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Preface to the English Edition

The French version of this book appeared in 2002 as part of the “Material
Mechanics and Engineering” series. The objective of this book was to create as
complete as possible a corpus of knowledge and methods in this field.

In designing this book on the mechanical behavior of soils and rocks, we
gathered together a number of internationally known specialists, who each brought a
significant contribution to the knowledge of the experimental behavior of these
materials, as well as their constitutive modeling. Our goal was to cover as far as
possible the theories at the basis of the different approaches of modeling, and also to
address the most recent advances in the field.

In translating this book into English, we hope to make available to a wider
scientific and engineering public the approaches and school of thought which have
dominated the field of geomaterial mechanics in France over the past few decades.
We have put together present-day knowledge of mechanical behavior and their
theoretical bases in order to construct an original, analytical framework which, we
hope, will give readers a useful guide for their own research. Most of the chapters
have been updated in order to include the most recent findings on the respective
topics.

Finally, we wish to dedicate this book to the memory of Professor Jean Biarez,
who not only played a ground-breaking role in the history of soil mechanics in
France, but remains a source of inspiration to many of us today.

Pierre-Yves Hicher
Jian-Fu Shao



Preface to the French Edition

Soils and rocks possess a number of similar characteristics: both are highly
heterogenous materials formed by natural grains. This alone gives them certain
rheological features which distinguish them from other solid materials, such as a
strongly non-linear character, a behavior which depends on the mean stress and
shearing which induces volume variations, often dilatancy, which leads to
unassociated plastic strains.

Soils and rocks can be studied at different scales. At the scale of one or several
grains (from um to cm), we can examine the discrete phenomena which govern the
interactions between grains. They can be described using micro-mechanical models
or analyzed in order to better understand the material behavior at a larger scale,
typically the size of the material specimen: this approach corresponds to passing
from a discontinuous to an equivalent continuous medium. Even though the size of
the latter can vary, it has to be “sufficiently large” (typically from 1 cm to 1 dm)
compared to the size of the material discontinuities in order to be representative of
the equivalent continuous medium, whose behavior can be modeled by using certain
concepts of continuous medium mechanics which ignore the notion of scaling in its
basic equations.

However, some phenomena, such as the development of defects or cracks within
the material specimen, are located at an intermediary scale, called the “meso” scale.
It is thus necessary, in a constitutive model for continuous medium, to use scaling
techniques in order to take into account these intermediary scales. This approach,
still recent but potentially strong, can also be adapted to change the scale from the
material specimen to the in situ soil or rock masses in geotechnical work modeling.

The constitutive models developed to describe the mechanical behaviors at the
macroscopic scale can be roughly classified into two categories: those adapted to the
behavior of “ductile” materials and those adapted to the behavior of “fragile”
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materials. The first category corresponds mainly to sandy or clayey soils, but also to
soft rocks subjected to high confining stresses. The second category corresponds
mainly to hard rocks, but also to certain soft rocks and highly overconsolidated clays
subjected to small confining stresses. In ductile materials, the non-linear behavior is
essentially due to irreversible grain displacements, which leads to a more or less
significant hardening and to a pore volume change which induces volume changes at
the scale of the specimen. In fragile materials, the non-linear behavior is due to the
development of cracks, whose size may vary and whose direction depends on the
principal stress directions.

In order to model ductile behaviors, plasticity (elastoplasticity or viscoplasticity)
has shown to be an operational framework and the large majority of the constitutive
models for soils and certain soft rocks belong to this category. However, for non-
cohesive soils in particular, the difficulty of characterizing an elastic domain,
determining the plastic mechanisms (potential and yield surface) experimentally, has
led to the development of specific constitutive models, whose structure can be
defined as incrementally non-linear.

In order to model fragile behaviors, the damage mechanics framework has been
used to propose constitutive models adapted to describing irreversible phenomena
linked to the deterioration of certain physical properties. In particular, they can take
into account a large amount of rock properties: irreversible strains, dilatancy,
induced anisotropy, hysteresis loop during loading-unloading due to opening and
closing of mesocracks and frictional mechanisms along closed mesocracks.

In intermediary materials, the non-linear behavior can be due to microstructural
changes, associating damage and hardening phenomena. Models coupling plasticity
and damage have been developed to take into account this type of behavior.

After a general presentation of the constitutive models and their internal
structures, each chapter will give a brief description of the different approaches
mentioned above by focusing on a given class of materials. The first three chapters
are devoted to the elastoplasticity theory applied to soils and soft sedimentary rocks.
An alternative approach is then presented by means of the so-called incrementally
non-linear models. The time-effect in clayey soils is analyzed in the framework of
viscoplasticity. The behavior of hard rocks is then studied in Chapters 8§ and 9,
through the use of the damage theory at different scales. The modeling of the
poromechanical behavior is also introduced in order to take into account the
hydromechanical coupling in saturated porous rocks.
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As the validity of any given model lies in its capacity to reproduce the observed
material characteristics, the authors have placed the experimental data, obtained
mainly from laboratory testing on intact soil and rock samples, under special
consideration. The final chapter is devoted to parameter identification procedures.
This is an important topic when dealing with natural materials because, each site
being different from another, accurate parameter identification is essential for the
quality of geotechnical work calculations, which is the final goal of this modeling
approach.

Pierre-Yves Hicher
Jian-Fu Shao
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Chapter 1

The Main Classes of Constitutive Relations

1.1. Introduction

The study of the mechanical behavior of solid materials and its description by
constitutive relations was for many years developed within the framework of
isotropic linear elasticity characterized by Hooke’s law, plasticity characterized by
the Von Mises, Tresca and Mohr-Coulomb criteria, and viscosity characterized in
the linear case by Newton’s law. However, since the end of the 1960s, the
development of more powerful numerical methods such as the finite element method
and the use of high-performance computers has revived the study of material
behavior, as it became possible to take into account a more realistic visco-
elastoplastic modeling, albeit at the expense of much more complex formalisms.

Inside the three sets of equations defining a continuous medium mechanics
problem, i.e. general equations (conservation equations), constitutive laws and
boundary conditions, constitutive laws correspond to the more difficult part,
particularly since the general framework in which the constitutive equations are
inscribed remains often numerically imprecise. It is the comprehension of the
absence of “physical laws” in this domain which gradually changed the designation
of “constitutive laws” to “constitutive models”. The latter corresponds better to the
objective of giving a mathematical form to the mechanical properties of materials,
whose complexity has been demonstrated by the diversity of the experimental
results.

Chapter written by Félix DARVE.
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During the last 30 years, a large variety of constitutive models have been
developed and many workshops organized all over the world have shown that it is
important for developers as well as users of models to be able to obtain guiding
ideas and a general framework of analysis. The objective of this chapter is to try to
formulate both of these.

This general framework will be more useable if it can be unified, and we intend
to show that it can be applied to elastoplasticity as well to viscoplasticity or damage
theory. We thus invite the reader to a wide presentation of constitutive relations for
solid materials.

Two preliminary comments need to be made. First, we should explain why the
chapter covers rheology in an incremental form. Two main reasons have made such
an incremental presentation indispensable. The first is physical and is linked to the
fact that, as soon as some plastic irreversibility is mobilized within the material, the
global constitutive functional, which relates the stress state 6(t) at a given time t to
the strain state €(t) history up to this time, is in principle very difficult to formulate
explicitly as this functional is singular at all stress-strain states (or more precisely
non-differentiable, as will be shown). An incremental formulation enables us to
avoid this fundamental difficulty. The second reason is numerical and stems from
the fact that material behavior, and usually also the modeling of engineering works,
exhibits many non-linearity sources which imply that the associated boundary value
problem must be solved by successive steps linked to increments of loading at the
boundary. Therefore, such finite element codes need to express the constitutive
relations incrementally.

Our second comment concerns the use of incremental stress and strain rather
than the stress and strain rates. Here also, it is the physical nature of the phenomena
which determines our choice: in elastoplasticity, and more generally for all non-
viscous behaviors, physical time does not play any role and, as a consequence, the
derivatives with the physical time have no real meaning. Therefore, the incremental
form appears to be intrinsically significant and can in fact be attached
straightforwardly to the rate: the incremental strain is the product of the strain rate
with the time increment, while the incremental stress is the product of Jaumann’s
derivative of the stress tensor with the time increment. It is, however, incorrect to
speak of stress and strain increments, since the incremental strain (for example)
corresponds to a small strain variation only in the case of a sufficiently small strain.

This chapter begins with a traditional presentation of the rheological functional.
We will show the limits of the functional expression and overcome this limitation by
establishing the incremental rheological formalism. First, we will cover the case of
non-viscous materials. The notion of “tensorial zones” will allow us to present the
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different classes of non-viscous models. Then, we will come back to the general
case by considering models which take into account any kind of irreversibility.

1.2. The rheological functional

The basic concepts of continuous medium mechanics are taken for granted. The
tangent linear transformation, characterized by the matrix of the gradient of the
material particle positions, is assumed to describe correctly the material geometric
deformation, even if some theories, called “second gradient theories”, consider that
this first order approximation by the tangent linear transformation from the positions
at a given time to the actual positions is not sufficient, and subsequently introduce
second order terms [MUH 91]. We also assume that the constitutive law of a
material element does not depend on the neighboring elements (some theories called
“non-local theories” consider that the behavior of a basic material particle depends
on a finite deformation field around that particle [P1J 87]). These two hypotheses
define a specific class of materials called “simple media” [TRU 74] for which we
will develop a theoretical analysis.

The starting point of rheology is thus based upon a principle of determinism,
which can be expressed as follows: if a given loading path is applied to a material
sample, the material response is determined and unique, i.e., the principle of
determinism applies only in conditions where there is uniqueness of the rheological
response. Passing through a bifurcation point gives several possible responses. The
choice of one of these responses is guided by existing imperfections which are not
taken into account in the description of the material mechanical state or in the mode
of loading application (control in force or in displacement, for example).

The first expression of the principle of determinism is obtained by stating that
stress state o(t) at a given time t is a functional of the history of the tangent linear
transformation up to this time t. This implies that it is necessary to know the entire
loading path in order to deduce the associated response path.

From a mathematical point of view, this is stated by the existence of a
rheological functional F:

o(t) = Fle(T)] (1.1)
—0<T<t

where E(t) is the strain part of the tangent linear transformation E at time t, also
called the deformation gradient. Deformation gradient E is the Jacobian matrix of
position f(X,t) of material point X at time t. The existence of such a functional, and
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not a function, is related to an essential physical characteristic: for irreversible
behaviors, knowing strain €(t) at time t does not enable us to determine the stress,
and vice versa. For example, we can think of viscous or plastic materials where a
given level of stress can be related to an infinite number of different strain states.

Since this chapter is devoted to the study of fundamental properties of
constitutive relations, the general properties of rheological functional F need to be
examined:

— isotropy of F: due to the principle of isotropy of space, F has to be an isotropic
function of € (if o, € and the internal variables are subjected to an equal rotation, F
remains identical);

— non-linearity of F: the hypothesis of linearity for F is expressed by:
Ve, € and VA, A, real: F[ A&, (7)+ 4,6,(7)]| = AF[&,(0)]|+ AF|&,(7)]

In such a case, the material response to a sum of histories will simply be equal to
the sum of the responses to each history. This constitutes Boltzmann’s principle and
is the basis of linear viscoelasticity theory, but it is not at all valid in the general
case, as in elastoplasticity, for example, where, when we double the strain for
example, the stress is obviously not doubled, due to the non-linear behavior.

In the general case, F must be studied in the framework of non-linear
functionals:

— F is furthermore non-differentiable as soon as there is some plastic
irreversibility. Owen and Williams (1969) showed in fact that the assumptions of
non-viscosity and differentiability of stress functional F imply that there is no
internal dissipation.

In other words, a non-viscous material whose constitutive functional is
differentiable is necessarily elastic. Basically, this is due to the fact that, in
plasticity, the tangent loading modulus is not equal to the tangent unloading
modulus. Therefore, if we want to describe the behavior of anelastic materials by
using a stress-strain relationship, this relation must be formulated using a non-linear
and non-differentiable functional:

— degeneration of F: the only case of degeneration of functional F into a function
corresponds to elasticity (possibly non-linear and anisotropic), where there is a one-
to-one mapping between stress and strain.

Finally, if we want to describe irreversible behavior, we have to consider a non-
linear, non-differentiable functional, which, mathematically, is very difficult to use.
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We therefore need to study constitutive relations using an incremental formulation
rather than a global one.

1.3. Incremental formulation of constitutive relations

We shall now introduce an incremental formulation using a second statement
from the principle of determinism. The second principle of determinism, which can
be called “in the small” to be distinguished from the first principle “in the large”, is
obtained by stating that a small load applied during a time increment dt induces a
small uniquely determined response.

As stated previously, this principle applies only if the uniqueness of the
incremental constitutive relation is maintained. For bifurcation cases, the principle is
no longer valid and the choice of the bifurcated branch will depend on the boundary
conditions and material imperfections. In addition, the principle assumes implicitly
that the loading rate is kept constant during the time increment (even if it can vary
from one increment to another), which excludes dynamic loads due to shocks.

We denote by de = D dt the incremental strain tensor of order two equal to the
product of the second-order strain rate tensor, D (symmetric part of transformation
rate L': L = EE" where E is here the deformation gradient) and time increment dt,
and by do = 0"dt the incremental stress tensor, equal to the product of an objective
time derivative of Cauchy stress tensor ¢ and dt.

Thus, the second determinism principle implies, from a mathematical point of
view, the existence of a tensorial function F, relating the three quantities:

Fy, (de,do, dt)=0 (1.2)
What are the properties of this tensorial function F,,?

The first comment concerns the fact that F;, depends on the previous stress-strain
history. This history is generally characterized by some scalar and tensorial variables
denoted by h which will appear as parameters in the previous relation. These
parameters describe, as far as possible, the actual deformed state of the solid.
According to various constitutive theories, they are sometimes called “memory

EEINT3

variables”, “hardening parameters”, “internal variables”, etc.

Secondly, F, must satisfy the objectivity principle, which means that F;, must be
independent of any observer movement relative to the solid. Thus, F, is an isotropic
function of all its arguments: de, do and also the state tensorial variables, which
characterize its presently deformed state. However, if the material is anisotropic
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insofar as its mechanical properties are concerned, then F, is an anisotropic function
of de and do.

Finally, F, is essentially a non-linear function as long as there is some plastic
irreversibility. If Fj, is linear, we can write:

de=Mdo + C dt

which is the general form of viscoelastic laws where M is the fourth-order elastic
tensor and C the second-order creep rate tensor of the material.

This property of non-linearity for Fj, is directly linked to the non-differentiability
of rheological functional F, the property of differentiability of F being equivalent to
the linearity of Fy,.

In conclusion, relation (1.2) corresponds to the general incremental form of the
constitutive relations. We will now distinguish between viscous and non-viscous
materials in order to represent this incremental form more precisely.

1.4. Rate-independent materials

For non-viscous materials, the loading rate (characterized by time gradation on a
loading path) has no influence on material constitutive behavior: a given loading
path, followed at any given rate, gives the same response path. In other words, the
behavior class considered is rate-independent. This restriction of the constitutive law
implies that constitutive function Fy,, which relates de and do, is independent of time
increment dt, during which the incremental loading is applied. Therefore, F} is
independent of dt and we can write:

de = G(do) (1.3)

or:
do = G''(de) = H(de) (1.4)
The possibility of inversing G or H is linked to the uniqueness of the constitutive
relations. This question will not be studied here; for more details see [DAR 94, DAR

95a].

From a mathematical point of view this independence of non-viscous behaviors
on loading rates implies the following identity:
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VA € R*: Ade = G(Ado)
thus
VA e R*: G (Ado)= AG (do) (1.5)

which states that if the stress rate is multiplied by any positive scalar, the strain rate
response is also multiplied by the same scalar.

This is the first property of G: G is a homogenous function of degree 1 in do
with respect to the positive values of the multiplying parameter. This homogenity
property must not be confused with that of “positively homogenous™ functions,
which is given by;

VA € R: Grdo) =]\G(do)

In addition to this property of homogenity of degree 1, functions G and H, as we
have seen in general for function Fy, are non-linear and anisotropic in do (or in de).

1.4.1. Non-linearity of G and H

If, in relation (1.3), de is the response to an incremental loading do, the response
to an incremental loading — do, following do, is not equal to — de, because plastic
irreversibility or damage takes place in the material. Therefore, G and H are
necessarily non-linear functions of do and de respectively, which implies that the
principle of incremental superposition cannot be rigorously verified, except within
the elastic domain, or more generally within a domain of incremental linearity of the
constitutive model. Calculus shows, however, that the principle of incremental
superposition can be roughly verified along “step-wise” paths, approaching a given
loading path [DAR 95b].

1.4.2. Anisotropy of G and H

Following the same reasoning as for function Fy,, we can deduce that G and H are
anisotropic functions of do and de respectively.

This anisotropy is directly linked to the geometrical meso-structure of the
material, which is gradually modified by the strain (particularly irreversible) history.
We have seen that this history can be characterized by scalar and tensorial state
parameters.
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In simple cases, this anisotropy is directly imposed by the choice of these state
parameters. If we consider, for example, only scalar memory parameters (such as
void ratio), defined independently of any frame, based on the objectivity principle
functions G and H will be isotropic functions, which is not supported by
experiments.

If we add one single tensor variable (such as the stress tensor) to these scalar
memory parameters, G and H are orthotropic functions of do and de respectively,
the orthotropy axes being identified with the principal stress or strain axes. In this
case, it means that G and H are invariant by symmetry with respect to any plane
containing two principal stress or strain directions.

In the more general case of state variables with at least two second-order non-
commutating tensorial variables, anisotropy is not defined. Orthotropy thus becomes
a constitutive assumption, which must be considered as an approximation of the real
behavior of the material for classes of loading in which stress and strain principal
axes rotate.

1.4.3. Homogenity of degree 1 of G and H

Having described the three main properties of G, we will now focus on the first
(homogenity of degree 1) to see the mathematical consequences of such a property.
Let us for this purpose recall Euler’s identity for homogenous regular functions of
degree 1, by writing it for a function of two variables:

Vx,y:f(x,y)sx§+y§ (1.6)

0x dy
where partial derivatives 8f/0x and 8f/dy are homogenous functions of degree 0.

In formulating constitutive relations, it is often more convenient to replace stress
tensor ¢ and strain tensor €, which are second order, by two vectors of IR® defined in
a six-dimensional related space. In this space, vectorial function G is written:

Gofdog) = 9o 45 (o, B=1,...6)
U oy

with summation on index f.
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The partial derivatives of a homogenous function of degree 1 are homogenous
functions of degree 0. Therefore, functions 6G,/0(dog) depend only on the direction
of do, characterized by the unit vector:

oo
M:|—

[dof

with:

[do] =/do; do,

Finally, we obtain:

de, =M 4(u,)doy(u,=do,/|do])) (1.7)
or:

do,=N,(v,)de,(v, =de,/|dée|) (1.8)

Equations (1.7) and (1.8) are the general expressions for all rate-independent
constitutive relations. Constitutive tensors M and N also depend on state variables
and memory parameters, which characterize the loading history. These two matrices
are the gradient matrices of non-linear functions G and H, respectively. In that sense,
they can be considered as tangent constitutive tensors and are therefore uniquely
defined. However, it is possible to construct from them an infinite number of secant
constitutive tensors by adding to the M or N lines the components of any unit vector
perpendicular to do or dg, respectively.

Relations (1.7) and (1.8) will now allow us to propose a classification of all the
existing rate-independent constitutive relations with respect to their intrinsic
structure.

1.5. Notion of tensorial zones

First of all, we need to define the notion of a “tensorial zone” [DAR 82]. We will
call a tensorial zone any domain in the incremental loading space on which the
restriction of G or H is a linear function. In other words, the relationship between de
and do in a given tensorial zone is incrementally linear. If we denote the tensorial
zone being considered as Z, the following definition implies:
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Yue Z:de=M*do

In zone Z, the constitutive relation is characterized by a unique tensor M”. If u
belongs to Z, any vector collinear to u also belongs to Z for all real positive values.
Therefore, a zone is defined by a set of half-infinite straight lines, whose apex is the
same and is at the origin of the incremental loading space. Tensorial zones thus
comprise adjacent hypercones, whose common apex is this origin. What does the
constitutive relation become on the common boundary of two (or several) adjacent
tensorial zones? If M?' and M* are constitutive tensors attached, respectively, to
tensorial zones Z; and Z,, they must obviously satisfy the condition of continuity of
the response to any loading direction u which belongs to the boundary between Z,
and Z,:

Yue ZynZ, (M2 -MZ)u=0 (1.9)

Relation (1.9) can be called a “continuity condition” for zone change. This
condition prohibits, in particular, an arbitrary choice of the constitutive tensors in
two adjacent tensorial zones.

Furthermore, we will see that conventional elastoplastic relations satisfy this
condition by means of the “consistency condition”. This is also the case for damage
models when they are built in a rigorous manner. On the other hand, hypoelastic
models do not necessarily fulfil this condition, which has to be verified a posteriori.
It has been proven that this is not the case for some of these models [GUD 79].

The “response-envelopes”, as proposed by Gudehus [GUD 79], constitute
geometrical diagrams which completely characterize a constitutive relation at a
given stress strain state after a given strain history. At this state, all the incremental
loadings, having the same norm but oriented in all directions, are considered and all
the incremental responses are plotted. The extremities of the response vectors form a
hypersurface which is called the “response-envelope”. Figure 1.1 gives an example
of an elastoplastic model in axisymmetric condition: the continuity of the response
at the boundary of two tensorial zones appears well fulfilled. Figure 1.2 gives an
example of a model with discontinuities, whereas Figure 1.3 corresponds to a
continuous non-elastoplastic model.

In fact, the number of tensorial zones characterizes how a given model describes
the irreversibility due to plasticity or damage, and the directional change of
behavior, i.e. how constitutive tensor M (or N) evolves with the direction of loading
u (or v). More precisely, the number of tensorial zones of a given constitutive model
is an intrinsic criterion, which fully represents the model structure. Therefore, we
have chosen this criterion to classify, in the next section, the different rate-
independent constitutive models.
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1.6. The main classes of rate-independent constitutive relations
1.6.1. Constitutive relations with one tensorial zone

The first class of relations that we are going to look at is related to the simplest
assumption that there is only one tensorial zone. Therefore:

Yu:Mu)=M
Therefore:

de = M, do
or:
do =N de.

The behavior is therefore entirely reversible (except possibly in the case of the
existence of memory parameters h, but this corresponds rather to an artefact in
hypoelasticity). As there is a unique linear relationship between de and do
(incremental linearity), we have here in this first class all the elastic laws, isotropic

or anisotropic, linear or non-linear (in this last case, M and N depend on the actual
state of stress).

The best way to reproduce an elastic behavior (without any internal dissipation)
in a rigorous manner is to introduce an elastic potential V defined by:

dv = Gij dﬁij
As V is an exact total differential, we obtain the following expression:
oV
Gij =—
88,-j

Therefore:

o’V o*v

aﬁij aEkl aﬁkl aSij

using Schwarz’s identity. As a consequence, matrices M and N are symmetric and
tensors C and D, defined by

de;r= Cijkl doy and dGij = Dijkl dey
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have “major” symmetries
Cijkl = Cklij and Dijkl = Dklij-

In the general case of non-linear elasticity, the existence of a potential also
implies conditions of “integrability” [LOR 85], which have to be satisfied by the
components of M and N. All these laws are called “hyperelastic”, while, in the
absence of a potential, they are called “hypoelastic”’. The hypoelastic models
generate energy dissipation, and should thus not be used in practice, the behavior
represented by these models being poorly identified.

1.6.2. Constitutive relations with two tensorial zones

In the presence of two tensorial zones, we can call one the “loading zone” and
the other the “unloading zone”. We thus define two different behaviors (two
different constitutive tensors), one representing the loading condition, and the other
the unloading condition. Each matrix is attached to a different tensorial zone, these
two tensorial zones being separated by a hyperplane in do or de space. A loading-
unloading criterion, a linear and homogenous inequation in do or de, allows us to
discriminate between the two behaviors. The hyperplane equation corresponds, by
construction, to the zero value of the loading-unloading criterion. The continuity
condition at the crossing of the hyperplane gives a link to the two constitutive
tensors and the hyperplane equation:

Yu € hyperplane:(M 4" — M )y=() (1.10)
fo=+1 61/Gy 4
ag=125" 7]
0}' > - T T T :
2000 1 2 2 6,/Gy
G]/GZ =14 2 K 4
f=-1

Figure 1.1. Response envelopes [GUD 79] in axisymmetric conditions for an
elastoplastic material with two tensorial zones (characterized by f; = +1) for three different
stress levels. The continuity of the response envelopes is verified
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Numerous constitutive models follow these general rules and are therefore based
on the definition of two tensorial zones. Their formalisms are basically similar, even
if, sometimes, the detailed equations do not clearly show their fundamentally
bilinear structure. These models are divided into three different families:
elastoplastic models with one plastic potential, hypoelastic models with a unique
loading-unloading criterion and damage laws. We will now examine them
successively.

1.6.2.1. Elastoplastic models with one plastic potential

The first assumption concerns the additive decomposition of the incremental
strain into an elastic part (reversible) and a plastic part (irreversible):

de = de® + deP (1.11)
The plastic deformations exist only beyond a given limit surface, “the elastic limit”,
which depends on the loading history and evolves due to the hardening created by
plastic strains, as has been shown experimentally. Its equation is given by:
flo, €P)=0 (1.12)
The loading condition is obtained by writing that the incremental stress is
directed outwards from the elastic limit. The unloading condition is obtained if the
incremental stress is directed inwards. It follows that:
(8£/85).do > 0: loading condition (1.13)

(8f/86).do < 0: unloading condition

The equation of the hyperplane, the border between the two zones in the do
space, is thus given by:

of/oc.do =0

When the elastic limit is reached, the direction of the incremental plastic strain is
given by the flow rule which is often specified in terms of a plastic potential g(c) as:

dep = d\ = (114)

where dA is an arbitrary scalar, whose value is determined by the consistency rule
which mathematically expresses that, the state of stress reaching the elastic limit and



14  Constitutive Modeling of Soils and Rocks

the loading condition being maintained, the elastic limit follows the state of stress by
hardening. Therefore, the consistency condition can be written as:

df=0 (1.15)
thus:

E.do—.l.a_f.dgp =0

Jdo oeP

which gives the value of dA:

dk:-(ﬁ.dc)/(a_f.%) (1.16)
Jc ¢ do

Therefore, continuity condition (1.10) is verified:
af loadin unloadin,
Vdo such that a—~d0'=0: M*"do-M tdo=0
o

because:
de — de® = de? from (1.11)

and:

de? =2 98 from (1.14)
do

with dA proportional to (6f/06.do) from (1.16).

Therefore, the consistency condition in elastoplasticity theory allows us to verify
the continuity condition in our general theory. The following equation gives the
general mathematical form of the elastoplastic models with one single potential, in
which the forms of functions f and g are not developed:

ﬁ. dJo
de=Medo- o 2002 (1.17)
o 0g do

@.80
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where M° is the elastic tensor and o is a scalar equal to 0 or 1:

oa=0 if: f(o, €?) <0

or:
f(o,€")=0 and I’ as<o
tele
o=1if:
f(o,€”)=0 and £-80>0
teled

When 0f/0c.do = 0, o can be equal either to 0 or to 1, indifferently, the value
being chosen for internal consistency.

All the elastoplastic models are inherently different from each other depending
on the choice of the equations of the elastic limit surface f = 0, the plastic potential
g = 0, and the plasticity criterion obtained when the hardening modulus becomes
equal to 0 (the determinant of the elastoplastic tensor N is zero with do = N de).
When f and g are identical functions, the elastoplastic model is said to be
“associated”, otherwise it is “unassociated”. In this last case, the elastoplastic tensor
is no longer symmetric.

The hardening rule can be “isotropic” when f varies in an homothetic manner in
the stress space, “kinematic” when f is translated in the stress space, or “rotational”
when f can turn around the origin of the stress space (this last hardening has been
introduced more recently, for example in [LAD 97]).
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61/Gy |

fo=+1

Figure 1.2. Response envelopes [GUD 79] in axisymmetric conditions for the Duncan-
Chang model with two tensorial zones (characterized by f; = +1) for four different stress
levels. The continuity of the response envelopes is not verified

1.6.2.2. Hypoelastic models with one single loading-unloading criterion

In this type of model, there is no distinction between elastic and plastic strains
and the notion of elastic limit surface is non-existent. The two tensorial zones are
separated by a hyperplane, having a linear homogenous equation of the following
form:

A(c).do=0
The loading zone corresponds to the loading condition:
A(c).do>0 (1.18)
with the associated constitutive tensor M. The unloading zone is defined by:
A(0).do <0 (1.19)
with the associated constitutive tensor M.

Here there is a complete similarity with the elastoplasticity theory. Inequations
(1.18) and (1.19) correspond to inequations (1.13), whereas tensors M~ and M" can
be compared to tensors M and M°, respectively.
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However, the continuity condition must be fulfilled a posteriori here. It can be
written:

Vdo such that A(g)-do=0: M*-M")do=0 (1.20)

Condition (1.20) prevents any arbitrary choice for M" and M. It corresponds to
the consistency condition in elastoplasticity theory. Tensors M+ and M- have to be
dependent on memory parameters, which are linked to the stress tensor and to the
plastic deformation, as in elastoplastic models.

Figure 1.2 shows the response envelopes obtained for the Duncan-Chang model,
which is a non-linear isotropic hypoelastic model with a specific loading-unloading
criterion. It is easy to verify that such a model cannot be continuous at the border
between the two zones.

1.6.2.3. Damage models

The main assumption behind these models is that damaged material loses part of
its mechanical elastic properties. This is shown by introducing a damage parameter
D, which can be a scalar or a tensor. By introducing the damage parameter into an
elastic formulation, we obtain a rheological functional which expresses the elastic
behavior of a damaged material [MAZ 86]. This approach has proved to be very
easy to use in monotonic loading, but not so much elsewhere, due to the nature of
the functional.

In the framework of the incremental expression of the constitutive relations,
damage models can be constructed by distinguishing a reversible damaged behavior
from an irreversible behavior [MAZ 89]. A limit surface where damage appears is
introduced:

flo.D)=0 (1.21)

When the incremental stress is directed towards the outside of this surface,
additional damage is created, while the damage remains constant when the
incremental stress is directed towards the inside of the surface. The loading-
unloading criterion is therefore given by the sign of 0f/0c.do:

g—f-dO' > 0: loading condition

o (1.22)
of

—-do < 0: unloading condition
teleg
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When the limit surface is reached and the loading criterion is verified, damage is
produced in the direction given by the damage evolution law:

D= % (1.23)

Jdo

where g(o) = 0 is the damage potential. dA is an arbitrary scalar at the present step
and can be determined by the consistency equation which expresses that the damage
limit surface follows the state of stress as long as the loading condition is verified:

df=0
thus
I a6+ ap=0 (1.24)
Jo JD
where
dx=-idc/ia_g (1.25)
Jc JdD Jdo

As in elastoplasticity, we must assure that the consistency equation is always
verified.

The incremental strain can then be considered as the sum of two contributions:

the first being the “degraded elastic” type, the second, irreversible, is induced by the
increase in damage:

de = M¥(D) do - o do__ g (1.26)

with M%(D) the damaged elastic matrix, and o a scalar equal to 0 or 1.

a=0, if f(o, D) <0
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or:

f(o, D)=0 and E-8(7<0
oo

a=1,if f(o,D)=0and g—f-80'>0 (1.27)
O

We can see that, by using the notions of tensorial zone and the continuity
condition, it is possible to give a unified presentation of -elastoplasticity,
hypoelasticity with loading-unloading criteria, and damage theory.

1.6.3. Constitutive relations with four tensorial zones

In order to describe more precisely the incrementally non-linear behavior of
materials, particularly soils, it appears preferable to take into account two plastic
mechanisms in the framework of elastoplasticity and two loading-unloading criteria
for the hypoelastic constitutive relations. Each criterion can be associated,
independently of the other, with a loading or unloading condition according to the
direction of the incremental stress, which leads to the definition of four tensorial
zones and four constitutive tensors. If the criteria are not independent, another
theory, albeit one which is the same in principle, has to be built.

fo=-1;-1 G

N\

1807
01/02 =1/1.2

fg=+1;-1 270° fo=-1;-1

Figure 1.3. Response envelopes [GUD 79] in axisymmetric conditions for the octo-linear
Darve’s model [DAR 82] with four tensorial zones (characterized by f;) for four different
stress levels. The continuity of the response envelopes is verified
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1.6.3.1. Elastoplastic models with double plastic potential

For each state of stress, following a given loading history, there are two yield
surfaces which pass through this state of stress when the first plastic deformations
develop:

fi(o, €”)=0
{ s (1.28)

For each surface, we define a criterion of loading-unloading defined by the
following relation:

of,
—-do>0 0
o o>0or< (129)

of,
do

-do>0o0or<0

In the incremental stress six-dimensional space, we can therefore define four
tensorial zones separated by two hyperplanes having the following equations:

%-d0'=0 and ai.do-=o (1.30)
Jdo Jdo

When the loading condition for criterion i is fulfilled, there is a plastic
deformation de”, whose direction is given by:

dePl = dxiaﬁ (1.31)

Jo

where dA; is an arbitrary scalar and g;(s) = 0 is the plastic potential for mechanism i.
As in the previous section, the consistency rule for mechanism i gives the value of
dA;, using equation (1.16). The incremental strain can therefore be written:

f f
a—l.dG a—z.dc

de=Medg-o, 20 %21, 90 Om (1.32)

2
g do on O do

o’ . Jo o’ 9o
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where:
a; =0, if fi (o,€P) <0

or f; (o, €”) = 0 and 0f/00.do < 0
o =1, if fi(o, €”) = 0 and 0f/00.d6 > 0

The four tensorial zones can be defined by the values of o, and o, and the
correspondent constitutive tensors are:

— tensorial zone I: (0, 0), M®
— tensorial zone II: (1, 0), MP'*?
— tensorial zone III: (0, 1), M*'??

— tensorial zone IV: (1, 1), MP'P?

The continuity condition has to be fulfilled between zones I and II for which
O = 0:

f
Vdo such that g—l-da =0: (M =M")do=0 (1.33)
loj
between zones I and III for which o; = 0:
of, ¢ npem _ 1.34
Vdo such that a—«d0'=0: (M¢-M*")do =0 (1.34)
o
between zones IV and II for which o, = 1:
of, e 1.35
Vdo such that a—-dO' =0: (M"™: —M"*)do =0 (1.35)
o
and between zones IV and III for which o, = 1:
of, .
Vdo such that a—~d0'=0: (MPP2 — M) do =0 (1.36)
o

We can easily verify that conditions (1.33) and (1.36) are equivalent, as well as
conditions (1.34) and (1.35).
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Even if there are four limits, only two continuity conditions have to be satisfied,
which correspond to the two consistency conditions. Due to the structure of
elastoplastic relations, the two other relations are automatically verified.

1.6.3.2. Hypoelastic models with two loading-unloading criteria

For each state of stress, two loading-unloading criteria are defined in order to
obtain a more progressive change of the constitutive tensor with the direction of do
(with only one criterion, the tensor can have only two expressions, one
corresponding to the loading condition, the other one to the unloading condition):

first criterion: A,(0)-do>0or <0 (1.37)
second criterion: A,(0)-do>0or <0

The two hyperplanes having for equation:
A(0).do=0
and:
A, (0).do=0

define four tensorial zones in the do space. If we characterize each zone by the signs
of expressions (1.37), we get the four different zones with the attached constitutive
tensors:

—zone I: (+,+), M
—zone II: (+, -), M"™
—zone III: (-, +), M~
—zone IV: (-,-), M~

The four continuity conditions are given by:

Vdo such that A, (6)-do=0: M™ -M " )do =0
and M -M 7 )do=0 (1.38)
Vdo such that A,(0)-do=0: M™ -M")do=0
and(M*"-M")do=0
We note that, due to the more general structure of the hypoelastic models, the

four conditions (1.38) cannot be reduced to two, as in the elastoplastic models with
double plastic potential.
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1.6.4. Constitutive relations with n tensorial zones (n > 4)

All these models have an incrementally piecewise linear structure. In the case of
elastoplastic models with m plastic potentials, corresponding to m loading-unloading
criteria, each state of stress can be located at the same time on m elastic limits, to
which we can associate m flow rules. The elastic limit corresponds locally to a
vertex, which can be interpreted as the creation of a local singularity by the stress
state encountering the elastic limit surface and deforming it locally. Some
mechanisms can be associated (yield surface i is therefore identical to plastic
potential 7) or unassociated.

With each plastic mechanism is associated a loading-unloading criterion and two
tensorial zones. The total number of tensorial zones is therefore equal to:

n=2"

In the case of hypoelasticity, we can find identical structures by the direct
introduction of m loading-unloading criteria. Obviously, the model has to be
constructed so that it will respect the continuity condition at each change of tensorial
zone.

An clastoplastic model has been constructed by using three deviatoric
mechanisms and one isotropic mechanism, which correspond to 16 tensorial zones
[HIC 85, HUJ 85]. A hypoelastic model with eight tensorial zones, the “octo-linear
incremental model” [DAR 82], is presented in Chapter 6.

1.6.5. Constitutive relations with an infinite number of tensorial zones

A constitutive model can be considered to have an infinite number of tensorial
zones, if each direction of do space is linked to a given tangent constitutive tensor
which varies in a continuous manner with this direction. There are three different
types of model.

Historically, the first models of this type were developed by Valanis [VAL 71].
They are written in the following form

de =Mdo + Cd{ (1.39)

where { plays the role of an “intrinsic time” for the material (which is at the origin
of the designation “endochronic models” for this type of constitutive laws), and
corresponds to the length of the path followed in the strain space:

dg =1 | del |
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The incremental non-linearity is thus given by the scalar | |de| | which always
remains positive, regardless of the direction of the incremental loading. Therefore,
irreversible strains, independent of the strain rate since the relation is homogenous
of degree 1, can be obtained without introducing either loading-unloading criteria or
an elastic domain.

In this class of models, we find models with a non-linear incremental term of a
tensorial nature, called “interpolation type” models since they are based on a non-
linear interpolation between given constitutive responses, the non-linearity being
linked to the type of interpolation rule used. Among these models, we can cite the
“incremental non-linear of second order” model [DAR 80, DAR 88], which has the
following general form:

1
de; =My, doy +7— Ny doydo,, (1.40)

|ac]

and some other models with different interpolation forms [CHA 79, DIB 87, ROY 86].

Models with a “bounding surface”, proposed by Dafalias [DAF 80], have led to
the development of an incrementally non-linear relation called “hypoplasticity”
[DAF 86] by creating a dependency of the incremental response on the direction of
incremental stress.

The term “hypoplasticity” was also used by Kolymbas [KOL 77] and Chambon
[CHA 94] for endochronic type models:

G=A(é+bé]) (1.41)

which are the object of specific developments unlike the initial model developed by
Valanis.

1.6.6. Conclusion

Metallic mono-crystals have a finite number of defined directions of sliding
planes; therefore, this specific microstructure is the basis of models which have a
finite number of plastic potentials. In granular materials, however, plastic sliding can
occur in any direction of the space along tangential planes at grain contacts. The
mechanical behavior of such materials is thus more likely to be incrementally non-
linear.
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In order to describe this non-linearity, i.e. the non-linear character of the
relationship between the incremental strain and stress, we can use a piecewise linear
formalism. Elastoplasticity theory guides us in the construction of such models by
the definition of notions such as elastic limit, flow rule and hardening variables.
However, calibrating these different elements can be a difficult task and it has been
shown that their predictions along non-proportional loading could be of poor quality
[WOR 84, WOR 88], mainly due to limitations induced by the difficulty of
identifying elastic domains, flow rules and hardening variables.

Hypoelastic models with multiple loading-unloading criteria require fewer initial
hypotheses and increase the choice of elaboration of the constitutive tensors, which
must however verify a posteriori the continuity conditions. We can say that the
modeler pays for his increased choice by a lack of constraint, which is certainly a
life lesson of broad concern!

The incrementally non-linear formalism increases to an even greater extent the
range of choices which is only limited by the homogenity condition. The advantage
of the incrementally non-linear constitutive “interpolation type” relations is the
reintroduction of some guides strongly linked to the material mechanical properties
by proposing a non-linear interpolation between known behaviors in conventional
loading conditions. We shall come back to this aspect in Chapter 6.

1.7. The main constitutive relations for rate-dependent materials

Viscosity plays a less central role in solid materials than in fluids. It completes
an elastoplastic behavior, either by adding an additional incremental strain, or by
influencing the plastic strain. These two hypotheses are the basis of the proposed
classification [DAR 90].

1.7.1. First class of incremental strain decomposition

The hypothesis for the models belonging to this first class consists of assuming
that the incremental strain can be divided into an instantaneous and a delayed part:

de = (dg)instamaneous + (d‘g)delayed (1 4 1)

The instantaneous strain can be interpreted as being of an elastoplastic type and
the delayed strain of a viscous type. Therefore:

de = de®P + deY (1.42)
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In the previous section we have seen that de® can be written:
de® =M(u)do with u= d0'/||d0’||
Thus:
de = M(u) do + de¥ (1.44)

Under the small transformation hypothesis, creep tests correspond to the
condition dt = 0. Therefore, de'/dt corresponds to the creep rate, and we obtain:

de = My(u) do + Cy, dt (1.45)

where M is the elastoplastic constitutive tensor and C the creep rate, both tensors
being dependent on the loading history.

We should note that, for saturated materials, the stresses to be considered are
effective stresses and that the considered creep tests are drained.

1.7.2. Second class of incremental strain decomposition

We assume in this case that incremental strain can be decomposed into a
reversible and an irreversible part:
de =(d¢)

+(dée) (1.46)

reversible irreversible

The reversible part can be considered as purely elastic and the irreversible part as
viscoplastic:

de = de® + de'P (1.47)
If M° is the elastic tensor, the elastic law being incrementally linear, we have:
de® = M°® do (1.48)

The viscoplastic strain is generally determined by using the viscoplastic potential
theory developed by Perzyna [PER 63]:

de"P = d) %, (1.49)

Jo
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with g(o) = 0 being the viscoplastic potential.

Due to the fact that the actual stress state can be outside the actual elastic limit,
scalar dA is no longer determined by the consistency condition, but directly by
the intensity of the viscoplastic strains.

1.8. General conclusions

Having reviewed all the main classes of constitutive relations, we must
emphasize two main choices when constructing a constitutive model.

The first choice concerns the structure of the constitutive model, which should be
better adapted to the problem to which it is addressed. This first choice has been
widely discussed: is viscosity necessary or not? If yes, which type of viscous
behavior is more pertinent: adding viscous behavior to elastoplastic strain or taking
into account viscoplastic strains? How many tensorial zones are needed to describe
the elastoplastic strains properly? Should we stay in the framework of
elastoplasticity or damage theory, well defined and yet restrictive, or should we give
ourselves more degrees of freedom by working in the framework of hypoelasticity
or incrementally non-linear constitutive equations? Without a precise and solid
knowledge of the material microstructure [DAR 05a, DAR 05b], the objective
criteria for choosing one direction cannot be well defined, which can partially
explain that the use of a given model in finite element analyses is rarely rationally
justified. For a better understanding of the limitations of main constitutive models,
the reader can refer to the results of two international workshops which took place in
Grenoble in 1984 and in Cleveland in 1988, which were devoted to comparing
model performances along various loading paths [WOR 84, WOR 88].

The second necessary choice is linked to the description of the loading history
and leads to the following questions: which state variables? Which hardening
variables? Which memory parameters? These questions have not been
fundamentally addressed in this chapter, even if they play a central role in the
quality of the model prediction. In the general case of an unproportional loading, our
ignorance on this topic remains significant. The only insurance that we have is the
major role played by induced anisotropy on the stress-strain response and therefore,
the necessity of taking it into account in the modeling. Elastoplasticity also seems to
require discrete memory parameters, which can characterize the last changes in the
loading direction.

Finally, we should note that the topic concerning constitutive models cannot be
developed further without taking into account the significant developments made in
the field of discrete numerical simulations concerning granular materials. We also
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have to take into consideration the demand coming from practitioners concerning
the need for parameter identification methods based on inverse analyses of in situ
test results, and not only from laboratory testing, which are often more difficult and
more expensive to perform.
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Chapter 2

Mechanisms of Soil Deformation

2.1. Introduction

Mechanical soil behavior is generally studied within the framework of
continuous medium mechanics, which provides a way of formulating constitutive
models adapted to the specific nature of these materials. Given the extremely diverse
nature of soils, it is necessary to investigate first of all the possibility of proposing
models flexible enough to be adapted to a vast range of natural materials. Secondly,
it is necessary to assess the procedure by which the parameters for a given soil are
obtained. The field of soil mechanics has always favored the perfect elastic-plastic
Mohr-Coulomb model. Numerous elastoplastic models have thus been developed,
improving the representation of observable non-linear behavior. However, these
models come up against a problem of parameter determination on account of the
generally small number of experimental field data. From the outset of our study, we
will present a number of experimental results which clearly show the soil’s
mechanical behavior by drawing attention to the common aspects that do not rely on
the nature of the constituents. This enables us to propose a mode of behavior
applicable to a large range of materials. We will then discuss the possibility of
relating the representative parameters of equivalent continuous medium to
parameters representative of a discontinuous medium as well as the pertinent
representation scales of this discontinuous medium. Our investigation is limited to
monotonous axisymmetric compression loading on dry or water-saturated materials.
Section 2.2 is devoted to remolded laboratory-prepared soils, considered as
continuous materials. Section 2.3 studies the relationship between a discontinuous
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and equivalent continuous medium. Section 2.4 develops an analysis of natural soils
from all the preceding discussion.

2.2. Remolded soil behavior

It is possible in a laboratory to prepare, remolded clay samples from a mixture of
dry clay powder and water. This slurry is afterwards progressively consolidated in
order to obtain a saturated solid material whose mechanical properties can be studied
(Figure 2.1). The advantage of this technique is that we can have at our disposal a
large number of identical specimens with a reproducible and, under specifically
prepared conditions, isotropic structure. The results of several triaxial tests presented
in several normalized planes illustrate the mechanical behavior of such materials,
normally called consolidated materials, which corresponds to the fact that the mean
effective stress at the beginning of the loading test is equal to the maximum stress
borne by the soil sample (Figure 2.2). These results, usually obtained from clays, are
more difficult to obtain from sands, because it is almost impossible to prepare a dry
or saturated sand sample under the same conditions. However, if we use slightly wet
sand, we can prepare a sand sample with a sufficiently high initial void ratio in order
to obtain behavior similar to that obtained previously from normally consolidated
clay (Figure 2.3). These results clearly show a highly non-linear response from these
materials as well as the influence of the mean stress, which in this case corresponds
simply to a homothetic influence on the g-¢; curves for deformations larger than
107, The final state, called the perfect plasticity state, is defined by a stress criterion
q/p’ = M, identical to a Mohr-Coulomb criterion in axisymmetric compression
condition with sin¢,, = 3M/(6+M), and by a linear relation between the final void
ratio and the logarithm of the mean effective stress. The materials appear in this case
to be contractant, which means that they are characterized by an anelastic volume
decrease under deviatoric stress loading.

A constant M value on stress paths different from the axisymmetric condition
leads to a Driicker-Prager plastic criterion, which is not obtained experimentally. In
order to generalize these results in true 3D condition, we have to consider a criterion
of the type q/p’ = M(0), where 0 is Lode’s angle. Several expressions have been
proposed, in particular by Lade and Matsuoka [HIC 85]. The Mohr-Coulomb
criterion ( ¢ = constant, independent of Lode’s angle) remains the most popular. It
gives conservative values of the maximum strength along stress paths other than the
axisymmetric compression (Figure 2.4).
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Figure 2.1. Isotropic compression on clay

The effect of an overconsolidated state on clay behavior — where the mean
effective stress at the beginning of the test is smaller than the maximum effective
stress borne by the specimen — can be observed in Figure 2.5 [HAT 95]. The
material becomes dilatant (anelastic volume increases) and, at a given mean stress,
its rigidity as well as its maximum strength are higher. Identical results are obtained
on sands when the initial void ratio is decreased: the dilatancy increases with the
initial density (Figure 2.6). The concept of perfect plasticity defined above in the
plane e-log (p’) helps to explain this change from contractant to dilatant behavior as
a function of the initial state of stress and void ratio.

We must however note that this perfect plasticity state is difficult to obtain
experimentally, since strain localization usually develops inside the specimens,
especially the dilatant specimens. Putting together all these results obtained on
reconstituted soils enables us to show a strong analogy between their mechanical
behavior and the influence of the volume changes on the stress-strain relationship,
independently of the nature of the particle constituents, as long as these particles can
be considered elastic (Figure 2.7).
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Figure 2.4. 3D tests on normally consolidated clay

The volume change under deviatoric loading can be quantified from the
following relation for normally consolidated soils:

e =eo— Cglog (1+N*/M?) = ¢y - AdLn(1+N*/M?)  where N=qg/p’
or with a formulation close to that proposed by Roscoe et al. [ROS 58]:
e =¢ - (A-K,) Ln (1+M*/M?)

where x,, is different from k introduced by Roscoe, which corresponds to the slope
of the isotropic or oedometric unloading curve corresponding to an elastic behavior.
Parameter A corresponds to the slope of a stress path at 1} constant in the e-Ln(p”)
plane. Therefore, the isotropic stress path (n=0), the oedometric stress path (&,=¢;=0,
6’3/6°1=K,, which corresponds to n=3(1-K)/(1+2K)), and the perfect plasticity
state are parallel in this plane.

For overconsolidated clays, the relation e- p’ allows a pseudoelastic volumetric
limit to be defined in the p’, q plane. At first, the curve follows a path corresponding
to an elastic recompression. It then moves away, either to follow a normally
consolidated type of path until it reaches the perfect plastic state for OCR < 2, or to
follow a dilatant path when the stress ratio q/p’ moves close to M for OCR > 2. The
size of this limit increases with the increase of the consolidation stress, all the
different limits being homothetic, with the homothetic transformation being equal to
the consolidation stress amplitude.
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Figure 2.7. General behavior of remolded soils

Similar results are obtained on sands, especially in the dilatant domain. The
shape of the pseudoelastic limit shows, however, that the junction with the isotropic
stress path is reached only for elevated stresses (Figure 2.9), at which grain crushing
occurs. The position of this junction point depends on the initial density of the
material. In the p’, q plane the regime change from contractant to dilatant can be
represented by a straight line passing through the origin. This line is called the
“phase transformation line” by Ishihara or “characteristic line” by Luong.
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Figure 2.8. Determination of the pseudo-elastic limit for overconsolidated clay

Different expressions of the generalized overconsolidation can be proposed
(Figure 2.10):

— enc — eoc: for a clayey material, we can see that a given isotropic
overconsolidation ratio p’ic/p’i, for different values of p’ic, corresponds to a straight
line in the plane e, logp’, parallel to the isotropic consolidation line. We can
therefore express overconsolidation by the distance to this line, which can be the
value of exc — eoc for a given p’, where eyc is the void ratio on the isotropic
consolidation line for this value of p’ and eqc is the actual void ratio: exc — eoc = (C.
- Cylog(p’ic/p’);

— the “‘state parameter” ess — eoc: We can also relate the initial point e, logp’ to
the distance to the perfect plastic line, which can be considered as parallel to the
isotropic consolidation line at a distance eyc — ess = 0.1. In these conditions, we can
define overconsolidation by the state parameter (ess — eoc) = (enc — €ss) — 0.1;

— the dilatancy W — 3: we can also define the distance of the initial point eoc, p’
to the perfect plastic line along a triaxial path (6°, = 6¢’; = constant). This path
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reaches the perfect plastic line at a point of void ratio e,, and corresponds to a curve
in the el,ev plane with a maximum slope tgfl = de,/de;, which can also be written:
tgf = 2sin'P/(1 - sin'P).

Volumetric
pseudo-elastic limit

|
I Isotropic
| compression

)

q (MPa)

Figure 2.9. Pseudo-elastic limit for sand

The volume change due to the application of a deviatoric stress affects the entire
stress-strain relationship. Rowe [ROW 62] has shown that the results of triaxial tests
can be represented in a preliminary approximation by a linear relationship between
0’1/6’3 and (1 — de,/de;). This is independent of the initial void ratio. If the slope of
this line is expressed as tg*(m/4 + ¢’/2), & can be approximated by the perfect
plasticity friction angle ¢,,. Rowe’s stress-dilatancy law can thus be written as
follows:

01/0°; = tg*(T/4 + 0,,/2)(1 — d€,/d€))
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This relation implies that the characteristic line and perfect plasticity line
correspond to the same mobilized friction angle. It also implies a relationship
between the dilatancy angle defined by the maximum of de,/d€; and the maximum
friction angle ¢’ which decreases if the mean stress decreases. For a given mean
stress, ¢’ increases if the initial void ratio increases according to the approximation:

e tg 0’ = e tgd,, = constant

Isotropic
compression
(n=0)
Cc or(A)

Perfect
plasticity
(n=M)
e "critical
void ratio"
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|
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Figure 2.10. Characterization of the generalized overconsolidation
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The pseudoelastic limit defined previously does not correspond to a perfectly
reversible behavior. For remolded soils, the size of the real elastic domain is very
small and can be studied only by measuring very small deformations using specific
experimental devices, such as that shown in Figure 2.11. Figures 2.12 and 2.13
show, for clay and sand respectively, the evolution of the secant modulus during a
triaxial loading test as a function of strain amplitude. We can see that a perfectly
reversible behavior can be obtained only for strain amplitudes smaller than 107,
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14 13 Detail A
1. load cell 8. outer membrane
2. axial displacement sensor 9. inner membrane
3. radial displacement sensor 10. needle
4. plexiglas ring for radial displacement sensor 11. sealing cap
5. metallic target for axial displacement measurement 12. valve
6. support for vertical sensor 13. lateral pressure sensor
7. support for plexiglas ring 14. pore pressure sensor

15. specimen

Figure 2.11. Triaxial test with small strain measurement device
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2.3. Relationships between discontinuous and continuous medium

The mechanical behavior of the equivalent continuous medium depends on the
properties of the discontinuous medium. An example can be seen in the elastic law
at very small strains as defined in the previous section. The elasticity is non-linear,
the isotropic modulus depends on the mean stress, in agreement with a calculation
that uses Hertz’ theory for an assembly of identical spheres [BIA 94]:

Eiso = 3/2(4E/3(1 — v)G(e))’p’"?

where E, and v, are the elastic constant of linear elasticity for the spheres and G (e)
is a function of the assembly void ratio.

For soils, Young’s modulus E can be written in the general form:

E =kp.(p’/p,)"

where k depends on the nature and density of the soil and p, is the atmospheric
pressure. n is close to 0.5 for all soils if the void ratio influence is completely taken
into account in the value of k [HIC 96]. Several expressions of k as a function of the
void ratio have been proposed, in particular by Hardin and Drnevitch [HAR 72].
From a wide collection of different soils, a simple relation can approximate the
experimental results:

E=b/e (p)*’

where b depends on the nature of the soil, more precisely on the modulus of the
grains or aggregates (see the next section).
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Figure 2.12. Triaxial test with accurate strain measurement on normally consolidated clay
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Figure 2.13. Triaxial test with accurate strain measurement on dense sand

The true elastic limit is thus a surface close to the hydrostatic axis in the
principal stress space for an isotropic material, and therefore close to the p’ axis in
the p’,q plane. The evolution of the secant modulus, for a given strain amplitude, is
also a non-linear function of the mean stress, the coefficient of non-linearity n
increasing from 0.5 at very small strains to 1 for € > 107 This last result is in
agreement with the homothetic character of the g-€ curves, as presented in the
previous section.

The discontinuous medium can be studied at different scales, more or less
representative of the phenomena observed at the macroscopic scale, i.e. at the scale
of the specimen, which corresponds to the equivalent continuous medium.
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2.3.1. Granular materials

As for granular materials (sands, gravels, etc.), the representative scale appears
to be that of the grain itself [DAR 95, HIC 98]. The relation between a
discontinuous and an equivalent continuous medium can be established by trying to
relate the parameters representative of the continuous medium behavior to the
parameters representative of the grains. These latter can be divided into two groups:

— the mechanical properties of the grains and the local contact law. In most cases
an elastic behavior can be retained for the grains;

— the geometrical conditions of the grain assembly. The geometry of the grains
themselves can be defined by parameters representing the size, shape and grain size
distribution, which can generally be considered as invariable. The geometry of the
arrangement, which can vary, includes, on one hand, a parameter expressing the
compacity (a scalar), and on the other hand, a parameter describing its anisotropy (a
tensor).

The research for correlative links between the parameters of the continuous
medium and those of the discontinuous medium has been the object of various
studies in soil mechanics, and there are several expressions concerning the
parameters used in foundation calculations in particular. As it is difficult to identify
all the parameters of the grain geometry, the nature of the granular medium is often
synthesized by a specific arrangement of the grains in response to suitable
normalized tests. For sands and gravels, we use two specific void ratios called
“maximal void ratio” ey, and “minimal void ratio” en;,. They give the interval of
the natural void ratio variation for a given material. Their values depend on both the
shape and surface roughness of the grains and on the grain size distribution.

Figure 2.14 gives an example of correlative links between the two nature
parameters en,, and e, and a mechanical property of the grain assembly, in this
case the position of the perfect plasticity relation in the e, logp’ plane. This approach
can be extended to the determination of constitutive model parameters from
correlations with parameters representative of the discontinuous granular medium
[HIC 94]. These correlative links can give an initial set of parameters which is
sufficiently precise so that it can be used as a starting point for an optimization
procedure. This approach can be very useful in practical applications of a
constitutive model in finite element calculations.
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Figure 2.14. Perfect plasticity relationship as a function of void ratios e, and e,,;,

2.3.2. Remolded clayey materials

The representative scale of the constitutive elements which affect the mechanical
behavior of the equivalent continuous medium is less evident in this case. Several
scales coexist in a clayey material:

— the basic clay layer, basic element of a clay particle;
— the clay particle made up of an assembly of layers, usually by organized stacks;

— the aggregate made up of particles, whose size and internal arrangement
depend on the history of the material. The size of the aggregates can be measured by
sedimentation.

A research study has been undertaken to relate the mechanical behavior of
saturated remolded clays to their structural organization [HIC 00]. Two clays were
studied: a kaolinite and a bentonite. The evolution of the shape, size, concentration
and orientation of the elements which constitute the clay structure was examined by
means of scanning and transmission electron microscopes, thanks to techniques
which obviate possible disturbances of the micro-structure during observation. The
results of this study show the main role played by the aggregates, similar to the role
played by the grains in the mechanical behavior of granular materials. This explains
the similar behavior of the equivalent continuous medium for the different nature of
the constituents, as seen in the previous section. The difference in nature between
grains and aggregates is however insufficient to explain quantitative differences in
the stress-strain relationship. In particular, the deformability of the aggregates can
play an important role. This deformability depends on the way the clay particles are
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assembled, which is dependent on the mineralogy, adsorbed ions, etc. Photographs
in Figures 2.15 and 2.16 show two different examples: the kaolinite is made of rigid
small particles assembled in compact stacks; on the other hand, the bentonite is
made of larger, more flexible particles creating less compact and therefore more
deformable aggregates.

Figure 2.15. SEM photos of Kaolinite P300

Figure 2.16. SEM photos of Bentonite
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This study also showed significant evolution of the aggregate sizes during
mechanical loading. As progressive division of the aggregates into smaller elements
takes place, the bigger aggregates are the first to be affected by this breakage. This
phenomenon induces a reduction in size of the elements which constitute the clayey
material and also reduces the pore size. As long as the amount of breakage remains
small, the mechanical properties of a normally consolidated clay can be considered
as homothetic to the mean stress, as seen previously. It is no longer the case when
the ruptures increase for high stresses. We can thus see an increase of the
deformability under deviatoric stresses, as in the case of sands and gravels [BIA 94,
BIA 97].

The links between the characteristics of the discontinuous medium and the
parameters of the equivalent continuous medium are more difficult to define for
clays rather than for sands. We can use, for example, two specific values of density
called Atterberg’s limits which are expressed in terms of water content w; and wy,
obtained as for e, and en, using normalized tests. These two parameters are
mainly dependent on the mineralogy of the constituents and adsorbed ions, and
therefore on the particle arrangement, size and shape of the aggregates. Figure 2.17
presents an example of a link between the liquid limit w; and the compressibility of
clayey materials. It is also possible to obtain a correlation between Atterberg’s limits
and the perfect plasticity line in the e, logp’ plane (Figure 2.18). In this last case, a
similar correlation as that proposed for sands is obtained by substituting w; and w,, to
€max and €min.

The influence of the aggregate deformability is particularly pronounced on the
elastic properties of clayey materials, since the elastic domain is restricted to very
small strains (< 10-5), for which the relative displacements of the constituents are
negligible. The deformation of the equivalent continuous medium is, therefore,
mainly due to the deformation of the discontinuous medium constituents (Hertz’s
law). In these conditions the elastic moduli measured in sands and gravels are much
higher than in clays. For clays, the more rigid aggregates of a kaolinite give elastic
moduli higher than those of a bentonite (Figure 2.19 [LIU 99]).

The influence of the significant deformability of bentonite aggregates can also be
seen at larger deformations, for example on the isotropic compressibility curve
whose slope is much higher than the kaolinite one. Its value for the kaolinite is close
to that obtained for sands, corresponding to a high rigidity of the aggregates which
causes them to behave more like sand grains. In this last case, the major deformation
mechanisms of the continuous medium are due to relative displacements of grains or
aggregates.
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Figure 2.17. Mechanical properties of normally consolidated clays
correlated to Atterberg’s limits

2.3.3. Granular materials with intergranular glue

The previous results correspond to materials for which the contact law between
two grains is reduced to solid friction. If two grains in contact are also “glued”, the
change in the contact law also produces a change in the mechanical properties of the
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equivalent continuous medium. Its overall behavior depends on the glue behavior.
The main visible change in the material behavior is the fact that the maximum
strength envelope does not intercept the origin of the axes and that the material
exhibits a non-zero strength in traction: this is usually expressed by the term
“cohesion”. However, the role of the intergranular glue cannot be reduced to a scalar
representing this cohesion, experimental results show that the whole stress-strain
relationship is affected by the glue properties. For example, in unsaturated granular
materials, the capillary forces act as a glue with negligible stiffness. Therefore, the
material will have a non-linear elastic behavior with a dependency on the mean
stress. On the other hand, if the glue has a stiffness similar to that of the grains, there
is a significant decrease of the role of mean stress on the elastic properties. At the
same time, the force necessary to displace two grains in contact is proportional to
the normal force in the case of a simple solid friction. If the two grains are glued, we
have to add the strength of the glue; if this strength is constant, the role of the
friction is negligible on the condition that the normal force is small and becomes
preponderant at elevated normal forces. For the equivalent continuous material, this
implies that its behavior is strongly dependant on the glue properties at small mean
stresses, when ¢ >> Mp’, and much less at high mean stresses when ¢ << Mp’. A
progressive damage of the glue during a mechanical loading can modify the relative
influence of the cohesion and friction. The two following examples illustrate these
different aspects of the intergranular glue influence.

0.003 0.5

Figure 2.18. Perfect plasticity relationship as a function of Atterberg’s limits
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Figure 2.19. Influence of soil nature on the elastic modulus

The first example corresponds to experimental results obtained on sands injected
by different grouts [TAI 98]. Each grout creates a specific type of glue between the
grains. The mechanical strength of the injected sand is higher than that of the natural
sand at the same confining stress. The maximum strength envelope in the p’,q plane
is a line that has the same slope as that of the natural sand, but translated from qo or
¢, which represents the cohesion due to the glue (Figure 2.20). The beginning of the
stress-strain curves are almost independent of the mean stress, which corresponds to
a constant stiffness. Afterwards, the curves become different when the dilatancy
begins. Traction causes damage to the glue, which creates cracks inside the
specimen with a frictional effect and, therefore, an influence of the mean stress.

The second example corresponds to the behavior of a bituminous concrete [BAR
93]. Here, the bitumen plays the role of the glue. It corresponds to a more ductile
and, at the same time, viscous material, which transmits to the equivalent continuous
material its viscous properties. As in the previous example, the stress-strain curves
are almost independent of the mean stress for small deformations, which gives
almost constant secant moduli for € < 10 (Figure 2.21). The maximum strength
depends on the strain rate due to the viscous properties of the bitumen. At small
strain rates, the maximum strength envelope is a straight line in the O3, qmax plane.
The slope decreases with the strain rate increase. For high strain rates, the envelope
is almost horizontal in that plane, which corresponds to a maximum strength
independent of the mean stress. The increase of the strain rate increases the rigidity
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of the glue, which, as a consequence, increases the cohesion and decreases the
friction angle of the bituminous concrete. The peaks observed on the q(€;) curves
correspond to damage to the glue by traction when the granular material becomes
dilatant. This damage is more accentuated at elevated strain rates because the
bitumen becomes more rigid and less ductile. Cracks develop in bituminous concrete
which behaves similarly to granular material without bitumen at large strains.
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Figure 2.20. Triaxial tests on grouted sand
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Figure 2.21. Triaxial tests on bituminous concrete

2.4. Natural soils

The geological history of sedimentary depositions has a significant impact on
mechanical properties, in particular the maximum stress state borne by the material
during its history, called the consolidation stress. We can roughly distinguish two
large families: recent soils, which have been deposited since the last Ice Age and
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which are normally or slightly overconsolidated; older soils, which are often
strongly overconsolidated, at least in the superficial layers. Their mode of deposition
as well as their evolution with time produces specific characteristics, which cannot
be found in laboratory prepared soils, such as those examined above. First of all,
their structure or the geometry of their particle arrangement is usually anisotropic
due to their deposition in the gravity field. This creates mechanical properties higher
in the vertical rather than the horizontal directions. This aspect will not be studied
here. Another important characteristic is the existence of an intergranular “glue”,
mainly due to physicochemical evolutions at the particle contacts. The influence of
this glue can be found in the mechanical properties of the equivalent continuous
medium. It can significantly increase the initial stiffness as well as its maximum
strength. Figure 2.22 presents an example of the behavior of a recent natural clay
during oedometric and triaxial loading. We can see during the oedometric test a
small deformability of the specimen at the beginning of the loading, which then
increases strongly before decreasing again at elevated stresses. The correlations
presented in the previous section and obtained from remolded clays are particularly
helpful in explaining this peculiar behavior. We observe that the initial void ratio is
higher than that expected from the correlations for a clay having a liquid limit w; =
117%. The sudden strain increase allows it to progressively meet the compression
curve corresponding to this liquid limit value and therefore to reach a traditional
normally consolidated behavior. The material’s initial behavior having been
influenced by an intergranular glue which took place early in the history of the
creation of the clay layer and, by reinforcement of the clay structure, led to a natural
void ratio higher than that which would have been obtained for a material without
this internal cohesion in the same consolidation conditions. This cohesion becomes
progressively destroyed during the oedometric loading and the stress-strain
relationship evolves to reach that corresponding to a material without cohesion.

Triaxial tests allow us to measure the effects of this intergranular glue on the
material considered as the equivalent continuous medium. The post peak behavior
corresponds to the destruction of the glue during a deviatoric loading. The stress-
strain curves after the peak converge towards an envelope of maximum strength
without cohesion identical to that obtained on the same remolded clay. However, we
have to be careful in interpreting the post peak curves, since they are often the
consequence of strain localization in shear bands inside the specimens.
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Figure 2.22. Oedometric and triaxial tests on recently deposited intact and remolded clay
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Figure 2.23. Triaxial tests on recently deposited clay (Guiche Clay) [FAY 00]
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Generally, natural soils will present a higher mechanical strength than remolded
soils, as confirmed by Figure 2.23 where several results obtained on a post last Ice
Age clay are presented together with results on a remolded clay having similar
mineralogical properties. The maximum strength envelopes are two straight lines on
the p’-q plane with almost the same slope. The envelope corresponding to the intact
clay is located above, the distance between the two lines qo = 0.04 Mpa represents
the macroscopic cohesion of the intact clay. Sometimes, the intergranular glue is
ductile enough to sustain macroscopic deformations of several percentage points. In
these conditions, the maximum strength can remain constant after reaching the peak,
which creates the equivalent of a perfectly plastic state for a cohesive material.

This intergranular glue is present in almost all the natural clayey soils and also,
only less frequently, in sandy soils, especially in ancient deposits. Its importance is
weak for “young” materials, such as the previous example. It can be significantly
higher in “older” clays, in particular if they have been subjected to high
consolidation. Figure 2.24 presents an example of the behavior of a deep clay (layer
located at 400 m depth), with an initial void ratio e, = 0.34 and 20% of CaCOs.
Oedometric and triaxial tests were performed on both intact and remolded
specimens at the same void ratio. The remolded samples were prepared by one
dimensional consolidation from a powder obtained by the desegregation of natural
samples (HEI 95]. The stiffness of the aggregates being much higher than that of the
glue, only the intergranular glue was affected by the remolding. Analyses by means
of scanning electron microscope and mercury porosimetry confirmed this
hypothesis. The triaxial tests demonstrate that the natural clay samples have a much
higher initial stiffness compared to the remolded ones, as well as a more fragile
behavior with strain localization starting as early as with 1% axial deformation. The
oedometer tests show an elevated consolidation stress for both materials. After this
consolidation stress, the remolded clay follows a stress-strain relationship in
accordance with the normally consolidated behavior as presented in Figure 2.17,
while the natural clay has a steeper consolidation slope which corresponds, as in the
previous example, to the progressive rupture of the intergranular glue. Its higher
resistance in this case leads to a slower evolution: we cannot see a brusque change in
the stress-strain relationship but a more gentle increase of the slope in the e, logo’v
plane.

In the case of overconsolidated clays, this internal cohesion will superimpose its
effect on the overconsolidated one. A typical example is the London Clay which has
been widely studied, in particular by Bishop et al. [BIS 65]. Between 20 m and 40 m
depth in the clay layer, the liquid limit varies between 65% and 70%, and the plastic
limit between 25% and 30%. The clay layer was subjected to an unloading
corresponding to an erosion of 360 m of superficial sedimentary deposits. The
maximum strength envelope from drained and undrained tests is represented by a
curve with very little dispersion (Figure 2.25). Its shape is similar to that obtained
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with a remolded clay having the same mineralogical properties (Figure 2.26), but its
position is located above due to the effect of the intergranular glue. For remolded
clays, the junction between this envelope and the straight line ¢ = Mp’ obtained for
normally consolidated states corresponds to an overconsolidation ratio close to 2.
For the London Clay, this junction is delayed: it occurs for a mean stress higher than
the consolidation stress and can be associated with the creation of a damage of the
intergranular glue during the initial isotropic loading.
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Figure 2.24. Oedometric and triaxial tests on strongly overconsolidated clay
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As glue damage also occurs during a deviatoric loading, we can assume that the
position of the maximum strength envelope depends on the role of
overconsolidation, of the intergranular glue, and of its damage evolution during
loading.
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Figure 2.25. Drained triaxial tests on the London Clay

This damage can take place in situ when the decompression of a highly
overconsolidated clay creates, in the upper part of the layer, vertical stresses
sufficiently smaller than the horizontal stresses in order to reach the maximum
strength envelope. Under theses conditions, cracks develop inside the clay layer.
Afterwards, the influence of climatic changes and the circulation of water inside the
cracks provoke, in the upper part of the clay layer, a physicochemical alteration,
often characterized by an increase of Atterberg’s limits. These phenomena increase
the void ratio. For this type of material, we can schematically propose a profile with
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a depth similar to that obtained on Cattenom Clay (Figure 2.27) for which
oedometer tests show a vertical unloading higher than 5 Mpa:

— a first layer (1) of several meters in depth, with an increasing liquid limit wl, a
decreasing density and mechanical properties also decreasing with very disperse
values when we get closer to the surface;

— an intermediary layer (2) with almost constant values of wl and gd, but in
which the unloading has created some fissuration;

— a third layer (3) with little disturbance from depths around 30 to 40 m.

Black Clay: WL =70%; Ip=30%
Remolded CID [ZER 82]; CIU [NAS 85]

London Clay: W, =70%; Ip=43%
Intact CID [BIS 65]; z = 34.77 (m)m

OCR =1 (E87, E74, E68, E98, E63, E76)
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Figure 2.26. Maximum strength envelopes for overconsolidated intact and remolded clay
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Figure 2.28. Stress path during a geological unloading

These mechanisms allow us also to explain the differences between the results
obtained by Bishop et al. on the London Clay and those obtained by Josseaume
[JOS 97] on the Flandrian Clay. These two clays, close in their mineralogy and
geological histories, can be distinguished by the depth at which the tested samples
were taken: 20 to 40 m for the London Clay, less than 10 m for the Flandrian Clay.
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The latter is nowadays covered by a layer of silty sand, which prevents it being
exposed at the surface as in the case of Cattenom Clay. It has not therefore been
subjected to a physicochemical alteration and we can consider that it corresponds to
a layer of type (2), while the London Clay, taken at greater depth, corresponds to a
type (3) layer. This aspect affects the triaxial test results obtained for each material.
The Flandrian Clay has lower as well as more scattered values of maximum
strength, due to the fissuration induced by the decompression which helps the strain
localization during the loading (Figure 2.29). The dispersion of the stiffness values
measured for strains varying between 10~ to 107 is less marked. This is due to the
fact that the localization zones are not yet mobilized. It is therefore not always
advisable to express the modulus as a function of the undrained shear resistance c,.

1.2 - Intact Flandrian Clay

= Maximum -
WL =T71%: Ip=44% T
Intact LCPC strength \
CID : 23, 24, 25, 26, 30, 33, 35 ,/”
14 CIU:4,6,7,8,9, 39,40, 42 el 23
0.8 Intact London Clay —
BIS65] =
= ‘ Remolded
& 06- M= 0.76(pp)
= [NAS 85]
o

0.4 0.6 0.8 1 12
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Figure 2.29. Drained and undrained triaxial tests on the Flandrian Clay
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The marine deposits usually contain a certain amount of CaCOs, which plays an
important role in the creation of the intergranular glue. We can see an example of
this in Figure 2.30 where results of triaxial tests on four deep clay samples are
presented, the percentage of CaCOj; varying from 15% to 50% [HEI 95]. The test
results clearly show that the macroscopic cohesion increases with the amount of
CaCO; whose effect can be seen in the increase of the initial stiffness which
increases from E = 740 MPa for CaCO; = 15% to E = 7900 MPa for CaCO; = 50%.
This leads also to a strong increase of the maximum strength from 10 MPa (CaCOj;
= 15%) to 62 MPa (CaCO; = 50%) for a confining stress G’3 = 5 MPa.

80- 1
0.51
S .
OJ>

1 X2 3 4
€1 (%)
-0.57

Drained triaxial tests p, = 5 MPa

-1 4 e Cemented clay (50% of CaCO3)
o Cemented clay (25% of CaCO3)
<© Cemented clay (20% of CaCO3)

3 4 A Cemented clay (15% of CaCO3)

€1 (%) A Remolded clay

Figure 2.30. Influence of calcium carbonate content on mechanical properties of a deep clay
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Figure 2.31. Influence of calcium carbonate content on mechanical properties
of clays and chalk at the Channel Tunnel site

Similar results have been obtained on clay, marl and chalk at the site of the
Channel Tunnel [FAY 00]. Along a depth of 100 m, we observe an increase of the
CaCOs; content from 10% in the first clay layer to 90% in the chalk. Triaxial tests on
chalk show that maximum strength increases linearly with the confining stress p’y
for a given CaCOj; content: qmax = q0 + Olp’y. qO0 increases with the CaCOj; content.
The secant moduli, measured for € = 10-2, also increase with the CaCO; content.
These depend on the mean stress, but less and less with the increase of the CaCOj3
content in the investigated stress domain (0.2<p’(<1MPa). These results clearly
show the significant impact that cementation has on the chalk mechanical behavior.
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Figure 2.32. Maximum strength envelope of the Gault Clay

The results obtained on the Gault Clay, compared to those obtained on a
remolded clay, confirm those obtained on the London Clay. The maximum strength
of the Gault Clay is higher for p’o, varying from 0.25 to 0.9 MPa (Figure 2.32). This
is due to the fact that the Gault Clay is located deeper than the London Clay and that
its consistency index Ic is bigger (1.2 instead of 1.08). However, the maximum
stress envelope for the Gault Clay meets that corresponding to the remolded clay for
p’ =3 MPa, compared to 6 MPa for the London Clay. This could be due to a higher
overconsolidation which created weaker zones in the clay layer. The results obtained
for elevated initial stresses show a decrease of the maximum strength. In Figure
2.33, we can see that the test performed at p’yp = 2.5 MPa gives a stress-strain
relationship identical to that obtained on a remolded normally consolidated clay.
This phenomenon is usually observed in natural soils with internal cohesion when
the strains induced by the loading are big enough to break the intergranular glue. As
for maximum strength, the moduli measured in the Gault Clay are higher than those
obtained for the London Clay. Their evolution shows a smaller dependency with
mean stress, due to a stronger cementation of the Gault Clay. Figure 2.34 gathers
secant modulus values obtained for € = 5 10 on different materials. Its shows the
predominant influence of the intergranular glue on these values as well as the
decrease of the mean stress influence when cohesion increases.
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Figure 2.34. Comparison of secant modulus values for different soils. A non-remolded soil
has a secant modulus higher than a remolded one. Non-remolded soil modulus before peak is

less dependent on mean stress

For very high cohesion, this influence can even disappear completely as in the
two examples presented in Figures 2.35 and 2.36 concerning Vosges sandstone
[GUS 89] and a marble [WAW 70]. The stress-strain curves are similar for small
mean stresses and then diverge for elevated mean stresses under the combined effect
of damage, predominant under deviatoric stress at small mean stress, and plasticity.
We have here results similar to those obtained on injected sands in section 2.2.
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The pseudo-elastic limit defined in remolded soils has a different shape for
natural clays. The shape depends on both the intergranular glue and the history of
the in situ stresses, in particular the ratio Ko = 6’h/G’v. In the p’,q plane, we can see
that the axis of symmetry is no longer axis p’ but is closer to the straight line with a
slope equal to the in situ stress ratio q/p’ = 3(1-Ky)/(1+2K,). Its determination can be
achieved from several tests having different stress paths in the p’,q plane. An

example is

given in Figure 2.37, concerning a post-last Ice Age clay, the Pornic

Clay, which is lightly overconsolidated [MOU 88]. Each point of this pseudo-elastic
limit corresponds to a threshold in the stress-strain curves, characteristic of a net
increase of the plastic deformation amplitude (Figure 2.37). Similar results have
been obtained by several other authors on slightly overconsolidated natural clays.
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Figure 2.35. Triaxial tests on red Vosges sandstone [GUS 89]
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Figure 2.36. Triaxial tests on Tenessee marble [WAW 70]
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The evolution of this pseudo-elastic limit by hardening is clearly established by
its determination from different specimens of the same clay taken at different
depths. In these conditions, the curves are homothetic with each other in the same
ratio as the consolidation stresses (Figure 2.38). The evolution of this limit along
stress paths different from those produced by oedometric consolidation remains to
be understood.
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Figure 2.37. Construction of the pseudo-elastic limit for a
natural clay: the Pornic Clay [MOU 88]
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The existence of an intergranular glue induces a behavior of the equivalent
continuous medium which is a function of the behavior of the glue itself. In several
previous examples, its damage on various stress paths has been mentioned. High
intensity isotropic or oedometric consolidation can produce a progressive
homogenous breakage of the glue inside the specimen. The consequence is an
increase, sometimes very accentuated, of the slope in the ¢ — log(p’) relationship.
The damage material, when loaded afterwards along a deviatoric stress path, shows
a significant decrease of the additional strength given by the intergranular glue and
its behavior comes close to that of a remolded material having the same
mineralogical characteristics (see for example the previous result obtained with the
Gault Clay isotropically consolidated under an isotropic stress equal to 2.4 MPa).
Damage can also occur during an oedometric unloading due to a strong increase of
the ratio G’,/G’, when the overconsolidation ratio becomes very high. Under these
conditions, cracks develop inside the material, as they do during a deviatoric triaxial
test. They play a particularly marked role at small mean stresses. We can define a
damage limit, corresponding to a given stress path to the beginning of the damage
spread, which takes a specific shape such as that obtained for Vosges sandstone in
Figure 2.35. The stress — strain relationship for the equivalent continuous medium
after this damage limit depends on two types of mechanisms: relative displacements
of the grains and damage of the intergranular glue. Constitutive models, coupling
damage and plasticity, have been developed to take into account the simultaneous
role of theses two mechanisms (see for example [CHA 98]).
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2.5. Conclusion

The mechanical behavior of remolded soils prepared in the laboratory show
broad similarities between sandy and clayey materials. The analysis of the
deformation mechanisms at the level of their structural constitutive elements enables
us to explain these similarities and propose correlative relations between the
parameters of the discontinuous medium and those of a constitutive model for the
equivalent continuous medium. In sandy materials, the grain scale is the most
appropriate; the mechanisms involved in the deformation of the continuous medium
being essentially grain relative displacements. In the case of clayey materials, the
appropriate scale is more difficult to estimate. We can assume that it corresponds to
the aggregate scale for both natural and remolded clays, which explains the
similarities observed with sandy materials. The differences between sand and
remolded clay are mainly due to the deformability of the structural constituents,
much larger for the aggregates than for the grains. The natural clay study showed the
influence, sometimes very pronounced, of the intergranular glue, where nature and
strength depend on the physicochemical and mechanical history of the soil. The
intergranular glue can be taken into account in the constitutive model for the
equivalent continuous medium. It is possible to model different behaviors for the
glue, corresponding to different physical natures: fragile with damage, ductile,
viscous, etc. The interest of this approach is to be able to take into account the
different mechanisms which, at the scale of the discontinuous medium, influence the
mechanical behavior of the equivalent continuous medium.
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Chapter 3

Elastoplastic Modeling of Soils:
Monotonous Loadings

3.1. Introduction

A natural soil is a porous material made up of two phases: the solid phase,
composed of mineral or organic particles, and the liquid phase. The effective stress
principle formulated by Terzaghi allows for a satisfactory description of the
behavior of both phases as well as their interaction. This description consists of the
combination of Darcy’s law ruling fluid flow across the solid skeleton, the
continuity (or mass balance) equations of the phases, and the constitutive law of the
solid skeleton, expressed by a relation between the effective stress and strain tensors.

The development of such a constitutive law for the solid skeleton is based on the
theoretical concepts of continuum mechanics (elasticity, plasticity, viscosity and
combinations) and on the results of experimental studies carried out in the laboratory
or in the field. In practice, the complexity of the constitutive laws that can be
developed depends very much on whether the aim is to describe precisely the whole
range of results that can be obtained experimentally in the laboratory, or rather to
build a robust tool, limited to the main features of soil behavior, but much easier to
handle in practice for designing structures.

Constitutive laws can take very different forms, but elastoplasticity provides the
most convenient and simple framework. The existence of a plateau on the stress-
strain curve and the experimental observation that only one part of the strain is
reversible, suggest that this framework should be used for constitutive modeling of

Chapter written by Philippe MESTAT, Emmanuel BOURGEOIS and Philippe REIFFSTECK.
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soils. This approach proved to be extremely efficient; it was possible to build
relatively satisfactory descriptions of the main features of the mechanical behavior
of saturated soils subjected to monotonous loadings. In addition, this framework is
well adapted to the introduction of constitutive models in computation software
based on the finite element method. This made it possible to give quantitative results
for a wide range of problems in geotechnical engineering, such as slope stability or
the service and ultimate limit states of foundations, embankments, tunnels and
retaining structures.

Elastoplastic constitutive models can be divided into three categories:

— models with no strain hardening, defined by a yield function, a plastic potential
(with an associated or unassociated flow rule) and an elastic law that can be linear or
non-linear;

— models with one plastic hardening mechanism and an elastic law that can be
isotropic or anisotropic, linear or non-linear;

— models combining several plastic mechanisms and non-linear elasticity.

3.2. Elastoplasticity equations
3.2.1. Basic concepts
The fundamental elastoplastic model is characterized by the following basic

concepts:

— the partition of strains, which splits the total strain tensor into the sum of the
elastic strain tensor and the plastic strain tensor;

— the yield surface, which defines the boundary in the stress space beside which
the behavior of a material becomes plastic (irreversible);

— the elastic domain, which is the domain of stress space interior to the yield
surface; inside the elastic domain, strains remain reversible;

— the plastic flow rule, which describes the evolution of the plastic strains;

— the hardening represents the changes of the size and position of the yield
surface in the stress space, depending on the applied loads;

— the plasticity criterion or failure criterion, that characterizes the stress states for
which failure occurs, i.e. strains tend towards infinity. In the case of “perfect
plasticity”, there is no hardening and no evolution of the yield surface, therefore the
failure criterion is the same as the yield surface.
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3.2.2. Yield surface and elastic domain

The elastic domain is defined in practice by a scalar function F of the stress
tensor (o). F is called the yield function, and the sign defines the position of a given
stress state with respect to the yield surface:

F(ojj) <0 corresponds to the elastic domain;
F(o;j) = 0 defines the stress states located on the yield surface;

F(ojj) > 0 corresponds to stress states located outside the elastic domain.

In the case of perfect plasticity, neither the yield surface nor the elastic domain
evolves. In the case of a strain hardening material, the elastic domain depends on
additional variables describing the current hardening state, denoted by k and
introduced in the expression of the yield function: F(oj, k). The hardening state
variable k only changes if there is an evolution of the plastic strain tensor. The
current yield surface is defined by the equation F(oj, k) = 0. Several theories have
been developed to describe the evolution of the hardening state. The two major
theories are:

— the isotropic hardening theory developed by Taylor and Quincey, in which
hardening is a function of one single scalar parameter (k), and the elastic domain is
transformed homothetically with respect of the origin O of the stress space;

— the kinematic hardening theory, introduced by Prager, in which the successive
positions of the yield surface are obtained by translating the initial boundary of the
elastic domain in the stress space. In this context, it is necessary to introduce a
tensorial variable to describe the hardening state: k becomes (kj).

We denote by (0j;, k) a stress and hardening state for a given loading step.

If this state is such that F(oy, k) < 0, the stress tensor (oy) is located inside the
current elastic domain and the strain variation is reversible (elastic):

If, on the other hand F(oj;, k) = 0, stress tensor (G;) belongs to the yield surface
(i.e. the boundary of the elastic domain). In this case, the appropriate formulation of
the equations describing strain evolution depends on whether the material point
undergoes a loading process (the stress state moves towards the exterior of the
elastic domain), or an unloading process (the stress state moves towards the inside of
the yield surface).
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The material point undergoes a loading The material point wundergoes an
process if and only if: unloading process if and only if:
F(ojj, k) =dF(o;,k) =0 F(o;,k)=0
oF oF
do; >0 = do; <0
do;; do;;
de;; = dej; + def de;; = de§;

P .
(&jj are zero or remain constant)

(with the convention of implicit summation over repeated indices).

This makes it possible to know under what conditions plastic strains occur: it
remains to be seen how they develop. The flow rule provides the necessary
information to evaluate the plastic strain.

3.2.3. Plastic flow rule

The plastic flow rule gives the expression of the increment of plastic strain

(dEf}) for a given state of stress (0j) and a given stress increment (dc;), and for the

current value of the hardening variable (k), through the introduction of a new
function denoted by G called “plastic potential”, such that:

def = d?»a—G
Y G

dA is a non-negative scalar, called a plastic multiplier. Note that generally G can be
different from the yield function: if F and G are identical, the flow rule is said to be
“associated”; if F and G are different, the flow rule is “unassociated”.

In the case of strain hardening, it is convenient to introduce an additional scalar
variable denoted by H(Gj;, k), called hardening modulus, and defined by:
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3.2.4. Incremental relations for one plastic mechanism model

The elastic strain increment (ds%) and stress increment (doj) are related to each
other by the elastic moduli tensor (Ejjq), or its inverse (Djju),

doj; = Eijkldgil or dgiej = Djjdoy
If, moreover, (0y, k) denotes the current stress and hardening state, located on the
boundary of the current elastic domain, the following relationships hold:

F(o,;,k)=0

ij>

de;; = def + def; =d83+0€d7\,%
ij

with o0 = 0 in the case of unloading and & = 1 in the case of loading.

In order to complete the formulation of the constitutive law, the value of the
plastic multiplier remains to be discussed. This is given by the consistency condition
dF = 0, which states that the stress state must remain on the yield surface when
loading occurs (F = 0). The consistency condition reads:

oF oF
aF=2 45 + L k=0
0. 08T ok

ij
Eventually, the scalar variable k is, in turn, a function of the plastic strain (85).

For instance, in the case of isotropic hardening, the model closure requires the
definition of an appropriate hardening law such as:

— k(P
k= k(sij
The set of equations above makes it possible to calculate the hardening modulus

H:
oF oF oF Y ok
dot=2 g5, =—F = de?
PR [ak){a g] €

y

S ] ) H= (BF) ok | G
which yields, given the flow rule, if dA # 0: ok 885 _aGij .
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The stress increment (doy) can therefore be expressed as:

oG
doj; = Eijkldgled = Ejja (dgyy — def)) = Ejja(deyg — d}\a—)

Ou

oF
Multiplying each member of this equation by {gj , we obtain:

1

oF OF oF oG
2 o, = B, ey —dA 2 B L | =daH
{aGUJ GU {ac J ijkd Skl {80 J 1ﬂd(ackl J

ij ij

oF

d0;;
and the plastic multiplier is thus given by: d = oOF 9G -
H+ By~ —

do;; Gy

Ejjadey

At this stage, we can establish the relationship between the strain and stress

increments:
oG oF
Eijnm BV Y Erskl
00, \ do
doy =< By - oF G dey
H + aG Enmrs aG

nm s

This makes it possible to define an elastoplastic behavior tensor (E,‘}kl), or

elastoplastic behavior matrix. The above increment relation remains true in the case
of a perfectly-plastic material (in which no hardening takes place), i.e. for H=0.

In the case of hardening, it is also possible to derive the inverse of the
elastoplastic tensor. The elastic part of the strain is given by:

Replacing dA by its expression (taken from the definition of hardening modulus
H), we obtain an alternative form of the constitutive law:
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3.2.5. Incremental relationships for multi-mechanism elastoplasticity

The traditional elastoplastic framework with one plastic mechanism has proved
to be too limited to account for some of the phenomena which can be observed
experimentally when geomaterials are submitted to a wide variety of stress paths. A
larger theoretical framework was necessary. It was defined by introducing several
sources of plasticity [KOI 60, MAN 65].

Dividing the strain tensor into the sum of the elastic and plastic strain tensors
remains valid; but the flow rule adopts a more general form and becomes a linear
combination of the contributions of several different plastic potentials, their number
being dependent on the stress path. Each of the plastic potentials defines a plastic
mechanism; the presence of a plastic potential in the flow rule indicates that the
corresponding plastic mechanism is active.

If p is the number of admissible mechanisms for a given material, each
mechanism, for instance that denoted by m, is characterized by a yield surface
Fu(oij, km), a plastic potential G,, and a hardening variable k.. The notion of
activating a mechanism (or of several mechanisms simultaneously) replaces the
notion of a loading process as defined in the traditional framework of a single
mechanism.

By definition, we have:
—if F,, <0 or F,, = 0 and dF,, < 0, the mechanism is inactive, and dA,, = 0;

—Fn =0 and dF,, > 0, the mechanism is active, and dA,, > 0.

If q is the number of active mechanisms (q < p) at a given instant, the plastic
strain increment is obtained as the sum of q terms,

def = Zd}»m S
d0;;

m<q

The consistency condition dF,, = 0 yields:
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JF oG oF ok JG oF
~m g n|_| Zm m ngA. = —m |E.. . d
Z (8%} ukl(ackl] (akm J[ agf’s IE)GISJ n [acij] ijk1 €k

n<q

The constitutive law can be expressed as a multilinear relation between the stress
and strain increments. The equation above, written for all active mechanisms, leads
to a system of q equations:

zAmndA’n = Bm

n<q

O, ). (9G.) (oF, Yok, \9G,
Amn = Ei'kl -

oF,,
B, = {EjEijkldekl .

1

with

and

The complexity of the system depends on the chosen flow rule (associated or
unassociated), on the existence of a coupling between different mechanisms, i.e. on
the choice of the hardening parameters for each mechanism. The hardening
parameter k,, for mechanism m can depend on the plastification of all active
mechanisms or only on the plastic strains developed in mechanism m (in which case
the underlying physical phenomena associated with hardening are independent).
Between the extreme situations there are numerous intermediate possibilities: in the
end, only experimental results can provide a sound basis for the choice of one of
these possibilities for a given geomaterial.

3.3. Constitutive laws and laboratory tests

Natural soils can be classified into two main categories: frictional soils (with
high permeability, for example most sands and gravels) and cohesive soils (fine soils
with low permeability, for example most clays and silt). The experimental
techniques used to characterize the mechanical behavior of soils (size and
preparation of the samples, testing devices, testing procedures) are adapted to these
classes of materials. In particular, as it is practically impossible to obtain samples of
sands and gravels in their natural state, the experimental identification of the
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constitutive laws is generally carried out on reconstituted and remolded materials,
and it is uncertain whether their mechanical behavior is identical or even similar to
in situ materials.

According to the type of tests that are performed, a soil sample can exhibit very
different features that do not necessarily seem to reflect a unique kind of behavior.
The experimental results obtained by means of the different testing techniques are,
however, different aspects of the same global constitutive law that describes the
interaction between the deformability and the strength of the ground. The challenge
is to create a constitutive law that takes into account and reproduces the main
features of the observed behavior for a given soil. Equations relating the effective
stresses and strains should therefore be written only after a detailed experimental
programme of the deformability and strength properties of soil samples having been
subjected to traditional or special triaxial tests, to shear tests on hollow cylinder
samples, and to oedometer tests (Table 3.1).

These mechanical tests are carried out on homogenous soil samples. The
homogenity of samples makes it possible to define an “average” behavior on the
basis of measures made on their boundaries; the question of whether or not the
sample is homogenous is a constant concern for researchers and technicians
involved in experimental investigation.

Type of tests Usual tests Research tests

Triaxial tests on | Isotropic or anisotropic | Isotropic + anisotropic consolidation.

cylindrical samples | consolidation + For the shearing stress path, various possibilities:
shearing stress path compression or extension;

(generally in compression) p’ = constant; p’/q = constant; K, test (with no
(UU, CU, CD, CU+u) radial strain).

Tests on  cubic |- Same as for triaxial test, plus test for constant values of
samples b ( b= (Gz - 01) / (G[ — 03) )

Plane strain tests

Compression test

All tests above, + tests with rotation of the principal
stresses (torsion).

Hollow cylinder tests

Oedometer tests Compression Relaxation and creeping

UU = unconsolidated and undrained test

CU = consolidated and undrained test

CD = consolidated and drained test

CU+u = consolidated and undrained test with measure of pore pressure
Ky = coefficient of earth pressure at rest

Table 3.1. Types of mechanical tests performed in the laboratory
on soil samples (monotonous loadings)
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For each type of test, the displacements and forces or pressures applied are
measured and then converted into strains and stresses. The processing of the results
is generally based on the assumption of small strains.

3.4. Characterization of natural cohesive soil behavior
3.4.1. Analysis of triaxial test results

The tests carried out on cohesive natural soils subjected to monotonous
mechanical loadings (CU, CD and CU+u tests) made it possible to identify some
features common to all these materials (see Chapter 2):

— independently of the type of test, the deformability of the soil increases after a
given stress is reached, which corresponds to a strain of 1%. In failure tests (in
drained or undrained conditions), this value of the stress is a threshold that
corresponds either to a peak value of the shear strength or to an asymptote in the (q,
€;) diagram. Generally, overconsolidated clays tend to show an increase in volume
when shearing occurs, whereas normally consolidated clays show a decrease in
volume (Figure 3.1);

— if we represent, for samples of the same soil tested from different initial stress
states, the points corresponding to stress states for which strains start increasing
rapidly, we can define a zone of the effective stress space, such that, for stresses
inside this zone, the behavior of the ground is practically reversible, at least for a
small number of unloading-reloading cycles. When the limit of this zone is
breached, the soil sample exhibits irreversible strain (especially volumetric strains)
and the threshold value changes;

— the position of the curve limiting the reversible domain in the effective stress
plane depends on time and on the initial state of the soil (density, stresses and pore
pressure). The experimental data show that curves associated with different initial
states are deduced from one another by a homothetic transformation. The limit of the
domain thus defined for the initial possible states of the clay is called the “limit state
surface”;

— values of the stresses at failure, obtained for various tests, make it possible to
build a failure envelope in (T, 6) plane: it is composed of a curved line at small
values of the mean stress, and of a straight line for larger values of the mean stress
(Figure 3.2). Such behaviors correspond to overconsolidated or normally
consolidated soils;

— the pore pressure has a predominant influence on the stress at failure. Shear
strength of soils depends on drainage conditions and on the loading rate. It is
necessary to distinguish between drained (CD and CU+u) and undrained (CU and
UU) characteristics;
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— irreversible strains associated with the viscosity of the soil are also included in
the experimental results.

aj evh
Overconsolidated Overcosnosic])hdated
soil
Normally
consolidated soil
ga);d Normally gu;al

consolidated soil

Figure 3.1. Experimental results for cohesive natural soils:
compression tests in drained condition (Magnan, 1989)
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Figure 3.2. Failure envelope typical for a cohesive soil

3.4.2. Analysis of oedometer tests

Oedometer tests, being very simple, have always been used by geotechnical
engineers as well as by researchers. This is the reason a large quantity of data
relative to cohesive soils is available: their analysis confirms, on the whole, the main
features of soil behavior already identified on the basis of triaxial tests:

—existence of a threshold value (overconsolidation pressure) above which
compressibility increases;

—effect of time in terms of creeping and changes in the overconsolidation
pressure when the strain rate increases.
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3.4.3. Elasto-viscoplasticity or elastoplasticity?

To improve the interpretation in terms of strain, it is necessary to choose at first
the role played by time in the mathematical formulation of the constitutive model.
All experimental data on cohesive soils show that strains are not instantaneous,
which leads to preferring visco-elastic or elasto-viscoplastic models. Data show that
the constitutive law of clays depends on effective stress, strain and strain rate.
However, the development of elastoplastic models is far beyond that of viscous
models, mainly because, in practice, settlements of clayey soils are calculated on the
basis of the oedometer compressibility curve and on the theory of 1D consolidation
that do not take into account the time-dependent characteristics of soil behavior.
This approach gives satisfactory results for relatively simple projects.

Observations made before also show that all the characteristics of the
elastoplastic behavior can be found in the experimental results for cohesive soils:
existence of irreversible strains, a yield surface in the stress space, and evolutions of
the yield surface, failure surface and plastic flow plateau. The -elastoplastic
framework also made it possible to describe quantitatively elastic and plastic strains,
and to provide analytical mathematical expressions.

3.5. Characterization of frictional soil behavior
3.5.1. Analysis of triaxial test results

Monotonous loadings on frictional soils carried out with triaxial apparatus
(CU+u and CD) led to the following observations (see Chapter 2):

— even for small strains, the stress-strain relationship is different in loading and
unloading. Macroscopic strains, mainly produced by the relative displacements of
grains, are not reversible. The values of the strain for which the behavior is
reversible is limited to very small values of the strain (smaller than 10”). However,
as with natural clays, natural sands (i.e. in situ) show relatively small strains in a
given domain surrounding their initial state. This small strain domain reflects their
geological history, and the mechanical loads they have been subjected to in the past;

—in a general way, the drained behavior of a frictional soil is analogous to that of
a cohesive soil: dense sands show a peak in shear strength (like overconsolidated
clays) followed by a progressive softening, during which shearing is associated with
a decrease in volume, then by a volume increase. On the other hand, loose sands
show an asymptotic trend, and the volume decreases continuously, as in the case of
normally consolidated clays or samples reconstituted in the laboratory (Figure 3.3);

— the failure envelope, i.e. the set of points of maximal shear strength in the
Mohr plane (o, 7), is a straight line passing through the origin, for loose as well as
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dense sands. The shear strength depends not only on the nature and state (initial
stress and density) of the soil, but also on the intensity of the loads and on the
application procedure;

Dense
q q sand
Dense
sand
Loose
sand
> g,
Sv A Ui
Dense Loose
sand sand
Drained test Undrained test
- €, L €y
Dense
Loose sand
sand

Figure 3.3. Typical results of triaxial tests on a frictional soil:
compression tests in drained and undrained conditions

— for very large strains, the volumetric strain tends towards a limit, called the
“critical state” (which corresponds to the condition de, = 0);

— the state of the soil corresponding to the extremum of the volumetric strain vs,
axial strain curve (de, = 0) and to the change in the sign of de, is called the
“characteristic state”. The mechanical phenomenon, associated with the onset of
irreversible changes of the volumetric strain is called “dilatancy”. In the case of
moderately dense or dense sands, the volumetric strain increases with the axial
strain, in a rather linear way, after the characteristic state has been reached, and
eventually the volumetric vs axial strain curve tends towards an asymptote
corresponding to the critical state;
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Figure 3.4. Example of failure envelope for a frictional soil (sand)

— for large values of the mean stress, we can observe a curvature of the failure
envelope, oriented towards the axis of isotropic compressions (Figure 3.4). Actually,
the behavior of a sand sample under high pressures is very different from its
behavior when subjected to moderate stresses. The maximum shear strength
decreases with the applied pressure. This decrease becomes slower and slower as the
pressure increases, and we eventually obtain a limit value;

— tests carried out on a three-dimensional apparatus have shown that the
intersection of the yield surface with the deviatoric plane is close to a succession of
linear segments, but without angles (Figure 3.5);

—in the case of a humid or lightly cemented sand, the origin of the stress space is
no longer a point of the failure envelope. The cohesion thus exhibited
experimentally is created either by the mechanical bonding created by cementation,
or by water meniscus located at the contact points between particles;

— in the case of undrained tests, the density has a very large influence on the
behavior. For dense sands, the deviatoric stress increases continuously with strain
and the pore pressure reaches first a peak, then decreases. On the other hand, for
loose sands, the deviatoric stress exhibits a peak value, then decreases more or less
rapidly to a relatively small asymptotic value; the pore pressure increases, then
stabilizes at a value close to the preconsolidation pressure (Figure 3.3). Loose sand
then loses a great part of its strength: this phenomenon is called static liquefaction
[DUP 97].
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Figure 3.5. Intersection of the yield surface with the deviatoric plane ([LAD 77])

3.5.2. Elastoplasticity framework for frictional soils

As in the case of cohesive soils, it is not easy to build up a unique theoretical
behavior formulation which accounts for all the observations obtained for various
loadings in conditions of applied stress or strain paths. It has often been noted,
however, that the drained behavior of a frictional soil is qualitatively analogous to
that of a cohesive soil: dense sands exhibit volume increases during shearing, as do
overconsolidated clays, whereas loose sands show volume decrease as do normally
consolidated clays.

On the other hand, in many cases, the behavior of frictional soils can be
considered as globally isotropic and it is generally accepted that strains change
simultaneously with the stress states and that viscosity and ageing effects are
negligible. The rate of loading has therefore little or no influence on the behavior of
the material. These assumptions are in relatively good agreement with experimental
results.

Apart from failure, the analysis of the tests brings to light several important
features of the behavior of frictional soils that are consistent with the elastoplasticity
framework. This makes it possible both to take advantage of the experimental curves
to provide a sound basis for the concepts of critical state, characteristic state, and to
provide a set of equations describing the dilatancy phenomenon.
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3.6. Principles for the derivation of elastoplastic models

In order to build up an elastoplastic constitutive law, for instance for a model
with one mechanism (for the sake of simplicity), “experience” shows that we must
go through the following steps:

— definition of the initial elastic domain and of the elastic law;
— definition of the yield surface;
— choice of a plastic potential;

— description of the evolution of the yield surface and of the hardening law.

The following sections illustrate this process, show its complexity, and underline
the interactions between the different parts of the model that must be clearly stated
in order to obtain an acceptable model. The presented process is essentially based on
drained tests and all stresses used are effective stresses, noted o and p for
simplicity, and not 6’ or p’.

3.6.1. Elastic behavior

3.6.1.1. Elasticity and unloading-reloading cycles

When experimental results include tests with one or several unloading-reloading
cycles, the hypothesis of an elastoplastic material leads us to consider that the strains
measured during unloading and reloading up to the stress level reached when stress
reversal occurred are elastic strains. Gathering these sets of points leads to analytical
expressions between stresses and strains. Such expressions cannot be arbitrary, as
they have to comply with certain physical laws, such as material stability. For this
reason, a number of authors who have developed models tend to prefer the so-called
hyperelastic approach, models for which the stresses are obtained by derivation of a
scalar potential with respect to strains.

Furthermore, before any attempt to derive an elastic law from “elastic” data can
be made, it must be decided whether the elastic behavior is isotropic or not. In the
anisotropic case, the elastic behavior is generally assumed to be linear, given that the
number of parameters that must be determined experimentally is so large that any
other type of analysis is extremely difficult to achieve. In the isotropic case, the
problem adds up to finding the variations of two scalar coefficients (K and G, or E
and v) when the stress state (or its invariants) changes. Table 3.2 presents some of
the expressions that can be found in the literature. In tensorial form, the isotropic
elasticity equation reads:
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Table 3.2. Expressions of the bulk modulus K and shear
modulus G available in the literature

If experimental tests do not include unloading-reloading tests, it is necessary in
the first place to identify the initial elastic domain in order to make the difference
between elastic and total strains.
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3.6.1.2. Initial elastic domain

For natural clays, it is commonly assumed that there is an initial elastic domain,
generally limited to small or very small strains [LER 85]. The search for the
boundary of this domain is based on the analysis of monotonous triaxial tests and on
the experimental identification of a clear change in the stress-strain curves: for
instance, a sharp change in the curvature of the (q, €;) line, for a triaxial compression
test (Figure 3.6). Taking into account the assumption of the linearity of the
anisotropic elastic behavior, it is generally simple to identify this sharp change, as it
is associated with a loss of linearity of the stress-strain relationship, and with the
onset of larger plastic-strain. Each test provides one point of the boundary of the
initial elastic domain, i.e. the yield surface. In the case of an anisotropic and non-
linear elastic behavior, this procedure no longer holds.

qa -

Figure 3.6. Initial elastic domain for natural clays

Interpretation of traditional tests on frictional soils is often implicitly based on
the assumption that the soil sample becomes plastic at the first loading. In other
words, the material has no initial elastic domain, but an elastic domain is created as
loads increase. This assumption is justified by relative displacements of grains, with
respect to one another, that explain why irreversible strains occur under the slightest
applied stress. The elastic domain is thus defined by the yield function and the
characterization of the elastic law can only be made through unloading-reloading

cycles.

More sophisticated studies can be carried out with a triaxial apparatus specially
equipped for the measure of very small strain. An initial domain is thus identified
for frictional soils, but it is limited to strains smaller than 10-3 or 1074, The initial
elastic domain can also be characterized in non-linear diagrams. For example, we
can look for a loss of linearity in a (In p, €,) diagram.
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Another, more difficult to use, method consists of applying small variations of
the applied stress starting from a given stress state, and to examine whether, once the
variation of stress is removed, any irreversible strain has been generated or not. We
can thus define locally a boundary separating the stress states belonging to the
elastic domain from those lying outside. In order to be fruitful, this approach must
be supplemented by the choice of an appropriate hardening variable, since this
procedure leads to the identification of the current elastic domain which is
associated with a given value of the hardening parameters. To continue along these
lines, we have to choose a type of variable, and to determine experimentally a
number of points of the yield surface for the same value of hardening variable,
before the elastic domain for a given hardening state can be properly defined. The
initial domain could also be obtained thanks to a thorough study of the evolution of
the elastic domain as hardening parameters vary, and by extrapolating the results for
small strains. This procedure, however simple and attractive it may seem, is
extremely difficult to carry out, especially for natural soils. Moreover, the distinction
between reversible and irreversible strains depends very much on the accuracy of the
experimental setup.

3.6.1.3. Anisotropy of natural clays

Most natural clays exhibit a very anisotropic behavior: the same stress variation
applied in two different directions produces very different strain increments. This is
why it may be necessary, in order to obtain an approximate representation of their
mechanical behavior, to use an elastoplastic model with an anisotropic linear
elasticity. This anisotropy is often limited to the simplest case of transverse
anisotropy. It is generally acceptable that there is a symmetry around the vertical
axis (the direction of gravity) for horizontal ground layers, and that the behavior is
isotropic in the plane perpendicular to this axis (isotropy plane or stratification
plane). This is no longer the case if the ground layer is inclined or has been
subjected to large tectonic forces. The elastic parameters are the following: a
Young’s modulus associated with the vertical direction E,; a Young’s modulus
associated with the horizontal direction Ep; two Poisson’s coefficients vy, and vy,

and an additional shear modulus Gvh , that characterizes the relation between shear
stresses and strains in planes which contain the vertical axis. Measuring these five
parameters can be achieved thanks to traditional triaxial tests performed on samples
cut in different directions. The axes of the sample are thus no longer identical to
those of the triaxial apparatus (Figure 3.7).
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Figure 3.7. Sampling in vertical, horizontal and inclined directions

3.6.2. Estimation of the plastic behavior

The construction of the plastic part of the model is based on the interpretation of
tests in terms of failure surface (or plasticity criterion), of strains and plastic
potentials, of evolutions of the yield surface and of the hardening variables. This
interpretation depends in turn on the type of elastoplastic model that is to be defined.
For the sake of simplicity, and to present the various possible approaches, we retain
here the framework of elastoplastic models with one plastic mechanism.

For traditional tests, and in a first step, the procedure can be identical to that
which has been adopted for the characterization of elastic behavior. The components
of the plastic model are searched for under the form of relationships between p, q,

€y, &, €F, Eg and their increments. Results of triaxial axisymmetric tests in
drained compression, for a constant value of the mean stress and a constant value of
the g/p ratio are often chosen as the basis for analytical developments. The plastic
strains (85,83) that appear, when the stress state is on the yield surface, can be

deduced from measures of total strains by substracting the elastic strains calculated
from the elastic law previously identified. However, being able to calculate the
plastic strains is one thing, the question of knowing when they have to be calculated



Elastoplastic Modeling of Soils: Monotonous Loadings 97

is another question. In other words, we are brought back to the question of the initial
elastic domain. If the determination of this domain cannot be carried out, we can
assume, for stress states far from the origin of the stress space, that for loading
processes, elastic strains can be neglected and experimental strains are equal to
plastic strains. Even if such an approach can be criticized (and may give rise to some
confusion in the model formulation), it is often the one that is used in constitutive
modeling.

3.6.3. Failure surface

3.6.3.1. Notion of critical state

When a soil sample is subjected to a triaxial loading, it undergoes progressive
volumetric strain (positive or negative), where upon the sample volume reaches a
constant value as deviatoric strain develops. The final state is called the critical state
[SCH 68] and can be defined as the ultimate state reached for large strains when
monotonous shearing is carried out at constant volume. The experimental
characterization is difficult and often needs an extrapolation procedure.
Quantitatively, the critical state is defined by the following conditions:

— plastic flow occurs at constant volumetric strain de? =0;
— the void ratio depends only on the mean stress, according to a relationship such
as e=eg —Mni, where e, and A are two parameters of the model and p;, a

Py
reference pressure value (1 kPa, for instance);

— the stress ratio q/p is constant.

The notion of critical state has enabled significant advances in elastoplastic
constitutive modeling of soil behavior, and is the source of the first hardening
models.

3.6.3.2. Failure surface in the (p, q) and (o, 1) planes

For any given soil, the maximum strength, reached under various loading
conditions, defines a failure surface in the principal stress space. The search for the
failure surface is relatively simple if test results are available for a wide array of
loading paths. For example, triaxial tests on cylindrical samples make it possible to
obtain the intersection of the failure surface with the (o, ) or (p, q) planes.

For cohesive soils, the intersection of the failure surface with the (t, ©) plane is
made up of a curved part for small values of the mean stress, and a straight line for
higher values of the mean stress (Figure 3.8). These behaviors correspond,
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respectively, to overconsolidated and normally consolidated soils. Usually, for the
values of stress that are commonly encountered in practical projects, these curves are
summed up as the combination of two straight lines, according to the stress state in
the soil or to the values of the stresses. Line (a) does not include the origin, whereas
line (b) does (Figure 3.8). Both lines are described by the same equation:

T=c+0 tanQ

where ¢ is the drained shear strength (or effective shear strength) and ? | the friction
angle (or effective friction angle). These parameters depend on the nature of the
material (chemical composition, shape and size of the grains), on the initial state
(density and stresses) and on the testing conditions (intensity of the confining
pressure, stress path).

A

Intrinsic curve

Overcons&idated +§« Normally consolidated soil
-7 soil !
0 -

Ya

Figure 3.8. Intersection of the failure surface with the (o; 1) plane

For frictional soils and reconstituted clays, the conventional approach is to
assume that the intersection of the failure surface with the (o, t) or (p, q) planes is a
straight line including the origin:

T =0 tan@

3.6.3.3. Failure surface in the stress space

As it is easier to carry out tests on frictional soils (sands), in-depth research has
been undertaken to characterize the three-dimensional failure surface, by means of
three-dimensional apparatus and hollow cylinder sample testing devices. Such
sophisticated testing facilities make it possible to investigate the influence of the
intermediate principal stress ©,, otherwise impossible to assess with traditional
triaxial tests (0, = 03). In the first place, we can extend the expressions obtained for
the intrinsic curve in the (p-q) space to the space of the principal stresses
(01, 0,3, 03), thus obtaining a cone with a revolution symmetry around the line of
equation: G6; = 0, = 63. The shape of the section cannot be obtained by traditional
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axisymmetric tests, but can be studied by means of true three-dimensional tests (true
triaxial apparatus or hollow cylinder apparatus). The experimental results thus make
it possible to state that, in the principal stress space, the failure surface has a conical
shape, the summit being the origin and the section being not very different from a
rounded triangle (Figure 3.9).

O1 A

Gy

Figure 3.9. Three-dimensional failure surface

From a theoretical point of view, this adds up to introducing the third invariant of
the stress tensor (the determinant or the Lode angle). Several authors have chosen to
express the failure surface using the following form:

d-t@,p)
p

where f is a homogenous function of degree zero with respect to its arguments and 6,

the Lode angle defined by: sin6 = ~34315 /(2132

3.6.3.4. Analytical expressions of the failure surface

According to the authors and the type of tests under discussion, several
categories of failure surface (or plasticity criteria) have been proposed. Some of
these are expressed in terms of principal stresses and others in terms of stress
invariants. Table 3.3 shows the models most commonly used in geomechanics.
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Type of criterion

Mathematical formulation

Type of soil

Tresca

6, —03—2c,

Clays and limestones
(short term)

Mohr-Coulomb G, — 03 —sin@ (0, +03)—2csin@ |2 | Most soils (long term)
Driicker-Prager \/f -d, -k 2 tseirrf)s and clays (long
Di Maggio and _ _ Sands and clays (long
Sandler (1971) Vo +yexp(-A,) -k 3 lterm)
- i I,I
Matsuoka-Nakai 112 ! Sands
(1974) I,
3

Lade-Duncan (1975) I—l - 1 Sands

3

LY I;
Lade (1977) [—‘J 27--L |-k 2 |Sands

Pa 13
Hoek and Brown [ ) .
(1980) 0, — 04 —+/M0;0, +50; 3 Hard soils, soft rocks

I n
Van Eekelen (1980) I, + a[l +b 3?2 J (11 —k) 4 tseirrf)s and clays (long
I3

Desai and _ _ 1/3 12 Sands and clays (long
Siriwardane (1984) T, -l - A5 k 3 term)
Matsuoka et al 11, 11—k | Sands
(1990) 91,

* where n is the number of parameters of the criterion; p,, a reference value for pressure.

Table 3.3. Expressions of the failure surface for soils

The stress invariants are defined by:

I, =0, t+0

I, = Gy Oyy

yy t0, 5

2 2 2
+0,0,, +0,,0,, —Oy, —Ox, —C

yZ 5
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2 2 2
I3 = O0xxOyyOz; ~O0xxOyz; ~OyyOx; =004y +20yxcxzcyz N
(Gxx - ny)z + (Gxx - Gzz)z + (ny - Gzz)z 2 2 2
JZ = +(ny) +(0xz) +(Gyz) :

6

Lade’s criterion [LAD 77] and Matsuoka-Nakai’s criterion [MAT 74] have been
validated by their authors for numerous experimental results and for different types
of sands. Although the shape of the surfaces are relatively similar in the deviatoric
plane (Figure 3.10), some differences can be pointed out:

— Matsuoka-Nakai’s criterion, like Mohr-Coulomb’s, corresponds to the same
friction angles in triaxial extension and in triaxial compression;

— the criterion proposed by Lade associates different values of the friction angle
with triaxial compression and triaxial extension conditions, which seems to be closer
to the experimental results [ZIT 88];

— in the case of Lade’s criterion, a second parameter, denoted by n, is necessary
to take into account the influence of the mean stress on the peak value of the friction
angle, which corresponds to experimental results observed over a large range of
stress values.

Figure 3.10. Failure surfaces proposed by Lade and Matsuoka-Nakai
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3.6.4. Total and plastic strains

3.6.4.1. Notions of characteristic state and dilatancy

During a drained triaxial compression test, a frictional soil shows initially a
decrease in volume, or a contractant phase. Then, as the deviatoric stress increases,
the volumetric strain rate tends to decrease towards zero for loose soils. In the case
of denser soils, the volumetric strain rate shifts sign, and the soil volume starts to
increase before large strains occur (Figure 3.11). The “dilatancy” thus produced is
greater if the material is initially in a denser state, and if the initial confining
pressure is low.

| Eaxial

0 ! =
0 1 >
> Eaxial

l Characteristic state

Figure 3.11. Definition of the characteristic state

The stress state associated with zero volumetric strain rate and with the change in
the sign of volumetric strain variations is called the “characteristic state”. It is
defined by the following two conditions [LUO 801:

— the volumetric strain rate is zero (de, = 0);

— the Mohr circles for characteristic states reached for different isotropic initial
stresses have a common tangent, called the “characteristic line”, whose gradient is
equal to tan Q..

The angle ¢. has been interpreted as the ability of the grains to become
entangled. Its experimental determination is direct and easy: it is obtained for
relatively small axial strains (typically 1 or 2%). Tests carried out on different sands
show that @, is an intrinsic parameter, independent of the density, the grain size
distribution, and the mean stress [LUO 80]. However, in spite of the fact that the
existence of the characteristic state has been confirmed for other stress paths in the
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triaxial plane, in drained as well as undrained conditions, it seems difficult to define
uniquely the transition between contractant and dilatant behavior. For example, the
value of the axial strain corresponding to the characteristic state is not smaller in
extension than the value that can be observed in triaxial compression.

3.6.4.2. Stress-dilatancy relationship

Studying the experimental volumetric strain vs axial strain curves makes it
possible to derive theoretical expressions for the plastic strain. For isotropic soils,
the processing of the results is based on the use of invariants €} and €} and of their

increments, and on the dilatancy rate 8, defined as the ratio between the volumetric
and deviatoric plastic strain rates:

deP
3(p,q) =—
def

Variations of this ratio when p and q vary, or when p and n (n=q/p) vary, makes
it possible to derive a stress-dilatancy relationship. Combined with a simulation of
the plastic part of the isotropic compression test [ &P =g(p)], the following equations

for the components of the plastic increments can be obtained:

dg 1 dg
de? =(—jdp . d£p=—(—Jdp
dp ) MM 8(p,q) Ldp

It remains to be seen if the results are in reasonably good agreement with the
direct estimation of the plastic strains obtained by subtracting the elastic strains from
the total strains. If results are satisfactory, the stress-dilatancy relationship can also
lead to the derivation of a plastic potential.

3.6.5. Plastic potential

3.6.5.1. Analysis in the (p, q) plane

Indications on the plastic potential can be supplied by the experimental results if
we associate in the same figure the direction of the plastic strain increments (Ae?,

Ae! ) with the yield surface previously obtained in the (p, q) plane, or at least with

the boundary of the initial elastic domain. It can thus be decided whether the flow
rule is associated or not, with the restrictions due to the precision of the measures
(Figure 3.12). In general, directions of the plastic strain increments are not strictly
normal to the yield surface. The most difficult point is thus to choose an analytical
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expression which matches the experimentally observed plastic flow directions. Two
possibilities have been investigated: the first consists of expressing the gradient of
the plastic potential as a linear combination of the normal to the yield surface and of
a given vector of the (p, q) plane, defining a straight line including the origin or the
center of the yield surface (case of natural clays); the other possibility consists of
adopting an explicit analytical expression for the dilatancy ratio, and in integrating
the differential equation thus obtained.

LyP g

ni: normal of the yield
surface at Aj
Di: direction of the plastic
distortion at Aj
5: plastic volumetric
deformation

)

P plastic distortion

—=

s,eb

Figure 3.12. Plastic flow directions on the yield surface

3.6.5.2. Plastic potential and stress-dilatancy relationship

The dilatancy ratio previously defined gives access to a method making it
possible to derive the plastic potential. In the case of traditional triaxial tests, we
have, by definition:

G
_deY _ op
8(13,q)—d€(Ii _E'
dq

For a given hardening state, the curve defined in the (p, q) plane by the plastic
potential is defined by the equation G(p, q) = constant. A local differentiation of this
relationship yields:

dG :a_de+a_qu:0
dp dq

Introducing this expression in the dilatancy rate, we obtain the following
differential equation:
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aG
d d

8(p,q) =%= —d—g
s

This equation can be solved, provided that the dilatancy rate is given a suitable
(relatively simple) expression 8(p, q). Two solutions can be considered:

— we can, in the first place, deduce the dilatancy rate directly from variations of
the experimental quantities Ae} and Ael] along a test [NAM 70; STR 71; NOV 82;
TOU 82];

— alternatively, we can choose a theoretical expression of the plastic dissipation
rate dW? = odef, = pdey +qdeg as a function of p and q [SCH 68].

From both approaches, we can derive an expression of the dilatancy rate 3(p, q)
so that the differential equation can be solved and an expression of the plastic
potential G(p, g, po) can be proposed, where p, is an integration constant. Plastic
potentials obtained by such a procedure are the basis of the Cam-Clay models [SCH
68] and the model proposed by Nova [NOV 82].

The plastic potential G(p, q, po), built on the basis of triaxial tests, is thus
extrapolated for the simulation of multiaxial stress situations. The assumption that
the model gives reasonably good results when applied outside the experimental
referential on which it is based must be checked by comparing simulations and
results of other types of tests, especially with true three-dimensional tests. For
example, a generalized definition of the dilatancy rate can be given by the following
relation [DEG 83]:

—deb
[4ePdeP
dsijdeij

This ratio represents relatively well the tendency of the sample volume to
increase (& > 0) or to decrease (8 < 0). The tests carried out on a true three-
dimensional apparatus show that the plastic flow occurs for a roughly constant
dilatancy ratio during a given test [ZIT 88]. These observations have been made for
monotonous and relatively simple test conditions (in axisymmetric conditions and
for a constant value of b; see Table 3.1). These interpretations remain to be
confirmed by three-dimensional condition tests of a higher level of complexity.

6:
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3.6.5.3. Plastic potential and plastic mechanism

A closer examination of the experimental results tends to suggest that the flow
rule itself is not well adapted to the description of frictional soil behavior. The
definition of the flow rule implies that, regardless of the direction of the strain
increment (doy) that induces plastic flow, the direction of the plastic strain
increment is entirely defined by the current stress state (6j); however, experimental
results show that their direction also depends on the stress increment itself [POO 67;
TAT 74; LOR 81; TOU 82; VER 82; TAN 90]. These authors have shown that the
influence of the stress path on the dilatancy ratio is greater for small values of the
stress ratio 1 and tends to vanish for values of 1 close to failure.

If we represent for different stress paths graphically the dilatancy ratio 8 vs the
stress ratio 1, it appears that 8 depends strongly on the stress path (Figure 3.13). The
unicity of the plastic potential is therefore not proved, except in the vicinity of
failure. The flow rule must be replaced by an incremental relationship such as:

def =G, (0y,do,,, )do,,

where Gijj is a tensor whose components are functions of degree zero with respect
to their second argument (do;j). This non-linear relationship has been studied by
Dafalias and Popov [DAF 76] and Mroz and Zienkiewicz [MRO 78]. In order to
account for this dependency, another solution consists of adopting an elastoplastic
model combining several plastic mechanisms. The use of several yield surfaces,
each attached to a different plastic mechanism, introduces a loss of uniqueness in the
plastic strain increment direction, which depends on the stress increment direction at
any point where more than one plastic mechanism is activated. The higher the
number of mechanisms, the higher the sensitivity to the stress increment direction.
For instance, in the case of two mechanisms (one deviatoric and one volumetric), the
relationship between (de”;) and (do;) becomes quadrilinear. This improves the
simulations notably, but we must be aware that the number of parameters increases,
and that they may not be independent of one another. From a more fundamental
point of view, we should also investigate the question of knowing whether the yield
surfaces are independent or not: can the activation of one of the mechanisms change
the shape of the other yield surfaces? The answer to this question remains open, and
more research is necessary. Nevertheless, most researchers in the field of
constitutive modeling think that one or two mechanisms (deviatoric and volumetric)
provide a framework that should be wide enough to account for most physical
phenomena observed experimentally in the case of monotonous loadings. This idea
has been adopted by Lade [LAD 77], Vermeer [VER 82], Luong and Loret [LUO
82], Aubry et al. [AUB 82], Cambou and Jafari [CAM 88] or Tan [TAN 90]. In the
case of cyclic loadings, however, it may be necessary to introduce two or three
mechanisms.
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Working with several plastic mechanisms also leads to more complex
expressions of the dilatancy ratio:

p

de?
8 =—"=3(p.q,dp.dq)
dej

From a qualitative point of view, this formulation seems to be closer to reality;
but unfortunately extremely difficult to identify. Due to this, the models proposed
are more based on mathematical constructions rather than on experimental data.

—a— o¢=0.5 MPa
1.4+ e Gc=2MPa
—a— Gc=4MPa
—O0— G6¢c =6 MPa
1.2 1 —A&— ©c=7MPa
—0— oc=16 MPa
—— o¢c=30MPa
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0.2 .
Fontainebleau sand

¥4 =169 kN/m3
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Figure 3.13. Dilatancy ratio vs stress ratio (Luong and Touati, 1983)

3.6.6. Yield surface

Elastoplasticity with hardening makes it possible to better describe the
intermediate phases between the onset of the irreversible strains and the ultimate
failure of the sample. Hardening changes the yield surface in the stress space. The
changes of its shape have been extensively discussed in numerous research works,
combining experimental observations and theoretical hypothesis.
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3.6.6.1. Principles of the mathematical formulation

Even if its extreme positions are known (the initial elastic domain for very small
strains and the failure surface reached for very large strains), finding an appropriate
mathematical expression for the yield surface on the basis of experimental results
can be quite difficult. We have to build the yield surface in the stress space,
determine the internal variables describing the hardening phenomenon, and, finally,
express the influence of the hardening variables on the evolution of the yield
surface. During a loading path, this surface can undergo successively or
simultaneously an expansion, a translation, a change in shape or even a rotation.
Describing the changes of the yield surface requires us to look for its shape in many
points of the loading path. Thus, it remains to define the influence of the applied
stress path.

Given the complexity of the problem, we have to resort to simplifying
assumptions about the nature of the internal variables which govern the changes of
the yield surface. The construction of the yield surface is thus the result of more or
less sophisticated combinations of experimental observations and theoretical
opinions on the nature of hardening and on the shape of the failure and yield
surfaces, or on the plastic potential. For example, the following observations make it
possible to limit the scope of the possibilities:

— the yield surface is convex and contains the origin;

— after a given point on the stress-strain curve in isotropic compression, the
unloading curve is different from the loading curve: this proves that irreversible
strains exist, and that the stress path has crossed the yield surface. This result implies
that the yield surface intersects the isotropic compression axis (p axis);

— tests carried out for a decreasing deviatoric stress combined with simultaneous
increasing mean stress p show irreversible strains. This tends to indicate that the
yield surface is perpendicular to the isotropic compression axis.

In practice, methods determining the yield surface are based on:

— the so-called normality rule (meaning that the flow rule is more often
associated than not);

— a relatively good knowledge of the failure surface;

— a careful analysis of experimental results.

3.6.6.2. Derivation based on the normality rule

In this approach, it is assumed that the plastic flow is governed by an associated
flow rule. In other words, the direction of the plastic strain increment is also the
direction of the outer normal to the yield surface. The yield function is therefore also
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the plastic potential. The problem thus consists of expressing the plastic potential.
The first elastoplastic models with hardening were developed to describe the
behavior of reconstituted soil samples. The shape of the yield surface was validated
on remolded clay samples, isotropic and normally consolidated [SCH 68]. For
natural soils, this approach is relatively less employed, since the flow rule is
generally very far from being associated.

3.6.6.3. Derivation based on the failure surface

Numerous authors have used the shape of the failure surface to define the shape
of the yield surface. The idea is simple. Once the failure surface equation has been
obtained, for instance f; (0j;) = k, where k denotes a constant and f. a homogenous
function of the invariants of the stress tensor, we use function f;, to define yield
function f, as:

fc(GijaSS') =fr(51j)_P0(8p) =0

where €P represents the hardening variable associated with plastic strain and py, a
function that tends towards the k constant as we get closer to failure. The problem is

now to provide a suitable function Po(€”) that describes the shape, size, orientation
of the yield surface and the way in which it tends towards the failure surface.
3.6.6.4. Hardening variables and changes in the yield surface

For an isotropic soil, the hardening variables are in most cases:

— the invariants of the plastic strain tensor (especially €5 and el ) or their linear

combination (for example, ey +Defl where Disa constant);

— the plastic work W (dW" = o;; de”y);

3
— the plastic distortion Y’ (dy” = W,Edegdeg with €} =€} —€{8y).

In any case, it is crucial that the hardening variable should be easily measurable.
For instance, if plastic work WP is chosen as the hardening variable, and if the
function associated with the failure surface f; (cj) is known, the only thing to do is to
place the experimental points in a (WP, f; (c;)) plot, which upon an appropriate
mathematical processing of the data gives an approximate expression of py(WP).
Here, the choice of the equations describing hardening should be dictated by
simplicity.
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Kinematic or anisotropic hardening laws have also been proposed to describe the
changes of the yield surface inside the failure surface. From a mathematical point of
view, these notions are expressed by the following equations:

— isotropic hardening: fc(0j; ,eP)=0;
— kinematic hardening: f.(o;-A;) =0,
— anisotropic hardening: f.(0,A5) =0,

where € is a scalar hardening variable and (A;), a symmetric tensorial hardening
variable. Kinematic hardening is also introduced to account for the influence of
cycles on the yield surface. Anisotropic hardening makes it possible to take into
account the anisotropy induced by the applied loads.

3.6.6.5. Hardening modulus and changes in the yield surface

Analyzing the experimental results in order to find the hardening modulus H also
makes it possible to discuss the changes of the yield surface. Starting from the
plastic potential G and from the assumption that the yield surface is such that:

fo(0y.€0) =1,(0;) —po(e”) =0
f, denoting the function defining the failure surface, we can write the incremental
relationships:

f
Ag? =L a r AGkI a_G
' H\doy do; °

Using this relationship provides a way of deriving the variations of the hardening
modulus, then of fitting an appropriate mathematical function H(eP). It is thus
possible (in theory) to obtain the hardening law through the following equation:

_ 9pg Ae”
osP AL

where AA is the plastic multiplier that can be evaluated experimentally.

3.6.6.6. Hardening and plastic mechanisms

Theoretical analyses and simulations of tests have also led to some conclusions
relating to the form of hardening laws. It has been shown that models in which

hardening only depends on the volumetric plastic strain [Po(€%)] are not well
adapted for undrained loadings [LOR 87]. This proves that, for the design of
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geotechnical structures, the choice of a model also depends on the kind of
computations that are to be carried out (drained or undrained for instance). To
overcome this difficulty, some authors have proposed to take into account a
hardening defined as the linear combination of the volumetric plastic strain and the
deviatoric plastic strain. However, in the case of sands, comparisons between
simulations and experimental results seem to show that the relationship between the
strain and stress increments depends on the stress increment. This observation
implies that more complex models should be designed, with at least two plastic
mechanisms, and also two or more hardening variables [LOR 82; LOR 87]. Other
theoretical models have been developed on the basis of the “incrementally non-
linear approach” (see Chapter 6).

3.6.6.7. Derivation of the yield surface on the basis of experimental results

For a practical determination of the yield surface, several methods have been
proposed, depending on the nature of the soil: natural cohesive soils, frictional soils
or soils reconstituted in the laboratory.

A. Case of natural cohesive soils

Research works on reconstituted soils carried out at the University of Cambridge
[ROS 58; SCH 68] have led to the first elastoplastic models with hardening and with
a non-linear isotropic elastic law (Cam-Clay models). Later, at the Laval University
in Quebec [TAV 79] and the Laboratoire Central des Ponts et Chaussées [MAG 86;
LEP 90; AZI 88], a somewhat more realistic shape for the yield surface, or limit
state line, in the (p, q) space was proposed. This research, carried out on samples
extracted from ground at different depths, showed that the principles of the
constitutive modeling that had been elaborated for reconstituted clays, remained
qualitatively acceptable for natural anisotropic clays.

Crooks and Graham [CRO 76] proposed searching for the shape of the yield
surface by means of a series of triaxial tests on reconsolidated samples, subjected to
the same stress level as in situ. Each sample is subjected to a radial drained triaxial
load (Figure 3.14). For any given test, the search for a clear change of the sample
behavior provides a dot in the (p, q) plane that belongs to the initial plastic domain
(initial position of the yield surface).
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Figure 3.14. Determination of the yield surface: principle of
the method proposed by Crooks and Graham (1976)
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Figure 3.15. Research of the yield surface: Tavenas and Leroueil method (1979)

Another more simple method was described by Tavenas and Leroueil [TAV 79],
which consisted of performing the whole set of traditional tests listed below:

— oedometer tests, conducted to obtain the preconsolidation pressure 6°p; this
value makes it possible to define one point of the initial position of the yield surface;

— triaxial undrained compression tests with a measurement of the pore pressure
(CU+u) for confining pressures lower than 0.5 6, (Figure 3.15). For each test, the
peak of the (q, €) curve is assumed to be associated with a point of the initial
position of the yield surface;

— compression tests conducted with a constant value of the effective stress ratio,
and during which volume variations are measured (Figure 3.15). Points of the initial
yield surface are obtained using the same procedure as previously.
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The plotting of the points characteristic of a clear change of behavior, in the (p,
q) plane, shows that the initial shape of the yield surface is close to that of a more or
less tilted ellipse compared to the mean pressure p axis (Figure 3.16) [LER 85]. An
elastoplastic behavior law with isotropic hardening and anisotropic linear elasticity
was developed, starting from these observations, to describe the behavior of natural
clays [MOU 83; MAG 86; KAT 90]. The yield function suggested has the following

general form:

fo(05,e8) =q” +ap’ +bpq —pfy(e}) —qf; (e7) ~,(e0) = 0

where a and b are two constants and f;, f; and f, are three scalar functions.
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Figure 3.16. Examples of the initial domain of elasticity for
natural cohesive soils (or limit state curves)
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B. Case of frictional soils

Poorooshasb et al. [POO 66], then Tatsuoka and Ishihara [TAT 74], completed
an important work that enabled the shape of the yield surface of sands in the (p, q)
plane to be defined. They carried out, in this plane, a succession of conventional
triaxial and constant deviatoric stress paths in drained condition. This approach rests
on the assumption, in conformity with the principles of elastoplasticity, that the yield
surface is convex and contains the origin. If a load increment brings the soil from
point 1 to point 2, with the supposition that point 2 is plastic, and if the load
increment is removed, this last followed path is located within the current elastic
domain (Figure 3.17). A reloading up to point 6, supposed outside of the elastic
domain, shows that there is necessarily a point 5, located on the yield surface
defined by the value of the hardening variable of point 2 and, such as starting from
this point 5, the strains increase in a notable way. This observation highlights a
portion of the curve joining points 2 and 5 which belongs to the yield surface. The

problem is thus to determine a function of the hardening variable “€” > which has
the same value in points 2 and 5.

qa

Y

Figure 3.17. Research of the boundary of the yield surface for frictional soils

If the process is repeated, starting from point 5, several couples of points such as
2 and 5 will be obtained. By means of an adapted mathematical fitting, an equation

of the type fc(0,€")=0 or f.(p,q,€") =0 can be given. Poorooshasb et al.
(1966) established that the yield function could be approached by the equation:

£.(p, ") =L+ mlInp—fy(e) =0
p

where the hardening variable €P is equal to the invariant €°,; f; is a scalar function
to be determined and m, a constant.
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Tatsuoka and Ishihara [TAT 74] proposed introducing the plastic deviatoric
strain like a hardening parameter, as well as the plastic volumetric deformation. The
yield function is thus approached by the general equation

fc<p,q,e‘3,e§)=%—f1(p)—fo<ss,s§)=o

where f; is a scalar function to be determined. Figure 3.18 represents the boundary
of these surfaces for various hardening states [TAT 74]. We should note that the
curvature of these surfaces is all the larger, as the frictional soil is initially dense.

The trace of the yield surface has also been studied in the deviatoric plane (p =
constant). The experiments on a true triaxial apparatus show that this boundary is
not angular, that its form is convex, close to that of a triangle and that it is close to
the shape of the yield surface (Figure 3.19) [LAD 73; ZIT 88].

12 e=0.50~0.53 / 12

e=0.72~0.78

10

Figure 3.18. Traces of the yield surface for various values of a hardening variable in
the (p, q) plane: a) dense sand; b) loose sands (Tatsuoka and Ishihara, 1974)
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A Extension Oz

Compression
. Ox

Figure 3.19. Trace of an experimental yield surface in the deviatoric plane

3.7. Three-dimensional aspect of the models and calculation of geotechnical
works

The traditional method for constructing constitutive models prefers to use the
long-established triaxial stress paths on cylindrical samples, in which the principal
directions of stresses and strains remain fixed. Therefore, the models built are
theoretically valid only on the paths used for their development and “fitting”. Any
generalization with other types of paths, or with the true three-dimensional case,
remains an extrapolation to be checked.

Generalizing the three-dimensional case forces us to introduce into the equations
the influence of the intermediate stress, which does not appear in the axisymmetric

conditions of tests on cylindrical samples (O2 = O3). If the writing of the models
according to invariants p and q allows a certain influence of the intermediate
principal stress to be introduced, it cannot be experimentally justified when going

o . .. 0, +20; _
from the cylindrical triaxial conditions (P = 3 q=61=-63) to the
6,+06,+0
multiaxial conditions (P = % ; q= 1[3.12 ) We can certainly always

think that the conceptual model is “universal”, and that, consequently, it is thus
sufficient to characterize the equations on some specific tests. However, to be
rigorous, it remains that this approach makes it possible to build only restrictions of
the yield functions, potentials, etc. All attempts at generalizing require certain
assumptions that must be confronted with the experimental reality, which only
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validates or refutes a model. Ideally, we would reason directly on three-dimensional
tests with three-dimensional variables. Unfortunately, the tests are both complex and
expensive, thus rarely performed, in particular for cohesive soils. Their
interpretation is also made difficult by the number of variables to be measured: three
invariants of stresses and three invariants of strains.

In developing these models, the authors thus favored axisymmetric tests
(available in great number) for setting up the constitutive equations. Thus, they tried
to validate the models based on three-dimensional results and corrected the
equations in order to take into account the effect of the intermediate stress, while
keeping the model response as close as possible to the traditional tests results. The
use of the models in finite element calculations of geotechnical works has also
contributed to the evolution of their formulation, either to a certain simplification, or
towards a greater complexity. The first tendency seems dominant at the present time,
with a clear decrease of the number of model parameters. This is due to the fact that
there is often very little geotechnical data available to estimate the parameters.
Methodologies to determine the parameters must be adapted to the practice of the
current studies and the interpretation of in situ tests.

Constant and long scientific effort has been required to the development of
successive versions of a model. Only a few authors seem to have followed this path
(essential in our opinion) with extended confrontations between theory, numerical
method and validation. We can cite the work of Lade ef al. (“Lade model”), Cambou
et al. (“CJS model”), Hicher et al. (“Hujeux model”), Magnan et al. (“Melanie
model”) and Nova (“Nova model”).

We understand that the simplest models (elastoplasticity without hardening) are
still very much used by engineers in calculation of geotechnical works; this is all the
more the case as they often provide satisfactory simulations, considering the
uncertainties of the problem. On the other hand, if there is abundant data and if we
have some measurements of the geotechnical works for an initial fitting, the models
with hardening can give excellent estimated results.

3.8. Examples of perfect elastoplastic models
3.8.1. The Mohr-Coulomb model

3.8.1.1. Description of the model
This elastic, perfectly plastic constitutive law is used to describe in an
approximate way the behavior of frictional (sands) and cohesive (clays and silts)

soils under short and long-term conditions. In the principal stress space (6,,0,,03)
the yield surface is a pyramid of hexagonal section of equation:
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F(0;))=0,-03|-(0,+03) sing—2 ¢ cosp = 0

where 6, and ©; represent the extreme principal stresses, (6,20, =0;,with the

following sign convention: compressions are counted positively). When ¢ = 0° and
v = 0°, the model is called the Tresca model and is used for studying cohesive soils
under short term conditions; the pyramid thus degenerates into a cylinder.

The plastic potential is written: G(0;;)= |01 —63|—((5l +065) siny .

When angles ¢ and y are equal, the flow rule is associated.

The elastic part of the behavior is defined by isotropic linear Hooke elasticity.
On the whole, the model requires five parameters: E (Young’s modulus), v
(Poisson’s ratio), ¢ (cohesion), @ (friction angle) and y (dilatancy angle). These
parameters are usually obtained from laboratory test results (oedometer and triaxial
apparatus). Figure 3.20 represents the modeling of a triaxial compression test of
compression by the Mohr-Coulomb model. The value of the parameters results from
an identification between this representation and the tangents and asymptotes
obtained from the test curves represented on the same diagrams. This figure also
shows that there are five unknown factors for four equations and that one needs at
least two triaxial compression tests in order to determine all the parameters. In
general, three tests are carried out with various confining pressures. Cohesion ¢ and
friction angle @ are also traditionally calculated in the Mohr plane (o, t) from the
stress states at failure, estimated for each triaxial compression test.

61-63

2sin @ + 2¢ cos @

1-sin q)cy3 1-sin ¢
€]
0 -
-2sin ¥
0 1-sin ¥ -
€]

€vol

Figure 3.20. Modeling of a triaxial compression test by the Mohr-Coulomb model
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3.8.1.2. Typical values of the parameters of the Mohr-Coulomb model

Several studies have been carried out concerning the influence of various factors
on the value of the friction angle, in particular in the case of frictional soils (Table
3.4). The current values lie between 15 and 45 degrees. The lower values of around
30 degrees are typical for clays while higher values characterize sands (between 25
and 45 degrees). At a given density, the friction angle is practically independent of
the water content of the ground, but it increases with the average diameter of the
grains. The friction angle also depends on the form and the surface quality of the
grains. This parameter is higher for soils with angular grains than for soils with
round grains, and for a rough surface quality than for a smooth surface quality grains
(Table 3.5). Cohesion ¢ is more difficult to estimate. Nevertheless, we can note that
the frictional soils practically have no cohesion (¢ = 0 or some kilopascals which are
due to capillary forces or cementing) and that cohesive soils have a cohesion ranging
between several and several hundred kilopascals. The value of the dilatancy angle v
generally lies between 0 and 15 degrees. Loose sands and clays have very low
values, being worth a few degrees, even zero. Generally, the friction angle is
practically always higher than the dilatancy angle. A simple, generally well verified,
empirical relation connecting the dilatancy angle to the natural angle of repose was
proposed (P. Vermeer): y = @ — 30°. In addition, in the case of strongly contracting
materials at rupture, the estimate of the dilatancy angle can lead to negative values.

The Young’s modulus depends primarily on the strain level at which it is
estimated and on the confining pressure. Table 3.6 provides orders of magnitude of
Young’s modulus and Poisson’s ratio for sands. Table 3.7 provides some examples
of parameter values deduced from the study of sands in a laboratory or adopted in
calculations of geotechnical works by the finite element method. Indicative values
for natural cohesive soils are provided in Tables 3.16 and 3.17, where the anisotropy
is taken into account.

In addition, it is advisable to remember that the natural angle of repose obtained
with tests in plane strain is 3 to 5 degrees higher than the friction angle determined
by using triaxial compression tests on cylindrical samples (axisymmetric tests).
Wise precautions must thus be taken before using the model in finite element
calculations of geotechnical works with parameters deduced from tests made by the
traditional triaxial apparatus.
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Influence factor Influence on the friction angle
Void ratio € et ol
Angularity A AT,01
Uniformity coefficient Cy CuT,07
Surface roughness R RT,07
Water content W w 1, @ { slightly
Grain size small influence if e is constant
Mean stress p ptT.o l

Table 3.4. Factors having an influence on the friction angle (Holtz and Kovacs, 1991).

@ (degrees) @ (degrees)
Nature of the ground Compacity Round.ed grams Angular grains
Uniform well graded
granulometry granulometry
Very loose 28°-30° 320-34°
Average sand Moderately dense 320-34° 36°-40°
Very dense 35°-38° 44°-46°
Sand and gravel:
65% gravel 35% sand Loose 39°
65% gravel 35% sand Moderately dense 37° 41°
80% gravel 20% sand Dense 45°
80% gravel 20% sand Loose 34°

Table 3.5. Orders of magnitude for the friction angle of frictional soils (Leonards, 1968)

Type of sand Young’s modulus (MPa) Poisson’s ratio
7-20 0.15-0.25
Loose sand 10-25 0.30-0.35
Dense sand 50-80 0.30-0.35

Very dense sand and|

gravel 100-200 0.30

Table 3.6. Typical values of the elastic properties of sands
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Y E c 0] 1
Sand References 3 v
(kN/m”) | (MPa) (kPa) | (deg) | (deg)

Hostun (loose) Mounir (1992) 14 55 02810 35 0.7
Hostun: (mediumj /i (1992 155 |85 |o028|0 |37 |55
dense)
Hostun (dense) | Mounir (1992) 16.3 95 03310 41 11
Fontainebleau Ghorbanbeigi (1995) | 15.5 40 03310 39 14
Labenne Mestat et al. (1999) | 16 33.6 0.28 | 1 365 | 114
Karlsruhe Arafati (1996) 16 3045 | 025 | 0-3 | 41.6 | 11.6

Table 3.7. Values of the Mohr-Coulomb parameters (sands)

NOTE.— Improved versions of the Mohr-Coulomb model have been proposed in
recent years, which incorporate linear anisotropic elasticity, modulus varying with
depth, non-linear isotropic elasticity, or limitation of the plastic volumetric strain in
order to describe the critical state properly.

3.8.2. The Driicker-Prager model

3.8.2.1. Model formulation

In the principal stress space (0,,0,,03), the failure surface is a cone with a
circular cross section. Its equation is given by:

F(o;)=4/J,(0;) —ol;—k=0

where J, (o) is the deviatoric stress and I, the trace of the stress tensor.
The plastic potential is defined by: G(c;;)=1/J,(0) — BI, .

The elastic part of the constitutive relations is defined by Hooke’s linear
isotropic law. On the whole, the model requires five parameters: E (Young’s
modulus), v (Poisson’s ratio), o, B and k. When oo = 0 and = 0, the model is
reduced to that proposed by von Mises, and the cone becomes a cylinder in the
principal stress space. The parameters are obtained relatively simply by means of
traditional laboratory tests (oedometer and triaxial apparatus). Figure 3.21 represents
the results of the simulation of a triaxial compression test for an ideal Driicker-
Prager material. The value of the parameters can be deduced from the comparison of
this representation and the results of tests plotted in the same axes. Like the Mohr-
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Coulomb model, the Driicker-Prager model requires at least two triaxial tests for all
parameters to be determined.

51-03 “
| /
o3 kN
| a3 103
E | i €1
0 : -
§ 3p3
0 LpV3
1-2v! &1
€vol

Figure 3.21. Simulation of a triaxial compression test for an ideal Driicker-Prager material

3.8.2.2. Values of the parameters

The parameters of Driicker-Prager model o, B and k are frequently expressed
from those of Mohr-Coulomb c, ¢ and y. Different relations are obtained according

to the test considered. For example, in the case of a triaxial compression ( 0, =0,

and o1 > 63), the two criteria are written respectively:

0,—0
0,-0,—(0,+6;) sing —2 ¢ cos¢p = 0 gpd ——= — (0,+205) aa—k=0_

V3

By supposing these equations verified for any stress field observing the
conditions of the test, it is easy to deduce from them the relations existing between
the parameters. We can proceed in the same way for other stress or strain paths
(Tables 3.8 and 3.9). Particular attention was paid to the case of the plane strain
condition.
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Type of test o k B

Triaxial compression: 2sin@ 6¢cos@ 2siny

0}; 0, = 03 = contstant. \/5(3 —sin () ﬁ(3 —sin@) ﬁ('g’ —siny)
Triaxial extension: 2sin@ 6¢ccosQ 2siny

G} = Oy; 03 = contstant. \/5(3 +sinQ) \/5(3 +sin@) ﬁ(3 +siny)
Plane strain: sin@y/3 + sin’ v | ccosg Vo+ 3sin’y tany

€, =0 (general case). \/§(3+ sin@siny) 3+singsiny \/9 +12tan’ y
Plane strain: tan@ 3¢ tan y

& =0 (ifo=y). V9+12tan’ @ V9+12tan’ @ J9+12tan? y

Table 3.8. Parameters of the Driicker-Prager model according
to those of the Mohr-Coulomb model

Type of test

C

sin @

sin

Triaxial compression:

Oy, 0, = 03 = contstant.

V3k

3\/§a

2\/1 + ﬁa— 60>

2+\/§oc

34/3p
2+4/3p

Triaxial extension:

O = 03; 03 = contstant.

3k

3\/§(x

Zx/l—\/goc—&xz

2—\/§(x

3436
2-4/3p

Plane strain:
& =0 (general case).

k

\/1—120(2+3((X_B)2

3011 — 382

1-3ap
2

3B

J1-3p2

Table 3.9. Parameters of the Mohr-Coulomb model according

to those of the Driicker-Prager model

The expression of the Driicker-Prager model also prompts the following
comment: the friction angles in compression are limited to low values. In fact, the
maximum friction angle that the material can have in extension is 90°, from where,
while deferring in the equation of the criterion, the value of ot and § = 0. Starting
from these values, we can calculate the angle of maximum compression, i.e.,
approximately 37°. This means that the friction angle cannot exceed this value in
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triaxial compression. However, particularly in the case of sands, many experimental
results show the opposite. It is thus advisable to use this criterion with precaution.

3.9. Examples of elastoplastic models with hardening

Driicker, Gibson and Henkel [DRU 57] were the first to consider soils as
elastoplastic materials with hardening. They assumed the existence of a yield surface
similar to that of the Mohr-Coulomb model, but closed by a second surface called
the “cap”, able to move along the axis of isotropic compressions. This constitutive
law brought about a family of models, known as “cap-models”. Each was developed
by introducing a fixed failure surface associated with a second variable surface
(Figure 3.22). The volumetric plastic strain governs the evolution of the “cap”
surface according to an empirical law. One of the main shortcomings of such models
lies in the fact that they generally adopt an associated flow rule, which is generally
not acceptable in view of experimental data.

) Iop
G =0p=0
1 2 3 A Driicker-Prager
von Mises

................ S

‘¥ £,(7;.NT5)

yo

Figure 3.22. Yield surface for a cap-model (Desai and Siriwardane, 1984)

3.9.1. University of Cambridge models (Cam-Clay models)

Roscoe ef al. [ROS 58] derived general elastoplastic constitutive relations for
soils, based on the theory of hardening plasticity, and on the analysis of oedometric
and triaxial tests. Such models belong to the family of “cap-models”, and are known
as “Cam-Clay models”, or in short “Cam-Clay”. They are basically oriented towards
the description of the behavior of remolded clays. They are based on four main
concepts: results of isotropic compression tests, the notion of critical state, the
notion of a relationship between stress and dilatancy and the normality rule.
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3.9.1.1. Isotropic compression test

In the (e, In p) plane, [where e denotes the void ratio], the representation of the
results of an isotropic compression test yields curves that can be assimilated to
straight lines (Figure 3.23):

— one is the initial compression line, or A-curve, which describes the elastoplastic
phase of the test:

e=e¢; Al
P’

— the other is the unloading-reloading curve, or K-curve, which represents a cycle
during which the load is reduced then increased again. Within the framework of
elastoplasticity, this curve is supposed to give the elastic non-linear response of the
sample:

e=eP —kInt.

p1’

where €1 and e’ correspond to the values obtained for a given reference pressure

denoted by Pi (generally taken equal to 1 kPa); A and k are two parameters of the
model.

ca

el Unloading-
reloading
curves
eP(Ap) ] Consolidation
eP(Aj) curve
aarl TG
o pi=1kPa
Inp;  Inpy, Inpy Inpy, Inp

Figure 3.23. Representation of a triaxial isotropic compression test (Cam-Clay model)

Figure 3.23 shows that e” (interpreted as the “plastic” void ratio: e =¢e® +eP)
changes when the load increases, and is related to the boundary of the current elastic
domain. It can therefore be used as a hardening parameter in the description of the
isotropic compression test.
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3.9.1.2. Equations of the Cam-Clay models

Plasticity is described by means of a stress-dilatancy relation derived from the
analysis of triaxial compression tests such that (p = constant and gq/p = constant)
(Table 3.10). Integrating this differential relation makes it possible to derive the

plastic potential G(p.a.p.) , and, through the normality rule, the expression of the

yleld surface F (ps q, pc)= G (pa q, pz)

Two versions of the Cam-Clay model have been proposed. The original model
allowed us to reproduce qualitatively the main features of the experimental results.
However, for some stress paths close to the isotropic compression axis, the model
yields excessively large deviatoric strains. This is the reason the flow rule (or stress-
dilatancy rule) was modified by Burland and Roscoe [BUR 68].

Cam-Clay model Original version Modified form
2
m2-| 4
St{ess-dilatancy dSE -m-4 de? (p]
rule d _—
Sd p dgg ) ﬂ
p
2
q Pc
. q Pc +1-—=0
Yield surface —_— - ln(—] =0 M2p2
Mp p p p
dEe — K d_p dgf] = S d_p
Non-linear elastic Y lte o P l+e, p
law .
dS = dg = —d
q q 3G q

Table 3.10. Stress-dilatancy rule, yield surface and non-linear
elastic law for the Cam-Clay models

/2
where sg = 856ij; ey = 3 S el and e

p_.p_Llp
i SUSU

G denotes the shear modulus and ¢, the initial void ratio.

The elastic part of the constitutive law can be formulated as follows in the elastic

regime:
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des =——do +| —— L lip's,
2G 31+ey)p  2G

The stress p. is the “integration constant” resulting from the integration of the
stress-dilatancy rule. p. is also the coordinate of the point of the isotropic axis that is
located at the intersection of the yield surface and of the isotropic compression axis,
therefore on the boundary of the current elastic domain (Figure 3.24); this value can
be seen as the variable governing the evolution of the yield surface, i.e., the
hardening of the yield surface. The hardening law between the plastic void ratio e”
and the value of p, can be obtained by combining the A- and K-curves at point p,
(Figure 3.25). We obtain the incremental relationship:

dpi: 1+e, de?
P A—x ’

Failure occurs when the critical state is reached: deb =0; q = M p and

e=e ~Aln2
P’

a) almond-shaped yield surface (original b) elliptical surface of the modified

model) model

Figure 3.24. Yield surfaces of the Cam-Clay models in the (p, q) plane

3.9.1.3. Determination of the parameters of the modified Cam-Clay model

The modified Cam-Clay model involves seven parameters: M, ©cs, A, X, €1, pi,
G and three more parameters describing the initial state of the soil (e, po, qo). The
parameters can be derived from the results of triaxial tests (drained tests, or
undrained tests with measurement of the pore pressure) and oedometer tests
(Table 3.11).
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q = Mp (critical state line)

€
A
ep(V)) > G Ay 4 v,
eP(A,) = eP(Vy) eI Vi
e(Ag) P 2
Inp, Inp! Inp2 1[1)

Figure 3.25. Representation of the hardening law of the Cam-Clay models

Parameters Principle of the determination
e Initial stress state in situ, or parameters estimated on the basis of isotropic
0. Po- o compression tests or triaxial tests.
G Derivation from results of triaxial tests including unloading phases, after|
(or E and v) | estimation of the initial elastic domain.
Interpretation of isotropic compression tests in the (e, In p) plane, on
A K, €1, P oedometric tests. Pressure p; is a reference value, often taken equal to|
1 kPa.
M. e Stress ratio at failure for shear tests in the (p, q) plane, and position of the
s ~CS

critical state in the (e, In p) plane.

Table 3.11. Determination of the parameters of the Cam-Clay models

3.9.1.4. Examples of typical values of the parameters of the Cam-Clay model

The state of the art report by Duncan [DUN 94] indicated that the modified Cam-
Clay model remained the most used in numerical simulations of coherent soils. This
stems from the fact that it is relatively simple to include in a finite element code, and
from the reduced number of parameters, that can be derived from traditional soil
mechanics tests. Table 3.12 gives indicative values of the parameters.
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Soil G (MPa) \Y M €es A K
London Clay G(z) 0.15 0.9 0.08 0.008
Las Planas marl 150 0.3 1.18 0.04 0.007
Pescara Clay (Italy) 0.3 0.898 1.91 0.18 0.045
Clay (Rio de Janeiro) G(z) 1.14 0.83 0.13
Clay (Muar, Malaysia) 0.3 1.19 3.07 0.13 0.05
Clay (San Francisco) 1.2 3.72 0.326 0.043

Table 3.12. Examples of typical values of the parameters of the modified Cam-Clay model

3.9.2. Nova model (1982 version)

3.9.2.1. Description of the model

The constitutive model proposed by Nova (version 1982) is an adaptation of the
modified Cam-Clay model, devoted to the description of the sand behaviour [NOV
82]. It combines a non-linear elastic law with a hardening plastic law, with a flow rule
that is associated or not, depending on the value of the stress ratio g/p (Table 3.13).

In the elastic domain, the following isotropic non-linear relation holds:

dp

o;j —pS; .
where Mjj =T; By and Lo are two material parameters.
Yield surface F(p,q, and
Stress ratio | Stress-dilatancy rule . . (P-a.pc)
plastic potential G(p,q,p¢)
. F(p.q.p.) = G(p.a.p.)
ﬂ < M dgV — 4“ P 4 2 2
p 2 deh  M?q G(p,q,pc)=M—qu—2+1—p%=0
p p
M
F(pape) = & - — +m ln( 1+u—] =0
p 2 c
ﬂ > M ﬂ = M _i 1-u
p 2 def u wp M n
G(pzq:pc)zﬂ__ 1_“‘ L =0
p 1_“ pcg

Table 3.13. Expressions of the yield surface and of the plastic potential (according to the
value of the stress ratio) for the Nova model [NOV 82]
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The evolution of the hardening parameter is governed by a linear combination of

the first two invariants of the plastic strain tensor €7 and e

eb+Deff
Pc=Pco€XP W

The hardening parameter Pc is therefore given by a relation very similar to that
adopted in the Cam-Clay models; the difference lies in the introduction of the

deviatoric term €} that makes it possible to account for the dilatant behavior of
sands. The variable Pcg represents the intersection of the plastic potential with the

isotropic compression axis and is linked to the hardening variable Pc .

3.9.2.2. Determination of the parameters of the Nova model (1982 version)

The model has eight parameters, seven of which are non-dimensional and can be
derived from fitting the results of traditional drained triaxial tests ((NOV 82]; [MES
00]). Table 3.14 describes the procedure.

Parameter Determination

o Analysis of the (83 , p) curve (unloading-reloading)

o Analysis of the (83 , q) curve (unloading-reloading)

Parameter related to the characteristic state (of sand) and to failure

Parameter associated with the failure (q/p tends towards M-+uD)

Slope of the dilatancy curve at failure

~ |9 =8| | w

Analysis of the (€v , p) curve (first loading)

Parameter associated with the characteristic state and with the curvature of]

=

the (q, €1) curve

Table 3.14. Determination of the parameters of the Nova model (1982 version)

The last parameter Pco is a reference pressure, which can be evaluated in either
of the following ways:

— by assuming that the initial stress state belongs to the yield surface, Pco being
solution to the equation F(p,.,q,.p¢,)=0;
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— by fitting tests results: this method should be avoided, since it leads to
overestimation of the mechanical meaning of this parameter (which should only
reflect the initial state of the soil).

3.9.3. Mélanie model

3.9.3.1. Description of the model

Works by Tavenas and Leroueil [TAV 79] on the clay of Saint-Alban (Québec)
and by Magnan et al. [MAG 82] on the clay of Cubzac-les-Ponts (France) confirmed
the applicability of the concepts developed at the University of Cambridge, with
appropriate corrections to take into account the anisotropy of natural clays. These
works have led to the so-called Mélanie model, developed by the French Public
Works Laboratory (Laboratoire Central des Ponts et et Chaussées: [MOU 83]; [LEP
90]; [KAT 90]). The model was built according to the principles underlying the
University of Cambridge models. A first version was eclaborated in the

_ 0, +0; (= 01-0

2 2
is based on the following experimental observations and assumptions:

: , €) space, then adapted to the (p, q, €) space. The model

— the yield surface has en elliptical shape in the (p, q) plane (Figure 3.26);

— the yield surfaces corresponding to different preconsolidation states are
deduced from one another by a homothety with respect to the origin;

— the flow rule is unassociated. The direction of the plastic strain increment is
given by the bissector of the normal to the yield surface and the radial direction.
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Figure 3.26. Yield surface or limit state line of the Mélanie model
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The yield surface is an ellipse inclined with an angle ¢ with respect to the
horizontal axis:

2 2 2
A? pcosG+ﬂ sin6+lcose _Pr +B7 4 cose—lsine —psin®| - Pe =0
2 3 AC 2 3 C

2
B2 :A;OSG(E_COSB); C=06 and

h A= 2(cose+sin(§));
e Csin?0 | A

1-K
0= arctan(1 KO J ,and K denotes the coefficient of earth pressure at rest (for a
tKo

normally consolidated state).

The plastic flow rule in point A of the (p, q) plane reads:

o
_ ., 0G G _ 905  OA
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do;;

where ||OA|| represents the Euclidean norm of vector OA.

The elastic part of the law is linear, and transversely isotropic:
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where n = E—h; E, and E, denote the elastic moduli in the vertical and horizontal

v

directions; v, , the Poisson’s ratio in the vertical direction under a vertical stress;
Vih, Poisson’s ratio in the horizontal direction under a horizontal stress and G,

the shear modulus between the vertical and horizontal directions.

The constitutive law can be expressed as follows:

o 1 | =0V ey #n(v)?) e+ V)V, 0 0 U,
o | [cm v el-nvy)?)  cld+vg)vy 00 o |
yy C Yy
o, c(1+Vp)Viy c(1+Vyp)Vin ;(1—(th)2) 0 0 0 €,
o, | 0 0 0 Gy O 0 £y,
o, 0 0 0 0 Gy 0 £,
Oy 0 0 0 R = Eyy

- L 20+ vp) |- T
. nE

with ¢ = X

A+ vy)d=vy, — 2H(th)2) '

The hardening parameter p, is determined by the intersection of the isotropic

original compression and of the line of isotropic reversible behavior in the (e, p)
plane (Figure 3.27). The relation between e? and p, reads:

el =¢, —an—p+0c(pp -p1),
Pi

where e, denotes the void ratio corresponding to the reference pressure p;

(generally taken as equal to 1 kPa). Slope o of the reversible isotropic strains
depends on the elastic characteristics:

a=(l+e,) e

v
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Figure 3.27. Definition of hardening parameter p,

3.9.3.2. Determination of the parameters of the Mélanie model

The parameters can be obtained by taking advantage of the results of drained
triaxial tests, undrained triaxial tests during which the pore pressure is measured,
and oedometric tests (Table 3.15).

3.9.3.3. Examples of typical values of the Mélanie model

The Young’s moduli in the horizontal direction are lower than the moduli in the
vertical direction for soft clays, and larger in the case of stiff clays. In addition, it
seems that the ratio of the shear modulus G, to the vertical modulus varies in the

range 0.3 — 0.5. The values of the Poisson ratios lie in the range 0 — 0.40. Note that,
unlike the models presented before, the elastic law is not isotropic: it must be
recalled that the complete determination of the five elastic parameters of an ideally
orthotropic material by means of standard tests is not common practice and remains
out of reach in most cases. Indicative values are given in Table 3.16. Table 3.17
provides examples of values for the other parameters of the model.
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Parameters Principle of the determination
Initial stress state, and results of tests in situ or in the laboratory. The
coefficients of earth pressure at rest K° (normally consolidated state) and
e,, K™, Ko® (overconsolidated state) are given by Kj° =1-sin@ and
Ko, o'y, . . -
, where @ is the internal friction angle. The
preconsolidation pressure G' . is derived from the oedometric test.
Results of triaxial tests with anisotropic consolidation on samples of
. . . . E, Gy
different orientations. In practice, the values of —, , Vpn and
v A4
E,, E,,| Vv are assumed to be fixed, chosen according to values obtained on
Vs Vin reference sites. It remains to choose E', . Using the oedometric tests
vh » 5
2
G . (1+¢,)(0,~G'y, ) E,v
vh results, we obtain E, = ° (pj' LR ) g (lh vh 7
-V
Cs In ' p A hh
vo
where Cj is the oedometric swelling index.
The void ratio ¢; can be obtained experimentally by means of an
oedometric test or thanks to the following relationship:
Pp
e; =€y —0(p; —p,)+Aln—
€1, P1s A P

where Py defines the initial position of the yield surface. The reference
pressure p; is equal to 1 kPa. Parameter A is linked to the compression

index C, derived from the oedometric test (A = C. / In 10).

Table 3.15. Determination of the parameters of the Mélanie model
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Site E, oMPa) | En (MPa) | Gwn (MPa) Vhh Vih
Cubzac 3.6 2.285 1.65 0.10 0.25
Lake Agassiz | 4.95 9.34 2.7 0.23 0.17
London 11 22 0.00 0.19
Léda 9.5 6.5 3.5 0.30 0.30
Lias 14 6.58 -0.38 0.19
gﬁ)ﬁ:@“c‘zﬁ 6.9 43 0.20 0.35
Romainville |22.2 24.6 0.38 0.40
Table 3.16. Values of the elastic parameters for some natural clays
depth | v T ! 3 “lc|c Be | Ea Vih| Vvh O
(kPa) | (kPa) | (KN/m>) (kPa) | (kPa) (kPa)
0-Im |65 55 16 1.16 {0.30 [0.04 {2,490 |1,550 |0.1[0.25 1,120
12m |11 40 13.8 2.55(1.23 {0.10 | 1,680 |1,050 |0.1]0.26 |755
2-3m |15 30 14.3 240 |1.16 [0.13 | 1,120 |700 0.1]0.25|505
34m |20 37 14.9 2.01 {0.79 {0.10 | 1,950 |1,220 |0.1]0.25|880
4-6m |[27.5 |45 15 1.95 10.88 [0.09 |2,475 [1,550 |0.1]0.25]|1,115
6-7m |35 55 14.8 2.07 10.98 |0.10 |2,510 |1,570 |0.1]0.25 1,130
7-8m |39 60 14.8 2.07 |1.14 [0.11 |2,680 |1,675 |0.1]0.25]1,205
89m |44 70 14.8 2.15{1.07 [0.11 |3,215 [2,010 |0.1{0.25|1,450

Table 3.17. Examples of typical values of the plastic parameters of the

Mélanie model (site of Cubzac les Ponts) (with K!* =0.5)

3.10. Conclusions

The mechanical behavior of the solid skeleton of soils can be described
satisfactorily by an elastoplastic model including hardening. Table 3.18 sums up, for
different situations (nature and state of soils), the main features of the behavior and
the models generally used in the finite element modeling of saturated grounds.
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Nature and state of the
soil

Behavior

Models generally adopted

Hard soils and soft
rocks (stiff clays,
marls, limestone,
chalk, etc.).

Small strains, linear, depending
on time (through permeability
and viscosity).

Failure is often brittle.

Linear or non-linear elasticity
combined with consolidation
and creep.

Elastoplasticity (with
anisotropic properties when
needed). Consolidation and
creep.

Soft soils and organic
soils (soft clays, silt,
mud, peat, etc.).

Large and highly non-linear
strains, dependent on time
(permeability and viscosity).

Instantaneous strains strongly
dependent on the initial density
(controlling dilatant or
contractant behavior).

Elastoplasticity (with
unassociated flow rule).

Frictional soils (sands,
gravels, etc.).

Table 3.18. Behavior of saturated soils and simulation
of structures by the finite element method

The validation of a model by comparison with laboratory tests does not ensure its
efficiency for the simulation of real structures. Testing constitutive models at the
scale of the geotechnical structures requires that the model is introduced in finite
element software.

In addition, the use of advanced elastoplastic models in engineering practice
remains a challenge, because the models involve a large number of parameters that
cannot be determined unless a large number of complex laboratory tests are carried
out, and with a physical meaning that is not necessarily clear, because of the
traditional difficulty of knowing the initial stress state (which has a considerably
larger influence on the results than in the case of the simple usual models), and
because of the heterogenity of natural or urban soils. Engineers often prefer to use
the traditional Mohr-Coulomb model or the modified Cam-Clay model. More
advanced models often combine features that are not well understood by the users,
and the interpretation of the results (if attempted) may give rise to difficult
questions.

However, advanced constitutive models, with complex hardening laws, provide
an indispensable aid to getting more realistic deformation mechanisms, and more
efficient design. The main difficulty lies in the determination of parameters,
generally far too complex to be achieved with the data contained in a standard
geotechnical survey. The lack of expertise in this field may lead to very inaccurate
results and is the main reason why the use of such models remains relatively rare in
day-to-day practice.
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3.11. Notations

G] +02 t03

Mean stress: p = 3

(o1 —02)2 +(o] —03)2 + (o2 —63)2 .

Deviatoric stress: q = \/ -

Volumetric strain: €, =€, +€, +¢&;

(8, —€,)7 + (g, —€5)” + (&, —£3)* .
2

. . . 3
Deviatoric strain: €4 = E\/
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Chapter 4

Elastoplastic Modeling of Soils:
Cyclic Loading

Cyclic loading applied to soils occur for different reasons. It can result from an
intentionally applied procedure, such as compaction, in order to improve the soil’s
mechanical behavior for the building of roads, embankments, backfills, etc. It can be
the consequence of natural hazards such as earthquakes, waves, wind, etc. We
therefore need to develop constitutive models which can be used in construction
projects.

4.1. Soil behavior under drained loading
4.1.1. Isotropic and oedometric cyclic loading

A succession of isotropic loading and unloading creates a progressive
compaction of granular materials. For a given number of cycles, compaction
increases with the stress amplitude. The cycles become more and more reversible
but a complete stabilization can be achieved only for very high numbers of cycles
(Figure 4.1) [LUO 80]. Similar results are obtained along “radial” stress paths:
q/p’ = constant, including the oedometric loading.

Chapter written by Bernard CAMBOU and Pierre-Yves HICHER.
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4.1.2. Cyclic triaxial loading

4.1.2.1. One-way cyclic tests

One-way tests, in which q is cycled between zero and q. show a significant
plastic strain during the first cycle. The cycles retain practically the same shape as
they move along the €, axis (Figure 4.2) [FRA 79].
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Figure 4.1. Cyclic isotropic loading on Fontainebleau Sand [LUO 80]

The plastic strain during the first loading is important. It is clearly less so for the
following cycles even though the plastic deformations continue. If after one or
several cycles up to the same stress amplitude, the maximum stress amplitude is
increased, a “bend” in the stress-strain curve appears. There is a clear reduction in
the gradient when the stress passes the maximum reached in preceding cycles.
However, the following cycles are more regular and are straighter at the top of the
cycle.

There is therefore a “memory phenomenon” which can be characterized by the
maximum value of the cyclic stress amplitude. This becomes a memory parameter
analogous to p’;. and this mechanism plays the role of a loading surface. Its increase
is associated with significant plastic deformations. Inside the surface there is also
plastic strain but of lower amplitude.

Volume changes depend on the position of the stress path with respect to the
contractant domain (in general q’/p’ < M) defined by monotonic tests. If the stress
path is situated entirely within this region, the cycles will produce a progressive
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compaction even for initially dense materials. If it crosses the boundary of the
region during each cycle, there will be a period of compaction and a period of
dilation. If the average level of the cycle lies within the contractant domain, cyclic
loading produces a compaction; otherwise it produces a dilation [LUO 80].
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Figure 4.2. One-way cyclic triaxial test on Granville Sand [FRA 79]

Figure 4.3 presents results on a normally consolidated clay [DOA 84]. In this
case, the material always contracts and the additional compaction caused by cyclic
loading compared to monotonic loading can be seen. A monotonic loading after the
cycles shows that this additional compaction gives to the material an
overconsolidated behavior.
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Figure 4.3. One-way cyclic triaxial test on normally consolidated clay [DOA 84]

4.1.2.2. Two-way cyclic triaxial tests

In this type of test each cycle, which consists of alternating axisymmetric
compression and extension, involves a sudden 90° change in the directions of the
major and minor principal stresses as they interchange. The results showing the
influence of a rotation of the principal stress (Chapter 3) reveal that considerable
rotation tends to cause compaction when the stress is close to the isotropic state and
therefore well inside the contractant domain. The results of two-way cyclic tests
confirm this analysis and progressive compaction is always observed irrespective of
the amplitude and the average level of the cycles. Figures 4.4 and 4.5 show the
results obtained on sand which can be compared with the previous graphs. For the
same number of cycles at the same amplitude, the final density is always higher for
two-way tests. In the case of normally consolidated clay, the variation in volume for
a two-way cyclic test is twice that for a one-way test.
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Figure 4.5. Two-ways cyclic triaxial test on normally consolidated clay [DOA 84]

The shape of the stress-strain cycles may alter. We no longer see a simple
translation of the loop for each cycle along the €, axis, but instead a modification of
its slope. Tests with fixed strain amplitudes lead to analogous results. Due to the
increasing density of the material with each cycle, the value of the maximum
stresses in compression or in tension increases with each cycle. The variation in
volume clearly shows a region of contraction bounded (in compression as for
extension) by a limiting value of q’/p’ beyond which dilation occurs (Figure 4.6).
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Figure 4.6. Two-ways cyclic triaxial test at constant strain amplitude [FRA 79]

4.1.3. Influence of rotating principal axes

Wong and Arthur [WON 86], using the directional shear, carried out tests on
loose sand, keeping the ratio 6°,/6’; constant and cyclically turning the axis of 67,
and ¢’; through a constant amplitude of rotation (0). Figure 4.7 shows the volume
variations obtained. For an amplitude of © = 30°, no significant variation occurs; for
0 = 55° and 70° they obtained considerable contraction during the cycles. These
results can be explained by the influence of induced anisotropy. Monotonic tests
with the same apparatus have shown a decrease in the gradient of g-€; curves when
the direction of the major principal stress deviates from the direction of anisotropy
created by a preceding loading. This phenomenon is accompanied by an increase in
compaction and is particularly marked for angles > 50°. This limit angle
corresponds approximately to the orientation of the lines with no extension during
the initial loading. This could be explained by the fact that, during a loading, the
number of intergranular contacts increases in the compression zones and decreases
in the extension zone. During the rotation, the contacts re-orient themselves. This
becomes more significant when the direction of ¢, is found to correspond to a
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previous line of extension, leading to a reduction in modulus and an increase in
compaction.
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Figure 4.7. Volume changes due to cyclic rotation of principal stress directions [WON 86]

This effect of stress rotation was confirmed by tests carried out by Joer [JOE 91]
on a two-dimensional material (PVC rods) in a plane strain device called “ly2e”.
Tests with constant principal stresses and continuous rotation of the principal axes
were performed. The cyclic effect of the rotation induced a compaction of the
specimen (Figure 4.8). Along the circular stress path, incremental strain vectors
were super-imposed, showing that the principal incremental strain axes do not
coincide with the principal stress axes. A cyclic rotation of principal directions
could therefore produce significant variations of volume in the material which
would be accompanied by a modification of the stress-strain relationships during the
cycles.

4.2. Isochoric triaxial tests

Isochoric tests correspond in particular to undrained tests on saturated soils. In
the isochoric test, variations of mean stress will depend on the tendency of the soil
to contract or dilate. We have seen in the preceding paragraphs that cyclic tests
generally lead to an increase in the density of granular materials. In the isochoric
test, this will translate into a decrease in mean stress. The decrease could, in certain
cases, be large enough to cause complete loss of stress: this is the phenomenon of
liquefaction, also called cyclic mobility.

Liquefaction only occurs with two-way cyclic tests. One way tests also produce
decreases in mean stress, but these tend to stabilize before liquefaction occurs.

Many factors determine whether a granular material will or will not liquefy:
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— relative density (Dr): the higher Dr is, the more cycles are required for
liquefaction to occur;

— mean stress;

— cyclic stress amplitude;

— particle size distribution: a uniform particle size facilitates liquefaction.

Figure 4.10 shows the behavior of a granular material during a liquefaction test.
This process can be broken down into three stages:

(a) small cyclic deformation, constant decrease of mean stress;

(b) the stress path reaches the intrinsic line. The mean stress continues to
decrease, the cyclic strain accelerates and the cycle develops a “stepped” like shape;

(c) the stress path becomes stable. It passes the point of zero effective stress
twice per cycle. The mean stress varies periodically. Strains become large and
continue to increase.
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Figure 4.8. Cyclic compaction due to cyclic rotation
of principal stress directions [JOE 91]
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Figure 4.9. Undrained cyclic triaxial test on Granville Sand [FRA 79]
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Figure 4.11. Undrained cyclic triaxial test on normally consolidated clay

There is therefore a liquefaction region in which deformations are associated
with near-zero stress. This explains the long “flat” portion of the q’-¢; curves on
either side of the origin during which the material has very little rigidity. Beyond a
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certain strain however, depending on the shape of the cycle, the mean stress
increases and the material stiffens. If monotonic loading is continued beyond the
value of the cyclic stress amplitude, the same strength values are obtained after
liquefaction as before.

In the case of clay the pore pressure increases until the stress cycle meets the line
of perfect plasticity q = Mp’. At this point there is a large increase in the strain and a
general rupturing of the material (Figure 4.11).

The effect of the principal axis rotation can also be observed in isochoric tests.
Figure 4.12 presents results obtained by Joer [JOE 91] in the ly2e device.
Continuous rotations of principal strain axes were imposed at constant volume. In
the deviatoric stress plane (Tyy, (0°x - 67y)/2) the path takes the form of a spiral
towards the origin. The mean effective stress (6°x + 6°y)/2 increases at the beginning
of the tests, then decreases continuously to zero. The state of stress tends to move to
the origin and a liquefaction state occurs due to the cyclic rotation of the principal
strain axes.
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Figure 4.12. Cyclic liquefaction by rotating principal strain directions [JOE 91]
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The influence of a rotation of the principal stresses in undrained condition has
also been studied on clay. Hicher and Lade [HIC 87] have carried out tests on an
anisotropic Ky-consolidated clay with and without rotation of the principal stress
with respect to the axis of anisotropy. The same cyclic stress amplitude has been
applied in three-dimensional triaxial tests and on hollow cylinders, with a rotation of
the major and minor principal stresses in the latter case. The pore pressure was
found to be sensitive to the rotation in that a rotation caused a larger increase in the
pore pressure. In addition, the strains were larger in the presence of rotation (Figure
4.13).
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Figure 4.13. Influence of principal stress axes rotation
in undrained condition on normally consolidated clay

4.3. Modeling soil cyclic behavior

The experimental results presented in the previous section show on one hand the
influence of the stress loading history, which affects mainly the deviatoric response,
and on the other hand the influence of the volume change, which leads to a density
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increase in a drained condition and a decrease of the mean stress in an undrained
condition. The first aspect corresponds to an evolution of the stress induced
anisotropy with the loading history, which is similar to what can be observed on
other different materials. We can take this into account in the framework of
plasticity theory by means of a kinematic hardening, with respect to a hardening
tensorial variable whose evolution can be continuous or discrete. The second aspect
needs the introduction of a second hardening variable, which can be a scalar related
to the density change.

4.3.1. Difficulties involved in the modeling of the soil cyclic behavior in the
framework of elastoplasticity

The simplest elastoplastic models are based on one yield surface without
hardening (for example the elastic plastic Mohr Coulomb model) or with isotropic
hardening (such as the Cam-Clay model), or on two yield surfaces, one for isotropic
loading and the other for deviatoric loading, both presenting isotropic hardening
(such as Lade’s model) (see Chapter 3). These models can reproduce the soil
behavior along monotonic loading but appear not to be adapted for a realistic
description of the cyclic behavior.

A617(53 (OF]

€]
! Gy G3

Figure 4.14. Modeling the cyclic behavior by means of an elastoplastic
Driicker-Prager model with isotropic hardening
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Figure 4.15. Several types of cyclic behaviors

In fact, with this type of model, the yield surface is activated and plastic
deformation occurs during the initial loading. However, unloading and reloading up
to the maximum stress during the first loading do not activate the plasticity
mechanism and the cyclic loading is modeled by an elastic behavior (Figure 4.14),
whereas experimental results show that irreversible deformations take place during
successive cycles.

The different plastic phenomena which can occur during cyclic loading are
characterized in Figure 4.15. If we consider a constant stress amplitude loading,
three types of behavior can be found. The “adaptation” corresponds to cycles,
initially open with energy dissipation, which converge towards a purely non-
dissipative elastic cycle. The “accommodation” corresponds to an open cycle, with
energy dissipation and irreversible cumulative deformation, which evolve
progressively towards a stabilized cycle with a hysteresis loop showing energy
dissipation. Experimentally, this phenomenon is found during drained, one-way
cyclic tests, with small or moderate amplitude and a large number of cycles. The
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“ratchet” phenomenon corresponds to open cycles with irreversible strain
accumulation, keeping the same shape (Figure 4.15).

For cyclic loading at constant strain amplitude, types of behavior can be defined.
The cyclic hardening corresponds to an increase in the cyclic stress amplitude, as for
example during drained cyclic tests with density increase. The cyclic softening
corresponds to the opposite phenomenon, as in undrained tests with pore pressure
increase.

These behaviors cannot be reproduced by a simple model such as that presented
in Figure 4.14. Modeling the soil cyclic behavior requires more complex models,
which are capable of producing plastic deformations during the whole sequence of
cycles. Different approaches have been proposed and the main ones are presented in
the following sections.

4.3.2. The Masing model

The Masing model was originally developed for the modeling of metallic
material behavior. It has become the basic model for cyclic plasticity. In a simple
1D version, it can be considered as a generalization of the Prager model, which can
be defined by the rheological model in Figure 4.16.
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(@)
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BC=20A
BC // OA

Figure 4.16. Prager’s model response in cyclic loading

The elastoplastic Prager model corresponds to: e=&+&
The elastic part is given by:

O-Z%é‘e, é”zO, |6'1|< S
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The plastic part is given by:
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Figure 4.17. Extended Prager’s model response in cyclic loading

The model has a plasticity criterion which depends on the internal variable €. Tt
corresponds therefore to a hardening plasticity model. We can show that, during a
cyclic loading, the center E,e” of the elastic domain evolves, but its size remains
constant, equal to 2s;, which corresponds to a kinematic hardening. Since the plastic
part of the deformation is linearly linked to the stress in spring E;, the model is
defined as an elastoplastic model with linear kinematic hardening.

A possible extension of this model consists of associating several Prager’s
models as shown in Figure 4.17. The resulting model is piecewise linecar. We can
obtain a non-linear continuous model by generalizing it to an infinite number of
Prager’s elements, which corresponds to the behavior of the Masing model.

Each element of the continuous serial model is defined by:

— a frictional pad k;

— a spring of elastic compliance J'; (k) dk.
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0 (k) is the stress transmitted by pad k. The stress-strain relationship can be
written:

A

e=Jyo+ TJIH(k)(O' - O'(k))dk
with | & (k)< k. "
The state of the system can be described by the function & (k).
Loading condition:
ok)=o if o <k
o(k)=kif 0 >k
thus:
g
e=Joo+ [ Jy (k)(o—k)dk
0
The integration of the integral function leads to:
e =Jy0 +Ji(0) =J(0)
J1(0) is the double integral of I'; (o) with J; (0) =0 and J, (0) =0

Unloading condition: during an unloading from ¢ equal to 6,, with Ao = 6—0,
the relationship becomes:

Ao
Ae=JgAo+2[ 2 Jy (k)(Ac - k)dk

The integration of this equation leads to:

Ae=] Ac+] [A—Gj
0 1 2

If elastic deformations are negligible compared to plastic deformations, we can
see that the previous equation gives a stress-strain curve homothetic to the loading
curve with a homothetic ratio equal to 2, which can be expressed by the following
relations:
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— initial loading:
e? =f(0)

—unloading — reloading from the reversal point (G, €):

P _cP -
€, "¢ ¢ 0,~0
2 2

The Masing model can produce plastic deformations during unloading and
reloading. The stiffness increase in the unloading curve compared to the initial
loading curve is called Masing’s effect. The scaling coefficient is called Masing’s
coefficient. In some other models, this coefficient can be different from 2, but
corresponds to a value determined from experimental results and is usually between
1 and 2. We can note that the Masing model leads to a hysteresis loop which
remains constant with successive cycles of the same amplitude, the ratcheting
phenomenon cannot be obtained.

4.4. Models based on one or several independent yield surfaces

The preceding section demonstrated how a kinematic hardening produces plastic
deformation during unloading. It has been introduced in tridimensional models such
as Hujeux or CJS model. Usually, kinematic hardening is defined by a tensorial
variable Xj;, called back stress, which is introduced in the yield function by the
following term:

- <
f (c5ij Xij) <0
Xijj corresponds to a thermodynamic force which is function of a hardening
variable o; also defined in a tensorial form. For example, plastic deformation €”;
can be used as a hardening variable. The evolution of Xj is therefore controlled

linearly or non-linearly by the evolution of o;.

As an example, we can consider the Von Mises model with kinematic hardening
defined by:

f= qu — R <0 with qij = Sij - Xij (Sijp)

where qy is the second invariant of .
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The yield surface is a cylinder in the principal stress space and its axis is defined
by X;; whose value is a function of &;: Xj; (¢;") (Figure 4.18).

S, S,

Figure 4.18. Von Mises’ model with kinematic hardening

4.4.1. The CJS model

Different versions of the CJS model have been developed; version CJS 3 was the
first version developed for the modeling of cyclic loadings.

This model takes into account one mechanism of elasticity and two mechanisms
of plasticity, so the increment of strain can be written:

L e “ip dp
E; =&, TE TE;

The first term of the right side of this equation corresponds to the elastic strain,
the second to the plastic strain linked with the isotropic plastic mechanism and the
last to the plastic strain linked with the deviatoric plastic mechanism.

— The elastic strain is obtained using a non-linear incremental formulation. The
considered shear and bulk moduli depend on the effective mean stress.

— The isotropic plastic mechanism is defined from the following yield function:
i 1]
A (11,Q)=§—Q=0

Its evolution is defined by an isotropic hardening mechanism which is defined
by:
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a

Q=K€(§j &

&, is the volumetric plastic strain linked with this plastic mechanism, P, is equal
to 100 kPa and K® and n are two constants of the model.

The deviatoric plastic mechanism is defined from the following yield function:
[0, R X)) = ¢ h()~ RI, =0

o O
with: g, = Ja;4; ay =s; —hXy; 5= 0,-0; =%

1

1 1
h(6) = (1- ycos36) = {1 _\/@de“}qi/)}é
9

The geometrical representation of this yield function is a cone whose angle is
linked with the value of R and the location of the axis with the value of Xj;. Figure
4.19 shows this surface. s;, q;j, Xjj are deviatoric tensors. Parameter y characterizes
the observed asymmetry of this yield surface. 6 is the Lode angle.

The evolution of this yield function is linked with two hardening mechanisms,
one is isotropic, the other is kinematic.

Isotropic mechanism

This mechanism governs the evolution of R which is expressed by:

__ AR,
(R +4py "

m

-1.5 -1.5
with - ﬂdafd(flj _ m{ll]
oR \ 3P, 3P,

A and R, are two constants of the model, Ry, is in particular the value of R at
failure.

A% is the plastic multiplier of this deviatoric mechanism; it can be calculated from
the consistency equation.
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Kinematic hardening

This hardening governs the evolution of parameter Xj;. This evolution is non-
linear and can be expressed by:

=15
. 1 1
Xy :Zﬂdll(Qif _¢Xif)(3_;>]

d
with Qij = dev [gLJ
i 9,

and O =0 h(0)0,

b is a constant and Qj; is the normal to the yield surface. @ is a function which
allows the evolution of Xj; to be bounded. ®,is defined from the characteristics
obtained at failure.

Plastic potential

The deviatoric plastic mechanism is unassociated. The flow rule is defined by:

-dp‘

S..e
“dp _ pSH ‘ gy
& = por
Sy S

B is a parameter of the model and s;;° is the second invariant of the characteristic
deviatoric stress. We recall that in the stress space the characteristic surface
corresponds to the boundary between contractant states and dilatant states. This
surface is defined from the following equation:

S =53h(0)=R.1; =0

R. is a parameter linked to the angle of the cone corresponding to the
characteristic surface.
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Failure surface
The failure state is directly linked with the non-linearity of the hardening laws

and corresponds to the limit value of hardening parameters. The limit value of R,
written Ry, is reached when p becomes infinite. The limit value of Xj; is reached

when X 5= 0. Considering these conditions and the yield function, it is possible to

define the equation of the limit envelope for the yielding surfaces.
ff = S[Ih(g) - lel =0

The surface defined by this equation is considered as the failure surface, its
geometrical shape is similar to that of the yielding surface.

The concept of critical state is introduced considering the following relation:

Rm—RczAR=ﬂ1n3];—”
1

Po 1s the mean stress which corresponds to the case where the peak stress is
equal to the critical state (R, = R.). This value p.; depends on the relative density of

the considered material.

R, is a constant of the model corresponding to the critical state which is
supposed to be identical to the characteristic state.

W is a constant of the model.

The evolution of p,, depends on the evolution of the density of the material:
Per = Peo exp(c g‘fJ)
Peo in this relation corresponds to the value of p,, in the initial state.

This relation allows the coupling between the two mechanisms of plasticity to be
considered.
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Figure 4.19. CJS model: plastic limit, characteristic and current
loading surfaces in the deviatoric plane
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Figure 4.20. Drained cyclic triaxial test at constant strain amplitude: a) experimental results
b) numerical simulation by CJS 3 model
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Figure 4.21. Drained cyclic triaxial test followed by cyclic
torsion shear test simulated by the CJS 3 model

This model is able to give reasonable modeling g of a small number of cycles.
However, it can be noted in Figure 4.20 that the cyclic hardening which appears in
the experimental results is underestimated by this model.

Results shown in Figure 4.21 correspond to an axisymmetric triaxial loading
path, then five cyclic torsions, then an axisymmetric triaxial loading until failure.
This rather complex loading is well described by this model CJS3.

4.5. Models based on nested yield surfaces

Most of the models for cyclic plasticity are defined by means of several nested
yield surfaces. Usually, we distinguish one particular surface, corresponding to the
maximum stress ratio experienced by the material, named differently by various
authors, such as bounding surface [DAF 75] or normal yield surface [HAS 93]. The
models of this type are mainly differentiated by the number of nested surfaces
defined inside this surface.

The Mroz model corresponds to the first model of this type. It was originally
designed for metallic materials. It has thus been adapted by different authors to be
applied to soil behavior.
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4.5.1. Models with nested yield surfaces: the Mroz model

The Mroz model is based on the following hypotheses. The yield surfaces are
cylindrical akin to the Von Mises type, initially centered on the isotropic stress axis.
The nested inner surfaces have different radii. Each nested surface has a fixed radius
and its center moves when the state of stress reaches the corresponding limit. The
plastic modulus of a given yield surface is a function of the size of this surface
(Figure 4.22).
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Figure 4.22. Modeling of the soil behavior by a multiple yield surface model

This type of model corresponds to a three-dimensional generalization of the
Masing model. The same scaling factor can be obtained, equal to 2, between the
loading and unloading curves. However, even though it has the advantage of being
able to give plastic deformations during an unloading phase, it is not capable of
simulating a ratcheting behavior for a constant stress amplitude cyclic loading. In
addition, it is difficult to use, because it requires us to store the position of all the
nested surfaces at each loading step and compare the position of the actual stress
state with all the nested surfaces.
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4.5.2. Model with infinite yield surfaces: the Hujeux model

In this type of model only the maximum yield surface and the surfaces
corresponding to the change of stress direction are stored. The advantage is that this
gives a continuous stress-strain relationship for a continuous stress path. The
Hujeux model is based on this principle and introduces, in addition to this peculiar
kinematic hardening, an isotropic hardening which allows us to take into account
the change in density during cyclic loading. The hardening variable is a function of
the initial density and the plastic volume change during loading. The kinematic
hardening allows us to take into account a discrete memory linked, on one hand, to
the highest deviatoric stress and, on the other hand, to the different points of loading
— unloading or unloading — reloading.

The Hujeux model is comprised of four plastic mechanisms: three deviatoric
mechanisms corresponding to three plane-strain mechanisms in three orthogonal
planes and an isotropic mechanism which generates only pure volumetric strains.
The state of stress of mechanism k contained in the (i,j) plane is defined by the
center of Mohr circle py and by vector Sy whose norm gy corresponds to the radius
of the circle.

(i) +G“) i i)’ . S
Pk—llkz(_]_]k qk:[(oll‘fﬂ)+cij2] =[Sk|

Sk1 and Sk» are the components of vector S

(oii ) — (i
Skl =—————— Sk2 =(Gij)k

The state of plastic strain of mechanism k is defined by plastic volumetric strain

E\I,) and by deviatoric plastic strain vector elf whose components elf 1 and elfz are:

P _ P _ P P _eP
e\ =€ —&; and e;, =2¢;

124

1/2
2 2
(ev )y =(eii ) +(eji )k Tk =[(ﬁii —ejj P + e }
Deviatoric mechanisms (k= 1, 2, 3)

The equations of each mechanism are identical. In primary loading the yield
surface for mechanism k is given by the equation:
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fk = HE"H - rkm normalized function-threshold
where Sy =Si / Fpk

Fi is a factor of normalization given by:

Fpk =sin@.Py (1 —blog %C j ,

¢ is the friction angle in perfect plasticity, p’ is the mean stress and p. is the
critical pressure.

p. is related to the plastic volumetric strain €, by the following equation:
P¢ =P¢o expBeyP

where pe is the initial value of p. which depends on the material initial void ratio
and 1/B is the slope of the perfect plasticity line in the plane €,°, logp’.

In the deviatoric plane (o; — 0;)/2, 6; of each mechanism normalized by the

function Fy, the yield surface is a circle with a radius equal to r,™ which is a
hardening variable that allows mechanism k to be progressively mobilized.

o)

Its evolution law is given by:
dri =A (o, 1y )
so that the plastic modulus H" depends only on r;:
S R (9
Hk =— g =
ork a

Ay is the plastic multiplier of the mechanism k.



170  Constitutive Modeling of Soils and Rocks

In the k plane, the plastic deviatoric strain rate tensor and the plastic volumetric
strain rate are defined as:

—7» ‘I’

foriandj#k geP =Ak \Pd ae k kl
k k ae =A ‘I’

k2 =Mk T2

atepj =0
k ( Jk

(atelv’jk =hk ¥

fori=j=

The hypothesis of associated law in the normalized deviatoric plane defines:

. Skl
p b II’1(31 Yii \PJJ k/k
dekz =Ak d =Ak 2 Ak S
k2 k2 i K

d
i+ (Sk-‘l’k)
I:dgg:lk :}kkI:IPV:| :}Lk |:112JJ:| :}Lk sin(p—T (X.(X(rk)

=Ak [sin o sin((p mob )k ] .Oc.oc(rk )

This last expression is a generalization of the equation of the Cam-Clay model
which controls the condition of plastic contractancy and dilatancy, where o is a
dilatancy factor and ou(ry) is the mobilized friction in the k plane.

The perfect plastic state is defined by:

r,=land P=P

i =sing.p,

(¢mob )k =¢

This corresponds to a Mohr-Coulomb failure criterion in each plane.
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In the normalized deviatoric plane of mechanism k, the yield surfaces in primary
loading are concentric circles. In cyclic loading, the circles become tangent to each
other at point Dy which represents the stress state at stress reversal (Figure 4.23), ny
being the normal vector to the yield surface at point Dy:

fk(Pk,Sk,slv’,rﬁ,Dk,nk) =H§k —(Dk —nkrﬁ)H—rﬁ

In the deviatoric plane of mechanism k, the equation becomes:

The loading memory of the material is expressed by Dy which corresponds to the
normalized deviatoric stress at the last stress reversal, n, which is the normal vector
to the yield surface at the point Dy and r° which represent the length of the
unloading path from the reversal point Dy.

Dy, ny and r,° are reinitialized at each stress reversal and also when the cyclic
yield surface becomes tangent to the primary loading surface. The model generalizes
in a continuous way Mroz’s discrete nested surface theory.

Each mechanism therefore keeps in its memory:

— the maximum degree of mobilization r,"™: this corresponds to the historical
memory;

— the last stress reversal, Dy and ny: this corresponds to the instant memory.



172 Constitutive Modeling of Soils and Rocks

‘ Ne)

k_ 7 S — (D —ny rﬁ)7
Pk

"T]

Ny

5

_rﬁ:fﬁ

5|

Pk

7 Dk — Ny fck7 Pk

C1 4
Mechanism 2

A4 /

) Mechanism
£ 4
&

Mechanism 3

N

.

(o)) o3

b)

Figure 4.23. a) Evolution of the yield surface in the deviatoric plane of mechanism k during
cyclic loading; b) elastic domain at the intersection of the plastic mechanisms

The hardening parameter keeps the same expression as for the primary loading,
with the possibility for parameter a to have a different value a,, in primary loading
and a. in cyclic loading:

The evolution law is given by:

drﬁ =Kk.l(Skv rlg, Dy nk)
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2
l—rc)
dr =Ly ( K

{acyc + (am ~acyc )a(rﬁ ﬂ

so that plastic modulus H," depends only on r;":

The choice of function ory) allows us to reproduce the evolution of the stress-
strain cycles observed during cyclic loading, by fixing several behavior domains :

a(ri)=ac +(am —ac)o(ry)

If F STy, O((rk)=0 £<107

r—r

If Vs ST STy 0!(1*,(): — 10°<e<10™
rmbl _rhy.v

I hw a(r)=1 £>107"

Isotropic mechanism (k = 4)

Experimental results exhibit plastic strain during an isotropic compression. As
they are not activated during this stress path, the three deviatoric mechanisms cannot
generate purely volumetric strains. An isotropic mechanism is thus introduced. The
yield surface is a plane perpendicular to the hydrostatic axis:

f4(p,pc,r4)=|f7|—r4

p =
where F.(p,)
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and F4(pc) is a normalization factor given by:

Fy(pc) = dp.

1, is the degree of mobilization of the mechanism. Its value increases from ry"
(elastic domain) to 1 and its evolution law is in the hyperbolic form:

(1-14)? P
d.r4 ZT Pad8V4

The mechanism generates purely volumetric plastic strains:
at SX Z}\,4 \P)(
A4 1s the plastic multiplier:
(at 35)4 =A4.0qi F /3=ty /3
P v 3
(atsv) =hg Wy =hg YOgii f4=2hy
4 i=1

The plastic modulus Hy' is written:

e =(l—r4)2

.Pa
4 c.Pe

where p, is the atmospheric pressure.
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In cyclic loading, the equation of the yield surface takes the following form:

c c
P—(D4 —n4r4)

C_ —
fy= T

The hardening variable r,° is given by:

p
Ceye tHEY

Its evolution has a hyperbolic form:

-r
4)
QS =hg

Ceyc

During loading, the four mechanisms can be activated and are coupled by the
density hardening p,. as follows:

4
81\3,: > (85)
k=1 k

Figures 4.24 and 4.25 show examples of numerical simulations using the Hujeux
model, for drained and undrained cyclic loading on sand. The results agree
reasonably well with the experiments. We can see in particular that the model is
capable of simulating cyclic mobility during undrained cyclic loading.
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Figure 4.24. Modeling of a drained cyclic triaxial test using the Hujeux model

4.5.3. Models with two yield surfaces: the Dafalias model

In this model two yield surfaces are considered: the limit surface called the
bounding surface and an inner surface [DAF 75]. They are of identical shape and
fixed dimensions. The interior of the inner surface corresponds to the elastic
domain. The plastic modulus is defined by monotonous increasing function of the
distance between the actual stress point and the conjugated point on the bounding
surface. For both points, the normal vectors to the two surfaces have the same
direction.
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Figure 4.25. Cyclic liquefaction of a saturated sand: comparison of
experimental results and numerical simulations by Hujeux’s model
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Figure 4.26. Limit surface and yield surface in the deviatoric plane
for Dafalias’ model with two yield surfaces



178  Constitutive Modeling of Soils and Rocks

This model produces plastic deformation during unloading. The ratcheting effect
can be reproduced by this type of model, but its effect is usually overestimated. The
model can be reduced to a single yield surface [DAF 77]. It is similar to the two
yield surfaces model with an elastic domain reduced to a point. It does not produce
Masing’s effect, the unloading curve is identical to the loading curve, and the
ratcheting effect is also overestimated.

4.5.4. Models with two yield surfaces: the Hashigushi model

The model takes into account two yield surfaces: a limit surface called the
normal yield surface and an inner surface called the subloading surface. The normal
yield surface has an isotropic hardening connected to the material density. The
essential difference with the previous model is only that the size of the inner surface
evolves during loading. The plastic modulus is a monotonic decreasing function of
the size ratio between the two surfaces. This ratio increases during a plastic loading.
When the state of stress reaches the normal yield surface, the two surfaces become
identical [HAS 80].

The two surfaces have a similar shape, in a ratio R, the center of similitude being
a point in the stress space (for example the origin), this point being fixed in a given
version of the model. During loading, the actual stress point always belongs to the
subloading surface. Therefore, during unloading, the stress vector is directed
towards the inside of this surface, creating elastic deformation. The surface follows
the stress point, its size will thus decrease and become a single point when the stress
state meets the center defined above.

The model allows for a continuous behavior to be ensured when the stress point
reaches the normal yield surface, a continuity that previous models could not ensure.
It does however have certain limitations, in particular that an elastic behavior is
produced during unloading until the stress state reaches the center of similitude,
which does not correspond to the real behavior of the soil. Furthermore, the
ratcheting effect is over predicted. Hashigushi modified the model [HAS 93] so that
it corresponds to an extension of the previous model in which the center of
similitude evolves in the stress space as a function of the plastic strains. During a
plastic loading, the size of the inner surface as well as the center of similitude
evolves. During unloading, the strain is purely elastic and therefore the center of
similitude remains fixed. The extended model gives better responses than the initial
model does, particularly in simulating the ratcheting effect more realistically.
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4.5.5. Models with two yield surfaces: CJS 4 model

An improvement to CJS 3 has been proposed to provide a better modeling of a
large number of cycles. For this purpose two types of behavior are considered: the
monotonic and the cyclic behavior. The monotonic behavior will be considered
when the yield surface is tangent to the “memory surface”, and the cyclic behavior
when these two surfaces have no contact.

For this, two values of parameter b are considered (bmon, bcyc). Parameter b
appears in the evolution law of the kinematic hardening. A new expression of b is
thus proposed:

b=b, +z(b,, —b

cyc mon )

Variable z takes values between 0 and 1. This is evaluated from measuring the
distance between the actual stress state and the maximal stress state.

Rmem — Rac
Ryen — R

mem cyc

Riem corresponds to the angle of the cone of the yield surface characterized by
the maximal loading.

R, corresponds to the angle of the cone of a similar surface passing through the
actual stress state.

Ry corresponds to the angle of the cone of a similar surface. If the stress state is in
the domain bounded by this surface, z = 1. R, has been taken as equal to 0.9 Ry,

It can be noted that if R,e> Ripern 2= 0, and if R,e <Ry z =1

The expression of the memory surface is similar to the expression of the failure
surface defined in CJS 3:

I, log(22<) = 0

mem
Il

sh(0) - R

p.is the mean stress corresponding to the intersection of the memory surface and
the hydrostatic axis in the stress space.

R
De = Per €Xp(—5)
U
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Figure 4.27. Representation of the “memory” surface in the deviatoric plane (CJS 4 model)

The analysis of the cyclic behavior of granular material leads to the necessity of
taking into account an evolution of the plastic modulus all along the cycles.

Two variables have been considered, the plastic volume change and a variable
d;* linked with the plastic deviatoric strain. Parameter by, is thus defined by:

beye = (bmax - (b - bmin) exp(_dl*k) exp(—d2

max

P
&y

)

The dependency of b, with respect the volume change allows for the
densification of the medium to be correctly taken into account.

At each change in direction of the loading, the value of variable k is changed to
0. The evolution of k is governed by:

| X
k==|1- g4 &
2 |%1sz|
Rmem 1n(3]pu)
with é” =4 [e:elf and d;‘ = dl R—fl

Parameter m is considered to be a constant equal to 2.
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To define the change in direction of the loading which leads to the change in
value of k, variables x and xy; are considered:

x= (X, ~ XX, - X5

Xy, =x if x>x,

During the loading, the direction of the loading is assumed to be changed if x<
xp; in such a case we consider the following changes:

KZO,XZOandXUC:Xij

This new version of the CJS model, called CJS 4, improves the simulation of
cyclic loading of granular soils. It can be seen in Figure 4.28 that in a drained
triaxial test the ratcheting effect is correctly described; furthermore, the evolution of
the cycle shape all along the loading is greatly improved.
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Figure 4.28. Simulation of a drained cyclic triaxial test by CJS 4 model

4.6. Generalized plasticity models
The generalized theory of plasticity was introduced by Zienkiewicz and Mroz in
1985 [ZIE 85] and later extended by Pastor and Zienkiewicz [PAS 90]. The basic
assumption of this theory is to assume that the strain increment can be written as:
de; = Cy: do for n:dc® > 0: loading

dey = Cy: do for n:do® < 0: unloading

where do® = D.: de is the stress increment produced if the behavior is elastic.
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By imposing the condition of continuity between loading and unloading states,
we obtain:

CL = Ce+ (I/HL)ngL*n
CU =C°+ (I/HU)ngU*n

where ng and ngy are arbitrary unit tensors and Hy and Hy two scalar functions
corresponding to loading and unloading plastic moduli.

The previous equations lead to the decomposition of the strain increment in
elastic and plastic parts such that:

de = de° + de”
with
def=C%do
and
de” = (1/Hp)(ng *n): do in loading
de” = (1/Hy)(ngu*n): dg in unloading

The advantage of the generalized plasticity framework is that it does not require
the introduction of any yield or plastic potential surface. The model can be
constructed by giving the directions of plastic flow n,. and nyy and the plastic
moduli Hy and Hy, while using suitable interpolation laws for simulating the cyclic
behavior of soils [PAS 90].

4.7. Parameter identification for cyclic plasticity models

Generally, the parameters of models developed for simulating cyclic loading can
be divided into two groups of parameters: the first group contains parameters which
essentially control the first loading response, the second group contains parameters
whose effect is visible only during cyclic loading. The latter can be identified only
by using cyclic laboratory tests, which require specific experimentation and high
quality measurement techniques.
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4.8. Conclusion

The cyclic behavior of soils is strongly affected by the volume changes induced
by loading. These volume changes correspond generally to a progressive density
increase with the cycles, which leads to an increase of the mechanical properties in
drained condition. The application of this property concerns in particular the
compaction of soil masses used as foundation support. However, when this density
increase is prevented (fast loading on saturated sand for example), it leads to a
decrease of effective stresses, eventually down to zero: this phenomenon, called
liquefaction or cyclic mobility, has been the cause of numerous disasters in seismic
areas.

The modeling of cyclic behavior is a difficult task, because it requires taking into
account with high accuracy the plastic deformations which occur all along the
cycles and whose amplitude evolves with the internal state of the material. In the
framework of elastoplasticity, a double hardening, which is kinematic and isotropic,
allows a significant amount of the observed phenomena to be reproduced. Some
progress is still necessary, particularly in cases of a large rotation of principal stress
directions, which require a very accurate modeling of induced anisotropy.
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Chapter 5

Elastoplastic Behavior of
Ductile Porous Rocks

5.1. Introduction

This chapter addresses the elastoplastic modeling of porous rocks, highlighting
especially the ductile plastic behavior under high compressive stresses. Damage
modeling of brittle behavior of rocks under low compressive stresses or tensile
stresses will be discussed in Chapter 8.

Modeling of the mechanical behavior of rocks such as chalk, sandstone and
limestone is of great interest for various applications in mining engineering, tunnel
construction and the petroleum industry. For instance, the evaluation of subsidence
due to pore compaction of porous rocks is an important feature for off-shore
reservoir engineering. Porous rocks present a complex mechanical behavior if only
because various features such as low material cohesion, strong pressure sensitivity,
plastic pore collapse, time-dependent strain, and dependency on porosity and
mineralogical compositions are involved. Generally speaking, two plastic
mechanisms can be identified: plastic pore collapse leading to significant volumetric
deformation and plastic shearing leading to material failure. The volumetric
compaction is a specific feature of porous materials, which is related to the
microstructure of the material. In granular and powder materials, the volumetric
compaction is generally generated by the rearrangement of grains reducing the pore
space. In porous cohesive rocks, the volumetric compaction is generated in general
by inelastic pore collapse through the contact force breaking between grains.

Chapter written by Jian-Fu SHAO and Shou-Yi XIE.
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Two families of constitutive models have been developed for modeling
geological materials which exhibit two plastic mechanisms. In the first family, two
distinct yield surfaces are introduced: a cap surface for volumetric compaction and a
cone surface for plastic shearing [LAD 77]; [DES 80]; [DES 84]; [GEN 93]; [DES
01] and others. In the second family of models whose aim is to avoid a singularity
point at the intersection between two surfaces, plastic models with a single yield
surface incorporating cap and cone are proposed [LAD 95]; [AUB 99]; [AUB 04]
and others. Generally, models with two distinct yield surfaces provide more
flexibility in the description of volumetric and deviatoric hardening in complex
loading conditions, whereas models with a single yield surface have the advantage
of mathematical regularity for numerical implementation.

Based on experimental data obtained from a porous chalk, we will first outline
the basic features of the mechanical behavior of porous rocks under compressive
stresses. An example of an elastoplastic model with two yield surfaces will be
presented. In the second part, a short review of modeling the effects of water
saturation and time-dependent behavior will be given.

5.2. Review of typical mechanical behavior of porous rocks

Hydrostatic triaxial compression tests are performed basically to characterize the
mechanical behavior of rock materials. In this section, we summarize the basic
mechanical behavior of porous rocks based on experimental data obtained from so-
called “Lixhe chalk” drilled in the CBR quarry near Liége (Belgium). It is composed
of more than 98% CaCO;, and its average porosity is about 43%. A series of

experimental studies have been performed on different chalks, including a
microstructure analysis and mechanical behavior investigation [ELL 85]; [HAL 90];
[BRI 94]; [AND 927; [RIS 98]; [RIS 01]; [MON 95]; [SCH 98]; [HOM 00]; [SCH
03a]; [CHE 03]; [DEG 04].

Typical hydrostatic stress versus volumetric strain curves are shown in Figure
5.1. Typically, the material response can be decomposed into three phases. In the
first phase, a quasilinear and reversible stress strain relation is obtained, representing
the elastic compressibility of the chalk skeleton. The elastic bulk modulus can be
determined from the slope of the stress strain curve during this phase. When the
hydrostatic stress reaches a limit value, called the pore collapse yield stress, an
abrupt accelerated and irreversible volumetric strain is produced, corresponding to
the phase of the plastic collapse of the pore structure. The pore collapse induces an
increase in the contact surface between grains, leading to the decrease of the
volumetric strain rate. This third phase resembles the plastic consolidation in soil
materials.



Elastoplastic Behavior of Ductile Porous Rocks 189

Confining pressure (MPa)

volumetric strain (%)

Figure 5.1. Volumetric strain curve of a porous chalk in hydrostatic
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Figure 5.3. Typical stress strain curves of chalk in triaxial compression
tests with high confining pressures ([HOM 00])

Conventional triaxial compression tests are then conducted with different
confining pressures in order to study the mechanical behavior of chalk subjected to
deviatoric stress. Typical stress strain curves are shown in Figures 5.2 and 5.3 for oil
saturated samples. We can see that the mechanical behavior of chalk is strongly
dependent on confining pressure. Under low confining pressures, i.e. when the
maximal mean stress is lower than the pore collapse stress, the basic behavior of
chalk is elastic-brittle or elastoplastic-brittle. The failure state may be characterized
by a peak stress. At very low confining pressures close to uniaxial compression, the
brittle failure occurs with material softening. Sample failure is traditionally
produced by the formation of localized shear bands. The orientation of shear bands
depends on the value of the confining pressure. The mechanical response changes
substantially when the confining pressure increases. At high confining pressures, i.e.
when the mean stress is close to the plastic pore collapse stress, no peak stress can
be found up to very large values of the axial strain. The slope of the stress-strain
curve increases continuously with a concave form similar to that in a hydrostatic
compression test. This means that the applied deviatoric stress under high confining
pressures enhances the pore collapse process, producing plastic hardening due to the
increase in contact area. Accordingly, an important volumetric contraction is
obtained due to the pore collapse. One of the specific features is that, due to the pore
collapse, the lateral strain at the first stage of a triaxial test is smaller than that which
should be obtained in a linear elastic material. At very high confining pressures, the
lateral strain may even be compressive during the first stage of a triaxial test (see
Figure 5.3). Material failure is characterized by the destruction of the pore structure,
transforming the cohesive material into a compacted powder assembly after
significant volumetric deformation.
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In light of the above results, it seems appropriate to formulate a constitutive
model with two plastic mechanisms. At low hydrostatic stresses, the plastic shear
mechanism dominates with a plastic hardening process from the initial elastic limit
to the ultimate failure state (peak stress), eventually followed by a softening phase.
A non-associated flow rule is generally needed to describe plastic volumetric
compressibility and dilatancy. On the other hand, at high hydrostatic stresses, the
pore collapse mechanism becomes the main process with a continuously positive
hardening process producing volumetric compressibility.
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Figure 5.4. Evolution of yield surface during plastic hardening
in the p—q plane ([HOM 00])

Some specific tests have been performed by Homand and Shao ([HOM 00]) to
characterize the evolution of yield surfaces during plastic hardening. The loading
path is composed of two phases in the conventional p —q plane. The sample is first
subjected to a hydrostatic compression up to 25 MPa, which is higher than the initial
pore collapse stress. Plastic hardening is then generated in the sample during this
preliminary phase. Afterwards, the hydrostatic stress is unloaded to a given value
(i.e. 10, 14, 17 and 20 MPa). From this point on, the sample is subjected to a triaxial
compression test through an increase of the axial stress. Yielding stress and possibly
failure stress are determined during the triaxial phase. The yielding surface obtained
after the hydrostatic preloading is compared with the initial surface (Figure 5.4). The
evolution of the yield surface due to plastic hardening can probably be characterized
by an isotropic expansion of the elastic domain. Therefore, an isotropic plastic
hardening law can be used for this material, at least for the plastic collapse
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mechanism. Another interesting feature of these results is that the failure stresses
due to plastic shearing are not affected by the preliminary plastic hardening in the
pore collapse process. In fact, the failure stresses obtained from two triaxial tests
performed on preliminary plastically deformed samples with 10 and 14 MPa
confining pressure are lined up with the failure stresses obtained from virgin
samples. This result would suggest that the two plastic mechanisms could be
considered as independent of each other; the plastic hardening (expansion) of the
cap surface does not necessarily affect the cone surface.

5.3. Formulation of the constitutive model

According to the above review, two plastic deformation mechanisms have to be
taken into account: plastic shearing and pore collapse. Plastic shearing is a common
mechanism for frictional materials. Plastic models based on traditional and extended
Mohr-Coulomb or Driicker-Prager failure criteria have been widely developed.
However, one particular feature of porous rocks is the strong pressure dependency,
which must be taken into account. Pore collapse, on the other hand, is specifically
related to the high porosity of materials. This mechanism plays an essential role in
many engineering applications such as subsidence analysis of oil reservoirs.
Therefore, particular attention is paid here to the modeling of pore collapse in
porous rocks.

The microstructure of porous rocks is generally complex. However, as a first
approximation of typical porous chalk in view of macroscopic modeling, an
idealized schematization can be adopted. Chalk can roughly be seen as an assembly
of solid grains with different types of contacts and a connected macroscopic porosity
[XIE 06] (Figure 5.5). For example, three types of contacts can be identified:
cemented solid contact, frictional point contact and liquid contact due to capillary
water. Inter-connected pores constitute the macroscopic porosity for fluid flow.
After a first homogenization phase, it is assumed that the assembly of solid grains,
together with their contacts, can be replaced by an equivalent cohesive-frictional
solid matrix. Closed porosity can eventually be included in this equivalent solid
matrix. Thus, the macroscopic mechanical behavior of the material is essentially
controlled by the mechanical properties of the solid matrix and the macroscopic
porosity, denoted by ¢ . The mechanical properties of the equivalent solid matrix are
related to the evolution of contacts during its deformation history. The increase of
frictional point contacts will result in a plastic hardening behavior while the
destruction of these contacts leads to a weakening of the mechanical strength.
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Figure 5.5. Simplified schematization of porous chalk as
an equivalent homogenous porous medium

Based on the previous analysis, an elastoplastic model with two flow
mechanisms is thus proposed [XIE 06]. The formulation of this constitutive model
has to satisfy the standard requirements in irreversible thermodynamics (Lemaitre
and Chaboche 1998; Khan and Huang 1995). Small strains are assumed. The total
incremental strain de; is composed of an elastic part de;- and a plastic part dsg .
The plastic strain is further divided into a collapse component deg- and a shear
component dej; .

dey; =d8§+d8§, dsg =dej; +dej; 5.1

The elastic strains are given by the linear Hook’s law:

1,1

dSZ- =%d0ij +%d6m811 (523)
1

ojf =6;-0,8; . G, =3Ok (5.2b)

where o;; are the components of the Cauchy stress tensor, Gf»jl» the components of

the deviatoric stress tensor and U, and k; the initial shear modulus and the bulk

modulus of the intact material respectively.
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5.3.1. Plastic pore collapse model

Based on an energy consideration, Gurson ([GUR 77]) proposed a general
macroscopic yield criterion for porous materials with a homogenous solid matrix.
The plastic behavior of the solid matrix is described by the von Mises perfect plastic
criterion. This criterion has been widely used and extended by many authors for
modeling ductile rupture of porous metals including the nucleation and expansion of
pores ([TVE 90]). Using a rigorous limit analysis, Perrin and Leblond ([PER 90])
and Leblond and Perrin ([LEB 96]) studied the micromechanic features of Gurson’s
criterion. It has been shown that this criterion represents the analytical solution of
the macroscopic yield function of a porous material with a solid matrix verifying the
von Mises perfect plastic criterion which contains spherical pores. The macroscopic
yield function depends on the yield stress of the solid matrix and the macroscopic
porosity. Heuristic extensions may be proposed to introduce a plastic hardening law
of the solid matrix. Considering the idealized representation adopted here for porous
rocks, Gurson’s criterion is used as the basic yield function for the pore collapse
mechanism. Therefore, the plastic yield function is expressed by the following form:

2
Y 3
Jz=%§’+2¢cosh(qz ;’6"1}—1—¢2=o,oeq= 3059) (53)
(o)

where 6,, denotes the equivalent deviatoric stress. Parameter g, is introduced to

control the geometrical form of the yield surface ([TVE 90]). G denotes the yield
stress of the solid matrix. The value of G depends on plastic deformation and is
affected by the evolution of contacts. The variation of G as a hardening law of the
solid matrix is issued from a heuristic extension of the original Gurson’s model.
Based on the experimental data from hydrostatic compression, the following
hardening function is proposed [XIE 06]:

5=0, [1 +a(-€5)" eb<‘8i¢k)} (5.4)

where €, is the plastic volumetric strain due to the pore collapse process, taken as
the internal hardening variable. G, denotes the initial yield stress of the solid

matrix. a, n and b are three parameters of the hardening law, which can be
identified from a hydrostatic compression test. Moreover, according to equation
(5.3), the macroscopic yield stress of a porous medium depends on the porosity. By
assuming that the plastic compressibility of solid grains may be neglected, the
porosity change is related to the plastic volumetric strain:
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do=(1-0)del, (5.5)

In most geomaterials, an unassociated plastic flow rule is generally needed to
describe the volumetric deformation more accurately. By adopting a similar form as
the yield function, the plastic potential takes the following form:

2
c « 30
0, =—L +2¢cosh(g, —) (5.6)
o 20

m

where q; is a parameter controlling the orientation of the plastic flow. However,

based on the experimental data obtained from triaxial compression tests at high
confining pressures, it seems that an associated flow rule describes the pore collapse
process accurately enough. Therefore, for the sake of simplicity, we have taken

42 =49 -

For a loading history, where only the pore collapse mechanism is activated, the
plastic flow rule is written as:

& = xcg& (5.7)
Gij

Plastic multiplier A, is determined by the plastic consistency condition:

% :C° :de

dh, = a 5.8

c % . CO . an _H ( )
do oo ¢

i =e 40 90 I g _g) 9L (59)
dG dgf, 90, 99 dG,,

The fourth order tensor C° denotes the elastic stiffness tensor of intact material.

5.3.2. Plastic shearing model

As previously mentioned, plastic shearing is a common mechanism for frictional
rocks, leading to the macroscopic failure of material by the formation of shear bands
and crack coalescence. However, in materials with high porosity, the shear
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mechanism is dominant only under low confining pressures. Furthermore, this
plastic mechanism significantly depends on the confining pressure. A curved yield
surface is necessary. Based on the failure surface proposed by Pietruszczak et al.
([PIE 88]), the following quadratic yield function is proposed:

2
f. =(%J +(prg(9)[(;—’”—CSJ=O (5.10)

r r

Parameter C, denotes the material cohesion. The normalizing parameter
p, =1MPa is taken to render parameter 4 dimensionless. Function g(0) describes

the influence of Lode’s angle. Different forms can be found in the literature.
However, since relevant data is not available for the material studied here, we take
for the sake of simplicity g(6) =1. Function o, defines the plastic hardening law for

the plastic shearing process. Since strain softening in porous rocks is observed only
at very low confining pressures, it is then neglected. Only a positive plastic
hardening law will be used. Material failure is reached wheno,, — 1. Based on the

experimental data from triaxial compression tests at low confining pressures, the
following hyperbolic law is proposed [XIE 06]:

Ys
B+y

o, =ad +(1-a)) (5.11)

N

Parameter oc(;7 denotes the initial yield threshold of the plastic shearing

mechanism; parameter B controls the hardening kinetics. Variable y, is the

generalized plastic distortion used as a hardening variable:

2 1
dy’ = ‘}gde;de; /Xp , e; =£—:‘fj —gs‘f{kSij (5.12)

B By
Xp — {(Gm patm>+ patm ] (513)

Py

The normalizing coefficient, ), , is introduced to take into account the influence
of the confining pressure on the deviatoric plastic hardening. Bracket (x) denotes

<x> = (|x| +x)/2 and p,,, is the atmospheric pressure.



Elastoplastic Behavior of Ductile Porous Rocks 197

In most cohesive-frictional geomaterials, the plastic shearing process can
generate volumetric compressibility and dilatancy. The volumetric plastic strain rate
depends on the level of applied stresses. There is usually a transition from
compressibility to dilatancy during plastic shearing. Therefore, an unassociated flow
rule is needed. Based on the experimental data from triaxial compression tests under
low confining pressures, and the adapted plastic potential as proposed by
Pietruszczak et al. ([PIE 88]), the following function is used for the plastic shear
model:

0, — P,.C
Qs =Gy N (Gm _prCO)ln[m[—proJ =0 (5.14)
0

Variable [, defines the intersection point between the potential surface and axis
G,, - The transition from plastic compressibility to dilatancy occurs on the boundary
defined by the condition, dQ,/dc,, =0. In this model, it is assumed that this
transition boundary can be described by a linear function:

Jfed = Oog =M(0,, = p,Co) =0 (5.15)

Parameter 1. defines the slope of the transition boundary in the 6,, -, plane.

For the loading history where only the plastic shear mechanism is activated, the
plastic flow rule is written as:

de, = d, 90, (5.16)
acsl-j

Plastic multiplier dA can be determined by the plastic consistency condition.

gA:CO:d

dh, = g 5.17

s %.CO.%_H ( )
do oo §

d
Hs—afs do, 1 Z(K:aQSJ [ BQJ
do, dy, x, \3 do oo

Kiu = (61k6 10,0 ]k) 8,0y (5.18)
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The fourth order tensor K defines the deviatoric part of a second order tensor.

In general loading conditions, two plastic mechanisms may be activated
simultaneously. In such a case, two plastic multipliers dA.,dA, can be determined

from the consistency conditions of two plastic yield functions; df, =0udf. =0.
Appropriate integration algorithms should be used ([SIM 98], [XIE 06]).

5.4. Examples of numerical simulations

The proposed model contains 12 parameters which can be determined from
conventional laboratory tests. As an example, the initial yield surfaces are shown in
Figure 5.6 for porous chalk. The detailed procedure for determining the model’s
parameters and typical values for porous chalks are given in [XIE 06].

The simulation of a hydrostatic compression test is shown in Figure 5.6. We can
see that the plastic deformation due to pore collapse and the plastic hardening
process due to increasing frictional contact force are well described by the model. In
Figures 5.7 and 5.8, two triaxial compression tests with different confining pressures
are simulated (14 and 20 MPa). Again, a good agreement between the numerical
simulations and experimental data is obtained. The deviatoric stress enhanced pore
collapse is correctly predicted by the proposed model.

357 simulation of the hydrostatic compression test

(oil saturated state)
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Figure 5.6. Simulation of a hydrostatic compression test on
oil-saturated Lixhe chalk (after [XIE 06])
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Figure 5.7. Simulation of a triaxial compression test on oil-saturated Lixhe chalk
with 14 MPa confining pressure (after [XIE 06])
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Figure 5.8. Simulation of a triaxial compression test on oil-saturated Lixhe chalk
with 20 MPa confining pressure (after [XIE 06])

In Figures 5.9 and 5.10, we present the simulations of three triaxial compression
tests at low confining pressures. In these tests, the plastic deformation is dominated
by the plastic shearing mechanism. Again, it seems that the proposed model is able
to describe the chalk mechanical behavior for the whole range of confining
pressures. Note that material softening and strain localization are not discussed in
this chapter. These features need to be completed in order to describe the
progressive failure process in geomaterials.
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Figure 5.9. Simulation of a triaxial compression test on oil-saturated chalk
with 1 MPa confining pressure (after [XIE 06])
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Figure 5.10. Simulation of a triaxial compression test on oil-saturated chalk
with 3 MPa confining pressure (after [XIE 06])

5.5. Influence of water saturation

In some engineering applications, modifying the nature of pore fluids in porous
rocks generates physical and chemical reactions. In the oil industry, for example,
porous chalk is initially saturated by oil-like fluids. In order to maintain pore
pressure during hydrocarbon production leading to pressure depletion, a large
amount of water is injected, which induces a significant change in the water content
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of porous chalk. In order to study the influence of saturating fluids on mechanical
behavior, laboratory tests have been performed on water saturated and oil saturated
samples. In Figure 5.11, yield and failure surfaces for two groups of samples are
shown. It is clear that the mechanical behavior of chalk strongly depends on the
nature of pore fluids. Typically, the elastic domain in water saturated samples
compared with oil saturated samples is largely reduced. Given that the pore collapse
stress decreases with water saturation, the transition from brittle to ductile behavior
occurs at lower confining pressure. The cohesion and failure strength are also
reduced. However, it was found that elastic properties are only slightly affected by
water saturation. Figure 5.12 shows that the pore collapse yield stress decreases
continuously with the degree of water saturation, but this quick decrease at low
degrees of water saturation tends towards a stationary value when the degree of
water saturation reaches a limit value. Schroeder ([SCH 03b]) performed a series of
hydrostatic compression tests on samples saturated with fluids of different
viscosities and showed that the mechanical behavior is quasi-independent of the
viscosity of the fluids. Therefore, the degree of water saturation is the key factor
which influences the mechanical behavior of pure chalk. It was also found that the
effects of water saturation are related to several factors such as pore structure, water
wettability and water activity ([RIS 01]; [RIS 03]).

With regard to water saturation effects in porous chalk, different constitutive
models have been proposed. For example, an empirical model has been constructed
in which a fictitious stress tensor was introduced to produce enhanced deformation
of chalk due to water injection ([PIA 98]). Such an approach is neither based on
sound analysis of physical mechanisms nor in agreement with a thermodynamic
framework. Based on the mechanics of partially saturated soils [ALO 90] the
influence of water saturation has been interpreted using the generalized suction
concept ([PAP 97], [COL 02]). A suction stress is introduced depending on the
degree of water saturation. Then, the Bishop’s effective stress concept ([BIS 63]) is
extended to take into account the effect of suction. On the other hand, suction is
used as an independent force which affects the plastic yield surface. These two
approaches are directly developed by extending the basic concepts used in
unsaturated soil mechanics. However, the microstructure and chemical nature of
porous chalk may be different from those of most soils. Therefore, the validity of the
suction concept is still debatable. In addition, this concept cannot directly explain
the fact that creep deformation is enhanced by water saturation.

Based on experimental data by Hellemann et a/. ((HEL 02a]) and inspired by the
notion of pressure solution in porous media, a chemoplastic model has been
proposed by Pietruszczak et al. ([PIE 06]). The effect of water saturation is
interpreted as a consequence of a chemical degradation in the contacts between
grains by a pressure solution process. An internal variable is introduced to describe
the state of chemical degradation. The kinetics of chemical degradation are
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controlled by the rate of dissolution of the contacts betweens grains and the
diffusion process of dissolved solids in the pore space. Rigorous micromechanical
analyses have been performed in order to determine the evolution of the internal
variable for chemical degradation ([LYD 07]). It was found that the evolution of the
chemical degradation variable covers a large time scale range from seconds to the
geological scale. At the first stage, very fast dissolution of solid contacts may occur
leading to a spontaneous degradation of mechanical properties of chalk as observed
in the water saturated sample. Its mechanical properties are defined as those of
sound material. The influence of the degree of water saturation may be taken into
account through a solubility coefficient. For instance, the completely oil saturated
sample is seen as the reference state without chemical degradation. The solubility
increases with the water saturation degree and reaches the maximal value in
completely water saturated samples. The residual mechanical properties of fully
saturated samples are defined as the properties of a completely degraded material.

12 _ Oeq (MPa)

Figure 5.11. Initial yield surfaces, failure surfaces and pore collapse yield surface for a
porous rock in oil and water saturated conditions (after [XIE 06])
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Figure 5.12. Variation of the initial yield stress of the equivalent matrix depending on the
water saturation degree (according to data from [COL 02])

The above concept of chemical degradation has been used in the elastoplastic
modeling of porous chalk ([XIE 06]). In Figure 5.13 the simulation of a triaxial
compression test under a confining pressure of 1 MPa is shown. Compared with the
mechanical responses of an oil saturated material (see Figure 5.9), it is clear that the
mechanical strength is significantly affected by water saturation.

4 T deviatoric stress (MPa)

(triaxial test,
Pc = 1 MPa, water saturated)

lateral strain (%) axial strain (%)
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Figure 5.13. Simulation of a triaxial compression test on water-saturated Lixhe chalk with
1 MPa confining pressure (after [XIE 06])
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5.6. Creep deformation

Under traditional approaches, creep deformation of material is generally
described by viscoplastic theory. Various viscoplastic models have been proposed
([PER 66]; [CRI 86], [CRI 94]; [MAR 01]; [COL 02]; [DEG 03], [DEG 04]; [SHA
95], [SHA 03], just to name a few related to porous rocks). All these models are
based on a mathematical formulation for modeling creep deformation. The physical
mechanisms involved in creep deformation are not clearly interpreted. For instance,
in rock materials, it is known that time-dependent deformation may be related to
physical and chemical degradation processes, such as a sub-critical propagation of
microcracks and chemical dissolution of solid grains and contacts. Therefore, more
physically based constitutive models should be developed. In the case of porous
chalk, it is now recognized that the creep deformation is essentially related to two
mechanisms. The first involves a viscous mechanism generating progressive
compaction of a solid skeleton. In addition, the second mechanism is related to
pressure dissolution of contacts between grains ([HEL 02b]). The two mechanisms
involve two different time scales. The viscous compaction is predominant in the
short-term while the pressure solution process controls creep deformation over the
long term on a geological timescale.

Based on these analyses, Lydzba et al. ((LYD 07]) proposed a phenomenological
approach including the two mechanisms leading to a time-dependent behavior of
porous chalk. The detailed presentation of the model can be found in the related
reference. In a general way, the total strain rate may be expressed as follows:

£=[C]6 +b{+[T]o (5.19)
e L10Q( | 0 e 100
[C]=[C HH{aa(aaj } b ac[C lo+ H 90 (5.20)

The first term corresponds to the time-independent elastic/plastic strain rate due
to the applied stress rate; [C]denotes the elastoplastic stiffness matrix with H being
the plastic hardening modulus. The second term describes the time-dependent strain
rate due to a pressure solution process, which affects elastic properties and plastic
behaviour respectively. The internal variable (represents the state of chemical
degradation. Finally, the last term is related to the viscous mechanism leading to a
time-dependent compaction of the solid skeleton. The kinetics of viscous
deformation are determined by the evolution of the internal variable &€ [0,1] . The
viscous strain rates are given by:

& =Ty on: Ty =E(@8;8y+a8,;8,), &=B3(1-¢) (5.21)
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B;, ay, and a, are three parameters of the model ([LYD 07]). In Figure 5.14, a
simulation of a triaxial creep test with 5 MPa confining pressure is presented. Note
that in this example, the time scale involved is about a day. Therefore, the creep
deformation is dominated by the viscous mechanism. The numerical predictions are
in good agreement with the experimental data. In Figure 5.15, triaxial creep tests
with a confining pressure of 2 MPa and three different values of the deviatoric stress
are shown. Basically, when the applied deviatoric stress is lower than the failure
strength of a fully degraded material (water saturated sample), a stationary state is
obtained. On the other hand, a spontaneous failure is produced for a higher
deviatoric stress. Again, the numerical simulations reproduce the experimental data
quite accurately.

o o o Experimental (oc1-03 =4.0MPa)

o—e—= Numerical

Creep strain -&,(%)

time (hrs)

-1

Figure 5.14. Simulation of triaxial creep test under 5 MPa confining pressure and 4 MPa
deviatoric stress on a water saturated sample (after [PIE 06])
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Figure 5.15. Simulation of a creep tests under 2 MPa confining pressure and four values of
the deviatoric stress on water saturated sample (after [PIE 06])

5.7. Conclusion

In this chapter, we addressed the plastic modeling of the ductile behavior of
porous rock subject to compressive stresses. An important specific feature of this
class of materials comes from the fact that two plastic flow mechanisms are
observed: pore collapse and deviatoric shearing. An example of a constitutive model
with two yield surfaces is illustrated. Furthermore, the mechanical behavior of these
materials is sensitive to water saturation. A fully phenomenological approach is
presented. Finally, the time-dependent deformation is also discussed. Based on
micromechanical analysis, the creep deformation is seen as a consequence of a
chemical degradation process. A simple phenomenological formulation has also
been presented. More detailed discussions on the chemical dissolution process as
well as on water sensitivity may be found in a number of indicated references.



Elastoplastic Behavior of Ductile Porous Rocks 207

5.8. References

[ALO 90] Alonso E.E., Gens A. and Josa A., “A constitutive model for partially saturated
soils”, Géotechnique, 40 (3), 405-430, 1990.

[AND 92] Andersen M.A., Foged N. and Pedersen H.F., “The rate-type compaction of a weak
North Sea chalk”, Proc. of 33rd US Rock Mechanics Symposium, Santa Fe, New Mexico,
June 1992.

[AUB 99] Aubertin M., Yahya O.M.L. and Julien M., “Modeling mixed hardening of alkali
halides with a modified version of an internal state variables model”, Int. J. Plasticity 15,
1067-1088, 1999.

[AUB 04] Aubertin M. and Li L., “A porosity-dependent inelastic criterion for engineering
materials”, International Journal of Plasticity 20, 2179-2208, 2004.

[BIO 55] Biot M.A., “Theory of elasticity and consolidation for a porous anisotropic solid”, J.
Appl. Phys, 26, 182—185, 1955.

[BIO 73] Biot M.A., “Non linear and semilinear rheology of porous solids”, J. of Geophy.
Res., vol. 78, no. 23, 4924-4937, 1973.

[BIS 63] Bishop A.W. and Blight G.E., “Some aspects of effective stress in saturated and
partly saturated soils”, Géotechnique, 13 (3), 177-197, 1963.

[BRI 94] Brignoli M., Santarelli F.J. and Righetti C., “Capillary Phenomena in Impure
Chalk”, SPE/ISRM paper 28135, Proc. of Eurock’94 — Rock Mechanics in Petroleum
Engineering, Delft, Balkema, 837-843, 1994.

[CHE 03] Chen H. and Hu Z. Y., “Some factors affecting the uniaxial strength of weak
sandstones”, Bull. Eng. Geol. Env. 62(4), 323-332, 2003.

[COL 02] Collin F., Cui Y.J., Schroeder C. and Charlier R., “Mechanical behaviour of Lixhe
chalk partly saturated by oil and water: experimental and modelling”, International
Journal for Numerical and Analytical Methods in Geomechanics, 26, 897-924, 2002.

[COU 95] Coussy O., Mechanics of Porous Continua, John Wiley & Sons, UK, 1995.

[CRI 86] Cristescu N., “Damage and failure of viscoplastic rock-like materials”, International
Journal of Plasticity, 2(2), 189-204, 1986.

[CRI 94] Cristescu N., “A procedure to determine non-associated constitutive equations for
geomaterials”, International Journal of Plasticity, 10(2), 103—131, 1994.

[DAS 85] Da Silva F., Sarda J.P. and Schroeder C., “Mechanical behavior of chalks”, Second
North Sea Chalk Symposium, Volume II, Stavanger, Norway, 1985.

[DEG 03] De Gennaro V., Delage P., Cui Y.J., Schroeder C. and Collin F., “Time dependent
behaviour of oil reservoir chalk: a multiphase approach”, Soils and Foundations, 43(4),
131-148, 2003.

[DEG 04] De Gennaro V., Delage P., Priol G., Collin F. and Cui Y.J., “On the collapse
behaviour of oil reservoir chalk”, Géotechnique, 54(6), 415-420, 2004.



208  Constitutive Modeling of Soils and Rocks

[DES 80] Desai C.S., “A general basis for yield, failure and potential functions in plasticity”,
Int. J. Num. Anal. Meth. Geomech., 4, 361-375, 1980.

[DES 84] Desai C.S. and Siriwardane H.J., Constitutive Laws for Engineering Materials with
Emphasis on Geological Materials, Prentice Hall, Englewood Cliffs, NJ, 1984.

[DES 01] Desai C.S., Mechanics of Materials and Interfaces: The Disturbed State Concept,
CRC Press, Boca Raton, 2001.

[DIM 71] DiMaggio F.L. and Sandler L.S., “Material model for granular soils”, ASCE J. Eng.
Mech. Div, 97(EM3), 935-950, 1971.

[ELL 85] Elliott G.M. and Brown E.T., “Yield of a soft, high porosity rock”, Geotechnique,
35(4), 413-423, 1985.

[GEN 93] Gens A. and Nova R., “Conceptual bases for a constitutive model for bonded soils
and weak rocks”, Proc. Symp. on Geotechnical Engineering of Hard Soils — Soft Rocks,
A. Agagnostopoulos et al. (eds.), Balkema, 485-493, 1993.

[GUR 77] Gurson A.L., “Continuum theory of ductile rupture by void nucleation and growth:
Part I- yield criterion and flow rules for porous ductile media”, Transactions of the ASME,
99, 2-15, 1977.

[HAL 90] Halleux L., Detiege C., Poot B., Schroeder C., Monjoie A., Debande G. and Da
Silva, F., Mechanical Behavior of Chalks”, Proceedings of the 3rd North Sea Chalk
Symposium, Copenhagen, 1990.

[HEL 02a] Hellemann R., Renders P.J.N., Gratier J.P. and Guiguet R., “Experimental
pressure solution compaction of chalk in aqueous solutions, Part 1: Deformation
behaviour and chemistry, water-rock interactions”, The Geochemical Society, special
publication, no. 7, R. Hellmann and S.A. Wood (eds.), 129-152, 2002.

[HEL 02b] Hellemann R., Renders P.J.N., Gratier J.P. and Guiguet R., “Experimental
pressure solution compaction of chalk in aqueous solutions, Part 2: Deformation
examined by SEM, porosimetry, synthetic permeability and X-ray computerized
tomography, water-rock interactions”, The Geochemical Society, special publication, no.
7, R. Hellmann and S.A. Wood (eds.), 129-152, 2002.

[HOM 00] Homand S. and Shao J.F., “Mechanical behavior of a porous chalk and water/chalk
interaction, Part I: Experimental study”, Oil & Gas Science and Technology, 55(6), 591—
598, 2000.

[HOU 97] Houlsby G.T., “The work input to an unsaturated granular material”,
Géotechnique, 47(1), 193-196, 1997.

[JIN 98] Jin J. and Cristescu N., “An elastic viscoplastic model for transient creep of rock
salt”, International Journal of Plasticity, 14, 85-107, 1998.

[LAD 77] Lade P.V., “Elastic-plastic stress-strain theory for cohesionless soil with curved
yield surfaces”, Int. J. Solids Structures, 13, 1019-1035, 1977.

[LAD 95] Lade P.V. and Kim M.K., “Single hardening constitutive model for soil, rock and
concrete”, Int. J. Solids Structures, 32(14), 1963—-1978, 1995.



Elastoplastic Behavior of Ductile Porous Rocks 209

[LEB 96] Leblond J.B. and Perrin G., “Introduction a la mécanique de la rupture ductile des
métaux”, Lecture notes (in French), Ecole Polytechnique, Paris, 1996.

[LOR 98] Lord C.J., Rhett D.W. and Johlman C.L., “Is capillary suction a viable cohesive
mechanism in chalk”, Proc. Eurock’98, 367-375, Trondheim, Norway, 1998.

[LYD 07] Lydzba D., Pietruszczak S. and Shao J.F., “Intergranular pressure solution in chalk;
A multiscale approach”, accepted for publication by Computers & Geotechnics, 2007.

[MAR 01] Maranini E. and Yamaguchi T., “A non-associated viscoplastic model for the
behaviour of granite in triaxial compression”, Mechanics of Materials, 33, 283-293,
2001.

[MON 95] Monjoie A., Schroeder Ch. and Da Silva, F., “Mechanical behaviour of chalks”,
Proceedings of the 3rd North Sea Chalk Symposium, Stavanger, Norway, 1995.

[PAP 97] Papamichos E., Brignoli M. and Santarelli F.J., “An experimental and theoretical
study partially saturated collapsible rock™, Int. J. of Mechanics of Cohesive-Frictional
Materials, 2,251-278, 1997.

[PER 66] Perzyna P., “Fundamental problems in viscoplasticity”, Advances Application
Mech, 9, 243-377, 1966.

[PER 90] Perrin G. and Leblond J.B., “Analytical study of a hollow sphere made of plastic
porous material and subjected to hydrostatic tension- application to some problems in
ductile fracture of metals”, International Journal of Plasticity, 6(6), 677-699, 1990.

[PIA 94] Piau J.M. and Maury V., “Mechanical effects of water injection on chalk
reservoirs”, SPE/ISRM paper 28133, Proc. Eurock’94 — Rock Mechanics in Petroleum
Engineering, Delft, Balkema, 837-843, 1994.

[PIA 98] Piau J.M., Bois A.P., Atahan C., Maury V. and Hallé G., “Water chalk interaction,
Part I: Comprehensive evaluation of strain and stress jumps at the waterfront”, Proc.
Eurock’98 — Rock Mechanics in Petroleum Engineering, SPE INC. 419428, Trondheim,
1998.

[PIE 88] Pietruszczak S., Jiang J. and Mirza F.A., “An elastoplastic constitutive model for
concrete”, Int. J. Solids & Structures 24 (7), 705-722, 1988.

[PIE 04] Pietruszczak S., Lydzba D. and Shao J.F., “Description of creep in frictional
materials in terms of microstructure evolution”, Journal of Engineering Mechanics,
ASCE, 130(6), 681-690, 2004.

[PIE 06] Pietruszczak S., Lydzba D. and Shao J.F., “Modeling of deformation response and
chemo-mechanical coupling in chalk”, Int. J. for numerical and analytical methods in
geomechanics, 30, 997-1018, 2006.

[RIS 98] Risnes, R. and Garspestad, O.J., “Strain hardening and extensional failure in high
porosity chalk”, SPE/ISRM 47581, Proc. Eurock’98 — Rock Mechanics in Petroleum
Engineering, SPE INC. 475-484, Trondheim, 1998.

[RIS 99a] Risnes R., Korsnes R.K. and Vatne T.A., “Tensional strength of soft chalks
measured in direct and Brazilian tests”, Proc. 9" ISRM Congress on Rock Mechanics,
Paris 1999, vol. 2, 667-672, Balkema, Rotterdam, 1999.



210  Constitutive Modeling of Soils and Rocks

[RIS 99b] Risnes R. and Flaageng O., “Mechanical properties of chalk with emphasis on
chalk-fluid interactions and micromechanical aspects”, Oil & Gas Science and
Technology — Revue IFP, Vol. 54, no. 6, 751-758, 1999.

[RIS 00] Risnes R., Berg T., Furuvald A. and Paulsen T., “Tensional failure and solid-fluid
interactions in high porosity chalk”, Proc. 4th North American Rock Mechanics
Symposium, 205-212, Balkema, Rotterdam, 2000.

[RIS 01] Risnes R., “Deformation and yield in high porosity outcrop chalk”, Phys. Chem.
Earth (4), vol. 26, no. 1-2, 53-57, Elsevier, 2001.

[RIS 03] Risnes R., Haghighi H., Korsnes R.I. and Natvik O., “Chalk — water interactions
with glycol and brines”, Tectonophysics, 370, 213-226, 2003.

[SCH 98] Schroeder C., Bois A.P., Maury V. and Hall¢ G., “Water/chalk (or collapsible soil)
interaction, Part II: Results of tests performed in laboratory on lixhe chalk to calibrate
water/chalk models”, SPE/ISRM 47587, Proc. Eurock’98-Rock Mechanics in Petroleum
Engineering, SPE INC., 505-514, Trondheim, 1998.

[SCH 03a] Schroeder, Ch., “Du coccolithe au réservoir pétrolier; approche phénoménologique
du comportement mécanique de la craie en vue de sa modélisation a différentes échelles”,
Doctoral Thesis (in French), University of Liege, 2003.

[SCH 03b] Schroeder C. (Coordinator), “Mechanical behaviour of partially and multiphase
saturated chalks and fluid-skeleton interaction: Main factor of chalk oil reservoirs
compaction and related subsidence”, Final report of the EU project (PASACHALK?2),
2003.

[SHA 95] Shao J.F., Dahou A. and Bederiat M., “Experimental and numerical investigations
on transient creep of porous chalk”, Mechanics of Materials, 21, 147158, 1995.

[SHA 03] Shao J.F., Zhu Q.Z. and Su K., “Description of creep in rock materials in terms of
material degradation”, Computer and Geotechnics 30, 549-555, 2003.

[SIM 98] Simo J.C. and Hughes T.J.R., Computational Inelasticity, Springer-Verlag, New
York, Inc., 1998.

[TVE 90] Tvergaard V., “Material failure by void growth to coalescence”, Adv. Appl. Mech.,
27, 83-151, 1990.

[WON 92] Wong T.F., Szeto H. and Zhang J., “Effect of loading path and porosity on the
failure mode of porous rocks”, Appl. Mech. Rev., 45(8), 281-293, 1992.

[XIE 06] Xie S.Y. and Shao J.F., “Elastoplastic deformation of a porous rock and water
interaction”, International Journal of Plasticity, 22, 2195-2225, 2006.



Constitutive Modeling of Soils and Rocks
Edited by Pierre-Yves Hicher & Jian-Fu Shao
Copyright © 2008, ISTE Ltd.

Chapter 6

Incremental Constitutive Relations for Soils

6.1. Incremental nature of constitutive relations

The notion of constitutive modeling is recent. Generally, it represents, with all
the possible problems linked to it, the whole of physics at small scales of a median
considered as continuous, which means without an internal scale. From a practical
point of view, we can say that it is indispensable for any modeling calculation. The
choice of a specific model allows us to express, in a mathematical form, that
different media “do not behave” in the same way (for example, sands and concretes
have different behaviors). From explicative or taxonomic models in the 1960s, the
constitutive models, due to the use of finite element calculus, have taken the form of
equations which relate the state of stress to the functional of the kinematic history:

o= 5 [Vu(s)] 6.1)

Obviously, this functional has to be objective. From this theoretical description,
a very significant simplification can be made by assuming that the history can be
expressed by the actual state. This leads to an elastic model, which becomes
hyperelastic if we add the assumption that the energy lost outside the medium during
a cycle cannot be positive. We can use this type of model if we want to describe the
behavior along a monotonic loading path. This is currently done for applications on
metallic materials when the deformation theory of plasticity is used. However, in
order to be able to use the model along more complicated loading paths, especially
loading-unloading paths, a more complicated constitutive model is needed. An
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incremental or rate formulation is indispensable. Since we will consider only non-
viscous behaviors, the two formulations are equivalent.

Assuming the state £ of a given material to be known, it is possible to find a
relationship between an objective derivative of the stress — in what follows,
Jaumann’s derivative & will be considered — and a spatial description of the
kinematics — in what follows, strain rate D , which is the symmetric part of the rate
gradient, will be considered. An implicit relation can be written:

F(6,D,E)=0 (6.2)

Due to the hypothesis of non-viscous behavior, function F has to be positive and
homogenous in ¢ and D . If equation (6.2) can be solved in & and/or D, we can
have:

6 = f(D,E) (6.3)

D=g(6,E) (6.4)

fand g are also positive and homogenous of degree 1 in D and & , respectively.
These two dual forms are not completely equivalent. Equation (6.3) is completely
inside the framework defined by equation (6.1). In fact, from equation (1.3), we can
deduce:

o(t)="[6ds="] f(D,E)ds 6.5)
5=0 s=0

if we have an evolution law for the state of the material. Equation (6.4) requires
solving the problem of the inversion, which is not always a simple problem.

Often, the problem can be simplified by assuming that / and g are linear
functions of their first argument. In that case, we obtain a reversible behavior, as:

6(D,E)= f(D,E)=~f(-D,E)=—-06(-D,E) (6.6)

This hypothesis can be partially justified for a given class of strain rates, using a
rigorous reasoning in several simple cases. For example in the case of metal
plasticity, if we assume that the plastic deformation is due to a unique microscopic
sliding mechanism in a direction well defined by the metal structure, we can
demonstrate that function f is linear when this mechanism is active. If we assume
that the behavior is elastic when the mechanism is inactive, relation (6.3)
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corresponds to two linear relations, one for plastic loading, and the other for elastic
unloading. Of course, a consistency condition between these two relations is
necessary, so that the model gives the same result at the boundary between the
domains (neutral loading). Ignoring this condition leads to calculation results which
depend on the computer used to obtain them [NEL 78]: this has been known for a
long time, but tends to be forgotten.

As just seen, the bilinearity can be justified only if a plastic mechanism can be
well identified. Many reasons can be cited to show that this is not the case in
geomaterials. Already, in many cases, the recent plasticity models for metals have
several (sometimes many) mechanisms. Concerning geomaterials, the microscopic
study of the deformations does not show a specific mechanism capable of justifying
the hypothesis of bilinearity and experimental results on soils have demonstrated the
non-validity of this hypothesis [TAT 74]. We should not conclude that the
incrementally bilinear models are insignificant, but rather that the in situ observed
phenomena will be better described by models which are not based on this simple
hypothesis.

In this chapter we will show two different ways of overcoming the bilinearity
and even the polylinearity of elastoplastic models with several plastic mechanisms
by using completely non-linear relations. The first part is devoted to hypoplastic
models in general and CloE models in particular, which have been specially
constructed to describe in a realistic manner the localized failure in geomaterials,
even if they are also capable of describing various other geomaterials characteristics.
The second part is devoted to incrementally non-linear constitutive models which
constitute a more general framework than the hypoplasticity, and can give more
realistic responses for cyclic loading and treat different classes of instability and
bifurcation.

6.2. Hypoplastic CloE models

Hypoplastic models have been independently developed by Kolymbas and co-
workers [KOL 87] and the authors [CHA 85, CHA 89]. A complete historical
presentation can be seen in [TAM 00a]. A common characteristic of the hypoplastic
models is to write equation (6.3) in the form of the following non-linear relation in
order to describe irreversibility:

6=4:D+0|D| 6 = Ay Dy + b0 6.7)

The fourth order tensor 4 and the second order tensor b are both functions of the
material state. This dependency needs of course to be expressed. We will develop all
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the theoretical consequences of equation (6.7), after which we will give several
examples of applications of these models.

6.2.1. Irreversibility in hypoplasticity

By using equation (6.7), the model is clearly irreversible. Contrary to what can
be seen in equation (6.6), we can see that, for a given material state:

dU»=A:D+ﬂEM¢dGID=—ALD+wD" (6.8)

G=A:D+blDI

Figure 6.1. [rreversibility in 1D and 2D hypoplasticity

It is interesting to reproduce this fundamental mathematical property graphically.
Figure 6.1 illustrates the irreversibility in 1D and 2D. The left part of the figure
corresponds to the 1D case. In such a case, &, D, A and b are scalars and the
norm becomes an absolute value. We obtain:

d:AD+4D| (6.9)

If we give to D the values +1 and —1, we obtain for 6, A + b in the first case
and —4 + b in the second case, which is illustrated in Figure 6.1 for a negative value
of b. We can clearly see that the irreversibility does not necessarily have to be
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modeled by two different linear relations, one for loading and one for unloading. A
single non-linear relation can be sufficient.

The 1D example is however insufficient to understand completely the
incremental non-linearity of the hypoplastic models. Let us now consider the 2D
scheme on the right side of Figure 6.1. Due to the positive homogenity of degree 1
in time, it is sufficient to consider only the solutions of equation (6.7) obtained for
strain rates with a norm equal to 1 in all the directions. In Figure 6.1, this
corresponds to a circle centered at the origin of the axes in the strain rate plane.
Multiplying by A4 transforms the circle into an ellipse in the stress rate plane, and
adding b, which is a vector in the 2D case, translates the ellipse in the same plane. It
appears clearly again that the additional term linked to the norm controls the
irreversibility.

Elastoplasticity with one mechanism Hypoplasticity

Figure 6.2. Comparison of incremental constitutive relations
in traditional elastoplasticty and in hypoplasticity

In order to see even more clearly that the 1D representation is meaningful but
insufficient, let us now consider two different ways of expressing the irreversibility
along a given loading path. For this purpose, we have in Figure 6.2 the responses in
o for two cases. The case of the hypoplastic response has been previously studied
and it has been shown that we obtain a non-centered ellipse as shown on the right
part of Figure 6.2. On this ellipse, we have identified two specific points
corresponding to two opposite strain rates. On the left part, we present the same
representation for a bilinear model, for example an elastoplastic model with one
mechanism. In that case, the response envelop consists of two half-ellipses, both
centered but of different sizes and connected to each other due to the consistency
condition mentioned in section 6.1. The difference between the two ellipses
describes the irreversibility. In the two cases, hypoplasticity and elastoplasticity, the
responses & for the two specific values of D are the same, which illustrates that the
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knowledge of the response along a given loading-unloading path is not enough to
determine the incremental relation.

To conclude this study of the irreversibility, it is interesting to note that, for b =
0, the hypoplastic model degenerates into a reversible incrementally linear model,
and is therefore potentially elastic.

6.2.2. Limit states

One of the big advantages presented by equation (6.7) is that it is possible to
deduce easily several model properties, or, in other words, that it is easy to establish
mathematically some properties which can allow us to test numerical software in
which the model has been implemented.

6.2.2.1. Dual model

An interesting question to ask may be: under what conditions can equation (6.7)
be inverted? It is easy to demonstrate that a necessary condition is that 4 can indeed
be inverted. We called 47" its inverse. Owing to the homogenity of the model, we
can assume that response D with a norm equal to 1 is obtained for & , defined by its
direction s and its norm A. Under these conditions, equation (6.7) becomes:

As=A:D+b (6.10)

thus:
D=4a"b:(s—b) (6.11)

which always has a solution if s and A exist. Since the norm of D must be equal to
1, we obtain:

AUAT ) (A7 )] =24[(A7 i s) (A7 D)+ (A7 ) (A7 ) =1 (6.12)

which is a second degree equation in A, that must have only one positive root.
Therefore, if (A_1 :b): (A_1 :b)—1<0, equation (6.7) can be inverted, the solution
being obtained from equation (6.11), with A as the unique positive solution of
equation (6.12). In a physical way, the possibility of inversion means that the
material is able to deform homogenously for any state of stress. It can be worthwhile
to introduce a new expression of the constitutive equation:

=47":p (6.13)
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6=A:(D+ B”D") (6.14)

From this new relation, we can deduce the previous result. The relationship
between D and & can be decomposed into a relation which allows us to go from

D to D+ B"D” , followed by multiplying by A4, which can be inverted according to

our hypothesis. Therefore, the condition for the existence of the dual model
corresponds to: B:B—-1<0

6.2.2.2. Plasticity and flow rule

We will now see if it is possible to find values of D different from zero
corresponding to the condition & = 0. In other words, we have to find conditions
for tensors A and b, which lead to a perfectly plastic flow. By using the previous
developments, a necessary condition is that one of the solutions of equation (6.12) is
A = 0. Therefore, we obtain the following relation:

(A7 :b): (47 :b)=B:B=1 (6.15)

If A and b are functions of the stress state, equation (6.15) represents in fact the
equation of the perfect plasticity surface. If equation (6.15) is satisfied, A = 0 and:

D=-4a"1:p=—B (6.16)

which thus represents the flow rule, meaning the strain rate, different from zero, for
which the stress remains constant, something which is easy to verify by inserting
equation (6.11) into equation (6.7).

D
AS A
/\ - >~ .
Elastoplasticity with one mechanism Hypoplasticity

Figure 6.3. Softening in elastoplasticity and in hypoplasticity



218 Constitutive Modeling of Soils and Rocks

6.2.2.3. Softening

We have seen the implication of the condition (4" :5): (47" :b)<1 for the
model. Having just demonstrated that the condition (47 :b):(47':b)=1
corresponds to perfect plasticity, we will now study the implication of the
condition (4™ :5): (47" :b)>1, which can also be written B: B >1. If we go back
to the calculation made in section 6.2.2.1, the model can no longer be inverted,
which corresponds to the case of elastoplastic models with negative hardening. This
is why we will call this particular case softening. Figure 6.3 illustrates in the 2D case
how the softening is treated in elastoplasticity and hypoplasticity. In elastoplasticity,
the plastic half-ellipse is located on the same side as the elastic half-ellipse, which
implies that half the plane of the strain rate is not accessible to the model, as in
perfect plasticity. In hypoplasticity, the ellipse is shifted in such a way that the plane
origin is located outside the ellipse, which implies that, by extension in 3D, a cone in
the strain rate space is inaccessible. The drawing was made, as previously, by
assuming that the two classes of models gave the same responses for a given strain
rate in one direction, and also in the opposite direction.

6.2.2.4. Consistency relation at the limit state

We have seen in section 6.2.2.2 how perfect plasticity was modeled in the
framework of hypoplasticity. Without more constraint (in the mathematical sense),
we can obtain a surface, for example in the stress space, which can be crossed over
towards softening states. This is not necessarily a desirable situation. It could be
preferable that the plastic surface was also a limit surface, making the states of stress
located outside this surface inaccessible. In that case, in the presence of softening,
the equation of the plastic surface cannot be dependent only on the stress. This need
for the stress states to belong to a well identified domain is often useful. In practice,
it allows us to better control the model use.

As

Inconsistency

Consistency

Figure 6.4. Principle of the consistency relation in hypoplasticity
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Once more, it is easier to understand this aspect by drawing a diagram in 2D. For
a potentially perfectly plastic state, the limit surface appears — if assumed to be
regular — as a straight line passing through the origin in the stress space. On the left
side of Figure 6.4, we can see clearly that there are stress rates which can cross the
limit surface, while on the right side, no stress rate can be directed towards the
forbidden zone. We say, in the second case, that the model verifies the consistency
relation given in equation (6.17). We can see the details of the calculation in [CHA
89]:

n:A=-AB (6.17)

where 7 is the outer normal to the limit surface in the stress space and A is a positive
scalar. This relation is one of the aspects characterizing CLoE models.

In elastoplasticity, with or without hardening, the consistency relation expresses
the condition that a stress state cannot be located outside the yield surface. In
hypoplasticity, it is possible to force the stress state to stay inside a limit surface.
This explains why we adopted the same expression. The fundamental difference is
that the relation applies only in an asymptotic state, when the state of stress tends
towards the limit state surface.

6.2.3. A simple example: the 2D Mohr-Coulomb model

In order to illustrate our theoretical developments, we will present a simple
application of these concepts for a 2D medium [CHA 98]. Such a 2D model is
simpler to study, and at the same time interesting enough, since many practical
problems are treated in 2D conditions. The model is written in the principal stress
axes. We have:

0{‘711 0 } (6.18)

0 op

Where o, is the minor principal stress. Without cohesion, the plastic surface
also considered as the limit surface is defined by:

Oy —0y +0'22 +0y;

> sing =0 (6.19)

where ¢ is the friction angle. In the same way, by assuming dilatancy in perfect
plasticity, the flow rule is written:
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Dzz +D11 + Dzz _D11
2

siny =0 (6.20)

where i is the dilatancy angle. Starting from these relations, we will give the
expressions of 4 and B as functions of the stress state; more precisely here,
depending on the mobilized friction angle, which will give us the constitutive
relation from equation (6.14). In what follows, we will write 4 and B in the form of
3*3 and 3*1 matrices by using the usual convention, since we are developing a
constitutive model. Equation (6.20) gives us the value of the transpose of B, which
represents the value of B at the limit state:

[ tim |7 1 1
B ] = 0 (6.21)
\/1+(1+s¥'n¢)2 \/1+(1—sin¢)2

1-sing 1+sing

For intermediate states, we take:

sin ¢ ’

B:Blim

where ¢,,,, is the mobilized friction angle. We can note that, for isotropic states of
stress, B =0, which means that the model gives reversible behavior. It is therefore
natural to assume that, in this condition, 4 is the isotropic elastic matrix. In respect
to the consistency relation, the solution adopted in what follows consists of
multiplying this isotropic matrix by a rotation matrix dependent on an angle &,
whose limit value #"'™ is calculated from equation (6.17). We can take for example:
SI0 Do (6.23)
sin @

We can finally write 4 as follows:

E(1-v) Ev
cosf  sing o] A+vA=2v) (1+v)(1-2v)
A=|—-sin@ cosd 0 Ev Ed=v) (6.24)
1+v)A-2v) (A+v)1-2v)
0 0 1 2E
} 0 0
L 1+v) |
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where £ and v are respectively a Young’s modulus and a Poisson’s ratio, which
can be interpreted as elastic parameters in isotropic stress states only, the only states
for which the model degenerates in an elastic model. Finally, we easily constructed a
model with four parameters: Young’s modulus £, Poisson’s ratio v, friction angle ¢
and dilatancy angle i .

Obviously, the previous model is very simple. We can construct more elaborated
3D CLoE models using interpolations between experimentally known behaviors, in
particular along triaxial loading paths. We do not have the room here to present a
more detailed application of this approach, which gives very precise models. For
more detailed studies and applications on specific geomaterials with comparison to
experimental results, see [CHA 94a, ELH 96, VIG 99].

6.2.4. Use in boundary value problems

The non-linear modeling of material behavior is not straightforward. In
particular, it is very difficult to know if a particular model leads to mathematically
well-written problems. In a book like this, it is indispensable to know if the
presented models are effectively usable in finite elements calculations. The story
reported in [NEL 76] about the computer dependence of some numerical results is
quite old but exemplary. It is very probable that all the models lead to mathematical
difficulties which cannot be overcome (we will discuss this point in section 6.2.5). It
is therefore interesting to possess some well assessed results concerning the
mathematical problem associated with a given model, as well as some precise
numerical experiments, with quantification of the accuracy of the integration
schemes.

Concerning CLoE models, we demonstrated that the positivity condition of the
second order work (equation (6.25)) in each point of the soil volume concerned by a
small deformation calculus, was a sufficient condition of existence and uniqueness
of the problem solution expressed in terms of the strain rate [CHA 99]:

AW =6:D=6,;D; >0 (6.25)

This condition is no longer verified when we get close to the limit surface, and
we will see that we have to examine carefully the states close to failure, as for all the
other models, because the models based on a continuous medium assumption do not
apply anymore.

In all cases for which we can reasonably assume that the mathematical problem
is well posed, CLoE models are easy to integrate. A Crank-Nicolson method for
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local integration [TAM 00b], associated with a Newton-Raphson method for the
global problem, allows us to integrate these models efficiently.

6.2.5. Explicit criterion of localization

Failure of geomaterials happens in most cases in a localized mode. It is therefore
indispensable that modern modeling is able to take into account this phenomenon.
The name CLoE accounts for the fact that, even if the model is non-linear, it allows
us to conduct a complete analysis of localization and to obtain an explicit form for it.
This is very important, considering that numerous localization analyses are only
partially treated. CLoE stands for consistence and explicit localization (Consistance
et Localization Explicite in French).

Localization calculus is based on the following. Guided by experimental
observations and also by some theoretical considerations which are not discussed
here, we are looking for the existence, within a homogenous infinite medium
subjected to a homogenous strain rate, of a band of undetermined width, subjected
also to a homogenous deformation, albeit different from the rest of the medium. We
can then write the kinematic compatibility condition between the two zones:

F'=F°+gQ®n Fl=F&+g.n, (6.26)

where F' is the strain rate gradient inside the normal band n, F* the strain rate
gradient outside the band, and » a possibly unknown vector. We can also write the
condition of equilibrium at the band boundary:

Al

6'n =6°n 6in . =6;n; (6.27)

where & is the stress derivative in fixed axes. These equations, combined with the
constitutive relations, give, when available, the shear band localization criterion.
CLoE and the hypoplastic models, generally expressed by equation (6.7) or equation
(6.14), which are equivalent, allow us to obtain an explicit localization criterion:

1
My = Ay +E(O-il§jk _U;k5_;1 +O—jl§ik _0'_;/{51-1) Py =M jqnn;

(6.28)

1 _
HE (Py lblknknj + lelblknkni) =1

When the band is located within a specific plane, which is the case for a simple
model such as the one presented in section 6.2.3, this criterion can be expressed by a
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polynomial form of degree 4 in tan o, where o is the angle between the normal
direction to the band and the x axis for example.

At the present stage, some observations have to be made.

The localization criterion for hypoplastics models, obtained by a completely
rigorous calculation (see equation (6.25)), has nothing to do with a determinant of
the acoustic tensor. In addition, in order to determine an acoustic tensor, we first
have to linearize the non-linear model rigorously, which is easy to do for the
hypoplastic models, but is of interest only for solving strain rate boundary problems.
A localization calculation made with the linear model corresponding to the
linearization of the model in the vicinity of the strain rate gradient F'¢ gives a result
which sometimes overestimates the medium’s resistance to localization [CHA 85,
TAM 00c].

We can demonstrate that, if the localization condition is fulfilled for the small
strain hypothesis (M ;;; = 4, n equation (6.25)), the second order work is no
longer positive. This result is not surprising, since the fulfilment of the localization
condition in fact means that there are several solutions to a given boundary problem.

N7
T N\

Figure 6.5. Physical interpretation of the localization

Finally, it is important to have a more physical view on this localization
criterion. It can be proved that, for a given material state represented in Figure 6.5 in
principal axes, the localization will take place in a band having a direction # and a
normal 7, if this band can be sheared with a stress increment at the boundary equal
to zero: &,, =0, =0. This result can be proved, rigorously again in a small strain
condition, in order to be equivalent to the criterion given by equation (6.25) [CHA
98a]. It is important to understand that this result does not mean that the model is in
the plasticity condition as presented in section 6.2.2.2. The important difference is
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that &, #0 in the case of localization. However, since the band width is not
specified because of the absence of material internal scale, the fact that o, #0 does
not allow the global problem to maintain the uniqueness of the solution.

6.2.6. Induced anisotropy

The last observation in the previous section clearly shows that, for a localization
to be possible, the existence of a weak zone in a given direction is necessary. The
localization phenomenon is thus clearly directed. In other words, following
Vardoulakis’ conclusion [VAR 80], we can say that the appearance of a localization
in laboratory tests should not be considered as an undesirable effect, but rather as a
added piece of information on the incremental anisotropy of the material when the
localization takes place. Based on these general principles, we developed a means to
integrate this information in our hypoplastic models. This is the main aspect which
characterizes CloE models among other hypoplastic models.

In laboratory homogenous testing (direct simple shear is thus excluded), the
strain and stress directions remain fixed if the material is initially isotropic. For the
model studied in section 6.2.3, this means that the term A3; in matrix 4, which will
be called the shear modulus in the loading axes, does not play any role in this type of

. . o 2F .
test. Except for the isotropic state, where it is fixed and equal to G = ﬁ’ this
+v
term is undetermined, while it plays an important role in the equation of the
localization criterion. Therefore, we chose to vary the shear modulus from its value
at the isotropic state to a value which gives the localization in the same conditions as
observed in the experimental tests, i.e. orientation and mechanical state, defined in

the simplified case by the mobilized friction angle ¢,,,. An interpolation is

thereafter made between the initial isotropic and the localized states:

_2E S0 e (6.29)
(1+v) sin ¢

Matrix A4 is therefore modified by taking for term A;; the expression in equation
(6.29). We can verify that consistency is verified at the isotropic state, which is
fundamental for the model’s use in numerical calculations, in order to prevent the
problems mentioned in section 6.1. Finally, we have introduced in our 2D model a
new parameter @ which can be viewed as the one controlling the anisotropy induced
by a loading from the initial isotropic state to the actual state. @ can also be viewed
as the parameter controlling the appearance of the plastic strain localization.
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Generalizing this concept in 3D does not imply a particular problem. In fact, this
concept has first been applied to a general 3D model before being applied to the
simplified 2D model chosen here as an example. In the 3D model, we must note,
however, that there are three shear moduli and that it is necessary to verify the
consistency condition more precisely. In addition to the relation at the isotropic state
for the three moduli, there are also relations for each of them for axisymmetric
states. For more details, see [CHA 94b].

Hypoplasticity thus offers a great flexibility for introducing this induced
anisotropy. The effects are different but similar to those obtained in the plasticity
framework by using vertex models, providing that they correspond to complete
constitutive models, which is rarely the case, or by using non-coaxial models, such
as models with kinematic hardening.

6.2.7. Extension to media with internal length

Traditional constitutive models, based on the description of the displacement
gradient tensor, have no internal length. Geomaterials, however, are clearly
materials with internal length: grain sizes for soils or concretes, spatial distribution
of pre-existing discontinuities for rocks. If, in numerous cases, the absence of
internal length in the models used can be ignored, this is no longer possible in the
case of localized failure. It has been proved experimentally that the dimension and
the width of localized bands in sands depend on the grain size distribution and
mainly on the mean grain size. If the traditional models can predict without
difficulty the apparition of a localized zone, it is illusionary to think that they can
also correctly predict the post-localized regime, even if this assumption is very often
made. Numerically, the results are computer independent, but depend strongly on
the size of the spatial discretizing in finite elements. We are not going to present an
exhaustive list of possible solutions, but rather concentrate on two specific solutions,
without too many details, since it is a field which is constantly evolving [CHA 98a].

An important class of models with internal length concerns the models with
microstructure. Their kinematics are no longer only described by the displacement
field, which, by spatial derivation, gives the gradient, rotation and the usual
deformation, but also by a micro-gradient field, which considers strains and
rotations at the grain level and gives by derivation a gradient of the micro-gradient.
This enriched kinematic requires taking into account, by duality, additional stress
tensors. The energy variables, or the virtual or real works, contain these kinematics
and static enrichments. By adding mathematical constraints, we can develop these
models into Cosserat’s models, second gradient models, etc. We will not develop
these theories, which have demonstrated their ability to take into account an internal
length within the studied material, especially in post-localization problems.
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Another possible way consists of introducing localized zones, whose behavior
differs from the rest of the medium. For example, experiments have shown that the
significant dilatancy obtained in dense sands leads asymptotically to a limit density
called the critical void ratio. Well instrumented experiments have shown that this
phenomenon was concentrated within shear bands [DES 96]. It is therefore
understandable to enter this behavior within a localized band rather than in the
whole volume. For this purpose, we can construct a specific model representative of
the band’s behavior, consistent with the CIoE model, from which it is built, and
leading to a critical void ratio inside the band. In this kind of model, the width of the
model is explicitly introduced and corresponds to an additional parameter to be
determined. For more details on this topic, see [CHA 98a].

Figure 6.6. Photo of a biaxial test with localization

6.2.8. Examples of application

We cannot develop too many examples of CloE model applications. We chose to
present here some results of integration in a finite elements code by selecting two
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different cases: one concerning an homogenous loading, the other a boundary value
problem.

7 —_

6_

T T
0 0.02 0.04 0.06 0.08 0.1
Axial strain

Figure 6.7. Comparison between experimental results and numerical
modeling with Daphnis and CLoE model of a biaxial test

6.2.8.1. Modeling of biaxial test

We first present the modeling by Daphnis-CloE of a biaxial test in plane strain
conditions, imposed by a glass wall, which allows us to show the tested specimen.
Figure 6.6 shows the specimen after localization. The CloE model used in this study
is the one presented in section 6.2.3. The numerical modeling was performed with
the following parameters: £ = 30,000 kPa, v=0.32, w= 0.6, ¢=45°, w=25°. The
confining stress was equal to 200 kPa. The specimen’s initial dimensions were:
338.5 mm x 102.5 mm. The initial void ratio was 0.66, the critical void ratio within
the band was taken equal to 0.8, in agreement with the value of 0.85 given in [DES
96] at a smaller mean stress, and the width of the band was taken as equal to 7 mm.

The modeling was not refined in order to best fit the experimental results. Figure
6.7 presents the relationship between the stress ratio and axial strain. We can see that
the model reproduces correctly not only the initial phase of the localization, but also
the post-peak plateau. For more details on this calculation, see [CHA 98a].
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Figure 6.8. Geometry and discretization of the trench

6.2.8.2. Modeling of a trench excavation with a retaining wall

The modeling of a trench excavation with a retaining wall was performed by
using the 3D CloE model presented in [CHA 94a]. The calculation was made
assuming plane strain conditions. A comparison was made with the results of the
same type of calculation obtained by commercial software. Detailed results can be
found in [VIG 99]. Figure 6.8 presents the trench geometry. The grey zone
corresponds to the excavated soil.

Figure 6.9 presents a map of the volumetric deformations in the upper part and
the deviatoric strains in the lower part, using the CloE model (left part) and the Hard
Soil Model (incrementally bilinear consistent model) (right part). Details of the
choices made to perform this numerical comparison can be found in [VIG 99]. In the
case presented in Figure 6.9, corresponding to a rigid wall, the predictions of the
CIloE model are more realistic, especially concerning the soil displacements in the
vicinity of the retaining wall. This result has significant practical interest.
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Figure 6.9. Iso-values of volumetric and deviatoric strains: comparison
of numerical simulations obtained with CLoE and HSM

6.3. Incrementally non-linear constitutive relations
6.3.1. Formalism

We have shown in Chapter | that the general relations for non-viscous behavior
could be written:

de, =M () doy, By efl2,6f (6.30)
or in the dual form:
do, =N,z(v,)deg,  aBy e{l.2,6F (6.31)

where u, represents the direction of the incremental stress do,:
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u, = ||c(li%’ y €{1.2,---,6}, with |do| = do-do  (632)

and where v, represents the direction of the incremental strain de,:
de .
v, = m, y €{l.2,--6}, with |de| = Vde-de
£

We will now specify the structure of M(«) and N(v). For this purpose, we will
consider the developments in polynomial series of the elements of these two
matrices:

M) = Mg + Mg u, + Mygsu s+, ofyde{l 6] (6.33)
Nop(v,) =Npg+ Nogv, + N2 g sv,vs +- ofyse{l, -6}  (6.34)

From equations (6.30) and (6.31), it follows that:

de, Maﬂ dog+—-Mgg dogdo, +- offye {1,--‘,6}3 (6.35)

o 01|

do, =Njzdeg+—Nig degde, +-or, apyefl6F (636

L
|de]

The first terms of equations (6.35) and (6.36) describe the incrementally linear
elastic behavior. The two first terms give the general representation of incrementally
non-linear second order constitutive relations:

1
de, =M} o+ LV 0o o, g {363

1

do, =N, de, +MNUW" de, de,,, ikimne {1,---,3}" (6.38)

We can verify that expressions (6.37) and (6.38) are non-linear and homogenous
of degree 1 with respect to do and de, respectively.
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In order to determine more precisely tensors M', M2, N', N°, we have to define
their general form. For this purpose, three hypotheses are in order:

— the incremental relation is orthotropic;
— when expressed in the orthotropy axes:

Va,fe{l1,2,3}, a#p, M., =0 and N, =0;

— the “shear” part of the relation is incrementally linear in the orthotropy axes:
Vpe{4,5,6}, ory {456}, M;, =0 and N}, =0.

In the orthotropy axes, equations (6.37) and (6.38) are then reduced to the
following simplified form:

dey doy, 1 ((10'11)2

dey, |= Al doy, |[+—B| (doy, ) (6.39)
|do] :

dés; dos; (d0'33)

doy, dey, | (dgu)z

doy, |=C| dey, |+ oD (dey, )? (6.40)

doss déss " 8” (d€33)2

and:
doy, |=2| G, dey, (6.41)

We have therefore to determine matrices of dimension 3x3: A, B, C, D and
functions G;, G,, G;. The idea is to identify the constitutive relations in equations
(6.39) to (6.41) by specific behaviors which can be experimentally determined. For
the model given by equation (6.39), they correspond to “generalized triaxial paths”
and for the dual model given by equation (6.40), they correspond to “generalized
oedometric paths”. Their definitions are, respectively, as follows:

— a path is called a “generalized triaxial path” if the stress and strain principal
axes are identical to a constant given direction, and if the two lateral stresses are
maintained constant along the stress path;



232 Constitutive Modeling of Soils and Rocks

— a path is called a “generalized oedometric path” if the stress and strain
principal axes are identical to a constant given direction, and the two lateral strains
are maintained constant along the strain path;

We will call triaxial compression, respectively triaxial extension, a loading path
with positive, respectively negative, axial stress rate. In a dual manner, we will call
oedometric compression, respectively oedometric extension, a loading path with
positive, respectively negative, axial strain rate. The case of softening materials is
not considered here.

We thus define:
. , a0,
— the generalized tangent Young’s modulus (£;) : E; = e
& 0,0}
— the generalized tangent Poisson’s ratio (v/ ) : Vij =— a—
&
D'jO'k

— the generalized tangent oedometric modulus (O, ) : O; = [%}
E.
L /eg;

0,

— the generalized tangent stress ratio (K l:j ): Kl;j = >
O-i

€&

By denoting “+” for the compression and “-” for the extension, we define:

Ef E} E; E[ E; E;
2+ 2+ 2— 2-
1% 1 1% _ v 1 12
N+= - 1+ —+ - 3+ andN = —1—_ —— —L_
El E2 E3 E1 Ez E3
| Ef  E; Ej | | Er  E; Ej |
of  Ky'0; Ki'0j O  Ky0, KiyO;

P =|KFOf 0F Ki'Of|and P =|K{O] O, K;Oj
Krof k3toi ot KFor K30, 05
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By identification of the behaviors along generalized triaxial paths and,
respectively, oedometric paths, we obtain:

A+B=N'andA-B=N"
C+D=P'andC-D=P

We thus obtain the expressions of A, B, C and D:

A=N +N C=P +P i
+2  and +2 _ (6.42)
B=N -N D=P -P
2 2

Equations (6.39) to (6.42) can be interpreted as a quadratic non-linear
interpolation between material behaviors known along particular loading paths,
generalized triaxial and oedometric paths. Other types of interpolation are possible.
The simplest one is linear interpolation, which leads to incrementally piecewise
linear constitutive relations, consisting of eight tensorial zones where the relation is
incrementally linear, called the octo-linear model. The linear interpolation model
can be written:

dEl d0'1 |d0'1|
de, :%[N++N’] do, +%[N+—N7] ldo,| (6.43)
d6‘3 d0'3 |d0'3|

and for the dual model:

do dg |d‘91|
do, |= %[P* +P7 ]| de, +%[P+ P |de,| (6.44)
do, dey [de,|

Royis [ROY 98] has given a general expression for these interpolation type
models in the following form:

de = [do] IN*9(0)* +N"g(u)” |

with ‘9)” ={p(n)" ()" 00ws)" f and ‘9" ={ptu), per)"03) "}
and has proposed the following table:
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P(u;)* ou;)”
A4 . Uu.|—u.
octo-linear model |u’| Ui | ’| i
2 2
second order non-linear ”12 +u; u 12 —u;
model 2 2
i+ -
Chambon’s interpolation Uil T il —Ui
2 2
2 2
Doanh’s model ”i(l + ”i) /4 _”i(l - ”z‘) /4

Table 6.1. Some directional interpolations

Another interpolation has also been proposed, by Robinet [ROB 82], Di
Benedetto [DIB 87] and Royis [ROY 89]. A comparison of these different models
and experimental results has been made by Royis and Doanh [ROY 98], by using
the construction of the response envelopes as proposed by Gudehus [GUD 79].
Figures 6.10 to 6.12 show the results obtained by the octo-linear and the non-linear
second order models. In the following section, we will also present such
comparisons for the model proposed by Laouafa [DAR 99], who has combined the
two previous models.

6.3.2. Continuous transition between non-linear and octo-linear interpolations

The octo-linear and non-linear interpolations proposed by Darve have shown
their capabilities in predicting the soil behavior in international benchmarks [GUD
84, SAA 88], as presented in Figures 6.10 to 6.12. They raise, however, the problem
of the choice of the nature of the interpolation, for material behavior as well as for
the use in boundary problem analysis (for instance, in finite element calculations).
These interpolations have been studied from both a mathematical point of view
[ROY 89, ROY 98] and a physical point of view [ROY 98]. In the description of the
observed mechanisms, no fundamental distinction can be made between the two
interpolations. Mathematical study has shown that the non-linear interpolation leads
to a loss of biunivocity (existence of bifurcation states) along given loading paths,
which is less the case for the octo-linear interpolation. The latter, however, belongs
to the class C°.
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Figure 6.10. Experimental and numerical response envelopes at a confining stress equal to
100 kPa and an axial stress equal to 100 kPa [ROY 86]
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Figure 6.11. Experimental and numerical response envelopes at a confining stress equal to
100 kPa and an axial stress equal to 200 kPa [ROY 86]
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Figure 6.12. Experimental and numerical response envelopes at a confining stress equal to
100 kPa and an axial stress equal to 400 kPa [ROY 86]

The interpolation proposed by Laouafa [DAR 99] allows for the two
interpolations to be described in a continuous way. The non-linear and the octo-
linear interpolation in Darve’s models become two particular cases of interpolation
used in Laouafa’s model, which depends on a real and positive scalar parameter 0.
Its expression in the principal axes is as follows:

dot
de, do, dof + ,(;"da"z
de, :%[N+ +N | do, +%[N* Ny o) Lz
de, do, doj + pldo]
d0'32
doi + ,0||d0'||2

When p—0, the above expression converges toward the octo-linear
formulation, and when © — oo, this same expression converges toward the non-
linear formulation. Figures 6.13 to 6.15 show the response envelopes for different
values of p (0= 0.005, 0.05, 1, 100).
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Figure 6.13. Experimental and numerical response envelopes at a confining stress equal to
100 kPa and an axial stress equal to 100 kPa for different values of p = 0.005, 0.05, 1.1
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Figure 6.14. Experimental and numerical response envelopes at a confining stress equal to
100 kPa and an axial stress equal to 200 kPa for different values of p = 0.005, 0.05, 1.1
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Figure 6.15. Experimental and numerical response envelopes at a confining stress equal to
100 kPa and an axial stress equal to 400 kPa for different values of p = 0.005, 0.05, 1.1

The value of parameter p is arbitrarily defined as a continuous function of some
given memory parameters, excluding any variable dependent on stress and strain
increments.

6.3.3. Significant degenerations

In order to understand better the possibilities and limits of these models, it is
interesting to consider several significant cases of degeneration: the one-
dimensional, the elastic and the perfectly plastic cases. These will be analyzed
successively.

One-dimensional degeneration

The octo-linear and non-linear models degenerate into the same expression in the
case of a one-dimensional material, for which the incremental stress and strain are
two scalars:

de = l[L 4 L)da N l[L _ Lj|d0| (6.45)
2\E* E 2\E* E

daz%(E* +E‘)d£+%(E+ —E)de] (6.46)
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E™ represents the tangent modulus during loading and £~ the tangent modulus
during unloading. £ and E~ depend, through scalar variables, on the loading
history. Any one-dimensional elastoplastic behavior can be reproduced by equations
(6.45) and (6.46).

It is interesting to note on this very simple example that a single non-linear
incremental relation is strictly equivalent to a double elastoplastic relation with a
loading-unloading criterion:

d€=; do, if do =0 (loading)

+

d€=ELdO', if do <0 (unloading)

We can also note that the octo-linear model can be seen as a direct
tridimensional generalization of equations (6.45) and (6.46).

Elastic degeneration

If the mechanical behavior is elastic, the responses on basic paths (generalized
triaxial and oedometric paths) are identical in loading and unloading. We thus obtain
the following relations:

N =N (called N)

P =P (call.dP=N')

The two models, octo-linear and non-linear, subsequently degenerate into an
identical relation:

deg do,
de, do;

where N corresponds to the general non-linear orthotropic elastic tensor. If no other
symmetry hypothesis is made on N, it will correspond to a hypo-elastic model. If the
existence of an elastic potential is assumed, this hypothesis will impose the
symmetry of N and the model will become hyperelastic.
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Perfectly plastic degeneration

This type of degeneration can be conveniently studied by considering the
constitutive relation in the following form:

do=M"'w)de (6.47)

A perfectly plastic behavior — if it exists — can be obtained by looking for
solutions corresponding to an indefinite strain under a state of constant stress:

|| d£|| # 0 with || d0'|| =0 (in the case of small strains)

A necessary and sufficient condition for the existence of such solutions in the
case of incrementally piecewise linear relations is given by:

detM'(w)=0

which corresponds to the plastic criterion. For the octo-linear model, this condition
can be obtained by the nullity of one of the six tangent moduli:

EfESEJE ESE; =0
The solutions for the strains are given by the relation:
M w)de=0 (6.48)

An infinite number of solutions can be obtained. They differ by their norm, the
direction of dé& (being in general imposed by equation (6.48)). Equation (6.48) can
then be seen as a plastic flow rule. We can note that it is a singular flow rule as the
directions of de, solutions of equation (6.48), generally depend on the direction of
do (existence of a vertex). In the case of the octo-linear model, this local singularity
of the flow rule is of pyramidal type [DAR 05a].

6.3.4. Applications
In order to study the predictive capabilities of a given constitutive model, we can

examine its responses on various classes of loading paths. The following section is
devoted to this purpose.
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Non-proportional loading paths

Two examples will be considered. The first concerns the modeling of a circular
stress path in the deviatoric plane. This type of loading can be found in practice (for
example, in the case of vehicles passing on a road) when repeated loads induce
within the soil almost closed stress paths. In addition, a circular stress path loading
was chosen as one of the tests to be modeled during the International Workshop in
Cleveland [SAA 87]. Figure 6.16 presents the results in the deviatoric strain plane
and Figure 6.17 shows the evolutions of the three principal strains and the volume
change. Due to successive increases and decreases of the principal stresses, these
evolutions present complex oscillations for the experimental results as well as for
the numerical simulations.

0.01
0.02

0.03 T

0.04 Le,

Figure 6.16. Prediction of the incrementally non-linear model of second order
for a circular strain path in the deviatoric plane [SAA 87]. Continuous lines:
experimental results, dashed lines: numerical results
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Figure 6.17. Evolution of the principal strains and the volumetric strain.
Continuous lines: experimental results, dashed lines: numerical results
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A second example concerns step-wise loading paths. A given proportional
loading path is approached by means of a small increment sequence.
Experimentally, it is known that servo-controlled machines are not able to follow the
required loading path exactly but must approach it by successive approximations.
The experimental responses are considered to be satisfactory as soon as the
difference between the desired and the real loading paths is “small enough”. This
experimental procedure introduces a systematic error which has to be quantified. In
addition, the superposition principle for incremental loading is valid only in the case
of incrementally linear relations. The condition:

v do",do? :G(do") +G(do?)=G(do™ +do®)
is valid only if G is linear.

Here we should ask: what happens in the case of incrementally non-linear
relations for which the principle does not apply at all as G is non-linear?

Figure 6.18 presents one of these examples. A drained triaxial stress path is
approached by successive loading steps decomposed into two parts: an isotropic
incremental loading (Ao, =Ao, =Ao;) followed by a constant mean stress
loading (Ao, +2A0, =0).
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Figure 6.18. Comparison of numerical simulations obtained by the incrementally
non-linear model for a drained triaxial test (dashed line) and a step-wise
loading path with various step amplitudes (continuous lines) [DAR 95]
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Figures 6.19 to 6.21 present another example in the case of an undrained triaxial
test approached by successive steps of effective stresses:

Ao, /Aoy =constant Ao,/ Aoy =constant
Ao, +2A05=0 and {Ao; =0
Ag <0 Ag <0

applied in such a way that the negative volume variation induced by the first loading

condition is compensated for by an opposite volume change during the following
loading step.

Final point for the numerical
simulations (path length: x kPa)
1501
= o(/o3=cst; o3 =cst
E‘\f/l()OA 8 kPa "~" 51=269kPa
o K d Step-wise stress path
g S Tt Continuous stress path
4 kPa O e Experiment
50+
0 T T T T T
0 50 100 150 200 250

p (kPa)

Figure 6.19. Undrained triaxial test. Upper figure: modeling of the isochoric condition by
means of two different paths: constant q/p and constant mean stress or constant q/p and
constant lateral stress [DAR 95]. Lower figure: influence of the step amplitudes: four
different amplitudes are considered. The numerical simulations (continuous lines) converge
when the amplitude decreases toward a single asymptote, different from the response
obtained for the undrained triaxial test (dashed line)
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Figure 6.20. Numerical simulation of an undrained triaxial test on loose Hostun Sand along a
stress path decomposed in steps at 0"/ 0’'; constant and 0’; constant [DAR 95]
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Figure 6.21. Numerical simulation of an undrained triaxial test on loose Hostun Sand along a
stress path decomposed in steps at 0°;/0’; constant and p’ constant [DAR 95]

The results show that, when the length of the steps decreases, the numerical
responses converge toward a given asymptotic behavior. The asymptotic responses

are not identical to the responses along the proportional loading path but remain
close enough to justify the use of servo-controlled machines.
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Simulations of elastic limit surfaces

The elastic limit surfaces have been studied experimentally for a long time,
especially in metals. The usual experimental procedure consists of applying a given
loading condition and then unloading to a given load value in the same direction. All
the stress directions are tested in the same way from this last stress-strain state and
the intensity of the strain responses is controlled by a given strain amplitude. The
elastic limit surface is then defined by the locus of all the corresponding stress
points. In the incrementally non-linear model, the notion of elastic limit does not
exist: any loading creates plastic deformation, which can eventually become
negligible. It is therefore interesting to follow numerically the same procedure in
order to analyze the possibility of defining the elastic limit concept from a model
which does not include it. Figures 6.22 and 6.23 show such simulations in the cases
of a loose, respectively dense, sand in the bisector plane of the stress space (the so-
called Rendulic plane). Figure 6.24 presents the simulation results in the deviatoric
stress plane. From these figures, the following conclusions can be drawn: the main
mechanism which influences the evolution of the elastic limit is a kinematic
hardening, the isotropic hardening remains small. Even if this analysis of the
numerical results is made in the framework of elastoplasticity theory, we must recall
that the model does not include either hardening variables or yield surfaces. Even if
the isotropic hardening remains small, the shape of the elastic limit evolves during
loading to approach the shape of the plastic limit at elevated stress levels.
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Figure 6.22. Numerical simulations of elastic limit surfaces in the Rendulic stress
plane for loose Hostun Sand. The sand is loaded up to stress states defined by
a black dot, then unloaded to the states defined by a cross, before the
determination of the elastic limit [DAR 95]
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Figure 6.23. Numerical simulations of elastic limit surfaces in the Rendulic stress plane for
dense Hostun Sand. The sand is loaded up to stress states defined by a black dot, then
unloaded to the states defined by a cross, before the determination of the
elastic limit [DAR 95]

Liquefaction

Liquefaction of saturated loose sands for a long time remained a little understood
phenomenon, mainly because it was analyzed as intrinsically linked to the undrained
condition and to the small density of the liquefiable sands. Experimental results
[LAN 89] have shown that it is possible to liquefy dry sands if, by using servo-
controlled machines, we can apply isochoric loading paths. In addition, even this
condition is not necessary since it appears possible to liquefy dense sands by
applying a sufficiently dilatant proportional strain path. Figure 6.25 presents
numerical simulations on loose Hostun sand using the incrementally non-linear
model; they show that liquefaction is a very common phenomenon in granular
materials: even a contractant strain path can lead to the liquefaction of a loose sand
(results corresponding to R = 0.45 and R = 0.425). In fact, we have presented [DAR
96] a general static liquefaction criterion by comparing the volume change rate
induced by the flow rule corresponding to the tested material with the volume
change rate imposed by the strain controlled loading path. If these two rates are
equal, the sand will undergo a perfectly plastic flow. If the first is higher than the
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second (with the sign convention: dilatancy is positive, contractancy is negative) the
stresses will decrease and eventually reach a zero value for the liquefied state.
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Figure 6.24. Numerical simulations of elastic limit surfaces in the deviatoric stress plane for
loose Hostun Sand. The sand is loaded up to stress states defined by a black dot, then
unloaded to the states defined by a cross, before the determination of the

elastic limit [DAR 95]
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Figure 6.25. Modeling of proportional axisymmetric strain paths
defined by: d&, = d&; = -RdE&; on loose Hostun Sand

This general criterion is illustrated, for example, by Figure 6.26 where we can
see that, by decreasing the initial void ratio, the sand behavior changes from
contractant to dilatant, which induces a change from a liquefying behavior to a
behavior corresponding to an effective stress increase in the undrained condition.
For an intermediate void ratio, the critical state is obtained (the volume change rate
imposed by the flow rule is equal to zero in this case) and a perfectly plastic
behavior will develop.
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Figure 6.26. Modeling of the liquefaction of loose Monterey Sand. Three different
void ratios are considered; only the highest one, corresponding
to a drained contractant behavior, leads to liquefaction

Instability in granular materials

The experimental evidence of the existence of instability in granular materials is
not recent, even if all the consequences have not yet been drawn. In fact, if we
consider liquefiable loose sand, the deviatoric stress ¢ =0, —0; presents
necessarily an extremum (a maximum in compression). If, from this state during an
undrained triaxial compression, we increase by a very small value the applied axial
force, a brutal collapse of the specimen occurs while the plastic failure criterion has
not been reached. Considering the notion of stability as defined by Lyapunov [LYA
07], this material behavior corresponds to the existence of an unstable state strictly
inside the plasticity criterion.

Furthermore, the existence of instability and bifurcation before the plastic failure
are predicted by elastoplasticity theory for unassociated materials, which is precisely
the case for geomaterials. The reasoning is based on the fact that plastic failure is
linked to the nullity of the determinant of the constitutive matrix, whereas instability
is linked to the nullity of the determinant of the symmetric part of this matrix. In the
case of unassociated flow rule, the constitutive matrix is not symmetric and it is
known (from linear algebra) that, along a given loading path, the determinant of the
symmetric part becomes equal to zero before the determinant of the whole matrix.

We have systematically studied the condition of stability in granular materials
with the octo-linear and the non-linear models, by considering the sufficient
condition of stability proposed by Hill [HIL 58]. For a given material, a state of
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stress and strain, produced by a given loading history, is considered stable if, for any
stress and strain increments linked by the constitutive relation, the second order
work is strictly positive:

Vdo:d*W =do:de>0 (6.49)

The sign of the normalized second order work t = de/"dO'"/ ||d8|| has therefore
been studied in a systematic manner for loose and dense sand in axisymmetric and
plane strain conditions, by using a polar diagram [DAR 99]. Figure 6.27 presents the
most significant results in the axisymmetric condition and Figure 6.28 in the plane
strain condition. For the non-linear model, the first stress level at which a potential
instability is detected in a given stress direction corresponds to g/p = 0.45 for loose
sand and to 0.83 for dense sand in the axisymmetric condition (Figure 6.27) [DAR
04b]. In the plane strain condition (Figure 6.28), the minimum mobilized friction
angle corresponding to the first appearance of instability was found to be equal to
13° [KHO 06]. All the results demonstrate the existence of a large domain of
potential instability in the stress space (“potential”, since the boundary conditions
must allow — or not — the instability to develop toward a kinematically admissible
failure mode).

90°

180°

* /p = 0.455
qu=0-83 S
q/p=0329 270° q/p=0.125
Figure 6.27. Polar representation of the normalized second order work for different stress

ratios q/p. Dense Hostun Sand on the left side, loose Hostun Sand on the right side. The first
instabilities are detected where the curve reaches the axis origin
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Figure 6.28. Stress states corresponding to the first detected instabilities in plane strain
conditions for dense and loose Hostun Sand

The existence of such an instability domain, probably has various applications in
geotechnics. One of these could be the analysis of slope failure mechanisms. Some
failures taking place for small (smaller than 14°) to very small (smaller than 8°)
slope angles cannot be explained by traditional plasticity theory, but by instability
analysis [DAR 99].

Inverse analysis in geomechanics

Determining mechanical parameters from laboratory testing is a long, costly and
imprecise procedure due to the remolding of the samples. In the future, in situ
testing will probably become more developed and more widely used to calibrate
constitutive models. They will require specific rigorous methods for this purpose,
based on inverse analysis. However, due to rheological non-linearity, the uniqueness
of the solution is not guaranteed, and it is therefore necessary to develop specific
constitutive models, which have a limited number of independent parameters.

In this way, two dual constitutive models have been developed, each of them
having five parameters. The constitutive relations are incrementally second order
non-linear and the two models correspond to equations (6.39) to (6.41). The
methodology adopted to construct the models comprises two independent phases: at
first, the selection of the basic loading path: triaxial or oedometric; secondly, the
choice of the interpolation, linear or non-linear, between the responses along the
basic paths. Here, in the framework of inverse analysis, the same interpolations as
previously are kept, but the choice is made of modeling the basic loading paths in
the simplest manner by means of only five model parameters: for the “direct” model
E,v,C,p,y and for the dual model E,,,..K, C,¢,0 [DAR 98b]. All these
parameters are ordinary soil parameters, except for ¢, which is used to indirectly
control the contractancy or the dilatancy during drained deviatoric loading. Figures
6.29 and 6.30 present the predictions of the dual model, calibrated on oedometric
paths, for drained and undrained triaxial paths in compression and extension, for
loose and dense sand.
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6.3.5. Conclusions

In comparison with the elastoplastic models, the incrementally non-linear models
present the advantage of having to introduce neither an elastic limit nor a flow rule,
whose experimental determination is difficult in the case of geomaterials. They are
based on the explicit choice of a non-linear relation between incremental stresses
and strains [DAR 05b].

In order to construct this relation, we proposed the following procedure,
composed of two independent steps: at first, the choice of the basic loading paths
(triaxial or oedometric) and the description of the material responses along these
paths; secondly, the choice of the interpolations — linear or non-linear — between
these responses. Based on this method, it is possible to construct in a flexible way a
robust model which, due to the interpolation procedure, provides realistic responses
for various loading paths.

Then, we illustrated the predictive capabilities of these models for different
classes of problems: non-proportional loading paths, elastic limit locus, liquefaction,
material instability in granular media and inverse analysis. Others problems have not
been addressed here, such as the modeling of plastic strain localization in shear
bands in granular materials [DAR 80a] and structured clays [DAR 98, DAR 04], a
failure mode which corresponds to a non-homogenous bifurcation of the strain field
(so-called “localized failure” [KHO 06]). Homogenous bifurcation modes can also
develop due to a loss of uniqueness of the constitutive response [DAR 98] (so-called
“diffuse failure”). All these different cases show that our models allow us to
analyze, in a coherent manner, various complex aspects of the geomaterial’s
behavior.

6.4. General conclusion

The first conclusive note is that, nowadays, almost all the constitutive models
implemented in finite elements codes are written in an incremental form, whatever
the formalism used to construct the model. This “incremental” denomination was
originally given to this family of models in order to distinguish their incremental
formulation, as presented in Chapter 1, from the expression of constitutive relations
by means of rheological fonctionals.

The second point concerns the following question: can experimental results
provide the means to make a distinction between incrementally non-linear and
incrementally piecewise linear constitutive models, such as elastoplastic models?
The response envelopes as defined by Gudehus [GUD 79] are good indicators for
answering this question. However, the discussion opened hereby remains
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controversial [ROY 98]. If we consider any phenomenological characteristics of the
geomaterial’s behavior, it always seems possible to find an elastoplastic formulation
suitable to describe it. We can also refer to the initial demonstration made by Hill
[HIL 67], who linked the incrementally piecewise linear formulations to
microstructural considerations, associated with the existence of a finite number of
particular micro-sliding planes in the case of metallic monocrystals. It is obvious
that, for granular materials, these particular sliding directions are a priori not
determined, thus leading to an incrementally non-linear structure for constitutive
relations. [DAR 80b, DAR 05b]

Benchmarking is another way of comparing the validity domains of different
constitutive models. The two benchmarks in Genoble in 1982 [GUD 84] and in
Cleveland in 1987 [SAA 88] have shown that the different models gave reasonably
close results along proportional loading paths (linear paths in the stress or strain
space), whereas the results could be very different for non-proportional loading
paths, some incrementally non-linear models giving good predictions. It is, in fact,
quite clear that a constitutive matrix with a continuous dependency on the direction
of the incremental loading is more likely to give a better response along a non-
proportional loading path than a constitutive matrix which can have only two
expressions: elastic or plastic. The influence of the structure of the constitutive
model can also be seen in the analysis of the bifurcation and instability conditions. It
is well know that associated plasticity can describe bifurcation or instability only
when the plastic limit criterion is reached, which is not experimentally verified. The
incrementally non-linear models are able to describe “discontinuous bifurcations”
leading to localized failure in shear bands as well as “homogenous bifurcations”
leading to diffuse failure inside the plastic limit criterion [DAR 04a, DAR 04b,
KHO 06].

The last observation concerns the different classes of incrementally non-linear
models. Endochronic [VAL 71] and hypoplastic (as defined by Chambon in the first
part of this chapter or by Kolymbas [KOL 88]) models have the common property of
describing the incremental non-linearity by means of a scalar, always positive for
any direction of the incremental loading. Chambon’s model, CloE, has the
advantage of considering in a rigorous manner the condition of limit states and of
allowing an analytical explicit determination of the bifurcation condition by strain
localization. It also has the advantage of allowing theorems concerning the existence
and uniqueness of solutions for boundary problems to be demonstrated. The
importance of these theorems consists of the confidence that we can have in the
numerical solutions obtained by the finite element method. Incremental models of
the interpolation type (in the sense given by Darve in the second part of this chapter,
or given by Di Benedetto [DIB 87] or Royis [ROY 89]) express the incremental
non-linearity in a more general manner by means of a quadratic tensorial form.
Darve’s incrementally non-linear model of second order can describe certain cyclic
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behaviors and various classes of bifurcations and instabilities [DAR 80b, DAR 84,
DAR 04b]. Moreover the octo-linear model enables simple analytical calculations
when necessary. Finally, Dafalias’ model [DAF 86] is an incrementally non-linear
generalization of his bounding surface model.

In the future, micromechanical models will probably help us to develop
constitutive relations closer to the essence of granular physics ([NIC 05]) and to
understand more intimately failure mechanisms ([NIC 06, SIB 07, NIC 07a, NIC
07b, NIC 07c]).

6.5. References

[CHA 84] CHAMBON R., “Une loi rhéologique incrémentale non-linéaire pour les sols non-
visqueux”, J. Meca. Théorique et Appl., vol. 3, 521-544, 1984.

[CHA 85] CHAMBON R., DESRUES 1., Bifurcation par Localization et non Linéarité
Incrémentale, un Exemple Heuristique d’Analyse Compléte, Proc. Plastic Instability
Presse ENN.P.C., 101-103, 1985.

[CHA 89] CHAMBON R., Une classe de loi de comportement incrémentalement non linéaire
pour les sols non visqueux: résolution de quelques problémes de cohérence, C. R. Acad.
Sci. 308 11, 1571-1576, 1989.

[CHA 94a] CHAMBON R., DESRUES J.,, HAMMAD W., CHARLIER R., “CLoE a new
rate model for geomaterials, theoretical basis and implementation”, /nt. J. Numer Anal
Meth Geom., 18, 4, 253-278, 1994.

[CHA 94b] CHAMBON R., DESRUES J., TILLARD D., Shear modulus identification versus
experimental localization data, 3™ International Workshop on Localization and
Bifurcation Theory for Soils and Rocks, R. CHAMBON, J. DESRUES, I.
VARDOULAKIS (eds.), A.A. BALKEMA, Rotterdam, 101-109, 1994.

[CHA 98a] CHAMBON R., CROCHEPEYRE S., “Daphnis a new model for the description
of post localization behavior”, Mech. Cohesive Frictional Materials, 3, 2, 128-153, 1998.

[CHA 98b] CHAMBON R., CAILLERIE D., EL HASSAN N., “One dimensional
localization studied with a second grade model”, Eur. J. of Mechanics A/Solids, 4, 637-
656, 1988.

[CHA 99] CHAMBON R., CAILLERIE D., “Existence and uniqueness theorems for
boundary value problems involving incrementally non-linear models”, Int. J. Solids and
Strutures, 364, 5089-5099, 1999.

[DAF 86] DAFALIAS Y. F., “Bounding surface plasticity. I. Mathematical foundation and
hypoplasticity”, J. Eng. Mech., vol. 112, no. 9, 966-987, 1986.

[DAR 80a] DARVE F., LABANIEH S., “Comportement mécanique des milieux granulaires
en liaison avec leur structure”, Compte-rendus du XV Colloque du Groupe Frangais de
Rhéologie, Paris, 329-341, 1980.



258  Constitutive Modeling of Soils and Rocks

[DAR 80b] DARVE F., DESRUES J., JACQUET M., “Les surfaces de ruptures en
mécanique des sols en tant qu’instabilité¢ de déformation”, Cahier du Groupe Frangais de
Rhéologie, vol. 5, no. 3, 93-106, 1980.

[DAR 82] DARVE F., LABANIEH 8., “Incremental constitutive law for sands and clay.
Simulations of monotonic and cyclic test”, /nt. J. Numer Anal Meth Geom., 6, 243-275,
1982.

[DAR 84] DARVE F., “An incrementally non-linear constitutive law of second order and its
application to localization”, Mechanics of Engineering Materials, Desai & Gallagher
(eds.), Wiley, Chapter 9, 179-196, 1984.

[DAR 93] DARVE F., FLAVIGNY E., MEGHACHOU M., “Yield surfaces and principle of
superposition revisited by incrementally non-linear constitutive relations”, Int. J. of
Plasticity, vol. 11, no. 8, 927-948, 1993.

[DAR 96] DARVE F., “Liquefaction phenomenon of granular materials and constitutive
instability”, Int. J. Eng. Comput., vol. 13, no. 7, 5-28, 1996.

[DAR 97a] DARVE F., PAL O ROGUIEZ X., “Material instabilities and bifurcations in
granular media”, 6™ Int. Symp. Numerical Models in Geomechanics, Pande and
Pietruszczak (eds.), A.A. Balkema, pp. 167-173, 1997.

[DAR 97b] DARVE F., “Liquefaction. A Phenomenon Specific to Granular Media”, in
Powders and Grains, Behringer & Jenkins (eds.), Balkema, 167-173, 1997.

[DAR 97¢] DARVE F., ROGUIEZ X., “Instabilities in Granular Materials”, in Computational
Plasticity, Owen, Onate, Hinton (eds.), CIMNE, 720-727, 1997.

[DAR 98a] DARVE F., ROGUIEZ X., “Homogeneous Bifurcations”, in Localization and
Bifurcation Theory for Soils and Rocks, ADACHI, OKA & YASHIMA (eds.), Balkema,
43-50, 1998.

[DAR 98b] DARVE F., PAL O., “A new incrementally non-linear constitutive relation with 5
material constant”, in Computer Methods and Advances in Geomechanics, Yuan (ed.),
Rotterdam. Balkema, 2445-2454, 1998.

[DAR 99] DARVE F., LAOUAFA F., “Plane strain instabilities in soil. Application to slopes
stability”, Numerical Models in Geomechanics, Pande Pietruszczak and Schweiger (eds.),
A.A. Balkema, pp. 85-90, 1999.

[DAR 00] DARVE F., LAOUAFA F., “Instabilities in granular materials and application to
landslides”, Int. J. Mech. of Cohes. Fric. Mat., vol. 5, no. 8, 627-652, 2000.

[DAR 04a] DARVE F., VARDOULAKIS 1., Degradations and Instabilities in Geomaterials,
Springer, 2004.
[DAR 04b] DARVE F., SERVANT G., LAOUAFA F., KHOA H.D.V., “Failure in

geomaterials, continuous and discrete analyses”, Comput. Meth. Applied Mech. and Eng.,
vol. 193, no. 27-29, 3057-3085, 2004.

[DAR 05a] DARVE F., NICOT F., “On flow rule in granular media. Phenomenological and
multiscale views”, Int. J. Num. Anal. Meth. Geomech., vol. 29, no. 14, 1411-1432,2005.



Incremental Constitutive Relations for Soils 259

[DAR 05b] DARVE F., NICOT F., “On incremental non-linearity in granular media”, Int. J.
Num. Anal. Meth. Geomech., vol. 29, no. 14, 1387-1410, 2005.

[DES 96] DESRUES J., CHAMBON R., MOKNI M., MHAZEROLLE F., “Void ration
evolution inside shear band studied by computerized tomography”, Géotechnique, 46, 3,
529-546, 1996.

[DIB 87] DI BENEDETTO H., “Modélisation du comportement des géomatériaux.
Application aux enrobés et aux bitumes”, Doctoral Thesis, University of Grenoble, 1987.

[DOA 89] DOANH T., DI BENEDETTO H., GOLCHEH G., KHARCHAFI K., “Non linear
incremental constitutive equation: application to sands”, Constitutive Equations for
Granular Soils, Saada & Bianchini (eds.), Balkema, 255-276, 1989.

[ELH 96] EL HASSAN N., DESRUES J., CHAMBON R., “Modelling a deep borehole
excavation in marls using an advanced constitutive model”, in Eurock '96, G. Barla (ed.),
Balkema, 777-784, 1996.

[GUD 84] GUDEHUS G., DARVE F., VARDOULAKIS 1., Constitutive Relations for Soils,
A. A. Balkema, 1984.

[GUD 79] GUDEHUS G., “A comparison of some constitutive laws for soils under radially
symmetric loading and unloading”, 3" Int. Conf. Num. Mech. in Geomech., ed. Wittke,
Balkema, vol. 4, 1309-1323, 1979.

[HIL 58] HILL R., “A general theory of uniqueness and stability in elastic-plastic solids”, J.
of the Mech. and Phys. of Solids, 6, pp. 236-249, 1958.

[KHO 06] KHOA H. D. V., GEORGOPOULOS 1. O., DARVE F., LAOUAFA F., “Diffuse
failure in geomaterials, experiments and modeling”, Comput. and Geotechn., vol. 33, 1-
14, 2006.

[KOL 87] KOLYMBAS D., “A novel constitutive law for soils”, Proc. 2" Int. Conf. on
Constitutive Laws for Engineering Materials, Elsevier 1., 319-326, 1987.

[KOL 88] KOLYMBAS D., “Generalized hypoplastic constitutive equation”, Constitutive
Equations for Granular Soils, Saada & Bianchini (eds.), A. A. Balkema, 349-366, 1988.

[LAN 89] LANIER J.,, BLOCK 1. F., Essais a volume constant réalisés sur presse
tridimensionnelle, Greco Geomaterials report, 240-243, 1989.

[LYA 07] LYAPUNOV A. M., Probleme général de la stabilité de mouvement, Reports from
the Toulouse Faculty of Science, 9. pp. 203-474, 1907.

[NEL 78] NELSON I., “Constitutive models for use in numerical computation”, in Plastic
and Long Term Effects Insoils 2, G. Gudehus (ed.), Balkema, 1978.

[NIC 05], NICOT F., DARVE F., “A multi-scale approach to granular materials”, Mech.
Mat., vol. 37, 980-1006, 2005.

[NIC 06] NICOT F., DARVE F., “Micro-mechanical investigation of material instability in
granular assemblies”, Int. J. Solids and Struct., vol. 43, 3569-3595, 2006.

[NIC 07a] NICOT F., DARVE F., KHOA H.D.V., “Bifurcations and second order work in
geomaterials”, Int. J. Num. Anal. Meth. Geomech., vol. 31, no. 8, 1007-1032, 2007.



260  Constitutive Modeling of Soils and Rocks

[NIC 07b] NICOT F., SIBILLE L., DONZE F., DARVE F., “From microscopic to
macroscopic second order work in granular assemblies”, Mech. Mat., vol. 39, no. 7, 664-
684, 2007.

[NIC 07c] NICOT F., DARVE F., “A micromechanical investigation of bifurcation in
granular materials”, Int. J. Solids and Struct., vol. 44, 6630-6652, 2007.

[ROB 82] ROBINET J. C., MOHKAM M., Doanh T., Deffayet M., “A non-linear constitutive
law for soil”, Constitutive Relations for Soils, Gudehus, Darve & Vardoulakis (eds.),
Balkema, 405-418, 1982.

[ROY 89] ROYIS P., “Interpolation and one-to-one properties of incremental constitutive
laws. A family of incrementally non linear constitutive laws”, Eur. J. Mech. A/Solids, vol.
8, 385-411, 1989.

[ROY 98] ROYIS P., DOANH T., “Theoretical analysis of strain response envelopes using
incrementally non-linear constitutive equations”, Int. J. Numer Anal Meth Geom., 22, 97-
132, 1998.

[SAA 88] SAADA A. S., BIANCHINI G., Constitutive Equations for Granular Soils, A. A.
Balkema, 1988.

[SIB 07] SIBILLE L., NICOT F., DONZE F.V., DARVE F., “Material instability in granular
assemblies from fundamentally different models”, Int. J. Num. Anal. Meth. Geomech.,
vol. 31, no. 3, 457-482, 2007.

[TAM 00a] TAMAGNINI C., VIGGIANI C., CHAMBON R., “A review of two differnt
approaches to hypoplasticity”, Constitutive Modeling including Development in
Hypoplasticity, Chapter A, Elsevier, 2000.

[TAM 00b] TAMAGNINI C., VIGGIANI C., CHAMBON R., “Evaluation of different
strategies for the integration of hypoplastic constitutive equations, Application to the
CLoE model”, Mech. Cohesive Frictional Materials, 2000.

[TAM 00c] TAMAGNINI C., VIGGIANI C., CHAMBON R., “Some remarks on shear band
analysis in hypoplasticity”, 5" International on Localization and Bifurcation Theory for
Soils and Rocks, H.B MUHLHAUS (ed.), A.A. BALKEMA, Rotterdam, 2000.

[TAT 74] TATSUOKA F., ISHIARA K., “Yielding on sand in triaxial compression”, Soils
and Foundations, 4,2, 1974.

[VAL 71] VALANIS K. C., “A theory of viscoplasticity without a yield surface”, Archives of
Mechanics, vol. 23, 517-551, 1971.

[VAR 80] VARDOULAKIS 1., “Shear band inclination and shear modulus of sands in biaxial
tests”, Int. J. Numer Anal Meth Geom., 4, 103-119, 1980.

[VIG 99] VIGGIANI C., TAMAGNINI C. “Hypoplasticity for modelling soil non linearity in
excavation problems”, Prefailure Deformation Characteristics of Geomaterials, M.
JAMIOLKOWSKI, R. LANCELLOTA, D. LO PRESTI (eds.), A.A. BALKEMA
Rotterdam, vol. 1, 581-588, 1999.



Constitutive Modeling of Soils and Rocks
Edited by Pierre-Yves Hicher & Jian-Fu Shao
Copyright © 2008, ISTE Ltd.

Chapter 7

Viscoplastic Behavior of Soils

7.1. Introduction

Various laboratory testing and in situ observations show the time-dependent
behavior of soils, especially fine soils. If we neglect the ageing effects here due to
physicochemical reactions at the level of the particles, we could say that this
characteristic has two origins: the pore pressure dissipation during consolidation
[BIO 41, SAN 69] and the viscous properties of the material constituents. These two
phenomena act together and their effects are not easy to separate. It is usually
assumed that the pore pressure dissipation is the main factor controlling the initial
consolidation phase, called the primary consolidation, and the viscous effects are
predominant in the second phase, called the secondary consolidation.

The viscous behavior of fine soils is mainly linked to their internal structure,
especially to adsorbed water. When an external load is applied to a soil element,
there is a progressive transmission of viscous contacts to frictional contacts, which
manifests itself at a macroscopic level by a time-dependent response. Considering
the importance of this phenomenon for the stiffness and the strength of clayey soils,
it is necessary to take it accurately into account in the modeling of constructions.

The viscous behavior of fine soils has been the subject of numerous experimental
and numerical works [ADA 82, AUB 86, BJE 67, BOR 85, DES 87, FOD 97, GRA
83, HIC 85, JAM 79, KAT 84, MES 77, SHI 69, SIN 68, TAV 78, VAI 77, YIN 99,
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YIN 06, ZIE 74, ZIE 75]. Laboratory testing consists mainly of triaxial and
oedometer tests. The modeling is based on different concepts, mainly in the
viscoplasticity framework.

In this chapter, we present first a synthesis of experimental results showing the
time-dependent behavior of soils and then the modeling concepts. For the latter, the
attention will be focused on viscoplastic models developed in the framework of the
overstress theory developed by Perzyna [PER 63, PER 66], which is mostly used in
soil modeling. The implementation of these models in finite element programs will
also be presented.

7.2. Laboratory testing
7.2.1. Strain rate influence

Figure 7.1 presents the results of undrained triaxial tests produced on a bentonite
clay at three different strain rates: 1.510%s, 610°%/s, 610”/s [HIC 85]. We can see
that the strain rate increase induces a deviatoric stress increase at any strain level.
These results, presented in a €, q/qmax diagram, give a single curve, demonstrating
that the strain rate influence is quantitatively the same at any strain level. The
relationship between qmax and log €, is linear in the interval 10°%/mn < g, <
10°%/mn (Figure 7.2). For smaller strain rate values, the maximum strength qpax
converges towards a constant value which represents the long term resistance of the
clayey material. The maximum strength increase, for a ten-fold strain rate increase,
varies between 4% to 12% for remolded clays and 6% to 16% for intact clays.

A
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100 A ?I 1.5 104 /s
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Figure 7.1. Undrained triaxial tests on bentonite
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Figure 7.2. Strain rate influence on undrained maximum strength
of normally consolidated bentonite (NC 200)

The strain rate effect can also be highlighted by triaxial tests with strain rate
changes. Figure 7.3 shows results obtained by Graham ef al. [GRA 83] on a natural
clay. A sudden change in the strain rate induces a change in the material stress-strain
relationship which converges gradually toward the curve corresponding to a loading
at a constant strain rate equal to the last value and applied from the beginning of the
test. This type of test allows the strain rate influence to be measured for a given soil,
without the interference of any discrepancy in natural properties, as is the case when
comparing test results obtained from several different specimens.

The effective stress paths are also affected by the strain rate (Figure 7.4).
However, the failure criterion g, = Mp’ appears to be independent of the strain
rate. Other researchers have also come to the conclusion of the independence of the
friction angle with the strain rate in a drained or undrained condition. In the case of
drained conditions, we have to recall that only a small number of test results
exploring the strain rate effect are available due to a duration which is too long in
this type of testing. In undrained conditions, the strain rate has to remain small
enough in order not to generate pore pressure gradients inside the specimens. These
experimental difficulties can sometimes lead to contradictory results, but we can
admit that, with a first approximation, the friction angle is independent of the strain
rate.
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Figure 7.3. Strain rate influence on the behavior of a natural clay
along triaxial and simple shear tests [GRA 83]
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Figure 7.4. Strain rate influence on the effective stress path during undrained
triaxial tests on normally consolidated bentonite (NC 200)
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7.2.2. Creep tests
7.2.2.1. Creep during consolidation tests

The test results show that the creep strain amplitude during isotropic secondary
consolidation, i.e. at constant effective pressure, is usually small. Under anisotropic
consolidation, the creep strains are bigger and increase with the deviatoric stress
level. Oedometric tests show a linear relationship between the variation of the void
ratio and the logarithm of time during secondary consolidation. The slope of the
relation is called c, Jamiolowsky [JAM 79] considers that this coefficient is
independent of time, loading increment and specimen size. Mesri ef al. [MES 77]
have shown that c, is a function of the loading history and in particular of the
overconsolidation degree (Figure 7.5). In the normal consolidation domain, ratio
cq/c. can be considered constant and comprise between 0.03 and 0.05 for mineral
clays [MES 84].
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Figure 7.5. Influence of the consolidation stress on the secondary compression coefficient
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Compression index c. has been found to be independent of time; this is not the
case for consolidation stress 6°, which increases with the strain rate (Figure 7.6
[GRA 83]). The dependency can be written in the following form:

(6" )W(6° o = (to/t) ““° or (67)e/(07p)eo = (€/€0)
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Figure 7.6. Strain rate influence on the determination of the consolidation stress

We can directly link these results to Bjerrum’s diagram in Figure 7.7 [BJE 67].
The void ratio decrease during secondary consolidation gives the material an
overconsolidated behavior when subjected to a stress increment. The density
increase provokes a hardening of the material and a shift of the elastic limit during
the creep phase.
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Figure 7.7. Void ratio evolution with the consolidation time [BJE 67]

7.2.2.2. Drained triaxial creep

Drained triaxial creep tests show the evolution of the volumetric and deviatoric
strains with time. Normally consolidated clays have a contractant volume change
during creep (Figure 7.8) [SHI 69] while strongly overconsolidated clays can exhibit
dilation with time (Figure 7.9) [AKA].
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Figure 7.8. Triaxial creep tests at constant mean stress [SHI 69]
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During creep tests, three phases in strain evolution with time can be observed:
— a primary creep at decreasing strain rate;
— a secondary creep at constant strain rate;

— a tertiary creep at increasing strain rate.

The primary creep phase always exists during a given period of time
immediately following the application of the constant stress. The tertiary creep
phase exists only for elevated applied stresses leading to the failure of the specimen.
In drained creep tests, it appears only for stress values close to the maximum
strength of the material (Figure 7.10: creep tests on London Clay performed by
Bishop and Lovenburry [BIS 69]). The existence of the secondary creep phase
depends on the nature of the material and on the loading amplitude. Most of the tests
leading to failure show a direct change from primary to tertiary creep without a
secondary creep phase [TAV 78].
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Figure 7.10. Drained triaxial creep tests on London Clay [BIS 69]
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Singh and Mitchell [SIN 68] have proposed the following relation between axial
deformation and elapsed time during drained or undrained triaxial creep tests:

. t;
=A™ ()"

where o, m and A are soil parameters. They are not intrinsic parameters but depend
on the stress path. This relation can be used to describe only the primary creep
phase. Tavenas et al. [TAV 78] have generalized Singh-Mitchell’s relation by
separating volumetric and deviatoric strains. They propose the following relations:

¢, =f(c)()"
tg = 8(0)(D)"

From these two equations, we can derive the plastic flow rule:

& _f©)

€, g(o")

We can see that the flow rule is independent of time. This result has been
obtained by other researchers, such as Fodil et al. [FOD 98] and Walker [WAL 69]
on normally consolidated clays (Figure 7.11). Aka et al. [AKA 75] have obtained
similar results from tuff samples. They proposed a viscoplastic flow rule which can
be written:

e/€4= 1M (M-q/p)

This is similar to the flow rule proposed by Nova in his elastoplastic model (see
Chapter 3). Dilatancy is also obtained during creep tests for q/p > M.
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Figure 7.11. Drained triaxial creep tests on normally consolidated clay [FOD 98]
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7.2.2.3. Undrained triaxial creep

The term undrained creep is applied to tests for which a deviatoric stress is
applied and kept constant with time in undrained conditions. As pore pressure
evolves with time, an evolution of the effective stress tensor is provoked. The term
creep is therefore incorrect in the strict sense, since the state of effective stress does
not stay constant, but numerous results for this kind of test are available and also
show a viscous behavior of the soils. Figures 7.12 to 7.15 present results obtained
from a normally consolidated bentonite [ELG 82, HIC 88]. They show the existence
of a primary creep phase which can be adequately represented by Singh-Mitchell’s
equation, and a tertiary creep phase for elevated values of the applied deviatoric
stress. The pore pressure increases with time, creating a decrease of the mean
effective stress. Large deformations develop when the effective stress state reaches
the condition q = Mp’, which confirms that the failure condition expressed in
effective stresses is time-independent.
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Figure 7.12. Undrained triaxial creep tests on normally consolidated bentonite (NC 200)
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Figure 7.13. Undrained triaxial creep tests on normally
consolidated bentonite (NC 200). Pore pressure evolution
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Figure 7.14. Undrained triaxial creep tests on bentonite. Effective stress paths
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Figure 7.15. Axial strain rate evolution during an undrained
creep test on normally consolidated bentonite (NC 200)

7.2.2.4. Stress relaxation tests

Fewer results are available for this type of test than for creep tests. Figure 7.16
presents results obtained from a bentonite [HIC 85]. In the three tests, an axial
deformation was first imposed in undrained condition and at a strain rate equal to
6.10°%/s and then maintained as constant. We can observe a decrease in the deviatoric
stress with time. The decrease appears to be at first proportional to log(t) and then
becomes smaller for elapsed time higher than 700 mn. These results are similar to
those presented by Murayama et al. [MUR 64], Lacerda et al. [LAC 73], Tjong Kie



Viscoplastic Behavior of Soils 275

[TJO 85] who also obtained a linear relationship between the deviatoric stress
change and log(t). More recently, Fodil et al. [FOD 97, FOD 98] reached the same
conclusion from drained stress relaxation on a normally consolidated natural clay.
They showed that the deviatoric stress decrease Aq/q was higher for a higher strain
rate during initial loading and independent of the applied strain (Figure 7.17). This
last result confirms that the viscosity influence is independent of the stress and strain
level.
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Figure 7.16. Stress relaxation test on normally consolidated bentonite (NC 200)
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Figure 7.17. Stress relaxation test on a natural clay [FOD 98]
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7.2.2.5. Synthesis of time-dependent behavior

All the test results obtained from the bentonite are gathered in the plane p’,q,
considering the different effective stress paths (Figure 7.18) [HIC 85, HIC 88]. All
the stabilized stress states during creep and stress relaxation tests give a single curve,
similar in shape to those obtained for undrained constant strain rate loading tests and
located to the left of all of them. We can assume that this curve represents the long
term behavior of the clay in undrained conditions. Its junction with the line ¢ = Mp’
gives the long term maximum strength. Similar results obtained from undrained
creep tests have been presented by Roscoe et al. [ROS 63].
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Figure 7.18. Effective stress paths during undrained creep and stress
relaxation tests on normally consolidated bentonite (NC 200)

Furthermore, a single relation q — €; for a given strain rate has been found. These
results have been confirmed by the work by Vaid [VAI 88] on the Haney Clay. If
the results are plotted in the q/qumax — €; diagram where qy,y is the maximum strength
for a given strain rate, all the results lead to a single curve, independent of time,
which allows us to characterize the elastoplastic behavior independently of the
viscous properties. The latter can then be measured by comparison to this time-
independent reference behavior. The number of available results in drained
condition is not sufficient for the analysis to be extended to the intrinsic
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characteristics of clayey materials. This division of the stress-strain relationship in
two parts, dependent and independent of time, is useful from the perspective of
developing constitutive models for viscous materials.

7.3. Constitutive models
7.3.1. Modeling framework

Several theories have been developed in order to represent the time-dependent
behavior of fine soils. Some of the models introduce time explicitly in the
formulation [MAT 86, SEK 84], but most of them consider it implicitly through the
hardening parameter evolution. Generally, the deformations are decomposed in two
parts: elastic and anelastic. The anelastic deformations are mostly strain dependent
(viscoplastic), but some authors assume that a part of them are time-independent
(plastic) [BOR 85, KAL 85].

Most of the models assume the existence of an elastic domain, but some others
assume that anelastic deformations take place immediately at the beginning of the
loading [KUT 92]. The elastic part can be time-dependent [MUR 64], but for
simplicity’s sake, it is mostly assumed to be time-independent, since the viscous
effects are more marked in the plastic domain.

Numerous models have been developed in the framework of viscoplasticity
theory. The strain tensor is decomposed into two parts: elastic and viscoplastic
[ADA 82, DES 87, KUT 92, ZIE 74]. The viscoplastic part is governed by a
function which controls the magnitude of the viscoplastic strain rate tensor S and a
potential which gives the direction of this tensor:

£ —s%2
J00

Function S is determined in most of the models for soils by Perzyna’s
formulation [PER 63, PER 66], but some authors use the concept of the time
equivalence [YIN 99] or the “time line” [BOR 85, KUT 92].
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7.3.2. Perzyna’s formulation

Perzyna’s formulation is widely used in the development of viscoplastic models
for soils in order to model monotonous as well as cyclic loading, as for example
[ADA 82, AUB 86, BOR 85, DES 87, KAT 84, KOD 83, MAT 86, OKA 88, YIN
99, YIN 07, ZIE 75].

The success of this theory is due to several factors:

— the definition of a yield surface is easy, and is often derived from elastoplastic,
time-independent models;

— it allows us to reproduce the time-dependent soil behavior along a large variety
of loading paths;

— the mathematical formulation is well adapted to the numerical modeling and its
implementation in finite elements programs;

— the parameter identification from laboratory testing is usually straightforward.

Perzyna assumes that the strain increment tensor can be decomposed into an
elastic and a viscoplastic part:

E=gt 47

where e and vp correspond respectively to the elastic and the viscoplastic strain
increment tensors.

The stress increment tensor is linked to the elastic strain increment tensor by the
elastic matrix D:

6=D¢

Viscoplastic strains are created when the state of stress goes beyond a given
limit, defined by the yield function f which depends on the stress tensor ¢ and
hardening parameters o.

f(o,)=0

The hardening parameters are assumed to depend on the viscoplastic strains €.
The viscoplastic strain increment tensor is determined in the following way:

e _ 0F) 2
N Jdo
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where ¢(F) is the viscous nucleus and n a viscosity parameter. The direction of the
viscoplastic strain increment tensor is given by the plastic potential g. F is a scalar
which represents the overstress corresponding to a measure of the distance between
the current state of stress and the current yield surface. In the case of associated flow
rule, the plastic potential is the same as the yield function: g = f; in most cases, the
two functions are different and the model is non-associated.

The viscous nuclear ¢ is a monotonous increasing positive function of F and is
equal to zero when F becomes negative or zero. This means that the plastic yield
surface f defines a limit surface between the elastic domain for f < 0 and the
viscoplastic domain for f> 0. F is often chosen as being the value of f(c,a), 6 being
the current state of stress at time t and o the current values of the hardening
variables at the same time t. F is therefore positive when the state of stress is located
beyond the limit yield locus and viscoplastic strains can develop.

Function ¢ take different forms in the existing viscoplastic models. For soils, the
usual expressions are the following:

_(E
¢(F)—(F0)

o(F) = Exp(Fiw -1

0
N is a constitutive parameter, and F is a constant with the same dimension as F.

Therefore, the extension of an elastoplastic model to a viscoplastic model
requires only the definition of function f.

The evolution law of the hardening variables is written:
do = 1(c, o)

Usually, the following form is chosen:
(o, o) = h(o) <f(o, 0)>

which allows us to assure that the hardening variables vary if and only if there are
viscoplastic deformations. When the state of stress is outside the yield locus, the
hardening will develop and the yield locus will evolve according to the dependency
of the viscous nucleus to the hardening variables. For example, in the case of a creep
test, the state of stress remains fixed, while the yield surface evolves with time and
comes closer to the stress point in the stress state. There is therefore a progressive
decrease of the distance F between the yield locus and the stress point and, as a
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consequence, a progressive decrease of the viscoplastic strain increment with time.
This corresponds to the primary creep behavior. After a long period of time, the
yield surface will eventually reach the stress point and the viscoplastic deformation
will stabilize. If the stress point is located on or outside the limit surface
corresponding to the failure condition, the viscoplastic deformation will
continuously increase with time, and no stabilization can be obtained.

7.4. Numerical integration of viscoplastic models

Zienkiewicz et al. [ZIE 74] have proposed an explicit scheme for the integration
of viscoplastic models. The scheme is simple, requiring only the elastic stiffness
matrix, the non-linearity being put in the second member. The main problem with
this scheme is that it requires very small time steps in order to assure stability
conditions. Hughes ef al. [HUG 78] have proposed an implicit scheme which
depends on only one parameter in order to avoid numerical instability. The
disadvantage of this method, however, is that it requires us to solve a non-linear
problem at each time step.

The integration of viscoplastic models may be performed from the following
equations:

Ac =D(Ae — Ae*?)
Ae™ = At[(1-0)" + 02", ]

0 = 0 corresponds to an explicit scheme and requires a small time step At in order to
avoid any problem of instability. An implicit scheme is obtained for 6 > 0. Since the
solution depends on the strain increment at time t,,;, it is necessary to use an
iterative calculation. For 6 > 0.5 the scheme is unconditionally stable, the choice of
At depends only on the required precision.

The two equations lead to:

Do, +0AtE”, = Ae —At(1-0)éP + Do,

n+l n+l
which can be written:

F(GI'H-I > E:”l’i]) = qu



Viscoplastic Behavior of Soils 281

The resolution of the equation is carried out by using an iterative Newton-Raphson
scheme, with the following algorithm:

— determination of Ac' from the relation:

oF . .
—Ac'=q, - P
9 dn

— actualization:

i+l

6" =0, +Ac
8vp(i+1) — 8n+l _DflGiJrl
fi+l :f(0i+l 8Vp(i+l))

s

évp(i+l) _ l(b(f iy ) ag i
n Jo

— back to the first step until the condition of convergence is obtained for a
requisite small value of Ac'.

7.5. Viscoplastic models for clays
7.5.1. Choice of the viscoplastic mechanisms

The central idea here is to choose a yield surface which provides the same
response as an elastoplastic model for very small viscosity values or for very low
strain rate loading. For this purpose, the expression of f(o, o) is kept similar to that
corresponding to an elastoplastic model. Tavenas ef al. [TAV 78] present the results
of drained creep tests by plotting isovolumetric and deviatoric strain rate curves in
the p’,q plane (Figure 7.19). We can see that the volumetric strain rate lines maintain
a similar shape as the yield surface defined in elastoplasticity for this type of
material (see Chapter 2) and that the inner domain reduces in size when the strain
rate decreases.
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As for the flow rule, experimental works, as presented previously, have shown
that it could be considered as independent of time and dependent only on the state of
stress. Several authors consider that flow rules proposed in elastoplasticity and
derived most of the time from the Cam-Clay model can also be applied in
viscoplasticity.

7.5.2. Viscoplastic models derived from the elastoplastic Cam-Clay model

Several researchers have developed viscoplastic models for clay based on the
concepts of the Cam-Clay model. Thus, Adachi et al. [ADA 82] developed a
viscoplastic version of the initial Cam-Clay model, keeping the expressions of the
yield surface and the plastic potential, as well as the hardening variable €,°. They
assumed an associated flow rule and considered an exponential function for the
viscous nucleus ¢:

O(F) = co exp(m’F)
m’ = (A -x)/cy(l +e)

Figure 7.20 shows simulations given by the model for undrained triaxial creep
tests.
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Figure 7.20. Comparison between experimental data and numerical
simulations by Adachi et al. model [ADA 82]
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Recently, Yin ef al. [YIN 06, YIN 07] developed a viscoplastic version of the
modified Cam-Clay model with the purpose of developing inverse methods for in
situ identification of soil viscous parameters (see Chapter 11). The authors define a
static yield criterion “f;” which represents a reference y1e1d surface for the material.
Its initial shape depends on the consolidation pressure “p.”. The expansion of the
static yield surface, which represents the hardening of the materlal, is expressed by
the variation of the consolidation pressure due to the inelastic volumetric strain

., VP,
e,

l+e,
A—x

S

i = pl S0ty

or

P. =P eXp( V”) Do eXp( 5 e’)

A dynamic yield criterion “f;” is defined to represent the current state of stress
and is expressed as follows:

2
_4q P s dy
fd—fM2+p~(p—pc)—0

Based on the values of “p.” and “p.*, the scaling function “pd(F)”, which

controls the amplitude of the viscoplastic strain rate, is taken as a power form or
exponential form as follows:

ﬂ'¢(F)=ﬂ'(p‘;—1J
p

¢

or

oot 2]
P.

where, “p” and “N” are the viscous parameters of the model. The exponential type
of functlon is closer to the test results which show that the stress evolution for a
given deformation is quite proportional to the logarithmic strain rate Furthermore, it
allows us to limit the increase of the deviatoric stress with the strain rate, which
therefore enlarges the domain of application of the viscoplastic model, as already
pointed out by Fodil et al. [FOD97].
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The flow rule for the viscoplastic strain rate, in a simple case of infinitesimal
strain field, follows the form proposed by Perzyna:

. o,
£ = uor) aﬁi

here th lov function is: (F 0-for-F<0
where the MacCauley function is: < > FforF>0

The principles of the model are illustrated by the effective stress path of an
undrained triaxial test presented in Figure 7.21. The stress state “A” represents an
initially normally K’y consolidation state. Along the loading stress path “A-B-C”,
viscoplastic volumetric strains occur during loading and cause the static yield
surface to expand in the stress space. As point C approaches C’, corresponding to
the critical state, the soil is subjected to a constant amount of overstress which
provokes an increase of the deviatoric strain at constant strain rate, without any
volumetric strain.

As for the creep stress path “B-D”, the static yield surface expands with the time-
dependent plastic volumetric strain, function of the amount of overstress. If the static
yield surface can reach the actual stress point, an equilibrium is obtained and the
strain will stabilize with time. If not, the effective stress will continue to evolve until
it reaches the critical state at point D’ where it will stop because no plastic
volumetric strain will develop, but deviatoric strain will continue to increase.

Taking into account the elastic stress-strain relations, the constitutive equations
of the viscoplastic model for normally consolidated clays are derived as follows:

&/ ./

=2y <¢(F>>( oy pc)ijJ

¢, =
772G 3K
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Figure 7.21. Schematic behavior of the elasto-viscoplastic modified Cam-Clay model during
CAU triaxial compression and triaxial creep tests

The comparison between experimental [HIN 96] and numerical results,
presented in Figure 7.22, shows a good agreement in the evolution of the deviatoric
stress as well as in the excess pore pressure response during undrained triaxial tests
at different strain rates.
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The evolution of the normalized maximal deviatoric stress ¢, * (maximal
deviatoric stress for each rate divided by the one corresponding to the greatest strain
rate) as a function of the strain rate, presented in Figure 7.23, shows the effect of the
strain rate on the undrained shear strength. The experimental results correspond to
constant strain rate tests on remolded Haney clay under strain rates varying from
0.0001 to 10%/min [VAI 77] and on undisturbed Osaka alluvial clay under strain
rates of 1, 0.021 and 0.00078%/min [ADA 85]. For tests with medium-sized strain
rates, the strain rate effect can be represented by the relationship proposed by
Sheahan et al. [SHE 96]:

a &
s, =1+pa0-log(."J
q/',aO an

where the indexes a and a, represent two values corresponding to two different
strain rates; g, the undrained shear strength and p,, a strain rate parameter.

As shown in Figures 7.22 and 7.23, the model can take into account the strain
rate effect on the undrained shear strength in a large range of strain rate, as well as
the decrease of this effect for small values of the strain rate (Haney clay samples).
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Figure 7.23. Comparison between predicted and experimental results
for constant strain rate triaxial tests
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Figure 7.24 shows numerical simulations of undrained creep tests on Sackville
clay. For low applied stress, the strain increases slowly and seems to converge
toward a stabilized value, as for a higher applied stress the strain rate is higher and
the strain continues to increase with time. Pore pressure increases with time and
converges toward a stabilized value, dependent on the applied deviatoric creep
stress.
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Figure 7.24. Comparison between predicted and experimental results
for creep triaxial tests on Sackville clay
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Results of stress-relaxation tests on Flumet clay in a triaxial apparatus are
provided by Fodil ef al. [FOD 97]. An initial loading with an axial strain rate of
0.15%/h was applied. The stress-relaxation tests were then performed on the same
sample for each test at about 1%, 3.5% and 6.7% of axial strain and lasted at least
24 h. The viscoplastic model predicts the results of the stress-relaxation tests
reasonably well in terms of deviatoric stress decrease versus time, as shown in
Figure 7.25.
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Figure 7.25. Comparison between predicted and experimental results
for stress relaxation tests on Flumet clay

Kodaissi [KOD 83] has developed a viscoplastic model based on the
elastoplastic Hujeux’s model, which has introduced a second hardening variable
linked to the deviatoric plastic strain €4° in the yield function of the Cam-Clay
model:

f(o,00 =q—Mp (1 - b Lnp/p) & /(a + &)
The plastic potential function is the same as in the Cam-Clay model:

g(p,9) =a¢/Mp +Lnp
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The direction of the plastic strain increment is given by the normal to the plastic
potential surface at the actual stress state. The overstress F is equal to the value of
f(o, o) where G is the actual state of stress. ¢ is a power function of F:

O(F) = (f(o,00/fo)"
The evolution laws of the two hardening variables are:

do, = de,f - H/ms o,

dO(d = dgdp* Hd/T]z Oy
with H, = 0f/de,” = B Mp e/(a + &)
and Hy = 0f/0e” = a Mp (1 — Ln p/p.)/(a + e4)

The viscoplastic strain increment takes the following form:
de’ = 1/nl < (f(G: Oy, (xd)/fo)n > W(Ga Oy, Ocd)

where y(o, oy, 04) is the plastic potential gradient.

Therefore, the viscosity is controlled by three parameters: n, 1; and 1m,. The
parameter determination is carried out in two steps: firstly, the determination of the
parameters common to the elastoplastic and viscoplastic models from triaxial and
oedometer tests performed at small strain rate; secondly, the determination of the
viscous parameters by curve fitting from test results which allow us to isolate the
viscous behavior, such as in drained creep tests.

Figures 7.26 and 7.27 show some examples of simulations. We can see that the
model can represent reasonably well drained and undrained creep tests, leading to
strain and pore pressure stabilization.
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7.5.3. Cyclic viscoplastic modeling

A viscoplastic version of Hujeux’s multimechanism elastoplastic model (see
Chapter 4) has been developed by Aubry ef al. [AUB 86] in order to reproduce time-
dependent behavior during cyclic loading. The viscoplastic strain increments
corresponding to each deviatoric mechanism k are written:

deg® = < (fi/fo)" > i’
de, ' = < (fi/fo)" > v

The evolution law of the hardening variable 1y linked to the deviatoric plastic
deformations of each mechanism £ is given by:

dry = < (f/f)" / na > (1 — 1 )/a
The isotropic mechanism produces purely isotropic viscoplastic deformations:
de,*P = < (fy/fo)" / Wy > p/3dp,

The viscous properties are introduced by means of the three parameters n, py and
Wy. Figure 7.28 shows the modeling of the strain rate influence during undrained
triaxial testing. Figures 7.29 and 7.30 present simulations of cyclic tests performed
by the model.
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Figure 7.28. Strain rate influence during an undrained triaxial test [AUB 86]
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7.6. Conclusion

Laboratory and in sifu testing have shown the viscous behavior of fine soils.
More recent works [TAT DIB] have also demonstrated that granular materials, such
as sands, also have a time-dependent behavior, even if the amplitude of the strain
evolution with time is less marked than in clay. Most of the developed models
adapted for describing the clay’s viscous behavior use an implicit formulation of the
time-dependency through the evolution of the hardening variables. Among them,
models using Perzyna’s overstress theory are the more numerous, since this
approach links in a straightforward manner elastoplasticity and viscoplasticity
through the definition of a yield surface and a plastic potential function, and can also
be easily implemented in finite elements codes. The examples presented here have
shown that these models can reproduce in a satisfactory way monotonic as well as
cyclic loading. However, their use for modeling real civil engineering structures still
remains limited, mainly due to the necessary calibration of the model which requires
additional parameters in comparison to a similar elastoplastic model.
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Chapter 8

Damage Modeling of Rock Materials

8.1. Introduction

In quasi-brittle rock materials exhibiting fracturing [DAR 95], non-linear
mechanical behavior can be determined from the kinetics of pre-existent and/or
loading initiated mesocracks. The term “meso”, traditionally used to designate the
intermediate scale between “macro” and “micro”, is currently used to indicate that
the scale of defects and the related representative volume are accessible to the naked
eye. However, this term should be handled rather carefully. In fact, among
sandstone, limestone and granite, which could be classed in the family of quasi-
brittle rocks, and also different concretes which are considered mechanically similar,
there are a number of discriminating factors related to the geological formation in
the case of rocks and to the manufacturing process in the case of concrete. This
implies that there are different types of microcracks from one material to another
and that various physico-chemical mechanisms play a role in deformation and
microcracking.

Selecting either “macro” and “meso” scales depends also on the nature of the
engineering problem which needs to be solved. In the context of constitutive laws
including damage effects, a representative volume (a material point of structure
body) is generally measured in centimeters whereas the size of heterogenities
(grains, defects) is in millimeters. This situation corresponds to laboratory testing
conditions and generally used sample sizes. Transposing laboratory results and their
derived constitutive models to the scale of rock massifs measured in kilometers
involves not only a rigorous scale analysis but also the fine art of engineers. In its
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basic equations, continuum mechanics does not explicitly invoke the notion of scale,
but the scale analysis has become essential today whenever constitutive modeling of
heterogenous real materials, such as natural rocks or man-made concrete, is
concerned.

Furthermore, the word “damage” which invokes volumetric or surface meso and
micro defects inside the representative volume of a considered material acquires
particular methodological significance in the field of damage mechanics, a discipline
which has been developed since the 1960s whose objective is to include the
phenomena of progressive deterioration in the description of the thermomechanical
state of a medium and its evolution.

This discipline is based on the thermodynamics of irreversible processes where
the dissipative evolutions (such as viscoplasticity with its hardening mechanisms,
and the deterioration which is of interest here) are described with so-called internal
variables; their values at time t summarize, condense and characterize the inelastic
response of the medium. Readers interested in a greater description of this
methodology, widely dominant in the fields of plasticity, viscoplasticity, and
extended to certain domains of fracture mechanics, can refer to the papers by
[BAT 75], [GER 83]. The internal state variables are involved only in constitutive
relations; they are not involved in equilibrium relations or in boundary conditions.
These internal variables are generally not controllable in standard laboratory tests; in
most cases, they represent quantities related to the endured phenomena. Internal
variables may possibly be characterized quantitatively, but the corresponding
microstructures must be deeply examined, which means that the phenomenon to be
studied must be captured in a fixed configuration by the use of pertinent instruments.

For example, we can observe with a scanning electron microscope (SEM) inter-
and intragranular phenomena in crystalline materials (configurations of dislocations,
microcracks) for a given state of plastic hardening after unloading and a careful
sample preparation. Today, it is even possible to perform mechanical tests inside the
SEM so that we can observe the mechanisms in evolution.

For a given mesofissuration state within a brittle material, we can approach the
in situ damage by examining the mesostructure and by counting the number of
cracks in a part of the specimen. This provides a better evaluation of the applied
theoretical scheme as compared to the existing mechanisms. The choice of internal
variables is very crucial; it always represents a compromise between the existing
physical phenomena and the degree of complexity of the model. Internal variables
are also called “hidden variables”, because they are not directly accessible under a
phenomenological approach. They are assumed to express the material evolution at
the meso- and microstructural scales during the evolution of a dissipative process.
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Damage mechanics, as part of the non-linear mechanics of materials and
structures, has undergone several stages of development, some successful and others
not. Nowadays, the purely phenomenological approach seems less popular. At the
same time, the purely micromechanical approach, using homogenization techniques
for the transition from microscale to macroscale, leads to models which appear
interesting but are frequently limited to specific loading paths. Furthermore, they are
usually not applicable for modeling large geotechnical structures without
adaptations which take them too far from their initial microstructural hypotheses.

Another problem is identifying their parameters as well as their validation in a
context different from the one used for their formulation.

This chapter is devoted to an approach to modeling non-linear phenomena
specific to pseudo-brittle geomaterials and linked to the development of mesocracks.
This approach will be formulated in the framework of damage mechanics with
internal variables, in order to propose a three-dimensional rigorous description of the
irreversible evolutions and to include micromechanical knowledge within a
relatively simple description, identifiable and applicable to the calculation of
geotechnical structures for the petroleum industry, energy disposals, civil
engineering, etc. The main idea is to propose an intermediary direction and a
synthesis between, on the one hand, entirely phenomenological approaches and, on
the other hand, entirely micromechanical approaches. Furthermore, knowing that the
difficulty of modeling the behavior of quasi-brittle materials resides in the large
number of phenomena involved, such as volumetric dilatancy, induced anisotropy,
irreversible deformations, hysteretic effects due to the closing of the mesocracks and
the friction along the closed mesocracks, we will propose here a modeling with an
architecture that includes three levels of complexity as follows:

— a first level describing, in the framework of an internal variables approach, the
progressive degradation through mesofissuration of quasi-brittle geomaterials,
inducing an anisotropic behavior, a volumetric dilatancy and macroscopic effects
such as irreversible deformations;

— a second level adding a rigorous analysis of the phenomenon which restores
certain initial properties, such as the elastic moduli in directions perpendicular to the
closed mesocracks, due to the closing of the defects. We can say that this level
corresponds to the modeling of a “unilateral normal” behavior;

— a third level accounting for the modeling of the behavior linked to frictional
effects (blocking and dissipative sliding) that concern the two sides of the closed
mesocracks. At this level, the constitutive equations are similar to formulating
anisotropic plasticity and are coupled to the two first levels in order to link sliding to
damage.
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The whole model forms a 3D theory, coupling plasticity and damage. It can be
seen as a particular expression of the general non-linear theory proposed by Lubarda
and Krajcinovic [LUB 95] for a large class of engineering materials.

The first level of modeling will be presented in section 8.2 and the second and
third levels in section 8.3. Section 8.4 will present some aspects of the mathematical
formulation of each level and of the coupled model, as well as some applications in
geomechanics. The formulation at each level will be compared to experimental data
corresponding to physical problems in relation to the considered level.

Throughout the chapter, the normal components of the stress and strain tensors,
corresponding respectively to the tension and the extension, are considered to be
positive. The hypothesis of small deformations is assumed and is considered
acceptable in the context of pseudo-brittle materials, even if their deformability is
much higher under compressive loading, especially for high confinements, rather
than under tension.

8.2. Modeling of damage by mesocracks and induced anisotropy

Cohesive pseudo brittle geomaterials are characterized by a specific inelastic
deformation mechanism resulting from nucleation and growth of mesocracks under
mechanical loading. Its orientation-dependent character leads to the apparition of
induced anisotropy if the material is initially isotropic. Otherwise, initial anisotropy
(formation, manufacture) interacts with induced anisotropy, which produces a
complex superimposed and possibly evolving anisotropy.

In the following section, we will consider an initially isotropic material.
Anisotropy will be induced by a set of parallel mesocracks under loading. The
induced anisotropy can evolve with damage progress. Particular care is needed in
choosing the internal damage variables in order to take into account the induced
anisotropy.

8.2.1. Preliminaries: damage variables and some micromechanical bases

The damage variable in question must reflect, in its mathematical form, the
essential features of the damage mechanism considered, particularly the orientations
and the density of mesocracks. It has been proven [DRA 94] that a reasonable
approximation can be obtained by using a second order damage tensor. A set of
parallel plane cracks is generally characterized by its orientation (unit normal
vector ) and the discontinuity surface area inside the representative volume. Based
on the dimensionless assumption of defect density, which is necessary, among
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others reasons, for assuring geometrical and mechanical similarity between samples
and structures of different sizes, and in relation to certain micromechanical analyses
[KAC 80], the following scalar quantity is proposed:

N
3/2
kzls(k)
a(s)=nt=—

(8.1)
i

where S represents the area of the k™ crack,

a measure of representative

volume and 1 a proportionality factor. For penny-shaped cracks with radiusa ) ,

density d(S) coincides with the standard crack density 7€ :

. kZ]“(k)
d(S)=r¢= |V| (8.2)
with S(k) and n= (7[\/_ )

The preceding postulates lead to the following form of damage variable D,

respectively, for one or several sets of mesocracks:

D=d(S)n®n  (j=1 (8.3)
2=zd(j) (S)E(j) ®E(j) (8.4)
J

Symbol “®? denotes a dyadic tensor product: n®n corresponds to n;n; in
index notation.

Expression (8.4) signifies that D is a second order tensor with real components.

Accordingly, there exists a system of orthogonal eigenvectors (z(l),y(z),ym)
associated with three positive eigenvalues Djy,D(3), D). In this coordinate

system, the damage tensor is expressed by:

3
D=3 Dyyv® ev® (8.5)
T k=l
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This form can be interpreted — with respect to that of (8.4) — in the following
way: any configuration of mesocracks is equivalent, when condensed in a damage
variable of the (8.4) type, to a set of three orthogonal systems of parallel
mesocracks.

Form (8.4) is thus restrictive (see also the analyses by Onat and Leckie, [ONA
88] and by Lubarda et Krajcinovic, [LUB 93]). It is nevertheless also physical as it
is issued from micromechanical analyses. We briefly summarize as follows some
elements of such analyses.

Consider a representative elementary volume (REV) in which mesocracks are
embedded. The characteristic length of mesocracks is much smaller than that of the
REV. The overall (macroscopic) strain of the REV is the sum of the strain of the

intact solid matrix go (assumed here to be elastic with the stiffness tensor ) and

that contributed by mesocracks gc :

-1 1 @)

e=C"’ :o+mz(<g>®g+g®<g>) Siy =€ +e° (8.6)
g i g te

(T3¢ 1)

The symbols “:” and “.” denote the contraction products between two tensors or
between tensor and vector. Vector b @ represents a displacement discontinuity along
the surfaces of the i™ mesocracks: b = [g](i) . Bracket< b >’ denotes the average of

b for the meso-surface of discontinuity S ! The value of < b > may be related to

macroscopic stresses as follows [KAC 92]:

<b >0 = B @ on @ 8.7

where Q(i) is the compliance tensor of i cracks. Its components can be obtained in

some specific 2D and 3D cases.

By contracting (8.6) with o, and after expressing<b >® with the help of (8.7),

we obtain the very useful expression of elastic energy (here the free enthalpy u) of a
cracked elastic solid. Consider the penny-shaped cracks for which the expression of
B can be obtained in a 3D elastic solid (see [KAC 92]), we can then explicitly

calculate the change of elastic energy contributed by mesocracks:
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Au = Au (Q’Q’E) = 3; ((11__:2/)2) {= (==)_V_2Dg:ﬁ:g}
=Au' (g, D)+ Au’ (g,ﬁ) (8.8)
with D defined by (8.4) and D in the following form:
1Sy

__ 1 e (8.9)
az V|

E — Z d(i)(S) E(i) ®ﬂ(i) ®ﬂ(i) ®ﬂ(i) ; d(i)

where E, and v, are, respectively, Young’s modulus and Poisson’s ratio for the

intact material.

We can see that the rigorous description of mesocrack effects on mechanical
behavior requires two internal variables to be introduced in the elastic energy
function, a second order tensor and a fourth order tensor. Note that, in the general
3D case where mesocracks are free to open, an energy approach using only the
second order tensor D, without being rigorous, can provide a satisfactory

approximation of the effective properties of cracked materials. However, when the
case of closed cracks is considered, such as the case under compression-dominant
stresses where mesocracks in certain orientations are forced to remain closed, the
previous conclusion is no longer valid. In fact, when the opening component of
<b> vanishes, only the tangential component remains. The expression of Au

becomes:

8(1-v2)

Au=Au (g,g,ﬁ)=m

[25(2'-2)—2:@:2} (8.10)

Note the absence of the factor v, /2before the term o : D :0. As a

consequence, and differently from case (8.8), the contribution of the term in 2 to
the effective compliance can no longer be neglected. Extended description is thus
needed to take into account the unilateral effects due to the closure of mesocracks.
This aspect, an important contribution of micromechanics as a guideline for
phenomenological modeling, will be discussed in section 8.3.

The preceding analysis invokes a particular representation of elastic energy,
which is a function of stress tensor o (free enthalpy ), while in the constitutive

model to be developed in the next section, a strain-based formulation will be
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adopted using the free energy function w. The relation between the two formulations
is obtained by Legendre’s transform:

W(E’Dﬂﬁ)?”(gﬁﬁ)ﬂﬁig (8.11)

Parameters D and D being passive variables regarding this transformation, the

previous conclusions can be extended to models derived from the thermodynamic
potential w, which is the free energy per unit volume.

It is worth noting that the constitutive model, once formulated, will reveal the
components of D through an evolution law. However, we should not interpret these

in terms of microscopic density and orientation, (which can cover several
morphological configurations at the mesoscale). The definition of D is justified by

micromechanics, but it will be used in a quasi-phenomenological theory. However,
the theory constructed in this way presents some advantages with respect to some
damage models such as those proposed by Ju [JU 89], Govindjee ef al. [GOV 95]. In
their models, the effective stiffness tensor itself is used as a damage variable, since
the damage affects the equivalent elastic stiffness of the material. It seems to be
preferable to identify the influence of mesocracks precisely through a
micromechanics-based damage variable such as D, rather than to deal with the

black box of overall stiffness.

8.2.2. Anisotropic damage model (basic model — level (i)

Let us postulate the existence of a thermodynamic potential, formulated as the
free energy w, a polynomial function of its arguments (&,D). The following
assumptions allow us to specify the particular form of w(g, D) :

— without damage, the solid matrix represents isotropic linear elastic behavior.

Only as damage evolves, does anisotropic behavior appear with the association
matrix-mesocracks. Related to decomposition (8.5) of damage tensor D into three

orthogonal systems, the induced anisotropy has an orthotropic form whose axes
coincide with the principal axes of D ;

— any simultaneous rotation of the principal directions of £ and D does not
affect the expression of the free energy w (¢, D), which can be seen as an isotropic

invariant. This justifies the use of tensor representation theory in terms of
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independent invariants for each of the arguments as well as of the mixed invariants
such as tr(£.D),tr (& 2 .D),tr (e.D 2 ), tr (€ 2 .D 2) (see [BOE 78] for more details);

— for any given state of damage, the behavior of material with cracks is linear
elastic; w(¢, D)is thus at maximum quadratic in&. It is assumed that there is no
interaction between mesocracks; this implies the linearity of w in D . These two

assumptions allow us to eliminate the last two mixed invariants which were
previously mentioned;

— the damage itself can produce, according to preferential orientations of
mesocracks, residual strains after unloading at o =0 (and in a dual form residual

stresses when £ =0). Thus, the expression of free energy w should contain a linear

termin £ and D: g tr(£.D).

According to the preceding assumptions, the free energy function is expressed as
follows [DRA 94]:

w@g)wk D)
( VP uire? (8.12)
+atr (=2 r5+2ﬂtr(£2.2)

II%
-

Note that for D =0, expression (8.12) coincides with the free energy function of

an isotropic linear solid (4 and y being Lamé’s constants). Constants ¢ and £,
introducing the two retained mixed invariants, are related to the degradation of
elastic moduli with damage. We will see later (section 8.2.3) that £ has a very clear
physical meaning related to the diminution of shear modulus in the cracked
orthotropic material. Modulus g controls residual effects: during a cycle of tension-
compression along the axis x3 the value of o3 for €3 =0 is 03 =gD;, as

illustrated in Figure 8.1 and given by the relation o (£,D) in equation (8.13).

Constant « is related to the degradation of Poisson’s ratio in some loading paths
such as tension with damage evolution.
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Figure 8.1. Residual effect during a tension-compression cycle along axis

By standard derivation of thermodynamic potential (8.12), the state laws which
characterize, for D # 0, the orthotropic elastic behavior of cracked material and the

driving (thermodynamic) force F D associated with damage can be obtained as

follows:
Jile2plen+ne) s.13)

aw=g2+/1(tr£)1+2,u£+0{[(tr£)2+tr(£=

D= ow —gﬁ—a(trg)g—z,ﬁg.g (8.14)

The damage force F b physically represents the energy release rate due to
mesocrack propagation. Two components can be distinguished; one related to the

release rate concerning the residual effects F bl - —g £, and the other to the release
rate associated with reversible effects F D2 - _g (re)e-2Pee.

As in classical plasticity theory and generally for any constitutive models for
dissipative phenomena using internal variables, it is necessary to complete state laws
(8.12)—~(8.14) by complementary relations, which, in the present case, have to
respond to the following questions:

“When does the damage evolve?” (— criterion).
“How does this evolution take place?” (— evolution law, to determine the form

of damage kinetics).
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Quasi-brittle materials are characterized by the dominant mechanism of
mesocracking as illustrated in Figure 8.2. This so-called “splitting” mechanism is
extensively observed even under compressive stresses with moderate confining
pressure. Under compressive loading, the crack density is usually quite high
compared to tensile loading, for which only a small number of mesocracks are
developed and for which instability phenomena occur leading to the sample fracture.
However, specific devices have been designed for tensile testing in order to delay
bifurcation and better control diffused damage evolution; see Mazars and Berthaud
[MAZ 89].

|

Figure 8.2. [llustration of kinetics for brittle damage in
uniaxial compression (a) and uniaxial tension (b)

The splitting type kinetics can be defined by the mechanism characterized by
formation and propagation of mesocracks in the direction perpendicular to those of
tensile strains. This phenomenon motivated several authors to construct a

pseudotensor of positive strains §+ by extracting positive eigenvalues of the total
strain tensor £. Consult for example Lubarda et al. [LUB 94] for a detailed

construction procedure. For this purpose, we introduce the fourth order projector

P Let Emy>n=1,2, 3 be the three eigenvalues and q(") eigenvectors of £. The

projection 2" and the extraction of §+ are defined as follows:

3
P =0 0" with =N He Vg ®q¢™
ijkl QL Q/l g ”Z:} ( (n))g ‘_1 (8.15)

g =P:e= 23: H(e,) e, 4" ®4"

with H () as the Heaviside function: H(x) =1if x>0, H(x) = 0 otherwise.
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In the current model, projector 2" is applied in order to decompose the energy

release rate, associated with the residual effects F' Dl , into one part F DI+ , related to
positive strains and another part 7 D= guch as:
Em =ED1+ +EDl—=_g£+_g(£_§+) (8.16)

This decomposition is performed for a precise objective. It is stated that the

E D1+

damage criterion is mainly controlled by the part of the energy release rate,

i.e. by the contribution of positive strains to residual effects:
f(iD ~-FP- —Em,g)so (8.17)

Moreover, as we can see in (8.17), the damage variable D is itself a parameter

of damage criterion. The fact that only one part of the damage force is used in
expressing the damage criterion can be seen as analogous to plasticity theory for
which only one part of the stress tensor is used. For example, only the deviatoric

1 . . . .
stress s=0——1tro is used in the Von Mises criterion. Furthermore, when

kinematic hardening is being studied, the driving force is modified again by the
backstress X in the definition of the reduced second invariant,

[%(E_i):(i_i):ll/Z-

The damage criterion Cp :{ED/ f ED,D)S 0} written in the space of

thermodynamic forces associated with the damage variable D is now proposed in

. . . . 1
the following form using three 1nvar1ant55tr (£D1+ F bl ), tr (iDH 2) and r D :

fED _pDl- _pD2 D)=\/ltr EDH FD1+)
. o L .Y 5 i
+8 |l p)|-(c, +cyrp) < 0 (8.18)

The damage mechanism considered is assumed to be evolving and time-
independent (non-viscous). The damage progressivity is assured by the fact that the
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convex reversibility domain Cp in the space of components F D is controlled by
D (this is similar to a hardening mechanism in plasticity). Without this

progressivity, brutal damage is produced, formally analogous to perfect plasticity,
but corresponding to the opposite physical phenomenon: the corresponding curve
o — ¢ exhibits a negative slope towards — oo after the peak value of orelated to the

damage threshold C, . Parameter C; which controls the effect of D thus represents

the degree of progression of material degradation: the lower the value of Cj, the

more brittle the behavior of the material will be; the higher it is, the more ductile the
behavior will be (curve o — ¢ ). The role of parameter B is to take into account the

sensitivity of the damage criterion with respect to the directional factors of damage.

D1+

Since component F is a function of &, it appears natural to write the

damage criterion = 0 in the strain space. With (8.13) it can also be drawn in the
stress space. The conventional (axisymmetric) triaxial compression test being one of
the basic tests in geomechanics, it is instructive to represent criterion (8.18) in the
strain and stress spaces under axisymmetric conditions. An illustration is given in
Figure 8.3 corresponding to the initial damage surface (for D =0).
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Figure 8.3. Simulation of initial damage threshold in the space of

principal axisymmetric strains (stresses respectively)

The normality rule applied to the evolution of damage allows us to show the
essential factors related to the splitting type damage mechanism. In fact, by writing:

o (ED _ pDI- —FDZ,D)
AD — —

D= =L | Ap=0

and, by taking into account form (8.18) of , we obtain:

0 l'ff<00rf=0andfwt<0

§+

|2t §+.g+)

IS
I

Ap +BD| if f=0and f,, =0

(8.19)

(8.20)
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We can see that the first term indicates the orientation of damage in the direction
of positive strains (brittle type kinetics). The second term, B D , induces the effect of

existing damage on the current evolution of damage. In the case of non-proportional

loading with rotation of principal directions of §+ , this corrective term avoids the

overly strong bifurcation of mesocracks.

The damage multiplier Ap is determined from the consistency condition
f(tot) =0 (as in plasticity theory). This condition implies that the current loading

point must be and remain on the yield surface f =0. A is given as follows:

|g| tr E+.é+ )—Bgtr (£+.D)1I2tri€+.£+ )
Ap = = = =
Bgtr (£+.§+ )+ Bzgtr(gr.g),/ 2tr i€+.§+ i+ ¢ tr§+ +C)BtrD,2 tri€+.§+ ’

(8.21)

Without giving a detailed presentation of the algorithm for the local integration
of the constitutive model at stake, it is useful to note that the calculation of the
damage multiplier A p, using an implicit scheme, implies the resolution of a linear

system without an iterative procedure contrary to the procedure applied to plastic
models.

In this basic version of the model, damage is the only dissipation mechanism.

The second law of thermodynamics implying non-negative intrinsic dissipation is
reduced to the simple form:

o0 = FP .

IS

>0 (8.22)

For normal dissipation systems, as is the case here, the condition (bD >0 can be
verified if the dissipation potential is convex, non-negative, and if the reversibility
domain ( Cp) contains the space origin. This last point has to be examined in the

current model because the use of part F b_pbl=_Fpb? iy (8.18), instead of the

total quantity F b , induces a translation of the damage surface in the space of FI-I-D s

as in plasticity with kinematic hardening of the Prager type. In an extreme case, this
can lead to configurations in which the loading surface does not contain the origin. It
will then be necessary, in view of the integration algorithm, to control the sign of

¢D at each loading step and for each integration point.
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8.2.3. Comments on the identification of the model’s parameters and on its
prediction capability

A number of simple loading paths show the physical significance of the model’s
parameters. Two cases are considered below: tension or compression inducing
damage followed by shearing. Tension and compression are applied along the axis
x3; the shearing induces a distortion along this same axis. In the brittle splitting

mechanism of mesocracks, we have in the first case one non-zero component of
damage D3 of D and in the second case D; =D, #0. The effective elastic

properties which are relevant in these loading paths, such as the axial Young’s
modulus E5 , Poisson’s ratio 3, and the shear modulus 37, are given as follows:

(i) tension-shearing

2
Ey=A+2u+2(a+28)Dy _AraDy) (8.23)
A+u
ﬂ+OtD3
=~ 8.24
BT w) (629
fi3) = i+ B Dy (8.25)
(i1) compression-shearing
2
Es=A+2u- GraDy) (8.26)
A+u+2(a+ p)D,
Vi = A+aD (8.27)
2[{A+u+2(a+ B)Dy]

H31 = u+ Dy (8.28)
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The interpretation of S, which defines the degradation of the effective shear
modulus, as mentioned in the previous section, is confirmed using relations (8.25)
and (8.28) with £<0.

The present damage model has been initially proposed in view of application in
petroleum engineering. Identifying the model’s parameters was our major concern.
Given the fact that axisymmetric triaxial compression tests are widely used in
geomechanics and the testing procedure is well established, a procedure for
identifying parameters based on this test is proposed. It is to be noted that the
proposed model predicts non-linear damage/elastic orthotropic behavior, and
involves only eight parameters (4, 4, a, B, g, C,, C,, B) whereas the linear
orthotropic elasticity requires as many as nine parameters. For the present model,
seven of the eight parameters can be determined from triaxial compression tests (all
except B) including loading-unloading cycles. Typical loading path and schematic
interpretations of stress-strain curves in terms of the given parameters are shown in
Figure 8.4. This purely phenomenological scheme may be completed by relevant
mesostructural analyses showing, for example, the morphology of mesocracks.

The initial sample state is assumed to be intact and isotropic. Possible initial
cracks, which do not generate anisotropic behavior, may be taken into account by
translating the initial concave curve towards a non-linear domain, as shown in
Figure 8.5.

The initial (quasi-linear) slopes of curves o3 —owith €5 and & allow us to
determine E,and E,/v,; see Figure 8.4. Lamé’s constants A and u are thus

calculated by:

g=_ Eo¥o __Eo (8.29)
“rv)i-2v) YT 20w,) '

Parameters @, fand g are determined from the non-linear part of the stress strain
curves affected by damage and unloading paths which are assumed to be described
by an orthotropic linear elastic behavior. Points B and B’ (Figure 8.4) have to be
chosen sufficiently far from the initial point of the non-linear response, so that
damage effects become significant (D, = D, > 0); however, these points should not
be too close to the peak stress in order to avoid interference with the bifurcation
phenomena. The effective properties involved in unloading paths are expressed as
functions of quantities Dy and S Dy :

2
L5 L,
Ei=A42u——=, vy =—= 8.30
3 U I 31 21 (8.30)
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with Ly = A+ u+2(a+B)D,, Ly =A+aDy.

A—(o3-01) 4 —(o3-01)

[
L

—83

Figure 8.5. Translation of initial porosity effect towards non-linear domain

From (8.13) we can write:

_ E3 &3 =03 +2V31 (o]

gD (8.31)
2 V31
At points A and A’, representing the initial damage threshold, we have:
A —
|g|ei’ —C, =0 (8.32)

The verification of criterion (8.18) at B (corresponding to damage value D, )
leads to:

lg|ef -(C, +2¢1Dy)=0 (8.33)

For a given value of D, the five parameters ¢, 5, g, C, and C; can be obtained
from the system of four equations (8.30)—(8.33). Therefore, the phenomenological
fitting requires an iterative procedure starting from an arbitrary value of D,. After
having determined the values of the five parameters, we can draw the curves
03 —o0; as functions of €5 and¢;. When a good agreement between experimental

curves and numerical predictions is obtained, the determination procedure is
completed. If not, a new iterative loop is performed, starting with a new value for
D,.

In principle, a single triaxial test is needed to determine seven parameters. In
practice, due to natural scattering of experimental data obtained for rock materials, it
is preferable to proceed with several confining pressures and to determine “average”
values of material parameters.
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Among the eight parameters involved in the model, only the determination of
parameter B needs more complex laboratory testing. We have to perform tests on
samples cut in an off-axis direction for pre-damaged material, in order to study the
effects of existing damage on the current evolution of damage, according to (8.18).

Further, the convexity of the yield function /' (F D,Q) (and of the dissipation

potential) imposes < g .

Using the procedure presented above, the model’s parameters have been
determined from experimental data obtained (except B taken to be zero) for Vosges
sandstone [PEC 95] and for Vienne granite [HOX 98]. An implicit integration
scheme is then used for the local integration of the model [COR 94]. Predicted
theoretical curves are compared with the experimental curves for some loading
paths, which are not used in the parameter determination procedure. Figure 8.6
shows triaxial compression tests on sandstone and, in particular, the curves of
deviatoric stress with volumetric strain. The effect of dilatancy in the non-linear
domain related to damage evolution is well described. We can observe a good
correlation between the experiment and the simulation for different strains (axial,
lateral and volumetric) for two different confining pressures.

In Figure 8.7, we present a quite discriminating path called lateral extension on
Vienne granite. It appears that the model’s prediction is also robust in this case.
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Figure 8.6. Comparison simulations (——) — experiment (- - - -) in triaxial compression with
two confining pressures10 MPa (respectively 15 MPa) (Vosges sandstone [PEC 95])
(a) deviatoric stress versus axial and lateral strains
(b) deviatoric stress versus volumetric strain
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Figure 8.7. Comparison simulation — experiment for a lateral
extension test on Vienne granite (data from [HOM 99])
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As a conclusion for this basic version of the damage model, the following points
can be made:

— although a phenomenological formulation is used, the proposed model is based
on a micromechanical background, in particular on the choice of the damage
variable D ;

— the expression of the thermodynamic potential (free energy) predicts an
orthotropic elasticity for a given state of damage (given D ) as well as significant

residual effects. The evolution of D, by a pseudo-standard scheme, describes a
brittle type of damage kinetics, largely observed in the class of materials studied;

— the proposed model contains a small number of parameters (eight), and most of
them can be easily determined from conventional triaxial compression tests with
unloading paths;

— the stability of the integration algorithm is obtained by a natural implicit
scheme.

The formulation makes it possible to introduce coupling with other dissipative
mechanisms. This coupling is necessary in the view of extending the model to
describe significant features related to cyclic loading paths involving mesocracks
closure effects and restoring certain elastic constants. The crack closure effect will
need to take into account coupling between damage and frictional sliding along
crack surfaces. These features will be discussed in the next section.

8.3. Taking into account mesocrack closure effects: restitution of moduli and
complex hysteretic phenomena

8.3.1. Normal unilateral effect

The progressive degradation of mechanical properties (moduli, mechanical
strength, material symmetry) is more complex in nature than that described by the
basic version of the model presented in the previous section. The nature of damage
considered here implies open and closed defects, and the loading paths inducing the
transition opening — closure of mesocracks lead to a material behavior similar to bi-
linear elasticity. It concerns the unilateral effect at the mesoscale for a considered set
of cracks; the macroscopic consequence of this effect is the restitution of elastic
moduli in the direction normal to the set of cracks. In the following sections, we will
briefly discuss the extended restitution phenomena including friction effects in
closed cracks and how this restitution also affects shearing moduli.
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In this section, only the “normal” unilateral effect is discussed. This effect can be
illustrated by a simple cyclic tension-compression test as shown in Figure 10.8. The
tension phase inducing a significant damage state, is followed by a compression
phase in which the axial elastic stiffness is partially recovered.

A

Vo

Figure 8.8. Schematization of unilateral effect in tension-compression test

The objective and also the main difficulty are to associate the description of
activation/deactivation of damage with anisotropic behavior (induced or structural)
by ensuring the continuity of the stress-strain response. This feature was the
principal problem for a long time, until the middle of the 1990s, even if several
approaches have been proposed:

— based on a relevant analysis of the unilateral contact at the mesocrack scale,
([AND 86], [GAM 93]) have proposed pertinent modeling schemes, but, by using
quantities that were difficult to measure, efficient macroscopic models could not be
formulated;

— some models have been devoted to the description of particular forms of
damage (for example [JU 89], [LAD 94] for composites), by using the
decomposition of the stress tensor into positive and negative parts. These models
may exhibit some singularities (for example, dissymmetry of stiffness tensor) in
taking into account the process of degradation — restitution in the general multiaxial
case;

— Chaboche [CHA 93] has proposed an a posteriori modification of the stiffness
tensor in the principal system of damage.
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In what follows, the unilateral condition proposed by Halm and Dragon [HAL
96] is presented, based on the microscopic behavior of the mesocracks mentioned in
section 8.2.1 and specifying a macroscopic opening/closure control term. This
condition was introduced in the damage model presented in section 8.2 with
emphasis put on the continuity of the stress-strain response during the transition
between activation/deactivation of defects.

It was shown (section 8.2.1, relation (8.10)) that a fourth order tensor has a non-
negligible contribution, in association with the second order damage tensor D, to

the alteration of energy induced by a displacement field of closed cracks. In order to
avoid the introduction of a new damage variable which will render the model more

complex, we propose to use the fourth order quantity /) by extension of D from its

eigenelements:

3
D=3 D, v'er" ey ey" (8.34)

k=1

Note that this formulation conserves the orthotropic nature generated by (8.5)
and cannot therefore describe greater general anisotropy. The analysis of the

integrity bases associated with arguments £ and [) can show that only one mixed
invariant (£: D: £) is actually relevant for the fourth order quantity (the others can
be reduced to the invariants of D). The term with this invariant will then be used as

a control parameter of opening/closure of mesocracks; i.e. this term is absent in the
thermodynamic potential when the damage is activated (fully opened cracks) and
present if the damage is inactive. A new form of the thermodynamic potential (8.12)
is then proposed. For the sake of clarity, only one family of cracks is considered,
here (D =d(s) vy ®V), in order to show the pertinence of the modified form:

— state 1: opened cracks, negligible effects of the term & D:e:

w! (g,Q):wO (£)+ g tr(g.Q)+0{I retr (£.2)+2 Bt (£.£.2)+0 (g:/@:g)

(8.35)

where w’ = (1/2)7» (tr 2)2 +utr (££)° O(.) being a zero order term;
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— state 2: closed cracks, the term £: D: £ is not negligible:

w(eD)=w'(g)+ g w(e-D)+arew(e.D)+2 (e 2. D)+re: Die
(8.36)

Modulus ¥ is determined by assuming that the stiffness in the direction
perpendicular to closed mesocracks is equal to the initial stiffness; this means that
the presence of the term Aw'' cancels out the degradation of stiffness induced by the
term Aw'. In the reference system connected to the crack set, this condition may be
written as follows (here axis x; is normal to mesocracks):

92 Aw' N 92 AW"
8511 8811 8511 8811

=0 (8.37)

This leads to the following relation between a5, £, and ¥ :

y=-a; -2, (838)

The unilateral behavior of cracked materials is characterized by a stiffness
discontinuity at the transition from the open to the closed state. The strain space is
divided into two sub-domains separated by the boundary S. However, it is required
that the continuity of the thermodynamic potential and that of the stress-strain
response must be conserved, i.e.:

[C]:2=0 on ST with [p]= W _ 0w (8.39)
= dede dEdE

According to the theory of multi-linear functions (see in particular [WES 69] and
[CUR 95]), as S is a hyper-surface of dimension 5, [C] must be singular and in

particular of order 1 in the sense of the dimension of its image: dim Im [C] =1.Itis
sufficient for this that all the second order determinants of [C] are equal to zero.

This is verified by the following relations:

{0{1 ) (8.40)
B =B
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This also leads to the opening/closure condition:

V.ev=0 (8.41)

Il ™

For convenience, we will use the notation defined in the basic version of the
model; i.e. a=a;=0a,,0 =0 =0,. The proposed approach, based on the
consideration of meso-structural mechanisms (see [HAL 97] for a detailed
presentation), leads to the formulation of a macroscopic criterion (8.41) which is
similar to that proposed by Chaboche [CHA 93]. This approach developed for one
set of mesocracks can easily be extended to any damage distribution. Since any
distribution of mesocracks is equivalent to three equivalent independent systems,
relation (8.41) can be generalized as follows:

v e v® =0 k=123 (8.42)

The equivalent system of normal z(k) becomes inactive (respectively active)
when the normal component of the strain tensor g(k) E. z(k) becomes negative
(respectively positive). Parallel to that, term £ D: & related to system k appears in
the thermodynamic potential, so that the restitution of stiffness occurs in direction

V(k).

Let us now summarize the constitutive equations including normal unilateral
effects (recall that H denotes the Heaviside function). Evolution law (8.20) remains

valid and is not cited: the supplementary quantity D is not a new internal variable
but is constructed from D and does not need an evolution law. The potential w, the

expression of ¢ and that of F D' are written as:

w(£,£)= w0(£)+gtr(£.D)+atr£tr (££)+2,6’ tr(ggg)

3
-(a+2/3)§:{ZH (—g(k) .g.g(k))D(k) g(k) ®g(k) ®z(k) ®g(k)}:§ (8.43)
=& = =
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o= ow =/1(tr£)l+2ﬂ£+g2+a[tr(£. )1+(tr£)2]+2,3(£.2+2.£)

7 !
3
%) (a+2ﬁ)ZH(—K(k).§.K(k))D(k)Q(k) .g.g(k))v(k) ®v® (8.44)
k=1 B B -
FD=—a—W=—g€—a(tr5)5—2ﬂ€ £
3
+ (a+2,8) ZH(—g(k) .g.g(k))@(k) .g.g(k) )2 g(k) ®g(k) (8.45)
k=1 - -

Note that even if H(.) is a discontinuous function in nature, the expressions of w,
[ and F D remain continuous, because the discontinuity of H occurs only when the
quantity (Z(k) £V (k )) reaches zero. Relation (8.45) is given only for a given
configuration of principal directions of D. The corresponding loading path is called
D -proportional loading. All loading paths, which are not D -proportional, may be

decomposed into a series of D -proportional sub-paths.

30
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Figure 8.9. Simulation of a tension-compression test on Fontainebleau sandstone
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Figure 8.10. Simulation of lateral stress strain responses during
triaxial compression test with lateral overloading

The modeling presented above successively associates the crack deactivation
phenomenon with a particular mesocracking mechanism which induces an
anisotropic behavior. Based on a meso-structural analysis of damage mechanisms,
this approach leads to a three-dimensional macroscopic formulation with the same
set of parameters as that involved in the basic version. The continuity of stress-strain
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responses is verified. A series of simulations of laboratory tests (tension-
compression Figure 8.9; triaxial compression with lateral confining followed by
overloading Figure 8.10) have shown the pertinence of the proposed model. It
predicts a full restitution of the elastic modulus; see [HAL 97]. Moreover, the
proposed approach is open to be coupled with another dissipation mechanism, for
instance the frictional sliding. The friction is involved in the deactivation of damage
by locking the crack surface followed by possible sliding. We can consider the case
where the sliding is the unique dissipation mechanism with D =cte. A more

complex case can also be studied: the frictional sliding is coupled with damage
growth. This is a dissipative coupling. It is possible to have a different configuration

of dissipation for each equivalent system (D(k),g(k)). The main features of the

third level of modeling including dissipative coupling are outlined in the next
section.

8.3.2. Introduction of friction

The modeling of unilateral behavior previously presented is related to the
restitution of the elastic modulus in the direction perpendicular to closed
mesocracks. The restitution of the shear modulus implies a frictional phenomenon;
and one of the consequences is the blockage of crack lips. For example, in
compression tests on specimens with inclined closed mesocracks with respect to the
axial direction, we can observe alternative states of blockage and sliding. This leads
to hysteretic loops of the pseudo multi-linear type (the linear lines in the space
o — ¢ obtained during sliding do not correspond to linear material behavior). An
example of the hysteretic type is shown in Figure 8.11 for a constant damage state.
Curves similar to that shown in Figure 8.11 have been obtained in a number of
micromechanical studies, for instance [WAL 65], [AND 81], [KAC 82], [HOR 83],
[NEM 88], [GAM 93], [FON 95], [LAW 98]; this list is probably not exhaustive.
Some experimental data, for example, that obtained by Pecqueur on chalk has been
reported. This data, simulated by Halm [HAL 98], confirms the scheme shown in
Figure 8.11. However, the form of the curve may be more complex during loading
when the propagation of mesocracks occurs simultaneously.
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Figure 8.11. Hysteretic loops during uniaxial compression: illustration
of blockage and sliding effects of parallel closed cracks. Segments AB (loading)
and CD (unloading) correspond to opposite sliding states

Most micromechanical models are limited to the determination of effective
elastic properties and do not involve the evolution sliding law. When it is studied
(for instance [GAM 93]), only one class of particular loading paths is considered.
Therefore, we propose here an operational formulation, mainly based on
micromechanical considerations, which can be applied to complex 3D loading
conditions. However, only the main features are briefly outlined here. Readers can
refer to [HAL 98], [DRA 00] and [HAL 97] for more details.

Frictional sliding and its consequences may be considered as a form of plasticity
(see for example, the unifying view of inelastic behavior of crystalline materials and
of brittle materials, for which the propagation of mesocracks is the principal
dissipation mechanism [LUB 95]). Therefore, the modeling of friction-damage
coupling can be considered as a particular form of damage and plasticity coupling.

Let us introduce an internal variable y to characterize sliding between crack

surfaces; its physical significance in the mesoscopic scale reflects the contributions
of all mesocracks for an overall deformation of cracked representative volume
(REV). It is similar to that defined by (8.6) with <b> L n. Considering, in the
context introduced in this work, three equivalent systems of mesocracks K(k),
k=1,2,3, sliding in direction g(k), the corresponding sliding quantity being & (k) s

we can define:

3 3
r=2e0begh =5 y® (8.46)
= k=l k=17
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In order to simplify the notations and before generalizing them to any
distribution of mesocracks, let us consider one set of mesocracks with normal v.

The thermodynamic potential for a closed state of cracks with frictional sliding is
completed with invariants of &,y and D :

w (g, 2 Q):w" (e)+g tr(e.D)+awetr(e. D)+2Btr(c.£.D)—(a+2B)e: D: ¢

2P €. D. e-2B (g £ 2)+77] tr (g LY. 2)+2772 (Z e Q) (8.47)

We can see that the first two terms of the second line of (8.47) remove the
contribution of the two terms with parameter § in the first line of (8.47). In fact, as
mentioned in section 8.2.2 and section 8.2.3 (equations (8.25) and (8.28)), the term
2 tr(e.£.D) is alone responsible for the degradation of the shear modulus. This

degradation is cancelled in the presence of friction due to the effect of a blockage.

The relationship between the thermodynamic potential for the state of

opened/closed mesocracks (expression (8.43)) and potential w? given above, can be
established by formulating the continuity of wand o during the closing of cracks.

This leads once again to multi-linear function theory in the case of bi-linear
clasticity for a given configuration of (D, ) and implies the following relations:

m=48 , m=-p (8.48)

Also, at the opening /closure transition the continuity requires:

IS
1]

S 1™
Il o

||é =
< IS

(8.49)

System (8.49) states that at the point of the opening/closure transition, £ and y
have the same components in the plane of cracks. This can be expressed as follows™

Vi = sym(gik ViV )(at the closure) (8.50)

and considered as the initiation condition of y. The definite expression of

W(g , D, 7/) for all opening/closure configurations is given by:
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D)

II™

W(E’Q’Zj =w? (£)+ g tr(£ . 2)-&-0{ re tr(ﬁ . 2)+ 20 tr(ﬁ.

+H(—g.§.z)[—2ﬂtr(£.£.D)—0:£: 55:£+4,Btr(£.

2)-260{y.7-2)]
(8.51)

=

The stress tensor o is classically derived from the thermodynamic potential

with respect to £ . Similarly, by derivating with respect to D and y, we obtain the

thermodynamic forces associated with damage and sliding.
The last one is written as:

L N S (%) (22

F ¥ may be decomposed into a tangential force F "and a normal force

F ™ with respect to the mesocrack plane:
F =F" 4+ F¥ with F7 =F7 -y Y y)v oy

FN =Q.£7.z)v®v (8.53)

We assume that the reversible domain for sliding is defined by a criterion of the
form h = 0, which is based on the following assumptions:

— function h explicitly depends on the norm of the tangential force F " ;

— the sliding threshold is expressed in terms of the normal strain on mesocracks
v.£.v (instead of normal stress as in the Coulomb criterion; we conserve the strain

based formulation for all parts of the model). We write:

h(Ey —E”N,g.g.z):\/%tr[(iy —iw).ty —EW)]+,OK.£.KSO

IN

ifv. 0 (8.54)

([

v

where p is a model’s parameter to be determined, which plays a similar role as that
of a friction coefficient; see [HAL 98] for details. Transformed in stress sub-space,
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criterion (8.54) has some similar geometrical features as the Coulomb criterion.
However, it is here expressed in terms of macroscopic quantities. Even when it is
expressed in terms of stress, it does not, due to its definition, correspond to the local
stresses applied to the crack surfaces. Moreover, it can be proven (see [HAL 97])
that an associated flow rule of the form

oh F"

L= or” 7 20 (E".F"")

, A 20 (8.55)

is consistent with D -proportional loading paths (without rotation of the principal

directions of D ). Flow rule (8.55) means that evolution y is coaxial to F n ; 1.e.,

the crack propagates along its own plane. There is no risk of crack surface separation
and no contradiction related to the evolution law associated with the standard
Coulomb criterion.

In particular, if the damage state remains constant as in the case of the uniaxial
compression test mentioned at the beginning of this section, the proposed model
predicts multi-linear hysteretic loops. This is illustrated in Figure 8.12 for the case of
a shearing cycle in the mesocrack plane. The difference with the prediction given by
the model without friction effects (dotted lines) is significant.
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Figure 8.12. Influence of friction on shearing behavior
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To simplify the presentation, some limitations have been introduced (one system
of mesocracks, D -proportional loading or no evolution of D). These cases do not

correspond to real situations. We can consider more general loading paths with
simultaneous damage evolution and sliding by taking into account the rotation of
principal directions of D . Halm and Dragon [HAL 98] proved that a partition of

F ¥ more general than that given by (8.53) is possible and valid in the case of non-

conservation of the sliding planes. Such a new partition includes, in the particular
case without rotation of the D axes, that mentioned above. We can write:

57:£ﬂ+4ﬂ(zzgjg®z —4ﬂ(£:2)g®g

(8.56)

Il
|1
|
N
=
&
IS
1<
®
1<

where, for all the cases corresponding to y:D =0 ( D -proportional or D = cte),
F=F".

We can now define the criterion h < 0 and the evolution law in terms of F and

consider the assembly of equivalent systems, k = 1,2,3. The equations of the model
can be represented with respect to the three systems by selecting them, one by one,
with the help of the following operator I/:

o= K(k) ®K(k) ®K(k) ® Z(k) (8.57)
We can write:

D® = pyy v @y ® =1 p (8.58)

The potential W(g, v, Q] and the state laws become:

W(E,Z,QJ = w0(£)+g tr(£.2)+atr£tr(£.£)+2ﬂ tr(ﬁﬁg)

+ iH(—g(k) .g.g(k))[—agz (D IP): E—Zﬂtr(g.g.g(k))
k=1 = = = ==
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ey® Q(k)j 2,3”( *) k) D(k))] (8.59)
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The complementary law concerning the sliding }/( ) on three independent
systems is expressed as: =

B0 (Fr® ) g ®) h(k)(i(k),g(k) ev®)= /%t’”(i(k)~5(k))

+pv® e v® <o (8.64)
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Physically, the directional term in evolution law (8.65) means that the sliding
rate contains not only a component in the crack plane but also a normal component
which can catch the rotation of the direction of equivalent mesocracks.

The advantage of the general model proposed here, beyond its three-dimensional
and anisotropic features, resides in its modular construction. The introduction of
friction requires only one parameter to be determined (frictional parameter p ). The
complete version of the model includes two dissipation mechanisms with nine
material parameters. The energy dissipation is expressed by:

. 3
D=FP:D+ 3y Fr®.y® (8.66)
- T k=l =

In the next section, we will give some indications on the numerical
implementation algorithm and applications of the model to geomechanics.

8.4. Numerical integration and application examples — concluding notes

At the end of section 8.2.2, a few synthetic notes were made about the numerical
integration of the basic version of the model. In particular, it was shown that the
damage multiplier A p could be determined without an iterative procedure in the

context of the implicit integration of the model. Therefore, the numerical integration
aspect of the proposed model has certain advantages with respect to classical
plasticity. The reader can find a detailed algorithm in [DRA 00]. Particular features
related to the frictional effects in closed cracks have also been discussed. The key
point concerns the incremental procedure applied to (8.65) for the evolution of y .

The implicit procedure was used. An iterative procedure of the Newton-Raphson
type is necessary to solve the non-linear system of equations.

When a joint evolution of damage and sliding takes place, it is necessary to
determine the incremental values AD and Ay which are simultaneously produced.

The integration procedure is facilitated due to the weak coupling between loading
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function f(F b D) and function h* F vk ,€) . The choice of the “active” part of

F? involved in f as defined in the basic version of the model, and of the “active”

form of f'itself (see (8.18)) lead to the conclusion that function f varies with D only,

while #* varies with y and D . This allows us to resolve first the equation

governing AD, without referring to sliding. The equation governing Ay is then
solved; this takes into account the consequences of coupling.

N.B.: The algorithmic properties mentioned above can be modified by another
choice of the thermodynamic potential and damage criterion. Some recent works

suggest an alternative choice of the active part of F' D such as:

by —a(tr f)f* —2pe" " (8.67)

(]

This choice neglects the irreversible effects (term gé&:D in w is cancelled),

leading to the form of criterion f <0, physically consistent with the behavior of

certain brittle materials. This criterion, when expressed in the strain and/or stress
space, appears to be quite close to that given by (8.18); see [HAL 02]. This means
that deeper investigations, comparable to numerous studies performed on various
plastic criteria and hardening laws, must also be performed for damage theories.
This is particularly needed in the context of anisotropic effects as is the case in this
chapter.

The choice of hierarchical modeling, including successively the basic version of
the model, extended to include the normal unilateral effect, and finally completed by
an elastoplastic form related to frictional effects, appears reasonable for a large class
of brittle geomaterials. To demonstrate this, a number of laboratory tests and
boundary value problems have been successfully simulated and studied. For
example, the so-called “Sanford beam”, a test-problem in rock mechanics introduced
by Jaeger and Cook [JAE 79] was studied with the basic version of the model in the
research project “GEOFRAC” (TOTAL-IFP) in 1994 [CHA 94]. The mechanical
fields generated by the model appeared to be physically realistic.

Among geomechanical problems, we can cite situations more or less close to
those related to petroleum engineering investigated by Pham [PHA 94]. Again, only
the basic version of the model was tested and the results obtained appeared
promising.
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In the following, we summarize an application briefly presented in [DRA 94]
and further detailed in [COR 94]. It consists of studying the boundary-value problem
of a cubic body containing a central hole and subjected to prescribed displacements,
as shown in Figure 8.13. The calculations using the finite element method are not
limited to the determination of mechanical fields including the evolving damaged
zone. We have also determined the bifurcation surface in the localized mode in 3D
conditions. The strain localization corresponded here to the loss of ellipticity of the
problem at a material point (actually one of the integration points). The phenomenon
of strain and damage localization is seen as a precursor of fracture — transition from
diffused volumetric damage to surface failure. The question is the following: does
the basic model applied to the studied structure generate a (several) macroscopic
failure mechanism(s)? In a surprising manner, the localization occured at point B
inside the damage zone which is much more reduced than that developed around the
top and bottom of the opening. This trend was confirmed by experimental
observations obtained by Onaisi [ONA 89] from a series of blocks, tests including
observations of macroscopic cracks (initiation and propagation). The example
shown in Figure 8.13 corresponds to one of the tests performed by Onaisi. It is
interesting to note that the induced anisotropy seems to play an important role in the
failure mechanism in localized mode. Comparative calculations performed with an
isotropic damage model showed that localization occured from the bore hole at the
vertical axis (point A) inside the extended damage zone. For the block tested, this
result is not in agreement with the initiation mechanism of macroscopic failure
observed by Onaisi.
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Figure 8.13. Finite element analysis of rock structure with central hole:
discretization and boundary conditions for a quarter of the block.
Localization of damage and initiation of macroscopic failure

The aforementioned examples concern the basic version of the model presented
in section 8.2. The results obtained appear highly interesting and the proposed model
can be applied to other structures with more complex loading conditions, for
example, the anchoring problem mentioned by Berthaud and El Dalati [ELD 99].
This problem may imply a strong rotation of the damage directions in the support
material (rock and concrete), due to loads applied to the anchor base.
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>

f

Figure 8.14. Comparison simulation — experiment in hydrostatic compression — torsion on
hollow cylinder of Vosges sandstone (P. = 10 MPa). (1) extended model, (2) experiment
[PEC 95], (3) model without friction

To conclude without being limited to applications regarding the first level
modeling introduced in this chapter, we shall present another example. A hollow
cylinder sample (Vosges sandstone) is subjected to compression and torsion [PEC
95]. Figure 8.14 shows the torsion couple as a function of angular deformation of the
central part of the cylinder, where the state of stress and strain is quasi-uniform. Let
us recall that the cylinder is subjected to strong compression, so that most
mesocracks are in a closed state. Only the model with frictional effects is able to
reproduce the stiffness jump observed at the beginning of loading, corresponding to
sliding along crack surfaces. The last loading phase shown in the figure corresponds
to coupled damage and sliding evolution. The proposed coupled model seems to
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overestimate the kinetics of damage evolution. The basic version of the model
(without friction) systematically leads to an underestimation of the applied torque
with respect to experimental data.

This example is a clear illustration of how more sophisticated features of the
proposed model (taking into account normal unilateral effects and frictional effects)
can be applied to engineering. It concerns loading conditions including cycles or
phases of closure of various systems of mesocracks, non-proportional local
evolutions and rotation of principal directions of the damage tensor.

As is indicated in section 8.2.1, the damage modeling and notably the modeling
of damage activation/deactivation related to the normal unilateral effect is based on
spectral decomposition (8.5) for the second-order tensor D and the extrapolation of

the latter leading to the restrictive fourth-order entity £ in (8.34). The
corresponding hypotheses involve maintaining the form of damage-induced
orthotropy of the effective elastic properties (to the detriment of more general
anisotropy) and the relevant equivalence postulate stipulating that any system of
mesocracks can be reduced to three commensurate orthogonal sets. The latter are

(k)

embodied by eigendensities Dy of D and its eigenvectors v'"’. Maintaining

orthotropy was arguably justified on some micromechanical bases by Kachanov
[KAC 80], [KAC 92]. The equivalence postulate is an important component of the
theory proposed in sections 8.2 and 8.3, as it concerns not only the damage segment
of the coupled model but is also reconducted for the mesocrack friction plasticity
model.

The damage description including a unilateral effect based on the spectral
decomposition of a second-order damage (or strain) tensor was earlier postulated by
Chaboche [CHA 93], cited in section 8.3.1.

In this regard, Cormery and Welemane [COR 02] have put forward critical
analyses regarding the spectral decomposition-based damage models. As we could
expect, difficulties appear for the damage configurations involving multiple
principal bases characterizing purely isotropic spatial damage distribution D =d, 1

and the like subspace, partial symmetries of D like transverse planar isotropic

distribution, i.e. D=d,(e, ®¢ +e,®¢,), e, and e, representing orthogonal unit
vectors. For such configurations involving an infinity of principal bases (non-
uniqueness), the choice of a particular set of eigenvectors leads to a form of the
energy function different from a form obtained for another licit system. We thus
observe, in general, non-uniqueness of the energy and of the resulting response (e.g.
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stiffness C( D)) for specific (sub)spatially uniform damage distribution. This has

been shown in detail for this model, as well as for the model by Chaboche [CHA
93]. Furthermore, such a non-uniqueness may produce the loss of continuity of the
energy function with respect to D and thus brings into question the very definition

of F’ (thermodynamic force) and corresponding evolution laws. It should thus be

stressed that the aforesaid isotropic and the like damage configurations involving the
multiplicity of principal bases should be tentatively excluded from the operational
domain of any spectral decomposition-based damage model. More fundamentally,
some topological safeguards should be searched for to assure the energy uniqueness
(i.e. the existence of the thermodynamic potential) in the close neighborhood of such
configurations.

An alternative method based on the so-called “discrete approach” of damage has
recently been advanced by Bargellini et al. [BAR 06]. This approach introduces a
finite number of crack densities associated with an equal number of directions in
space. It enables us to represent essential phenomena related to anisotropic damage,
including unilateral effects. Most of all, this approach avoids the disadvantages cited
above and related to models employing the unique second-order tensor variable D

and its spectral decomposition (non-uniqueness of the free energy for particular
configurations of damage and decomposition of the strain tensor into the positive
and negative parts).
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Chapter 9

Multiscale Modeling of Anisotropic Unilateral
Damage in Quasi-brittle Geomaterials:
Formulation and Numerical Applications

9.1. Introduction

Inelastic behavior and the failure process in quasi-brittle geomaterials such as
concrete and most rocks, are commonly considered to be the consequence of the
nucleation and growth of microcracks. A number of experimental investigations
have shown that there are different ways in which microcracks initiate and grow in
rock materials [1-8]. In general, we shall take into account two dissipation
mechanisms, related to the microcrack size evolution and the dissipative frictional
sliding in closed microcracks respectively, in order to model the resulting damage.
The main consequences of damage caused by microcracks growth are non-linear
stress — strain relations, deterioration of elastic properties, induced anisotropy,
irreversible deformation after unloading, volumetric dilatancy, hysteretic response
and the effects of microcrack closure on the material macroscopic response.
Moreover, induced anisotropic damage can also affect transport and diffusion
properties, in particular permeability. Rock permeability can indeed increase
significantly due to the propagation of microcracks and the associated volumetric
dilatancy [9-14]. In this chapter, however, only mechanical modeling of anisotropic
damage will be addressed.

The modeling of induced anisotropic damage is traditionally performed by
means of macroscopic continuum damage models (CDM). In these models, internal
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variables (scalar, vector, second order tensor and even higher rank tensors) are used
to describe the state of damage. A damage evolution law is commonly formulated as
a function of stress or strain, using the standard framework of irreversible
thermodynamics or some fracture mechanics principles; see for instance [15-22].
Uses of CDM have the ability of providing macroscopic constitutive equations
which can be easily implemented in computer codes and applied to engineering
analysis. Nevertheless, some assumptions used in these models are not clearly linked
to physical mechanisms involved in the microcracking process, for instance, the so-
called effective stress concept. Despite the numerical efficiency of this approach,
some critical issues still remain open. For example, the purely macroscopic
description of unilateral effects related to microcrack closure and of coupling
between damage and frictional sliding still requires more careful physical and
mathematical investigations which could be quite complex.

On the other hand, significant advances have recently been made in the field of
multiscale damage modeling of quasi-brittle materials, which offers a new way to
obtain a more physically based description of anisotropic damage related to the
progressive evolution of materials microstructure [23-24]. In fact, various
homogenization models have been proposed for concrete and rocks, see for example
[25-27]. Most of these models are limited to dilute microcrack concentration and do
not use an Eshelby type homogenization procedure to define the macroscopic elastic
behavior. As a consequence, the effects of microcrack interaction and spatial
distribution cannot be properly described [28]. Another aspect, which is important
for damage modeling in brittle rocks, is the coupling between damage and frictional
sliding on closed microcrack faces. This generally leads to volumetric dilatancy
which was not properly considered in previous models.

In the current chapter, we formulate a multiscale model for anisotropic damage
coupled with frictional sliding for quasi-brittle rocks. This model, based on Eshelby-
like techniques, is then numerically implemented for structural analysis. The basic
idea is to integrate the Eshelby solution-based homogenization techniques into the
standard thermodynamics framework for the description of damage by
microcracking. This provides a general micromechanics background for damage
modeling in which the microcrack interaction [29] and spatial distribution [30] can
also be described. A great emphasis will be put on the microcrack closure and on the
coupling between damage and frictional phenomena which allows us to explain the
salient features of quasi-brittle behaviors of rocks under compressive loadings. It
comes from the micromechanical analysis that the crack density parameter [31] in
each space orientation and two kinematic variables (sliding and opening along the
crack surface) can represent inelastic deformations induced by the presence of
microcracks. Furthermore, a damage criterion based on the energy release rate is
proposed to describe the evolution of the crack density parameter. The condition for
microcrack opening/closure transition will also be discussed. Comparisons of the
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model’s predictions with experimental data are performed on both conventional and
true triaxial compression paths, respectively, for two granites. Applying the
proposed multiscale model, implemented in the finite element software Abaqus with
UMAT facility, to an underground excavation problem shows a good agreement
between numerical results and in sifu data concerning radial displacements and the
evolution of the damaged zone.

Throughout the paper, the following notations for the product of second-order
tensors A and B will be used: (A®B), = 4,B,, (ABB) =4,B,+4,B, . The

ijkl

tensor product of two vectors ¢ and b is denoted (g@lz)ﬁ =qb, and its

symmetric part (g élz)ij = %(“;bj + a,-b,-)- With the second rank identity tensord , the
usually used fourth order isotropic tensors I and J are expressed as

1
]Iijkl = 5 (5ik§j1 + é‘ilé‘jk) and J

ik

1 .
= Eo:fo"k, , respectively.

9.2. Homogenization of microcracked materials: basic principles and
macroscopic energy

The general purpose of multiscale methods is to establish the effective properties
of the studied material from the knowledge of the material microstructure. For this
purpose, the microcracked material is considered as a multiphase composite with a
matrix phase weakened by a set of microcracks. In this framework, it is convenient
to introduce a representative elementary volume (REV), denoted by Q (with
boundary 9dQ ), as shown in Figure 9.1.

This REV is composed of an isotropic linear elastic matrix whose stiffness tensor
is noted C° and a distribution of microcracks with the elasticity tensor
C° (C° =0 for opened microcracks in order to account for the cancelation of the
local stress 0° on crack faces). Thus, the REV may be considered as a matrix-
inclusion system; this allows us to use the fundamental Eshelby solution [32-33].
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Figure 9.1. Representative elementary volume (REV)
of microcracked materials

We assume that microcracks are the penny-shaped type. A family of cracks is
identified by its normal 7, radius a and the half opening ¢ (see Figure 9.2). The

aspect ratio € = ¢/a of such a penny-shaped crack is such that ¢ < 1 (Figure 9.2).
The volume fraction of cracks @° is expressed as:

4

o :Eﬂazcj\/: ed ©.1)

4
3
where A denotes the crack density (number of cracks per unit volume) of the
considered family of cracks and 4 = A’ is the crack density parameter as initially

introduced by Budiansky and O’Connell [31], and widely used as an internal
damage variable in micromechanical analysis [34].

n

Figure 9.2. Schematic representation of a penny-shaped crack

The related displacement jump between the faces of two cracks is denoted by
[g ] The unilateral contact on the crack faces is then described by:
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[u,]20, 0 <0, [u,]-05=0 9.2)

n

where O'nc is the normal component of the local stress field and [un] the normal

component of the displacement jump [g ] .

We consider now a macroscopic uniform stress, >, applied to boundary 0Q .
The problem to be solved is the determination of local stress, strain and
displacement fields inside the REV. According to [25] and [27], this problem may
be decomposed into two sub-problems in terms of the displacement field, as shown
in Figure 9.3. Accordingly, the macroscopic strain E of the cracked medium is
written as the sum of two terms:

E=E’+E° 9.3)

/

N c

u = u + u

Figure 9.3. Decomposition of the basic homogenization problem
in terms of the displacement field

The first term corresponds to the solid matrix strain E* and the second term

E‘is related to the contribution of microcracks, more precisely, to the microcrack
displacement discontinuities, which read:

E =me+ﬁé[z]d3=ﬁ(ﬂ®ﬂ)+zéﬂ (9.4)
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with £ and ¥ as two kinematic variables characterizing the microcrack

opening/closure state and the sliding in the crack plane, respectively, which are
defined as:

B=N| [ulds; y=N| [ulds ©.5)
Note that [g t] = [g ] - [un ]Q . a)+ denotes the crack surface with the unit normal 7.

The microscopic stress field o is uniform which implies the relation:
o= <0'S >Q =" and the local stress (o‘c - o'x) on cracks is self balancing. Finally,

the free energy W is expressed as the sum of an elastic energy corresponding to the
solid matrix and of the stored energy due to the local stress field:

1 -X):(2®n)[u,]

L St (o 9.6)
w 2(E E):C:(E-E°) 2NL+ en(o ) u] ds

In order to establish the relation between the deformation E¢ and the local stress
field o in the cracks, inspired by the work of Barthelemy [35], the initial problem
is decomposed into two sub-problems, as shown in Figure 9.4.

The solution of the sub-problem P’ is obtained through the homogenization
procedure with the uniform macroscopic strain (E -S°: o"') on the boundary 0Q:

-1

E'=¢'A:(E-S":0°), §'=(C) ©.7)

where A° is the concentration tensor associated with the considered family of

microcracks. In the case of opening cracks (0 =0), the above expression (9.7)
returns to that obtained in the traditional homogenization procedure:

I _ cAC.
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E E-S':0°

I
+

(P) (P") (P")
Figure 9.4. Homogenization-based problem decomposition

The corresponding macroscopic stress is determined with the help of the
macroscopic stiffness tensor C™™ :

¥ =C"":(E-S":0°) 9.9)

for which we recall the general effective stiffness tensor C™™ =C* + ¢°(C° -C*): A° in
the case of open cracks (Cc=0) and frictionless closed cracks (C°=3k"]). The
uniformity of the sub-problem P” gives:

>=X"+0° (9.10)

The coherence between expressions (9.7) and (9.3) leads to the equality E' =E°,
ie.:

ﬂ(g®2)+zég=¢f&“:(E—S“:O'”) (9.11)

which allows us to simplify the notation by replacing E°and E’ by E” '. The
combination of (9.7), (9.9) and (9.10) allows us to express the local stress field °
according to the macroscopic stress . of the crack induced inelastic deformation

E”:

1 In fact, the strain due to closed microcracks is also referred to as “friction-induced
plasticity” [20]. Its evolution can then be determined in the framework of classic plasticity
theory.
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o =>-C":E” 9.12)

with
: -1 -
Cc” = [go‘A" (T-gAc) S“} (9.13)
Equation (9.12) can also be rewritten in the form:

o =Y =-C":E” 9.14)

The insertion of (9.14) into (9.6) and using (9.4) gives the free energy function of
the cracked material:

W=%(E—Ep’):(C‘ :(E—E”)+%E’” :C"E” (9.15)

9.3. Formulation of the multiscale anisotropic unilateral damage model
9.3.1. Constitutive equations

Profiting from the background previously defined, our aim is to formulate a
micromechanical anisotropic damage model that accounts for microcrack closure.
To this end, and thanks to the matrix-inclusion morphology of the microcracked
materials, we implement the Mori-Tanaka estimate for which the following strain
concentration tensor is available [28, 36, 37]:

A =(I-8,.) " :[@'T+¢" (I-S,)] (9.16)

where S_ is the Eshelby tensor corresponding to the penny-shaped crack inclusion

(the components of S( can be found in [23, 24]).

It is shown that for a unique family of microcracks, the macroscopic free

enthalpy W, obtained by the means of the Legendre transform of the free energy
W, can be expressed in the form:
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»_ 1 s . 1 2
W' =-%:8 .Z+ﬁ2.(ﬂ®g)+z.z.g—g[Hoﬁ +Hyy]  ©17)

with HO :va and Hl =H0[1—V—].
16[1-(')’ | 2

Accordingly, the macroscopic Gibbs free energy, denoted ¥, is obtained by

integrating /7" over the unit sphere S* ={n, |n|=1}:
b =lZ:SS )
2
+Z:$ Sz{ﬁ(g)(ﬂ®g)+z(g)ég}dé’ (9.18)
_é Szﬁ[mﬂz (n)+H,7* (n) S

Since distributions £ (Q) , }_/(g) and d(g) are generally unknown for an

arbitrary loading path, the closed-form expression of ¥~ is not available. Thus, the
Gauss type numerical integration formula with /N points is adopted in this study,
similarly to [38]. Therefore, integral form (9.18) is approximated as:

where W' is the weighting coefficient associated with the ™ microcrack family

characterized by unit vector 71’ .

We shall now attempt to derive the expression of the macroscopic energy by
taking into account the microcrack closure. First we determine from (9.15) the

thermodynamic force associated with internal variable E*':
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ow

F" =-
oE”

=Z—CPI:EPI=O'C (920)

In a similar way, F' # and F" associated forces, with the forces associated with

P and y respectively, are given by:

F =-aa_Z= (n®n) 921)
F =—%—V;:=O'c.ﬂ.(§—g®g) 022)

In agreement with (2), the crack opening/closure transition condition is defined
by:

o (Q & Q) =0, or F¥ =0 (reversible process) (9.23)

which leads to the following relation for the Mori-Tanaka scheme:

ﬂ=%2:(ﬁ®g) 9.24)

0

Moreover, using condition F’ = 0 provides the following expression:

y=—2xn(d-n®n) (9.25)

1

Taking into account the unilateral condition, we need to make a clear distinction
(in the energy contribution) between the opened crack families, numbered NV, , and

the closed crack families, N, with N, + N, = N . The substitution of (9.24) and
(9.25) into (9.19) yields the general expression:
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| o & 1 1
P =3 S+ MY wd | —EB* +—E 1Y
2 2 2 [H 2H,

0

=,
"
>
®
>
o

j=]

o

with the notation AN =n®n ,

B = [N @(6-a)+(5-4)80 ]

It is now possible to derive the first state law which defines the macroscopic
stress-strain relations. We see from (9.26) that:

o 1 1 & :
E=S":2+) wd’ —Ez”+—E4’rJ:Z+ w’[ﬂr n®n +}/r®nr}
rZ:l: (Ho 2H1 rZ::‘ (_ _) -
(9.27)

The  second state law  defining the  thermodynamic  force

F? =0¥"/0d" associated with any internal damage variable d" reads for a family
of opened microcracks:

ooty [ L gl s (9.28)
27\ H, 2H,

0

and equivalently:

— | m () +myy | (9.29)

for a family of closed cracks. It is readily seen that F¥ =9W¥"/dd" depends on the
internal variables associated with each family of microcracks, namely 8", y",d" .
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9.3.2. Friction-damage coupling and evolution laws

To complete the formulation of the damage model and its coupling with friction
phenomena, we need to determine the evolution laws of damage and frictional
sliding. It is assumed that the closed frictional microcracks obey the traditional
Coulomb criterion at the local scale and that the saturation of the criterion is uniform
on the microcrack faces. At the microscopic scale, the Coulomb criterion

g (o‘c) =() reads, as standard (in terms of normal and tangential components of the

local stress ¢ applied on the microcracks faces):
g=|o"n(-n®n)|+uo0 :(n®n)=0 (9.30)

where . is the friction coefficient on the microcrack faces. In terms of

thermodynamic forces F # and F7, this criterion also reads:
g(gv)=|5y|+ﬂvpﬂ=o (9.31)

It must be emphasized that the pressure sensitivity of geomaterial behavior is
taken into account through the effect of normal stress on the crack o° :(g@g)

(which explicitly appears in (9.30)).

Concerning the damage evolution law, the following general form, based on the
energy-release rate, is adopted for the damage criterion of each family of
microcracks:

f(F'.d)=F'-R(d)=0 (9.32)

Function ’R(d ) represents the material resistance to the damage evolution by
microcrack growth, which can be theoretically determined from experimental
investigations. For the sake of simplicity, we consider here an affine function of d
as initially proposed in [39] in the context of macroscopic modeling of isotropic
damage:

R(d)=c,+cd (9.33)

where ¢, and ¢, are two constitutive parameters, respectively defining the initial

damage threshold and the kinetics of the damage evolution. These parameters may
be identified from experimental data showing progressive degradation of elastic
properties during unloading cycles in triaxial compression tests.
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Adopting the normality rule, the rates of damage variable d and of sliding

vector ¥ in the presence of frictional contact are determined by:

. Of(FYd) .
d=ﬁ"%=ﬂd 9.39)

y=A aify =A"v (9.35)

where ﬂd and )Ly are the multipliers associated with damage and frictional sliding

respectively; they are determined by using simultaneously consistency conditions
/=0 and g =0. The unit vector v represents the direction of frictional sliding,

defined by v=F" /\E’\ .

For the evolution of variable £, which represents the microcrack opening
displacement due to frictional sliding of microcracks, two different situations can be
singled out:

— frictional sliding without dilatation in smooth microcracks, for which we
have 3 = 0. This leads to an unassociated flow rule for the inelastic deformation E”';

— frictional sliding with normal dilatation on microcracks with rough faces, for
which f#0.

From the physical point of view, the dilatation is related here to the asperity on
the microcrack faces and to the misfit of microcrack faces after the unloading of
applied stresses (see Figure 9.5). This generally leads to the occurrence of inelastic
volumetric strains after a complete unloading.

y N - N

[ —_— A

\ ’ N - ’
~ ’ ~ v

Figure 9.5. Schematic representation of dilatant crack sliding mechanism
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For simplicity, we also adopt here a normality flow rule for the evolution of E” !
It follows that:

B=ui (9.36)

Subsequently the evolution law of variable E”' reads:
E" = B(2®ﬁ)+z®ﬂ=ﬂy(2®ﬂ+ﬂcﬂ®ﬁ)

A detailed theoretical analysis of the coupled damage-friction model can be
found in Zhu (2006).

9.4. Computational aspects and implementation of the multiscale damage
model

We are now interested in implementing the proposed damage-friction coupled
model into the finite element software Abaqus. This is performed by means of the
provided user subroutine UMAT. In this subroutine, the material Jacobian matrix,
0Y./0E , must be provided for the mechanical constitutive model and the values of

stresses and solution-dependent state variables (i.e. the variables d”, f"and }_/ in this

study) must be updated at the end of the increment. For this purpose, we need to
determine the rate form of the macroscopic stress-strain relation which provides the
consistent tangent operator. Then, we will present the local integration of the
proposed model.

9.4.1. Determination of the tangent matrix

The strategy adopted here consists of starting from the macroscopic stress-strain

relation (9.27) and of expressing the macroscopic strain rate £ as a function of the
stress rate:

E=S"":Y 9.37)

The Jacobian matrix can be obtained by an inverse calculation of Sthom [28]. For

a given family of closed microcracks, if the damage growth condition and friction
sliding criteria are simultaneously verified, we will obtain the following consistency
conditions:
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dg « dg . dg , Jdg -
98 3198 B
33 z+agz+aﬁﬂ+ad

s y'/+alﬂ'+aia"=0

Y

(9.38)

whereas for a given family of opened microcracks, the consistency condition for
damage evolution reads:

K/ 9.39
az.Z+add 0 (9:39)

Considering relations (9.38) and (9.39), respectively, for the families of closed
and opened cracks, as well as the rate form of (9.27), the tangent operator S

reads:
v g+ LN N\ P @ o\ 408 o8 (9.40)
S =81+ 3 e az®az+;<g>‘”ﬁ;az®az

with /" the damage function of the i family of microcracks:

afr 1 2 1 4 ag’ S .
“—=| —E""+—E" |:>, =—=0"®n" +un ®n",
Iy (HO 21, LEn v AL S

and

(f )W uHpB +Hy )
Hy(B ) +Hy y +¢@d)

T 2
A =H, + 4’ H, -
where <x> =1 when x > 0, and zero otherwise.

9.4.2. Local integration of the model

Considering the requirements of the user subroutine UMAT in Abaqus, an
incremental procedure associated with the rate form of stress-strain relation and
based on the strain discretization of the considered loading path is used. Furthermore,
a widely-used prediction-correction splitting numerical scheme is adopted, given the
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strongly non-linear character of the constitutive law. The scheme from step j to
j+1 is briefly summarized as follows:

(1) elastic prediction:

For each family of microcracks, allow d,, =d, B,,, = B,y L=V
St L

N s
calculate ES =E, — Za)r (ﬂ"gr ®n +y' ®er ,
r=1

then E°

J+l

= Ej + AEj+, and ZH =C':E°

j+l°

(2) examine the opening-closure condition for each family:

FP =%, (0 ®ﬁr)—%:3f
J

r

(3) determination of increments Adﬂ1 , AZ;H and AB;:
F? >0: calculate Ad; ., using (9.32) and (9.28) for open cracks;

F? <0: examine the frictional sliding criterion (9.30) for closed cracks:

if g <0, then A}, =0,Ay"  =0,Af], =0

if g >0, calculate A}_/;H, AB;,, using (9.31)
if f7 <0, then Ad’,, =0;

calculate /" : o
or, calculate Ad’,, using (9.39)

Jj+1’

(4) update the variables: d’,, =d} +Ad;,, Z;H = Zj + AZ;H C B =B AL

(5) update the stress tensor: calculate > j+1
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9.5. Illustration of the model predictions for shear tests

In order to illustrate the performance of the micromechanical model in various
cases (closed frictional microcracks, with and without dilatancy, with and without
damage evolution), we should investigate the macroscopic behavior of a material

weakened by a family of microcracks with the unit normal e; . The damaged

material is subjected to a simple shearing path defined by Ei3 = E,3;, which is
monotonous or cyclic. To keep the cracks closed, we apply beforehand a
compressive stress 2.,; =10 MPa in the direction perpendicular to the crack plane,

ie. ;. The model’s parameters used in the simulations are E* = 33,330 MPa,
V=023, ¢, =2.5x10°J.m™, ¢, =0.08 Jm?and u =0.4. The initial value of the

damage is chosen to be equal to d, =0.1.

Monotonous loading path

Figure 9.6 shows the comparisons of the mechanical responses predicted by the
model for the FCD case (non-dilatant frictional cracks with damage evolution) and
FDCD case (frictional dilatant cracks with damage evolution).

It is observed that the model, based on the Mori-Tanaka Scheme, predicts a
strain hardening response. As expected, volumetric dilatations are obtained in the
FDCD case.

30 2;[MPa] 0 e FCD version
— FDCD version
20
10
E%] E,[%]
T 9] T T T - ]
-0.1 0.0 0.1 0.2 0.3 0.4

Figure 9.6. Response (shear strain and volumetric strain) on monotonous loading
path predicted by the model. Note the great amount of volumetric
strain predicted in the case of dilatant cracks
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Cyclic loading path

The responses predicted by the homogenization scheme for the cyclic loading
path are illustrated in Figures 9.7a and 9.7b. From a qualitative point of view, three
response phases can be noted as in monotonous loading. Irreversible strains and
hysteretic loops during loading-unloading paths are observed as a consequence of
the frictional mechanism. Furthermore, the hysteretic loops are closed at the end of
the reloading path for the FCD models, similar to those obtained by Lawn and
Marshall (1998) in the absence of damage evolution. In contrast, open loops are
found for the FDCD models; this is in agreement with the evolution of variable £

associated with the volumetric dilatation.

b)

Figure 9.7. Response on a cyclic loading path predicted by: a) FCD model; b) FDCD model

9.6. Model’s validation for laboratory data including true triaxial tests

In order to provide a preliminary evaluation of the proposed model, we consider
in this section the conventional and true triaxial compression tests on two granites
(Lac du Bonnet in Canada, Westerly in USA) for which data is available. The
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proposed model requires only six parameters with a clear physical meaning for each
one. The initial elastic constants Eyand vy can be determined from the linear part of

the standard stress-strain curve in a compression test. Parameters ¢, and ¢,

involved in the damage criterion, may be determined by evaluating the progressive
degradation of the elastic modulus on the unloading stress-strain curves. Friction

coefficient 4. may be evaluated by comparing the mechanical responses with

different confining pressures. The initial overall density of microcrack distribution is
assumed to be isotropic and characterized by d,. Its value could be determined from
a hydrostatic compression test or, more accurately, from electron microscopy scans.

9.6.1. Validation by comparison with conventional triaxial compression tests

The model is first checked by running simulations of conventional triaxial
compression tests under different confining pressures. The considered material
is known as Lac du Bonnet granite, largely studied in the underground research
laboratory for nuclear waste storage in Canada [41-43]. The following
parameter values are considered for the simulation: E* = 68,000 MPa, v* =0.21,

¢, =3x10"Jm>, ¢, =6x107J.m>, d,=1x10", u, =0.7. The comparisons of the
stress-strain (axial strain £, [%], lateral strain E,, = E;;[%] and volumetric strain
E [%]) curves between the experimental data and model predictions are shown in

Figures 9.8 to 9.10. It can easily be seen that the main features of quasi-brittle
geomaterial behavior, previously mentioned, are correctly described by the model.
Moreover, comparisons of numerical predictions between the models with and
without friction-based dilatation are also presented. It is observed that the model
with dilatation offers a much better prediction then the model without dilatation.
Therefore, the macroscopic volumetric dilatancy of these quasi-brittle materials can
be physically interpreted as a consequence of the microscopic normal dilatation
during frictional sliding along microcracks. In Figure 9.9, some unloading paths are
shown. As the microcracks are closed due to compressive stresses and due to the
fact that the microcrack sliding is locked by frictional effect, a linear elastic response
appears during unloading of the deviatoric stress.

Figure 9.11 shows the simulation of a lateral extension test. In this particular test,
the rock sample is first submitted to a hydrostatic stress 60 MPa. The axial stress
2, is increased in a second stage to a prescribed value. In the last stage, the

confining pressure is progressively reduced while the axial stress is kept constant.
This test is widely performed in rock mechanics because it approximately
reproduces the stress path near the cavity boundary during excavation in
axisymmetric conditions. The numerical simulation presented here was performed



366 Constitutive Modeling of Solids and Rocks

for 2., =160 MPa and 2.,, =2.,; =60 MPa . A good agreement is obtained

between the test data and the model’s predictions. Furthermore, it is noted that in
this case the difference between the models with and without dilatation is small.

13, -2, [MPal
400 -
Ey;
i E, 7 E,
. \ o
300* % R
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7 * *
. . Pc =10 MPa
0 -+ - °
* L)
B *
100 - N * Experiments
With dilatation
— Without dilatation
T T T T O

-0.6 -04 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 9.8. Comparison between data and model’s predictions for a triaxial compression test
with confining pressure of 10 MPa using the models with and without frictional dilatation
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Figure 9.9. Comparisons between data and model’s predictions for a triaxial compression
cyclic test with confining pressure of 20 MPa using the model with frictional dilatation
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Figure 9.10. Comparisons between data and model’s predictions for a triaxial compression
test with confining pressure of 40 MPa using the models with and without frictional dilatation
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Figure 9.11. Comparison between data and model’s prediction for a lateral extension test

9.6.2. Simulations of true triaxial compression tests

The simulations of conventional triaxial compression tests provide a first
validation of the model in the particular case of axisymmetric loading. We now
investigate the performance of the model in more general loading conditions. To this
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end, we propose comparing numerical predictions and experimental data available
from true triaxial compression tests performed on Westerly granite (USA) by
Haimson and Chang [44]. The tests were performed on cubic specimens by
independently controlling three principal stresses in three axes. We follow a
procedure which consists of identifying the model’s parameters on a conventional
triaxial compression test with a confining pressure of 60MPa and simulating the
true triaxial tests. The following values are obtained: E* = 68,000 MPa, v* =0.21,

TN =3%x10" J.m?, ¢ =0.18 Jm?, d, =1x1073, u. =0.7.

The loading path applied in the true triaxial tests is composed of three steps: i) a
hydrostatic compression phase until 60 MPa; ii) >, being kept constant (60 MPa)

and increasing Z“ = 222 to the prescribed values of 60 MPa, 113 MPa, 180 MPa
and 249 MPa; and iii) the value of 222 and 233 being kept constant and the value
of X, increasing from >, =2, to prescribed values of 747 MPa, 822 MPa,

860 MPa and 861 MPa. The model is now applied to simulate these tests and the
comparisons between its predictions and test data are shown in Figure 9.12. An
agreement is observed for the different loading paths considered.

It is worth noting that, contrary to phenomenological models, the multiscale
model is able to provide not only overall stress-strain responses, but also the
anisotropic distribution of the microcrack density parameter. Figure 9.13 shows 3D
damage density distributions with the different intermediate principal stress
value 2.,, . Noting 0 as the original point in the considered space and a as a point

on the distribution functions surfaces, the direction of the vector oa corresponds to
the family of microcracks with unit normal a/ “a“ and the damage density

evaluated by”@“. We notice that as 222 increases from 60 MPa to 249 MPa, the

growth of damage in plane 1-2 is progressively blocked. In addition, the greatest
value always occurs in plane 1-3 and the dip angles for all the four tests are always
around 62°. This value is slightly different from the experimental data (ranging from
67° to 72°) reported in [43]. The difference may be explained by the fact that the
frictional sliding criterion (9.30) is an interfacial criterion and, thus, the intermediate

stress 222 cannot be taken into account for the microcracks with normal vectors

within plane 1-3.
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Figure 9.12. Comparisons of model’s predictions with experimental data for true triaxial
compression tests on Westerly granite [44]

9.7. Application on an underground structure: evaluation of the excavation
damage zone (EDZ)

After the simulation of laboratory tests, in this section, we will discuss the
feasibility of applying the micromechanical model to engineering problems. We
propose to study mechanical responses induced by the excavation of a 3.5 m
diameter circular tunnel in the context of the Underground Research Laboratory for
nuclear waste storage (URL-ACEL Canada). The experiment was conducted at the
420 m level in order to investigate the rock damage process during excavation using
a non-explosive technique [41, 43, 45]. The tunnel is subjected to a strongly
deviatoric initial stress state as shown in Figure 9.14.
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Figure 9.13. Microcracks density parameter distributions in true triaxial
compression tests on Westerly granite: a) }.,, =60 MPa, 2., =747 MPa;

b) ¥, =113 MPa, ¥, =822 MPa ¢)Y,, =180 MPa, ¥, =860 MPa;
d) ¥, =249 MPa, ¥, =861 MPa

Figure 9.14. Observing the damaged zones around the tunnel excavation [45]
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Radial displacement evolution and acoustic emission were monitored. /n situ
observations showed two damaged zones in the direction of the minor principal
stress (see Figure 9.14). It has been also observed that the size of the damaged zones
as well as the radial displacement evolve in time due to time-dependent behavior.
However, in this study, only the short term behavior is investigated. Multiscale
modeling of the viscous effects accompanying the damage process will be the
subject of further investigations.

The initial in situ stress state is defined by three principal stresses as
follows: 0, =55 MPa , 0, =14 MPa and o, =48 MPa . The tunnel axis is quasi-

parallel to the intermediate principal stress direction. Therefore, 2D modeling was
performed under plane strain conditions. Due to the symmetry of the problem, with
respect to two principal stresses, only a quarter of the domain is considered. The
studied region with the outer boundary of 30x30 m was meshed with 900

rectangular elements. The excavation process is simulated by reducing the normal
stress on the tunnel wall from its initial value to the atmospheric pressure. The
parameters used for the FEM modeling were determined from a uniaxial
compression test on the Lac du Bonnet granite. In Figure 9.15, the distribution of the
microcrack density parameter around the excavation is shown. The induced damage
zone appears localized on the top point of the excavation along the minor principal
stress. This is qualitatively in agreement with in situ observations. The predicted size
of the damaged zone is also close to that observed in place, varying between 0.43 m
and 0.52 m [45]. Furthermore, tensile stresses were obtained in numerical
predictions in some zones near the tunnel wall (see Figure 9.16). However, the
magnitude of the maximum tensile stress (5.3 MPa) is quite small and less than the
tensile strength of material which is about 10 MPa. Therefore, the damage is
essentially induced by closed cracks due to compressive stresses. The principal
mechanism is frictional sliding along microcracks coupled with crack propagation
and dilatation.
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In Figure 9.17, we show the radial displacements (convergence) on the tunnel
wall in different directions (0° corresponds to the major stress direction). The in situ
data is obtained by extensometers placed around the excavation [45]. We can point
out a good qualitative agreement between the predicted results and in situ data.

4,

Model

B Experiments

Radial displacements (mm)

| ]
D 90 180 270 360

Angle (°)

Figure 9.17. Comparisons of radial convergence between
in situ measurement and model prediction

9.8. Conclusions

This chapter has been devoted to the formulation and application of multiscale
anisotropic damage. The materials under investigation are quasi-brittle geomaterials.
The model is formulated within a micro-macro framework using a general
homogenization procedure, together with a thermodynamics approach of irreversible
dissipation mechanisms. An important feature of the model is the incorporation of
unilateral effects due to microcrack closure. Coupling of the damage mechanisms
with friction phenomena on closed microcrack faces allows us to account for the
main features of mechanical behaviors in quasi-brittle geomaterials: non-linear
stress-strain relations, volumetric dilatancy, hysteretic behavior, coupling between
microcrack growth and frictional sliding. The model contains a small number of
parameters and each one contains a physical interpretation. It is applied to two
granites and a good agreement between the model’s predictions and experimental
data for various loading paths has been obtained. The model is also implemented
into a standard FEM code. The calculation strategy used for this implementation has
been described in detail. An example of a structure has been presented to show the
applicability of the micromechanical model to engineering problems. The extension
of the model will include, for example, the objective modeling of strain localization
as well as the subsequent failure process, the correlation between induced damage
and permeability evolution and the time-dependent behavior due to sub-critical
microcrack growth.
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Chapter 10

Poromechanical Behavior
of Saturated Cohesive Rocks

10.1. Introduction

This chapter is devoted to the poromechanical modeling of saturated cohesive
rocks. Limiting the discussion to this class of materials, we will briefly review the
constitutive models developed so far for various coupled poromechanical behavior.
In traditional soil mechanics, the pore pressure effect is generally taken into account
by using the Terzaghi’s effective stress concept. However, it is known that this
effective stress concept is not valid for general cases, in particular for cohesive
geomaterials. More general approaches should thus be proposed. We will present the
fundamental features and general methodologies for modeling three types of
behavior of saturated media: poroelasticity, poroplasticity and damage mechanics.
As a number of general studies on the modeling of poroelasticity and poroplasticity
already exist, we will only recall some basic concepts, emphasizing in particular
parameter identification for these two classes of behaviors. Given that modeling
damage in saturated porous materials is only a recently developed topic, the field is
still largely open and, at the same time, of great interest for many engineering
applications. This is why an important part of this chapter is devoted to this topic.
Limiting the discussions to macroscopic consideration, we try to provide a general
methodology for damage modeling of saturated materials and an example of a
constitutive model is given for a saturated porous rock.

Chapter written by Jian-Fu SHAO and Albert GIRAUD.
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10.2. Fundamentals of linear poroelasticity

In this section, we begin by presenting the fundamental relations of the linear
poroelasticity initially proposed by Biot [BIO 41, 55, 57; COU 91]. The porous
medium is seen as an open thermodynamic system exchanging fluid mass with the
exterior domain. Limited to isothermal and small deformation cases, the state
variables involved are strain tensor € and fluid mass change per unit initial
volume m . Considering a natural initial state (without pre-stress and pressure), the
quadratic free energy function is:

2
w(e,m) = gm+Lg:Cre- = M(B:g)+ M = (10.1)
2 Py 2 pr

where g,?l is the specific free fluid enthalpy and pff the reference volumetric fluid

mass. The fourth order tensor C denotes the elastic stiffness of the porous medium
in undrained conditions. The second order tensor B is Biot’s coefficient tensor and
the scalar parameter M is the Biot modulus. The standard derivative of (10.1) leads
to the constitutive relations of linear elasticity:

6=C:e—-M B{%J (10.2)
Py

(&n —2n) =-{Q%JM(B:8>+{p%JM[pﬂOJ (10.3)
7 i v

Using the state law of perfect fluid, relation (10.3) may be rewritten in the
following form:

(gm—gm) =220 (10.4)
Pr

(p-py)=M —B:S{%J (10.5)
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Substituting (10.5) for (10.2) leads to the constitutive relations of linear
poroelasticity in drained conditions:

6=C":¢-B(p-p,) (10.6)

c’=C-MB®B) (10.7)
where C” is the drained elastic stiffness tensor. Relation (10.6) may be rewritten as:

¢ =Cl:¢ (10.8)

!

¢“ =c6+Bp (10.9)

The second order tensor ¢’ is called the effective stress for elastic deformation
because it is the thermodynamic force associated with the elastic strain tensor.

The following discussion is devoted to the identification of poroelastic
parameters. For the sake of simplicity, only an isotropic material is considered:

o-c" =2u’e+ A ur(e)l-b(p - py)I (10.10)

(p—pp)=M —btr(a){ﬂo] (10.11)

Py

¢”and po denote the initial stress and pore pressure at the reference state of

deformation. A”and ,ub are Lame constants in drained conditions and b is Biot’s

coefficient.

Four parameters suffice to describe the linear poroelastic behavior: two elastic

constants in the drained condition (/1b and ,ub or equivalently drained Young’s

modulus E” Poisson’s ratio Vb) and two coupling parameters b and M . The
elastic constants may be identified in the framework of linear elasticity through
standard laboratory tests. As for determining the coupling parameters, we see that
microstructural analysis applied to saturated porous media leads to the following
intrinsic relations [COU 95; DOR 05]:
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_b-e, 0 (10.12)

K, and K, are respectively the compressibility modulus of the solid matrix and

the fluid. ¢ denotes the connected porosity. Using the constitutive relations of
poroelasticity, the following additional relationships may be obtained:

K,

bzi(l——b (10.13)
B, K

BsszM, K=K, +b’M (10.14)

Parameter K is the bulk modulus of a porous medium in undrained conditions,
which can be determined from the stress strain curve in an undrained hydrostatic
compression test:

K:(AG’”J (10.15)
ASV Am=0

where o, =tro/3 is the mean stress and &, =tre the volumetric strain. In the

same test, we can also measure the pore pressure generated by compressive stress,
leading to Skempton’s coefficient B as defined by (see (10.13)):

_ M
Bo=— (10.16)

m

An example of Skempton’s coefficient measurement is shown in Figure 10.1 for
sandstone [KAR 98]. In relation (10.12), K, is the drained bulk modulus, which

may be identified from the stress-strain curve obtained from a drained hydrostatic
compression test:

K, = (A"m] (10.17)
Ag, Ap=0

In Figure 10.2, typical stress strain curves are shown for drained hydrostatic
compression tests on sandstone [KAR 98]. In practice, it is often useful and even
recommended to perform a mixed hydrostatic compression test. In such a test, two
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loading phases are used: in the first phase, hydrostatic stress (confining pressure) is
increased by keeping the pore pressure constant. In the second phase, the pore
pressure is increased while the confining stress is kept unchanged. The volumetric
strain is measured in each phase. By applying the poroelastic constitutive relations
to this loading path, we can express Biot’s coefficient as a function of the volumetric
strain measured during the two phases by:

(Ag,)pq, =
- \v/A0,=0 (10.18)
(Ag,)Ap=0
Finally, note that the compressibility modulus of solid matrix K, is a micro-

structural parameter, unlike moduli, K; and K , which are macroscopic parameters.

In practice the modulus (or more precisely, the average value of compressibility of
the solid matrix) K, may be determined from a specific compression test in which

the confining stress and pore pressure are simultaneously increased with Ao, = 4p .

The following relation gives the value of K :

A
A8y ) gz, =p

(10.19)

An example of such a test for sandstone is shown in Figure 10.3 [KAR 98].
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Figure 10.1. Typical stress-pore pressure curve in undrained hydrostatic compression test on
sandstone used for the determination of Skempton’s coefficient [KAR 98]
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Figure 10.2. Typical stress strain curves in drained hydrostatic
compression test on sandstone [KAR 98]
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Figure 10.3. Typical stress strain curves in hydrostatic
compression test with A0, = Ap on sandstone [KAR 98]

10.3. Fundamentals of poroplasticity

In this section, we address fundamental features for modeling plastic behavior in
saturated porous media. More detailed discussions may be found in [BIO 73; COU
91; COU 95]. Within the framework of small disturbances in a porous medium
exhibiting elastoplastic behavior, the strain tensor and fluid mass change are divided
into an elastic and a plastic part as:

e=g+&, m=m® +m? (10.20)
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In practice, it is convenient to use a state variable homogenous with strain to
represent irreversible change of fluid mass. Thus the concept of plastic porosity is
introduced and defined by:

0" =m” /9 (10.21)

The thermodynamic potential for poroelastic medium is extended to include a
plastic process:

2
w(se,me,Vk)=g?nm+lse:C:se— ﬂo—qﬂ’ M(B:se)+lM ﬁo—q)!’ +w?(V,)
2 pr 2 pr

(10.22)

The termw”(V,) denotes locked energy due to plastic hardening, and is a
function of internal hardening variables denoted by the set V, (scalar for isotropic

hardening and tensorial for kinematic hardening). The standard derivative of the
thermodynamic potential leads to the constitutive relations of elastoplastic behavior
of a saturated porous medium:

6-6"=C":(e—¢")-B(p-p,) (10.23)
(P=po)=M| -B:(e—2")+| 0" (10.24)
Py

The fundamental Clausius-Duhem inequality for intrinsic dissipation is written
as:

6:&” +ph” —AV, 20, A, =;TW (10.25)
k

Complementary plastic laws are now required to determine the evolution rate of
basic state variables (£7, " ,Vk ). This may be done by establishing a (dual) plastic

dissipation potential. However, considering the time-independent process, plastic
complementary laws are defined by a yield function, a plastic potential in the case of
unassociated flow and a hardening function. The yield function is an indicative
function of a convex elastic domain; it is a scalar function of stresses and
thermodynamic forces associated with hardening variables, i.e.:
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f(o,p,A)=0 (10.26)

For most geomaterials with internal friction, hypothesizing generalized standard
materials are not verified. The normality rule for the plastic potential is therefore
invalid. We thus have to define a complementary plastic potential and a specific
hardening function verifying the dissipation condition (10.25), which could be
expressed in the following general form:

&r ZXM’ P ZXM’ A, =\i(e, p,A,) (10.27)
o P

The complementary plastic laws are constrained by Kuhn-Tucker conditions:
A0, f(o,p,A))S0, Af(o,p,A)=0 (10.28)

The plastic multiplier A>0 is determined by the plastic consistency
condition f =0.

The above formulation provides the general framework for elastoplastic
modeling of saturated porous media. Note that the yield function, the plastic
potential and the hardening law depend independently on the stress tensor, the pore
pressure and the conjugated hardening forces. The specific forms of these functions
can be found from relevant experimental data. However, experimental identification
is usually a difficult task, requiring a series of laboratory tests with complex loading
paths. In order to simplify the plastic modeling of porous media, the concept of
effective stress formulated in poroelasticity is extended to poroplasticity. Based on
the so-called stress equivalence principle, the basic idea is to extend the plastic
complementary functions obtained for dry materials to saturated porous media by
simply substituting an effective stress tensor for the nominal stress tensor. The
essential question is the validity of this concept in the plastic field and how to
determine the form of the effective stress. This feature is still an open topic although
experimental investigations and micromechanical analyses have been performed
[PIE 95; KHE 95; BUH 96; LAD 97; LYD 00]. The conclusion obtained thus far is
that the effective stress concept is generally not valid in the plastic field making it
impossible to define a general form for such an effective stress. Depending on the
microstructure of porous media, the validity of effective stress may be proven only
for a few specific cases. For example, for a porous medium with a solid matrix
obeying the Von-Mises criterion, we find that the traditional Terzaghi effective
stress is valid in the plastic field. In this case, the plastic functions may be
formulated with Terzaghi’s effective stress to take into account the effect of pore
pressure on plastic flow.
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For purely macroscopic considerations, some (unproven) kinematic hypotheses
may be formulated. For example, it is assumed that plastic porosity is proportional
to plastic volumetric strain [COU 91; 95], i.e.:

oF = pefh., Belod] (10.29)

Coefficient [ plays a role similar to Biot’s coefficient in poroelasticity, even
though its value is generally different. Given this assumption, the intrinsic
dissipation inequality becomes:

(6+Bpl):&’ —A, V, >0 (10.30)

In view of this, the quantity (¢+fpI) appears as the thermodynamic force
associated with the plastic strain tensor. In this sense, the term (¢ +fpl) is called

the effective stress tensor in the plastic field. Accordingly, the plastic potential may
be simplified as:

g(o,p, A =g(6” A), 67 =c+Ppl (10.31)

To complete the formulation, we need to assume that the yield function may also
be expressed with the effective stress tensor, i.e.:

f(6,p,A) = f(67,A)=0 (10.32)

Within the framework of the above assumptions, we may conclude that the
plastic modeling of saturated porous media is formally reduced to the plastic
modeling of an equivalent dry material. Finally we note that the value of coefficient
[ may be determined from specific laboratory tests [YAM 81; KHE 95].

10.4. Damage modeling of saturated brittle materials

Damage due to microcracks is known as an essential mechanism of the inelastic
behavior and the failure process in a large class of geomaterials such as rocks and
concrete. Over recent decades, a number of research works have attempted the
physical characterization and mathematical modeling of brittle damage. Different
types of constitutive model, based on either the phenomenological and
micromechanical approaches, have been developed. However, most of these
constitutive models only focused on damage in dry material subject to mechanical
loading. Damage modeling of saturated materials has been discussed more recently
and remains open to study. It is known that material damage affects not only
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mechanical behavior but also hydromechanical and thermomechanical properties
[FAU 91; CAR 98]. In this section, we present some representative results from
experimental data and numerical damage modeling in saturated porous media in
order to contribute some basic ideas to this large topic.

10.4.1. Experimental characterization

The purpose here is to show macroscopic consequences of microcracks on the
poromechanical behavior of saturated brittle rocks. A conceptional framework is
first defined for constitutive models of damaged porous media in order to explain
more clearly the experimental procedures followed and to interpret the results
obtained. For the sake of simplicity, an elastic behavior coupled with induced
damage is assumed. The damage evolution due to microcrack propagation is the
unique dissipation mechanism.

10.4.1.1. General methodology

In a fully phenomenological approach, the damage state is represented by
internal variables (scalar and tensorial) which may be formally denoted by D. The
damage variables have to take into account density and orientation of the
microcracks [KAC 93; LEM 96]. For the sake of simplicity, it is assumed that the
initial behavior of the undamaged material is linear elastic and that the response to
unloading at constant damage state is also linear elastic. Assuming the existence of a
thermodynamic potential, the constitutive relations of elastic damage behavior of
saturated porous media can be deduced in the same way as for dry materials. In a
general way, considering that damage affects elastic properties and poroelastic
coefficients, the constitutive relations of a damage porous medium in a saturated
condition may be expressed as follows:

c=C"(D):e-B(D)p (10.33)
M _B(D):e+—2P 10.34
o (D):e 47 (1034)

where €* (D) is the effective elastic stiffness tensor of a damaged material in a

drained condition. In the same way, the tensor of Biot’s coefficients B(D) and Biot’s
modulus, M (D) are also functions of damage variables. It is convenient to use the

porosity variation as a state variable instead of the change of fluid mass (m/ pg-) .
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Thus, the free skeleton energy may be separated from the free fluid enthalpy.
Relation (10.34) becomes:

0—0y=B(D):e+B(D)p (10.35)

Coefficient S(D) thus defines the compressibility of the pores, which is also a
function of the damage state.

The time derivative of equations (10.33) and (10.34) gives us the incremental
forms of the constitutive relations:

de = S" (D) : do + H(D)dp (10.36)
dm * dp

Z-H'(D):do+ 10.37
o7 (D):do D) (10.37)

The fourth order tensor $” (D) denotes the tangent elastic compliance of a
damaged material in drained conditions, and the second order symmetric tensor
H(D) defines strain variations due to changes of pore pressure. H*(D) is also a
second order symmetric tensor producing stress induced change of pore fluid.
Finally, scalar modulus L(D) gives the relationship between the variation of pore
pressure and fluid mass change. It is clear that all the tangent coefficients are
functions of the damage state.

We thus assume that there are three symmetry planes in damaged materials,
which means that the effects of randomly distributed microcracks may be considered
as equivalent to those of three orthogonal microcrack families [KAC 93]. Therefore,
it is possible to define three principal directions of damage state, and in the principal
damage framework, the tangent compliance tensor S” (D) may be written in the
following matrix form:
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(10.38)

Coefficients E,ft and vfj’-’ are the Young’s moduli and Poisson’s ratios of the

damaged material in drained conditions respectively, while Gitl- are the shear

moduli. In a similar way, the coupling coefficient tensor H (D) may be expressed

as:
0w o
Hl
1
HD)=| 0 — 0 10.39
(D) i, ( )
L Hj |

In rock mechanics, basic laboratory tests are usually performed on cylinder
samples. In this particular case, a transversely isotropic behavior is assumed. If
axis x; is parallel to the cylinder axis, we obtain the following relations:

bt bt bt bt bt t t
EY = EY vl =vih Vi =vi vl =Vl Gy =Gy, Hy = H (10.40)
and the incremental constitutive equations are written as:
Vo 1
de;; =——do;; -2 do,, +—dp (10.41)
fnt gt H1
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bt bt
d¢922 =d£33 Z—%d(j]]‘l' ]— d0'22 +—dp (1042)
Ej EY H;
d—’;’,— (10.43)
Ly Hi H,

The above equations may be inverted to give incremental stresses versus
incremental strains and pore pressure:

bt
d0'22 =[ EZ J(dgzz +V2] dg]]) b2 dp (1044)
1=2v3 v —v5S

bt bt bt
2 E; 2 E
doy; =(E5” VZ[ i b Jdall *{ v dezz ~bjdp
1-2v5 v - v 1-2v5 v —vh

(10.45)

The two Biot coefficients bf and bé may be given in terms of measurable

quantities:
bt bt
E 1-v5% v
bj = L 5, 2o (10.46)
1- 2V21V12 V>3 H] H2
bt bt
E5
bh = (V” +Lj (10.47)
1- 2V2] V]Z V23 H] HZ

Thus, in the case of axisymmetric conditions, the tangent poroelastic behavior of
damaged porous media are determined by 8 independent parameters, which are

bt bt bt bt bt
dependent on the damage state. These parameters are E;" , E> , Viy, Va5, V33,

G/,, H;and H, . The tangent Biot’s coefficients may be determined from relations

(10.46) and (10.47). Therefore, experimental investigations consist of evaluating the
8 parameters for different states of damage.
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Type of testing Loading condition | Constitutive relations | Measurable
coefficients
d0'22 =do =0 1
. . 33 dejp=—rdoy;
Drained triaxial E f gbt bt
compression 1721
_ bt
(with and without dp=0 dérs = Vor d
: Exp=——-4d0])
unloading cycles) E;’t e
1
dO']I #0 dm 1
7= w901
P03 H
dO']] =0 21/573
Increase and decrease dejp=- bt doss -yt
cycles of radial stress o033 3 bt23
) . . dp=0 bt E3
in drained triaxial I1-vy;
com . d£‘33 = b d0'33 bt
pression E3t v,
L2 H;
d0'33 =d0'22 #0 dm 2 Eé’t
— = +4033
o 2
doj;=0
11 dE]] = —dp
Increase or decrease of pore 1 H; Hj;
pressure during triaxial ;
compression (drained or doz3 =doy; =0 dez3 =—dp
undrained) L
dm
dp#0 A

Table 10.1. Loading conditions and coefficients measured in various tests

Generally, four typical loading paths may be performed:
— drained triaxial compression test with and without unloading cycles;

— drained triaxial compression test with increase of pore pressure at different
levels of deviatoric stress;

— drained triaxial compression test with extension of radial stress at different
levels of deviatoric stress;

— undrained triaxial compression with decrease of pore pressure at different
levels of deviatoric stress.
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In Table 10.1, we summarize the loading conditions, the constitutive relations
concerned and the measurable coefficients for various loading paths.

10.4.1.2. Some representative results

We present here some typical results obtained from sandstone. It is composed of
95% quartz and the average porosity is about 20% [KAR 98]. This material is
extensively studied due to its quite homogenous microstructure and sensitivity to
induced damage. The typical mechanical behavior of sandstone has been
investigated in [IKO 90, KHA 95, KAR 00]. In this section, only the
poromechanical behavior is discussed. The main purpose is to show the
consequences of damage on the poromechanical response of a damaged material.
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Figure 10.4. Variation of axial and radial strains with pore pressure at different values of
deviatoric stress [KAR 98]

A first series of results has been obtained from a triaxial compression test in
which pore pressure was increased at different values of deviatoric stress. In this
test, the sample was first subjected to a conventional triaxial compression phase
until a given value of deviatoric stress was reached. Then, the axial and radial
stresses are held constant and fluid is injected into the sample. The pore pressure
magnitude was limited to a third of the confining pressure in order to avoid extra
propagation of microcracks. Invoking microcrack space distribution, the purpose of
this test was to show induced anisotropy of poromechanical behavior. Several tests
have been performed by [KAR 00]. The results obtained from a test with a confining
pressure of 30 MPa are shown in Figure 10.4.

We can see that if the increase in pore pressure is performed at a level of
deviatoric stress larger than the damage threshold, further propagation of
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microcracks is generated by the increased pore pressure. Accordingly, the variations
of the axial and radial strains are non-linear and anisotropic ( 4de; # Ae3). However,

if the injection is performed at a level of deviatoric stress lower than the damage
threshold, i.e. inside the elastic domain, linear and isotropic strains are obtained
depending on the increasing pore pressure (Ae; = Aez). The results obtained from

the series of tests appear to agree with this analysis. As most microcracks are
oriented along the axial direction, the variation of axial strain is always smaller than
that of radial strain. The difference between these two orientations is intensified as
the level of induced damage increases. Furthermore, for a very high level of damage,
a compressive incremental strain may be obtained in the radial direction due to an
increase of pore pressure. This indicates a very strong induced anisotropy by
microcracks. Using the initial slope of the strain variation curves at the beginning of
the fluid injection, we can determine the coupling parameters ( H;, H, L ) as defined

in the previous section [KAR 00].

A second example involves an undrained triaxial compression test. In the first
stage, the sample is subjected to conventional undrained compression until a given
value of deviatoric stress is reached. Pore pressure is progressively generated by
applied deviatoric stress. Then the pore pressure is decreased and axial and radial
strains are measured. Note that the diminution of pore pressure corresponds to
elastic unloading, leading to linear elastic strain responses. However, the initial
slopes of strain curves represent the effective poroelastic behavior and should thus
depend on the damage state (or equivalently on the level of deviatoric stress
applied). In Figure 10.5, strains and pore pressure are presented as dependent on
deviatoric stress. The pore pressure increases at a first stage and then decreases in a
second stage. Such a decrease in pore pressure is a consequence of volumetric
dilatation induced by the growth of microcracks. In Figure 10.6, strain variations are
shown with the decrease in pore pressure. Clearly, linear variations are obtained and
the slopes of the curves become smaller as the level of deviatoric stress increases.
Moreover, the slope of the radial strain is much smaller than that of the axial strain.
This seems to confirm induced anisotropy of poroelastic behavior of damaged
material.
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Figure 10.5. Strains and pore pressure versus deviatoric stress
in an undrained triaxial compression test [KAR 98]
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Figure 10.6. Variations of axial and radial strains with pore pressure decrease during
undrained triaxial compression test [KAR 98]

Finally, an example is given to show the determination of the tangent Biot’s
coefficient during a drained triaxial compression test that uses the procedure
presented in the preceding section. However, a geometrical limitation is placed on
cylinder samples. Due to geometrical symmetry, it is impossible to distinguish radial

and tangential directions. For example, as it is impossible to determine v% and then
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deduce Eé” and v% (see Table 10.1), a strong simplification is usually introduced.

It is assumed thatv% =v3 in order to estimate the tangent Biot’s coefficients.

Representative results are given in Table 10.2 for a test performed with a confining
pressure of 20 MPa [KAR 00]. From these results, the following observations are in
order:

— at a low level of deviatoric stress, the values of tangent Biot’s coefficients are
smaller than the initial value obtained from a hydrostatic compression test (around
0.8) [KAR 00]. This decrease in Biot’s coefficient may be related to the closure of
the initial microcracks by applied deviatoric stress. The fact that the decrease in the
axial direction is larger than that in the radial direction is in agreement with this
analysis;

— after a short phase of decrease, the tangent Biot’s coefficient in the radial
direction increases continuously, as a consequence of the growth of microcracks
which are essentially oriented in the axial direction;

— the tangent Biot’s coefficient in the axial direction continuously decreases until
a high level of deviatoric stress is reached and starts to increase only when the
deviatoric stress is close to peak strength. This clearly indicates an anisotropic
distribution of microcracks which generates an induced anisotropy in the tangent
Biot’s coefficients.

01-03 27% 39% 52% 63% 74%
(o] - 0'3)pic
B 0.434+.042 | 0.368+.037 | 0.355+.036 | 0.296+.036 0.306+.037
1
avl /bt 9.6% 10.1% 10.2% 12.3% 12.1%
M 0.611+.042 | 0.593+.040 | 0.606+.041 | 0.675+.046 0.770+.054
2

db, /b, 6.8% 6.8% 6.8% 6.8% 7.0%

Table 10.2. Tangent Biot’s coefficients for different values
of deviatoric stress (Pc=20 MPa) [KAR 98]

10.4.2. Numerical modeling

This section is now devoted to constitutive damage modeling in saturated porous
media. The general framework is first exposed, and an example of a constitutive
model is then presented. Note that only phenomenological approaches will be
discussed here.
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10.4.2.1. General framework

Under phenomenological approaches, damage is represented by internal
variables. In order to describe anisotropic damage, tensorial damage variables are
needed. Second and fourth order tensors are generally used. For the sake of
simplicity, only a second order symmetric damage tensor is involved here [KAC
93], which can be decomposed to a spectral form with its three principal directions:

3 . .
D=YD;V'®V! (10.48)
i=1

where 7' is the unit vector normal to the " family of microcracks and D; denotes

the microcrack density. By adopting this representation, we can see that the
damaged material exhibits an orthotropic behavior defined by its three principal
directions.

In a direct formulation, the state variables used are strain tensor &, Lagrangian
porosity change (¢—¢,) and damage tensor D. The thermodynamic potential is

split into two parts, the free energy of the skeleton and the free enthalpy of the pore
fluid:

V(E0-0,,D) =y, (,0-0,,D)+v , (10.49)
The basic Clausius-Duhem’s inequality is written as:
O, =6:&+pd—, =0 (10.50)

The standard derivation of thermodynamic potential (10.50) leads us to the
following state equations:

o=V 9V ya_ 0V, (10.51)
Jde a0 oD
In order to specify the expression of the free energy function, some assumptions
need to be made. The initial behavior of the undamaged material is linearly elastic
and the anisotropy is entirely induced by the directed distribution of microcracks.
Moreover, linear poroelastic behavior is also assumed for a constant damage state.
Thus, the free energy of the skeleton is in quadratic form on € and ¢. Finally,

neglecting interactions between microcracks [KAC 93, HAL 96], the
thermodynamic potential is linear in D . Thus, by extending Biot’s poroelasticity,
the following form of the thermodynamic potential is proposed:



396 Constitutive Modeling of Soils and Rocks

v, =+, :%SICW(D)iS—(q’—%)(BO 18)+%N0(¢—¢0)2
(10.52)

~CP(0-p)(D:€) +%c;” (D)0 —dg)* = CT (0~ ) (trD) tre

Second order tensor B’ and scalar coefficient N denote poroelastic

coefficients of undamaged material. Three parameters c?, C? and C? are
introduced to characterize the influence of damage on poroelastic coefficients.

Fourth order tensor C* denotes the effective elastic stiffness of the damaged
material at constant porosity. From (10.52), the thermodynamic force associated
with damage can be deduced, which is a second order tensor depending on the
strains and variation of porosity. In practice and in view of experimental
identification, it is more convenient to use pore pressure as a driving variable instead
of the change of porosity. Thus, it is proposed to write a complementary formulation
through a partial Legendre transformation with respect to the change of porosity.
The thermodynamic potential takes the following form (the reference pore pressure
is zero for convenience):

v =y - p(0-0) =V, (e, p.D)+y (10.53)

. . 1 1
vy = v v, =58erd re-p(A° :8)—5501’2

| (10.54)
-ct (D:s)p—ECzp (D) p* -C{ uDtre p
Accordingly, the state equations are given by:
a ¥
o:%:cbd :s—[AO +CPD+CY trDIJ p (10.55)
a *
0—0p = ——a“]’; [ A+ CD+Cp oD e[ B+ CL D] p (10.56)
dwdl L wd2 OV » 1 ., 2 p
Y =Y"+Y =—a—D+C1 pS+EC2 p I+C3 pﬂ”SI (1057)
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We can easily see that the second order tensor A is the initial Biot’s coefficient

tensor and that ﬂo is the initial coefficient of pore compressibility. Three

parameters C¥, C4 and C{, which are respectively dual to C;/j, C? and C?,
characterize the influence of damage on poroelastic coupling coefficients. Fourth

order tensor C”? denotes the drained elastic stiffness of the damaged material. In
(10.57), we can see that the thermodynamic force associated with damage is
independently related to strain and pore pressure.

Comparing (10.55) and (10.56) with the standard linear anisotropic poroelasticity
[THO 91; CHE 97], we may deduce the following relations:

4;(D) = 4) +C D; +CY trDY, (10.58)

B(D) =p" +C? 1D (10.59)

These relations clearly define the poroelastic coefficients of material with
induced damage. Three coefficients should be determined from relevant
experimental data. However, a micromechanical analysis allows some theoretical
estimation to be made. In fact, the application of homogenization techniques on
porous media shows that the poroelastic properties are directly related to those of the
constituents and to the microstructure [DOR et al. 06]. For example, for initially
isotropic materials, we obtain [LYD 00]:

1
4; =8 —ﬁcg,‘fléikl (10.60)
S
1 (1
BZK—(EIV(A)—¢]ZO (10.61)

where K is the compressibility modulus of the solid matrix. According to these
relations, identifying the poroelastic behavior can lead to the determination of

effective elastic properties of the damaged material C bd (D).

The evolution of the damage variable is determined by a pseudo-potential of
dissipation. In the case of time-independent dissipation, the dissipation potential
becomes an indicative function of the convex elastic domain and its boundary is
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defined by the damage criterion in the space of the thermodynamic forces conjugate
to damage.

£, (Y D)<0 (10.62)

and the damage evolution law is:

. dfy
D=x, 2ld (10.63)
9 vd

Parameter A; 20 is determined by the damage consistency condition

Ay fd = 0. The damage dissipation is verified by the fundamental inequality:

Y :D>0 (10.64)

The specific form of the damage criterion should be based on relevant
experimental investigation. However, it is noted that experimental identification is
generally a delicate task.

10.4.2.2. An example of a damage model

An example of an anisotropic damage model for saturated media is presented. As
previously mentioned, the essential step is to determine the effective elastic stiffness
tensor of a damaged material. Based on the previous works by Kachanov [KAC 93]
and Halm et al. [HAL 96], the following free energy function of the dry skeleton
material (without fluid) may be used:

A
vl = 70(”8)2 +Wotr(e€)+a tretr(e.D) + a, tr(ee.D) (10.65)

where A, and p, are Lame’s elastic constants of undamaged material. Two
parameters a; and a, characterize the degradation of elastic properties due to

damage. From the derivative of (10.65), the effective elastic stiffness of damaged
material can be deduced:

bd _ b0
Cijtr = Cjia + a1(d;; Dy + Dy 84)
(10.66)

o)
+7[6ikDﬂ + BﬂDjk + Dl-ij, + Di,8jk ]
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C?° denotes the initial elastic stiffness tensor of undamaged material and the
thermodynamic force associated with damage is given by:

Y¢ = Y9 4 Y9? =—q,(tre)e—a, (€€)
» 1 5 (10.67)
+Cf p£+5C§p I1+CY pirel

Note that the thermodynamic potential given in (10.65) is a simplified version of
a more general expression deduced from micromechanical analysis [PEN 05]. In this
simplified version, unilateral effects have been neglected. Since experimental
identification of the damage force is generally difficult, a pragmatic approach for
determining damage evolution is preferred. Based on the principles of linear fracture
mechanics, we propose to relate the damage evolution to the propagation of
microcracks. Therefore, the damage tensor components are expressed as:

N ~ ~
D=ka(rzf—ro3)(ﬁ®ﬁ)k,rk=%", r0=%° (10.68)
k=1

where a; and my, are, respectively, the average length and number (density) of the

K" family of microcracks, with 7, being the unit normal vector. In this definition,
an initial isotropic distribution of microcracks with the average length a, is
assumed. Parameter b defines a critical length of microcracks for coalescence.

A crack propagation criterion remains to be defined. In the spirit of fracture
mechanics, this criterion is formulated with applied stresses and pore pressure.
Based on the work by Costin [COS 87], it is assumed that any family of microcracks
can be replaced by a fictitious single crack subjected to mode I propagation. The
propagation is controlled by the deviatoric stress field which is the driving force for
propagation and the hydrostatic stress which acts as a confining effect. For instance,
the following criterion is proposed:

\/;[G;,T+f(r)(ﬁ.S.ﬁ+a3(l—r)p)}—C,, =0 (10.69)

ol =iioT ii=ii(c+pl)i, S=6-(oy /3)1 (10.70)
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Tensor o7 denotes the effective stress defined by Terzaghi. The corrective
term (/—r)p is introduced to describe an anisotropic effect of pore pressure on

crack propagation. Parameter C, defines material resistance to propagation.
Function f(r) plays a double role in this criterion. It first defines the

proportionality between the macroscopic deviatoric stress field and the local tensile
stress. Secondly, the variation of f(r) describes the material hardening/softening

during crack propagation. It increases monotonically when the crack density is
smaller than (7 < 7). After this critical point (»>1), it becomes stationary (as in
perfect plasticity) or decreases (as in strain softening) to produce an unstable crack
propagation. The specific form of function f(r) may be experimentally and

numerically determined. As a first approximation, the following simple function
may be used:

tlr, r<l

f(r):{ (10.71)

t , r2l1

The detailed procedure for determining the model’s parameters is given in [BAR
00].

In Figure 10.7, a simulation example is shown, corresponding to a drained
triaxial test with stages of pore pressure increase at different levels of deviatoric
stress, as previously mentioned. In order to study the influence of the pore pressure
on the crack propagation criterion, two comparative simulations have been
performed, with (a3 # 0) and without (a3 = 0 ) respectively, taking into account the

anisotropic effect. From these results, we can first conclude that linear poroelasticity
is not able to describe the experimental evidence, even in a qualitative way. The
results obtained by the anisotropic damage model are qualitatively in agreement
with experimental data. The numerical predictions are significantly improved by
taking into account the anisotropic effect of pore pressure.
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Figure 10.7. Variation of axial and radial strain with increase of pore pressure -
comparisons between numerical predictions and experimentale data for two values of
deviatoric stress (46 and 112 MPa) under a confining pressure of 30 MPa. triangle —

experiment, square — proposed mode as # 0 I, rhombus — simplified model with a3 =0,
circle — linear poroelasticity, from [BAR 00]

10.5. Conclusion

Some basic features for damage modeling in saturated porous media have been
presented. Basic experimental investigations have also been discussed. However,
this topic is still an open issue. Recent advances have been made in recent years both
in phenomenological approaches and micromechanical analyses.
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Chapter 11

Parameter Identification

11.1. Introduction

The use of a constitutive model, particularly in finite element calculations for
geotechnical problems, requires a methodology to be developed which identifies
parameters, adapted to both the internal structure of the model and the available test
data. The identification method must lead, so far as possible, to an objective
determination of the model parameters, which means that it has to be user
independent. In most cases, it consists of a better use of the available experimental
data in order to obtain a set of parameters that is the best compromise for the
model’s response along all the known loading paths. According to the problem
which has to be treated, this compromise can give more importance to the response
along specific loading paths.

Developing such a methodology for a given model requires at first an analysis of
all the parameters, their physical meaning, their possible value interval, and their
eventual link with the usual geotechnical parameters. They can usually be divided
into two groups:

1) parameters having a direct link to experimental behavior: for example, the
Young’s modulus and the Poisson’s ratio in elasticity, the friction angle and the
dilatancy angle in plasticity;

2) “numerical” parameters: for example, in the case of an elastoplastic model,
the parameters controlling the shape of the yield surface or the evolution of the
hardening variables.

Chapter written by Pierre-Yves HICHER and Jian-Fu SHAO.
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The determination method can vary from one group to another. For the first
group, a direct approach based on the experimental curves in well controlled
laboratory tests, such as triaxial and oedometer tests, is usually possible and
straightforward. However, it has to be well controlled and in agreement with the
concepts at the basis of the model. For example, the definition of the friction angle
in the Mohr-Coulomb elastic-perfectly plastic model is different from the one in the
Cam-Clay model or any derived model such as Hujeux’s model (see Chapters 3 and
4). In the first case, the model introduces the peak friction angle, while in the second
case, we use the friction angle at the perfect plasticity state (critical state). These two
angles are the same for contractant materials, but are different for dilatant ones.

Another example concerns the determination of the elastic modulus for every
elastoplastic model. It is now well established that the elastic domain for a soil is
restrained to very small deformations (< 107 to 10™). Therefore, the elastic
properties can be measured only with specific tests (instrumented triaxial cells,
resonant columns, etc.). Conventional elastic parameters are measured from
traditional tests at higher strain amplitudes, usually around 107, It is in that case
better to use an unloading curve whenever it is available rather than the initial slope
of the loading curve, which corresponds to the development of plastic as well as
elastic strains. The moduli measured in that case are much smaller than those
obtained in very small deformations and cannot be used in analyses requiring small
strain amplitudes, such as seismic case studies for example. We have to remember
that, even for high stress levels, the value of the elastic modulus can play a non-
negligible role on the overall response of a non-homogenous boundary value
problem, as shown in [DAR 95]. In the parameter identification process itself, the
choice of the elastic parameters can influence the determination of some other
parameters, in particular the “numerical” parameters. This is particularly true when
the identification procedure is conducted using stress paths along which the model
response is strongly influenced by the elastic constants. This is not the case for a
drained triaxial test, but is for an undrained triaxial test. In this loading, the
condition of no volume change corresponds for the elastoplastic response to the
relation de, + de,” = 0, which means that the amplitude of the plastic volumetric
strain is of the same order of magnitude as the elastic one, leading to a marked
influence of the elastic parameters on the model response.

The determination of the “numerical” parameters usually requires a method
adapted to each model. They can be classified under three categories: analytical
methods, correlation methods and optimization methods.
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11.2. Analytical methods

These methods involve using the mathematical formulation of the model
equations in order to obtain a set of analytical expressions leading to a system of
linear equations whose unknowns are the required parameters. Usually, these
equations correspond to particular stress and strain states, such as the peak or the
asymptotic value of the deviatoric stress, the change in sign of the volume change
increment or the inflection point in the volume change curve, the instant slope
values at different points of the stress-strain curve, etc.

It is a simple approach which has the advantage of staying close to the model’s
inner structure and which provides good results if the set of experimental results
does not present strong incoherency. It has been used with success by different
authors; see for example the work of Mestat et al. [MES 00] with Nova’s
elastoplastic model.

This approach can be enriched by the analytical study of the plastic yield
condition, verified by a large number of experimental points, which enables a well
written set of parameters to be obtained by an appropriate statistic treatment. Based
on this method, Laigle developed a program for determining Hujeux’s model
parameters, called DELUGE.

The least squares methods, which can also be classified within this kind of
approach, consist generally of using simple, often linear, relations in well chosen
diagrams in order to obtain a direct determination of one of the model parameters
(for example the slope of the linear relation). We can cite the work of Duncan and
Chang [DUN 70] who transformed a hyperbolic relation into a linear one; the work
of Lade [LAD 88] adapted to his model; the work of Kolymbas [KOL 91] for his
hypo-elastic model. However, not all the constitutive models are adapted to the use
of such an approach and we have to be careful with the use of some diagrams which
can amplify the effect of experimental errors.

11.3. Correlations applied to parameter identification

Until now, empirical correlations have successfully offered some links between
the physical properties (nature of the constituents, grain size distribution, etc.) and
the mechanical properties of soils. Most of the common parameters used in soil
mechanics have thus been related in this way to parameters linked to the nature of
the materials. A methodology of connecting properties of the discontinuous medium
and properties of the equivalent continuous medium has been developed by Biarez et
al. [BIA 77 BIA 89, BIA 94]. Some results are presented in Chapter 2. This
approach has been extended to the determination of constitutive model parameters
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by Hicher and Rahma [HIC 94]. The main objective of this method is not to replace
the experimental determination of the parameters, but to give a first estimate of a set
of parameters for a given soil, which can afterwards be used as an objective initial
set for a more precise determination, as for example in an optimization procedure
(see section 11.4). The correlation framework can also provide us with the value of a
given parameter when the available data is not sufficient to obtain the entire set of
parameters. It can also allow us to take into account the special heterogenities of a
natural soil deposit.

We present here an example of the construction of correlations applied to the
determination of the parameters of Hujeux’s model (see Chapter 4). The setting up
of correlations between physical and mechanical properties consists of creating an
implicit link between characteristics of the discontinuous medium (DM) made of
grains and those of the equivalent continuous medium (CM). The mechanical
properties of the latter will thus depend on a set of parameters representative of the
discontinuous medium which can be classified into different groups:

1) mechanical properties of the grains:

— mechanical properties of each individual grain. For most purposes, linear
isotropic elasticity can be assumed (two parameters E, and v,). If not, a more
complex constitutive model has to be developed with plasticity, damage, etc. This is
particularly the case for elevated stresses when grain ruptures take place.

— mechanical properties of the contact between grains: intergranular friction (one
parameter of friction @) and possibly intergranular glue (see Chapter 2).

2) geometrical boundary conditions:

— grain geometry: shape characterized by the angularity coefficient, the surface
state, etc.; the size and grain size distribution characterized by several parameters
(dgo, deo, deo/dio, etc.);

— arrangement of the grains: the compacity of the arrangement can be
represented by a scalar, such as the void ratio e or the porosity n. The anisotropic
aspect is more complex to define. We can use for example the statistical orientation
of the tangential planes at grain contact or the fabric tensor.

These different parameters, representative of the discontinuous medium, can be
classified into two categories: a set of parameters which can be considered as
constant in the absence of grain ruptures, called nature parameters; parameters
representative of the grain arrangement which evolve with the loading history. Table
6.1 summarizes the different elements and allows us to propose a basic equation for
the construction of correlations:

NATURE (DM) + COMPACITY (DM) — RHEOLOGY (CM)
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Table 11.1. Relations between discontinuous and continuous media

As it is difficult to identify all the parameters representative of the discontinuous
medium, the nature of soils can be synthesized by a particular arrangement of the
constituents in response to suitable normalized mechanical tests: maximum and
minimum void ratio e, and e,; for sands, Atterberg’s limits w; and w, for fine
soils. These nature parameters can be combined with a parameter representative of
the grain arrangement:

density index Ip = (€max — €)/(Emax — €min) O consistency index I, = (w; — w)/(w; — wy)

These mixed parameters are representative of the mechanical state of the
discontinuous medium and the second basic equation can be written as:

MECHANICAL STATE (DM) - RHEOLOGY (CM)

Given this approach, it is possible to construct correlations either between
parameters representative of the discontinuous medium, for example between nature
parameters and mixed parameters, or between parameters of the discontinuous
medium and parameters of the continuous medium. In the latter case, we have to
distinguish between parameters independent of the grain arrangement: which are
sometimes called intrinsic parameters, and parameters dependent on both nature and
arrangement which evolve with the mechanical state. In particular, they are
dependent on the initial state of the material at the beginning of the loading and thus
have to be calibrated according to this initial state.
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Along these lines, Hicher and Rahma [HIC 94] have developed correlations
applied to the determination of parameters of Hujeux’s model (see Chapter 4) in
a simplified version called Cyclade [AUB 82]. This simplified version contains
10 parameters which can be classified in two groups:

1) parameters directly related to experimental behavior: E, v and » for non-linear
elasticity; £ p.p and ¢ for perfect plasticity;

2) “numerical” parameters: b which controls the shape of the yield surface, 7
which defines the initial size of the elastic domain; @ and « which control the
evolution of the hardening variables.

21 sands, with a large variety of physical properties, were selected from the
Modelisol database [FAV 91]. Around 150 drained and undrained triaxial tests were
available for these 21 sands, tested at different initial densities. For each material,
the same procedure was used for parameter determination. Parameters of group 1
were first measured as closely as possible from experimental data. Parameters of
group 2 were then estimated using an optimization programme called Adelap [MEI
92]. The quality of the numerical simulations was estimated according to certain
criteria, such as the initial slope, the peak and plateau levels, the peak abscissa of the
stress-strain curve and the amplitude of the contraction and dilatancy of the
volumetric change curves. Figure 11.1 presents an example of numerical simulations
of drained and undrained triaxial tests on Ham River Sand [BIS 66] with an
optimized set of parameters. Only two parameters £ and p. are dependent on the
initial state of the material, all the others are considered as intrinsic and depend only
on the soil physical characteristics.
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Figure 11.1. Numerical simulations (dashed lines) of drained and undrained triaxial tests on
Ham River Sand. Experimental data (continuous lines) after [BIS 66]; parameter
identification by optimization procedure
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Correlations were then constructed by using a statistical approach composed of
two methods: the principal component analysis and the multiple regression analysis.
They gave mathematical links between model parameters and parameters of the
discontinuous medium with a probability in a confidence range estimated at 95%.
Correlations for elasticity and perfect plasticity parameters already exist [BIA 94],
the main interest of this approach lies in its capacity to produce correlations for the
“numerical” parameters. As an example, the results obtained for parameters b and a
are presented below.

Parameter b controls the shape of the yield surface. It can vary between 0 and 1.
For b = 1, the shape is similar to the yield surface of the Cam-Clay model. Values
close to 1 are therefore suitable for clayey materials. For » = 0, we obtain a Mohr-
Coulomb type yield surface. Therefore, small values of b (b < 0.3) are more suitable
for sandy materials. In this study, all the tested materials being sands, obtained
values of b were all located between 0.1 and 0.3. The principal component analysis
showed a strong dependency with e, e, and the grain size distribution, in
particular d;y. This last parameter indicates that the percentage of fine particles has a
significant influence on the shape of the yield surface. The proposed relation is the
following:

b =0.5€mx — 0.84€ i, — 0.02d;o(mm) + 0.2 R =0.93

Parameter a controls the evolution of the hardening variable, which is a function
of the deviatoric plastic strain. It thus has a great influence on the non-linearity of
the stress-strain relationship. For sands, its values are between 10~ and 107, The
principal component analysis showed a strong dependency with the grain size. The
correlation equation takes this effect into account by means of the mean size
coefficient dgy, completed by a parameter which can be related to the whole
granulometry range, here e,

loga = 0.35logdgo(mm) + 0.93e,,;, — 3.37 R=0.97

In order to validate this approach, an a priori determination of the model
parameters based on these correlations was performed for a sand outside of the
database. Elastic parameters and the friction angle were determined directly from the
experimental curves while the other parameters were determined by using the
correlation equations. The result of the simulation, presented in Figure 11.2, is quite
satisfactory and has been improved in a second step using an optimization
technique. The final value of each parameter is well located within the standard
deviation obtained by the statistical analysis.
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Figure 11.2. Validation of correlations: a) initial set of parameters, b) optimized set of
parameters. Continuous lines: experimental results, dashed lines: numerical simulations

This method has been applied with success to other materials [DAO 99]. The
construction of correlation models provides a priori an initial set of parameters and
facilitates the use of an optimization technique by reducing the variation interval of
each parameter for any given soil. It is also a very useful complement to a
determination by inverse analysis (as will be seen later in this chapter).

11.4. Optimization methods

When some of the model parameters cannot be determined either by direct
analysis of the experimental curves or by an analytical method, the usual approach
to attempt them is by curve fitting. However, this is often time consuming and the
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result can be strongly user dependent. We thus have to develop methods which are
more objective and this is usually done by means of an optimization technique
coupled or not to a statistical analysis which takes into account any experimental
errors. This approach is based on the inverse problem theory [TAR 87]. The
optimization process consists of minimizing a given function, called the cost
function, which depends on the whole set of parameters and measures the distance
between experimental results and numerical simulations.

The database can be diverse in origin. The first approaches in soil mechanics
[MEI 89, PIC 91, SHA 91] were developed for laboratory test data, mainly drained
and undrained triaxial tests. In recent years, in situ testing data, mainly pressiometer
tests, have been included [CAM 93, HIC 96, ZEN 01, RAN 03, YIN 07].

11.4.1. Numerical formulation

Traditionally, we would resolve a mechanical problem by calculating response R
of a mechanical system S subjected to actions 4. This can be written:

actions (X) — system (S) — response (R)

System S includes constitutive model M and its parameters P. These problems,
known as direct problems, can be mathematically expressed by:

R=F (P, X, B,C)

where F represents a functional calculus connecting R (to be determined) to S
(known), B represents all the boundary conditions of the problem and C all the
constants of the problem, such as the initial state.

In the inverse problem, one part of the information constituting system S is
unknown. In the case of parameter identification, parameters P of constitutive model
M are unknown. Therefore, we need complementary information which is given by
our knowledge of response R (or at least a part of it), corresponding here to
mechanical test results. The inverse problem is thus defined such that:

P=F'(R* X,B, C)

where R* represents a set of experimental data. It is usually impossible to obtain an
explicit solution to this equation which requires the construction of an optimization
procedure, consisting of minimizing the difference between the experimental data
R* and the calculated response R¢.
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The inverse problem, as defined above, is mathematically formulated by
introducing a “cost” function which measures, for a given set of parameters, the
distance between the model simulation R and the experimental response R* made
of a series of experimental data. This “cost” function L can be written:

L =3,NL; with N: number of tests in the database
Li = 1(t; - to)lio"l | R*(t) - Re()l | dit

where the notation || .. /| represents a norm in the space variable, ¢; — ¢, is the time
of observation and R*(#) — Rc(t) is the difference at time t between experimental and
numerical data for tests .

In practice, the experimental data correspond to a set of discrete data obtained at
specific times. Thus, the integral in the previous equation can be replaced by a sum
of the number of measurements. The “cost” function is thus defined by using a
Euclidean norm and by introducing a weighting matrix D:

Li = 1/mZ, ™ (R*(t) — Re(t)) DR*(t) ~ Re(t))
with m; the number of observation times ¢ for test i.

Diagonal weighting matrix D is introduced to transform the observable variables
into adimensional quantities. The quality of the measure is taken into account at this
point by choosing as diagonal terms in this matrix the square of the inverse of the
error estimate, within the measure of each variable. Thus, the weighting coefficients
can be defined in an objective manner, which enable us to give more weight to
values measured with good accuracy.

It is also possible, in the definition of the “cost” function, to attribute a given
weight to each test. We can therefore give more importance to specific loading
paths, closer to the actual problem, or penalize some tests which are considered as
being of poor quality. We can also give more weight to certain parts of the
experimental curve in order to assure a better determination of some given
parameters.

Different numerical methods have been proposed for the resolution of a
minimization problem. We can find in Tarantola [TAR 87] the description of the
most commonly used methods. Among them, the Gauss-Newton method seems to
be well adapted when response Rc is a derivable function of parameters P, which is
the case for determining model parameters from laboratory simple tests or from non-
homogenous tests which can be described by an analytical solution (see following
section). The numerical treatment of the minimization problem can lead to several
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solutions or to a solution which is physically unacceptable (values of parameters
outside the current intervals). In particular, the function can have several local
minima and under these conditions, the calculation procedure can converge towards
a different solution according to the initial set of parameters. To overcome this
difficulty, it is necessary to start the numerical process with an initial set of
parameters well adapted to the nature of the material. For this purpose we can use
one of the methods described earlier (analytical method, correlations, etc.) and/or
base the choice on the previous knowledge of the model users.

Before starting the optimization procedure, it is also necessary to check if the
model response along stress paths corresponding to those present in the database is
significantly affected by the parameters to be determined. If this is not the case, it
will be necessary to enrich the database or to accept that some of the parameters are
given a priori values. More complex problems can also exist in case of a coupling
effect of some parameters. The whole procedure requires a real strategy of parameter
identification as well as controlling the numerical tools used for this purpose.

11.4.2. Examples of parameter identification by means of laboratory testing

When the database is made of laboratory tests, we can usually obtain a set of
responses R* corresponding to well documented material behavior along well
controlled loading paths. The optimization procedure thus consists of minimizing
the difference between experimental results and numerical simulations. The division
of the whole set of parameters into two groups as defined earlier allows us in general
to identify directly a first group of parameters and to reserve the optimization
procedure to the second group. In fact, the numerical problems described earlier
(local minima, etc.) can be more easily avoided if the number of parameters to be
determined is smaller. Therefore, for a given model, we have to adapt the
identification method to the type of tests available in the database by a classification
of the parameters according to their influence along different loading paths.

Several studies lead to the construction of calculation programmes adapted to
different models. We can cite for example the ADELAP program [MEI 89] for the
Cyclade model and the PARASOL program [PIC 91] for Hujeux’s model. We
present below an approach developed by Shao er al. [SHA 91] which takes into
account a certain degree of uncertainty on the experimental data, R* being in that
case an assembly of random variables.

The example presented here concerns the parameter identification of a
constitutive model for porous rocks [SHA 91]. It is an elastoplastic model with two
plastic mechanisms, which contains 13 parameters. In order to construct the inverse
method applied for their determination, we divide the parameters into two groups:
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the first group contains parameters that can be determined directly from
conventional experimental data (compressive triaxial tests), such as the cohesion and
the friction angle; the second group includes the “numerical” parameters, whose
determination requires a specific treatment of the experimental data, such as the
hardening parameters. The inverse analysis is specially developed for the parameters
of the second group. The method takes into account the uncertainties in the
experimental data. The problem to be solved consists of maximizing the intersection
between two probabilistic density functions of the Gaussian type.

The efficiency of the method was at first tested on three important model
parameters. Numerical simulations were created from a given set of parameters and
taken as representative of the material behavior. Then, the parameter values were
modified and the inverse method was applied in order to minimize the difference
between the stress-strain relations obtained by this new set of parameters and the
reference one. The results proved the inverse method to be efficient in terms of
calculation time and solution stability.

Then, two examples were chosen. The first example concerns a hydrostatic test
used to determine the three parameters of the pore collapse mechanism associated
with a compressive triaxial test used to determine the five parameters of the
deviatoric mechanism. The uncertainty in the experimental data was estimated to be
10%. The results of the optimization procedure are presented in Figure 11.3.
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Figure 11.3. Chalk parameter identification. Elastoplastic model
with isotropic and deviatoric mechanisms
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Figure 11.4. Chalk parameter identification from oedometer test

In the second example, an oedometer test is used to determine the eight
parameters of the model. Satisfactory results could be obtained (Figure 11.4).
However, the stability and the uniqueness of the solution become more difficult to
achieve when the number of parameters increases. We have to specify that the
quality of the solution is directly linked to the quality of the experimental data
expressed in terms of mean values D,, and variance S;. From a statistical point of
view, the response quality improves when a greater number of repeated tests are
made. Under these conditions, the inverse method gives the most probable values of
the parameters.

11.4.3. Parameter identification from in situ testing

Data obtained from laboratory tests can be biased for different reasons: poor
representativeness of the sampling, remolding of the specimens due to boring,
extraction and transport. In order to overcome these difficulties, in situ testing is
often recommended. Furthermore, in situ testing is now far more developed in site
investigation because of its cost effectiveness.

We thus have to develop appropriate methods in order to identify the parameters
of the adopted constitutive model from in situ test data. A direct identification is
impossible in this case, since the stress and strain fields are non-homogenous and the
measures are made at specific points. Therefore, an inverse method is necessary. In
geophysics, such approaches were developed many years ago and could now be
extended to geotechnical problems. They enable us to determine the elastic
properties of a soil formation from the measurement of wave propagation in the
ground (cross-hole testing for example). However, these tests have up to now been
limited to mechanical characteristics at very small strains. More recently, inverse
analysis methods have been developed and applied to the pressuremeter test, which
corresponds to the expansion of a cylindrical cavity within the soil. The advantage
of this specific test among other in situ tests is that it gives information on the soil
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behavior in a large range of strain amplitudes, from small deformation up to failure,
with boundary conditions well controlled and easy to reproduce in a numerical
simulation. The plane strain condition hypothesis in the direction of the boring axis
can usually be assumed as well as the symmetry condition around the same axis,
which leads to a 1D loading condition easy to implement in a numerical simulation.
Analytical solutions can be obtained for simple constitutive models, such as the
elastic-perfectly plastic Mohr-Coulomb model [MON 94, YU 91]. For more
complex models, the numerical simulation requires the use of a finite element code.

The analysis of the pressuremeter test shows that there are some difficulties in
interpreting the results, due to its mode of execution. The main difficulty concerns
the remolding due to boring. Menard’s pressuremeter, most commonly used,
requires a preliminary boring, before the introduction of the probe. This testing
procedure leads to an unloading of the soil near the cavity wall and a more or less
important remolding of the soil, which influences the initial part of the pressure-
displacement curve. This difficulty can be overcome by the use of a self-boring
pressuremeter (PAF or Camcometer). The work by Cambou et al. [CAM 93] has
shown the influence of the loading mode, in particular on the modulus values, by
means of numerical simulations using the CJS model (see Chapter 4). The
conclusion of this work is that the identification of the elastic modulus can be
carried out by using the pressure-volume curve obtained by a self-boring
pressuremeter without considering the initial part up to AV/V = 2.5%. Another,
more rigorous, procedure consists of realizing an unloading-reloading cycle and
identifying the elastic properties from this cycle. However, this procedure is not
applied in routine tests.

Another important aspect concerns the drainage condition for saturated soils with
low permeability. Several analyses [CAM 91, HIC 96, RAN 03, ZEN 99] have
shown that Menard’s pressuremeter test could be considered as totally drained for a
permeability £ > 10 m/s and totally undrained for £ < 10™'° m/s. For intermediary
values of k, it is necessary to use a coupled numerical simulation in order to take
into account partial consolidation of the soil around the probe. This aspect has been
examined with great care in the works of Hicher and Michali [HIC 96] and
Rangeard et al. [RAN 03] for self-boring pressuremeter tests in clayey soils.
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Figure 11.5. Numerical simulations of the pressuremeter curve
using the Mohr-Coulomb model in small and large deformations

The determination of the parameters of the elastic-perfectly plastic Mohr-
Coulomb model from pressuremeter tests has been treated by Dano et al. [DAN 01]
from the analytical formulation proposed by Yu and Houlsby [YU 91] in large
deformations. This last hypothesis has a significant consequence on the pressure-
volume curve, as shown in Figure 11.5 by comparison to the one proposed by
Monnet et al. [MON 94] for small deformations. We can see that the two curves
become different for radial deformations u,/a (radial displacement/initial radius)
greater than few percent. Using the formulation proposed by Yu and Houlsby, the
equation of the pressuremeter curve can be written as follows for a cohesive-
frictional material:

Ua _P-Fo
a 2G

The maximum pressure corresponding to the plastic condition is:

P, =C.cos@+Py.(1+sin¢)

We have the following relations:

r
gr =Ln {EJ 89 = Ln (_]
dr, Iy

E E Y_2C.cos(p
1= 1—sin@
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The analytical expression of the pressuremeter curve takes the following form:

B
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The results presented in Figure 11.6 show the influence of each model
parameter: Young’s modulus E, friction angle ¢, the dilation angle i, cohesion c, as
well as the influence of the initial horizontal stress P, on the pressuremeter curve.
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We can see that each parameter affects the whole curve, which makes identifying
several parameters simultaneously difficult.

An optimization method based on the Newton-Gauss algorithm has been
developed and used to treat several examples [DAN 01]. The results show the
difficulty of identifying several parameters simultaneously, as discussed previously.
The “cost” function presents local minima and the whole procedure thus leads to a
final solution which depends on the initial set of parameters. To overcome this
problem, an optimization procedure has been developed for non-cohesive frictional
materials only. It requires the use of a pressuremeter test with an unloading-
reloading cycle from which the elastic modulus is at first determined. Then, a
correlation between the dilation angle and the friction angle is used, in order to
center the optimization on the sole friction angle. This procedure has given good
results. Figure 11.7 presents an example of two simulations obtained by the use of
this optimization procedure from tests realized by Mokrani [MOK 91] in the
calibration chamber on Hostun RF sand. The result of the optimization process gives
friction angle values in accordance with those obtained by triaxial tests (Table 11.2).
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Figure 11.6. Influence of Mohr-Coulomb model’s parameters on the pressuremeter curve



Figure 11.7. Optimization of Hostun Sand parameters from pressuremeter tests
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For a cohesive-frictional material, the simultaneous identification of ¢ and ¢
from one test is not possible, but can be obtained if two tests at two different depths
are available. For each test, a series of coupled values of ¢ and ¢ are derived. The
solution is obtained for the couple which is the solution for the two tests (Figure
11.8 [CAM 93]).

200

1504

100

Cohesion (kPa)

501

Friction angle

Figure 11.8. Determination of cohesion and friction angle
from two pressuremeter tests at different depths

When the chosen constitutive model does not allow us to obtain an analytical
expression of the pressuremeter curve, it is necessary to use a numerical approach by
means for example of a finite element code. Zentar et al. [ZEN 01] and Rangeard et
al. [RAN 03] have developed this type of approach and have applied it to the
modified Cam-Clay model (see Chapter 3). For this purpose, they have used two
codes: CESAR LCPC, a finite element code, for the numerical simulation of the
pressuremeter test, and SiDoLo (simulation and identification of constitutive
models) [CAI 94], an optimization code for the parameter optimization process. The
algorithm used to resolve the non-linear optimization problem combines two
traditional minimization techniques: the steepest descent method at the beginning of
the process, in order to improve the initial estimation of the parameters and a variant
of the Levenberg-Marquardt method [NOU 85] in order to accelerate the
convergence in the final phase of the identification. The coupling of the two codes
was performed by the development of an interface code, InCeSi.

The soils which can be modeled by the Cam-Clay model are essentially saturated
soft clays. Under these conditions, the finite element calculation has to be coupled in
order to consider the permeability of the material. The identification procedure can
be realized only with parameters which affect the numerical response in a significant
way. A parametric study of the modified Cam-Clay parameters on the pressuremeter
curve have shown that the shear modulus G, the critical state constant M and the



Parameter Identification 425

preconsolidation pressure p’., greatly affect the numerical response, whereas the
Poisson’s ratio v and the plastic consolidation coefficient £ (= A — k) have little
influence. The identification method was thus applied in order to determine G, M
and p’.p. The results showed the impossibility of determining simultaneously the two
parameters M and p .y, due to the fact that the pressuremeter results are expressed in
terms of total stresses while the model is expressed in terms of effective stresses. In
order to overcome this difficulty, the pore pressure measured at a given point near
the probe was introduced as a complementary result. In these conditions, the three
parameters G, M and p’,, could be simultaneously correctly identified. Where this
new information is not available, as in most cases for a common pressuremeter test,
the complementary information can come from an oedometer test performed on the
same material. The values of £ and p’, can be identified directly from the
oedometer test results and G and M can be identified afterwards using an inverse
analysis on the pressuremeter test results.

g 200 g 200
2 Reference test and 2 Reference test and
§ 150- calculation result (c,) g 150- calculation result (o)
2 R
LA 25
EXS 5
% P 1004 % P 1004
¥ =z

o 3]
£ 5 50+ £ 5 504
& ﬁ g, _8
2 < Reference test and e Reference test and
: = 04 calculation result (uc) g 5 04 calculation result (uc)
g =
2 Z
s -50 T T T T s =50 T T T T
£ 0 0.02 004 006 008 O0.I & 0 002 004 006 008 0.1

u,/a u,/a
a) simultaneous identification b) simultaneous identification
from E and M from p';p and M

Figure 11.9. Validation of the identification procedures of Cam-Clay model’s parameters
from pressuremeter curves: a) identification from the sole pressure-volume curve;
b) identification from the pressure-volume curve and the pore pressure
evolution at a point near the apparatus

This method has been successfully applied in order to determine the parameters
of Saint Herblain Clay, a soft clay from the Loire Valley, in the vicinity of Nantes.
The parameter values obtained from pressuremeter tests are in agreement with those
determined by a direct analysis of triaxial tests (Figure 11.10).
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Figure 11.10. Identification of parameters E and M for Saint Herblain Clay

Rangeard ef al. [RAN 03] have developed an identification procedure in order to
identify mechanical parameters and permeability simultaneously from pressuremeter
tests with strain holding stages. The mechanical parameters are identified, as
presented previously, on the pressuremeter curve, and then, with the obtained
optimized set of parameters, the permeability is derived from the pore pressure
dissipation curve during a strain holding stage. Few iterations need to be realized on
the two optimization procedures in order to obtain both mechanical parameters and
permeability. Figure 11.11 shows an example of the final optimization step on both
the pressuremeter curve and pore pressure dissipation during a strain holding stage
on a Saint Herblain Clay sample. The validation of the whole procedure was
performed by comparing the parameter values obtained after optimization to values
of the same parameters obtained by direct analysis of oedometer and triaxial tests. A
very good agreement could be achieved.
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Figure 11.11. Comparison between experiment and simulation of
pressuremeter test: (a) pressuremeter curve and pore pressure evolution,
(b) pore pressure dissipation during strain holding stage

The procedure has been extended in order to be applied to a viscoplastic model,
the EVP-MCC model developed by Yin et al. [YIN 07] (see Chapter 7). The
parameters of the viscoplastic model are the same as in the Cam-Clay model, but
two more parameters N and x have been added to take into account the clay viscous
behavior. The inverse analysis is thus more difficult to carry out. The shear modulus
is at first determined by the initial slope of the radial stress-radial strain curve. The
other parameters can be determined by using pressuremeter tests with three levels of
strain rate. The coupling effect between M and p’. requires a special treatment to
determine both of them separately. A first assumption is made on the value of M.
For a given value of M, the values of p’.y, N, u and permeability k can be found after
a convergence of the optimization procedure made on the three loading curves at
different strain rates and the pore pressure dissipation during a strain holding stage.
The same procedure is repeated for different values of M until the overall
convergence of the optimization process, which is obtained when the difference
between experimental data and calculation results becomes sufficiently small and
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stable, according to a criterion which enables the calculation of the overall error
between experimental and numerical results. Figures 11.12 and 11.13 show a final
result obtained from this procedure applied to the Saint Herblain Clay.
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Figure 11.12. Comparison between experiment and simulation of
pressuremeter strain rate tests
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Figure 11.13. Comparison between experiment and simulation of a pressuremeter creep test

Cambou et al. [CAM 93] have developed a similar approach by constructing a
specific optimization code, called Press’ident, and applying it to the determination
of the parameters of two different models: the Duncan-Chang hypoelastic model and
the elastoplastic CJS model (see Chapter 4). After the extraction of the parameters,
they simulated the displacements of the soil during the construction of a nuclear
power plant and a tunnel made from soft soil. A good agreement between numerical
results and in sifu measures was obtained.
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11.5. Conclusion

The methodology of determining model parameters has to be considered at the
same time as the model construction. This is a necessary step for its use in finite
element codes applied to geotechnical projects. This methodology has to be based
on experimental data obtained through traditional laboratory or in situ tests, and
while it should be adapted to the structure of each model, it must enable, as
completely as possible, an objective determination, i.e. independent of the user.

When experimental data comes from laboratory tests, several approaches are
possible and can be established more or less easily, depending on the nature of the
parameter to be identified. When all or part of the data comes from in situ tests, only
an inverse analysis method based on numerical optimization techniques can
adequately be used. The inverse analyses are often difficult to achieve because the
character of the numerical problem is badly written. It is therefore recommended
that at least part of the data should come from laboratory tests.

The good quality of the latter is an indispensable factor for a successful
identification. The quality of each individual test can be taken into account at
different levels of the identification process: a greater weight given to certain tests or
to certain parts of the tests; introduction of the data uncertainty in the optimization
technique. It is also important to define the testing procedure to account for both the
problem to be solved and the identification procedure to be envisioned.
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failure surface 97
flow rule 13, 80, 126
Fontainebleau sandstone 327
fracture mechanics 300, 348
free energy 306, 307, 322, 395
friction 329

angle 57, 119, 120, 405

G H

Gurson 194
hardening 247
modulus 15, 80, 110
variable 83, 95, 109, 110, 114, 130
Hill 251
Hoek and Brown criterion 100
homogenization 349
hydrostatic 188
hyperelastic 92, 211, 239
hypoelasticity 11, 19, 23, 27
hysteresis loop 156, 160

LJ

identification 314
implicit scheme 280

in situ
stress 69, 371
testing 253, 295, 418
incremental 211
incrementally
non-linear 255
piecewise linear 23
induced anisotropy 224, 302
initial anisotropy 302,
instability 251
internal
damage variable 302, 350, 357
variable 158, 201, 202, 204, 330
interpolation 24
inverse analyses 28, 430
irreversible strain 24, 86, 87

K, L

Kachanov 341, 398
Lade’s criterion 101
liquefaction 249
loading
path 3
surface 144, 171, 313
zone 12
Lyapunov 251

M

Masing model 157
Matsuoka-Nakai’s criterion 101
mean pressure 113

mechanical parameters from laboratory

testing 253

Meélanie model 131
mesostructural analyses 316
micromechanical approach 301
Mohr-Coulomb criterion 32

N

natural

cohesive soil 86

soil 77
Nova model 117, 129
numerical integration 280, 336



(0]

octo-linear
incremental model 23
interpolations 234
oedometer tests 87
oedometric test 56, 134, 135, 265
optimization methods 413
orthotropy 8, 231, 341
overconsolidated 267

P

parameter 405

identification 182
perfect plasticity 32, 33
Perzyna’s formulation 278
plastic

distortion 109, 196

flow rule 78, 132

mechanism 23, 78, 81, 83, 96

potential 106, 163

strain 13, 80, 96

work 109
plasticity criterion 78, 96, 158, 251
Poisson’s ratio 118, 119, 132, 221
porosity 187, 188, 192, 194
porous rock 202, 206
pressuremeter test 418, 419
primary creep 269, 272
principle of determinism 3
probability 412
progressive

damage 52

rupture 59

Q,R

quasi-brittle rock 299

relaxation 275

remolded soil 32

representative elementary volume (REV)
304, 330, 349, 350

reservoir 187

response-envelopes 10

restitution of moduli 322

rheological functional 3

Index 439

S

secant modulus 43, 46, 67
second order work 221, 223, 252
secondary

consolidation 265

creep 269, 270
simulation 365
Skempton’s coefficient 380
sliding 332, 335, 336
slope failure 253
splitting 309, 312, 314
stress-dilatancy relationship 103, 104

T

tangent

Poisson’s ratio 232

stress ratio 232
tensorial zone 9
tertiary creep 269, 272
Terzaghi’s effective stress 377, 384
thermodynamic potential 306, 308, 322,
324,331, 383, 386, 395
triaxial tests 32, 34, 35, 43, 45, 46, 54, 55,
56, 58, 69, 70,
true triaxial compression tests 367

U

undrained triaxial creep 272
unilateral effect 305, 322, 341
unloading zone 12

V-7

validation of the model 367
Vienne granite 318
viscoplastic potential 26, 27
viscoplasticity 2, 262, 277, 283, 295, 300
viscosity 25
volumetric
hardening 188
strain 86, 89
Vosges sandstone 68, 320, 340
Young’s modulus 221, 232, 305



