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Preface to the English Edition 

The French version of this book appeared in 2002 as part of the “Material 
Mechanics and Engineering” series. The objective of this book was to create as 
complete as possible a corpus of knowledge and methods in this field. 

In designing this book on the mechanical behavior of soils and rocks, we 
gathered together a number of internationally known specialists, who each brought a 
significant contribution to the knowledge of the experimental behavior of these 
materials, as well as their constitutive modeling. Our goal was to cover as far as 
possible the theories at the basis of the different approaches of modeling, and also to 
address the most recent advances in the field.  

In translating this book into English, we hope to make available to a wider 
scientific and engineering public the approaches and school of thought which have 
dominated the field of geomaterial mechanics in France over the past few decades. 
We have put together present-day knowledge of mechanical behavior and their 
theoretical bases in order to construct an original, analytical framework which, we 
hope, will give readers a useful guide for their own research. Most of the chapters 
have been updated in order to include the most recent findings on the respective 
topics. 

Finally, we wish to dedicate this book to the memory of Professor Jean Biarez, 
who not only played a ground-breaking role in the history of soil mechanics in 
France, but remains a source of inspiration to many of us today. 

Pierre-Yves Hicher  
Jian-Fu Shao 



Preface to the French Edition 

Soils and rocks possess a number of similar characteristics: both are highly 
heterogenous materials formed by natural grains. This alone gives them certain 
rheological features which distinguish them from other solid materials, such as a 
strongly non-linear character, a behavior which depends on the mean stress and 
shearing which induces volume variations, often dilatancy, which leads to 
unassociated plastic strains. 

Soils and rocks can be studied at different scales. At the scale of one or several 
grains (from m to cm), we can examine the discrete phenomena which govern the 
interactions between grains. They can be described using micro-mechanical models 
or analyzed in order to better understand the material behavior at a larger scale, 
typically the size of the material specimen: this approach corresponds to passing 
from a discontinuous to an equivalent continuous medium. Even though the size of 
the latter can vary, it has to be “sufficiently large” (typically from 1 cm to 1 dm) 
compared to the size of the material discontinuities in order to be representative of 
the equivalent continuous medium, whose behavior can be modeled by using certain 
concepts of continuous medium mechanics which ignore the notion of scaling in its 
basic equations. 

However, some phenomena, such as the development of defects or cracks within 
the material specimen, are located at an intermediary scale, called the “meso” scale. 
It is thus necessary, in a constitutive model for continuous medium, to use scaling 
techniques in order to take into account these intermediary scales. This approach, 
still recent but potentially strong, can also be adapted to change the scale from the 
material specimen to the in situ soil or rock masses in geotechnical work modeling. 

The constitutive models developed to describe the mechanical behaviors at the 
macroscopic scale can be roughly classified into two categories: those adapted to the 
behavior of “ductile” materials and those adapted to the behavior of “fragile” 
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materials. The first category corresponds mainly to sandy or clayey soils, but also to 
soft rocks subjected to high confining stresses. The second category corresponds 
mainly to hard rocks, but also to certain soft rocks and highly overconsolidated clays 
subjected to small confining stresses. In ductile materials, the non-linear behavior is 
essentially due to irreversible grain displacements, which leads to a more or less 
significant hardening and to a pore volume change which induces volume changes at 
the scale of the specimen. In fragile materials, the non-linear behavior is due to the 
development of cracks, whose size may vary and whose direction depends on the 
principal stress directions. 

In order to model ductile behaviors, plasticity (elastoplasticity or viscoplasticity) 
has shown to be an operational framework and the large majority of the constitutive 
models for soils and certain soft rocks belong to this category. However, for non-
cohesive soils in particular, the difficulty of characterizing an elastic domain, 
determining the plastic mechanisms (potential and yield surface) experimentally, has 
led to the development of specific constitutive models, whose structure can be 
defined as incrementally non-linear. 

In order to model fragile behaviors, the damage mechanics framework has been 
used to propose constitutive models adapted to describing irreversible phenomena 
linked to the deterioration of certain physical properties. In particular, they can take 
into account a large amount of rock properties: irreversible strains, dilatancy, 
induced anisotropy, hysteresis loop during loading-unloading due to opening and 
closing of mesocracks and frictional mechanisms along closed mesocracks. 

In intermediary materials, the non-linear behavior can be due to microstructural 
changes, associating damage and hardening phenomena. Models coupling plasticity 
and damage have been developed to take into account this type of behavior. 

After a general presentation of the constitutive models and their internal 
structures, each chapter will give a brief description of the different approaches 
mentioned above by focusing on a given class of materials. The first three chapters 
are devoted to the elastoplasticity theory applied to soils and soft sedimentary rocks. 
An alternative approach is then presented by means of the so-called incrementally 
non-linear models. The time-effect in clayey soils is analyzed in the framework of 
viscoplasticity. The behavior of hard rocks is then studied in Chapters 8 and 9, 
through the use of the damage theory at different scales. The modeling of the 
poromechanical behavior is also introduced in order to take into account the 
hydromechanical coupling in saturated porous rocks. 
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As the validity of any given model lies in its capacity to reproduce the observed 
material characteristics, the authors have placed the experimental data, obtained 
mainly from laboratory testing on intact soil and rock samples, under special 
consideration. The final chapter is devoted to parameter identification procedures. 
This is an important topic when dealing with natural materials because, each site 
being different from another, accurate parameter identification is essential for the 
quality of geotechnical work calculations, which is the final goal of this modeling 
approach. 

Pierre-Yves Hicher 
Jian-Fu Shao 



Chapter 1 

The Main Classes of Constitutive Relations  

1.1. Introduction 

The study of the mechanical behavior of solid materials and its description by 
constitutive relations was for many years developed within the framework of 
isotropic linear elasticity characterized by Hooke’s law, plasticity characterized by 
the Von Mises, Tresca and Mohr-Coulomb criteria, and viscosity characterized in 
the linear case by Newton’s law. However, since the end of the 1960s, the 
development of more powerful numerical methods such as the finite element method 
and the use of high-performance computers has revived the study of material 
behavior, as it became possible to take into account a more realistic visco-
elastoplastic modeling, albeit at the expense of much more complex formalisms.  

Inside the three sets of equations defining a continuous medium mechanics 
problem, i.e. general equations (conservation equations), constitutive laws and 
boundary conditions, constitutive laws correspond to the more difficult part, 
particularly since the general framework in which the constitutive equations are 
inscribed remains often numerically imprecise. It is the comprehension of the 
absence of “physical laws” in this domain which gradually changed the designation 
of “constitutive laws” to “constitutive models”. The latter corresponds better to the 
objective of giving a mathematical form to the mechanical properties of materials, 
whose complexity has been demonstrated by the diversity of the experimental 
results. 
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During the last 30 years, a large variety of constitutive models have been 
developed and many workshops organized all over the world have shown that it is 
important for developers as well as users of models to be able to obtain guiding 
ideas and a general framework of analysis. The objective of this chapter is to try to 
formulate both of these. 

This general framework will be more useable if it can be unified, and we intend 
to show that it can be applied to elastoplasticity as well to viscoplasticity or damage 
theory. We thus invite the reader to a wide presentation of constitutive relations for 
solid materials. 

Two preliminary comments need to be made. First, we should explain why the 
chapter covers rheology in an incremental form. Two main reasons have made such 
an incremental presentation indispensable. The first is physical and is linked to the 
fact that, as soon as some plastic irreversibility is mobilized within the material, the 
global constitutive functional, which relates the stress state (t) at a given time t to 
the strain state (t) history up to this time, is in principle very difficult to formulate 
explicitly as this functional is singular at all stress-strain states (or more precisely 
non-differentiable, as will be shown). An incremental formulation enables us to 
avoid this fundamental difficulty. The second reason is numerical and stems from 
the fact that material behavior, and usually also the modeling of engineering works, 
exhibits many non-linearity sources which imply that the associated boundary value 
problem must be solved by successive steps linked to increments of loading at the 
boundary. Therefore, such finite element codes need to express the constitutive 
relations incrementally. 

Our second comment concerns the use of incremental stress and strain rather 
than the stress and strain rates. Here also, it is the physical nature of the phenomena 
which determines our choice: in elastoplasticity, and more generally for all non-
viscous behaviors, physical time does not play any role and, as a consequence, the 
derivatives with the physical time have no real meaning. Therefore, the incremental 
form appears to be intrinsically significant and can in fact be attached 
straightforwardly to the rate: the incremental strain is the product of the strain rate 
with the time increment, while the incremental stress is the product of Jaumann’s 
derivative of the stress tensor with the time increment. It is, however, incorrect to 
speak of stress and strain increments, since the incremental strain (for example) 
corresponds to a small strain variation only in the case of a sufficiently small strain. 

This chapter begins with a traditional presentation of the rheological functional. 
We will show the limits of the functional expression and overcome this limitation by 
establishing the incremental rheological formalism. First, we will cover the case of 
non-viscous materials. The notion of “tensorial zones” will allow us to present the 
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different classes of non-viscous models. Then, we will come back to the general 
case by considering models which take into account any kind of irreversibility. 

1.2. The rheological functional 

The basic concepts of continuous medium mechanics are taken for granted. The 
tangent linear transformation, characterized by the matrix of the gradient of the 
material particle positions, is assumed to describe correctly the material geometric 
deformation, even if some theories, called “second gradient theories”, consider that 
this first order approximation by the tangent linear transformation from the positions 
at a given time to the actual positions is not sufficient, and subsequently introduce 
second order terms [MUH 91]. We also assume that the constitutive law of a 
material element does not depend on the neighboring elements (some theories called 
“non-local theories” consider that the behavior of a basic material particle depends 
on a finite deformation field around that particle [PIJ 87]). These two hypotheses 
define a specific class of materials called “simple media” [TRU 74] for which we 
will develop a theoretical analysis. 

The starting point of rheology is thus based upon a principle of determinism, 
which can be expressed as follows: if a given loading path is applied to a material 
sample, the material response is determined and unique, i.e., the principle of 
determinism applies only in conditions where there is uniqueness of the rheological 
response. Passing through a bifurcation point gives several possible responses. The 
choice of one of these responses is guided by existing imperfections which are not 
taken into account in the description of the material mechanical state or in the mode 
of loading application (control in force or in displacement, for example).  

The first expression of the principle of determinism is obtained by stating that 
stress state (t) at a given time t is a functional of the history of the tangent linear 
transformation up to this time t. This implies that it is necessary to know the entire 
loading path in order to deduce the associated response path.  

From a mathematical point of view, this is stated by the existence of a 
rheological functional F:  

(t) = F[ ( )] (1.1) 

–  <   t 

where E(t) is the strain part of the tangent linear transformation E at time t, also 
called the deformation gradient. Deformation gradient E is the Jacobian matrix of 
position f(X,t) of material point X at time t. The existence of such a functional, and 
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not a function, is related to an essential physical characteristic: for irreversible 
behaviors, knowing strain (t) at time t does not enable us to determine the stress, 
and vice versa. For example, we can think of viscous or plastic materials where a 
given level of stress can be related to an infinite number of different strain states.  

Since this chapter is devoted to the study of fundamental properties of 
constitutive relations, the general properties of rheological functional F need to be 
examined:  

– isotropy of F: due to the principle of isotropy of space, F has to be an isotropic 
function of  (if ,  and the internal variables are subjected to an equal rotation, F 
remains identical); 

– non-linearity of F: the hypothesis of linearity for F is expressed by: 

1 2 1 2 1 1 2 2 1 1 2 2,  and ,  real: F ( ) ( ) F ( ) F ( )  

In such a case, the material response to a sum of histories will simply be equal to 
the sum of the responses to each history. This constitutes Boltzmann’s principle and 
is the basis of linear viscoelasticity theory, but it is not at all valid in the general 
case, as in elastoplasticity, for example, where, when we double the strain for 
example, the stress is obviously not doubled, due to the non-linear behavior.  

In the general case, F must be studied in the framework of non-linear 
functionals: 

– F is furthermore non-differentiable as soon as there is some plastic 
irreversibility. Owen and Williams (1969) showed in fact that the assumptions of 
non-viscosity and differentiability of stress functional F imply that there is no 
internal dissipation.  

In other words, a non-viscous material whose constitutive functional is 
differentiable is necessarily elastic. Basically, this is due to the fact that, in 
plasticity, the tangent loading modulus is not equal to the tangent unloading 
modulus. Therefore, if we want to describe the behavior of anelastic materials by 
using a stress-strain relationship, this relation must be formulated using a non-linear 
and non-differentiable functional:  

– degeneration of F: the only case of degeneration of functional F into a function 
corresponds to elasticity (possibly non-linear and anisotropic), where there is a one-
to-one mapping between stress and strain. 

Finally, if we want to describe irreversible behavior, we have to consider a non-
linear, non-differentiable functional, which, mathematically, is very difficult to use. 
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We therefore need to study constitutive relations using an incremental formulation 
rather than a global one. 

1.3. Incremental formulation of constitutive relations 

We shall now introduce an incremental formulation using a second statement 
from the principle of determinism. The second principle of determinism, which can 
be called “in the small” to be distinguished from the first principle “in the large”, is 
obtained by stating that a small load applied during a time increment dt induces a 
small uniquely determined response.  

As stated previously, this principle applies only if the uniqueness of the 
incremental constitutive relation is maintained. For bifurcation cases, the principle is 
no longer valid and the choice of the bifurcated branch will depend on the boundary 
conditions and material imperfections. In addition, the principle assumes implicitly 
that the loading rate is kept constant during the time increment (even if it can vary 
from one increment to another), which excludes dynamic loads due to shocks.  

We denote by d  = D dt the incremental strain tensor of order two equal to the 
product of the second-order strain rate tensor, D (symmetric part of transformation 
rate L : L = E-1 where E is here the deformation gradient) and time increment dt, 
and by d  = ˆdt the incremental stress tensor, equal to the product of an objective 
time derivative of Cauchy stress tensor  and dt.  

Thus, the second determinism principle implies, from a mathematical point of 
view, the existence of a tensorial function Fh relating the three quantities:  

Fh (d ,d , dt) = 0  (1.2) 

What are the properties of this tensorial function Fh?  

The first comment concerns the fact that Fh depends on the previous stress-strain 
history. This history is generally characterized by some scalar and tensorial variables 
denoted by h which will appear as parameters in the previous relation. These 
parameters describe, as far as possible, the actual deformed state of the solid. 
According to various constitutive theories, they are sometimes called “memory 
variables”, “hardening parameters”, “internal variables”, etc.  

Secondly, Fh must satisfy the objectivity principle, which means that Fh must be 
independent of any observer movement relative to the solid. Thus, Fh is an isotropic 
function of all its arguments: d , d  and also the state tensorial variables, which 
characterize its presently deformed state. However, if the material is anisotropic 
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insofar as its mechanical properties are concerned, then Fh is an anisotropic function 
of d  and d .  

Finally, Fh is essentially a non-linear function as long as there is some plastic 
irreversibility. If Fh is linear, we can write: 

d  = Md  + C dt  

which is the general form of viscoelastic laws where M is the fourth-order elastic 
tensor and C the second-order creep rate tensor of the material.  

This property of non-linearity for Fh is directly linked to the non-differentiability 
of rheological functional F, the property of differentiability of F being equivalent to 
the linearity of Fh. 

In conclusion, relation (1.2) corresponds to the general incremental form of the 
constitutive relations. We will now distinguish between viscous and non-viscous 
materials in order to represent this incremental form more precisely. 

1.4. Rate-independent materials 

For non-viscous materials, the loading rate (characterized by time gradation on a 
loading path) has no influence on material constitutive behavior: a given loading 
path, followed at any given rate, gives the same response path. In other words, the 
behavior class considered is rate-independent. This restriction of the constitutive law 
implies that constitutive function Fh, which relates d  and d , is independent of time 
increment dt, during which the incremental loading is applied. Therefore, Fh is 
independent of dt and we can write: 

d  = G(d ) (1.3) 

or: 

d  = G-1(d ) = H(d ) (1.4) 

The possibility of inversing G or H is linked to the uniqueness of the constitutive 
relations. This question will not be studied here; for more details see [DAR 94, DAR 
95a]. 

From a mathematical point of view this independence of non-viscous behaviors 
on loading rates implies the following identity:  
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  R+ : d   G d  

thus 

  R+ :  G d   G d   (1.5) 

which states that if the stress rate is multiplied by any positive scalar, the strain rate 
response is also multiplied by the same scalar.  

This is the first property of G: G is a homogenous function of degree 1 in d  
with respect to the positive values of the multiplying parameter. This homogenity 
property must not be confused with that of “positively homogenous” functions, 
which is given by;  

  R :  G d   G d   

In addition to this property of homogenity of degree 1, functions G and H, as we 
have seen in general for function Fh, are non-linear and anisotropic in d  (or in d ). 

1.4.1. Non-linearity of G and H 

If, in relation (1.3), d  is the response to an incremental loading d , the response 
to an incremental loading – d , following d , is not equal to – d , because plastic 
irreversibility or damage takes place in the material. Therefore, G and H are 
necessarily non-linear functions of d  and d  respectively, which implies that the 
principle of incremental superposition cannot be rigorously verified, except within 
the elastic domain, or more generally within a domain of incremental linearity of the 
constitutive model. Calculus shows, however, that the principle of incremental 
superposition can be roughly verified along “step-wise” paths, approaching a given 
loading path [DAR 95b]. 

1.4.2. Anisotropy of G and H 

Following the same reasoning as for function Fh, we can deduce that G and H are 
anisotropic functions of d  and d  respectively.  

This anisotropy is directly linked to the geometrical meso-structure of the 
material, which is gradually modified by the strain (particularly irreversible) history. 
We have seen that this history can be characterized by scalar and tensorial state 
parameters.  
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In simple cases, this anisotropy is directly imposed by the choice of these state 
parameters. If we consider, for example, only scalar memory parameters (such as 
void ratio), defined independently of any frame, based on the objectivity principle 
functions G and H will be isotropic functions, which is not supported by 
experiments.  

If we add one single tensor variable (such as the stress tensor) to these scalar 
memory parameters, G and H are orthotropic functions of d  and d  respectively, 
the orthotropy axes being identified with the principal stress or strain axes. In this 
case, it means that G and H are invariant by symmetry with respect to any plane 
containing two principal stress or strain directions.  

In the more general case of state variables with at least two second-order non-
commutating tensorial variables, anisotropy is not defined. Orthotropy thus becomes 
a constitutive assumption, which must be considered as an approximation of the real 
behavior of the material for classes of loading in which stress and strain principal 
axes rotate.  

1.4.3. Homogenity of degree 1 of G and H 

Having described the three main properties of G, we will now focus on the first 
(homogenity of degree 1) to see the mathematical consequences of such a property. 
Let us for this purpose recall Euler’s identity for homogenous regular functions of 
degree 1, by writing it for a function of two variables:  

x, y : f x, y   x 
f

x
 + y 

f

y
 (1.6) 

where partial derivatives f/ x and f/ y are homogenous functions of degree 0.  

In formulating constitutive relations, it is often more convenient to replace stress 
tensor  and strain tensor , which are second order, by two vectors of IR6 defined in 
a six-dimensional related space. In this space, vectorial function G is written: 

G d   
G

d
 d   ,  = 1, ..., 6

  

with summation on index . 



The Main Classes of Constitutive Relations     9 

The partial derivatives of a homogenous function of degree 1 are homogenous 
functions of degree 0. Therefore, functions G / (d ) depend only on the direction 
of d , characterized by the unit vector: 

u
d

 

with: 

 ij ijd d d  

Finally, we obtain: 

( ) ( / )d M u d u d d  (1.7) 

or: 

( ) ( / )d N v d v d d  (1.8) 

Equations (1.7) and (1.8) are the general expressions for all rate-independent 
constitutive relations. Constitutive tensors M and N also depend on state variables 
and memory parameters, which characterize the loading history. These two matrices 
are the gradient matrices of non-linear functions G and H, respectively. In that sense, 
they can be considered as tangent constitutive tensors and are therefore uniquely 
defined. However, it is possible to construct from them an infinite number of secant 
constitutive tensors by adding to the M or N lines the components of any unit vector 
perpendicular to d  or d  respectively. 

Relations (1.7) and (1.8) will now allow us to propose a classification of all the 
existing rate-independent constitutive relations with respect to their intrinsic 
structure. 

1.5. Notion of tensorial zones 

First of all, we need to define the notion of a “tensorial zone” [DAR 82]. We will 
call a tensorial zone any domain in the incremental loading space on which the 
restriction of G or H is a linear function. In other words, the relationship between d  
and d  in a given tensorial zone is incrementally linear. If we denote the tensorial 
zone being considered as Z, the following definition implies:  
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u  Z : d  = Mz d  

In zone Z, the constitutive relation is characterized by a unique tensor Mz. If u 
belongs to Z, any vector collinear to u also belongs to Z for all real positive values. 
Therefore, a zone is defined by a set of half-infinite straight lines, whose apex is the 
same and is at the origin of the incremental loading space. Tensorial zones thus 
comprise adjacent hypercones, whose common apex is this origin. What does the 
constitutive relation become on the common boundary of two (or several) adjacent 
tensorial zones? If Mz1 and Mz2 are constitutive tensors attached, respectively, to 
tensorial zones Z1 and Z2, they must obviously satisfy the condition of continuity of 
the response to any loading direction u which belongs to the boundary between Z1 
and Z2:  

u  Z1  Z2 : Mz1 - MZ2  u  0  (1.9) 

Relation (1.9) can be called a “continuity condition” for zone change. This 
condition prohibits, in particular, an arbitrary choice of the constitutive tensors in 
two adjacent tensorial zones.  

Furthermore, we will see that conventional elastoplastic relations satisfy this 
condition by means of the “consistency condition”. This is also the case for damage 
models when they are built in a rigorous manner. On the other hand, hypoelastic 
models do not necessarily fulfil this condition, which has to be verified a posteriori. 
It has been proven that this is not the case for some of these models [GUD 79].  

The “response-envelopes”, as proposed by Gudehus [GUD 79], constitute 
geometrical diagrams which completely characterize a constitutive relation at a 
given stress strain state after a given strain history. At this state, all the incremental 
loadings, having the same norm but oriented in all directions, are considered and all 
the incremental responses are plotted. The extremities of the response vectors form a 
hypersurface which is called the “response-envelope”. Figure 1.1 gives an example 
of an elastoplastic model in axisymmetric condition: the continuity of the response 
at the boundary of two tensorial zones appears well fulfilled. Figure 1.2 gives an 
example of a model with discontinuities, whereas Figure 1.3 corresponds to a 
continuous non-elastoplastic model. 

In fact, the number of tensorial zones characterizes how a given model describes 
the irreversibility due to plasticity or damage, and the directional change of 
behavior, i.e. how constitutive tensor M (or N) evolves with the direction of loading 
u (or v). More precisely, the number of tensorial zones of a given constitutive model 
is an intrinsic criterion, which fully represents the model structure. Therefore, we 
have chosen this criterion to classify, in the next section, the different rate-
independent constitutive models. 
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1.6. The main classes of rate-independent constitutive relations 

1.6.1. Constitutive relations with one tensorial zone  

The first class of relations that we are going to look at is related to the simplest 
assumption that there is only one tensorial zone. Therefore:  

u : Mu  = M 

Therefore: 

d  = Mh d

or: 

d  = Nh d . 

The behavior is therefore entirely reversible (except possibly in the case of the 
existence of memory parameters h, but this corresponds rather to an artefact in 
hypoelasticity). As there is a unique linear relationship between d  and d  
(incremental linearity), we have here in this first class all the elastic laws, isotropic 
or anisotropic, linear or non-linear (in this last case, M and N depend on the actual 
state of stress).  

The best way to reproduce an elastic behavior (without any internal dissipation) 
in a rigorous manner is to introduce an elastic potential V defined by: 

dV = ij d ij 

As V is an exact total differential, we obtain the following expression: 

ij  = 
V

ij  
Therefore: 

2
V

ij  kl

  
2
V

kl ij  

using Schwarz’s identity. As a consequence, matrices M and N are symmetric and 
tensors C and D, defined by 

d if = Cijkl d kl and d ij = Dijkl d kl 
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have “major” symmetries 

Cijkl = Cklij and Dijkl = Dklij. 

In the general case of non-linear elasticity, the existence of a potential also 
implies conditions of “integrability” [LOR 85], which have to be satisfied by the 
components of M and N. All these laws are called “hyperelastic”, while, in the 
absence of a potential, they are called “hypoelastic”. The hypoelastic models 
generate energy dissipation, and should thus not be used in practice, the behavior 
represented by these models being poorly identified. 

1.6.2. Constitutive relations with two tensorial zones  

In the presence of two tensorial zones, we can call one the “loading zone” and 
the other the “unloading zone”. We thus define two different behaviors (two 
different constitutive tensors), one representing the loading condition, and the other 
the unloading condition. Each matrix is attached to a different tensorial zone, these 
two tensorial zones being separated by a hyperplane in d  or d  space. A loading-
unloading criterion, a linear and homogenous inequation in d  or d , allows us to 
discriminate between the two behaviors. The hyperplane equation corresponds, by 
construction, to the zero value of the loading-unloading criterion. The continuity 
condition at the crossing of the hyperplane gives a link to the two constitutive 
tensors and the hyperplane equation: 

loading unloadingu hyperplane:(M M )u=0  (1.10) 

 
Figure 1.1. Response envelopes [GUD 79] in axisymmetric conditions for an 

elastoplastic material with two tensorial zones (characterized by fs = ±1) for three different 
stress levels. The continuity of the response envelopes is verified 
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Numerous constitutive models follow these general rules and are therefore based 
on the definition of two tensorial zones. Their formalisms are basically similar, even 
if, sometimes, the detailed equations do not clearly show their fundamentally 
bilinear structure. These models are divided into three different families: 
elastoplastic models with one plastic potential, hypoelastic models with a unique 
loading-unloading criterion and damage laws. We will now examine them 
successively. 

1.6.2.1. Elastoplastic models with one plastic potential 

The first assumption concerns the additive decomposition of the incremental 
strain into an elastic part (reversible) and a plastic part (irreversible):  

d  = d e + d p  (1.11) 

The plastic deformations exist only beyond a given limit surface, “the elastic limit”, 
which depends on the loading history and evolves due to the hardening created by 
plastic strains, as has been shown experimentally. Its equation is given by: 

f , p  = 0  (1.12) 

The loading condition is obtained by writing that the incremental stress is 
directed outwards from the elastic limit. The unloading condition is obtained if the 
incremental stress is directed inwards. It follows that:  

( f/ ).d  > 0: loading condition (1.13) 

( f/ ).d  < 0: unloading condition 

The equation of the hyperplane, the border between the two zones in the d  
space, is thus given by:  

f/ .d  = 0 

When the elastic limit is reached, the direction of the incremental plastic strain is 
given by the flow rule which is often specified in terms of a plastic potential g( ) as:  

d p = d  
g

 (1.14) 

where d  is an arbitrary scalar, whose value is determined by the consistency rule 
which mathematically expresses that, the state of stress reaching the elastic limit and 
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the loading condition being maintained, the elastic limit follows the state of stress by 
hardening. Therefore, the consistency condition can be written as: 

df = 0 (1.15) 

thus: 

p
p

f fd d 0  

which gives the value of d : 

d  = - 
f
 . d

f
p  . 

g
  (1.16) 

Therefore, continuity condition (1.10) is verified: 

loading unloadingfd  such that d : M d d  

because: 

d  – d e = d p from (1.11) 

and: 

p gd d  from (1.14) 

with d  proportional to ( f/ .d ) from (1.16). 

Therefore, the consistency condition in elastoplasticity theory allows us to verify 
the continuity condition in our general theory. The following equation gives the 
general mathematical form of the elastoplastic models with one single potential, in 
which the forms of functions f and g are not developed: 

d  = Med  -  

f
 . 

f
d p  . 

g
 

g  (1.17) 
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where Me is the elastic tensor and  is a scalar equal to 0 or 1: 

 = 0  if: f( , p) < 0 

or: 

p ff( ) 0 and 0  

if: 

p ff( ) 0 and 0  

When f/ .d  = 0, can be equal either to 0 or to 1, indifferently, the value 
being chosen for internal consistency.  

All the elastoplastic models are inherently different from each other depending 
on the choice of the equations of the elastic limit surface f = 0, the plastic potential  
g = 0, and the plasticity criterion obtained when the hardening modulus becomes 
equal to 0 (the determinant of the elastoplastic tensor Nep is zero with d  = Nep d ). 
When f and g are identical functions, the elastoplastic model is said to be 
“associated”, otherwise it is “unassociated”. In this last case, the elastoplastic tensor 
is no longer symmetric. 

The hardening rule can be “isotropic” when f varies in an homothetic manner in 
the stress space, “kinematic” when f is translated in the stress space, or “rotational” 
when f can turn around the origin of the stress space (this last hardening has been 
introduced more recently, for example in [LAD 97]). 
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Figure 1.2. Response envelopes [GUD 79] in axisymmetric conditions for the Duncan-
Chang model with two tensorial zones (characterized by fs = ±1) for four different stress 

levels. The continuity of the response envelopes is not verified 

1.6.2.2. Hypoelastic models with one single loading-unloading criterion 

In this type of model, there is no distinction between elastic and plastic strains 
and the notion of elastic limit surface is non-existent. The two tensorial zones are 
separated by a hyperplane, having a linear homogenous equation of the following 
form: 

A( ) . d  = 0 

The loading zone corresponds to the loading condition: 

A( ) . d  > 0 (1.18) 

 with the associated constitutive tensor M+. The unloading zone is defined by: 

A( ) . d  < 0 (1.19) 

with the associated constitutive tensor M-.  

Here there is a complete similarity with the elastoplasticity theory. Inequations 
(1.18) and (1.19) correspond to inequations (1.13), whereas tensors M+ and M- can 
be compared to tensors Mep and Me, respectively. 
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However, the continuity condition must be fulfilled a posteriori here. It can be 
written: 

d  such that A( d : (M ) d  (1.20) 

Condition (1.20) prevents any arbitrary choice for M+ and M-. It corresponds to 
the consistency condition in elastoplasticity theory. Tensors M+ and M- have to be 
dependent on memory parameters, which are linked to the stress tensor and to the 
plastic deformation, as in elastoplastic models. 

Figure 1.2 shows the response envelopes obtained for the Duncan-Chang model, 
which is a non-linear isotropic hypoelastic model with a specific loading-unloading 
criterion. It is easy to verify that such a model cannot be continuous at the border 
between the two zones. 

1.6.2.3. Damage models 

The main assumption behind these models is that damaged material loses part of 
its mechanical elastic properties. This is shown by introducing a damage parameter 
D, which can be a scalar or a tensor. By introducing the damage parameter into an 
elastic formulation, we obtain a rheological functional which expresses the elastic 
behavior of a damaged material [MAZ 86]. This approach has proved to be very 
easy to use in monotonic loading, but not so much elsewhere, due to the nature of 
the functional. 

In the framework of the incremental expression of the constitutive relations, 
damage models can be constructed by distinguishing a reversible damaged behavior 
from an irreversible behavior [MAZ 89]. A limit surface where damage appears is 
introduced: 

f , D  = 0  (1.21) 

When the incremental stress is directed towards the outside of this surface, 
additional damage is created, while the damage remains constant when the 
incremental stress is directed towards the inside of the surface. The loading-
unloading criterion is therefore given by the sign of f/ .d : 

f d 0: loading condition

f d 0: unloading condition

 (1.22) 
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When the limit surface is reached and the loading criterion is verified, damage is 
produced in the direction given by the damage evolution law: 

dD = d  
g  (1.23) 

where g( ) = 0 is the damage potential. d  is an arbitrary scalar at the present step 
and can be determined by the consistency equation which expresses that the damage 
limit surface follows the state of stress as long as the loading condition is verified: 

df = 0 

thus 

f
 . d  + 

f

D
 . dD = 0 (1.24) 

where 

d  = - 
f
 . d

f

D
 . 

g  (1.25) 

As in elastoplasticity, we must assure that the consistency equation is always 
verified. 

The incremental strain can then be considered as the sum of two contributions: 
the first being the “degraded elastic” type, the second, irreversible, is induced by the 
increase in damage: 

d  = Me D  d  -  

f
 . d

f

D
 . 

g
 

g  (1.26) 

with Me(D) the damaged elastic matrix, and  a scalar equal to 0 or 1. 

0, if f ( D) < 0  
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or: 

ff( D) 0 and  

fif    f( D) = 0 and  (1.27) 

We can see that, by using the notions of tensorial zone and the continuity 
condition, it is possible to give a unified presentation of elastoplasticity, 
hypoelasticity with loading-unloading criteria, and damage theory. 

1.6.3. Constitutive relations with four tensorial zones  

In order to describe more precisely the incrementally non-linear behavior of 
materials, particularly soils, it appears preferable to take into account two plastic 
mechanisms in the framework of elastoplasticity and two loading-unloading criteria 
for the hypoelastic constitutive relations. Each criterion can be associated, 
independently of the other, with a loading or unloading condition according to the 
direction of the incremental stress, which leads to the definition of four tensorial 
zones and four constitutive tensors. If the criteria are not independent, another 
theory, albeit one which is the same in principle, has to be built. 

1.2 4.2

 

Figure 1.3. Response envelopes [GUD 79] in axisymmetric conditions for the octo-linear 
Darve’s model [DAR 82] with four tensorial zones (characterized by fs) for four different 

stress levels. The continuity of the response envelopes is verified 
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1.6.3.1. Elastoplastic models with double plastic potential 

For each state of stress, following a given loading history, there are two yield 
surfaces which pass through this state of stress when the first plastic deformations 
develop: 

f1 , p  = 0
f2 , p  = 0

 (1.28) 

For each surface, we define a criterion of loading-unloading defined by the 
following relation: 

1

2

f d or 0

f d or 0

 (1.29) 

In the incremental stress six-dimensional space, we can therefore define four 
tensorial zones separated by two hyperplanes having the following equations: 

1 2f fd    and  d 0  (1.30) 

When the loading condition for criterion i is fulfilled, there is a plastic 
deformation d pi, whose direction is given by:  

d pi = d i 
gi  (1.31) 

where d i is an arbitrary scalar and gi(s) = 0 is the plastic potential for mechanism i. 
As in the previous section, the consistency rule for mechanism i gives the value of 
d i, using equation (1.16). The incremental strain can therefore be written: 

d  = Me d  - 1 

f1  . d

f1
p  . 

g1

 
g1  - 2 

f2  . d

f2
p  . 

g2

 
g2  (1.32) 
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where: 

i = 0,       if  fi ( , p) < 0 
or  fi ( , p) = 0 and fi/ .d  < 0 

i = 1,  if  fi( , p) = 0 and fi/ .d  > 0 

The four tensorial zones can be defined by the values of 1 and 2 and the 
correspondent constitutive tensors are: 

– tensorial zone I: (0, 0), Me 

– tensorial zone II: (1, 0), Mp1e2 

– tensorial zone III: (0, 1), Me1p2 

– tensorial zone IV: (1, 1), Mp1p2 

The continuity condition has to be fulfilled between zones I and II for which  
2 = 0: 

1 2p ee1fd  such that d : (M ) d  (1.33) 

between zones I and III for which 1 = 0: 

1 2e pe2fd  such that d : (M ) d  (1.34) 

between zones IV and II for which 1 = 1: 

1 2 1 2p p p e2fd  such that d : (M ) d  (1.35) 

and between zones IV and III for which 2 = 1: 

1 2 1 2p p e p1fd  such that d : (M ) d  (1.36) 

We can easily verify that conditions (1.33) and (1.36) are equivalent, as well as 
conditions (1.34) and (1.35). 
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Even if there are four limits, only two continuity conditions have to be satisfied, 
which correspond to the two consistency conditions. Due to the structure of 
elastoplastic relations, the two other relations are automatically verified. 

1.6.3.2. Hypoelastic models with two loading-unloading criteria 

For each state of stress, two loading-unloading criteria are defined in order to 
obtain a more progressive change of the constitutive tensor with the direction of d  
(with only one criterion, the tensor can have only two expressions, one 
corresponding to the loading condition, the other one to the unloading condition): 

1

2

first criterion: A ( d  or 0
second criterion: A ( d  or 0

 (1.37) 

The two hyperplanes having for equation: 

A1( ).d  = 0 

and: 

A2 ( ).d  = 0 

define four tensorial zones in the d  space. If we characterize each zone by the signs 
of expressions (1.37), we get the four different zones with the attached constitutive 
tensors: 

– zone I: (+, +), M++ 

– zone II: (+, -), M+- 

– zone III: (-, +), M-+ 

– zone IV: (-, -), M-- 

The four continuity conditions are given by: 

1

2

d  such that A ( d : (M )d

                                          and (M M )d
d  such that A ( d : (M )d

                                          and (M M )d

 (1.38) 

We note that, due to the more general structure of the hypoelastic models, the 
four conditions (1.38) cannot be reduced to two, as in the elastoplastic models with 
double plastic potential. 
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1.6.4. Constitutive relations with n tensorial zones (n > 4) 

All these models have an incrementally piecewise linear structure. In the case of 
elastoplastic models with m plastic potentials, corresponding to m loading-unloading 
criteria, each state of stress can be located at the same time on m elastic limits, to 
which we can associate m flow rules. The elastic limit corresponds locally to a 
vertex, which can be interpreted as the creation of a local singularity by the stress 
state encountering the elastic limit surface and deforming it locally. Some 
mechanisms can be associated (yield surface i is therefore identical to plastic 
potential i) or unassociated. 

With each plastic mechanism is associated a loading-unloading criterion and two 
tensorial zones. The total number of tensorial zones is therefore equal to: 

n = 2m 

In the case of hypoelasticity, we can find identical structures by the direct 
introduction of m loading-unloading criteria. Obviously, the model has to be 
constructed so that it will respect the continuity condition at each change of tensorial 
zone. 

An elastoplastic model has been constructed by using three deviatoric 
mechanisms and one isotropic mechanism, which correspond to 16 tensorial zones 
[HIC 85, HUJ 85]. A hypoelastic model with eight tensorial zones, the “octo-linear 
incremental model” [DAR 82], is presented in Chapter 6. 

1.6.5. Constitutive relations with an infinite number of tensorial zones  

A constitutive model can be considered to have an infinite number of tensorial 
zones, if each direction of d  space is linked to a given tangent constitutive tensor 
which varies in a continuous manner with this direction. There are three different 
types of model.  

Historically, the first models of this type were developed by Valanis [VAL 71]. 
They are written in the following form 

d  = Md  + Cd  (1.39) 

where  plays the role of an “intrinsic time” for the material (which is at the origin 
of the designation “endochronic models” for this type of constitutive laws), and 
corresponds to the length of the path followed in the strain space: 

d  = d  
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The incremental non-linearity is thus given by the scalar d  which always 
remains positive, regardless of the direction of the incremental loading. Therefore, 
irreversible strains, independent of the strain rate since the relation is homogenous 
of degree 1, can be obtained without introducing either loading-unloading criteria or 
an elastic domain. 

In this class of models, we find models with a non-linear incremental term of a 
tensorial nature, called “interpolation type” models since they are based on a non-
linear interpolation between given constitutive responses, the non-linearity being 
linked to the type of interpolation rule used. Among these models, we can cite the 
“incremental non-linear of second order” model [DAR 80, DAR 88], which has the 
following general form: 

ij ijkl kl ijklmn kl mn
1d M d N d d

d
 (1.40) 

and some other models with different interpolation forms [CHA 79, DIB 87, ROY 86]. 

Models with a “bounding surface”, proposed by Dafalias [DAF 80], have led to 
the development of an incrementally non-linear relation called “hypoplasticity” 
[DAF 86] by creating a dependency of the incremental response on the direction of 
incremental stress. 

The term “hypoplasticity” was also used by Kolymbas [KOL 77] and Chambon 
[CHA 94] for endochronic type models: 

A( b )  (1.41) 

which are the object of specific developments unlike the initial model developed by 
Valanis. 

1.6.6. Conclusion 

Metallic mono-crystals have a finite number of defined directions of sliding 
planes; therefore, this specific microstructure is the basis of models which have a 
finite number of plastic potentials. In granular materials, however, plastic sliding can 
occur in any direction of the space along tangential planes at grain contacts. The 
mechanical behavior of such materials is thus more likely to be incrementally non-
linear. 
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In order to describe this non-linearity, i.e. the non-linear character of the 
relationship between the incremental strain and stress, we can use a piecewise linear 
formalism. Elastoplasticity theory guides us in the construction of such models by 
the definition of notions such as elastic limit, flow rule and hardening variables. 
However, calibrating these different elements can be a difficult task and it has been 
shown that their predictions along non-proportional loading could be of poor quality 
[WOR 84, WOR 88], mainly due to limitations induced by the difficulty of 
identifying elastic domains, flow rules and hardening variables. 

Hypoelastic models with multiple loading-unloading criteria require fewer initial 
hypotheses and increase the choice of elaboration of the constitutive tensors, which 
must however verify a posteriori the continuity conditions. We can say that the 
modeler pays for his increased choice by a lack of constraint, which is certainly a 
life lesson of broad concern! 

The incrementally non-linear formalism increases to an even greater extent the 
range of choices which is only limited by the homogenity condition. The advantage 
of the incrementally non-linear constitutive “interpolation type” relations is the 
reintroduction of some guides strongly linked to the material mechanical properties 
by proposing a non-linear interpolation between known behaviors in conventional 
loading conditions. We shall come back to this aspect in Chapter 6. 

1.7. The main constitutive relations for rate-dependent materials 

Viscosity plays a less central role in solid materials than in fluids. It completes 
an elastoplastic behavior, either by adding an additional incremental strain, or by 
influencing the plastic strain. These two hypotheses are the basis of the proposed 
classification [DAR 90]. 

1.7.1. First class of incremental strain decomposition 

The hypothesis for the models belonging to this first class consists of assuming 
that the incremental strain can be divided into an instantaneous and a delayed part: 

instantaneous delayedd (d ) (d )  (1.41) 

The instantaneous strain can be interpreted as being of an elastoplastic type and 
the delayed strain of a viscous type. Therefore: 

d  = d ep + d v  (1.42) 



26     Constitutive Modeling of Soils and Rocks 

In the previous section we have seen that d ep can be written: 

epd M(u)d   with  u d / d  

Thus: 

d  = M u  d  + d  (1.44) 

Under the small transformation hypothesis, creep tests correspond to the 
condition dt = 0. Therefore, d v/dt corresponds to the creep rate, and we obtain: 

d  = Mh u  d  + Ch dt  (1.45) 

where M is the elastoplastic constitutive tensor and C the creep rate, both tensors 
being dependent on the loading history.  

We should note that, for saturated materials, the stresses to be considered are 
effective stresses and that the considered creep tests are drained. 

1.7.2. Second class of incremental strain decomposition 

We assume in this case that incremental strain can be decomposed into a 
reversible and an irreversible part: 

reversible irreversibled (d ) (d )  (1.46) 

The reversible part can be considered as purely elastic and the irreversible part as 
viscoplastic: 

d  = d e + d vp  (1.47) 

If Me is the elastic tensor, the elastic law being incrementally linear, we have: 

d e = Me d   (1.48) 

The viscoplastic strain is generally determined by using the viscoplastic potential 
theory developed by Perzyna [PER 63]: 

d vp = d  
g

 ,  (1.49) 
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with g( ) = 0 being the viscoplastic potential. 

Due to the fact that the actual stress state can be outside the actual elastic limit, 
scalar d is no longer determined by the consistency condition, but directly by  
the intensity of the viscoplastic strains. 

1.8. General conclusions 

Having reviewed all the main classes of constitutive relations, we must 
emphasize two main choices when constructing a constitutive model.  

The first choice concerns the structure of the constitutive model, which should be 
better adapted to the problem to which it is addressed. This first choice has been 
widely discussed: is viscosity necessary or not? If yes, which type of viscous 
behavior is more pertinent: adding viscous behavior to elastoplastic strain or taking 
into account viscoplastic strains? How many tensorial zones are needed to describe 
the elastoplastic strains properly? Should we stay in the framework of 
elastoplasticity or damage theory, well defined and yet restrictive, or should we give 
ourselves more degrees of freedom by working in the framework of hypoelasticity 
or incrementally non-linear constitutive equations? Without a precise and solid 
knowledge of the material microstructure [DAR 05a, DAR 05b], the objective 
criteria for choosing one direction cannot be well defined, which can partially 
explain that the use of a given model in finite element analyses is rarely rationally 
justified. For a better understanding of the limitations of main constitutive models, 
the reader can refer to the results of two international workshops which took place in 
Grenoble in 1984 and in Cleveland in 1988, which were devoted to comparing 
model performances along various loading paths [WOR 84, WOR 88].  

The second necessary choice is linked to the description of the loading history 
and leads to the following questions: which state variables? Which hardening 
variables? Which memory parameters? These questions have not been 
fundamentally addressed in this chapter, even if they play a central role in the 
quality of the model prediction. In the general case of an unproportional loading, our 
ignorance on this topic remains significant. The only insurance that we have is the 
major role played by induced anisotropy on the stress-strain response and therefore, 
the necessity of taking it into account in the modeling. Elastoplasticity also seems to 
require discrete memory parameters, which can characterize the last changes in the 
loading direction.  

Finally, we should note that the topic concerning constitutive models cannot be 
developed further without taking into account the significant developments made in 
the field of discrete numerical simulations concerning granular materials. We also 
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have to take into consideration the demand coming from practitioners concerning 
the need for parameter identification methods based on inverse analyses of in situ 
test results, and not only from laboratory testing, which are often more difficult and 
more expensive to perform.  
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Chapter 2 

Mechanisms of Soil Deformation  

2.1. Introduction 

Mechanical soil behavior is generally studied within the framework of 
continuous medium mechanics, which provides a way of formulating constitutive 
models adapted to the specific nature of these materials. Given the extremely diverse 
nature of soils, it is necessary to investigate first of all the possibility of proposing 
models flexible enough to be adapted to a vast range of natural materials. Secondly, 
it is necessary to assess the procedure by which the parameters for a given soil are 
obtained. The field of soil mechanics has always favored the perfect elastic-plastic 
Mohr-Coulomb model. Numerous elastoplastic models have thus been developed, 
improving the representation of observable non-linear behavior. However, these 
models come up against a problem of parameter determination on account of the 
generally small number of experimental field data. From the outset of our study, we 
will present a number of experimental results which clearly show the soil’s 
mechanical behavior by drawing attention to the common aspects that do not rely on 
the nature of the constituents. This enables us to propose a mode of behavior 
applicable to a large range of materials. We will then discuss the possibility of 
relating the representative parameters of equivalent continuous medium to 
parameters representative of a discontinuous medium as well as the pertinent 
representation scales of this discontinuous medium. Our investigation is limited to 
monotonous axisymmetric compression loading on dry or water-saturated materials. 
Section 2.2 is devoted to remolded laboratory-prepared soils, considered as 
continuous materials. Section 2.3 studies the relationship between a discontinuous 
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and equivalent continuous medium. Section 2.4 develops an analysis of natural soils 
from all the preceding discussion.  

2.2. Remolded soil behavior 

It is possible in a laboratory to prepare, remolded clay samples from a mixture of 
dry clay powder and water. This slurry is afterwards progressively consolidated in 
order to obtain a saturated solid material whose mechanical properties can be studied 
(Figure 2.1). The advantage of this technique is that we can have at our disposal a 
large number of identical specimens with a reproducible and, under specifically 
prepared conditions, isotropic structure. The results of several triaxial tests presented 
in several normalized planes illustrate the mechanical behavior of such materials, 
normally called consolidated materials, which corresponds to the fact that the mean 
effective stress at the beginning of the loading test is equal to the maximum stress 
borne by the soil sample (Figure 2.2). These results, usually obtained from clays, are 
more difficult to obtain from sands, because it is almost impossible to prepare a dry 
or saturated sand sample under the same conditions. However, if we use slightly wet 
sand, we can prepare a sand sample with a sufficiently high initial void ratio in order 
to obtain behavior similar to that obtained previously from normally consolidated 
clay (Figure 2.3). These results clearly show a highly non-linear response from these 
materials as well as the influence of the mean stress, which in this case corresponds 
simply to a homothetic influence on the q- 1 curves for deformations larger than  
10-2. The final state, called the perfect plasticity state, is defined by a stress criterion 
q/p’ = M, identical to a Mohr-Coulomb criterion in axisymmetric compression 
condition with sin pp = 3M/(6+M), and by a linear relation between the final void 
ratio and the logarithm of the mean effective stress. The materials appear in this case 
to be contractant, which means that they are characterized by an anelastic volume 
decrease under deviatoric stress loading. 

A constant M value on stress paths different from the axisymmetric condition 
leads to a Drücker-Prager plastic criterion, which is not obtained experimentally. In 
order to generalize these results in true 3D condition, we have to consider a criterion 
of the type q/p’ = M( ), where  is Lode’s angle. Several expressions have been 
proposed, in particular by Lade and Matsuoka [HIC 85]. The Mohr-Coulomb 
criterion (  = constant, independent of Lode’s angle) remains the most popular. It 
gives conservative values of the maximum strength along stress paths other than the 
axisymmetric compression (Figure 2.4).  
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Figure 2.1. Isotropic compression on clay 

The effect of an overconsolidated state on clay behavior – where the mean 
effective stress at the beginning of the test is smaller than the maximum effective 
stress borne by the specimen – can be observed in Figure 2.5 [HAT 95]. The 
material becomes dilatant (anelastic volume increases) and, at a given mean stress, 
its rigidity as well as its maximum strength are higher. Identical results are obtained 
on sands when the initial void ratio is decreased: the dilatancy increases with the 
initial density (Figure 2.6). The concept of perfect plasticity defined above in the 
plane e-log (p’) helps to explain this change from contractant to dilatant behavior as 
a function of the initial state of stress and void ratio. 

We must however note that this perfect plasticity state is difficult to obtain 
experimentally, since strain localization usually develops inside the specimens, 
especially the dilatant specimens. Putting together all these results obtained on 
reconstituted soils enables us to show a strong analogy between their mechanical 
behavior and the influence of the volume changes on the stress-strain relationship, 
independently of the nature of the particle constituents, as long as these particles can 
be considered elastic (Figure 2.7). 
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Figure 2.2. Constant p’ triaxial tests on normally consolidated clay 
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Figure 2.3. Drained triaxial tests on very loose sand 
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Figure 2.4. 3D tests on normally consolidated clay 

The volume change under deviatoric loading can be quantified from the 
following relation for normally consolidated soils: 

e = e0 – Cdlog (1+ 2/M2) = e0 - dLn(1+ 2/M2)       where =q/p’ 

or with a formulation close to that proposed by Roscoe et al. [ROS 58]: 

e = e0 - ( - p) Ln (1+ 2/M2) 

where p is different from k introduced by Roscoe, which corresponds to the slope 
of the isotropic or oedometric unloading curve corresponding to an elastic behavior. 
Parameter  corresponds to the slope of a stress path at  constant in the e-Ln(p’) 
plane. Therefore, the isotropic stress path ( =0), the oedometric stress path ( 2= 3=0, 

’3/ ’1=K0, which corresponds to =3(1-K0)/(1+2K0)), and the perfect plasticity 
state are parallel in this plane. 

For overconsolidated clays, the relation e- p’ allows a pseudoelastic volumetric 
limit to be defined in the p’, q plane. At first, the curve follows a path corresponding 
to an elastic recompression. It then moves away, either to follow a normally 
consolidated type of path until it reaches the perfect plastic state for OCR < 2, or to 
follow a dilatant path when the stress ratio q/p’ moves close to M for OCR > 2. The 
size of this limit increases with the increase of the consolidation stress, all the 
different limits being homothetic, with the homothetic transformation being equal to 
the consolidation stress amplitude.  
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Figure 2.5. Constant p’ triaxial tests on overconsolidated clay 
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Figure 2.6. Drained triaxial tests on sand with different initial  
densities (Bouvard (1982) reported in [BIA 94]) 
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Figure 2.7. General behavior of remolded soils 

Similar results are obtained on sands, especially in the dilatant domain. The 
shape of the pseudoelastic limit shows, however, that the junction with the isotropic 
stress path is reached only for elevated stresses (Figure 2.9), at which grain crushing 
occurs. The position of this junction point depends on the initial density of the 
material. In the p’, q plane the regime change from contractant to dilatant can be 
represented by a straight line passing through the origin. This line is called the 
“phase transformation line” by Ishihara or “characteristic line” by Luong.  
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Figure 2.8. Determination of the pseudo-elastic limit for overconsolidated clay 

Different expressions of the generalized overconsolidation can be proposed 
(Figure 2.10): 

– eNC – eOC: for a clayey material, we can see that a given isotropic 
overconsolidation ratio p’ic/p’i, for different values of p’ic, corresponds to a straight 
line in the plane e, logp’, parallel to the isotropic consolidation line. We can 
therefore express overconsolidation by the distance to this line, which can be the 
value of eNC – eOC for a given p’, where eNC is the void ratio on the isotropic 
consolidation line for this value of p’ and eOC is the actual void ratio: eNC – eOC = (Cc 
– Cs)log(p’ic/p’); 

– the “state parameter” eSS – eOC: we can also relate the initial point e, logp’ to 
the distance to the perfect plastic line, which can be considered as parallel to the 
isotropic consolidation line at a distance eNC – eSS = 0.1. In these conditions, we can 
define overconsolidation by the state parameter (eSS – eOC) = (eNC – eSS) – 0.1; 

– the dilatancy : we can also define the distance of the initial point eOC, p’ 
to the perfect plastic line along a triaxial path ( ’2 = ’3 = constant). This path 
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reaches the perfect plastic line at a point of void ratio epp and corresponds to a curve 
in the e1,ev plane with a maximum slope tg  = d v/d 1, which can also be written  
tg = 2sin /(1 - sin  
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Figure 2.9. Pseudo-elastic limit for sand 

The volume change due to the application of a deviatoric stress affects the entire 
stress-strain relationship. Rowe [ROW 62] has shown that the results of triaxial tests 
can be represented in a preliminary approximation by a linear relationship between 

’1/ ’3 and (1 – d v/d 1). This is independent of the initial void ratio. If the slope of 
this line is expressed as tg2( /4 + ’/2), ’ can be approximated by the perfect 
plasticity friction angle pp. Rowe’s stress-dilatancy law can thus be written as 
follows: 

’1/ ’3 = tg2( /4 + pp/2)(1 – d v/d 1) 
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This relation implies that the characteristic line and perfect plasticity line 
correspond to the same mobilized friction angle. It also implies a relationship 
between the dilatancy angle defined by the maximum of d v/d 1 and the maximum 
friction angle ’ which decreases if the mean stress decreases. For a given mean 
stress, ’ increases if the initial void ratio increases according to the approximation: 

e tg ’ = e tg pp = constant 

 

Figure 2.10. Characterization of the generalized overconsolidation 
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The pseudoelastic limit defined previously does not correspond to a perfectly 
reversible behavior. For remolded soils, the size of the real elastic domain is very 
small and can be studied only by measuring very small deformations using specific 
experimental devices, such as that shown in Figure 2.11. Figures 2.12 and 2.13 
show, for clay and sand respectively, the evolution of the secant modulus during a 
triaxial loading test as a function of strain amplitude. We can see that a perfectly 
reversible behavior can be obtained only for strain amplitudes smaller than 10-5.  

 

Figure 2.11. Triaxial test with small strain measurement device 
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2.3. Relationships between discontinuous and continuous medium 

The mechanical behavior of the equivalent continuous medium depends on the 
properties of the discontinuous medium. An example can be seen in the elastic law 
at very small strains as defined in the previous section. The elasticity is non-linear, 
the isotropic modulus depends on the mean stress, in agreement with a calculation 
that uses Hertz’ theory for an assembly of identical spheres [BIA 94]: 

Eiso = 3/2(4Eg/3(1 – g
2)G(e))2/3p’1/3 

where Eg and g are the elastic constant of linear elasticity for the spheres and G (e) 
is a function of the assembly void ratio. 

For soils, Young’s modulus E can be written in the general form: 

E = kpa(p’/pa)n 

where k depends on the nature and density of the soil and pa is the atmospheric 
pressure. n is close to 0.5 for all soils if the void ratio influence is completely taken 
into account in the value of k [HIC 96]. Several expressions of k as a function of the 
void ratio have been proposed, in particular by Hardin and Drnevitch [HAR 72]. 
From a wide collection of different soils, a simple relation can approximate the 
experimental results: 

E = b/e (p’)0.5 

where b depends on the nature of the soil, more precisely on the modulus of the 
grains or aggregates (see the next section). 
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Figure 2.12. Triaxial test with accurate strain measurement on normally consolidated clay 
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Figure 2.13. Triaxial test with accurate strain measurement on dense sand 

The true elastic limit is thus a surface close to the hydrostatic axis in the 
principal stress space for an isotropic material, and therefore close to the p’ axis in 
the p’,q plane. The evolution of the secant modulus, for a given strain amplitude, is 
also a non-linear function of the mean stress, the coefficient of non-linearity n 
increasing from 0.5 at very small strains to 1 for  > 10-2. This last result is in 
agreement with the homothetic character of the q-  curves, as presented in the 
previous section. 

The discontinuous medium can be studied at different scales, more or less 
representative of the phenomena observed at the macroscopic scale, i.e. at the scale 
of the specimen, which corresponds to the equivalent continuous medium. 
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2.3.1. Granular materials 

As for granular materials (sands, gravels, etc.), the representative scale appears 
to be that of the grain itself [DAR 95, HIC 98]. The relation between a 
discontinuous and an equivalent continuous medium can be established by trying to 
relate the parameters representative of the continuous medium behavior to the 
parameters representative of the grains. These latter can be divided into two groups: 

– the mechanical properties of the grains and the local contact law. In most cases 
an elastic behavior can be retained for the grains; 

– the geometrical conditions of the grain assembly. The geometry of the grains 
themselves can be defined by parameters representing the size, shape and grain size 
distribution, which can generally be considered as invariable. The geometry of the 
arrangement, which can vary, includes, on one hand, a parameter expressing the 
compacity (a scalar), and on the other hand, a parameter describing its anisotropy (a 
tensor). 

The research for correlative links between the parameters of the continuous 
medium and those of the discontinuous medium has been the object of various 
studies in soil mechanics, and there are several expressions concerning the 
parameters used in foundation calculations in particular. As it is difficult to identify 
all the parameters of the grain geometry, the nature of the granular medium is often 
synthesized by a specific arrangement of the grains in response to suitable 
normalized tests. For sands and gravels, we use two specific void ratios called 
“maximal void ratio” emax and “minimal void ratio” emin. They give the interval of 
the natural void ratio variation for a given material. Their values depend on both the 
shape and surface roughness of the grains and on the grain size distribution.  

Figure 2.14 gives an example of correlative links between the two nature 
parameters emax and emin and a mechanical property of the grain assembly, in this 
case the position of the perfect plasticity relation in the e, logp’ plane. This approach 
can be extended to the determination of constitutive model parameters from 
correlations with parameters representative of the discontinuous granular medium 
[HIC 94]. These correlative links can give an initial set of parameters which is 
sufficiently precise so that it can be used as a starting point for an optimization 
procedure. This approach can be very useful in practical applications of a 
constitutive model in finite element calculations.  
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Figure 2.14. Perfect plasticity relationship as a function of void ratios emax and emin 

2.3.2. Remolded clayey materials 

The representative scale of the constitutive elements which affect the mechanical 
behavior of the equivalent continuous medium is less evident in this case. Several 
scales coexist in a clayey material: 

– the basic clay layer, basic element of a clay particle; 

– the clay particle made up of an assembly of layers, usually by organized stacks; 

– the aggregate made up of particles, whose size and internal arrangement 
depend on the history of the material. The size of the aggregates can be measured by 
sedimentation. 

A research study has been undertaken to relate the mechanical behavior of 
saturated remolded clays to their structural organization [HIC 00]. Two clays were 
studied: a kaolinite and a bentonite. The evolution of the shape, size, concentration 
and orientation of the elements which constitute the clay structure was examined by 
means of scanning and transmission electron microscopes, thanks to techniques 
which obviate possible disturbances of the micro-structure during observation. The 
results of this study show the main role played by the aggregates, similar to the role 
played by the grains in the mechanical behavior of granular materials. This explains 
the similar behavior of the equivalent continuous medium for the different nature of 
the constituents, as seen in the previous section. The difference in nature between 
grains and aggregates is however insufficient to explain quantitative differences in 
the stress-strain relationship. In particular, the deformability of the aggregates can 
play an important role. This deformability depends on the way the clay particles are 
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assembled, which is dependent on the mineralogy, adsorbed ions, etc. Photographs 
in Figures 2.15 and 2.16 show two different examples: the kaolinite is made of rigid 
small particles assembled in compact stacks; on the other hand, the bentonite is 
made of larger, more flexible particles creating less compact and therefore more 
deformable aggregates. 

 

Figure 2.15. SEM photos of Kaolinite P300 

 

Figure 2.16. SEM photos of Bentonite 
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This study also showed significant evolution of the aggregate sizes during 
mechanical loading. As progressive division of the aggregates into smaller elements 
takes place, the bigger aggregates are the first to be affected by this breakage. This 
phenomenon induces a reduction in size of the elements which constitute the clayey 
material and also reduces the pore size. As long as the amount of breakage remains 
small, the mechanical properties of a normally consolidated clay can be considered 
as homothetic to the mean stress, as seen previously. It is no longer the case when 
the ruptures increase for high stresses. We can thus see an increase of the 
deformability under deviatoric stresses, as in the case of sands and gravels [BIA 94, 
BIA 97]. 

The links between the characteristics of the discontinuous medium and the 
parameters of the equivalent continuous medium are more difficult to define for 
clays rather than for sands. We can use, for example, two specific values of density 
called Atterberg’s limits which are expressed in terms of water content wl and wp, 
obtained as for emax and emin using normalized tests. These two parameters are 
mainly dependent on the mineralogy of the constituents and adsorbed ions, and 
therefore on the particle arrangement, size and shape of the aggregates. Figure 2.17 
presents an example of a link between the liquid limit wl and the compressibility of 
clayey materials. It is also possible to obtain a correlation between Atterberg’s limits 
and the perfect plasticity line in the e, logp’ plane (Figure 2.18). In this last case, a 
similar correlation as that proposed for sands is obtained by substituting wl and wp to 
emax and emin.  

The influence of the aggregate deformability is particularly pronounced on the 
elastic properties of clayey materials, since the elastic domain is restricted to very 
small strains (< 10-5), for which the relative displacements of the constituents are 
negligible. The deformation of the equivalent continuous medium is, therefore, 
mainly due to the deformation of the discontinuous medium constituents (Hertz’s 
law). In these conditions the elastic moduli measured in sands and gravels are much 
higher than in clays. For clays, the more rigid aggregates of a kaolinite give elastic 
moduli higher than those of a bentonite (Figure 2.19 [LIU 99]). 

The influence of the significant deformability of bentonite aggregates can also be 
seen at larger deformations, for example on the isotropic compressibility curve 
whose slope is much higher than the kaolinite one. Its value for the kaolinite is close 
to that obtained for sands, corresponding to a high rigidity of the aggregates which 
causes them to behave more like sand grains. In this last case, the major deformation 
mechanisms of the continuous medium are due to relative displacements of grains or 
aggregates. 
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Figure 2.17. Mechanical properties of normally consolidated clays  
correlated to Atterberg’s limits 

2.3.3. Granular materials with intergranular glue 

The previous results correspond to materials for which the contact law between 
two grains is reduced to solid friction. If two grains in contact are also “glued”, the 
change in the contact law also produces a change in the mechanical properties of the 
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equivalent continuous medium. Its overall behavior depends on the glue behavior. 
The main visible change in the material behavior is the fact that the maximum 
strength envelope does not intercept the origin of the axes and that the material 
exhibits a non-zero strength in traction: this is usually expressed by the term 
“cohesion”. However, the role of the intergranular glue cannot be reduced to a scalar 
representing this cohesion, experimental results show that the whole stress-strain 
relationship is affected by the glue properties. For example, in unsaturated granular 
materials, the capillary forces act as a glue with negligible stiffness. Therefore, the 
material will have a non-linear elastic behavior with a dependency on the mean 
stress. On the other hand, if the glue has a stiffness similar to that of the grains, there 
is a significant decrease of the role of mean stress on the elastic properties. At the 
same time, the force necessary to displace two grains in contact is proportional to 
the normal force in the case of a simple solid friction. If the two grains are glued, we 
have to add the strength of the glue; if this strength is constant, the role of the 
friction is negligible on the condition that the normal force is small and becomes 
preponderant at elevated normal forces. For the equivalent continuous material, this 
implies that its behavior is strongly dependant on the glue properties at small mean 
stresses, when c >> Mp’, and much less at high mean stresses when c << Mp’. A 
progressive damage of the glue during a mechanical loading can modify the relative 
influence of the cohesion and friction. The two following examples illustrate these 
different aspects of the intergranular glue influence. 

 

Figure 2.18. Perfect plasticity relationship as a function of Atterberg’s limits 
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Figure 2.19. Influence of soil nature on the elastic modulus 

The first example corresponds to experimental results obtained on sands injected 
by different grouts [TAI 98]. Each grout creates a specific type of glue between the 
grains. The mechanical strength of the injected sand is higher than that of the natural 
sand at the same confining stress. The maximum strength envelope in the p’,q plane 
is a line that has the same slope as that of the natural sand, but translated from q0 or 
c, which represents the cohesion due to the glue (Figure 2.20). The beginning of the 
stress-strain curves are almost independent of the mean stress, which corresponds to 
a constant stiffness. Afterwards, the curves become different when the dilatancy 
begins. Traction causes damage to the glue, which creates cracks inside the 
specimen with a frictional effect and, therefore, an influence of the mean stress. 

The second example corresponds to the behavior of a bituminous concrete [BAR 
93]. Here, the bitumen plays the role of the glue. It corresponds to a more ductile 
and, at the same time, viscous material, which transmits to the equivalent continuous 
material its viscous properties. As in the previous example, the stress-strain curves 
are almost independent of the mean stress for small deformations, which gives 
almost constant secant moduli for  < 10-2 (Figure 2.21). The maximum strength 
depends on the strain rate due to the viscous properties of the bitumen. At small 
strain rates, the maximum strength envelope is a straight line in the 3, qmax plane. 
The slope decreases with the strain rate increase. For high strain rates, the envelope 
is almost horizontal in that plane, which corresponds to a maximum strength 
independent of the mean stress. The increase of the strain rate increases the rigidity 
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of the glue, which, as a consequence, increases the cohesion and decreases the 
friction angle of the bituminous concrete. The peaks observed on the q( 1) curves 
correspond to damage to the glue by traction when the granular material becomes 
dilatant. This damage is more accentuated at elevated strain rates because the 
bitumen becomes more rigid and less ductile. Cracks develop in bituminous concrete 
which behaves similarly to granular material without bitumen at large strains. 

 

Figure 2.20. Triaxial tests on grouted sand 
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If the strain rate within the bituminous concrete is large, the cohesion C is large and the role 
of 3 is reduced 

Figure 2.21. Triaxial tests on bituminous concrete 

2.4. Natural soils 

The geological history of sedimentary depositions has a significant impact on 
mechanical properties, in particular the maximum stress state borne by the material 
during its history, called the consolidation stress. We can roughly distinguish two 
large families: recent soils, which have been deposited since the last Ice Age and 
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which are normally or slightly overconsolidated; older soils, which are often 
strongly overconsolidated, at least in the superficial layers. Their mode of deposition 
as well as their evolution with time produces specific characteristics, which cannot 
be found in laboratory prepared soils, such as those examined above. First of all, 
their structure or the geometry of their particle arrangement is usually anisotropic 
due to their deposition in the gravity field. This creates mechanical properties higher 
in the vertical rather than the horizontal directions. This aspect will not be studied 
here. Another important characteristic is the existence of an intergranular “glue”, 
mainly due to physicochemical evolutions at the particle contacts. The influence of 
this glue can be found in the mechanical properties of the equivalent continuous 
medium. It can significantly increase the initial stiffness as well as its maximum 
strength. Figure 2.22 presents an example of the behavior of a recent natural clay 
during oedometric and triaxial loading. We can see during the oedometric test a 
small deformability of the specimen at the beginning of the loading, which then 
increases strongly before decreasing again at elevated stresses. The correlations 
presented in the previous section and obtained from remolded clays are particularly 
helpful in explaining this peculiar behavior. We observe that the initial void ratio is 
higher than that expected from the correlations for a clay having a liquid limit wl = 
117%. The sudden strain increase allows it to progressively meet the compression 
curve corresponding to this liquid limit value and therefore to reach a traditional 
normally consolidated behavior. The material’s initial behavior having been 
influenced by an intergranular glue which took place early in the history of the 
creation of the clay layer and, by reinforcement of the clay structure, led to a natural 
void ratio higher than that which would have been obtained for a material without 
this internal cohesion in the same consolidation conditions. This cohesion becomes 
progressively destroyed during the oedometric loading and the stress-strain 
relationship evolves to reach that corresponding to a material without cohesion. 

Triaxial tests allow us to measure the effects of this intergranular glue on the 
material considered as the equivalent continuous medium. The post peak behavior 
corresponds to the destruction of the glue during a deviatoric loading. The stress-
strain curves after the peak converge towards an envelope of maximum strength 
without cohesion identical to that obtained on the same remolded clay. However, we 
have to be careful in interpreting the post peak curves, since they are often the 
consequence of strain localization in shear bands inside the specimens. 
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Figure 2.22. Oedometric and triaxial tests on recently deposited intact and remolded clay 
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Figure 2.23. Triaxial tests on recently deposited clay (Guiche Clay) [FAY 00] 
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Generally, natural soils will present a higher mechanical strength than remolded 
soils, as confirmed by Figure 2.23 where several results obtained on a post last Ice 
Age clay are presented together with results on a remolded clay having similar 
mineralogical properties. The maximum strength envelopes are two straight lines on 
the p’-q plane with almost the same slope. The envelope corresponding to the intact 
clay is located above, the distance between the two lines q0 = 0.04 Mpa represents 
the macroscopic cohesion of the intact clay. Sometimes, the intergranular glue is 
ductile enough to sustain macroscopic deformations of several percentage points. In 
these conditions, the maximum strength can remain constant after reaching the peak, 
which creates the equivalent of a perfectly plastic state for a cohesive material. 

This intergranular glue is present in almost all the natural clayey soils and also, 
only less frequently, in sandy soils, especially in ancient deposits. Its importance is 
weak for “young” materials, such as the previous example. It can be significantly 
higher in “older” clays, in particular if they have been subjected to high 
consolidation. Figure 2.24 presents an example of the behavior of a deep clay (layer 
located at 400 m depth), with an initial void ratio e0 = 0.34 and 20% of CaCO3. 
Oedometric and triaxial tests were performed on both intact and remolded 
specimens at the same void ratio. The remolded samples were prepared by one 
dimensional consolidation from a powder obtained by the desegregation of natural 
samples (HEI 95]. The stiffness of the aggregates being much higher than that of the 
glue, only the intergranular glue was affected by the remolding. Analyses by means 
of scanning electron microscope and mercury porosimetry confirmed this 
hypothesis. The triaxial tests demonstrate that the natural clay samples have a much 
higher initial stiffness compared to the remolded ones, as well as a more fragile 
behavior with strain localization starting as early as with 1% axial deformation. The 
oedometer tests show an elevated consolidation stress for both materials. After this 
consolidation stress, the remolded clay follows a stress-strain relationship in 
accordance with the normally consolidated behavior as presented in Figure 2.17, 
while the natural clay has a steeper consolidation slope which corresponds, as in the 
previous example, to the progressive rupture of the intergranular glue. Its higher 
resistance in this case leads to a slower evolution: we cannot see a brusque change in 
the stress-strain relationship but a more gentle increase of the slope in the e, log ’v 
plane. 

In the case of overconsolidated clays, this internal cohesion will superimpose its 
effect on the overconsolidated one. A typical example is the London Clay which has 
been widely studied, in particular by Bishop et al. [BIS 65]. Between 20 m and 40 m 
depth in the clay layer, the liquid limit varies between 65% and 70%, and the plastic 
limit between 25% and 30%. The clay layer was subjected to an unloading 
corresponding to an erosion of 360 m of superficial sedimentary deposits. The 
maximum strength envelope from drained and undrained tests is represented by a 
curve with very little dispersion (Figure 2.25). Its shape is similar to that obtained 
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with a remolded clay having the same mineralogical properties (Figure 2.26), but its 
position is located above due to the effect of the intergranular glue. For remolded 
clays, the junction between this envelope and the straight line q = Mp’ obtained for 
normally consolidated states corresponds to an overconsolidation ratio close to 2. 
For the London Clay, this junction is delayed: it occurs for a mean stress higher than 
the consolidation stress and can be associated with the creation of a damage of the 
intergranular glue during the initial isotropic loading.  

 

Figure 2.24. Oedometric and triaxial tests on strongly overconsolidated clay 
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As glue damage also occurs during a deviatoric loading, we can assume that the 
position of the maximum strength envelope depends on the role of 
overconsolidation, of the intergranular glue, and of its damage evolution during 
loading.  

 

Figure 2.25. Drained triaxial tests on the London Clay 

This damage can take place in situ when the decompression of a highly 
overconsolidated clay creates, in the upper part of the layer, vertical stresses 
sufficiently smaller than the horizontal stresses in order to reach the maximum 
strength envelope. Under theses conditions, cracks develop inside the clay layer. 
Afterwards, the influence of climatic changes and the circulation of water inside the 
cracks provoke, in the upper part of the clay layer, a physicochemical alteration, 
often characterized by an increase of Atterberg’s limits. These phenomena increase 
the void ratio. For this type of material, we can schematically propose a profile with 
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a depth similar to that obtained on Cattenom Clay (Figure 2.27) for which 
oedometer tests show a vertical unloading higher than 5 Mpa: 

– a first layer (1) of several meters in depth, with an increasing liquid limit wl, a 
decreasing density and mechanical properties also decreasing with very disperse 
values when we get closer to the surface; 

– an intermediary layer (2) with almost constant values of wl and gd, but in 
which the unloading has created some fissuration; 

– a third layer (3) with little disturbance from depths around 30 to 40 m. 
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Figure 2.26. Maximum strength envelopes for overconsolidated intact and remolded clay 
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Figure 2.27. Typical profile for a site made of strongly overconsolidated clayey soil 

 

Figure 2.28. Stress path during a geological unloading 

These mechanisms allow us also to explain the differences between the results 
obtained by Bishop et al. on the London Clay and those obtained by Josseaume 
[JOS 97] on the Flandrian Clay. These two clays, close in their mineralogy and 
geological histories, can be distinguished by the depth at which the tested samples 
were taken: 20 to 40 m for the London Clay, less than 10 m for the Flandrian Clay. 
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The latter is nowadays covered by a layer of silty sand, which prevents it being 
exposed at the surface as in the case of Cattenom Clay. It has not therefore been 
subjected to a physicochemical alteration and we can consider that it corresponds to 
a layer of type (2), while the London Clay, taken at greater depth, corresponds to a 
type (3) layer. This aspect affects the triaxial test results obtained for each material. 
The Flandrian Clay has lower as well as more scattered values of maximum 
strength, due to the fissuration induced by the decompression which helps the strain 
localization during the loading (Figure 2.29). The dispersion of the stiffness values 
measured for strains varying between 10-3 to 10-2 is less marked. This is due to the 
fact that the localization zones are not yet mobilized. It is therefore not always 
advisable to express the modulus as a function of the undrained shear resistance cu. 
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Figure 2.29. Drained and undrained triaxial tests on the Flandrian Clay 
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The marine deposits usually contain a certain amount of CaCO3, which plays an 
important role in the creation of the intergranular glue. We can see an example of 
this in Figure 2.30 where results of triaxial tests on four deep clay samples are 
presented, the percentage of CaCO3 varying from 15% to 50% [HEI 95]. The test 
results clearly show that the macroscopic cohesion increases with the amount of 
CaCO3 whose effect can be seen in the increase of the initial stiffness which 
increases from E = 740 MPa for CaCO3 = 15% to E = 7900 MPa for CaCO3 = 50%. 
This leads also to a strong increase of the maximum strength from 10 MPa (CaCO3 
= 15%) to 62 MPa (CaCO3 = 50%) for a confining stress ’3 = 5 MPa.  

 

 

Figure 2.30. Influence of calcium carbonate content on mechanical properties of a deep clay 
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Figure 2.31. Influence of calcium carbonate content on mechanical properties  
of clays and chalk at the Channel Tunnel site 

Similar results have been obtained on clay, marl and chalk at the site of the 
Channel Tunnel [FAY 00]. Along a depth of 100 m, we observe an increase of the 
CaCO3 content from 10% in the first clay layer to 90% in the chalk. Triaxial tests on 
chalk show that maximum strength increases linearly with the confining stress p’0 
for a given CaCO3 content: qmax = q0 + p’0. q0 increases with the CaCO3 content. 
The secant moduli, measured for  = 10-2, also increase with the CaCO3 content. 
These depend on the mean stress, but less and less with the increase of the CaCO3 
content in the investigated stress domain (0.2<p’0<1MPa). These results clearly 
show the significant impact that cementation has on the chalk mechanical behavior. 
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Figure 2.32. Maximum strength envelope of the Gault Clay 

The results obtained on the Gault Clay, compared to those obtained on a 
remolded clay, confirm those obtained on the London Clay. The maximum strength 
of the Gault Clay is higher for p’0, varying from 0.25 to 0.9 MPa (Figure 2.32). This 
is due to the fact that the Gault Clay is located deeper than the London Clay and that 
its consistency index Ic is bigger (1.2 instead of 1.08). However, the maximum 
stress envelope for the Gault Clay meets that corresponding to the remolded clay for 
p’ = 3 MPa, compared to 6 MPa for the London Clay. This could be due to a higher 
overconsolidation which created weaker zones in the clay layer. The results obtained 
for elevated initial stresses show a decrease of the maximum strength. In Figure 
2.33, we can see that the test performed at p’0 = 2.5 MPa gives a stress-strain 
relationship identical to that obtained on a remolded normally consolidated clay. 
This phenomenon is usually observed in natural soils with internal cohesion when 
the strains induced by the loading are big enough to break the intergranular glue. As 
for maximum strength, the moduli measured in the Gault Clay are higher than those 
obtained for the London Clay. Their evolution shows a smaller dependency with 
mean stress, due to a stronger cementation of the Gault Clay. Figure 2.34 gathers 
secant modulus values obtained for  = 5 10-3 on different materials. Its shows the 
predominant influence of the intergranular glue on these values as well as the 
decrease of the mean stress influence when cohesion increases.  
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Figure 2.33. Influence of mean stress on the Gault Clay behavior 

 

Figure 2.34. Comparison of secant modulus values for different soils. A non-remolded soil 
has a secant modulus higher than a remolded one. Non-remolded soil modulus before peak is 

less dependent on mean stress 

For very high cohesion, this influence can even disappear completely as in the 
two examples presented in Figures 2.35 and 2.36 concerning Vosges sandstone 
[GUS 89] and a marble [WAW 70]. The stress-strain curves are similar for small 
mean stresses and then diverge for elevated mean stresses under the combined effect 
of damage, predominant under deviatoric stress at small mean stress, and plasticity. 
We have here results similar to those obtained on injected sands in section 2.2. 
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The pseudo-elastic limit defined in remolded soils has a different shape for 
natural clays. The shape depends on both the intergranular glue and the history of 
the in situ stresses, in particular the ratio K0 = ’h/ ’v. In the p’,q plane, we can see 
that the axis of symmetry is no longer axis p’ but is closer to the straight line with a 
slope equal to the in situ stress ratio q/p’ = 3(1-K0)/(1+2K0). Its determination can be 
achieved from several tests having different stress paths in the p’,q plane. An 
example is given in Figure 2.37, concerning a post-last Ice Age clay, the Pornic 
Clay, which is lightly overconsolidated [MOU 88]. Each point of this pseudo-elastic 
limit corresponds to a threshold in the stress-strain curves, characteristic of a net 
increase of the plastic deformation amplitude (Figure 2.37). Similar results have 
been obtained by several other authors on slightly overconsolidated natural clays. 

 

Figure 2.35. Triaxial tests on red Vosges sandstone [GUS 89] 

 

Figure 2.36. Triaxial tests on Tenessee marble [WAW 70] 



70     Constitutive Modeling of Soils and Rocks 

The evolution of this pseudo-elastic limit by hardening is clearly established by 
its determination from different specimens of the same clay taken at different 
depths. In these conditions, the curves are homothetic with each other in the same 
ratio as the consolidation stresses (Figure 2.38). The evolution of this limit along 
stress paths different from those produced by oedometric consolidation remains to 
be understood. 

 

Figure 2.37. Construction of the pseudo-elastic limit for a  
natural clay: the Pornic Clay [MOU 88] 
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The existence of an intergranular glue induces a behavior of the equivalent 
continuous medium which is a function of the behavior of the glue itself. In several 
previous examples, its damage on various stress paths has been mentioned. High 
intensity isotropic or oedometric consolidation can produce a progressive 
homogenous breakage of the glue inside the specimen. The consequence is an 
increase, sometimes very accentuated, of the slope in the e – log(p’) relationship. 
The damage material, when loaded afterwards along a deviatoric stress path, shows 
a significant decrease of the additional strength given by the intergranular glue and 
its behavior comes close to that of a remolded material having the same 
mineralogical characteristics (see for example the previous result obtained with the 
Gault Clay isotropically consolidated under an isotropic stress equal to 2.4 MPa). 
Damage can also occur during an oedometric unloading due to a strong increase of 
the ratio ’h/ ’v when the overconsolidation ratio becomes very high. Under these 
conditions, cracks develop inside the material, as they do during a deviatoric triaxial 
test. They play a particularly marked role at small mean stresses. We can define a 
damage limit, corresponding to a given stress path to the beginning of the damage 
spread, which takes a specific shape such as that obtained for Vosges sandstone in 
Figure 2.35. The stress – strain relationship for the equivalent continuous medium 
after this damage limit depends on two types of mechanisms: relative displacements 
of the grains and damage of the intergranular glue. Constitutive models, coupling 
damage and plasticity, have been developed to take into account the simultaneous 
role of theses two mechanisms (see for example [CHA 98]). 

 

 

 

 

 

 



72     Constitutive Modeling of Soils and Rocks 

 

 

 

Figure 2.38. Determination of the pseudo-elastic limit for  
different consolidation pressures [GRA 83] 
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2.5. Conclusion 

The mechanical behavior of remolded soils prepared in the laboratory show 
broad similarities between sandy and clayey materials. The analysis of the 
deformation mechanisms at the level of their structural constitutive elements enables 
us to explain these similarities and propose correlative relations between the 
parameters of the discontinuous medium and those of a constitutive model for the 
equivalent continuous medium. In sandy materials, the grain scale is the most 
appropriate; the mechanisms involved in the deformation of the continuous medium 
being essentially grain relative displacements. In the case of clayey materials, the 
appropriate scale is more difficult to estimate. We can assume that it corresponds to 
the aggregate scale for both natural and remolded clays, which explains the 
similarities observed with sandy materials. The differences between sand and 
remolded clay are mainly due to the deformability of the structural constituents, 
much larger for the aggregates than for the grains. The natural clay study showed the 
influence, sometimes very pronounced, of the intergranular glue, where nature and 
strength depend on the physicochemical and mechanical history of the soil. The 
intergranular glue can be taken into account in the constitutive model for the 
equivalent continuous medium. It is possible to model different behaviors for the 
glue, corresponding to different physical natures: fragile with damage, ductile, 
viscous, etc. The interest of this approach is to be able to take into account the 
different mechanisms which, at the scale of the discontinuous medium, influence the 
mechanical behavior of the equivalent continuous medium. 
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Chapter 3 

Elastoplastic Modeling of Soils:  
Monotonous Loadings 

3.1. Introduction 

A natural soil is a porous material made up of two phases: the solid phase, 
composed of mineral or organic particles, and the liquid phase. The effective stress 
principle formulated by Terzaghi allows for a satisfactory description of the 
behavior of both phases as well as their interaction. This description consists of the 
combination of Darcy’s law ruling fluid flow across the solid skeleton, the 
continuity (or mass balance) equations of the phases, and the constitutive law of the 
solid skeleton, expressed by a relation between the effective stress and strain tensors. 

The development of such a constitutive law for the solid skeleton is based on the 
theoretical concepts of continuum mechanics (elasticity, plasticity, viscosity and 
combinations) and on the results of experimental studies carried out in the laboratory 
or in the field. In practice, the complexity of the constitutive laws that can be 
developed depends very much on whether the aim is to describe precisely the whole 
range of results that can be obtained experimentally in the laboratory, or rather to 
build a robust tool, limited to the main features of soil behavior, but much easier to 
handle in practice for designing structures. 

Constitutive laws can take very different forms, but elastoplasticity provides the 
most convenient and simple framework. The existence of a plateau on the stress-
strain curve and the experimental observation that only one part of the strain is 
reversible, suggest that this framework should be used for constitutive modeling of 
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soils. This approach proved to be extremely efficient; it was possible to build 
relatively satisfactory descriptions of the main features of the mechanical behavior 
of saturated soils subjected to monotonous loadings. In addition, this framework is 
well adapted to the introduction of constitutive models in computation software 
based on the finite element method. This made it possible to give quantitative results 
for a wide range of problems in geotechnical engineering, such as slope stability or 
the service and ultimate limit states of foundations, embankments, tunnels and 
retaining structures. 

Elastoplastic constitutive models can be divided into three categories: 

– models with no strain hardening, defined by a yield function, a plastic potential 
(with an associated or unassociated flow rule) and an elastic law that can be linear or 
non-linear; 

– models with one plastic hardening mechanism and an elastic law that can be 
isotropic or anisotropic, linear or non-linear; 

– models combining several plastic mechanisms and non-linear elasticity. 

3.2. Elastoplasticity equations  

3.2.1. Basic concepts 

The fundamental elastoplastic model is characterized by the following basic 
concepts: 

– the partition of strains, which splits the total strain tensor into the sum of the 
elastic strain tensor and the plastic strain tensor; 

– the yield surface, which defines the boundary in the stress space beside which 
the behavior of a material becomes plastic (irreversible); 

– the elastic domain, which is the domain of stress space interior to the yield 
surface; inside the elastic domain, strains remain reversible; 

– the plastic flow rule, which describes the evolution of the plastic strains;  

– the hardening represents the changes of the size and position of the yield 
surface in the stress space, depending on the applied loads;  

– the plasticity criterion or failure criterion, that characterizes the stress states for 
which failure occurs, i.e. strains tend towards infinity. In the case of “perfect 
plasticity”, there is no hardening and no evolution of the yield surface, therefore the 
failure criterion is the same as the yield surface. 
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3.2.2. Yield surface and elastic domain 

The elastic domain is defined in practice by a scalar function F of the stress 
tensor ( ij). F is called the yield function, and the sign defines the position of a given 
stress state with respect to the yield surface: 

F( ij) < 0 corresponds to the elastic domain; 

F( ij) = 0 defines the stress states located on the yield surface; 

F( ij) > 0 corresponds to stress states located outside the elastic domain. 

In the case of perfect plasticity, neither the yield surface nor the elastic domain 
evolves. In the case of a strain hardening material, the elastic domain depends on 
additional variables describing the current hardening state, denoted by k and 
introduced in the expression of the yield function: F( ij, k). The hardening state 
variable k only changes if there is an evolution of the plastic strain tensor. The 
current yield surface is defined by the equation F( ij, k) = 0. Several theories have 
been developed to describe the evolution of the hardening state. The two major 
theories are: 

– the isotropic hardening theory developed by Taylor and Quincey, in which 
hardening is a function of one single scalar parameter (k), and the elastic domain is 
transformed homothetically with respect of the origin O of the stress space; 

– the kinematic hardening theory, introduced by Prager, in which the successive 
positions of the yield surface are obtained by translating the initial boundary of the 
elastic domain in the stress space. In this context, it is necessary to introduce a 
tensorial variable to describe the hardening state: k becomes (kij). 

We denote by ( ij, k) a stress and hardening state for a given loading step.  

If this state is such that F( ij, k) < 0, the stress tensor ( ij) is located inside the 
current elastic domain and the strain variation is reversible (elastic): 

e
ijij dd  

If, on the other hand F( ij, k) = 0, stress tensor ( ij) belongs to the yield surface 
(i.e. the boundary of the elastic domain). In this case, the appropriate formulation of 
the equations describing strain evolution depends on whether the material point 
undergoes a loading process (the stress state moves towards the exterior of the 
elastic domain), or an unloading process (the stress state moves towards the inside of 
the yield surface).  
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The material point undergoes a loading
process if and only if: 

The material point undergoes an 
unloading process if and only if: 

0)k,(dF)k,(F ijij  

0dF
ij

ij
 

p
ij

e
ijij ddd  

0)k,(F ij  

0dF
ij

ij
 

e
ijij dd  

(
p
ij  are zero or remain constant) 

(with the convention of implicit summation over repeated indices). 

This makes it possible to know under what conditions plastic strains occur: it 
remains to be seen how they develop. The flow rule provides the necessary 
information to evaluate the plastic strain. 

3.2.3. Plastic flow rule 

The plastic flow rule gives the expression of the increment of plastic strain 
)d( p

ij  for a given state of stress ( ij) and a given stress increment (d ij), and for the 
current value of the hardening variable (k), through the introduction of a new 
function denoted by G called “plastic potential”, such that: 

ij

p
ij

Gdd  

d  is a non-negative scalar, called a plastic multiplier. Note that generally G can be 
different from the yield function: if F and G are identical, the flow rule is said to be 
“associated”; if F and G are different, the flow rule is “unassociated”. 

In the case of strain hardening, it is convenient to introduce an additional scalar 
variable denoted by H( ij, k), called hardening modulus, and defined by: 

ij
ij

dFdH  
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3.2.4. Incremental relations for one plastic mechanism model 

The elastic strain increment )d( e
ij  and stress increment (d ij) are related to each 

other by the elastic moduli tensor (Eijkl), or its inverse (Dijkl), 

e
klijklij dEd  or klijkl

e
ij dDd  

If, moreover, ( ij, k) denotes the current stress and hardening state, located on the 
boundary of the current elastic domain, the following relationships hold: 

0)k,(F ij  

ij

e
ij

p
ij

e
ijij

Gddddd  

with  = 0 in the case of unloading and  = 1 in the case of loading. 

In order to complete the formulation of the constitutive law, the value of the 
plastic multiplier remains to be discussed. This is given by the consistency condition 
dF = 0, which states that the stress state must remain on the yield surface when 
loading occurs (F = 0). The consistency condition reads: 

0dk
k
FdFdF ij

ij
 

Eventually, the scalar variable k is, in turn, a function of the plastic strain )( p
ij . 

For instance, in the case of isotropic hardening, the model closure requires the 
definition of an appropriate hardening law such as: 

)(kk p
ij  

The set of equations above makes it possible to calculate the hardening modulus 
H: 

p
ijp

ij
ij

ij
dk

k
Fdk

k
FdFHd  

which yields, given the flow rule, if d   0: 
ij

p
ij

Gk
k
FH . 
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The stress increment (d ij) can therefore be expressed as: 

)Gdd(E)dd(EdEd
kl

klijkl
p
klklijkl

e
klijklij  

Multiplying each member of this equation by 
ij

F
, we obtain: 

HdGEFddEFdF

kl
ijkl

ij
klijkl

ij
ij

ij
 

and the plastic multiplier is thus given by: 

kl
ijkl

ij

klijkl
ij

GEFH

dEF

d . 

At this stage, we can establish the relationship between the strain and stress 
increments: 

kl

rs
nmrs

nm

rskl
rsnm

ijnm

ijklij dGEFH

EFGE
Ed  

This makes it possible to define an elastoplastic behavior tensor )E( p
ijkl , or 

elastoplastic behavior matrix. The above increment relation remains true in the case 
of a perfectly-plastic material (in which no hardening takes place), i.e. for H = 0. 

In the case of hardening, it is also possible to derive the inverse of the 
elastoplastic tensor. The elastic part of the strain is given by: 

ij
ij

p
ijijklijkl

e
ij

GdddddDd  

Replacing d  by its expression (taken from the definition of hardening modulus 
H), we obtain an alternative form of the constitutive law: 
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kl
klij

ijklij dFG
H
1Dd . 

3.2.5. Incremental relationships for multi-mechanism elastoplasticity 

The traditional elastoplastic framework with one plastic mechanism has proved 
to be too limited to account for some of the phenomena which can be observed 
experimentally when geomaterials are submitted to a wide variety of stress paths. A 
larger theoretical framework was necessary. It was defined by introducing several 
sources of plasticity [KOÏ 60, MAN 65]. 

Dividing the strain tensor into the sum of the elastic and plastic strain tensors 
remains valid; but the flow rule adopts a more general form and becomes a linear 
combination of the contributions of several different plastic potentials, their number 
being dependent on the stress path. Each of the plastic potentials defines a plastic 
mechanism; the presence of a plastic potential in the flow rule indicates that the 
corresponding plastic mechanism is active. 

If p is the number of admissible mechanisms for a given material, each 
mechanism, for instance that denoted by m, is characterized by a yield surface 
Fm( ij, km), a plastic potential Gm and a hardening variable km. The notion of 
activating a mechanism (or of several mechanisms simultaneously) replaces the 
notion of a loading process as defined in the traditional framework of a single 
mechanism. 

By definition, we have: 

– if Fm < 0 or Fm = 0 and dFm < 0, the mechanism is inactive, and d m = 0; 

– Fm = 0 and dFm > 0, the mechanism is active, and d m > 0. 

If q is the number of active mechanisms (q < p) at a given instant, the plastic 
strain increment is obtained as the sum of q terms, 

qm ij

m
m

p
ij

Gdd  

The consistency condition dFm = 0 yields: 
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The constitutive law can be expressed as a multilinear relation between the stress 
and strain increments. The equation above, written for all active mechanisms, leads 
to a system of q equations: 

qn

mnmn BdA
 

with 
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n
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n
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mn
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k
FGEFA  

and 

klijkl
ij

m
m dEFB . 

The complexity of the system depends on the chosen flow rule (associated or 
unassociated), on the existence of a coupling between different mechanisms, i.e. on 
the choice of the hardening parameters for each mechanism. The hardening 
parameter km for mechanism m can depend on the plastification of all active 
mechanisms or only on the plastic strains developed in mechanism m (in which case 
the underlying physical phenomena associated with hardening are independent). 
Between the extreme situations there are numerous intermediate possibilities: in the 
end, only experimental results can provide a sound basis for the choice of one of 
these possibilities for a given geomaterial. 

3.3. Constitutive laws and laboratory tests 

Natural soils can be classified into two main categories: frictional soils (with 
high permeability, for example most sands and gravels) and cohesive soils (fine soils 
with low permeability, for example most clays and silt). The experimental 
techniques used to characterize the mechanical behavior of soils (size and 
preparation of the samples, testing devices, testing procedures) are adapted to these 
classes of materials. In particular, as it is practically impossible to obtain samples of 
sands and gravels in their natural state, the experimental identification of the 
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constitutive laws is generally carried out on reconstituted and remolded materials, 
and it is uncertain whether their mechanical behavior is identical or even similar to 
in situ materials. 

According to the type of tests that are performed, a soil sample can exhibit very 
different features that do not necessarily seem to reflect a unique kind of behavior. 
The experimental results obtained by means of the different testing techniques are, 
however, different aspects of the same global constitutive law that describes the 
interaction between the deformability and the strength of the ground. The challenge 
is to create a constitutive law that takes into account and reproduces the main 
features of the observed behavior for a given soil. Equations relating the effective 
stresses and strains should therefore be written only after a detailed experimental 
programme of the deformability and strength properties of soil samples having been 
subjected to traditional or special triaxial tests, to shear tests on hollow cylinder 
samples, and to oedometer tests (Table 3.1). 

These mechanical tests are carried out on homogenous soil samples. The 
homogenity of samples makes it possible to define an “average” behavior on the 
basis of measures made on their boundaries; the question of whether or not the 
sample is homogenous is a constant concern for researchers and technicians 
involved in experimental investigation. 

Type of tests Usual tests Research tests 

Triaxial tests on 
cylindrical samples 

Isotropic or anisotropic 
consolidation + 
shearing stress path 
(generally in compression)
(UU, CU, CD, CU+u) 

Isotropic + anisotropic consolidation.  
For the shearing stress path, various possibilities: 
compression or extension; 
p’ = constant; p’/q = constant; K0 test (with no 
radial strain). 

Tests on cubic 
samples 

- Same as for triaxial test, plus test for constant values of 
b ( b = ( 2 – 1) / ( 1 – 3) ).. 

Plane strain tests - Compression test 

Hollow cylinder tests - All tests above, + tests with rotation of the principal 
stresses (torsion). 

Oedometer tests Compression Relaxation and creeping 
UU = unconsolidated and undrained test 
CU = consolidated and undrained test 
CD = consolidated and drained test 
CU+u = consolidated and undrained test with measure of pore pressure 
K0 = coefficient of earth pressure at rest 

Table 3.1. Types of mechanical tests performed in the laboratory  
on soil samples (monotonous loadings) 
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For each type of test, the displacements and forces or pressures applied are 
measured and then converted into strains and stresses. The processing of the results 
is generally based on the assumption of small strains. 

3.4. Characterization of natural cohesive soil behavior 

3.4.1. Analysis of triaxial test results 

The tests carried out on cohesive natural soils subjected to monotonous 
mechanical loadings (CU, CD and CU+u tests) made it possible to identify some 
features common to all these materials (see Chapter 2): 

– independently of the type of test, the deformability of the soil increases after a 
given stress is reached, which corresponds to a strain of 1%. In failure tests (in 
drained or undrained conditions), this value of the stress is a threshold that 
corresponds either to a peak value of the shear strength or to an asymptote in the (q, 

1) diagram. Generally, overconsolidated clays tend to show an increase in volume 
when shearing occurs, whereas normally consolidated clays show a decrease in 
volume (Figure 3.1); 

– if we represent, for samples of the same soil tested from different initial stress 
states, the points corresponding to stress states for which strains start increasing 
rapidly, we can define a zone of the effective stress space, such that, for stresses 
inside this zone, the behavior of the ground is practically reversible, at least for a 
small number of unloading-reloading cycles. When the limit of this zone is 
breached, the soil sample exhibits irreversible strain (especially volumetric strains) 
and the threshold value changes; 

– the position of the curve limiting the reversible domain in the effective stress 
plane depends on time and on the initial state of the soil (density, stresses and pore 
pressure). The experimental data show that curves associated with different initial 
states are deduced from one another by a homothetic transformation. The limit of the 
domain thus defined for the initial possible states of the clay is called the “limit state 
surface”; 

– values of the stresses at failure, obtained for various tests, make it possible to 
build a failure envelope in ( , ) plane: it is composed of a curved line at small 
values of the mean stress, and of a straight line for larger values of the mean stress 
(Figure 3.2). Such behaviors correspond to overconsolidated or normally 
consolidated soils; 

– the pore pressure has a predominant influence on the stress at failure. Shear 
strength of soils depends on drainage conditions and on the loading rate. It is 
necessary to distinguish between drained (CD and CU+u) and undrained (CU and 
UU) characteristics; 
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– irreversible strains associated with the viscosity of the soil are also included in 
the experimental results. 

 

Figure 3.1. Experimental results for cohesive natural soils:  
compression tests in drained condition (Magnan, 1989) 

 

Figure 3.2. Failure envelope typical for a cohesive soil 

3.4.2. Analysis of oedometer tests 

Oedometer tests, being very simple, have always been used by geotechnical 
engineers as well as by researchers. This is the reason a large quantity of data 
relative to cohesive soils is available: their analysis confirms, on the whole, the main 
features of soil behavior already identified on the basis of triaxial tests: 

– existence of a threshold value (overconsolidation pressure) above which 
compressibility increases; 

– effect of time in terms of creeping and changes in the overconsolidation 
pressure when the strain rate increases. 
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3.4.3. Elasto-viscoplasticity or elastoplasticity? 

To improve the interpretation in terms of strain, it is necessary to choose at first 
the role played by time in the mathematical formulation of the constitutive model. 
All experimental data on cohesive soils show that strains are not instantaneous, 
which leads to preferring visco-elastic or elasto-viscoplastic models. Data show that 
the constitutive law of clays depends on effective stress, strain and strain rate. 
However, the development of elastoplastic models is far beyond that of viscous 
models, mainly because, in practice, settlements of clayey soils are calculated on the 
basis of the oedometer compressibility curve and on the theory of 1D consolidation 
that do not take into account the time-dependent characteristics of soil behavior. 
This approach gives satisfactory results for relatively simple projects.  

Observations made before also show that all the characteristics of the 
elastoplastic behavior can be found in the experimental results for cohesive soils: 
existence of irreversible strains, a yield surface in the stress space, and evolutions of 
the yield surface, failure surface and plastic flow plateau. The elastoplastic 
framework also made it possible to describe quantitatively elastic and plastic strains, 
and to provide analytical mathematical expressions. 

3.5. Characterization of frictional soil behavior 

3.5.1. Analysis of triaxial test results 

Monotonous loadings on frictional soils carried out with triaxial apparatus 
(CU+u and CD) led to the following observations (see Chapter 2): 

– even for small strains, the stress-strain relationship is different in loading and 
unloading. Macroscopic strains, mainly produced by the relative displacements of 
grains, are not reversible. The values of the strain for which the behavior is 
reversible is limited to very small values of the strain (smaller than 10-5). However, 
as with natural clays, natural sands (i.e. in situ) show relatively small strains in a 
given domain surrounding their initial state. This small strain domain reflects their 
geological history, and the mechanical loads they have been subjected to in the past; 

– in a general way, the drained behavior of a frictional soil is analogous to that of 
a cohesive soil: dense sands show a peak in shear strength (like overconsolidated 
clays) followed by a progressive softening, during which shearing is associated with 
a decrease in volume, then by a volume increase. On the other hand, loose sands 
show an asymptotic trend, and the volume decreases continuously, as in the case of 
normally consolidated clays or samples reconstituted in the laboratory (Figure 3.3); 

– the failure envelope, i.e. the set of points of maximal shear strength in the 
Mohr plane ( , ) , is a straight line passing through the origin, for loose as well as 
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dense sands. The shear strength depends not only on the nature and state (initial 
stress and density) of the soil, but also on the intensity of the loads and on the 
application procedure; 

 

Figure 3.3. Typical results of triaxial tests on a frictional soil: 
compression tests in drained and undrained conditions 

– for very large strains, the volumetric strain tends towards a limit, called the 
“critical state” (which corresponds to the condition d v = 0); 

– the state of the soil corresponding to the extremum of the volumetric strain vs, 
axial strain curve (d v = 0) and to the change in the sign of d v is called the 
“characteristic state”. The mechanical phenomenon, associated with the onset of 
irreversible changes of the volumetric strain is called “dilatancy”. In the case of 
moderately dense or dense sands, the volumetric strain increases with the axial 
strain, in a rather linear way, after the characteristic state has been reached, and 
eventually the volumetric vs axial strain curve tends towards an asymptote 
corresponding to the critical state; 
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Figure 3.4. Example of failure envelope for a frictional soil (sand) 

– for large values of the mean stress, we can observe a curvature of the failure 
envelope, oriented towards the axis of isotropic compressions (Figure 3.4). Actually, 
the behavior of a sand sample under high pressures is very different from its 
behavior when subjected to moderate stresses. The maximum shear strength 
decreases with the applied pressure. This decrease becomes slower and slower as the 
pressure increases, and we eventually obtain a limit value; 

– tests carried out on a three-dimensional apparatus have shown that the 
intersection of the yield surface with the deviatoric plane is close to a succession of 
linear segments, but without angles (Figure 3.5); 

– in the case of a humid or lightly cemented sand, the origin of the stress space is 
no longer a point of the failure envelope. The cohesion thus exhibited 
experimentally is created either by the mechanical bonding created by cementation, 
or by water meniscus located at the contact points between particles; 

– in the case of undrained tests, the density has a very large influence on the 
behavior. For dense sands, the deviatoric stress increases continuously with strain 
and the pore pressure reaches first a peak, then decreases. On the other hand, for 
loose sands, the deviatoric stress exhibits a peak value, then decreases more or less 
rapidly to a relatively small asymptotic value; the pore pressure increases, then 
stabilizes at a value close to the preconsolidation pressure (Figure 3.3). Loose sand 
then loses a great part of its strength: this phenomenon is called static liquefaction 
[DUP 97]. 
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Figure 3.5. Intersection of the yield surface with the deviatoric plane ([LAD 77]) 

3.5.2. Elastoplasticity framework for frictional soils 

As in the case of cohesive soils, it is not easy to build up a unique theoretical 
behavior formulation which accounts for all the observations obtained for various 
loadings in conditions of applied stress or strain paths. It has often been noted, 
however, that the drained behavior of a frictional soil is qualitatively analogous to 
that of a cohesive soil: dense sands exhibit volume increases during shearing, as do 
overconsolidated clays, whereas loose sands show volume decrease as do normally 
consolidated clays. 

On the other hand, in many cases, the behavior of frictional soils can be 
considered as globally isotropic and it is generally accepted that strains change 
simultaneously with the stress states and that viscosity and ageing effects are 
negligible. The rate of loading has therefore little or no influence on the behavior of 
the material. These assumptions are in relatively good agreement with experimental 
results. 

Apart from failure, the analysis of the tests brings to light several important 
features of the behavior of frictional soils that are consistent with the elastoplasticity 
framework. This makes it possible both to take advantage of the experimental curves 
to provide a sound basis for the concepts of critical state, characteristic state, and to 
provide a set of equations describing the dilatancy phenomenon. 
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3.6. Principles for the derivation of elastoplastic models 

In order to build up an elastoplastic constitutive law, for instance for a model 
with one mechanism (for the sake of simplicity), “experience” shows that we must 
go through the following steps: 

– definition of the initial elastic domain and of the elastic law; 

– definition of the yield surface; 

– choice of a plastic potential; 

– description of the evolution of the yield surface and of the hardening law. 

The following sections illustrate this process, show its complexity, and underline 
the interactions between the different parts of the model that must be clearly stated 
in order to obtain an acceptable model. The presented process is essentially based on 
drained tests and all stresses used are effective stresses, noted ij and p for 
simplicity, and not ’ij or p’. 

3.6.1. Elastic behavior 

3.6.1.1. Elasticity and unloading-reloading cycles 

When experimental results include tests with one or several unloading-reloading 
cycles, the hypothesis of an elastoplastic material leads us to consider that the strains 
measured during unloading and reloading up to the stress level reached when stress 
reversal occurred are elastic strains. Gathering these sets of points leads to analytical 
expressions between stresses and strains. Such expressions cannot be arbitrary, as 
they have to comply with certain physical laws, such as material stability. For this 
reason, a number of authors who have developed models tend to prefer the so-called 
hyperelastic approach, models for which the stresses are obtained by derivation of a 
scalar potential with respect to strains. 

Furthermore, before any attempt to derive an elastic law from “elastic” data can 
be made, it must be decided whether the elastic behavior is isotropic or not. In the 
anisotropic case, the elastic behavior is generally assumed to be linear, given that the 
number of parameters that must be determined experimentally is so large that any 
other type of analysis is extremely difficult to achieve. In the isotropic case, the 
problem adds up to finding the variations of two scalar coefficients (K and G, or E 
and ) when the stress state (or its invariants) changes. Table 3.2 presents some of 
the expressions that can be found in the literature. In tensorial form, the isotropic 
elasticity equation reads: 
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Table 3.2. Expressions of the bulk modulus K and shear  
modulus G available in the literature 

If experimental tests do not include unloading-reloading tests, it is necessary in 
the first place to identify the initial elastic domain in order to make the difference 
between elastic and total strains. 
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3.6.1.2. Initial elastic domain 

For natural clays, it is commonly assumed that there is an initial elastic domain, 
generally limited to small or very small strains [LER 85]. The search for the 
boundary of this domain is based on the analysis of monotonous triaxial tests and on 
the experimental identification of a clear change in the stress-strain curves: for 
instance, a sharp change in the curvature of the (q, 1) line, for a triaxial compression 
test (Figure 3.6). Taking into account the assumption of the linearity of the 
anisotropic elastic behavior, it is generally simple to identify this sharp change, as it 
is associated with a loss of linearity of the stress-strain relationship, and with the 
onset of larger plastic-strain. Each test provides one point of the boundary of the 
initial elastic domain, i.e. the yield surface. In the case of an anisotropic and non-
linear elastic behavior, this procedure no longer holds.  

 

Figure 3.6. Initial elastic domain for natural clays 

Interpretation of traditional tests on frictional soils is often implicitly based on 
the assumption that the soil sample becomes plastic at the first loading. In other 
words, the material has no initial elastic domain, but an elastic domain is created as 
loads increase. This assumption is justified by relative displacements of grains, with 
respect to one another, that explain why irreversible strains occur under the slightest 
applied stress. The elastic domain is thus defined by the yield function and the 
characterization of the elastic law can only be made through unloading-reloading 
cycles. 

More sophisticated studies can be carried out with a triaxial apparatus specially 
equipped for the measure of very small strain. An initial domain is thus identified 
for frictional soils, but it is limited to strains smaller than 10-5 or 10-4. The initial 
elastic domain can also be characterized in non-linear diagrams. For example, we 
can look for a loss of linearity in a (ln p, v) diagram. 
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Another, more difficult to use, method consists of applying small variations of 
the applied stress starting from a given stress state, and to examine whether, once the 
variation of stress is removed, any irreversible strain has been generated or not. We 
can thus define locally a boundary separating the stress states belonging to the 
elastic domain from those lying outside. In order to be fruitful, this approach must 
be supplemented by the choice of an appropriate hardening variable, since this 
procedure leads to the identification of the current elastic domain which is 
associated with a given value of the hardening parameters. To continue along these 
lines, we have to choose a type of variable, and to determine experimentally a 
number of points of the yield surface for the same value of hardening variable, 
before the elastic domain for a given hardening state can be properly defined. The 
initial domain could also be obtained thanks to a thorough study of the evolution of 
the elastic domain as hardening parameters vary, and by extrapolating the results for 
small strains. This procedure, however simple and attractive it may seem, is 
extremely difficult to carry out, especially for natural soils. Moreover, the distinction 
between reversible and irreversible strains depends very much on the accuracy of the 
experimental setup. 

3.6.1.3. Anisotropy of natural clays 

Most natural clays exhibit a very anisotropic behavior: the same stress variation 
applied in two different directions produces very different strain increments. This is 
why it may be necessary, in order to obtain an approximate representation of their 
mechanical behavior, to use an elastoplastic model with an anisotropic linear 
elasticity. This anisotropy is often limited to the simplest case of transverse 
anisotropy. It is generally acceptable that there is a symmetry around the vertical 
axis (the direction of gravity) for horizontal ground layers, and that the behavior is 
isotropic in the plane perpendicular to this axis (isotropy plane or stratification 
plane). This is no longer the case if the ground layer is inclined or has been 
subjected to large tectonic forces. The elastic parameters are the following: a 
Young’s modulus associated with the vertical direction Ev; a Young’s modulus 
associated with the horizontal direction Eh; two Poisson’s coefficients vh and hh, 
and an additional shear modulus vhG , that characterizes the relation between shear 
stresses and strains in planes which contain the vertical axis. Measuring these five 
parameters can be achieved thanks to traditional triaxial tests performed on samples 
cut in different directions. The axes of the sample are thus no longer identical to 
those of the triaxial apparatus (Figure 3.7). 
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Figure 3.7. Sampling in vertical, horizontal and inclined directions 

3.6.2. Estimation of the plastic behavior 

The construction of the plastic part of the model is based on the interpretation of 
tests in terms of failure surface (or plasticity criterion), of strains and plastic 
potentials, of evolutions of the yield surface and of the hardening variables. This 
interpretation depends in turn on the type of elastoplastic model that is to be defined. 
For the sake of simplicity, and to present the various possible approaches, we retain 
here the framework of elastoplastic models with one plastic mechanism. 

For traditional tests, and in a first step, the procedure can be identical to that 
which has been adopted for the characterization of elastic behavior. The components 
of the plastic model are searched for under the form of relationships between p, q, 

v , d , p
v , 

p
d  and their increments. Results of triaxial axisymmetric tests in 

drained compression, for a constant value of the mean stress and a constant value of 
the q/p ratio are often chosen as the basis for analytical developments. The plastic 
strains ( p

v ,
p
d ) that appear, when the stress state is on the yield surface, can be 

deduced from measures of total strains by substracting the elastic strains calculated 
from the elastic law previously identified. However, being able to calculate the 
plastic strains is one thing, the question of knowing when they have to be calculated 
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is another question. In other words, we are brought back to the question of the initial 
elastic domain. If the determination of this domain cannot be carried out, we can 
assume, for stress states far from the origin of the stress space, that for loading 
processes, elastic strains can be neglected and experimental strains are equal to 
plastic strains. Even if such an approach can be criticized (and may give rise to some 
confusion in the model formulation), it is often the one that is used in constitutive 
modeling. 

3.6.3. Failure surface 

3.6.3.1. Notion of critical state 

When a soil sample is subjected to a triaxial loading, it undergoes progressive 
volumetric strain (positive or negative), where upon the sample volume reaches a 
constant value as deviatoric strain develops. The final state is called the critical state 
[SCH 68] and can be defined as the ultimate state reached for large strains when 
monotonous shearing is carried out at constant volume. The experimental 
characterization is difficult and often needs an extrapolation procedure. 
Quantitatively, the critical state is defined by the following conditions: 

– plastic flow occurs at constant volumetric strain 0d p
v ; 

– the void ratio depends only on the mean stress, according to a relationship such 

as 
1

cs p
plnee , where ecs and  are two parameters of the model and p1, a 

reference pressure value (1 kPa, for instance); 

– the stress ratio p/q  is constant. 

The notion of critical state has enabled significant advances in elastoplastic 
constitutive modeling of soil behavior, and is the source of the first hardening 
models. 

3.6.3.2. Failure surface in the (p, q) and ( , ) planes 

For any given soil, the maximum strength, reached under various loading 
conditions, defines a failure surface in the principal stress space. The search for the 
failure surface is relatively simple if test results are available for a wide array of 
loading paths. For example, triaxial tests on cylindrical samples make it possible to 
obtain the intersection of the failure surface with the ( , ) or (p, q) planes. 

For cohesive soils, the intersection of the failure surface with the ( , ) plane is 
made up of a curved part for small values of the mean stress, and a straight line for 
higher values of the mean stress (Figure 3.8). These behaviors correspond, 



98     Constitutive Modeling of Soils and Rocks 

respectively, to overconsolidated and normally consolidated soils. Usually, for the 
values of stress that are commonly encountered in practical projects, these curves are 
summed up as the combination of two straight lines, according to the stress state in 
the soil or to the values of the stresses. Line (a) does not include the origin, whereas 
line (b) does (Figure 3.8). Both lines are described by the same equation:  

tanc   

where c is the drained shear strength (or effective shear strength) and , the friction 
angle (or effective friction angle). These parameters depend on the nature of the 
material (chemical composition, shape and size of the grains), on the initial state 
(density and stresses) and on the testing conditions (intensity of the confining 
pressure, stress path). 

 

Figure 3.8. Intersection of the failure surface with the ( , ) plane 

For frictional soils and reconstituted clays, the conventional approach is to 
assume that the intersection of the failure surface with the ( , ) or (p, q) planes is a 
straight line including the origin: 

tan  

3.6.3.3. Failure surface in the stress space 

As it is easier to carry out tests on frictional soils (sands), in-depth research has 
been undertaken to characterize the three-dimensional failure surface, by means of 
three-dimensional apparatus and hollow cylinder sample testing devices. Such 
sophisticated testing facilities make it possible to investigate the influence of the 
intermediate principal stress , otherwise impossible to assess with traditional 
triaxial tests ( 2 = 3). In the first place, we can extend the expressions obtained for 
the intrinsic curve in the (p-q) space to the space of the principal stresses 
( ), thus obtaining a cone with a revolution symmetry around the line of 
equation: . The shape of the section cannot be obtained by traditional 
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axisymmetric tests, but can be studied by means of true three-dimensional tests (true 
triaxial apparatus or hollow cylinder apparatus). The experimental results thus make 
it possible to state that, in the principal stress space, the failure surface has a conical 
shape, the summit being the origin and the section being not very different from a 
rounded triangle (Figure 3.9). 

 

Figure 3.9. Three-dimensional failure surface 

From a theoretical point of view, this adds up to introducing the third invariant of 
the stress tensor (the determinant or the Lode angle). Several authors have chosen to 
express the failure surface using the following form: 

)p,(f
p
q

 

where f is a homogenous function of degree zero with respect to its arguments and , 
the Lode angle defined by: )J2/(J33sin 2/3

23 . 

3.6.3.4. Analytical expressions of the failure surface 

According to the authors and the type of tests under discussion, several 
categories of failure surface (or plasticity criteria) have been proposed. Some of 
these are expressed in terms of principal stresses and others in terms of stress 
invariants. Table 3.3 shows the models most commonly used in geomechanics. 
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Type of criterion Mathematical formulation n* Type of soil 

Tresca  u31 c2  1 Clays and limestones 
(short term)  

Mohr-Coulomb sinc2)(sin 3131  2 Most soils (long term) 

Drücker-Prager kIJ 12  2 Sands and clays (long 
term) 

Di Maggio and 
Sandler (1971) k)Iexp(J 12  3 Sands and clays (long 

term) 

Matsuoka-Nakai 
(1974) 

k
I
II

3

21
 1 Sands 

Lade-Duncan (1975) k
I
I

3

3
1

 1 Sands 

Lade (1977) k
I
I

27
p
I

3

3
1

m

a

1  2 Sands 

Hoek and Brown 
(1980) 

2
cc331 sm  3 Hard soils, soft rocks 

Van Eekelen (1980) kI
J
I

b1aJ 1

n

2/3
2

3
2  4 Sands and clays (long 

term) 

Desai and 
Siriwardane (1984) 

23/1
3112 kIIIJ  3 Sands and clays (long 

term) 

Matsuoka et al. 
(1990) k1

I9

II

3

21
 1 Sands 

* where n is the number of parameters of the criterion; pa, a reference value for pressure. 

Table 3.3. Expressions of the failure surface for soils 

The stress invariants are defined by: 

zzyyxx1I ; 

2
yz

2
xz

2
xyzzyyzzxxyyxx2I ; 
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yzxzyx
2
xyzz

2
xzyy

2
yzxxzzyyxx3 2I ; 

2
yz

2
xz

2
xy

2
zzyy

2
zzxx

2
yyxx

2 )()()(
6

)()()(
J . 

Lade’s criterion [LAD 77] and Matsuoka-Nakai’s criterion [MAT 74] have been 
validated by their authors for numerous experimental results and for different types 
of sands. Although the shape of the surfaces are relatively similar in the deviatoric 
plane (Figure 3.10), some differences can be pointed out: 

– Matsuoka-Nakai’s criterion, like Mohr-Coulomb’s, corresponds to the same 
friction angles in triaxial extension and in triaxial compression; 

– the criterion proposed by Lade associates different values of the friction angle 
with triaxial compression and triaxial extension conditions, which seems to be closer 
to the experimental results [ZIT 88]; 

– in the case of Lade’s criterion, a second parameter, denoted by n, is necessary 
to take into account the influence of the mean stress on the peak value of the friction 
angle, which corresponds to experimental results observed over a large range of 
stress values. 

 

Figure 3.10. Failure surfaces proposed by Lade and Matsuoka-Nakai 



102     Constitutive Modeling of Soils and Rocks 

3.6.4. Total and plastic strains 

3.6.4.1. Notions of characteristic state and dilatancy 

During a drained triaxial compression test, a frictional soil shows initially a 
decrease in volume, or a contractant phase. Then, as the deviatoric stress increases, 
the volumetric strain rate tends to decrease towards zero for loose soils. In the case 
of denser soils, the volumetric strain rate shifts sign, and the soil volume starts to 
increase before large strains occur (Figure 3.11). The “dilatancy” thus produced is 
greater if the material is initially in a denser state, and if the initial confining 
pressure is low. 

 

Figure 3.11. Definition of the characteristic state 

The stress state associated with zero volumetric strain rate and with the change in 
the sign of volumetric strain variations is called the “characteristic state”. It is 
defined by the following two conditions [LUO 80]: 

– the volumetric strain rate is zero (d v = 0); 

– the Mohr circles for characteristic states reached for different isotropic initial 
stresses have a common tangent, called the “characteristic line”, whose gradient is 
equal to tan c. 

The angle c has been interpreted as the ability of the grains to become 
entangled. Its experimental determination is direct and easy: it is obtained for 
relatively small axial strains (typically 1 or 2%). Tests carried out on different sands 
show that c is an intrinsic parameter, independent of the density, the grain size 
distribution, and the mean stress [LUO 80]. However, in spite of the fact that the 
existence of the characteristic state has been confirmed for other stress paths in the 
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triaxial plane, in drained as well as undrained conditions, it seems difficult to define 
uniquely the transition between contractant and dilatant behavior. For example, the 
value of the axial strain corresponding to the characteristic state is not smaller in 
extension than the value that can be observed in triaxial compression. 

3.6.4.2. Stress-dilatancy relationship 

Studying the experimental volumetric strain vs axial strain curves makes it 
possible to derive theoretical expressions for the plastic strain. For isotropic soils, 
the processing of the results is based on the use of invariants p

v  and p
d  and of their 

increments, and on the dilatancy rate , defined as the ratio between the volumetric 
and deviatoric plastic strain rates: 

p
d

p
v

d
d)q,p(  

Variations of this ratio when p and q vary, or when p and q/p) vary, makes 
it possible to derive a stress-dilatancy relationship. Combined with a simulation of 
the plastic part of the isotropic compression test [ p

v =g(p)], the following equations 
for the components of the plastic increments can be obtained: 

dp
dp
dgd p

v  and dp
dp
dg

)q,p(
1d p

d . 

It remains to be seen if the results are in reasonably good agreement with the 
direct estimation of the plastic strains obtained by subtracting the elastic strains from 
the total strains. If results are satisfactory, the stress-dilatancy relationship can also 
lead to the derivation of a plastic potential. 

3.6.5. Plastic potential 

3.6.5.1. Analysis in the (p, q) plane 

Indications on the plastic potential can be supplied by the experimental results if 
we associate in the same figure the direction of the plastic strain increments ( p

v , 
p
d ) with the yield surface previously obtained in the (p, q) plane, or at least with 

the boundary of the initial elastic domain. It can thus be decided whether the flow 
rule is associated or not, with the restrictions due to the precision of the measures 
(Figure 3.12). In general, directions of the plastic strain increments are not strictly 
normal to the yield surface. The most difficult point is thus to choose an analytical 
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expression which matches the experimentally observed plastic flow directions. Two 
possibilities have been investigated: the first consists of expressing the gradient of 
the plastic potential as a linear combination of the normal to the yield surface and of 
a given vector of the (p, q) plane, defining a straight line including the origin or the 
center of the yield surface (case of natural clays); the other possibility consists of 
adopting an explicit analytical expression for the dilatancy ratio, and in integrating 
the differential equation thus obtained. 

 

Figure 3.12. Plastic flow directions on the yield surface 

3.6.5.2. Plastic potential and stress-dilatancy relationship 

The dilatancy ratio previously defined gives access to a method making it 
possible to derive the plastic potential. In the case of traditional triaxial tests, we 
have, by definition: 

q
G
p
G

d
d

)q,p( p
d

p
v

. 

For a given hardening state, the curve defined in the (p, q) plane by the plastic 
potential is defined by the equation G(p, q) = constant. A local differentiation of this 
relationship yields: 

0dq
q
Gdp

p
GdG  

Introducing this expression in the dilatancy rate, we obtain the following 
differential equation: 
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dp
dq

q
G
p
G

)q,p(  

This equation can be solved, provided that the dilatancy rate is given a suitable 
(relatively simple) expression (p, q). Two solutions can be considered: 

– we can, in the first place, deduce the dilatancy rate directly from variations of 
the experimental quantities p

v  and p
d  along a test [NAM 70; STR 71; NOV 82; 

TOU 82]; 

– alternatively, we can choose a theoretical expression of the plastic dissipation 
rate p

d
p
v

p
ijij

p qdpdddW  as a function of p and q [SCH 68]. 

From both approaches, we can derive an expression of the dilatancy rate (p, q) 
so that the differential equation can be solved and an expression of the plastic 
potential G(p, q, p0) can be proposed, where p0 is an integration constant. Plastic 
potentials obtained by such a procedure are the basis of the Cam-Clay models [SCH 
68] and the model proposed by Nova [NOV 82]. 

The plastic potential G(p, q, p0), built on the basis of triaxial tests, is thus 
extrapolated for the simulation of multiaxial stress situations. The assumption that 
the model gives reasonably good results when applied outside the experimental 
referential on which it is based must be checked by comparing simulations and 
results of other types of tests, especially with true three-dimensional tests. For 
example, a generalized definition of the dilatancy rate can be given by the following 
relation [DEG 83]: 

p
ij

p
ij

p
v

dd

d
. 

This ratio represents relatively well the tendency of the sample volume to 
increase (  > 0) or to decrease ( < 0). The tests carried out on a true three-
dimensional apparatus show that the plastic flow occurs for a roughly constant 
dilatancy ratio during a given test [ZIT 88]. These observations have been made for 
monotonous and relatively simple test conditions (in axisymmetric conditions and 
for a constant value of b; see Table 3.1). These interpretations remain to be 
confirmed by three-dimensional condition tests of a higher level of complexity. 
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3.6.5.3. Plastic potential and plastic mechanism 

A closer examination of the experimental results tends to suggest that the flow 
rule itself is not well adapted to the description of frictional soil behavior. The 
definition of the flow rule implies that, regardless of the direction of the strain 
increment (d ij) that induces plastic flow, the direction of the plastic strain 
increment is entirely defined by the current stress state ( ij); however, experimental 
results show that their direction also depends on the stress increment itself [POO 67; 
TAT 74; LOR 81; TOU 82; VER 82; TAN 90]. These authors have shown that the 
influence of the stress path on the dilatancy ratio is greater for small values of the 
stress ratio  and tends to vanish for values of  close to failure. 

If we represent for different stress paths graphically the dilatancy ratio  vs the 
stress ratio , it appears that  depends strongly on the stress path (Figure 3.13). The 
unicity of the plastic potential is therefore not proved, except in the vicinity of 
failure. The flow rule must be replaced by an incremental relationship such as: 

rsmnklp
p
ij d)d,(Gd  

where Gijkl is a tensor whose components are functions of degree zero with respect 
to their second argument (d ij). This non-linear relationship has been studied by 
Dafalias and Popov [DAF 76] and Mroz and Zienkiewicz [MRO 78]. In order to 
account for this dependency, another solution consists of adopting an elastoplastic 
model combining several plastic mechanisms. The use of several yield surfaces, 
each attached to a different plastic mechanism, introduces a loss of uniqueness in the 
plastic strain increment direction, which depends on the stress increment direction at 
any point where more than one plastic mechanism is activated. The higher the 
number of mechanisms, the higher the sensitivity to the stress increment direction. 
For instance, in the case of two mechanisms (one deviatoric and one volumetric), the 
relationship between (d p

ij) and (d ij) becomes quadrilinear. This improves the 
simulations notably, but we must be aware that the number of parameters increases, 
and that they may not be independent of one another. From a more fundamental 
point of view, we should also investigate the question of knowing whether the yield 
surfaces are independent or not: can the activation of one of the mechanisms change 
the shape of the other yield surfaces? The answer to this question remains open, and 
more research is necessary. Nevertheless, most researchers in the field of 
constitutive modeling think that one or two mechanisms (deviatoric and volumetric) 
provide a framework that should be wide enough to account for most physical 
phenomena observed experimentally in the case of monotonous loadings. This idea 
has been adopted by Lade [LAD 77], Vermeer [VER 82], Luong and Loret [LUO 
82], Aubry et al. [AUB 82], Cambou and Jafari [CAM 88] or Tan [TAN 90]. In the 
case of cyclic loadings, however, it may be necessary to introduce two or three 
mechanisms. 
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Working with several plastic mechanisms also leads to more complex 
expressions of the dilatancy ratio: 

)dq,dp,q,p(
d
d

p
d

p
v

. 

From a qualitative point of view, this formulation seems to be closer to reality; 
but unfortunately extremely difficult to identify. Due to this, the models proposed 
are more based on mathematical constructions rather than on experimental data. 

 

Figure 3.13. Dilatancy ratio vs stress ratio (Luong and Touati, 1983) 

3.6.6. Yield surface  

Elastoplasticity with hardening makes it possible to better describe the 
intermediate phases between the onset of the irreversible strains and the ultimate 
failure of the sample. Hardening changes the yield surface in the stress space. The 
changes of its shape have been extensively discussed in numerous research works, 
combining experimental observations and theoretical hypothesis. 
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3.6.6.1. Principles of the mathematical formulation 

Even if its extreme positions are known (the initial elastic domain for very small 
strains and the failure surface reached for very large strains), finding an appropriate 
mathematical expression for the yield surface on the basis of experimental results 
can be quite difficult. We have to build the yield surface in the stress space, 
determine the internal variables describing the hardening phenomenon, and, finally, 
express the influence of the hardening variables on the evolution of the yield 
surface. During a loading path, this surface can undergo successively or 
simultaneously an expansion, a translation, a change in shape or even a rotation. 
Describing the changes of the yield surface requires us to look for its shape in many 
points of the loading path. Thus, it remains to define the influence of the applied 
stress path. 

Given the complexity of the problem, we have to resort to simplifying 
assumptions about the nature of the internal variables which govern the changes of 
the yield surface. The construction of the yield surface is thus the result of more or 
less sophisticated combinations of experimental observations and theoretical 
opinions on the nature of hardening and on the shape of the failure and yield 
surfaces, or on the plastic potential. For example, the following observations make it 
possible to limit the scope of the possibilities: 

– the yield surface is convex and contains the origin; 

– after a given point on the stress-strain curve in isotropic compression, the 
unloading curve is different from the loading curve: this proves that irreversible 
strains exist, and that the stress path has crossed the yield surface. This result implies 
that the yield surface intersects the isotropic compression axis (p axis); 

– tests carried out for a decreasing deviatoric stress combined with simultaneous 
increasing mean stress p show irreversible strains. This tends to indicate that the 
yield surface is perpendicular to the isotropic compression axis. 

In practice, methods determining the yield surface are based on: 

– the so-called normality rule (meaning that the flow rule is more often 
associated than not); 

– a relatively good knowledge of the failure surface; 

– a careful analysis of experimental results. 

3.6.6.2. Derivation based on the normality rule 

In this approach, it is assumed that the plastic flow is governed by an associated 
flow rule. In other words, the direction of the plastic strain increment is also the 
direction of the outer normal to the yield surface. The yield function is therefore also 
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the plastic potential. The problem thus consists of expressing the plastic potential. 
The first elastoplastic models with hardening were developed to describe the 
behavior of reconstituted soil samples. The shape of the yield surface was validated 
on remolded clay samples, isotropic and normally consolidated [SCH 68]. For 
natural soils, this approach is relatively less employed, since the flow rule is 
generally very far from being associated. 

3.6.6.3. Derivation based on the failure surface 

Numerous authors have used the shape of the failure surface to define the shape 
of the yield surface. The idea is simple. Once the failure surface equation has been 
obtained, for instance fr ( ij) = k, where k denotes a constant and fr a homogenous 
function of the invariants of the stress tensor, we use function fr to define yield 
function fc as: 

0)(p)(f),(f p
0ijr

p
ijijc  

where p  represents the hardening variable associated with plastic strain and p0, a 
function that tends towards the k constant as we get closer to failure. The problem is 
now to provide a suitable function )(p p

0  that describes the shape, size, orientation 
of the yield surface and the way in which it tends towards the failure surface. 

3.6.6.4. Hardening variables and changes in the yield surface 

For an isotropic soil, the hardening variables are in most cases: 

– the invariants of the plastic strain tensor (especially p
v  and p

d  ) or their linear 

combination (for example, 
p
d

p
v D  where D is a constant); 

– the plastic work Wp (dWp = ij d p
ij); 

– the plastic distortion p  ( p
ij

p
ij

p dede
2
3d  with ij

p
kk

p
ij

p
ije ). 

In any case, it is crucial that the hardening variable should be easily measurable. 
For instance, if plastic work Wp is chosen as the hardening variable, and if the 
function associated with the failure surface fr ( ij) is known, the only thing to do is to 
place the experimental points in a (Wp, fr ( ij)) plot, which upon an appropriate 
mathematical processing of the data gives an approximate expression of p0(Wp). 
Here, the choice of the equations describing hardening should be dictated by 
simplicity. 
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Kinematic or anisotropic hardening laws have also been proposed to describe the 
changes of the yield surface inside the failure surface. From a mathematical point of 
view, these notions are expressed by the following equations: 

– isotropic hardening: 0),(f p
ijc ; 

– kinematic hardening: 0)A(f ijijc ; 

– anisotropic hardening: 0)A,(f ijijc ; 

where p  is a scalar hardening variable and (Aij), a symmetric tensorial hardening 
variable. Kinematic hardening is also introduced to account for the influence of 
cycles on the yield surface. Anisotropic hardening makes it possible to take into 
account the anisotropy induced by the applied loads. 

3.6.6.5. Hardening modulus and changes in the yield surface 

Analyzing the experimental results in order to find the hardening modulus H also 
makes it possible to discuss the changes of the yield surface. Starting from the 
plastic potential G and from the assumption that the yield surface is such that:  

0)(p)(f),(f p
0ijr

p
ijijc  

rf  denoting the function defining the failure surface, we can write the incremental 
relationships: 

ij
kl

kl

rp
ij

Gf
H
1

. 

Using this relationship provides a way of deriving the variations of the hardening 
modulus, then of fitting an appropriate mathematical function H( p). It is thus 
possible (in theory) to obtain the hardening law through the following equation: 

p

p
0p

H  

where  is the plastic multiplier that can be evaluated experimentally.  

3.6.6.6. Hardening and plastic mechanisms 

Theoretical analyses and simulations of tests have also led to some conclusions 
relating to the form of hardening laws. It has been shown that models in which 
hardening only depends on the volumetric plastic strain [ )(p p

v0 ] are not well 
adapted for undrained loadings [LOR 87]. This proves that, for the design of 
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geotechnical structures, the choice of a model also depends on the kind of 
computations that are to be carried out (drained or undrained for instance). To 
overcome this difficulty, some authors have proposed to take into account a 
hardening defined as the linear combination of the volumetric plastic strain and the 
deviatoric plastic strain. However, in the case of sands, comparisons between 
simulations and experimental results seem to show that the relationship between the 
strain and stress increments depends on the stress increment. This observation 
implies that more complex models should be designed, with at least two plastic 
mechanisms, and also two or more hardening variables [LOR 82; LOR 87]. Other 
theoretical models have been developed on the basis of the “incrementally non-
linear approach” (see Chapter 6). 

3.6.6.7. Derivation of the yield surface on the basis of experimental results 

For a practical determination of the yield surface, several methods have been 
proposed, depending on the nature of the soil: natural cohesive soils, frictional soils 
or soils reconstituted in the laboratory. 

A. Case of natural cohesive soils 

Research works on reconstituted soils carried out at the University of Cambridge 
[ROS 58; SCH 68] have led to the first elastoplastic models with hardening and with 
a non-linear isotropic elastic law (Cam-Clay models). Later, at the Laval University 
in Quebec [TAV 79] and the Laboratoire Central des Ponts et Chaussées [MAG 86; 
LEP 90; AZI 88], a somewhat more realistic shape for the yield surface, or limit 
state line, in the (p, q) space was proposed. This research, carried out on samples 
extracted from ground at different depths, showed that the principles of the 
constitutive modeling that had been elaborated for reconstituted clays, remained 
qualitatively acceptable for natural anisotropic clays. 

Crooks and Graham [CRO 76] proposed searching for the shape of the yield 
surface by means of a series of triaxial tests on reconsolidated samples, subjected to 
the same stress level as in situ. Each sample is subjected to a radial drained triaxial 
load (Figure 3.14). For any given test, the search for a clear change of the sample 
behavior provides a dot in the (p, q) plane that belongs to the initial plastic domain 
(initial position of the yield surface). 
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Figure 3.14. Determination of the yield surface: principle of  
the method proposed by Crooks and Graham (1976) 

 

Figure 3.15. Research of the yield surface: Tavenas and Leroueil method (1979) 

Another more simple method was described by Tavenas and Leroueil [TAV 79], 
which consisted of performing the whole set of traditional tests listed below:  

– oedometer tests, conducted to obtain the preconsolidation pressure ’p; this 
value makes it possible to define one point of the initial position of the yield surface; 

– triaxial undrained compression tests with a measurement of the pore pressure 
(CU+u) for confining pressures lower than 0.5 ’p (Figure 3.15). For each test, the 
peak of the (q, 1) curve is assumed to be associated with a point of the initial 
position of the yield surface; 

– compression tests conducted with a constant value of the effective stress ratio, 
and during which volume variations are measured (Figure 3.15). Points of the initial 
yield surface are obtained using the same procedure as previously. 
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The plotting of the points characteristic of a clear change of behavior, in the (p, 
q) plane, shows that the initial shape of the yield surface is close to that of a more or 
less tilted ellipse compared to the mean pressure p axis (Figure 3.16) [LER 85]. An 
elastoplastic behavior law with isotropic hardening and anisotropic linear elasticity 
was developed, starting from these observations, to describe the behavior of natural 
clays [MOU 83; MAG 86; KAT 90]. The yield function suggested has the following 
general form: 

0)(f)(qf)(pfbpqapq),(f p
v2

p
v1

p
v0

22p
ijijc  

where a and b are two constants and f0, f1 and f2 are three scalar functions. 

 

Figure 3.16. Examples of the initial domain of elasticity for  
natural cohesive soils (or limit state curves) 
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B. Case of frictional soils 

Poorooshasb et al. [POO 66], then Tatsuoka and Ishihara [TAT 74], completed 
an important work that enabled the shape of the yield surface of sands in the (p, q) 
plane to be defined. They carried out, in this plane, a succession of conventional 
triaxial and constant deviatoric stress paths in drained condition. This approach rests 
on the assumption, in conformity with the principles of elastoplasticity, that the yield 
surface is convex and contains the origin. If a load increment brings the soil from 
point 1 to point 2, with the supposition that point 2 is plastic, and if the load 
increment is removed, this last followed path is located within the current elastic 
domain (Figure 3.17). A reloading up to point 6, supposed outside of the elastic 
domain, shows that there is necessarily a point 5, located on the yield surface 
defined by the value of the hardening variable of point 2 and, such as starting from 
this point 5, the strains increase in a notable way. This observation highlights a 
portion of the curve joining points 2 and 5 which belongs to the yield surface. The 
problem is thus to determine a function of the hardening variable “ p ” which has 
the same value in points 2 and 5. 

 

Figure 3.17. Research of the boundary of the yield surface for frictional soils 

If the process is repeated, starting from point 5, several couples of points such as 
2 and 5 will be obtained. By means of an adapted mathematical fitting, an equation 
of the type 0),(f p

ijc  or 0),q,p(f p
c , can be given. Poorooshasb et al. 

(1966) established that the yield function could be approached by the equation: 

0)(fplnm
p
q),q,p(f p

v0
p

c  

where the hardening variable p  is equal to the invariant p
v; f0 is a scalar function 

to be determined and m, a constant. 
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Tatsuoka and Ishihara [TAT 74] proposed introducing the plastic deviatoric 
strain like a hardening parameter, as well as the plastic volumetric deformation. The 
yield function is thus approached by the general equation 

0),(f)p(f
p
q),,q,p(f p

d
p
v01

p
d

p
vc  

where f1 is a scalar function to be determined. Figure 3.18 represents the boundary 
of these surfaces for various hardening states [TAT 74]. We should note that the 
curvature of these surfaces is all the larger, as the frictional soil is initially dense. 

The trace of the yield surface has also been studied in the deviatoric plane (p = 
constant). The experiments on a true triaxial apparatus show that this boundary is 
not angular, that its form is convex, close to that of a triangle and that it is close to 
the shape of the yield surface (Figure 3.19) [LAD 73; ZIT 88]. 

 

Figure 3.18. Traces of the yield surface for various values of a hardening variable in  
the (p, q) plane: a) dense sand; b) loose sands (Tatsuoka and Ishihara, 1974) 
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Figure 3.19. Trace of an experimental yield surface in the deviatoric plane 

3.7. Three-dimensional aspect of the models and calculation of geotechnical 
works 

The traditional method for constructing constitutive models prefers to use the 
long-established triaxial stress paths on cylindrical samples, in which the principal 
directions of stresses and strains remain fixed. Therefore, the models built are 
theoretically valid only on the paths used for their development and “fitting”. Any 
generalization with other types of paths, or with the true three-dimensional case, 
remains an extrapolation to be checked.  

Generalizing the three-dimensional case forces us to introduce into the equations 
the influence of the intermediate stress, which does not appear in the axisymmetric 
conditions of tests on cylindrical samples ( 32 ). If the writing of the models 
according to invariants p and q allows a certain influence of the intermediate 
principal stress to be introduced, it cannot be experimentally justified when going 

from the cylindrical triaxial conditions ( 3
2p 31 ; 31q ) to the 

multiaxial conditions ( 3
p 321 ; 2J3q ). We can certainly always 

think that the conceptual model is “universal”, and that, consequently, it is thus 
sufficient to characterize the equations on some specific tests. However, to be 
rigorous, it remains that this approach makes it possible to build only restrictions of 
the yield functions, potentials, etc. All attempts at generalizing require certain 
assumptions that must be confronted with the experimental reality, which only 
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validates or refutes a model. Ideally, we would reason directly on three-dimensional 
tests with three-dimensional variables. Unfortunately, the tests are both complex and 
expensive, thus rarely performed, in particular for cohesive soils. Their 
interpretation is also made difficult by the number of variables to be measured: three 
invariants of stresses and three invariants of strains. 

In developing these models, the authors thus favored axisymmetric tests 
(available in great number) for setting up the constitutive equations. Thus, they tried 
to validate the models based on three-dimensional results and corrected the 
equations in order to take into account the effect of the intermediate stress, while 
keeping the model response as close as possible to the traditional tests results. The 
use of the models in finite element calculations of geotechnical works has also 
contributed to the evolution of their formulation, either to a certain simplification, or 
towards a greater complexity. The first tendency seems dominant at the present time, 
with a clear decrease of the number of model parameters. This is due to the fact that 
there is often very little geotechnical data available to estimate the parameters. 
Methodologies to determine the parameters must be adapted to the practice of the 
current studies and the interpretation of in situ tests.  

Constant and long scientific effort has been required to the development of 
successive versions of a model. Only a few authors seem to have followed this path 
(essential in our opinion) with extended confrontations between theory, numerical 
method and validation. We can cite the work of Lade et al. (“Lade model”), Cambou 
et al. (“CJS model”), Hicher et al. (“Hujeux model”), Magnan et al. (“Melanie 
model”) and Nova (“Nova model”).  

We understand that the simplest models (elastoplasticity without hardening) are 
still very much used by engineers in calculation of geotechnical works; this is all the 
more the case as they often provide satisfactory simulations, considering the 
uncertainties of the problem. On the other hand, if there is abundant data and if we 
have some measurements of the geotechnical works for an initial fitting, the models 
with hardening can give excellent estimated results. 

3.8. Examples of perfect elastoplastic models 

3.8.1. The Mohr-Coulomb model 

3.8.1.1. Description of the model 

This elastic, perfectly plastic constitutive law is used to describe in an 
approximate way the behavior of frictional (sands) and cohesive (clays and silts) 
soils under short and long-term conditions. In the principal stress space ),,( 321 , 
the yield surface is a pyramid of hexagonal section of equation:  



118     Constitutive Modeling of Soils and Rocks 

0cosc2sin)()(F 3131ij  

where 1  and 3  represent the extreme principal stresses, ( 321 ,with the 
following sign convention: compressions are counted positively). When  = 0° and 

 = 0°, the model is called the Tresca model and is used for studying cohesive soils 
under short term conditions; the pyramid thus degenerates into a cylinder. 

The plastic potential is written: sin)()(G 3131ij . 

When angles  and  are equal, the flow rule is associated. 

The elastic part of the behavior is defined by isotropic linear Hooke elasticity. 
On the whole, the model requires five parameters: E (Young’s modulus),  
(Poisson’s ratio), c (cohesion),  (friction angle) and  (dilatancy angle). These 
parameters are usually obtained from laboratory test results (oedometer and triaxial 
apparatus). Figure 3.20 represents the modeling of a triaxial compression test of 
compression by the Mohr-Coulomb model. The value of the parameters results from 
an identification between this representation and the tangents and asymptotes 
obtained from the test curves represented on the same diagrams. This figure also 
shows that there are five unknown factors for four equations and that one needs at 
least two triaxial compression tests in order to determine all the parameters. In 
general, three tests are carried out with various confining pressures. Cohesion c and 
friction angle  are also traditionally calculated in the Mohr plane ( , ) from the 
stress states at failure, estimated for each triaxial compression test. 

 

Figure 3.20. Modeling of a triaxial compression test by the Mohr-Coulomb model 
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3.8.1.2. Typical values of the parameters of the Mohr-Coulomb model 

Several studies have been carried out concerning the influence of various factors 
on the value of the friction angle, in particular in the case of frictional soils (Table 
3.4). The current values lie between 15 and 45 degrees. The lower values of around 
30 degrees are typical for clays while higher values characterize sands (between 25 
and 45 degrees). At a given density, the friction angle is practically independent of 
the water content of the ground, but it increases with the average diameter of the 
grains. The friction angle also depends on the form and the surface quality of the 
grains. This parameter is higher for soils with angular grains than for soils with 
round grains, and for a rough surface quality than for a smooth surface quality grains 
(Table 3.5). Cohesion c is more difficult to estimate. Nevertheless, we can note that 
the frictional soils practically have no cohesion (c = 0 or some kilopascals which are 
due to capillary forces or cementing) and that cohesive soils have a cohesion ranging 
between several and several hundred kilopascals. The value of the dilatancy angle  
generally lies between 0 and 15 degrees. Loose sands and clays have very low 
values, being worth a few degrees, even zero. Generally, the friction angle is 
practically always higher than the dilatancy angle. A simple, generally well verified, 
empirical relation connecting the dilatancy angle to the natural angle of repose was 
proposed (P. Vermeer): . In addition, in the case of strongly contracting 
materials at rupture, the estimate of the dilatancy angle can lead to negative values. 

The Young’s modulus depends primarily on the strain level at which it is 
estimated and on the confining pressure. Table 3.6 provides orders of magnitude of 
Young’s modulus and Poisson’s ratio for sands. Table 3.7 provides some examples 
of parameter values deduced from the study of sands in a laboratory or adopted in 
calculations of geotechnical works by the finite element method. Indicative values 
for natural cohesive soils are provided in Tables 3.16 and 3.17, where the anisotropy 
is taken into account. 

In addition, it is advisable to remember that the natural angle of repose obtained 
with tests in plane strain is 3 to 5 degrees higher than the friction angle determined 
by using triaxial compression tests on cylindrical samples (axisymmetric tests). 
Wise precautions must thus be taken before using the model in finite element 
calculations of geotechnical works with parameters deduced from tests made by the 
traditional triaxial apparatus. 



120     Constitutive Modeling of Soils and Rocks 

Influence factor Influence on the friction angle 

Void ratio e e ,   

Angularity A A ,   

Uniformity coefficient CU CU ,   

Surface roughness R R ,   

Water content w w ,   slightly 

Grain size small influence if e is constant 

Mean stress p p ,   

Table 3.4. Factors having an influence on the friction angle (Holtz and Kovacs, 1991). 

Nature of the ground Compacity 

 (degrees)
Rounded grains 

Uniform 
granulometry 

 (degrees)
Angular grains 

well graded 
granulometry 

Average sand 
Very loose 
Moderately dense 
Very dense 

28°–30° 
32°–34° 
35°–38° 

32°–34° 
36°–40° 
44°–46° 

Sand and gravel: 
65% gravel 35% sand 
65% gravel 35% sand 
80% gravel 20% sand 
80% gravel 20% sand 

 
Loose 
Moderately dense 
Dense 
Loose 

 
 
37° 
 
34° 

 
39° 
41° 
45° 

Table 3.5. Orders of magnitude for the friction angle of frictional soils (Leonards, 1968) 

Type of sand Young’s modulus (MPa) Poisson’s ratio 

 7–20 0.15–0.25 

Loose sand 10–25 0.30–0.35 

Dense sand 50–80 0.30–0.35 

Very dense sand and
gravel 100–200 0.30 

Table 3.6. Typical values of the elastic properties of sands 
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Sand References 
(kN/m3) 

E 
(MPa) 

c 
(kPa) (deg) (deg) 

Hostun (loose) Mounir (1992) 14 55 0.28 0 35 0.7 

Hostun (medium 
dense) Mounir (1992) 15.5 85 0.28 0 37 5.5 

Hostun (dense) Mounir (1992) 16.3 95 0.33 0 41 11 

Fontainebleau Ghorbanbeigi (1995) 15.5 40 0.33 0 39 14 

Labenne Mestat et al. (1999) 16 33.6 0.28 1 36.5 11.4 

Karlsruhe Arafati (1996) 16 30–45 0.25 0–3 41.6 11.6 

Table 3.7. Values of the Mohr-Coulomb parameters (sands) 

NOTE.– Improved versions of the Mohr-Coulomb model have been proposed in 
recent years, which incorporate linear anisotropic elasticity, modulus varying with 
depth, non-linear isotropic elasticity, or limitation of the plastic volumetric strain in 
order to describe the critical state properly. 

3.8.2. The Drücker-Prager model 

3.8.2.1. Model formulation  

In the principal stress space ),,( 321 , the failure surface is a cone with a 
circular cross section. Its equation is given by: 

0kI)(J)(F 1ij2ij  

where )(J ij2  is the deviatoric stress and 1I  the trace of the stress tensor. 

The plastic potential is defined by: 1ij2ij I)(J)(G . 

The elastic part of the constitutive relations is defined by Hooke’s linear 
isotropic law. On the whole, the model requires five parameters: E (Young’s 
modulus),  (Poisson’s ratio), ,  and k. When  = 0 and  = 0, the model is 
reduced to that proposed by von Mises, and the cone becomes a cylinder in the 
principal stress space. The parameters are obtained relatively simply by means of 
traditional laboratory tests (oedometer and triaxial apparatus). Figure 3.21 represents 
the results of the simulation of a triaxial compression test for an ideal Drücker-
Prager material. The value of the parameters can be deduced from the comparison of 
this representation and the results of tests plotted in the same axes. Like the Mohr-
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Coulomb model, the Drücker-Prager model requires at least two triaxial tests for all 
parameters to be determined. 

 

Figure 3.21. Simulation of a triaxial compression test for an ideal Drücker-Prager material 

3.8.2.2. Values of the parameters 

 The parameters of Drücker-Prager model ,  and k are frequently expressed 
from those of Mohr-Coulomb c,  and . Different relations are obtained according 
to the test considered. For example, in the case of a triaxial compression ( 2 3  
and 31 ), the two criteria are written respectively: 

0cosc2sin)( 3131  and 0k)2(
3

31
31

. 

By supposing these equations verified for any stress field observing the 
conditions of the test, it is easy to deduce from them the relations existing between 
the parameters. We can proceed in the same way for other stress or strain paths 
(Tables 3.8 and 3.9). Particular attention was paid to the case of the plane strain 
condition. 
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Type of test  k   

Triaxial compression: 
contstant. )sin3(3

sin2
 )sin3(3

cosc6
 )sin3(3

sin2
 

Triaxial extension: 
contstant. )sin3(3

sin2
 )sin3(3

cosc6
 )sin3(3

sin2
 

Plane strain: 
02  (general case). )sinsin3(3

sin3sin 2

 
sinsin3

sin39cosc 2

 
2tan129

tan
 

Plane strain: 

2 0  (if  = ). 2tan129

tan
 2tan129

c3
 2tan129

tan
 

Table 3.8. Parameters of the Drücker-Prager model according  
to those of the Mohr-Coulomb model 

Type of test c sin  sin  

Triaxial compression: 
contstant. 26312

k3
 32

33
 

32
33

 

Triaxial extension: 
contstant. 26312

k3
 32

33
 

32
33

 

Plane strain: 

2 0  (general case). 

2

2
2

31
)(3121

k

 

31
313 2

 231

3
 

Table 3.9. Parameters of the Mohr-Coulomb model according  
to those of the Drücker-Prager model 

The expression of the Drücker-Prager model also prompts the following 
comment: the friction angles in compression are limited to low values. In fact, the 
maximum friction angle that the material can have in extension is 90 , from where, 
while deferring in the equation of the criterion, the value of  and  = 0. Starting 
from these values, we can calculate the angle of maximum compression, i.e., 
approximately 37 . This means that the friction angle cannot exceed this value in 
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triaxial compression. However, particularly in the case of sands, many experimental 
results show the opposite. It is thus advisable to use this criterion with precaution. 

3.9. Examples of elastoplastic models with hardening 

Drücker, Gibson and Henkel [DRU 57] were the first to consider soils as 
elastoplastic materials with hardening. They assumed the existence of a yield surface 
similar to that of the Mohr-Coulomb model, but closed by a second surface called 
the “cap”, able to move along the axis of isotropic compressions. This constitutive 
law brought about a family of models, known as “cap-models”. Each was developed 
by introducing a fixed failure surface associated with a second variable surface 
(Figure 3.22). The volumetric plastic strain governs the evolution of the “cap” 
surface according to an empirical law. One of the main shortcomings of such models 
lies in the fact that they generally adopt an associated flow rule, which is generally 
not acceptable in view of experimental data. 

 

Figure 3.22. Yield surface for a cap-model (Desai and Siriwardane, 1984) 

3.9.1. University of Cambridge models (Cam-Clay models) 

Roscoe et al. [ROS 58] derived general elastoplastic constitutive relations for 
soils, based on the theory of hardening plasticity, and on the analysis of oedometric 
and triaxial tests. Such models belong to the family of “cap-models”, and are known 
as “Cam-Clay models”, or in short “Cam-Clay”. They are basically oriented towards 
the description of the behavior of remolded clays. They are based on four main 
concepts: results of isotropic compression tests, the notion of critical state, the 
notion of a relationship between stress and dilatancy and the normality rule. 
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3.9.1.1. Isotropic compression test 

In the (e, ln p) plane, [where e denotes the void ratio], the representation of the 
results of an isotropic compression test yields curves that can be assimilated to 
straight lines (Figure 3.23): 

– one is the initial compression line, or -curve, which describes the elastoplastic 
phase of the test: 

1
1 p

plnee ; 

– the other is the unloading-reloading curve, or -curve, which represents a cycle 
during which the load is reduced then increased again. Within the framework of 
elastoplasticity, this curve is supposed to give the elastic non-linear response of the 
sample: 

1

p

p
plnee ; 

where 1e  and pe  correspond to the values obtained for a given reference pressure 
denoted by 1p  (generally taken equal to 1 kPa);  and  are two parameters of the 
model. 

 

Figure 3.23. Representation of a triaxial isotropic compression test (Cam-Clay model) 

Figure 3.23 shows that pe  (interpreted as the “plastic” void ratio: pe eee ) 
changes when the load increases, and is related to the boundary of the current elastic 
domain. It can therefore be used as a hardening parameter in the description of the 
isotropic compression test. 
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3.9.1.2. Equations of the Cam-Clay models 

Plasticity is described by means of a stress-dilatancy relation derived from the 
analysis of triaxial compression tests such that (p = constant and q/p = constant) 
(Table 3.10). Integrating this differential relation makes it possible to derive the 
plastic potential )p,q,p(G c , and, through the normality rule, the expression of the 
yield surface ( , , ) ( , , )c cF p q p G p q p . 

Two versions of the Cam-Clay model have been proposed. The original model 
allowed us to reproduce qualitatively the main features of the experimental results. 
However, for some stress paths close to the isotropic compression axis, the model 
yields excessively large deviatoric strains. This is the reason the flow rule (or stress-
dilatancy rule) was modified by Burland and Roscoe [BUR 68]. 

Cam-Clay model Original version Modified form 

Stress-dilatancy 
rule p

qM
d
d

p
d

p
v

 

p
q2

p
qM

d
d

2
2

p
d

p
v  

Yield surface  0
p

p
ln

Mp
q c

 
0

p
p

1
pM

q c
22

2

 

 

Non-linear elastic 
law 

p
dp

e1
d

o

e
v  

0d e
q  

p
dp

e1
d

o

e
v  

dq
G3
1d e

q  

Table 3.10. Stress-dilatancy rule, yield surface and non-linear  
elastic law for the Cam-Clay models 

where ij
p
ij

p
v ; p

ij
p
ij

p
d ee

3
2

 and ij
p
ij3

1p
ij

p
ije . 

G denotes the shear modulus and e0 the initial void ratio.  

The elastic part of the constitutive law can be formulated as follows in the elastic 
regime: 
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ij
0

ij
e
ij '.dp

G2
1

'p)e1(3
d

G2
1d  

The stress pc is the “integration constant” resulting from the integration of the 
stress-dilatancy rule. pc is also the coordinate of the point of the isotropic axis that is 
located at the intersection of the yield surface and of the isotropic compression axis, 
therefore on the boundary of the current elastic domain (Figure 3.24); this value can 
be seen as the variable governing the evolution of the yield surface, i.e., the 
hardening of the yield surface. The hardening law between the plastic void ratio ep 
and the value of pc can be obtained by combining the - and -curves at point pc 
(Figure 3.25). We obtain the incremental relationship: 

p
v

o

c

c d
e1

p
dp

. 

Failure occurs when the critical state is reached: 0d p
v ; q = M p and 

1
cs p

plnee . 

 
a) almond-shaped yield surface (original 
model) 

b) elliptical surface of the modified 
model 

Figure 3.24. Yield surfaces of the Cam-Clay models in the (p, q) plane 

3.9.1.3. Determination of the parameters of the modified Cam-Clay model 

The modified Cam-Clay model involves seven parameters: M, cse , , , e1, p1, 
G and three more parameters describing the initial state of the soil (e0, p0, q0). The 
parameters can be derived from the results of triaxial tests (drained tests, or 
undrained tests with measurement of the pore pressure) and oedometer tests  
(Table 3.11). 
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Figure 3.25. Representation of the hardening law of the Cam-Clay models 

Parameters Principle of the determination 

e0, p0, q0 Initial stress state in situ, or parameters estimated on the basis of isotropic 
compression tests or triaxial tests. 

G 
(or E and ) 

Derivation from results of triaxial tests including unloading phases, after
estimation of the initial elastic domain. 

, , e1, p1 
Interpretation of isotropic compression tests in the (e, ln p) plane, or 
oedometric tests. Pressure p1 is a reference value, often taken equal to 
1 kPa. 

M, ecs 
Stress ratio at failure for shear tests in the (p, q) plane, and position of the 
critical state in the (e, ln p) plane. 

Table 3.11. Determination of the parameters of the Cam-Clay models 

3.9.1.4. Examples of typical values of the parameters of the Cam-Clay model 

The state of the art report by Duncan [DUN 94] indicated that the modified Cam-
Clay model remained the most used in numerical simulations of coherent soils. This 
stems from the fact that it is relatively simple to include in a finite element code, and 
from the reduced number of parameters, that can be derived from traditional soil 
mechanics tests. Table 3.12 gives indicative values of the parameters. 
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Soil G (MPa) M cse  
London Clay G(z) 0.15 0.9  0.08 0.008 
Las Planas marl 150 0.3 1.18  0.04 0.007 
Pescara Clay (Italy)  0.3 0.898 1.91 0.18 0.045 
Clay (Rio de Janeiro) G(z)  1.14  0.83 0.13 
Clay (Muar, Malaysia)  0.3 1.19 3.07 0.13 0.05 
Clay (San Francisco)   1.2 3.72 0.326 0.043 

Table 3.12. Examples of typical values of the parameters of the modified Cam-Clay model 

3.9.2. Nova model (1982 version) 

3.9.2.1. Description of the model 

The constitutive model proposed by Nova (version 1982) is an adaptation of the 
modified Cam-Clay model, devoted to the description of the sand behaviour [NOV 
82]. It combines a non-linear elastic law with a hardening plastic law, with a flow rule 
that is associated or not, depending on the value of the stress ratio q/p (Table 3.13). 

In the elastic domain, the following isotropic non-linear relation holds: 

ij0ij0ij p3
dpBdLd  

where p
p ijij

ij ; 0B  and 0L  are two material parameters. 

Stress ratio Stress-dilatancy rule 
Yield surface )cp,q,p(F  and  
plastic potential )cp,q,p(G  

2
M

p
q

 q
p

M
4

d
d

2p
d

p
v

 

)p,q,p(G)p,q,p(F cc  

0
p
p

1
p
q

M
4)p,q,p(G 2

2
c

2

2

2c  

2
M

p
q

 p
qM

d
d

p
d

p
v

 

0
p
p1lnm

2
M

p
q)p,q,p(F

c
c  

0
p
p1

1
M

p
q)p,q,p(G

1

cg
c  

Table 3.13. Expressions of the yield surface and of the plastic potential (according to the 
value of the stress ratio) for the Nova model [NOV 82] 
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The evolution of the hardening parameter is governed by a linear combination of 
the first two invariants of the plastic strain tensor p

v  and p
d : 

o

p
d

p
v

coc B
D

exppp . 

The hardening parameter cp  is therefore given by a relation very similar to that 
adopted in the Cam-Clay models; the difference lies in the introduction of the 
deviatoric term p

d  that makes it possible to account for the dilatant behavior of 

sands. The variable cgp  represents the intersection of the plastic potential with the 
isotropic compression axis and is linked to the hardening variable cp . 

3.9.2.2. Determination of the parameters of the Nova model (1982 version) 

The model has eight parameters, seven of which are non-dimensional and can be 
derived from fitting the results of traditional drained triaxial tests ([NOV 82]; [MES 
00]). Table 3.14 describes the procedure. 

Parameter Determination 

oB  Analysis of the (
e
v , p) curve (unloading-reloading) 

oL  Analysis of the (
e
d , q) curve (unloading-reloading) 

M Parameter related to the characteristic state (of sand) and to failure 

 Parameter associated with the failure (q/p tends towards M+ D) 

D Slope of the dilatancy curve at failure 

 Analysis of the ( v , p) curve (first loading) 

m 
Parameter associated with the characteristic state and with the curvature of
the (q, 1 ) curve 

Table 3.14. Determination of the parameters of the Nova model (1982 version) 

The last parameter cop  is a reference pressure, which can be evaluated in either 
of the following ways: 

– by assuming that the initial stress state belongs to the yield surface, cop  being 
solution to the equation 0)p,q,p(F cooo ; 
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– by fitting tests results: this method should be avoided, since it leads to 
overestimation of the mechanical meaning of this parameter (which should only 
reflect the initial state of the soil). 

3.9.3. Mélanie model 

3.9.3.1. Description of the model 

Works by Tavenas and Leroueil [TAV 79] on the clay of Saint-Alban (Québec) 
and by Magnan et al. [MAG 82] on the clay of Cubzac-les-Ponts (France) confirmed 
the applicability of the concepts developed at the University of Cambridge, with 
appropriate corrections to take into account the anisotropy of natural clays. These 
works have led to the so-called Mélanie model, developed by the French Public 
Works Laboratory (Laboratoire Central des Ponts et et Chaussées: [MOU 83]; [LEP 
90]; [KAT 90]). The model was built according to the principles underlying the 
University of Cambridge models. A first version was elaborated in the 

( 2
s 31 , 2

t 31 , e) space, then adapted to the (p, q, e) space. The model 

is based on the following experimental observations and assumptions: 

– the yield surface has en elliptical shape in the (p, q) plane (Figure 3.26); 

– the yield surfaces corresponding to different preconsolidation states are 
deduced from one another by a homothety with respect to the origin; 

– the flow rule is unassociated. The direction of the plastic strain increment is 
given by the bissector of the normal to the yield surface and the radial direction.  

 

Figure 3.26. Yield surface or limit state line of the Mélanie model 
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The yield surface is an ellipse inclined with an angle  with respect to the 
horizontal axis: 
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where OA  represents the Euclidean norm of vector OA. 

The elastic part of the law is linear, and transversely isotropic: 
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where 
v

h

E
En ; vE  and hE  denote the elastic moduli in the vertical and horizontal 

directions; vh , the Poisson’s ratio in the vertical direction under a vertical stress; 

hh , Poisson’s ratio in the horizontal direction under a horizontal stress and vhG , 
the shear modulus between the vertical and horizontal directions. 

The constitutive law can be expressed as follows: 
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The hardening parameter pp  is determined by the intersection of the isotropic 
original compression and of the line of isotropic reversible behavior in the (e, p) 
plane (Figure 3.27). The relation between pe  and pp  reads: 
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where 1e  denotes the void ratio corresponding to the reference pressure 1p  
(generally taken as equal to 1 kPa). Slope  of the reversible isotropic strains 
depends on the elastic characteristics: 
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Figure 3.27. Definition of hardening parameter pp 

3.9.3.2. Determination of the parameters of the Mélanie model 

The parameters can be obtained by taking advantage of the results of drained 
triaxial tests, undrained triaxial tests during which the pore pressure is measured, 
and oedometric tests (Table 3.15). 

3.9.3.3. Examples of typical values of the Mélanie model 

The Young’s moduli in the horizontal direction are lower than the moduli in the 
vertical direction for soft clays, and larger in the case of stiff clays. In addition, it 
seems that the ratio of the shear modulus vhG  to the vertical modulus varies in the 
range 0.3 – 0.5. The values of the Poisson ratios lie in the range 0 – 0.40. Note that, 
unlike the models presented before, the elastic law is not isotropic: it must be 
recalled that the complete determination of the five elastic parameters of an ideally 
orthotropic material by means of standard tests is not common practice and remains 
out of reach in most cases. Indicative values are given in Table 3.16. Table 3.17 
provides examples of values for the other parameters of the model. 
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Parameters Principle of the determination 

oe , nc
oK , 

oc
oK , vo'  

Initial stress state, and results of tests in situ or in the laboratory. The 
coefficients of earth pressure at rest nc

oK  (normally consolidated state) and 
oc
oK  (overconsolidated state) are given by sin1Knc

o  and 

vo

pnc
o
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o '

'
KK , where  is the internal friction angle. The 

preconsolidation pressure p'  is derived from the oedometric test. 

vE , hE , 

vh , hh , 

vhG  

Results of triaxial tests with anisotropic consolidation on samples of 

different orientations. In practice, the values of 
v

h

E
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G , hh  and 

vh  are assumed to be fixed, chosen according to values obtained on 
reference sites. It remains to choose v'E . Using the oedometric tests 

results, we obtain 
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where sC  is the oedometric swelling index. 

1e , 1p ,  

The void ratio e1 can be obtained experimentally by means of an 
oedometric test or thanks to the following relationship: 

1

p
p101 p

p
ln)pp(ee  

where pp  defines the initial position of the yield surface. The reference 

pressure 1p  is equal to 1 kPa. Parameter  is linked to the compression 

index Cc derived from the oedometric test ( = Cc / ln 10). 

Table 3.15. Determination of the parameters of the Mélanie model 
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Site vE  (MPa) hE  (MPa) vhG  (MPa) hh  vh  

Cubzac 3.6 2.285 1.65 0.10 0.25 

Lake Agassiz 4.95 9.34 2.7 0.23 0.17 

London 11 22  0.00 0.19 

Léda 9.5 6.5 3.5 0.30 0.30 

Lias 14 6.58  -0.38 0.19 

St-Louis de 
Bonsecours 6.9 4.3  0.20 0.35 

Romainville 22.2 24.6  0.38 0.40 

Table 3.16. Values of the elastic parameters for some natural clays 

depth vo
'  

(kPa) 
p
'

 
(kPa) 

 
(kN/m3)

eo  
 

Cc  Cs  
vE  

(kPa) 
hE  

(kPa) 
hh vh  

vhG  
(kPa) 

0–1 m 
1–2 m 
2–3 m 
3–4 m 
4–6 m 
6–7 m 
7–8 m 
8–9 m  

6.5 
11 
15 
20 
27.5 
35 
39 
44 

55 
40 
30 
37 
45 
55 
60 
70 

16 
13.8 
14.3 
14.9 
15 
14.8 
14.8 
14.8 

1.16 
2.55 
2.40 
2.01 
1.95 
2.07 
2.07 
2.15 

0.30 
1.23 
1.16 
0.79 
0.88 
0.98 
1.14 
1.07 

0.04 
0.10 
0.13 
0.10 
0.09 
0.10 
0.11 
0.11 

2,490 
1,680 
1,120 
1,950 
2,475 
2,510 
2,680 
3,215 

1,550 
1,050 
700 
1,220 
1,550 
1,570 
1,675 
2,010 

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.25 
0.26 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 

1,120 
755 
505 
880 
1,115 
1,130 
1,205 
1,450 

Table 3.17. Examples of typical values of the plastic parameters of the  
Mélanie model (site of Cubzac les Ponts) (with 0.5nc

oK ) 

3.10. Conclusions 

The mechanical behavior of the solid skeleton of soils can be described 
satisfactorily by an elastoplastic model including hardening. Table 3.18 sums up, for 
different situations (nature and state of soils), the main features of the behavior and 
the models generally used in the finite element modeling of saturated grounds. 
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Nature and state of the 
soil Behavior Models generally adopted 

Hard soils and soft 
rocks (stiff clays, 
marls, limestone, 
chalk, etc.). 

Small strains, linear, depending 
on time (through permeability 
and viscosity). 
Failure is often brittle. 

Linear or non-linear elasticity 
combined with consolidation 
and creep. 

Soft soils and organic 
soils (soft clays, silt, 
mud, peat, etc.). 

Large and highly non-linear 
strains, dependent on time 
(permeability and viscosity). 

Elastoplasticity (with 
anisotropic properties when 
needed). Consolidation and 
creep. 

Frictional soils (sands, 
gravels, etc.). 

Instantaneous strains strongly 
dependent on the initial density 
(controlling dilatant or 
contractant behavior). 

Elastoplasticity (with 
unassociated flow rule). 

Table 3.18. Behavior of saturated soils and simulation  
of structures by the finite element method 

The validation of a model by comparison with laboratory tests does not ensure its 
efficiency for the simulation of real structures. Testing constitutive models at the 
scale of the geotechnical structures requires that the model is introduced in finite 
element software. 

In addition, the use of advanced elastoplastic models in engineering practice 
remains a challenge, because the models involve a large number of parameters that 
cannot be determined unless a large number of complex laboratory tests are carried 
out, and with a physical meaning that is not necessarily clear, because of the 
traditional difficulty of knowing the initial stress state (which has a considerably 
larger influence on the results than in the case of the simple usual models), and 
because of the heterogenity of natural or urban soils. Engineers often prefer to use 
the traditional Mohr-Coulomb model or the modified Cam-Clay model. More 
advanced models often combine features that are not well understood by the users, 
and the interpretation of the results (if attempted) may give rise to difficult 
questions. 

However, advanced constitutive models, with complex hardening laws, provide 
an indispensable aid to getting more realistic deformation mechanisms, and more 
efficient design. The main difficulty lies in the determination of parameters, 
generally far too complex to be achieved with the data contained in a standard 
geotechnical survey. The lack of expertise in this field may lead to very inaccurate 
results and is the main reason why the use of such models remains relatively rare in 
day-to-day practice. 
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3.11. Notations 

Mean stress: 
3

321p  

Deviatoric stress: 
6

2)32(2)31(2)21(q . 

Volumetric strain: 321v  

Deviatoric strain: 
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Chapter 4 

Elastoplastic Modeling of Soils:  
Cyclic Loading  

Cyclic loading applied to soils occur for different reasons. It can result from an 
intentionally applied procedure, such as compaction, in order to improve the soil’s 
mechanical behavior for the building of roads, embankments, backfills, etc. It can be 
the consequence of natural hazards such as earthquakes, waves, wind, etc. We 
therefore need to develop constitutive models which can be used in construction 
projects.  

4.1. Soil behavior under drained loading 

4.1.1. Isotropic and oedometric cyclic loading 

A succession of isotropic loading and unloading creates a progressive 
compaction of granular materials. For a given number of cycles, compaction 
increases with the stress amplitude. The cycles become more and more reversible 
but a complete stabilization can be achieved only for very high numbers of cycles 
(Figure 4.1) [LUO 80]. Similar results are obtained along “radial” stress paths:  
q/p’ = constant, including the oedometric loading. 
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4.1.2. Cyclic triaxial loading 

4.1.2.1. One-way cyclic tests 

One-way tests, in which q is cycled between zero and qc, show a significant 
plastic strain during the first cycle. The cycles retain practically the same shape as 
they move along the 1 axis (Figure 4.2) [FRA 79]. 

 
Figure 4.1. Cyclic isotropic loading on Fontainebleau Sand [LUO 80] 

The plastic strain during the first loading is important. It is clearly less so for the 
following cycles even though the plastic deformations continue. If after one or 
several cycles up to the same stress amplitude, the maximum stress amplitude is 
increased, a “bend” in the stress-strain curve appears. There is a clear reduction in 
the gradient when the stress passes the maximum reached in preceding cycles. 
However, the following cycles are more regular and are straighter at the top of the 
cycle. 

There is therefore a “memory phenomenon” which can be characterized by the 
maximum value of the cyclic stress amplitude. This becomes a memory parameter 
analogous to p’ic and this mechanism plays the role of a loading surface. Its increase 
is associated with significant plastic deformations. Inside the surface there is also 
plastic strain but of lower amplitude. 

Volume changes depend on the position of the stress path with respect to the 
contractant domain (in general q’/p’ < M) defined by monotonic tests. If the stress 
path is situated entirely within this region, the cycles will produce a progressive 
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compaction even for initially dense materials. If it crosses the boundary of the 
region during each cycle, there will be a period of compaction and a period of 
dilation. If the average level of the cycle lies within the contractant domain, cyclic 
loading produces a compaction; otherwise it produces a dilation [LUO 80]. 

 
Figure 4.2. One-way cyclic triaxial test on Granville Sand [FRA 79] 

Figure 4.3 presents results on a normally consolidated clay [DOA 84]. In this 
case, the material always contracts and the additional compaction caused by cyclic 
loading compared to monotonic loading can be seen. A monotonic loading after the 
cycles shows that this additional compaction gives to the material an 
overconsolidated behavior. 
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Figure 4.3. One-way cyclic triaxial test on normally consolidated clay [DOA 84] 

4.1.2.2. Two-way cyclic triaxial tests 

In this type of test each cycle, which consists of alternating axisymmetric 
compression and extension, involves a sudden 90° change in the directions of the 
major and minor principal stresses as they interchange. The results showing the 
influence of a rotation of the principal stress (Chapter 3) reveal that considerable 
rotation tends to cause compaction when the stress is close to the isotropic state and 
therefore well inside the contractant domain. The results of two-way cyclic tests 
confirm this analysis and progressive compaction is always observed irrespective of 
the amplitude and the average level of the cycles. Figures 4.4 and 4.5 show the 
results obtained on sand which can be compared with the previous graphs. For the 
same number of cycles at the same amplitude, the final density is always higher for 
two-way tests. In the case of normally consolidated clay, the variation in volume for 
a two-way cyclic test is twice that for a one-way test. 



Elastoplastic Modeling of Soils: Cyclic Loading     147 

 
Figure 4.4. Two-ways cyclic triaxial test on Granville Sand [FRA 79] 

 
Figure 4.5. Two-ways cyclic triaxial test on normally consolidated clay [DOA 84] 

The shape of the stress-strain cycles may alter. We no longer see a simple 
translation of the loop for each cycle along the 1 axis, but instead a modification of 
its slope. Tests with fixed strain amplitudes lead to analogous results. Due to the 
increasing density of the material with each cycle, the value of the maximum 
stresses in compression or in tension increases with each cycle. The variation in 
volume clearly shows a region of contraction bounded (in compression as for 
extension) by a limiting value of q’/p’ beyond which dilation occurs (Figure 4.6). 
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Figure 4.6. Two-ways cyclic triaxial test at constant strain amplitude [FRA 79] 

4.1.3. Influence of rotating principal axes 

Wong and Arthur [WON 86], using the directional shear, carried out tests on 
loose sand, keeping the ratio ’1/ ’3 constant and cyclically turning the axis of ’1 
and ’3 through a constant amplitude of rotation ( ). Figure 4.7 shows the volume 
variations obtained. For an amplitude of  = 30°, no significant variation occurs; for 

 = 55° and 70° they obtained considerable contraction during the cycles. These 
results can be explained by the influence of induced anisotropy. Monotonic tests 
with the same apparatus have shown a decrease in the gradient of q- 1 curves when 
the direction of the major principal stress deviates from the direction of anisotropy 
created by a preceding loading. This phenomenon is accompanied by an increase in 
compaction and is particularly marked for angles > 50°. This limit angle 
corresponds approximately to the orientation of the lines with no extension during 
the initial loading. This could be explained by the fact that, during a loading, the 
number of intergranular contacts increases in the compression zones and decreases 
in the extension zone. During the rotation, the contacts re-orient themselves. This 
becomes more significant when the direction of 1 is found to correspond to a 
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previous line of extension, leading to a reduction in modulus and an increase in 
compaction. 

 
Figure 4.7. Volume changes due to cyclic rotation of principal stress directions [WON 86] 

This effect of stress rotation was confirmed by tests carried out by Joer [JOE 91] 
on a two-dimensional material (PVC rods) in a plane strain device called “1 2 ”. 
Tests with constant principal stresses and continuous rotation of the principal axes 
were performed. The cyclic effect of the rotation induced a compaction of the 
specimen (Figure 4.8). Along the circular stress path, incremental strain vectors 
were super-imposed, showing that the principal incremental strain axes do not 
coincide with the principal stress axes. A cyclic rotation of principal directions 
could therefore produce significant variations of volume in the material which 
would be accompanied by a modification of the stress-strain relationships during the 
cycles. 

4.2. Isochoric triaxial tests 

Isochoric tests correspond in particular to undrained tests on saturated soils. In 
the isochoric test, variations of mean stress will depend on the tendency of the soil 
to contract or dilate. We have seen in the preceding paragraphs that cyclic tests 
generally lead to an increase in the density of granular materials. In the isochoric 
test, this will translate into a decrease in mean stress. The decrease could, in certain 
cases, be large enough to cause complete loss of stress: this is the phenomenon of 
liquefaction, also called cyclic mobility. 

Liquefaction only occurs with two-way cyclic tests. One way tests also produce 
decreases in mean stress, but these tend to stabilize before liquefaction occurs. 

Many factors determine whether a granular material will or will not liquefy: 
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– relative density (Dr): the higher Dr is, the more cycles are required for 
liquefaction to occur; 

– mean stress; 

– cyclic stress amplitude; 

– particle size distribution: a uniform particle size facilitates liquefaction. 

Figure 4.10 shows the behavior of a granular material during a liquefaction test. 
This process can be broken down into three stages: 

(a) small cyclic deformation, constant decrease of mean stress; 

(b) the stress path reaches the intrinsic line. The mean stress continues to 
decrease, the cyclic strain accelerates and the cycle develops a “stepped” like shape; 

(c) the stress path becomes stable. It passes the point of zero effective stress 
twice per cycle. The mean stress varies periodically. Strains become large and 
continue to increase. 

0.5

1.5
d) Strain increment direction

a) Stress path b) Strain response

c) Volume change  
Figure 4.8. Cyclic compaction due to cyclic rotation  

of principal stress directions [JOE 91] 
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Figure 4.9. Undrained cyclic triaxial test on Granville Sand [FRA 79] 
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Figure 4.10. Schematic representation of cyclic liquefaction 

 
Figure 4.11. Undrained cyclic triaxial test on normally consolidated clay  

There is therefore a liquefaction region in which deformations are associated 
with near-zero stress. This explains the long “flat” portion of the q’- 1 curves on 
either side of the origin during which the material has very little rigidity. Beyond a 
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certain strain however, depending on the shape of the cycle, the mean stress 
increases and the material stiffens. If monotonic loading is continued beyond the 
value of the cyclic stress amplitude, the same strength values are obtained after 
liquefaction as before.  

In the case of clay the pore pressure increases until the stress cycle meets the line 
of perfect plasticity q = Mp’. At this point there is a large increase in the strain and a 
general rupturing of the material (Figure 4.11). 

The effect of the principal axis rotation can also be observed in isochoric tests. 
Figure 4.12 presents results obtained by Joer [JOE 91] in the 1 2  device. 
Continuous rotations of principal strain axes were imposed at constant volume. In 
the deviatoric stress plane ( xy, ( ’x - ’y)/2) the path takes the form of a spiral 
towards the origin. The mean effective stress ( ’x + ’y)/2 increases at the beginning 
of the tests, then decreases continuously to zero. The state of stress tends to move to 
the origin and a liquefaction state occurs due to the cyclic rotation of the principal 
strain axes. 

 
Figure 4.12. Cyclic liquefaction by rotating principal strain directions [JOE 91] 
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The influence of a rotation of the principal stresses in undrained condition has 
also been studied on clay. Hicher and Lade [HIC 87] have carried out tests on an 
anisotropic K0-consolidated clay with and without rotation of the principal stress 
with respect to the axis of anisotropy. The same cyclic stress amplitude has been 
applied in three-dimensional triaxial tests and on hollow cylinders, with a rotation of 
the major and minor principal stresses in the latter case. The pore pressure was 
found to be sensitive to the rotation in that a rotation caused a larger increase in the 
pore pressure. In addition, the strains were larger in the presence of rotation (Figure 
4.13). 
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Figure 4.13. Influence of principal stress axes rotation  
in undrained condition on normally consolidated clay 

4.3. Modeling soil cyclic behavior 

The experimental results presented in the previous section show on one hand the 
influence of the stress loading history, which affects mainly the deviatoric response, 
and on the other hand the influence of the volume change, which leads to a density 
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increase in a drained condition and a decrease of the mean stress in an undrained 
condition. The first aspect corresponds to an evolution of the stress induced 
anisotropy with the loading history, which is similar to what can be observed on 
other different materials. We can take this into account in the framework of 
plasticity theory by means of a kinematic hardening, with respect to a hardening 
tensorial variable whose evolution can be continuous or discrete. The second aspect 
needs the introduction of a second hardening variable, which can be a scalar related 
to the density change. 

4.3.1. Difficulties involved in the modeling of the soil cyclic behavior in the 
framework of elastoplasticity 

The simplest elastoplastic models are based on one yield surface without 
hardening (for example the elastic plastic Mohr Coulomb model) or with isotropic 
hardening (such as the Cam-Clay model), or on two yield surfaces, one for isotropic 
loading and the other for deviatoric loading, both presenting isotropic hardening 
(such as Lade’s model) (see Chapter 3). These models can reproduce the soil 
behavior along monotonic loading but appear not to be adapted for a realistic 
description of the cyclic behavior. 

 

Figure 4.14. Modeling the cyclic behavior by means of an elastoplastic  
Drücker-Prager model with isotropic hardening  
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Figure 4.15. Several types of cyclic behaviors 

In fact, with this type of model, the yield surface is activated and plastic 
deformation occurs during the initial loading. However, unloading and reloading up 
to the maximum stress during the first loading do not activate the plasticity 
mechanism and the cyclic loading is modeled by an elastic behavior (Figure 4.14), 
whereas experimental results show that irreversible deformations take place during 
successive cycles. 

The different plastic phenomena which can occur during cyclic loading are 
characterized in Figure 4.15. If we consider a constant stress amplitude loading, 
three types of behavior can be found. The “adaptation” corresponds to cycles, 
initially open with energy dissipation, which converge towards a purely non-
dissipative elastic cycle. The “accommodation” corresponds to an open cycle, with 
energy dissipation and irreversible cumulative deformation, which evolve 
progressively towards a stabilized cycle with a hysteresis loop showing energy 
dissipation. Experimentally, this phenomenon is found during drained, one-way 
cyclic tests, with small or moderate amplitude and a large number of cycles. The 
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“ratchet” phenomenon corresponds to open cycles with irreversible strain 
accumulation, keeping the same shape (Figure 4.15).  

For cyclic loading at constant strain amplitude, types of behavior can be defined. 
The cyclic hardening corresponds to an increase in the cyclic stress amplitude, as for 
example during drained cyclic tests with density increase. The cyclic softening 
corresponds to the opposite phenomenon, as in undrained tests with pore pressure 
increase. 

These behaviors cannot be reproduced by a simple model such as that presented 
in Figure 4.14. Modeling the soil cyclic behavior requires more complex models, 
which are capable of producing plastic deformations during the whole sequence of 
cycles. Different approaches have been proposed and the main ones are presented in 
the following sections. 

4.3.2. The Masing model 

The Masing model was originally developed for the modeling of metallic 
material behavior. It has become the basic model for cyclic plasticity. In a simple 
1D version, it can be considered as a generalization of the Prager model, which can 
be defined by the rheological model in Figure 4.16. 

 

Figure 4.16. Prager’s model response in cyclic loading 

The elastoplastic Prager model corresponds to: pe  

The elastic part is given by: 

eE0 , 0p , 1ˆ  s1 
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The plastic part is given by: 

f E sp
1 1 0  (elastic limit), p 0 , 11ˆ s  

1 : stress transmitted by the frictional pad s1 with 
1

ˆ   s1 

 
Figure 4.17. Extended Prager’s model response in cyclic loading 

The model has a plasticity criterion which depends on the internal variable p. It 
corresponds therefore to a hardening plasticity model. We can show that, during a 
cyclic loading, the center E1

p of the elastic domain evolves, but its size remains 
constant, equal to 2s1, which corresponds to a kinematic hardening. Since the plastic 
part of the deformation is linearly linked to the stress in spring E1, the model is 
defined as an elastoplastic model with linear kinematic hardening. 

A possible extension of this model consists of associating several Prager’s 
models as shown in Figure 4.17. The resulting model is piecewise linear. We can 
obtain a non-linear continuous model by generalizing it to an infinite number of 
Prager’s elements, which corresponds to the behavior of the Masing model. 

Each element of the continuous serial model is defined by: 

– a frictional pad k; 

– a spring of elastic compliance J"
1 (k) dk. 
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(k) is the stress transmitted by pad k. The stress-strain relationship can be 
written:  

J J k k dk0 1
0

"  

with (k)  k. 

The state of the system can be described by the function (k). 

Loading condition: 

(k) =  if  < k 

(k) = k if   k 

thus:  

J J k k dk0 1
0

"  

The integration of the integral function leads to:  

 =J0  + J1( ) = J( ) 

J1( ) is the double integral of J"
1 ( ) with J1 (0) = 0 and J1

’(0) = 0 

Unloading condition: during an unloading from  equal to 0, with 0, 
the relationship becomes: 

J J k k dk0 10 22 "  

The integration of this equation leads to:  

2
JJ 10

 

If elastic deformations are negligible compared to plastic deformations, we can 
see that the previous equation gives a stress-strain curve homothetic to the loading 
curve with a homothetic ratio equal to 2, which can be expressed by the following 
relations: 
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– initial loading: 

)(fp  

– unloading – reloading from the reversal point ( 0, 0):  

2
f

2
0

pp
0  

The Masing model can produce plastic deformations during unloading and 
reloading. The stiffness increase in the unloading curve compared to the initial 
loading curve is called Masing’s effect. The scaling coefficient is called Masing’s 
coefficient. In some other models, this coefficient can be different from 2, but 
corresponds to a value determined from experimental results and is usually between 
1 and 2. We can note that the Masing model leads to a hysteresis loop which 
remains constant with successive cycles of the same amplitude, the ratcheting 
phenomenon cannot be obtained.  

4.4. Models based on one or several independent yield surfaces 

The preceding section demonstrated how a kinematic hardening produces plastic 
deformation during unloading. It has been introduced in tridimensional models such 
as Hujeux or CJS model. Usually, kinematic hardening is defined by a tensorial 
variable Xij, called back stress, which is introduced in the yield function by the 
following term: 

0)X(f
ijij

 

Xij corresponds to a thermodynamic force which is function of a hardening 
variable ij also defined in a tensorial form. For example, plastic deformation p

ij 
can be used as a hardening variable. The evolution of Xij is therefore controlled 
linearly or non-linearly by the evolution of ij.  

As an example, we can consider the Von Mises model with kinematic hardening 
defined by:  

f = qII – R  0 with qij = sij - Xij ( ij
p) 

where qII is the second invariant of qij. 
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The yield surface is a cylinder in the principal stress space and its axis is defined 
by Xij whose value is a function of ij

p: Xij ( ij
p) (Figure 4.18). 

 

Figure 4.18. Von Mises’ model with kinematic hardening 

4.4.1. The CJS model 

Different versions of the CJS model have been developed; version CJS 3 was the 
first version developed for the modeling of cyclic loadings. 

This model takes into account one mechanism of elasticity and two mechanisms 
of plasticity, so the increment of strain can be written: 

dp
ij

ip
ij

e
ijij  

The first term of the right side of this equation corresponds to the elastic strain, 
the second to the plastic strain linked with the isotropic plastic mechanism and the 
last to the plastic strain linked with the deviatoric plastic mechanism. 

– The elastic strain is obtained using a non-linear incremental formulation. The 
considered shear and bulk moduli depend on the effective mean stress. 

– The isotropic plastic mechanism is defined from the following yield function: 

0
3

) ,( 1
1 QIQIf i  

Its evolution is defined by an isotropic hardening mechanism which is defined 
by: 
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ip
v

n

a

p

P
QKQ 0

 

v
ip is the volumetric plastic strain linked with this plastic mechanism, Pa is equal 

to 100 kPa and K0
p and n are two constants of the model. 

The deviatoric plastic mechanism is defined from the following yield function: 

0)() , ,( 1RIhqXRf IIklij
d  

with:   
3

 -                           1
kk

ijijijijijijijijII sXIsqqqq  

6
1

3
6
1 )det(

541)3cos1()(
II

ij

q

q
h  

The geometrical representation of this yield function is a cone whose angle is 
linked with the value of R and the location of the axis with the value of Xij. Figure 
4.19 shows this surface. sij, qij, Xij are deviatoric tensors. Parameter  characterizes 
the observed asymmetry of this yield surface.  is the Lode angle. 

The evolution of this yield function is linked with two hardening mechanisms, 
one is isotropic, the other is kinematic. 

Isotropic mechanism 

This mechanism governs the evolution of R which is expressed by: 

p
ApR

ARR
m

m
2

2

)(
  

with 
5.1

1
1

5.1

1

33 a

d

a

d
d

P
II

P
I

R
fp  

A and Rm are two constants of the model, Rm is in particular the value of R at 
failure. 

d is the plastic multiplier of this deviatoric mechanism; it can be calculated from 
the consistency equation. 
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Kinematic hardening 

This hardening governs the evolution of parameter Xij. This evolution is non-
linear and can be expressed by: 

1.5

1
1

1 ( )    
3

d
ij ij ij

a

IX I Q X
b P

 

with  
d

ij
ij

fQ dev
q

 

and  0 ( ) IIh Q  

b is a constant and Qij is the normal to the yield surface.  is a function which 
allows the evolution of Xij to be bounded. is defined from the characteristics 
obtained at failure. 

Plastic potential 

The deviatoric plastic mechanism is unassociated. The flow rule is defined by: 

II

dp
ijij

c
II

IIdp
v s

es

s
s

 

 is a parameter of the model and sII
c is the second invariant of the characteristic 

deviatoric stress. We recall that in the stress space the characteristic surface 
corresponds to the boundary between contractant states and dilatant states. This 
surface is defined from the following equation: 

0)( 1IRhsf c
c
II

c   

Rc is a parameter linked to the angle of the cone corresponding to the 
characteristic surface. 
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Failure surface  

The failure state is directly linked with the non-linearity of the hardening laws 
and corresponds to the limit value of hardening parameters. The limit value of R, 
written Rm, is reached when p becomes infinite. The limit value of Xij is reached 
when ijX = 0. Considering these conditions and the yield function, it is possible to 

define the equation of the limit envelope for the yielding surfaces. 

0)( 1IRhsf mII
f  

The surface defined by this equation is considered as the failure surface, its 
geometrical shape is similar to that of the yielding surface. 

The concept of critical state is introduced considering the following relation: 

1

3ln
I
pRRR cr

cm
 

pcr is the mean stress which corresponds to the case where the peak stress is 
equal to the critical state (Rm = Rc). This value pcr depends on the relative density of 
the considered material. 

Rc is a constant of the model corresponding to the critical state which is 
supposed to be identical to the characteristic state. 

 is a constant of the model. 

The evolution of pcr depends on the evolution of the density of the material: 

) exp( 0
p

vccr cpp   

pc0 in this relation corresponds to the value of pcr in the initial state. 

This relation allows the coupling between the two mechanisms of plasticity to be 
considered. 
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Figure 4.19. CJS model: plastic limit, characteristic and current  

loading surfaces in the deviatoric plane 

 
Figure 4.20. Drained cyclic triaxial test at constant strain amplitude: a) experimental results 

b) numerical simulation by CJS 3 model 
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Figure 4.21. Drained cyclic triaxial test followed by cyclic  

torsion shear test simulated by the CJS 3 model 

This model is able to give reasonable modeling g of a small number of cycles. 
However, it can be noted in Figure 4.20 that the cyclic hardening which appears in 
the experimental results is underestimated by this model.  

Results shown in Figure 4.21 correspond to an axisymmetric triaxial loading 
path, then five cyclic torsions, then an axisymmetric triaxial loading until failure. 
This rather complex loading is well described by this model CJS3. 

4.5. Models based on nested yield surfaces 

Most of the models for cyclic plasticity are defined by means of several nested 
yield surfaces. Usually, we distinguish one particular surface, corresponding to the 
maximum stress ratio experienced by the material, named differently by various 
authors, such as bounding surface [DAF 75] or normal yield surface [HAS 93]. The 
models of this type are mainly differentiated by the number of nested surfaces 
defined inside this surface.  

The Mroz model corresponds to the first model of this type. It was originally 
designed for metallic materials. It has thus been adapted by different authors to be 
applied to soil behavior. 
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4.5.1. Models with nested yield surfaces: the Mroz model 

The Mroz model is based on the following hypotheses. The yield surfaces are 
cylindrical akin to the Von Mises type, initially centered on the isotropic stress axis. 
The nested inner surfaces have different radii. Each nested surface has a fixed radius 
and its center moves when the state of stress reaches the corresponding limit. The 
plastic modulus of a given yield surface is a function of the size of this surface 
(Figure 4.22).  

 
Figure 4.22. Modeling of the soil behavior by a multiple yield surface model 

This type of model corresponds to a three-dimensional generalization of the 
Masing model. The same scaling factor can be obtained, equal to 2, between the 
loading and unloading curves. However, even though it has the advantage of being 
able to give plastic deformations during an unloading phase, it is not capable of 
simulating a ratcheting behavior for a constant stress amplitude cyclic loading. In 
addition, it is difficult to use, because it requires us to store the position of all the 
nested surfaces at each loading step and compare the position of the actual stress 
state with all the nested surfaces. 



168     Constitutive Modeling of Soils and Rocks 

4.5.2. Model with infinite yield surfaces: the Hujeux model 

In this type of model only the maximum yield surface and the surfaces 
corresponding to the change of stress direction are stored. The advantage is that this 
gives a continuous stress-strain relationship for a continuous stress path. The 
Hujeux model is based on this principle and introduces, in addition to this peculiar 
kinematic hardening, an isotropic hardening which allows us to take into account 
the change in density during cyclic loading. The hardening variable is a function of 
the initial density and the plastic volume change during loading. The kinematic 
hardening allows us to take into account a discrete memory linked, on one hand, to 
the highest deviatoric stress and, on the other hand, to the different points of loading 
– unloading or unloading – reloading. 

The Hujeux model is comprised of four plastic mechanisms: three deviatoric 
mechanisms corresponding to three plane-strain mechanisms in three orthogonal 
planes and an isotropic mechanism which generates only pure volumetric strains. 
The state of stress of mechanism k contained in the (i,j) plane is defined by the 
center of Mohr circle pk and by vector Sk whose norm qk corresponds to the radius 
of the circle. 

kS
2/1

2
ij4

2jjii
kq

2
kjjkii

kP  

1kS  and 2kS  are the components of vector Sk 

kij2kS
2

kjjkii
1kS  

The state of plastic strain of mechanism k is defined by plastic volumetric strain 
p
v  and by deviatoric plastic strain vector p

ke  whose components p
1ke  and p

2ke  are: 

1 2 2p p p p p
k ii jj k ije and e  

2/12
ij42

jjiikkjjkiikv  

Deviatoric mechanisms (k = 1, 2, 3) 

The equations of each mechanism are identical. In primary loading the yield 
surface for mechanism k is given by the equation: 
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m
k k kf S r  normalized function-threshold 

where pkFkSkS   

Fpk is a factor of normalization given by: 

,
cP

'Plogb1kP.sinpkF  

is the friction angle in perfect plasticity, p’ is the mean stress and pc is the 
critical pressure.  

pc is related to the plastic volumetric strain v
p by the following equation: 

p
v.expcoPcP  

where pc0 is the initial value of pc which depends on the material initial void ratio 
and 1/ is the slope of the perfect plasticity line in the plane v

p, logp’. 

In the deviatoric plane ( ii – jj)/2, ij of each mechanism normalized by the 
function Fpk, the yield surface is a circle with a radius equal to rk

m which is a 
hardening variable that allows mechanism k to be progressively mobilized. 

p
ka

p
k

e
kr

m
kr  

Its evolution law is given by: 

kr,l.kkdr  

so that the plastic modulus Hk
r depends only on rk: 

a

2
kr1

kl.
kr
kfr

kH  

k is the plastic multiplier of the mechanism k. 
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In the k plane, the plastic deviatoric strain rate tensor and the plastic volumetric 
strain rate are defined as: 

for i and j  k 
d
2kk

d
2ke
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1kk
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1ked
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for i = j = k 
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The hypothesis of associated law in the normalized deviatoric plane defines: 
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This last expression is a generalization of the equation of the Cam-Clay model 
which controls the condition of plastic contractancy and dilatancy, where  is a 
dilatancy factor and (rk) is the mobilized friction in the k plane. 

The perfect plastic state is defined by: 

sin .

1

k

k c

k P

mob k

r and P P
q  

This corresponds to a Mohr-Coulomb failure criterion in each plane. 
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In the normalized deviatoric plane of mechanism k, the yield surfaces in primary 
loading are concentric circles. In cyclic loading, the circles become tangent to each 
other at point Dk which represents the stress state at stress reversal (Figure 4.23), nk 
being the normal vector to the yield surface at point Dk: 

c
kr

c
krknkDkSkn,kD,c

kr,p
v,kS,kPkf  

In the deviatoric plane of mechanism k, the equation becomes: 

c
krpkF

kqc
kf  

The loading memory of the material is expressed by Dk which corresponds to the 
normalized deviatoric stress at the last stress reversal, nk which is the normal vector 
to the yield surface at the point Dk and rk

c which represent the length of the 
unloading path from the reversal point Dk. 

Dk, nk and rk
c are reinitialized at each stress reversal and also when the cyclic 

yield surface becomes tangent to the primary loading surface. The model generalizes 
in a continuous way Mroz’s discrete nested surface theory. 

Each mechanism therefore keeps in its memory: 

– the maximum degree of mobilization rk
m: this corresponds to the historical 

memory; 

– the last stress reversal, Dk and nk: this corresponds to the instant memory. 
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Figure 4.23. a) Evolution of the yield surface in the deviatoric plane of mechanism k during 

cyclic loading; b) elastic domain at the intersection of the plastic mechanisms 

The hardening parameter keeps the same expression as for the primary loading, 
with the possibility for parameter a to have a different value am in primary loading 
and ac in cyclic loading: 
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The evolution law is given by: 
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The choice of function (rk) allows us to reproduce the evolution of the stress-
strain cycles observed during cyclic loading, by fixing several behavior domains : 
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Isotropic mechanism (k = 4) 

Experimental results exhibit plastic strain during an isotropic compression. As 
they are not activated during this stress path, the three deviatoric mechanisms cannot 
generate purely volumetric strains. An isotropic mechanism is thus introduced. The 
yield surface is a plane perpendicular to the hydrostatic axis: 
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and F4(pc) is a normalization factor given by: 

F4(pc) = dpc 

r4 is the degree of mobilization of the mechanism. Its value increases from r4
el 

(elastic domain) to 1 and its evolution law is in the hyperbolic form: 
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The mechanism generates purely volumetric plastic strains: 
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4 is the plastic multiplier: 
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The plastic modulus H4
r is written: 
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where pa is the atmospheric pressure. 
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In cyclic loading, the equation of the yield surface takes the following form: 
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The hardening variable r4
c is given by: 
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Its evolution has a hyperbolic form: 
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During loading, the four mechanisms can be activated and are coupled by the 
density hardening pc as follows: 
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Figures 4.24 and 4.25 show examples of numerical simulations using the Hujeux 
model, for drained and undrained cyclic loading on sand. The results agree 
reasonably well with the experiments. We can see in particular that the model is 
capable of simulating cyclic mobility during undrained cyclic loading. 
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Figure 4.24. Modeling of a drained cyclic triaxial test using the Hujeux model 

4.5.3. Models with two yield surfaces: the Dafalias model 

In this model two yield surfaces are considered: the limit surface called the 
bounding surface and an inner surface [DAF 75]. They are of identical shape and 
fixed dimensions. The interior of the inner surface corresponds to the elastic 
domain. The plastic modulus is defined by monotonous increasing function of the 
distance between the actual stress point and the conjugated point on the bounding 
surface. For both points, the normal vectors to the two surfaces have the same 
direction.  
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Figure 4.25. Cyclic liquefaction of a saturated sand: comparison of  
experimental results and numerical simulations by Hujeux’s model 

 

Figure 4.26. Limit surface and yield surface in the deviatoric plane  
for Dafalias’ model with two yield surfaces 
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This model produces plastic deformation during unloading. The ratcheting effect 
can be reproduced by this type of model, but its effect is usually overestimated. The 
model can be reduced to a single yield surface [DAF 77]. It is similar to the two 
yield surfaces model with an elastic domain reduced to a point. It does not produce 
Masing’s effect, the unloading curve is identical to the loading curve, and the 
ratcheting effect is also overestimated. 

4.5.4. Models with two yield surfaces: the Hashigushi model 

The model takes into account two yield surfaces: a limit surface called the 
normal yield surface and an inner surface called the subloading surface. The normal 
yield surface has an isotropic hardening connected to the material density. The 
essential difference with the previous model is only that the size of the inner surface 
evolves during loading. The plastic modulus is a monotonic decreasing function of 
the size ratio between the two surfaces. This ratio increases during a plastic loading. 
When the state of stress reaches the normal yield surface, the two surfaces become 
identical [HAS 80]. 

The two surfaces have a similar shape, in a ratio R, the center of similitude being 
a point in the stress space (for example the origin), this point being fixed in a given 
version of the model. During loading, the actual stress point always belongs to the 
subloading surface. Therefore, during unloading, the stress vector is directed 
towards the inside of this surface, creating elastic deformation. The surface follows 
the stress point, its size will thus decrease and become a single point when the stress 
state meets the center defined above. 

The model allows for a continuous behavior to be ensured when the stress point 
reaches the normal yield surface, a continuity that previous models could not ensure. 
It does however have certain limitations, in particular that an elastic behavior is 
produced during unloading until the stress state reaches the center of similitude, 
which does not correspond to the real behavior of the soil. Furthermore, the 
ratcheting effect is over predicted. Hashigushi modified the model [HAS 93] so that 
it corresponds to an extension of the previous model in which the center of 
similitude evolves in the stress space as a function of the plastic strains. During a 
plastic loading, the size of the inner surface as well as the center of similitude 
evolves. During unloading, the strain is purely elastic and therefore the center of 
similitude remains fixed. The extended model gives better responses than the initial 
model does, particularly in simulating the ratcheting effect more realistically. 



Elastoplastic Modeling of Soils: Cyclic Loading     179 

4.5.5. Models with two yield surfaces: CJS 4 model 

An improvement to CJS 3 has been proposed to provide a better modeling of a 
large number of cycles. For this purpose two types of behavior are considered: the 
monotonic and the cyclic behavior. The monotonic behavior will be considered 
when the yield surface is tangent to the “memory surface”, and the cyclic behavior 
when these two surfaces have no contact. 

For this, two values of parameter b are considered (bmon, bcyc). Parameter b 
appears in the evolution law of the kinematic hardening. A new expression of b is 
thus proposed: 

)( moncycmon bbzbb     

Variable z takes values between 0 and 1. This is evaluated from measuring the 
distance between the actual stress state and the maximal stress state. 

cycmem

acmem
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Rmem corresponds to the angle of the cone of the yield surface characterized by 
the maximal loading. 

Rac corresponds to the angle of the cone of a similar surface passing through the 
actual stress state. 

Rcyc corresponds to the angle of the cone of a similar surface. If the stress state is in 
the domain bounded by this surface, z = 1. Rcyc has been taken as equal to 0.9 Rmem. 

It can be noted that if Rac > Rmem z = 0, and if Rac < Rcyc z = 1 

The expression of the memory surface is similar to the expression of the failure 
surface defined in CJS 3: 
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pc is the mean stress corresponding to the intersection of the memory surface and 
the hydrostatic axis in the stress space. 
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Figure 4.27. Representation of the “memory” surface in the deviatoric plane (CJS 4 model) 

The analysis of the cyclic behavior of granular material leads to the necessity of 
taking into account an evolution of the plastic modulus all along the cycles. 

Two variables have been considered, the plastic volume change and a variable 
d1* linked with the plastic deviatoric strain. Parameter bcyc is thus defined by: 
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The dependency of bcyc with respect the volume change allows for the 
densification of the medium to be correctly taken into account. 

At each change in direction of the loading, the value of variable k is changed to 
0. The evolution of k is governed by: 
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Parameter m is considered to be a constant equal to 2. 
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To define the change in direction of the loading which leads to the change in 
value of k, variables x and xM are considered: 
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During the loading, the direction of the loading is assumed to be changed if x< 
xM; in such a case we consider the following changes: 

K = 0, x = 0 and Xij
c = Xij 

This new version of the CJS model, called CJS 4, improves the simulation of 
cyclic loading of granular soils. It can be seen in Figure 4.28 that in a drained 
triaxial test the ratcheting effect is correctly described; furthermore, the evolution of 
the cycle shape all along the loading is greatly improved.  

 

Figure 4.28. Simulation of a drained cyclic triaxial test by CJS 4 model 

4.6. Generalized plasticity models 

The generalized theory of plasticity was introduced by Zienkiewicz and Mroz in 
1985 [ZIE 85] and later extended by Pastor and Zienkiewicz [PAS 90]. The basic 
assumption of this theory is to assume that the strain increment can be written as: 

d L = CL: d  for n:d e > 0: loading 

d U = CU: d  for n:d e < 0: unloading 

where d e = De: d  is the stress increment produced if the behavior is elastic. 
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By imposing the condition of continuity between loading and unloading states, 
we obtain: 

CL = Ce + (1/HL)ngL*n 

CU = Ce + (1/HU)ngU*n 

where ngL and ngU are arbitrary unit tensors and HL and HU two scalar functions 
corresponding to loading and unloading plastic moduli. 

The previous equations lead to the decomposition of the strain increment in 
elastic and plastic parts such that: 

d  = d e + d p 

with  

d e = Ce:d  

and 

d p = (1/HL)(ngL*n): d in loading 

d p = (1/HU)(ngU*n): d in unloading 

The advantage of the generalized plasticity framework is that it does not require 
the introduction of any yield or plastic potential surface. The model can be 
constructed by giving the directions of plastic flow ngL and ngU and the plastic 
moduli HL and HU, while using suitable interpolation laws for simulating the cyclic 
behavior of soils [PAS 90]. 

4.7. Parameter identification for cyclic plasticity models 

Generally, the parameters of models developed for simulating cyclic loading can 
be divided into two groups of parameters: the first group contains parameters which 
essentially control the first loading response, the second group contains parameters 
whose effect is visible only during cyclic loading. The latter can be identified only 
by using cyclic laboratory tests, which require specific experimentation and high 
quality measurement techniques.  
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4.8. Conclusion 

The cyclic behavior of soils is strongly affected by the volume changes induced 
by loading. These volume changes correspond generally to a progressive density 
increase with the cycles, which leads to an increase of the mechanical properties in 
drained condition. The application of this property concerns in particular the 
compaction of soil masses used as foundation support. However, when this density 
increase is prevented (fast loading on saturated sand for example), it leads to a 
decrease of effective stresses, eventually down to zero: this phenomenon, called 
liquefaction or cyclic mobility, has been the cause of numerous disasters in seismic 
areas. 

The modeling of cyclic behavior is a difficult task, because it requires taking into 
account with high accuracy the plastic deformations which occur all along the 
cycles and whose amplitude evolves with the internal state of the material. In the 
framework of elastoplasticity, a double hardening, which is kinematic and isotropic, 
allows a significant amount of the observed phenomena to be reproduced. Some 
progress is still necessary, particularly in cases of a large rotation of principal stress 
directions, which require a very accurate modeling of induced anisotropy. 
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Chapter 5 

Elastoplastic Behavior of  
Ductile Porous Rocks  

5.1. Introduction  

This chapter addresses the elastoplastic modeling of porous rocks, highlighting 
especially the ductile plastic behavior under high compressive stresses. Damage 
modeling of brittle behavior of rocks under low compressive stresses or tensile 
stresses will be discussed in Chapter 8. 

Modeling of the mechanical behavior of rocks such as chalk, sandstone and 
limestone is of great interest for various applications in mining engineering, tunnel 
construction and the petroleum industry. For instance, the evaluation of subsidence 
due to pore compaction of porous rocks is an important feature for off-shore 
reservoir engineering. Porous rocks present a complex mechanical behavior if only 
because various features such as low material cohesion, strong pressure sensitivity, 
plastic pore collapse, time-dependent strain, and dependency on porosity and 
mineralogical compositions are involved. Generally speaking, two plastic 
mechanisms can be identified: plastic pore collapse leading to significant volumetric 
deformation and plastic shearing leading to material failure. The volumetric 
compaction is a specific feature of porous materials, which is related to the 
microstructure of the material. In granular and powder materials, the volumetric 
compaction is generally generated by the rearrangement of grains reducing the pore 
space. In porous cohesive rocks, the volumetric compaction is generated in general 
by inelastic pore collapse through the contact force breaking between grains.  
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Two families of constitutive models have been developed for modeling 
geological materials which exhibit two plastic mechanisms. In the first family, two 
distinct yield surfaces are introduced: a cap surface for volumetric compaction and a 
cone surface for plastic shearing [LAD 77]; [DES 80]; [DES 84]; [GEN 93]; [DES 
01] and others. In the second family of models whose aim is to avoid a singularity 
point at the intersection between two surfaces, plastic models with a single yield 
surface incorporating cap and cone are proposed [LAD 95]; [AUB 99]; [AUB 04] 
and others. Generally, models with two distinct yield surfaces provide more 
flexibility in the description of volumetric and deviatoric hardening in complex 
loading conditions, whereas models with a single yield surface have the advantage 
of mathematical regularity for numerical implementation. 

Based on experimental data obtained from a porous chalk, we will first outline 
the basic features of the mechanical behavior of porous rocks under compressive 
stresses. An example of an elastoplastic model with two yield surfaces will be 
presented. In the second part, a short review of modeling the effects of water 
saturation and time-dependent behavior will be given. 

5.2. Review of typical mechanical behavior of porous rocks 

Hydrostatic triaxial compression tests are performed basically to characterize the 
mechanical behavior of rock materials. In this section, we summarize the basic 
mechanical behavior of porous rocks based on experimental data obtained from so-
called “Lixhe chalk” drilled in the CBR quarry near Liège (Belgium). It is composed 
of more than 98% 3CaCO , and its average porosity is about 43%. A series of 
experimental studies have been performed on different chalks, including a 
microstructure analysis and mechanical behavior investigation [ELL 85]; [HAL 90]; 
[BRI 94]; [AND 92]; [RIS 98]; [RIS 01]; [MON 95]; [SCH 98]; [HOM 00]; [SCH 
03a]; [CHE 03]; [DEG 04]. 

Typical hydrostatic stress versus volumetric strain curves are shown in Figure 
5.1. Typically, the material response can be decomposed into three phases. In the 
first phase, a quasilinear and reversible stress strain relation is obtained, representing 
the elastic compressibility of the chalk skeleton. The elastic bulk modulus can be 
determined from the slope of the stress strain curve during this phase. When the 
hydrostatic stress reaches a limit value, called the pore collapse yield stress, an 
abrupt accelerated and irreversible volumetric strain is produced, corresponding to 
the phase of the plastic collapse of the pore structure. The pore collapse induces an 
increase in the contact surface between grains, leading to the decrease of the 
volumetric strain rate. This third phase resembles the plastic consolidation in soil 
materials.  
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Figure 5.1. Volumetric strain curve of a porous chalk in hydrostatic  
compression tests ([HOM 00]) 

)

 
Figure 5.2. Typical stress strain curves of chalk in triaxial compression  

tests with low confining pressures ([HOM 00]) 
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Figure 5.3. Typical stress strain curves of chalk in triaxial compression  
tests with high confining pressures ([HOM 00]) 

Conventional triaxial compression tests are then conducted with different 
confining pressures in order to study the mechanical behavior of chalk subjected to 
deviatoric stress. Typical stress strain curves are shown in Figures 5.2 and 5.3 for oil 
saturated samples. We can see that the mechanical behavior of chalk is strongly 
dependent on confining pressure. Under low confining pressures, i.e. when the 
maximal mean stress is lower than the pore collapse stress, the basic behavior of 
chalk is elastic-brittle or elastoplastic-brittle. The failure state may be characterized 
by a peak stress. At very low confining pressures close to uniaxial compression, the 
brittle failure occurs with material softening. Sample failure is traditionally 
produced by the formation of localized shear bands. The orientation of shear bands 
depends on the value of the confining pressure. The mechanical response changes 
substantially when the confining pressure increases. At high confining pressures, i.e. 
when the mean stress is close to the plastic pore collapse stress, no peak stress can 
be found up to very large values of the axial strain. The slope of the stress-strain 
curve increases continuously with a concave form similar to that in a hydrostatic 
compression test. This means that the applied deviatoric stress under high confining 
pressures enhances the pore collapse process, producing plastic hardening due to the 
increase in contact area. Accordingly, an important volumetric contraction is 
obtained due to the pore collapse. One of the specific features is that, due to the pore 
collapse, the lateral strain at the first stage of a triaxial test is smaller than that which 
should be obtained in a linear elastic material. At very high confining pressures, the 
lateral strain may even be compressive during the first stage of a triaxial test (see 
Figure 5.3). Material failure is characterized by the destruction of the pore structure, 
transforming the cohesive material into a compacted powder assembly after 
significant volumetric deformation. 
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In light of the above results, it seems appropriate to formulate a constitutive 
model with two plastic mechanisms. At low hydrostatic stresses, the plastic shear 
mechanism dominates with a plastic hardening process from the initial elastic limit 
to the ultimate failure state (peak stress), eventually followed by a softening phase. 
A non-associated flow rule is generally needed to describe plastic volumetric 
compressibility and dilatancy. On the other hand, at high hydrostatic stresses, the 
pore collapse mechanism becomes the main process with a continuously positive 
hardening process producing volumetric compressibility. 

 

Figure 5.4. Evolution of yield surface during plastic hardening  
in the p q plane ([HOM 00])  

Some specific tests have been performed by Homand and Shao ([HOM 00]) to 
characterize the evolution of yield surfaces during plastic hardening. The loading 
path is composed of two phases in the conventional p q plane. The sample is first 
subjected to a hydrostatic compression up to 25 MPa, which is higher than the initial 
pore collapse stress. Plastic hardening is then generated in the sample during this 
preliminary phase. Afterwards, the hydrostatic stress is unloaded to a given value 
(i.e. 10, 14, 17 and 20 MPa). From this point on, the sample is subjected to a triaxial 
compression test through an increase of the axial stress. Yielding stress and possibly 
failure stress are determined during the triaxial phase. The yielding surface obtained 
after the hydrostatic preloading is compared with the initial surface (Figure 5.4). The 
evolution of the yield surface due to plastic hardening can probably be characterized 
by an isotropic expansion of the elastic domain. Therefore, an isotropic plastic 
hardening law can be used for this material, at least for the plastic collapse 
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mechanism. Another interesting feature of these results is that the failure stresses 
due to plastic shearing are not affected by the preliminary plastic hardening in the 
pore collapse process. In fact, the failure stresses obtained from two triaxial tests 
performed on preliminary plastically deformed samples with 10 and 14 MPa 
confining pressure are lined up with the failure stresses obtained from virgin 
samples. This result would suggest that the two plastic mechanisms could be 
considered as independent of each other; the plastic hardening (expansion) of the 
cap surface does not necessarily affect the cone surface. 

5.3. Formulation of the constitutive model 

According to the above review, two plastic deformation mechanisms have to be 
taken into account: plastic shearing and pore collapse. Plastic shearing is a common 
mechanism for frictional materials. Plastic models based on traditional and extended 
Mohr-Coulomb or Drücker-Prager failure criteria have been widely developed. 
However, one particular feature of porous rocks is the strong pressure dependency, 
which must be taken into account. Pore collapse, on the other hand, is specifically 
related to the high porosity of materials. This mechanism plays an essential role in 
many engineering applications such as subsidence analysis of oil reservoirs. 
Therefore, particular attention is paid here to the modeling of pore collapse in 
porous rocks.  

The microstructure of porous rocks is generally complex. However, as a first 
approximation of typical porous chalk in view of macroscopic modeling, an 
idealized schematization can be adopted. Chalk can roughly be seen as an assembly 
of solid grains with different types of contacts and a connected macroscopic porosity 
[XIE 06] (Figure 5.5). For example, three types of contacts can be identified: 
cemented solid contact, frictional point contact and liquid contact due to capillary 
water. Inter-connected pores constitute the macroscopic porosity for fluid flow. 
After a first homogenization phase, it is assumed that the assembly of solid grains, 
together with their contacts, can be replaced by an equivalent cohesive-frictional 
solid matrix. Closed porosity can eventually be included in this equivalent solid 
matrix. Thus, the macroscopic mechanical behavior of the material is essentially 
controlled by the mechanical properties of the solid matrix and the macroscopic 
porosity, denoted by . The mechanical properties of the equivalent solid matrix are 
related to the evolution of contacts during its deformation history. The increase of 
frictional point contacts will result in a plastic hardening behavior while the 
destruction of these contacts leads to a weakening of the mechanical strength.  
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Figure 5.5. Simplified schematization of porous chalk as  
an equivalent homogenous porous medium 

Based on the previous analysis, an elastoplastic model with two flow 
mechanisms is thus proposed [XIE 06]. The formulation of this constitutive model 
has to satisfy the standard requirements in irreversible thermodynamics (Lemaitre 
and Chaboche 1998; Khan and Huang 1995). Small strains are assumed. The total 
incremental strain ijd  is composed of an elastic part e

ijd  and a plastic part p
ijd . 

The plastic strain is further divided into a collapse component c
ijd  and a shear 

component s
ijd . 

pe
ij ij ijd d d , p c s

ij ijijd d d  (5.1) 

The elastic strains are given by the linear Hook’s law: 
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where ij  are the components of the Cauchy stress tensor, d
ij  the components of 

the deviatoric stress tensor and 0  and 0k  the initial shear modulus and the bulk 
modulus of the intact material respectively. 
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5.3.1. Plastic pore collapse model 

Based on an energy consideration, Gurson ([GUR 77]) proposed a general 
macroscopic yield criterion for porous materials with a homogenous solid matrix. 
The plastic behavior of the solid matrix is described by the von Mises perfect plastic 
criterion. This criterion has been widely used and extended by many authors for 
modeling ductile rupture of porous metals including the nucleation and expansion of 
pores ([TVE 90]). Using a rigorous limit analysis, Perrin and Leblond ([PER 90]) 
and Leblond and Perrin ([LEB 96]) studied the micromechanic features of Gurson’s 
criterion. It has been shown that this criterion represents the analytical solution of 
the macroscopic yield function of a porous material with a solid matrix verifying the 
von Mises perfect plastic criterion which contains spherical pores. The macroscopic 
yield function depends on the yield stress of the solid matrix and the macroscopic 
porosity. Heuristic extensions may be proposed to introduce a plastic hardening law 
of the solid matrix. Considering the idealized representation adopted here for porous 
rocks, Gurson’s criterion is used as the basic yield function for the pore collapse 
mechanism. Therefore, the plastic yield function is expressed by the following form: 
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where eq  denotes the equivalent deviatoric stress. Parameter 2q  is introduced to 
control the geometrical form of the yield surface ([TVE 90]).  denotes the yield 
stress of the solid matrix. The value of  depends on plastic deformation and is 
affected by the evolution of contacts. The variation of  as a hardening law of the 
solid matrix is issued from a heuristic extension of the original Gurson’s model. 
Based on the experimental data from hydrostatic compression, the following 
hardening function is proposed [XIE 06]: 
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0 1 ( )

c
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where c
kk  is the plastic volumetric strain due to the pore collapse process, taken as 

the internal hardening variable. 0  denotes the initial yield stress of the solid 
matrix. a , n  and b  are three parameters of the hardening law, which can be 
identified from a hydrostatic compression test. Moreover, according to equation 
(5.3), the macroscopic yield stress of a porous medium depends on the porosity. By 
assuming that the plastic compressibility of solid grains may be neglected, the 
porosity change is related to the plastic volumetric strain: 
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1 p
kkd d  (5.5) 

In most geomaterials, an unassociated plastic flow rule is generally needed to 
describe the volumetric deformation more accurately. By adopting a similar form as 
the yield function, the plastic potential takes the following form: 
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where *
2q  is a parameter controlling the orientation of the plastic flow. However, 

based on the experimental data obtained from triaxial compression tests at high 
confining pressures, it seems that an associated flow rule describes the pore collapse 
process accurately enough. Therefore, for the sake of simplicity, we have taken 

*
2 2q q .  

For a loading history, where only the pore collapse mechanism is activated, the 
plastic flow rule is written as: 
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Plastic multiplier c is determined by the plastic consistency condition: 
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The fourth order tensor 0 denotes the elastic stiffness tensor of intact material. 

5.3.2. Plastic shearing model 

As previously mentioned, plastic shearing is a common mechanism for frictional 
rocks, leading to the macroscopic failure of material by the formation of shear bands 
and crack coalescence. However, in materials with high porosity, the shear 
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mechanism is dominant only under low confining pressures. Furthermore, this 
plastic mechanism significantly depends on the confining pressure. A curved yield 
surface is necessary. Based on the failure surface proposed by Pietruszczak et al. 
([PIE 88]), the following quadratic yield function is proposed: 
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Parameter sC  denotes the material cohesion. The normalizing parameter 
1rp MPa  is taken to render parameter A  dimensionless. Function ( )g describes 

the influence of Lode’s angle. Different forms can be found in the literature. 
However, since relevant data is not available for the material studied here, we take 
for the sake of simplicity ( ) 1g . Function p defines the plastic hardening law for 

the plastic shearing process. Since strain softening in porous rocks is observed only 
at very low confining pressures, it is then neglected. Only a positive plastic 
hardening law will be used. Material failure is reached when 1p . Based on the 

experimental data from triaxial compression tests at low confining pressures, the 
following hyperbolic law is proposed [XIE 06]: 

0 0(1 ) s
p p p

sB+
 (5.11) 

Parameter 0
p  denotes the initial yield threshold of the plastic shearing 

mechanism; parameter B controls the hardening kinetics. Variable s  is the 
generalized plastic distortion used as a hardening variable: 
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The normalizing coefficient, p , is introduced to take into account the influence 

of the confining pressure on the deviatoric plastic hardening. Bracket x  denotes 

( ) / 2x x x  and atmp is the atmospheric pressure. 



Elastoplastic Behavior of Ductile Porous Rocks     197 

In most cohesive-frictional geomaterials, the plastic shearing process can 
generate volumetric compressibility and dilatancy. The volumetric plastic strain rate 
depends on the level of applied stresses. There is usually a transition from 
compressibility to dilatancy during plastic shearing. Therefore, an unassociated flow 
rule is needed. Based on the experimental data from triaxial compression tests under 
low confining pressures, and the adapted plastic potential as proposed by 
Pietruszczak et al. ([PIE 88]), the following function is used for the plastic shear 
model: 
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Variable 0I defines the intersection point between the potential surface and axis 

m . The transition from plastic compressibility to dilatancy occurs on the boundary 
defined by the condition, / 0s mQ . In this model, it is assumed that this 
transition boundary can be described by a linear function: 

0( ) 0cd eq c m rf p C   (5.15) 

Parameter c  defines the slope of the transition boundary in the eq m  plane.  

For the loading history where only the plastic shear mechanism is activated, the 
plastic flow rule is written as: 
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Plastic multiplier sd can be determined by the plastic consistency condition. 
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The fourth order tensor defines the deviatoric part of a second order tensor. 

In general loading conditions, two plastic mechanisms may be activated 
simultaneously. In such a case, two plastic multipliers ,c sd d can be determined 
from the consistency conditions of two plastic yield functions; 0 0c cdf df . 
Appropriate integration algorithms should be used ([SIM 98], [XIE 06]). 

5.4. Examples of numerical simulations 

The proposed model contains 12 parameters which can be determined from 
conventional laboratory tests. As an example, the initial yield surfaces are shown in 
Figure 5.6 for porous chalk. The detailed procedure for determining the model’s 
parameters and typical values for porous chalks are given in [XIE 06]. 

The simulation of a hydrostatic compression test is shown in Figure 5.6. We can 
see that the plastic deformation due to pore collapse and the plastic hardening 
process due to increasing frictional contact force are well described by the model. In 
Figures 5.7 and 5.8, two triaxial compression tests with different confining pressures 
are simulated (14 and 20 MPa). Again, a good agreement between the numerical 
simulations and experimental data is obtained. The deviatoric stress enhanced pore 
collapse is correctly predicted by the proposed model. 
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Figure 5.6. Simulation of a hydrostatic compression test on  
oil-saturated Lixhe chalk (after [XIE 06]) 
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Figure 5.7. Simulation of a triaxial compression test on oil-saturated Lixhe chalk  
with 14 MPa confining pressure (after [XIE 06]) 
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Figure 5.8. Simulation of a triaxial compression test on oil-saturated Lixhe chalk  
with 20 MPa confining pressure (after [XIE 06]) 

In Figures 5.9 and 5.10, we present the simulations of three triaxial compression 
tests at low confining pressures. In these tests, the plastic deformation is dominated 
by the plastic shearing mechanism. Again, it seems that the proposed model is able 
to describe the chalk mechanical behavior for the whole range of confining 
pressures. Note that material softening and strain localization are not discussed in 
this chapter. These features need to be completed in order to describe the 
progressive failure process in geomaterials. 
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Figure 5.9. Simulation of a triaxial compression test on oil-saturated chalk  
with 1 MPa confining pressure (after [XIE 06]) 
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Figure 5.10. Simulation of a triaxial compression test on oil-saturated chalk  
with 3 MPa confining pressure (after [XIE 06]) 

5.5. Influence of water saturation 

In some engineering applications, modifying the nature of pore fluids in porous 
rocks generates physical and chemical reactions. In the oil industry, for example, 
porous chalk is initially saturated by oil-like fluids. In order to maintain pore 
pressure during hydrocarbon production leading to pressure depletion, a large 
amount of water is injected, which induces a significant change in the water content 
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of porous chalk. In order to study the influence of saturating fluids on mechanical 
behavior, laboratory tests have been performed on water saturated and oil saturated 
samples. In Figure 5.11, yield and failure surfaces for two groups of samples are 
shown. It is clear that the mechanical behavior of chalk strongly depends on the 
nature of pore fluids. Typically, the elastic domain in water saturated samples 
compared with oil saturated samples is largely reduced. Given that the pore collapse 
stress decreases with water saturation, the transition from brittle to ductile behavior 
occurs at lower confining pressure. The cohesion and failure strength are also 
reduced. However, it was found that elastic properties are only slightly affected by 
water saturation. Figure 5.12 shows that the pore collapse yield stress decreases 
continuously with the degree of water saturation, but this quick decrease at low 
degrees of water saturation tends towards a stationary value when the degree of 
water saturation reaches a limit value. Schroeder ([SCH 03b]) performed a series of 
hydrostatic compression tests on samples saturated with fluids of different 
viscosities and showed that the mechanical behavior is quasi-independent of the 
viscosity of the fluids. Therefore, the degree of water saturation is the key factor 
which influences the mechanical behavior of pure chalk. It was also found that the 
effects of water saturation are related to several factors such as pore structure, water 
wettability and water activity ([RIS 01]; [RIS 03]). 

With regard to water saturation effects in porous chalk, different constitutive 
models have been proposed. For example, an empirical model has been constructed 
in which a fictitious stress tensor was introduced to produce enhanced deformation 
of chalk due to water injection ([PIA 98]). Such an approach is neither based on 
sound analysis of physical mechanisms nor in agreement with a thermodynamic 
framework. Based on the mechanics of partially saturated soils [ALO 90] the 
influence of water saturation has been interpreted using the generalized suction 
concept ([PAP 97], [COL 02]). A suction stress is introduced depending on the 
degree of water saturation. Then, the Bishop’s effective stress concept ([BIS 63]) is 
extended to take into account the effect of suction. On the other hand, suction is 
used as an independent force which affects the plastic yield surface. These two 
approaches are directly developed by extending the basic concepts used in 
unsaturated soil mechanics. However, the microstructure and chemical nature of 
porous chalk may be different from those of most soils. Therefore, the validity of the 
suction concept is still debatable. In addition, this concept cannot directly explain 
the fact that creep deformation is enhanced by water saturation. 

Based on experimental data by Hellemann et al. ([HEL 02a]) and inspired by the 
notion of pressure solution in porous media, a chemoplastic model has been 
proposed by Pietruszczak et al. ([PIE 06]). The effect of water saturation is 
interpreted as a consequence of a chemical degradation in the contacts between 
grains by a pressure solution process. An internal variable is introduced to describe 
the state of chemical degradation. The kinetics of chemical degradation are 
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controlled by the rate of dissolution of the contacts betweens grains and the 
diffusion process of dissolved solids in the pore space. Rigorous micromechanical 
analyses have been performed in order to determine the evolution of the internal 
variable for chemical degradation ([LYD 07]). It was found that the evolution of the 
chemical degradation variable covers a large time scale range from seconds to the 
geological scale. At the first stage, very fast dissolution of solid contacts may occur 
leading to a spontaneous degradation of mechanical properties of chalk as observed 
in the water saturated sample. Its mechanical properties are defined as those of 
sound material. The influence of the degree of water saturation may be taken into 
account through a solubility coefficient. For instance, the completely oil saturated 
sample is seen as the reference state without chemical degradation. The solubility 
increases with the water saturation degree and reaches the maximal value in 
completely water saturated samples. The residual mechanical properties of fully 
saturated samples are defined as the properties of a completely degraded material. 

 

Figure 5.11. Initial yield surfaces, failure surfaces and pore collapse yield surface for a 
porous rock in oil and water saturated conditions (after [XIE 06]) 
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Figure 5.12. Variation of the initial yield stress of the equivalent matrix depending on the 
water saturation degree (according to data from [COL 02]) 

The above concept of chemical degradation has been used in the elastoplastic 
modeling of porous chalk ([XIE 06]). In Figure 5.13 the simulation of a triaxial 
compression test under a confining pressure of 1 MPa is shown. Compared with the 
mechanical responses of an oil saturated material (see Figure 5.9), it is clear that the 
mechanical strength is significantly affected by water saturation.  
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Figure 5.13. Simulation of a triaxial compression test on water-saturated Lixhe chalk with  
1 MPa confining pressure (after [XIE 06]) 
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5.6. Creep deformation 

Under traditional approaches, creep deformation of material is generally 
described by viscoplastic theory. Various viscoplastic models have been proposed 
([PER 66]; [CRI 86], [CRI 94]; [MAR 01]; [COL 02]; [DEG 03], [DEG 04]; [SHA 
95], [SHA 03], just to name a few related to porous rocks). All these models are 
based on a mathematical formulation for modeling creep deformation. The physical 
mechanisms involved in creep deformation are not clearly interpreted. For instance, 
in rock materials, it is known that time-dependent deformation may be related to 
physical and chemical degradation processes, such as a sub-critical propagation of 
microcracks and chemical dissolution of solid grains and contacts. Therefore, more 
physically based constitutive models should be developed. In the case of porous 
chalk, it is now recognized that the creep deformation is essentially related to two 
mechanisms. The first involves a viscous mechanism generating progressive 
compaction of a solid skeleton. In addition, the second mechanism is related to 
pressure dissolution of contacts between grains ([HEL 02b]). The two mechanisms 
involve two different time scales. The viscous compaction is predominant in the 
short-term while the pressure solution process controls creep deformation over the 
long term on a geological timescale.  

Based on these analyses, Lydzba et al. ([LYD 07]) proposed a phenomenological 
approach including the two mechanisms leading to a time-dependent behavior of 
porous chalk. The detailed presentation of the model can be found in the related 
reference. In a general way, the total strain rate may be expressed as follows: 

[ ] [ ]C b  (5.19) 

1 1[ ] [ ] ; [ ]
T

e eQ f f Q
C C C

H H
b=  (5.20) 

The first term corresponds to the time-independent elastic/plastic strain rate due 
to the applied stress rate; C denotes the elastoplastic stiffness matrix with H being 
the plastic hardening modulus. The second term describes the time-dependent strain 
rate due to a pressure solution process, which affects elastic properties and plastic 
behaviour respectively. The internal variable represents the state of chemical 
degradation. Finally, the last term is related to the viscous mechanism leading to a 
time-dependent compaction of the solid skeleton. The kinetics of viscous 
deformation are determined by the evolution of the internal variable 0,1 . The 
viscous strain rates are given by: 

1 2 3; ( ) ,   (1 )ij ijkl kl ijkl ij kl ik jla a B  (5.21) 
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B3, a1, and a2 are three parameters of the model ([LYD 07]). In Figure 5.14, a 
simulation of a triaxial creep test with 5 MPa confining pressure is presented. Note 
that in this example, the time scale involved is about a day. Therefore, the creep 
deformation is dominated by the viscous mechanism. The numerical predictions are 
in good agreement with the experimental data. In Figure 5.15, triaxial creep tests 
with a confining pressure of 2 MPa and three different values of the deviatoric stress 
are shown. Basically, when the applied deviatoric stress is lower than the failure 
strength of a fully degraded material (water saturated sample), a stationary state is 
obtained. On the other hand, a spontaneous failure is produced for a higher 
deviatoric stress. Again, the numerical simulations reproduce the experimental data 
quite accurately.  
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Figure 5.14. Simulation of triaxial creep test under 5 MPa confining pressure and 4 MPa 
deviatoric stress on a water saturated sample (after [PIE 06]) 
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Figure 5.15. Simulation of a creep tests under 2 MPa confining pressure and four values of 
the deviatoric stress on water saturated sample (after [PIE 06]) 

5.7. Conclusion 

In this chapter, we addressed the plastic modeling of the ductile behavior of 
porous rock subject to compressive stresses. An important specific feature of this 
class of materials comes from the fact that two plastic flow mechanisms are 
observed: pore collapse and deviatoric shearing. An example of a constitutive model 
with two yield surfaces is illustrated. Furthermore, the mechanical behavior of these 
materials is sensitive to water saturation. A fully phenomenological approach is 
presented. Finally, the time-dependent deformation is also discussed. Based on 
micromechanical analysis, the creep deformation is seen as a consequence of a 
chemical degradation process. A simple phenomenological formulation has also 
been presented. More detailed discussions on the chemical dissolution process as 
well as on water sensitivity may be found in a number of indicated references. 
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Chapter 6 

Incremental Constitutive Relations for Soils  

6.1. Incremental nature of constitutive relations 

The notion of constitutive modeling is recent. Generally, it represents, with all 
the possible problems linked to it, the whole of physics at small scales of a median 
considered as continuous, which means without an internal scale. From a practical 
point of view, we can say that it is indispensable for any modeling calculation. The 
choice of a specific model allows us to express, in a mathematical form, that 
different media “do not behave” in the same way (for example, sands and concretes 
have different behaviors). From explicative or taxonomic models in the 1960s, the 
constitutive models, due to the use of finite element calculus, have taken the form of 
equations which relate the state of stress to the functional of the kinematic history: 

)]([)(
0

sut
ts
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F  (6.1) 

Obviously, this functional has to be objective. From this theoretical description, 
a very significant simplification can be made by assuming that the history can be 
expressed by the actual state. This leads to an elastic model, which becomes 
hyperelastic if we add the assumption that the energy lost outside the medium during 
a cycle cannot be positive. We can use this type of model if we want to describe the 
behavior along a monotonic loading path. This is currently done for applications on 
metallic materials when the deformation theory of plasticity is used. However, in 
order to be able to use the model along more complicated loading paths, especially 
loading-unloading paths, a more complicated constitutive model is needed. An 
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incremental or rate formulation is indispensable. Since we will consider only non-
viscous behaviors, the two formulations are equivalent.  

Assuming the state E of a given material to be known, it is possible to find a 
relationship between an objective derivative of the stress – in what follows, 
Jaumann’s derivative  will be considered – and a spatial description of the 
kinematics – in what follows, strain rate D , which is the symmetric part of the rate 
gradient, will be considered. An implicit relation can be written: 

0),,( EDF  (6.2) 

Due to the hypothesis of non-viscous behavior, function F has to be positive and 
homogenous in and D . If equation (6.2) can be solved in and/or D , we can 
have: 

),( EDf  (6.3) 

),( EgD  (6.4) 

f and g are also positive and homogenous of degree 1 in D  and , respectively. 
These two dual forms are not completely equivalent. Equation (6.3) is completely 
inside the framework defined by equation (6.1). In fact, from equation (1.3), we can 
deduce: 
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if we have an evolution law for the state of the material. Equation (6.4) requires 
solving the problem of the inversion, which is not always a simple problem. 

Often, the problem can be simplified by assuming that f and g are linear 
functions of their first argument. In that case, we obtain a reversible behavior, as: 

),(),(),(),( EDEDfEDfED  (6.6) 

This hypothesis can be partially justified for a given class of strain rates, using a 
rigorous reasoning in several simple cases. For example in the case of metal 
plasticity, if we assume that the plastic deformation is due to a unique microscopic 
sliding mechanism in a direction well defined by the metal structure, we can 
demonstrate that function f is linear when this mechanism is active. If we assume 
that the behavior is elastic when the mechanism is inactive, relation (6.3) 
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corresponds to two linear relations, one for plastic loading, and the other for elastic 
unloading. Of course, a consistency condition between these two relations is 
necessary, so that the model gives the same result at the boundary between the 
domains (neutral loading). Ignoring this condition leads to calculation results which 
depend on the computer used to obtain them [NEL 78]: this has been known for a 
long time, but tends to be forgotten. 

As just seen, the bilinearity can be justified only if a plastic mechanism can be 
well identified. Many reasons can be cited to show that this is not the case in 
geomaterials. Already, in many cases, the recent plasticity models for metals have 
several (sometimes many) mechanisms. Concerning geomaterials, the microscopic 
study of the deformations does not show a specific mechanism capable of justifying 
the hypothesis of bilinearity and experimental results on soils have demonstrated the 
non-validity of this hypothesis [TAT 74]. We should not conclude that the 
incrementally bilinear models are insignificant, but rather that the in situ observed 
phenomena will be better described by models which are not based on this simple 
hypothesis. 

In this chapter we will show two different ways of overcoming the bilinearity 
and even the polylinearity of elastoplastic models with several plastic mechanisms 
by using completely non-linear relations. The first part is devoted to hypoplastic 
models in general and CloE models in particular, which have been specially 
constructed to describe in a realistic manner the localized failure in geomaterials, 
even if they are also capable of describing various other geomaterials characteristics. 
The second part is devoted to incrementally non-linear constitutive models which 
constitute a more general framework than the hypoplasticity, and can give more 
realistic responses for cyclic loading and treat different classes of instability and 
bifurcation. 

6.2. Hypoplastic CloE models 

Hypoplastic models have been independently developed by Kolymbas and co-
workers [KOL 87] and the authors [CHA 85, CHA 89]. A complete historical 
presentation can be seen in [TAM 00a]. A common characteristic of the hypoplastic 
models is to write equation (6.3) in the form of the following non-linear relation in 
order to describe irreversibility: 

DbklDADbDA ijijklij:  (6.7) 

The fourth order tensor A and the second order tensor b are both functions of the 
material state. This dependency needs of course to be expressed. We will develop all 
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the theoretical consequences of equation (6.7), after which we will give several 
examples of applications of these models. 

6.2.1. Irreversibility in hypoplasticity 

By using equation (6.7), the model is clearly irreversible. Contrary to what can 
be seen in equation (6.6), we can see that, for a given material state: 

DbDADDbDAD :)(:)(  (6.8) 

 

Figure 6.1. Irreversibility in 1D and 2D hypoplasticity 

It is interesting to reproduce this fundamental mathematical property graphically. 
Figure 6.1 illustrates the irreversibility in 1D and 2D. The left part of the figure 
corresponds to the 1D case. In such a case, , D , A  and b  are scalars and the 
norm becomes an absolute value. We obtain: 

DbDA  (6.9) 

If we give to D  the values +1 and –1, we obtain for , A + b in the first case 
and –A + b in the second case, which is illustrated in Figure 6.1 for a negative value 
of b. We can clearly see that the irreversibility does not necessarily have to be 
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modeled by two different linear relations, one for loading and one for unloading. A 
single non-linear relation can be sufficient. 

The 1D example is however insufficient to understand completely the 
incremental non-linearity of the hypoplastic models. Let us now consider the 2D 
scheme on the right side of Figure 6.1. Due to the positive homogenity of degree 1 
in time, it is sufficient to consider only the solutions of equation (6.7) obtained for 
strain rates with a norm equal to 1 in all the directions. In Figure 6.1, this 
corresponds to a circle centered at the origin of the axes in the strain rate plane. 
Multiplying by A transforms the circle into an ellipse in the stress rate plane, and 
adding b, which is a vector in the 2D case, translates the ellipse in the same plane. It 
appears clearly again that the additional term linked to the norm controls the 
irreversibility. 

 

Figure 6.2. Comparison of incremental constitutive relations  
in traditional elastoplasticty and in hypoplasticity 

In order to see even more clearly that the 1D representation is meaningful but 
insufficient, let us now consider two different ways of expressing the irreversibility 
along a given loading path. For this purpose, we have in Figure 6.2 the responses in 

 for two cases. The case of the hypoplastic response has been previously studied 
and it has been shown that we obtain a non-centered ellipse as shown on the right 
part of Figure 6.2. On this ellipse, we have identified two specific points 
corresponding to two opposite strain rates. On the left part, we present the same 
representation for a bilinear model, for example an elastoplastic model with one 
mechanism. In that case, the response envelop consists of two half-ellipses, both 
centered but of different sizes and connected to each other due to the consistency 
condition mentioned in section 6.1. The difference between the two ellipses 
describes the irreversibility. In the two cases, hypoplasticity and elastoplasticity, the 
responses  for the two specific values of D are the same, which illustrates that the 
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knowledge of the response along a given loading-unloading path is not enough to 
determine the incremental relation.  

To conclude this study of the irreversibility, it is interesting to note that, for b = 
0, the hypoplastic model degenerates into a reversible incrementally linear model, 
and is therefore potentially elastic. 

6.2.2. Limit states 

One of the big advantages presented by equation (6.7) is that it is possible to 
deduce easily several model properties, or, in other words, that it is easy to establish 
mathematically some properties which can allow us to test numerical software in 
which the model has been implemented. 

6.2.2.1. Dual model 

An interesting question to ask may be: under what conditions can equation (6.7) 
be inverted? It is easy to demonstrate that a necessary condition is that A can indeed 
be inverted. We called 1A  its inverse. Owing to the homogenity of the model, we 
can assume that response D  with a norm equal to 1 is obtained for , defined by its 
direction s and its norm . Under these conditions, equation (6.7) becomes: 

bDAs :  (6.10) 

thus: 

)(:1 bsAD  (6.11) 

which always has a solution if s and  exist. Since the norm of D  must be equal to 
1, we obtain: 

1):(:):()]:(:):[(2)]:(:):[( 1111112 bAbAbAsAsAsA  (6.12) 

which is a second degree equation in , that must have only one positive root. 
Therefore, if 01):(:):( 11 bAbA , equation (6.7) can be inverted, the solution 
being obtained from equation (6.11), with  as the unique positive solution of 
equation (6.12). In a physical way, the possibility of inversion means that the 
material is able to deform homogenously for any state of stress. It can be worthwhile 
to introduce a new expression of the constitutive equation: 

bAB :1  (6.13) 
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)(: DBDA  (6.14) 

From this new relation, we can deduce the previous result. The relationship 
between D  and  can be decomposed into a relation which allows us to go from 
D  to DBD , followed by multiplying by A, which can be inverted according to 

our hypothesis. Therefore, the condition for the existence of the dual model 
corresponds to: 01: BB  

6.2.2.2. Plasticity and flow rule 

We will now see if it is possible to find values of D  different from zero 
corresponding to the condition  = 0. In other words, we have to find conditions 
for tensors A and b, which lead to a perfectly plastic flow. By using the previous 
developments, a necessary condition is that one of the solutions of equation (6.12) is 

 = 0. Therefore, we obtain the following relation: 

1:):(:):( 11 BBbAbA  (6.15) 

If A and b are functions of the stress state, equation (6.15) represents in fact the 
equation of the perfect plasticity surface. If equation (6.15) is satisfied,  = 0 and: 

BbAD :1  (6.16) 

which thus represents the flow rule, meaning the strain rate, different from zero, for 
which the stress remains constant, something which is easy to verify by inserting 
equation (6.11) into equation (6.7). 

 
Figure 6.3. Softening in elastoplasticity and in hypoplasticity 
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6.2.2.3. Softening 

We have seen the implication of the condition 1):(:):( 11 bAbA  for the 
model. Having just demonstrated that the condition 1):(:):( 11 bAbA  
corresponds to perfect plasticity, we will now study the implication of the 
condition 1):(:):( 11 bAbA , which can also be written 1: BB . If we go back 
to the calculation made in section 6.2.2.1, the model can no longer be inverted, 
which corresponds to the case of elastoplastic models with negative hardening. This 
is why we will call this particular case softening. Figure 6.3 illustrates in the 2D case 
how the softening is treated in elastoplasticity and hypoplasticity. In elastoplasticity, 
the plastic half-ellipse is located on the same side as the elastic half-ellipse, which 
implies that half the plane of the strain rate is not accessible to the model, as in 
perfect plasticity. In hypoplasticity, the ellipse is shifted in such a way that the plane 
origin is located outside the ellipse, which implies that, by extension in 3D, a cone in 
the strain rate space is inaccessible. The drawing was made, as previously, by 
assuming that the two classes of models gave the same responses for a given strain 
rate in one direction, and also in the opposite direction. 

6.2.2.4. Consistency relation at the limit state 

We have seen in section 6.2.2.2 how perfect plasticity was modeled in the 
framework of hypoplasticity. Without more constraint (in the mathematical sense), 
we can obtain a surface, for example in the stress space, which can be crossed over 
towards softening states. This is not necessarily a desirable situation. It could be 
preferable that the plastic surface was also a limit surface, making the states of stress 
located outside this surface inaccessible. In that case, in the presence of softening, 
the equation of the plastic surface cannot be dependent only on the stress. This need 
for the stress states to belong to a well identified domain is often useful. In practice, 
it allows us to better control the model use. 

 
Figure 6.4. Principle of the consistency relation in hypoplasticity 
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Once more, it is easier to understand this aspect by drawing a diagram in 2D. For 
a potentially perfectly plastic state, the limit surface appears – if assumed to be 
regular – as a straight line passing through the origin in the stress space. On the left 
side of Figure 6.4, we can see clearly that there are stress rates which can cross the 
limit surface, while on the right side, no stress rate can be directed towards the 
forbidden zone. We say, in the second case, that the model verifies the consistency 
relation given in equation (6.17). We can see the details of the calculation in [CHA 
89]: 

BAn :  (6.17) 

where n is the outer normal to the limit surface in the stress space and  is a positive 
scalar. This relation is one of the aspects characterizing CLoE models. 

In elastoplasticity, with or without hardening, the consistency relation expresses 
the condition that a stress state cannot be located outside the yield surface. In 
hypoplasticity, it is possible to force the stress state to stay inside a limit surface. 
This explains why we adopted the same expression. The fundamental difference is 
that the relation applies only in an asymptotic state, when the state of stress tends 
towards the limit state surface.  

6.2.3. A simple example: the 2D Mohr-Coulomb model 

In order to illustrate our theoretical developments, we will present a simple 
application of these concepts for a 2D medium [CHA 98]. Such a 2D model is 
simpler to study, and at the same time interesting enough, since many practical 
problems are treated in 2D conditions. The model is written in the principal stress 
axes. We have: 

22

11

0
0

 (6.18) 

Where 11  is the minor principal stress. Without cohesion, the plastic surface 
also considered as the limit surface is defined by: 

0sin
22

11221122  (6.19)  

where  is the friction angle. In the same way, by assuming dilatancy in perfect 
plasticity, the flow rule is written: 
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0sin
22

11221122 DDDD
 (6.20) 

where  is the dilatancy angle. Starting from these relations, we will give the 
expressions of A and B as functions of the stress state; more precisely here, 
depending on the mobilized friction angle, which will give us the constitutive 
relation from equation (6.14). In what follows, we will write A and B in the form of 
3*3 and 3*1 matrices by using the usual convention, since we are developing a 
constitutive model. Equation (6.20) gives us the value of the transpose of Blim, which 
represents the value of B at the limit state: 
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For intermediate states, we take: 

sin
sinlim mobBB  (6.22) 

where mob  is the mobilized friction angle. We can note that, for isotropic states of 
stress, 0B , which means that the model gives reversible behavior. It is therefore 
natural to assume that, in this condition, A is the isotropic elastic matrix. In respect 
to the consistency relation, the solution adopted in what follows consists of 
multiplying this isotropic matrix by a rotation matrix dependent on an angle , 
whose limit value lim  is calculated from equation (6.17). We can take for example: 

sin
sinlim mob  (6.23) 

We can finally write A as follows: 
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where E and  are respectively a Young’s modulus and a Poisson’s ratio, which 
can be interpreted as elastic parameters in isotropic stress states only, the only states 
for which the model degenerates in an elastic model. Finally, we easily constructed a 
model with four parameters: Young’s modulus E, Poisson’s ratio , friction angle  
and dilatancy angle . 

Obviously, the previous model is very simple. We can construct more elaborated 
3D CLoE models using interpolations between experimentally known behaviors, in 
particular along triaxial loading paths. We do not have the room here to present a 
more detailed application of this approach, which gives very precise models. For 
more detailed studies and applications on specific geomaterials with comparison to 
experimental results, see [CHA 94a, ELH 96, VIG 99]. 

6.2.4. Use in boundary value problems 

The non-linear modeling of material behavior is not straightforward. In 
particular, it is very difficult to know if a particular model leads to mathematically 
well-written problems. In a book like this, it is indispensable to know if the 
presented models are effectively usable in finite elements calculations. The story 
reported in [NEL 76] about the computer dependence of some numerical results is 
quite old but exemplary. It is very probable that all the models lead to mathematical 
difficulties which cannot be overcome (we will discuss this point in section 6.2.5). It 
is therefore interesting to possess some well assessed results concerning the 
mathematical problem associated with a given model, as well as some precise 
numerical experiments, with quantification of the accuracy of the integration 
schemes.   

Concerning CLoE models, we demonstrated that the positivity condition of the 
second order work (equation (6.25)) in each point of the soil volume concerned by a 
small deformation calculus, was a sufficient condition of existence and uniqueness 
of the problem solution expressed in terms of the strain rate [CHA 99]: 

0: ijij DDW  (6.25) 

This condition is no longer verified when we get close to the limit surface, and 
we will see that we have to examine carefully the states close to failure, as for all the 
other models, because the models based on a continuous medium assumption do not 
apply anymore. 

In all cases for which we can reasonably assume that the mathematical problem 
is well posed, CLoE models are easy to integrate. A Crank-Nicolson method for 



222     Constitutive Modeling of Soils and Rocks 

local integration [TAM 00b], associated with a Newton-Raphson method for the 
global problem, allows us to integrate these models efficiently. 

6.2.5. Explicit criterion of localization  

Failure of geomaterials happens in most cases in a localized mode. It is therefore 
indispensable that modern modeling is able to take into account this phenomenon. 
The name CLoE accounts for the fact that, even if the model is non-linear, it allows 
us to conduct a complete analysis of localization and to obtain an explicit form for it. 
This is very important, considering that numerous localization analyses are only 
partially treated. CLoE stands for consistence and explicit localization (Consistance 
et Localization Explicite in French). 

Localization calculus is based on the following. Guided by experimental 
observations and also by some theoretical considerations which are not discussed 
here, we are looking for the existence, within a homogenous infinite medium 
subjected to a homogenous strain rate, of a band of undetermined width, subjected 
also to a homogenous deformation, albeit different from the rest of the medium. We 
can then write the kinematic compatibility condition between the two zones: 
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where iF  is the strain rate gradient inside the normal band n, eF  the strain rate 
gradient outside the band, and n a possibly unknown vector. We can also write the 
condition of equilibrium at the band boundary: 
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where ˆ is the stress derivative in fixed axes. These equations, combined with the 
constitutive relations, give, when available, the shear band localization criterion. 
CLoE and the hypoplastic models, generally expressed by equation (6.7) or equation 
(6.14), which are equivalent, allow us to obtain an explicit localization criterion: 
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When the band is located within a specific plane, which is the case for a simple 
model such as the one presented in section 6.2.3, this criterion can be expressed by a 
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polynomial form of degree 4 in tan , where  is the angle between the normal 
direction to the band and the x axis for example. 

At the present stage, some observations have to be made. 

The localization criterion for hypoplastics models, obtained by a completely 
rigorous calculation (see equation (6.25)), has nothing to do with a determinant of 
the acoustic tensor. In addition, in order to determine an acoustic tensor, we first 
have to linearize the non-linear model rigorously, which is easy to do for the 
hypoplastic models, but is of interest only for solving strain rate boundary problems. 
A localization calculation made with the linear model corresponding to the 
linearization of the model in the vicinity of the strain rate gradient eF  gives a result 
which sometimes overestimates the medium’s resistance to localization [CHA 85, 
TAM 00c]. 

We can demonstrate that, if the localization condition is fulfilled for the small 
strain hypothesis ( ijklijkl AM  in equation (6.25)), the second order work is no 
longer positive. This result is not surprising, since the fulfilment of the localization 
condition in fact means that there are several solutions to a given boundary problem. 

 

 

Figure 6.5. Physical interpretation of the localization 

Finally, it is important to have a more physical view on this localization 
criterion. It can be proved that, for a given material state represented in Figure 6.5 in 
principal axes, the localization will take place in a band having a direction t and a 
normal n, if this band can be sheared with a stress increment at the boundary equal 
to zero: 0ntnn . This result can be proved, rigorously again in a small strain 
condition, in order to be equivalent to the criterion given by equation (6.25) [CHA 
98a]. It is important to understand that this result does not mean that the model is in 
the plasticity condition as presented in section 6.2.2.2. The important difference is 
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that 0tt  in the case of localization. However, since the band width is not 
specified because of the absence of material internal scale, the fact that 0tt  does 
not allow the global problem to maintain the uniqueness of the solution. 

6.2.6. Induced anisotropy 

The last observation in the previous section clearly shows that, for a localization 
to be possible, the existence of a weak zone in a given direction is necessary. The 
localization phenomenon is thus clearly directed. In other words, following 
Vardoulakis’ conclusion [VAR 80], we can say that the appearance of a localization 
in laboratory tests should not be considered as an undesirable effect, but rather as a 
added piece of information on the incremental anisotropy of the material when the 
localization takes place. Based on these general principles, we developed a means to 
integrate this information in our hypoplastic models. This is the main aspect which 
characterizes CloE models among other hypoplastic models.  

In laboratory homogenous testing (direct simple shear is thus excluded), the 
strain and stress directions remain fixed if the material is initially isotropic. For the 
model studied in section 6.2.3, this means that the term A33 in matrix A, which will 
be called the shear modulus in the loading axes, does not play any role in this type of 

test. Except for the isotropic state, where it is fixed and equal to 
)1(

2E
G , this 

term is undetermined, while it plays an important role in the equation of the 
localization criterion. Therefore, we chose to vary the shear modulus from its value 
at the isotropic state to a value which gives the localization in the same conditions as 
observed in the experimental tests, i.e. orientation and mechanical state, defined in 
the simplified case by the mobilized friction angle mob . An interpolation is 
thereafter made between the initial isotropic and the localized states: 

]
sin

sin
1[

)1(
2 mobE

G  (6.29) 

Matrix A is therefore modified by taking for term A33 the expression in equation 
(6.29). We can verify that consistency is verified at the isotropic state, which is 
fundamental for the model’s use in numerical calculations, in order to prevent the 
problems mentioned in section 6.1. Finally, we have introduced in our 2D model a 
new parameter  which can be viewed as the one controlling the anisotropy induced 
by a loading from the initial isotropic state to the actual state. can also be viewed 
as the parameter controlling the appearance of the plastic strain localization. 
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Generalizing this concept in 3D does not imply a particular problem. In fact, this 
concept has first been applied to a general 3D model before being applied to the 
simplified 2D model chosen here as an example. In the 3D model, we must note, 
however, that there are three shear moduli and that it is necessary to verify the 
consistency condition more precisely. In addition to the relation at the isotropic state 
for the three moduli, there are also relations for each of them for axisymmetric 
states. For more details, see [CHA 94b]. 

Hypoplasticity thus offers a great flexibility for introducing this induced 
anisotropy. The effects are different but similar to those obtained in the plasticity 
framework by using vertex models, providing that they correspond to complete 
constitutive models, which is rarely the case, or by using non-coaxial models, such 
as models with kinematic hardening.  

6.2.7. Extension to media with internal length 

Traditional constitutive models, based on the description of the displacement 
gradient tensor, have no internal length. Geomaterials, however, are clearly 
materials with internal length: grain sizes for soils or concretes, spatial distribution 
of pre-existing discontinuities for rocks. If, in numerous cases, the absence of 
internal length in the models used can be ignored, this is no longer possible in the 
case of localized failure. It has been proved experimentally that the dimension and 
the width of localized bands in sands depend on the grain size distribution and 
mainly on the mean grain size. If the traditional models can predict without 
difficulty the apparition of a localized zone, it is illusionary to think that they can 
also correctly predict the post-localized regime, even if this assumption is very often 
made. Numerically, the results are computer independent, but depend strongly on 
the size of the spatial discretizing in finite elements. We are not going to present an 
exhaustive list of possible solutions, but rather concentrate on two specific solutions, 
without too many details, since it is a field which is constantly evolving [CHA 98a].  

An important class of models with internal length concerns the models with 
microstructure. Their kinematics are no longer only described by the displacement 
field, which, by spatial derivation, gives the gradient, rotation and the usual 
deformation, but also by a micro-gradient field, which considers strains and 
rotations at the grain level and gives by derivation a gradient of the micro-gradient. 
This enriched kinematic requires taking into account, by duality, additional stress 
tensors. The energy variables, or the virtual or real works, contain these kinematics 
and static enrichments. By adding mathematical constraints, we can develop these 
models into Cosserat’s models, second gradient models, etc. We will not develop 
these theories, which have demonstrated their ability to take into account an internal 
length within the studied material, especially in post-localization problems. 
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Another possible way consists of introducing localized zones, whose behavior 
differs from the rest of the medium. For example, experiments have shown that the 
significant dilatancy obtained in dense sands leads asymptotically to a limit density 
called the critical void ratio. Well instrumented experiments have shown that this 
phenomenon was concentrated within shear bands [DES 96]. It is therefore 
understandable to enter this behavior within a localized band rather than in the 
whole volume. For this purpose, we can construct a specific model representative of 
the band’s behavior, consistent with the CloE model, from which it is built, and 
leading to a critical void ratio inside the band. In this kind of model, the width of the 
model is explicitly introduced and corresponds to an additional parameter to be 
determined. For more details on this topic, see [CHA 98a]. 

 

Figure 6.6. Photo of a biaxial test with localization 

6.2.8. Examples of application  

We cannot develop too many examples of CloE model applications. We chose to 
present here some results of integration in a finite elements code by selecting two 
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different cases: one concerning an homogenous loading, the other a boundary value 
problem. 

 
Figure 6.7. Comparison between experimental results and numerical  

modeling with Daphnis and CLoE model of a biaxial test 

6.2.8.1. Modeling of biaxial test 

We first present the modeling by Daphnis-CloE of a biaxial test in plane strain 
conditions, imposed by a glass wall, which allows us to show the tested specimen. 
Figure 6.6 shows the specimen after localization. The CloE model used in this study 
is the one presented in section 6.2.3. The numerical modeling was performed with 
the following parameters: E = 30,000 kPa, = 0.32, = 0.6, = 45°, = 25°. The 
confining stress was equal to 200 kPa. The specimen’s initial dimensions were: 
338.5 mm x 102.5 mm. The initial void ratio was 0.66, the critical void ratio within 
the band was taken equal to 0.8, in agreement with the value of 0.85 given in [DES 
96] at a smaller mean stress, and the width of the band was taken as equal to 7 mm. 

The modeling was not refined in order to best fit the experimental results. Figure 
6.7 presents the relationship between the stress ratio and axial strain. We can see that 
the model reproduces correctly not only the initial phase of the localization, but also 
the post-peak plateau. For more details on this calculation, see [CHA 98a].  



228     Constitutive Modeling of Soils and Rocks 

 

Figure 6.8. Geometry and discretization of the trench 

6.2.8.2. Modeling of a trench excavation with a retaining wall 

The modeling of a trench excavation with a retaining wall was performed by 
using the 3D CloE model presented in [CHA 94a]. The calculation was made 
assuming plane strain conditions. A comparison was made with the results of the 
same type of calculation obtained by commercial software. Detailed results can be 
found in [VIG 99]. Figure 6.8 presents the trench geometry. The grey zone 
corresponds to the excavated soil.  

Figure 6.9 presents a map of the volumetric deformations in the upper part and 
the deviatoric strains in the lower part, using the CloE model (left part) and the Hard 
Soil Model (incrementally bilinear consistent model) (right part). Details of the 
choices made to perform this numerical comparison can be found in [VIG 99]. In the 
case presented in Figure 6.9, corresponding to a rigid wall, the predictions of the 
CloE model are more realistic, especially concerning the soil displacements in the 
vicinity of the retaining wall. This result has significant practical interest. 
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Figure 6.9. Iso-values of volumetric and deviatoric strains: comparison  

of numerical simulations obtained with CLoE and HSM 

6.3. Incrementally non-linear constitutive relations 

6.3.1. Formalism 

We have shown in Chapter 1 that the general relations for non-viscous behavior 
could be written: 

3,61,2,  ,,         ,d )(d uM  (6.30) 

or in the dual form: 

3,61,2,  ,,         ,d )(d vN  (6.31) 

where u  represents the direction of the incremental stress d : 
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d
,       1,2, ,6 ,       with      d   d d       

d
u  (6.32) 

and where v  represents the direction of the incremental strain d : 

d
,       1,2, ,6 ,       with      d   d d      

d
v  

We will now specify the structure of M(u) and N(v). For this purpose, we will 
consider the developments in polynomial series of the elements of these two 
matrices: 

4321 6,,1      ,MMM)(M uuuu  (6.33) 

4321 6,,1         ,NNN)(N vvvv  (6.34) 

From equations (6.30) and (6.31), it follows that: 

321 6,,1           ,d d M
d
1d Md  (6.35) 

321 6,,1           ,d d N
d
1d Nd  (6.36) 

The first terms of equations (6.35) and (6.36) describe the incrementally linear 
elastic behavior. The two first terms give the general representation of incrementally 
non-linear second order constitutive relations: 

61 2 1, , 3
1d M  d M  d  d ,        

dij ijkl kl ijklmn kl mn ijklmn  (6.37) 

61 2 1, , 3
1d N  d N  d  d ,     

dij ijkl kl ijklmn kl mn ijklmn  (6.38) 

We can verify that expressions (6.37) and (6.38) are non-linear and homogenous 
of degree 1 with respect to d  and d , respectively. 
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In order to determine more precisely tensors M1, M2, N1, N2, we have to define 
their general form. For this purpose, three hypotheses are in order: 

– the incremental relation is orthotropic; 

– when expressed in the orthotropy axes: 
2 2, 1, 2,3 ,   ,   M 0  and  N 0 ; 

– the “shear” part of the relation is incrementally linear in the orthotropy axes: 
2 24,5,6 ,   or  4,5,6 ,   M 0  and  N 0 . 

In the orthotropy axes, equations (6.37) and (6.38) are then reduced to the 
following simplified form: 
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and: 
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 (6.41) 

We have therefore to determine matrices of dimension 3x3: A, B , C, D and 
functions G1, G2 , G3. The idea is to identify the constitutive relations in equations 
(6.39) to (6.41) by specific behaviors which can be experimentally determined. For 
the model given by equation (6.39), they correspond to “generalized triaxial paths” 
and for the dual model given by equation (6.40), they correspond to “generalized 
oedometric paths”. Their definitions are, respectively, as follows: 

– a path is called a “generalized triaxial path” if the stress and strain principal 
axes are identical to a constant given direction, and if the two lateral stresses are 
maintained constant along the stress path; 
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– a path is called a “generalized oedometric path” if the stress and strain 
principal axes are identical to a constant given direction, and the two lateral strains 
are maintained constant along the strain path; 

We will call triaxial compression, respectively triaxial extension, a loading path 
with positive, respectively negative, axial stress rate. In a dual manner, we will call 
oedometric compression, respectively oedometric extension, a loading path with 
positive, respectively negative, axial strain rate. The case of softening materials is 
not considered here. 

We thus define: 

– the generalized tangent Young’s modulus ( iE ) : 
kj

i

i
iE  

– the generalized tangent Poisson’s ratio ( j
i ) : 

j k

jj
i

i

 

– the generalized tangent oedometric modulus ( iO ) : 
kj

i

i
iO  

– the generalized tangent stress ratio ( j
iK ) : 

j k

jj
i

i

K  

By denoting “+” for the compression and “-” for the extension, we define: 
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By identification of the behaviors along generalized triaxial paths and, 
respectively, oedometric paths, we obtain: 

A + B = N+ and A – B = N- 

C + D = P+ and C – D = P-  

We thus obtain the expressions of A, B, C and D: 

2 2    and    

2 2

- -

- -

N N P PA C

N N P PB D

 (6.42) 

Equations (6.39) to (6.42) can be interpreted as a quadratic non-linear 
interpolation between material behaviors known along particular loading paths, 
generalized triaxial and oedometric paths. Other types of interpolation are possible. 
The simplest one is linear interpolation, which leads to incrementally piecewise 
linear constitutive relations, consisting of eight tensorial zones where the relation is 
incrementally linear, called the octo-linear model. The linear interpolation model 
can be written: 
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and for the dual model: 
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Royis [ROY 98] has given a general expression for these interpolation type 
models in the following form: 

 )(  )( d d uu NN  

with )(,)( ,)()( 321 uuuut  and )(,)( ,)()( 321 uuuut  
and has proposed the following table: 
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 )( iu  )( iu  

octo-linear model 
2

ii uu
 

2
ii uu

 

second order non-linear 
model  2

2
ii uu

 
2

2
ii uu

 

Chambon’s interpolation 
2

3
ii uu

 
2

3
ii uu

 

Doanh’s model 41 2 /uu ii

 
41 2 /uu ii

 

Table 6.1. Some directional interpolations 

Another interpolation has also been proposed, by Robinet [ROB 82], Di 
Benedetto [DIB 87] and Royis [ROY 89]. A comparison of these different models 
and experimental results has been made by Royis and Doanh [ROY 98], by using 
the construction of the response envelopes as proposed by Gudehus [GUD 79]. 
Figures 6.10 to 6.12 show the results obtained by the octo-linear and the non-linear 
second order models. In the following section, we will also present such 
comparisons for the model proposed by Laouafa [DAR 99], who has combined the 
two previous models. 

6.3.2. Continuous transition between non-linear and octo-linear interpolations 

The octo-linear and non-linear interpolations proposed by Darve have shown 
their capabilities in predicting the soil behavior in international benchmarks [GUD 
84, SAA 88], as presented in Figures 6.10 to 6.12. They raise, however, the problem 
of the choice of the nature of the interpolation, for material behavior as well as for 
the use in boundary problem analysis (for instance, in finite element calculations). 
These interpolations have been studied from both a mathematical point of view 
[ROY 89, ROY 98] and a physical point of view [ROY 98]. In the description of the 
observed mechanisms, no fundamental distinction can be made between the two 
interpolations. Mathematical study has shown that the non-linear interpolation leads 
to a loss of biunivocity (existence of bifurcation states) along given loading paths, 
which is less the case for the octo-linear interpolation. The latter, however, belongs 
to the class C0. 
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Figure 6.10. Experimental and numerical response envelopes at a confining stress equal to 

100 kPa and an axial stress equal to 100 kPa [ROY 86] 

 
Figure 6.11. Experimental and numerical response envelopes at a confining stress equal to 

100 kPa and an axial stress equal to 200 kPa [ROY 86] 
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Figure 6.12. Experimental and numerical response envelopes at a confining stress equal to 

100 kPa and an axial stress equal to 400 kPa [ROY 86] 

The interpolation proposed by Laouafa [DAR 99] allows for the two 
interpolations to be described in a continuous way. The non-linear and the octo-
linear interpolation in Darve’s models become two particular cases of interpolation 
used in Laouafa’s model, which depends on a real and positive scalar parameter . 
Its expression in the principal axes is as follows: 
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When 0 , the above expression converges toward the octo-linear 
formulation, and when , this same expression converges toward the non-
linear formulation. Figures 6.13 to 6.15 show the response envelopes for different 
values of = 0.005, 0.05, 1, 100). 
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Figure 6.13. Experimental and numerical response envelopes at a confining stress equal to 

100 kPa and an axial stress equal to 100 kPa for different values of  = 0.005, 0.05, 1.1 

 
Figure 6.14. Experimental and numerical response envelopes at a confining stress equal to 

100 kPa and an axial stress equal to 200 kPa for different values of  = 0.005, 0.05, 1.1 
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Figure 6.15. Experimental and numerical response envelopes at a confining stress equal to 

100 kPa and an axial stress equal to 400 kPa for different values of  = 0.005, 0.05, 1.1 

The value of parameter  is arbitrarily defined as a continuous function of some 
given memory parameters, excluding any variable dependent on stress and strain 
increments. 

6.3.3. Significant degenerations 

In order to understand better the possibilities and limits of these models, it is 
interesting to consider several significant cases of degeneration: the one-
dimensional, the elastic and the perfectly plastic cases. These will be analyzed 
successively. 

One-dimensional degeneration 

The octo-linear and non-linear models degenerate into the same expression in the 
case of a one-dimensional material, for which the incremental stress and strain are 
two scalars: 

d11
2
1d11

2
1d

EEEE
 (6.45) 

d 
2
1d 

2
1d EEEE  (6.46) 
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E  represents the tangent modulus during loading and E  the tangent modulus 
during unloading. E  and E  depend, through scalar variables, on the loading 
history. Any one-dimensional elastoplastic behavior can be reproduced by equations 
(6.45) and (6.46). 

It is interesting to note on this very simple example that a single non-linear 
incremental relation is strictly equivalent to a double elastoplastic relation with a 
loading-unloading criterion: 

if (loading)    

if (unloading)

1d d ,       d   0   

1d d ,       d   0   

E

E

 

We can also note that the octo-linear model can be seen as a direct 
tridimensional generalization of equations (6.45) and (6.46). 

Elastic degeneration 

If the mechanical behavior is elastic, the responses on basic paths (generalized 
triaxial and oedometric paths) are identical in loading and unloading. We thus obtain 
the following relations: 

-    (called 
- 1   (called  -

N N N)         

P P P N )
 

The two models, octo-linear and non-linear, subsequently degenerate into an 
identical relation: 
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where N corresponds to the general non-linear orthotropic elastic tensor. If no other 
symmetry hypothesis is made on N, it will correspond to a hypo-elastic model. If the 
existence of an elastic potential is assumed, this hypothesis will impose the 
symmetry of N and the model will become hyperelastic. 
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Perfectly plastic degeneration 

This type of degeneration can be conveniently studied by considering the 
constitutive relation in the following form: 

d d 1(u)M  (6.47) 

A perfectly plastic behavior – if it exists – can be obtained by looking for 
solutions corresponding to an indefinite strain under a state of constant stress: 

0d  with 0d  (in the case of small strains) 

A necessary and sufficient condition for the existence of such solutions in the 
case of incrementally piecewise linear relations is given by: 

0 det 1(u)M  

which corresponds to the plastic criterion. For the octo-linear model, this condition 
can be obtained by the nullity of one of the six tangent moduli: 

0321321 EEEEEE  

The solutions for the strains are given by the relation: 

0d 1(u)M  (6.48) 

An infinite number of solutions can be obtained. They differ by their norm, the 
direction of d  (being in general imposed by equation (6.48)). Equation (6.48) can 
then be seen as a plastic flow rule. We can note that it is a singular flow rule as the 
directions of d , solutions of equation (6.48), generally depend on the direction of 
d  (existence of a vertex). In the case of the octo-linear model, this local singularity 
of the flow rule is of pyramidal type [DAR 05a]. 

6.3.4. Applications 

In order to study the predictive capabilities of a given constitutive model, we can 
examine its responses on various classes of loading paths. The following section is 
devoted to this purpose. 
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Non-proportional loading paths 

Two examples will be considered. The first concerns the modeling of a circular 
stress path in the deviatoric plane. This type of loading can be found in practice (for 
example, in the case of vehicles passing on a road) when repeated loads induce 
within the soil almost closed stress paths. In addition, a circular stress path loading 
was chosen as one of the tests to be modeled during the International Workshop in 
Cleveland [SAA 87]. Figure 6.16 presents the results in the deviatoric strain plane 
and Figure 6.17 shows the evolutions of the three principal strains and the volume 
change. Due to successive increases and decreases of the principal stresses, these 
evolutions present complex oscillations for the experimental results as well as for 
the numerical simulations. 

 
Figure 6.16. Prediction of the incrementally non-linear model of second order  
for a circular strain path in the deviatoric plane [SAA 87]. Continuous lines:  

experimental results, dashed lines: numerical results 
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Figure 6.17. Evolution of the principal strains and the volumetric strain.  
Continuous lines: experimental results, dashed lines: numerical results 
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A second example concerns step-wise loading paths. A given proportional 
loading path is approached by means of a small increment sequence. 
Experimentally, it is known that servo-controlled machines are not able to follow the 
required loading path exactly but must approach it by successive approximations. 
The experimental responses are considered to be satisfactory as soon as the 
difference between the desired and the real loading paths is “small enough”. This 
experimental procedure introduces a systematic error which has to be quantified. In 
addition, the superposition principle for incremental loading is valid only in the case 
of incrementally linear relations. The condition: 

)dd ()d ()d (:d ,d  )2()1()2()1()2()1( GGG  

is valid only if G is linear. 

Here we should ask: what happens in the case of incrementally non-linear 
relations for which the principle does not apply at all as G is non-linear? 

Figure 6.18 presents one of these examples. A drained triaxial stress path is 
approached by successive loading steps decomposed into two parts: an isotropic 
incremental loading ( 321 ) followed by a constant mean stress 
loading ( 02 31 ).  
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Figure 6.18. Comparison of numerical simulations obtained by the incrementally  
non-linear model for a drained triaxial test (dashed line) and a step-wise  
loading path with various step amplitudes (continuous lines) [DAR 95] 
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Figures 6.19 to 6.21 present another example in the case of an undrained triaxial 
test approached by successive steps of effective stresses: 

                        0
          02

1

31

31 ttancons/
 and 

                        0
                        0

1

3

31 ttancons/
 

applied in such a way that the negative volume variation induced by the first loading 
condition is compensated for by an opposite volume change during the following 
loading step. 

 

Figure 6.19. Undrained triaxial test. Upper figure: modeling of the isochoric condition by 
means of two different paths: constant q/p and constant mean stress or constant q/p and 
constant lateral stress [DAR 95]. Lower figure: influence of the step amplitudes: four 

different amplitudes are considered. The numerical simulations (continuous lines) converge 
when the amplitude decreases toward a single asymptote, different from the response 

obtained for the undrained triaxial test (dashed line) 
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Figure 6.20. Numerical simulation of an undrained triaxial test on loose Hostun Sand along a 

stress path decomposed in steps at ’1/ ’3 constant and ’3 constant [DAR 95] 

 
Figure 6.21. Numerical simulation of an undrained triaxial test on loose Hostun Sand along a 

stress path decomposed in steps at ’1/ ’3 constant and p’ constant [DAR 95] 

The results show that, when the length of the steps decreases, the numerical 
responses converge toward a given asymptotic behavior. The asymptotic responses 
are not identical to the responses along the proportional loading path but remain 
close enough to justify the use of servo-controlled machines. 
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Simulations of elastic limit surfaces 

The elastic limit surfaces have been studied experimentally for a long time, 
especially in metals. The usual experimental procedure consists of applying a given 
loading condition and then unloading to a given load value in the same direction. All 
the stress directions are tested in the same way from this last stress-strain state and 
the intensity of the strain responses is controlled by a given strain amplitude. The 
elastic limit surface is then defined by the locus of all the corresponding stress 
points. In the incrementally non-linear model, the notion of elastic limit does not 
exist: any loading creates plastic deformation, which can eventually become 
negligible. It is therefore interesting to follow numerically the same procedure in 
order to analyze the possibility of defining the elastic limit concept from a model 
which does not include it. Figures 6.22 and 6.23 show such simulations in the cases 
of a loose, respectively dense, sand in the bisector plane of the stress space (the so-
called Rendulic plane). Figure 6.24 presents the simulation results in the deviatoric 
stress plane. From these figures, the following conclusions can be drawn: the main 
mechanism which influences the evolution of the elastic limit is a kinematic 
hardening, the isotropic hardening remains small. Even if this analysis of the 
numerical results is made in the framework of elastoplasticity theory, we must recall 
that the model does not include either hardening variables or yield surfaces. Even if 
the isotropic hardening remains small, the shape of the elastic limit evolves during 
loading to approach the shape of the plastic limit at elevated stress levels. 

 
Figure 6.22. Numerical simulations of elastic limit surfaces in the Rendulic stress  

plane for loose Hostun Sand. The sand is loaded up to stress states defined by  
a black dot, then unloaded to the states defined by a cross, before the  

determination of the elastic limit [DAR 95] 
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Figure 6.23. Numerical simulations of elastic limit surfaces in the Rendulic stress plane for 
dense Hostun Sand. The sand is loaded up to stress states defined by a black dot, then 

unloaded to the states defined by a cross, before the determination of the  
elastic limit [DAR 95] 

Liquefaction 

Liquefaction of saturated loose sands for a long time remained a little understood 
phenomenon, mainly because it was analyzed as intrinsically linked to the undrained 
condition and to the small density of the liquefiable sands. Experimental results 
[LAN 89] have shown that it is possible to liquefy dry sands if, by using servo-
controlled machines, we can apply isochoric loading paths. In addition, even this 
condition is not necessary since it appears possible to liquefy dense sands by 
applying a sufficiently dilatant proportional strain path. Figure 6.25 presents 
numerical simulations on loose Hostun sand using the incrementally non-linear 
model; they show that liquefaction is a very common phenomenon in granular 
materials: even a contractant strain path can lead to the liquefaction of a loose sand 
(results corresponding to R = 0.45 and R = 0.425). In fact, we have presented [DAR 
96] a general static liquefaction criterion by comparing the volume change rate 
induced by the flow rule corresponding to the tested material with the volume 
change rate imposed by the strain controlled loading path. If these two rates are 
equal, the sand will undergo a perfectly plastic flow. If the first is higher than the 
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second (with the sign convention: dilatancy is positive, contractancy is negative) the 
stresses will decrease and eventually reach a zero value for the liquefied state. 

 

 

Figure 6.24. Numerical simulations of elastic limit surfaces in the deviatoric stress plane for 
loose Hostun Sand. The sand is loaded up to stress states defined by a black dot, then 

unloaded to the states defined by a cross, before the determination of the  
elastic limit [DAR 95] 
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Figure 6.25. Modeling of proportional axisymmetric strain paths  
defined by: d 2 = d 3 = -Rd 1 on loose Hostun Sand  

This general criterion is illustrated, for example, by Figure 6.26 where we can 
see that, by decreasing the initial void ratio, the sand behavior changes from 
contractant to dilatant, which induces a change from a liquefying behavior to a 
behavior corresponding to an effective stress increase in the undrained condition. 
For an intermediate void ratio, the critical state is obtained (the volume change rate 
imposed by the flow rule is equal to zero in this case) and a perfectly plastic 
behavior will develop.  
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Figure 6.26. Modeling of the liquefaction of loose Monterey Sand. Three different 
 void ratios are considered; only the highest one, corresponding  

to a drained contractant behavior, leads to liquefaction 

Instability in granular materials 

The experimental evidence of the existence of instability in granular materials is 
not recent, even if all the consequences have not yet been drawn. In fact, if we 
consider liquefiable loose sand, the deviatoric stress 31q  presents 
necessarily an extremum (a maximum in compression). If, from this state during an 
undrained triaxial compression, we increase by a very small value the applied axial 
force, a brutal collapse of the specimen occurs while the plastic failure criterion has 
not been reached. Considering the notion of stability as defined by Lyapunov [LYA 
07], this material behavior corresponds to the existence of an unstable state strictly 
inside the plasticity criterion. 

Furthermore, the existence of instability and bifurcation before the plastic failure 
are predicted by elastoplasticity theory for unassociated materials, which is precisely 
the case for geomaterials. The reasoning is based on the fact that plastic failure is 
linked to the nullity of the determinant of the constitutive matrix, whereas instability 
is linked to the nullity of the determinant of the symmetric part of this matrix. In the 
case of unassociated flow rule, the constitutive matrix is not symmetric and it is 
known (from linear algebra) that, along a given loading path, the determinant of the 
symmetric part becomes equal to zero before the determinant of the whole matrix. 

We have systematically studied the condition of stability in granular materials 
with the octo-linear and the non-linear models, by considering the sufficient 
condition of stability proposed by Hill [HIL 58]. For a given material, a state of 
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stress and strain, produced by a given loading history, is considered stable if, for any 
stress and strain increments linked by the constitutive relation, the second order 
work is strictly positive: 

0d :dd:d 2W  (6.49) 

The sign of the normalized second order work d /d/dt 2W  has therefore 
been studied in a systematic manner for loose and dense sand in axisymmetric and 
plane strain conditions, by using a polar diagram [DAR 99]. Figure 6.27 presents the 
most significant results in the axisymmetric condition and Figure 6.28 in the plane 
strain condition. For the non-linear model, the first stress level at which a potential 
instability is detected in a given stress direction corresponds to q/p = 0.45 for loose 
sand and to 0.83 for dense sand in the axisymmetric condition (Figure 6.27) [DAR 
04b]. In the plane strain condition (Figure 6.28), the minimum mobilized friction 
angle corresponding to the first appearance of instability was found to be equal to 
13° [KHO 06]. All the results demonstrate the existence of a large domain of 
potential instability in the stress space (“potential”, since the boundary conditions 
must allow – or not – the instability to develop toward a kinematically admissible 
failure mode).  

 

Figure 6.27. Polar representation of the normalized second order work for different stress 
ratios q/p. Dense Hostun Sand on the left side, loose Hostun Sand on the right side. The first 

instabilities are detected where the curve reaches the axis origin 
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Figure 6.28. Stress states corresponding to the first detected instabilities in plane strain 

conditions for dense and loose Hostun Sand 

The existence of such an instability domain, probably has various applications in 
geotechnics. One of these could be the analysis of slope failure mechanisms. Some 
failures taking place for small (smaller than 14°) to very small (smaller than 8°) 
slope angles cannot be explained by traditional plasticity theory, but by instability 
analysis [DAR 99]. 

Inverse analysis in geomechanics 

Determining mechanical parameters from laboratory testing is a long, costly and 
imprecise procedure due to the remolding of the samples. In the future, in situ 
testing will probably become more developed and more widely used to calibrate 
constitutive models. They will require specific rigorous methods for this purpose, 
based on inverse analysis. However, due to rheological non-linearity, the uniqueness 
of the solution is not guaranteed, and it is therefore necessary to develop specific 
constitutive models, which have a limited number of independent parameters. 

In this way, two dual constitutive models have been developed, each of them 
having five parameters. The constitutive relations are incrementally second order 
non-linear and the two models correspond to equations (6.39) to (6.41). The 
methodology adopted to construct the models comprises two independent phases: at 
first, the selection of the basic loading path: triaxial or oedometric; secondly, the 
choice of the interpolation, linear or non-linear, between the responses along the 
basic paths. Here, in the framework of inverse analysis, the same interpolations as 
previously are kept, but the choice is made of modeling the basic loading paths in 
the simplest manner by means of only five model parameters: for the “direct” model 

,,,, CE  and for the dual model ,,C,K,E ooedom  [DAR 98b]. All these 
parameters are ordinary soil parameters, except for , which is used to indirectly 
control the contractancy or the dilatancy during drained deviatoric loading. Figures 
6.29 and 6.30 present the predictions of the dual model, calibrated on oedometric 
paths, for drained and undrained triaxial paths in compression and extension, for 
loose and dense sand. 
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Figure 6.29. Modeling of drained triaxial tests with the incrementally non-linear  

model with five parameters calibrated along an oedometer path on  
dense sand (left side) and loose sand (right side) 

 
Figure 6.30. Modeling of undrained triaxial tests with the incrementally non-linear  

model with five parameters calibrated along an oedometer path on  
dense sand (left side) and loose sand (right side) 
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6.3.5. Conclusions 

In comparison with the elastoplastic models, the incrementally non-linear models 
present the advantage of having to introduce neither an elastic limit nor a flow rule, 
whose experimental determination is difficult in the case of geomaterials. They are 
based on the explicit choice of a non-linear relation between incremental stresses 
and strains [DAR 05b]. 

In order to construct this relation, we proposed the following procedure, 
composed of two independent steps: at first, the choice of the basic loading paths 
(triaxial or oedometric) and the description of the material responses along these 
paths; secondly, the choice of the interpolations – linear or non-linear – between 
these responses. Based on this method, it is possible to construct in a flexible way a 
robust model which, due to the interpolation procedure, provides realistic responses 
for various loading paths. 

Then, we illustrated the predictive capabilities of these models for different 
classes of problems: non-proportional loading paths, elastic limit locus, liquefaction, 
material instability in granular media and inverse analysis. Others problems have not 
been addressed here, such as the modeling of plastic strain localization in shear 
bands in granular materials [DAR 80a] and structured clays [DAR 98, DAR 04], a 
failure mode which corresponds to a non-homogenous bifurcation of the strain field 
(so-called “localized failure” [KHO 06]). Homogenous bifurcation modes can also 
develop due to a loss of uniqueness of the constitutive response [DAR 98] (so-called 
“diffuse failure”). All these different cases show that our models allow us to 
analyze, in a coherent manner, various complex aspects of the geomaterial’s 
behavior.  

6.4. General conclusion 

The first conclusive note is that, nowadays, almost all the constitutive models 
implemented in finite elements codes are written in an incremental form, whatever 
the formalism used to construct the model. This “incremental” denomination was 
originally given to this family of models in order to distinguish their incremental 
formulation, as presented in Chapter 1, from the expression of constitutive relations 
by means of rheological fonctionals.  

The second point concerns the following question: can experimental results 
provide the means to make a distinction between incrementally non-linear and 
incrementally piecewise linear constitutive models, such as elastoplastic models? 
The response envelopes as defined by Gudehus [GUD 79] are good indicators for 
answering this question. However, the discussion opened hereby remains 
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controversial [ROY 98]. If we consider any phenomenological characteristics of the 
geomaterial’s behavior, it always seems possible to find an elastoplastic formulation 
suitable to describe it. We can also refer to the initial demonstration made by Hill 
[HIL 67], who linked the incrementally piecewise linear formulations to 
microstructural considerations, associated with the existence of a finite number of 
particular micro-sliding planes in the case of metallic monocrystals. It is obvious 
that, for granular materials, these particular sliding directions are a priori not 
determined, thus leading to an incrementally non-linear structure for constitutive 
relations. [DAR 80b, DAR 05b] 

Benchmarking is another way of comparing the validity domains of different 
constitutive models. The two benchmarks in Genoble in 1982 [GUD 84] and in 
Cleveland in 1987 [SAA 88] have shown that the different models gave reasonably 
close results along proportional loading paths (linear paths in the stress or strain 
space), whereas the results could be very different for non-proportional loading 
paths, some incrementally non-linear models giving good predictions. It is, in fact, 
quite clear that a constitutive matrix with a continuous dependency on the direction 
of the incremental loading is more likely to give a better response along a non-
proportional loading path than a constitutive matrix which can have only two 
expressions: elastic or plastic. The influence of the structure of the constitutive 
model can also be seen in the analysis of the bifurcation and instability conditions. It 
is well know that associated plasticity can describe bifurcation or instability only 
when the plastic limit criterion is reached, which is not experimentally verified. The 
incrementally non-linear models are able to describe “discontinuous bifurcations” 
leading to localized failure in shear bands as well as “homogenous bifurcations” 
leading to diffuse failure inside the plastic limit criterion [DAR 04a, DAR 04b, 
KHO 06]. 

The last observation concerns the different classes of incrementally non-linear 
models. Endochronic [VAL 71] and hypoplastic (as defined by Chambon in the first 
part of this chapter or by Kolymbas [KOL 88]) models have the common property of 
describing the incremental non-linearity by means of a scalar, always positive for 
any direction of the incremental loading. Chambon’s model, CloE, has the 
advantage of considering in a rigorous manner the condition of limit states and of 
allowing an analytical explicit determination of the bifurcation condition by strain 
localization. It also has the advantage of allowing theorems concerning the existence 
and uniqueness of solutions for boundary problems to be demonstrated. The 
importance of these theorems consists of the confidence that we can have in the 
numerical solutions obtained by the finite element method. Incremental models of 
the interpolation type (in the sense given by Darve in the second part of this chapter, 
or given by Di Benedetto [DIB 87] or Royis [ROY 89]) express the incremental 
non-linearity in a more general manner by means of a quadratic tensorial form. 
Darve’s incrementally non-linear model of second order can describe certain cyclic 
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behaviors and various classes of bifurcations and instabilities [DAR 80b, DAR 84, 
DAR 04b]. Moreover the octo-linear model enables simple analytical calculations 
when necessary. Finally, Dafalias’ model [DAF 86] is an incrementally non-linear 
generalization of his bounding surface model. 

In the future, micromechanical models will probably help us to develop 
constitutive relations closer to the essence of granular physics ([NIC 05]) and to 
understand more intimately failure mechanisms ([NIC 06, SIB 07, NIC 07a, NIC 
07b, NIC 07c]). 
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Chapter 7 

Viscoplastic Behavior of Soils  

7.1. Introduction 

Various laboratory testing and in situ observations show the time-dependent 
behavior of soils, especially fine soils. If we neglect the ageing effects here due to 
physicochemical reactions at the level of the particles, we could say that this 
characteristic has two origins: the pore pressure dissipation during consolidation 
[BIO 41, SAN 69] and the viscous properties of the material constituents. These two 
phenomena act together and their effects are not easy to separate. It is usually 
assumed that the pore pressure dissipation is the main factor controlling the initial 
consolidation phase, called the primary consolidation, and the viscous effects are 
predominant in the second phase, called the secondary consolidation. 

The viscous behavior of fine soils is mainly linked to their internal structure, 
especially to adsorbed water. When an external load is applied to a soil element, 
there is a progressive transmission of viscous contacts to frictional contacts, which 
manifests itself at a macroscopic level by a time-dependent response. Considering 
the importance of this phenomenon for the stiffness and the strength of clayey soils, 
it is necessary to take it accurately into account in the modeling of constructions. 

The viscous behavior of fine soils has been the subject of numerous experimental 
and numerical works [ADA 82, AUB 86, BJE 67, BOR 85, DES 87, FOD 97, GRA 
83, HIC 85, JAM 79, KAT 84, MES 77, SHI 69, SIN 68, TAV 78, VAI 77, YIN 99, 
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YIN 06, ZIE 74, ZIE 75]. Laboratory testing consists mainly of triaxial and 
oedometer tests. The modeling is based on different concepts, mainly in the 
viscoplasticity framework. 

In this chapter, we present first a synthesis of experimental results showing the 
time-dependent behavior of soils and then the modeling concepts. For the latter, the 
attention will be focused on viscoplastic models developed in the framework of the 
overstress theory developed by Perzyna [PER 63, PER 66], which is mostly used in 
soil modeling. The implementation of these models in finite element programs will 
also be presented. 

7.2. Laboratory testing 

7.2.1. Strain rate influence 

Figure 7.1 presents the results of undrained triaxial tests produced on a bentonite 
clay at three different strain rates: 1.510-4/s, 610-6/s, 610-7/s [HIC 85]. We can see 
that the strain rate increase induces a deviatoric stress increase at any strain level. 
These results, presented in a 1, q/qmax diagram, give a single curve, demonstrating 
that the strain rate influence is quantitatively the same at any strain level. The 
relationship between qmax and log 1 is linear in the interval 10-3%/mn < 1 < 
102%/mn (Figure 7.2). For smaller strain rate values, the maximum strength qmax 
converges towards a constant value which represents the long term resistance of the 
clayey material. The maximum strength increase, for a ten-fold strain rate increase, 
varies between 4% to 12% for remolded clays and 6% to 16% for intact clays. 

 

Figure 7.1. Undrained triaxial tests on bentonite 



Viscoplastic Behavior of Soils     263 

 

 

Figure 7.2. Strain rate influence on undrained maximum strength  
of normally consolidated bentonite (NC 200) 

The strain rate effect can also be highlighted by triaxial tests with strain rate 
changes. Figure 7.3 shows results obtained by Graham et al. [GRA 83] on a natural 
clay. A sudden change in the strain rate induces a change in the material stress-strain 
relationship which converges gradually toward the curve corresponding to a loading 
at a constant strain rate equal to the last value and applied from the beginning of the 
test. This type of test allows the strain rate influence to be measured for a given soil, 
without the interference of any discrepancy in natural properties, as is the case when 
comparing test results obtained from several different specimens. 

 
The effective stress paths are also affected by the strain rate (Figure 7.4). 

However, the failure criterion qmax = Mp’ appears to be independent of the strain 
rate. Other researchers have also come to the conclusion of the independence of the 
friction angle with the strain rate in a drained or undrained condition. In the case of 
drained conditions, we have to recall that only a small number of test results 
exploring the strain rate effect are available due to a duration which is too long in 
this type of testing. In undrained conditions, the strain rate has to remain small 
enough in order not to generate pore pressure gradients inside the specimens. These 
experimental difficulties can sometimes lead to contradictory results, but we can 
admit that, with a first approximation, the friction angle is independent of the strain 
rate. 
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Figure 7.3. Strain rate influence on the behavior of a natural clay  
along triaxial and simple shear tests [GRA 83] 

 

Figure 7.4. Strain rate influence on the effective stress path during undrained  
triaxial tests on normally consolidated bentonite (NC 200) 
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7.2.2. Creep tests 

7.2.2.1. Creep during consolidation tests 

The test results show that the creep strain amplitude during isotropic secondary 
consolidation, i.e. at constant effective pressure, is usually small. Under anisotropic 
consolidation, the creep strains are bigger and increase with the deviatoric stress 
level. Oedometric tests show a linear relationship between the variation of the void 
ratio and the logarithm of time during secondary consolidation. The slope of the 
relation is called c . Jamiolowsky [JAM 79] considers that this coefficient is 
independent of time, loading increment and specimen size. Mesri et al. [MES 77] 
have shown that c  is a function of the loading history and in particular of the 
overconsolidation degree (Figure 7.5). In the normal consolidation domain, ratio 
c /cc can be considered constant and comprise between 0.03 and 0.05 for mineral 
clays [MES 84]. 

 

Figure 7.5. Influence of the consolidation stress on the secondary compression coefficient 
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Compression index cc has been found to be independent of time; this is not the 
case for consolidation stress ’p which increases with the strain rate (Figure 7.6 
[GRA 83]). The dependency can be written in the following form: 

( ’p)t/( ’p)t0 = (t0/t) c /cc or ( ’p) /( ’p) 0 = ( / 0) c /cc 

 

Figure 7.6. Strain rate influence on the determination of the consolidation stress 

We can directly link these results to Bjerrum’s diagram in Figure 7.7 [BJE 67]. 
The void ratio decrease during secondary consolidation gives the material an 
overconsolidated behavior when subjected to a stress increment. The density 
increase provokes a hardening of the material and a shift of the elastic limit during 
the creep phase. 
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Figure 7.7. Void ratio evolution with the consolidation time [BJE 67] 

7.2.2.2. Drained triaxial creep 

Drained triaxial creep tests show the evolution of the volumetric and deviatoric 
strains with time. Normally consolidated clays have a contractant volume change 
during creep (Figure 7.8) [SHI 69] while strongly overconsolidated clays can exhibit 
dilation with time (Figure 7.9) [AKA]. 
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Figure 7.8. Triaxial creep tests at constant mean stress [SHI 69] 

 

Figure 7.9. Drained triaxial creep tests [AKA 77] 
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During creep tests, three phases in strain evolution with time can be observed: 

– a primary creep at decreasing strain rate; 

– a secondary creep at constant strain rate; 

– a tertiary creep at increasing strain rate. 

The primary creep phase always exists during a given period of time 
immediately following the application of the constant stress. The tertiary creep 
phase exists only for elevated applied stresses leading to the failure of the specimen. 
In drained creep tests, it appears only for stress values close to the maximum 
strength of the material (Figure 7.10: creep tests on London Clay performed by 
Bishop and Lovenburry [BIS 69]). The existence of the secondary creep phase 
depends on the nature of the material and on the loading amplitude. Most of the tests 
leading to failure show a direct change from primary to tertiary creep without a 
secondary creep phase [TAV 78]. 

 

Figure 7.10. Drained triaxial creep tests on London Clay [BIS 69] 
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Singh and Mitchell [SIN 68] have proposed the following relation between axial 
deformation and elapsed time during drained or undrained triaxial creep tests: 

miq
1 )

t
t(Ae  

where , m and A are soil parameters. They are not intrinsic parameters but depend 
on the stress path. This relation can be used to describe only the primary creep 
phase. Tavenas et al. [TAV 78] have generalized Singh-Mitchell’s relation by 
separating volumetric and deviatoric strains. They propose the following relations: 
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From these two equations, we can derive the plastic flow rule: 

)'(g
)'(f

d

v  

We can see that the flow rule is independent of time. This result has been 
obtained by other researchers, such as Fodil et al. [FOD 98] and Walker [WAL 69] 
on normally consolidated clays (Figure 7.11). Aka et al. [AKA 75] have obtained 
similar results from tuff samples. They proposed a viscoplastic flow rule which can 
be written: 

v/ d = 1/  (M-q/p) 

This is similar to the flow rule proposed by Nova in his elastoplastic model (see 
Chapter 3). Dilatancy is also obtained during creep tests for q/p > M.  
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Figure 7.11. Drained triaxial creep tests on normally consolidated clay [FOD 98] 
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7.2.2.3. Undrained triaxial creep 

The term undrained creep is applied to tests for which a deviatoric stress is 
applied and kept constant with time in undrained conditions. As pore pressure 
evolves with time, an evolution of the effective stress tensor is provoked. The term 
creep is therefore incorrect in the strict sense, since the state of effective stress does 
not stay constant, but numerous results for this kind of test are available and also 
show a viscous behavior of the soils. Figures 7.12 to 7.15 present results obtained 
from a normally consolidated bentonite [ELG 82, HIC 88]. They show the existence 
of a primary creep phase which can be adequately represented by Singh-Mitchell’s 
equation, and a tertiary creep phase for elevated values of the applied deviatoric 
stress. The pore pressure increases with time, creating a decrease of the mean 
effective stress. Large deformations develop when the effective stress state reaches 
the condition q = Mp’, which confirms that the failure condition expressed in 
effective stresses is time-independent. 

 

Figure 7.12. Undrained triaxial creep tests on normally consolidated bentonite (NC 200) 
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Figure 7.13. Undrained triaxial creep tests on normally  
consolidated bentonite (NC 200). Pore pressure evolution 

 

Figure 7.14. Undrained triaxial creep tests on bentonite. Effective stress paths 
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Figure 7.15. Axial strain rate evolution during an undrained  
creep test on normally consolidated bentonite (NC 200) 

7.2.2.4. Stress relaxation tests 

Fewer results are available for this type of test than for creep tests. Figure 7.16 
presents results obtained from a bentonite [HIC 85]. In the three tests, an axial 
deformation was first imposed in undrained condition and at a strain rate equal to 
6.10-6/s and then maintained as constant. We can observe a decrease in the deviatoric 
stress with time. The decrease appears to be at first proportional to log(t) and then 
becomes smaller for elapsed time higher than 700 mn. These results are similar to 
those presented by Murayama et al. [MUR 64], Lacerda et al. [LAC 73], Tjong Kie 
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[TJO 85] who also obtained a linear relationship between the deviatoric stress 
change and log(t). More recently, Fodil et al. [FOD 97, FOD 98] reached the same 
conclusion from drained stress relaxation on a normally consolidated natural clay. 
They showed that the deviatoric stress decrease q/q was higher for a higher strain 
rate during initial loading and independent of the applied strain (Figure 7.17). This 
last result confirms that the viscosity influence is independent of the stress and strain 
level. 

 

Figure 7.16. Stress relaxation test on normally consolidated bentonite (NC 200) 

 

Figure 7.17. Stress relaxation test on a natural clay [FOD 98] 
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7.2.2.5. Synthesis of time-dependent behavior 

All the test results obtained from the bentonite are gathered in the plane p’,q, 
considering the different effective stress paths (Figure 7.18) [HIC 85, HIC 88]. All 
the stabilized stress states during creep and stress relaxation tests give a single curve, 
similar in shape to those obtained for undrained constant strain rate loading tests and 
located to the left of all of them. We can assume that this curve represents the long 
term behavior of the clay in undrained conditions. Its junction with the line q = Mp’ 
gives the long term maximum strength. Similar results obtained from undrained 
creep tests have been presented by Roscoe et al. [ROS 63].  

 

Figure 7.18. Effective stress paths during undrained creep and stress  
relaxation tests on normally consolidated bentonite (NC 200) 

Furthermore, a single relation q – 1 for a given strain rate has been found. These 
results have been confirmed by the work by Vaid [VAI 88] on the Haney Clay. If 
the results are plotted in the q/qmax – 1 diagram where qmax is the maximum strength 
for a given strain rate, all the results lead to a single curve, independent of time, 
which allows us to characterize the elastoplastic behavior independently of the 
viscous properties. The latter can then be measured by comparison to this time-
independent reference behavior. The number of available results in drained 
condition is not sufficient for the analysis to be extended to the intrinsic 
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characteristics of clayey materials. This division of the stress-strain relationship in 
two parts, dependent and independent of time, is useful from the perspective of 
developing constitutive models for viscous materials. 

7.3. Constitutive models 

7.3.1. Modeling framework 

Several theories have been developed in order to represent the time-dependent 
behavior of fine soils. Some of the models introduce time explicitly in the 
formulation [MAT 86, SEK 84], but most of them consider it implicitly through the 
hardening parameter evolution. Generally, the deformations are decomposed in two 
parts: elastic and anelastic. The anelastic deformations are mostly strain dependent 
(viscoplastic), but some authors assume that a part of them are time-independent 
(plastic) [BOR 85, KAL 85]. 

Most of the models assume the existence of an elastic domain, but some others 
assume that anelastic deformations take place immediately at the beginning of the 
loading [KUT 92]. The elastic part can be time-dependent [MUR 64], but for 
simplicity’s sake, it is mostly assumed to be time-independent, since the viscous 
effects are more marked in the plastic domain.  

Numerous models have been developed in the framework of viscoplasticity 
theory. The strain tensor is decomposed into two parts: elastic and viscoplastic 
[ADA 82, DES 87, KUT 92, ZIE 74]. The viscoplastic part is governed by a 
function which controls the magnitude of the viscoplastic strain rate tensor S and a 
potential which gives the direction of this tensor: 

gSvp  

Function S is determined in most of the models for soils by Perzyna’s 
formulation [PER 63, PER 66], but some authors use the concept of the time 
equivalence [YIN 99] or the “time line” [BOR 85, KUT 92]. 
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7.3.2. Perzyna’s formulation 

Perzyna’s formulation is widely used in the development of viscoplastic models 
for soils in order to model monotonous as well as cyclic loading, as for example 
[ADA 82, AUB 86, BOR 85, DES 87, KAT 84, KOD 83, MAT 86, OKA 88, YIN 
99, YIN 07, ZIE 75]. 

The success of this theory is due to several factors: 

– the definition of a yield surface is easy, and is often derived from elastoplastic, 
time-independent models; 

– it allows us to reproduce the time-dependent soil behavior along a large variety 
of loading paths; 

– the mathematical formulation is well adapted to the numerical modeling and its 
implementation in finite elements programs; 

– the parameter identification from laboratory testing is usually straightforward. 

Perzyna assumes that the strain increment tensor can be decomposed into an 
elastic and a viscoplastic part: 

vpe  

where e and vp correspond respectively to the elastic and the viscoplastic strain 
increment tensors. 

The stress increment tensor is linked to the elastic strain increment tensor by the 
elastic matrix D: 

eD  

Viscoplastic strains are created when the state of stress goes beyond a given 
limit, defined by the yield function f which depends on the stress tensor  and 
hardening parameters .  

f( ) = 0 

The hardening parameters are assumed to depend on the viscoplastic strains vp. 
The viscoplastic strain increment tensor is determined in the following way: 

g)F(vp  
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where (F) is the viscous nucleus and  a viscosity parameter. The direction of the 
viscoplastic strain increment tensor is given by the plastic potential g. F is a scalar 
which represents the overstress corresponding to a measure of the distance between 
the current state of stress and the current yield surface. In the case of associated flow 
rule, the plastic potential is the same as the yield function: g = f; in most cases, the 
two functions are different and the model is non-associated.  

The viscous nuclear  is a monotonous increasing positive function of F and is 
equal to zero when F becomes negative or zero. This means that the plastic yield 
surface f defines a limit surface between the elastic domain for f < 0 and the 
viscoplastic domain for f > 0. F is often chosen as being the value of f( , ),  being 
the current state of stress at time t and  the current values of the hardening 
variables at the same time t. F is therefore positive when the state of stress is located 
beyond the limit yield locus and viscoplastic strains can develop. 

Function  take different forms in the existing viscoplastic models. For soils, the 
usual expressions are the following: 

1)
F
F(Exp)F(

)
F
F()F(

N

0

N

0
 

N is a constitutive parameter, and F0 is a constant with the same dimension as F.  

Therefore, the extension of an elastoplastic model to a viscoplastic model 
requires only the definition of function f.  

The evolution law of the hardening variables is written: 

d = l( ) 

Usually, the following form is chosen: 

l( ) = h( ) <f( )> 

which allows us to assure that the hardening variables vary if and only if there are 
viscoplastic deformations. When the state of stress is outside the yield locus, the 
hardening will develop and the yield locus will evolve according to the dependency 
of the viscous nucleus to the hardening variables. For example, in the case of a creep 
test, the state of stress remains fixed, while the yield surface evolves with time and 
comes closer to the stress point in the stress state. There is therefore a progressive 
decrease of the distance F between the yield locus and the stress point and, as a 
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consequence, a progressive decrease of the viscoplastic strain increment with time. 
This corresponds to the primary creep behavior. After a long period of time, the 
yield surface will eventually reach the stress point and the viscoplastic deformation 
will stabilize. If the stress point is located on or outside the limit surface 
corresponding to the failure condition, the viscoplastic deformation will 
continuously increase with time, and no stabilization can be obtained.  

7.4. Numerical integration of viscoplastic models 

Zienkiewicz et al. [ZIE 74] have proposed an explicit scheme for the integration 
of viscoplastic models. The scheme is simple, requiring only the elastic stiffness 
matrix, the non-linearity being put in the second member. The main problem with 
this scheme is that it requires very small time steps in order to assure stability 
conditions. Hughes et al. [HUG 78] have proposed an implicit scheme which 
depends on only one parameter in order to avoid numerical instability. The 
disadvantage of this method, however, is that it requires us to solve a non-linear 
problem at each time step. 

The integration of viscoplastic models may be performed from the following 
equations: 

)(D vp    

])1[(t vp
1n

vp
n

vp   

 = 0 corresponds to an explicit scheme and requires a small time step t in order to 
avoid any problem of instability. An implicit scheme is obtained for  > 0. Since the 
solution depends on the strain increment at time tn+1, it is necessary to use an 
iterative calculation. For  > 0.5 the scheme is unconditionally stable, the choice of 

t depends only on the required precision. 

The two equations lead to: 

1 1
1 1 (1 ) n

vp vp
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which can be written: 

n
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The resolution of the equation is carried out by using an iterative Newton-Raphson 
scheme, with the following algorithm: 

– determination of i from the relation: 

i
n

i PqF  

– actualization: 

1i
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– back to the first step until the condition of convergence is obtained for a 
requisite small value of i. 

7.5. Viscoplastic models for clays 

7.5.1. Choice of the viscoplastic mechanisms 

The central idea here is to choose a yield surface which provides the same 
response as an elastoplastic model for very small viscosity values or for very low 
strain rate loading. For this purpose, the expression of f( ) is kept similar to that 
corresponding to an elastoplastic model. Tavenas et al. [TAV 78] present the results 
of drained creep tests by plotting isovolumetric and deviatoric strain rate curves in 
the p’,q plane (Figure 7.19). We can see that the volumetric strain rate lines maintain 
a similar shape as the yield surface defined in elastoplasticity for this type of 
material (see Chapter 2) and that the inner domain reduces in size when the strain 
rate decreases. 
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Figure 7.19. Triaxial creep tests. Iso-strain rate contours 
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As for the flow rule, experimental works, as presented previously, have shown 
that it could be considered as independent of time and dependent only on the state of 
stress. Several authors consider that flow rules proposed in elastoplasticity and 
derived most of the time from the Cam-Clay model can also be applied in 
viscoplasticity. 

7.5.2. Viscoplastic models derived from the elastoplastic Cam-Clay model 

Several researchers have developed viscoplastic models for clay based on the 
concepts of the Cam-Clay model. Thus, Adachi et al. [ADA 82] developed a 
viscoplastic version of the initial Cam-Clay model, keeping the expressions of the 
yield surface and the plastic potential, as well as the hardening variable v

p. They 
assumed an associated flow rule and considered an exponential function for the 
viscous nucleus : 

(F) = c0 exp(m’F)  

m’ = (  – )/c (1 + e) 

Figure 7.20 shows simulations given by the model for undrained triaxial creep 
tests. 

 

Figure 7.20. Comparison between experimental data and numerical 
 simulations by Adachi et al. model [ADA 82] 
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Recently, Yin et al. [YIN 06, YIN 07] developed a viscoplastic version of the 
modified Cam-Clay model with the purpose of developing inverse methods for in 
situ identification of soil viscous parameters (see Chapter 11). The authors define a 
static yield criterion “fs” which represents a reference yield surface for the material. 
Its initial shape depends on the consolidation pressure “pc

s”. The expansion of the 
static yield surface, which represents the hardening of the material, is expressed by 
the variation of the consolidation pressure due to the inelastic volumetric strain 
“ v

vp”: 
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A dynamic yield criterion “fd” is defined to represent the current state of stress 
and is expressed as follows: 
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Based on the values of “pc
s” and “pc

d”, the scaling function “μ (F)”, which 
controls the amplitude of the viscoplastic strain rate, is taken as a power form or 
exponential form as follows: 
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where, “μ” and “N” are the viscous parameters of the model. The exponential type 
of function is closer to the test results which show that the stress evolution for a 
given deformation is quite proportional to the logarithmic strain rate Furthermore, it 
allows us to limit the increase of the deviatoric stress with the strain rate, which 
therefore enlarges the domain of application of the viscoplastic model, as already 
pointed out by Fodil et al. [FOD97].  
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The flow rule for the viscoplastic strain rate, in a simple case of infinitesimal 
strain field, follows the form proposed by Perzyna: 

ij

dvp
ij

f
F  

where the MacCauley function is: 
0
00

FforF
Ffor

F . 

The principles of the model are illustrated by the effective stress path of an 
undrained triaxial test presented in Figure 7.21. The stress state “A” represents an 
initially normally K’0 consolidation state. Along the loading stress path “A-B-C”, 
viscoplastic volumetric strains occur during loading and cause the static yield 
surface to expand in the stress space. As point C approaches C’, corresponding to 
the critical state, the soil is subjected to a constant amount of overstress which 
provokes an increase of the deviatoric strain at constant strain rate, without any 
volumetric strain. 

As for the creep stress path “B-D”, the static yield surface expands with the time-
dependent plastic volumetric strain, function of the amount of overstress. If the static 
yield surface can reach the actual stress point, an equilibrium is obtained and the 
strain will stabilize with time. If not, the effective stress will continue to evolve until 
it reaches the critical state at point D’ where it will stop because no plastic 
volumetric strain will develop, but deviatoric strain will continue to increase. 

Taking into account the elastic stress-strain relations, the constitutive equations 
of the viscoplastic model for normally consolidated clays are derived as follows: 
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Figure 7.21. Schematic behavior of the elasto-viscoplastic modified Cam-Clay model during 
CAU triaxial compression and triaxial creep tests 

The comparison between experimental [HIN 96] and numerical results, 
presented in Figure 7.22, shows a good agreement in the evolution of the deviatoric 
stress as well as in the excess pore pressure response during undrained triaxial tests 
at different strain rates.  
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Figure 7.22. Comparison between predicted and experimental results  
for constant strain rate triaxial tests on Sackville clay 
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The evolution of the normalized maximal deviatoric stress qmax* (maximal 
deviatoric stress for each rate divided by the one corresponding to the greatest strain 
rate) as a function of the strain rate, presented in Figure 7.23, shows the effect of the 
strain rate on the undrained shear strength. The experimental results correspond to 
constant strain rate tests on remolded Haney clay under strain rates varying from 
0.0001 to 10%/min [VAI 77] and on undisturbed Osaka alluvial clay under strain 
rates of 1, 0.021 and 0.00078%/min [ADA 85]. For tests with medium-sized strain 
rates, the strain rate effect can be represented by the relationship proposed by 
Sheahan et al. [SHE 96]: 

0
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q
q  

where the indexes a and a0 represent two values corresponding to two different 
strain rates; qf, the undrained shear strength and a0, a strain rate parameter.  

As shown in Figures 7.22 and 7.23, the model can take into account the strain 
rate effect on the undrained shear strength in a large range of strain rate, as well as 
the decrease of this effect for small values of the strain rate (Haney clay samples). 
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Figure 7.23. Comparison between predicted and experimental results 
 for constant strain rate triaxial tests 
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Figure 7.24 shows numerical simulations of undrained creep tests on Sackville 
clay. For low applied stress, the strain increases slowly and seems to converge 
toward a stabilized value, as for a higher applied stress the strain rate is higher and 
the strain continues to increase with time. Pore pressure increases with time and 
converges toward a stabilized value, dependent on the applied deviatoric creep 
stress. 
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Figure 7.24. Comparison between predicted and experimental results  
for creep triaxial tests on Sackville clay 
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Results of stress-relaxation tests on Flumet clay in a triaxial apparatus are 
provided by Fodil et al. [FOD 97]. An initial loading with an axial strain rate of 
0.15%/h was applied. The stress-relaxation tests were then performed on the same 
sample for each test at about 1%, 3.5% and 6.7% of axial strain and lasted at least  
24 h. The viscoplastic model predicts the results of the stress-relaxation tests 
reasonably well in terms of deviatoric stress decrease versus time, as shown in 
Figure 7.25. 
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Figure 7.25. Comparison between predicted and experimental results  
for stress relaxation tests on Flumet clay 

Kodaissi [KOD 83] has developed a viscoplastic model based on the 
elastoplastic Hujeux’s model, which has introduced a second hardening variable 
linked to the deviatoric plastic strain d

p in the yield function of the Cam-Clay 
model: 

f( , ) = q – Mp (1 – b Ln p/pc) d
p /(a + d

p) 

The plastic potential function is the same as in the Cam-Clay model: 

g(p,q) = q/Mp + Ln p 
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The direction of the plastic strain increment is given by the normal to the plastic 
potential surface at the actual stress state. The overstress F is equal to the value of 
f( ) where is the actual state of stress.  is a power function of F: 

(F) = (f( , )/f0)n 

The evolution laws of the two hardening variables are: 

d v = d v
p - Hv/ 2 v 

d d = d d
p – Hd/ 2 d 

with Hv = f/ v
p =  Mp d

p/(a + d
p) 

and Hd = f/ d
p = a Mp (1 – Ln p/pc)/(a + d

p)2 

The viscoplastic strain increment takes the following form: 

d vp = 1/ 1 < (f( , v, d)/f0)n > ( , v, d) 

where ( , v, d) is the plastic potential gradient.  

Therefore, the viscosity is controlled by three parameters: n,  and 2. The 
parameter determination is carried out in two steps: firstly, the determination of the 
parameters common to the elastoplastic and viscoplastic models from triaxial and 
oedometer tests performed at small strain rate; secondly, the determination of the 
viscous parameters by curve fitting from test results which allow us to isolate the 
viscous behavior, such as in drained creep tests. 

Figures 7.26 and 7.27 show some examples of simulations. We can see that the 
model can represent reasonably well drained and undrained creep tests, leading to 
strain and pore pressure stabilization. 
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Figure 7.26. Comparison between experimental data and numerical simulations  
of a drained creep test by Kodaissi model [KOD 93] 

 

Figure 7.27. Comparison between experimental data and numerical simulations  
of an undrained creep test by Kodaissi model [KOD 93] 
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7.5.3. Cyclic viscoplastic modeling 

A viscoplastic version of Hujeux’s multimechanism elastoplastic model (see 
Chapter 4) has been developed by Aubry et al. [AUB 86] in order to reproduce time-
dependent behavior during cyclic loading. The viscoplastic strain increments 
corresponding to each deviatoric mechanism k are written: 

d dk
vp = < (fk/f0)n > k

d 

d vk
vp = < (fk/f0)n > k

v 

The evolution law of the hardening variable rk linked to the deviatoric plastic 
deformations of each mechanism k is given by: 

drk = < (fk/f0)n / d > (1 – rk)2/a 

The isotropic mechanism produces purely isotropic viscoplastic deformations: 

d v
vp = < (f4/f0)n / v > p/3dpc 

The viscous properties are introduced by means of the three parameters n, d and 
v. Figure 7.28 shows the modeling of the strain rate influence during undrained 

triaxial testing. Figures 7.29 and 7.30 present simulations of cyclic tests performed 
by the model. 

 

Figure 7.28. Strain rate influence during an undrained triaxial test [AUB 86] 
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Figure 7.29. Undrained cyclic triaxial tests: influence of the cycle frequency [AUB 86] 

 

Figure 7.30. Undrained cyclic triaxial test on Karlsruhe Clay: relation between  
axial strain and pore pressure [AUB 86] 
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7.6. Conclusion 

Laboratory and in situ testing have shown the viscous behavior of fine soils. 
More recent works [TAT DIB] have also demonstrated that granular materials, such 
as sands, also have a time-dependent behavior, even if the amplitude of the strain 
evolution with time is less marked than in clay. Most of the developed models 
adapted for describing the clay’s viscous behavior use an implicit formulation of the 
time-dependency through the evolution of the hardening variables. Among them, 
models using Perzyna’s overstress theory are the more numerous, since this 
approach links in a straightforward manner elastoplasticity and viscoplasticity 
through the definition of a yield surface and a plastic potential function, and can also 
be easily implemented in finite elements codes. The examples presented here have 
shown that these models can reproduce in a satisfactory way monotonic as well as 
cyclic loading. However, their use for modeling real civil engineering structures still 
remains limited, mainly due to the necessary calibration of the model which requires 
additional parameters in comparison to a similar elastoplastic model.  
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Chapter 8 

Damage Modeling of Rock Materials  

8.1. Introduction 

In quasi-brittle rock materials exhibiting fracturing [DAR 95], non-linear 
mechanical behavior can be determined from the kinetics of pre-existent and/or 
loading initiated mesocracks. The term “meso”, traditionally used to designate the 
intermediate scale between “macro” and “micro”, is currently used to indicate that 
the scale of defects and the related representative volume are accessible to the naked 
eye. However, this term should be handled rather carefully. In fact, among 
sandstone, limestone and granite, which could be classed in the family of quasi-
brittle rocks, and also different concretes which are considered mechanically similar, 
there are a number of discriminating factors related to the geological formation in 
the case of rocks and to the manufacturing process in the case of concrete. This 
implies that there are different types of microcracks from one material to another 
and that various physico-chemical mechanisms play a role in deformation and 
microcracking. 

Selecting either “macro” and “meso” scales depends also on the nature of the 
engineering problem which needs to be solved. In the context of constitutive laws 
including damage effects, a representative volume (a material point of structure 
body) is generally measured in centimeters whereas the size of heterogenities 
(grains, defects) is in millimeters. This situation corresponds to laboratory testing 
conditions and generally used sample sizes. Transposing laboratory results and their 
derived constitutive models to the scale of rock massifs measured in kilometers 
involves not only a rigorous scale analysis but also the fine art of engineers. In its 
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basic equations, continuum mechanics does not explicitly invoke the notion of scale, 
but the scale analysis has become essential today whenever constitutive modeling of 
heterogenous real materials, such as natural rocks or man-made concrete, is 
concerned. 

Furthermore, the word “damage” which invokes volumetric or surface meso and 
micro defects inside the representative volume of a considered material acquires 
particular methodological significance in the field of damage mechanics, a discipline 
which has been developed since the 1960s whose objective is to include the 
phenomena of progressive deterioration in the description of the thermomechanical 
state of a medium and its evolution. 

This discipline is based on the thermodynamics of irreversible processes where 
the dissipative evolutions (such as viscoplasticity with its hardening mechanisms, 
and the deterioration which is of interest here) are described with so-called internal 
variables; their values at time t summarize, condense and characterize the inelastic 
response of the medium. Readers interested in a greater description of this 
methodology, widely dominant in the fields of plasticity, viscoplasticity, and 
extended to certain domains of fracture mechanics, can refer to the papers by  
[BAT 75], [GER 83]. The internal state variables are involved only in constitutive 
relations; they are not involved in equilibrium relations or in boundary conditions. 
These internal variables are generally not controllable in standard laboratory tests; in 
most cases, they represent quantities related to the endured phenomena. Internal 
variables may possibly be characterized quantitatively, but the corresponding 
microstructures must be deeply examined, which means that the phenomenon to be 
studied must be captured in a fixed configuration by the use of pertinent instruments. 

For example, we can observe with a scanning electron microscope (SEM) inter- 
and intragranular phenomena in crystalline materials (configurations of dislocations, 
microcracks) for a given state of plastic hardening after unloading and a careful 
sample preparation. Today, it is even possible to perform mechanical tests inside the 
SEM so that we can observe the mechanisms in evolution. 

For a given mesofissuration state within a brittle material, we can approach the 
in situ damage by examining the mesostructure and by counting the number of 
cracks in a part of the specimen. This provides a better evaluation of the applied 
theoretical scheme as compared to the existing mechanisms. The choice of internal 
variables is very crucial; it always represents a compromise between the existing 
physical phenomena and the degree of complexity of the model. Internal variables 
are also called “hidden variables”, because they are not directly accessible under a 
phenomenological approach. They are assumed to express the material evolution at 
the meso- and microstructural scales during the evolution of a dissipative process.  
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Damage mechanics, as part of the non-linear mechanics of materials and 
structures, has undergone several stages of development, some successful and others 
not. Nowadays, the purely phenomenological approach seems less popular. At the 
same time, the purely micromechanical approach, using homogenization techniques 
for the transition from microscale to macroscale, leads to models which appear 
interesting but are frequently limited to specific loading paths. Furthermore, they are 
usually not applicable for modeling large geotechnical structures without 
adaptations which take them too far from their initial microstructural hypotheses.  

Another problem is identifying their parameters as well as their validation in a 
context different from the one used for their formulation. 

This chapter is devoted to an approach to modeling non-linear phenomena 
specific to pseudo-brittle geomaterials and linked to the development of mesocracks. 
This approach will be formulated in the framework of damage mechanics with 
internal variables, in order to propose a three-dimensional rigorous description of the 
irreversible evolutions and to include micromechanical knowledge within a 
relatively simple description, identifiable and applicable to the calculation of 
geotechnical structures for the petroleum industry, energy disposals, civil 
engineering, etc. The main idea is to propose an intermediary direction and a 
synthesis between, on the one hand, entirely phenomenological approaches and, on 
the other hand, entirely micromechanical approaches. Furthermore, knowing that the 
difficulty of modeling the behavior of quasi-brittle materials resides in the large 
number of phenomena involved, such as volumetric dilatancy, induced anisotropy, 
irreversible deformations, hysteretic effects due to the closing of the mesocracks and 
the friction along the closed mesocracks, we will propose here a modeling with an 
architecture that includes three levels of complexity as follows: 

– a first level describing, in the framework of an internal variables approach, the 
progressive degradation through mesofissuration of quasi-brittle geomaterials, 
inducing an anisotropic behavior, a volumetric dilatancy and macroscopic effects 
such as irreversible deformations; 

– a second level adding a rigorous analysis of the phenomenon which restores 
certain initial properties, such as the elastic moduli in directions perpendicular to the 
closed mesocracks, due to the closing of the defects. We can say that this level 
corresponds to the modeling of a “unilateral normal” behavior; 

– a third level accounting for the modeling of the behavior linked to frictional 
effects (blocking and dissipative sliding) that concern the two sides of the closed 
mesocracks. At this level, the constitutive equations are similar to formulating 
anisotropic plasticity and are coupled to the two first levels in order to link sliding to 
damage.  
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The whole model forms a 3D theory, coupling plasticity and damage. It can be 
seen as a particular expression of the general non-linear theory proposed by Lubarda 
and Krajcinovic [LUB 95] for a large class of engineering materials. 

The first level of modeling will be presented in section 8.2 and the second and 
third levels in section 8.3. Section 8.4 will present some aspects of the mathematical 
formulation of each level and of the coupled model, as well as some applications in 
geomechanics. The formulation at each level will be compared to experimental data 
corresponding to physical problems in relation to the considered level. 

Throughout the chapter, the normal components of the stress and strain tensors, 
corresponding respectively to the tension and the extension, are considered to be 
positive. The hypothesis of small deformations is assumed and is considered 
acceptable in the context of pseudo-brittle materials, even if their deformability is 
much higher under compressive loading, especially for high confinements, rather 
than under tension.  

8.2. Modeling of damage by mesocracks and induced anisotropy  

Cohesive pseudo brittle geomaterials are characterized by a specific inelastic 
deformation mechanism resulting from nucleation and growth of mesocracks under 
mechanical loading. Its orientation-dependent character leads to the apparition of 
induced anisotropy if the material is initially isotropic. Otherwise, initial anisotropy 
(formation, manufacture) interacts with induced anisotropy, which produces a 
complex superimposed and possibly evolving anisotropy. 

In the following section, we will consider an initially isotropic material. 
Anisotropy will be induced by a set of parallel mesocracks under loading. The 
induced anisotropy can evolve with damage progress. Particular care is needed in 
choosing the internal damage variables in order to take into account the induced 
anisotropy. 

8.2.1. Preliminaries: damage variables and some micromechanical bases  

The damage variable in question must reflect, in its mathematical form, the 
essential features of the damage mechanism considered, particularly the orientations 
and the density of mesocracks. It has been proven [DRA 94] that a reasonable 
approximation can be obtained by using a second order damage tensor. A set of 
parallel plane cracks is generally characterized by its orientation (unit normal 
vector n ) and the discontinuity surface area inside the representative volume. Based 
on the dimensionless assumption of defect density, which is necessary, among 
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others reasons, for assuring geometrical and mechanical similarity between samples 
and structures of different sizes, and in relation to certain micromechanical analyses 
[KAC 80], the following scalar quantity is proposed: 
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where )(kS represents the area of the kth crack, V  a measure of representative 

volume and  a proportionality factor. For penny-shaped cracks with radius )(ka , 
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The preceding postulates lead to the following form of damage variable D , 

respectively, for one or several sets of mesocracks: 
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Symbol “ ” denotes a dyadic tensor product: nn corresponds to ji nn  in 
index notation. 

Expression (8.4) signifies that D  is a second order tensor with real components. 

Accordingly, there exists a system of orthogonal eigenvectors ),,( )3()2()1(  
associated with three positive eigenvalues )3()2()1( ,, DDD . In this coordinate 

system, the damage tensor is expressed by: 
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This form can be interpreted – with respect to that of (8.4) – in the following 
way: any configuration of mesocracks is equivalent, when condensed in a damage 
variable of the (8.4) type, to a set of three orthogonal systems of parallel 
mesocracks. 

Form (8.4) is thus restrictive (see also the analyses by Onat and Leckie, [ONA 
88] and by Lubarda et Krajcinovic, [LUB 93]). It is nevertheless also physical as it 
is issued from micromechanical analyses. We briefly summarize as follows some 
elements of such analyses.  

Consider a representative elementary volume (REV) in which mesocracks are 
embedded. The characteristic length of mesocracks is much smaller than that of the 
REV. The overall (macroscopic) strain of the REV is the sum of the strain of the 
intact solid matrix o  (assumed here to be elastic with the stiffness tensor O ) and 

that contributed by mesocracks c : 
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The symbols “:” and “.” denote the contraction products between two tensors or 
between tensor and vector. Vector )(ib represents a displacement discontinuity along 

the surfaces of the ith mesocracks: )(][ iub . Bracket ib denotes the average of 

b  for the meso-surface of discontinuity iS . The value of b  may be related to 
macroscopic stresses as follows [KAC 92]: 

)()()( .. iii nBb   (8.7) 

where )(iB is the compliance tensor of ith cracks. Its components can be obtained in 

some specific 2D and 3D cases.  

By contracting (8.6) with , and after expressing )(ib with the help of (8.7), 

we obtain the very useful expression of elastic energy (here the free enthalpy u) of a 
cracked elastic solid. Consider the penny-shaped cracks for which the expression of 
B can be obtained in a 3D elastic solid (see [KAC 92]), we can then explicitly 

calculate the change of elastic energy contributed by mesocracks: 
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with D  defined by (8.4) and  in the following form: 
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where oE  and o  are, respectively, Young’s modulus and Poisson’s ratio for the 
intact material.  

We can see that the rigorous description of mesocrack effects on mechanical 
behavior requires two internal variables to be introduced in the elastic energy 
function, a second order tensor and a fourth order tensor. Note that, in the general 
3D case where mesocracks are free to open, an energy approach using only the 
second order tensor D , without being rigorous, can provide a satisfactory 

approximation of the effective properties of cracked materials. However, when the 
case of closed cracks is considered, such as the case under compression-dominant 
stresses where mesocracks in certain orientations are forced to remain closed, the 
previous conclusion is no longer valid. In fact, when the opening component of 

b  vanishes, only the tangential component remains. The expression of u  
becomes: 

28 1
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u u D D
E

 (8.10)  

Note the absence of the factor 2/o before the term : : . As a 
consequence, and differently from case (8.8), the contribution of the term in  to 
the effective compliance can no longer be neglected. Extended description is thus 
needed to take into account the unilateral effects due to the closure of mesocracks. 
This aspect, an important contribution of micromechanics as a guideline for 
phenomenological modeling, will be discussed in section 8.3. 

The preceding analysis invokes a particular representation of elastic energy, 
which is a function of stress tensor (free enthalpy u), while in the constitutive 

model to be developed in the next section, a strain-based formulation will be 
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adopted using the free energy function w. The relation between the two formulations 
is obtained by Legendre’s transform: 

, , , , :w D u D   (8.11) 

Parameters D  and  being passive variables regarding this transformation, the 

previous conclusions can be extended to models derived from the thermodynamic 
potential w, which is the free energy per unit volume. 

It is worth noting that the constitutive model, once formulated, will reveal the 
components of D  through an evolution law. However, we should not interpret these 

in terms of microscopic density and orientation, (which can cover several 
morphological configurations at the mesoscale). The definition of D  is justified by 

micromechanics, but it will be used in a quasi-phenomenological theory. However, 
the theory constructed in this way presents some advantages with respect to some 
damage models such as those proposed by Ju [JU 89], Govindjee et al. [GOV 95]. In 
their models, the effective stiffness tensor itself is used as a damage variable, since 
the damage affects the equivalent elastic stiffness of the material. It seems to be 
preferable to identify the influence of mesocracks precisely through a 
micromechanics-based damage variable such as D , rather than to deal with the 

black box of overall stiffness. 

8.2.2. Anisotropic damage model (basic model – level (i)) 

Let us postulate the existence of a thermodynamic potential, formulated as the 
free energy w, a polynomial function of its arguments ),( D . The following 

assumptions allow us to specify the particular form of ),( Dw : 

– without damage, the solid matrix represents isotropic linear elastic behavior. 
Only as damage evolves, does anisotropic behavior appear with the association 
matrix-mesocracks. Related to decomposition (8.5) of damage tensor D  into three 

orthogonal systems, the induced anisotropy has an orthotropic form whose axes 
coincide with the principal axes of D ; 

– any simultaneous rotation of the principal directions of  and D  does not 

affect the expression of the free energy ),( Dw , which can be seen as an isotropic 

invariant. This justifies the use of tensor representation theory in terms of 



Damage Modeling of Rock Materials     307 

independent invariants for each of the arguments as well as of the mixed invariants 
such as ).(),.(),.(),.( 2222 DtrDtrDtrDtr  (see [BOE 78] for more details); 

– for any given state of damage, the behavior of material with cracks is linear 
elastic; ),( Dw is thus at maximum quadratic in . It is assumed that there is no 

interaction between mesocracks; this implies the linearity of w in D . These two 

assumptions allow us to eliminate the last two mixed invariants which were 
previously mentioned; 

– the damage itself can produce, according to preferential orientations of 
mesocracks, residual strains after unloading at 0  (and in a dual form residual 

stresses when 0 ). Thus, the expression of free energy w should contain a linear 

term in  and ).(: DtrgD . 

According to the preceding assumptions, the free energy function is expressed as 
follows [DRA 94]: 

DtrtrDtr

trtr

DtrgDw

.2.
2
1

,,

2

22  (8.12) 

Note that for 0D , expression (8.12) coincides with the free energy function of 

an isotropic linear solid (  and  being Lamé’s constants). Constants  and , 
introducing the two retained mixed invariants, are related to the degradation of 
elastic moduli with damage. We will see later (section 8.2.3) that  has a very clear 
physical meaning related to the diminution of shear modulus in the cracked 
orthotropic material. Modulus g controls residual effects: during a cycle of tension-
compression along the axis 3x  the value of 3  for 03  is 33 Dg , as 
illustrated in Figure 8.1 and given by the relation ),( D  in equation (8.13). 

Constant  is related to the degradation of Poisson’s ratio in some loading paths 
such as tension with damage evolution. 



308     Constitutive Modeling of Soils and Rocks 

  
Figure 8.1. Residual effect during a tension-compression cycle along axis  

By standard derivation of thermodynamic potential (8.12), the state laws which 
characterize, for 0D , the orthotropic elastic behavior of cracked material and the 

driving (thermodynamic) force DF associated with damage can be obtained as 

follows: 

..21.21 DDDtrDtrtrDg
w  (8.13) 

.2trg
w

F D  (8.14) 

The damage force DF physically represents the energy release rate due to 

mesocrack propagation. Two components can be distinguished; one related to the 
release rate concerning the residual effects gF D1 , and the other to the release 

rate associated with reversible effects .2)(2 trF D . 

As in classical plasticity theory and generally for any constitutive models for 
dissipative phenomena using internal variables, it is necessary to complete state laws 
(8.12)–(8.14) by complementary relations, which, in the present case, have to 
respond to the following questions: 

“When does the damage evolve?” (  criterion). 

“How does this evolution take place?” (  evolution law, to determine the form 
of damage kinetics). 
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Quasi-brittle materials are characterized by the dominant mechanism of 
mesocracking as illustrated in Figure 8.2. This so-called “splitting” mechanism is 
extensively observed even under compressive stresses with moderate confining 
pressure. Under compressive loading, the crack density is usually quite high 
compared to tensile loading, for which only a small number of mesocracks are 
developed and for which instability phenomena occur leading to the sample fracture. 
However, specific devices have been designed for tensile testing in order to delay 
bifurcation and better control diffused damage evolution; see Mazars and Berthaud 
[MAZ 89].  

  
Figure 8.2. Illustration of kinetics for brittle damage in  

uniaxial compression (a) and uniaxial tension (b) 

The splitting type kinetics can be defined by the mechanism characterized by 
formation and propagation of mesocracks in the direction perpendicular to those of 
tensile strains. This phenomenon motivated several authors to construct a 
pseudotensor of positive strains by extracting positive eigenvalues of the total 

strain tensor . Consult for example Lubarda et al. [LUB 94] for a detailed 

construction procedure. For this purpose, we introduce the fourth order projector 
. Let )(n , n = 1, 2, 3 be the three eigenvalues and ( )nq  eigenvectors of . The 

projection  and the extraction of are defined as follows: 

3
( ) ( )

( )
1

3
( ) ( )

( ) ( )
1

:

n n
ijkl ik jl n

n

n n
n n

n

P Q Q with Q H q q

H q q

 (8.15) 

with H ( ) as the Heaviside function: ( ) 1 0H x if x , 0)(xH otherwise. 
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In the current model, projector  is applied in order to decompose the energy 
release rate, associated with the residual effects 1DF , into one part 1DF , related to 

positive strains and another part 1DF  such as: 

ggFFF DDD 111  (8.16) 

This decomposition is performed for a precise objective. It is stated that the 
damage criterion is mainly controlled by the part 1DF of the energy release rate, 

i.e. by the contribution of positive strains to residual effects: 

0,21 DFFFf DDD   (8.17) 

Moreover, as we can see in (8.17), the damage variable D  is itself a parameter 

of damage criterion. The fact that only one part of the damage force is used in 
expressing the damage criterion can be seen as analogous to plasticity theory for 
which only one part of the stress tensor is used. For example, only the deviatoric 

stress trs 1
3
1  is used in the Von Mises criterion. Furthermore, when 

kinematic hardening is being studied, the driving force is modified again by the 
backstress X  in the definition of the reduced second invariant, 

2/1
:

2
1

XsXs . 

The damage criterion 0,/ DFfFC DD
D  written in the space of 

thermodynamic forces associated with the damage variable D  is now proposed in 

the following form using three invariants 11 .
2
1 DD FFtr , DFtr D .1  and tr D : 

1121 .
2
1, DDDDD FFtrDFFFf  

0. 1
1 DtrCCDFtrB o

D  (8.18) 

The damage mechanism considered is assumed to be evolving and time-
independent (non-viscous). The damage progressivity is assured by the fact that the 
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convex reversibility domain DC  in the space of components DF  is controlled by 

D  (this is similar to a hardening mechanism in plasticity). Without this 

progressivity, brutal damage is produced, formally analogous to perfect plasticity, 
but corresponding to the opposite physical phenomenon: the corresponding curve 

 exhibits a negative slope towards –  after the peak value of  related to the 

damage threshold oC . Parameter 1C  which controls the effect of D  thus represents 

the degree of progression of material degradation: the lower the value of 1C , the 
more brittle the behavior of the material will be; the higher it is, the more ductile the 
behavior will be (curve ). The role of parameter B is to take into account the 

sensitivity of the damage criterion with respect to the directional factors of damage. 

Since component 1DF  is a function of , it appears natural to write the 

damage criterion f = 0 in the strain space. With (8.13) it can also be drawn in the 
stress space. The conventional (axisymmetric) triaxial compression test being one of 
the basic tests in geomechanics, it is instructive to represent criterion (8.18) in the 
strain and stress spaces under axisymmetric conditions. An illustration is given in 
Figure 8.3 corresponding to the initial damage surface (for 0D ). 
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Figure 8.3. Simulation of initial damage threshold in the space of  
principal axisymmetric strains (stresses respectively) 

The normality rule applied to the evolution of damage allows us to show the 
essential factors related to the splitting type damage mechanism. In fact, by writing: 

0,
,21

DD

DDD

D
F

DFFFf
D  (8.19) 

and, by taking into account form (8.18) of f, we obtain: 

0 0 0 0

0 0
2 .

tot

D tot

if f or f and f

D
B D if f and f

tr

 (8.20) 
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We can see that the first term indicates the orientation of damage in the direction 
of positive strains (brittle type kinetics). The second term, DB , induces the effect of 

existing damage on the current evolution of damage. In the case of non-proportional 
loading with rotation of principal directions of , this corrective term avoids the 

overly strong bifurcation of mesocracks. 

The damage multiplier D  is determined from the consistency condition 

0)(totf  (as in plasticity theory). This condition implies that the current loading 

point must be and remain on the yield surface 0f . D  is given as follows: 

.2.2..

.2..

11
2 trDtrBCtrCtrDtrgBtrBg

trDtrgBtrg
D   

  
 (8.21) 

Without giving a detailed presentation of the algorithm for the local integration 
of the constitutive model at stake, it is useful to note that the calculation of the 
damage multiplier D , using an implicit scheme, implies the resolution of a linear 
system without an iterative procedure contrary to the procedure applied to plastic 
models. 

In this basic version of the model, damage is the only dissipation mechanism. 
The second law of thermodynamics implying non-negative intrinsic dissipation is 
reduced to the simple form: 

0: DF DD   (8.22) 

For normal dissipation systems, as is the case here, the condition 0D  can be 
verified if the dissipation potential is convex, non-negative, and if the reversibility 
domain ( DC ) contains the space origin. This last point has to be examined in the 

current model because the use of part 21 DDD FFF  in (8.18), instead of the 

total quantity DF , induces a translation of the damage surface in the space of D
ijF , 

as in plasticity with kinematic hardening of the Prager type. In an extreme case, this 
can lead to configurations in which the loading surface does not contain the origin. It 
will then be necessary, in view of the integration algorithm, to control the sign of 

D  at each loading step and for each integration point. 
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8.2.3. Comments on the identification of the model’s parameters and on its 
prediction capability 

A number of simple loading paths show the physical significance of the model’s 
parameters. Two cases are considered below: tension or compression inducing 
damage followed by shearing. Tension and compression are applied along the axis 

3x ; the shearing induces a distortion along this same axis. In the brittle splitting 
mechanism of mesocracks, we have in the first case one non-zero component of 
damage 3D  of D  and in the second case 021 DD . The effective elastic 

properties which are relevant in these loading paths, such as the axial Young’s 
modulus 3E , Poisson’s ratio 31  and the shear modulus 31 , are given as follows: 

(i) tension-shearing 

2
3

33 222
D

DE  (8.23) 

2
3

31
D

  (8.24) 

331 D   (8.25) 

(ii) compression-shearing 

1

2
1

3 2
2

D
D

E  (8.26) 

1

1
31 22 D

D
  (8.27) 

131 D   (8.28) 
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Figure 8.4. Determination of parameters E0, 0, E3 and from  
triaxial compression test (Pc – confining pressure) 
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The interpretation of , which defines the degradation of the effective shear 
modulus, as mentioned in the previous section, is confirmed using relations (8.25) 
and (8.28) with  < 0. 

The present damage model has been initially proposed in view of application in 
petroleum engineering. Identifying the model’s parameters was our major concern. 
Given the fact that axisymmetric triaxial compression tests are widely used in 
geomechanics and the testing procedure is well established, a procedure for 
identifying parameters based on this test is proposed. It is to be noted that the 
proposed model predicts non-linear damage/elastic orthotropic behavior, and 
involves only eight parameters ( , , , , g, Co, C1, B) whereas the linear 
orthotropic elasticity requires as many as nine parameters. For the present model, 
seven of the eight parameters can be determined from triaxial compression tests (all 
except B) including loading-unloading cycles. Typical loading path and schematic 
interpretations of stress-strain curves in terms of the given parameters are shown in 
Figure 8.4. This purely phenomenological scheme may be completed by relevant 
mesostructural analyses showing, for example, the morphology of mesocracks. 

The initial sample state is assumed to be intact and isotropic. Possible initial 
cracks, which do not generate anisotropic behavior, may be taken into account by 
translating the initial concave curve towards a non-linear domain, as shown in 
Figure 8.5. 

The initial (quasi-linear) slopes of curves 13 with 3  and 1  allow us to 
determine oE and ooE / ; see Figure 8.4. Lamé’s constants  and  are thus 
calculated by: 

o

o

oo

oo EE
12

,
211

 (8.29) 

Parameters ,  and g are determined from the non-linear part of the stress strain 
curves affected by damage and unloading paths which are assumed to be described 
by an orthotropic linear elastic behavior. Points B and B’ (Figure 8.4) have to be 
chosen sufficiently far from the initial point of the non-linear response, so that 
damage effects become significant (D1 = D2 > 0); however, these points should not 
be too close to the peak stress in order to avoid interference with the bifurcation 
phenomena. The effective properties involved in unloading paths are expressed as 
functions of quantities 1D and 1D : 

1

2
31

1

2
2

3 2
,2

L
L

L
L

E   (8.30) 
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with 11 2 DL , 12 DL . 

  
Figure 8.5. Translation of initial porosity effect towards non-linear domain 

From (8.13) we can write: 

31

131333
1 2

2E
Dg   (8.31) 

At points A and A’, representing the initial damage threshold, we have: 

01 o
A Cg   (8.32) 

The verification of criterion (8.18) at B (corresponding to damage value D1 ) 
leads to: 

02 111 DCCg o
B   (8.33) 

For a given value of D1, the five parameters , , g, Co and C1 can be obtained 
from the system of four equations (8.30)–(8.33). Therefore, the phenomenological 
fitting requires an iterative procedure starting from an arbitrary value of D1. After 
having determined the values of the five parameters, we can draw the curves 

13  as functions of 3 1and . When a good agreement between experimental 
curves and numerical predictions is obtained, the determination procedure is 
completed. If not, a new iterative loop is performed, starting with a new value for 
D1. 

In principle, a single triaxial test is needed to determine seven parameters. In 
practice, due to natural scattering of experimental data obtained for rock materials, it 
is preferable to proceed with several confining pressures and to determine “average” 
values of material parameters. 
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Among the eight parameters involved in the model, only the determination of 
parameter B needs more complex laboratory testing. We have to perform tests on 
samples cut in an off-axis direction for pre-damaged material, in order to study the 
effects of existing damage on the current evolution of damage, according to (8.18). 
Further, the convexity of the yield function ),( DFf D  (and of the dissipation 

potential) imposes 2
2

B . 

Using the procedure presented above, the model’s parameters have been 
determined from experimental data obtained (except B taken to be zero) for Vosges 
sandstone [PEC 95] and for Vienne granite [HOX 98]. An implicit integration 
scheme is then used for the local integration of the model [COR 94]. Predicted 
theoretical curves are compared with the experimental curves for some loading 
paths, which are not used in the parameter determination procedure. Figure 8.6 
shows triaxial compression tests on sandstone and, in particular, the curves of 
deviatoric stress with volumetric strain. The effect of dilatancy in the non-linear 
domain related to damage evolution is well described. We can observe a good 
correlation between the experiment and the simulation for different strains (axial, 
lateral and volumetric) for two different confining pressures. 

In Figure 8.7, we present a quite discriminating path called lateral extension on 
Vienne granite. It appears that the model’s prediction is also robust in this case. 
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 (MPa)  (MPa)  (MPa)  (MPa) g (MPa) C0 (MPa) C1 (MPa) B 

3250 4875 9925 -11180 -32 0.02 0.27 0 
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Figure 8.6. Comparison simulations (——) – experiment (- - - -) in triaxial compression with 
two confining pressures10 MPa (respectively 15 MPa) (Vosges sandstone [PEC 95])  

(a) deviatoric stress versus axial and lateral strains  
(b) deviatoric stress versus volumetric strain 
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 (MPa)  (MPa)  (MPa)  (MPa) g (MPa) C0(MPa) C1(MPa) B 

39,850 31,300 -16,000 -31,000 -330 0.11 2.20 0 

Figure 8.7. Comparison simulation – experiment for a lateral  
extension test on Vienne granite (data from [HOM 99]) 
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As a conclusion for this basic version of the damage model, the following points 
can be made: 

– although a phenomenological formulation is used, the proposed model is based 
on a micromechanical background, in particular on the choice of the damage 
variable D ; 

– the expression of the thermodynamic potential (free energy) predicts an 
orthotropic elasticity for a given state of damage (given D ) as well as significant 

residual effects. The evolution of D , by a pseudo-standard scheme, describes a 

brittle type of damage kinetics, largely observed in the class of materials studied; 

– the proposed model contains a small number of parameters (eight), and most of 
them can be easily determined from conventional triaxial compression tests with 
unloading paths; 

– the stability of the integration algorithm is obtained by a natural implicit 
scheme.  

The formulation makes it possible to introduce coupling with other dissipative 
mechanisms. This coupling is necessary in the view of extending the model to 
describe significant features related to cyclic loading paths involving mesocracks 
closure effects and restoring certain elastic constants. The crack closure effect will 
need to take into account coupling between damage and frictional sliding along 
crack surfaces. These features will be discussed in the next section.

8.3. Taking into account mesocrack closure effects: restitution of moduli and 
complex hysteretic phenomena 

8.3.1. Normal unilateral effect 

The progressive degradation of mechanical properties (moduli, mechanical 
strength, material symmetry) is more complex in nature than that described by the 
basic version of the model presented in the previous section. The nature of damage 
considered here implies open and closed defects, and the loading paths inducing the 
transition opening – closure of mesocracks lead to a material behavior similar to bi-
linear elasticity. It concerns the unilateral effect at the mesoscale for a considered set 
of cracks; the macroscopic consequence of this effect is the restitution of elastic 
moduli in the direction normal to the set of cracks. In the following sections, we will 
briefly discuss the extended restitution phenomena including friction effects in 
closed cracks and how this restitution also affects shearing moduli.  
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In this section, only the “normal” unilateral effect is discussed. This effect can be 
illustrated by a simple cyclic tension-compression test as shown in Figure 10.8. The 
tension phase inducing a significant damage state, is followed by a compression 
phase in which the axial elastic stiffness is partially recovered. 

  
Figure 8.8. Schematization of unilateral effect in tension-compression test 

The objective and also the main difficulty are to associate the description of 
activation/deactivation of damage with anisotropic behavior (induced or structural) 
by ensuring the continuity of the stress-strain response. This feature was the 
principal problem for a long time, until the middle of the 1990s, even if several 
approaches have been proposed: 

– based on a relevant analysis of the unilateral contact at the mesocrack scale, 
([AND 86], [GAM 93]) have proposed pertinent modeling schemes, but, by using 
quantities that were difficult to measure, efficient macroscopic models could not be 
formulated; 

– some models have been devoted to the description of particular forms of 
damage (for example [JU 89], [LAD 94] for composites), by using the 
decomposition of the stress tensor into positive and negative parts. These models 
may exhibit some singularities (for example, dissymmetry of stiffness tensor) in 
taking into account the process of degradation – restitution in the general multiaxial 
case; 

– Chaboche [CHA 93] has proposed an a posteriori modification of the stiffness 
tensor in the principal system of damage. 
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In what follows, the unilateral condition proposed by Halm and Dragon [HAL 
96] is presented, based on the microscopic behavior of the mesocracks mentioned in 
section 8.2.1 and specifying a macroscopic opening/closure control term. This 
condition was introduced in the damage model presented in section 8.2 with 
emphasis put on the continuity of the stress-strain response during the transition 
between activation/deactivation of defects. 

It was shown (section 8.2.1, relation (8.10)) that a fourth order tensor has a non-
negligible contribution, in association with the second order damage tensor D , to 

the alteration of energy induced by a displacement field of closed cracks. In order to 
avoid the introduction of a new damage variable which will render the model more 
complex, we propose to use the fourth order quantity ˆ  by extension of D  from its 

eigenelements: 

3
( ) ( ) ( ) ( )

( )
1

ˆ k k k k
k

k

D  (8.34) 

Note that this formulation conserves the orthotropic nature generated by (8.5) 
and cannot therefore describe greater general anisotropy. The analysis of the 
integrity bases associated with arguments and ˆ  can show that only one mixed 

invariant ( ˆ: : ) is actually relevant for the fourth order quantity (the others can 

be reduced to the invariants of )D . The term with this invariant will then be used as 

a control parameter of opening/closure of mesocracks; i.e. this term is absent in the 
thermodynamic potential when the damage is activated (fully opened cracks) and 
present if the damage is inactive. A new form of the thermodynamic potential (8.12) 
is then proposed. For the sake of clarity, only one family of cracks is considered, 
here ( ))(sdD , in order to show the pertinence of the modified form: 

– state 1: opened cracks, negligible effects of the term ˆ: : : 

1 0
1 1

ˆ, . . 2 . . : :w D w g tr D tr tr D tr D O  

 (8.35) 

where 210w .2 trtr ; O(.) being a zero order term; 
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– state 2: closed cracks, the term ˆ: :  is not negligible: 

'

2 0
2 2

''

ˆ, . . 2 . . : :
ww

w D w g tr D tr tr D tr D  

  (8.36) 

Modulus  is determined by assuming that the stiffness in the direction 
perpendicular to closed mesocracks is equal to the initial stiffness; this means that 
the presence of the term ''w  cancels out the degradation of stiffness induced by the 
term 'w . In the reference system connected to the crack set, this condition may be 
written as follows (here axis x1 is normal to mesocracks): 

0'''

1111

2

1111

2 ww   (8.37) 

This leads to the following relation between 22 ,  and : 

22 2   (8.38) 

The unilateral behavior of cracked materials is characterized by a stiffness 
discontinuity at the transition from the open to the closed state. The strain space is 
divided into two sub-domains separated by the boundary S. However, it is required 
that the continuity of the thermodynamic potential and that of the stress-strain 
response must be conserved, i.e.: 

: 0  on S  with 
2 1 2 2w w  (8.39) 

According to the theory of multi-linear functions (see in particular [WES 69] and 
[CUR 95]), as S is a hyper-surface of dimension 5,  must be singular and in 

particular of order 1 in the sense of the dimension of its image: dim Im = 1. It is 

sufficient for this that all the second order determinants of  are equal to zero. 

This is verified by the following relations: 

21

21  (8.40) 
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This also leads to the opening/closure condition: 

0..  (8.41) 

For convenience, we will use the notation defined in the basic version of the 
model; i.e. 21 , 21 . The proposed approach, based on the 
consideration of meso-structural mechanisms (see [HAL 97] for a detailed 
presentation), leads to the formulation of a macroscopic criterion (8.41) which is 
similar to that proposed by Chaboche [CHA 93]. This approach developed for one 
set of mesocracks can easily be extended to any damage distribution. Since any 
distribution of mesocracks is equivalent to three equivalent independent systems, 
relation (8.41) can be generalized as follows: 

0.. )()( kk , k = 1,2,3 (8.42) 

The equivalent system of normal )(k  becomes inactive (respectively active) 

when the normal component of the strain tensor )()( .. kk  becomes negative 

(respectively positive). Parallel to that, term ˆ: :  related to system k appears in 

the thermodynamic potential, so that the restitution of stiffness occurs in direction 
)(k .  

Let us now summarize the constitutive equations including normal unilateral 
effects (recall that H denotes the Heaviside function). Evolution law (8.20) remains 
valid and is not cited: the supplementary quantity ˆ  is not a new internal variable 
but is constructed from D  and does not need an evolution law. The potential w, the 

expression of and that of DF  are written as: 

DtrDtrtrDtrgwDw ..2.., 0  

- :..:2
3

1

)()()()(
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)()(

k

kkkk
k

kk DH  (8.43) 
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Note that even if H(.) is a discontinuous function in nature, the expressions of w, 
and DF remain continuous, because the discontinuity of H occurs only when the 

quantity )..( )()( kk  reaches zero. Relation (8.45) is given only for a given 

configuration of principal directions of D . The corresponding loading path is called 

D -proportional loading. All loading paths, which are not D -proportional, may be 

decomposed into a series of D -proportional sub-paths. 

  
Figure 8.9. Simulation of a tension-compression test on Fontainebleau sandstone 
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Figure 8.10. Simulation of lateral stress strain responses during  
triaxial compression test with lateral overloading 

The modeling presented above successively associates the crack deactivation 
phenomenon with a particular mesocracking mechanism which induces an 
anisotropic behavior. Based on a meso-structural analysis of damage mechanisms, 
this approach leads to a three-dimensional macroscopic formulation with the same 
set of parameters as that involved in the basic version. The continuity of stress-strain 
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responses is verified. A series of simulations of laboratory tests (tension-
compression Figure 8.9; triaxial compression with lateral confining followed by 
overloading Figure 8.10) have shown the pertinence of the proposed model. It 
predicts a full restitution of the elastic modulus; see [HAL 97]. Moreover, the 
proposed approach is open to be coupled with another dissipation mechanism, for 
instance the frictional sliding. The friction is involved in the deactivation of damage 
by locking the crack surface followed by possible sliding. We can consider the case 
where the sliding is the unique dissipation mechanism with D cte. A more 

complex case can also be studied: the frictional sliding is coupled with damage 
growth. This is a dissipative coupling. It is possible to have a different configuration 
of dissipation for each equivalent system ),( )(

)(
k

kD . The main features of the 

third level of modeling including dissipative coupling are outlined in the next 
section. 

8.3.2. Introduction of friction 

The modeling of unilateral behavior previously presented is related to the 
restitution of the elastic modulus in the direction perpendicular to closed 
mesocracks. The restitution of the shear modulus implies a frictional phenomenon; 
and one of the consequences is the blockage of crack lips. For example, in 
compression tests on specimens with inclined closed mesocracks with respect to the 
axial direction, we can observe alternative states of blockage and sliding. This leads 
to hysteretic loops of the pseudo multi-linear type (the linear lines in the space 

obtained during sliding do not correspond to linear material behavior). An 
example of the hysteretic type is shown in Figure 8.11 for a constant damage state. 
Curves similar to that shown in Figure 8.11 have been obtained in a number of 
micromechanical studies, for instance [WAL 65], [AND 81], [KAC 82], [HOR 83], 
[NEM 88], [GAM 93], [FON 95], [LAW 98]; this list is probably not exhaustive. 
Some experimental data, for example, that obtained by Pecqueur on chalk has been 
reported. This data, simulated by Halm [HAL 98], confirms the scheme shown in 
Figure 8.11. However, the form of the curve may be more complex during loading 
when the propagation of mesocracks occurs simultaneously.  
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Figure 8.11. Hysteretic loops during uniaxial compression: illustration  

of blockage and sliding effects of parallel closed cracks. Segments AB (loading)  
and CD (unloading) correspond to opposite sliding states 

Most micromechanical models are limited to the determination of effective 
elastic properties and do not involve the evolution sliding law. When it is studied 
(for instance [GAM 93]), only one class of particular loading paths is considered. 
Therefore, we propose here an operational formulation, mainly based on 
micromechanical considerations, which can be applied to complex 3D loading 
conditions. However, only the main features are briefly outlined here. Readers can 
refer to [HAL 98], [DRA 00] and [HAL 97] for more details. 

Frictional sliding and its consequences may be considered as a form of plasticity 
(see for example, the unifying view of inelastic behavior of crystalline materials and 
of brittle materials, for which the propagation of mesocracks is the principal 
dissipation mechanism [LUB 95]). Therefore, the modeling of friction-damage 
coupling can be considered as a particular form of damage and plasticity coupling. 

Let us introduce an internal variable  to characterize sliding between crack 

surfaces; its physical significance in the mesoscopic scale reflects the contributions 
of all mesocracks for an overall deformation of cracked representative volume 
(REV). It is similar to that defined by (8.6) with <b>  n. Considering, in the 

context introduced in this work, three equivalent systems of mesocracks )(k , 

3,2,1k , sliding in direction )(kg , the corresponding sliding quantity being )(k , 

we can define: 

3

1

)()(3

1

)(

k

kk
symk

k g  (8.46) 
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In order to simplify the notations and before generalizing them to any 
distribution of mesocracks, let us consider one set of mesocracks with normal . 
The thermodynamic potential for a closed state of cracks with frictional sliding is 
completed with invariants of , and D : 

3 0 ˆ, , . . 2 . . 2 : :w D w g tr D tr tr D tr D

 

1 2
ˆ2 . . 2 . . . . 2 . .tr D tr D D  (8.47) 

We can see that the first two terms of the second line of (8.47) remove the 
contribution of the two terms with parameter  in the first line of (8.47). In fact, as 
mentioned in section 8.2.2 and section 8.2.3 (equations (8.25) and (8.28)), the term 

)..(2 Dtr  is alone responsible for the degradation of the shear modulus. This 

degradation is cancelled in the presence of friction due to the effect of a blockage.  

The relationship between the thermodynamic potential for the state of 
opened/closed mesocracks (expression (8.43)) and potential 3w given above, can be 
established by formulating the continuity of w and  during the closing of cracks. 

This leads once again to multi-linear function theory in the case of bi-linear 
elasticity for a given configuration of ),(D  and implies the following relations:  

21 ,4  (8.48) 

Also, at the opening /closure transition the continuity requires: 

..

..

DD

DD
 (8.49) 

System (8.49) states that at the point of the opening/closure transition,  and  
have the same components in the plane of cracks. This can be expressed as follows: 

jkikij sym (at the closure) (8.50) 

and considered as the initiation condition of . The definite expression of 

,, Dw  for all opening/closure configurations is given by: 
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DtrDtrtrDtrgwDw ..2..,, 0   

DtrDtrDtrH ..2..4:ˆ:..2..

 (8.51) 

The stress tensor  is classically derived from the thermodynamic potential 

with respect to . Similarly, by derivating with respect to D  and , we obtain the 

thermodynamic forces associated with damage and sliding. 

The last one is written as: 

..2..2 DDDD
w

F  (8.52) 

F may be decomposed into a tangential force TF and a normal force 
NF with respect to the mesocrack plane: 

NT FFF  with .. FFF T  

.. FF N  (8.53) 

We assume that the reversible domain for sliding is defined by a criterion of the 
form h = 0, which is based on the following assumptions: 

– function h explicitly depends on the norm of the tangential force TF ; 

– the sliding threshold is expressed in terms of the normal strain on mesocracks 
..  (instead of normal stress as in the Coulomb criterion; we conserve the strain 

based formulation for all parts of the model). We write: 

0...
2
1.., NNN FFFFtrFFh  

if 0..   (8.54) 

where  is a model’s parameter to be determined, which plays a similar role as that 
of a friction coefficient; see [HAL 98] for details. Transformed in stress sub-space, 
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criterion (8.54) has some similar geometrical features as the Coulomb criterion. 
However, it is here expressed in terms of macroscopic quantities. Even when it is 
expressed in terms of stress, it does not, due to its definition, correspond to the local 
stresses applied to the crack surfaces. Moreover, it can be proven (see [HAL 97]) 
that an associated flow rule of the form 

, 0
2 .

T

T T

Fh
F tr F F

 (8.55) 

is consistent with D -proportional loading paths (without rotation of the principal 

directions of D ). Flow rule (8.55) means that evolution  is coaxial to TF ; i.e., 

the crack propagates along its own plane. There is no risk of crack surface separation 
and no contradiction related to the evolution law associated with the standard 
Coulomb criterion.  

In particular, if the damage state remains constant as in the case of the uniaxial 
compression test mentioned at the beginning of this section, the proposed model 
predicts multi-linear hysteretic loops. This is illustrated in Figure 8.12 for the case of 
a shearing cycle in the mesocrack plane. The difference with the prediction given by 
the model without friction effects (dotted lines) is significant.  

  
Figure 8.12. Influence of friction on shearing behavior 
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To simplify the presentation, some limitations have been introduced (one system 
of mesocracks, D -proportional loading or no evolution of D ). These cases do not 

correspond to real situations. We can consider more general loading paths with 
simultaneous damage evolution and sliding by taking into account the rotation of 
principal directions of D . Halm and Dragon [HAL 98] proved that a partition of 

F  more general than that given by (8.53) is possible and valid in the case of non-

conservation of the sliding planes. Such a new partition includes, in the particular 
case without rotation of the D axes, that mentioned above. We can write: 

DDFF T :4:4  

DF :4  (8.56) 

where, for all the cases corresponding to 0: D ( D -proportional or D = cte), 

TFF . 

We can now define the criterion h  0 and the evolution law in terms of F  and 

consider the assembly of equivalent systems, k = 1,2,3. The equations of the model 
can be represented with respect to the three systems by selecting them, one by one, 
with the help of the following operator IL(k): 

IL(k)
 = )()()()( kkkk  (8.57) 

We can write: 

)()(
)(

)( kk
k

k DD  IL(k)
: D  (8.58) 

The potential Dw ,,  and the state laws become: 

DtrDtrtrDtrgwDw ..2..,, 0  

:..
3

1

)()(

k

kkH (D(k) IL(k)): )(..2 kDtr  
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+ )()()()()( ..2..4 kkkkk DtrDtr ] (8.59) 

..21.21 DDDtrDtrDgtr
w  

..2..2.. )()()()()()(3

1

)()( kkkkkk
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  )()()()( :4 kkkk DF  (8.63) 

The complementary law concerning the sliding )(k  on three independent 
systems is expressed as: 

)()()()()()()()()()( .
2
1..,.., kkkkkkkkkk FFtrFhFh  

  0.. )()( kk  (8.64) 
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( ) ( ) ( )
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    (8.65) 

Physically, the directional term in evolution law (8.65) means that the sliding 
rate contains not only a component in the crack plane but also a normal component 
which can catch the rotation of the direction of equivalent mesocracks.  

The advantage of the general model proposed here, beyond its three-dimensional 
and anisotropic features, resides in its modular construction. The introduction of 
friction requires only one parameter to be determined (frictional parameter ). The 
complete version of the model includes two dissipation mechanisms with nine 
material parameters. The energy dissipation is expressed by: 

)(3

1

)( :: k

k

kD FDFD  (8.66) 

In the next section, we will give some indications on the numerical 
implementation algorithm and applications of the model to geomechanics. 

8.4. Numerical integration and application examples – concluding notes 

At the end of section 8.2.2, a few synthetic notes were made about the numerical 
integration of the basic version of the model. In particular, it was shown that the 
damage multiplier D  could be determined without an iterative procedure in the 
context of the implicit integration of the model. Therefore, the numerical integration 
aspect of the proposed model has certain advantages with respect to classical 
plasticity. The reader can find a detailed algorithm in [DRA 00]. Particular features 
related to the frictional effects in closed cracks have also been discussed. The key 
point concerns the incremental procedure applied to (8.65) for the evolution of . 

The implicit procedure was used. An iterative procedure of the Newton-Raphson 
type is necessary to solve the non-linear system of equations.  

When a joint evolution of damage and sliding takes place, it is necessary to 
determine the incremental values D  and which are simultaneously produced. 

The integration procedure is facilitated due to the weak coupling between loading 

0( )kh
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function ),( DFf D  and function ),( )(kk Fh . The choice of the “active” part of 
DF involved in f as defined in the basic version of the model, and of the “active” 

form of f itself (see (8.18)) lead to the conclusion that function f varies with D only, 

while kh  varies with  and D . This allows us to resolve first the equation 

governing D , without referring to sliding. The equation governing  is then 

solved; this takes into account the consequences of coupling.  

N.B.: The algorithmic properties mentioned above can be modified by another 
choice of the thermodynamic potential and damage criterion. Some recent works 
suggest an alternative choice of the active part of DF such as: 

.2trF
D

 (8.67) 

This choice neglects the irreversible effects (term Dg :  in w is cancelled), 

leading to the form of criterion 0f , physically consistent with the behavior of 
certain brittle materials. This criterion, when expressed in the strain and/or stress 
space, appears to be quite close to that given by (8.18); see [HAL 02]. This means 
that deeper investigations, comparable to numerous studies performed on various 
plastic criteria and hardening laws, must also be performed for damage theories. 
This is particularly needed in the context of anisotropic effects as is the case in this 
chapter. 

The choice of hierarchical modeling, including successively the basic version of 
the model, extended to include the normal unilateral effect, and finally completed by 
an elastoplastic form related to frictional effects, appears reasonable for a large class 
of brittle geomaterials. To demonstrate this, a number of laboratory tests and 
boundary value problems have been successfully simulated and studied. For 
example, the so-called “Sanford beam”, a test-problem in rock mechanics introduced 
by Jaeger and Cook [JAE 79] was studied with the basic version of the model in the 
research project “GEOFRAC” (TOTAL-IFP) in 1994 [CHA 94]. The mechanical 
fields generated by the model appeared to be physically realistic. 

Among geomechanical problems, we can cite situations more or less close to 
those related to petroleum engineering investigated by Pham [PHA 94]. Again, only 
the basic version of the model was tested and the results obtained appeared 
promising. 
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In the following, we summarize an application briefly presented in [DRA 94] 
and further detailed in [COR 94]. It consists of studying the boundary-value problem 
of a cubic body containing a central hole and subjected to prescribed displacements, 
as shown in Figure 8.13. The calculations using the finite element method are not 
limited to the determination of mechanical fields including the evolving damaged 
zone. We have also determined the bifurcation surface in the localized mode in 3D 
conditions. The strain localization corresponded here to the loss of ellipticity of the 
problem at a material point (actually one of the integration points). The phenomenon 
of strain and damage localization is seen as a precursor of fracture – transition from 
diffused volumetric damage to surface failure. The question is the following: does 
the basic model applied to the studied structure generate a (several) macroscopic 
failure mechanism(s)? In a surprising manner, the localization occured at point B 
inside the damage zone which is much more reduced than that developed around the 
top and bottom of the opening. This trend was confirmed by experimental 
observations obtained by Onaisi [ONA 89] from a series of blocks, tests including 
observations of macroscopic cracks (initiation and propagation). The example 
shown in Figure 8.13 corresponds to one of the tests performed by Onaisi. It is 
interesting to note that the induced anisotropy seems to play an important role in the 
failure mechanism in localized mode. Comparative calculations performed with an 
isotropic damage model showed that localization occured from the bore hole at the 
vertical axis (point A) inside the extended damage zone. For the block tested, this 
result is not in agreement with the initiation mechanism of macroscopic failure 
observed by Onaisi. 
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Figure 8.13. Finite element analysis of rock structure with central hole:  

discretization and boundary conditions for a quarter of the block.  
Localization of damage and initiation of macroscopic failure 

The aforementioned examples concern the basic version of the model presented 
in section 8.2. The results obtained appear highly interesting and the proposed model 
can be applied to other structures with more complex loading conditions, for 
example, the anchoring problem mentioned by Berthaud and El Dalati [ELD 99]. 
This problem may imply a strong rotation of the damage directions in the support 
material (rock and concrete), due to loads applied to the anchor base.  
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Figure 8.14. Comparison simulation – experiment in hydrostatic compression – torsion on 
hollow cylinder of Vosges sandstone (Pc = 10 MPa). (1) extended model, (2) experiment 

[PEC 95], (3) model without friction 

To conclude without being limited to applications regarding the first level 
modeling introduced in this chapter, we shall present another example. A hollow 
cylinder sample (Vosges sandstone) is subjected to compression and torsion [PEC 
95]. Figure 8.14 shows the torsion couple as a function of angular deformation of the 
central part of the cylinder, where the state of stress and strain is quasi-uniform. Let 
us recall that the cylinder is subjected to strong compression, so that most 
mesocracks are in a closed state. Only the model with frictional effects is able to 
reproduce the stiffness jump observed at the beginning of loading, corresponding to 
sliding along crack surfaces. The last loading phase shown in the figure corresponds 
to coupled damage and sliding evolution. The proposed coupled model seems to 
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overestimate the kinetics of damage evolution. The basic version of the model 
(without friction) systematically leads to an underestimation of the applied torque 
with respect to experimental data.  

This example is a clear illustration of how more sophisticated features of the 
proposed model (taking into account normal unilateral effects and frictional effects) 
can be applied to engineering. It concerns loading conditions including cycles or 
phases of closure of various systems of mesocracks, non-proportional local 
evolutions and rotation of principal directions of the damage tensor.  

As is indicated in section 8.2.1, the damage modeling and notably the modeling 
of damage activation/deactivation related to the normal unilateral effect is based on 
spectral decomposition (8.5) for the second-order tensor D  and the extrapolation of 

the latter leading to the restrictive fourth-order entity ˆ  in (8.34). The 
corresponding hypotheses involve maintaining the form of damage-induced 
orthotropy of the effective elastic properties (to the detriment of more general 
anisotropy) and the relevant equivalence postulate stipulating that any system of 
mesocracks can be reduced to three commensurate orthogonal sets. The latter are 
embodied by eigendensities D(k) of D  and its eigenvectors )(k . Maintaining 

orthotropy was arguably justified on some micromechanical bases by Kachanov 
[KAC 80], [KAC 92]. The equivalence postulate is an important component of the 
theory proposed in sections 8.2 and 8.3, as it concerns not only the damage segment 
of the coupled model but is also reconducted for the mesocrack friction plasticity 
model. 

The damage description including a unilateral effect based on the spectral 
decomposition of a second-order damage (or strain) tensor was earlier postulated by 
Chaboche [CHA 93], cited in section 8.3.1. 

In this regard, Cormery and Welemane [COR 02] have put forward critical 
analyses regarding the spectral decomposition-based damage models. As we could 
expect, difficulties appear for the damage configurations involving multiple 
principal bases characterizing purely isotropic spatial damage distribution 0D d I  
and the like subspace, partial symmetries of D  like transverse planar isotropic 

distribution, i.e. 1 1 2 20 ( )D d e e e e , 1 2and e e  representing orthogonal unit 
vectors. For such configurations involving an infinity of principal bases (non-
uniqueness), the choice of a particular set of eigenvectors leads to a form of the 
energy function different from a form obtained for another licit system. We thus 
observe, in general, non-uniqueness of the energy and of the resulting response (e.g. 
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stiffness ( D )) for specific (sub)spatially uniform damage distribution. This has 

been shown in detail for this model, as well as for the model by Chaboche [CHA 
93]. Furthermore, such a non-uniqueness may produce the loss of continuity of the 
energy function with respect to D  and thus brings into question the very definition 

of 0F  (thermodynamic force) and corresponding evolution laws. It should thus be 
stressed that the aforesaid isotropic and the like damage configurations involving the 
multiplicity of principal bases should be tentatively excluded from the operational 
domain of any spectral decomposition-based damage model. More fundamentally, 
some topological safeguards should be searched for to assure the energy uniqueness 
(i.e. the existence of the thermodynamic potential) in the close neighborhood of such 
configurations. 

An alternative method based on the so-called “discrete approach” of damage has 
recently been advanced by Bargellini et al. [BAR 06]. This approach introduces a 
finite number of crack densities associated with an equal number of directions in 
space. It enables us to represent essential phenomena related to anisotropic damage, 
including unilateral effects. Most of all, this approach avoids the disadvantages cited 
above and related to models employing the unique second-order tensor variable D  

and its spectral decomposition (non-uniqueness of the free energy for particular 
configurations of damage and decomposition of the strain tensor into the positive 
and negative parts).  
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Chapter 9 

Multiscale Modeling of Anisotropic Unilateral 
Damage in Quasi-brittle Geomaterials: 

Formulation and Numerical Applications  

9.1. Introduction  

Inelastic behavior and the failure process in quasi-brittle geomaterials such as 
concrete and most rocks, are commonly considered to be the consequence of the 
nucleation and growth of microcracks. A number of experimental investigations 
have shown that there are different ways in which microcracks initiate and grow in 
rock materials [1-8]. In general, we shall take into account two dissipation 
mechanisms, related to the microcrack size evolution and the dissipative frictional 
sliding in closed microcracks respectively, in order to model the resulting damage. 
The main consequences of damage caused by microcracks growth are non-linear 
stress – strain relations, deterioration of elastic properties, induced anisotropy, 
irreversible deformation after unloading, volumetric dilatancy, hysteretic response 
and the effects of microcrack closure on the material macroscopic response. 
Moreover, induced anisotropic damage can also affect transport and diffusion 
properties, in particular permeability. Rock permeability can indeed increase 
significantly due to the propagation of microcracks and the associated volumetric 
dilatancy [9-14]. In this chapter, however, only mechanical modeling of anisotropic 
damage will be addressed. 

The modeling of induced anisotropic damage is traditionally performed by 
means of macroscopic continuum damage models (CDM). In these models, internal 
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variables (scalar, vector, second order tensor and even higher rank tensors) are used 
to describe the state of damage. A damage evolution law is commonly formulated as 
a function of stress or strain, using the standard framework of irreversible 
thermodynamics or some fracture mechanics principles; see for instance [15-22]. 
Uses of CDM have the ability of providing macroscopic constitutive equations 
which can be easily implemented in computer codes and applied to engineering 
analysis. Nevertheless, some assumptions used in these models are not clearly linked 
to physical mechanisms involved in the microcracking process, for instance, the so-
called effective stress concept. Despite the numerical efficiency of this approach, 
some critical issues still remain open. For example, the purely macroscopic 
description of unilateral effects related to microcrack closure and of coupling 
between damage and frictional sliding still requires more careful physical and 
mathematical investigations which could be quite complex. 

On the other hand, significant advances have recently been made in the field of 
multiscale damage modeling of quasi-brittle materials, which offers a new way to 
obtain a more physically based description of anisotropic damage related to the 
progressive evolution of materials microstructure [23-24]. In fact, various 
homogenization models have been proposed for concrete and rocks, see for example 
[25-27]. Most of these models are limited to dilute microcrack concentration and do 
not use an Eshelby type homogenization procedure to define the macroscopic elastic 
behavior. As a consequence, the effects of microcrack interaction and spatial 
distribution cannot be properly described [28]. Another aspect, which is important 
for damage modeling in brittle rocks, is the coupling between damage and frictional 
sliding on closed microcrack faces. This generally leads to volumetric dilatancy 
which was not properly considered in previous models. 

In the current chapter, we formulate a multiscale model for anisotropic damage 
coupled with frictional sliding for quasi-brittle rocks. This model, based on Eshelby-
like techniques, is then numerically implemented for structural analysis. The basic 
idea is to integrate the Eshelby solution-based homogenization techniques into the 
standard thermodynamics framework for the description of damage by 
microcracking. This provides a general micromechanics background for damage 
modeling in which the microcrack interaction [29] and spatial distribution [30] can 
also be described. A great emphasis will be put on the microcrack closure and on the 
coupling between damage and frictional phenomena which allows us to explain the 
salient features of quasi-brittle behaviors of rocks under compressive loadings. It 
comes from the micromechanical analysis that the crack density parameter [31] in 
each space orientation and two kinematic variables (sliding and opening along the 
crack surface) can represent inelastic deformations induced by the presence of 
microcracks. Furthermore, a damage criterion based on the energy release rate is 
proposed to describe the evolution of the crack density parameter. The condition for 
microcrack opening/closure transition will also be discussed. Comparisons of the 
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model’s predictions with experimental data are performed on both conventional and 
true triaxial compression paths, respectively, for two granites. Applying the 
proposed multiscale model, implemented in the finite element software Abaqus with 
UMAT facility, to an underground excavation problem shows a good agreement 
between numerical results and in situ data concerning radial displacements and the 
evolution of the damaged zone. 

Throughout the paper, the following notations for the product of second-order 
tensors A and B will be used: ,  ij kl ik jl il jkijkl ijkl

A B A B A BA B A B . The 

tensor product of two vectors a  and b  is denoted i jij
a b a b  and its 

symmetric part 1( )
2

s

ij i j j ia b a b a b . With the second rank identity tensor , the 

usually used fourth order isotropic tensors and  are expressed as 
1
2ijkl ik jl il jk and 1

3ijkl ij kl , respectively. 

9.2. Homogenization of microcracked materials: basic principles and 
macroscopic energy 

The general purpose of multiscale methods is to establish the effective properties 
of the studied material from the knowledge of the material microstructure. For this 
purpose, the microcracked material is considered as a multiphase composite with a 
matrix phase weakened by a set of microcracks. In this framework, it is convenient 
to introduce a representative elementary volume (REV), denoted by  (with 
boundary ), as shown in Figure 9.1.  

This REV is composed of an isotropic linear elastic matrix whose stiffness tensor 
is noted s  and a distribution of microcracks with the elasticity tensor 

c ( 0c for opened microcracks in order to account for the cancelation of the 
local stress c  on crack faces). Thus, the REV may be considered as a matrix-
inclusion system; this allows us to use the fundamental Eshelby solution [32-33]. 
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in

s

c

 

Figure 9.1. Representative elementary volume (REV)  
of microcracked materials  

We assume that microcracks are the penny-shaped type. A family of cracks is 
identified by its normal n , radius a  and the half opening c  (see Figure 9.2). The 
aspect ratio /c a  of such a penny-shaped crack is such that 1  (Figure 9.2). 
The volume fraction of cracks c  is expressed as: 

24 4
3 3

c a c d�  (9.1) 

where denotes the crack density (number of cracks per unit volume) of the 
considered family of cracks and 3d a  is the crack density parameter as initially 
introduced by Budiansky and O’Connell [31], and widely used as an internal 
damage variable in micromechanical analysis [34]. 

a

2c

n

 

Figure 9.2. Schematic representation of a penny-shaped crack 

The related displacement jump between the faces of two cracks is denoted by 
u . The unilateral contact on the crack faces is then described by:  
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0,  0,  0c c
n n n nu u  (9.2) 

where c
n  is the normal component of the local stress field and nu  the normal 

component of the displacement jump u . 

We consider now a macroscopic uniform stress, , applied to boundary . 
The problem to be solved is the determination of local stress, strain and 
displacement fields inside the REV. According to [25] and [27], this problem may 
be decomposed into two sub-problems in terms of the displacement field, as shown 
in Figure 9.3. Accordingly, the macroscopic strain E  of the cracked medium is 
written as the sum of two terms:  

s cE E E  (9.3) 

s

u su cu

[ ], c su[ ], cu

 

Figure 9.3. Decomposition of the basic homogenization problem  
in terms of the displacement field 

The first term corresponds to the solid matrix strain sE and the second term 
cE is related to the contribution of microcracks, more precisely, to the microcrack 

displacement discontinuities, which read:  

s s
c n u dS n n nE  (9.4) 
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with  and  as two kinematic variables characterizing the microcrack 

opening/closure state and the sliding in the crack plane, respectively, which are 
defined as: 

;    = tnu dS u dS�  (9.5) 

Note that ntu u u n .  denotes the crack surface with the unit normal n. 

The microscopic stress field s is uniform which implies the relation: 
s s  and the local stress c s  on cracks is self balancing. Finally, 

the free energy W  is expressed as the sum of an elastic energy corresponding to the 
solid matrix and of the stored energy due to the local stress field: 

1 1:
2 .2 .

:
:

c s

c
n

c
t

c
n n u

W dS
n u

E E E E  (9.6) 

In order to establish the relation between the deformation cE  and the local stress 
field c  in the cracks, inspired by the work of Barthelemy [35], the initial problem 
is decomposed into two sub-problems, as shown in Figure 9.4. 

The solution of the sub-problem IP  is obtained through the homogenization 
procedure with the uniform macroscopic strain :E s c  on the boundary : 

1
: : ,    I c c s c s sE E  (9.7) 

where c  is the concentration tensor associated with the considered family of 
microcracks. In the case of opening cracks ( 0c ), the above expression (9.7) 
returns to that obtained in the traditional homogenization procedure:  

:I c cE E  (9.8) 
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E

c
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:s cE :s c

c

n

0

 

Figure 9.4. Homogenization-based problem decomposition 

The corresponding macroscopic stress is determined with the help of the 
macroscopic stiffness tensor hom : 

hom : :I s cE  (9.9) 

for which we recall the general effective stiffness tensor hom ( ) :s c c s c  in 
the case of open cracks ( 0c ) and frictionless closed cracks ( 3c sk ). The 
uniformity of the sub-problem IIP gives: 

I c   (9.10) 

The coherence between expressions (9.7) and (9.3) leads to the equality I cE E , 
i.e.: 

: :c c
s

s cn n n E  (9.11) 

which allows us to simplify the notation by replacing cE and IE  by plE 1 . The 
combination of (9.7), (9.9) and (9.10) allows us to express the local stress field c  
according to the macroscopic stress  of the crack induced inelastic deformation 

plE : 

                                   
1  In fact, the strain due to closed microcracks is also referred to as “friction-induced 
plasticity” [20]. Its evolution can then be determined in the framework of classic plasticity 
theory. 
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:c pl plE  (9.12)  

with 

11
: :pl c c c c s  (9.13) 

Equation (9.12) can also be rewritten in the form: 

:c pl plE  (9.14) 

The insertion of (9.14) into (9.6) and using (9.4) gives the free energy function of 
the cracked material: 

1 1: : + : :
2 2

pl s pl pl pl plW E E E E E E  (9.15) 

9.3. Formulation of the multiscale anisotropic unilateral damage model 

9.3.1. Constitutive equations 

Profiting from the background previously defined, our aim is to formulate a 
micromechanical anisotropic damage model that accounts for microcrack closure. 
To this end, and thanks to the matrix-inclusion morphology of the microcracked 
materials, we implement the Mori-Tanaka estimate for which the following strain 
concentration tensor is available [28, 36, 37]: 

11 :c s c�  (9.16) 

where  is the Eshelby tensor corresponding to the penny-shaped crack inclusion 

(the components of can be found in [23, 24]).  

It is shown that for a unique family of microcracks, the macroscopic free 
enthalpy *W , obtained by the means of the Legendre transform of the free energy 
W, can be expressed in the form: 
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* 2
0 1

1 1: : + : . . .
2 2

sW n n n H H
d

 (9.17) 

with 0 2

3
16 1 ( )

s

s

EH  and 1 0 1
2

s

H H . 

Accordingly, the macroscopic Gibbs free energy, denoted *, is obtained by 
integrating *W  over the unit sphere ,  1n n : 

2

2

*

22
0 1

1 : :
2

1           + :
4
1 1                

8

s

s
n n n n n dS

H n H n dS
d n

 (9.18) 

Since distributions n , n  and d n  are generally unknown for an 

arbitrary loading path, the closed-form expression of *  is not available. Thus, the 
Gauss type numerical integration formula with N points is adopted in this study, 
similarly to [38]. Therefore, integral form (9.18) is approximated as: 

*

1

2

0 1
1

1 : : + :
2

1                                             .
2

N s
r r r rs r r

r

rN
r rr

r
r

w n n n

w H H
d

 (9.19) 

where rw is the weighting coefficient associated with the thr microcrack family 

characterized by unit vector rn . 

We shall now attempt to derive the expression of the macroscopic energy by 
taking into account the microcrack closure. First we determine from (9.15) the 
thermodynamic force associated with internal variable plE : 
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:pl pl pl c
pl

WF E
E

 (9.20) 

In a similar way, F and F associated forces, with the forces associated with 
and  respectively, are given by: 

:cW
F n n  (9.21) 

. .cW
F n n n  (9.22) 

In agreement with (2), the crack opening/closure transition condition is defined 
by: 

: 0,  or  0c n n F  (reversible process) (9.23) 

which leads to the following relation for the Mori-Tanaka scheme: 

0

:d
n n

H
 (9.24) 

Moreover, using condition 0F  provides the following expression: 

1

. .d
n n n

H
 (9.25) 

Taking into account the unilateral condition, we need to make a clear distinction 
(in the energy contribution) between the opened crack families, numbered oN , and 

the closed crack families, cN with 0cN N N  . The substitution of (9.24) and 
(9.25) into (9.19) yields the general expression:  
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* 2, 4,

1 0 1

2

0 1
1 1

1 1 1 1: : : :
2 2 2

1         + : .
2

o

c c

N
s r r r r

r

N N rs
r r r r r rr r r

r
r r

w d
H H

w
w n n n H H

d

  

 (9.26) 

with the notation r rr n n , 2,r r r  and 
4, 1

2
r r r r r . 

It is now possible to derive the first state law which defines the macroscopic 
stress-strain relations. We see from (9.26) that: 

2, 4,

1 10 1

1 1: : +
2

o cN N s
r r r rs r r r r r r

r r

w d w n n n
H H

E   

 (9.27) 

The second state law defining the thermodynamic force 
* /

rd rF d associated with any internal damage variable rd reads for a family 
of opened microcracks: 

2, 4,

0 1

1 1 1: :
2 2

rd r rF
H H

 (9.28) 

and equivalently: 

2

0 12

1 .
2

r r rd r

r
F H H

d
 (9.29) 

for a family of closed cracks. It is readily seen that * /
rd rF d  depends on the 

internal variables associated with each family of microcracks, namely , ,r r rd . 
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9.3.2. Friction-damage coupling and evolution laws 

To complete the formulation of the damage model and its coupling with friction 
phenomena, we need to determine the evolution laws of damage and frictional 
sliding. It is assumed that the closed frictional microcracks obey the traditional 
Coulomb criterion at the local scale and that the saturation of the criterion is uniform 
on the microcrack faces. At the microscopic scale, the Coulomb criterion 

0cg  reads, as standard (in terms of normal and tangential components of the 

local stress c applied on the microcracks faces): 

. . : 0c c
cg n n n n n  (9.30) 

where c is the friction coefficient on the microcrack faces. In terms of 

thermodynamic forces F  and F , this criterion also reads: 

0c
cg F F  (9.31) 

It must be emphasized that the pressure sensitivity of geomaterial behavior is 
taken into account through the effect of normal stress on the crack :c n n  
(which explicitly appears in (9.30)). 

Concerning the damage evolution law, the following general form, based on the 
energy-release rate, is adopted for the damage criterion of each family of 
microcracks: 

, 0d df F d F d  (9.32) 

Function d  represents the material resistance to the damage evolution by 
microcrack growth, which can be theoretically determined from experimental 
investigations. For the sake of simplicity, we consider here an affine function of d , 
as initially proposed in [39] in the context of macroscopic modeling of isotropic 
damage: 

0 1d c c d  (9.33) 

where 0c  and 1c  are two constitutive parameters, respectively defining the initial 
damage threshold and the kinetics of the damage evolution. These parameters may 
be identified from experimental data showing progressive degradation of elastic 
properties during unloading cycles in triaxial compression tests.  
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Adopting the normality rule, the rates of damage variable d and of sliding 
vector  in the presence of frictional contact are determined by: 

,d
d d

d

f F d
d

F
 (9.34) 

g
F

 (9.35) 

where d  and  are the multipliers associated with damage and frictional sliding 

respectively; they are determined by using simultaneously consistency conditions 
0f  and 0g . The unit vector  represents the direction of frictional sliding, 

defined by /F F .  

For the evolution of variable , which represents the microcrack opening 
displacement due to frictional sliding of microcracks, two different situations can be 
singled out: 

– frictional sliding without dilatation in smooth microcracks, for which we 
have 0 . This leads to an unassociated flow rule for the inelastic deformation plE ;  

– frictional sliding with normal dilatation on microcracks with rough faces, for 
which 0 . 

From the physical point of view, the dilatation is related here to the asperity on 
the microcrack faces and to the misfit of microcrack faces after the unloading of 
applied stresses (see Figure 9.5). This generally leads to the occurrence of inelastic 
volumetric strains after a complete unloading.  

 

Figure 9.5. Schematic representation of dilatant crack sliding mechanism 
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For simplicity, we also adopt here a normality flow rule for the evolution of plE . 
It follows that: 

c  (9.36) 

Subsequently the evolution law of variable plE  reads: 

s

c
pl

s
n n n n nE n  

A detailed theoretical analysis of the coupled damage-friction model can be 
found in Zhu (2006). 

9.4. Computational aspects and implementation of the multiscale damage 
model  

We are now interested in implementing the proposed damage-friction coupled 
model into the finite element software Abaqus. This is performed by means of the 
provided user subroutine UMAT. In this subroutine, the material Jacobian matrix, 

/ E , must be provided for the mechanical constitutive model and the values of 
stresses and solution-dependent state variables (i.e. the variables , and rr rd  in this 
study) must be updated at the end of the increment. For this purpose, we need to 
determine the rate form of the macroscopic stress-strain relation which provides the 
consistent tangent operator. Then, we will present the local integration of the 
proposed model.  

9.4.1. Determination of the tangent matrix 

The strategy adopted here consists of starting from the macroscopic stress-strain 
relation (9.27) and of expressing the macroscopic strain rate E  as a function of the 
stress rate: 

hom :tE  (9.37) 

The Jacobian matrix can be obtained by an inverse calculation of hom
t  [28]. For 

a given family of closed microcracks, if the damage growth condition and friction 
sliding criteria are simultaneously verified, we will obtain the following consistency 
conditions: 
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: . 0

. 0

g g g g
d

d

f f f
d

d

 (9.38) 

whereas for a given family of opened microcracks, the consistency condition for 
damage evolution reads: 

: 0f f
d

d
 (9.39) 

Considering relations (9.38) and (9.39), respectively, for the families of closed 
and opened cracks, as well as the rate form of (9.27), the tangent operator hom

t  
reads: 

hom

1 11

1 o cN Nr r r r r
s r r r r

t r
r r

f f d g g
f g

c H
 (9.40) 

with rf the damage function of the thr  family of microcracks: 

2, 4,

0 1

1 1 : ,
2

r
r rf

H H
 

r s
r r r r

c
g

n n n , 

and 

2
0 12

1 0 2 3
0 1 1

( . )

( ) . ( )

r rr r
cr

c r rr r

f H H
H H H

H H c d
 

where 1x  when 0x , and zero otherwise. 

9.4.2. Local integration of the model 

Considering the requirements of the user subroutine UMAT in Abaqus, an 
incremental procedure associated with the rate form of stress-strain relation and 
based on the strain discretization of the considered loading path is used. Furthermore, 
a widely-used prediction-correction splitting numerical scheme is adopted, given the 
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strongly non-linear character of the constitutive law. The scheme from step j  to 
1j  is briefly summarized as follows: 

(1) elastic prediction:  

For each family of microcracks, allow 1 1 1
, ,j j j j j j

d d ; 

calculate 
1

N s
r r r re r r

j j
r

n n nE E , 

then 1 1
e e
j j jE E E  and 1 1:s e

j jE . 

(2) examine the opening-closure condition for each family: 
0

1 :
r r r r

j jr
j

H
F n n

d
 

(3) determination of increments 1 1
, rr

j j
d  and 1

r
j : 

0
r

F : calculate 1
r
jd using (9.32) and (9.28) for open cracks;  

0
r

F : examine the frictional sliding criterion (9.30) for closed cracks: 

1 11

11

1

1

if 0,  then 0, 0, 0

if 0,  calculate ,  using (9.31)

if  0,  then 0;
calculate :

or,  calculate  using (9.39) 

rr r
j jj

r r
jj

r r
jr

r
j

g d

g

f d
f

d

 

(4) update the variables: 1 1
r r r
j j jd d d ; 

1 1

r r r

j j j
; 1 1

r r r
j j j  

(5) update the stress tensor: calculate 1j  
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9.5. Illustration of the model predictions for shear tests 

In order to illustrate the performance of the micromechanical model in various 
cases (closed frictional microcracks, with and without dilatancy, with and without 
damage evolution), we should investigate the macroscopic behavior of a material 
weakened by a family of microcracks with the unit normal 3e . The damaged 
material is subjected to a simple shearing path defined by E13 = E23, which is 
monotonous or cyclic. To keep the cracks closed, we apply beforehand a 
compressive stress 33 10 MPa  in the direction perpendicular to the crack plane, 

i.e. 3e . The model’s parameters used in the simulations are Es = 33,330 MPa,  

vs = 0.23, 3 2
0 2.5 10 .c J m , 2

1 0.08 .c J m and 0.4c . The initial value of the 
damage is chosen to be equal to 0 0.1d . 

Monotonous loading path 

Figure 9.6 shows the comparisons of the mechanical responses predicted by the 
model for the FCD case (non-dilatant frictional cracks with damage evolution) and 
FDCD case (frictional dilatant cracks with damage evolution). 

It is observed that the model, based on the Mori-Tanaka Scheme, predicts a 
strain hardening response. As expected, volumetric dilatations are obtained in the 
FDCD case.  

0
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Figure 9.6. Response (shear strain and volumetric strain) on monotonous loading  
path predicted by the model. Note the great amount of volumetric  

strain predicted in the case of dilatant cracks 
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Cyclic loading path 

The responses predicted by the homogenization scheme for the cyclic loading 
path are illustrated in Figures 9.7a and 9.7b. From a qualitative point of view, three 
response phases can be noted as in monotonous loading. Irreversible strains and 
hysteretic loops during loading-unloading paths are observed as a consequence of 
the frictional mechanism. Furthermore, the hysteretic loops are closed at the end of 
the reloading path for the FCD models, similar to those obtained by Lawn and 
Marshall (1998) in the absence of damage evolution. In contrast, open loops are 
found for the FDCD models; this is in agreement with the evolution of variable  
associated with the volumetric dilatation. 

a)  

b)  

Figure 9.7. Response on a cyclic loading path predicted by: a) FCD model; b) FDCD model 

9.6. Model’s validation for laboratory data including true triaxial tests 

In order to provide a preliminary evaluation of the proposed model, we consider 
in this section the conventional and true triaxial compression tests on two granites 
(Lac du Bonnet in Canada, Westerly in USA) for which data is available. The 
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proposed model requires only six parameters with a clear physical meaning for each 
one. The initial elastic constants E0 and v0 can be determined from the linear part of 
the standard stress-strain curve in a compression test. Parameters 0c and 1c , 
involved in the damage criterion, may be determined by evaluating the progressive 
degradation of the elastic modulus on the unloading stress-strain curves. Friction 
coefficient c may be evaluated by comparing the mechanical responses with 
different confining pressures. The initial overall density of microcrack distribution is 
assumed to be isotropic and characterized by d0. Its value could be determined from 
a hydrostatic compression test or, more accurately, from electron microscopy scans. 

9.6.1. Validation by comparison with conventional triaxial compression tests  

The model is first checked by running simulations of conventional triaxial 
compression tests under different confining pressures. The considered material  
is known as Lac du Bonnet granite, largely studied in the underground research 
laboratory for nuclear waste storage in Canada [41-43]. The following  
parameter values are considered for the simulation: 68,000 MPsE a , 0.21s , 

3 2
0 3 10 .c J m , 2 2

1 6 10 .c J m , 3
0 1 10d , 0.7c . The comparisons of the 

stress-strain (axial strain 11E  [%], lateral strain 22 33E E [%] and volumetric strain 

vE  [%]) curves between the experimental data and model predictions are shown in 
Figures 9.8 to 9.10. It can easily be seen that the main features of quasi-brittle 
geomaterial behavior, previously mentioned, are correctly described by the model. 
Moreover, comparisons of numerical predictions between the models with and 
without friction-based dilatation are also presented. It is observed that the model 
with dilatation offers a much better prediction then the model without dilatation. 
Therefore, the macroscopic volumetric dilatancy of these quasi-brittle materials can 
be physically interpreted as a consequence of the microscopic normal dilatation 
during frictional sliding along microcracks. In Figure 9.9, some unloading paths are 
shown. As the microcracks are closed due to compressive stresses and due to the 
fact that the microcrack sliding is locked by frictional effect, a linear elastic response 
appears during unloading of the deviatoric stress. 

Figure 9.11 shows the simulation of a lateral extension test. In this particular test, 
the rock sample is first submitted to a hydrostatic stress 60 MPa. The axial stress 

11  is increased in a second stage to a prescribed value. In the last stage, the 
confining pressure is progressively reduced while the axial stress is kept constant. 
This test is widely performed in rock mechanics because it approximately 
reproduces the stress path near the cavity boundary during excavation in 
axisymmetric conditions. The numerical simulation presented here was performed 
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for 11 160 MPa  and 22 33 60 MPa . A good agreement is obtained 
between the test data and the model’s predictions. Furthermore, it is noted that in 
this case the difference between the models with and without dilatation is small. 
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Figure 9.8. Comparison between data and model’s predictions for a triaxial compression test 
with confining pressure of 10 MPa using the models with and without frictional dilatation 
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Figure 9.9. Comparisons between data and model’s predictions for a triaxial compression 
cyclic test with confining pressure of 20 MPa using the model with frictional dilatation 
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Figure 9.10. Comparisons between data and model’s predictions for a triaxial compression 
test with confining pressure of 40 MPa using the models with and without frictional dilatation 
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Figure 9.11. Comparison between data and model’s prediction for a lateral extension test 

9.6.2. Simulations of true triaxial compression tests 

The simulations of conventional triaxial compression tests provide a first 
validation of the model in the particular case of axisymmetric loading. We now 
investigate the performance of the model in more general loading conditions. To this 
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end, we propose comparing numerical predictions and experimental data available 
from true triaxial compression tests performed on Westerly granite (USA) by 
Haimson and Chang [44]. The tests were performed on cubic specimens by 
independently controlling three principal stresses in three axes. We follow a 
procedure which consists of identifying the model’s parameters on a conventional 
triaxial compression test with a confining pressure of 60MPa and simulating the  
true triaxial tests. The following values are obtained: 68,000 MPsE a , 0.21s , 

3 -2
0 3 10 J.mc , -2

1 0.18 J.mc , 3
0 1 10d , 0.7c . 

The loading path applied in the true triaxial tests is composed of three steps: i) a 
hydrostatic compression phase until 60 MPa; ii) 33 being kept constant (60 MPa) 

and increasing 11 22  to the prescribed values of 60 MPa, 113 MPa, 180 MPa 

and 249 MPa; and iii) the value of 22 and 33  being kept constant and the value 

of 11  increasing from 11 22  to prescribed values of 747 MPa, 822 MPa,  
860 MPa and 861 MPa. The model is now applied to simulate these tests and the 
comparisons between its predictions and test data are shown in Figure 9.12. An 
agreement is observed for the different loading paths considered. 

It is worth noting that, contrary to phenomenological models, the multiscale 
model is able to provide not only overall stress-strain responses, but also the 
anisotropic distribution of the microcrack density parameter. Figure 9.13 shows 3D 
damage density distributions with the different intermediate principal stress 
value 22 . Noting o  as the original point in the considered space and a  as a point 

on the distribution functions surfaces, the direction of the vector oa corresponds to 
the family of microcracks with unit normal oa oa  and the damage density 

evaluated by oa . We notice that as 22  increases from 60 MPa to 249 MPa, the 

growth of damage in plane 1-2 is progressively blocked. In addition, the greatest 
value always occurs in plane 1-3 and the dip angles for all the four tests are always 
around 62°. This value is slightly different from the experimental data (ranging from 
67° to 72°) reported in [43]. The difference may be explained by the fact that the 
frictional sliding criterion (9.30) is an interfacial criterion and, thus, the intermediate 
stress 22  cannot be taken into account for the microcracks with normal vectors 
within plane 1-3. 
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Figure 9.12. Comparisons of model’s predictions with experimental data for true triaxial 
compression tests on Westerly granite [44] 

9.7. Application on an underground structure: evaluation of the excavation 
damage zone (EDZ)  

After the simulation of laboratory tests, in this section, we will discuss the 
feasibility of applying the micromechanical model to engineering problems. We 
propose to study mechanical responses induced by the excavation of a 3.5 m 
diameter circular tunnel in the context of the Underground Research Laboratory for 
nuclear waste storage (URL-ACEL Canada). The experiment was conducted at the 
420 m level in order to investigate the rock damage process during excavation using 
a non-explosive technique [41, 43, 45]. The tunnel is subjected to a strongly 
deviatoric initial stress state as shown in Figure 9.14.  
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Figure 9.13. Microcracks density parameter distributions in true triaxial  
compression tests on Westerly granite: a) 22 1160 MP ,  747 MPa a ; 
 b) 22 11113 MP ,  822 MPa a  c) 22 11180 MP ,  860 MPa a ;  

d) 22 11249 MP ,  861 MPa a  

 

Figure 9.14. Observing the damaged zones around the tunnel excavation [45] 
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Radial displacement evolution and acoustic emission were monitored. In situ 
observations showed two damaged zones in the direction of the minor principal 
stress (see Figure 9.14). It has been also observed that the size of the damaged zones 
as well as the radial displacement evolve in time due to time-dependent behavior. 
However, in this study, only the short term behavior is investigated. Multiscale 
modeling of the viscous effects accompanying the damage process will be the 
subject of further investigations. 

The initial in situ stress state is defined by three principal stresses as 
follows: 1 55 MPa , 2 14 MPa and 3 48 MPa . The tunnel axis is quasi-
parallel to the intermediate principal stress direction. Therefore, 2D modeling was 
performed under plane strain conditions. Due to the symmetry of the problem, with 
respect to two principal stresses, only a quarter of the domain is considered. The 
studied region with the outer boundary of 30 30 m  was meshed with 900 
rectangular elements. The excavation process is simulated by reducing the normal 
stress on the tunnel wall from its initial value to the atmospheric pressure. The 
parameters used for the FEM modeling were determined from a uniaxial 
compression test on the Lac du Bonnet granite. In Figure 9.15, the distribution of the 
microcrack density parameter around the excavation is shown. The induced damage 
zone appears localized on the top point of the excavation along the minor principal 
stress. This is qualitatively in agreement with in situ observations. The predicted size 
of the damaged zone is also close to that observed in place, varying between 0.43 m 
and 0.52 m [45]. Furthermore, tensile stresses were obtained in numerical 
predictions in some zones near the tunnel wall (see Figure 9.16). However, the 
magnitude of the maximum tensile stress (5.3 MPa) is quite small and less than the 
tensile strength of material which is about 10 MPa. Therefore, the damage is 
essentially induced by closed cracks due to compressive stresses. The principal 
mechanism is frictional sliding along microcracks coupled with crack propagation 
and dilatation. 
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Figure 9.15. Distribution of the damaged zone  

 

  

Figure 9.16. Distribution of the principal stress 1  
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In Figure 9.17, we show the radial displacements (convergence) on the tunnel 
wall in different directions (0° corresponds to the major stress direction). The in situ 
data is obtained by extensometers placed around the excavation [45]. We can point 
out a good qualitative agreement between the predicted results and in situ data. 

 

Figure 9.17. Comparisons of radial convergence between  
in situ measurement and model prediction 

9.8. Conclusions 

This chapter has been devoted to the formulation and application of multiscale 
anisotropic damage. The materials under investigation are quasi-brittle geomaterials. 
The model is formulated within a micro-macro framework using a general 
homogenization procedure, together with a thermodynamics approach of irreversible 
dissipation mechanisms. An important feature of the model is the incorporation of 
unilateral effects due to microcrack closure. Coupling of the damage mechanisms 
with friction phenomena on closed microcrack faces allows us to account for the 
main features of mechanical behaviors in quasi-brittle geomaterials: non-linear 
stress-strain relations, volumetric dilatancy, hysteretic behavior, coupling between 
microcrack growth and frictional sliding. The model contains a small number of 
parameters and each one contains a physical interpretation. It is applied to two 
granites and a good agreement between the model’s predictions and experimental 
data for various loading paths has been obtained. The model is also implemented 
into a standard FEM code. The calculation strategy used for this implementation has 
been described in detail. An example of a structure has been presented to show the 
applicability of the micromechanical model to engineering problems. The extension 
of the model will include, for example, the objective modeling of strain localization 
as well as the subsequent failure process, the correlation between induced damage 
and permeability evolution and the time-dependent behavior due to sub-critical 
microcrack growth.  
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Chapter 10 

Poromechanical Behavior  
of Saturated Cohesive Rocks  

10.1. Introduction 

This chapter is devoted to the poromechanical modeling of saturated cohesive 
rocks. Limiting the discussion to this class of materials, we will briefly review the 
constitutive models developed so far for various coupled poromechanical behavior. 
In traditional soil mechanics, the pore pressure effect is generally taken into account 
by using the Terzaghi’s effective stress concept. However, it is known that this 
effective stress concept is not valid for general cases, in particular for cohesive 
geomaterials. More general approaches should thus be proposed. We will present the 
fundamental features and general methodologies for modeling three types of 
behavior of saturated media: poroelasticity, poroplasticity and damage mechanics. 
As a number of general studies on the modeling of poroelasticity and poroplasticity 
already exist, we will only recall some basic concepts, emphasizing in particular 
parameter identification for these two classes of behaviors. Given that modeling 
damage in saturated porous materials is only a recently developed topic, the field is 
still largely open and, at the same time, of great interest for many engineering 
applications. This is why an important part of this chapter is devoted to this topic. 
Limiting the discussions to macroscopic consideration, we try to provide a general 
methodology for damage modeling of saturated materials and an example of a 
constitutive model is given for a saturated porous rock.  
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10.2. Fundamentals of linear poroelasticity 

In this section, we begin by presenting the fundamental relations of the linear 
poroelasticity initially proposed by Biot [BIO 41, 55, 57; COU 91]. The porous 
medium is seen as an open thermodynamic system exchanging fluid mass with the 
exterior domain. Limited to isothermal and small deformation cases, the state 
variables involved are strain tensor  and fluid mass change per unit initial  
volume m . Considering a natural initial state (without pre-stress and pressure), the 
quadratic free energy function is: 

2
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0 0
1 1( , ) : : ( : )
2 2m

f f

m m
w m g m M MC B  (10.1) 

where 0
mg  is the specific free fluid enthalpy and 0

f  the reference volumetric fluid 
mass. The fourth order tensor C  denotes the elastic stiffness of the porous medium 
in undrained conditions. The second order tensor B is Biot’s coefficient tensor and 
the scalar parameter M is the Biot modulus. The standard derivative of (10.1) leads 
to the constitutive relations of linear elasticity: 
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Using the state law of perfect fluid, relation (10.3) may be rewritten in the 
following form: 
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Substituting (10.5) for (10.2) leads to the constitutive relations of linear 
poroelasticity in drained conditions: 

0:b p pC B  (10.6) 

( )b MC C B B  (10.7) 

where bC  is the drained elastic stiffness tensor. Relation (10.6) may be rewritten as: 

:el bC  (10.8) 

el pB  (10.9) 

The second order tensor el is called the effective stress for elastic deformation 
because it is the thermodynamic force associated with the elastic strain tensor. 

The following discussion is devoted to the identification of poroelastic 
parameters. For the sake of simplicity, only an isotropic material is considered: 

0
02 ( )b btr b p pI I  (10.10) 

0 0( ) ( )
f

m
p p M btr  (10.11) 

0 and 0p denote the initial stress and pore pressure at the reference state of 

deformation. b and b are Lame constants in drained conditions and b  is Biot’s 
coefficient. 

Four parameters suffice to describe the linear poroelastic behavior: two elastic 
constants in the drained condition ( b and b or equivalently drained Young’s 

modulus bE  Poisson’s ratio b ) and two coupling parameters b and M . The 
elastic constants may be identified in the framework of linear elasticity through 
standard laboratory tests. As for determining the coupling parameters, we see that 
microstructural analysis applied to saturated porous media leads to the following 
intrinsic relations [COU 95; DOR 05]:  



380     Constitutive Modeling of Soils and Rocks 

1 b

s

K
b

K
, 1

s f

b
M K K

 (10.12) 

sK  and fK  are respectively the compressibility modulus of the solid matrix and 
the fluid.  denotes the connected porosity. Using the constitutive relations of 
poroelasticity, the following additional relationships may be obtained: 
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Parameter K is the bulk modulus of a porous medium in undrained conditions, 
which can be determined from the stress strain curve in an undrained hydrostatic 
compression test: 
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where 3/trm  is the mean stress and trv  the volumetric strain. In the 
same test, we can also measure the pore pressure generated by compressive stress, 
leading to Skempton’s coefficient sB  as defined by (see (10.13)): 
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An example of Skempton’s coefficient measurement is shown in Figure 10.1 for 
sandstone [KAR 98]. In relation (10.12), bK  is the drained bulk modulus, which 
may be identified from the stress-strain curve obtained from a drained hydrostatic 
compression test: 
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In Figure 10.2, typical stress strain curves are shown for drained hydrostatic 
compression tests on sandstone [KAR 98]. In practice, it is often useful and even 
recommended to perform a mixed hydrostatic compression test. In such a test, two 
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loading phases are used: in the first phase, hydrostatic stress (confining pressure) is 
increased by keeping the pore pressure constant. In the second phase, the pore 
pressure is increased while the confining stress is kept unchanged. The volumetric 
strain is measured in each phase. By applying the poroelastic constitutive relations 
to this loading path, we can express Biot’s coefficient as a function of the volumetric 
strain measured during the two phases by: 

0

0

( )

( )
mv

v p
b  (10.18) 

Finally, note that the compressibility modulus of solid matrix sK , is a micro-
structural parameter, unlike moduli, bK  and K , which are macroscopic parameters. 
In practice the modulus (or more precisely, the average value of compressibility of 
the solid matrix) sK , may be determined from a specific compression test in which 
the confining stress and pore pressure are simultaneously increased with pm . 
The following relation gives the value of sK : 
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An example of such a test for sandstone is shown in Figure 10.3 [KAR 98]. 
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Figure 10.1. Typical stress-pore pressure curve in undrained hydrostatic compression test on 
sandstone used for the determination of Skempton’s coefficient [KAR 98] 
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Figure 10.2. Typical stress strain curves in drained hydrostatic  
compression test on sandstone [KAR 98] 
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Figure 10.3. Typical stress strain curves in hydrostatic  
compression test with pm on sandstone [KAR 98] 

10.3. Fundamentals of poroplasticity  

In this section, we address fundamental features for modeling plastic behavior in 
saturated porous media. More detailed discussions may be found in [BIO 73; COU 
91; COU 95]. Within the framework of small disturbances in a porous medium 
exhibiting elastoplastic behavior, the strain tensor and fluid mass change are divided 
into an elastic and a plastic part as: 

e p , pe mmm  (10.20) 
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In practice, it is convenient to use a state variable homogenous with strain to 
represent irreversible change of fluid mass. Thus the concept of plastic porosity is 
introduced and defined by: 

0/p p
fm  (10.21) 

The thermodynamic potential for poroelastic medium is extended to include a 
plastic process: 
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1 1( , , ) : : ( : ) ( )
2 2

e e e e p e p p
k m k

f f

m mw m g m M M wV C B V   

 (10.22) 

The term ( )p
kw V  denotes locked energy due to plastic hardening, and is a 

function of internal hardening variables denoted by the set kV (scalar for isotropic 
hardening and tensorial for kinematic hardening). The standard derivative of the 
thermodynamic potential leads to the constitutive relations of elastoplastic behavior 
of a saturated porous medium: 

0
0: ( )b p p pC B  (10.23) 

0 0( ) : ( )p p

f

m
p p M B  (10.24) 

The fundamental Clausius-Duhem inequality for intrinsic dissipation is written 
as: 

: 0p p
k kp A V , k

k

wA
V

 (10.25) 

Complementary plastic laws are now required to determine the evolution rate of 
basic state variables ( , ,p p

kV ). This may be done by establishing a (dual) plastic 
dissipation potential. However, considering the time-independent process, plastic 
complementary laws are defined by a yield function, a plastic potential in the case of 
unassociated flow and a hardening function. The yield function is an indicative 
function of a convex elastic domain; it is a scalar function of stresses and 
thermodynamic forces associated with hardening variables, i.e.: 
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( , , ) 0kf p A  (10.26) 

For most geomaterials with internal friction, hypothesizing generalized standard 
materials are not verified. The normality rule for the plastic potential is therefore 
invalid. We thus have to define a complementary plastic potential and a specific 
hardening function verifying the dissipation condition (10.25), which could be 
expressed in the following general form: 

( , , )p kg p A
, 

( , , )p kg p
p

A
, ( , , )k kh pA A  (10.27) 

The complementary plastic laws are constrained by Kuhn-Tucker conditions: 

0 ,   ( , , ) 0  ,    ( , , ) 0k kf p f pA A  (10.28) 

The plastic multiplier 0  is determined by the plastic consistency 
condition 0f . 

The above formulation provides the general framework for elastoplastic 
modeling of saturated porous media. Note that the yield function, the plastic 
potential and the hardening law depend independently on the stress tensor, the pore 
pressure and the conjugated hardening forces. The specific forms of these functions 
can be found from relevant experimental data. However, experimental identification 
is usually a difficult task, requiring a series of laboratory tests with complex loading 
paths. In order to simplify the plastic modeling of porous media, the concept of 
effective stress formulated in poroelasticity is extended to poroplasticity. Based on 
the so-called stress equivalence principle, the basic idea is to extend the plastic 
complementary functions obtained for dry materials to saturated porous media by 
simply substituting an effective stress tensor for the nominal stress tensor. The 
essential question is the validity of this concept in the plastic field and how to 
determine the form of the effective stress. This feature is still an open topic although 
experimental investigations and micromechanical analyses have been performed 
[PIE 95; KHE 95; BUH 96; LAD 97; LYD 00]. The conclusion obtained thus far is 
that the effective stress concept is generally not valid in the plastic field making it 
impossible to define a general form for such an effective stress. Depending on the 
microstructure of porous media, the validity of effective stress may be proven only 
for a few specific cases. For example, for a porous medium with a solid matrix 
obeying the Von-Mises criterion, we find that the traditional Terzaghi effective 
stress is valid in the plastic field. In this case, the plastic functions may be 
formulated with Terzaghi’s effective stress to take into account the effect of pore 
pressure on plastic flow. 
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For purely macroscopic considerations, some (unproven) kinematic hypotheses 
may be formulated. For example, it is assumed that plastic porosity is proportional 
to plastic volumetric strain [COU 91; 95], i.e.: 

p
kk

p , 1,0  (10.29) 

Coefficient plays a role similar to Biot’s coefficient in poroelasticity, even 
though its value is generally different. Given this assumption, the intrinsic 
dissipation inequality becomes: 

( ) : 0p
k kpI A V  (10.30) 

In view of this, the quantity ( )pI  appears as the thermodynamic force 
associated with the plastic strain tensor. In this sense, the term ( )pI  is called 
the effective stress tensor in the plastic field. Accordingly, the plastic potential may 
be simplified as: 

( , , ) ( , )pl
k kg p gA A , pl pI  (10.31) 

To complete the formulation, we need to assume that the yield function may also 
be expressed with the effective stress tensor, i.e.: 

( , , ) ( , ) 0pl
k kf p fA A  (10.32) 

Within the framework of the above assumptions, we may conclude that the 
plastic modeling of saturated porous media is formally reduced to the plastic 
modeling of an equivalent dry material. Finally we note that the value of coefficient 

may be determined from specific laboratory tests [YAM 81; KHE 95]. 

10.4. Damage modeling of saturated brittle materials 

Damage due to microcracks is known as an essential mechanism of the inelastic 
behavior and the failure process in a large class of geomaterials such as rocks and 
concrete. Over recent decades, a number of research works have attempted the 
physical characterization and mathematical modeling of brittle damage. Different 
types of constitutive model, based on either the phenomenological and 
micromechanical approaches, have been developed. However, most of these 
constitutive models only focused on damage in dry material subject to mechanical 
loading. Damage modeling of saturated materials has been discussed more recently 
and remains open to study. It is known that material damage affects not only 
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mechanical behavior but also hydromechanical and thermomechanical properties 
[FAU 91; CAR 98]. In this section, we present some representative results from 
experimental data and numerical damage modeling in saturated porous media in 
order to contribute some basic ideas to this large topic. 

10.4.1. Experimental characterization 

The purpose here is to show macroscopic consequences of microcracks on the 
poromechanical behavior of saturated brittle rocks. A conceptional framework is 
first defined for constitutive models of damaged porous media in order to explain 
more clearly the experimental procedures followed and to interpret the results 
obtained. For the sake of simplicity, an elastic behavior coupled with induced 
damage is assumed. The damage evolution due to microcrack propagation is the 
unique dissipation mechanism. 

10.4.1.1. General methodology 

In a fully phenomenological approach, the damage state is represented by 
internal variables (scalar and tensorial) which may be formally denoted by D. The 
damage variables have to take into account density and orientation of the 
microcracks [KAC 93; LEM 96]. For the sake of simplicity, it is assumed that the 
initial behavior of the undamaged material is linear elastic and that the response to 
unloading at constant damage state is also linear elastic. Assuming the existence of a 
thermodynamic potential, the constitutive relations of elastic damage behavior of 
saturated porous media can be deduced in the same way as for dry materials. In a 
general way, considering that damage affects elastic properties and poroelastic 
coefficients, the constitutive relations of a damage porous medium in a saturated 
condition may be expressed as follows: 

( ) : ( )bd pC D B D  (10.33) 

0

( ) :
( )fl

m p
M

B D
D

 (10.34) 

where ( )bdC D  is the effective elastic stiffness tensor of a damaged material in a 
drained condition. In the same way, the tensor of Biot’s coefficients B(D) and Biot’s 
modulus, )(M D  are also functions of damage variables. It is convenient to use the 

porosity variation as a state variable instead of the change of fluid mass 0( / )fm . 
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Thus, the free skeleton energy may be separated from the free fluid enthalpy. 
Relation (10.34) becomes:  

0 ( ) : ( ) pB D D  (10.35) 

Coefficient )( D  thus defines the compressibility of the pores, which is also a 
function of the damage state.  

The time derivative of equations (10.33) and (10.34) gives us the incremental 
forms of the constitutive relations: 

( ) : ( )btd d dpS D H D  (10.36) 

*( ) :
( )fl

dm dpd
L

H D
D

 (10.37) 

The fourth order tensor Sbt (D) denotes the tangent elastic compliance of a 
damaged material in drained conditions, and the second order symmetric tensor 
H(D) defines strain variations due to changes of pore pressure. H*(D) is also a 
second order symmetric tensor producing stress induced change of pore fluid. 
Finally, scalar modulus L(D) gives the relationship between the variation of pore 
pressure and fluid mass change. It is clear that all the tangent coefficients are 
functions of the damage state. 

We thus assume that there are three symmetry planes in damaged materials, 
which means that the effects of randomly distributed microcracks may be considered 
as equivalent to those of three orthogonal microcrack families [KAC 93]. Therefore, 
it is possible to define three principal directions of damage state, and in the principal 
damage framework, the tangent compliance tensor Sbt (D) may be written in the 
following matrix form:  
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Coefficients bt
kE  and bt

ij  are the Young’s moduli and Poisson’s ratios of the 

damaged material in drained conditions respectively, while t
ijG  are the shear 

moduli. In a similar way, the coupling coefficient tensor )(H D may be expressed 
as: 

1

2

3

1 0 0

1( ) 0 0

10 0

H

H

H

H D   (10.39) 

In rock mechanics, basic laboratory tests are usually performed on cylinder 
samples. In this particular case, a transversely isotropic behavior is assumed. If 
axis 1x  is parallel to the cylinder axis, we obtain the following relations: 

bt
3

bt
2 EE , bt

13
bt
12 , bt

31
bt
21

btbt
3223 , tt GG 3112 , 32 HH  (10.40) 

and the incremental constitutive equations are written as: 
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H
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The above equations may be inverted to give incremental stresses versus 
incremental strains and pore pressure: 
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The two Biot coefficients t
1b  and t

2b  may be given in terms of measurable 
quantities:  
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1
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E
b  (10.47) 

Thus, in the case of axisymmetric conditions, the tangent poroelastic behavior of 
damaged porous media are determined by 8 independent parameters, which are 
dependent on the damage state. These parameters are bt

1E , bt
2E , bt

12 , bt
21 , bt

23 , 
tG12 , 1H and 2H . The tangent Biot’s coefficients may be determined from relations 

(10.46) and (10.47). Therefore, experimental investigations consist of evaluating the 
8 parameters for different states of damage. 
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Type of testing Loading condition Constitutive relations Measurable 
coefficients 
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Table 10.1. Loading conditions and coefficients measured in various tests 

Generally, four typical loading paths may be performed: 

– drained triaxial compression test with and without unloading cycles;  

– drained triaxial compression test with increase of pore pressure at different 
levels of deviatoric stress; 

– drained triaxial compression test with extension of radial stress at different 
levels of deviatoric stress; 

– undrained triaxial compression with decrease of pore pressure at different 
levels of deviatoric stress.  
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In Table 10.1, we summarize the loading conditions, the constitutive relations 
concerned and the measurable coefficients for various loading paths. 

10.4.1.2. Some representative results 

We present here some typical results obtained from sandstone. It is composed of 
95% quartz and the average porosity is about 20% [KAR 98]. This material is 
extensively studied due to its quite homogenous microstructure and sensitivity to 
induced damage. The typical mechanical behavior of sandstone has been 
investigated in [IKO 90, KHA 95, KAR 00]. In this section, only the 
poromechanical behavior is discussed. The main purpose is to show the 
consequences of damage on the poromechanical response of a damaged material.  
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Figure 10.4. Variation of axial and radial strains with pore pressure at different values of 
deviatoric stress [KAR 98] 

A first series of results has been obtained from a triaxial compression test in 
which pore pressure was increased at different values of deviatoric stress. In this 
test, the sample was first subjected to a conventional triaxial compression phase 
until a given value of deviatoric stress was reached. Then, the axial and radial 
stresses are held constant and fluid is injected into the sample. The pore pressure 
magnitude was limited to a third of the confining pressure in order to avoid extra 
propagation of microcracks. Invoking microcrack space distribution, the purpose of 
this test was to show induced anisotropy of poromechanical behavior. Several tests 
have been performed by [KAR 00]. The results obtained from a test with a confining 
pressure of 30 MPa are shown in Figure 10.4. 

We can see that if the increase in pore pressure is performed at a level of 
deviatoric stress larger than the damage threshold, further propagation of 
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microcracks is generated by the increased pore pressure. Accordingly, the variations 
of the axial and radial strains are non-linear and anisotropic ( 31 ). However, 
if the injection is performed at a level of deviatoric stress lower than the damage 
threshold, i.e. inside the elastic domain, linear and isotropic strains are obtained 
depending on the increasing pore pressure ( 31 ). The results obtained from 
the series of tests appear to agree with this analysis. As most microcracks are 
oriented along the axial direction, the variation of axial strain is always smaller than 
that of radial strain. The difference between these two orientations is intensified as 
the level of induced damage increases. Furthermore, for a very high level of damage, 
a compressive incremental strain may be obtained in the radial direction due to an 
increase of pore pressure. This indicates a very strong induced anisotropy by 
microcracks. Using the initial slope of the strain variation curves at the beginning of 
the fluid injection, we can determine the coupling parameters ( L ,H ,H 21 ) as defined 
in the previous section [KAR 00]. 

A second example involves an undrained triaxial compression test. In the first 
stage, the sample is subjected to conventional undrained compression until a given 
value of deviatoric stress is reached. Pore pressure is progressively generated by 
applied deviatoric stress. Then the pore pressure is decreased and axial and radial 
strains are measured. Note that the diminution of pore pressure corresponds to 
elastic unloading, leading to linear elastic strain responses. However, the initial 
slopes of strain curves represent the effective poroelastic behavior and should thus 
depend on the damage state (or equivalently on the level of deviatoric stress 
applied). In Figure 10.5, strains and pore pressure are presented as dependent on 
deviatoric stress. The pore pressure increases at a first stage and then decreases in a 
second stage. Such a decrease in pore pressure is a consequence of volumetric 
dilatation induced by the growth of microcracks. In Figure 10.6, strain variations are 
shown with the decrease in pore pressure. Clearly, linear variations are obtained and 
the slopes of the curves become smaller as the level of deviatoric stress increases. 
Moreover, the slope of the radial strain is much smaller than that of the axial strain. 
This seems to confirm induced anisotropy of poroelastic behavior of damaged 
material. 
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Figure 10.5. Strains and pore pressure versus deviatoric stress  
in an undrained triaxial compression test [KAR 98] 
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Figure 10.6. Variations of axial and radial strains with pore pressure decrease during 
undrained triaxial compression test [KAR 98] 

Finally, an example is given to show the determination of the tangent Biot’s 
coefficient during a drained triaxial compression test that uses the procedure 
presented in the preceding section. However, a geometrical limitation is placed on 
cylinder samples. Due to geometrical symmetry, it is impossible to distinguish radial 
and tangential directions. For example, as it is impossible to determine bt

23  and then 
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deduce bt
3E  and bt

12  (see Table 10.1), a strong simplification is usually introduced. 

It is assumed that b
0

bt
23  in order to estimate the tangent Biot’s coefficients. 

Representative results are given in Table 10.2 for a test performed with a confining 
pressure of 20 MPa [KAR 00]. From these results, the following observations are in 
order: 

– at a low level of deviatoric stress, the values of tangent Biot’s coefficients are 
smaller than the initial value obtained from a hydrostatic compression test (around 
0.8) [KAR 00]. This decrease in Biot’s coefficient may be related to the closure of 
the initial microcracks by applied deviatoric stress. The fact that the decrease in the 
axial direction is larger than that in the radial direction is in agreement with this 
analysis;  

– after a short phase of decrease, the tangent Biot’s coefficient in the radial 
direction increases continuously, as a consequence of the growth of microcracks 
which are essentially oriented in the axial direction; 

– the tangent Biot’s coefficient in the axial direction continuously decreases until 
a high level of deviatoric stress is reached and starts to increase only when the 
deviatoric stress is close to peak strength. This clearly indicates an anisotropic 
distribution of microcracks which generates an induced anisotropy in the tangent 
Biot’s coefficients.  

pic31

31
)(

 27% 39% 52% 63% 74% 

t
1b  0.434±.042 0.368±.037 0.355±.036 0.296±.036 0.306±.037 

t
1

t
1 b/bd  9.6% 10.1% 10.2% 12.3% 12.1% 

t
2b  0.611±.042 0.593±.040 0.606±.041 0.675±.046 0.770±.054 

t
2

t
2 b/bd  6.8% 6.8% 6.8% 6.8% 7.0% 

Table 10.2. Tangent Biot’s coefficients for different values  
of deviatoric stress (Pc=20 MPa) [KAR 98] 

10.4.2. Numerical modeling 

This section is now devoted to constitutive damage modeling in saturated porous 
media. The general framework is first exposed, and an example of a constitutive 
model is then presented. Note that only phenomenological approaches will be 
discussed here. 
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10.4.2.1. General framework 

Under phenomenological approaches, damage is represented by internal 
variables. In order to describe anisotropic damage, tensorial damage variables are 
needed. Second and fourth order tensors are generally used. For the sake of 
simplicity, only a second order symmetric damage tensor is involved here [KAC 
93], which can be decomposed to a spectral form with its three principal directions: 

3

1i

ii
i VV DD  (10.48) 

where iV  is the unit vector normal to the thi  family of microcracks and iD  denotes 
the microcrack density. By adopting this representation, we can see that the 
damaged material exhibits an orthotropic behavior defined by its three principal 
directions. 

In a direct formulation, the state variables used are strain tensor , Lagrangian 
porosity change 0( )  and damage tensor D . The thermodynamic potential is 
split into two parts, the free energy of the skeleton and the free enthalpy of the pore 
fluid: 

( , , ) ( , , )o s o fD D  (10.49) 

The basic Clausius-Duhem’s inequality is written as: 

1 : 0sp  (10.50) 

The standard derivation of thermodynamic potential (10.50) leads us to the 
following state equations: 

s , 
 
 

sp , d sY
D

 (10.51) 

In order to specify the expression of the free energy function, some assumptions 
need to be made. The initial behavior of the undamaged material is linearly elastic 
and the anisotropy is entirely induced by the directed distribution of microcracks. 
Moreover, linear poroelastic behavior is also assumed for a constant damage state. 
Thus, the free energy of the skeleton is in quadratic form on  and . Finally, 
neglecting interactions between microcracks [KAC 93, HAL 96], the 
thermodynamic potential is linear in D . Thus, by extending Biot’s poroelasticity, 
the following form of the thermodynamic potential is proposed: 
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Second order tensor 0B  and scalar coefficient 0N  denote poroelastic 

coefficients of undamaged material. Three parameters 1C , 2C  and 3C  are 
introduced to characterize the influence of damage on poroelastic coefficients. 
Fourth order tensor dC  denotes the effective elastic stiffness of the damaged 
material at constant porosity. From (10.52), the thermodynamic force associated 
with damage can be deduced, which is a second order tensor depending on the 
strains and variation of porosity. In practice and in view of experimental 
identification, it is more convenient to use pore pressure as a driving variable instead 
of the change of porosity. Thus, it is proposed to write a complementary formulation 
through a partial Legendre transformation with respect to the change of porosity. 
The thermodynamic potential takes the following form (the reference pore pressure 
is zero for convenience): 
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Accordingly, the state equations are given by: 
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We can easily see that the second order tensor 0A  is the initial Biot’s coefficient 
tensor and that 0  is the initial coefficient of pore compressibility. Three 

parameters p
1C , p

2C  and p
3C , which are respectively dual to 1C , 2C  and 3C , 

characterize the influence of damage on poroelastic coupling coefficients. Fourth 
order tensor bdC  denotes the drained elastic stiffness of the damaged material. In 
(10.57), we can see that the thermodynamic force associated with damage is 
independently related to strain and pore pressure. 

Comparing (10.55) and (10.56) with the standard linear anisotropic poroelasticity 
[THO 91; CHE 97], we may deduce the following relations: 

0
1 3( ) p p

ij ij ij ijA A C D C trD D  (10.58) 

0
2( ) pC trD D  (10.59) 

These relations clearly define the poroelastic coefficients of material with 
induced damage. Three coefficients should be determined from relevant 
experimental data. However, a micromechanical analysis allows some theoretical 
estimation to be made. In fact, the application of homogenization techniques on 
porous media shows that the poroelastic properties are directly related to those of the 
constituents and to the microstructure [DOR et al. 06]. For example, for initially 
isotropic materials, we obtain [LYD 00]: 

1
3

bd
ij ij ijkl kl
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K
 (10.60) 

1 1 ( ) 0
3s

tr
K

A  (10.61) 

where sK  is the compressibility modulus of the solid matrix. According to these 
relations, identifying the poroelastic behavior can lead to the determination of 
effective elastic properties of the damaged material ( )bdC D . 

The evolution of the damage variable is determined by a pseudo-potential of 
dissipation. In the case of time-independent dissipation, the dissipation potential 
becomes an indicative function of the convex elastic domain and its boundary is 
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defined by the damage criterion in the space of the thermodynamic forces conjugate 
to damage. 

( , ) 0d
df Y D  (10.62) 

and the damage evolution law is: 

 
 

d
d d

f
D

Y
 (10.63) 

Parameter 0d  is determined by the damage consistency condition 

0d df . The damage dissipation is verified by the fundamental inequality:  

: 0dY D  (10.64) 

The specific form of the damage criterion should be based on relevant 
experimental investigation. However, it is noted that experimental identification is 
generally a delicate task.  

10.4.2.2. An example of a damage model 

An example of an anisotropic damage model for saturated media is presented. As 
previously mentioned, the essential step is to determine the effective elastic stiffness 
tensor of a damaged material. Based on the previous works by Kachanov [KAC 93] 
and Halm et al. [HAL 96], the following free energy function of the dry skeleton 
material (without fluid) may be used: 

20
1 0 1 2( ) ( . ) ( . )  ( . . )

2
b
s tr tr a tr tr a trD D  (10.65) 

where 0  and 0  are Lame’s elastic constants of undamaged material. Two 
parameters 1a  and 2a  characterize the degradation of elastic properties due to 
damage. From the derivative of (10.65), the effective elastic stiffness of damaged 
material can be deduced: 
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0bC  denotes the initial elastic stiffness tensor of undamaged material and the 
thermodynamic force associated with damage is given by: 

1 2
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I I
 (10.67) 

Note that the thermodynamic potential given in (10.65) is a simplified version of 
a more general expression deduced from micromechanical analysis [PEN 05]. In this 
simplified version, unilateral effects have been neglected. Since experimental 
identification of the damage force is generally difficult, a pragmatic approach for 
determining damage evolution is preferred. Based on the principles of linear fracture 
mechanics, we propose to relate the damage evolution to the propagation of 
microcracks. Therefore, the damage tensor components are expressed as: 
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where kâ  and km are, respectively, the average length and number (density) of the 
thk  family of microcracks, with kn  being the unit normal vector. In this definition, 

an initial isotropic distribution of microcracks with the average length 0â  is 
assumed. Parameter b  defines a critical length of microcracks for coalescence.  

A crack propagation criterion remains to be defined. In the spirit of fracture 
mechanics, this criterion is formulated with applied stresses and pore pressure. 
Based on the work by Costin [COS 87], it is assumed that any family of microcracks 
can be replaced by a fictitious single crack subjected to mode I propagation. The 
propagation is controlled by the deviatoric stress field which is the driving force for 
propagation and the hydrostatic stress which acts as a confining effect. For instance, 
the following criterion is proposed: 
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Tensor T  denotes the effective stress defined by Terzaghi. The corrective 
term p)r1(  is introduced to describe an anisotropic effect of pore pressure on 
crack propagation. Parameter rC  defines material resistance to propagation. 
Function ( )f r  plays a double role in this criterion. It first defines the 
proportionality between the macroscopic deviatoric stress field and the local tensile 
stress. Secondly, the variation of ( )f r  describes the material hardening/softening 
during crack propagation. It increases monotonically when the crack density is 
smaller than ( 1r ). After this critical point ( 1r ), it becomes stationary (as in 
perfect plasticity) or decreases (as in strain softening) to produce an unstable crack 
propagation. The specific form of function ( )f r  may be experimentally and 
numerically determined. As a first approximation, the following simple function 
may be used: 

  / , 1
( )

  , 1
t r r

f r
t r

 (10.71) 

The detailed procedure for determining the model’s parameters is given in [BAR 
00]. 

In Figure 10.7, a simulation example is shown, corresponding to a drained 
triaxial test with stages of pore pressure increase at different levels of deviatoric 
stress, as previously mentioned. In order to study the influence of the pore pressure 
on the crack propagation criterion, two comparative simulations have been 
performed, with ( 3 0a ) and without ( 3 0a ) respectively, taking into account the 
anisotropic effect. From these results, we can first conclude that linear poroelasticity 
is not able to describe the experimental evidence, even in a qualitative way. The 
results obtained by the anisotropic damage model are qualitatively in agreement 
with experimental data. The numerical predictions are significantly improved by 
taking into account the anisotropic effect of pore pressure.  
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Figure 10.7. Variation of axial and radial strain with increase of pore pressure - 
comparisons between numerical predictions and experimentale data for two values of 
deviatoric stress (46 and 112 MPa) under a confining pressure of 30 MPa: triangle – 

experiment, square – proposed mode 3 0a l, rhombus – simplified model with 3 0a , 
circle – linear poroelasticity, from [BAR 00] 

10.5. Conclusion 

Some basic features for damage modeling in saturated porous media have been 
presented. Basic experimental investigations have also been discussed. However, 
this topic is still an open issue. Recent advances have been made in recent years both 
in phenomenological approaches and micromechanical analyses.  
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Chapter 11 

Parameter Identification  

11.1. Introduction 

The use of a constitutive model, particularly in finite element calculations for 
geotechnical problems, requires a methodology to be developed which identifies 
parameters, adapted to both the internal structure of the model and the available test 
data. The identification method must lead, so far as possible, to an objective 
determination of the model parameters, which means that it has to be user 
independent. In most cases, it consists of a better use of the available experimental 
data in order to obtain a set of parameters that is the best compromise for the 
model’s response along all the known loading paths. According to the problem 
which has to be treated, this compromise can give more importance to the response 
along specific loading paths. 

Developing such a methodology for a given model requires at first an analysis of 
all the parameters, their physical meaning, their possible value interval, and their 
eventual link with the usual geotechnical parameters. They can usually be divided 
into two groups: 

1) parameters having a direct link to experimental behavior: for example, the 
Young’s modulus and the Poisson’s ratio in elasticity, the friction angle and the 
dilatancy angle in plasticity; 

2) “numerical” parameters: for example, in the case of an elastoplastic model, 
the parameters controlling the shape of the yield surface or the evolution of the 
hardening variables. 
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The determination method can vary from one group to another. For the first 
group, a direct approach based on the experimental curves in well controlled 
laboratory tests, such as triaxial and oedometer tests, is usually possible and 
straightforward. However, it has to be well controlled and in agreement with the 
concepts at the basis of the model. For example, the definition of the friction angle 
in the Mohr-Coulomb elastic-perfectly plastic model is different from the one in the 
Cam-Clay model or any derived model such as Hujeux’s model (see Chapters 3 and 
4). In the first case, the model introduces the peak friction angle, while in the second 
case, we use the friction angle at the perfect plasticity state (critical state). These two 
angles are the same for contractant materials, but are different for dilatant ones.  

Another example concerns the determination of the elastic modulus for every 
elastoplastic model. It is now well established that the elastic domain for a soil is 
restrained to very small deformations ( < 10-5 to 10-4). Therefore, the elastic 
properties can be measured only with specific tests (instrumented triaxial cells, 
resonant columns, etc.). Conventional elastic parameters are measured from 
traditional tests at higher strain amplitudes, usually around 10-3. It is in that case 
better to use an unloading curve whenever it is available rather than the initial slope 
of the loading curve, which corresponds to the development of plastic as well as 
elastic strains. The moduli measured in that case are much smaller than those 
obtained in very small deformations and cannot be used in analyses requiring small 
strain amplitudes, such as seismic case studies for example. We have to remember 
that, even for high stress levels, the value of the elastic modulus can play a non-
negligible role on the overall response of a non-homogenous boundary value 
problem, as shown in [DAR 95]. In the parameter identification process itself, the 
choice of the elastic parameters can influence the determination of some other 
parameters, in particular the “numerical” parameters. This is particularly true when 
the identification procedure is conducted using stress paths along which the model 
response is strongly influenced by the elastic constants. This is not the case for a 
drained triaxial test, but is for an undrained triaxial test. In this loading, the 
condition of no volume change corresponds for the elastoplastic response to the 
relation d v

e + d v
p = 0, which means that the amplitude of the plastic volumetric 

strain is of the same order of magnitude as the elastic one, leading to a marked 
influence of the elastic parameters on the model response. 

The determination of the “numerical” parameters usually requires a method 
adapted to each model. They can be classified under three categories: analytical 
methods, correlation methods and optimization methods. 
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11.2. Analytical methods 

These methods involve using the mathematical formulation of the model 
equations in order to obtain a set of analytical expressions leading to a system of 
linear equations whose unknowns are the required parameters. Usually, these 
equations correspond to particular stress and strain states, such as the peak or the 
asymptotic value of the deviatoric stress, the change in sign of the volume change 
increment or the inflection point in the volume change curve, the instant slope 
values at different points of the stress-strain curve, etc. 

It is a simple approach which has the advantage of staying close to the model’s 
inner structure and which provides good results if the set of experimental results 
does not present strong incoherency. It has been used with success by different 
authors; see for example the work of Mestat et al. [MES 00] with Nova’s 
elastoplastic model. 

This approach can be enriched by the analytical study of the plastic yield 
condition, verified by a large number of experimental points, which enables a well 
written set of parameters to be obtained by an appropriate statistic treatment. Based 
on this method, Laigle developed a program for determining Hujeux’s model 
parameters, called DELUGE. 

The least squares methods, which can also be classified within this kind of 
approach, consist generally of using simple, often linear, relations in well chosen 
diagrams in order to obtain a direct determination of one of the model parameters 
(for example the slope of the linear relation). We can cite the work of Duncan and 
Chang [DUN 70] who transformed a hyperbolic relation into a linear one; the work 
of Lade [LAD 88] adapted to his model; the work of Kolymbas [KOL 91] for his 
hypo-elastic model. However, not all the constitutive models are adapted to the use 
of such an approach and we have to be careful with the use of some diagrams which 
can amplify the effect of experimental errors. 

11.3. Correlations applied to parameter identification 

Until now, empirical correlations have successfully offered some links between 
the physical properties (nature of the constituents, grain size distribution, etc.) and 
the mechanical properties of soils. Most of the common parameters used in soil 
mechanics have thus been related in this way to parameters linked to the nature of 
the materials. A methodology of connecting properties of the discontinuous medium 
and properties of the equivalent continuous medium has been developed by Biarez et 
al. [BIA 77 BIA 89, BIA 94]. Some results are presented in Chapter 2. This 
approach has been extended to the determination of constitutive model parameters 
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by Hicher and Rahma [HIC 94]. The main objective of this method is not to replace 
the experimental determination of the parameters, but to give a first estimate of a set 
of parameters for a given soil, which can afterwards be used as an objective initial 
set for a more precise determination, as for example in an optimization procedure 
(see section 11.4). The correlation framework can also provide us with the value of a 
given parameter when the available data is not sufficient to obtain the entire set of 
parameters. It can also allow us to take into account the special heterogenities of a 
natural soil deposit.  

We present here an example of the construction of correlations applied to the 
determination of the parameters of Hujeux’s model (see Chapter 4). The setting up 
of correlations between physical and mechanical properties consists of creating an 
implicit link between characteristics of the discontinuous medium (DM) made of 
grains and those of the equivalent continuous medium (CM). The mechanical 
properties of the latter will thus depend on a set of parameters representative of the 
discontinuous medium which can be classified into different groups: 

1) mechanical properties of the grains: 

– mechanical properties of each individual grain. For most purposes, linear 
isotropic elasticity can be assumed (two parameters Eg and g). If not, a more 
complex constitutive model has to be developed with plasticity, damage, etc. This is 
particularly the case for elevated stresses when grain ruptures take place. 

– mechanical properties of the contact between grains: intergranular friction (one 
parameter of friction  and possibly intergranular glue (see Chapter 2). 

2) geometrical boundary conditions: 

– grain geometry: shape characterized by the angularity coefficient, the surface 
state, etc.; the size and grain size distribution characterized by several parameters 
(d90, d60, d60/d10, etc.); 

– arrangement of the grains: the compacity of the arrangement can be 
represented by a scalar, such as the void ratio e or the porosity n. The anisotropic 
aspect is more complex to define. We can use for example the statistical orientation 
of the tangential planes at grain contact or the fabric tensor. 

These different parameters, representative of the discontinuous medium, can be 
classified into two categories: a set of parameters which can be considered as 
constant in the absence of grain ruptures, called nature parameters; parameters 
representative of the grain arrangement which evolve with the loading history. Table 
6.1 summarizes the different elements and allows us to propose a basic equation for 
the construction of correlations: 

NATURE (DM) + COMPACITY (DM) – RHEOLOGY (CM) 
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Nature and geometry
of the

grains + mechanical

Properties of the discontinuous medium

Grain assemblyProperties of the grains

Properties of the continuous medium

Semi-cubic elastic modulus

Permeability

1.4

5.85

angularity

0.11 + 0.0037

 

Table 11.1. Relations between discontinuous and continuous media 

As it is difficult to identify all the parameters representative of the discontinuous 
medium, the nature of soils can be synthesized by a particular arrangement of the 
constituents in response to suitable normalized mechanical tests: maximum and 
minimum void ratio emax and emin for sands, Atterberg’s limits wl and wp for fine 
soils. These nature parameters can be combined with a parameter representative of 
the grain arrangement:  

density index ID = (emax – e)/(emax – emin) or consistency index Ic = (wl – w)/(wl – wp) 

These mixed parameters are representative of the mechanical state of the 
discontinuous medium and the second basic equation can be written as: 

MECHANICAL STATE (DM) – RHEOLOGY (CM) 

Given this approach, it is possible to construct correlations either between 
parameters representative of the discontinuous medium, for example between nature 
parameters and mixed parameters, or between parameters of the discontinuous 
medium and parameters of the continuous medium. In the latter case, we have to 
distinguish between parameters independent of the grain arrangement: which are 
sometimes called intrinsic parameters, and parameters dependent on both nature and 
arrangement which evolve with the mechanical state. In particular, they are 
dependent on the initial state of the material at the beginning of the loading and thus 
have to be calibrated according to this initial state. 
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Along these lines, Hicher and Rahma [HIC 94] have developed correlations 
applied to the determination of parameters of Hujeux’s model (see Chapter 4) in  
a simplified version called Cyclade [AUB 82]. This simplified version contains  
10 parameters which can be classified in two groups: 

1) parameters directly related to experimental behavior: E,  and n for non-linear 
elasticity; , pc0 and  for perfect plasticity; 

2) “numerical” parameters: b which controls the shape of the yield surface, rel 
which defines the initial size of the elastic domain; a and  which control the 
evolution of the hardening variables. 

21 sands, with a large variety of physical properties, were selected from the 
Modelisol database [FAV 91]. Around 150 drained and undrained triaxial tests were 
available for these 21 sands, tested at different initial densities. For each material, 
the same procedure was used for parameter determination. Parameters of group 1 
were first measured as closely as possible from experimental data. Parameters of 
group 2 were then estimated using an optimization programme called Adelap [MEI 
92]. The quality of the numerical simulations was estimated according to certain 
criteria, such as the initial slope, the peak and plateau levels, the peak abscissa of the 
stress-strain curve and the amplitude of the contraction and dilatancy of the 
volumetric change curves. Figure 11.1 presents an example of numerical simulations 
of drained and undrained triaxial tests on Ham River Sand [BIS 66] with an 
optimized set of parameters. Only two parameters E and pc0 are dependent on the 
initial state of the material, all the others are considered as intrinsic and depend only 
on the soil physical characteristics. 
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Figure 11.1. Numerical simulations (dashed lines) of drained and undrained triaxial tests on 

Ham River Sand. Experimental data (continuous lines) after [BIS 66]; parameter 
identification by optimization procedure 
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Correlations were then constructed by using a statistical approach composed of 
two methods: the principal component analysis and the multiple regression analysis. 
They gave mathematical links between model parameters and parameters of the 
discontinuous medium with a probability in a confidence range estimated at 95%. 
Correlations for elasticity and perfect plasticity parameters already exist [BIA 94], 
the main interest of this approach lies in its capacity to produce correlations for the 
“numerical” parameters. As an example, the results obtained for parameters b and a 
are presented below. 

Parameter b controls the shape of the yield surface. It can vary between 0 and 1. 
For b = 1, the shape is similar to the yield surface of the Cam-Clay model. Values 
close to 1 are therefore suitable for clayey materials. For b = 0, we obtain a Mohr-
Coulomb type yield surface. Therefore, small values of b (b < 0.3) are more suitable 
for sandy materials. In this study, all the tested materials being sands, obtained 
values of b were all located between 0.1 and 0.3. The principal component analysis 
showed a strong dependency with emax, emin and the grain size distribution, in 
particular d10. This last parameter indicates that the percentage of fine particles has a 
significant influence on the shape of the yield surface. The proposed relation is the 
following: 

b = 0.5emax – 0.84emin – 0.02d10(mm) + 0.2 R = 0.93 

Parameter a controls the evolution of the hardening variable, which is a function 
of the deviatoric plastic strain. It thus has a great influence on the non-linearity of 
the stress-strain relationship. For sands, its values are between 10-3 and 10-2. The 
principal component analysis showed a strong dependency with the grain size. The 
correlation equation takes this effect into account by means of the mean size 
coefficient d60, completed by a parameter which can be related to the whole 
granulometry range, here emin: 

loga = 0.35logd60(mm) + 0.93emin – 3.37 R = 0.97 

In order to validate this approach, an a priori determination of the model 
parameters based on these correlations was performed for a sand outside of the 
database. Elastic parameters and the friction angle were determined directly from the 
experimental curves while the other parameters were determined by using the 
correlation equations. The result of the simulation, presented in Figure 11.2, is quite 
satisfactory and has been improved in a second step using an optimization 
technique. The final value of each parameter is well located within the standard 
deviation obtained by the statistical analysis. 
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Figure 11.2. Validation of correlations: a) initial set of parameters, b) optimized set of 

parameters. Continuous lines: experimental results, dashed lines: numerical simulations 

This method has been applied with success to other materials [DAO 99]. The 
construction of correlation models provides a priori an initial set of parameters and 
facilitates the use of an optimization technique by reducing the variation interval of 
each parameter for any given soil. It is also a very useful complement to a 
determination by inverse analysis (as will be seen later in this chapter). 

11.4. Optimization methods 

When some of the model parameters cannot be determined either by direct 
analysis of the experimental curves or by an analytical method, the usual approach 
to attempt them is by curve fitting. However, this is often time consuming and the 
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result can be strongly user dependent. We thus have to develop methods which are 
more objective and this is usually done by means of an optimization technique 
coupled or not to a statistical analysis which takes into account any experimental 
errors. This approach is based on the inverse problem theory [TAR 87]. The 
optimization process consists of minimizing a given function, called the cost 
function, which depends on the whole set of parameters and measures the distance 
between experimental results and numerical simulations. 

The database can be diverse in origin. The first approaches in soil mechanics 
[MEI 89, PIC 91, SHA 91] were developed for laboratory test data, mainly drained 
and undrained triaxial tests. In recent years, in situ testing data, mainly pressiometer 
tests, have been included [CAM 93, HIC 96, ZEN 01, RAN 03, YIN 07]. 

11.4.1. Numerical formulation 

Traditionally, we would resolve a mechanical problem by calculating response R 
of a mechanical system S subjected to actions A. This can be written: 

actions (X) – system (S) – response (R) 

System S includes constitutive model M and its parameters P. These problems, 
known as direct problems, can be mathematically expressed by: 

R = F (P, X, B, C)  

where F represents a functional calculus connecting R (to be determined) to S 
(known), B represents all the boundary conditions of the problem and C all the 
constants of the problem, such as the initial state. 

In the inverse problem, one part of the information constituting system S is 
unknown. In the case of parameter identification, parameters P of constitutive model 
M are unknown. Therefore, we need complementary information which is given by 
our knowledge of response R (or at least a part of it), corresponding here to 
mechanical test results. The inverse problem is thus defined such that: 

P = F-1(R*, X, B, C) 

where R* represents a set of experimental data. It is usually impossible to obtain an 
explicit solution to this equation which requires the construction of an optimization 
procedure, consisting of minimizing the difference between the experimental data 
R* and the calculated response RC.  
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The inverse problem, as defined above, is mathematically formulated by 
introducing a “cost” function which measures, for a given set of parameters, the 
distance between the model simulation RC and the experimental response R* made 
of a series of experimental data. This “cost” function L can be written: 

L = 1
N Li with N: number of tests in the database 

Li = 1/(t1 - t0) t0
t1 R*(t) - RC(t) dt  

where the notation …  represents a norm in the space variable, t1 – t0 is the time 
of observation and R*(t) – RC(t) is the difference at time t between experimental and 
numerical data for tests i. 

In practice, the experimental data correspond to a set of discrete data obtained at 
specific times. Thus, the integral in the previous equation can be replaced by a sum 
of the number of measurements. The “cost” function is thus defined by using a 
Euclidean norm and by introducing a weighting matrix D: 

Li = 1/mi 1
mi(R*(tj) – RC(tj))TD(R*(tj) – RC(tj)) 

with mi the number of observation times tj for test i. 

Diagonal weighting matrix D is introduced to transform the observable variables 
into adimensional quantities. The quality of the measure is taken into account at this 
point by choosing as diagonal terms in this matrix the square of the inverse of the 
error estimate, within the measure of each variable. Thus, the weighting coefficients 
can be defined in an objective manner, which enable us to give more weight to 
values measured with good accuracy. 

It is also possible, in the definition of the “cost” function, to attribute a given 
weight to each test. We can therefore give more importance to specific loading 
paths, closer to the actual problem, or penalize some tests which are considered as 
being of poor quality. We can also give more weight to certain parts of the 
experimental curve in order to assure a better determination of some given 
parameters. 

Different numerical methods have been proposed for the resolution of a 
minimization problem. We can find in Tarantola [TAR 87] the description of the 
most commonly used methods. Among them, the Gauss-Newton method seems to 
be well adapted when response RC is a derivable function of parameters P, which is 
the case for determining model parameters from laboratory simple tests or from non-
homogenous tests which can be described by an analytical solution (see following 
section). The numerical treatment of the minimization problem can lead to several 
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solutions or to a solution which is physically unacceptable (values of parameters 
outside the current intervals). In particular, the function can have several local 
minima and under these conditions, the calculation procedure can converge towards 
a different solution according to the initial set of parameters. To overcome this 
difficulty, it is necessary to start the numerical process with an initial set of 
parameters well adapted to the nature of the material. For this purpose we can use 
one of the methods described earlier (analytical method, correlations, etc.) and/or 
base the choice on the previous knowledge of the model users. 

Before starting the optimization procedure, it is also necessary to check if the 
model response along stress paths corresponding to those present in the database is 
significantly affected by the parameters to be determined. If this is not the case, it 
will be necessary to enrich the database or to accept that some of the parameters are 
given a priori values. More complex problems can also exist in case of a coupling 
effect of some parameters. The whole procedure requires a real strategy of parameter 
identification as well as controlling the numerical tools used for this purpose. 

11.4.2. Examples of parameter identification by means of laboratory testing 

When the database is made of laboratory tests, we can usually obtain a set of 
responses R* corresponding to well documented material behavior along well 
controlled loading paths. The optimization procedure thus consists of minimizing 
the difference between experimental results and numerical simulations. The division 
of the whole set of parameters into two groups as defined earlier allows us in general 
to identify directly a first group of parameters and to reserve the optimization 
procedure to the second group. In fact, the numerical problems described earlier 
(local minima, etc.) can be more easily avoided if the number of parameters to be 
determined is smaller. Therefore, for a given model, we have to adapt the 
identification method to the type of tests available in the database by a classification 
of the parameters according to their influence along different loading paths. 

Several studies lead to the construction of calculation programmes adapted to 
different models. We can cite for example the ADELAP program [MEI 89] for the 
Cyclade model and the PARASOL program [PIC 91] for Hujeux’s model. We 
present below an approach developed by Shao et al. [SHA 91] which takes into 
account a certain degree of uncertainty on the experimental data, R* being in that 
case an assembly of random variables. 

The example presented here concerns the parameter identification of a 
constitutive model for porous rocks [SHA 91]. It is an elastoplastic model with two 
plastic mechanisms, which contains 13 parameters. In order to construct the inverse 
method applied for their determination, we divide the parameters into two groups: 
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the first group contains parameters that can be determined directly from 
conventional experimental data (compressive triaxial tests), such as the cohesion and 
the friction angle; the second group includes the “numerical” parameters, whose 
determination requires a specific treatment of the experimental data, such as the 
hardening parameters. The inverse analysis is specially developed for the parameters 
of the second group. The method takes into account the uncertainties in the 
experimental data. The problem to be solved consists of maximizing the intersection 
between two probabilistic density functions of the Gaussian type.  

The efficiency of the method was at first tested on three important model 
parameters. Numerical simulations were created from a given set of parameters and 
taken as representative of the material behavior. Then, the parameter values were 
modified and the inverse method was applied in order to minimize the difference 
between the stress-strain relations obtained by this new set of parameters and the 
reference one. The results proved the inverse method to be efficient in terms of 
calculation time and solution stability.  

Then, two examples were chosen. The first example concerns a hydrostatic test 
used to determine the three parameters of the pore collapse mechanism associated 
with a compressive triaxial test used to determine the five parameters of the 
deviatoric mechanism. The uncertainty in the experimental data was estimated to be 
10%. The results of the optimization procedure are presented in Figure 11.3. 

  
Figure 11.3. Chalk parameter identification. Elastoplastic model 

 with isotropic and deviatoric mechanisms 
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Figure 11.4. Chalk parameter identification from oedometer test 

In the second example, an oedometer test is used to determine the eight 
parameters of the model. Satisfactory results could be obtained (Figure 11.4). 
However, the stability and the uniqueness of the solution become more difficult to 
achieve when the number of parameters increases. We have to specify that the 
quality of the solution is directly linked to the quality of the experimental data 
expressed in terms of mean values Dm and variance S1. From a statistical point of 
view, the response quality improves when a greater number of repeated tests are 
made. Under these conditions, the inverse method gives the most probable values of 
the parameters. 
 
11.4.3. Parameter identification from in situ testing 

Data obtained from laboratory tests can be biased for different reasons: poor 
representativeness of the sampling, remolding of the specimens due to boring, 
extraction and transport. In order to overcome these difficulties, in situ testing is 
often recommended. Furthermore, in situ testing is now far more developed in site 
investigation because of its cost effectiveness.  

We thus have to develop appropriate methods in order to identify the parameters 
of the adopted constitutive model from in situ test data. A direct identification is 
impossible in this case, since the stress and strain fields are non-homogenous and the 
measures are made at specific points. Therefore, an inverse method is necessary. In 
geophysics, such approaches were developed many years ago and could now be 
extended to geotechnical problems. They enable us to determine the elastic 
properties of a soil formation from the measurement of wave propagation in the 
ground (cross-hole testing for example). However, these tests have up to now been 
limited to mechanical characteristics at very small strains. More recently, inverse 
analysis methods have been developed and applied to the pressuremeter test, which 
corresponds to the expansion of a cylindrical cavity within the soil. The advantage 
of this specific test among other in situ tests is that it gives information on the soil 
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behavior in a large range of strain amplitudes, from small deformation up to failure, 
with boundary conditions well controlled and easy to reproduce in a numerical 
simulation. The plane strain condition hypothesis in the direction of the boring axis 
can usually be assumed as well as the symmetry condition around the same axis, 
which leads to a 1D loading condition easy to implement in a numerical simulation. 
Analytical solutions can be obtained for simple constitutive models, such as the 
elastic-perfectly plastic Mohr-Coulomb model [MON 94, YU 91]. For more 
complex models, the numerical simulation requires the use of a finite element code. 

The analysis of the pressuremeter test shows that there are some difficulties in 
interpreting the results, due to its mode of execution. The main difficulty concerns 
the remolding due to boring. Menard’s pressuremeter, most commonly used, 
requires a preliminary boring, before the introduction of the probe. This testing 
procedure leads to an unloading of the soil near the cavity wall and a more or less 
important remolding of the soil, which influences the initial part of the pressure-
displacement curve. This difficulty can be overcome by the use of a self-boring 
pressuremeter (PAF or Camcometer). The work by Cambou et al. [CAM 93] has 
shown the influence of the loading mode, in particular on the modulus values, by 
means of numerical simulations using the CJS model (see Chapter 4). The 
conclusion of this work is that the identification of the elastic modulus can be 
carried out by using the pressure-volume curve obtained by a self-boring 
pressuremeter without considering the initial part up to V/V = 2.5%. Another, 
more rigorous, procedure consists of realizing an unloading-reloading cycle and 
identifying the elastic properties from this cycle. However, this procedure is not 
applied in routine tests. 

Another important aspect concerns the drainage condition for saturated soils with 
low permeability. Several analyses [CAM 91, HIC 96, RAN 03, ZEN 99] have 
shown that Menard’s pressuremeter test could be considered as totally drained for a 
permeability k > 10-5 m/s and totally undrained for k < 10-10 m/s. For intermediary 
values of k, it is necessary to use a coupled numerical simulation in order to take 
into account partial consolidation of the soil around the probe. This aspect has been 
examined with great care in the works of Hicher and Michali [HIC 96] and 
Rangeard et al. [RAN 03] for self-boring pressuremeter tests in clayey soils. 
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Figure 11.5. Numerical simulations of the pressuremeter curve  

using the Mohr-Coulomb model in small and large deformations 

The determination of the parameters of the elastic-perfectly plastic Mohr-
Coulomb model from pressuremeter tests has been treated by Dano et al. [DAN 01] 
from the analytical formulation proposed by Yu and Houlsby [YU 91] in large 
deformations. This last hypothesis has a significant consequence on the pressure-
volume curve, as shown in Figure 11.5 by comparison to the one proposed by 
Monnet et al. [MON 94] for small deformations. We can see that the two curves 
become different for radial deformations ua/a (radial displacement/initial radius) 
greater than few percent. Using the formulation proposed by Yu and Houlsby, the 
equation of the pressuremeter curve can be written as follows for a cohesive-
frictional material: 
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The analytical expression of the pressuremeter curve takes the following form: 
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The results presented in Figure 11.6 show the influence of each model 
parameter: Young’s modulus E, friction angle , the dilation angle , cohesion c, as 
well as the influence of the initial horizontal stress P0 on the pressuremeter curve. 
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We can see that each parameter affects the whole curve, which makes identifying 
several parameters simultaneously difficult. 

 
An optimization method based on the Newton-Gauss algorithm has been 

developed and used to treat several examples [DAN 01]. The results show the 
difficulty of identifying several parameters simultaneously, as discussed previously. 
The “cost” function presents local minima and the whole procedure thus leads to a 
final solution which depends on the initial set of parameters. To overcome this 
problem, an optimization procedure has been developed for non-cohesive frictional 
materials only. It requires the use of a pressuremeter test with an unloading-
reloading cycle from which the elastic modulus is at first determined. Then, a 
correlation between the dilation angle and the friction angle is used, in order to 
center the optimization on the sole friction angle. This procedure has given good 
results. Figure 11.7 presents an example of two simulations obtained by the use of 
this optimization procedure from tests realized by Mokrani [MOK 91] in the 
calibration chamber on Hostun RF sand. The result of the optimization process gives 
friction angle values in accordance with those obtained by triaxial tests (Table 11.2). 

  
Figure 11.6. Influence of Mohr-Coulomb model’s parameters on the pressuremeter curve 
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Figure 11.7. Optimization of Hostun Sand parameters from pressuremeter tests 

Test ’v p 0  Id 

 kPa kPa kN/m3 % 

14 200 84 14.4 41 

16 500 130 14.9 54 

Test Ep Etriax  =  /  ’triax 

 MPa MPa  (°) 

14 25 26 0.15 35.4 

16 79 57 0.25 34 

a) Test characteristics 

Test Imposed  
value 

Correlation 
used 

Optimization  
results 

14 E = 26 MPa  = ’ -30  ’opt = 33.6° 

14 E = 25 MPa  = ’ -30  ’opt = 33.9° 

14 E = 26 MPa  = 0.15 ’  ’opt = 32.7° 

14 ’triax = 35.4°  = ’ -30  E = 21.1 MPa 

16 E = 57 MPa  = ’ -30  ’opt = 36.1° 

16 E = 79 MPa  = ’ -30  ’opt = 33.4° 

16 E = 57 MPa  = 0.25 ’  ’opt = 34.4° 

16 ’ triax = 34°  = ’ -30  E = 72.9 MPa 

b) Optimization results 

Table 11.2. Results of optimization tests and comparison  
with values obtained from triaxial tests 
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For a cohesive-frictional material, the simultaneous identification of c and  
from one test is not possible, but can be obtained if two tests at two different depths 
are available. For each test, a series of coupled values of c and  are derived. The 
solution is obtained for the couple which is the solution for the two tests (Figure 
11.8 [CAM 93]). 

  
Figure 11.8. Determination of cohesion and friction angle  

from two pressuremeter tests at different depths 

When the chosen constitutive model does not allow us to obtain an analytical 
expression of the pressuremeter curve, it is necessary to use a numerical approach by 
means for example of a finite element code. Zentar et al. [ZEN 01] and Rangeard et 
al. [RAN 03] have developed this type of approach and have applied it to the 
modified Cam-Clay model (see Chapter 3). For this purpose, they have used two 
codes: CESAR_LCPC, a finite element code, for the numerical simulation of the 
pressuremeter test, and SiDoLo (simulation and identification of constitutive 
models) [CAI 94], an optimization code for the parameter optimization process. The 
algorithm used to resolve the non-linear optimization problem combines two 
traditional minimization techniques: the steepest descent method at the beginning of 
the process, in order to improve the initial estimation of the parameters and a variant 
of the Levenberg-Marquardt method [NOU 85] in order to accelerate the 
convergence in the final phase of the identification. The coupling of the two codes 
was performed by the development of an interface code, InCeSi. 

The soils which can be modeled by the Cam-Clay model are essentially saturated 
soft clays. Under these conditions, the finite element calculation has to be coupled in 
order to consider the permeability of the material. The identification procedure can 
be realized only with parameters which affect the numerical response in a significant 
way. A parametric study of the modified Cam-Clay parameters on the pressuremeter 
curve have shown that the shear modulus G, the critical state constant M and the 



Parameter Identification     425 

preconsolidation pressure p’c0 greatly affect the numerical response, whereas the 
Poisson’s ratio  and the plastic consolidation coefficient  (  =  – ) have little 
influence. The identification method was thus applied in order to determine G, M 
and p’c0. The results showed the impossibility of determining simultaneously the two 
parameters M and p’c0, due to the fact that the pressuremeter results are expressed in 
terms of total stresses while the model is expressed in terms of effective stresses. In 
order to overcome this difficulty, the pore pressure measured at a given point near 
the probe was introduced as a complementary result. In these conditions, the three 
parameters G, M and p’c0 could be simultaneously correctly identified. Where this 
new information is not available, as in most cases for a common pressuremeter test, 
the complementary information can come from an oedometer test performed on the 
same material. The values of  and p’c0 can be identified directly from the 
oedometer test results and G and M can be identified afterwards using an inverse 
analysis on the pressuremeter test results. 

  
Figure 11.9. Validation of the identification procedures of Cam-Clay model’s parameters 

from pressuremeter curves: a) identification from the sole pressure-volume curve;  
b) identification from the pressure-volume curve and the pore pressure  

evolution at a point near the apparatus 

This method has been successfully applied in order to determine the parameters 
of Saint Herblain Clay, a soft clay from the Loire Valley, in the vicinity of Nantes. 
The parameter values obtained from pressuremeter tests are in agreement with those 
determined by a direct analysis of triaxial tests (Figure 11.10). 
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Figure 11.10. Identification of parameters E and M for Saint Herblain Clay 

Rangeard et al. [RAN 03] have developed an identification procedure in order to 
identify mechanical parameters and permeability simultaneously from pressuremeter 
tests with strain holding stages. The mechanical parameters are identified, as 
presented previously, on the pressuremeter curve, and then, with the obtained 
optimized set of parameters, the permeability is derived from the pore pressure 
dissipation curve during a strain holding stage. Few iterations need to be realized on 
the two optimization procedures in order to obtain both mechanical parameters and 
permeability. Figure 11.11 shows an example of the final optimization step on both 
the pressuremeter curve and pore pressure dissipation during a strain holding stage 
on a Saint Herblain Clay sample. The validation of the whole procedure was 
performed by comparing the parameter values obtained after optimization to values 
of the same parameters obtained by direct analysis of oedometer and triaxial tests. A 
very good agreement could be achieved.  
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Figure 11.11. Comparison between experiment and simulation of 
 pressuremeter test: (a) pressuremeter curve and pore pressure evolution; 

 (b) pore pressure dissipation during strain holding stage 

The procedure has been extended in order to be applied to a viscoplastic model, 
the EVP-MCC model developed by Yin et al. [YIN 07] (see Chapter 7). The 
parameters of the viscoplastic model are the same as in the Cam-Clay model, but 
two more parameters N and  have been added to take into account the clay viscous 
behavior. The inverse analysis is thus more difficult to carry out. The shear modulus 
is at first determined by the initial slope of the radial stress-radial strain curve. The 
other parameters can be determined by using pressuremeter tests with three levels of 
strain rate. The coupling effect between M and p’c0 requires a special treatment to 
determine both of them separately. A first assumption is made on the value of M. 
For a given value of M, the values of p’c0, N, μ and permeability k can be found after 
a convergence of the optimization procedure made on the three loading curves at 
different strain rates and the pore pressure dissipation during a strain holding stage. 
The same procedure is repeated for different values of M until the overall 
convergence of the optimization process, which is obtained when the difference 
between experimental data and calculation results becomes sufficiently small and 
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stable, according to a criterion which enables the calculation of the overall error 
between experimental and numerical results. Figures 11.12 and 11.13 show a final 
result obtained from this procedure applied to the Saint Herblain Clay. 
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Figure 11.12. Comparison between experiment and simulation of  
pressuremeter strain rate tests 
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Figure 11.13. Comparison between experiment and simulation of a pressuremeter creep test 

Cambou et al. [CAM 93] have developed a similar approach by constructing a 
specific optimization code, called Press’ident, and applying it to the determination 
of the parameters of two different models: the Duncan-Chang hypoelastic model and 
the elastoplastic CJS model (see Chapter 4). After the extraction of the parameters, 
they simulated the displacements of the soil during the construction of a nuclear 
power plant and a tunnel made from soft soil. A good agreement between numerical 
results and in situ measures was obtained.  
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11.5. Conclusion 

The methodology of determining model parameters has to be considered at the 
same time as the model construction. This is a necessary step for its use in finite 
element codes applied to geotechnical projects. This methodology has to be based 
on experimental data obtained through traditional laboratory or in situ tests, and 
while it should be adapted to the structure of each model, it must enable, as 
completely as possible, an objective determination, i.e. independent of the user. 

When experimental data comes from laboratory tests, several approaches are 
possible and can be established more or less easily, depending on the nature of the 
parameter to be identified. When all or part of the data comes from in situ tests, only 
an inverse analysis method based on numerical optimization techniques can 
adequately be used. The inverse analyses are often difficult to achieve because the 
character of the numerical problem is badly written. It is therefore recommended 
that at least part of the data should come from laboratory tests. 

The good quality of the latter is an indispensable factor for a successful 
identification. The quality of each individual test can be taken into account at 
different levels of the identification process: a greater weight given to certain tests or 
to certain parts of the tests; introduction of the data uncertainty in the optimization 
technique. It is also important to define the testing procedure to account for both the 
problem to be solved and the identification procedure to be envisioned.  
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