger, J., Saxena, P., Akhawe, D., Finifter, M., Shin, R., Song, D.: A sys-
tematic analysis of XSS sanitization in web application frameworks. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 150–171. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23822-2 9

http://dx.doi.org/10.1007/978-3-642-23822-2_9

96 G.B. Welearegai and C. Hammer

8. Samuel, M., Saxena, P., Song, D.: Context-sensitive auto-sanitization in web tem-
plating languages using type qualifiers. In: CCS, pp. 587–600. ACM (2011)

9. Saxena, P., Molnar, D., Livshits, B.: SCRIPTGARD: automatic context-sensitive
sanitization for large-scale legacy web applications. In: CCS, pp. 601–614 (2011)

10. T.J. Watson Libraries for Analysis (WALA). http://wala.sourceforge.net

http://wala.sourceforge.net

FPRandom: Randomizing Core Browser Objects
to Break Advanced Device
Fingerprinting Techniques

Pierre Laperdrix1(B), Benoit Baudry2,
and Vikas Mishra3

1 INSA de Rennes & INRIA, Rennes, France
pierre.laperdrix@insa-rennes.fr

2 INRIA, Rennes, France
benoit.baudry@inria.fr

3 Birla Institute of Technology and Science, Sancoale, Goa, India
vikasmishra95@gmail.com

Abstract. The rich programming interfaces (APIs) provided by web
browsers can be diverted to collect a browser fingerprint. A small num-
ber of queries on these interfaces are sufficient to build a fingerprint that
is statistically unique and very stable over time. Consequently, the fin-
gerprint can be used to track users. Our work aims at mitigating the
risk of browser fingerprinting for users privacy by ‘breaking’ the stabil-
ity of a fingerprint over time. We add randomness in the computation of
selected browser functions, in order to have them deliver slightly different
answers for each browsing session. Randomization is possible thanks to
the following properties of browsers implementations: (i) some functions
have a nondeterministic specification, but a deterministic implementa-
tion; (ii) multimedia functions can be slightly altered without deterio-
rating user’s perception. We present FPRandom, a modified version of
Firefox that adds randomness to mitigate the most recent fingerprinting
algorithms, namely canvas fingerprinting, AudioContext fingerprinting
and the unmasking of browsers through the order of JavaScript prop-
erties. We evaluate the effectiveness of FPRandom by testing it against
known fingerprinting tests. We also conduct a user study and evaluate
the performance overhead of randomization to determine the impact on
the user experience.

1 Introduction

Browser fingerprinting has reached a state of maturity where it is now used by
many companies alongside cookies to identify and track devices for a wide range
of purposes from targeted advertising to fraud prevention. Several studies have
shown the growth of this technique along the years with both the discovery of
new attributes and its spread on the web [1,2,18]. Englehardt et al. notably

The stamp on the top of this paper refers to an approval process conducted by the
ESSoS artifact evaluation committee chaired by Karim Ali and Omer Tripp.

c© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 97–114, 2017.
DOI: 10.1007/978-3-319-62105-0 7

98 P. Laperdrix et al.

showed in 2016 that “the number of sites on which font fingerprinting is used
and the number of third parties using canvas fingerprinting have both increased
by considerably in the past few years” [8]. Third-parties are starting to turn to
the most recent browser APIs to collect as much device-specific information as
possible. Olejnik et al. demonstrated that recent APIs like the Battey API [20] or
the Ambient Light Sensor API [21] can leak device-specific information. Engle-
hardt et al. discovered that some online scripts use the AudioContext API to
get data on the audio capabilities of a device [8]. However, in the fast evolv-
ing landscape of Web standards, only a very low number of works have explored
approaches to mitigate or thwart tracking through fingerprinting. The main chal-
lenge in designing a good defense is to preserve the user experience while sending
information that will render device identification impossible. Since most of the
different attributes that constitute a fingerprint are essential for browsing the
web, changing a single one incorrectly can result in the complete loss of func-
tionalities and the user is then unable to get access to the desired service. In
this paper, we explore the use of browsers’ flexibility to prevent tracking through
advanced fingerprinting techniques along with an implementation in a Firefox
browser called FPRandom.

Key insight. Several API functions used to build a browser fingerprint are unnec-
essarily deterministic and provide device-specific information as a side effect.
Browsers present untapped flexibility that can be exploited to obtain a constantly
changing fingerprint. We especially investigate the two following areas:

– Browsers’ JavaScript engines make deterministic implementation choices,
even for some functions which are meant to be non-deterministic according
to the ECMAScript. We show that by removing some of these deterministic
coding choices, we can prevent the leakage of device-specific information.

– Randomness can be used to diversify how HTML multimedia elements are
rendered in the browser. Leveraging human’s perception of colors and sound,
we introduce controlled noise into the rendering process of canvas and audio
elements. Consequently, fingerprinting scripts constantly collect new values,
but we preserve the user experience.

By introducing randomness into key browser subroutines, we break the stabil-
ity of a fingerprint without artificially replacing values with pre-existing ones.
This hampers user tracking since a server cannot rely on the stability of the
fingerprint.

Implementation and evaluation. The landscape of browser fingerprinting
has greatly evolved in the past few years with the push of HTML5 by devel-
opers to make the web more secure and more complete. The lists of plugins
and fonts used to be two key attributes to identify devices, but they are now
slowly becoming remnants of the past. Yet, more recent techniques such as can-
vas fingerprinting [1], AudioContext fingerprinting [8] and the unmasking of the
browser through JavaScript properties’ order [18] offer strong foundations for
effective fingerprinting. Our work focuses on these three techniques. For each
technique, we look at the official JavaScript specification with a special atten-
tion for the inner-workings of the targeted HTML elements. Then we design

FPRandom: Randomizing Core Browser Objects 99

behavioural modifications that can impact the fingerprinting process without
altering the user experience. We developed a working prototype based on Fire-
fox called FPRandom and we evaluate both its performance and its resilience
against known fingerprinting scripts. The performed benchmarks show that the
overhead introduced by our solution is negligible and that all scripts using the
targeted attributes are affected.

The paper is organized as follows. Section 2 gives an overview of our approach
along with details on existing techniques to break the linkability of fingerprints.
Section 3 details the FPRandom browser with the different fingerprinting tech-
niques we target. Section 4 provides an evaluation of the browser’s performance
and its ability to deceive known fingerprinting scripts. Section 5 discusses the
related work while Sect. 6 concludes this paper.

2 Breaking Linkability of Fingerprints

Fingerprint uniqueness and stability are the two key properties that make
browser fingerprint tracking a reality. In this work, we aim at breaking the sta-
bility of fingerprints so that collected fingerprints are not linkable. Diversity is a
strong solution as constantly-changing information can be sent to fingerprinters
without impacting the user experience. Below, we present two state of the art
solutions that specifically target the linkability of fingerprints before we detail
our approach.

2.1 Current Solutions

Blink. In a previous study, we explored with Blink the use of dynamic software
reconfiguration “to establish a moving target defense against browser fingerprint
tracking” [13]. By leveraging virtualization and assembling components from a
large pool of operating systems, browsers, plugins and fonts, Blink is able to
build environments that exhibit very different fingerprints over time. The strong
advantage of this solution is that the generated browsing platforms are gen-
uine: they do not present any inconsistencies contrary to the spoofing extensions
discussed in Sect. 5. However, its major drawback is the complete machinery
involved in the synthesis of these browsing platforms. To exhibit diverse fin-
gerprints, Blink relies on a pool of hundreds of components that can occupy a
large amount of disk space and the use of virtual machines can be very costly
on less powerful computers. Moreover, Blink requires the use of several differ-
ent browsers to increase its success rate at breaking fingerprint linkability. It
is a sacrifice that not all users may be willing to make to increase their online
privacy.

PriVaricator. Nikiforakis et al. explore with PriVaricator how randomization
can be used to render browser fingerprints unreliable for tracking [18]. The main
insight of their study is that making fingerprints non-deterministic on multiple
visits makes them hard to link across browsing sessions. They state that “cre-
atively misrepresenting—or lying—about [collected] values introduces an ele-
ment of non-determinism” and that “subtly misrepresenting key properties of

100 P. Laperdrix et al.

the browser environment goes a long way towards combating fingerprinters”. As
a proof of concept, they introduced into Chromium the concept of randomiza-
tion policies, protection strategies that are activated when specific requirements
are met. They designed policies against the collection of offset measurements of
HTML elements and the enumeration of the list of plugins.

2.2 Our Approach: Exploiting Browsers’ Flexibility

In this work, we propose to exploit browsers’ untapped flexibility to introduce
randomness. Instead of changing software components at runtime like Blink or
lying on specific values like PriVaricator, we want to increase non-determinism
in browsers to reduce side-effects that cause fingerprintable behaviors.

Flexibility of the implementation of the JavaScript specifications. The
official ECMAScript specification, the de facto standard for scripting language
on the web, allows some flexibility in actual JavaScript implementations. Differ-
ent parts of the specification give some leeway by clearly indicating that specific
choices are left for the implementation. The ECMA organization strictly codifies
the interpretation of the language but the exact details of how it works remain in
the hands of browser vendors. For example, as we will see in the next Section, the
enumeration order of JavaScript properties are not detailed by the ECMAScript
specification but each browser presents its own unique order. Developers have
made deterministic choices when they implemented these functions. By taking a
step back and removing what can be interpreted as a surspecification of the stan-
dard, we are able to thwart fingerprinting vectors that rely on these detectable
side-effects.

Flexibility of the renderings of multimedia elements. Vendors are con-
stantly striving to improve their browsers to provide the latest innovations and
the best possible experience to their users. Changing some attributes collected in
a browser fingerprint like the user agent or the screen resolution can negatively
impact how a page is displayed to the detriment of users. However, the rendering
of HTML multimedia elements can be made more flexible and less deterministic
without degrading the user experience. Especially, we can exploit users’ per-
ception of color and sound to introduce imperceptible noise that impacts the
stability of specific browser routines. The key challenge here is to apply very
small modifications that no user will notice while a fingerprinting script will
output constantly changing values at every execution.

3 Implementation

To experiment with randomization, we target three of the most recent finger-
printing techniques: canvas fingerprinting as it is a prime example of a dynamic
media element and “in the top 5 of the most discriminating attributes” [14];
the Web Audio API recently observed in fingerprinting scripts by Englehardt
et al. [8]; the leakage of system information through JavaScript properties’ order

FPRandom: Randomizing Core Browser Objects 101

found by Nikiforakis et al. in the Cookieless Montster study [18]. All the miti-
gation techniques detailed in this section are implemented in a modified version
of Firefox called FPRandom. The complete patch for Firefox 54 is available on
GitHub1 along with a fully-compiled prototype for Linux systems.

3.1 Canvas API

Definition. Canvas fingerprinting was firstly introduced by Mowery et al. [16]
and observed on the Internet by Acar et al. [1]. Its goal is to use the Canvas API
of a browser to draw an image that can help differentiate one device from another.
Each device executes the exact same set of instructions and depending on both
hardware and software, rendered images present variations. Figure 1 shows the
canvas test we run on the AmIUnique website. The test consists in displaying
two lines of text with different shapes merged together. Here, depending on the
hardware and the installed drivers, the rendering of shapes and colors slightly
vary between devices. Then, depending on the software and most especially on
the list of installed fonts, the lines of text can present great differences. In our
previous study [14], we showed that one of the strength of canvas fingerprinting
is its stability and that it is “in the top 5 of the most discriminating attributes”.
It is notably the “second highest source of entropy for mobile devices”.

Modification. The first modification we made to the Firefox source code is to
introduce randomness inside the ParseColor function of the CanvasRendering-
Context2D class. Every time a color is set inside a canvas fingerprinting script,
the browser changes the actual RGB values of the parsed color by adding or
removing a very small number for each color channel. For example, if a script
asks to draw an orange rectangle, the browser will paint the canvas element as
requested. However, for every browsing session, the browser will use a slightly
different orange than the last time. Modifying the ParseColor method enables
us to support the full range of color declaration (for example, you can chose a
color by directly setting its RGB values or you can simply write its name like
“gold” or “orange”). The impact on the user experience is almost non-existent as
the difference in color is very hard to see with the naked eye. Finally, it should
be noted that we differentiate ourselves from tools called “canvas poisoners”
that change the RGB values of each pixel of the rendered image independently
from one another. Mowery et al. wrote that they are not “a feasible defense”
against current scripts because the noise can be lifted by repeating a test a few
times and comparing the results. They add that the aggressive introduction of
noise “degrades the performance of <canvas> significantly for legitimate appli-
cations” [16]. With our approach, the color on a whole surface is consistent as we
do not introduce random noise on separate pixels. As discussed in Sect. 3.4, we
can apply the exact same modification for every run of a fingerprinting script. If
a fingerprinter were to repeat the same canvas test more than once, he will not
be able to notice differences whereas canvas poisoners present noticeable varia-
tions between runs. The second modification operates in the SetFont function of
1 https://github.com/plaperdr/fprandom.

https://github.com/plaperdr/fprandom

102 P. Laperdrix et al.

the CanvasRenderingContext2D class and changes a font set by a script by one
present on the operating system. For the scripts asking for a fallback font, the
stability is broken as a font different from the previous session will be presented.

Example. Figure 2 illustrates the impact of FPRandom on the exact same can-
vas test with all protection features enabled. The blue, orange and green colors
are slightly different for each run and the used fonts are chosen among the ones
present on the operating system. The more fonts are installed on the user’s sys-
tem, the bigger the diversity of generated canvas renderings will be. By changing
at runtime core properties of elements present in a canvas test, we break the sta-
bility of this technique while still preserving the user experience.

Fig. 1. Original canvas rendering with
standard colors and the default fallback
font (Color figure online)

Fig. 2. Canvas renderings with modified
colors and fonts (Color figure online)

3.2 AudioContext API

Definition. Discovered by Englehardt et al. while crawling the web looking
for trackers [8], AudioContext fingerprinting is a newcomer in the browser fin-
gerprinting domain. The AudioContext API provides an interface to create a
pipeline to process audio. By linking audio modules together, you can generate
audio signals and apply very specific operations like compression or filtering to
generate a very specific output.

In audio, sampling is applied to convert a continuous signal into a discrete
one. This way, a computer can easily process audio in distinct blocks called
frames. Each frame is composed of samples that represent the value of the audio
stream at a specific point in time. Englehardt et al. have shown that, depending
on the audio stack of your system (both software and hardware), the exact value
of each of these frames slightly vary between devices. An audio fingerprint can
then be created similarly to what is done with the Canvas API.

Modification. We performed an analysis of audio fingerprints that we collected
on AmIUnique.org and the results can be found in AppendixA. We decided
to introduce very small noises directly into the audio processing routines of
the browser so that tests using any number of AudioContext modules are all
impacted. We operate at the heart of the AudioBuffers of the AudioNodeEngine
as they contain the frames of the processed audio. By modifying key functions,
we slightly decrease the volume of processed buffers by a factor ranging between
0.000 and 0.001. This way, a frame can present very small variations where only

http://AmIUnique.org

FPRandom: Randomizing Core Browser Objects 103

the smallest decimal digits are affected. With the use of very small factors, it is
impossible to detect modified sections from unmodified ones just by listening to
the rendered track as the differences between the original and modified track can
genuinely be interpreted as side effects or simple noise of the whole audio stack
of the device. For fingerprinting scripts, these modifications produce a different
hash as the audio routine will be ever so slightly different for each browsing
session.

Example. Figure 3 shows three waveforms of the first second of the “Ride of
the Valkyries” from Wagner. The audio pipeline we set up for this example per-
forms two operations. It first increases the volume of the track with a GainNode
and then compresses it through a DynamicsCompressorNode. The waveform in
Fig. 3a represents the output from an unaltered pipeline and the one in Fig. 3b
from a pipeline with our volume modification. The last waveform in Fig. 3c rep-
resents the difference between the first two (i.e. the introduced noise). In order to
see the impact of FPRandom, the 3rd waveform has been zoomed in at 1000%.
The scale is a clear indication that the generated noise is inaudible, proving that
the impact on the user experience is non-existent audio wise but it still impacts
the created audio fingerprint.

(a) Original waveform (b) Modified waveform

(c) Difference between the two
waveforms

Fig. 3. Visualization of audio rendered through the AudioContext API

3.3 Order of JavaScript Object’s Properties

Definition. By analyzing the content of JavaScript objects in the browser,
Nikiforakis et al. discovered that “the order of property-enumeration of special
browser objects, like the navigator and screen objects, is consistently different
between browser families, versions of each browser, and, in some cases, among
deployments of the same version on different operating systems” [18]. This way, if
someone were to hide the true browser’s identity, enumerating the properties of a
special object would simply unmask it. As stated by the latest ECMAScript Lan-
guage Specification ratified in June 2016, “mechanics and order of enumerating

104 P. Laperdrix et al.

the properties is not specified” (see Sect. 13.7.5.15 EnumerateObjectProperties
of [7]). This ordering behavior is entirely dependent on the browser’s imple-
mentation. Chrome and Firefox yield vastly different enumeration orders for
native objects like navigator. For non-native JavaScript objects, both browsers
first return integers in ascending order and then strings in insertion order. This
choice is arbitrary and many developers have long debated for the best and most
logical behavior as illustrated by this long discussion on the V8 bug tracker [22].

Modification. The browser’s unmasking added by the surspecification of the
ECMAScript standard can simply be undone by modifying the jsiter class of
Firefox. A special flag called “JS MORE DETERMINISTIC” can be activated
at compile time to sort IDs for both native and non-native objects in a deter-
ministic way. By tweaking the behavior of the SortComparatorIds structure used
with this special flag, we flip its purpose by not making the JavaScript engine
more deterministic but by generating a unique enumeration order every time the
browser is launched.

With the “JS MORE DETERMINISTIC” flag activated, the enumeration of
a JavaScript object first returns integers in ascending order and then strings in
alphabetical order. By diving even deeper into the source code, we found that
the string comparison done by the browser relies on the “Latin-1” or “ISO/CEI
8859-1” encoding of each string. When comparing two strings, the engine goes
through one character at a time and performs a simple subtraction of their code
points (i.e. their place in the Latin-1 character set, see [27]) to determine which
character is in front of the other. When a difference is detected, the engine
knows how to order the two strings as the result is either positive or negative.
AppendixB gives an example of such comparison between the appName and
appVersion strings.

In order to change the enumeration order for each browsing session, we assign
a random order for each combination (i.e. for each possible subtraction result)
from the Latin-1 character set. As the first code point starts at position no32
and the last one is at no255, we generate in total 223 different booleans to cover
all possible combinations. Any attempt to unmask the browser through this
technique is then prevented.

3.4 Randomization Strategy

All the modifications described in this section can be executed in different ways
when browsing the web. Here, we detail the two randomization strategies present
in FPRandom while discussing their own strengths and weaknesses.

Random mode. The first mode that we propose in FPRandom is the “Ran-
dom” strategy. Every time the modified functions are executed in the browser,
they will return random values. The advantage is that it prevents cross-domain
tracking as two scripts on two different domains (even from the same provider)
would collect different values on both sites. However, the major downside of this
solution is that it presents “transparency” problems as discussed by Nikiforakis

FPRandom: Randomizing Core Browser Objects 105

et al. in the PriVaricator study [17]. If a fingerprinter were to study the pres-
ence of randomness, a script could execute the same test several times to detect
instability. Depending on the test, a statistical analysis could be performed to
reduce or remove the introduced randomness but it requires far more means and
a certain insight into the way noise is introduced to get meaningful results. The
“Random” mode is the default one in FPRandom as we have no recorded proof
of such behaviors from today’s major fingerprinting actors.

Per session. The second mode initializes all the randomized variables at startup
and they are never modified on subsequent executions. The advantages of this
strategy is that it cannot be detected through repeated measurements as the
browser will always return the same answers for an identical fingerprinting test.
The downside is that it only breaks linkability between browsing sessions as the
same fingerprint will be presented to all websites until the browser is rebooted.

4 Evaluation

4.1 Deceiving Fingerprinting Scripts

As pointed out by [17], while it is possible to analyze the JavaScript code that
runs inside the browser and detect fingerprinting scripts, it is much more compli-
cated to find fingerprinters that can act as black-box oracles for our work. Some
websites give a specific identifier associated with a device’s fingerprint but others
map collected attributes in a very specific way that is confidential and that is
entirely performed on the side of the server. The main challenge in assessing
the impact of FPRandom is to find fingerprinting scripts that use the advanced
techniques we target and retrieve the right information (either an identifier or
the fingerprint data that is sent).

Fingerprintjs2 is the second version of a popular open-source fingerprinting
library that collects 25 different attributes and hash them all into a single
value [9]. We executed the complete test suite of this library 100 times on both
a standard version of Firefox 54 and FPRandom. On Firefox 54, we obtained
the same hash for all of the 100 executions. For FPRandom, we collected 100
different ones with the Random mode and a single one in Session mode. These
results show how fragile the test suite is for identification. The introduction of
noise on a single attribute is sufficient to be considered as a “new” fingerprint.

Maxmind is a company specialized in IP geolocation and online fraud preven-
tion. As part of its fraud detection system, Maxmind has a “device tracking
add-on” to identify devices “as they move across networks” [15]. The main add-
on script sends the complete device fingerprint at a specific address in a POST
request. We manually analyzed the code of the add-on and found that it col-
lects the rendering of a canvas test along with the enumeration order of both the
navigator and screen objects. After 100 runs of the fingerprinting script, FPRan-
dom gives a different canvas hash at each execution whereas a standard Firefox
build always send the same result. For the enumeration orders, the behavior

106 P. Laperdrix et al.

of Firefox 54 is the expected one and returns the exact same order for both
JavaScript objects. For FPRandom, the browser gives a unique and different
enumeration order at each session.

Limitations. Our approach does not deal with static attributes like the user-
agent or the timezone but it can mitigate the collection of dynamic attributes
from APIs like Canvas or Battery. Scripts that do not rely on the attributes we
target can still build their own browser fingerprint and use it for tracking, albeit
with a less complete view of the user’s system.

4.2 Performance

We use three different JavaScript benchmark suites to assess the performance
overhead introduced by FPRandom. The experiments were conducted on a lap-
top running Fedora 25 with an Intel Core i7-4600U CPU @ 2.10 GHz. The tests
were performed using Firefox 54 (Nightly version) with and without our modi-
fications present and enabled.

Firefox Random Session

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Browser

Ti
m

e
to

 g
en

er
at

e
a

ca
nv

as
 re

nd
er

in
g

(m
s)

(a) Canvas API

Firefox Random Session

13
00

0
14

00
0

15
00

0
16

00
0

17
00

0

Browser

D
ur

at
io

n
of

 th
e

be
nc

hm
ar

k
(m

s)

(b) Audio API

Fig. 4. Benchmarking results

Canvas. As there are no benchmarks that specifically target the Canvas API,
we developed our own test to asses the overhead introduced by our color and
font variations. We repeated the test shown in Fig. 1 1,000 times and measured
the time it takes for each image to be fully rendered inside the browser. To get
precise measurements, we used the JavaScript Performance API that provides
timestamps with an accuracy up to the microsecond [23]. Figure 4a illustrates
the difference between a vanilla version of Firefox 54 and FPRandom. While an
unmodified version takes 0.12 ms to render the image, our modified browser is
about 0.06 ms longer on average in both randomization modes. This difference
corresponds to the time it takes to properly choose a new font and introduce

FPRandom: Randomizing Core Browser Objects 107

variations in the canvas colors. With these reported numbers, we consider the
overhead here to be negligible as a rendering time of less than a single millisecond
will not impact the user experience.

AudioContext. To assess the impact of FPRandom on the AudioContext API,
we use a WebAudio benchmark developed by a Mozilla developer [4]. The bench-
mark performs a series of 19 different tests from simple gain operations to
more complex mixing procedures. Each test instantiates an OfflineAudioCon-
text object which is one of the objects we targeted when modifying the Firefox
source code. The results in Fig. 4b indicate the time it takes to perform the
complete series of 19 tests. It should be noted that we repeated the test suite
30 times. The mean value for FPRandom is about 25% higher than its Firefox
counterpart. The “Random” mode is also a little longer than the “Session” one.
This increase can be explained by the fact that the modified code is executed a
very high number of times in a single test. By comparison, the modification made
to the canvas API is only executed once for a test. We instrumented the browser
to find a precise number and we found out that a single run of the benchmark
enters our modified function more than 8,862,000 times. As a point of reference,
the AudioContext test found by Englehardt et al. [8] only enters our function less
than 3,000 times. With these numbers, we qualify the benchmark as extremely
intensive. The increase in processing time may not be visible for less extreme
and more traditional uses of the API. We leave for a future work the exploration
of different implementation strategies where only a specific percentage of audio
frames would be modified, leading to an increase in performance.

JavaScript enumeration order. As a final performance test for FPRandom,
we decided to run a standard JavaScript benchmark to see if the modification
made on the enumeration order has an impact on the overall JavaScript engine.
We used the recent JetStream benchmark [12] which is developed as part of the
WebKit browser engine. Currently, the 1.1 version performs 39 different tests
and covers a wide variety of advanced workloads and programming techniques.
It integrates tests from well-known benchmarking suites like SunSpider or Octane
along with new ones developed specifically for JetStream (more details [11]). The
results are present in Table 1 (the bigger the score, the better the performance).
As we can see, the scores are almost identical and no real distinction can be
made between Firefox and FPRandom. The behavior of the two browsers are
similar on both JavaScript throughput and latency and the impact of our order
modification is seemingly nonexistent.

Table 1. JetStream benchmark results

Firefox FPRandom-random FPRandom-session

Latency 76.075 ± 1.3250 74.553 ± 1.8074 74.767 ± 1.2530

Throughput 251.97 ± 3.2912 252.32 ± 2.4214 256.02 ± 1.1213

Total 147.45 ± 1.5753 146.23 ± 1.9204 147.61 ± 1.1257

108 P. Laperdrix et al.

Web crawl. In order to assess more globally the impact of our modifications on
day-to-day browsing, we crawled the thousand most popular websites as reported
by Alexa [3] on both a vanilla version of Firefox 54 and FPRandom. We used
Selenium as the engine for the crawl of both browsers, and we used the Perfor-
mance API of the browser to measure the time it takes for the DOM of the main
page to be completely loaded. Specifically, we used the domLoading and dom-
ContentLoadedEventStart events to make our measurements as they are inde-
pendent of problems related to network instabilities and congestion. Because of
server unavailability and certificate problems encountered during our crawl, we
miss loading times for 43 sites. The results can be found in Table 2. In general,
load times are extremely close between a vanilla Firefox and FPRandom. Mean
times indicate a slightly better performance for Firefox. Yet, in both cases, the
standard deviation is very high, meaning that the collected loading times are
very dispersed between 0 and 5 s. These numbers demonstrate that the mod-
ifications introduced in FPRandom do not have a visible impact on the user
experience for day-to-day browsing. Moreover, we can also say that the amount
of site breakage is kept to a minimum as only a single script provided us with
an error due to our enumeration modification. The modifications on both the
Canvas and AudioContext API had no impact on site breakage.

Table 2. Web crawl results

Times collected Min (ms) Max (ms) Mean (ms) SD (ms)

Firefox 957 10 64728 1602 3712

FPRandom 958 9 55852 1823 3935

4.3 User Study

An important aspect of FPRandom is that it modifies multimedia elements that
can be seen or heard by the user. To make sure that the modified subroutines
do not degrade substantially the user experience at the cost of better privacy,
we ran a preliminary user study in February 2017. Its goal was to compare
multimedia elements as rendered by a normal version of Firefox 54 with modified
ones rendered by FPRandom. The study was divided into two phases: the first
was focused on the modifications made to canvas elements while the second
investigated the impact on the AudioContext API. The link to our survey was
communicated through regular channels like social networks and team mailing
lists. We received an answer from 20 participants and the results are as follows:

– Half of them noticed a color difference between the original canvas rendering
and the 10 modified ones, the other half did not.

– 70% said that some fonts made the strings harder to read and only one person
said that it was significantly harder for all of the modified renderings.

– For the AudioContext API, only 25% detected a difference between the orig-
inal track and the 3 modified ones.

FPRandom: Randomizing Core Browser Objects 109

– For people who heard a difference, they all qualified the difference with words
like “tiny” or “small”.

These results give us confidence in the direction we took with our approach but
we plan on conducting a more thorough study to pinpoint more precisely avenues
for improvement with more participants. Still, we will investigate how we can
exclude some exotic fonts as they can make strings in canvas renderings harder
to read for users.

5 Related Work

While we focus in this paper on breaking the linkability of browser fingerprints,
other approaches have been designed to tackle fingerprint tracking.

Blocking extensions. Several works report that one strong way to prevent
tracking is to block scripts before they are loaded by the browser [1,8,16].
Browser extensions like NoScript [19], Ghostery [10] or Disconnect [6] are illus-
trations of such solutions. However, these extensions require complete lists of
all scripts performing fingerprinting to correctly block them. As the web is con-
stantly evolving and actors in the tracking business are changing, it is very hard
to maintain up-to-date lists to protect users’ privacy.

Spoofing extensions. Another way to mitigate tracking based on browser fin-
gerprints is to return incorrect information to trackers. Dozens of spoofing exten-
sions already exist for both Chrome and Firefox. With very few steps, a Firefox
browser can easily report that it is a Chrome one and vice versa. However, as
shown by Nikiforakis et al. [18], these solutions produce inconsistent fingerprints.
While the user agent reports one information, a JavaScript property will tell a
different story, proving that the browser has deliberately changed its default val-
ues. Torres et al. follow in the footsteps of spoofers and created a solution called
FP-Block that is an implementation of the concept of separation of web identi-
ties [25]. The idea is simple: FP-Block generates a fingerprint (i.e. an identity)
for each website that the browser is in contact with. Every time the browser
reconnects to the same website, it will reuse the generated identity. As a defense
against fingerprinting, the premise is great but unfortunately, the implementa-
tion presents the same shortcomings as the extensions stated above. Generated
fingerprints are inconsistent and it is easy to find supposedly hidden information
as there is an incomplete coverage of methods used for fingerprinting.

Use of multiple browsers. One approach to obtain different browser finger-
prints is to use multiple browsers. However, Boda et al. showed the existence of
Cross-browser fingerprinting [5]. By collecting enough OS-specific data like the
list of fonts or plugins, a script can identify a device behind multiple browsers
as these information are stable from one browser to the next. A more recent
method by Cao et al. can identify with high precision users across different
browsers through the use of the WebGL API [28].

110 P. Laperdrix et al.

Tor browser. The Tor browser is a modified Firefox specifically designed for the
Tor network. Its approach towards fingerprinting is to have fingerprints that are
as uniform as possible. As stated by the Tor design document [24], its defenses
include “value spoofing”, “Subsystem Modification or Reimplementation”, “Vir-
tualization”, “Site Permissions” and “Feature or Functionality Removal”. How-
ever, this approach poses several problems. First, by design, fingerprints from Tor
browser are very specific and thus already known to trackers. Its users can easily
be identified as using the Tor browser. Then, the offered protection is extremely
brittle since a simple change can change the standard fingerprint to a unique one.
To remain effective, customizability and personalization are severely hampered
because of this mono-configuration. Finally, by blocking specific browser APIs,
the Tor browser restricts users from benefiting from the full array of browser
features that could enrich their browsing experience.

6 Conclusion and Future Perspectives

In this work, we aim at breaking the stability of browser fingerprints over time
to improve users’ privacy. By identifying APIs with restrictive implementation
with respect to the JavaScript specification, we introduce randomness to pro-
duce slight variations at each execution of a fingerprinting script. We also gen-
erate noise inside HTML multimedia elements to alter their rendering without
deteriorating user’s perception. The approach presented in this work can be gen-
eralized to more fingerprinting vectors. For example, there exists other parts in
the ECMAScript specification that leave the exact details of the implementation
in the hands of developers. The use of Math constants in the browser can be
used to unveil information about the device and its browser [26]. If we take a
look at Sect. 20.2.2. of the official JavaScript specification [7], it is written that
“the choice of algorithms is left to the implementation” and that the behavior of
mathematical functions “is not precisely specified”. This means that the actual
libraries used for these functions could be diversified to prevent the unmasking
of the operating system. In the end, the main challenge that remains here is
to perform an exhaustive search to identify and anticipate future fingerprinting
mechanisms. By locating key functions that could reveal device-specific informa-
tion, we could preemptively introduce randomness to reinforce users’ privacy on
the web.

We also developed a working prototype called FPRandom that targets the
following attributes of the browser fingerprinting domain: canvas fingerprint-
ing, AudioContext fingerprinting and the unmasking of the browser through the
order of special JavaScript objects. By looking at the specification and analyz-
ing the browser’s source code, we modified key locations to introduce very small
noise that prevents the use of these fingerprinting vectors for identification. Our
tests show that our modifications impact known fingerprinting scripts that use
the targeted attributes. A careful attention was also given to preserve the user
experience as much as possible and our performance benchmarks indicate that
the introduced overhead is very small.

FPRandom: Randomizing Core Browser Objects 111

A Analyzing Differences in the AudioContext API

In order to have a better understanding of the diversity of audio fingerprints on
the web, we deployed the AudioContext script found by Englehardt et al. on the
AmIUnique.org website (used in our Beauty and the Beast study [14]). After
discarding more than 1,000 fingerprints from browsers that did not implement
the AudioContext API, we collected in total 19,468 audio fingerprints on a period
of 100 days between June and September 2016. The results of this study can be
found in Table 3. We use the Shannon entropy in bits to better represent the
probability distribution of each of the attributes. The higher the entropy is, the
more diversity is exhibited between devices.

Table 3. Study of 19,468 audio fingerprints

Name Entropy (bits) Size of the
biggest set

Number of
distinct
values

Number of
unique
values

acSampleRate 1.18 9549 10 3

acState 0.99 10821 2 0

acMaxChannelCount 0.38 18580 11 1

acNumberOfInputs 0.0 19468 1 0

acNumberOfOutputs 0.0 19468 1 0

acChannelCount 0.0 19468 1 0

acChannelCountMode 0.0 19468 1 0

acChannelInterpretation 0.0 19468 1 0

anFftSize 0.0 19468 1 0

anFrequencyBinCount 0.0 19468 1 0

anMinDecibels 0.0 19468 1 0

anMaxDecibels 0.0 19468 1 0

anSmoothingTimeConstant 0.0 19468 1 0

anNumberOfInputs 0.0 19468 1 0

anNumberOfOutputs 0.0 19468 1 0

anChannelCount 0.99 10821 2 0

anChannelCountMode 0.0 19468 1 0

anChannelInterpretation 0.0 19468 1 0

audioDynSum 3.28 5698 53 5

audioDynHash 3.43 5697 72 12

Most of the collected attributes have a single value and do not provide any
ground to distinguish one device from another. From the collected audio finger-
prints, only 3 attributes have an entropy superior to a single bit:

http://AmIUnique.org

112 P. Laperdrix et al.

– acSampleRate is the default sample rate of a created track when using the
AudioContext API. The most common values are 44,1 kHz (49,0% of collected
fingerprints) and 48 kHz (48,5%) but some browsers still present some unusual
ones (1,7% have 192 kHz and 0,7% 96 kHz).

– audioDynSum is the sum of 500 frames generated by a very specific audio
processing (compressed audio from an oscillator). The precision of each frame
is up to 15 decimal digits. The large majority of values are really close to each
other with differences only appearing from the 6th or 7th decimal digit.

– audioDynHash is similar to audioDynSum as it takes the exact same output
but it covers the entirety of the rendered track instead of a few hundreds
frames. As it covers a larger space, the entropy is a little higher and this test
exhibits more diversity than all other collected attributes.

With these results, we decided to focus only on the differences created by the audio
processing performed inside audio nodes. Especially, we want to introduce random
noise in the computed frames so that each run of the same test produces different
variations. Other values like the default sample rate are still interesting to change
but they can easily be modified and they are not the focus of this work.

B Example of String Comparison When Ordering
JavaScript Properties

Figure 5 illustrates the comparison mechanism between the appVersion and the
appName strings. The engine starts with the ‘a’ letter on both strings. Trans-
lating this letter to their corresponding Latin-1 code points yields the decimal
numbers ‘97’. Subtracting 97 from 97 results in 0. As no difference is detected,
the engine continues but faces the exact same result for both the second and
third characters in each string as they are identical ‘p’ letters. However, the
behavior is different from the fourth character. The first string presents a ‘V’
and the second an ‘N’. Translating to their decimal code points yields ‘86’ and
‘78’. This time, since the subtraction 86−78 = 8 does not give a zero, it informs
the engine that a difference has been detected. As the result is positive, appName
is placed before appVersion. If the result of the subtraction were to be negative,
it would have been the opposite order.

Fig. 5. String comparison between the appName and appVersion properties

FPRandom: Randomizing Core Browser Objects 113

References

1. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., Diaz, C.: The
web never forgets: persistent tracking mechanisms in the wild. In: Proceedings of
the 21st ACM Conference on Computer and Communications Security (CCS 2014).
ACM (2014)

2. Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F., Preneel, B.:
FPDetective: dusting the web for fingerprinters. In: Proceedings of the Conference
on Computer and Communications Security (CCS), pp. 1129–1140. ACM (2013)

3. Alexa: The top 500 sites on the web. http://www.alexa.com/topsites
4. Benchmarks for the WebAudio API. https://github.com/padenot/

webaudio-benchmark
5. Boda, K., Földes, Á.M., Gulyás, G.G., Imre, S.: User tracking on the web via

cross-browser fingerprinting. In: Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161,
pp. 31–46. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29615-4 4

6. Disconnect’s official webpage. https://disconnect.me/
7. ECMAScript R© 2016 Language Specification. http://www.ecma-international.org/

ecma-262/7.0/index.html
8. Englehardt, S., Narayanan, A.: Online tracking: A 1-million-site measurement and

analysis. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2016, pp. 1388–1401. ACM, New York (2016)

9. fingerprintjs2, modern and flexible browser fingerprinting library, a successor to
the original fingerprintjs. https://github.com/Valve/fingerprintjs2

10. Ghostery’s browser extension. https://ghostery.com/our-solutions/
ghostery-browser-extension/

11. Introducing the JetStream Benchmark Suite. https://webkit.org/blog/3418/
introducing-the-jetstream-benchmark-suite/

12. JetStream benchmark. http://browserbench.org/JetStream/
13. Laperdrix, P., Rudametkin, W., Baudry, B.: Mitigating browser fingerprint track-

ing: multi-level reconfiguration and diversification. In: 10th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS
2015), Firenze, Italy, May 2015

14. Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: diverting mod-
ern web browsers to build unique browser fingerprints. In: 37th IEEE Symposium
on Security and Privacy (S&P 2016) (2016)

15. Maxmind’s Device Tracking Add-on for minFraud Services. http://dev.maxmind.
com/minfraud/device/

16. Mowery, K., Shacham, H.: Pixel perfect: fingerprinting canvas in HTML5. In:
Fredrikson, M. (ed.) Proceedings of W2SP 2012. IEEE Computer Society, May
2012

17. Nikiforakis, N., Joosen, W., Livshits, B.: Privaricator: deceiving fingerprinters with
little white lies. In: Proceedings of the 24th International Conference on World
Wide Web, pp. 820–830. International World Wide Web Conferences Steering Com-
mittee (2015)

18. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: exploring the ecosystem of web-based device fingerprinting.
In: Proceedings of the Symposium on Security and Privacy, pp. 541–555 (2013)

19. NoScript’s official webpage. https://noscript.net/
20. Olejnik, L., Acar, G., Castelluccia, C., Daz, C.: The leaking battery: a privacy

analysis of the HTML5 battery status API. IACR Cryptology ePrint Archive,
2015:616 (2015)

http://www.alexa.com/topsites
https://github.com/padenot/webaudio-benchmark
https://github.com/padenot/webaudio-benchmark
http://dx.doi.org/10.1007/978-3-642-29615-4_4
https://disconnect.me/
http://www.ecma-international.org/ecma-262/7.0/index.html
http://www.ecma-international.org/ecma-262/7.0/index.html
https://github.com/Valve/fingerprintjs2
https://ghostery.com/our-solutions/ghostery-browser-extension/
https://ghostery.com/our-solutions/ghostery-browser-extension/
https://webkit.org/blog/3418/introducing-the-jetstream-benchmark-suite/
https://webkit.org/blog/3418/introducing-the-jetstream-benchmark-suite/
http://browserbench.org/JetStream/
http://dev.maxmind.com/minfraud/device/
http://dev.maxmind.com/minfraud/device/
https://noscript.net/

114 P. Laperdrix et al.

21. Olejnik, L., Janc, A.: Stealing sensitive browser data with the W3C Ambient
Light Sensor API. https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-
with-the-w3c-ambient-light-sensor-api/

22. Wrong order in object properties interation - V8 bug tracker. https://bugs.
chromium.org/p/v8/issues/detail?id=164

23. High Resolution Time Level 2 (JavaScript Performance API). https://www.w3.
org/TR/hr-time/#dom-domhighrestimestamp

24. The Design and Implementation of the Tor Browser - Cross-Origin Finger-
printing Unlinkability. https://www.torproject.org/projects/torbrowser/design/#
fingerprinting-linkability

25. Torres, C.F., Jonker, H., Mauw, S.: FP-Block : usable web privacy by control-
ling browser fingerprinting. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9327, pp. 3–19. Springer, Cham (2015). doi:10.1007/
978-3-319-24177-7 1

26. Tor bug tracker - math routines are OS fingerprintable. https://trac.torproject.
org/projects/tor/ticket/13018

27. Codepage layout - ISO/IEC 8859-1. https://en.wikipedia.org/wiki/ISO/IEC
8859-1#Codepage layout

28. Cao, S.L.Y., Wijmans, E.: (Cross-)browser fingerprinting via OS and hardware level
features. In: Proceedings of the 2017 Network and Distributed System Security
Symposium, NDSS 2017 (2017)

https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/
https://blog.lukaszolejnik.com/stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/
https://bugs.chromium.org/p/v8/issues/detail?id=164
https://bugs.chromium.org/p/v8/issues/detail?id=164
https://www.w3.org/TR/hr-time/#dom-domhighrestimestamp
https://www.w3.org/TR/hr-time/#dom-domhighrestimestamp
https://www.torproject.org/projects/torbrowser/design/#fingerprinting-linkability
https://www.torproject.org/projects/torbrowser/design/#fingerprinting-linkability
http://dx.doi.org/10.1007/978-3-319-24177-7_1
http://dx.doi.org/10.1007/978-3-319-24177-7_1
https://trac.torproject.org/projects/tor/ticket/13018
https://trac.torproject.org/projects/tor/ticket/13018
https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Codepage_layout
https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Codepage_layout

Control What You Include!

Server-Side Protection Against Third Party Web Tracking

Dolière Francis Somé(B), Nataliia Bielova, and Tamara Rezk

Université Côte d’Azur, Inria, France
{doliere.some,nataliia.bielova,tamara.rezk}@inria.fr

Abstract. Third party tracking is the practice by which third parties
recognize users accross different websites as they browse the web. Recent
studies show that more than 90% of Alexa top 500 websites [38] contain
third party content that is tracking its users across the web. Website
developers often need to include third party content in order to provide
basic functionality. However, when a developer includes a third party con-
tent, she cannot know whether the third party contains tracking mech-
anisms. If a website developer wants to protect her users from being
tracked, the only solution is to exclude any third-party content, thus
trading functionality for privacy. We describe and implement a privacy-
preserving web architecture that gives website developers a control over
third party tracking: developers are able to include functionally useful
third party content, the same time ensuring that the end users are not
tracked by the third parties.

Keywords: Program rewriting techniques for security · Security by
design

1 Introduction

Third party tracking is the practice by which third parties recognize users accross
different websites as they browse the web. In recent years, tracking technologies
have been extensively studied and measured [28,29,31,34,36,38] – researchers
have found that third parties embedded in websites use numerous technologies,
such as third-party cookies, HTML5 local storage, browser cache and device
fingerprinting that allow the third party to recognize users across websites [39]
and build browsing history profiles. Researchers found that more than 90% of
Alexa top 500 websites [38] contain third party web tracking content, while some
sites include as much as 34 distinct third party content [33].

But why do website developers include so many third party content (that
may track their users)? Though some third party content, such as images and
CSS [2] files can be copied to the main (first-party) site, such an approach has a
number of disadvantages for other kinds of content. Advertisement is the base of
the economic model in the web – without advertisements many website providers
will not be able to financially support their website maintenance. Third party
c© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 115–132, 2017.
DOI: 10.1007/978-3-319-62105-0 8

116 D.F. Somé et al.

JavaScript libraries offer extra functionality: though copies of such libraries can
be stored on the main first party site, this solution will sacrifice maintenance
of these libraries when new versions are released. The developer would need to
manually check the new versions. Web mashups, as for example applications that
use hotel searching together with maps, are actually based on reusing third-
party content, as well as maps, and would not be able to provide their basic
functionality without including the third-party content. Including JavaScript
libraries, content for mashups or advertisements means that the web developers
cannot provide to the users the guarantee of non-tracking.

Except for ethical decision not to track users, from May 2018 the website
owners will have a legal obligation as well. The ePrivacy directive (also know as
‘cookie law’) will be updated to the regulation, and will make website owners
liable for third party tracking that takes place in their websites. This regula-
tion will be applied to all the services that are delivered to the natural persons
located in the European Union. This regulation will apply high penalties for any
violation. Hence, privacy compliance will be of high interest to all website owners
and developers, and today there is no automatic tool that can help to control
third party tracking. To keep a promise of non-tracking, the only solution today
is to exclude any third-party content1, thus trading functionality for privacy.

In this paper, we present a new web application architecture that allows
web developers to gain control over certain types of third party content. Our
solution is based on the automatic rewriting of the web application in such a
way that the third party requests are redirected to a trusted web server, with
a different domain than the main site. This trusted web server may be either
controlled by a trusted party, or by a main site owner – it is enough that the
trusted web server has a different domain. A trusted server is needed so that the
user’s browser will treat all redirected requests as third party requests, like in the
original web application. The trusted server automatically eliminates third-party
tracking cookies and other technologies.

In summary our contributions are:

– A classification of third party content that can and cannot be controlled by
the website developer.

– An analysis of third party tracking capabilities – we analyze two mechanisms:
recognition of a web user, and identification of the website she is visiting2.

– A new architecture that allows to include third party content in web appli-
cations and eliminate stateful tracking.

– An implementation of our architecture, demonstrating its effectiveness at pre-
venting stateful third party tracking in several websites.

1 For example, see https://duckduckgo.com/.
2 Tracking is often defined as the ability of a third party to recognize a user through

different websites. However, being able to identify the websites a user is interacting
with is equally crucial for the effectiveness of tracking.

https://duckduckgo.com/

Server-Side Protection Against Third Party Web Tracking 117

2 Background and Motivation

Third party web tracking is the ability of a third party to re-identify users as
they browse the web and record their browsing history [34]. Tracking is often
done with the purpose of web analytics, targeted advertisement, or other forms
of personalization. The more a third party is prevalent among the websites a user
interacts with, the more precise is the browsing history collected by the tracker.
Tracking has often been conceived as the ability of a third party to recognize
the web user. However, for successful tracking, each user request should contain
two components:

User recognition is the information that allows tracker to recognize the user;
Website identification is the website which the user is visiting.

Fig. 1. Third party tracking

For example, when a user visits news.com, the browser may make additional
requests to facebook.com. As a result, Facebook learns about the user’s visit
to news.com. Figure 1 shows a hypothetical example of such tracking where
facebook.com is the third party.

Consider that a third party server, such as facebook.com hosts different
content, and some of them are useful for the website developers. The web devel-
oper of another website, say mysite.com, would like to include such functional
content from Facebook, such as Facebook “Like” button, an image, or a useful
JavaScript library, but the developer does not want its users to be tracked by
Facebook. If the web developer simply includes third party Facebook content
in his application, all its users are likely to be tracked by cookie-based track-
ing. Notice that each request to facebook.com also contains an HTTP Referrer
header, automatically attached by the browser. This header contains the website
URL that the user is visiting, which allows Facebook to build user’s browsing
history profile.

The example demonstrates cookie-based tracking, which is extremely com-
mon [38]. Other types of third party tracking, that use client-side storage mech-
anisms, such as HTML5 LocalStorage, or cache, and device fingerprinting that
do not require any storage capabilities, are also becoming more and more pop-
ular [29].

118 D.F. Somé et al.

Web Developer Perspective. A web developer may include third party con-
tent in her webpages, either because this content intentionally tracks users (for
example, for targeted advertising), or because this content is important for the
functioning of the web application. We therefore distinguish two kinds of third
party content from a web developer perspective: tracking and functional. Track-
ing content is intentionally embedded by website owner for tracking purposes.
Functional content is embedded in a webpage for other purposes than tracking:
for example, JavaScript libraries that provide additional functionality, such as
jQuery, or other components, such as maps. In this work, we focus on functional
content and investigate the following questions:

– What kind of third party content can be controlled from a server-side (web
developer) perspective?

– How to eliminate the two components of tracking (user recognition and web-
site identification) from functional third party content that websites embed?

2.1 Browsing Context

Browsers implement different specifications to securely fetch and aggregate third
party content. One widely used approach is the Same Origin Policy (SOP) [15],
a security mechanism designed for developers to isolate legacy content from
potentially untrusted third party content. An origin is defined as scheme, host
and port number, of the URL [21] of the third party content.

When a browser renders a webpage delivered by a first party, the page is
placed within a browsing context [1]. A browsing context represents an instance
of the browser in which a document such as a webpage is displayed to a user, for
instance browser tabs, and popup windows. Each browsing context contains (1)
a copy of the browser properties (such as browser name, version, device screen
etc.), stored in a specific object; (2) other objects that depend on the origin
of the document according to SOP. For instance, the object document.cookie
gives the cookies related to the domain and path of the current context.

In-Context and Cross-Context Content. Certain types of content embed-
ded in a webpage, such as images, links, and scripts, are associated with the con-
text of the webpage, and we call them in-context content. Other types of content,
such as <iframe>, <embed>, and <object> tags are associated with their own
browsing context, and we call them cross-context content. Usually, cross-context
content, such as <iframe> elements, cannot be visually distinguished from the
webpage in which they are embedded, however they are as autonomous as other
browsing contexts, such as tabs or windows. Table 1 shows different third party
content and their execution contexts.

The Same Origin Policy manages interactions between different browsing
contexts. In particular, it prevents in-context scripts from interacting with cross-
context iframes in case their origins are different. To communicate, they may use
inter-frame communication APIs such as postMessage [12].

Server-Side Protection Against Third Party Web Tracking 119

Table 1. Third party content and execution context.

HTML Tags Third party content

in-context <link> Stylesheets

 Images

<audio> Audios

<video> Videos

<form> Forms

<script> Scripts

cross-context <(i)frame>, <frameset>, <a> Web pages

<object>, <embed>, <applet> Plugins and web pages

2.2 Third Party Tracking

In this work, we consider only stateful tracking technologies – they require an
identifier to be stored client-side. The most common storage mechanism is cook-
ies, but others, such as HTML5 LocalStorage and browser cache can also be
used for stateful tracking. Figure 2 presents the well-known stateful tracking
mechanisms. We distinguish two components necessary for successful tracking:
user recognition and website identification. For each component, we describe the
capabilities of in-context and cross-context. We also distinguish passive track-
ing (through HTTP headers) and active tracking (through JavaScript or plugin
script).

User Recognition Website Identification
Passive Active Passive Active

in-context HTTP cookies
Cache-Control
Etag
Last-Modified

-
Referer
Origin

document.URL

document.location

window.location

cross-context

Flash LSOs
document.cookie

window.localStorage

window.indexedDB

Referer document.referrer

Fig. 2. Stateful tracking mechanisms

In-Context Tracking. In-context third party content is associated with the
browsing context of the webpage that embeds it (see Table 1).

Passively, such content may use HTTP headers to recognize a user and iden-
tify the visited website. When a webpage is rendered, the browser sends a request
to fetch all third party content embedded in that page. The responses from the
third party, along with the requested content, may contain HTTP headers that
are used for tracking. For example, the Set-cookie HTTP header tells the browser

120 D.F. Somé et al.

to save third party cookies, that will be later on automatically attached to every
request to that third party in the Cookie header. Etag HTTP header and other
cache mechanisms like Last-Modified and Cache-Control HTTP headers may
also be used to store user identifiers [39] in a browser. To identify the visited
website, a third party can either check the Referer HTTP header, automatically
attached by the browser, or an Origin header3.

Actively, in-context third party content cannot use browser storage mecha-
nisms, such as cookies or HTML5 Local Storage associated to the third party
because of the limitations imposed by the SOP (see Sect. 2.1). For example, if
a third party script from third.com uses document.cookie API, it will read the
cookies of the main website, but not those of third.com. This allows tracking
within the main website but does not allow tracking cross-sites [38]. For website
identification, third party active content, such as scripts, can use several APIs,
for example document.location.

Cross-Context Tracking. Cross-context content, such as iframe, is associated
with the browsing context of the third party that provided this content.

Passively, the browser may transmit HTTP headers used for user recognition
and website identification, just like in the case of in-context content. Every third-
party request for cross-context content will contain the URL of the embedding
webpage in its Referer header.

Requests to fetch third party content further embedded inside a cross-context
(such as iframe) will carry, not the URL of the embedding webpage, but that of
the iframe in their Referer or Origin headers (in the case of CORS requests).
This prevents them from passively identifying the embedding webpage.

Actively, cross-context third party content can use a number of APIs to store
user identifiers in the browser. These APIs include cookies (document.cookie),
HTML5 LocalStorage (document.localStorage), IndexedDB, and Flash Local
Stored Objects (LSOs). For website identification, document.referrer API can
be used – it returns the value of the HTTP Referrer header transmitted in the
request to the cross-context third party.

Combining In-Context and Cross-Context Tracking. Imagine a third
party script from third.com embedded in a webpage – according to the context
and to the SOP, it is in-context. If the same webpage embeds a third party iframe
from third.com (cross-context), then because of SOP, such script and iframe
cannot interact directly. However, the can still communicate through inter-frame
communication APIs such as postMessage [12].

On one hand, the in-context script can easily identify the website using APIs
such as document.location. On the other hand, the cross-context iframe can
easily recognize the user by calling document.cookie. Therefore, if the iframe
and the script are allowed to communicate, they can exchange those partial
tracking information to fully track the user.

3 Origin header is also automatically generated by the browser when the third party
content is trying to access data using Cross-Origin Resource Sharing [4] mechanism.

Server-Side Protection Against Third Party Web Tracking 121

For example, a social widget, such as Facebook “Like” button, or Google
“+1” button, may be included in webpages as a script. When the social widget
script is executed on the client-side, it loads additional scripts, and new browsing
contexts (iframes) allowing the third party to benefit from both in-context and
cross-context capabilities to track users.

3 Privacy-Preserving Web Architecture

For third party tracking to be effective, two capabilities are needed: (1) the
tracker should be able to identify the website in which it is embedded, and (2)
recognize the user interacting with the website. Disabling only one of these two
capabilities for a given third party already prevents tracking. In order to mitigate
stateful tracking (see Sect. 2), we make the following design choices:

1. Preventing only user recognition for in-context. As show in Table 2,
in-context content cannot perform any active user recognition. We are left
with passive user recognition and (active and passive) website identification.
Preventing passive user recognition for such content (images, scripts, forms)
is possible by removing HTTP headers such as Cookie, Set-cookie, ETag that
are sent along with requests/responses to fetch those content.
Note that it is particularly difficult to prevent active website identification
because trying to alter or redefine document.location or window.location
APIs, will cause the main page to reload. Therefore, in-context active content
(scripts) can still perform active website identification. Nonetheless, since we
remove their user recognition capability, tracking is therefore prevented for
in-context content.

2. Preventing only website identification for cross-context. We pre-
vent passive website identification by instructing the browser not to send
the HTTP Referer header along with requests to fetch a cross-context con-
tent. Therefore, when the cross-context content gets loaded, the tracker is
unable to identify the website in which it is embedded in. Indeed, execut-
ing document.referrer returns an empty string instead of the URL of the
embedding page.
Because of the limitations of the SOP, a website owner has no control over
cross-context third party content, such as iframes. Therefore, active and pas-
sive user recognition can still happen in third party cross-context. We discuss
other possibilities to block some active user recognition APIs in Sect. 4.1.
Nonetheless, since website identification is not possible, tracking is therefore
prevented for cross-context third party content.

3. Prevent communication between in-context and cross-context con-
tent. Our architecture proposes a way to block such communications that can
be done by postMessage API. We discuss the limitations of this approach in
Sect. 4.1.

To help web developers keep their promises of non-tracking and still include
third-party content in their web applications, we propose a new web application

122 D.F. Somé et al.

Fig. 3. Privacy-preserving web architecture

architecture. This architecture allows web developers to (1) automatically rewrite
the URLs of all in-context third party content embedded in a web application, (2)
redirect those requests to a trusted third party server which (3) remove/disable
known stateful tracking mechanisms (see Sect. 2) for such content; (4) rewrite
and redirect cross-context requests to the trusted third party so as to prevent
website identification and communication with in-context scripts.

Figure 3 provides an overview of our web application architecture. It intro-
duces two new components fully controlled by the website owner.

Rewrite Server (Sect. 3.1) acts like a reverse proxy [14] for the original
web server. It rewrites the original web pages in such a way that all the requests
to fetch all the third party content that they embed are redirected through the
Middle Party Server before reaching the intended third party server.

Middle Party Server (Sect. 3.2) is at the core of our solution since it
intercepts all browser third party requests, removes tracking, then forwards them
to the intended third parties. From every response from a third party, the server
removes tracking information and forwards the response back to the browser. For
in-context content such as images and scripts, the Middle Party Server prevents
user recognition and website identification, while for cross-context content such
as iframes, it prevents website identification and communication with other in-
context scripts.

3.1 Rewrite Server

The goal of the Rewrite Server is to rewrite the original content of the requested
webpages in such a way that all third party requests will be redirected to the Mid-
dle Party Server. It consists of three main components: static HTML rewriter for

Server-Side Protection Against Third Party Web Tracking 123

HTML pages, static CSS rewriter and JavaScript injection component. Into each
webpage, we load a JavaScript code that insures that all dynamically generated
third party content are redirected to the Middle Party Server as well.

HTML and CSS Rewriter rewrites the URLs of static third party con-
tent embedded in original web pages and CSS files in order to redirect them to
the Middle Party Server. For example, the URL of a third-party script source
http://third.com/script.js is written so that it is instead fetched through
the Middle Party Server: http://middle.com/?src=http://third.com/
script.js. The HTML Rewriter component is implemented using the Jsdom
HTML parser [8], and CSS Rewriter, using the CSS parser [5] module for
Node.js.

JavaScript Injection. The Rewrite Server also injects a script in all original
webpages after they are rewritten. This script controls APIs used to dynamically
inject content inside a webpage once the webpage is rendered in a browser. It
is available at https://webstats.inria.fr/sstp/dynamic.js. Table 2 shows
APIs that can be used to dynamically inject third party content within a web-
page. They are controlled using the injected script.

Table 2. Injecting dynamic third party content

API Content

document.createElement Inject content from Table 1

document.write Any content

window.open Web pages (popups)

Image Images

XMLHttpRequest Any data

Fetch, Request Any content

EventSource Stream data

WebSocket Websocket data

A Content Security Policy (CSP) [44] is injected in the response header
of each webpage in order to prevent third parties from bypassing the rewriting
and redirection to the Middle Party Server. A CSP delivered with the webpage
controls the resources of that page by specifying which resources are allowed to
be loaded and executed. By limiting the resource origins to only those of the
Middle Party Server and the website own domain, we prevent third parties from
bypassing the redirection to the Middle Party Server in order to load content
directly from a third party server. Such attempts will get blocked by the browser
upon enforcement of the CSP of the page. The following listing gives the CSP
injected in all webpages, assuming that middle.com is the domain of the Middle
Party Server.

1 Content-Security-Policy: default-src ’self’

middle.com; object-src ’self’;

124 D.F. Somé et al.

3.2 Middle Party

The main goal of the Middle Party is to proxy the requests and responses between
browsers and third parties in order to remove tracking information exchanged
between them. It functions differently for in-context and cross-context content.

In-Context content are scripts, images, etc. (see Table 1). Since a
third party script from http://third.com/script.js is rewritten by the
Rewrite Server to http://middle.com/?src=http://third.com/script.js, it
is fetched through the Middle Party Server. This hides the third party destination
from the browser, and therefore prevents it from attaching third party HTTP
cookies to such requests. Because the browser will still attach some tracking
information to the requests, then when the middle party receives a request URL
from the browser, it takes the following steps. Remove Tracking from request
that are set by the browser as HTTP headers. Among those headers are Etag,
If-Modified-Since, Cache-Control, Referer. Next, it makes a request to the third
party in order to get the content of the script http://third.com/script.js.
Remove Tracking from response returned by the third party. The head-
ers that the third party may send are Set-Cookie, Etag, Last-Modified, Cache-
Control. CSS Rewriter rewrites the response if the content is a CSS file, in
order to also redirect to the Middle Party Server any third party content that
they may embed. Finally, the response is returned back to the browser.

Cross-context content are iframes, links, popups, etc. (see Table 1). The
Middle Party Server prevents website identification for cross-context content and
communication with in-context scripts. This is done by loading cross-context
content from another cross-context controlled by the Middle Party Server as
illustrated by Fig. 4.

For instance, a third party iframe from http://third.com/page.html is
rewritten to http://middle.com/?emb=http://third.com/page.html. When
the Middle Party Server receives such a request URL from the browser, it takes
the following actions: URL Rewriting. Instead of fetching directly the content
of http://third.com/page.html, the Middle Party Server generates a con-
tent in which it puts the URL of the third party content as a hyperlink =
"http://third.com/page.html" rel = "noreferrer noopener">. The
most important part of this content is in the rel attribute value. Therefore,
noreferrer noopener instructs the browser not the send the Referer header

Fig. 4. Prevent combining in-context and cross-context tracking

Server-Side Protection Against Third Party Web Tracking 125

when the link http://third.com/page.html is followed client-side. JavaScript
Injection module adds a script to the content so that the link gets automat-
ically followed once the content is rendered by the browser. Once the link is
followed, the browser fetches the third party content directly on the third party
server, without going through the Middle Party server anymore. Nonetheless, it
does not include the Referer header for identifying the website. Therefore, the
document.referrer API also returns an empty string inside the iframe context.
This prevents it from identifying the website. The third party server response
is placed within a new iframe nested within a context that belongs to the Mid-
dle Party, and not directly within the site webpage. This prevents in-context
scripts and the cross-context content from exchanging tracking information as
illustrated by Fig. 4.

HTTPS Content. We recommend deploying the Middle Party Server as an
HTTPS server. Therefore, third party content originally served over HTTPS
(before rewriting) still get served over HTTPS even in the presence of the Middle
Party Server. Moreover, third party content originally served over HTTP would
get blocked by current browsers according to the Mixed Content policy [43]. With
an HTTPS Middle Party, HTTP third party requests will not be prevented from
loading since they are fetched over HTTPS through the Middle Party.

Multiple Redirections. A third party may attempt to circumvent our solution
by performing multiple redirections. This is commonly used in advertisements
(though ads are not in scope of this paper).

When a (third party) web server wants to perform a redirection to another
server, it usually does so by including in the response, a special HTTP Location
that indicates the server to which the next request will be sent. The Middle
Party Server prevents such circumvention by rewriting the Location header so
that the browser sends the next redirection request to the Middle Party Server
again. As a result, all the redirections pass via the Middle Party.

4 Implementation

We have implemented both the Rewrite Server and the Middle Party Server as
full Node.js [10] web servers supporting HTTP(S) protocols and web sockets.
Implementation details are available at https://webstats.inria.fr/sstp/.

Rewrite Server. In our implementation, we deploy the Rewrite Server on the
same physical machine as the original web application server. In order to do
so, we moved the original server on a different port number, and the Rewrite
Server on the initial port of the original server. Therefore, requests that are
sent by browsers reach first the Rewrite Server. It then simply forwards them to
the original server, which handles the request as usual and return a response to
the Rewrite Server. Then, HTML webpages, and CSS files are rewritten using
the HTML Rewriter and CSS Rewriter components respectively. To handle
dynamic third party content, we inject a script. And in order to prevent malicious
third parties from bypassing the redirection, we inject a CSP (See Sect. 3.1).

126 D.F. Somé et al.

Middle Party. All requests to load third party contents embedded in a website
deploying our architecture will go through the Middle Party Server. In-Context
and cross-context contents are handled differently.

In-Context Contents are simply stripped off tracking information that
they carry from the browser to the third parties and vice versa. See Sect. 3 for
the list of tracking information that are removed from third party requests and
responses. In particular, third party CSS responses are rewritten, using the CSS
Rewriter component, to redirect to the Middle Party Server any third party
content that they may further embed. As in the case of the Rewrite Server, this
component is implemented using a CSS parser [5] for Node.js.

Cross-Context contents are handled in a way that the original website
identity is not leaked to them. They are also prevented from communicating
with any in-context third party content to exchange tracking information. If
the cross-context URL was http://third.com/page.html, instead of making a
request to third.com, the Middle Party Server returns to the browser a response
consisting of rewriting the URL to

1 <a href="http: // third.com/page.html" rel="noreferrer

noopener">.

and injecting the following script:

1 var third_party = document.getElementsByTagName("a")[0];

2 if(window.top == window.self){

3 third_party.target = "_blank";

4 third_party.click ();

5 window.close ();

6 }else{

7 var iframe = document.createElement("iframe");

8 iframe.name = "iframetarget";

9 document.body.appendChild(iframe);

10 third_party.target = "iframetarget";

11 third_party.click ();

12 }

Overall, when this response is rendered, the browser will not the Referer header
to the third party, and the third party is prevented from communicating with
in-context content, as explained in Sect. 3.2.

4.1 Discussion and Limitations

Our approach suffers from the following limitations. First, our implemen-
tation prevents cross-context and in-context contents from communicating
with each other using postMessage API. However, in-context third party
script can identify the website a user visits via document.location.href
API. Then the script can include the website URL, say http://main.com,
as a parameter of the URL of a third party iframe, for example
http://third.com/page.html?ref=http://main.com and dynamically embed
it in the webpage. In our architecture, this URL is rewritten and routed to the

Server-Side Protection Against Third Party Web Tracking 127

Middle Party. Since, the Middle Party Server does not inspect URL parameters,
this information will reach the third party even though the Referer is not sent
with cross-context requests.

Another limitation is that of dynamic CSS changes. For instance, changing
the background image via the style object of an element in the webpage is not
captured by the dynamic rewriting script injected in webpages. Therefore, if the
image was a third party image, the CSP will prevent it from loading.

Performance Overhead. There is a performance cost associated with the
Rewrite Server, which can be evaluated as the cost of introducing any reverse
proxy to a web application architecture (See Sect. 3.1). Rewriting contents server-
side and browser-side is also expensive in terms of performance. We believe that
server-side caching mechanisms, in particular for static webpages, may help speed
up the responsiveness of the Rewrite Server.

The Middle Party Server may also lead to performance overhead especially
for webpages with numerous third party contents. Therefore, it can be provided
as a service by a trusted external party, as it is the case for Content Distribution
Networks (CDNs) serving contents for many websites.

Extension to Stateless Tracking. Even though this work did not address
stateless tracking, such as device fingerprinting, our architecture already hides
several fingerprintable device properties and can be extended to several others:
(1) The redirection to the Middle Party anonymizes the real IP addresses of users;
(2) Some stateless tracking APIs such as window.navigator, window.screen,
and HTMLCanvasElement can be easily removed or randomized from the context
of the webpage to mitigate in-context fingerprinting.

Possibility to Blocking Active User Recognition in Cross-Context.
With the prevalence of third party tracking on the web, we have shown the chal-
lenges that a developer will face towards mitigating that. The sandbox attribute
for iframes help prevent access to security-sensitive APIs. As tracking has become
a hot concern, we suggest that similar mechanisms can help first party websites
tackle third party tracking. The sandbox attribute can for instance be extended
with specific values to tackle tracking. Nonetheless, the sandbox attribute can
be used to prevent cross-context from some stateful tracking mechanisms [9].

5 Evaluation and Case Study

Demo website. We have set up a demo website that embeds a collection
of third party content, both in-context and cross-context. In-context content
include images, HTML5 audio and video, and a Google Map which further loads
dynamic content such as images, fonts, scripts, and CSS files. A Youtube video is
embedded as cross-context content in an iframe. The demo website is deployed at
https://sstp-rewriteproxy.inria.fr. With the deployment of our solution,
there is no change from a user perspective on how the demo website is accessed.
Indeed, it is still accessible at https://sstp-rewriteproxy.inria.fr. How-
ever from the server-side, it is the Rewrite Server which is now running at

128 D.F. Somé et al.

https://sstp-rewriteproxy.inria.fr instead of the original server. It then
intercepts user requests and forwards them to the original server which has
been moved on port 8080 (http://sstp-rewriteproxy.inria.fr:8080), hid-
den from users and the outside.

The Middle Party Server runs at https://sstp-middleparty.inria.fr.
With our architecture deployed, all requests to fetch third party content embed-
ded in the demo website are redirected to the Middle Party Server. For in-context
content, its removes any tracking information in the requests sent by the browser.
Then it forwards the requests to the third parties. Any tracking information set
by the third parties in the responses are also removed before being forwarded to
the browser. For the cross-context content (Youtube Video in our demo), it is
not directly loaded as an iframe inside the demo page. Instead, an iframe from
the Middle Party Server is created and embedded inside the demo webpage.
Then the Youtube video is automatically loaded in another iframe inside this
first iframe which context is that of Middle Party Server. During this process,
the Referer header is not leaked to Youtube (Sect. 3.2), preventing it from iden-
tifying the demo website in which it is included. In the Appendix, we show a
screenshot of redirection requests to the Middle Party Server.

Real websites. Since we did not have access to real websites, we could not install
the Rewrite Server and evaluate our solution on them. We therefore implemented
a browser proxy based on a Node.js proxy [11], and included

all the logic of the Rewrite Server within the proxy. The proxy was deployed at
https://sstp-rewriteproxy.inria.fr:5555 and acts like the Rewrite Server
for real websites intercepting and forwarding requests to them, and rewriting
the responses in order to redirect them to our Middle Party Server deployed at
https://sstp-middleparty.inria.fr.

We then evaluated our solution on different kinds of websites: a news website
http://www.bbc.com, an entertainment website http://www.imdb.com, and a
shopping website http://verbaudet.fr. All three websites load content from
various third party domains. Visually, we did not notice any change in the behav-
iors of the websites. We also interacted with them in a standard way (clicking on
links on a news website, choosing products and putting them in the basket on the
shopping website) and the main functionalities of the websites were preserved.

Overall, these evaluation scenarios have helped us improve the solution, espe-
cially rewriting dynamically injected third party content. We believe that this
implementation will get even mature in the future when we will be able to con-
vince some website owners to deploy it.

Limitations of the evaluation on real websites. The evaluation on the real
websites may break some features or introduce performances issues. Here, we
discuss such problems and how to prevent them.

Third party identity (OpenID) providers such as Facebook or Google need
to use third party cookies in order to be able to authenticate users to websites
embedding them. Therefore, stripping off cookies can prevent users from suc-
cessfully logging in to the related websites. In a deployment scenario, we make

Server-Side Protection Against Third Party Web Tracking 129

it possible for the developer to instruct the Rewrite Server not to rewrite such
third party identity provider content so that users can still log in.

Furthermore, it is common for websites to rely on Content Distribution Net-
works (CDNs), from which they load content for performance purposes. There-
fore, rewriting and redirecting CDNs requests to the Middle Party Server can
introduce performance issues. In this case also, a developer can declare a list of
CDNs which requests should not be rewritten by the Rewrite Server.

Finally, as one may have noticed, the real websites we have considered in our
evaluation scenario are all HTTP websites. We could not evaluate our solution
on real HTTPS websites because HTTPS requests and responses that arrive at
the browser proxy are encrypted. Therefore, we could not be able to rewrite
third party content that are embedded in such websites.

6 Related Work

A number of studies have demonstrated that third party tracking is very
prevalent on the web today and analyzed the underlying tracking technolo-
gies [29,31,34,38]. Lerner et al. [33] analyzed how third party tracking evolved
for a period of twenty years. Trackers have been categorized according to either
their business relationships with websites [34], their prominence [29,31] or the
user browsing profile that they can build [38]. Mayer and Mitchell [34] grouped
tracking mechanisms in two categories called stateful (cookie-based and super-
cookies) and stateless (fingerprinting). It is rather intuitive to convince our-
selves about the effectiveness of a stateful tracking, since it is based on unique
identifiers that are set in users browsers. Nonetheless, the efficacy of stateless
mechanisms has been extensively demonstrated. Since the pioneer work of Eck-
ersley [28], new fingerprinting methods have been revealed in the literature [22–
24,26,27,29,36,40,41]. A classification of fingerprinting techniques is provided
in [42]. Those studies have contributed to raising public awareness of tracking
privacy threats. Mayer and Mitchell [34] have shown that users are very sensitive
to their online privacy, thus hostile to third party tracking. Englehardt et al. [30]
have demonstrated that tracking can be used for surveillance purposes. The suc-
cess of anti-tracking defenses is yet another illustration that users are concerned
about tracking [35].

There are a number of defenses that try to protect users against third party
tracking. First, major browser vendors do natively provide mechanisms for users
to block third party cookies or browse in private/incognito mode for instance.
More and more browsers even take a step further, considering privacy as a design
principle: Tor Browser [17], TrackingFree [37], Blink [32], CLIQZ [3].

But the most popular defenses are browser extensions. Being tightly inte-
grated into browsers, they provide additional privacy features that are not
natively implemented in browsers. Well known privacy extensions are Discon-
nect [6], Ghostery [7], ShareMeNot [38], which is now part of PrivacyBadger [13],
uBlock Origin [20] and a relatively new MyTrackingChoices [25]. Merzdovnik
et al. [35] provide a large-scale evaluation of these anti-tracking defenses. Well

130 D.F. Somé et al.

known trackers such as advertisers, which businesses heavily depend on tracking,
have also been taking steps towards limiting their own tracking capabilities [34].
The W3C is pushing forward the Do Not Track standard [18,19] for users to
easily express their tracking preferences so that trackers may comply with them.
To the best of our knowledge, we are the first to investigate how a website owner
can embed third party content while preventing them from accidentally tracking
users. The idea of proxying requests within a webpage is inspired by web service
workers API [16], though this API is still a working draft which is currently
being tested in Mozilla Firefox and Google Chrome.

7 Conclusions

Most of the previous research analyzed third party tracking mechanisms, and
how to block tracking from a user perspective. In this work, we classified third
party tracking capabilities from a website developer perspective. We proposed a
new architecture for website developers that allows to embed third party content
while preserving users privacy. We implemented our solution, and evaluated it
on real websites to mitigate stateful tracking.

Appendix

Screenshots of the demo website map console (Fig. 5).

Fig. 5. A demo page displaying a Google Maps

Server-Side Protection Against Third Party Web Tracking 131

References

1. Browsing Contexts. https://www.w3.org/TR/html51/browsers.html
2. Cascading Style Sheets. https://www.w3.org/Style/CSS/
3. CLIQZ. https://cliqz.com
4. Cross-origin-resource sharing. https://developer.mozilla.org/en-US/docs/Web/

HTTP/Access control CORS
5. CSS Parser for Node.js. https://github.com/reworkcss/css
6. Disconnect. https://disconnect.me/
7. Ghostery. https://www.ghostery.com/
8. HTML Parser for Node.js. https://github.com/tmpvar/jsdom
9. Iframe Sandbox Attribute. https://www.w3.org/TR/2011/WD-html5-20110525/

the-iframe-element.html#attr-iframe-sandbox
10. Node.js. https://nodejs.org/en/
11. Node.js Proxy. https://newspaint.wordpress.com/2012/11/05/

node-js-http-and-https-proxy
12. PostMessage - Cross-Origin Iframe Secure Communication. https://developer.

mozilla.org/en-US/docs/Web/API/Window/postMessage
13. Privacy Badger. https://www.eff.org/fr/privacybadger
14. Reverse Proxy. https://en.wikipedia.org/wiki/Revers proxy
15. Same Origin Policy. https://www.w3.org/Security/wiki/Same Origin Policy
16. Service Worker API. https://developer.mozilla.org/en-US/docs/Web/API/

Service Worker API
17. Tor Browser. https://www.torproject.org/projects/torbrowser/design/
18. Tracking Compliance and Scope. https://www.w3.org/TR/tracking-compliance/
19. Tracking Preference Expression. https://www.w3.org/TR/tracking-dnt/
20. uBlock Origin. https://www.ublock.org/
21. URL. https://www.w3.org/TR/url
22. Abgrall, E., Traon, Y.L., Monperrus, M., Gombault, S., Heiderich, M., Ribault, A.:

XSS-FP: browser fingerprinting using HTML parser quirks. CoRR (2012)
23. Acar, G., Eubank, C., Englehardt, S., Juárez, M., Narayanan, A., Dı́az, C.: The

web never forgets: persistent tracking mechanisms in the wild. In: Proceedings of
CCS 2014 (2014)

24. Acar, G., Juárez, M., Nikiforakis, N., Dı́az, C., Gürses, S.F., Piessens, F., Preneel,
B.: FPDetective: dusting the web for fingerprinters. In: Proceedings of CCS 2013
(2013)

25. Achara, J.P., Parra-Arnau, J., Castelluccia, C.: Mytrackingchoices: pacifying the
ad-block war by enforcing user privacy preferences. CoRR (2016)

26. Boda, K., Földes, Á.M., Gulyás, G.G., Imre, S.: User tracking on the web via
cross-browser fingerprinting. In: Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161,
pp. 31–46. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29615-4 4

27. Cao, Y., Li, S., Wijmans, E.: (cross-)browser fingerprinting via os and hardware
level features. In: Proceedings of the 24th NDSS (2017)

28. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14527-8 1

29. Englehardt, S., Narayanan, A.: Online tracking: a 1-million-site measurement and
analysis. In: Proceedings of the 2016 CCS, pp. 1388–1401 (2016)

30. Englehardt, S., Reisman, D., Eubank, C., Zimmerman, P., Mayer, J.,
Narayanan, A., Felten, E.W.: Cookies that give you away: The surveillance impli-
cations of web tracking. In: Proceedings of the 24th WWW, pp. 289–299 (2015)

https://www.w3.org/TR/html51/browsers.html
https://www.w3.org/Style/CSS/
https://cliqz.com
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://github.com/reworkcss/css
https://disconnect.me/
https://www.ghostery.com/
https://github.com/tmpvar/jsdom
https://www.w3.org/TR/2011/WD-html5-20110525/the-iframe-element.html#attr-iframe-sandbox
https://www.w3.org/TR/2011/WD-html5-20110525/the-iframe-element.html#attr-iframe-sandbox
https://nodejs.org/en/
https://newspaint.wordpress.com/2012/11/05/node-js-http-and-https-proxy
https://newspaint.wordpress.com/2012/11/05/node-js-http-and-https-proxy
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://www.eff.org/fr/privacybadger
https://en.wikipedia.org/wiki/Revers_proxy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://www.torproject.org/projects/torbrowser/design/
https://www.w3.org/TR/tracking-compliance/
https://www.w3.org/TR/tracking-dnt/
https://www.ublock.org/
https://www.w3.org/TR/url
http://dx.doi.org/10.1007/978-3-642-29615-4_4
http://dx.doi.org/10.1007/978-3-642-14527-8_1
http://dx.doi.org/10.1007/978-3-642-14527-8_1

132 D.F. Somé et al.

31. Krishnamurthy, B., Wills, C.E.: Privacy diffusion on the web: a longitudinal per-
spective. In: Proceedings of the 18th WWW, pp. 541–550 (2009)

32. Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: diverting mod-
ern web browsers to build unique browser fingerprints. In: Proceedings of IEEE SP
2016 (2016)

33. Lerner, A., Simpson, A.K., Kohno, T., Roesner, F.: Internet jones and the raiders
of the lost trackers: an archaeological study of web tracking from 1996 to 2016. In:
Proceedings of the 25th USENIX Security, Austin, TX (2016)

34. Mayer, J.R., Mitchell, J.C.: Third-party web tracking: policy and technology. In:
Proceedings of the 2012 IEEE SP, pp. 413–427 (2012)

35. Merzdovnik, G., Huber, M., Buhov, D., Nikiforakis, N., Neuner, S., Schmiedecker,
M., Weippl, E.: Block me if you can: a large-scale study of tracker-blocking tools.
In: Proceedings of the 2nd EuroSP, Paris, France (2017)

36. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: exploring the ecosystem of web-based device fingerprinting.
In: Proceedings of the 2013 IEEE SP, pp. 541–555 (2013)

37. Pan, X., Cao, Y., Chen, Y.: I do not know what you visited last summer: pro-
tecting users from stateful third-party web tracking with trackingfree browser. In:
Proceedings of the 22nd NDSS (2015)

38. Roesner, F., Kohno, T., Wetherall, D.: Detecting and defending against third-party
tracking on the web. In: Proceedings of the 9th NSDI, pp. 155–168 (2012)

39. Soltani, A., Canty, S., Mayo, Q., Thomas, L., Hoofnagle, C.J.: Flash cookies and
privacy. In: AAAI Spring Symposium: Intelligent Information Privacy Manage-
ment, pp. 158–163 (2010)

40. Starov, O., Nikiforakis, N.: Extended tracking powers: measuring the privacy dif-
fusion enabled by browser extensions. In: Proceedings of the 2017 WWW (2017)

41. Takei, N., Saito, T., Takasu, K., Yamada, T.: Web browser fingerprinting using
only cascading style sheets. In: Proceedings of the 10th BWCCA, pp. 57–63 (2015)

42. Upathilake, R., Li, Y., Matrawy, A.: A classification of web browser fingerprinting
techniques. In: Proceedings of the 7th NTMS, pp. 1–5 (2015)

43. West, M.: Mixed Content (2016). https://www.w3.org/TR/mixed-content/
44. West, M., Barth, A., Veditz, D.: Content Security Policy Level 2 (2015)

https://www.w3.org/TR/mixed-content/

Idea-Caution Before Exploitation: The Use
of Cybersecurity Domain Knowledge
to Educate Software Engineers Against

Software Vulnerabilities

Tayyaba Nafees(&), Natalie Coull(&), Robert Ian Ferguson(&),
and Adam Sampson (&)

School of Arts, Media and Computer Games,
University of Abertay Dundee, Dundee DD1 1HG, UK

{1405357,N.Coull,ian.ferguson,

A.Sampson}@abertay.ac.uk,

http://www.abertay.ac.uk

Abstract. The transfer of cybersecurity domain knowledge from security
experts (‘Ethical Hackers’) to software engineers is discussed in terms of
desirability and feasibility. Possible mechanisms for the transfer are critically
examined. Software engineering methodologies do not make use of security
domain knowledge in its form of vulnerability databases (e.g. CWE, CVE,
Exploit DB), which are therefore not appropriate for this purpose. An approach
based upon the improved use of pattern languages that encompasses security
domain knowledge is proposed.

Keywords: Software Development Lifecycle (SDLC) � Security Pattern (SP) �
Software Fault Pattern (SFP) � Attack Pattern (AP) � Vulnerability DataBase
(VDB)

1 Introduction

Programmers make mistakes. There are ‘15–50 errors per 1000 lines of delivered code’
[1]. Much research effort has concentrated on addressing this problem [2]. Of particular
concern are those software flaws that lead to security vulnerabilities. The deliberate
misuse of such a vulnerability is termed an exploitation, resulting in information leaks,
and reduce the value or usefulness of the system [3]. Generally, software developers do
not understand the security as their focus is on delivering features, rather than on
ensuring the software security, so it is often considered as something to be added to a
system as a bolt-on component into later stages of development. However, the cost of
fixing bugs post software release is estimated to be 30 times pre-release cost [4].
Testing has poor relation with security. It is unusual for the software developer to use
testing approaches for finding vulnerabilities; this issue has not received the research
attention it requires [5]. One implication of this is that security concerns should be
embedded into the software development lifecycle (including the early phases) [6].

© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 133–142, 2017.
DOI: 10.1007/978-3-319-62105-0_9

90% of security incidents result from exploitation of flaws in software [7]. In
reality, however, software developers struggle against recurring and consistent software
flaws (i.e. buffer overflows and integer overflows), which are exploited daily by
malicious hackers. Nonetheless, a large body of knowledge about software vulnera-
bilities exists within the cybersecurity community, in particular amongst penetration
testers and ethical hackers. The term ‘Ethical Hacker’ (EH) will be used as a shorthand
to denote this community. Currently ethical hackers put much effort into classifying
discovered vulnerabilities and developing taxonomies of these vulnerabilities. Such
vulnerabilities are then catalogued in publicly available vulnerability databases (VDBs)
[8]. Software developers have worked to embed security within the software devel-
opment lifecycle (SDLC) [9] in order to fix the deployment errors. The mechanism of
knowledge transfers between the work on vulnerability databases (VDBs), developers’
perceptions of security issues and the security development lifecycle (SDLC) is
complex, which creates a distinct communication gap between ethical hackers and
software engineers [10]. Interception of (knowledge) communication directs software
developers to repeat persistent prevalent vulnerabilities and gives rise to software flaws
exploitation. Various attempts to capture and formalize the transferring knowledge in a
manner appropriate to software engineers have been made, including Misuse Patterns
[11], Software Fault Patterns (SFP) [12], and Security Patterns (SP) [13]. The need for
a better understanding of this mechanism and our proposed solution is the subject of
remainder of this paper, which is structured as follows: Sect. 2 examines previous work
in this area and leads the following hypotheses (Table 1).

In Sect. 3, shortcomings of previous attempts are analyzed and in Sect. 4, proposals
for a pattern-based approach (Vulnerability Anti-Pattern) to the problems are presented.

2 Background and Related Work

2.1 Building Security by Software Engineers

Other researchers had attempted addressing software developers’ security concerns as
part of the software development process. For example, earlier attempts have been
conducted based upon improving libraries, implementation languages, and language
processors [14, 15]. Approaches based on static and dynamic code analysis have been
proposed by providing different guidelines, such as SDL banned functions [16].
Software engineers have attempted early exclusion of the vulnerabilities by considering

Table 1. Proposed hypotheses

H-1 Software developers lack the conscious understanding to identify recurring software
flaws during software development process due to stagnated and possibly degrading
vulnerabilities’ knowledge transfer

H-2 Patterns (anti-patterns, security patterns and attack patterns) are an appropriate means
of communicating knowledge of vulnerabilities from ethical hackers to software
engineers. However, existing applications of these pattern languages fail to do so

134 T. Nafees et al.

security issues at all phases of the SDLC. Examples of these approaches are considered
in Table 2: [13, 17].

2.2 Attempts by Ethical Hacker to Catalogue and Use Patterns
to Communicate Vulnerabilities

The National Vulnerability Database (NVD) comprises CWE, CVE and CAPEC,
which are the three most comprehensive vulnerability databases (VDBs). They are
open-source and maintained by MITRE [20] as shown in Table 3.

Table 2. Approaches to embed security in software development processes

Name Description

Security development
lifecycle (SDL)

SDL is proposed to reduce software maintenance costs and
increase reliability of software with regards to software security
related bugs. Cybersecurity standards, such as ISO 27001 are
incorporated into the SDL to ensure that any software produced
with this process complies with industry recognized standards.
However, compliance with standards does not necessarily lead to
all vulnerabilities being eliminated from software. The lacking of
this model is discussed in Sect. 4.2

OWASP CLASP OWASP Comprehensive, Lightweight Application Security
Process includes a set of guidelines for web security
requirements, cheat sheets, a development guide, a code review
and a testing guide, tools and information about top web security
vulnerabilities. This is explored further in Sect. 4.2

Security patterns (SP) It defines as a solution to stop or mitigate a set of specified
threats through certain security mechanisms, and designing to
assist software developers who are not security experts with
embedding security in their systems. It can also be a useful tool
for teaching security concepts [18]. This is explored further in
(Sect. 4.2). However, they are not based directly on the
vulnerability knowledge stored in VDBs, which is necessary for
achieving currency and a timely response to new threats [19]

Table 3. Attempts to catalogue vulnerabilities

Name Description

CWE The Common Weakness Enumeration database (CWE) catalogues weaknesses
that can occur in software. These weaknesses are described as software bugs that
can lead to vulnerabilities

CVE The Common Vulnerabilities Enumeration database (CVE) catalogues specific
examples of publicly known vulnerabilities that exist in software

CAPEC The Common Attack Pattern Enumeration and Classification database (CAPEC)
provides formal attack patterns, while considering the CVE examples and CWE
information

Idea-Caution Before Exploitation 135

In addition to the above VDBs, security experts have also endeavored to embed
their knowledge of vulnerabilities in the form of patterns (as shown in Table 4) such as
SFP, AP and Misuse pattern. This will be explored further in Sect. 3.4.

3 Analysis

3.1 Potential Causes of Poor Knowledge Sharing

The lack of a shared understanding between the Software Engineering and Ethical
Hacking communities is well documented [21, 22]. Although there are exceptions,
security testing typically takes place as an activity during the SDLC. Ethical Hackers
communicate with and report to system administrators and IT managers. Although,
there is some crossover between the ground knowledge and skill-set of a software
engineer and an ethical hacker, they own some very distinct technical domains, with
different educational paths, different technical languages and different professional
bodies. Generally, a malicious hacker does not work under the same constraints of
project schedules and deadlines as a software engineer does. If they wish to spend six
months examining in minute detail of the state of stack under a particular attack
condition, they will not have employers pressurizing employees, to deliver. Thus, they
have the advantage of time. This coupled with the extensive knowledge sharing that
takes place amongst the hacking community [23] means that a hacker may be more
familiar with the weaknesses in a particular piece of software than those who created it.

Table 4. Attempts to use patterns to communicate vulnerabilities

Name Description

Software fault
patterns (SFP)

SFP is aligned with the CWE database, whose contains a formal
specification of weaknesses (vulnerabilities) and will be explored
further in Sect. 3.4. However, a lack of detailed information about
the structure and format of SFP presents a considerable obstacle for
software developers

Attack patterns (AP) AP is derived from CAPEC database, which describes a procedure of
a particular vulnerability attack format. However, it is not intended as
a source of design patterns (like standard software pattern) Generally,
the complicated structure and understanding difficulty restrain
developers in their usage. There is not much research done on usage
of attack pattern by software developers due to their inherent
complexity

Misuse patterns It describes the malicious hacker generic prospect while considering
sub-dimensions, which classifying into set of attack actions and
enumerating with possible security patterns as a countermeasure [13].
Although, the misuse pattern groundwork clearly evidences the no
usage of cybersecurity knowledge sources (i.e. VDBs) in defining
attack action. Thus far, misuse patterns have certain construction
deficiencies and lack considerable usage for developers

136 T. Nafees et al.

3.2 Software Engineering Problems

The approaches from Sect. 3.1 are attempts by the software engineering community to
enable the integration of security concerns into the process of developing software. The
approaches, such as SDL, OWASP CLASP and SP, focus only on fulfilling security
guidelines and standards rather than raising awareness of vulnerabilities. SDL does not
embed any knowledge from cybersecurity experts and are challenging for those soft-
ware developers who have limited awareness and understanding of the security vul-
nerabilities in order to apply the security guidelines effectively. The organizational
emphasis of SDL may also be of limited applicability in the informal world of cross
platform application deployment. OWASP CLASP implementation is limited to
web-based systems. Furthermore, the value of SPs in order to provide usable and
understandable documentation for developers is questionable due to their complexity
[24], and they are generally not adopted by developers due to their poorly described
implementation [25]. This can be attributed to the lack of an accepted standard cata-
logue and a lack of methodological support.

3.3 Cyber Security Problems

The various databases described are maintained by cybersecurity professionals to keep
track of known vulnerabilities in the different versions of released software. It is clear
that the intended audience for these databases is not software engineers involved in
developing software but rather systems administrators looking to secure their existing
systems. It might be possible that the information contained therein is simply not
generalized enough to be directly relevant for software developers to use in the
development process. Some of the difficulties that software developers face are enu-
merated in Table 5.

Table 5. VDBs issues

No
standardization

No standard taxonomy/classification scheme for existing VDBs, thus
each of them use their own approach, none of which were explicitly
designed to use during SDLC. As such, these VDBs can typically appear
complex and ambiguous to the software developer [26–28]

Limited
knowledge

Closed source VDBs, such as the Carnegie-Mellon US Cert database and
Secunia, are of necessity limited in the information that they can show
concerning code-level errors

Complexed
knowledge

It is clearly shown by many research studies, which have compared
vulnerability information across the multiple VDBs that these
repositories are deficient in providing interoperability, knowledge
consistency and are not following standard classification schemes
[29, 30]

Idea-Caution Before Exploitation 137

3.4 Addressing Shortcomings of Previous Pattern-Based Attempts

Section 3.3 discussed previous attempts to use patterns/pattern languages in the
cybersecurity context. These attempts highlighted the following shortcomings: a dis-
tinct communication gap between software developers and ethical hackers; software
developers lack conscious understanding about prevalent vulnerabilities because of
unusable and complicated knowledge sources, SDLC does not adequately address
software security practices, and finally there are limited efforts from both the cyber-
security and software engineering communities to work together to address software
vulnerabilities. It is clear that the use of patterns can only succeed in the context of an
appropriate software development process, which must include knowledge from the
VDBs. The author’s future work will examine the way in which patterns can be used to
capture VBDs knowledge in a usable format, the need to provide understandable
vulnerabilities’ awareness to developers is emphasized by Fahl et al. and Acar et al.
work [31, 32]. The desirability of a methodology and tool is also support by McGraw
[27] and Borstad [33].

4 Practical Proposition: Our Solution

To address these issues, our research has led to the creation of a set of ‘Vulnerability
Anti-Patterns’, based on the OWASP Top 10 Vulnerabilities. Our anti-patterns have
been constructed following two main stages: knowledge extraction (1-knowledge
pulling process sourced from VDBs and security patterns) and knowledge provision
(2-knowledge pushing process to educate developers through anti-patterns).

4.1 The Knowledge Extraction (1-Knowledge Pulling Process)

The knowledge pulling process sourced by cybersecurity community such as VDBs
(CWE, CVE), security patterns and attack pattern databases (CAPEC), and collected
essential information of the vulnerability. For example, general information,
root-causes and attack procedures. This is the first step towards addressing the com-
munication gap. The knowledge pulling process comprises two sub-parts: (1) Creating
a taxonomy of vulnerabilities. The taxonomy includes vulnerability info, vulnerability
footprints or characteristics and mitigation categories; (2) generating a decision tree
which describes the vital VDBs information, and shows safeguard and injury paths that
map security incidents with their low-level and high-level root-causes of vulnerabilities
in respective phase of software development life cycle (SDLC).

4.2 Knowledge Provision (2-Knowledge Pushing Process)

Extracted knowledge passed to the knowledge pushing process, which captures pre-
vious process formalized information in the form of patterns, known as Vulnerability
Anti-Patterns that is most appropriate mechanism to communicate knowledge of vul-
nerabilities to software developers.

138 T. Nafees et al.

4.2.1 The Notion of Vulnerability Anti-pattern (VAP)
A recurring error or vulnerability initiates an anti-pattern, which can occur due to any
poor software design or implementation errors. Same in the case of vulnerabilities,
which are, commonly reoccurring flaws, so why does not capture and address the
fundamental problems of cybersecurity through anti-patterns. A VAP describes a
problem, i.e. poor practice that negatively causes a security flaw, and a solution, i.e. a
set of refactoring actions that can be carried out to mitigate or stop flaws. In contrast to
SP, which are only designed to perceive a threat, not to repair a vulnerability, and
VDBs that appear complicated for developers’ understanding and are generally not
considered as a part of developers’ security practices. It has been argued [34] that the
prevalent software errors occurred because of established software practices that
actually have negative impact during SDLC. Such poor practices generally cause
prevalent vulnerabilities. It can thus be suggested that these poor practices need to be
identified and refactored so safe solutions can be generated [35]. The use of
anti-patterns for finding and understanding vulnerabilities is understudied, particularly
for software developers. VAP can describe poor practices or solutions, which aid in
reasoning about and communicating unsuccessful design intent, and introduce refac-
tored solutions, which suggests safe alternative procedures. The advantage of adopting
VAP during software development process is that it bridges the knowledge gap
between software developers and security experts about commonly occurring software
flaws. This finding has important implications for developing security training meth-
ods. Therefore, an anti-pattern is suggested for the vulnerability that includes necessary
vulnerability information in a well-defined and usable format for those inexperienced
and naive developers who do not understand security and can be an effective way of
communicating vulnerable poor practices, so developers can learn valuable lesson from
other fellows’ successes and failures. Without this wisdom, anti-patterns of prevalent
vulnerabilities will continue to persist.

Vulnerability Anti-Pattern: A Proposed Solution. Authors propose a new refactored
solution called ‘Vulnerability Anti-Patterns’ that are intended to provide the develop-
ers’ security necessary awareness. Since the vulnerability anti-patterns’ core objective
is to highlight the entire software exploitation potential, each pattern has been written to
describe the following: general practices of the anti-pattern (i.e. how it could be mis-
used), examples such as CVE (real-world exploitation) and sample vulnerable code,
and finally the footstep of risk patterns within SDLC, the refactored solution and
related solutions in the form of security patterns. Ultimately, the anti-patterns should
enable the developers to realize the root-cause of the vulnerability. In regards to the
proposed solutions (or countermeasures to the vulnerabilities), we anticipate that the
anti-patterns will encourage the developers to retain a deep understanding and con-
scious alertness of vulnerabilities in their future development practices. Our template
for an anti-pattern is presented below. We have utilized this template and produced
complete anti-patterns for 10 vulnerabilities to date. In addition to the complete pattern
data outlined below, we have also produced an abridged version of each pattern, which
describes, using languages from various different programming languages how each
vulnerability can be exploited (Table 6).

Idea-Caution Before Exploitation 139

4.3 Evaluation

To evaluate the effectiveness of ‘Vulnerability Anti-Patterns, we are in the process of
conducting a series of experiments with software developers from two international
organizations and computing students from our own university. Stage-1:
Pre-assessment evaluation to measure participants’ actual awareness about poor
development practices. Stage-2: Participants are trained while using informal versions
of the vulnerability anti-patterns. Stage-3: Post assessment evaluation to how much
participants able to improve their understanding of vulnerabilities accompanied by the
formal version of vulnerability anti-patterns. Stage-4: Comparative analysis performed
between trained and untrained developers to measure the progression in developers’
abilities to identify and understand the most commonly persistent software flaws
regarding the efficiency of vulnerability anti-patterns.

Table 6. Vulnerability Anti-Pattern template.

Pattern main-division Pattern sub-division

1. Vulnerability
anti-pattern general info

1.1 Anti-pattern name:
1.2 Also known as:
1.3 Most frequent scale in SDLC: Requirement specification,

Design, Implementation/Coding-phase
1.4 Problem description:
1.5 CWE mapping: CWE-ID, General name
1.6 Related CWEs:
1.7 CVE example:

2. Anti-pattern
(Problematic solution)

2.1 Refactored solution name:
2.2 Refactored solution type: Software pattern, Technology

pattern, Process pattern, Role pattern
2.3 Root causes (Context): Unbalanced Forces related to

meeting requirements, controlling technology changes,
controlling use and implementation of people

2.4 Risk patterns and consequences:
2.5 Typical causes

3. Problem fingerprints 3.1 Software Fault Pattern (SFP)
4. Known exploitation 4.1 Attack Pattern (Attack patterns-CAPEC)
5. Mitigation (Refactors the
problem)

5.1 Refactored solutions:
5.1.1 Solution steps SDLC, Description
5.2 Examples: (Real-world Patch Example)
5.3 Pen testing techniques
5.4 Related Solutions(SP):
5.4.1 General solution (All in one solution)
5.4.2 Language solution

140 T. Nafees et al.

5 Conclusion

Secure software development is one of the most challenging areas of cybersecurity.
Although, the cybersecurity industry is mature and generates a wealth of resources on
discovered software vulnerabilities in the form of VDBs, software developers are
continuing to produce recurring and persistent software flaws at an alarming rate. The
software engineering community has also worked to embed security into the SDLC;
however, these independent efforts fail to provide effective solutions against prevalent
vulnerabilities. Hackers on a daily basis exploit a large number of fatal development
errors. Software developers are largely unaware of the design and implementation-level
security flaws (poor development practices) which generally turn into fatal security
weaknesses (vulnerabilities). There exists a big communication gap between the
software developers and security experts, which does not help them to solve this
problem. The research proposes a methodology to use a pattern for transferring a
necessary vulnerabilities knowledge to software developers through ‘Vulnerability
Anti-Pattern’, and considers the use of patterns to communicate knowledge of software
vulnerabilities in usable format with the best means of avoiding their creation. It
bridges the communication gap between them with assistance of classified cyberse-
curity knowledge sources such as VDBs, which ultimately share essential information
about common errors and help to identify software developers’ secure ideas to build
secure software. We propose that one solution to this problem lies in the use of patterns
languages (with appropriate methodological, tool and training support) to better capture
and communicate the information currently held in VDBs to create a ‘Safe Develop-
ment Environment’. Therefore, knowledge of vulnerabilities can bridge the commu-
nication gap between cybersecurity and software engineering communities. It is toward
this goal that our future work, based upon this initial study will be directed.

References

1. McConnell, S.: Code Complete: A Practical Handbook of Software Construction. Microsoft,
Redmond (1993)

2. Todorov, A.: User guide for open source project bug submissions (2015). http://opensource.
com/business/13/10/user-guide-bugs-open-source-projects

3. Leveson, N.: A new accident model for engineering safer systems. Saf. Sci. 42, 237–270
(2004)

4. Cabinet Office: The cost of cybercrime (2011)
5. Bekrar, S., et al.: Finding software vulnerabilities by smart fuzzing, pp. 427–430 (2011)
6. Jorgensen, P.C.: Software Testing: A Craftsman’s Approach. CRC Press, Boca Raton (2013)
7. DHS: Cyber incident response at DHS (2017)
8. Aslam, T., Krsul, I., Spafford, E.H.: Use of a taxonomy of security faults (1996)
9. Howard, M., Lipner, S.: The security development lifecycle: a process for developing

demonstrably more secure software (2006)

Idea-Caution Before Exploitation 141

http://opensource.com/business/13/10/user-guide-bugs-open-source-projects
http://opensource.com/business/13/10/user-guide-bugs-open-source-projects

10. Busch, M., Koch, N., Wirsing, M.: Evaluation of engineering approaches in the secure
software development life cycle. In: Heisel, M., Joosen, W., Lopez, J., Martinelli, F. (eds.)
Engineering Secure Future Internet Services and Systems. LNCS, vol. 8431, pp. 234–265.
Springer, Cham (2014). doi:10.1007/978-3-319-07452-8_10

11. Fernandez, E.B., Yoshioka, N., Washizaki, H.: A worm misuse pattern, No. 2 (2010)
12. Mansourov, D.N.: Software fault patterns: towards formal compliance points for CWE

(2011)
13. Schumacher, M., et al.: Security Patterns: Integrating Security and Systems Engineering.

Wiley, Hoboken (2013)
14. Bourque, P., Fairley, R.E.: Guide to the Software Engineering Body of Knowledge

(SWEBOK (R)): Version 3.0. IEEE Computer Society Press, Washington, D.C. (2014)
15. Shiralkar, T., Grove B.: Guidelines for secure coding (2009)
16. Howard, M.: Security development lifecycle (SDL) banned function calls (2012)
17. Howard, M., Lipner, S.: The Security Development Lifecycle. Microsoft Press, Redmond

(2006)
18. Brenner, J.: ISO 27001: Risk management and compliance. Risk Manage. 54, 24 (2007)
19. Halkidis, S., et al.: A qualitative analysis of software security patterns. Comput. Secur. 25,

379–392 (2006)
20. MITRE Corporation: Common weakness enumeration (2015). http://cwe.mitre.org/
21. Van Wyk, K.R., McGraw, G.: Bridging the gap between software development and

information security. IEEE Secur. Privacy 3, 75–79 (2005)
22. Viega, J., McGraw, G.: Building Secure Software: How to Avoid Security Problems the

Right Way Portable Documents. Pearson Education, Essex (2001)
23. Mansourov, N., et al.: Why hackers know more about our systems, pp. 1–21 (2011)
24. Bunke, M.: Software-security patterns: degree of maturity, p. 42 (2015)
25. Fernandez-Buglioni, E.: Security Patterns in Practice: Designing Secure Architectures Using

Software Patterns. Wiley, Hoboken (2013)
26. Hui, Z., Huang, S., Ren, Z., Yao, Y.: Review of software security defects taxonomy. In: Yu,

J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401,
pp. 310–321. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16248-0_46

27. McGraw, G.: Software Security: Building Security In. Addison-Wesley Professional, Boston
(2006)

28. Huang, C., Lin, F., Lin, F.Y., Sun, Y.S.: A novel approach to evaluate software vulnerability
prioritization. J. Syst. Software 86, 2822–2840 (2013)

29. Ghani, H., et al.: Predictive vulnerability scoring in the context of insufficient information
availability, pp. 1–8 (2013)

30. Yun-hua, G., Pei, L.: Design and research on vulnerability database (2010)
31. Fahl, S., et al.: Rethinking SSL development in an appified world, pp. 49–60 (2013)
32. Acar, Y., et al.: You get where you’re looking for: the impact of information sources on code

security, pp. 289–305 (2016)
33. Borstad, O.G.: Finding security patterns to countermeasure software vulnerabilities (2008)
34. McGraw, G.: Software security. 36, 662–665 (2012)
35. Julisch, K.: Understanding and overcoming cyber security anti-patterns. Comput. Netw. 57,

2206–2211 (2013)

142 T. Nafees et al.

http://dx.doi.org/10.1007/978-3-319-07452-8_10
http://cwe.mitre.org/
http://dx.doi.org/10.1007/978-3-642-16248-0_46

Defeating Zombie Gadgets by Re-randomizing
Code upon Disclosure

Micah Morton1(B), Hyungjoon Koo2, Forrest Li1, Kevin Z. Snow3,
Michalis Polychronakis2, and Fabian Monrose1

1 University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
micah@cs.unc.edu

2 Stony Brook University, Stony Brook, NY, USA
3 ZeroPoint Dynamics, Cary, NC, USA

Abstract. Over the past few years, return-oriented programming
(ROP) attacks have emerged as a prominent strategy for hijacking
control of software. The full power and flexibility of ROP attacks
was recently demonstrated using just-in-time ROP tactics (JIT-ROP),
whereby an adversary repeatedly leverages a memory disclosure vulner-
ability to identify useful instruction sequences and compile them into a
functional ROP payload at runtime. Since the advent of just-in-time code
reuse attacks, numerous proposals have surfaced for mitigating them,
the most practical of which involve the re-randomization of code at run-
time or the destruction of gadgets upon their disclosure. Even so, sev-
eral avenues exist for performing code inference, which allows JIT-ROP

attacks to infer values at specific code locations without directly reading
the memory contents of those bytes. This is done by reloading code of
interest or implicitly determining the state of randomized code. These
so-called “zombie gadgets” completely undermine defenses that rely on
destroying code bytes once they are read. To mitigate these attacks,
we present a low-overhead, binary-compatible defense which ensures an
attacker is unable to execute gadgets that were identified through code
reloading or code inference. We have implemented a prototype of the pro-
posed defense for closed-source Windows binaries, and demonstrate that
our approach effectively prevents zombie gadget attacks with negligible
runtime overhead.

Keywords: Code reuse · JIT-ROP · Code inference · Destructive reads

1 Introduction

In recent years, memory corruption attacks have become increasingly sophisti-
cated. For example, present day exploits on commodity systems must circum-
vent Address Space Layout Randomization (ASLR), a widely deployed defense
which requires the adversary to use memory disclosure to compute the addresses
of useful gadgets in a program before repurposing them for malicious means.
Researchers and practitioners recently proposed further approaches to harden
c© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 143–160, 2017.
DOI: 10.1007/978-3-319-62105-0 10

144 M. Morton et al.

vulnerable applications against memory disclosure, through focusing on more
fine-grained forms of code diversification [26,31]. In turn, attackers responded
with the development of “just-in-time” ROP (JIT-ROP), a style of attack that
leverages the dynamic scripting capabilities of document renderers and web
browsers to repeatedly disclose memory in order to build exploit payloads at
runtime, all the while making no assumptions about the layout of code and thus
circumventing fine-grained ASLR [28].

Not willing to be outdone, defenders developed several new mechanisms in
order to stay one step ahead of attackers armed with scripted memory disclo-
sure capabilities. In this vein, proposed compile-time defenses [7,12] effectively
mitigate JIT-ROP attacks by enforcing code memory to be executable but not
readable—eliminating an attacker’s ability to use memory disclosure to enumer-
ate and read code pages. In an effort to be more readily deployable to closed-
source software, other binary-compatible defenses have attempted to apply on-
demand code randomization [6,10,33] or gadget destruction [30,32] at runtime
in order to protect against JIT-ROP.

Unfortunately, the most promising JIT-ROP defenses either have major hur-
dles to overcome in achieving widespread deployability [29], due to their reliance
on source code access and compiler support [7,12,13], or have been shown to
be vulnerable to ingenious advancements in JIT-ROP capabilities. In particu-
lar, Snow et al. [27] demonstrated that existing execute-only memory protec-
tions applicable at the binary level based on the concept of destructive code
reads [30,32] can be bypassed using code reloading, JIT code generation, or
implicit code disclosure attacks. As explained in Sect. 4, these clever evasion
techniques are made possible through the attacker’s ability to re-load a given
code module multiple times or to deduce the values of certain code bytes based on
values of related instructions. That said, the shortcomings of previous binary-
compatible defenses do not indicate that the task of defending against code
reuse is insurmountable. Rather, in this work we propose further advancements
to existing defense paradigms that aptly harden them against these powerful
code reloading and code inference strategies.

In this paper, we identify two concepts as the pillars of any effective JIT-ROP
defense that seeks to prevent the execution of disclosed gadgets. We refer to
these as the trigger and countermeasure of a defense, respectively. These terms
come from the fact that part of the defense must be triggered when an attacker
has disclosed potentially useful executable bytes in memory, and some subse-
quent countermeasure must be taken to ensure those bytes cannot be leveraged
by an attacker for hijacking control of the application. The purpose of this work
is to adapt ideas put forth by existing defenses that implement runtime gadget
destruction [30,32] by making novel extensions to both the trigger and counter-
measure components. At its core, our defense features the ability to efficiently
and robustly re-randomize program instructions in response to their code bytes
being disclosed by an attacker. Specifically, to deal with code reloading attacks,
our approach detects when code modules that could contain fresh usable copies
of gadgets (that were previously disclosed and destroyed in another instance of

Defeating Zombie Gadgets by Re-randomizing Code upon Disclosure 145

that module) are about to be loaded, and replaces them with new randomized
versions. In addition, to deal with the more sophisticated code inference attacks,
our approach re-randomizes upon each destructive read the subset of the code
that could potentially be implicitly disclosed.

2 Goals and Adversarial Model

Our goal is to provide a binary-compatible defense against just-in-time code
reuse attacks [28]. We are particularly interested in sound defenses that have
low runtime overhead and are applicable to real world programs and their com-
plexities. We assume the attacker has full power of scripted arbitrary memory
disclosure as well as the ability to cause arbitrary code modules to be loaded
or unloaded, per the attacks recently presented by Snow et al. [27]. Specifically,
we assume that i. Data Execution Prevention, ii. Fine-grained Address Space
Layout Randomization (e.g., [7,15,19,26,31]) and iii. Destructive read capa-
bilities that leverage execute-only memory (e.g., [8,30,32]) are in use. We also
assume that adversary have at their disposal a memory disclosure vulnerabil-
ity that allows them to read and write arbitrary memory locations. By now,
these assumptions are commonly accepted as being no stronger than the capa-
bilities already leveraged by skilled adversaries (e.g., [6,9,12,18,28]) to defeat
contemporary ASLR.

3 Background and Related Work

Over the past several years, a number of defenses (e.g., [4,6,7,10–12,15,16,19–
21,30,32,33]) have been suggested as ways to curtail the power of just-in-time
code reuse attacks. Interested readers are referred to Crane et al. [13] for an
excellent review of the current state of the art in return oriented programming
attacks. Here, we instead focus on existing defensive strategies in terms of the
triggers they utilize and their runtime countermeasures. To date, a myriad of
triggers have been proposed, such as invoking countermeasures as a result of file
I/O [6], process forking [24], or elapsed wall-time [10,33]. At the same time, the
runtime countermeasures involve either re-randomizing code layout [6,10,24,33]
or overwriting disclosed code bytes as a way to ensure they cannot be leveraged
in a ROP payload [30,32].

Unfortunately, the existing approaches all have significant shortcomings. For
example, Bigelow et al. [6] assumes that scripting environments are out of scope,
and so their approach cannot protect widely used applications like modern
browsers or document renderers; the work of Chen et al. [10] only offers a prob-
abilistic defense, and the recent proposals of Tang et al. [30] and Werner et
al. [32] have been undermined using only modest enhancements to the original
JIT-ROP framework [27]. Additionally, many of these proposed defenses suffer
from shortcomings in terms of real-world applicability (e.g., such as poor per-
formance guarantees or lack of compatibility with multi-threaded programs) or

146 M. Morton et al.

require the ability to re-compile code from source in order to enable the pro-
posed protections [7,12,13]. Although the ability to recompile software for added
security enforcement is often an ideal avenue for mitigating software threats,
such defenses that require access to source code are not positioned for near-
term deployability in the same way as binary-compatible defenses. Since binary-
compatible defenses only require updating core system components rather than
all commodity software running on a device, wide-spread deployability is more
feasible. Our defense is motivated by the need to protect vulnerable systems in
the near-term, and so many of our design choices prioritize deployability.

One related work which shares similar deployability goals is a defense pro-
posed by Williams-King et al. [33] which offers a binary-compatible solution
for constantly re-randomizing code at prescribed intervals (of wall-clock time)
in order to break JIT-ROP payloads. Their approach requires relocating func-
tions using complex pointer tracking techniques in order to avoid creating stale
pointers that can no longer be safely dereferenced; however, such analysis is
known to be an unsolvable problem in the general case, and raises a slew of
challenges for real-world deployment. The approach of Williams-King et al. [33]
makes strides in advancing the robustness of pointer tracking based defenses by
leveraging program analysis and assuming access to debug symbols in order to
bolster the accuracy of moving functions around at runtime within the address
space of a protected process. Unfortunately, there are corner cases in deploy-
able pointer tracking that are not handled by their work, thereby lessening the
near-term deployability of the defense. For instance, even when instructing the
compiler/linker to preserve as much information as possible, certain informa-
tion is not retained, such as locations of static functions (for which the known
offset within a module can be hard-coded by the compiler), alignment of jump
tables, or existence of functions which implicitly fall through to the next func-
tion. This lack of information complicates the prospect of reordering functions in
applications that feature these program constructs. Certain aspects of data flow
tracking are also not supported (e.g., when an object is initialized in one library
and memcpy’d to a different library). Our work does not share these drawbacks,
as we avoid pointer tracking altogether. In another related code-shuffling style
approach, Chen et al. [10] attempt to provide a probabilistic defense against
JIT-ROP attacks by applying time-based binary stirring [31] to a process in an
attempt to re-randomize all code in the entire program. Unfortunately, since
Chen et al. [10] provide no guidance on how to determine realistic intervals for
triggering their defense, it remains unclear what the incurred overhead is for
thwarting real-world JIT-ROP attacks that have a lifetime of a few seconds [28].

Destructive Reads. Of late, several defenses that rely on the notion of execute-
only memory (i.e., to enforce that any given location in a code section can be
either read or executed—but not both) have been suggested as a mechanism for
preventing code reuse attacks. Indeed, instead of attempting to solve the diffi-
cult problem of separating code and data and preventing code from being read
recursively (e.g., [4,5,19]), the idea behind destructive reads [30,32] is to allow
all code to be disclosed, but to prevent any disclosed code from subsequently

Defeating Zombie Gadgets by Re-randomizing Code upon Disclosure 147

being executed. Sadly, while the notion of destructive reads was thought to be
an effective technique for mitigating just-in-time code reuse attacks as origi-
nally proposed by Snow et al. [28], several ingenious attacks have surfaced that
leverage the ability to load and unload modules at will—or for selectively disclos-
ing bytes of memory as a means of inferring surrounding gadgets—to undermine
any afforded protection [27].

Even with these attacks in mind, we show how the notion of destructive
reads can be effectively combined with load-time randomization to provide strong
protection against powerful code reuse attacks. Our solution for doing so is
discussed next.

4 Approach

In what follows, we propose a practical defense against just-in-time code reuse
attacks that take advantage of an adversary’s ability to disclose and execute
code bytes whose values were learned by loading and unloading code modules,
or performing so-called code inference attacks like those recently presented by
Snow et al. [27]. At a high-level, our approach centers around the ability to
place randomized versions of code in a process at key trigger points during
the execution of a just-in-time code reuse attack. Specifically, we replace the
code upon which an attack relies with logically equivalent code of a different
form that will break the attacker’s ROP payload. To achieve this, we apply
binary-compatible in-place randomization to code modules in order to obtain
multiple diversified copies of the code which are kept in kernel-space memory
where they are not accessible to user-level processes. With swappable versions of
a module available at our disposal, we can then efficiently replace disclosed code
at runtime with minimal complexities while assuring correct program execution.
Specifically, when a module is loaded into memory from disk, we ensure that a
randomized copy of that module is mapped into the user-space process, thwarting
code reloading attacks. Furthermore, individual reads to executable addresses in
the module trigger our system to swap localized code sequences within functions
for semantically-equivalent randomized code sequences from one of the alternate
versions maintained in kernel-space. This technique prevents adversaries from
making use of individually disclosed gadgets, while not requiring any re-routing
of control flow or swapping of entire code modules.

Both Heisenbyte [30] and NEAR [32] provide solid foundations for detecting
the most straightforward way an attacker can learn the values of code bytes—
i.e., by directly reading their values in memory—and are able to prevent the
execution of those exact bytes at a later time. Unfortunately, attacks are still
possible when scripting environments can be used to cause modules to be loaded
or unloaded at will, exchanging destroyed gadgets for fresh versions of the pre-
viously disclosed bytes and thus rendering destructive code reads ineffective.
Indeed, the most concerning attacks suggested by Snow et al. [27] involve the
use of implicit code reads that allow an adversary to infer the values of code
bytes indirectly, based on the directly read values of related code bytes. These

148 M. Morton et al.

Fig. 1. At load time, one among many randomized versions of a module is picked
at random. Whenever a potential code disclosure event occurs (due to a destructive
read operation), the locally surrounding region is re-randomized by swapping it with
a different randomized instance.

two orthogonal attack approaches necessitate two orthogonal components of our
defense: one for thwarting code reloading and another for defending against code
inference. Figure 1 shows an overview of the proposed approach, depicting how
our defense ensures different randomized copies of code modules get mapped
into memory on image load, as well as ensuring code bytes that are disclosed by
an attacker get swapped for a different randomized version of those bytes before
they can be leveraged in an exploit payload.

These two components of our defense extend destructive read capabilities pre-
sented in previous work, which we briefly explain before relaying the specifics of
our contributions. Heisenbyte [30] and NEAR [32] both implement what is called
a thin hypervisor, allowing them to leverage hardware virtualization support for
Extended Page Tables (EPT) to intercept read accesses to executable sections
of a given process. While this may seem like a drastic means by which to sim-
ply mark code pages as execute-only, at present, it is the only feasible approach
for contemporary Intel processors.1 In both Heisenbyte and NEAR, enforcing
destructive reads involves registering an EPT fault handler that, when invoked,
assures the byte values where a fault takes place can never be subsequently exe-
cuted (e.g., by overwriting the bytes with invalid opcodes). In addition, the byte
values at those offsets must be preserved so that they can be made available in
the event that an application wants to read the data again at a later time.

1 That said, as hardware support [22] is added for more fine-grained control of the
memory protections applied to individual pages, we expect the hypervisor component
of execute-only-memory based defenses to become obsolete.

Defeating Zombie Gadgets by Re-randomizing Code upon Disclosure 149

4.1 Defeating Code Reloading

The first of the two components of our defense aims to combat so called code
reloading attacks. The approach we take here is straightforward: ensure that
adversaries are faced with a different randomized copy of a module each time
the module is loaded, thereby preventing them from disclosing gadgets in one
copy of a module and executing them in a different identical copy. To do this,
we apply in-place randomization (using the techniques of Pappas et al. [26]) to
k distinct versions of the module and map the different versions into process
memory on load. As shown on the left side of Fig. 1, this can be done by hooking
the operating system functions that map executable images into memory and
redirecting the associated OpenFile call to any of the k randomized versions
of the binary that reside on disk. While this straightforward countermeasure by
itself eliminates a significant subset of the attacks presented in the work by Snow
et al. [27], additional special attention must be taken to avoid the pitfalls that
opened the door to attacks based on code inference via implicit disclosure.

4.2 Defeating Code Inference

The idea behind code inference attacks is that in-place code randomization [26]
applies code transformations at such a local level, that reading even one byte
where randomization has been applied is often enough information to infer how
other related nearby bytes (which may actually contain useful gadgets) have
been randomized. The problem this poses for defenses that leverage destructive
code reads is that simply destroying the code byte that was directly read does
nothing to prevent an attacker from leveraging gadgets that were discovered
through implicit code disclosure, enabled by explicit code disclosure [27].

The ability of attackers to mount code inference attacks stems from the
nature of the code transformations applied by binary-compatible fine-grained
randomization techniques [23,26], and specifically their narrow scope. Specifi-
cally, in-place randomization [26] applies the following four code transformations:
instruction substitution, which replaces existing instructions with functionally-
equivalent ones; basic block instruction reordering, which applies a functionally
equivalent instruction ordering within a basic block by maintaining any data
dependencies; register preservation code reordering, which reorders the push and
pop instructions of a function’s prologue and epilogue; and register reassignment,
which swaps register operands throughout overlapping live regions.

By disclosing a few instructions, an attacker is able to infer the state of
related instructions that are part of a ROP gadget. For example, an adversary
could use code inference to implicitly learn the precise structure of a gadget that
has been randomized using register preservation code reordering—which involves
reordering the push and pop instructions of a function’s prologue and epilogue.
By (destructively) reading instructions in the prologue that are affected by the
transformation, but which are not part of the actual gadget, an attacker can
accurately infer the structure of the gadget in the function epilogue. Concretely,
if the attacker knows that registers are saved onto the stack by a function, the

150 M. Morton et al.

order by which these registers are popped in the epilogue is the reverse order in
which they were pushed during the prologue, so reading the prologue allows the
adversary to infer the exact gadget contained in the function epilogue. Since the
actual disclosure by the adversary was aimed at the prologue, destructive read
enforcement will only protect those bytes, leaving the epilogue to be freely used
as a useful gadget for the adversary. Similar code inference attacks against the
rest of the transformations are discussed by Snow et al. [27], all of which are
mitigated by our defense.

Crafting a countermeasure that renders implicit code reads ineffective turned
out to be more difficult than it appeared on first blush. The reason is that an
important criterion of ours was to allow for runtime re-randomization without
having to deal with unsound and cumbersome pointer tracking. As noted in
Sect. 3, other approaches to runtime re-randomization (e.g., [6,24,33]) have also
turned to ASLR-style code relocation at runtime, but these works needed to
apply heuristics to deal with the problem of stale pointers. Re-randomization
schemes can introduce stale pointers into a program if they do not carefully
adjust every pointer that references a given code section when that section is
relocated at runtime. The tracking of all pointers is rife with challenges and it
remains an active area of research.

We choose not to introduce such complexity into our work. As an alternative
to moving around large chunks of code in process memory, we opted for a more
localized solution that guarantees that any—explicitly or implicitly—disclosed
bytes are re-randomized in response to disclosure, while simplifying as much as
possible the problem of ensuring correct program continuation. As shown on the
right side of Fig. 1, we detect when a code disclosure occurs (causing an EPT
fault, which is intercepted by our thin hypervisor) and replace only the part
of the code that was disclosed with a different randomized version. As in our
approach for combating code reloading attacks, we must maintain k different
randomized versions of the program code, so we can randomly select from k
different versions (which reside in kernel module memory) of the disclosed code
to swap in at runtime. The intricacies of ensuring program correctness when
swapping code ranges are discussed further in Sect. 5.

Critically, to deal with code inference attacks, we ensure that the part of
code that is randomized includes not only the destructively read bytes, but
also all other instructions that could potentially be inferred. The choice of using
in-place randomization was a driving factor in simplifying our solution: with
in-place randomization we can know the exact range of code that is vulnerable
to implicit code disclosure for any given explicit code read. Importantly, we do
not have to swap an entire randomized version of the program every time a
disclosure happens, as the vast majority of randomized locations in a program
cannot be inferred from a single disclosure. In other words, every explicit code
read carries with it the potential to infer the values of other code bytes without
actually reading them, but the range of code bytes that can be inferred is limited
and is easy to compute in advance. We refer to this range of addresses as the
scope of randomization, and return to a discussion thereof in Sect. 4.2.

Defeating Zombie Gadgets by Re-randomizing Code upon Disclosure 151

What is important to understand at this stage is that through offline analysis
we are able to compute the scope of randomization for each byte in a code
module. Thus, when we intercept an explicit code read at a given location, we
can look up the scope of randomization for that byte and swap the code in that
range of addresses for a different randomized version. This necessitates only
swapping out localized ranges of code, and in that way, we sidestep the issue
of using broadly scoped runtime re-randomization techniques that incur a large
overhead and rely on complex pointer tracking [6,10,33]. Moreover, in-place
randomization guarantees that different randomized versions of the same code
will always be the same size. Hence, these bytes can be interchanged without
having to worry about making room for a larger version of logically equivalent
code when the swap takes place.

Scope of In-place Randomization. The exact range of code that must be
swapped out for a given EPT fault is directly dependent on type of transforma-
tion that was applied by in-place randomization to the surrounding code bytes.
For the remaining discussion, we use the randomization technique of Pappas
et al. [26] (called ORP) as an example since it is representative of the state
of the art in this domain. The three possible scopes for a given transformation
include randomizing at the opcode, basic block, or function level. Thus, if byte
x in a module has to be randomized, the randomization may involve simply
rewriting the opcode containing x, or could involve altering an entire function’s
worth of code that includes x.

There are two ways to think about the scope of randomization for a given
byte in a code module. In one sense it can be considered the range of code bytes
that are potentially vulnerable to implicit disclosure should that code byte be
explicitly disclosed. In another sense this term represents the smallest range
of code bytes that can be swapped for a different randomized version while
still maintaining correct execution of the program. The three different scopes at
which ORP applies code randomization determine the range of bytes that need
to be swapped as a result of a given byte being directly read by an attacker.
Note that we never have to swap out more than an entire function’s worth of
bytes for a single EPT violation, since no ORP transformations are applied at a
broader scope than the function level. One caveat with using binary-compatible
randomization techniques like ORP is that it may not always be possible to
randomize all bytes in a given program. This is due to the fact that commodity
binaries can include data in their executable code sections and disassembly of
closed-source software can be imprecise. That said, the coverage of existing tools
is high enough [23] that this limitation does not significantly weaken the security
assurance that our defense offers. We discuss this further in Sect. 6.

Notice too that as long as we safely swap the correct amount of code (based
on the type of randomization applied), we can ensure correct program execution.
That said, the preceding discussion assumes that function in which we intend to
replace code does not already have an activation record on the stack. In other
words, if a function has been invoked but not yet returned at the time that a

152 M. Morton et al.

code disclosure targets that function, we cannot safely change the bytes of that
function without potentially causing a crash when program execution returns to
the function. For example, two different randomized versions of the same function
could potentially save and restore registers to the stack in a different order for
their respective function prologues/epilogues. If the registers are saved in one
order during the function prologue and the code of the function gets randomized
before that function invocation has returned, the newly randomized code may
restore registers in a different order than they were saved in the prologue. If we
allow this to happen, we could introduce failures into otherwise correct programs.

To ensure this does not happen, we take a conservative approach and do
not randomize any span of bytes that are referenced by a pointer on one of the
program stacks at the time of the disclosure. This simplification ensures that
no functions where execution has already started but not yet completed will be
randomized. The approach is conservative as it assumes that every word on each
of the program stacks is a pointer, but in practice, this is certainly not the case.
This conservative approach would seem to be a weakness, but it turns out not
to be the case for two reasons: first, the code and data separation techniques we
leverage from NEAR and Heisenbyte are highly effective in minimizing legitimate
code reads that occur during normal program execution (i.e., by moving data
that does not need to be executed out of the code section of a binary). Second,
code reads that cannot be eliminated by the “purification” steps of Werner et al.
[32] or Tang et al. [30] are not likely to trigger a stack lookup because they will
be referencing code bytes that cannot be randomized by our approach anyway.

To see why, it is important to keep in mind that the majority of reads directed
at code sections by a program are for reading data that has been embedded
in the code section, rather than reading actual machine instructions. But, as
ORP’s conservative offline disassembly should not identify this data as exe-
cutable instructions, ORP will not randomize this data and our defense will, by
extension, not be able to randomize data bytes in code sections. Our empirical
analysis (Sect. 6) confirms that is the case. Nonetheless, this restriction could be
relaxed by employing more accurate stack unwinding [17] or shadow stack tech-
niques (implemented either in software or hardware) [2,14] that do not assume
(as we do here for simplicity) that every word on the stack is a pointer.

5 Implementation

As a proof of concept, we chose to build this system for 32-bit x86 Windows,
with all implementation contained in a single loadable kernel module.2 The kernel
module is comprised of code for setting up the thin hypervisor and reacting to
EPT faults, as well as code for hooking operating system routines to ensure
that each load results in a randomized copy of the image being mapped into a
process’ memory. In what follows, we discuss some key decisions we made during
our design, as well as implementation challenges we encountered along the way.
2 Our thin hypervisor and kernel module are built upon the code provided by [32] as

part of their work on destructive reads.

Defeating Zombie Gadgets by Re-randomizing Code upon Disclosure 153

5.1 Adapting Offline Randomization Techniques for Online Defense

One challenge we faced arose due to the fact that all the existing in-place ran-
domization techniques we are aware of only work offline (e.g., ORP randomizes
code instructions in an executable file). Since swapping out code at runtime is
central to our defense, we needed a way to access different randomized versions
of a given range of program code when a destructive read occurs. Our solu-
tion was to create a single aggregate binary with k distinct randomized versions
of the .text section. Thus, when the binary is loaded, multiple different ran-
domized versions of the code for the module will be brought into memory and
their instructions can be swapped into the executing .text section whenever
necessary. This involves storing additional metadata specifying the ranges of
swappable code that have been randomized, which is used to determine whether
to swap out memory in response to a given EPT fault (i.e., yes if the fault is in
a range randomized by ORP, no otherwise).3 On a final note, we must ensure
that the extra .text sections maintained by our defense are only accessible to
the operating system, so their contents cannot be disclosed by exploits as part
of attacking a user space process. We achieve this by only mapping one of the k
code sections as accessible to user space when the binary is loaded into memory.

5.2 Handling Relocatable Code

Base address
used for all
relocations

Headers

Randomized Code k (in-use)

Randomized Code k-1

Randomized Code k-2

Data

Aggregate Relocation Table

…

…

Fig. 2. Load time adjustments

Another technical challenge is dealing with
the problem of relocatable binaries. In
Windows, for example, binaries are loaded
into process memory in such a way that it
not uncommon that hard-coded addresses
in the binary must be adjusted before
the module can execute properly. This
absolute addressing (in contrast to Linux-
style position-independent code) assumes
a specific load address in process memory
called the preferred offset. If the binary
is loaded at an address other than the
preferred offset, all hard-coded addresses
in the executable need to be adjusted
during the loading process. Our runtime
re-randomization approach may introduce
incorrect execution if we simply swap bytes
of a program out for the corresponding
bytes from a different randomized binary
whose hard-coded addresses were not cor-
rectly adjusted.
3 Failure of our system to swap a given range of code indicates that this range was

not randomized through ORP, and thus is not vulnerable to inference attacks. Note
that destructive read enforcement still protects these memory areas.

154 M. Morton et al.

To address this problem, we coerce the loader to adjust all the hard-coded
addresses in each of the k code sections as if they are all being loaded at the
same code section offset within the module (e.g., offset 0x1000 is typical in the
PE format). In Windows, for example, each relocatable binary contains a table
that specifies the hard coded addresses in the binary that need to be adjusted
if it is not loaded at its preferred offset. As shown in Fig. 2, our approach takes
executable file a and packages it with k randomized versions of a, so we also
must combine the relocation tables from each randomized file into one large
relocation table in the aggregate binary. In this way, we can safely start the
module off executing from a randomly chosen version, i, of the binary, but when
a destructive read is triggered, we then randomly select one of the other k − 1
variants and swap the bytes that are in the scope of the destructive read.

6 Evaluation

To test the runtime overhead of our defense, we ran the same selection of SPEC
benchmark programs that were used to evaluate the performance of destruc-
tive read enforcement [32]. Similar to Werner et al. [32], we compiled the CPU
SPEC2006 benchmark programs with the Microsoft Visual Studio 2013 C/C++
compiler using the default compiler and linker options listed in the benchmark
suite. We used the unoptimized “base” configuration.

The negligible performance penalty incurred by our solution on top of
destructive read enforcement (shown in Table 1) can be attributed to the fact
that for these benchmarks, all observed EPT faults were directed at data embed-
ded in code sections, rather than actual code instructions that could be ran-
domized. As such, a hash table lookup was enough to decide that these ranges
could not be swapped, so no further action was necessary. Of course, as soon
as an attacker starts disclosing actual machine instructions in the code, runtime
overhead would likely increase due to the need to repeatedly unwind the pro-
gram stacks and copy appropriate ranges of bytes surrounding the EPT faulting
addresses.

As for memory overhead, our solution involves mapping k extra copies of the
.text section into memory for each protected code module. To help understand
the tradeoff between security assurance and memory overhead, we consider that
the probability of success for a ROP exploit comprised of n gadgets that attempts
to randomly guess which gadgets exist at given locations would be 1/kn. Thus,
choosing a k value even as low as two or three can still provide strong assurance
against ROP chains working as expected by the adversary. It may seem that
storing the k additional .text sections in memory would incur a large memory
overhead when considering that the .text sections of the benchmark programs
we tested range from 65 KB to 2.4 MB. This is not the case, however, as in-place
randomization only alters a small fraction of bytes in the code section (about
3% on average), and thus only these transformed bytes would need to be stored
in memory to be swapped in as needed.

Defeating Zombie Gadgets by Re-randomizing Code upon Disclosure 155

Table 1. End-to-end runtime overhead.

SPEC CPU benchmark Destructive reads Re-randomization Total

400.perlbench 3.04% 0.1% 3.14%

401.bzip2 1.21% 0.03% 1.24%

403.gcc 19.88% 0.2% 20.08%

429.mcf 4.04% 0.3% 4.34%

445.gobmk 0.99% 0% 0.99%

456.hmmer 1.81% 0% 1.81%

458.sjeng 1.10% 0.09% 1.19%

464.h264ref 7.63% 0% 7.63%

417.omnetpp 2.32% 0.13% 2.45%

473.astar 2.13% 0.8% 2.83%

483.xalancbmk 5.51% 0.25% 5.76%

Average 4.51% 0.17% 4.68%

6.1 Security and Correctness

To show that we can reliably thwart code inference attacks without introducing
incorrectness into programs, we ran a runtime stress test, forcing all possible
randomizable code ranges to be swapped. This allows us to confirm that we
can correctly swap in and out all parts of the program that are marked as
randomizable. Our results confirm that in all cases swapping these code ranges
worked as expected and did not alter the correctness of the code compared to the
original binary. The average time to perform each swap incurred a low runtime
overhead, at only 0.105 ms.

Moreover, to demonstrate that our solution thwarts code reloading attacks,
we took the same approach outlined by Snow et al. [27] for generating exploit
payloads from gadgets in commonly reloaded DLLs. We thoroughly inspected
one of these DLLs (vgx.dll) to confirm that the constructed exploit payloads
are broken by in-place randomization of the respective code modules, and con-
sequently that the resulting payloads could not be reliably used in an attack.
Indeed, approximately 70% (9,622 out of 13,729) of the gadgets in the module
identified by the automated gadget finding tool ROPEME [1] were swappable.
The remaining gadget discrepancy mainly arises from different parameter set-
tings used by ROPEME and the build-in gadget discovery module in ORP (e.g.,
the number of look-ahead bytes or gadget depth during the gadget generation
process).

With k being a finite number of different program variations, the reader
may be curious as to whether our system would be vulnerable to some type
of fingerprinting attack that seeks to infer the version of code that has been
swapped into user-space process memory. This would not be feasible, however,
for a few reasons. First, since every randomizable gadget in a program is a degree

156 M. Morton et al.

of freedom for in-place randomization, an attacker would be forced to disclose
all randomizable sections in order to uniquely identify one of the k versions. The
footprint of such a brute-force probing attack would be so substantial that it
would be trivially detectable and would constitute on its own a clear trigger for
detection. Note that k can easily be tuned to make such an attack practically
unrealistic. Furthermore, k can be increased to a much higher number than
what is allowable by the available memory on the system. Indeed, rotating k
randomized in-memory instances is only one option. The system could easily
generate a higher number of new randomized instances in the background once
the pool of ready-to-use instances in the kernel module is running low. We leave
the implementation of this additional functionality for future work.

6.2 Function Randomization Variability and Coverage

0.0

0.2

0.4

0.6

0.8

1.0

Number of possible randomized instances

C
um

ul
at

iv
e

fr
ac

tio
n

of
 fu

nc
tio

ns

1 10 102 103 104 105 106

Fig. 3. Function randomization variability.

The in-place code randomization of
Pappas et al. [26] uses a combi-
nation of four different transfor-
mation techniques of different spa-
tial granularity (instruction, basic
block, and whole function) to gen-
erate alternative representations of
a program’s code. For a given code
disclosure, multiple transformations
may have been applied to the
code area surrounding the address
which caused an EPT fault. We use
the coarsest randomization scope
(i.e., the function that contains the disclosed code bytes) as the unit of
re-randomization because function scope randomizations tend to offer the highest
level of variability for a given range of code. That said, when we swap the bytes
of a given function for a randomized copy, the contained bytes may have been
altered by any combination of the four transformation techniques, so our solution
still fully benefits from all four transformation tactics. It is crucial to evaluate
whether re-randomization at the function level allows for enough randomization
variability to prevent attackers from guessing or inferring the structure of the
code to be swapped in. Specifically, according to the definition by Pappas et al.
[26], we define function randomization variability to be the number of possible
randomized instances that can be generated for a given function.

To gain a better understanding of the resulting randomization variability,
we performed an empirical evaluation based on more than 1.5 million functions
from 2,566 PE files from both Windows 7 and Windows 8.1. Figure 3 shows the
number of possible randomized instances of a function (including its original
form), as a cumulative fraction of all 1.5 M functions contained in the analyzed
PE files. Notice that 10% of the functions have a variability value of one (i.e., just
their original instance), meaning that in-place randomization cannot generate
any variants for them. The next 4% have only two possible instances, and then

Defeating Zombie Gadgets by Re-randomizing Code upon Disclosure 157

the variability for the rest of the functions increases exponentially. For ease of
exposition, we cap the calculation of all possible variants to 100,000. As explained
in Sect. 6, note that just two versions of a function could be enough to foil an
attacker, since randomly choosing which version of the code to swap at runtime
means that the success rate for the attacker diminishes rapidly.

In general, these 10% of functions cannot be randomized due to their tiny
size, often a consequence of compiler intricacies such as basic block sharing,
wrapper functions, and other performance optimizations. In fact, our data on
Windows binaries shows that about 15% of functions are at most 10 bytes in
size, whereas only half of them are larger than 50 bytes. Moreover, 40% of func-
tions consist of a single basic block, while 62% have five or fewer basic blocks.
Our findings confirm the observations of Pappas et al. [26] in that the 10% of
non-randomizable functions consists mostly of such tiny functions. Overall, we
found that roughly 80% of gadgets can be probabilistically broken. Although the
possibility remains that a functional payload might still be constructed based
solely on non-randomizable gadgets, Pappas et al. [26] showed that this was not
possible using state-of-the-art ROP compilers—even without considering recent
work by Koo et al. [23] that increases gadget randomization coverage even fur-
ther. Moreover, additional improvements to in-place randomization techniques
could be easily adopted by our system, as this is an orthogonal research topic.

7 Limitations

One limitation of our approach is that it leaves open the possibility of code
bytes being disclosed from functions currently on the call stack without those
disclosed bytes being re-randomized immediately. In this restricted scenario, the
JIT-ROP strategy of following code pointers to disclose code pages en masse
(with hopes of leaking enough data to be able to compile a ROP payload on
demand) can no longer be followed. Indeed, a completely different approach
must be taken, involving somehow knowing which functions have been called but
not yet returned at the time the exploit is underway—and then only disclosing
code in those functions. While such an attack may be conceivable in theory,
our expectation is that non-trivial enhancements to the principal of just-in-time
code reuse would need to be made before such an attack vector would be feasible.
Even if such attacks were possible, the fact that destructive reads targeted at
randomizable ranges in a process are rare in normal programs4 means it would
be highly suspicious if one of these reads were to a function that has an activation
record on the stack. Since an attacker would need to leverage this rare event many
times during said hypothetical attack (i.e., to be able to disclose the requisite
amount of code in order to build a ROP payload), the repeated observance of this
phenomena could signal that an attack is underway and the offending process
would simply be terminated.
4 In our evaluation with the benchmark programs there was not a single instance were

there was an EPT fault in a range of code that was marked by ORP as randomizable
code.

158 M. Morton et al.

Finally, among the attacks against destructive code reads presented by Snow
et al. [27], we currently do not deal with code cloning via JIT code generation,
as this would require substantial changes into the JIT engine of each protected
application. We do not consider this as a significant issue since modern browsers
have already adopted constant blinding techniques [3,25] to prevent the gener-
ation of malicious code or ROP gadgets, and thus thwart this type of attack.

8 Conclusion

Over the past year, defenses that leverage the concept of destructive reads (e.g.,
[30,32]) have been shown to offer a readily deployable mitigation against the
threat of just-in-time code reuse attacks. The initial attraction of the promise of
destructive reads as a defensive measure stems from the fact that it offers a solu-
tion that is compatible with closed-source applications, has low overhead, and has
well-defined security properties—three factors that Szekeres et al. [29] argue pro-
mote wide-spread adoption of security technologies. Unfortunately, very recent
attacks by Snow et al. [27] shed light on inherent weaknesses in adversarial
assumptions that did not account for the possibility of code re-loading and code
inference techniques, which can be used to undermine the security guarantees
provided by destructive reads.

To address these weaknesses, we provide a solution that strengthens the
applicability of destructive reads by eliminating the threats posed by code reload-
ing and code inference attacks. Our defense includes two orthogonal components:
one for mitigating code reloading and the other for preventing code inference.
In particular, we demonstrate a novel solution for loading randomized copies
of an executable any time the image is loaded, thereby preventing an entire
class of code reloading attacks. In addition, we take advantage of the localized
approach for code diversification used for in-place randomization [19,26,31] to
enable efficient and robust runtime re-randomization of code that has been dis-
closed implicitly through code inference. Our solution is practical, and offers the
first protection (we are aware of) against the ingenious use of zombie gadgets as
disclosed by Snow et al. [27].

Acknowledgments. We are grateful to the anonymous reviewers and our shepherd,
Stefan Brunthaler, for their insightful comments. This work was supported in part
by the Office of Naval Research (ONR) under award no. N00014-15-1-2378, and the
National Science Foundation (NSF) awards no. 1421703 and 1617902. Any opinions,
findings, and conclusions or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the view of the US government, ONR or NSF.

References

1. ROPEME - ROP exploit made easy (2016). https://github.com/packz/ropeme
2. Control-flow enforcement technology preview (2016). https://software.intel.com/

sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.
pdf

https://github.com/packz/ropeme
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

Defeating Zombie Gadgets by Re-randomizing Code upon Disclosure 159

3. Athanasakis, M., Athanasopoulos, E., Polychronakis, M., Portokalidis, G.,
Ioannidis, S.: The devil is in the constants: bypassing defenses in browser JIT
engines. In: Symposium on Network and Distributed System Security (2015)

4. Backes, M., Nürnberger, S.: Oxymoron: making fine-grained memory randomiza-
tion practical by allowing code sharing. In: USENIX Security Symposium, pp.
433–447 (2014)

5. Backes, M., Holz, T., Kollenda, B., Koppe, P., Nürnberger, S., Pewny, J.: You can
run but you can’t read: preventing disclosure exploits in executable code. In: ACM
Conference on Computer and Communications Security, pp. 1342–1353 (2014)

6. Bigelow, D., Hobson, T., Rudd, R., Streilein, W., Okhravi, H.: Timely rerandom-
ization for mitigating memory disclosures. In: ACM Conference on Computer and
Communications Security, pp. 268–279. ACM (2015)

7. Braden, K., Crane, S., Davi, L., Franz, M., Larsen, P., Liebchen, C., Sadeghi,
A.-R.: Leakage-resilient layout randomization for mobile devices. In: Symposium
on Network and Distributed System Security (2016)

8. Brookes, S., Denz, R., Osterloh, M., Taylor, S.: Exoshim: preventing memory disclo-
sure using execute-only kernel code. In: International Conference on Cyber Warfare
and Security (2016, to appear)

9. Chen, P., Xu, J., Wang, J., Liu, P.: Instantly obsoleting the address-code associ-
ations: a new principle for defending advanced code reuse attack. arXiv preprint
arXiv:1507.02786 (2015)

10. Chen, Y., Wang, Z., Whalley, D., Lu, L.: Remix: on-demand live randomization.
In: Proceedings of the Sixth ACM Conference on Data and Application Security
and Privacy, pp. 50–61. ACM (2016)

11. Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Thwarting cache
side-channel attacks through dynamic software diversity. In: Symposium on Net-
work and Distributed System Security (2015)

12. Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi, A.-R.,
Brunthaler, S., Franz, M.: Readactor: practical code randomization resilient to
memory disclosure. In: IEEE Symposium on Security and Privacy, pp. 763–780
(2015)

13. Crane, S.J., Volckaert, S., Schuster, F., Liebchen, C., Larsen, P., Davi, L., Sadeghi,
A.-R., Holz, T., De Sutter, B., Franz, M.: It’s a trap: table randomization and
protection against function-reuse attacks. In: ACM Conference on Computer and
Communications Security, pp. 243–255 (2015)

14. Dang, T.H., Maniatis, P., Wagner, D.: The performance cost of shadow stacks
and stack canaries. In: ACM Asia Conference on Computer and Communications
Security, pp. 555–566 (2015)

15. Davi, L., Liebchen, C., Sadeghi, A.-R., Snow, K.Z., Monrose, F.: Isomeron: code
randomization resilient to (just-in-time) return-oriented programming. In: Sympo-
sium on Network and Distributed System Security (2015)

16. Evans, D., Nguyen-Tuong, A., Knight, J.: Moving Target Defense: Creating Asym-
metric Uncertainty for Cyber Threats. Springer, New York (2011)

17. Fu, Y., Rhee, J., Lin, Z., Li, Z., Zhang, H., Jiang, G.: Detecting stack layout
corruptions with robust stack unwinding. In: Monrose, F., Dacier, M., Blanc, G.,
Garcia-Alfaro, J. (eds.) RAID 2016. LNCS, vol. 9854, pp. 71–94. Springer, Cham
(2016). doi:10.1007/978-3-319-45719-2 4

18. Gawlik, R., Kollenda, B., Koppe, P., Garmany, B., Holz, T.: Enabling client-side
crash-resistance to overcome diversification and information hiding. In: Symposium
on Network and Distributed System Security (2016)

http://arxiv.org/abs/1507.02786
http://dx.doi.org/10.1007/978-3-319-45719-2_4

160 M. Morton et al.

19. Gionta, J., Enck, W., Ning, P.: HideM: protecting the contents of userspace mem-
ory in the face of disclosure vulnerabilities. In: ACM Conference on Data and
Application Security and Privacy, pp. 325–336 (2015)

20. Giuffrida, C., Kuijsten, A., Tanenbaum, A.S.: Enhanced operating system secu-
rity through efficient and fine-grained address space randomization. In: USENIX
Security Symposium, pp. 475–490 (2012). https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/giuffrida

21. Goues, C.L., Nguyen-Tuong, A., Chen, H., Davidson, J.W., Forrest, S., Hiser, J.D.,
Knight, J.C., Van Gundy, M.: Moving target defenses in the helix self-regenerative
architecture. In: Jajodia, S., Ghosh, A., Subrahmanian, V., Swarup, V., Wang,
C., Wang, X. (eds.) Moving Target Defense II. Advances in Information Security,
vol. 100. Springer, New York (2013). doi:10.1007/978-1-4614-5416-8 7. ISBN:978-
1-4614-5416-8. http://dx.doi.org/10.1007/978-1-4614-5416-8 7

22. Hansen, D.: [RFC] x86: Memory protection keys (2015). https://lwn.net/Articles/
643617/

23. Koo, H., Polychronakis, M.: Juggling the gadgets: binary-level code randomiza-
tion using instruction displacement. In: ACM Asia Conference on Computer and
Communications Security, May 2016

24. Lu, K., Nürnberger, S., Backes, M., Lee, W.: How to make aslr win the clone wars:
runtime re-randomization. In: Symposium on Network and Distributed System
Security (2016)

25. Maisuradze, G., Backes, M., Rossow, C.: What cannot be read, cannot be lever-
aged? revisiting assumptions of JIT-ROP defenses. In: USENIX Security Sympo-
sium (2016)

26. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the gadgets: hindering
return-oriented programming using in-place code randomization. In: IEEE Sym-
posium on Security and Privacy, pp. 601–615 (2012)

27. Snow, K., Rogowski, R., Werner, J., Koo, H., Monrose, F., Polychronakis, M.:
Return to the zombie gadgets: undermining destructive code reads via code infer-
ence attacks. In: IEEE Symposium on Security and Privacy (2016)

28. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.-R.:
Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: IEEE Symposium on Security and Privacy, pp. 574–588 (2013)

29. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: IEEE
Symposium on Security and Privacy, pp. 48–62 (2013)

30. Tang, A., Sethumadhavan, S., Stolfo, S.: Heisenbyte: thwarting memory disclo-
sure attacks using destructive code reads. In: ACM Conference on Computer and
Communications Security, pp. 256–267 (2015)

31. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: ACM Conference on Computer
and Communications Security, pp. 157–168 (2012)

32. Werner, J., Baltas, G., Dallara, R., Otterness, N., Snow, K.Z., Monrose, F.,
Polychronakis, M.: No-execute-after-read: preventing code disclosure in commodity
software. In: ACM Asia Conference on Computer and Communications Security
(2016)

33. Williams-King, D., Gobieski, G., Williams-King, K., Blake, J.P., Yuan, X., Colp,
P., Zheng, M., Kemerlis, V.P., Yang, J., Aiello, W.: Shuffler: fast and deployable
continuous code re-randomization. In: USENIX Symposium on Operating Systems
Design and Implementation, pp. 367–382 (2016)

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/giuffrida
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/giuffrida
http://dx.doi.org/10.1007/978-1-4614-5416-8_7
http://dx.doi.org/10.1007/978-1-4614-5416-8_7
https://lwn.net/Articles/643617/
https://lwn.net/Articles/643617/

KASLR is Dead: Long Live KASLR

Daniel Gruss(B), Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard

Graz University of Technology, Graz, Austria
daniel.gruss@iaik.tugraz.at

Abstract. Modern operating system kernels employ address space lay-
out randomization (ASLR) to prevent control-flow hijacking attacks and
code-injection attacks. While kernel security relies fundamentally on pre-
venting access to address information, recent attacks have shown that the
hardware directly leaks this information. Strictly splitting kernel space
and user space has recently been proposed as a theoretical concept to
close these side channels. However, this is not trivially possible due to
architectural restrictions of the x86 platform.

In this paper we present KAISER, a system that overcomes limitations
of x86 and provides practical kernel address isolation. We implemented
our proof-of-concept on top of the Linux kernel, closing all hardware
side channels on kernel address information. KAISER enforces a strict
kernel and user space isolation such that the hardware does not hold
any information about kernel addresses while running in user mode. We
show that KAISER protects against double page fault attacks, prefetch
side-channel attacks, and TSX-based side-channel attacks. Finally, we
demonstrate that KAISER has a runtime overhead of only 0.28%.

1 Introduction

Like user programs, kernel code contains software bugs which can be exploited to
undermine the system security. Modern operating systems use hardware features
to make the exploitation of kernel bugs more difficult. These protection mech-
anisms include making code non-writable and data non-executable. Moreover,
accesses from kernel space to user space require additional indirection and can-
not be performed through user space pointers directly anymore (SMAP/SMEP).
However, kernel bugs can be exploited within the kernel boundaries. To make
these attacks harder, address space layout randomization (ASLR) can be used
to make some kernel addresses or even all kernel addresses unpredictable for
an attacker. Consequently, powerful attacks relying on the knowledge of virtual
addresses, such as return-oriented-programming (ROP) attacks, become infeasi-
ble [14,17,19]. It is crucial for kernel ASLR to withhold any address information
from user space programs. In order to eliminate address information leakage,

The stamp on the top of this paper refers to an approval process conducted by the
ESSoS artifact evaluation committee chaired by Karim Ali and Omer Tripp.

c© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 161–176, 2017.
DOI: 10.1007/978-3-319-62105-0 11

162 D. Gruss et al.

the virtual-to-physical address information has been made unavailable to user
programs [13].

Knowledge of virtual or physical address information can be exploited
to bypass KASLR [7,22], bypass SMEP and SMAP [11], perform side-
channel attacks [6,15,18], Rowhammer attacks [5,12,20], and to attack system
memory encryption [2]. To prevent attacks, system interfaces leaking the virtual-
to-physical mapping have recently been fixed [13]. However, hardware side chan-
nels might not easily be fixed without changing the hardware. Specifically side-
channel attacks targeting the page translation caches provide information about
virtual and physical addresses to the user space. Hund et al. [7] described an
attack exploiting double page faults, Gruss et al. [6] described an attack exploit-
ing software prefetch instructions,1 and Jang et al. [10] described an attack
exploiting Intel TSX (hardware transactional memory). These attacks show that
current KASLR implementations have fatal flaws, subsequently KASLR has been
proclaimed dead by many researchers [3,6,10].

Gruss et al. [6] and Jang et al. [10] proposed to unmap the kernel address
space in the user space and vice versa. However, this is non-trivial on modern
x86 hardware. First, modifying page table structures on context switches is not
possible due to the highly parallelized nature of today’s multi-core systems, e.g.,
simply unmapping the kernel would inhibit parallel execution of multiple sys-
tem calls. Second, x86 requires several locations to be valid for both user space
and kernel space during context switches, which are hard to identify in large
operating systems. Third, switching or modifying address spaces incurs transla-
tion lookaside buffer (TLB) flushes [8]. Jang et al. [10] suspected that switching
address spaces may have a severe performance impact, making it impractical.

In this paper, we present KAISER, a highly-efficient practical system for ker-
nel address isolation, implemented on top of a regular Ubuntu Linux. KAISER
uses a shadow address space paging structure to separate kernel space and user
space. The lower half of the shadow address space is synchronized between both
paging structures. Thus, multiple threads work in parallel on the two address
spaces if they are in user space or kernel space respectively. KAISER eliminates
the usage of global bits in order to avoid explicit TLB flushes upon context
switches. Furthermore, it exploits optimizations in current hardware that allow
switching address spaces without performing a full TLB flush. Hence, the per-
formance impact of KAISER is only 0.28%.

KAISER reduces the number of overlapping pages between user and kernel
address space to the absolute minimum required to run on modern x86 systems.
We evaluate all microarchitectural side-channel attacks on kernel address infor-
mation that are applicable to recent Intel architectures. We show that KAISER
successfully eliminates the leakage in all cases.

Contributions. The contributions of this work are:

1 The list of authors for “Prefetch Side-Channel Attacks” by Gruss et al. [6] and this
paper overlaps.

KASLR is Dead: Long Live KASLR 163

1. KAISER is the first practical system for kernel address isolation. It introduces
shadow address spaces to utilize modern CPU features efficiently avoiding
frequent TLB flushes. We show how all challenges to make kernel address
isolation practical can be overcome.

2. Our open-source proof-of-concept implementation in the Linux kernel shows
that KAISER can easily be deployed on commodity systems, i.e., a full-
fledged Ubuntu Linux system.2

3. After KASLR has already been considered dead by many researchers,
KAISER fully restores the former efficacy of KASLR with a runtime overhead
of only 0.28%.

Outline. The remainder of the paper is organized as follows. In Sect. 2, we
provide background on kernel protection mechanisms and side-channel attacks.
In Sect. 3, we describe the design and implementation of KAISER. In Sect. 4,
we evaluate the efficacy of KAISER and its performance impact. In Sect. 5, we
discuss future work. We conclude in Sect. 6.

2 Background

2.1 Virtual Address Space

Virtual addressing is the foundation of memory isolation between different
processes as well as processes and the kernel. Virtual addresses are translated
to physical addresses through a multi-level translation table stored in physi-
cal memory. A CPU register holds the physical address of the active top-level
translation table. Upon a context switch, the register is updated to the physi-
cal address of the top-level translation table of the next process. Consequently,
processes cannot access all physical memory but only the memory that is mapped
to virtual addresses. Furthermore, the translation tables entries define proper-
ties of the corresponding virtual memory region, e.g., read-only, user-accessible,
non-executable.

On modern Intel x86-64 processors, the top-level translation table is the page
map level 4 (PML4). Its physical address is stored in the CR3 register of the CPU.
The PML4 divides the 48-bit virtual address space into 512 PML4 entries, each
covering a memory region of 512 GB. Each subsequent level sub-divides one block
of the upper layer into 512 smaller regions until 4 kB pages are mapped using
page table (PTs) on the last level. The CPU has multiple levels of caches for
address translation table entries, the so-called TLBs. They speed up address
translation and privilege checks. The kernel address space is typically a defined
region in the virtual address space, e.g., the upper half of the address space.

Similar translation tables exist on modern ARM (Cortex-A) processors too,
with small differences in size and property bits. One significant difference to

2 We are preparing a submission of our patches into the Linux kernel upstream. The
source code and the Debian package compatible with Ubuntu 16.10 can be found at
https://github.com/IAIK/KAISER.

https://github.com/IAIK/KAISER

164 D. Gruss et al.

x86-64 is that ARM CPUs have two registers to store physical addresses of
translation tables (TTBR0 and TTBR1). Typically, one is used to map the user
address space (lower half) whereas the other is used to map the kernel address
space (upper half). Gruss et al. [6] speculated that this might be one of the
reasons why the attack does not work on ARM processors. As x86-64 has only
one translation-table register (CR3), it is used for both user and kernel address
space. Consequently, to perform privilege checks upon a memory access, the
actual page translation tables have to be checked.

Control-Flow Attacks. Modern Intel processors protect against code injec-
tion attacks through non-executable bits. Furthermore, code execution and data
accesses on user space memory are prevented in kernel mode by the CPU fea-
tures supervisor-mode access prevention (SMAP) and supervisor-mode execution
prevention (SMEP). However, it is still possible to exploit bugs by redirecting
the code execution to existing code. Solar Designer [23] showed that a non-
executable stack in user programs can be circumvented by jumping to existing
functions within libc. Kemerlis et al. [11] presented the ret2dir attack which
redirects a hijacked control flow in the kernel to arbitrary locations using the
kernel physical direct mapping. Return-oriented programming (ROP) [21] is a
generalization of such attacks. In ROP attacks, multiple code fragments—so-
called gadgets—are chained together to build an exploit. Gadgets are not entire
functions, but typically consist of one or more useful instructions followed by a
return instruction.

To mitigate control-flow-hijacking attacks, modern operating systems ran-
domize the virtual address space. Address space layout randomization (ASLR)
ensures that every process has a new randomized virtual address space, prevent-
ing an attacker from knowing or guessing addresses. Similarly, the kernel has
a randomized virtual address space every time it is booted. As Kernel ASLR
makes addresses unpredictable, it protects against ROP attacks.

2.2 CPU Caches

Caches are small memory buffers inside the CPU, storing frequently used data.
Modern Intel CPUs have multiple levels of set-associative caches. The last-level
cache (LLC) is shared among all cores. Executing code or accessing data on one
core has immediate consequences for all other cores.

Address translation tables are stored in physical memory. They are cached
in regular data caches [8] but also in special caches such as the translation
lookaside buffers. Figure 1 illustrates how the address translation caches are used
for address resolution.

2.3 Microarchitectural Attacks on Kernel Address Information

Until recently, Linux provided information on virtual and physical addresses
to any unprivileged user program through operating system interfaces. As this
information facilitates mounting microarchitectural attacks, the interfaces are

KASLR is Dead: Long Live KASLR 165

Core 0 TLB Paging
Structure Cache

Core 1 TLB Paging
Structure Cache

LLC DRAM

Fig. 1. Address translation caches are used to speed up address translation table
lookups.

now restricted [13]. However, due to the way the processor works, side channels
through address translation caches [4,6,7,10] and the branch-target buffer [3]
leak parts of this information.

Address Translation Caches. Hund et al. [7] described a double page fault
attack, where an unprivileged attacker tries to access an inaccessible kernel mem-
ory location, triggering a page fault. After the page fault interrupt is handled
by the operating system, the control is handed back to an error handler in the
user program. The attacker measures the execution time of the page fault inter-
rupt. If the memory location is valid, regardless of whether it is accessible or not,
address translation table entries are copied into the corresponding address trans-
lation caches. The attacker then tries to access the same inaccessible memory
location again. If the memory location is valid, the address translation is already
cached and the page fault interrupt will take less time. Thus, the attacker learns
whether a memory location is valid or not, even if it is not accessible from the
user space.

Jang et al. [10] exploited the same effect in combination with Intel TSX. Intel
TSX is an extension to the x86 instruction set providing a hardware transactional
memory implementation via so-called TSX transactions. If a page fault occurs
within a TSX transaction, the transaction is aborted without any operating
system interaction. Thus, the entire page fault handling of the operation system
is skipped, and the timing differences are significantly less noisy. In this attack,
the attacker again learns whether a memory location is valid, even if it is not
accessible from the user space.

Gruss et al. [6] exploited software prefetch instructions to trigger address
translation. The execution time of the prefetch instruction depends on which
address translation caches hold the right translation entries. Thus, in addition
to learning whether an inaccessible address is valid or not, an attacker learns its
corresponding page size as well. Furthermore, software prefetches can succeed
even on inaccessible memory. Linux has a kernel physical direct map, providing
direct access to all physical memory. If the attacker prefetches an inaccessible
address in this kernel physical direct map corresponding to a user-accessible
address, it will also be cached when accessed through the user address. Thus,
the attacker can retrieve the exact physical address for any virtual address.

All three attacks have in common that they exploit that the kernel address
space is mapped in user space as well, and that accesses are only prevented

166 D. Gruss et al.

through the permission bits in the address translation tables. Thus, they use
the same entries in the paging structure caches. On ARM architectures, the user
and kernel addresses are already distinguished based on registers, and thus no
cache access and no timing difference occurs. Gruss et al. [6] and Jang et al. [10]
proposed to unmap the entire kernel space to emulate the same behavior as on
the ARM architecture.

Branch-Target Buffer. Evtyushkin et al. [3] presented an attack on the
branch-target buffer (BTB) to recover the lowest 30 bits of a randomized kernel
address. The BTB is indexed based on the lowest 30 bits of the virtual address.
Similar as in a regular cache attack, the adversary occupies parts of the BTB by
executing a sequence of branch instructions. If the kernel uses virtual addresses
with the same value for the lowest 30 bits as the attacker, the sequence of branch
instructions requires more time. Through targeted execution of system calls, the
adversary can obtain information about virtual addresses of code that is executed
during a system call. Consequently, the BTB attack defeats KASLR.

We consider the BTB attack out of scope for our countermeasure (KAISER),
which we present in the next section, for two reasons. First, Evtyushkin et al. [3]
proposed to use virtual address bits >30 to randomize memory locations for
KASLR as a zero-overhead countermeasure against their BTB attack. Indeed,
an adaption of the corresponding range definitions in modern operating system
kernels would effectively mitigate the attack. Second, the BTB attack relies on
a profound knowledge of the behavior of the BTB. The BTB attack currently
does not work on recent architectures like Intel Skylake, as the BTB has not
been reverse-engineered yet. Consequently, we also were not able to reproduce
the attack in our test environment (Intel Skylake i7-6700K).

3 Design and Implementation of KAISER

In this section, we describe the design and implementation of KAISER3. We
discuss the challenges of implementing kernel address isolation. We show how
shadow address space paging structures can be used to separate kernel space
and user space. We describe how modern CPU features and optimizations can
be used to reduce the amount of regular TLB flushes to a minimum. Finally,
to show the feasibility of the approach, we implemented KAISER on top of the
latest Ubuntu Linux kernel.

3.1 Challenges of Kernel Address Isolation

As recommended by Intel [8], today’s operating systems map the kernel into the
address space of every user process. Kernel pages are protected from unwanted
access by user space applications using different access permissions, set in the
page table entries (PTE). Thus, the address space is shared between the kernel
and the user and only the privilege level is escalated to execute system calls and
interrupt routines.
3 Kernel Address Isolation to have Side channels Efficiently Removed.

KASLR is Dead: Long Live KASLR 167

User memory Kernel memory

0 −1
context switch

(a) Regular OS

User memory not mapped

0 −1
context switch

not mapped Kernel memory

0 −1

switch address space

(b) Stronger kernel isolation

User memory not mapped

0 −1
context switch

SMAP + SMEP Kernel memory

0 −1

switch address space

(c) KAISER

Fig. 2. (a) The kernel is mapped into the address space of every user process. (b)
Theoretical concept of stronger kernel isolation. It splits the address spaces and only
interrupt handling code is mapped in both address spaces. (c) For compatibility with
x86 Linux, KAISER relies on SMAP to prevent invalid user memory references and
SMEP to prevent execution of user code in kernel mode.

The idea of Stronger Kernel Isolation proposed by Gruss et al. [6] (cf. Fig. 2)
is to unmap kernel pages while the user process is in user space and switch to
a separated kernel address space when entering the kernel. Consequently, user
pages are not mapped in kernel space and only a minimal numbers of pages
is mapped both in user space and kernel space. While this would prevent all
microarchitectural attacks on kernel address space information on recent sys-
tems [6,7,10], it is not possible to implement Stronger Kernel Isolation without
rewriting large parts of today’s kernels. There is no previous work investigating
the requirements real hardware poses to implement kernel address isolation in
practice. We identified the following three challenges that make kernel address
isolation non-trivial to implement.

Challenge 1. Threads cannot use the same page table structures in user space
and kernel space without a huge synchronization overhead. The reason for this
is the highly parallelized nature of today’s systems. If a thread modifies page
table structures upon a context switch, it influences all concurrent threads of the
same process. Furthermore, the mapping changes for all threads, even if they are
currently in the user space.

Challenge 2. Current x86 processors require several locations to be valid for
both user space and kernel space during context switches. These locations are
hard to identify in large operating system kernels due to implicit assumptions
about the omnipresence of the entire kernel address space. Furthermore, seg-
mented memory accesses like core-local storage are required during context
switches. Thus, it must be possible to locate and restore the segmented areas
without re-mapping the unmapped parts of the kernel space. Especially, unmap-
ping the user space in the Linux kernel space, as proposed by Gruss et al. [6],
would require rewriting large parts of the Linux kernel.

168 D. Gruss et al.

Challenge 3. Switching the address space incurs an implicit full TLB flush and
modifying the address space causes a partial TLB flush [8]. As current operating
systems are highly optimized to reduce the amount of implicit TLB flushes,
a countermeasure would need to explicitly flush the TLB upon every context
switch. Jang et al. [10] suspected that this may have a severe performance impact.

3.2 Practical Kernel Address Isolation

In this section we show how KAISER overcomes these challenges and thus fully
revives KASLR.

Shadow Address Spaces. To solve challenge 1, we introduce the idea of shadow
address spaces to provide kernel address isolation. Figure 3 illustrates the princi-
ple of the shadow address space technique. Every process has two address spaces.
One address space which has the user space mapped but not the kernel (i.e., the
shadow address space), and a second address space which has the kernel mapped
but the user space protected with SMAP and SMEP.

The switch between the user address space and the kernel address space now
requires updating the CR3 register with the value of the corresponding PML4.
Upon a context switch, the CR3 register initially remains at the old value, map-
ping the user address space. At this point KAISER can only perform a very
limited amount of computations, operating on a minimal set of registers and
accessing only parts of the kernel that are mapped both in kernel and user
space. As interrupts can be triggered from both user and kernel space, interrupt
sources can be both environments and it is not generally possible to determine
the interrupt source within the limited amount of computations we can perform
at this point. Consequently, switching the CR3 register must be a short static
computation oblivious to the interrupt source.

With shadow address spaces we provide a solution to this problem. Shadow
address spaces are required to have a globally fixed power-of-two offset between
the kernel PML4 and the shadow PML4. This allows switching to the kernel
PML4 or the shadow PML4 respectively, regardless of the interrupt source. For
instance, setting the corresponding address bit to zero switches to the kernel
PML4 and setting it to one switches to the shadow PML4. The easiest offset
to implement is to use bit 12 of the physical address. That is, the PML4 for
the kernel space and shadow PML4 are allocated as an 8 kB-aligned physical
memory block. The shadow PML4 is always located at the offset +4 kB. With
this trick, we do not need to perform any memory lookups and only need a single
scratch register to switch address spaces.

The memory overhead introduced through shadow address spaces is very
small. We have an overhead of 8 kB of physical memory per user thread for
kernel page directories (PDs) and PTs and 12 kB of physical memory per user
process for the shadow PML4. The 12 kB are due to a restriction in the Linux
kernel that only allows to allocate blocks containing 2n pages. Additionally,
KAISER has a system-wide total overhead of 1 MB to allocate 256 global kernel
page directory pointer table (PDPTs) that are mapped in the kernel region of
the shadow address spaces.

KASLR is Dead: Long Live KASLR 169

CR3 Pair

CR3 + 0x1000

CR3

User

Kernel

PGD User

PGD Kernel

C
R
3
[1

2
]
=

1

C
R
3
[1

2
]
=

0

Fig. 3. Shadow address space: PML4 of user address space and kernel address space
are placed next to each other in physical memory. This allows to switch between both
mappings by applying a bit mask to the CR3 register.

Minimizing the Kernel Address Space Mapping. To solve challenge 2,
we identified the memory regions that need to be mapped for both user space
and kernel space, i.e., the absolute minimum number of pages to be compatible
with x86 and its features used in the Linux kernel. While previous work [6]
suggested that only a negligible portion of the interrupt dispatcher code needs
to be mapped in both address spaces, in practice more locations are required.

As x86 and Linux are built around using interrupts for context switches, it is
necessary to map the interrupt descriptor table (IDT), as well as the interrupt
entry and exit .text section. To enable multi-threaded applications to run on
different cores, it is necessary to identify per-CPU memory regions and map
them into the shadow address space. KAISER maps the entire per-CPU section
including the interrupt request (IRQ) stack and vector, the global descriptor
table (GDT), and the task state segment (TSS). Furthermore, while switching
to privileged mode, the CPU implicitly pushes some registers onto the current
kernel stack. This can be one of the per-CPU stacks that we already mapped or
a thread stack. Consequently, thread stacks need to be mapped too.

We found that the idea to unmap the user space entirely in kernel space
is not practical. The design of modern operating system kernels is based upon
the capability of accessing user space addresses from kernel mode. Furthermore,
SMEP protects against executing user space code in kernel mode. Any memory
location that is user-accessible cannot be executed by the kernel. SMAP pro-
tects against invalid user memory references in kernel mode. Consequently, the
effective user memory mapping is non-executable and not directly accessible in
kernel mode.

Efficient and Secure TLB Management. The Linux kernel generally tries
to minimize the number of implicit TLB flushes. For instance when switching
between kernel and user mode, the CR3 register is not updated. Furthermore,
the Linux kernel uses PTE global bits to preserve mappings that exist in every
process to improve the performance of context switches. The global bit of a PTE

170 D. Gruss et al.

marks pages to be excluded from implicit TLB flushes. Thus, they reduce the
impact of implicit TLB flushes when modifying the CR3 register.

To solve challenge 3, we investigate the effects of these global bits. We found
that it is necessary to either perform an explicit full TLB flush, or disable the
global bits to eliminate the leakage completely. Surprisingly, we found the per-
formance impact of disabling global bits to be entirely negligible.

Disabling global bits alone does not eliminate any leakage, but it is a neces-
sary building block. The main side-channel defense in KAISER is based on the
separate shadow address spaces we described above. As the two address spaces
have different CR3 register values, KAISER requires a CR3 update upon every
context switch. The defined behavior of current Intel x86 processors is to perform
implicit TLB flushes upon every CR3 update. Venkatasubramanian et al. [25]
described that beyond this architecturally defined behavior, the CPU may imple-
ment further optimizations as long as the observed effect does not change. They
discussed an optimized implementation which tags the TLB entries with the
CR3 register to avoid frequent TLB flushes due to switches between processes or
between user mode and kernel mode. As we show in the following section, our
evaluation suggests that current Intel x86 processors have such optimizations
already implemented. KAISER benefits from these optimizations implicitly and
consequently, its TLB management is efficient.

4 Evaluation

We evaluate and discuss the efficacy and performance of KAISER on a desk-
top computer with an Intel Core i7-6700K Skylake CPU and 16 GB RAM. To
evaluate the effectiveness of KAISER, we perform all three microarchitectural
attacks applicable to Skylake CPUs (cf. Sect. 2). We perform each attack with
and without KAISER enabled and show that KAISER can mitigate all of them.
For the performance evaluation, we compare various benchmark suites with and
without KAISER and observe a negligible performance overhead of only 0.08%
to 0.68%.

4.1 Evaluation of Microarchitectural Attacks

Double Page Fault Attack. As described in Sect. 2, the double page fault
attack by Hund et al. [7] exploits the fact that the page translation caches
store information to valid kernel addresses, resulting in timing differences. As
KAISER does not map the kernel address space, kernel addresses are never valid
in user space and thus, are never cached in user mode. Figure 4 shows the average
execution time of the second page fault. For the default kernel, the execution
time of the second page fault is 12 282 cycles for a mapped address and 12 307
cycles for an unmapped address. When running the kernel with KAISER, the
access time is 14 621 in both cases. Thus, the leakage is successfully eliminated.

Note that the observed overhead for the page fault execution does not reflect
the actual performance penalty of KAISER. The page faults triggered for this

KASLR is Dead: Long Live KASLR 171

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

unmapped

mapped

12,307

12,282

14,621

14,621

Execution time in cycles

KAISER

KAISER

Fig. 4. Double page fault attack with and without KAISER: mapped and unmapped
pages cannot be distinguished if KAISER is in place.

attack are never valid and thus can never result in a valid page mapping. They
are commonly referred to as segmentation faults, typically terminating the user
program.

Intel TSX-based Attack. The Intel TSX-based attack presented by
Jang et al. [10] (cf. Sect. 2) exploits the same timing difference as the dou-
ble page fault attack. However, with Intel TSX the page fault handler is not
invoked, resulting in a significantly faster and more stable attack. As the basic
underlying principle is equivalent to the double page fault attack, KAISER suc-
cessfully prevents this attack as well. Figure 5 shows the execution time of a TSX
transaction for unmapped pages, non-executable mapped pages, and executable
mapped pages. With the default kernel, the transaction execution time is 299
cycles for unmapped pages, 270 cycles for non-executable mapped pages, and
226 cycles for executable mapped pages. With KAISER, we measure a constant
timing of 300 cycles. As in the double page fault attack, KAISER successfully
eliminates the timing side channel.

We also verified this result by running the attack demo by Jang et al. [9].
On the default kernel, the attack recovers page mappings with a 100% accu-
racy. With KAISER, the attack does not even detect a single mapped page and
consequently no modules.

Prefetch Side-Channel Attack. As described in Sect. 2, prefetch side-channel
attacks exploit timing differences in software prefetch instructions to obtain
address information. We evaluate the efficacy of KAISER against the two
prefetch side-channel attacks presented by Gruss et al. [6].

Figure 6 shows the median execution time of the prefetch instruction in
cycles compared to the actual address translation level. We observed an execution
time of 241 cycles on our test system for page translations terminating at PDPT
level and PD level respectively. We observed an execution time of 237 cycles
when the page translation terminates at the PT level. Finally, we observed a
distinct execution times of 212 when the page is present and cached, and 515
when the page is present but not cached. As in the previous attack, KAISER

172 D. Gruss et al.

0 50 100 150 200 250 300

unmapped

mapped
executable

mapped
non-executable

299

226

270

300

300

300

Execution time in cycles

KAISER

KAISER

KAISER

Fig. 5. Intel TSX-based attack: On the default kernel, the status of a page can be
determined using the TSX-based timing side channel. KAISER completely eliminates
the timing side channel, resulting in an identical execution time independent of the
status.

PDPTE PDE PTE Page
(cached)

Page
(uncached)

200

300

400

500

241 241 237
212

515

241 241 241 241 241

Mapping level

E
x
ec

u
ti

o
n

ti
m

e
in

cy
cl

es

default

KAISER

Fig. 6. Median prefetch execution time in cycles depending on the level where the
address translation terminates. With the default kernel, the execution time leaks infor-
mation on the translation level. With KAISER, the execution time is identical and
thus does not leak any information.

successfully eliminates any timing differences. The measured execution time is
241 cycles in all cases.

Figure 7 shows the address-translation attack. While the correct guess can
clearly be detected without the countermeasure (dotted line), KAISER elim-
inates the timing difference. Thus, the attacker is not able to determine the
correct virtual-to-physical translation anymore.

4.2 Performance Evaluation

As described in Sect. 3.2, KAISER has a low memory overhead of 8 kB per user
thread, 12 kB per user process, and a system-wide total overhead of 1 MB. A
full-blown Ubuntu Linux already consumes several hundred megabytes of mem-
ory. Hence, in our evaluation the memory overhead introduced by KAISER was
hardly observable.

KASLR is Dead: Long Live KASLR 173

0 20 40 60 80 100 120
0

100

200

300

Page offset in kernel direct map

M
in

im
u
m

la
te

n
cy

in
cy

cl
es

default

KAISER

Fig. 7. Minimum access time after prefetching physical direct-map addresses. The low
peak in the dotted line reveals to which physical address a virtual address maps (run-
ning the default kernel). The solid line shows the same attack on a kernel with KAISER
active. KAISER successfully eliminates the leakage.

In order to evaluate the runtime performance impact of KAISER, we execute
different benchmarks with and without the countermeasure. We use the PARSEC
3.0 [1] (input set “native”), the pgbench [24] and the SPLASH-2x [16] (input set
“native”) benchmark suites to exhaustively measure the performance overhead
of KAISER in various different scenarios.

The results of the different benchmarks are summarized in Fig. 8 and Table 1.
We observed a very small average overhead of 0.28% for all benchmark suites and
a maximum overhead of 0.68% for single tests. This surprisingly low performance
overhead underlines that KAISER should be deployed in practice.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

CPU threads

R
u
n
ti

m
e

ov
er

h
ea

d
[%

]

pgbench

PARSEC 3.0

splash2x

Fig. 8. Comparison of the runtime of different benchmarks when running on the
KAISER-protected kernel. The default kernel serves as baseline (=100%). We see that
the average overhead is 0.28% and the maximum overhead is 0.68%.

4.3 Reproducibility of Results

In order to make our evaluation of efficacy and performance of KAISER eas-
ily reproducible, we provide the source code and precompiled Debian pack-
ages compatible with Ubuntu 16.10 on GitHub. The repository can be found

174 D. Gruss et al.

Table 1. Average performance overhead of KAISER.

Benchmark Kernel Runtime Average overhead

1 core 2 cores 4 cores 8 cores

PARSEC 3.0 default 27:56,0 s 14:56,3 s 8:35,6 s 7:05,1 s 0.37%

KAISER 28:00,2 s 14:58,9 s 8:36,9 s 7:08,0 s

pgbench default 3:22,3 s 3:21,9 s 3:21,7 s 3:53,5 s 0.39%

KAISER 3:23,4 s 3:22,5 s 3:22,3 s 3:54,7 s

SPLASH-2X default 17:38,4 s 10:47,7 s 7:10,4 s 6:05,3 s 0.09%

KAISER 17:42,6 s 10:48,5 s 7:10,8 s 6:05,7 s

at https://github.com/IAIK/KAISER. We fully document how to build the
Ubuntu Linux kernel with KAISER protections from the source code and how
to obtain the benchmark suites we used in this evaluation.

5 Future Work

KAISER does not consider BTB attacks, as they require knowledge of the BTB
behavior. The BTB behavior has not yet been reverse-engineered for recent
Intel processors, such as the Skylake microarchitecture (cf. Sect. 2.3). However,
if the BTB is reverse-engineered in future work, attacks on systems protected
by KAISER would be possible. Evtyushkin et al. [3] proposed to use virtual
address bits >30 to randomize memory locations for KASLR as a zero-overhead
countermeasure against BTB attacks. KAISER could incorporate this adaption
to effectively mitigate BTB attacks as well.

Intel x86-64 processors implement multiple features to improve the perfor-
mance of address space switches. Linux currently does not make use of all fea-
tures, e.g., Linux could use process-context identifiers to avoid some TLB flushes.
The performance of KAISER would also benefit from these features, as KAISER
increases the number of address space switches. Consequently, utilizing these
optimization features could lower the runtime overhead below 0.28%.

KAISER exploits very recent processor features which are not present on
older machines. Hence, we expect higher overheads on older machines if KAISER
is employed for security reasons. The current proof-of-concept implementation of
KAISER shows that defending against the attack is possible. However, it does
not eliminate all KASLR information leaks, especially information leaks that
are not caused by the same hardware effects. A full implementation of KAISER
must map any randomized memory locations that are used during the context
switch at fixed offsets. This is straightforward, as we have already introduced
new mappings which can easily be extended. During the context switch, kernel
memory locations are only accessed through these fixed mappings. Hence, the
offsets of the randomized parts of the kernel can not be leaked in this case.

https://www.github.com/IAIK/KAISER

KASLR is Dead: Long Live KASLR 175

6 Conclusion

In this paper we discussed limitations of x86 impeding practical kernel address
isolation. We show that our countermeasure (KAISER) overcomes these limita-
tions and eliminates all microarchitectural side-channel attacks on kernel address
information on recent Intel Skylake systems. More specifically, we show that
KAISER protects the kernel against double page fault attacks, prefetch side-
channel attacks, and TSX-based side-channel attacks. KAISER enforces a strict
kernel and user space isolation such that the hardware does not hold any informa-
tion about kernel addresses while running user processes. Our proof-of-concept
is implemented on top of a full-fledged Ubuntu Linux kernel. KAISER has a
low memory overhead of approximately 8 kB per user thread and a low runtime
overhead of only 0.28%.

Acknowledgments. We would like to thank our anonymous reviewers, Anders Fogh,

Rodrigo Branco, Richard Weinbeger, Thomas Garnier, David Gens and Mark Rut-

land for their valuable feedback. This project has received funding from the European

Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (grant

agreement No 681402). This work was partially supported

by the TU Graz LEAD project “Dependable Internet of

Things in Adverse Environments”.

References

1. Bienia, C.: Benchmarking Modern Multiprocessors. Ph.D. thesis, Princeton Uni-
versity, January 2011

2. Branco, R., Gueron, S.: Blinded random corruption attacks. In: IEEE International
Symposium on Hardware Oriented Security and Trust (HOST 2016) (2016)

3. Evtyushkin, D., Ponomarev, D., Abu-Ghazaleh, N.: Jump over ASLR: attacking
branch predictors to bypass ASLR. In: International Symposium on Microarchi-
tecture (MICRO 2016) (2016)

4. Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: ASLR on the line: practical
cache attacks on the MMU. In: NDSS 2017 (2017)

5. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced
fault attack in JavaScript. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 300–321. Springer, Cham (2016). doi:10.1007/
978-3-319-40667-1 15

6. Gruss, D., Maurice, C., Fogh, A., Lipp, M., Mangard, S.: Prefetch side-channel
attacks: bypassing SMAP and kernel ASLR. In: CCS 2016 (2016)

7. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space ASLR. In: S&P 2013 (2013)

8. Intel: Intel R© 64 and IA-32 Architectures Software Developer’s Manual, vol. 3 (3A,
3B & 3C): System Programming Guide 253665 (2014)

9. Jang, Y.: The DrK Attack - Proof of concept (2016). https://github.com/
sslab-gatech/DrK. Accessed 24 Feb 2017

10. Jang, Y., Lee, S., Kim, T.: Breaking kernel address space layout randomization
with intel TSX. In: CCS 2016 (2016)

http://dx.doi.org/10.1007/978-3-319-40667-1_15
http://dx.doi.org/10.1007/978-3-319-40667-1_15
https://github.com/sslab-gatech/DrK
https://github.com/sslab-gatech/DrK

176 D. Gruss et al.

11. Kemerlis, V.P., Polychronakis, M., Keromytis, A.D.: ret2dir: rethinking kernel iso-
lation. In: USENIX Security Symposium, pp. 957–972 (2014)

12. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai, K.,
Mutlu, O.: Flipping bits in memory without accessing them: an experimental study
of DRAM disturbance errors. In: ISCA 2014 (2014)

13. Shutemov, K.A.: Pagemap: Do Not Leak Physical Addresses to Non-
Privileged Userspace. https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.
git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce. Accessed 10 Nov
2015

14. Levin, J.: Mac OS X and IOS Internals: To the Apple’s Core. Wiley (2012)
15. Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Boano, C.A., Mangard,

S., Römer, K.: Hello from the other side: SSH over robust cache covert channels in
the cloud. In: NDSS 2017 (2017, to appear)

16. PARSEC Group: A Memo on Exploration of SPLASH-2 Input Sets (2011). http://
parsec.cs.princeton.edu

17. PaX Team: Address space layout randomization (ASLR) (2003). http://pax.
grsecurity.net/docs/aslr.txt

18. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: exploiting
DRAM addressing for cross-CPU attacks. In: USENIX Security Symposium (2016)

19. Russinovich, M.E., Solomon, D.A., Ionescu, A.: Windows Internals. Pearson Edu-
cation (2012)

20. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain kernel
privileges. In: Black Hat 2015 Briefings (2015)

21. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: 14th ACM CCS (2007)

22. Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: CCS 2004 (2004)

23. Solar Designer: Getting around non-executable stack (and fix), August 1997.
http://seclists.org/bugtraq/1997/Aug/63

24. The PostgreSQL Global Development Group: pgbench (2016). https://www.
postgresql.org/docs/9.6/static/pgbench.html

25. Venkatasubramanian, G., Figueiredo, R.J., Illikkal, R., Newell, D.: TMT: a TLB
tag management framework for virtualized platforms. Int. J. Parallel Program.
40(3), 353–380 (2012)

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
http://parsec.cs.princeton.edu
http://parsec.cs.princeton.edu
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://seclists.org/bugtraq/1997/Aug/63
https://www.postgresql.org/docs/9.6/static/pgbench.html
https://www.postgresql.org/docs/9.6/static/pgbench.html

JTR: A Binary Solution for Switch-Case
Recovery

Lucian Cojocar(B), Taddeus Kroes, and Herbert Bos

Vrije Universiteit Amsterdam, Amsterdam, Netherlands
{l.cojocar,t.kroes}@vu.nl, herbertb@cs.vu.nl

Abstract. Most security solutions that rely on binary rewriting assume
a clean separation between code and data. Unfortunately, jump tables
violate this assumption. In particular, switch statements in binary
code often appear as indirect jumps with jump tables that interleave
with executable code—especially on ARM architectures. Most existing
rewriters and disassemblers handle jump tables in a crude manner, by
means of pattern matching. However, any deviation from the pattern
(e.g. slightly different instructions) leads to a mismatch.

Instead, we propose a complementary approach to “solve” jump tables
and automatically find the right target addresses of the indirect jump by
means of a tailored Value Set Analysis (VSA). Our approach is generic
and applies to binary code without any need for source, debug symbols,
or compiler generated patterns.

We benchmark our technique on a large corpus of ARM binaries,
including malware and firmware. For gcc binaries, our results approach
those of IDA Pro when IDA has symbols (which is generally not the case),
while for clang binaries we outperform IDA Pro with debug symbols by
orders of magnitude: IDA finds 11 of 828 switch statements implemented
as jump tables in SPEC, while we find 763.

1 Introduction

Solving indirect control flow transfers such as jump tables in a disassembler is
important for many applications—from binary rewriting to reverse engineering,
and from malware analysis to code complexity metrics [21,37,47]—because it
is essential to find some parts of the Control Flow Graph (CFG) of a program.
Unfortunately, it is also very difficult and modern disassemblers frequently get it
wrong in cases where code does not follow common, easy-to-fingerprint patterns,
such as handwritten assembly or malware.

Extracting a reliable CFG requires the ability to distinguish between data
and code and to solve the indirect control transfers—in the sense of finding the
possible targets for such transfers. Any over-approximation adds spurious edges
to the CFG, while under-approximations remove legitimate edges.

Unless they can extract the CFG reliably, many binary analysis techniques
either no longer work at all, or with reduced accuracy. Besides reverse engineering
in general, this includes the analysis of code complexity [21,37,47] and binary
c© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 177–195, 2017.
DOI: 10.1007/978-3-319-62105-0 12

178 L. Cojocar et al.

control flow testing [6,58]. Moreover, a reliable solution for jump tables also
serves to detect the presence of custom protocol parsers [21].

If incorrect CFGs are a nuisance for software testers and reverse engi-
neers, they can be downright catastrophic for binary rewriting solutions. Many
software hardening approaches rely on binary rewriting [42] to offer security
guarantees. Examples include control flow integrity (CFI) [6,22,26,50,52,58],
sandboxing [18,25,27,36,38,45,55,57], static taint tracking [9,19,28,41,54]. An
incomplete or incorrect CFG can void the security guarantees or even break
legitimate software. Most binary rewriting solutions [8,12,42,49,51] are conser-
vative when the CFG is incomplete, trading security guarantees for the overhead
of the binary solution.

State-of-the-art disassemblers use pattern matching to solve complicated
indirect control flow transfers. For instance, if a specific compiler generates a
jump table to implement a switch statement in C, IDA Pro should know the
precise template that the compiler will use a priori, so that it can search for
exactly this pattern in the binary. Getting it right is important, as IDA uses
the resulting jump targets to continue disassembly. Changing the code, however
slightly, to not fit the template, results in a misclassification of the code. In
practice, we found such cases in both benign and malicious software.

In this paper, we present a generic technique to solve indirect control trans-
fers without pattern matching, to handle complicated cases—malware and hand-
written code—for which templates are not available. We do not necessarily aim
to outperform solutions based on pattern matching for “easy” cases (although
we show that our solution is very competitive even for those). By means of a
compiler-independent context-sensitive Value Set Analysis (VSA) tailored specif-
ically to complicated indirect control transfers, we instead aim to help disassem-
blers handle complex and malicious code.

We compare our work against IDA Pro, a state-of-the-art pattern match-
ing disassembler, and show that our analysis results are good and very robust.
For instance, since IDA does not have good patterns for clang, our results are
orders of magnitude better for clang and comparable for gcc even though we
never embedded any compiler knowledge. In summary, our contributions are the
following:

– We systematize how modern compilers implement switch statements by
means of jump tables.

– We show that jump table detection by pattern matching is limited.
– We describe a context sensitive VSA suitable for recovering indirect jumps

from binary code that outperforms powerful tools like IDA Pro and is
compiler-independent.

– We evaluate our approach and show that it recovers complicated jump tables
in binary code without access to source code or debug symbols.

2 The Problem with Patterns

Modern disassemblers commonly classify all sorts of code fragments by way of
pattern matching—scanning the binary code for templates of known language

JTR: A Binary Solution for Switch-Case Recovery 179

constructs. For example, solutions like Jakstab and IDA Pro use well-known
patterns for a variety of compilers to identify function entry points, function
parameters, C++ virtual calls, switch statements, and many other constructs [1,
30,32,35]. Unfortunately, the effectiveness of pattern matching depends on the
completeness and soundness of the templating for the code under analysis. For
instance, Bao et al. [13] demonstrated the ineffectiveness of pattern matching for
detecting function entry points. In general, pattern matching does not work well
if the code deviates from the templates—a common phenomenon in hand-written
assembly or malware.

In this section, we systematize how modern compilers implement switch state-
ments by means of jump tables. We then show the limitations of pattern match-
ing for identifying these jump tables.

2.1 Jump Tables in Practice

Instead of a straightforward if-then-else implementation, modern compilers fre-
quently opt for jump tables to implement switch statements [44]1. In practice,
compilers generate three different types of jump table instances in terms of
the control flow. These types are orthogonal to Cifuentes and Van Emmerik’s
expressions [20] and cover all jump tables that implement switch statements in
compiler-generated code that we encountered, across hundreds of applications,
a wide range of compilers, and various architectures.
1 // compare r3 with 10
2 cmp r3, #10
3 // if less or same, load pc
4 // with pc + value in jump
5 // table, using r3<<2 as index
6 ldrls pc, [pc, r3, lsl #2]
7 b default
8 .word 0x20
9 .word 0x40

10 .word 0x80
11 .word 0x40
12 ...

Listing 1.1. jumpSIMPL: gcc

implementation of switching. An
alternative implementation replaces line
1 with subs r4, r3, #10 which changes
the pattern so that IDA cannot detect it.

1 add r1, r1, #1
2 and r3, r1, #0xff
3 cmp r3, #0xB // 12 cases
4 mov r1, #6
5 strb r3, [r4,#4]
6 addls pc, pc, r3, lsl #2
7 b loc_7d0c //default case
8 b loc_7d0c //default case
9 b loc_7c9c //case 1

10 b loc_7ccc //case 2-9
11 ...
12 ---

Listing 1.2. jump2JUMP case. Line 7
computes he value of the target. Unlike
jumpSIMPL, it uses unconditional relative
jumps instead of jump tables (lines 7–11).

jumpSIMPL is the most common form of jump table. It uses a register as an index
in the table and computes the value of that register using the switch input value.
It then loads the value of an offset from the jump table, adjusts it and adds it
to the program counter. An example of this idiom is shown in Listing 1.1.

jump2JUMP represents an implementation that is slightly less common, but still
widely used. It first adds an offset based on the switched value to the current
1 23% of switch statements are lowered to jump tables by gcc. When compiling SPEC

CPU 2006 with clang (for ARM), 21% of the switch statements are lowered to jump
tables.

180 L. Cojocar et al.

1 ldrb r3, [r4, #7] // r3 is the index
2 adds r0, #0x49
3 bl rt_switch_stub // switch 7 cases
4

5 .byte 6 // item count
6 .byte 0x4, 0x8, 0xd, 0x12, 0x17, 0x20
7 .byte 0x1d // default offset
8

9 rt_switch_stub: // jt width = 8 bits
10 ldrb r12, [lr, #-1] // load the item count
11 cmp r3, r12 // compare the index
12 ldrccb r3, [lr, r3] // load case offset
13 ldrcsb r3, [lr, r12] // load default offset
14 add r12, lr, r3, lsl#1 // add the offset
15 bx r12 // jump to target

Listing 1.3. jump2STUB case. The stub uses the link register (lr) to access the jump
table. The jump table contains the number of cases as the first entry. The default case
is the last item in the jump table.

Program Counter (PC). The new PC will target another jump (forward) instruc-
tion. The offsets are not stored in code, but in the branch forward instructions.
Even though it uses no jump table in the strict sense of the word, we still consider
this case for our experiments, since the computation of PC represents a signifi-
cant and similar hurdle for static disassemblers. Listing 1.2 shows an example of
the jump2JUMP idiom.

jump2STUB, a less common implementation, makes the code to jump to a stub
that takes as parameters the switched value and the jump table. The jump
table is stored after the unconditional jump instruction. Listing 1.3 shows an
example. While less common, we did encounter this switch statement imple-
mentation on multiple occasions in ARM Thumb code, in position independent
code, and in firmware. The advantage of jump2STUB is its space efficiency—the
rt switch stub is present only once in the binary regardless of the number of
switch statements.

JTR is generic enough to recover all three cases even though we do not
embed any logic that models these three types. As we shall see, we do use them
for evaluation.

2.2 Pattern Matching Limitations

Disassemblers try very hard to detect switch statements (so they know which
bytes to disassemble), by matching the bytes in binary code to well-known pat-
terns that compilers are known to generate. Any deviation from the known
patterns confuses the detection. Unfortunately, it is hard to find patterns that
allow jump table detection to be both sound and complete. As a result, disas-
semblers can easily get it wrong. Consider Listing 1.1, which shows one of the
idioms generated by gcc to implement switch statements. A mere replacement
of the cmp compare instruction with any semantically similar instruction such as
sub breaks the pattern recognition even though the program semantics remain

JTR: A Binary Solution for Switch-Case Recovery 181

unchanged. State-of-the-art disassemblers such as IDA miss the modified jump
table entirely and interpret all the data in lines 6–10 as instructions instead.

As shown in Table 1, it is quite easy to fool modern disassemblers and decom-
pilers by deviating from such well-known patterns, but the question is whether
such cases also occur in real-world code. Unfortunately, they do. For instance,
the last column of Table 1 contains code that is generated by clang. Moreover,
Listing 1.4 displays a real-world (hand optimized) implementation of the memcpy
function in glibc. Note that link-time optimisation (LTO) may easily inline such
highly optimized code in several places in a program. As explained in the figure,
state of the art disassemblers cannot compute the target address at line 5 and
line 10, because they expect the calculation of jump targets immediately before
the jump itself.

As a result, the analysis generates an incomplete CFG which renders sub-
sequent analysis techniques less effective—hurting, for instance, the strength of
security measures that rely on binary rewriting. Likewise, reverse engineering the
code now requires significant manual annotation and analysis. In the remainder
of this paper, we show that JTR can complement pattern matching approaches
and solve these cases.

Table 1. JTR Pattern matching failures. In all cases except the baseline, IDA fails to
detect the switch statement (“IDA sw”). Often, this leads to an incomplete CFG also
(“IDA CFG”). JTR always recovers the correct targets of the switch statement. The
last and first column of the table is code generated by compilers.

3 Tailored Value Set Analysis for Solving Indirect Jumps

As shown in Fig. 1, our analysis starts by lifting the binary to LLVM intermediate
code using a home-grown translator2, much like PIE [21] and LLBT [46], but
slightly more advanced. As we do not consider it a contribution of this paper,
will not discuss it further. Next, in Step 2, we apply a variety of optimizations,
in particular aggressive inlining. As we will discuss later, without it LLVM does

2 https://github.com/cojocar/bin2llvm.

https://github.com/cojocar/bin2llvm

182 L. Cojocar et al.

1 2: subs r2, r2, #96
2 [...]
3 5: ands ip, r2, #28 // set flags
4 rsb ip, ip, #32 // no flag change
5 addne pc, pc, ip // flags are tested
6 b 7f
7 6: nop
8 ldr r3, [r1], #4 // r3=*r1; r1 += 4
9 [...] // load 6 more regs

10 add pc, pc, ip // ip from line 5
11 nop
12 nop
13 str r3, [r0], #4 // [r0]=r3; r0 += 4
14 [...] // store 6 more regs
15 bcs 2b // jump to loop entry

Listing 1.4. Code snippet of the implementation of memcpy in glibc. Note that
(a) both conditional and unconditional instructions compute the targets (lines 5
and 10), (b) the condition of the add on line 5 is determined by the and instruction
on line 3), and (c) the target computed on line 10 depends on a value computed
11 instructions earlier. Since most disassemblers assume locality (the calculation of
jump targets right before the jump), they fail to recover this case. In contrast, JTR
successfully computes the possible values written to the PC on lines 5 and 10.

not inline some of the more intricate examples of jump2STUB. We now describe
the main analysis steps of JTR—Steps 3–5 in Fig. 1. Analogous to how bounded
address tracking [32,33,43] targets VSA [10] at binaries, we compute a list of all
possible values a register may contain at specific points in any program—with
an emphasis on indirect control transfers.

Lift to
LLVM

10110010011001011001
01001110110001001011

define i32 @foo(i32 %a) {
 %1 = mul i32 %a, %a
 ret i32 %1
}

inlining +
optimizations

VSA

*p1 --> SMT formula 1
*p2 --> SMT formula 2
*p3 --> SMT formula 3
...

SMT formula
for every ptr

Data dependency
DAG (per ptr)

SOLVE!

1 2 3 4 5

Fig. 1. High-level overview of the approach

To analyse all the indirect control transfers of interest (i.e., jump tables and
complex arithmetic computations on the PC), we need only consider a program’s
non-constant writes to the program counter. In Step 3 in Fig. 1, after identifying
all such indirect writes (stores) to PC, JTR goes through every function con-
taining them to determine all possible paths from the store instruction back to
the start of the function. For each path, we build a set C that represents the
specific path constraints in SMT expressions form. Specifically, we go back along
the paths to discover where this value originated and stop when we encounter a
memory read or the start of the function. If the memory access itself depends on
an indirect memory access, we recursively trace that back also, ensuring that we

JTR: A Binary Solution for Switch-Case Recovery 183

handle cases where, say, the program computes a pointer p by adding pointer q
and index i.

To do so, JTR computes a data dependency Directed Acyclic Graph (DAG)
to capture the relation between the memory pointers:

1. A node in the graph corresponds to a memory pointer access in its SMT
expression form. Because the SMT formula stops when we encounter a mem-
ory read, the expression kept in non-root nodes always contains a memory
read. The SMT expression captures any complex expression between nodes.

2. An edge in the graph captures the dependency between nodes. Given two
nodes p and q, an edge from p to q means that p depends on the value
pointed by q. In other words, to solve pointer p, we must compute the value
pointed by q. In this way, the expression of p can easily emulate (but is not
limited to) an indirect memory load with a base (node q) and an offset which
can be a constant or another node.

3. The root of the dependency graph represents the pointer used in the targeted
indirect write and the root expression will give us the possible values of PC.

For the final step, solving the DAG, the naive approach is to invoke the
Satisfiability Modulo Theories (SMT) solver for the expression of the leaves,
constrained by C . Using the obtained values, we can then subsequently load the
values pointed to and solve the rest of the tree. Doing so always gives results
that are an overapproximation of the real jump targets, but with a high false
positive rate in case of translation imprecision.

The key observation for improving the naive solution is that the possible val-
ues of a pointer are a limited subset of all possible memory addresses and C and
some expressions of the nodes from the DAG must have a common expression.
Let N be the set of the expressions of all nodes in the DAG. We denote M the
set of common non-constant expressions between C and N . We now construct
M ← [m0, ...,mk] as a sorted set, with m0 the largest expression in the set. We
define the size of an expression as the number of nodes needed to represent the
expression as a tree.

We now ask the Z3 [40] SMT solver for concrete values for m0 while obeying
the path constraints (see Algorithm 1). Using the concrete values, we recursively
solve the DAG by temporarily expanding C with constraints that capture the
concrete values. In the second part of Algorithm 1, we start from the leaves of the
DAG and we simplify each node expression using the accumulated constraints. If
a node’s expression becomes constant, we load its corresponding memory pointer,
otherwise we continue with the simplified expression. If the memory pointer is
invalid, we abandon mi and we move to mi+1 and restart the process. If the
expression of the root node becomes constant then we successfully solved the
DAG for one value. We continue the process until all the values of m0 are tested.

If we explored all paths but found no solution, our analysis fails. In Sect. 4,
we will see that despite its simplicity this method is quite effective in solving
jump tables (and other indirect jumps).

184 L. Cojocar et al.

Algorithm 1. DAG solving

Require: C , M

1: procedure Solve DAG

2: for m ∈ M do � M is an ordered set

3: for value∈ SMTSolve(m, C) do

4: constraint←m≡value

5: C ← C∪constraint

6: rootExpr←RecursiveDAGSolve(DAG.root, C)

7: if isConstant(rootExpr) then

8: appendSolution(rootExpr)

9: C ← C�constraint

1: procedure RecursiveDAGSolve(Node, C)

2: expressions = {}
3: for child←Node.children do

4: childExpr←RecursiveDAGSolve(child, C)

5: expressions←expressions∪(child, childExpr)

6: for child, childExpr←expressions do

7: if isConstantAndLoadable(childExpr) then

8: value←LoadPointer(childExpr)

9: constraint←childExpr≡value

10: C ← C∪constraint

11: return simplifyExpression(Node.expr, C)

Recovered Code Preparation. As LLVM optimizations may influence our
results, we evaluated the effect of important optimizations that we applied to
the lifted LLVM code. As a baseline, we used the same level of optimization as
in PIE [21] which already provides common optimizations such as memory to
register promotion, global value numbering, and dead code elimination. Next,
we added a custom pass to replace the intricate control flow of the select
instruction with a simpler if-then-else sequence. Finally, we turned on aggressive
inlining.

In practice, presumably because the select instructions does not affect the
control flow of the code of interest, we could not observe any change in the
solving capabilities of JTR. Becuase JTR analysis is intra-procedural, aggressive
inlining, improved our results overall as subtler jump2STUB were inlined and, in
consequence, analyzed. We therefore turn on aggressive inlining in Step (2) of
Fig. 1 and in all experiments in Sect. 4.

4 Evaluation

We evaluate our solution on 109 coreutils programs compiled for ARM,
4 firmwares, 17 malware samples, a synthetic set of 210 binaries, and the SPEC
CPU 2006 test suite. We believe that this is a meaningful set to evaluate JTR, as
it is large-scale, contains binaries generated with different (known and unkwon)
compilers, while SPEC is commonly used by the security community for bench-
marking. We summarize the results in Table 2 and discuss them in detail below.

Coreutils Binaries. It is a clear that if accurate patterns are available, we
cannot beat pattern matching, but we show that we are competitive still with
the most important state-of-the-art dissambler. As mentioned, we intend JTR
to complement rather than compete with traditional jump target detectors—to
resolve the complicated cases that pattern matching cannot handle. Nevertheless,
it is interesting to evaluate our solution by itself. To show the limitations of
pattern matching and the genericity of JTR, we use two different compilers,
namely Clang (version 3.5) and GCC (version 4.9.2). We use the debug symbols
in combination with IDA to generate a “ground truth”.

JTR: A Binary Solution for Switch-Case Recovery 185

In the absence of debug information, IDA recovers 77% of all the switch
statements. The missing 23% are either due to failed function detection, or mis-
interpretation of jump tables as instructions (as is the case for each of our syn-
thetic test programs). In contrast, JTR recovers 98%. However, we will compare
JTR solely with our ground truth, so as to measure against the best of what
IDA could do (when IDA has the debug symbols). We believe that comparing
IDA’s results on stripped binaries, even though the results look better, is less
meaningful. We run our analysis on an Intel(R) i7-3770 CPU based machine
with 20 GB of RAM on which JTR took 7 s on average per input binary and 755
seconds in total.

The results in Table 2 show that regardless of the compiler in use, JTR yields
good results. JTR outperforms IDA when the Clang compiler is used. This is
mainly because IDA uses a pattern that is usually generated by gcc. Specifically,
the code commonly generated by clang for a jumptable is ldr pc, [rX, rY],
which is different from Listing 1.1. Moreover, rX and rY can be any general
purpose register and the index value can reside in either. Coming up with a
pattern that matches Clang’s behavior and has a low false positive rates is
difficult, demonstrating the benefits of JTR’s generic technique.

Table 2. JTR results for different test sets. The ratios in the last rows relate to the
ground truth when available, and to the “IDA + symbols” row otherwise.

Compiler Coreutils SPEC Firmware Malware Synthetic

gcc clang gcc clang unknown unknown various

Input binaries 109 109 12 16 4 17 210

Ground truth – – – 828 – – 80

IDA + symbols 642 0 655 11 66 205 80

JTR 629 (97.98%) 295 573 (87.48%) 763 (92.14%) 65 (98%) 166 (81%) 80 (100%)

Results on SPEC CPU Test Suite. We again compiled SPEC with both
clang and gcc. The missing cases from the SPEC benchmark are either due to
compilation errors (perlbench, omnetpp and dealII with clang), or to trans-
lation errors. We instrument the clang compiler to generate the ground truth.
However, due to code inlining after the instrumentation, this ground truth is an
underapproximation of the number of switch statements actually generated. For
the testcases compiled with gcc, we rely on IDA’s output for the ground truth
(given the debug symbols).

We observe the same behavior as in the case of coreutils: JTR succeeds both
on clang and on gcc and pattern matching yields poor results on SPEC with
clang.

To show the impact of our analysis on the quality of the CFG, for the clang
test set, we incorporate the recovered switch statements in IDA. Due to the 9097
new edges in the CFG discovered by JTR, we add a cumulated 2523 basic blocks
to the CFGs. The detailed results are given in Table 4 (Appendix 1).

186 L. Cojocar et al.

1 memset:
2 mov r3, r0
3 cmp r2, #8
4 blt 2f: // branch if < signed
5 ...
6 2:
7 movs r2, r2
8 moveq pc, lr
9 rsb r2, r2, #7

10 add pc, pc, r2,lsl#2
11 // IDA dissasembler stops here
12 nop
13 strb r1, [r3],#1 // repeated 8 times
14 ...

Listing 1.5. A real-world bug found by JTR. This code is handcoded assembly and
part of the memset function in uClibc. It treats the length parameter (r2) as a signed
value. If r2 is interpreted as a negative number, the value written to the PC is outside
of the mapped memory.

Firmware. Next, we evaluate JTR on the firmware of four different devices: a
smart meter, a boot-ROM used by LPC214, a GPS stick and a GSM modem. The
firmwares were manually reverse engineered in IDA, no symbols were available
for this test. The ground truth is represented by the manual reverse engineering
process. Our translator covered 66 switch statements that were implemented
with jump tables, of which JTR identified all but one in the unoptimised LLVM
bitcode. The missing jump table is recovered when aggressive inlining is enabled.
We found 4 jump2STUB switch statement implementations in this set.

Malware. In this experiment, we used 17 malware binaries from 7 different fam-
ilies: AESddos, GoARM, PnScan, Taidra, Tsunami, Elknot and LightTaidra. We
manually unpacked each of the samples and then fed them to JTR. In practice,
none of the malware samples seemed to use control flow obfuscation.

Out of the 205 switch statements identified by IDA in the translated func-
tions, the translator JTR recovered 166 (81%). The main cause for this modest
result is the translator: several indirect jumps are wrongly translated or com-
pletely missed, therefore the input LLVM code for JTR is inaccurate. Interest-
ingly, while investigating the results on this set, we also found the bug listed in
Listing 1.5. The bug was confirmed by the developers of the uClibc library3.

Synthetic Binaries. In our next experiment, we again demonstrate that our
solution is compiler agnostic by running JTR on 210 binaries generated from
10 C source code files that contain switch statements or control flow based on
jump table. We generate the binaries using 20 different compilers and compiler
optimization levels from 6 different toolchains and IDEs.

In addition, we evaluated 10 cases of hand-coded assembly, which are not
reported in Table 2 all of which were successfully recovered. JTR successfully
recovers all of the 70 switch statements generated by the various compilers and
reproduced by the translator.

3 “bugfix: ARM: memset.S: use unsigned comparisons”–http://goo.gl/5NiXJq.

http://goo.gl/5NiXJq

JTR: A Binary Solution for Switch-Case Recovery 187

4.1 Detailed Analysis Results

Jump table types distribution. We show the distribution of the different types of
jump table, as identified by IDA, in Table 3. The jumpSIMPLE type is the one
that is by far the most popular on ARM, regardless of the test set. jump2STUB is
rare on normal binaries but much less so in the firmware test set. In the synthetic
set, we generated the jump2STUB cases by selecting Thumb mode and Cortex-M0
as the target platform. This CPU is often used in embedded devices, therefore
compiler flags play an important role in evaluation of tools alike JTR. Table 3
shows that the performance of JTR is similar, regardless of the jump table type.

Table 3. Results of JTR on different jump table types. IDA is used to categorize the
jump tables whenever possible.

Test set Total jumpSIMPLE jump2JUMP jump2STUB

Coreutils-gcc IDA 642 642 0 0

Coreutils-gcc JTR 629 629 0 0

Coreutils-clang IDA 0 0 0 0

Coreuitls-clang JTR 295 N/A N/A N/A

SPEC-gcc IDA 655 655 0 0

SPEC-gcc JTR 573 573 0 0

SPEC-clang IDA 11 11 0 0

SPEC-clang JTR 763 >11 N/A N/A

Firmware IDA (translated) 66 58 4 4

Firmware JTR 65 58 3 4

Malware IDA 205 152 53 0

Malware JTR 166 120 46 0

Synthetic binaries IDA 80 59 21 20

Synthetic binaries JTR 77 56 21 20

Completeness and bug finding. On the ARM processor architecture, the code
transitions between ARM mode and Thumb mode by means of a jump to an odd
address with a specific instruction. Depending on the path, the address computed
at runtime can be odd or even. When JTR computes the possible address value,
the reported value can therefore also be either odd or even, depending on the
path. The two results are essentially the same (modulo the mode) and we ignore
the last bit. The computation is not ARM specific, but rather arises from the
generality of the solution, as JTR explores both paths (ARM and Thumb).

As shown in Listing 1.5, JTR helps to find memory access violations. How-
ever, this is not its main objective and care must be taken when applying it
naively. Specifically, because our method is (a) conservative – any pointer that

188 L. Cojocar et al.

fails to load on a specific path invalidates that path, and (b) intra-procedural,
the false positive rate for a bug finding strategy that uses JTR naively will be
high. However, one may augment JTR with model checking techniques (e.g.,
specify a range of values that one register can have) to reduce the false positive
rate or target only a specific family of bugs, such as stack-based buffer overflows.

4.2 Comparing JTR with Other Solutions

We tried to compare JTR with a variety of other solutions.

Angr. The Angr framework [48] supports ARM architecture and uses static
analysis to solve some jump table. Its public version (48998c5) does not work
with switch statements implemented with jump tables [2]. Again, Angr generates
an incomplete CFG, as the jump table targets are missing.

Jakstab. While JakStab [32] does not support ARM, we tried to compare JTR
with JakStab’s public version by adapting our examples to the x86 architecture.
Instead of using a switch statement, we used a table of pointer to functions.
With optimizations turned off, Jakstab recovers the targeted functions. When
we turn on optimizations (−O2 or −O3), its analysis fails to recover the targets.

RetDec. The Retargetable decompiler [5,24,34] which does not use any VSA
techniques, fails to retrieve targets in the absence of debug symbols. The decom-
piler either interprets the jump table as code or it does not reference it at all.

Radare2. Radare2’s [4] support for switch statement implemented with jump
tables is work in progress [3]. Note, however, that the implementation is based
on pattern matching and therefore will have similar issues as IDA Pro.

REV.NG. Concurrent work from Di Federico et al. [23] use VSA to ana-
lyze LLVM code to recover a complete CFG. Even so, on ARM architectures,
IDA’s Jackard index on CFG matching consistently outperforms REV.NG’s. The
results on SPEC show that JTR improves the quality of the CFG generated by
IDA. In our experience, REV.NG performed well on simple files, but none of the
configurations4 of SPEC binaries could currently be handled by REV.NG.

5 Related Work

Jump Tables and Switch Statements. Cifuentes and Van Emmerik [20] pro-
pose a solution based on lifting the binary code to Register Transfer List (RTL)
expressions. Code slicing is used to extract the expression. Next the expression

4 We compiled SPEC with Clang and with GCC. We tried static and dynamic linking.

JTR: A Binary Solution for Switch-Case Recovery 189

are substituted until any of three known patterns are reached. The summarised
patterns give enough information for recovering the possible targets of the jump
table. However, the recovery of jump table’s targets fails when the expression
does not match one of the known patterns. Holsti [31] shows how to recover
switch-case tables’ targets when a Read-Only Memory (ROM) table is present.
They use partial evaluation (e.g. run the program snippet with concrete input) to
generate possible outputs. For this the state of the registers is modeled and loops
are unrolled. This solution does not take into account the content of the memory
and is dependant on detecting switch statement implementation patterns.

Meng and Miller [39] observe the difficulty of recovering an accurate CFG
because of jump tables. They define three models for jump tables usage and
populate these models by means of static analysis. We believe that these models
are a form of pattern matching and that are not effective on ARM architecture,
for example the jump2STUB case would require information about the where in
the code the stub is. Gedich and Lazdin [29] uses the linearity property of jump
tables’ contents to detect them. Their solution assumes that the position of the
jump table is roughly known. Once few targets are discovered, JTR can make
use of this heuristic to accelerate the full jump table discovery.

Wang et al. [53] propose a solution to find data to code references. Their
solution is working only when pointers to functions are stored in the jump table,
in a data section. The compiler stores offsets rather than function pointer in the
jump tables used by switch statements.

CFG Recovery. Reinbacher and Brauer [43] introduce a method based on SMT
for generic control flow graph recovery. They leverage forward and backward
abstract program interpretation to recover indirect jump targets. As opposed to
JTR, they do not take advantage of the program’s memory contents but rather
use pre- and post-conditions for program’s registers which are further refined
by the algorithm process. JakStab [32] uses code inlining, abstract interpreta-
tion and local constant propagation to solve jump targets. It does not work on
ARM. JakStab uses Bounded Address Tracking [43] and tracks every memory
access and register assignment. Updates in the abstract domain are explicitly
propagated. JakStab makes a distinction between memory regions. JTR relies
on expressions and it does not need this tracking. Moreover, in JTR the case
when a pointer points to an unknown region is captured by the SMT expressions
rather than being explicitly accounted for.

Brumley et al. [17] proposes a decompiler that uses BAP’s [16] VSA to recover
the CFG from the tested binary. Their focus is different that JTR. JTR focuses in
recovering the target of indirect control flows while Phoenix focuses on recovering
high level semantics (e.g. switch statments) once the CFG is known.

Value Set Analysis. Balakrishnan and Reps [11] introduce a binary static
analysis technique called VSA. They show both limitations and strengths of
VSA when applied to binary reverse engineering. The method used by JTR
extends their VSA by means of the SMT solving technique.

190 L. Cojocar et al.

Brauer et al. [15] argues that SMT solving is effective to do VSA but they do
not leverage the memory contents’. To achieve good performance they perform
liveness analysis of the Intermediate Representation (IR). This is not required
by JTR as the expression set contains at any time the optimal set. Bounded
values and k-set analysis were previously used by Bardin et al. [14] to recover
indirect jumps. They exploit the locality of the indirect target computation.

6 Limitations

Path Explosion. A large number of paths may exist from the targeted pointer
to the start of the function. Building a dependency graph for each of them and
subsequently solving it could lead to resource exhaustion. The deeper into the
function’s CFG the program uses the pointer, the higher the chances of running
into this problem. We find that in practice, limiting the size of each path to 5
LLVM basic blocks yields good results. To further optimize the running time,
JTR solves the paths in ascending order: from the shortest to the longest.

Code Discovery. The accuracy of the translator, although not a real contribu-
tion of this paper, directly influences the results of JTR. For instance, because
the translator currently uses a static view of the program, it misses jump tables
that the program populates at runtime. This is not a fundamental limitation
and in future work, we will fix it by feeding back the JTR results. Note that
dynamic jump tables are not common in benign software, but it is not hard to
imagine that future malware will make use of it, as an additional defense.

Memory Layout and Program Correctness. JTR assumes that the input
code is correct and that a memory map is available. While we can extract
the memory map automatically using heuristics (e.g., read/write ordering [56]),
guaranteeing the correctness of the program is hard. Conversely, JTR can be
instructed to find bugs. For instance, in Listing 1.5 we show one example in
which JTR finds a previousely unreported bug (see also Sect. 4). We are con-
fident that we can extend JTR to find good candidates for memory violation
errors.

During the analysis, we should take special care when loading pointers that
point to Input/Output (IO) memory. We cannot predict the value returned by
load from an IO memory. The naive solution is to ignore the memory accesses
to IO memory and treat them as invalid accesses. However, doing so may have
a negative impact on the true positive rate of JTR in case an IO value is used
to index a jump table.

Memory Aliasing. Finally, the memory accesses generated by the LLVM
translator can alias. When this happens the accuracy of the expressions stored
in the nodes of the graph and of the path constraints decreases. The underlying

JTR: A Binary Solution for Switch-Case Recovery 191

reason is that JTR does not capture the aliasing information in SMT expres-
sions. As future work, we will leverage the alias analysis already provided by
LLVM to detect these cases.

LLVM Translator. Like SecondWrite [7] and PIE [21], JTR builds on top of a
binary-to-LLVM translator. The translator lifts the code to LLVM in a straight-
forward manner and JTR then analyzes the resulting code together with the
memory image of the binary. Specifically, it uses weak heuristics for determining
whether a function is in ARM mode or Thumb mode and occasionally misclas-
sifies them. In addition, the translator does not itself resolve the indirect jump
targets and its recursive descent disassembly therefore misses code fragments.
The solution for the latter problem would be to feed the results of the JTR
analysis back to the translator to discover the targeted code, but doing so is a
major engineering task, and we leave this for future work.

Misclassifying a fragment’s mode (ARM or Thumb) and missing code frag-
ments in the recursive descent both cause JTR to miss indirect jumps and hence
the appropriate targets. We stress that these issues are a problem of the trans-
lator only and not of the JTR analysis. By construction, JTR will generate a
solution for the targets of every indirect jump in its input.

7 Conclusion

Jump tables on RISC architectures lead to frequent interleavings of (jump table)
data and code in binaries. Most disassembler use pattern matching to detect such
jump tables in binary code, which easily fails for complicated indirect control
transfers. We argue that in specific security-relevant domains (handwritten code,
firmware and malware), we need a more generic technique to handle the cases
that elude common pattern matching. This paper proposed such a technique
for “solving” jump targets for indirect control transfers. By transforming the
targets to formulas that we solve in an SMT solver, we remove dependencies
on templates, compilers, and processor architectures. The results show that our
technique approaches and sometimes improves that of popular disassemblers
that use pattern matching. JTR is available as an open source project: https://
github.com/cojocar/jtr.

Acknowledgments. We thank the anonymous reviewers for their feedback. This
work was supported by the Netherlands Organisation for Scientific Research through
the grant NWO 628.001.005 CYBSEC “OpenSesame” and through the grant NWO
639.023.309 VICI “Dowsing”.

https://github.com/cojocar/jtr
https://github.com/cojocar/jtr

192 L. Cojocar et al.

1 SPEC Result Details

Table 4. IDA results on SPEC binaries compiled with clang are depicted in the first
5 columns. The first column represents the number of switch statement as reported
by clang. We instrumented clang to tell if a switch statement was lowered to a jump
table before code inlining takes place, thus the above 100% success rate on some cases
for JTR. IDA misses most of the jump tables on clang. Column 3 and 4 show how the
CFG benefits from the newly discovered targets. The percentages are relative to the
total number of edges and basic blocks. The results for SPEC when compiled with gcc

are shown in the last two columns. Here JTR performs better than IDA on soplex.

Testcase Clang IDA JTR Edges added BBs added IDA JTR

namd 1 0 0 (0.00%) 0 (0.000%) 0 (0.000%) 1 1 (100.00%)

sphinx3 2 0 2 (100.00%) 9 (0.139%) 0 (0.000%) 2 2 (100.00%)

bzip2 5 0 7 (140.00%) 17 (0.502%) 2 (0.084%) 3 3 (100.00%)

milc 2 0 3 (150.00%) 23 (0.675%) 3 (0.113%) 4 4 (100.00%)

sjeng 13 0 10 (76.92%) 262 (4.248%) 126 (3.000%) – –

h264ref 26 0 25 (96.15%) 142 (0.794%) 10 (0.079%) 17 17 (100.00%)

soplex 27 0 40 (148.15%) 241 (1.641%) 20 (0.183%) 36 40 (111.11%)

cactusADM 36 0 34 (94.44%) 1399 (6.819%) 766 (5.116%) 34 29 (85.29%)

gromacs 40 0 40 (100.00%) 367 (1.685%) 30 (0.192%) 43 41 (95.35%)

calculix 8 1 12 (150.00%) 72 (0.141%) 0 (0.000%) – –

hmmer 41 0 39 (95.12%) 298 (2.327%) 60 (0.658%) 30 26 (86.67%)

wrf 10 10 74 (740.00%) 355 (0.433%) 1 (0.002%) – –

povray 126 0 97 (76.98%) 767 (2.153%) 17 (0.064%) 95 75 (78.95%)

gcc 361 0 320 (88.64%) 3467 (2.045%) 1038 (0.928%) 484 419 (86.57%)

xalancbmk 111 0 140 (126.13%) 1459 (1.265%) 414 (0.444%) – –

gobmk 19 0 17 (89.47%) 219 (0.666%) 36 (0.151%) – –

omnetpp – – – – – 15 10 (66.67%)

References

1. IDA F.L.I.R.T. Technology: Overview
2. Angr, Switch Statement Analysis 106, June 2016. https://github.com/angr/angr/

issues/106
3. Radare2, Analyze jump tables 3201, June 2016. https://github.com/radare/

radare2/issues/3201
4. Radare2, Portable reversing framework, June 2016. https://radare.org
5. Retargetable Decompiler, June 2016. https://retdec.com/decompilation-run/
6. Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. Control-flow integrity. In:

CCS12 (2005)

https://github.com/angr/angr/issues/106
https://github.com/angr/angr/issues/106
https://github.com/radare/radare2/issues/3201
https://github.com/radare/radare2/issues/3201
https://radare.org
https://retdec.com/decompilation-run/

JTR: A Binary Solution for Switch-Case Recovery 193

7. Anand, K., Smithson, M., Elwazeer, K., Kotha, A., Gruen, J., Giles, N., Barua, R.:
A compiler-level intermediate representation based binary analysis and rewriting
system. In: ECCS8, pp. 295–308 (2013)

8. Anand, K., Smithson, M., Kotha, A., Elwazeer, K., Barua, R.: Decompilation to
compiler high IR in a binary rewriter. Technical report, University of Maryland
(2010)

9. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: ACM SIGPLAN (2014)

10. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24723-4 2

11. Balakrishnan, G., Reps, T.: What you see is not what you execute. ACM Trans.
Program. Lang. Syst. 32(6), 23:1–23:84 (2010)

12. Bansal, S., Aiken, A.: Binary translation using peephole super optimizers. In: OSDI
2008 (2008)

13. Bao, T., Burket, J., Woo, M., Turner, R., Brumley, D. Byteweight: learning to
recognize functions in binary code. In: USENIX Security 2014 (2014)

14. Bardin, S., Herrmann, P., Védrine, F.: Refinement-based CFG reconstruction from
unstructured programs. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol.
6538, pp. 54–69. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18275-4 6

15. Brauer, J., Hansen, R.R., Kowalewski, S., Larsen, K.G., Olesen, M.C.: Adaptable
value-set analysis for low-level code. In: SSV 2012 (2012)

16. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: a binary analysis plat-
form. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
463–469. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 37

17. Brumley, D., Lee, J., Schwartz, E.J., Woo, M.: Native x86 decompilation using
semantics-preserving structural analysis and iterative control-flow structuring. In:
USENIX SEC 2013 (2013)

18. Castro, M., Costa, M., Martin, J.-P., Peinado, M., Akritidis, P., Donnelly, A.,
Barham, P., Black, R.: Fast byte-granularity software fault isolation. In: SIGOPS
2009 (2009)

19. Cha, S.K., Woo, M., Brumley, D.: Program-adaptive mutational fuzzing. In: S&P
2015 (2015)

20. Cifuentes, C., Van Emmerik, M.: Recovery of jump table case statements from
binary code. In: Program Comprehension (1999)

21. Cojocar, L., Zaddach, J., Verdult, R., Bos, H., Francillon, A., Balzarotti, D.: Parser
identification in embedded systems. In: ACSAC 2015 (2015)

22. Davi, L., Lehmann, D., Sadeghi, A.-R., Monrose, F.: Stitching the gadgets: on the
ineffectiveness of coarse-grained control-flow integrity protection. In: USENIX SEC
2014 (2014)

23. Di Federico, A., Payer, M., Agosta, G.: Rev.Ng: a unified binary analysis framework
to recover CFGs and function boundaries. In: Proceedings of the 26th International
Conference on Compiler Construction, CC 2017, pp. 131–141. ACM (2017)

24. Durfina, L., Křoustek, J., Zemek, P., Kolávr, D., Hruska, T., Masaŕık, K., Meduna,
A.: Design of a retargetable decompiler for a static platform-independent malware
analysis. Int. J. Secur. Its Appl. 5(4), 91–106 (2011)

25. Erlingsson, U., Abadi, M., Vrable, M., Budiu, M., Necula, G.: Software guards for
system address spaces. In: OSDI 2006 (2006)

http://dx.doi.org/10.1007/978-3-540-24723-4_2
http://dx.doi.org/10.1007/978-3-642-18275-4_6
http://dx.doi.org/10.1007/978-3-642-22110-1_37

194 L. Cojocar et al.

26. Evans, I., Long, F., Otgonbaatar, U., Shrobe, H., Rinard, M., Okhravi, H.,
Sidiroglou-Douskos, S.: Control jujutsu: on the weaknesses of fine-grained control
flow integrity. In: CCS 2015 (2015)

27. Ford, B., Cox, R.: Vx32: lightweight user-level sandboxing on the x86. In: USENIX
Annual Technical Conference

28. Ganesh, V., Leek, T., Rinard, M.: Taint-based directed whitebox fuzzing. In: ICSE
2009 (2009)

29. Gedich, A., Lazdin, A.: Improved algorithm for identification of switch tables in
executable code. In: FRUCT 2015 (2015)

30. Harris, L.C., Miller, B.P.: Practical analysis of stripped binary code. ACM
SIGARCH Comput. Archit. News 33(5), 63–68 (2005)

31. Holsti, N.: Analysing switch-case tables by partial evaluation. In: WCET (2007)
32. Kinder, J., Veith, H.: Jakstab: a static analysis platform for binaries. In: Gupta,

A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 423–427. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-70545-1 40

33. Kinder, J., Veith, H.: Precise static analysis of untrusted driver binaries. In:
FMCAD 2010 (2010)

34. Křoustek, J.: Retargetable Analysis of Machine Code. PhD thesis, Faculty of Infor-
mation Technology, Brno University of Technology, CZ (2015)

35. Kästner, D., Wilhelm, S.: Generic Control Flow Reconstruction from Assembly
Code

36. Li, Y., McCune, J., Newsome, J., Perrig, A., Baker, B., Drewry, W.: Minibox : a
two-way sandbox for x86 native code. In: USENIX ATC 2014 (2014)

37. McCabe, T.J.: A complexity measure. IEEE Softw. Eng. (1976)
38. McCamant, S., Morrisett, G.: Evaluating SFI for a CISC architecture. In: USENIX-

SS 2006 (2006)
39. Meng, X., Miller, B.: Binary code is not easy. In: ISSTA 2016 (2016)
40. Microsoft. The Z3 Theorem Prover, February 2016. https://github.com/Z3Prover/

z3
41. Ming, J., Wu, D., Xiao, G., Wang, J., Liu, P. TaintPipe: pipelined symbolic taint

analysis. In: USENIX SEC 2015 (2015)
42. O’Sullivan, P., Anand, K., Kotha, A.: Retrofitting security in COTS software with

binary rewriting. In: IFP SEC 2011 (2011)
43. Reinbacher, T., Brauer, J.: Precise control flow reconstruction using boolean logic.

In: EMSOFT 2011 (2011)
44. Sayle, R.A.: A superoptimizer analysis of multiway branch code generation. In:

Proceedings of the GCC Developers Summit (2008)
45. Sehr, D., Muth, R., Biffle, C. L., Khimenko, V., Pasko, E., Yee, B., Schimpf, K.,

Chen, B.: Adapting software fault isolation to contemporary CPU architectures.
In: USENIX SEC 2010 (2010)

46. Shen, B.-Y., Chen, J.-Y., Hsu, W.-C., Yang, W.: An LLVM-based static binary
translator. In: Proceedings of the 2012 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, CASES 2012, pp. 51–60.
ACM, New York (2012)

47. Shin, Y., Williams, L.: An empirical model to predict security vulnerabilities using
code complexity metrics. In: ESEM 2008 (2008)

48. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., Vigna, G.: SoK: (State of) the art of
war: offensive techniques in binary analysis. In: S&P 2016 (2016)

49. Smithson, M., Anand, K., Kotha, A.: Binary rewriting without relocation infor-
mation. Technical report. University of Maryland, November 2010

http://dx.doi.org/10.1007/978-3-540-70545-1_40
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3

JTR: A Binary Solution for Switch-Case Recovery 195

50. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, U., Lozano,
L., Pike, G.: Enforcing forward-edge control-flow integrity in GCC & LLVM. In:
USENIX SEC 2014 (2014)

51. Tikir, M. M., Laurenzano, M., Carrington, L., Snavely, A.: PMaC binary instru-
mentation library for PowerPC/AIX. In: Workshop on Bin. Inst. and App. (2006)

52. van der Veen, V., Andriesse, D., Göktaş, E., Gras, B., Sambuc, L., Slowinska, A.,
Bos, H., Giuffrida, C.: Practical context-sensitive cfi. In: CCS 2015 (2015)

53. Wang, S., Wang, P., Wu, D.: Reassembleable disassembling. In: USENIX SEC 2015
(2015)

54. Wang, X., Jhi, Y.-C., Zhu, S., Liu, P. Still : Exploit code detection via static taint
and initialization analyses. In: ACSAC 2008 (2008)

55. Yee, B., Sehr, D., Dardyk, G., Chen, J., Muth, R., Ormandy, T., Okasaka, S.,
Narula, N., Fullagar, N.: Native client: a sandbox for portable, untrusted x86 native
code. In: S&P 2009 (2009)

56. Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D.: A framework to support
dynamic security analysis of embedded systems’ firmwares. In: NDSS 2014 (2014)

57. Zeng, B., Tan, G., Morrisett, G.: Combining control-flow integrity and static analy-
sis for efficient and validated data sandboxing. In: CCS18, pp. 29–40. ACM (2011)

58. Zhang, M., Sekar, R.: Control flow integrity for COTS binaries. In: USENIX SEC
2013 (2013)

A Formal Approach to Exploiting Multi-stage
Attacks Based on File-System Vulnerabilities

of Web Applications

Federico De Meo1(B) and Luca Viganò2

1 Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy
federico.demeo@univr.it

2 Department of Informatics, King’s College London, London, UK

Abstract. We propose a formal approach that allows one to (i) reason
about file-system vulnerabilities of web applications and (ii) combine
file-system vulnerabilities and SQL-Injection vulnerabilities for complex,
multi-stage attacks. We have developed an automatic tool that imple-
ments our approach and we show its efficiency by discussing four real-
world case studies, which are witness to the fact that our tool can generate,
and exploit, attacks that, to the best of our knowledge, no other tool for
the security of web applications can find.

1 Introduction

Context and motivations. Modern web applications (web apps, for short)
often make intensive use of functionalities for reading and writing content from
the web app’s file-system (i.e., the file-system of the web server that hosts the
web app). Reading from and writing to the file-system are routine operations
that web apps perform for different tasks. For instance, the option of dynamically
loading resources based on runtime needs is commonly adopted by developers
to structure the web app’s source code for stronger reusability. Similarly, several
web apps allow users to upload (write) content that can be shared with other
users or can be available from a web browser as in a cloud service. Reading and
writing functionalities are offered by most server-side programming languages for
developing web apps such as PHP [20], JSP [18] or ASP [3]. Modern database
APIs also provide a convenient way to interact with the file-system (e.g., backup
or restore functionalities), but they also increase the attack surface an attacker
could exploit. Whenever an attacker finds a way to exploit vulnerabilities that
allow him to gain access to the web app’s file-system, the security of the whole
web app is put at high risk. Indeed, both OWASP [19] and MITRE [7] list
vulnerabilities that compromise the file-system among the most common and
dangerous vulnerabilities that afflict the security of modern software.1

1 The Top 10 compiled by OWASP is a general classification and it does not include a
specific category named “file-system vulnerability”; however, “Injections”, “Broken
Authentication and session Management”, “Security misconfiguration” (just to name
a few) can all lead to a vulnerability related to the file-system.

c© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 196–212, 2017.
DOI: 10.1007/978-3-319-62105-0 13

A Formal Approach to Exploiting Multi-stage Attacks 197

Vulnerability assessment and penetration testing are the two main steps that
security analysts typically undertake when assessing the security of a web app
and other computer systems [6,16,23]. During a vulnerability assessment, auto-
matic scanning tools are used to search for common vulnerabilities of the sys-
tem under analysis (Wfuzz [26] and DotDotPwn [13] are the main tools for
file-system-related vulnerabilities). However, it is well known [14] that state-of-
the-art scanners do not detect vulnerabilities linked to the logical flaws of web
apps. This means that even if a vulnerability is found, no tool can link it to
logical flaws leading to the violation of a security property. The result of the vul-
nerability assessment is thus used to perform the second and more complicated
step: during a penetration test (pentest), the analyst defines an attack goal and
manually attempts to exploit the discovered vulnerabilities to determine whether
the attack goal he defined can actually be achieved. A pentest is meant to show
the real damage on a specific web app resulting from the exploitation of one or
more vulnerabilities. Consider the following example, which is simple but also
fundamental to understand the motivation for the approach that we propose.

Trustwave SpiderLabs found a SQL injection vulnerability in Joomla! [17],
a popular Content Management System (CMS). In [24], Trustwave researchers
show two things: the code vulnerable to SQL injection and how the injection
could have been exploited for obtaining full administrative access. The descrip-
tion of the vulnerable code clearly highlights an inadequate filtering of data
when executing a SQL query. The description of the damage resulting from the
exploitation of the SQL injection shows that an attacker might be able to per-
form a session hijacking by stealing session values stored as plain-text in the
database. The result of this analysis points out two problems: Joomla! is failing
in (1) properly filtering data used when performing a SQL query and (2) securely
storying session values. Problem (1) could have been identified by vulnerability
scanners (e.g., sqlmap is able to identify the vulnerability), but no automatic vul-
nerability scanner can identify Problem (2) and only a manual pentesting session
is effective. However, manual pentesting relies on the security analyst’s expertise
and skills, making the entire pentesting phase easily prone to errors. An analyst
might underestimate the impact of a certain vulnerability leaving the entire web
app exposed to attackers. This is why we can’t stop at the identification of a SQL
injection or file-system-related vulnerability, and why we can’t address the ensu-
ing attacks with a manual analysis. Our approach addresses this by automating
the identification of attacks that exploit such multi-stage vulnerabilities.

Contributions. Our contributions are two-fold. First, we formally define file-
system vulnerabilities and how to exploit them to violate security properties of
web apps. A number of formal approaches based on the Dolev-Yao (DY) attacker
model [12] have been developed for the security analysis of web apps, e.g., [1,2,4,
9,22,25]. However, file-system vulnerabilities of web apps have never been taken
into consideration by formal approaches before. In this paper, we define how
web apps interact with the file-system and show how the DY model can be used
to exploit file-system vulnerabilities. Moreover, we extend our previous work on
the exploitation of SQL-Injection (SQLi) vulnerabilities [9] by showing how to

198 F. De Meo and L. Viganò

combine file-system vulnerabilities and SQLi vulnerabilities for the identification
of complex, multi-stage attacks commonly identified only by manual analysis
during the pentesting phase. It is crucial to point out that we do not search for
payloads that can be used to exploit a particular vulnerability, but rather we
exploit file-system vulnerabilities.

Second, to show that our formalization can effectively generate multi-stage
attacks where file-system and SQLi vulnerabilities are exploited, we have devel-
oped a prototype tool called WAFEx (Web Application Formal Exploiter, [10])
and we discuss here its application to four real-world case studies. WAFEx can
generate, and exploit, complex attacks that, to the best of our knowledge, no
other state-of-the-art-tool for the security analysis of web apps can find. In par-
ticular, we show how WAFEx can automatically generate different attack traces
violating the same security property, a result that only a manual analysis per-
formed by a pentester can achieve. In each attack trace, multiple vulnerabilities
are used in combination.

Organization. In Sect. 2, we give a classification of file-system-related vulner-
abilities. In Sect. 3, we provide our formal approach. In Sect. 4, we describe the
WAFEx tool and discuss its application to four real-world case studies. In Sect. 5,
we draw conclusions and discuss related work and future work.

2 A Classification of File-System-Related Vulnerabilities

To provide a coherent and uniform starting point for reasoning about file-system-
related vulnerabilities, we give a classification of the vulnerabilities of web apps
that lead to compromise the file-system. The two security properties that we
consider are: authentication (the attacker gets unauthorized access to a restricted
area) and confidentiality (the attacker gets access to content stored in the web
app’s file-system that isn’t meant to be publicly available). We have identified
five vulnerability categories, which we describe below, focusing on the main
details of the attacks that are relevant for our formalization.

(1) Directory Traversal (DT) (a.k.a. Path Traversal). Operations on files
(reading and writing) performed by a web app are intended to occur in the
root directory of the web app, a restricted directory where the web app actually
resides. A DT vulnerability refers to a lack of authorization controls when an
attacker attempts to access a location that is intended to identify a file or direc-
tory stored in a restricted area outside the web app’s root directory. Whenever
the access permissions of a web app are not restricted in such a way that they
only allow users to access authorized files, an attacker might be able to craft a
payload that allows him to access restricted files located outside the web app’s
root directory.

(2) SQL-Injection (SQLi). Most modern DMBSs provide APIs that extend
SQL’s expressiveness by allowing SQL code to access a web app’s file-system
for reading and writing purposes. Reading APIs allow developers to produce
code that retrieves content stored in the web app’s file-system and loads it in

A Formal Approach to Exploiting Multi-stage Attacks 199

the database. Writing APIs allow developers to produce code that saves content
from the database to the web app’s file-system. Attackers mainly exploit SQLi
to bypass authentication mechanisms or to extract data from the database, but,
as there is no limit on the SQL syntax that could be injected, it is also possible
to exploit reading and writing APIs to access the underlying file-system [8].

(3) File Inclusion (FI). All programing languages for the development of
web apps support functionalities for structuring code into separate files so that
the same code can be reused at runtime by dynamically including files whenever
required. A FI vulnerability refers to a lack of proper sanitization of user-supplied
data during the creation of a file location string that will be used to locate a
resource meant to be included in a web page. When the file location depends
on user-supplied data, an attacker can exploit it and force the inclusion of files
different from the ones intended by the developers. FI might allow an attacker
to access arbitrary resources stored on the file-system and to execute code.

(4) Forced Browsing (FB) (a.k.a. Direct Request) refers to a lack of autho-
rization controls when a resource is directly accessed via URLs. This lack of
authorization might allow an attacker to enumerate and access resources that
are not referenced by the web app (thus not directly displayed to the users
through the web app) or that are intended to be accessed only as a result of
previous HTTP requests. By making an appropriate HTTP request, an attacker
could access resources with a direct request rather than by following the intended
path. The lack of authorization controls comes from the erroneous assumption
that resources can only be reached through a given navigation path. This mis-
assumption leads developers to implementing authorization mechanisms only at
certain points along the way for accessing a resource, leaving no controls when
a resource is directly accessed.

(5) Unrestricted File Upload (UFU). A widespread feature provided by
web apps is the possibility of uploading files that will be stored on the web app’s
file-system. An UFU vulnerability refers to a lack of proper file sanitization when
a web app allows for uploading files. The consequences can vary, ranging from
complete takeover with remote arbitrary code execution to simple defacement,
where the attacker is able to modify the content shown to users by the web app.

3 A Formalization to Reason About File-System
Vulnerabilities

We will now describe how we formally represent the behavior of a file-system and
of a web app that interacts with it. We also show how our formalization allows the
DY attacker to successfully exploit file-system vulnerabilities. In our formaliza-
tion, we used ASLan++, the formal specification language of the AVANTSSAR
Platform [2], but in fact our approach is general and for the sake of readability
we give here pseudo-code rather than ASLan++.

Our approach doesn’t search for payloads that can be used to exploit file-
system vulnerabilities, but rather analyzes the security of web apps by exploiting

200 F. De Meo and L. Viganò

Fig. 1. MSC of a FI vulnerability.

vulnerabilities that lead attackers to have unauthorized access to the file-system.
To deal with such vulnerabilities, we need to represent the behavior of the

(i) web app, which defines the interaction with client, file-system and database,
(ii) file-system, which interacts with the web app and the database for reading

and writing content,
(iii) database, which can also interact with the file-system,
(iv) attacker, who interacts only with the web app.

We do not formalize the behavior of honest clients since we assume the DY
attacker to be the only agent to communicate with the web app, i.e., we are
only interested in dishonest interactions. This is because the exploitation of file-
system vulnerabilities doesn’t require interaction with the honest users.

To explain how our formalization works, we will use a simple FI example
depicted in Fig. 1 as a Message Sequence Chart (MSC) in which there are three
entities: client, web app and file-system (the fourth entity, database, does not
send messages and will be discussed later). In this example and, in general, in
our formalization, we assume the web app and the file-system (and the database)
to have a long-lasting secure relation, i.e., no attacker can read or modify the
communication between them.2 As is standard, constants begin with a lower
case character (e.g., filePath), variables with an upper case one (e.g., Page).

In step (1), the client sends to the web app a message containing the variable
Page, representing the page to be included. In step (2), the web app performs
a read operation by issuing a read(Page) request. In step (3), the file-system
checks if the requested page points to an existing file and, in step (4), it replies
to the web app with a variable Response that represents the result of the read
operation. In step (5), the web app forwards the response to the client.

Definition 1. Messages consist of variables V , constants c, concatenation
M.M , function application f(M) of uninterpreted function symbols f to mes-
sages M , and encryption {M}M of messages with public, private or symmetric
keys that are themselves messages.3 We define that M1 is a submessage of M2

2 We assume the communication with the file-system to be secure since the file-system
actually is not a real network node, and thus no attacker can put himself between the
communication with the file-system, i.e., man-in-the-middle attacks are not possible.

3 In this paper, we need not distinguish between different kinds of encrypted messages,
but we could do it by following standard practice. Here we don’t even need to consider
explicitly encrypted messages, but we add them for completeness.

A Formal Approach to Exploiting Multi-stage Attacks 201

as is standard (e.g., M1 is a submessage of M1.M3, of f(M1) and of {M1}M4)
and, abusing notation, we then write M1 ∈ M2.

3.1 The DY Attacker as a Web Attacker

The DY model [12] defines an attacker that has total control over the network but
cannot break cryptography: he can intercept messages and decrypt them if he
holds the corresponding keys for decryption, he can generate new messages from
his knowledge and send messages under any agent name. Message generation
and analysis are formalized by derivation rules, expressing how the attacker can
derive messages from his knowledge in order to use them for performing attacks.

Suppose that we want to search for a FI vulnerability possibly leading the
attacker to access resources stored outside the root folder of the web app (DT).
As described in Sect. 2, the attacker can try to access resources by injecting a
payload used for accessing a file that will be included in the current page. How-
ever, it is important to point out two fundamental aspects of our work: (1) as
stated, we are not interested in generating the payloads that will exploit vulner-
abilities, but rather we want to represent that a vulnerability can be exploited
and what happens when it is exploited, and (2) we want to avoid state-space
explosion by making the models as simple as possible. We have thus introduced
the constant fsi that represents any and all payloads for exploiting file-system
vulnerabilities (e.g., ../../../ for DT). By using fsi and the definition of the
file-system entity (Sect. 3.2), we allow the DY attacker to deal with file-system
vulnerabilities.

3.2 File-System

We will now give a formalization of the file-system entity that can be used in
any specification when searching for attacks related to file-system vulnerabilities
of web apps. As depicted in Fig. 1, the file-system can be seen as a network
node always actively listening for incoming connections, and the web app sends
reading and writing requests to the file-system.

Our formalization aims to abstract away as many concrete details as possible,
while still being able to represent the exploitation of file-system vulnerabilities,
and so we do not represent the file-system structure but rather formalize mes-
sages sent and received along with reading and writing behavior. This allows us
to give a compact formalization so as to avoid state-space explosion problems
when carrying out the analysis with the model checker.

Incoming messages. As incoming messages for the file-system entity, we con-
sider only reading and writing requests, for which we use the uninterpreted func-
tions readFile() and writeFile(), both taking a generic variable Filepath
that represents a file location in the file-system.

Reading and writing behavior. To exploit vulnerabilities related to reading
and writing operations, we need to represent the available files in addition to the
behavior of the two operations. We represent the existence of a file by means of

202 F. De Meo and L. Viganò

the predicate inFS(), i.e., inFS(filePath) means that the file represented by
the constant filePath is stored in the file-system.

When the file-system entity receives a reading request readFile(filePath),
it checks, by means of inFS(), whether the file exists: if so, then it answers to
the request with file(filePath), i.e., wrapping the file being read with the
uninterpreted function file(), else the constant no file is returned.4

When the file-system entity receives a writing request writeFile(file), it
uses inFS() to mark the file as part of the file-system but it need not return a
result to the web app (as explained in Footnote 4).

To represent an attacker’s attempt to access files, we include the Horn clause

fs_hc_evil(M):inFS(fsi.M)

that states that the predicate inFS() holds for a message whenever it is of the
form fsi.M , i.e., a message that is a concatenation including the constant fsi
that represents a payload to exploit file-system vulnerabilities. More specifically,
this states that the attacker has injected a malicious payload fsi into the para-
meters (expressed as a variable) M . In case of a DT attack, one may think of
fsi as the ../../../ payload that escapes from the web app’s root folder.

The specification. Summarizing, the pseudo-code representing the file-system
behavior is in Listing 1.1 (the full ASLan++ specification is in [11]. We represent
the file-system as a network node always actively listening for incoming messages.
More specifically, we define the file-system by two mutually exclusive branches of
an if-elseif statement: in the guard in line (1) the file-system receives (expressed
in Alice&Bob notation) a reading request and in (4) it receives a writing request.
For the reading request, the file-system verifies the existence of the file (2): if the
file exists, then the file-system returns the variable Filepath wrapped with the
uninterpreted function file() (2), else the constant no file is returned instead
(3, where ! formalizes negation). As we assume that writing operations always
succeed, when a writing request is received, the file-system marks the new file
as “existing” by means of inFS() and need not return (4).

Listing 1.1. Pseudo-code representing the behavior of the file-system; we write FS for
the file-system and Entity as a general entity (either web app or database).

1 if(Entity -> FS: readFile(Filepath)){

2 if(inFS(Filepath)){

3 FS -> Entity : file(Filepath);

4 } elseif (!(inFS(Filepath))){

5 FS -> Entity : no_file;

6 } elseif(Entity -> FS: writeFile(Filepath)){

7 inFS(Filepath);

8 }

4 We don’t need to consider access control policies/models as they are external to the
web app. Hence, we assume that every file that is in the file-system can always be
read and that every writing operation will always succeed..

A Formal Approach to Exploiting Multi-stage Attacks 203

3.3 Database

To cover all file-system vulnerabilities (Sect. 2), we need to formalize a database
that can interact with the file-system. We can adapt the basic formalization
we gave in [9] for the case of SQLi vulnerabilities by including interaction with
the file-system (and thus to also be able to cover file-system access through
SQLi vulnerabilities, see Sect. 2). We can see the database, like the file-system,
as a network node that interacts with the web app and the file-system. The
idea behind the extension is to make the database able to perform a reading
or writing request to the file-system whenever a query is valid. We also mod-
ified how sanitized queries are handled by removing the sanitization function
sanitizedQuery() from the database specification of [9] and introducing a new
uninterpreted function sanitized() that represents a general sanitization func-
tion (see Sect. 3.4 for further details).

The pseudo-code of the extension is shown in Listing 1.2. We focus only
on the new part and refer to [9] for the main behavior. The database entity
is still represented by an if-elseif statement. The main if branch (1) handles
sanitized queries, represented with the new sanitization function, whereas the
second branch (3) handles raw queries. Within the raw query branch, we have
defined two additional behaviors. The first new branch performs a read operation
on the file-system (5) and, if the file-system sends back a file (6), the database
wraps the answer from the file-system with tuple() and sends it back to the
web app (6). The second new branch (7) handles writing operations performed
by the database, for which the answer to the web app will be a message of
the form tuple(newFile(filePath)), where newFile() is an uninterpreted
function stating that a file has been written as a result of a SQL query.

Listing 1.2. Pseudo-code representing the behavior of the extended database.

1 if(WebApp -> DB: query(sanitized(SQLquery))){

2 if(SQLquery == tuple (*)){

3 DB -> WebApp: no_tuple;

4 }} elseif(WebApp -> DB: query(SQLquery)){

5 if(inDB(sqlquery)){

6 DB -> WebApp: tuple(SQLquery);

7 } elseif(inDB(SQLquery)){

8 DB -> FS: read(SQLquery);

9 if(FS -> DB: file(SQLquery)){

10 DB -> WebApp: tuple(file(SQLquery));

11 }} elseif(inDB(SQLquery)){ DB -> FS: write(SQLquery);

12 DB -> WebApp: tuple(new_file(SQLquery));

13 } elseif (!(inDB(SQLquery))){

14 DB -> WebApp: no_tuple;

15 }}

3.4 Web Application

The web app is another node of the network that can send and receive messages.
In our formalization, the web app can communicate with client, file-system and

204 F. De Meo and L. Viganò

database. In [9] we also provided some guidelines on how to represent web apps,
however, they were limited to basic interaction with the database. In this paper
we provide extended guidelines that also take the file-system into consideration.

The file-system and the database entities don’t depend on the web app and
thus we can reuse them in every model. The web app formalization does depend
on the scenario being modeled, but we give a series of guidelines on how to
represent the web app’s behavior for testing the interaction with the file-system
and the database.

If statements. HTTP is a stateless protocol, which means that each pair
request-response is considered as an independent transaction that is not related
to any previous request-response. We use if statements to define that a web app
can answer different requests without following a specific sequence of messages,
thus representing the stateless nature of HTTP. The web app’s model is thus a
sequence of if statements defining all the requests the web app can handle.

Client communication. A general HTTP request (and response) header com-
prises different fields that are needed for the message to be processed by the
browser. In our formalization, we don’t need to represent all the fields of a real
request (or response) header as they are not relevant to the analysis, and thus we
limit to: a variable representing the sender, a variable representing the receiver,
and a concatenation of constants and variables representing the message.

In case of a request, the message would be represented by the HTTP
query string containing parameters and values. For example, a request to the
URL http://example.com/index.php?page=menu.php can be represented as
Client -> WebApp : index.Page, where index is a constant representing a
web page and Page is a variable representing an HTTP query value. We pro-
ceed similarly to formalize a response from the web app to the client. We
only represent the details needed for the analysis: a constant representing the
returned page (e.g., admin, dashboard, ...), the function file() when the
web app performs a reading operation on the file-system, and the function
tuple() that is returned only if the executed query is SELECT, UPDATE or
DELETE (see [9] for further details). For example, the response WebApp -> Client
: dashboard.file(fsi) can be used to represent the result of a successful
request where the client receives the dashboard page. The message file(fsi)
is returned to express that a file was retrieved from the file-system.

File-system and database communication. As already stated in Sect. 3.2,
whenever the web app has to read content from the file-system, it sends a
readFile() request and whenever it has to write to the file-system, it sends
a writeFile() request. When the web app has to perform a SQL query on the
database, it sends a query() request to the database (see Sect. 3.3). To allow the
web app to represent sanitized input, we introduced an uninterpreted function
sanitized() that allows the modeler to “switch on” or “switch off” the possi-
bility of exploiting a vulnerability either of the file-system or of the database,
letting the model-checker analyze the web app for possible attacks. The web app
has to check the response coming from the file-system or the database in order

A Formal Approach to Exploiting Multi-stage Attacks 205

to behave properly. For example, if a file is being read, the web app has to check
that the file-system is answering with the uninterpreted function file() before
proceeding further.

Remote code execution. Our formalization can represent scenarios where the
attacker is able to write arbitrary files into the web app’s file-system leading
to arbitrary remote code execution. As described earlier, a web app model is a
sequence of if statements defining the requests the web app responds to. The
possibility of uploading a file that leads to code execution can be seen as a way
of increasing the number of requests the web app responds to. We then include
into the model of the web app a series of predefined if branches representing the
behavior of common malicious code an attacker might try to upload. We define
that these malicious if branches can be used by the attacker only if the file exists
in the file-system (i.e., inFS() is valid for that file). This will ensure that the
attacker finds a way of writing the malicious file before actually using it.

Sessions. As already mentioned, HTTP is a stateless protocol. In order for
the user to experience a stateful interaction with a web app (e.g., the web app
recognizes when a user is logged-in when he changes page), developers make use
of sessions. A session allows a web app to store information into a memory area
in order to have it accessible across multiple pages. When a request is made to
a web page that creates a session, the web page allocates a memory area and
assigns to that area a session identifier. The same session identifier is sent back
to the client (generally as a cookie value) within the response for that request.
When a cookie is received, a web browser automatically sends it back to the web
app when a new request is made. The web app receives the session identifier and
uses it to retrieve the information stored within the associated memory area.

In order to represent sessions, we introduced the predicate sessionValue()
to state that a variable is a session value. Whenever a request is made to a
page that creates a session value, a new variable is created, marked as a session
value and returned to the client. Whenever a page requires a session prior to
performing any further step, the page needs to verify that one of the variables
sent to the web app is indeed a session value.

Taking stock. Listing 1.3 can now finally formalize the FI example of Fig. 1.
The web app accepts a request for include.Page, where include is a constant
representing the web page being requested and Page is a variable representing
the page to include (1). The web app sends a reading request with the page
received by the client (1). The file-system checks if the file is stored in the file-
system and then sends a response to the web app (2): if the response is of
the form file(Page) (3), then the web app sends back to the client include
(representing an included web page) along with file(Page) (representing the
content of the included file), else it sends include without further details (4).

206 F. De Meo and L. Viganò

Listing 1.3. Pseudo-code representing the behavior of FI example of Fig. 1.

1 if(Client -> WebApp: include.Page){

2 WebApp -> FS : read(Page);

3 FS -> WebApp: Response;

4 if(Response == file(Page)){

5 WebApp -> Client: include.file(Page);

6 }else{

7 WebApp -> Client: include;

8 }}

3.5 Goals

The last component of the formalization is the goal (or security property) that
should be verified. As we discussed in Sect. 2, we are not interested in finding
file-system vulnerabilities but rather we want to exploit them. In particular, we
define security properties related to authentication bypass and confidentiality
breach, which, respectively, express that the attacker can access some part of the
web app that should be protected with some sort of authorization mechanisms,
or obtain information that is “leaked” from the web app (such “leakage” can
happen from either the file-system or the database).

We use the LTL “globally” operator [], which defines that a formula has
to hold on the entire subsequent temporal path, and the iknowledge predicate,
which represents the knowledge of the attacker. We can then represent authen-
tication goals by stating that the attacker will never have access to some specific
page, and confidentiality goals by stating that the attacker will never increase his
knowledge with parts coming from the file-system or the database, i.e., file().
The confidentiality goal for the FI example in Fig. 1 is shown in Listing 1.4,
stating that the attacker will never know something of the form file().

Listing 1.4. Confidentiality goal for the FI example in Fig. 1.

[](!(iknowledge(file (*))))

4 Our Tool WAFEx and Its Application to Case Studies

In this section, we show how our formalization can be used effectively for rep-
resenting and testing attacks involving the exploit of file-system vulnerabilities.
We have developed a prototype tool, called WAFEx, that shows how the abstract
attack trace (AAT) generated from our models can be concretized and tested over
the implementations of the real web apps. We have tested WAFEx on Damn Vul-
nerable Web Application (DVWA) [15] and on Multi-Stage, a web app we wrote
for security testing and freely available at [10]. DVWA is a vulnerable web app
that provides an environment in which security analysts can test their skills
and tools. DVWA is divided in examples implementing web pages vulnerable to
the most common web app vulnerabilities. We selected three relevant exercises
from DVWA: FI, UFU and SQLi. WAFEx was able to identify the intended

A Formal Approach to Exploiting Multi-stage Attacks 207

vulnerability on all the case studies and was also able to identify an unintended
vulnerability of SQLi for file reading in the SQLi exercise of DVWA.

In the remainder of this section, we will describe WAFEx and present the
Multi-Stage case study that shows how file-system vulnerabilities and SQLi can
be combined for the generation of multi-stage attack on the same web app.

Our pool of case studies might look small and trivial at first, but it is worth
noting that DVWA is a state-of-the-art testing environment used for teaching
the security of web apps to pentesters and the case studies represent real sce-
narios that might be implemented by many web apps. Moreover, ethical aspects
prevented us from blindly executing WAFEx on the Internet since our imple-
mentation makes use of brute-forcing tools such as Wfuzz and sqlmap, whose
unauthorized usage must be approved by the owner of the web app. Finally, we
didn’t test the latest release of any free CMSs as that would require a first phase
of vulnerability assessment, which is out of the scope of this work.

We give here only the pseudo-code specification of the web apps and the
goals; full models in pseudo-code and ASLan++ can be found in [11].

4.1 WAFEx: A Web Application Formal Exploiter

WAFEx takes in input an ASLan++ specification together with a concretization
file that contains information such as the real URL of the web app and the name
of the real parameters used for making requests. We have chosen ASLan++ so to
apply the model-checkers of the AVANTSSAR Platform [2] (in particular, CL-
AtSe), but our approach is general and could be used with other specification
languages and/or other reasoners implementing the DY attacker model.

To aid the security analyst in the model creation, we have written a Python
script that allows him to first use the Burp proxy [21] to record a trace of HTTP
requests/responses generated by interacting with the web app, and then use our
script to convert this trace into an ASLan++ model. The analyst has to specify
the behavior for the HTTP requests and the security goal he wants to test.

WAFEx is also able to automatically use information it extracts during an
attack (e.g., as a result of FI) to proceed further with the execution of an AAT.
We have run WAFEx on our case studies using a Mac Book laptop (Intel i5-
4288U with 8 G RAM and Python3.5). The execution time of the model-checking
phase ranges from 30 ms to 50 ms, while the overall process (from MSC genera-
tion to concretization) depends on the external tools Wfuzz and sqlmap.

4.2 Case Study: The Multi-stage Web App

Multi-Stage is a web app that we specifically wrote in order to show how file-
system and SQLi vulnerabilities can be combined together to generate multiple
attack traces. We designed Multi-Stage to ensure that it is realistic and repre-
sentative of software that could indeed be deployed.

Multi-Stage implements a typical HTTP login phase in which users can log
into the system by providing username and password. The web app performs a

208 F. De Meo and L. Viganò

query to the database in order to verify the credentials and grant access to a
restricted area. The restricted area allows users to view other users’ profiles and
modify their own personal information (Name, Surname, Phone number), and
it allows for the upload of a personal image to use as avatar. We check the web
app for file reading attacks, i.e., we want to generate multi-stage attack traces
showing how an attacker can exploit file-system and SQLi vulnerabilities to get
read access to the web app’s file-system. A detailed description of the model can
be found in [10,11].

We ran this model with WAFEx in order to test the security of Multi-Stage.
Unfortunately, the model-checker CL-AtSe that we use inside WAFEx does not
allow for generating multiple attack traces (nor do the other back-ends of the
AVANTSSAR Platform). Thus, whenever a trace was found, we disabled the
branch corresponding to the attack and run WAFEx again to generate another
trace different from the previous one. This process does, of course, miss some
traces since by disabling a branch we prevent any other trace to use that branch
in a different step of the attack trace.5 However, it shows that multiple traces
can actually be generated. We generated three different AATs: #1, #2 and #3.

AAT #1. This first AAT shows how an attacker might be able to exploit an
SQLi in the login phase to directly read files from the file-system (Listing 1.5).
The attacker i sends to the web app a request for login by sending the payload
sqli.fsi (1). The web app sends a query to the database entity (2), which forces
the database into sending a read request to the file-system entity with value fsi
(3). The file-system checks if the provided file is part of the file-system and
answers to the database with that file (4). The database forwards the response
from the file-system to the web app (5), which, finally, sends to the attacker the
dashboard page along with the result from the database (6).

Listing 1.5. AAT #1 for accessing the file-system in Multi-stage.

1 i -> WebApp : login.sqli.fsi.Password

2 WebApp -> DB: query(sqli.fsi)

3 DB -> FS : readFile(fsi)

4 FS -> DB : file(fsi)

5 DB -> WebApp : tuple(file(fsi))

6 WebApp -> i : dashboard.AuthCookie.tuple(file(fsi))

AAT #2. We disabled the branch that allows the database to read from the
file-system and ran the model again in order to generate a different AAT (Listing
1.6). The attacker i tries to exploit a SQLi in order to write a malicious file so
to exploit a remote code execution. i sends to the web app a request for login
by sending the payload sqli.evil file (1). The web app sends a query to the
database entity (2), which forces the database into sending a writing request
with value evil file to the file-system (3). The file-system marks the new file
as available in the file-system and the database sends a response to the web app

5 We plan to extend CL-AtSe or replace it with a tool capable of generating multiple
attack traces.

A Formal Approach to Exploiting Multi-stage Attacks 209

with the file just created (4). The web app responds to i with the dashboard
page along with a newly generated cookie and the result of the creation of a new
file (5). The attacker i now exploits the evil file by sending the payload fsi
to the web app (6). The web app will now perform a readFile() operation on
the file-system and will send the retrieved file back to the attacker (7–9).

Listing 1.6. AAT #2 for accessing the file-system in Multi-Stage.

1 i -> WebApp : login.sqli.evil_file.Password

2 WebApp -> DB: query(sqli.evil_file)

3 DB -> FS : writeFile(evil_file)

4 DB -> WebApp : tuple(new_file(evil_file))

5 WebApp -> i : dashboard.AuthCookie.tuple(new_file(

evil_file))

6 i -> WebApp : file.fsi

7 WebApp -> FS : readFile(fsi)

8 FS -> WebApp : file(fsi)

9 WebApp -> i : file(fsi)

AAT #3. We disabled the branch that allows the database to both read and
write from the file-system, and ran the model again to generate a different AAT
(Listing 1.7). The attacker i bypasses the authentication mechanism by sending
the sqli payload (1). This allows him to have access to the web app, which
responds with a valid authentication cookie value (2–4). The attacker can now
take advantage of the profile edit page in order to upload a malicious file by
sending the SQLi payload sqli and the evil file payload (5). The web app
sends a query request to the database and the database answers (6–7). The web
app now sends a writing request to the file-system in order to store the newly
uploaded avatar evil file (8), and finally the web app responds back to the
attacker with the profileid page and the tuple(sqli) resulting from exploiting
a SQLi in the editing request (9). The attacker exploits the evil file created
in (8), to read content from the file-system. The web app receives a request for
the evil file with payload fsi (10) and makes a request to the file-system for
reading fsi (11–12). Finally, the web app sends the file back to the attacker (13).

It is worth remarking what happened in steps (6–7). Since we assumed that all
requests made by the attacker are malicious actions, the only way the attacker
has to proceed is performing a SQLi attack in the edit request. However, by
reading the trace it can be easily seen that the SQLi is not used to bypass an
authentication or extract information.

Listing 1.7. AAT #3 for accessing the file-system in Multi-stage.

1 i -> WebApp : login.sqli.Password

2 WebApp -> DB: query(sqli)

3 DB -> WebApp: tuple(sqli)

4 WebApp -> i : dashboard.Cookie.tuple(sqli)

5 i -> WebApp : edit.Name.Surname.sqli.evil_file.Cookie

6 WebApp -> DB: query(sqli)

7 DB -> WebApp: tuple(sqli)

210 F. De Meo and L. Viganò

8 WebApp -> FS: writeFile(evil_file)

9 WebApp -> i : profileid.tuple(sqli)

10 i -> WebApp : file.fsi

11 WebApp -> FS: readFile(fsi)

12 FS -> WebApp: file(fsi)

13 WebApp -> i : file(fsi)

4.3 Concretization Phase

We configured a safe environment where we ran DVWA and our Multi-Stage case
study. We ran WAFEx and concretized the AATs it generated. The concretiza-
tion was successful for all our case studies, actually showing how the attacker
would perform the real attacks on both DVWA and Multi-Stage. The only exam-
ple that WAFEx could not concretize is the AAT#2 in Multi-Stage. In that case,
the attacker is supposed to exploit a SQLi for writing to the file-system. WAFEx
was not able to concretize the trace since the user executing the database did not
have the privileges to write to the file-system, which highlights, as we already
stated, that the presence of a vulnerability does not imply its exploitability and
that only a penetration testing phase can analyze such scenarios.

5 Concluding Remarks, Related Work and Future Work

Our approach is able to find multi-stage attacks to web apps that involve the
combined exploit of file-system and SQLi vulnerabilities. To the best of our
knowledge, no other tool can find the attacks that WAFEx can find. Some related
works are, however, worth discussing in more detail.

Pentesting remains the leading methodology for the security analysis of web
apps. This is because the human component is crucial in evaluating the security
of the web app. Tools like Wfuzz [26] or DotDotPwn [13] support the security
analyst in finding the presence of vulnerabilities, but they do not give any clue
on how a vulnerability can be used nor they say if an attack that uses that
vulnerability can actually be carried out.

The idea underlying the methodology for modeling web apps given in [1] is
similar to our approach, but they defined three different attacker models that
should find web attacks, whereas we show how the standard DY attacker can
be used. They also represent a number of HTTP details that we do not require
that eases the modeling phase. Most importantly, they don’t take combination
of attacks into consideration.

The model-based security testing tool SPaCiTE [4] starts from a secure
(ASLan++) specification of a web app and, by mutating the specification, auto-
matically introduces security flaws. SPaCiTE implements a mature concretiza-
tion phase, but it mainly finds vulnerability entry points and tries to exploit
them, whereas our main goal is to consider how the exploitation of one or more
vulnerabilities can compromise the security of the web app.

A Formal Approach to Exploiting Multi-stage Attacks 211

The “Chained Attack” approach of [5] considers multiple attacks to compro-
mise a web app, but it does not consider file-system vulnerabilities nor inter-
actions between vulnerabilities, which means that it can’t reason about using a
SQLi to access the file-system. Moreover, it requires an extra effort of the secu-
rity analyst, who should provide an instantiation library for the concretization
phase, while we use well-known external state-of-the-art tools.

The analysis in [9] was limited to SQLi for authentication bypass and data
extraction attacks, which we used in this paper as the basis for considering SQLi
for accessing the file-system and for modeling the Multi-Stage case study. In [22],
Rocchetto et al. model web apps to search for CSRF attacks. While they limit
the analysis to CSRF, there could be useful interactions with our approach.

We plan to extend WAFEx (i) with stronger functionalities for the automatic
creation of the web app model and (ii) to cover other complex web app vulnera-
bilities like Cross-Site Scripting and sophisticated multi-stage attacks involving
the exploitation of multiple vulnerabilities.

References

1. Akhawe, D., Barth, A., Lam, P., Mitchell, J., Song, D.: Towards a formal foundation
of web security. In CSF. IEEE (2010). doi:10.1109/CSF.2010.27

2. Armando, A., et al.: The AVANTSSAR platform for the automated validation of
trust and security of service-oriented architectures. In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 267–282. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-28756-5 19

3. ASP documentation: Including Files in ASP Applications. https://msdn.microsoft.
com/en-us/library/ms524876(v=vs.90).aspx

4. Büchler, M., Oudinet, J., Pretschner, A.: Semi-automatic security testing of web
applications from a secure model. In: SERE. doi:10.1109/SERE.2012.38

5. Calvi, A., Viganò, L.: An automated approach for testing the security of web appli-
cations against chained attacks. In: 31st ACM/SIGAPP Symposium on Applied
Computing (SAC). ACM Press (2016). doi:10.1145/2851613.2851803

6. Carey, M.: Penetration Testing vs. Vulnerability Scanning - What’s the Differ-
ence? https://www.alienvault.com/blogs/security-essentials/penetration-testing-
vs-vulnerability-scanning-whats-the-difference

7. Christey, S.: The 2009 CWE/SANS top 25 most dangerous programming errors.
http://cwe.mitre.org/top25

8. Damele, B., Guimarães, A.: Advanced SQL injection to operating system full con-
trol. In: BlackHat EU (2009)

9. De Meo, F., Rocchetto, M., Viganò, L.: Formal analysis of vulnerabilities of web
applications based on SQL injection. In: Barthe, G., Markatos, E., Samarati, P.
(eds.) STM 2016. LNCS, vol. 9871, pp. 179–195. Springer, Cham (2016). doi:10.
1007/978-3-319-46598-2 13

10. De Meo, F., Viganò, L.: WAFEx: Web Application Formal Exploiter. http://regis.
di.univr.it/wafex/

11. De Meo, F., Viganò, L.: A Formal Approach to Exploiting Multi-Stage Attacks
based on File-System Vulnerabilities of Web Applications (Extended Version)
(2017). https://arxiv.org/abs/1705.03658

http://dx.doi.org/10.1109/CSF.2010.27
http://dx.doi.org/10.1007/978-3-642-28756-5_19
https://msdn.microsoft.com/en-us/library/ms524876(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ms524876(v=vs.90).aspx
http://dx.doi.org/10.1109/SERE.2012.38
http://dx.doi.org/10.1145/2851613.2851803
https://www.alienvault.com/blogs/security-essentials/penetration-testing-vs-vulnerability-scanning-whats-the-difference
https://www.alienvault.com/blogs/security-essentials/penetration-testing-vs-vulnerability-scanning-whats-the-difference
http://cwe.mitre.org/top25
http://dx.doi.org/10.1007/978-3-319-46598-2_13
http://dx.doi.org/10.1007/978-3-319-46598-2_13
http://regis.di.univr.it/wafex/
http://regis.di.univr.it/wafex/
https://arxiv.org/abs/1705.03658

212 F. De Meo and L. Viganò

12. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29, 198–208 (1983). doi:10.1109/TIT.1983.1056650

13. DotDotPwn - The Directory Traversal Fuzzer. https://github.com/wireghoul/
dotdotpwn

14. Doupé, A., Cova, M., Vigna, G.: Why johnny can’t pentest: an analysis of
black-box web vulnerability scanners. In: Kreibich, C., Jahnke, M. (eds.) DIMVA
2010. LNCS, vol. 6201, pp. 111–131. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14215-4 7

15. DVWA: Damn Vulnerable Web Application. http://www.dvwa.co.uk/
16. Glynn, F.: Vulnerability Assessment and Penetration Testing. http://www.

veracode.com/security/vulnerability-assessment-and-penetration-testing
17. Joomla! https://www.joomla.org
18. The Java EE 5 Tutorial: Reusing Content in JSP Pages. http://docs.oracle.com/

javaee/5/tutorial/doc/bnajb.html
19. OWASP. Top 10 for 2013. https://www.owasp.org/index.php/Category:OWASP

Top Ten Project
20. PHP documentation: include. http://php.net/manual/it/function.include.php
21. Postswigger. Burp Proxy (2014). https://portswigger.net/burp/proxy.html
22. Rocchetto, M., Ochoa, M., Torabi Dashti, M.: Model-based detection of CSRF.

In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El Kalam, A., Sans,
T. (eds.) SEC 2014. IFIP AICT, vol. 428, pp. 30–43. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-55415-5 3

23. SANS Institute. Penetration Testing: Assessing Your Overall Security Before
Attackers Do. https://www.sans.org/reading-room/whitepapers/analyst/penetra
tion-testing-assessing-security-attackers-34635

24. Trustwave SpiderLabs. Joomla SQL Injection Vulnerability Exploit Results
in Full Administrative Access (2015). https://www.trustwave.com/Resources/
SpiderLabs-Blog/Joomla-SQL-Injection-Vulnerability-Exploit-Results-in-Full-
Administrative-Access

25. Viganò, L.: The SPaCIoS project: secure provision and consumption in the internet
of services. In: Software Testing, Verification and Validation (ICST) (2013). doi:10.
1109/ICST.2013.75

26. Wfuzz: The Web Bruteforcer. https://github.com/xmendez/wfuzz

http://dx.doi.org/10.1109/TIT.1983.1056650
https://github.com/wireghoul/dotdotpwn
https://github.com/wireghoul/dotdotpwn
http://dx.doi.org/10.1007/978-3-642-14215-4_7
http://dx.doi.org/10.1007/978-3-642-14215-4_7
http://www.dvwa.co.uk/
http://www.veracode.com/security/vulnerability-assessment-and-penetration-testing
http://www.veracode.com/security/vulnerability-assessment-and-penetration-testing
https://www.joomla.org
http://docs.oracle.com/javaee/5/tutorial/doc/bnajb.html
http://docs.oracle.com/javaee/5/tutorial/doc/bnajb.html
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://php.net/manual/it/function.include.php
https://portswigger.net/burp/proxy.html
http://dx.doi.org/10.1007/978-3-642-55415-5_3
https://www.sans.org/reading-room/whitepapers/analyst/penetration-testing-assessing-security-attackers-34635
https://www.sans.org/reading-room/whitepapers/analyst/penetration-testing-assessing-security-attackers-34635
https://www.trustwave.com/Resources/SpiderLabs-Blog/Joomla-SQL-Injection-Vulnerability-Exploit-Results-in-Full-Administrative-Access
https://www.trustwave.com/Resources/SpiderLabs-Blog/Joomla-SQL-Injection-Vulnerability-Exploit-Results-in-Full-Administrative-Access
https://www.trustwave.com/Resources/SpiderLabs-Blog/Joomla-SQL-Injection-Vulnerability-Exploit-Results-in-Full-Administrative-Access
http://dx.doi.org/10.1109/ICST.2013.75
http://dx.doi.org/10.1109/ICST.2013.75
https://github.com/xmendez/wfuzz

A Systematic Study of Cache Side Channels
Across AES Implementations

Heiko Mantel1(B), Alexandra Weber1(B), and Boris Köpf2

1 Computer Science Department, TU Darmstadt, Darmstadt, Germany
mantel@cs.tu-darmstadt.de, weber@mais.informatik.tu-darmstadt.de

2 IMDEA Software Institute, Madrid, Spain
boris.koepf@imdea.org

Abstract. While the AES algorithm is regarded as secure, many imple-
mentations of AES are prone to cache side-channel attacks. The lookup
tables traditionally used in AES implementations for storing precom-
puted results provide speedup for encryption and decryption. How such
lookup tables are used is known to affect the vulnerability to side chan-
nels, but the concrete effects in actual AES implementations are not yet
sufficiently well understood. In this article, we analyze and compare mul-
tiple off-the-shelf AES implementations wrt. their vulnerability to cache
side-channel attacks. By applying quantitative program analysis tech-
niques in a systematic fashion, we shed light on the influence of imple-
mentation techniques for AES on cache-side-channel leakage bounds.

1 Introduction

The Advanced Encryption Standard (AES) is a widely used symmetric cipher
that is approved by the U.S. National Security Agency for security-critical appli-
cations [8]. While traditional attacks against AES are considered infeasible as
of today, software implementations of AES are known to be highly suscepti-
ble to cache side-channel attacks [5,15,18,19,32]. While such side channels can
be avoided by bitsliced implementations [6,24], lookup-table-based implementa-
tions, which aim at better performance, are often vulnerable and wide spread.

To understand the vulnerability to cache side-channel attacks, recall that
the 128 bit version of AES relies on 10 rounds of transformations. The first nine
rounds consist of the steps SubBytes, ShiftRows, MixColumns, and AddRoundkey.
The last transformation round is similar but skips the step MixColumns. Many
cryptographic libraries, such as LibTomCrypt [37], mbed TLS [3], Nettle [28]
and OpenSSL [30], precompute the results of applying SubBytes, ShiftRows, and
MixColumns for all possible inputs. They store the precomputed results in four
1KB lookup tables with entries of 32 bit each. With this, the AES rounds can be
implemented by simple table lookups to indices depending on the current state
– which is beneficial for performance but introduces the cache side channel.

While the table organization of the first nine rounds specified by [10] is used
as the default in most implementations, there is a variety of approaches for
implementing the last round of AES:
c© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 213–230, 2017.
DOI: 10.1007/978-3-319-62105-0 14

214 H. Mantel et al.

– mbed TLS and Nettle rely on an additional 0.25 KB table with 8 bit entries
to store the S-Box for SubBytes.

– OpenSSL computes the results of SubBytes and ShiftRows based on the
lookup tables for the main rounds.

– LibTomCrypt uses four additional 1 KB lookup tables with 32 bit entries for
the last round.

The organization of the lookup tables affects the vulnerability of AES imple-
mentations to cache side-channel attacks. While this effect was observed early
on [32,34] and studied based on an analytical model [39], it has not yet been
analyzed based on the actual target of the attack, which is the executable code.

In this article, we use program analysis techniques for a systematic, quantita-
tive study of cache-side-channel leakage across AES implementations. We analyze
executable code of AES implementations from LibTomCrypt, mbed TLS, Nettle,
and OpenSSL. More concretely, we systematically derive upper bounds for the
leakage of these executables to a number of adversaries that are commonly con-
sidered in the literature. We also describe the effects of table preloading and
of varying the cache configuration (i.e. cache size and replacement strategy)
across implementations. By our study, it becomes clear how the usage of lookup
tables in AES implementations influences the height of leakage bounds within
the same cache size and across cache sizes. For instance, the leakage bounds for
the lookup-table-based implementations stabilize with increasing cache size. The
stabilization occurs once the cache is large enough for the mapping from AES
memory blocks (dominated by the lookup tables) to cache sets to be injective.

We used the CacheAudit static analyzer [12] as a starting point for our study.
Analyzing the AES executables in their original form required us to extend the
tool’s scope in terms of, both supported x86 instructions and CPU flags. This
required significant engineering effort. The extended CacheAudit is available
under www.mais.informatik.tu-darmstadt.de/cacheaudit-essos17.html.

2 Preliminaries

In this section, we review the necessary background on AES, caches, and cache
side-channel attacks.

AES. AES is a widely used symmetric block cipher proposed by Daemen and
Rijmen (originally as “Rijndael”) [10]. The AES algorithm operates in multiple
transformation rounds. It depends on the AES key’s size, how many rounds are
performed. The inputs to each round are the current state of the transformed
message or ciphertext and a round key that is generated from the AES key by
a key expansion. Each round consists of multiple steps, including a substitution
step that can be implemented using a lookup table of size 0.25 KB, called S-Box.
Lookup tables of size 1 KB are often used to store precomputed results of entire
transformation rounds for all possible inputs to speed up the computation. The
result for a given input is then retrieved using an index to the lookup table [10].

http://www.mais.informatik.tu-darmstadt.de/cacheaudit-essos17.html

A Systematic Study of Cache Side Channels Across AES Implementations 215

Lookup-table-based implementations are available in many libraries, includ-
ing LibTomCrypt, mbed TLS, Nettle, and OpenSSL. However, AES can also
be implemented without using lookup tables. For instance, OpenSSL defaults
to AES-NI, i.e., AES encryption with hardware support using dedicated x86
instructions, and the AES implementation in NaCl is based on bitslicing, which
implements the AES transformation rounds on the fly.

In our study, we consider the lookup-table-based AES implementations from
LibTomCrypt, mbed TLS, Nettle, and OpenSSL for a key size of 128 bit, which
implies that ten transformation rounds are performed [10]. The AES imple-
mentations in mbed TLS and Nettle AES use an S-Box and four 1 KB lookup
tables. OpenSSL AES also uses four 1 KB lookup tables but no S-Box, while
LibTomCrypt AES uses eight 1 KB lookup tables and no S-Box.

Caches. Caches are small and fast memories that store copies of selected memory
entries to reduce the average memory access time of the Central Processing
Unit (CPU). If the CPU accesses a memory entry that resides in the cache, it
encounters a cache hit, and the entry is quickly read from the cache. Otherwise,
the CPU encounters a cache miss, and the entry needs to be fetched first from
the main memory to the cache, which is significantly slower.

In our study, we consider 4-way set-associative caches with 64 Byte line size
and FIFO replacement. The chunks in which memory entries can be loaded into
the cache are called memory blocks. Memory blocks are cached in cache lines
of the same size as memory blocks, namely the line size. The associativity of a
cache defines how many cache lines form one cache set. A given memory block is
mapped to one specific cache set but can be cached in any of the cache lines in
this cache set. A cache with associativity k is called k-way set-associative. If a
memory block shall be cached into a cache set that is full, then another memory
block is evicted from the cache set according to a replacement strategy, e.g., to
evict the least recently cached memory block (FIFO).

Cache side-channel attacks. A side-channel attack recovers information about
inputs to a program from characteristics of program runs. In 2002, Page [33]
showed that the interaction between a program and the cache is such a character-
istics, i.e., one that can be used to mount a side-channel attack. Such attacks are
known as cache side-channel attacks. Since table lookups in lookup-table-based
AES implementations depend on the secret key, they are prone to different kinds
of attacks: Time-based attacks [5] recover the secret key from measurements of
the the overall execution time; access-based attacks [15,32] recover the secret key
from the cache state after termination; and trace-based attacks [1] recover the
key from sequences of cache hits and misses.

3 Our Approach

We analyze AES implementations wrt. potential cache side channel’s based on
information theory and static analysis. The static-analysis tool that we employ is
an extension of CacheAudit [12] that we developed for this research project. Our

216 H. Mantel et al.

extensions increase the tool’s coverage of the x86 machine language and improve
the tool’s precision wrt. its treatment of processor flags. These changes were
crucial for analyzing the four AES implementations, without having to modify
their off-the-shelf source code, and they might be beneficial for others.

We describe our approach to side-channel analysis in Sect. 3.1, illustrate it
using mbed TLS AES as an example in Sect. 3.2, and sketch our conceptual and
technical extensions of CacheAudit in Sect. 3.3.

3.1 Static Bounds on Cache Side Channels

A common approach for quantifying the information leaks of a program is to
compute (upper bounds on) the number of observations that an adversary can
make. This number comes with different interpretations in terms of security,
such as lower bounds for the expected number of guesses required for recovering a
secret [26] or upper bounds on the probability for correctly guessing the secret in
one shot [38]. Moreover, this number can be obtained by combining off-the-shelf
static analysis with model counting techniques [4,29]. The computation of this
number has been implemented based on abstract interpretation [23], bounded
model checking [16], and symbolic execution [36].

The CacheAudit static analyzer [12] leverages this basic idea for quantifying
cache side channels of x86 executables, based on abstract interpretation. Given
an x86 executable, CacheAudit computes bounds wrt. the three adversary mod-
els discussed in Sect. 2. Namely,

– for access-based attackers (denoted acc), CacheAudit computes a set Oacc that
contains all possible states of the cache after termination. Here, cache states
are represented as tuples of sequences of memory blocks, where each sequence
is of bounded length and represents the content of one cache set.

– for trace-based attackers (denoted tr), CacheAudit computes a set Otr ⊆
{hit ,miss}∗ that contains all possible traces of cache hits and misses that
can occur in an execution.

– for time-based attackers (denoted time), CacheAudit computes a set Otime ⊆ N

that contains the possible execution times that can occur.

In addition, CacheAudit computes a set Oaccd that contains a representation of
cache states as tuples of integers, where each integer represents the amount of
blocks loaded in a particular cache set. This corresponds to the possible observa-
tions of a fourth attacker, the blurred access-based attacker (denoted accd). This
attacker is similar to acc, in the sense that it shares the cache with the victim,
but it does not share the memory with the victim.

Bounds on the information (in bits) leaked to the four adversaries are given
by log2 |Oa| for a ∈ {acc, tr, time, accd}.

3.2 Analysis of AES from mbed TLS

We illustrate our approach using the AES implementation from mbed TLS (pre-
viously known as PolarSSL). This library is used, e.g., in the implementation of
OpenVPN [31] and of Internet-of-Things products [2].

A Systematic Study of Cache Side Channels Across AES Implementations 217

Table 1. Bounds for mbed TLS on leakage and entropy under acc

Cache [KB] 2 4 8 16 32 64 128

Leakage [bit] ≤ 92.6 114.5 91.8 71.2 69.6 69.6 69.0

Entropy [bit] ≥ 163.4 141.5 164.2 184.8 186.4 186.4 187

2 4 8 16 32 64 128
0

100

200

300

cache size [KB]

b
o
u
n
d

[b
it
]

acc accd

tr time

Fig. 1. Leakage bounds for mbed TLS AES encryption

Computation of bounds for mbed TLS under acc. The leakage bounds computed
by our extension of CacheAudit for mbed TLS under acc for different cache sizes
are listed in Table 1.1 Table 1 also contains lower bounds on the remaining min-
entropy of the 256 secret bits (key and message) after a side-channel observation.
In the remainder of the article, we only explicate leakage bounds because the
entropy can be easily computed. It equals 256 bit minus the leakage bounds.

Note that the acc leakage bounds converge to 69 bit, starting between the
cache sizes 16 KB and 32 KB. This could be due to the fact that at least 17 KB
of cache are required for an injective mapping from memory blocks (dominated
by 4.25 KB lookup tables) to cache sets. Once the cache is so big that each cache
set can contain at most one memory block, an attacker under acc is able to infer
exactly which blocks are accessed by mbed TLS AES. In practice, a convergence
of leakage bounds with growing cache sizes implies that leakage bounds will
remain valid when processors with larger caches become available in the future.

Exploration of other attacker models. The leakage bounds that we obtain for
mbed TLS AES, using all four attacker models, are depicted in Fig. 1.2

We observe that the leakage bounds for all attacker models converge with
increasing cache size. This suggests that the leakage bounds for the mbed TLS
AES implementation are robust against future hardware with larger caches, not
only with respect to acc, but also for the attacker models accd, tr, and time.
1 We round all leakage bounds up to one decimal place and truncate them to the

maximum leakage of 256 bit (128 bit message and 128 bit key) throughout the article.
2 To support the reader in reading such diagrams, we connect the leakage bounds

computed for adjacent cache sizes and the same attacker model by dashed lines.

218 H. Mantel et al.

The leakage bounds for acc and accd converge to the same value, namely
69 bit. This could be due to the fact that an attacker under accd (like under acc)
can infer exactly which memory blocks are cached – given that the mapping
from memory blocks to cache sets is injective. In practice, this means that, for
a system running mbed TLS AES, reducing the attack surface from acc to accd
does not lead to better leakage bounds – given that the system has a cache of
more than 16 KB. In contrast, much better leakage bounds can be achieved when
reducing the attack surface to time (e.g., the 7.7 bit computed for a cache size of
128 KB correspond to 3% of the key and message only).

Before convergence, the leakage bounds computed for tr and time (marked by
and , respectively) decrease with increasing cache size. We will get back

to this point in Sect. 4. In contrast, the leakage bounds for accd (marked by)
increase with increasing cache size. Interestingly, the evolution of leakage bounds
for acc (marked by) follows a different pattern. These bounds increase, until
a peak is reached for 4 KB cache size, and then decrease, until they stabilize.
The peak observable in the acc bounds could be due to the exact fit of memory
blocks with mbed TLS AES data (dominated by 4.25 KB lookup tables) into a
cache with size around 4.25 KB. If the memory blocks fit exactly into the cache,
the most information can be conveyed through the ordering of memory blocks,
so that the potential leakage to an attacker under acc is maximized.

Note that our quantitative analysis of mbed TLS AES not only allows us
to observe the influence of implementation-level design decisions on the inter-
play between cache size, attack surface, and leakage bounds. It also enables us to
speculate about the practical consequences in an informed manner and, hence, to
shed more light on the effects of such design choices. In Sect. 4, we study the influ-
ence of implementation-level design choices on the interplay between cache size,
attack surface, and leakage bounds for three further off-the-shelf AES implemen-
tations. Moreover, we compare the effects of implementation-level design choices
across all four AES implementations.

Details on our analysis setup. In our analysis of mbed TLS AES, we consid-
ered the sequential composition of the key expansion function mbedtls aes-
setkey enc with the encryption function mbedtls aes encrypt from the
file aes.c of mbed TLS version 2.2.1, configured to use hard-coded tables
(option MBEDTLS AES ROM TABLES) and to not use hardware support (option
MBEDTLS PADLOCK C). We compiled to a 32 bit x86 binary without additional
code for overflow protection (option -fno-stack-protector).

We configured the AES implementation to use a key size of 128 bit. Note
that this choice complies with the recommendation of the US National Insti-
tute of Standards and Technology. They recommend a security strength of at
least 128 bit to protect sensitive data in unclassified applications beyond the
year 2031 [13, Sect. 5.6.2]. For simplicity, we configured the message size in the
AES implementation also to 128 bit. We configured CacheAudit to assume a
four-way set-associative cache with 64Byte line size. This cache configuration is
used, e.g., for the level 2 cache in the current Intel micro-architecture Skylake

A Systematic Study of Cache Side Channels Across AES Implementations 219

[17, Table 2–4]. We used FIFO replacement and varied the cache size from 2 KB
to 128 KB.

Remark 1. A previous version (1.3.7) of mbed TLS AES was already analyzed
in [11] (with focus on key size 128 bit) and in [12] (with focus on key size
256 bit). Like our analysis, [12] considered encryption jointly with key gener-
ation, while [11] considered encryption only. In [11,12], mbed TLS AES was
transformed before the analysis to meet the x86 sublanguage supported by the
analysis tool. As usual, a code transformation was chosen that preserves the
code’s semantics.

We extended the analysis tool to support the analysis of mbed TLS AES
without code transformations. The reader might wonder how our results for the
off-the-shelf binaries for Version 2.2.1 compare to the ones in [11,12] for the
transformed code snippets of mbed TLS (Version 1.3.7). In brief, our results are
rather similar (including the convergence of the bounds for acc and accd from a
cache size of 16 KB). This similarity shows that both the evolution of mbed TLS
versions and the application of code transformations in [11,12] did not have
substantial effects (neither positive nor negative) on the leakage bounds.

3.3 Tool Support

From the beginning of our study, we wanted to analyze off-the-shelf AES imple-
mentations in their original form (i.e., without code transformations like the
one discussed at the end of Sect. 3.2). To make this possible, support for addi-
tional x86 instructions was needed in CacheAudit. We have added such sup-
port. We extended the x86 parser and the abstract x86 semantics in CacheAudit
for the instructions listed in Table 2. Now, CacheAudit supports all instruc-
tions that occur in the relevant code snippets from the off-the-shelf binaries of
LibTomCrypt, mbed TLS, Nettle, and OpenSSL AES.

Table 2. Extended language coverage in CacheAudit

Type New instructions

Arithmetic 2D (Sub), 18 (Sbb), 19 (Sbb), 11 (Adc), F7/6 (Div), 3C (Cmp)

Logic 08 (Or), 30 (Xor), 84 (Test), A9 (Test), F6/0 (Test)

Bitstring 0FA4 (Shld), 0FA5 (Shld), 0FAC (Shrd), 0FAD (Shrd)

Stack 07 (Pop)

Jump 7C, 0F8C, 7D, 0F8D, 70, 0F80, 71, 0F81, 78, 0F88, 79, 0F89, 7E, 0F8E,
7F, 0F8F (all Jcc)

Move 0F48 (Cmovs)

Some of the binaries contain jump instructions that branch on the sign flag
or the overflow flag, which both were previously not supported by CacheAudit.

220 H. Mantel et al.

For instance, the conditional jump instruction Jnle (opcode 0F8F) occurs in
the binary of mbed TLS AES encryption, and the conditional jump instruction
Jl (opcode 0F8C) occurs in the binary of LibTomCrypt AES decryption. Jnle
branches on the previously supported zero flag and the previously unsupported
sign flag. Jl branches on both previously unsupported flags, i.e., the sign flag and
the overflow flag. In abstract interpretation, both branches of a conditional need
to be considered if the abstraction is too imprecise to determine which branch
must be chosen. This can lead to substantial imprecision of analysis results. To
avoid such imprecision, we conceptually revised the abstraction employed by
CacheAudit and modified the implementation of CacheAudit to support this
abstraction. The new abstraction represents the states of the sign and overflow
flag on the abstract level with high precision. To implement this abstraction,
we refined the data structure for representing flags on the abstract level and
adapted the implementation of the abstract semantics of all x86 instructions.

The resulting, extended CacheAudit version enabled us to analyze the off-
the-shelf binaries for mbed TLS AES, with the results described in Sect. 3.2.
The extended version of CacheAudit is also the basis for our systematic study
of cache side channels across AES implementations reported in Sects. 4 and 5.

Remark 2. In our study, we focus on architectures with a single cache. We leave
a thorough analysis of multiple cache levels to future work. In particular, the
effects of different cache inclusion policies deserve to be studied in detail.

While we focus on the FIFO cache replacement strategy throughout this arti-
cle, we also investigated other replacement strategies, namely LRU (least recently
used) and PLRU (Pseudo-LRU). We observed that the replacement strategies
influence the concrete leakage bounds. The cache sizes at which the leakage
bounds stabilize also vary across the replacement strategies. Interestingly, the
leakage bounds for 128 KB cache size are identical for all three replacement
strategies. We leave a more extensive investigation of replacement strategies for
future work.

4 Leakage Across AES Implementations

The technique of lookup tables that store precomputed round transformations is
supported by popular libraries like OpenSSL and mbed TLS. We investigate four
such implementations, namely LibTomCrypt, mbed TLS, Nettle and OpenSSL
AES. All four implementations use four 1 KB lookup tables with 32 bit entries
to store the precomputed transformations for the first nine AES rounds. The
implementation of the last AES round, which uses a different transformation,
differs across the implementations. OpenSSL AES reuses the existing four lookup
tables for the last AES round, while mbed TLS and Nettle AES use an additional
0.25 KB S-Box with 8 bit entries, and LibTomCrypt AES uses four additional
1 KB lookup tables with 32 bit entries. In this section, we study the effects of this
design choice on the cache-side-channel leakage. We investigate how the different
implementations of the last round compare in terms of

A Systematic Study of Cache Side Channels Across AES Implementations 221

– security guarantees against cache side channels and
– the interplay between cache sizes and security guarantees.

To this end, we compute leakage bounds on the AES implementations from
LibTomCrypt, mbed TLS, Nettle, and OpenSSL (see Table 3 for the exact func-
tions that we analyze), with the experimental setup described in Sect. 3.2.

Table 3. AES implementations for which leakage bounds were computed

Library Configuration Analyzed functions

LibTomCrypt 1.17 ENCRYPT ONLY,
LTC NO ASM,ARGTYPE

rijndael enc setup,
rijndael enc ecb encrypt (aes.c)

mbed TLS 2.2.1 MBEDTLS AES ROM-

TABLES, removed
MBEDTLS PADLOCK C

mbedtls aes setkey enc,
mbedtls aes encrypt (aes.c)

Nettle 3.2 default aes128 set encrypt key

(aes128-set-encrypt-key.c),
aes128 encrypt (aes-encrypt.c)

OpenSSL 1.0.1t default private AES set encrypt key,
AES encrypt (aes core.c)

Our results suggest that using fewer additional lookup tables in the last
round of AES leads to better security guarantees against attackers under acc
and accd. Furthermore, our security guarantees for implementations with fewer
additional tables are more robust against an increase of the cache size. They
stabilize already at a smaller cache size. In the subsequent subsections, we discuss
the influence of the lookup tables in the last AES round in detail.

4.1 Security Guarantees

To study the influence of the lookup tables in the last AES round on the height
of leakage bounds, we focus on a fixed cache size of 128 KB.

The lookup tables in AES implementations have been considered with respect
to access-based attackers by Osvik, Shamir, and Tromer [32]. They discuss the
use of smaller lookup tables (e.g., one 1 KB lookup table or one 2 KB lookup table
in the main rounds of AES) as a countermeasure to access-based attacks. They
state that for certain access-based attackers “smaller tables necessitate more
measurements by the attacker”, i.e., reduce the leakage of one program run.
The leakage bounds that we obtain for the access-based attacker models (listed
in Table 4) confirm this. For both accd and acc, we obtain the lowest leakage
bounds, namely 64 bit, for OpenSSL AES, which uses only 4 KB of lookup tables.
The implementations from mbed TLS and Nettle AES, which use lookup tables
with a total size of 4.25 KB, follow closely with leakage bounds of 69 bit. The
leakage bounds for LibTomCrypt AES, which uses lookup tables with twice the

222 H. Mantel et al.

Table 4. acc/accd leakage bounds for 128KB cache

LibTomCrypt mbed TLS Nettle OpenSSL

accd 129 bit 69 bit 69 bit 64 bit

acc 129 bit 69 bit 69 bit 64 bit

Table 5. time/trace leakage bounds for 128 KB cache

LibTomCrypt mbed TLS Nettle OpenSSL

time 7.7 bit 7.7 bit 7.7 bit 7.7 bit

tr 198 bit 199 bit 199 bit 196 bit

total size, namely 8 KB, are roughly twice as high, namely 129 bit. Interestingly,
reducing the total size of lookup tables in one transformation round only, already
has a positive effect on the leakage bounds. LibTomCrypt AES and mbed TLS
AES use lookup tables of the same total size in the first nine rounds, but differ
in the total size of lookup tables used in the last round. While mbed TLS AES
uses a single additional S-Box of 0.25 KB in the last round, LibTomCrypt AES,
which has significantly higher leakage bounds, uses four additional lookup tables
that each require 1 KB.

The influence of lookup tables in AES implementations on time- and trace-
based attackers has been studied by Page [34]. He recommends the use of S-Boxes
with 8 bit entries, instead of lookup tables with 32 bit entries. Page argues that,
the smaller table entries are, the more table entries share the same cache line.
Consequently, for smaller table entries, cache hits and misses reveal less infor-
mation. Tiri, Aciiçmez, Neve, and Andersen [39] confirm this for two time-based
attacks in a practical evaluation of variants of OpenSSL AES. They compare
an attack on OpenSSL AES, which reuses the 1 KB lookup tables with 32 bit
entries in the last round, to an attack on a variant of OpenSSL AES that uses
an S-Box with 8 bit entries in the last round. The latter attack requires more
attacker measurements than the former. Our leakage bounds for the attacker
models time and tr are listed in Table 5. We observe that the leakage bounds are
very similar across the different implementations. In particular, the bounds for
mbed TLS and Nettle, which use S-Boxes with 8 bit entries in the last round,
are not lower than the bounds for LibTomCrypt and OpenSSL, which use tables
with 32 bit entries in the last round. Note that, in our approach, we approximate
the possible observations about cache hits, but not the value that an individual
observed cache hit has for the attacker. This difference between our approach
and the one in [39] might be the reason for the difference in the findings.

In summary, our study suggests that the use of fewer additional lookup tables
in the last round of AES leads to better leakage guarantees against attackers
under acc and accd. While a more fine-grained approach would be needed to
study the effectiveness of smaller table entries as a countermeasure against trace-

A Systematic Study of Cache Side Channels Across AES Implementations 223

and time-based attackers, the leakage bounds are precise enough to confirm that
smaller lookup tables are effective against access-based attackers.

4.2 Interplay of Cache Size and Security Guarantees

The leakage bounds that we obtain for varying cache sizes for the attacker models
accd and acc are depicted in Fig. 2c and d.3 For all four AES implementations
the leakage bounds stabilize with increasing cache size. The cache size from
which they stabilize differs across the implementations. This could be due to
the minimum amount of cache sets that is needed for an injective mapping from
memory blocks to cache sets. For LibTomCrypt, which uses 4 KB of additional
tables in the last AES round, additional 15 KB of 4-way set-associative cache
are needed, compared to mbed TLS AES, which uses only 0.25 KB of additional
tables in the last AES round. Note that, it is of practical relevance that the
leakage bounds for acc and accd stabilize at the observed points. If leakage
bounds are computed for a stabilization point, they are robust against increasing
cache sizes, and cache sizes tend to grow with technological improvements. In
our analysis, the stabilization point is reached, once the mapping from memory
blocks to cache sets is injective.

(a) time

4 8 16 32

8

8.5

9

cache size [KB]

b
o
u
n
d

[b
it
]

8

(b) tr

4 8 16 32

200

220

240

cache size [KB]

b
o
u
n
d

[b
it
]

LibTomCrypt

mbed TLSmbed TLS

Nettle

OpenSSLOpenSSL

(c) accd

2 4 8 16 32 64 128

50

100

cache size [KB]

b
o
u
n
d

[b
it
]

(d) acc

2 4 8 16 32 64 128

100

150

200

cache size [KB]

b
o
u
n
d

[b
it
]

Fig. 2. Leakage bounds wrt. the four attacker models

3 For LibTomCrypt AES and 2KB cache size, the analysis ran out of memory.

224 H. Mantel et al.

The leakage bounds that we obtain for the attacker models time and tr are
depicted in Fig. 2a and b. We observe that the tr leakage bounds for all four AES
implementations decrease and then stabilize to roughly 200 bit with increasing
cache size. The bounds for mbed TLS, Nettle, and OpenSSL are stable start-
ing between cache size 4 KB and 8 KB. The bounds for LibTomCrypt are stable
starting between cache size 8 KB and 16 KB. Note that, for all four implemen-
tations, the cache sizes at which the bounds stabilize correspond to the amount
of data used by the implementations (dominated by the lookup tables). Since
the AES implementations perform 200 accesses to lookup tables during one key
expansion and encryption, a leakage of 200 bit corresponds to a leakage of 1 bit
(hit or miss) per access to a lookup table. The additional leakage before stabi-
lization could be due to secret-dependent eviction of other local variables. Once
all memory blocks fit into the cache, local variables are not evicted any more.
In practice, a smaller total size of additional lookup tables in the last round of
AES leads to more robustness of our tr and time leakage bounds against changes
in the cache size.

Overall, our study suggests that the decision how many additional lookup
tables are used in the last round of AES has an influence on the robustness
of the security guarantees for all four attacker models with respect to future
hardware. A smaller total size of additional tables leads to implementations that
are robust starting from a smaller cache size.

5 Hardening Across AES Implementations

Hardening techniques aim to reduce the side-channel leakage of implementations.
The preloading hardening technique is tailored specifically to lookup-table-based
implementations of AES. It preloads all memory blocks that belong to lookup
tables into the cache, before running the actual implementation. Cache lock-
ing [27] locks memory blocks in cache lines. Locked memory blocks cannot be
evicted from the cache. If lookup tables are preloaded and then locked in the
cache, their presence in the cache is independent of secret information4.

Does the implementation of the last AES round in a lookup-table-based
implementation influence the effectiveness of preloading as a hardening tech-
nique? To address this question, we compute leakage bounds for preloading in
multiple lookup-table-based AES implementations. These implementations dif-
fer in the techniques used to implement the last round of AES. More concretely,
we analyze the implementations from LibTomCrypt (last round with four 1 KB
lookup tables), mbed TLS and Nettle (last round with one 0.25 KB S-Box), and
OpenSSL (last round without additional lookup tables), to which we manually
added preloading. Throughout this section, we assume that no other processes
affect the cache content.5

4 Without cache locking, the preloaded table entries might be evicted from the cache
by other processes [21,22].

5 This can be realized using static cache locking if the cache size exceeds the total size
of tables. One could consider dynamic cache locking [27] if the cache is too small.

A Systematic Study of Cache Side Channels Across AES Implementations 225

In Table 6, each line corresponds to one AES implementation with preloading.
The symbol � marks the cache sizes for which we obtain the leakage bound 0 bit.
The table is the same under all four attacker models acc, accd, tr, and time.

Table 6. Preloading effectiveness for acc/accd/tr/time

Cache Size [KB] 4 8 16 32 64 128

LibTomCrypt � � � �
Nettle � � � � �
OpenSSL � � � � �
mbed TLS � � � � �

We observe that the leakage bounds for LibTomCrypt stabilize to 0 bit for
caches greater than 8 KB and the leakage bounds for the other AES implemen-
tations stabilize to 0 bit for caches greater than 4 KB. This could be due to the
cache size required to hold all lookup table entries and additional variables of
an AES implementation. When no lookup-table entry can be evicted from the
cache, the cache trace and the final cache state are constant for any secret key
and message. To rule out evictions, OpenSSL AES requires at least 4 KB cache
for its 4 KB lookup tables. The AES implementations from mbed TLS and Nettle
require roughly 0.25 KB additional cache for the additional S-Box that they use
in the last AES round. LibTomCrypt AES requires at least 4 KB of additional
cache for its additional 4 KB of lookup tables in the last round. In practice,
this suggests that the use of fewer additional lookup tables in the last round of
AES not only makes preloading more efficient (because fewer blocks need to be
preloaded), but also makes preloading effective on more systems.

Furthermore, for each AES implementation and cache size, we either obtained
the leakage bound 0 bit for all attacker models or for none of the attacker models.
This could be because the final cache state and the cache trace can depend on
secret information if and only if preloaded table entries might be evicted from
the cache. In practice this suggests that, if preloading is used, no additional effort
has to be spent to reduce the attack surface of an AES implementation from tr
to a more restricted attacker model.

Overall, our study suggests that preloading is effective against acc, accd, tr
and time for lookup-table-based AES implementations whose data fits into the
cache entirely.

Remark 3. It is also possible to avoid cache-side-channel leakage by implement-
ing AES without lookup tables. Instead of precomputing the round transforma-
tions, they can be computed on the fly, e.g., using bitslicing. We analyze the
bitsliced AES implementation from the library NaCl6 [6]. We obtain the leakage
bound 0 bit for all four attacker models and all six cache sizes.
6 The sequential composition of the functions crypto stream beforenm (beforenm.c)

and crypto stream xor afternm (xor afternm.c) from NaCl in version 20110221.

226 H. Mantel et al.

6 Related Work

Cache attacks on AES. AES implementations have been attacked using different
techniques to exploit cache-side-channel vulnerabilities.

Bernstein’s time-based attack on OpenSSL AES [5] exploited that a given
byte of the AES key can be characterized by the running times it induces on
different messages. Information about an unknown key was obtained by compar-
ing the duration of multiple sample AES runs with this key against previously
measured running times for known keys. The attacker model time captures the
observations from one sample AES run, where the actual running time is approx-
imated based on the numbers of cache hits and cache misses. Acıiçmez and Koç
presented trace-based attacks on OpenSSL AES [1]. The underlying samples of
cache traces were generated by instrumenting OpenSSL AES to store all access
indices. The attacker model tr captures the observations from one such sample.

Osvik, Shamir, and Tromer mounted access-based cache attacks on OpenSSL
AES using two techniques [32]. In Evict+Time, the attacker clears a cache set
after running AES and times a subsequent encryption. In Prime+Probe, the
attacker fills the cache with his data and times his own accesses to his data in
a cache set after an encryption. Both techniques allow an attacker to determine
whether a given cache set was used. This scenario is generalized by the attacker
model accd, under which attackers can observe the fill-degree of all cache sets.

An asynchronous access-based attack on AES was mounted by Gullasch,
Bangerter, and Krenn [15] with a technique later extended to Flush+Reload
[42]. These attacks motivated the attacker model acc, which is weaker because
it captures a synchronous attacker, who can only observe the final cache state.

While cache side-channel attacks [1,5,15,18,19,32,40] have often targeted
OpenSSL, recently the Java library Bouncy Castle was also attacked through
a cache side channel [25]. A detailed survey of microarchitectural side-channel
attacks is provided by Ge, Yarom, Cock, and Heiser [14].

Hardening techniques for AES. Preloading is a code-based technique to counter
cache side channels in lookup-table-based implementations. The cache-locking
technique, mentioned in Sect. 6, is supported by multiple commercial proces-
sors [27]. Multiple other code-based, hardware-based, and operating-system-
based countermeasures exist. A survey of countermeasures is provided in [14].

Already in 2003, Page considered a variety of code-based countermeasures
against trace- and time-based cache side channels, including preloading and
lookup tables with smaller entries [34]. As countermeasures against access-based
cache side channels, Osvik, Shamir, and Tromer suggested different possibilities
to avoid memory accesses [32]. As alternatives to avoiding memory accesses,
they discussed, e.g., the use of smaller lookup tables. Brickell et al. suggested
to harden AES implementations against cache side channels by permuting the
lookup tables during the algorithm and by using one compact lookup table that
can be preloaded before each AES round [7]. Crane et al. proposed a random-
ization of the control flow and the execution characteristics of binaries [9].

A Systematic Study of Cache Side Channels Across AES Implementations 227

On the operating system level, Page considered restricting access to precise
timing information, randomizing the duration of memory accesses, and out-of-
order execution of memory accesses [34]. On the hypervisor level, Stealth-
Mem [20] counters cache side-channels by avoiding that different VMs evict
each other’s cache lines. Hardware-based countermeasures include larger cache
lines, physical shielding of devices [34], and special cache architectures [35,41].

Leakage across implementations. To our knowledge, ours is the first systematic
study of cache-side-channel leakage across off-the-shelf AES implementations.

Different variants of one specific AES implementation have been investigated
by Tiri, Acıiçmez, Neve, and Andersen [39]. They propose an analytical model
for time-based cache attacks that predicts the number of required running time
samples for key recovery. They validate the model with respect to three variants
of OpenSSL AES (5 KB, 4.25 KB, and 4 KB lookup tables), two specific approx-
imations of the attacker model time, and two different cache line sizes. To this
end, they mount attacks with an attacker who can directly access the number of
cache misses. In their predictions as well as in their attacks, the 4.25 KB variant
requires more samples than the 5 KB variant. While Tiri, Acıiçmez, Neve, and
Andersen consider only OpenSSL AES, we investigate cache-side-channel leak-
age across multiple AES implementations. Furthermore, while Tiri et al. focus
on time-based attacks, our study also covers access- and trace-based attacks.

Variants of mbed TLS AES 1.3.7 with/without preloading and varying key
sizes (128 bit, 192 bit, 256 bit) have been analyzed by Doychev, Köpf, Mauborgne,
and Reinecke [12]. They observed that, under FIFO replacement, preloading is
effective against acc, accd, tr, and time for the cache sizes large enough to hold
all AES lookup tables. They also observed a positive effect of larger cache sizes
on their leakage bounds for accd, tr, and time as well as a negative effect on
their bounds for acc. They describe that the acc leakage bounds converge to
the same value as the accd leakage bounds because each cache set can contain
at most one lookup table block at the point of convergence. Our study shows
that the observations from [12] carry over to a newer version of mbed TLS.
Moreover, we show that these observations are also valid for three further AES
implementations.

7 Conclusion

We conducted a systematic study of cache side channels in off-the-shelf AES
implementations, namely OpenSSL, LibTomCrypt, mbed TLS, and Nettle AES.
Our goal was to better understand the influence of implementation details on
upper bounds for the cache-side-channel leakage of AES implementations.

Our findings suggest that the total size of lookup tables in an AES implemen-
tation plays an important role for the leakage bounds on cache side channels.
The use of a dedicated S-Box in the last round of AES, for instance, can be
avoided by masking entries of the lookup tables used in the first rounds of AES.

An interesting direction for future work will be to study the influence of
multiple cache levels and of cache inclusion policies. We hope that the approach

228 H. Mantel et al.

used for AES in this article will also be adopted by others to enable the analytic
study of cache side channels in a broad range of cryptographic implementations.

Acknowledgements. We thank Clémentine Maurice and the anonymous reviewers
for helpful comments. We also thank Artem Starostin for inspiring discussions in the
initial phase of this project and Xucheng Yin for his contributions to CacheAudit.
This work has been funded by the DFG as part of the project Secure Refinement of
Cryptographic Algorithms (E3) within the CRC 1119 CROSSING and was supported
by Ramón y Cajal grant RYC-2014-16766, Spanish projects TIN2012-39391-C04-01
StrongSoft and TIN2015-70713-R DEDETIS, and Madrid regional project S2013/ICE-
2731 N-GREENS.

References

1. Acıiçmez, O., Koç, Ç.K.: Trace-driven cache attacks on AES (short paper). In:
Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 112–121. Springer,
Heidelberg (2006). doi:10.1007/11935308 9

2. A.R.M Ltd.: ARM buys Leading IoT Security Company Offspark as it
Expands its mbed Platform (2015). https://www.arm.com/about/newsroom/
arm-buys-leading-iot-security-company-offspark-as-it-expands-its-mbed-platform.
php. Accessed 11 Feb 2017

3. A.R.M Ltd.: mbed TLS (Version 2.2.1-gpl) (2016). https://tls.mbed.org/
download/mbedtls-2.2.1-gpl.tgz. Accessed 28 Jul 2016

4. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: S&P, pp. 141–153 (2009)

5. Bernstein, D.J.: Cache-timing attacks on AES. Technical report, University of Illi-
nois at Chicago (2005)

6. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol.
7533, pp. 159–176. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33481-8 9

7. Brickell, E., Graunke, G., Neve, M., Seifert, J.: Software mitigations to hedge AES
against cache-based software side channel vulnerabilities. IACR Cryptology ePrint
Archive, pp. 1–17 (2006)

8. Committee on National Security Systems: CNSS Policy No. 15: National Infor-
mation Assurance Policy on the Use of Public Standards for the Secure Sharing
of Information Among National Security Systems (2016). https://www.cnss.gov/
CNSS/openDoc.cfm?1858/J1y8IPFvRRvn+ZZBw==. Accessed 29 Dec 2016

9. Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Thwarting cache
side-channel attacks through dynamic software diversity. In: NDSS (2015)

10. Daemen, J., Rijmen, V.: AES submission document on Rijndael, Version 2 (1999).
http://csrc.nist.gov/archive/aes/rijndael/Rijndael.pdf

11. Doychev, G., Feld, D., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: a tool
for the static analysis of cache side channels. In: USENIX Security, pp. 431–446
(2013)

12. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: Cacheaudit: a tool for the
static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18, 4:1–4:32
(2015)

13. Barker, E.: Nist special publication 800–57 part 1, revision 4: Recommendation
for key management - part 1: General (2016). http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-57pt1r4.pdf

http://dx.doi.org/10.1007/11935308_9
https://www.arm.com/about/newsroom/arm-buys-leading-iot-security-company-offspark-as-it-expands-its-mbed-platform.php
https://www.arm.com/about/newsroom/arm-buys-leading-iot-security-company-offspark-as-it-expands-its-mbed-platform.php
https://www.arm.com/about/newsroom/arm-buys-leading-iot-security-company-offspark-as-it-expands-its-mbed-platform.php
https://tls.mbed.org/download/mbedtls-2.2.1-gpl.tgz
https://tls.mbed.org/download/mbedtls-2.2.1-gpl.tgz
http://dx.doi.org/10.1007/978-3-642-33481-8_9
https://www.cnss.gov/CNSS/openDoc.cfm?1858/J1y8IPFvRRvn+ZZBw==
https://www.cnss.gov/CNSS/openDoc.cfm?1858/J1y8IPFvRRvn+ZZBw==
http://csrc.nist.gov/archive/aes/rijndael/Rijndael.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

A Systematic Study of Cache Side Channels Across AES Implementations 229

14. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptogr. Eng., 1–27
(2016)

15. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache
attacks on AES to practice. In: S&P, pp. 490–505 (2011)

16. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: ACSAC,
pp. 261–269 (2010)

17. Corporation, I.: IntelR©64 and IA-32 Architectures Optimization Reference Manual.
Order Number: 248966–032 (2016)

18. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works
across cores and defies VM sandboxing - and its application to AES. In: S& P, pp.
591–604 (2015)

19. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! a fast, cross-VM
attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS,
vol. 8688, pp. 299–319. Springer, Cham (2014). doi:10.1007/978-3-319-11379-1 15

20. Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: system-level protection
against cache-based side channel attacks in the cloud. In: USENIX Security, pp.
189–204 (2012)

21. Kong, J., Aciiçmez, O., Seifert, J.P., Zhou, H.: Deconstructing new cache designs
for thwarting software cache-based side channel attacks. In: CSAW, pp. 25–34
(2008)

22. Kong, J., Aciiçmez, O., Seifert, J.P., Zhou, H.: Hardware-software integrated
approaches to defend against software cache-based side channel attacks. In: HPCA,
pp. 393–404 (2009)

23. Köpf, B., Rybalchenko, A.: Approximation and randomization for quantitative
information-flow analysis. In: CSF, pp. 3–14 (2010)

24. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04138-9 1

25. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: cache
attacks on mobile devices. In: USENIX Security, pp. 549–564 (2016)

26. Massey, J.L.: Guessing and entropy. In: ISIT, p. 204 (1994)
27. Mittal, S.: A survey of techniques for cache locking. ACM Trans. Des. Automat.

Electron. Syst., 49:1–49:24 (2016)
28. Möller, N.: Nettle (Version 3.2) (2016). https://ftp.gnu.org/gnu/nettle/nettle-3.2.

tar.gz. Accessed 28 Jul 2016
29. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distinguish

undue influence. In: PLAS, pp. 73–85 (2009)
30. OpenSSL Software Foundation: OpenSSL (Version 1.0.1t) (2016). https://www.

openssl.org/source/openssl-1.0.1t.tar.gz. Accessed 28 Jul 2016
31. OpenVPN Technologies, Inc. HOWTO (2017). https://openvpn.net/index.php/

open-source/documentation/howto.html. Accessed 16 Feb 2017
32. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the

case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). doi:10.1007/11605805 1

33. Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel.
IACR Cryptology ePrint Archive, pp. 1–23 (2002)

34. Page, D.: Defending Against Cache-Based Side-Channel Attacks. Information
Security Technical Report, pp. 30–44 (2003)

35. Page, D.: Partitioned cache architecture as a side-channel defence mechanism.
IACR Cryptology ePrint Archive, pp. 1–14 (2005)

http://dx.doi.org/10.1007/978-3-319-11379-1_15
http://dx.doi.org/10.1007/978-3-642-04138-9_1
https://ftp.gnu.org/gnu/nettle/nettle-3.2.tar.gz
https://ftp.gnu.org/gnu/nettle/nettle-3.2.tar.gz
https://www.openssl.org/source/openssl-1.0.1t.tar.gz
https://www.openssl.org/source/openssl-1.0.1t.tar.gz
https://openvpn.net/index.php/open-source/documentation/howto.html
https://openvpn.net/index.php/open-source/documentation/howto.html
http://dx.doi.org/10.1007/11605805_1

230 H. Mantel et al.

36. Pasareanu, C.S., Phan, Q., Malacaria, P.: Multi-run side-channel analysis using
symbolic execution and max-SMT. In: CSF, pp. 387–400 (2016)

37. libtom projects: LibTomCrypt (Version 1.17) (2010). https://github.com/libtom/
libtomcrypt/archive/1.17.tar.gz. Accessed 28 Jul 2016

38. Smith, G.: On the foundations of quantitative information flow. In: FOSSACS, pp.
288–302 (2009)

39. Tiri, K., Acıiçmez, O., Neve, M., Andersen, F.: An analytical model for time-driven
cache attacks. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 399–413.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74619-5 25

40. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptology 23(1), 37–71 (2010)

41. Wang, Z., Lee, R.B.: A novel cache architecture with enhanced performance and
security. In: MICRO, pp. 83–93 (2008)

42. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security, pp. 719–732 (2014)

https://github.com/libtom/libtomcrypt/archive/1.17.tar.gz
https://github.com/libtom/libtomcrypt/archive/1.17.tar.gz
http://dx.doi.org/10.1007/978-3-540-74619-5_25

Idea: A Unifying Theory for Evaluation Systems

Giampaolo Bella1(B) and Rosario Giustolisi2

1 Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy
giamp@dmi.unict.it

2 IT University of Copenhagen, Copenhagen, Denmark
rosg@itu.dk

Abstract. Secure systems for voting, exams, auctions and conference
paper management are theorised to address the same problem, that of
secure evaluations. In support of such a unifying theory comes a model
for Secure Evaluation Systems (SES), which offers innovative common
grounds to understand all four groups. For example, all rest on submis-
sions, respectively votes, test answers, bids and papers, which are to be
evaluated and ultimately ranked. A taxonomy for all groups is advanced
to provide a comparative understanding of the various systems. The tax-
onomy is built according to the type of submissions and the type of
evaluation.

The uniformity of the security requirements across all groups offers
additional validation, and this is an innovative finding in the direction,
currently unexplored, of a common system design. Still, the requirements
may variously shape up. For example, while voter privacy is normally
required forever, anonymity of the submissions is required until after
the marking/evaluation phase for the test answers of an exam, for the
(sealed) bids of an auction, and for the papers submitted to a conference.

1 Introduction

There are at least four groups of secure systems that are widely used at present.
These are respectively for voting, exams, auctions and conference paper manage-
ment. Each group has been extensively studied so far. To advance an example
system per group, we mention Helios for voting [1], Remark! for exams [2], the
protocol presented by Curtis et al. for auctions [3] and Confichair for conference
paper management [4].

This idea paper unfolds our theory that all groups can be unified at an
abstract level. The theory is supported by three main pillars. One is a formal
model for Secure Evaluation Systems (SES), whose main elements are the sub-
mitters, the authorities, the submissions and an evaluation function (Sect. 2).
The model is a tuple that can be instantiated over each group or a specific
system, thus offering a benchmark for a contrastive assessment of the various
systems.

Another pillar in support of our unifying theory is a taxonomy for the groups
of systems based upon the type of submissions and the type of evaluation
(Sect. 3). For example, the taxonomy supports the claim that exam systems and
c© Springer International Publishing AG 2017
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 231–239, 2017.
DOI: 10.1007/978-3-319-62105-0 15

232 G. Bella and R. Giustolisi

conference systems are very similar, although only exams may seek submissions
of type ordered choice, namely a ranked list.

The third pillar is a requirement elicitation process across the four groups of
systems (Sect. 4). It is found that all systems have in common various flavours
of authentication, non-repudiation, fairness and privacy. In particular, receipt-
freeness and coercion-resistance, traditionally spelled out for voting, are inter-
preted for the first time for exams, indicating the impossibility for an examinee
to prove the ownership of her test until after the marking, even with the col-
laboration of a coercing examining authority. By contrast, after the marking
terminates, the system should allow the examinee to publicly leverage the mark
for her test.

2 A Model for Secure Evaluation Systems

Secure Multi-Party Computation (SMPC) is a widely studied area of cryptog-
raphy aimed at the distributed, privacy preserving computation of a function
[5]. It means that all participating players will provide inputs that are needed to
compute the function, whose output may be made public; however, the computa-
tion must not reveal anything about the inputs, hence preserve the privacy of the
players. This model can be reviewed to emphasise the details of secure evaluation
systems. It is useful to further detail our four groups of secure systems.

Voting system is a method for making a decision or expressing an opinion,
usually following discussions, debates or election campaigns. The submissions
consist of a set of preferences (votes) over some options (candidate, decisions,
etc.). The evaluation consists of a tallyng algorithm that outputs a ranking
of candidates (or a winning candidate).

Exam system is a method for evaluating candidates according to their knowl-
edge or skill. The submissions consist of a set of tests over some options
(open-ended questions, multiple-questions, etc.). The evaluation consists of a
marking algorithm that outputs a ranking of tests (or a winning test).

Auction system is a method for buying and selling goods or services by offer-
ing them up for bidding, then taking the bids, and finally selling to the win-
ning bidder. The submissions consist of a set of offers (bids) over some options
(goods, prices, etc.). The evaluation consists of an algorithm that outputs a
ranking of bids (or a winning bid).

Conference system is a method for managing the papers to be presented at
a conference and often published in a book of proceedings. The submissions
consist of a set of papers, which are often anonymised. The evaluation consist
of an algorithm that outputs a ranking of papers (or a winning paper).

This description underlines clear similarities among all groups, such as that
they all aim at producing a ranking. However, the evaluation used for the raking
is inherently different. While there is no notion of “correctness” of a vote in
democracy, there clearly is such a notion for test answers. Also, while all bids

Idea: A Unifying Theory for Evaluation Systems 233

are potentially correct once they are in the right format, correctness of a research
paper also is meaningful.

An informal definition can be given to identify the subject matter.

Definition 1 (SES — Informal). A Secure Evaluation System is a SMPC
system that computes a function termed evaluation function securely. Its players
can be partitioned as submitters, who contribute submissions, and authorities,
who contribute administration.

A formal model can then be built to capture a SES abstractly. The model
rests on a set S of submitters a set s of submissions and a set A of authorities. The
players treat the submissions by means of a set T of tasks, such as sending the
submissions or entering data in a computer. The specific list of tasks is normally
understood as the protocol definition underlying the system. The tasks may
express important features of a SES, for example as an electronic protocol if the
tasks occur over computing devices, or as a face-to-face protocol if the tasks take
place traditionally, de visu. Both submitters and authorities may misbehave to
obtain an advantage maliciously. This admits a threat model, namely a set of
malicious tasks Tt.

The evaluation function f, which may be jointly computed by the players,
should satisfy a set Rf of functional requirements. The privacy preservation pre-
requisite can be generalised as a set Rs of security and privacy.

A SES can thus be formalised as a tuple.

Definition 2 (SES — Formal). A Secure Evaluation System, at the formal
level, is a tuple SES = 〈S,A, s,T,Tt, f,Rf ,Rs〉 such that:

– S is a set of submitters;
– A is a set of authorities;
– s is a set of submissions;
– T is a set of tasks, which the players carry out;
– Tt is a threat model;
– f is an evaluation function, which the players may jointly compute;
– Rf is a set of functional requirements;
– Rs is a set of security requirements.

The model can be easily instantiated over a target secure system of our four
chosen groups. We instantiate it over the groups themselves, building a table
that expresses an inclusion relation, Table 1. Therefore, the table is incomplete
because it only provides a limited set of examples, but offers a compact, uni-
fying workbench. This highlights a minor ambiguity in the terminology, that a
candidate in voting is someone who can be voted for, while a candidate in exam
is someone who is examined.

It must be emphasised that all groups of systems are aimed at computing
a ranking. This underlines the competitive nature of the problems that all sys-
tems address. Also the Rs line is limited, providing just one obvious security
requirement per group, but a more comprehensive analysis will follow (Sect. 4).

234 G. Bella and R. Giustolisi

Table 1. An incomplete demonstration of the SES formal model

⊆ Voting Exam Auction Conference

S Voters Candidates (examinees) Bidders Authors

A Talliers, officials Invigilators, examiners Auctioneer Program chair

s Votes Test answers Bids Research papers

T Vote casting Answering questions Bidding Paper writing

Tt Voting twice Over-marking Bid alteration De-anonymisation

f Candidate ranking Test ranking Bid ranking Paper ranking

Rf Efficiency Efficiency Efficiency Efficiency

Rs Voter privacy Anonymous marking Bid sealing Anonymous reviewer

3 A Taxonomy for Secure Evaluation Systems

We build a taxonomy based upon the types of submissions and the type of
evaluation. Submissions can be of three types.

3.1 Types of Submissions

Single-choice submission allows the submitter to select one of the possible
options. In voting, this submission type reflects Single-Mark Ballot type where
each voter chooses one candidate. In exams, it reflects both open-ended tests
and those multiple-choice tests that only demand one answer. In auctions,
it reflects Dutch and Sealed first-price auction types where each bidder may
only put in one bid. In conferences, this type of submissions is the standard
one.

Check-All-That-Applies (CATA) submission allows the submitter to
select more than one of the possible options, precisely all those that the sub-
mitter deems appropriate. In voting, this reflects Approvals ballot type where
each voter can select any number of candidates of her choice. In exams, it
reflects tests with more than one correct answer. In auctions, it reflects Eng-
lish auction types where bidders can submit multiple bids to get the standing
bid. In conferences, it may be interpreted as the submission of more than one
paper by the same author list.

Ordered-choice submission allows the submitter to order the options accord-
ing to a stated criterion. In voting, this submission type reects Rank and
Score ballot types where each voter produces a hierarchy of the candidates. In
exams, it reects scale format tests, where submissions are based on a rating
scale. In auctions, it reects Combinatorial auction type where each bidder
can place bids on combinations of discrete items. In conferences, this type of
submissions does not seem to be used.

Idea: A Unifying Theory for Evaluation Systems 235

3.2 Types of Evaluation

The tasks for evaluating the submissions managed through a SES may, in turn,
be carried out in three alternative ways, depending on who performs them (while
meeting the requirements in Rs):

Authority evaluation prescribes the submissions to be evaluated by a set of
dedicated authorities.

Peer evaluation sees the evaluation of the submissions being performed by a
set of peers of the submitter’s. Also in this case, anonymity may contribute to
the submitter’s trust in the peers for the sake of evaluation; for example, the
submissions might be anonymised. Additionally, the evaluation may extend,
as prescribed by Rf of the specific protocol, to the answers of a subset or all
of the submitters, as we shall see below.

Self evaluation limits the evaluation to be carried out by the individual sub-
mitter, namely each individual can perform the evaluation that meets the
requirements stated in Rf . Soundness and fairness of such an evaluation are
not obvious so will have to derive from the specific tasks of the system.

3.3 Taxonomy

With all the details provided above, a taxonomy can be built for secure eval-
uation systems. The taxonomy is in Table 2: a cell mentions a group of secure
systems when we are aware that there exists at least one system in the group
that exhibits the specific combination of submission and evaluation types that
the cell pinpoints.

Authority evaluation. Most SES’s feature an authority that takes care of the
evaluation process. All democracies elect holders of offices by voting systems that
have tallying authorities. This applies to single-choice, CATA, and ordered-choice
types of submissions. In electronic voting, some systems have been proposed to
distribute the trust among different authorities. For example, one such system
is Helios [1]. Similarly, in most classic auctions, the auctioneer is the authority
who declares the winning bid. E-bay is a popular example of electronic auction
with a CATA type of submission. The auction system by Curtis et al. [3] fits any
submission type. In entrance examinations, authorities normally produce the list
of admitted candidate. Some effort to distribute the trust on such authorities

Table 2. A taxonomy for secure evaluation systems

Evaluation

Authority Peer Self

Submission Single-choice Voting auction exam conf. Exam conf. Voting auction

CATA Voting auction exam conf. Exam conf. Voting

Ordered-choice Voting auction exam Exam

236 G. Bella and R. Giustolisi

has been discussed in a recent proposal of a secure exam system [2]. Notably, the
latter fits any submission type. In Easychair, the program chair acts as authority
and decides the list of accepted papers. Easychair accepts submissions of more
than one paper by the same author list, hence supports both single-choice and
CATA submission types.

Peer evaluation. Peer evaluation is peculiar to conferences and exams. For exam-
ple, in MOOCs homeworks are peer-reviewed. To our knowledge, neither voting
nor auction systems have been proposed so far with this feature.

Self evaluation. Kiayias and Yung [6] introduced the notion of self-tallying voting
for single-choice submission type, in which the result can be tallied and verified
by anybody. Hao et al. [7] proposed a different system that supports an approval
ballot type, hence a CATA submission. No exam systems today support ordered-
choice with self evaluation. Recent works on smart contract technology, such
as AuctionHouse [8] seems to lead to auctions with self-declaration of winning
bids enforced by the use of blockchains. To our knowledge, there is no work on
exam with self-evaluation, although the use of smart contracts may favour the
construction of such a kind of systems.

4 Requirement Elicitation for Secure Evaluation Systems

We now wonder whether it is also possible to find similarities among the SES
multi-objective security goals. More specifically, given any security goal of a
group of SES systems, can we find a similar interpretation in each of the other
groups? History of secure systems tell us that it is unfeasible to list and freeze
all the security goals of a system because people’s needs may change over time,
hence the system’s requirements tend to change as well. However, while we may
not reach a definitive answer to our question, we may find a temporary answer by
considering the main requirements that are popular nowadays. In our analysis,
we focus on classic authentication, non-repudiation, fairness, and privacy goals.

Authentication. Data origin Authentication naturally maps to the authentica-
tion of the submissions of a SES system. Data origin authentication is a common
goal with the same interpretation in voting, exams, auctions, and conferences. It
is normally expected that any evaluation algorithm considers only inputs sub-
mitted by eligible parties: only ballots cast by eligible voters should be recorded
in a voting system; only test answers originated with eligible candidates should
be marked in an exam; only bids put by registered bidders should be considered
in an auction; only papers by registered authors should be considered as valid
submissions to a conference.

In the same way, data origin authentication is also expected for authenti-
cating the outcome of the evaluation in each of the systems. It means that the
rankings in all four groups of systems are generated by the corresponding set
of official authorities. Note that data origin authentication does not imply the

Idea: A Unifying Theory for Evaluation Systems 237

correctness of the evaluation, which means that the outcome derives by correct
execution of the evaluation function. Data origin authentication guarantees that
such a function is fed with all and only eligible submissions. However, correct-
ness of the evaluation is a desired goal for each of our systems, and has a similar
interpretation across each of them.

Non-repudiation. An interpretation of non-repudiation [9] is the impossibility
for submitters to deny their participation. In voting, it means that a voter cannot
deny to have participated in an election. The same clearly applies to exams with
candidates, to auctions with bidders and to conferences with papers. However,
auctions support an additional interpretation in which non-repudiation may sig-
nify the impossibility for a bidder to claim that she did not submit the winning
bid. A similar interpretation is hard to find in voting, in which the very oppo-
site is actually desirable, namely that a voter cannot prove the way she voted
(receipt freeness). We observe that in exams a test should eventually be linked
to the corresponding author in order to assign a mark to each examinee, hence
non-repudiation applies to exams.

Another instantiation of non-repudiation regards the reception of submis-
sions. This interpretation applies to voting, exams, auctions and conferences, so
that no authority can successfully deny having received valid submissions.

Fairness. As regards submissions, fairness means that choices are submitted
independently from other submissions. In voting, it means that no voter can
be influenced by votes already cast. In most auction types, submitted offers
should not influence subsequent offers. However, this interpretation of fairness
obviously does not apply for English auctions, in which bidders submit new
offers to displace the standing bid. From a bidding strategy point of view, if
we consider the submission of a bidder as the final bid she wishes to offer for
an auction, we can see our fairness interpretation in English auctions as well.
Fairness is of utmost importance in exams and means that candidates should
answer their test based on their knowledge and skills. An additional fairness
goal exists for exam and can be named marking fairness: it prescribes that tests
should be marked independently from the identity of their authors. Note that
marks are not the outcome of exam’s function evaluation but they rather are
inputs to the function to calculate the rank of the tests. Marks can be associated
to weights in voting and auctions, in which votes or bids have different weights.
Such interpretation, however, requires weights to depend on the identity of the
submitters. Thus, an interpretation similar to marking fairness is hard to find
in voting and auctions. By contrast, fairness in conferences abides by the same
interpretation as for exams.

Privacy. Privacy goals have seen many interpretations. If we look at the privacy
of the submission, the interpretation in voting is that the system does not reveal
how a voter voted. The same applies to the pairs examinee/test, bidder/bid

238 G. Bella and R. Giustolisi

and author/paper. Note that this definition is strongly related to the definition
of fairness discussed above, and the same considerations made about English
auctions apply here. Voting systems normally require vote privacy to hold even
after the evaluation. The winning bid is normally revealed in auctions, still the
identity of the bidder may not be disclosed. The same applies for exams in
which the right to publicly disclose the link of a test with its author is left
to the examinee. By contrast, this link is routinely disclosed in conferences,
where the author is normally required to attend and present the accepted paper.
Further differences among those systems find a place in specific definitions of
privacy. Strong privacy definitions in voting state that a voter cannot prove the
way she voted (receipt-freeness) even if the voter collaborates with the coercer
(coercion-resistance) [10]. Similar strong privacy definitions are less meaningful
in auctions since winning bids are normally announced publicly. Also information
revealed through other channels, such as who is the (new) owner of the auctioned
good or service, would disclose if a bidder sent a winning or a losing offer.
In exams, receipt-freeness and coercion-resistance are meaningful through the
marking phase and can be seen as stronger definitions of marking fairness. In
particular, receipt-freeness and coercion-resistance are two detailed instances of
anonymous marking, in which tests are marked while ignoring their authors.
They signify that an examinee should not be able to prove the ownership of her
test until after the marking (receipt-freeness) even if the examinee collaborates
with the coercer, e.g. the examiner (coercion-resistance). However, the possibility
of a covert channel between examinee and examiner should be ruled out. Privacy
over conferences can be interpreted much the same way as with exams.

Although we found many similar security goal interpretations among SES
systems, there may still be differences in other clusters, such as verifiability and
accountability [11]. The requirement elicitation needs to be expanded also over
such clusters to fully substantiate a putative claim that all systems state the
same security requirements.

5 Conclusions

Secure systems for voting, exams, auctions and conferences have never been
analysed comparatively before. Our unifying theory claims that this is possible,
and our supporting model confirms their similarities. Our taxonomy favours
a comparative understanding of the various systems. The traditional security
requirements of authentication, non-repudiation, fairness and privacy apply to
all four groups. The next step is to focus on either one of the three introduced
pillars, i.e., formal model, taxonomy, or requirement elicitation, and to study it
thoroughly. For example, it would be interesting to study those group of systems,
such as surveys, that normally do not produce a ranking.

A readily-exploitable value of this work is a deep understanding of the secu-
rity requirements of each system; this is made possible precisely by their argu-
mentation across the various groups. An additional value is that it may inspire
a combination of the research efforts that are currently spent in each individual

Idea: A Unifying Theory for Evaluation Systems 239

group towards solving more effectively than before what seems to be a same
problem, that of secure evaluation.

Acknowledgement. This work is supported in part by DemTech grant 10-092309
from the Danish Council for Strategic Research, Programme Commission on Strategic
Growth Technologies.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: Proceedings of the 17th Con-
ference on Security Symposium, USENIX Symposium (2008)

2. Giustolisi, R., Lenzini, G., Ryan, P.Y.A.: Remark! : a secure protocol for remote
exams. In: Christianson, B., Malcolm, J., Matyáš, V., Švenda, P., Stajano, F.,
Anderson, J. (eds.) Security Protocols 2014. LNCS, vol. 8809, pp. 38–48. Springer,
Cham (2014). doi:10.1007/978-3-319-12400-1 5

3. Curtis, B., Pieprzyk, J., Seruga, J.: An efficient eauction protocol. In: Proceedings
of the Second International Conference on Availability, Reliability and Security
(ARES), pp. 417–421. IEEE Computer Society (2007)

4. Arapinis, M., Bursuc, S., Ryan, M.: Privacy supporting cloud computing: Con-
fiChair, a case study. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol.
7215, pp. 89–108. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28641-4 6

5. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science (SFCS), pp. 160–164, IEEE
(1982)

6. Kiayias, A., Yung, M.: Self-tallying elections and perfect ballot secrecy. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 141–158. Springer,
Heidelberg (2002). doi:10.1007/3-540-45664-3 10

7. Hao, F., Kreeger, M.N., Randell, B., Clarke, D., Shahandashti, S.F., Lee, P.H.J.:
Every vote counts: ensuring integrity in large-scale electronic voting. USENIX J.
Election Technol. Syst. 2, 1–25 (2014)

8. Petkanics, D., Tang, E.: Auctionhouse. http://auctionhouse.dappbench.com/
(2016). Accessed 16 Jan 2017

9. Kremer, S., Markowitch, O., Zhou, J.: An intensive survey of fair non-repudiation
protocols. Comput. Commun. 25, 1606–1621 (2002)

10. Delaune, S., Kremer, S., Ryan, M.: Coercion-resistance and receipt-freeness in elec-
tronic voting. In: 19th IEEE Computer Security Foundations Workshop (CSFW
2006), pp. 12–42(2006)

11. Küsters, R., Truderung, T., Vogt, A.: Accountability: Definition and relationship
to verifiability. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, pp. 526–535. ACM, New York (2010)

http://dx.doi.org/10.1007/978-3-319-12400-1_5
http://dx.doi.org/10.1007/978-3-642-28641-4_6
http://dx.doi.org/10.1007/3-540-45664-3_10
http://auctionhouse.dappbench.com/

Author Index

Alm, Cecilia O. 70

Baldwin, Carliss 53
Baudry, Benoit 97
Beato, Filipe 19
Bella, Giampaolo 231
Beni, Emad Heydari 19
Bielova, Nataliia 115
Bogaerts, Jasper 1
Bos, Herbert 177

Cojocar, Lucian 177
Coull, Natalie 133

De Cock, Danny 19
De Meo, Federico 196
Doolan, Lee 53

Fellner, Richard 161
Ferguson, Robert Ian 133

Giustolisi, Rosario 231
Gruss, Daniel 161

Hammer, Christian 87

Joosen, Wouter 1, 19

Koo, Hyungjoon 143
Köpf, Boris 213
Kroes, Taddeus 177

Lagaisse, Bert 1, 19
Lagerström, Robert 53
Laperdrix, Pierre 97
Le, Anhtuan 36

Li, Forrest 143
Lipp, Moritz 161

MacCormack, Alan 53
Mangard, Stefan 161
Mantel, Heiko 213
Maurice, Clémentine 161
Meneely, Andrew 70
Meyers, Benjamin S. 70
Mishra, Vikas 97
Monrose, Fabian 143
Morton, Micah 143
Munaiah, Nuthan 70
Murukannaiah, Pradeep K. 70

Nafees, Tayyaba 133

Polychronakis, Michalis 143
Prud’hommeaux, Emily 70

Rashid, Awais 36
Rezk, Tamara 115
Roedig, Utz 36

Sampson, Adam 133
Schwarz, Michael 161
Snow, Kevin Z. 143
Somé, Dolière Francis 115
Sturtevant, Dan 53

Viganò, Luca 196

Weber, Alexandra 213
Welearegai, Gebrehiwet Biyane 87
Wolff, Josephine 70

Yu, Yang 70

Zhang, Ren 19

	Preface
	Organization
	Contents
	SEQUOIA: Scalable Policy-Based Access Control for Search Operations in Data-Driven Applications
	1 Introduction
	2 Background and Related Work
	3 Sequoia Architecture
	4 Transformation
	5 Performance Evaluation
	6 Conclusion
	References

	A Voucher-Based Security Middleware for Secure Business Process Outsourcing
	1 Introduction
	2 Background and Related Work
	2.1 Background on BPO and WF-Interop
	2.2 Related Work

	3 Secure BPO
	3.1 Delegation and Validation of Access Rights
	3.2 Secure Asynchronous Operations
	3.3 Secure HATEOAS Filtering

	4 Validation and Illustration
	5 Performance Evaluation
	6 Conclusion and Future Work
	A Appendix
	References

	LASARUS: Lightweight Attack Surface Reduction for Legacy Industrial Control Systems
	1 Introduction
	2 Background and Related Work
	2.1 Industrial Control Systems
	2.2 Security of ICS

	3 Problem Definition
	3.1 Threat Model
	3.2 Example ICS

	4 Lightweight Attack Surface Reduction with LASARUS
	5 Evaluation
	5.1 Evaluation Scenario and Datasets
	5.2 Experiment Setup
	5.3 Results and Discussions
	5.4 Possible Attacks on Obfuscation Keys
	5.5 System Configuration Options

	6 Conclusion
	References

	Exploring the Relationship Between Architecture Coupling and Software Vulnerabilities
	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Metrics and Defects
	2.2 Software Metrics and Vulnerabilities
	2.3 Coupling Metrics for Outcome Prediction

	3 Measuring Component and Architecture Coupling Metrics
	3.1 Software Component Metrics
	3.2 Architecture Coupling Measures

	4 The Chromium Project
	4.1 Chrome Metrics and Coupling
	4.2 Chrome Vulnerabilities

	5 Chrome Metrics and Vulnerable Files
	5.1 Findings
	5.2 Use of Different Sets of Data Available

	6 Discussion and Future Work
	7 Conclusions
	References

	Natural Language Insights from Code Reviews that Missed a Vulnerability
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Collection
	3.2 Metric Collection
	3.3 Analysis

	4 Results
	4.1 RQ1 Feedback Quality
	4.2 RQ2 Lexical Classifier

	5 Limitations
	6 Summary
	A Comparing Distribution of Inquisitiveness, Sentiment and Complexity Metrics
	References

	Idea: Optimized Automatic Sanitizer Placement
	1 Introduction
	2 Sanitizer Placement Overview
	2.1 Dataflow Graph and Sanitization Policy
	2.2 Sanitizer Placement Problem

	3 Our Approach
	3.1 Fully Optimized Approach

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	FPRandom: Randomizing Core Browser Objects to Break Advanced Device Fingerprinting Techniques
	1 Introduction
	2 Breaking Linkability of Fingerprints
	2.1 Current Solutions
	2.2 Our Approach: Exploiting Browsers' Flexibility

	3 Implementation
	3.1 Canvas API
	3.2 AudioContext API
	3.3 Order of JavaScript Object's Properties
	3.4 Randomization Strategy

	4 Evaluation
	4.1 Deceiving Fingerprinting Scripts
	4.2 Performance
	4.3 User Study

	5 Related Work
	6 Conclusion and Future Perspectives
	A Analyzing Differences in the AudioContext API
	B Example of String Comparison When Ordering JavaScript Properties
	References

	Control What You Include!
	1 Introduction
	2 Background and Motivation
	2.1 Browsing Context
	2.2 Third Party Tracking

	3 Privacy-Preserving Web Architecture
	3.1 Rewrite Server
	3.2 Middle Party

	4 Implementation
	4.1 Discussion and Limitations

	5 Evaluation and Case Study
	6 Related Work
	7 Conclusions
	References

	Idea-Caution Before Exploitation: The Use of Cybersecurity Domain Knowledge to Educate Software Engineers Against Software Vulnerabilities
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Building Security by Software Engineers
	2.2 Attempts by Ethical Hacker to Catalogue and Use Patterns to Communicate Vulnerabilities

	3 Analysis
	3.1 Potential Causes of Poor Knowledge Sharing
	3.2 Software Engineering Problems
	3.3 Cyber Security Problems
	3.4 Addressing Shortcomings of Previous Pattern-Based Attempts

	4 Practical Proposition: Our Solution
	4.1 The Knowledge Extraction (1-Knowledge Pulling Process)
	4.2 Knowledge Provision (2-Knowledge Pushing Process)
	4.2.1 The Notion of Vulnerability Anti-pattern (VAP)

	4.3 Evaluation

	5 Conclusion
	References

	Defeating Zombie Gadgets by Re-randomizing Code upon Disclosure
	1 Introduction
	2 Goals and Adversarial Model
	3 Background and Related Work
	4 Approach
	4.1 Defeating Code Reloading
	4.2 Defeating Code Inference

	5 Implementation
	5.1 Adapting Offline Randomization Techniques for Online Defense
	5.2 Handling Relocatable Code

	6 Evaluation
	6.1 Security and Correctness
	6.2 Function Randomization Variability and Coverage

	7 Limitations
	8 Conclusion
	References

	KASLR is Dead: Long Live KASLR
	1 Introduction
	2 Background
	2.1 Virtual Address Space
	2.2 CPU Caches
	2.3 Microarchitectural Attacks on Kernel Address Information

	3 Design and Implementation of KAISER
	3.1 Challenges of Kernel Address Isolation
	3.2 Practical Kernel Address Isolation

	4 Evaluation
	4.1 Evaluation of Microarchitectural Attacks
	4.2 Performance Evaluation
	4.3 Reproducibility of Results

	5 Future Work
	6 Conclusion
	References

	JTR: A Binary Solution for Switch-Case Recovery
	1 Introduction
	2 The Problem with Patterns
	2.1 Jump Tables in Practice
	2.2 Pattern Matching Limitations

	3 Tailored Value Set Analysis for Solving Indirect Jumps
	4 Evaluation
	4.1 Detailed Analysis Results
	4.2 Comparing JTR with Other Solutions

	5 Related Work
	6 Limitations
	7 Conclusion
	1 SPEC Result Details
	References

	A Formal Approach to Exploiting Multi-stage Attacks Based on File-System Vulnerabilities of Web Applications
	1 Introduction
	2 A Classification of File-System-Related Vulnerabilities
	3 A Formalization to Reason About File-System Vulnerabilities
	3.1 The DY Attacker as a Web Attacker
	3.2 File-System
	3.3 Database
	3.4 Web Application
	3.5 Goals

	4 Our Tool WAFEx and Its Application to Case Studies
	4.1 WAFEx: A Web Application Formal Exploiter
	4.2 Case Study: The Multi-stage Web App
	4.3 Concretization Phase

	5 Concluding Remarks, Related Work and Future Work
	References

	A Systematic Study of Cache Side Channels Across AES Implementations
	1 Introduction
	2 Preliminaries
	3 Our Approach
	3.1 Static Bounds on Cache Side Channels
	3.2 Analysis of AES from mbed TLS
	3.3 Tool Support

	4 Leakage Across AES Implementations
	4.1 Security Guarantees
	4.2 Interplay of Cache Size and Security Guarantees

	5 Hardening Across AES Implementations
	6 Related Work
	7 Conclusion
	References

	Idea: A Unifying Theory for Evaluation Systems
	1 Introduction
	2 A Model for Secure Evaluation Systems
	3 A Taxonomy for Secure Evaluation Systems
	3.1 Types of Submissions
	3.2 Types of Evaluation
	3.3 Taxonomy

	4 Requirement Elicitation for Secure Evaluation Systems
	5 Conclusions
	References

	Author Index

