
Embedded Systems
Architecture for
Agile Development

A Layers-Based Model
—
Mohsen Mirtalebi

Embedded Systems
Architecture for Agile

Development
A Layers-Based Model

Mohsen Mirtalebi

Embedded Systems Architecture for Agile Development: A Layers-Based Model

ISBN-13 (pbk): 978-1-4842-3050-3				 ISBN-13 (electronic): 978-1-4842-3051-0
https://doi.org/10.1007/978-1-4842-3051-0

Library of Congress Control Number: 2017957715

Copyright © 2017 by Mohsen Mirtalebi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Technical Reviewer: Amir Shahirinia
Coordinating Editor: Rita Fernando
Copy Editor: Karen Jameson

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the books product page, located at www.apress.com/9781484230503. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Mohsen Mirtalebi
Indianapolis, Indiana, USA

https://doi.org/10.1007/978-1-4842-3051-0

To my parents who put up with my handyman
projects since age four when I was first

electrocuted attempting to fix the TV. To my son
who has patiently learned that I only answer the

calls after the sixth attempt. This is why I was slow.

v

Table of Contents

Chapter 1: The History of Layers Architecture��� 1

The New and the Old�� 4

Clash of Cultures�� 5

Clash of Thoughts�� 5

Projects and Processes�� 6

Products and People�� 6

Product Software��� 7

Embedded Systems��� 7

Process Bottlenecks�� 8

Intelligent Product Development�� 8

Architecture in the Construction Industry�� 9

Land Survey Drawings��� 10

Architectural Drawings�� 12

Drawing’s Reusability, Maintainability, Readability, and Scalability�� 22

Making Buildings versus Making PCBs�� 24

Summary��� 25

Chapter 2: Project Management Methods��� 27

The Basics�� 28

Project Management Using Critical Path Methods (CPM)�� 28

What Is CPM?��� 29

Creating a Robust Gantt Chart�� 29

About the Author�� xi

About the Technical Reviewer�� xiii

Introduction��xv

vi

Project Management Using Agile Methods�� 36

What Does Agile Mean?�� 37

The Ideal Scrum��� 37

Collaborative Product Development (CPD)��� 43

Tasks, Deliverables, and Decisions��� 44

Software and Project Management��� 47

Software Layers�� 47

Software Development Process��� 49

Software Reusability, Maintainability, Readability, and Scalability��� 51

Software throughout CPD Process��� 52

V-Model (Software Life Cycle)�� 53

Design for Manufacturing (DFM)�� 54

Modeling Languages and Agile�� 56

Unified Modeling Language (UML)�� 56

Model-Based Design (MBD)�� 56

Summary �� 57

Bibliography��� 59

Chapter 3: Convergence of Management and Architecture������������������������������������� 61

Convergence of Management and Architecture��� 62

A Requirement Model��� 63

Creating Requirements�� 70

Every Problem Is a Communication Problem��� 70

Marketing Requirements Document (MRD)�� 74

Conceptual Design�� 75

Architecture Design�� 82

Module Design�� 83

Component Design and Product Breakdown Structure (PBS)�� 86

Summary��� 89

Bibliography��� 90

Table of Contents

vii

Chapter 4: Requirements Model�� 91

Process and Control Requirements Model��� 91

Context Diagrams��� 92

Flow Diagrams�� 95

Process and Control Specification (PSPEC, CSPEC)�� 97

The Requirements Dictionary��� 99

Timing Specifications��� 100

A Note on Requirements Model�� 101

Structured Scrum��� 104

Simplified V-Model��� 104

PBS Development��� 114

A Different Approach in Design�� 116

Processing the External Data��� 118

Bringing It All Together��� 120

Utilizing MBD Tools for PBS�� 122

Summary��� 122

Bibliography��� 123

Chapter 5: Problem Statement�� 125

Understanding the Problem��� 125

Requirements Model�� 126

Data Context and Control Context Diagrams (DCD, CCD)�� 127

Data Flow and Control Flow Diagrams (DFD, CFD)��� 129

PSPEC and CSPEC�� 135

Timing Specification��� 137

Requirements Dictionary�� 138

Architectural Model�� 139

Summary��� 140

Bibliography��� 141

Table of Contents

viii

Chapter 6: Process Architecture�� 143

Proof of Concept�� 145

Hardware Recycling��� 147

Software Recycling��� 148

Method Recycling��� 148

Team Dynamics in Concept Release��� 148

Scrum and the Concept Release�� 150

Architecture and Planning�� 153

Hardware Recycling��� 154

Software Recycling��� 154

Method Recycling��� 155

Team Dynamics�� 155

Modules and Components Releases�� 155

The Final Release��� 157

Departing from CPD and Landing on Structured Scrum��� 157

Smoke Test��� 159

Agile Testing��� 160

Summary��� 160

Chapter 7: Layers Model�� 163

What Is a Model?��� 163

Process and Product Models��� 164

Product’s Process Model�� 166

Development Process Model�� 169

MBD Tools�� 172

MBD Utilization Steps�� 173

Layer Model and MBD�� 174

MBD’s Build Process�� 177

MBD in Layers Model��� 179

MBD Platforms��� 181

Summary��� 182

Bibliography��� 182

Table of Contents

ix

Chapter 8: MBD and Requirements Model��� 183

Product Model�� 186

MBD and Process Model�� 195

Timing Specifications��� 196

Requirements Dictionary�� 198

Real-Time Operating Systems�� 199

Database Architecture�� 200

Verification and Validation (V&V)�� 201

Continuous Integration��� 203

Smoke Test��� 203

Manufacturing Tests��� 204

Diagnostics��� 204

Summary��� 205

�Index�� 207

Table of Contents

xi

About the Author

Mohsen Mirtalebi is a specialist in diagnostics software

with Cummins Inc., a global power leader that designs,

manufactures, sells, and services diesel and alternative fuel

engines as well as related components and technologies.

He has more than 10 years of experience in the engineering

field. At Cummins, Mohsen leads a team of engineers,

where he oversees the software quality meeting regulatory

requirements by utilizing various data analysis tools, controls

software reviews, as well as Agile and project management

tools. Previously he worked for Rockwell Automation as a

control firmware engineer, responsible for control algorithm design and implementation

for motor drives utilizing MBD, and real-time operating systems. He has held other

hardware/software positions at Danfoss, Emerson Process Management, and more.

Computer skills include being a certified user of Matlab/Simulink, LabView/TestStand

and Texas Instrument DSC/DSP products specializing in motion devices. Mohsen has a

MS in Electrical Engineering with an emphasis on power electronics control and

HIL/SIL/MIL. He has been a member of IEEE for 10 years. He is an advocate of STEM

and has coached many robotics teams in grade schools.

xiii

About the Technical Reviewer

Dr. Amir Shahirinia is an Assistant Professor of the

Department of Electrical and Computer Engineering at the

University of the District of Columbia, Washington, DC.

He received BS and MS degrees from K.N.Toosi University

of Techology, Tehran, Iran, and a PhD from University of

Wisconsin-Milwaukee in Electrical Engineering. He also

performed postdoctoral research in the Power Electronics

group at Rockwell Automation (Allen Bradly) from 2013–2015.

Dr. Shahirinia is the director of Center of Excellence for

Renewable Energy (CERE) at UDC. Dr. Shahirinia’s research

interests encompass the areas of power systems, smart grids, power electronics, and

control and ranges from optimal planning of renewable energy grid integration systems

(REGIS), optimal operations of REGIS, modeling and intelligent real-time control

of REGIS, Bayesian statistical analysis and predictive modeling of REGIS, to power

electronics and motor drives.

xv

Introduction

What do onions and software have in common? Apparently there is nothing in

common between them, but how many things around us are inspired by nature? Years

ago I was hired by a high-tech company for what was, I thought at the time, one of the

coolest products. Here I was in a small manufacturing company with a high innovative

spirit but not part of a highly meaningful organization. For a duration of two and half

months I had nothing to do but to get myself familiarized with the product, and I loved it.

So as a free agent I started roaming around every corner of the company, visiting many

departments from quality control to hardware, manufacturing, program management,

and even product returns.

The result of two and half months of my spiritual journey into the deep belly of the

product was to discover that there were numerous holes in our development process

of which many were software related. Since our product target and host software

were closely coupled, which were also utilized internally for various applications

such as product calibration and tests, I came up with a 30-page report including some

recommendations to improve the quality of the software architecture on both ends:

target and host software. I thought it could be cost effective to enhance the existing

architecture rather than investing in a new platform. Additionally, there were some

serious security concerns. Our OEM customers were using the same host software,

and the chances of breaching the engineering tier was high. Perhaps when our OEM

customer was talking to us, we didn’t do a good job of listening; and now they had to

take the matter into their own capable hands to tweak some product configuration

parameters for us.

On that account, listening to the customer’s voice is essential. Either we choose to

listen to them when we are developing the requirements or were forced to do so when

the hammer comes down on us through the product return doors. Although we might

think the product research and returns are two different departments, in fact they are the

same with a minor difference. These two departments fall on the two ends of product

development process, but in both, people get into the same type of cause-and-effect

cycles. The difference falls into the chronology of the product issues.

xvi

A new anomaly in returns most likely is an old known one in research. The reason

some people might think it is a new problem is because the problem was either

overlooked, forgotten, or currently being worked on – in secrets without notifying other

internal departments. So if there was a way we could capture this wealth of knowledge

that we’ve tirelessly gained during product R&D, then there is a very good chance we can

better manage them downstream. This is called transparency.

In another example with a different manufacturer, I observed that the products

of a well-known test and measurement vendor were extensively used in the R&D

department. Although the manufacturing was not using the same type of test tools, but

their test routines were basically the same only designed to be more subjective and

shorter in duration. Then I thought if I could convert the tools in manufacturing to be

matched with R&D tools, I could recycle research software programs for manufacturing

uses. So that was exactly what I did. The result was a seamless path between

development and manufacturing that not only unified the tools but also the languages

these two very different departments were speaking. This was more than creating a

scalable test process; it was about creating a freeway of knowledge – the very knowledge

that distinguishes one product, one company, one country from another.

Coming back to my 30-page report, I received the worst possible review. “Huh?!” was

the only reply I got from the executive management. I don’t blame them. If anyone else

was in their shoes, reading a technical report that compares a software to an onion, you

could most likely have the same reaction. So why on earth did I make this comparison?

It’s simple, because onions do not rot in a way other perishable produce do. The

progress of decay in an onion is in layers. If the outside layers get infected by bacteria,

the inner layers would be still intact. This is because each layer is carefully isolated and

independent from another layer. So if you haven’t guessed it by now, I had proposed a new

software architecture based on targeted functional layers specific for different applications.

You might ask now how the Layers architecture works? The concept of layers is to

reduce dependencies between various engineering disciplines involved in product

development while keeping the functionality of the software intact. Layers also help to

break the development constraints in a multiplatform product consisting of hardware

and software. As we know, hardware and software follow their own life cycle at their own

pace. Often we see that either the hardware gets a head start while software waits for the

hardware development to complete, or often the software becomes much more complex

than its own hardware platform. In either case, software is always late, incomplete, and

buggy. Unfortunately this is the case in every embedded systems market that makes the

software the bottleneck in our product development processes.

Introduction

xvii

The first golden rule of removing the bottlenecks is to remove dependencies. This is

not 20 years ago when we didn’t have tools to do hardware in the loop (HIL), software

in the loop (SIL), or model in the loop (MIL) simulations. Back then we didn’t have

evaluation boards handy for every product. We can now simulate the entire product no

matter how complex its functionality is. However, you might ask, we have the tools but

why aren’t our processes still not as efficient? It’s because the tools can’t think. What we

need is a trusted process that would enable us to organize our thoughts systematically

and across various engineering disciplines. Layers is a work frame that will enable us to

architect our products before they are even formed into a meaningful concepts. It is an

organic process solely based on our understanding of our own customer’s requirements.

It is organic because it is formed based on your application, product, organization,

and company’s culture. Once we inputted and analyzed the customer’s voice, then the

developers and the tools can take over and breathe through the development process –

from research, to design, to manufacturing, deployment, and beyond.

Nevertheless, this is not the end of the story: there are still various other bottlenecks

in the development. Testing is one of those. Product testing is one of the lengthiest

and possibly the single most expensive item in the development. In addition, various

engineering departments design and perform their own engineering/manufacturing

tests independently from one another and often unknowingly overlap in test scopes.

Since Layers emphasizes independence, the chances of redundancy would increase

even more. However if a common product integration tool is used across all the

development, this common language would make the redundancies evident to the

designers; therefore they can address it beforehand. But this is not enough because the

ultimate goal is to remove lengthy and expensive redundancies in the test in order to

make our processes lean.

To create lean processes you can’t just jump into buying fancy tools yet, unless you’d

like to add to your collection of very expensive dust collectors. We need an active product

architecture that is designed based on the customer’s specific needs. With the help of

the Requirements Model and Model-Based Design tools, creating and maintaining an

active product architecture is easier than ever. Furthermore, these tools will enable

the development team, from research to manufacturing, to cut back on the amount of

documentations without compromising the integrity of the design. For the people who

are worried about government regulations and scrutiny of its various branches such as

DOD, FDA, DOT, DOE, EPA, ARB, etc., this would provide a documentation system with

a robust traceability feature for your design.

Introduction

xviii

Although the “onion” architecture belonged to that particular company facing a

specific security problem, the idea of layers can well be expanded into any existing

development whether in software, hardware, or a mixture of both, especially in

embedded systems. Each department only needs a portion of this software while still

receiving the majority of product knowledge. The idea of layers will provide a solution

to unify the different languages that now exist in each development segment. It reduces

the rework and the time to market, and most importantly saves money, which in

return enables the manufacturers to stay competitive not only locally but globally. The

macroeconomic impact of deploying intelligent development and product architecture

such as Layers would not be dismissive. It is now time to turn away from looking at

software as a commodity and see it as a conduit in which knowledge flows.

Finally, by removing the constraints in our development processes, we would be able

to implement one Agile framework for development for both hardware and software

rather than having a hodgepodge of traditional V-Model or Water Fall in software and

ancient phase-gate (CPD)/CPM systems for our hardware. Nevertheless, you still can

represent your progress in a phase-gate approach if you choose to, but the development

team won’t be bugged down by it as they will follow the Agile approach. All these would

empower the development team who is doing the bulk of the work to synchronize their

paces across the board while keeping a desirable cadence to deliver incremental values

to the customers.

Introduction

© Mohsen Mirtalebi 2017
M. Mirtalebi, Embedded Systems Architecture for Agile Development,
https://doi.org/10.1007/978-1-4842-3051-0_1

1

CHAPTER 1

The History of Layers
Architecture
What does developing a real-time system project have in common with a construction

project, from the project management perspective? Can we develop and manage both

projects with the same methodologies and tools? Some of you might think from a

project management standpoint, developing real-time or embedded systems should

not resemble developing a construction project. Although both might look similar

organizationally and share the same types of resources such as time, money, and people;

however, the fact that software has become an integral part of embedded systems will

significantly differentiate these two projects from each other. Now, this important

question arises: why is it that in many companies, both developments are called projects

and use the same project management tools? The answer to this question will go

beyond the boundaries of what the science of management can offer. This is because the

sciences involved with developing real-time systems are very new and are in a constant

state of change. Therefore the word “project” might carry a misleading connotation

when it’s used for developing embedded systems. But this misconception has deeper

roots than one might think. We all have seen many leaders in the embedded systems

industry still utilize the same tools and methods that a construction company uses in

developing their projects.

Nevertheless there are very valuable lessons in studying the construction projects,

not in the management methods that have been used for years but in their own schools

of thought. The construction industry has evolved through their thousands of years

of history. All in all, the traditional management tools can work for real-time systems

projects but in no way can one call this type of project management efficient for

developing mid- to large-size embedded systems. Through reading this book you will

realize how developing embedded systems are fundamentally different from any other

types of projects. To start off, let’s avoid the use of the term “project” temporarily as it

2

might misleadingly imply only a process. An embedded system development is not just

a process, it is a product integrated into a process. Although you might say a physical

building is considered a product but it is not, because it lacks manufacturing of the same

building in a volume of thousands of identical copies. Since a building is not a product,

therefore, the term “project” shouldn’t apply to embedded systems. If you want, you can,

but keep in mind, our embedded system development project implies the process and

product.

The fact that there will be thousands of copies of what you are making in the market

makes the concept of efficiency of grave importance. An efficient development method

results in an efficient product, and this translates directly to waste elimination, which

creates direct economic impacts on both our company and customers through our

process and products respectively. If we reduce the cost of development, our product

would become cost effective and more competitive in pricing. In return it will bring a

considerable amount of saving of costs to our customers. Combine efficiency and the

astronomical numbers of embedded systems used currently across the globe, and we

will come to the realization that the efficiency we intend to create will propagate to the

furthest corner of the earth. Now this is a true green process. So forget not about the

green products, but instead imagine your product will be the greenest of all. However,

for some reasons, the idea of green in the industry has been slowly becoming a concept

confined only to some promotional tools for marketing biodegradable materials in

products or environmentally compliant methods such as ISO14000.

Although the recent waves of the green movement in the waste management and

manufacturing process improvements are very good starting points for creating efficient

systems, the bulk of waste in resources happens during development of products of

any sorts. It is ironic that the term “green,” which would imply efficient should result

in lower costs; but rather it imposes additional compliance regulations by which the

manufacturers must assign budgets to maintain. This will result in higher developmental

costs and longer product time to market, which consequently results in higher product

prices defeating the purpose of being green. As we can see, a true green process results

in better economic impacts such as a lower finished cost of the product without

compromising the quality of the product. Therefore our concept of green runs a bit

deeper, and it starts from where the first idea of a product sparks; however, it doesn’t stop

there and it continues to bear fruit while it runs its entire course of product life cycle. The

Agile method of development is one way to reduce the waste since these methodologies

were initially created to specifically target waste; however there are two shortcomings in

Chapter 1 The History of Layers Architecture

3

these frameworks. One is that most Agile methods are optimized for software products,

not embedded systems that are comprised of both software and hardware. Also,

embedded systems are produced in order to carry out critical applications where general

purpose computers are not to be trusted to perform the tasks; therefore saving costs is

not the main objective of creating these systems.

In other words, most real-time systems are mainly designed to carry out control

functions with critical applications. The Agile methods give waste elimination the

highest priority, which could make us happy about the efficiency portion, but they fail

to put enough emphasis on the robustness of the product. A good example of this is the

Microsoft products that are developed through Agile methods. Their numerous after-

release software patches and their daily software updates are evident that robustness is

not high on their list. We are not to blame one product over its lack of quality. What we

want to say is that, when there is not enough emphasis on one aspect of product or there

is so much of it on another aspect, people who follow those methods blindly might not

be able to put things in perspective. In addition, since in the span of development time

and also product life cycle the technology and hardware components can change, it is

very important to plan carefully ahead. While an Agile method empowers the project to

deal with short-term changes, it might make it easier for its followers to abandon long-

term plans for the product. The real consequence of this approach is that the importance

of architecture in product development will be devalued. As you can see later, the

product architecture plays a vital role in developing the embedded systems.

A project manager, in any type of project, from construction to hi-tech needs to

put several hats on during the life of the project. In a real-time system development

project, a manager needs to interface with different stakeholders and internal and

external customers at different phases of a project and needs to follow various life cycles

including project, product, and software life cycles. However, a project manager is hardly

a product architect. This is because most project managers are trained and skillful in the

art of management rather than designing a real-time system. This book is intended to

find the common aspects of various life cycles and introduce an inclusive methodology

that would cover them all under one umbrella with an emphasis on the necessary

amount of documentation. We are hoping that by the end by reading this book, if not

anything, at least your outlook will change toward real-time systems development.

Furthermore, this book is for the embedded system project architects who are aware

of steps involving developing a real-time system and not just the project. The detail of

how to become aware of the design steps is through systematic use of a tool called the

Chapter 1 The History of Layers Architecture

4

requirement model. This new addition to what Agile methods seem to be lacking will

empower the project architects to create a robust architecture that would very well

address the criticality of a real-time system development while creating an efficient

process and product. The advantage of following an Agile method will break the never-

ending cycle of analysis-paralysis that most classical product development methods

suffer from. Nevertheless, we all know that the classical methods are the foundation

of the new methods; therefore, the ideas discussed here might be new but backward

compatible and are absolutely true to the traditional methods, especially the CPD

framework. Nevertheless, this book will not discuss the details of any design standards;

software and hardware testing methods such as white box, black box, or any hardware

development phase such as hardware alpha and beta prototyping; and manufacturing

bottlenecks such as functional and end-of-the line testing, but it will show you how to

utilize these methods and tools when you get to the different phases of development.

Nevertheless, if we look at the nature, there is a great lesson in it, that anything and

everything in nature happens for a reason. There is no beauty for the sake of only beauty.

Any vibrant or dull color and exotic or subtle shape carries a reason. It is useless to talk

about team structure and function if we don’t know the mission. A mission creates a

structure and a structure delivers a function. As Louise Henry Sullivan, the father of

skyscrapers and the founder of the school of organic architecture said, “Form Follows

Function.” This book is to show you how to build your processes around the product.

�The New and the Old
If you are coming from an Industrial Engineering background, you know that a simple

Gantt chart would never satisfy you if you are planning a project. This is because you

believe a project must have a baseline. But why don’t most project managers create

project baselines? It is because it’s a tedious job as you have to break down the project

to the units of work per person, which are called tasks, then you have to go on to load

all the tasks with resources that they are required to have their own work calendars.

Finally you have to apply the logical and temporal constraints to see how the tasks line

up, and at the end you have to level the resources by sliding the tasks in the schedule.

Therefore, creating a simple Gantt chart by no means is project planning and control.

Years later when I changed gears in my career and became an electrical engineer, to

my astonishment I saw the embedded system development projects were managed the

same way as a construction project was managed.

Chapter 1 The History of Layers Architecture

5

However, considering the short history of electronics, software, and computer

engineering relative to other branches of engineering such as mechanical, chemical,

and civil, these new disciplines are still at their infancy stage with respect to work

standardization and offering best practices. Nevertheless, our modern manufacturing

and the backbone of our industries are built on the foundation of these new branches of

engineering. So the storyline goes like this: there are three young sheriffs in our town and

they are clueless.

�Clash of Cultures
In every traditional development project there are two types of people. People who know

the product and people who know the project and hardly enough people who know the

product and project at the same time. People who know the product can tell you very

well what the product is comprised of. They can identify the sub-assemblies, modules,

and components; and they can break down the product into various functions. People

who know the project can arrange development and manufacturing work in such way

that product or concepts would come to life through the path of the least resistance.

However, both groups of people have one thing in common: they are concerned about

the constraints. Product-oriented crowds want to establish constraints and project-

oriented individuals want to avoid them. This brings up a very interesting phenomenon

in product development and manufacturing: the clash of cultures.

�Clash of Thoughts
By definition, a project is a unique set of activities that a distinctive team of people carry

out only once. On the other hand, a process is what a fixed number of people do routinely.

With respect to constraints, projects want to remove the constraints and processes want

to solidify them. In classical project planning, the project manager starts drafting the

project with no constraints in mind, with the sort of 9-women-giving-birth-to-a-child-

in-a-month mentality. Therefore, ideally all project activities start at the same time and

continue concurrently. Consequently, the project managers don’t want any resource,

material, and budget constraints. However, in an engineering process everything is

diagonally opposing this view. Engineers, for example, want design reviews before

approvals, prototypes before releases, and so forth. This brings us to another fundamental

difference between processes and projects; let’s call it the clash of school of thoughts.

Chapter 1 The History of Layers Architecture

6

�Projects and Processes
By calling a product development, which inherently has a procedural nature, a project,

you bound yourself, your team, and your company to utilize project planning and

control methods and tools instead of utilizing methods and tools that were specific to the

processes. This is contradictory to the nature of product development, because a product

development is much closer in nature to manufacturing, which is also process based,

than being a project in its classical form. Let’s remember that the most powerful modern

product development methodologies such as Lean and Agile come from manufacturing

environments but in contrast, the project management methods and tools are originated

from the non-manufacturing environments.

Let’s assume your company manufactures switching power supplies in various sizes

for different applications. Your company has two main lines of products, a fixed line with

the highest volume of production; and a custom line that is low in volume but for special

applications. You, as an owner, decide to call these two product lines differently. You

call the more established product line a process and the custom line or any new product

development, a project. In the best case, you decide to use a common pool of resources

to support both lines; otherwise you have no option but to have two parallel teams

with the same skill sets to work on two different lines. As long as you are using the same

resources in the common pool to support and also develop products, you have created

a very inefficient system with two very different product visions, project vs. process. But

the worst case is when you use two different teams for these two different lines, and then

you lose valuable product knowledge in transition from one team to another. In both

cases your system has become highly inefficient.

�Products and People
A product is nothing more than a collection of constraints that have been materialized.

The size, value, scope, and functionality of a product are predefined from day one of

its inception. The moment you envision a product in your mind you have constrained

it. Consequently the product developers are people who are aware of these constraints

and work around or with them to conceptualize the product. Let’s say you start a new

“project” and invite numerous subject-matter experts into the development team. Let’s

assume you invited Matt, an expert in power electronics hardware design, to the team.

Chapter 1 The History of Layers Architecture

7

He’s been doing this for the last 15 years. To him, project x, y, and z don’t mean much.

All he cares about is to design a robust hardware that meets all the constraints or in

better words all the requirements of any particular “project.”

�Product Software
Now the big question is where the software development falls into product development

as a whole? Software is becoming a very integral part of our lives and it is growing fast in

complexity, which is accepting a bigger portion of the product. The traditional software

development methods and life cycles such as V-Model, waterfall, and so forth are

project-based methods, because the hallmark of a project is that it has a distinctive start,

an end, and some transitional stages in between. The reason V-Model and other software

life cycles are so popular now in software development is because when software needed

development methods, the only trusted methods available all had roots in project-based

methodologies. Software science took off so fast that it left the method thinkers in the

dust, giving no advance warning to them to come up with standards and established

methods. But now we are at a different juncture of time where we have process-based

methodologies such as Lean and Agile, which are gaining tremendous grounds in

the industry. This is good news for the software industry but not good enough for the

embedded systems.

�Embedded Systems
These systems are neither purely hardware nor software but a combination of both. As

a matter of fact, the software takes a different name in these systems, called firmware,

emphasizing how firmly software is tied to the hardware. The fundamental problem

that lays down in the nature of embedded systems is originated from how differently

hardware and software are viewed from the developmental standpoint. By adopting

two different methods in developing hardware and software separately, we create the

clashes of thoughts and cultures resulting in enormous challenges in embedded systems

development as how to synchronize the paces of development in software and hardware

to minimize the development losses.

In an attempt to overcome this challenge, some cutting-edge industry leaders

have decided to adopt two different approaches for hardware and software separately.

Process-based methodologies are chosen for the firmware and project-based methods

Chapter 1 The History of Layers Architecture

8

are chosen for their hardware development. But this, in no way, will help to resolve the

initial issue. You still have two different mythologies under one roof for one product

while creating additional problems with respect to the clashes of cultures and thoughts.

Let’s find out what’s the root cause of this synchronization problem? To answer this we

should look at what the bottlenecks are in the development of the embedded systems.

�Process Bottlenecks
In my previous writings, I pointed out two major bottlenecks, firmware latencies, and

test applications. For the embedded systems development, these two are the two sides of

the same coin. The test bottleneck would be the real issue and the firmware bottleneck

would be a consequential one. In other words, firmware development for an embedded

system wouldn’t cause any bottleneck if the hardware platform was readily available. But

to develop the hardware we need firmware. To resolve this situation some people resort

to developing their hardware beforehand to give the firmware a head start prior to the

“project’s” formal kickoff. But that will make your entire product development gravely

inefficient, which not only increases the final cost of the product but also lowers the

product quality.

The solution might be to utilize any of the in-the-loop methods such as Model in the

Loop, Software in the Loop, and Hardware in the Loop, intelligently. We know that the

in-the-loop methods have been utilized in the industry for a long time, but why there

is still so much waste in our systems? This is because we don’t know when exactly to

deploy these tools. We have no plan and no road maps as how to resolve the bottleneck

issues.

�Intelligent Product Development
As we discussed before we should avoid managing our Hi-Tech developmental process

like a construction project. But there is one thing we can learn from construction projects:

no one in a construction project starts the project until every participating team is aware

of the building or site architecture. You might think there are still a lot of embedded

systems manufacturers who just do that. That’s correct, but soon after the product

architecture is in place, the product hardware and software take their own development

paths only to synch by enforcing “project” management tools. An active product

architecture would give us a road map on when to deploy our synchronization tools.

Chapter 1 The History of Layers Architecture

9

�Architecture in the Construction Industry
The oldest profession in the world’s history (although some might dispute this) is civil

engineering. Looking at some examples of how civil engineering has evolved might

be beneficial to one of the newest professions in the world, computer engineering. By

looking at the time line of civil engineering, we believe that the materials, methods, and

tools in construction engineering have not changed drastically. We can see the use of

rocks, metals, concrete, and so on from a few thousand years ago until now. Although

there have been many breakthroughs in the sciences involved in civil engineering in

terms of tools, methods, and materials, since the evolution of this profession has been so

gradual, it has provided the engineers enough adaptation time to vigorously test various

ways of applying them.

For example, Persians used mud and hay as reinforced building materials to

strengthen their buildings. Later the idea of reinforced building material such as

concrete was used by Sullivan in the Auditorium building in Chicago. It reduced the

massive weight of the buildings, allowing the building to go higher, providing them with

more rooms inside and larger windows outside. He also invented reinforced concrete for

the first time in the world that revolutionized the construction industry. From reinforced

mud to reinforced concrete, there is a timespan of a few thousand years. What it means

is that there has been a long period of adaptation time that allowed the civil engineers

to get acquainted with the materials and their applications. But if we look carefully, the

basics of making buildings have stayed the same for quite a long time. This has allowed

the civil engineers and architects to polish their methods of engineering to perfection.

In contrast, the construction material in electrical engineering has evolved

drastically within the last few decades. Although the base material of a building and

a microprocessor chip is comprised of the same silicon element, there is a lot more

complexity in application of this element in a silicon chip than, for example, in a floor

tile made of ceramic. Going back to civil engineering, one of the tools engineers invented

that is widely used today, even in other engineering disciplines and that was pioneered

thousands of years ago, is the architectural drawing. These drawings have been utilized

as the most effective tool to communicate with various trade professionals from the time

of pyramids to the time of skyscrapers.

Chapter 1 The History of Layers Architecture

10

�Land Survey Drawings
One of the first tasks in developing a new construction project is to identify the building

site relative to its surrounding. In modern buildings the location of the construction site

is marked through the use of cameras equipped with GPS with respect to the absolute

coordinates. The survey drawing provides several advantages; it not only marks the

building location, it also identifies the residents’ access to the building as well as

identifying the building’s access to the city utility lines and in general its surrounding

world. Figure 1-1 shows the topographical view of the construction site and the location

of a residential building. The shape in bold in the middle is the location of the future

building site, and the contour lines identify the shape of a landmark with a different

elevation, perhaps marking a hillside. On the top of the figure you can see the access

road to the site. Also the prospective building is surrounded by vegetation.

Chapter 1 The History of Layers Architecture

11

Figure 1-1.  Land surveying map of a candidate construction site (Courtesy of
Afshin Kianpour)

Chapter 1 The History of Layers Architecture

12

In Figure 1-2, you can see the enlarged portion of Figure 1-1. All the main access

to the building from the outside world is meticulously designed from the stairways

to lawns, driveway to the three-car garage, and the exact locations of each tree. In

an analogy to an embedded system, this is the first step of realizing a customer’s

requirements in terms of a well-defined system with bounded inputs and outputs

(BIBO).

�Architectural Drawings
The next step in the long line of the civil engineering documentation process is the

architectural drawing. Please note the architectural drawings are strictly hierarchical in

nature and follow a top-down approach. They start from the perimeter of the building

and then slowly move into the inside of the building explaining every detail, from

material and tool specifications to showing access to a city’s utilities in every room.

To avoid crowding the drawings the information is categorized to a different level of

Figure 1-2.  Land surveying map of a candidate construction site (details of
Figure 1-1) (Courtesy of Afshin Kianpour)

Chapter 1 The History of Layers Architecture

13

abstraction. The principals are explained first then if it deemed necessary, more details

would follow. In an architectural drawing every line of text carries critical information. In

Figure 1-3 a plot plan of the building shows the building’s perimeter, the main structure,

and dimensions. The drawing shows the top view of the future building.

Figure 1-3.  Plot plan of a future building (Courtesy of Afshin Kianpour)

Chapter 1 The History of Layers Architecture

14

A plot plan is to show the main modules of the building giving an overview of what

comes next. In embedded systems this is called system specifications where the inputs,

outputs, user interfaces, and main system functionality are defined in a very abstract

fashion. The system spec is meant to unify the language of customer with the designers,

creating a common language between them.

Since this is a three-story building the next three figures, Figures 1-4, 1-5, and

1-6, show the architectural details of these floors from garage level to the third floor

level respectively. As you can see there is a massive amount of information packed on

these sheets. All the measurements and locations for the walls, windows, columns,

and stairways along references to other drawings and site designation for each room

are clearly marked. For example by a quick inspection one can realize there is another

drawing regarding the cross-sectional view of the building.

Chapter 1 The History of Layers Architecture

15

Figure 1-4.  Garage floor architectural drawing (Courtesy of Afshin
Kianpour)

Chapter 1 The History of Layers Architecture

16

Figure 1-5.  First floor architectural drawing (Courtesy of Afshin Kianpour)

Chapter 1 The History of Layers Architecture

17

Figure 1-6.  Second floor architectural drawing (Courtesy of Afshin
Kianpour)

Chapter 1 The History of Layers Architecture

18

Figure 1-7.  Front and east elevation of the building (Courtesy of Afshin
Kianpour)

Since a building is a 3D object, to better help visualize it, the designers present the

design with the building side views. Figures 1-7 and 1-8 illustrate that.

Chapter 1 The History of Layers Architecture

19

As you might have noticed, the side views of the building also show what seemed to

be a flat surface in Figure 1-1, the topological land survey. Now we have a much better

understanding of the building with its surroundings.

Figure 1-8.  West and rear elevation of the building (Courtesy of Afshin
Kianpour)

Chapter 1 The History of Layers Architecture

20

The last but not least important drawing in the barrage of architectural drawing is

the cross-sectional view of the building. Figures 1-9 and 1-10 show the sections of the

building that were marked in Figure 1-6 by the letters A and B.

Figure 1-9.  Cross-section A of the building that was referenced in Figure 1-6
(Courtesy of Afshin Kianpour)

Chapter 1 The History of Layers Architecture

21

The cross-sectional drawings are vital among all architectural drawings because they

provide insights where other drawings are not able to. The concept and application of

a cross-sectional view of the system will come up in the later chapters. You will see how

a vertical slice of the system creates not only an indication of how the system performs,

but also it will create a cadence among the development team.

After the architectural drawings are made, reviewed, revised, and approved, they

will be sent to the construction engineers for review and then are absolutely enforced

on the construction site. No deviation from the prints without architects’ approval is

permitted. In addition, in case of confusion and doubt, construction engineers are

responsible to consult with the architects to clarify and resolve the issues. The change

orders must follow a formal approval process and all the changes in the plan are carefully

documented. There are two types of drawings, the plans and the as-built. The plan is

what is being ordered to the construction engineers to build and as-built is documenting

what actually was built. The gap between plan and as-built is filled with the approved

change orders.

Figure 1-10.  Cross-sectional view of the building marked as B in Figure 1-6
(Courtesy of Afshin Kianpour)

Chapter 1 The History of Layers Architecture

22

�Drawing’s Reusability, Maintainability, Readability,
and Scalability
Each booklet of architectural drawing is comprised of several layers that organize the

drawings based on job functions involving their corresponding processes such as

electrical, mechanical, HVAC, Fire and Safety, Security, Data, and so forth. For example,

a typical architectural drawing might contain one or more of these layers: Architecture,

Building Survey, Civil, Electrical, Landscape, Structural, Plumbing, Mechanical,

Telecommunication, Data, etc.

The idea of creating layers is rather about having everything on one drawing; if

you make each layer transparent, by stacking all the layers on top each other you can

get a three-dimensional visualization of the building or what we call it today, a static

simulation of the object. So basically it is civil engineering that pioneered the model

simulation. Obviously engineers utilize this tool in order to find the design defects,

establish guidelines, avoid reworks, and unify the language of people involved. This

would leave no room for doubts and miscommunication. This would be the keystone of

efficiency.

Each sheet of drawing is filled with symbols and lines. There is no unintended

or meaningless line on the drawing pages. The symbols are consistent and unique

throughout their representations and guided via legends. Above all, the flow of the

diagrams is natural and intuitive and is intended to be understood by the engineers,

technicians, and skilled workers who have limited or no related education.

Each page of drawing is marked with special guiding symbols to track down

upstream and downstream drawings related to the page being studied. This unifies

segregated drawings to one giant uniform road map to construct the building.

In addition, the drawings help the building owners to maintain the building in

years to come. For example, if years later there is a need for a major remodeling or

reconstruction, then each drawing tells the story of what and where everything are. As

you can see, many of the tools and methods that computer and software engineers use

today are invented and initiated in the construction industry.

Chapter 1 The History of Layers Architecture

23

Architectural Layer

Mechanical Layer

Electrical Layer

Fire/Safety Layer

Data Layer

Figure 1-11.  The stack of various building drawing layers including architectural,
mechanical, electrical, and so forth

The numbering system and the modular approach to developing design documents

somehow make the scaling of the design more convenient for the designers. There

are sometimes even design considerations foreseen in the drawings for the expansion

of the building. All the hooks and handles in each layer are to allow scalability either

by merging with other modules or facilitating the merger of the future modules. The

following image shows four layers of drawing for the same layout that they can get

stacked up one on top of another. As we mentioned before, each layer is assigned only

to one job function. For example, one layer can be architectural, the others, plumbing,

electrical, and mechanical.

Figure 1-11 shows the stack of various building drawings. Starting from the

architectural layer, the designed measure, and mark of the building perimeters, it utilizes

the land surveying map from Figure 1-1. Then they slowly move into the building,

designing the major spaces from living room and kitchen to closets and pantry. Once the

spaces are marked then they look at functionality of each room in order to establish all

the inputs and outputs to that room for which to satisfy the functionality requirements.

Once all the inputs and outputs to the building are estimated, then functional drawings

are introduced. For example, the data line might have its own drawing layer to feed data

to various functional spaces across the house. Some of the layers are very recent due to

the advancement in home automation and modern security functionalities that require

their own set of special skills to meet some very complex requirements.

Chapter 1 The History of Layers Architecture

24

As you have observed so far, the building construction industry is much more

advanced than what it looks like from the facade. This is because the facade of the

building has stayed the same for thousands of years, but the building applications have

greatly specialized. The secret for keeping up with modern-life demand while keep

the same simple surface is that civil engineers are very familiar with modularity and

work organization. The very pivotal point in building construction is in architecture,

understanding the need of the application and clearly marking the boundaries of

functionalities while keeping in mind that the entire work should be carried out in an

undistributed work fashion utilizing various skill sets.

�Making Buildings versus Making PCBs
The reason that the building industry has such a stiff approach toward doing the

documentation before starting the construction is that the design deviation in a building

construction can potentially cost the project its entire lifeline, or even worse, in some

cases can bankrupt the company. When constructing a PCB, making a mistake, for

example, in the layout of the PCB can only cost the company on average a few weeks

delay and a few hundred dollars’ worth of rework, which is nowhere close to cost of

rework in a building construction. Yes, there have been catastrophic failures that cost

nations billions of dollars and caused permanent environmental damage as a result of a

single PCB failure, but we are talking about the cost of a project, not the liability cost of

a product. In other words, the nature of developing real-time systems might give a false

impression that we can successfully finish a failing product that passes all the phases of

development but it can still fail miserably in the field.

Since the consequences of rework in a building are grave initially, civil engineers

have many defined and strict design guidelines. But in embedded system development,

the cost of rework and prototypes are much more manageable, which has led us to be

more forgiving toward design mistakes and reworks. However, the real-time systems

might not appear to carry a high up-front project cost, but the liability cost of embedded

systems might be far greater exceeded than the liability costs of a building. This is why

for the critical applications, we need more than an Agile developmental process to

guarantee reliability of our product.

Chapter 1 The History of Layers Architecture

25

�Summary
The topics discussed in this chapter were not covered in order to state the obvious about

different industries, but to show some simple trends and to highlight some common

challenges. What we think is a complicated problem in our industry might be just a norm

in another industry. Electrical, computer, and software engineering are the professions

of the 20th century and still in their infancy in terms of the level of maturity in

establishing solid standards and methods compared to some other ancient professions.

Some might even think that with the ever-changing face of our industry, there is a lot left

to learn and we might never get to establish a one-method-fits-all stage.

Chapter 1 The History of Layers Architecture

© Mohsen Mirtalebi 2017
M. Mirtalebi, Embedded Systems Architecture for Agile Development,
https://doi.org/10.1007/978-1-4842-3051-0_2

27

CHAPTER 2

Project Management
Methods
There are many ways to define and call a real-time system with respect to their intended

applications, but in a general sense, as its name implies, it is a system that carries out

applications that are dedicated, focused, and above all are time sensitive. Depending

on how the application needs to be carried out, there are systems that must execute

their tasks at certain times; some give you a range of time to execute an application,

and the rest want you to execute the application but are not too pushy about it. They are

called hard real-time systems, soft real-time systems, and general purpose computers

respectively. Depending on who we consult with, there are a lot of discussions

in categorizing the computer systems of which some get into deep philosophical

discussions about the concept of time. For the sake of our discussion, the above

definitions about real-time systems can suffice.

In old days, a real-time system was purely hardware based. A PID controller that

had sets of screws, resistors, capacitors, and amplifiers with an almost infinitely fast

control loop response was considered an embedded system. However, with all the perks

that would come with the pure hardware-based controllers and by the invention of

transistors, the designers decided to have software involved in order to make the systems

user friendly and easier to maintain. Nowadays it is hard to imagine that a real-time

system can operate without any embedded software.

The main objective to justify using a real-time system for an application is that these

systems are application specific, which means you cannot utilize your personal computer

to carry out its tasks. In addition, this translates to a system that benefits from a tightly

designed hardware and software architecture. For example, an automobile’s cruise

control system is comprised of various hardware and software components that receive

commands from the driver, data from various sensors, and performs a control algorithm

for this specific application in order to monitor and maintain the speed of the vehicle.

28

The ease of use of digital systems; compact packaging; low cost of semiconductor

devices such as microprocessors, microcontrollers, memory chips, solid state switches,

and so forth has made the use of these transistor-based components in real-time

industrial systems very popular. But all these benefits come with a cost, which is the

cost of software development. Although this new branch of science – software

engineering – is still at its initial stage compared to the other branches of science, the

progress it has made and the lives it has touched already are far beyond other sciences.

As the science of software leaps toward more advancement, it branches into more

specialty fields and takes on new names. In the meantime, more project/product

management tools and methods are introduced to cope with this fast transient of

progress. The following is only an introduction to some basic and related topics on the

subject of embedded systems development.

�The Basics
Whether we are all experts or rookies or anything in between in project management,

we should agree on some common definitions. Let’s all agree that a firmware is a

special case of software that exclusively performs real-time applications and directly

controls the machine on a time-critical and predictable basis. Although there are

various definitions for what is called real time and what level of time criticality there

is to it (hard or soft real time) but either way a real-time system is a system developed

where the use of a PC or any other general purpose computers fail to deliver results in a

predictable and deterministic manner.

�Project Management Using Critical Path
Methods (CPM)
To start off with the first and one of the oldest project management methods, we

introduce critical path methods. This method has been used in many industries from

construction to product development and any process that is based on a phase-gate

approach.

Chapter 2 Project Management Methods

29

�What Is CPM?
CPM was initially invented around the 1940s and put in practice by the U.S. Navy for

developing the Polaris Defense System. The magnitude of the project and its sensitivity,

complexity, and criticality due to geopolitics of the time, which coincided with the

height of the Cold War, is evident to the effectiveness of this powerful management tool.

Unfortunately as it is the case for most functional methods and as the time passed, this

tool became either overly complicated or simplified as it was slowly making headway

into different industries.

The effectiveness of this tool became so popular among industries that even

the construction industry started heavily utilizing the tools for resource scheduling.

Although the CPM tool they used was a watered-down version of this version of

time-series analysis, it still was proven to be very effective. This oversimplified the use of

the tool and made this active tool to have a reactive personality in the face of changes in

the project. The people who took the tool seriously and wanted a more proactive role for

it became so obsessed with the tool that they forgot analysis, creating graphs and reports

are not the objectives of the tool.

The rest in the industry use the tool as an intimidation tool to induce productivity

in human resources. The overcomplication in the tool made the method heavy in

documentations, which in turn made it costly to maintain and slow to respond to

changes. The oversimplified methods carry little to no effectiveness due to the lack of a

realistic outlook toward inevitable and constant changes which proven to be excessively

stiff toward adapting the changes. Maybe this is the reason the construction industry

found it effective as the culture in that industry is inflexible toward changes.

�Creating a Robust Gantt Chart
The Gantt chart is the most widely used and, in some cases, abused project management

tool in the history of management. If someone asks us to name a management tool

common between a project with a goal of developing a hi-tech medical product and

developing a new hospital building, the answer would be a Gantt chart. Although a Gantt

chart is only one of the graphical representations of a project in CPM, it is by far the most

popular and effective tool for planning, tracking, and forecasting a project.

The Gantt chart is enormously effective if it is deployed and implemented correctly.

A well-established Gantt chart can help the managers with their projects’ bottlenecks

and provide them with fairly accurate cost and time estimation and predictions. The

Chapter 2 Project Management Methods

30

principals of developing an effective Gantt chart are simple and intuitive. These can

apply to any type of project: from developing a highly complex real-time system to a

project comprised of writing a book.

�Work Breakdown Structures (WBS)

If you refer to our initial discussion in the introduction chapter of the book, you see

we distinguished between project and product developments. However from the CPD

standpoint, these two terms are viewed the same and used interchangeably. Therefore

the WBS contains both product and process breakdown structures. Contrary to popular

belief, a manager shouldn’t know everything about the work but should know who knows

what. Task delegation is one of the manager’s responsibilities but not for project planning.

A project manager interviews the subject matter experts, observes work and time,

and decides how to plan the project. Creating a WBS is one of the initial and essential

activities a manager does to build a framework for the project at the planning phase.

Although the scope of the project is still to develop a product, later the process

takes the upper hand and overshadows the product. Therefore a manager starts with

identifying product functions and then plan resources based on those specific functions.

For this, the first step would logically become interviewing the subject matter experts

to identify the scope of the project and to gather enough data to create high-level

product specifications, then slowly to break down the major parts to smaller pieces. For

developing each part of the product, the project manager assigns some activities and

tasks. It is how the resource planning is introduced to the project. When the resources,

money, and time are assigned to the activities, then the process management takes the

higher priority over the product management and that’s how we get to where we are

today, using Gantt charts for everything.

In project management the activity of decomposing processes to activities and

then tasks is called creating a work breakdown structure. The WBS starts from the top

processes and then continues down to creating subordinate task units that normally

are assigned to or performed by a single individual for a certain duration of time.

In industrial engineering the act of creating tasks for individuals in a top-down,

functional, and homogeneous manner is part of work standardization. Normally work

standardization is for a production environment where the flow of product is steady and

work fluctuations are minimized. But if we assume a project is a one-time production,

then most of work and time study techniques can apply.

Chapter 2 Project Management Methods

31

The WBS development in analogy is similar to brainstorming or writing a journal or

a book, starting from the title then moving on to subject of each chapter and eventually

to the subjects of each paragraph. At this phase of planning, the project manager/author

should not worry about the orders of the tasks and their relationships, rather utilizing

their entire brain power to identify the works and to narrow down the project scope. But

it is very unlikely that a writer is able to identify the topic of each paragraph at this early

stages of a book’s planning. However, whether it’s true or not, the project managers get

into their project planning stage, hoping they can identify all the functions and features

of the product down to its nuts and bolts by systematically decomposing the functions

to modules and components and the processes to activities and tasks in which all

tasks carry an equal weight, are homogeneous, and take the same amount of time and

resources. We all know that this hope never materializes but this is the underlying theory

of project planning.

The decomposition method that we have discussed is centered on the product

function. There are many ways other than function-based decomposition of a project.

Some organizations might plan their product development based on their available

resources, some based on their organizational charts, and some based on geographical

regions or a combination of all these. Our WBS development is based on product

function and we did this because we wanted to avoid waste by using just enough

resources to carry out the tasks in full. Now let’s assume that for writing this book, we

need to create a WBS. Since we don’t know how exactly the project would lay out, we

base our best guesses on the major product functions.

There is a new idea and we want to introduce our new idea to our ever idea-hungry

market. Therefore everything should revolve around expressing this new idea; otherwise

we didn’t have any reason to write a book about. However, we can’t just expose our

naked idea to the public. We are to dress it up decently and in layers so the reader would

get engaged with the book as s/he goes through these familiar layers until it gets to the

core idea. Therefore, introducing the new idea would be the main engine that drives

writing this book, and as a rule of writing we should stay focused to the main scope of

this book throughout writing all the chapters, even when we try to review the old and

existing ideas that might be familiar and redundant to the majority of the readers. This is

to keep the readers focused on the main topic of the book.

While performing WBS we should always have the project’s scopes in mind;

otherwise it is easy to get distracted, which will result in creating unnecessary functions

and tasks. A well-defined project is not a project heavy on documentation: it is a project

Chapter 2 Project Management Methods

32

that is focused on only project scopes and deliverables. Since there are activities that

are not directly related to project scopes and deliverables, but since they support

activities and materials in order to deliver the project, therefore they should be built

into the WBS. For example, for a construction project the delivery of all raw materials

to the building site is a supporting activity. This needs to be included into the WBS so

it is considered for the planning and scheduling phase. So the project’s scope not only

includes the WBS of the direct project tasks but also every aspect of the project whether

they support the project directly or indirectly.

In Figure 2-1, the WBS of the direct contents for writing this book is used as an

example without mentioning the indirect activities such as editing, which are vital to

the delivery of quality contents. Also the main function of the book is to introduce a new

idea; however the introduction and basics sections are the supporting functionalities

in order to prepare the reader for the complex topics discussed in the “A New Idea” and

“How It Works” sections. An additional advantage for utilizing WBS is to create a smooth

flow in developing the more complex functions as well as tracing back all the points

discussed in the advanced chapters back to the principals, making a solid point as you

will. It also helps the designers to understand the requirements thoroughly without

entangling into unnecessary details while missing on the major deliverables. The fruit

of the matter is this: if you have a clear WBS you can easily explain your product, idea,

function, in one sentence. It may be long but it will be all inclusive.

Chapter 2 Project Management Methods

33

There are not enough words as to how important a WBS is to a product’s

development. It will clarify the path of development, identify the loopholes and resource

constraints, and give a rough estimate of overall project time and resources needed

or even a budget estimate if you have done similar projects. All in all, a WBS is the

cornerstone of a successful product development process.

�Project Constraints

After the majority of a project’s tasks are identified, the project manager is responsible

for applying project constraints to the tasks. Constraints are delicate affairs in every

project. They define correlations among the tasks and are categorized to two types:

physical and logical constraints. As an example for both cases, let’s consider a project

comprising tasks for staining a newly cemented floor. The physical constraint tells us

that the floor can’t be stained before the cement is actually made. In other words, it is

impossible to stain the floor until the cement is poured and the actual floor comes into

existence. You might laugh at this but you’ll be surprised how many project managers

forget this obvious fact. This is like adding more resources to a late project to make

it go faster. As a rule of thumb, adding resources to a late project make it even later.

Figure 2-1.  Work breakdown of writing a book (Please note the entire project is
not included)

Chapter 2 Project Management Methods

34

An example of a logical constraint is that the floor can’t be stained until the cement is

well cured. It is possible to stain a wet concrete floor but it normally doesn’t lead to a

good quality of paint plus a concrete slap needs to stay moist with water to cure for a

while.

Although defining and categorizing project constraints are not as easy as it sounds

here, a visionary manager could achieve a reasonable result at this stage by interviewing

the people who are going to carry out the tasks. If project management is considered a

combination of art and science, this part is definitely the artistic side of it. Because this

is the part that asks for effective people participation in a manner that would reveal the

actual costs, time, dynamics, resources, and mechanics of each task.

The WBS that we defined earlier can be projected into a schedule that is bounded

by realistic constraints. The titles in bold in Figure 2-2 are not tasks as they carry some

elements underneath. There are some of these tasks that have no room to wiggle, and as

a result, any delay in these tasks can delay the entire project. These are called tasks on

the critical path.

Figure 2-2.  Gantt chart representation of an earlier WBS with an emphasis on time

A Gantt chart can have more than one critical path and there are many methods to

resolve a situation like this, which is beyond the scope of this book. However, as you can

see in Figure 2-2, a simplified version of a project has been represented. This graph does

not carry information on resources since there is only a person who was responsible to

carry out this project. It also does not carry budgetary data and equipment utilization

information. The more a Gantt chart is loaded with the information, the more realistic

your project plan would become.

Chapter 2 Project Management Methods

35

�Project Resource Planning

Loading resources into the project schedule equips the Gantt chart with reality. There

is no project with unlimited resources. Of all the available resources to any project,

human resources are most valuable. The diligence, intelligence, and hard work of these

resources have added some bright pages to the history of mankind. However, with all

the advantages come some disadvantages as well. Human resources are unpredictable

because they come with different strengths and weaknesses and are prone to sudden

tiredness, mistakes, and illnesses. Therefore, project managers often assign a separate

calendar to these resources that are different from the project calendar. It’s called a

resource calendar.

After loading the resources to the Gantt chart, the nature of the project schedule

changes and it becomes a controllable entity. Now the project managers can forecast

the final budget and time; increase or decrease the scopes of the project; outsource or

in-source activities; and effectively manage the resources, controlling time and budget.

�Project Control

Project control in its classical definition deals with three major constraints – time, cost,

and quality – where changing one will affect the other two. But let’s have in mind that the

purpose of project control is to find the optimum point where all these three intersect,

creating a project minimized in budget and time and maximized in quality. After the

resources are loaded into the project, a manager can control any of these constraints.

For example, for a better quality product, a project manager can place quality control

processes in the schedule that will prolong the project and impose more costs or have it

to speed up so s/he can remove some product features or minimize the scope.

Another art of project management is to minimize the cost of the project where it’s

possible. Leveling the resources ensures the maximized utilization of the resources by

adjusting the occurrence of the tasks by sliding them back and forth within their time

buffer without affecting downstream tasks. This is called resource leveling. Performing

the project leveling task is tedious and delicate. As you move the task within its allowable

time window, you have to go back and adjust every other task in the project accordingly.

This is where the computer programs can help with automatically adjusting the project.

There are different techniques as for resource leveling; you can divide or combine

tasks, reduce or increase scopes, or add or remove resources to it such as outsourcing

or in-sourcing the tasks. Figure 2-3 shows the famous project management triangle that

Chapter 2 Project Management Methods

36

each project is believed to be affected by. It is not possible that any side of the triangle

can be modified without affecting the other two sides.

At the end, CPM is a tool that would give us enough control to make educated

decisions to manipulate the project in a safe and controlled fashion. It was created to

just do that in order to minimize the risk of the decision-making process and to lead a

project to the optimum point where the cost and time are minimized and the quality is

maximized.

�Project Management Using Agile Methods
Although Agile methods were primarily invented to manage software development

processes rather than firmware, more and more hi-tech companies have adopted them

for developing their real-time applications. In the early 2000s several software engineers

published a manifesto for Agile methodologies that summarize the unified philosophies

supporting these methods. The manifesto especially emphasizes individualism, light

documentations, more interaction with the customers, and adapting changes on the

go rather than following a set plan such as a V-Model. There are books written on this

subject and reiterating those topics is beyond the scope of book. We just touch up a few

related topics on this subject and then move on to other parts.

Figure 2-3.  The project management pyramid

Chapter 2 Project Management Methods

37

�What Does Agile Mean?
Agile, as it is evident from its name, means fast response to the customers’ needs.

However the term is effectively used in the software development, while in

manufacturing it is interchangeably used with the lean term. In general any system that

has specialized tools and methods to respond quickly to changes is called Agile. This is

like the hundred-meter Olympics runners who possess the right muscle tone, weight,

and height and are physically different from the marathon runners who are lean and

slow; therefore agility implies efficiency, having just the right gears for the challenge

ahead. There are many different methods under the Agile umbrella such as Kanban,

Scrum, FDD, DSDM, ASD, XP, Lean, Crystal, and more. If we understand the reasoning

behind Agile methodologies, we can apply one methodology or a combination of

methodologies to make our process efficient in function and responsive to unexpected

issues. For the sake of our argument we picked Scrum to discuss.

�The Ideal Scrum
Scrum is one of more the popular Agile approaches to software development. Although

Scrum is very receptive to changes, it has its own shortcomings in adapting to real-world

problems. The ideal Scrum is for a team of five to nine people with T-shape skill sets

who perform a daily stand-up meeting and periodical sprints every two to three weeks.

The main theme in Scrum is repetition, gathering momentum of generating results,

and adding values to the product in small increments. At the end of each cycle the team

produces something that they like to call a Potentially Shippable Product. The team is

required to perform the cycles of inspect and adapt when they are taking on their tasks.

The ideal Scrum works as a management tool such as CPM and as a product development

framework such as CPD; however the methods to function as a framework, especially

when it comes to budgeting and planning, have not been fully clear.

�Scrum Master

Although Scrum seems to be trying to avoid creating a project management position in

its classical form, in which the project manager would top the hierarchy of the project

organization, in the real world it faces some challenges due to the fact that the massive

antiquated financial systems and majority of project stakeholders still like to respond to

the older project structures. As a result the Scrum Master is the one who usually has to

Chapter 2 Project Management Methods

38

put multiple hats on. The primary role of a Scrum master is to act as a facilitator to the

team to remove impediments, shield the team from outside influences, keeps the team

focused during daily stand-ups, and acts as a public relations person on behalf of the

team at the stakeholders’ meetings.

�Project Backlog

Backlog is the process of creating a work breakdown structure in a way that the created

tasks can be ideally completed during one sprint by a single developer. Sprint is the

unit of time in Scrum and normally has a fixed time span of two to three weeks. The

team’s performance and velocity and projected completion time is expressed in Sprints.

Sometimes during the sprint the team members get together to refine the stories, their

orders and definitions, objectives, and score them as the project unfolds and more

details become available to the team. This creates a need for another Scrum process that

is called Backlog Grooming.

�Sprint Planning

After the backlog is created and organized in an open and relaxed fashion, it is presented

to the team member at each sprint planning session. The term “relaxed” is to oppose

any excessive planning ahead of time by meticulously arranging the backlog items in

any particular order. This stage of the process is comparable to the stage in the Gantt

chart process where the PM interviews the team members to identify the constraints

and time required to complete each task. Since the emphasis is on individualism, the

team memebers decide what to do first and it happens right at the planning stage. Also

note each task in Scrum is called a Story and carries two values, weight and an estimated

time to complete the tasks. The weight of the project is used to create an estimated

completion time for important milestones in the project.

Chapter 2 Project Management Methods

39

�Project Control

Although it might not be evident from the Scrum’s streamline that the process is being

controlled, it is. It’s being done through different interfaces, tools, and methods.

•	 The Done-Done List

This is practically a quality node in the process. The done list is a

list of objectives and qualifications that is used to qualify whether

a sprint task is complete. Creating these subtasks is not mandatory

and it is at a developer’s discretion to use them in order to satisfy the

objectives that have been set by the stakeholders/product owner to

qualify the task as complete. It is also called an acceptance criterion

for any story. Mentioning the word “Done” twice is to emphasize the

importance of completeness of the task at the end of the sprint, which

lends its existence to the concept of “potentially shippable product.”

•	 Potentially Shippable Product

This part works as resource leveling during developing the Gantt

chart. The developmental tasks performed during each sprint are to

produce enough incremental progress in software features that the

product can be shipped to the customers at the end of the sprint. The

product might not carry all the features that the stakeholders have in

mind, but it is a complete working small-scale (in features) product.

We will discuss this concept in a greater detail in the next chapters.

•	 Team Members Co-locations

Scrum process requires the team members to be located close to

each other in order to perform effective daily stand-up meetings.

•	 Daily Stand-Ups

During the Sprint, each team member is required to participate in

the daily meetings, preferably early on the work schedule. Then each

member will briefly explain three things: what has been done from

the last stand-up, what is going to be done after this stand-up, and

whether there are any impediments that prevent this team member

from achieving his/her goals. Daily stand-ups are meant to inform the

stakeholders about the pace of the project and potential problems.

Chapter 2 Project Management Methods

40

•	 Sprint Review/Retrospective

This is a meeting scheduled after the Sprint is done. The team

decides if each story is completed based on the done-done list.

Also the team members are provided a chance to give input to the

stakeholders on how the overall process can be improved.

•	 Cost, Quality, Time, and Scope

In traditional project management the scope of the project is

normally a set value, and at least less evident as a tool for the

project manager to steer the project. In Scrum, the scope of the

project is a more pronounced value and more readily available

to the managers than the earlier management methods. The

Scope of the project is normally divided to two, Must-Have, and

Nice-To-Have attributes for each Story and there will be two

projections toward the end of the project for each category

(see Figure 2-4). The smaller triangle is representative of Must-Have

scope and the larger triangle represents the Nice-To-Have scope,

which engulfs the smaller scope. It is worthy of mention that the

scopes never change during the run of a Sprint.

Scope

Time

Quality

Cost

Figure 2-4.  An Agile process control pyramid

Chapter 2 Project Management Methods

41

•	 Burn-Down/Up Charts

The team members are required to log their activities and

progress by entering hours spent and left to finish each task of the

story. As a result the Scrum master is able to graph the projected

completion of each story in order to track down the progress

toward each Sprint, Release, or Project end dates. In addition,

by accumulating all the tasks done, the stakeholders are able to

measure the average speed of the team and project the dates.

•	 Cone of Uncertainty

Software development in Agile utilizes a graph known as “The Cone

of Uncertainty” to describe how a project is being dynamically sized

in terms of time, cost, and scope (see Figure 2-5). As the project

progresses from concept to test, the amount of certainty reduces in

scope, cost, and time of the project.

Figure 2-5.  Cone of uncertainty for any product development: in this case, software

Chapter 2 Project Management Methods

42

However, if there are extra efforts spent at the design stage the

benefit would be a much narrower uncertainty at the earlier

stage of the project. This does not mean that an earlier stage of

the project phase equates to an earlier milestone on the project

time line since this often causes the design stage to become

longer in time; on the other hand, the implementation, test, and

deployment phases will shrink in time.

Although Agile methodologies claim that they are light on

documentations unlike other traditional methods, this graph

is evidence that they unofficially support requirement analysis.

Again, this is from the software engineering perspective regarding

software projects. Nevertheless due to the nature of real-time

systems, the use of clear requirement specifications is vital for

communications and scope definitions.

•	 Release Planning

Release planning is a high-level plan that is a subset of project

planning. It often contains many sprints and it has all the

elements for project planning but on a smaller scale. Therefore a

release planning must include a set of prioritized and estimated

product backlogs and defined scopes, schedules, velocity, and

resources (see Figure 2-6).

Figure 2-6.  Cone of uncertainty when more time is spent on design phase

Chapter 2 Project Management Methods

43

�Collaborative Product Development (CPD)
Every year in the United States there are thousands of patent applications being

filed. From all these applications only a selected few become manufacturable and

also profitable. Therefore one might view CPD as a financial tool for funding and

representing various complex apparatuses of a project in an abstract form. Therefore

CPD is more of financial tool than a developmental one to size up the worth of new

concepts for investment purposes. However one of its useful by products is that it gives

an architectural view of the product. If we assume CPM and Scrum are the vehicles

carrying the project/product from concept to release, CPD is the road map.

Firmware is one of the most important building blocks of a real-time system; that’s

why it must be viewed from a broader perspective and in the context of other major

elements such as manufacturing, purchasing, hardware development, and so forth. CPD

brings all these aspects of product development efforts together under one umbrella in a

presentable and understandable fashion to the project stakeholders.

Aside from the financial aspect of a CPD, which looks a lot like a business plan,

there are many aspects of which they are technical and related to product development.

There are normally five to six phases and gates associated with the entire process

(see Figure 2-7). Phases comprised of activities and deliverables and gates are for the

executive managers to decide whether to allow the project to move on, postponed,

reduced in scope, or canceled.

Figure 2-7.  Typical phases of a CPD process

This representation of the project is specifically crafted for the executive managers

since they oversee many concurrent projects at a given time. It enables them to

visually track down the progress made. It actually is a super project of all projects in a

pseudo-Gantt chart format. These bars depict a snapshot of progress to date with respect

to the phases and gates.

Chapter 2 Project Management Methods

44

�Tasks, Deliverables, and Decisions
There are many different opinions and philosophical points of view on CPD process. The

following is a very simplified version of it that emphasizes only major and conventionally

agreeable highlights in the process. CPD is focused heavily on documentations, the same

as any business plan submitted to an angle investor or a bank for the purpose of seeking

seed money for a start-up business.

The bankers and investors might not have a clue about what the loan applicant is

planning to really do with the money but the order and amount of documentations

tells them if the applicant has done his/her homework and if s/he is ready to unleash all

her/his resources to have a successful project. This is a natural process to minimize the

risk and protect the investment. The following is a summary of a general CPD process.

�Phase One (Concept Development)

•	 Tasks:

Defining Customer Requirements

Developing Proof of Concept

Intellectual Property Study

Developing Product Quality Metrics

•	 Deliverables:

Marketing Requirement Specifications

Concept Prototypes

IP Report

Marketing Test Specifications

�Gate One

Making decisions based on all the deliverables regarding market feasibility, product

manufacturability, IP clearances, technology availability, and a clear regulatory path.

Chapter 2 Project Management Methods

45

�Phase Two (Project/Product Planning and Architecture)

•	 Tasks:

Project Planning Including Development, Manufacturing,

Regulatory, and Quality/Reliability Planning

Developing Product Architectural Plan included with the

functional modules and components and also Risk Management

Study

•	 Deliverables:

All Project, Manufacturing, and Regulatory Plans and Risk

Assessments

All Architectural Documents including Modules and Component

Requirements and Test Specs

�Gate Two

The simple decision at this stage is to answer whether the product is manufacturable? To

come to an educated decision is to develop and review all the documents generated at

this stage. This is a lengthy process but is the path of least resistance; should the product

fail further down the line it will cost the company a lot more.

�Phase Three (Design)

•	 Tasks:

Design Modules and Models

DFMEA

Design Reviews

Software Development

Developing Pilot Manufacturing Lines

Developing V&V Specs

Chapter 2 Project Management Methods

46

•	 Deliverables:

Generating Documents for all the above tasks

Developing Hardware Prototypes

Developing Design Documents, Codes, Models, and Modules

�Gate Three

Design Freeze and Moving Forward into Manufacturing

�Phase Four (V&V and Optimization)

•	 Tasks:

Performing Software and Hardware V&V

Developing PFMEA

Software Optimization

Engineering and Reliability Testing

Regulatory Submissions

Manufacturing Pilot Run and Test Design

•	 Deliverables:

Test Results and Design Modification recommendations

�Gate Four

This involves making decisions if the tests are performed sufficiently, design changes are

valid, and regulatory testing are qualified. Is the Vendor Selected? Is the Manufacturing

Process Stable?

�Phase Five (Product Launch)

•	 Tasks:

Developing Customer Manuals and Training them

Developing Service Plans

Filed Tests

Chapter 2 Project Management Methods

47

•	 Deliverables:

Generating Field Test Report

Documenting the Manufacturing Process

�Gate Five

Is the Project Close-Out, Audit, and Design Transfer Complete?

As we saw in the past CPD summary, we can see how a project is comprised of

various engineering disciplines and how people outside of the circle of the project view

its wholeness as a coherent entity. In addition, the tedious documentation process is

viewed as a form of communication where it unifies perceptions, declares definitions,

and answers questions. But to an engineer, the documentation process should be more

than that. It should also be about benchmarking, calculating, and arriving to the same

conclusion as planned. No matter how much effort an engineer puts in defining the

objectives, it is always easier than troubleshooting and less expensive than reworks.

�Software and Project Management
Since the science of software is very new compared to mathematics and physics, and also

it is rapidly evolving, the impact of software on the projects has been underestimated

by the popular belief. However the impact is being noticed by more companies. The

main problem with real-time system development projects is that software seems to be

always on the critical path and often creating a long bottleneck for the product on the

way to market. In addition the quality software has been of a concern more so than other

major components such as hardware. This is because there is a great hole in the software

project management and even more in how to integrate the software development in a

project where what we all are used to seeing are tangible and quick results. For this let’s

have a very general look into the software structure of a real-time system.

�Software Layers
In a real-time system, depending on its application, there might be up to three major

and distinct levels of software: algorithm firmware, system firmware, and application

software. Without getting into the details, for example, in a cruise control system the

algorithm firmware would contain the control algorithm. The system firmware then

Chapter 2 Project Management Methods

48

would be in charge of peripheral management and communications to the sensors and

vehicle’s main processor. Finally the application software is one that runs on the main

computer to collect, report, and perform general housekeeping activities for the network

of various real-time subsystems. However application software is also referred to as

the software that connects a real-time system to a general purpose processor such as

a personal computer that runs with a non-real-time operating system. These pieces of

real-time system firmware that are connected to the PC are often called drivers.

In Figure 2-8 the sensors transfer their data to the system firmware portion of an

embedded system and consequently the core firmware of it in order to carry a specific

function. The combination of the hardware and software for this embedded system

normally runs on a real-time basis. Sometimes in larger machines several of these

embedded systems need to communicate with a larger processor for coordination,

monitoring, and reporting purposes. The host computer often needs not to be a

real-time system. The smaller embedded systems are called the driver for the general

purpose computer that would run specific applications in a timely manner then report

the results to the main computer. The main computer is the one that normally would

interface with the user to report the total system conditions.

Chapter 2 Project Management Methods

49

�Software Development Process
As we mentioned earlier, software engineering is a very new discipline in the

engineering world but has gained a tremendous amount of attention and applications.

This rapid explosion in growth has caused the software engineering to get ahead of its

standardization process and best practices simply because by the time the rules of the

games are invented, the playground has changed.

Compare this with very stable and relatively unchanged engineering disciplines such

as civil or mechanical. In these fields the standards and procedures are well defined and

Figure 2-8.  Hardware-dependent software layout for an embedded system

Chapter 2 Project Management Methods

50

tools and processes of engineering have been modernized, but the logic behind them

has stayed relatively the same. For example, to build a house 20 years ago you needed a

blueprint. Today you also need the same thing to start a house although the architectural

plans and drawings might not be blue anymore and are replaced by fancy 3D animation

along complex structural simulations; but the process of building is still the same. To

build a house you need architectural drawings regardless of the color or format of the

drawings.

As mentioned in the introduction of the book, a builder needs a 2D drawing of

the floor plans with all measurements. The plan must show the utility lines, structural

elements, and defined spaces along their purposes. It also should include the materials

used. Then the requirements, test plans, and regulatory processes including city, state,

and federal codes need to be implemented and noted in the drawings.

Building a single-family ranch house faces different regulations than building a

movie theater. These codes and regulations can change the order of execution of the

project tasks and also greatly impacts the materials and processes being utilized. This

can delay the project and add unwanted costs if the initial plan of the project has not

been studied well.

In civil engineering, lack of proper documentation equates directly to money, time,

quality, and in most cases safety issues. This is true for any other type of engineering

projects and so the same for software engineering. However the behavior that some of

the major software companies have created is a false public perception that software

shouldn’t be perfect the first time around. As a result various governing bodies of this

profession have tried to create road maps for a proper software development process.

One of these attempts was to create and recommend the software companies to

adhere to software life-cycle processes. One of the more recent (still in software space

it’s considered ancient) procedures is V-Model for software development. The reason

V-Model is being discussed here is that it is much more aligned with CPD and Agile

processes than other product life cycles such as waterfall or spiral. Again there are many

different types of V-Model implementations. However for the purpose of simplicity we

have brought here a version that is most common.

Chapter 2 Project Management Methods

51

�Software Reusability, Maintainability, Readability,
and Scalability
In the real-time systems the spirit of software flows throughout the entire product

development life cycle from part qualification to prototyping, hardware design,

algorithm simulations, system troubleshooting, engineering and manufacturing tests,

field diagnostics, and so on. The idea is to make the software reusable in a way that as

product passes through the phases of the development the software module would only

require it to be added together or trimmed to fit that particular phase. For example, the

software at the prototyping stage can be used for the product’s algorithm and system

firmware, then to be modified for engineering and manufacturing tests.

Software reusability and scalability in conjunction with developing a clear

architectural road map will spread the software development efforts across the product

life cycle rather than putting it in front of the project to create bottlenecks. In CPM,

software development is often highlighted on a critical path that leads to more project

delays that will result in a delayed product release to the market. Software reusability,

scalability, and readability in the spirit of DFM will also introduce consistency to the

project, preventing waste in time and materials, which consequently reduces or even

eliminates reworks. In addition, it allows engineers to establish a benchmarking process

for product’s functions at the concept and design stage that would result in a more

reliable product with less field returns and greater features for the customers, especially

in product diagnostics.

There is often a misunderstanding for distinguishing between reusability and

scalability. The goal in utilizing reusability in a software is not to use the entire software

program wholly in all phases of the product life cycle but to create features that easily

allow the designers to scale up or back to the extent that would not lose its main

functional characteristics while serving a function. You don’t need the engine of an

18-wheeler on a VW Beetle.

Chapter 2 Project Management Methods

52

�Software throughout CPD Process
As we’ve seen earlier the simplified CPD process would have five different and distinct

phases for product development: concept, architecture, design, validation/verification/

optimization, and product launch. Modern real-time systems benefit from software in all

these phases:

•	 Software for Product Concept

Simulation and analysis and algorithm development software are

extensively utilized for proof of concept for a new product.

•	 Software for Product Architecture

Using Modeling Languages and high-level languages with

custom-made graphical user interfaces, external database

interfacing, connectivity to the outside world, and operating

systems glue various modules.

•	 Software for Product Design

Firmware and low-level programing languages are used to make

the product function based on its defined requirements.

•	 Software for Validation/Verification/Optimization

Various engineering and reliability testing including software

regression, highly accelerated life testing (HALT), and smoke

testing are being used to run extended automated test scripts that

run for hours or sometimes days to test various functionalities of

the system prototypes.

•	 Software for Product Launch

In manufacturing testing, normally automated test equipment

is utilized for final checks before shipping the product to the

customer. When the product is in the field, the asset management

and user-interface software are used to provide system monitoring

and diagnostics utilities.

Chapter 2 Project Management Methods

53

�V-Model (Software Life Cycle)
Like any other classical methods a V-Model has a top-down approach for product

development. The model was invented to manage developing a system, not just

particularly a software system; however it’s more popular now in the software

development domain since it originated from there. Therefore the underlying

principles of a V-Model can apply to any system development whether it is hardware,

manufacturing, finance, or arts. Keep in mind there is no single, accepted definition of

this model. Many government agencies such as the FDA require adopting a product

life-cycle process as a prerequisite to obtain proper certifications for the product. There

are also many international institutions that won’t give your product their stamp of

approval unless a well-documented product life cycle is demonstrated.

The V-Model is highly document oriented. The entire left branch of the model, which

is more than half of development, is focused on design definitions, specifications, and

requirements including creating documents for the right branch. Products that closely

follow a well-established V-Model normally have a significant longer design phase

and much shorter implementations and integrations phases, which normally receive

a higher product quality mark in the field. This is because the process has an iterative

nature between all the phases involved in the process.

The hierarchical nature of this model implies a work breakdown structure similar to the

CPM method. The architectural stage is comprised of many modules and then modules are

broken down to components and so forth in the requirement and design phases.

As you can see, the majority of the design branch is assigned to creating various

design documents. This means that at the start of the project the developers do not

get the chance to implement and test any code until later at the implementation level.

Therefore the majority of design is conceptual and abstract. For example, when the

developers define the modules’ functions, they also create design documents for it along

the test specifications. This will cause the developers to conceptualize the product in

finer detail before developing the real product but at the end, the product definitions,

like a well-designed rocket once it’s fueled, will take off on an incredible speed into the

implementation and integration.

Nevertheless there is a great chance that at the implementation level, the designers

need to go back to the corresponding documents and update them for the design

changes. This also applies to the opposite branch denoted as a test. The circular arrows

are to highlight the feedback and feed forward nature of each phase of the V-Model with

Chapter 2 Project Management Methods

54

respect to the preceding and succeeding phases as well as parallel phases on the test

branch (see Figure 2-9).

Figure 2-9.  A typical V-Model for a software development process

�Design for Manufacturing (DFM)
Design for manufacturing is a proactive concept that instills the idea of manufacturing

in the earliest stages of product development. After all, the inventors create ideas so

they can be manufactured and widely used. A very simplified version of DFM principals

Chapter 2 Project Management Methods

55

follows.[1] Please note these concepts not only apply to physical hardware but also to

software in many ways. The developers must do the following:

•	 Reduce the total number of parts. The fewer parts, the fewer vendors

to deal with, qualify, employ, communicate, and monitor. Also fewer

parts mean fewer reasons for the product to malfunction or fail in the

field.

•	 Develop a modular design. All parts shouldn’t be ready at the same

time but a placeholder can be designed so it keeps manufacturing

ready for the final launch rather than dumbing everything on

manufacturing all at once.

•	 Use of standard components. Consider the End of Life of components

and parts, pricing, and logistics. Introducing new parts to the existing

manufacturing system is expensive.

•	 Design parts to be multifunctional. For example, a heat sink might

also function as a structural element to support parts.

•	 Design parts for multiuse. The multiuse parts can be used in different

products.

•	 Design for ease of fabrication.

•	 Design with standard interfaces. For example, if one of the

communication protocols is CAN, try to utilize this protocol

for subassembly, firmware download, and user-interface

communications for as much as possible. The less costume

interfaces, the less integration and troubleshooting problems.

•	 Maximize compliance by following one standard process, tool,

and method from design to manufacturing. This minimizes human

errors.

There is much more to the DFM concept, but what is mentioned above applies to

designing and manufacturing real-time systems.

Chapter 2 Project Management Methods

56

�Modeling Languages and Agile
Modeling languages are firmware programming tools that allow the firmware developers

to graphically design, implement, simulate, and test the software independent of the

target hardware. Although bringing up the concept of development tools might seem

irrelevant to the topic of project architecture, the impact that these tools have on the

project structure, development, time, budget, and quality necessitates a short mention

of their huge benefits. Because of the scope of these tools and their numerous features

and their inherently compatible nature with Agile software development methods, a

good project architect can combine all the phases of the entire left side of the V-Model by

combining concept, requirements, design, and implementations all in one phase.

�Unified Modeling Language (UML)
The idea of unified modeling language has been around for a while; however the tool

is a registered trademark of IBM. Now many companies have invented their own UML

type of tools. The idea behind UML and other comparable tools are to allow the user to

define a system in a graphical format and convert, simulate, and test the graphics or the

program scripts. The program script is a result of automatic conversion from graphics to

a textual program.

�Model-Based Design (MBD)
Model-based design is a subset of the modeling languages. You can define a system

in terms of its control diagrams by utilizing finite state machines, math functions, and

formulas, or a combination of all and generate program codes from them. The advantage

of utilizing MBD is that the researchers and/or designers can simulate the results and

establish benchmarks for the design validation and verification phases for the entire

development process until the end – meaning the same benchmarking can be used

from concept until deployment and even in the field for diagnostics and preventative

maintenance.

There are many advantages to using model-based design for real-time system

development; however the detail of the tool utilization is not in the scope of this book.

As we discussed before the MBD tools are well compatible with Agile product

development processes while saving money and lives.

Chapter 2 Project Management Methods

57

�Summary
The Scrum functions the best for pure software projects where the co-location of the

team members is possible. However they are not suitable for multidisciplinary,

safety-critical projects such as firmware development where the software and hardware

are developed at the same time in different development campuses. If a video game

crashes, it can restart again with minimal bodily harm to the user; but in case of an

electric motor’s catastrophic failure, the extent of the damages can be unimaginable.

Although the spirit of Scrum aligned with the principles of DFM and asks for an

all-hands collaboration among all the various functional teams and stakeholders, in

reality the majority of Scrum meetings suffer from lack of stakeholder participation.

Mainly the assumption in a Scrum setup is to gather program specialist with related

fields of expertise in one place. This often leaves the manufacturing and purchasing

departments out. As often, it’s the case with the design engineers, who start their career

right after they leave their desk at school, so they have minimal contact with real-world

problems. Enforcing DFM concepts in a development team environment will make the

design ideas grounded and practical.

Another aspect of CPD that suffers in a Scrum environment is optimization. In

simple language, we all know when the marketing engineers see the product prototypes

they want to ship to the customers. This inherent rush in Agile processes will make the

optimization phase with less importance in the eyes of the sales team. This is because

the optimization seems to carry the least tangible value compared to implementation

and test. However, in most cases the design imperfections and hidden bugs (technical

debts in Scrum’s term) make the software less maintainable and hard to understand

and scale for the next rounds of new product development. In other worlds, in a

mission-critical system a known bug should not be tolerated to be left out in the product

for any duration of time.

On a different but related note, we should mention that in the eyes of the majority

of engineers the documentation process fulfills no engineering purposes. That might be

why Scrum gained such a rapid popularity among engineers. This is another backlash of

blindfully abiding by the CPM and CPD rules for such a long time. We all know that most

engineers lack stlar communications skills, so the unfriendly sparks as a result of friction

between engineers and documents are inevitable. However, let’s hope the everlasting

desire of engineers to create things will fill this gap and overcome the friction. Therefore,

Agile processes must not equate to document-less processes. The documentation

process must be viewed as a tool of communication that establishes a technical

Chapter 2 Project Management Methods

58

definition dictionary to avoid false assumptions. The documentation is the glue that

adheres everything in a development process. It is the grammar of the language spoken

between various different departments involved in developing a product.

Looking back at the materials that have been presented thus far, there is a tremendous

amount of evidence indicating that CPM has impacted project management in many

good and fundamental ways. What is marked as a weakness for CPM is what exactly

helped Agile methods to come into existence. That’s the excessive documentations. The

CPD, V-Model, and Scrum are all synthesized in the same laboratory or thought process.

If it wasn’t for the CPM process to record everything in a project, there wouldn’t be any

records for Agile methods to learn from the mistakes, identify the weaknesses, and come

up with effective solutions. If we take away this powerful tool in our process we have

effectively removed the means to improve the process.

Still today, if CPM is carried out the way it was meant to, it provides an impeccable

method to develop products. But what was meant one day to be a tool became a goal,

and project managers became happy with developing graphs, reports, and forecasts

rather than carrying out the project in an effective way. From all the methods that have

been discussed here, one common thing is a work breakdown structure; and a top-down

approach to product development and project management is still alive and kicking.

Although Agile methods try to distance themselves from CPM they follow the

same principles more or less. In Scrum, we might not see a general process but still we

can witness that localized CPM and CPD are performing for the duration of a Sprint.

Although Scrum claims to be an all-in framework for developing systems rather than only

software, the lack of DFM, hardware-oriented processes, and minimal documentation

make it difficult to make Scrum an inclusive tool for developing real-time systems as a

whole. Remember that these systems are often used in time-critical applications such

as mission-critical systems. However from Scrum comes a few noble ideas. Potentially

shippable product is one of those original and unique concepts.

V-Model is unrealistic since for so long the developers go on designing an imaginary

system without getting the feel of how it is really going to perform. Scrum breaks that

habit and motivates the developers to create tangible work within a reasonable time,

which creates a positive momentum and allows the project to move with a constant

velocity. In addition to creating a steady pace for the project, the development team gets

a sense of accomplishment during each iteration of a sprint.

Chapter 2 Project Management Methods

59

In V-Model the design changes are hard to implement because this requires that

various documents have to be updated simultaneously. It also poses a great challenge to

the CPD process after the design freeze is imposed. This is why in the classical methods

the changes are often not documented properly or not implemented at all, which poses

even a greater challenge for troubleshooting at later times once the product is released,

in addition to warranty challenges and liability commitments and even loss of lives.

Among all the items that DFM recommended to the developers, the most

relevant item to a real-time system development is to implement a uniform method

of development from concept to manufacturing and beyond on the field. This clearly

shows that DFM supports Agile processes but the question is if the implemented Agile

processes comply with DFM. Model-based design can be one of these tools that would

flow easily throughout the entire development process.

We know the Scrum is there to replace CPD, but the real question is if Scrum can still

create interfaces to interact with the antiquated and dominated existing management

and financial establishments the way that CPD did. But let’s look at this problem again.

Neither core concept of CPD is outdated as it is how any logical process develops, nor

does Scrum have all the answers to product development that could just drop in CPD’s

place and solve all the problems overnight. The solution might lie in a hybrid concept

that creates a structured Scrum, which creates a project management position that

is more involved than a Scrum master but also is more hands-on with the technical

aspect of the system in dealing with real issues. Let’s go back to the introduction of

this book where we looked at the lessons learned from civil engineering. In a building

construction, the project manager is also the system architect. Therefore let’s combine

these two positions in our real-time system development project into one and let’s call

our project manager a “Project Architect.”

�Bibliography
[1] Chang, Tien-Chien, Richard A Wysk, and Hsu-Pin Wang. Computer-Aided

Manufacturing (2nd ed.). Upper Saddle River, NJ: Prentice Hall, 1998, pp. 596-598.

Chapter 2 Project Management Methods

© Mohsen Mirtalebi 2017
M. Mirtalebi, Embedded Systems Architecture for Agile Development,
https://doi.org/10.1007/978-1-4842-3051-0_3

61

CHAPTER 3

Convergence
of Management
and Architecture
This chapter will present a perspective on the a project management process and a

system architectural tool, which together create a complete and uniform framework for

developing real-time systems across hardware and software platforms. We will review

some powerful tools and methods that will empower the project managers to architect

a system or system architects to manage a project. We want to bring together these two

powerful positions, organically, into the organizational chart along with the rest of the

development team. Performing this process and its unique tools, unlike other traditional

methods, allows you to make only the product, and not the processes or the tools, at the

center of the project. Along the way we will come across some more powerful tools that

will differentiate this method of product development from other product development

methodologies.

The requirement model is a classical method to establish function definitions in

a systematic and hierarchical fashion. This is because, when the prophets of Agile

methodology were busy in their advance laboratories to create wonderful Agile method,

they seemed to forget to add some potion of old tricks to the mix. As a result the

requirement model is not mentioned anywhere in their manifestos. But not to worry:

the big boys in aviation and automotive industries know when it comes to acquiring

certification from the government and other institutions, or when it comes to thriving

for high-quality products where there are lives at stake, they need more than what an

Agile system can offer. Since almost all embedded systems are designed to fulfill some

type of critical-mission functionalities, utilizing a requirement model is absolutely

imperative. A software flaw in a computer on, for example, a car traveling through a

62

winter storm, a wild ride in your local theme park, an airplane in midair, a smart phone

making an emergency phone call, or in mission control room of a power plant, can lead

to catastrophic outcomes.

However, it’s been more than 20 years since Hatley and Pirbhai[1] introduced their

version of the requirement model. Since then the landscape of product development

has been revolutionized. The old method of paper and pencil kept in metal file cabinets

full of drawings is long gone. The light-documented Agile processes are introduced and

computers are leading the way on every aspect of the projects. However, the school of

thought behind the requirement model still holds their true values. We will show how

the old mindsets will still work marvellously in the new processes.

�Convergence of Management and Architecture
The nature of real-time systems has changed from when they came to existence decades

ago. The market is demanding smarter and more integrated systems. As a result the

complexity of real-time systems has shifted from mechanical enclosures, packaging,

and hardware to a new horizon we could have never envisioned several years ago, to

firmware and software. Now we are expecting to fix anything with the software. Even

the embedded system manufacturers think firmware should fill the functional gaps

left behind by the hardware. This is because the stakeholders think the software is free,

despite the fact they hire thousands of software engineers every year to develop them.

But actually they might have a point. The cost of hardware development is now so high

that the software development cost is easily overshadowed. But this trending software

complexity, the lack of unified methods, and ever-changing face of technologies, have

made the software development a bottleneck in the entire developmental process.

On the other hand, we know that software touches every aspect of the product

development from concept to manufacturing, product diagnostics, and asset

management. To have a consistent product development process and in accordance

to proven DFM principals, we need to unify development tools and processes for all

the major players in the project. One of these processes that we can consider is the

requirement model process. Although Scrum is a power tool for developing PC-based

software, it is not fully inclined toward a real-time system development, mainly because

in the real-time systems, hardware has a much larger role than, for example, in a pure

software project such as an inventory system design and implementation. However there

should be a middle ground between Scrum and CPM for real-time system development.

Chapter 3 Convergence of Management and Architecture

63

As you might remember we have covered a summary of various topics that a project

manager might come across in the process of real-time system development. What

we have discussed so far was at an introductory level with a very brief history and

applications of these topics to the extent that was beneficial to understanding the core

idea of this book, which will be discussed in details later. The rest of this book will try

to show you that documentation process in the requirement model is a major player in

this game and it should be viewed as a powerful tool rather than a burden. Please note,

although I have brought a detailed example in the last chapter, we intend to show what
has to be designed for a real-time system – not to show you how to design it. In this

process we start from identifying the common structures in the majority of real-time

systems and then base our methods on these common and popular systems. At the end,

we hope you feel confident that you have learned how these methods can apply to the

common embedded applications; you can get creative and tailor them to fit your special

applications.

�A Requirement Model
The requirement phase used to be a major part of highly sensitive software development

processes in aerospace and defense industries. As a result they were an integral part

of their software life cycle. This is why there is a specific phase named requirements in

CPD and also V-Model. The mission criticality of software and hardware of embedded

systems demanded the creation of a requirements model not to fancy the stakeholders

with complicated graphs. The requirements model is especially useful when a thorough

definition of the system’s inputs, outputs, and functions are needed. Although the

modern Agile methods tend to claim they are all inclusive when it comes to software

applications, in Scrum there is no specific mention of what if the system mission is so

critical that it would roll over some of their principles. This is because Scrum likes to

differentiate itself from CPM by being light on documentations and heavy on creating a

value stream and productivity. Nevertheless, in reality, even in traditional developmental

processes such as CPD, the process is anchored on requirements and documentations,

and the documents are often either developed incorrectly or developed incomplete and

never fully completed. Let’s remember that the requirements are only a tool for a better

design and ease of communication, not to show off our visual artistic talent.

In addition, documents are the proof of work done, act as legal records in courts,

or used for acquiring certificates. Although the project managers can make this part of

Chapter 3 Convergence of Management and Architecture

64

the project as fancy and extensive as they want to, for the sake of Agile methodologies

we should consider an optimum point between extensive documentations or no

documentations at all in real-time system development. For this reason our practical and

precise requirement model must be centered around the main function of the product;

and there is only one way to achieve that: to include an architectural model that comes

from the heart of the product’s features. To deal out all the product features, we must

break down the product functionalities into modules and components that consequently

will precisely define all the inputs and outputs to the system. Let’s allow the product to

define the inputs and outputs and not what we think the product needs. On that account,

there is no difference between hardware and software as these two entities are united

to develop one real-time system. So let’s leave behind any prejudice toward hardware

or software, focus on product function, and develop your requirement agnostics to

hardware or software. By doing this, you will avoid unnecessary design constraints and

will keep one in mind. By the time you get to design, implement, and test your functional

modules, new doors and ideas have opened up.

�An Architectural Template

As we discussed earlier, the software takes a few different forms on various phases of

the development process. Many of these roles that software takes up to play are mainly

supportive and not directly related to the main product functions. A massive chunk of

total software created during the development is to address the hardware requirements

especially to ensure its safe operation, which means in an embedded system, software

and hardware tightly function together. Therefore they must act in a specific coordinated

correlation. Some of these software-hardware functional correlations are rather obvious,

especially when it comes to product function. That’s why the hardware’s software drivers

are called firmware. In other words, the software will act as an integral part of the system.

However, there are cases in which the correlation between the hardware and software

is not as obvious and needs some attention. For example, as we discussed earlier in

the software’s reusability section, some software are widely used for hardware part

qualification processes specifically at the concept stage, often at design stage, always at

the manufacturing stage. and sometimes in field operations. The hardware qualification

process is mostly software driven no matter what stage the product is at. Therefore in the

embedded systems, the hardware-software relationship is always there whether

it’s evident to us or not. Therefore the software in embedded systems development is

not a commodity we sell to the customers. With this in mind, an architectural model in

Chapter 3 Convergence of Management and Architecture

65

a real-time system comprises both hardware and software architectural models at every

stage of the product. Figure 3-1 depicts this concept.[1]

Figure 3-1.  An overall real-time system architecture

As you can see the system architecture is comprised of hardware and software

architecture, and the first step of development is to define how we can break down the

system architecture into two separate but highly correlated architectures. However

there is good and bad news for you regarding the system architecture and its breakdown

structure. The bad news is, it might seem very easy to achieve a system division by

having a T in the middle of a triangle, but in reality it can be a nightmare to assign

product functionalities to either hardware or software units. The good news is that there

is a proven systematic solution that helps us to break down this complexity into smaller

and simpler steps. This good news is brought to you by the requirements model.

Hatley and Pirbhai [2] introduce an architectural template that works for almost all

real-time systems. The template works for both hardware and software systems, which

comprise Interface Processing, System Input Processing, System Output Processing,

and Main Process and Control units (Figure 3-2). You don’t have to strictly follow this

template, but this is a simple and practical solution that can be scaled up or down

depending on your application requirements. Although this might at the beginning look

like a two-dimensional drawing, as we observed at the introduction section of this book

it can, like a building’s architectural drawing, contain many functional and physical

layers.

Chapter 3 Convergence of Management and Architecture

66

It shouldn’t be hard to figure out that the template is modeled after our body: its

sensory, mechanical, nervous systems, and so forth. We employ a series of sensory

organs that receive data and control signals, process the signals, and reissue a multitude

of other control and data signals. The brain contains the main process and control unit.

However we don’t have a user interface processing unit simply because we are a fully

autonomous system. We don’t take a user command to operate; therefore there is no

need for a user-interface processing unit.

Hardware/Software Modules and Interfaces

As we’ve seen earlier, under the system architectural model, there are hardware

and software modules that are often closely related. A requirement model must

address both the hardware and software requirements. The requirements model also

includes their interfaces with respect to hardware-hardware, software-software, and

User Interface Processing

Input Processing Main Process and Control Output Processing

Figure 3-2.  An embedded system architecture with its main functional
modules

Chapter 3 Convergence of Management and Architecture

67

hardware-software interfaces and correlations. The interfaces are always the hot point

and the causes of vast numbers of product failures. Often a module works perfectly

by itself until it is made to interface with another module. Although the interfaces are

the hot spots in design, implementation, and testing, if the development team rightly

decides to consider developing two sets of requirements for both hardware and software

under a single system requirement model, then the HP model is still able to help the

engineers to visualize data and control flow. As we mentioned before, we are after

what has to be designed for a real-time system – not how to design it. The examples
brought here are only to show you some specific use cases for the model.

Please note some modules only handle data, control, or data and control. The

Control signals tell software or hardware modules to come online and process their

inputs in a certain fashion prescribed by the module’s algorithm. For example, an input

port of an analog to digital converter hardware (ADC) is triggered with a hardwire control

signal that starts a hardware sampling process. Then again the ADC buffer is a piece of

hardware whose readiness will trigger a software submodule to collect the data. As you

can see for a simple data conversion task, there are some coordinated hardware and

software actions along data and control signal flows. Both of these control and data flows

need to be defined in a requirement document along their interdependencies. In another

example, in a motor drive system, the inverter section is responsible to accept PWM

control signals as input to control the gates of the IGBT switches in such a way that the

input DC becomes an AC. The software is responsible to generate the PWM switching

patterns in order to control the physical switches. Another example is in an automotive

product where the cruise control module in a vehicle receives the control signal from

the driver to activate the cruise control hardware and software submodules. Then both

modules receive, process, and generate new rounds of data and control signals. This is to

show how interconnected the hardware and software are in a real-time system. Although,

as we’ve seen so far, in the embedded system product there is a fundamental correlation

between hardware and software, but in reality these two development processes follow

entirely different paths.

�Product Life Cycle

For example, in a software development process, engineers follow various different

models such as V or waterfall models. Ironically, under these traditional methods while

a software life-cycle model such as V-Model represents the WBS of only the software

part of the product, a CPD model wants to depict a more comprehensive image of the

Chapter 3 Convergence of Management and Architecture

68

product development life cycle as a whole, which is not limited only to design and test

but also gives a bigger picture regarding all the necessary steps to form a complete

product, a wholesome hardware, and software development.

In spite of the fact that all the traditional product development processes point

to the fact that there should be a unified process for both hardware and software

development, unless the companies come up with their own creative solutions to glue

these two different processes, currently there is no standard method to marry these two

development processes under CPD.

In the meantime, in a real-time system, software carries the heaviest weight and

complexity in the embedded system development. Then let’s ask, wouldn’t it be

logical to expand one of the software developmental processes to cover both hardware

and software development, considering we can tailor it so it meets all the product’s

demands? If so, then let me offer you the V-Model as a strong candidate for this choice.

It’s a prominent practice, it follows a logical process, and most importantly it’s simple.

However the V-Model heavily relies on two lengthy and costly processes: design

and testing. But perhaps we can modify it so it can fit into modern developmental

frameworks such as Agile while holding a defined form that is friendly to conservative

developmental models such as CPD, which look at the product as a whole and not just

segmented hardware and software units.

�Product Breakdown Structure (PBS)

Product breakdown structure is similar to WBS in CPM. If we assume the product is

also a work to be done, then WBS is the same as PBS. For the software and hardware

breakdown structures, let’s assume there are three levels to the product on each

hardware and software platforms: systems, modules, and components. For the larger

and more complex products we might need more layers such as units, submodules,

and subcomponents; but for the sake of simplicity let’s assume the mentioned three

levels. For example, a vehicle is comprised of various systems including electrical and

mechanical systems. Its electrical system might break down to monitoring and control

modules and the monitoring module can be comprised of speed, fuel, and maintenance

monitoring components. Each component then can break down to subcomponents

and so forth until the amount of developmental work results in components that

can be confined to the efforts of any single developer per Sprint. So if you think this

process seems a lot like a combination of CPM, V-Model, and Scrum it’s because it is

but on a micro scale. The micro V-Model in a Scrum environment represents a micro

Chapter 3 Convergence of Management and Architecture

69

CPD development process that will be explained in more detail in later chapters. So for

now, just keep in mind that this is the reason we are intending to modify the traditional

V-Model. What is important is that, as we saw in the building architecture, the most

intuitive and safe approach for creating a new product is the top-down method, which

complies with the CPD process. The modified V-Model enables and keep us focused just

to reach this very important architectural goal.

�Product Development Team

If we accept that a combination of V-Model and CPD is feasible to implement, then

based on DFM principals of unified processes and tools and Scrum’s concept of

“a potentially shippable product,” a real-time system development team should

be comprised of various multidisciplinary engineering, manufacturing, sales, and

purchasing units. The entire team would be involved with the product from concept

to deployment. Therefore there would be no wall to throw the design over. The project

architect can expand or contract the roles of team members as s/he sees fit. For example,

below is a sample of a possible functional team. These are not new functions in the

development team, but the level of participation of these new team members is raised.

In this somewhat new team dynamics, we have expanded the traditional definition of

“developers,” which used to be confined only to design engineers, to everyone involved

in developing a new product.

•	 Marketing Personnel: Define the overall scope of the project and

represent end-user expectations. In Scrum and CPD they are product

owners and stakeholders respectively.

•	 Research Engineers: Receive feedback from the team for the part

selections, practical manufacturing ideas, resolving design and

implementation issues, resolving manufacturing test issues, etc.

•	 Purchasing Personnel: To identify and recommend parts, based

on their availability, end-of-life status, logistics, and supply chain

management, out/in-sourcing, delivery, and so forth.

•	 Design Engineers: Conventionally known as the developers. In

a DFM-based team organization every team member is essential

and is considered a developer. As a result everyone beside the

design engineers will contribute directly to product throughout the

development process.

Chapter 3 Convergence of Management and Architecture

70

•	 Manufacturing Engineers: Qualify parts, and recommend board

material and layout for the printed circuit boards to ease the

manufacturing, logistical processes, and improve the quality of

products. The manufacturing engineering role impacts the product’s

final price directly.

�Creating Requirements
Creating requirement documents is a tedious job for two reasons. First of all, most

engineers like to jump right into the design and develop prototypes. Secondly, envisioning

a complex system and laying down its details on paper seems a far-fetched idea at the

beginning of the project when everything seems rather vague. However, these two reasons

are exactly why we need to pay extra attention to the requirement development process.

Jumping into any project without studying its requirements is guaranteed to prolong the

project’s time and increase the cost because it adds reworks to all development. Project

complexities provide no excuse for the lack of requirements as these documents will break

down the project complexities to smaller and more manageable portions. Documentation

is the very reason the engineering profession exists.

�Every Problem Is a Communication Problem
When Alexander Graham Bell developed the first phone line, he pioneered the

communication theory. Years later with the development of the first computers, the

information and control theories stemmed from this theory. Control and information

theories as well as communication theory are widely used in the development of

embedded systems. On the other hand, we know that interfacing hardware and software

modules is either through communication lines, power lines, or both. To make this

problem a bit simpler let’s assume the power line is also a communication line where

instead of messages, the electrical power is communicated. From my observation while

serving in various industries, the majority of electrical failures in the embedded systems

in the field are attributed to cables, connectors, and wire harnesses as well as EMI effects

on PCBs.

On the other hand, based on my observation, in human interaction among the

developers, miscommunication or lack of communication are blamed for the majority of

product design flaws. Therefore, establishing clear and robust communication channels,

Chapter 3 Convergence of Management and Architecture

71

whether in its technical or social form, on the product or among the team members is of

grave importance.

In a DFM environment, the developer engineers have both internal and external

customers. For example, the team that develops a control algorithm might have a

client that includes a team of system developers who are in charge of programming the

peripherals for sending and receiving data and control signals to and from the control

firmware. The control firmware team is in charge of developing the core functionality

of the product. The nature of communication between the control firmware and system

firmware does not depend on the size of the company. In the smaller companies

where the developers possess more T-shaped skill sets and put various hats on, the

line between engineering roles are blurred, but this should not yield to bluring the line

between responsibilities.

Any system architecture must distinguish separate product functionalities

and to establish clear and robust communication among teams developing them,

whether these teams are organized based on product modules or in the smaller

companies where the teams share the responsibilities of developing various modules.

Shared responsibilities do not dismiss the need to draw clear lines between various

product functionalities and functional modules. Hence it is requiring establishing

communication protocols among these functions in the team and also product modules.

Bottom line: a product architecture should be agnostic about development teams also.

It should only focus on how the product functions.

Consequently the control firmware team might have to face its data and control

structures in a fashion that would comply with system communication protocols,

database structures, and system timings. This might not be the case in all project or

organizations, but the important idea is that at the requirement level, all data and

dependencies among hardware and software modules, manufacturing processes, part

purchasing, logistics, deliveries, and many other dependencies will be identified with

enough details. We will come back to this topic again later when we discuss the system

architectural template.

Unlike what’s customary in many companies following the V-Model and

CPD frameworks, we are not asking for an extensive and expensive requirements

development process with various detailed documents, but we need at the minimum

level, a system definition spelling out inputs, outputs, and functions within modules in a

tabular format. For example let’s assume a table of data on a hall element’s temperature

sensitivity, represented the curve characteristics (Figure 3-3) under a constant field of

300 Gauss (Figure 3-4).

Chapter 3 Convergence of Management and Architecture

72

This means that this sensor under a relatively constant magnetic field of 300 gauss

will demonstrate a gradual decrease on its output voltage as the temperature rises. To be

able to manufacture a product that would linearly operate under temperature ranges,

we must come up with a temperature compensation algorithm that would reside in the

control firmware and would run at certain intervals.

One might ask why don’t we just buy a part that can compensate the temperature

right at the hardware level? The answer is because utilizing hardware to compensate the

temperature effect is not economically justifiable. Additionally we have realized that we

have a temperature sensor readily available for other purposes that we could also utilize

for this purpose. A software component with the following requirement can be rendered

to compensate for the temperature for a given magnetic field.

Whether we follow a V-Model or are in a freestyle developmental process such as

Scrum, whether we are developing hardware or software components, we must define

the requirements for this functionality followed with test procedures. Both V-Model and

Scrum methodologies are strictly for software development; however the idea can apply

to any other parts of a real-time system or all the phases of CPD. In Scrum, if developing

the component was assigned to a developer for the duration of a Sprint then the test

specification would be the same as acceptance criteria for this story. However the

difference is that in Scrum there is no push for requirements.

Figure 3-3.  A typical Hall element temperature dependency

Chapter 3 Convergence of Management and Architecture

73

Please note that in part, because of this requirement, raw hall sensing is carried out

by the hardware; and the other part, temperature compensation, is performed by the

software. Since we developed our requirement for this function we can now move on

to test it. Based on the V-Model for every requirement there should be a test procedure

to ensure the product meets the requirement. An example of a test spec for this module

could be as the following in Figure 3-5.

Figure 3-4.  A Hall element’s basic functional requirements

Figure 3-5.  Temperature compensation for a Hall element

Chapter 3 Convergence of Management and Architecture

74

As you can see, we don’t have to create a spectacular document to be called

requirement and test specification document. Outlining the major parts of the

functionality would be sufficient at the beginning. Later, you will see that you can add

the requirement and test specs to the Model-Based Design models, all in one place.

The rest of the spec will be detailed out as the project progresses. However, to achieve a

cohesive method for requirements modeling development, we need to come up with a

process that can be applied to any project and stays applicable throughout the process.

The first step in creating a cohesive process is to analyze the marketing requirements.

Again by requirements here, we mean developing a requirement specs in its traditional

and popular form known as a Marketing Requirements Document (MRD).

�Marketing Requirements Document (MRD)
Writing a good marketing requirements document is a talent that is rare. Technically

the marketing people are the sole owners of the new products. However in technology

sectors, often a product under development is an orphan. It seems because of

uncertainties no one wants to take ownership of the product. A product with a clear

owner will demonstrate magnificent attributes and achieve many goals such as shorter

time-to-market time, smaller development costs, larger profit margins, and higher levels

of customer satisfaction. If the marketing people were doing a good job of representing

the customers, we would be facing a totally different world, perhaps with less problems

and waste.

Nevertheless, discussing the shortcomings of the technology management is not in

the scope of this book. Instead we try to steer away the development away from these

problems by creating a new position called project architect, which is able to convert

partial customer requirements to detailed design documents focusing in on a single goal

of creating a robust new product. You might ask why we introduced this new position?

How this position combining project management and product architecture jobs can

contribute to developing a robust product? Can a product architect control project time,

quality, and cost? The answer is yes. As we saw in the construction example in the earlier

chapters, a robust product is born out of knowledge about the product requirements,

functionalities, and limitations. An organized development starting with a robust

requirements definition and clear architectural outlines yields to a strong product that is

sought after by the customers.

Chapter 3 Convergence of Management and Architecture

75

Normally marketing documents explain customer’s expectations from the product

in terms of temperature range, the effect of environment on the product, user interfaces,

voltage and current operating ranges, power consumption, modes of operations, speed,

efficiency, and other conditions. They also might include regulatory and certifications

requirements, patent issues and in some cases product test specifications. If the MRD

lacks any of the mentioned items then it is the development teams’ responsibility to

expand these documents in details.

Since the marketing requirement document looks at the product from the customer’s

perspective, it can serve as a requirement document for the architectural phase of the

product development. Although the marketing requirement can come very close to

product architectural design, it is not an architectural document. To make MRD a design

document, developers must identify the major software and hardware modules of the

real-time system.

�Conceptual Design
After developing the preliminary architectural document and identifying the major parts

of our real-time system, we need to develop the prototypes. Prototyping is a hot topic

among developers whether they come from CPD or Agile frameworks. In CPD, concept

development comes before architecture. This is because a project is handled like a

business plan. The program managers must convince the stakeholders that the initial

concept of the product is sound and the project is economically feasible in order to get

the necessary funding.

However in Agile or many other derivatives of it such as Scrum, the prototyping is

not mentioned. Many developers, especially the ones developing embedded systems,

have attempted to fit the concept development into an acceptable format for Scrum.

Sprint zero or in some cases called Sprint minus one is a result of that attempt. However

the sprint zero is not an official Scrum concept since it has an open-ended duration and

a mixed backlog of items including team organization, logistics, etc., which seem to be a

hodgepodge of odds and ends that won’t fit in the normal Scrum setting.

Prototyping can be viewed from various perspectives with various levels of

complexity in design and cost. However the type of prototyping we intend to picture here

is the proof-of-concept type of demonstration to the project stakeholders for founding

purposes while it is on its path to become a full-featured product. The prototype can

be entirely a simulation model, a complete working concept, or anything in between.

Chapter 3 Convergence of Management and Architecture

76

Depending on the stakeholders’ level of technical inclination and general reception of

the idea, the project architect can create a sample of a product.

All in all, in the spirit of avoiding waste generation we do not take the concept of

development to be a trivial matter. There are many hours of careful thoughts, years

of experience, and many ingenious ideas have put into work to create a prototype.

Whether your ideas pass the concept phase or get rejected by the financial watchdogs,

the components and knowledge it carries will not go away. If your idea is accepted by the

stakeholders, you can transform your prototype into a product and if it’s rejected it can

fuel another project idea. Therefore the proof of concept is the first potentially shippable

product of the project in a Scrum frame of work. It is also strongly recommended that the

concept prototype architecturally represents the entire system with all its layers. This is

because the DFM and Agile are constantly forcing us to think “Product” throughout the

development process. A prototype is not a complete product, but it should represent all

the major product modules in one form or another.

Therefore a prototype cannot be destroyed; rather, it transforms from one form to

another. The ideas discussed in this book will allow you to see what needs to be done

to preserve the invaluable knowledge you put into countless hours of your prototyping

activities and what to recycle in order to fuel the entire product development process.

�Simulated Prototyping

As there are no two equal types of products, even in the same class and in the same

company, the new products are always unique; therefore you can’t use a prototype of a

legacy product to serve as a prototype for a new product. You shouldn’t even use a legacy

product to work as a prototype for a new product. This is because each design is unique

even though the differences might seem minimal. By introducing an old product to a

new design, you are unwillingly inviting all the unnecessary legacy design constraints

and that’s the worst thing that can happen to a design process at its infancy. You can use

part of a legacy product in a prototype or the whole legacy product in part of a prototype,

but never base your new design on an old product because in the age of computers you

have a lot more other sound options at your disposal.

Some prototypes in the real-time systems are pure software based, some pure

hardware, and a lot of them are a combination of both. Since the design at the concept

level is mostly dealing with the new ideas, inventions, groundbreaking concepts, and

so forth, simulation models are very important. These models not only are used for

concept proofing but also for establishing design benchmarks that could be carried out

Chapter 3 Convergence of Management and Architecture

77

throughout the entire CPD or Scrum processes even when the product is launched and

is being used in the field. The most popular example of the design benchmark that is

being carried over to the field is the diagnostic features for products such as frequency

and step responses, self-calibration routines, auto-tuning, etc., which can be performed

occasionally or systematically in forms of electrical or mechanical tests at a customer’s

fingertip.

�Rapid Prototyping

By using Model-Based Design (MBD) tools, one can generate very quick conceptual

results that can be implemented on the hardware. Depending on the availability of the

hardware prototypes there will be different prototyping approaches.

Model in the Loop (MIL)

In MBD, a part of the system is represented and simulated in conjunction with the rest of

the existing system whether it is only comprises hardware, software, or both.

•	 Model in a hardware loop: There are many MBD tool vendors

who can provide you with hardware adapters that can allow you to

interface your system hardware with your model or allow your model

to be downloaded on their hardware, and then it will be interfaced

with another hardware that poses as plant hardware. This means

your model in its original graphical format can get in the hardware

loop and be tested for its performance. As we mentioned, the

hardware can be a plant model that is being simulated on another

autonomous simulation system or an actual real-time system

hardware. In Figure 3-6, you can build your control model in a host

computer in a non-real-time environment then download it to a

custom hardware that can accept your model as is. The model will

be compiled to another programming language or possibly directly

into machine language. The custom hardware then would act as

your ideal target processor that you are planning to manufacture.

Custom hardware then would be interfaced with a power module,

for example, IGBT switches and through that you can test your new

control scheme by translating electrical power to force or energy, in

this case, possibly an electromechanical system such as a motor.

Chapter 3 Convergence of Management and Architecture

78

•	 Model in a software loop: If we omit the plant hardware and power

module in Figure 3-6 and instead feed back the control signals

from the input of the power module to enter the host computer and

create a software test harness in the host computer with pass and

fail criteria, then we are able to test our model. Another alternative is

to create our model in a real-time simulator and create the software

test harnesses in the same environment. In this case our model to be

simulated and tested is called Unit Under Test (UUT) and the rest of

real-time system surrounding our models is be considered as the test

harness. In this case a form of software is interacting with another

form of software in order for evaluation and benchmarking purposes.

Figure 3-6.  Model in the loop basic topology

Software in the Loop (SIL)

The MBD tool vendors also can provide you with another feature that would allow

you to generate code from a model in C, C++, or some other different programming

languages, depending on their integrated development environment (IED). The model

then automatically generates the code that can be used in hardware and software loops

Chapter 3 Convergence of Management and Architecture

79

similar to what we described in the MIL method. In this case we use a program often in

a textual form to interact with the rest of the system and not a model, which in MIL was

represented in a graphical format. We normally utilize SIL when the models have passed

the POC stage. The SIL is a step closer to actual product simulation because it’s the code

in the product that eventually interacts with the real world.

Figure 3-7.  Basic software in-the-loop topology

Hardware in the Loop (HIL)

The last and most important part of testing your software is to download it into the

target hardware. By this time, hopefully your actual hardware is developed; otherwise

your software can be downloaded into an evaluation board that utilizes the same

microprocessor as the final product. Then the target can be either used in another

hardware loop or in a pure simulated environment. There will be numerous possibilities

to mix and match hardware with software. For example, if your product is a new DC-DC

converter that is being used in a power system project, the load or plant can be a piece

of software that simulates a power grid in real time via a simulator. Figure 3-8 depicts a

summary of how MIL, SIL, and HIL are positioned with respect to the rest of the system.

Chapter 3 Convergence of Management and Architecture

80

Control
Model

Control
C-Code

Controller
on Target

Development Timeline

Non-Real-Time Non-Real-Time

(MIL)

Plant Model

(SIL)

Plant Model

Real-Time

(CHIL)

Plant Model

Figure 3-8.  Utilizing various in-the-loop topologies in product development

Concept design is the most important phase of CPD in terms of proof of concept;

therefore it will set the course for the other phases of the project. As we discussed before

any hardware and software development, especially at the HIL stage, can be recycled

and scaled for any other phases of CPD.

Consequently a well-designed HIL system can be the first potentially shippable

product. Let’s reaffirm that at this stage the product is not complete, it is not cost

effective, safe, or fully featured; but by the definition it carries the core functionality of

the end product, therefore it is potentially shippable. This is very important to treat the

concept prototype as a product because for the rest of the project, its parts and modules

slowly will evolve and be replaced with safer, more cost-effective, and fully featured parts

and modules.

There are many ways to do the simulation and prototyping in a cost-effective way

without compromising the integrity of the scientific efforts. It is not important how we

name the proof-of-concept phase, whether we insert it in the sprint zero or we put it in

the backlog as part of a potentially shippable product as long as its creation does not

Chapter 3 Convergence of Management and Architecture

81

constitute discontinuity in scope, method, or product. The goal is to recycle 100% of

everything happening in this phase for other phases of product development.

Also in Figure 3-8 you can see a few other names and approaches in prototyping.

As you can see the product/prototype starts as pure simulation and as the project

progresses, scope of the product is more defined and risks are lowered as the product

becomes more and more realized in a hardware form.

�Proof of Concept

The proof of concept (POC) is part of any project that has ever been done successfully

or has failed miserably, from a home remodeling project to changing a spare tire. The

sequence you review in your mind before chaining the tire is technically your prototype.

A POC can be in any format from a drawing on a napkin, computer simulations, or a

full-fledged hardware prototype to an idea formed in your mind. Obviously the more an

idea is developed and materialized, the higher its rate of success will be. For a real-time

system a napkin note might get people to listen to your idea but will not get you a

bank loan.

Furthermore to prove the concept, one must test the concept first. So building a

cosmetic form of hardware for show-and-tell purposes is not enough; it must also be

able to perform some functions. These functions might in part look like test routines.

For example, function_1 is to turn the green LED on after the pushbutton_1 is pressed

and released within a second. This is to visually confirm the function_1 works. However

it also verifies that all the system components from software to hardware are functioning

correctly.

Imagine a product is on its developmental path moving from one department to

another: to a research engineer the test routine is to verify that the concept works; to

a hardware and/or software engineer the same routine can be utilized and be called

an engineering test to verify the hardware and software modules function per design;

and to a manufacturing engineer it is a test with pass-fail criteria at the end of the

manufacturing line. As you can see even testing methods, tools, hardware, and software

can be recycled, duplicated, or scaled to be used in other departments.

Chapter 3 Convergence of Management and Architecture

82

�Architecture Design
As we discussed before any real-time system has at least one architectural layer that

includes software and hardware. Modules are the next layer in a system architecture

and they are the main building blocks. A real-time system architecture has a minimum

of four modules: User Interface Processing, System Input Processing, System Output

Processing, and Main Process and Control units. Let’s assume our real-time system is so

simple that each module can run with one hardware or software component. Software

and hardware components are the simplest form of a module. A collection of similar

components make up a module. These compartmentalized components are simple

enough that developers can design and implement them in one Sprint, one component

per developer per single Sprint. Figure 3-9 would be one of the representations of a real-

time system in the simplest form.

Driver Interface
Module

Engine Speed
Module

Throttle Interface
Module

Electronics Control Unit

Cruise
Control
Console

Speed Meter
Sub-Module

Throttle
Drive

Sub-Module

Cruise
Control
Module

Data

Data/Command

Command

Figure 3-9.  System architecture for vehicle cruise control

Chapter 3 Convergence of Management and Architecture

83

Please note that at the prototype level any of these modules and components can

be substituted with the final released hardware, or software or can be replaced with

component prototypes or be fully simulated with MIL, SIL, or HIL methods. It is up

to the team to decide how to assemble these hardware and software parts depending

on the part availability. However when the parts are assembled at the system level, a

series of tests are required. If the system passes all the tests the product is pronounced a

potentially shippable product. In a later chapter we will discuss what types of tests are

at your disposal to qualify the prototypes.

�Module Design
According to the requirement model and based on top-down architectural approach, the

next step in our development is module design. The largest modules in our architectural

template are the Data Processing and Control Modules. These two super-modules

constitute the entire process and control unit for every embedded system application

even though when you think your control is purely control based. This is because control

algorithms relay heavily on input/output data processing more so in a real-time systems,

which normally demand a timely stream of data. Therefore the architectural model that

was introduced earlier would be as in Figure 3-10.

Chapter 3 Convergence of Management and Architecture

84

As you can see later, these two modules will later become two layers called data

and control layers in the overall system structure. The data and control layers can have

their own architectural layout in the larger and more complex products. Normally the

databases and computational operations are placed on data layer, while operating

systems and logical operations are placed on the control layer.

As shown in Figure 3-10, the connection between control and data processing units

is shown with bold lines. This is because a control signal is discrete rather than being

a constant stream of data. Therefore we are distinguishing between data and control

signals. This is also true in the hardware layer as control signals/buses are normally

different from communications/data streams and buses. For now think of control signals

as triggering mechanisms to signal a hardware or software module to do something with

the data. We will get into a more insightful analysis of these two grand functionalities

when we discuss the component design.

User Interface Processing

Input Processing Output Processing

Main Process and Control

Data

Control

Figure 3-10.  Functional constraints in a real-time system with respect to data and
control flow

Chapter 3 Convergence of Management and Architecture

85

�What Constitutes a Module?

As a reminder, a module is a section of a functional architecture that performs a very

specific function. The developers encapsulate functions in modules so as to increase

the readability, maintainability, scalability, and the reusability of their programs or

hardware. The software engineers seem to have a better handle of defining what a

module is and how it should look like as in hardware due to a constant technology

change and part obsolescence; modularity has some limitations: as a result the hardware

engineers are extra careful when it comes to grouping components with similar

functionalities. There are many ways to identify or structure a module but discussing this

topic further is beyond the scope of this book.

�Control and Data in Model-Based Design (MBD)

In model-based design, think of control modules as modules with logical operations and

data modules as modules that contain mostly arithmetic and algebraic operations even

though they calculate control gains. This is because they provide a constant stream of

data (here in this example they are control data).

The control modules carry values on demand based on reaching threshold, max and

min limits, or any logical combinations as a result of users or other modules’ commands,

for example, the commands from the operating system. Some powerful software

packages such as Simulink(R) have two definition for different signals that can be used

as “control” and “data” signals, for example, Simulink’s designated “parameters” and

“signals” can be used for control and data signals respectively.

Parameters are software variables that carry Boolean or constant values for some

period of time but they are time invariant, meaning for a duration of time their values are

held constant. On the other hand the data through the “signals” change in time for every

instant of time. They are time-variant variables. Please see Figure 3-11.

Chapter 3 Convergence of Management and Architecture

86

Now that we got the big picture of a real-time system design in terms of its

architecture and major modules, we can discuss the most important part of it, the

“component design” in greater detail. We do this because the components of a real-time

system, whether hardware or software, are the most basic building blocks of the entire

system.

�Component Design and Product Breakdown Structure (PBS)
The components are the building blocks of a real-time system but to decompose the

system into its building blocks requires following a systematic method.

�Identifying a Component

•	 First decomposition rule: From when you decide to decompose an

architectural model to its modules until when you decompose modules

to its components, have the 7±2 in mind. An architectural model,

modules, and submodules or any other parent module should contain

a maximum of 9 and minimum of 5 modules. Anything less or more

makes the design too simple or too crowded; hence it makes it hard to

redesign, scale, or maintain. Remember that we want to welcome future

changes, which cannot be avoided as the development moves ahead.

•	 You decompose the modules into submodules and components

until you reach a unit of workload that is comparable to what is

called “task” in WBS. Which means it’s a workload that consists of a

product component that can be performed by a single person (Task

Component).

Figure 3-11.  Time-series representation of signal and parameter

Chapter 3 Convergence of Management and Architecture

87

•	 The task-component should be sized to be performed in one unit

of project time. This unit of time is comparable to what is called a

“Sprint” in Scrum.

•	 The task-component would perform a single function (or feature in a

Scrum term) of the system you intend to design.

•	 The decomposition should be uniform. Do not design modules that

carry many submodules and then some that include too few of them.

•	 The decomposition should be performed one level at a time. Unlike

Scrum, which offers no structure, the method we discuss here

requires you to develop all the modules on the same functional

level and complexity. Then you can move to the next level of which

submodules or components reside.

•	 If you reach the component level too early for one submodule while

other ones require additional levels to detail out the functionality,

you should not worry. The goal here is to uniformly reach the

component level. Later on you can reshuffle all these. Let’s just

focus on producing a feasible PBS while the team develops a good

understanding about the system.

•	 Producing tangible results starts when there are enough details in

hand that would allow us to draw some lines in the sand with respect

to the functional responsibilities of the team members. In other

words, the first sprint starts when there are enough task components

in the backlog queue. Otherwise you are still in the per-first sprint

stage. This is comparable to “Sprint Zero” in Scrum.

•	 Try to group modules with similar functionalities.

•	 Have a free mind. Don’t box up the ideas. Try to avoid any

constraints, logical or physical, until it’s time to implement the design

for each level of the architecture.

•	 If a module consists of only one submodule, either it must be

combined with its parent module, or it is partially defined and needs

to be expanded.

Chapter 3 Convergence of Management and Architecture

88

•	 Modules that carry he word “and” in their titles must be decomposed

to two submodules. A “data management and system diagnostics”

module consists of two submodules, “data management” and

“system diagnostics.”

•	 If you can’t come up with a name for a module then it needs to be

defined better and decomposed to more modules.

•	 Avoid creating partially defined modules, submodules, and

components. Before moving on to the lower level you need to finish

defining this one.

•	 Initially create the modules and components in their simplest

form without deviating from its main functionality. An abstract

functionality of a module with well-defined inputs and outputs is

much better than detailed functional realization and partial input/

output definitions.

•	 Remember there is no silver bullet in this process. It requires many

iterations of inspect-adapt cycles. This is the part that carries the

heaviest weight of the project in terms of development efforts,

but it saves you much time at implementation, optimization, and

deployment with minimum waste, which also guarantees a product

with significant values in quality.

•	 The decomposition process is a brainstorming process and unlike

WBS in CPM where it is only performed by the project manager, the

best results are achieved in the context of a functional team.

•	 If the real-time system development processes were repeatable,

the project managers could carry lessons learned, work and time

studies, and work standardizations from one real-time system

project to another. However, as most of us know, every technology-

based project is unique due to parts, architecture, and methods

obsolescence that occurs more frequently than it deems necessary.

Chapter 3 Convergence of Management and Architecture

89

�Summary
No matter how you look at it, from CPM, Scrum, or V-Model perspectives, creating a

work breakdown structure, backlog items, or V-Model hierarchy, is the foundation of

the project. If we break down the project in such a way that we can follow the product

function while creating tasks, we can achieve a unit of product that is the same as a unit

of work. We’d like to call this unit a task component. The next chapter will explain how

PBS and requirement models are closely related to each other.

Scrum, like any modernist movement, comes in response to the sluggishness of

traditional methods, mainly the CPM methods. However the majority of the supporting

organizations of the modern projects are still acting as nothing is changed and try to

understand and analyze the projects based on traditional methods. After introduction

of the Agile methods the developers like to conduct the project in an Agile way while

the financial sectors like to track the projects down in traditional methods. On the other

hand, methods such as CPD have a natural and structured flow to them that make them

easy to understand and to track them down. In addition, the majority of embedded

systems need to be certified by the organizations by which a structured development

process is mandated. The new method would combine the Scrum process with planning

sessions of V-Model and CPD in addition to some modern tools such as MBD and the

requirement model to achieve PBS.

One of the most important shortcomings in Scrum comes right at the beginning

of the project when it is the most critical time in the project. In the CPD process the

concept phase is the first phase of the project when at the end the stakeholder will

decide to whether allow the project to continue or not. Scrum has a philosophical

contradiction when it comes to prototypes. Since a prototype is not a product, Scrum

cannot decide whether to treat it as a product release or not. Some decide to treat it as

a product release while they know that at the end there might not a product to release.

Some would put it in their unofficial sprint zero phase. Either way, in Agile, prototyping

efforts are vague and often defeat their own purpose to be a discovery tool than to be a

project goal.

In the meantime the modern time has brought us some modern tools for product

development. The MBD tools are such a powerful tools that if they are utilized properly

the product requirement, design, and test phases can be lumped into one phase,

shortening the time to market and cutting significant implementation and deployment

costs.

Chapter 3 Convergence of Management and Architecture

90

�Bibliography
[1] Hatley, Derek J., and Imtiaz A. Pirbhai. Strategies for Real-Time System Specifications.

New York: Dorset House Publishing Co. Inc., 1988, p. 274.

[2] Ibid., p. 195.

Chapter 3 Convergence of Management and Architecture

© Mohsen Mirtalebi 2017
M. Mirtalebi, Embedded Systems Architecture for Agile Development,
https://doi.org/10.1007/978-1-4842-3051-0_4

91

CHAPTER 4

Requirements Model
Based on Hatley and Pirbhai [1], the foundation of any real-time system requirements

model is its process and control models. As we discussed before, process normally refers

to data handling, whether internal or external, and control refers to control schemes

and signals as the gatekeeper of the data. Although Hatley and Pirbhai’s (HP) method of

developing relies heavily on paper-based documentations, its spirit is timeless as their

logic can apply to any real-time system. Since the documentation process for HP method

is obsolete, what will come in this chapter is only a skimmed summary. If the reader

decides to dig deeper into the method, s/he can obviously consult with their book that

is referenced at the end of this chapter and throughout this book. What we cover in this

chapter will be mainly focused on HP’s decomposition initiatives and function definition

methods. The reason I mention HP method here is because it has a proven track record

in aerospace and automotive industries in which embedded system efficiency and safety

are of paramount importance.

�Process and Control Requirements Model
Based on a general agreement and wider common concession in the engineering

world, whether in the hardware or software environment, the requirement phase is a

stage before design. It’s where the knowledge of various engineering disciplines comes

together to define the functionalities of the system. It does not lay out the details of

the design, but it requires the product modules and the development processes to be

defined by their functions and tasks respectively. At the top of the V-Model or at the very

initial stages of CPD comes the marketing requirements document (MRD). For example,

the marketing requires the product to function in a specific temperature, voltage,

current, and pressure ranges. It might also require the finished product to acquire some

international compliance certificates. The marketing requirement is not a process to

conceptualize the product concept nor to materialize the end product. It only gives the

92

development engineers an initial boost to ignite the development processes and set

some viewpoints to let the developers start decomposing the high-level requirements to

the low-level engineering specs.

�Context Diagrams
Each process and control model starts with a context diagram. You can think of a

context diagram as an architectural level of PBS that has been extracted from the

marketing requirements document and purely focuses on the functional aspect of the

product regardless of how it would be designed and implemented. It’s the most abstract

document that explains how the product will function in the hands of customers.

The Data Context Diagram and Control Context Diagram are the special cases of data

and control flow diagrams (which will be explained later) but differ from other flow

diagrams in which their main distinction is that they provide an interface with the

external environment for your real-time system. Imagine a typical real-time system with

a user interface to receive set point values, commands, and control signals where it also

displays the system parametric status via some visual means to the user. Meanwhile, the

central processing unit receives sensor values where some defined algorithms process

the values and generate new sets of data and/or commands to other functional parts of

the system.

As you can see in Figure 4-1, the entire real-time system is manifested in a

very simple diagram that reflects only a limited functional aspect of the marketing

requirements from the customer’s standpoint. Evidently, the customer’s view of the

product is not necessarily as complicated as how the system developers view the

product. However, you can have a state-of-the-art control algorithm in your system, but

if the product does not function the way the customer wants it to, then you have failed.

Sometimes just a word such as safety in MRD can completely change your development

and eventually your product. Therefore, capturing all the requirement items one by

one is vital. Ironically, a lot of time the MRD does not include everything in it. The

consequential requirements are the ones generated from interacting requirement items

in MRD. The developers are responsible for discovering, extending, and expanding the

consequential requirements. Therefore, the safest way to capture all the requirements

is to follow a systematic approach. The requirements model is the approach that is

specifically designed for embedded systems development.

Chapter 4 Requirements Model

93

Based on HP’s method, after breaking down the system into major functional

sections, we need to focus on each functionality to break them down into their simplest

functional components. In Figure 4-2 the DCD and CCD contents are compared so

you can have a better understanding of what purpose each one of them serves. The

first-tier DCD and CCD correspond directly to the system architecture. As you might

recall, a simplified system architecture has four main major functional modules:

User Interface, Input, Output and process, and control units. Therefore, the DCD and

CCD would correspond to the four modules. If you decide to have different sets of

module with different naming, then you have to list your modules in the DCD and

CCD. Consequently, the list of modules in Figure 4-2 corresponds to our modules stated

in our architecture template.

Figure 4-1.  A simple representation of an embedded system in the eyes of a
customer

Chapter 4 Requirements Model

94

Figure 4-3 illustrates the major architectural units of our system.

Figure 4-2.  DCD and CCD comparison in a requirement model

Figure 4-3.  Submodules in the grand view of system architecture

Now by looking at Figure 4-3 and comparing it with Figure 4-2 of Context Diagrams,

you can see how the context diagrams are positioned with respect to the architectural

template of the system. The circles inside of Main Process and Control Unit are the

representation of data and control flow for Main Process and Control module. To avoid

crowding this diagram, I did not include submodules and components in the other three

main modules; otherwise in reality all these four main modules are comprised of many

submodules and components.

Chapter 4 Requirements Model

95

�Flow Diagrams
If we consider the DCD and CCD as the product definition at the top tier of our

architectural level, the flow diagrams are the same diagrams but at the levels blow. The

difference between those diagrams and these is that there is only one set of DCD and

CCD that describes the product requirement in abstract, and as the product gradually

moves to the lower levels by decomposing the modules to submodules and components,

more details are introduced and represented by the flow diagrams. There are two types

of flow diagrams: Data Flow Diagram(DFD) and Control Flow Diagram (CFD).

Let’s assume that our architectural template shown in Figure 4-3 is for a hardware

counter product. Each circle in the DFD could denote a subfunction of the counter,

for example, to carry out a synchronous/asynchronous, acceding/descending,

absolute/relative operations and so forth based on the requirements stated in the

MRD. Then the CFD would describe the control functionalities, for example, what the

modules do or flag what fault if there is an overflow event.

There will be many iterations of hierarchical DFD and CFD with parent-child

relationships that would create eventually a network of all circles and arrows describing

all the product’s functions. As illustrated in Figure 4-4, the DFDs and CFDs look similar

visually but they carry different functionalities. Figure 4-5 shows how DCD will be

broken down to DFDs passing through various stages of decomposition. Please note

each circle indicates a functionality and each arrow is the flow: in this case data flow;

also in the last stage I chose to encapsulate a control function as a reminder that control

functions are not necessarily should put in the control modules. Many control modules

and components submerge in the sea of data.

Chapter 4 Requirements Model

96

Figure 4-4.  DFD and CFD representations in a requirement model

Chapter 4 Requirements Model

97

�Process and Control Specification (PSPEC, CSPEC)
The PSPEC and CSPEC are developed when the work of decomposing flow diagrams

through DFDs and CFDs are done. These two documents, PSPEC and CSPEC, show

the functionality of each component and the relationships among them for the entire

project where it leaves less to no ambiguity about the functionality, inputs, and outputs

of a component. Hatley and Pirbhai [1] provide a useful graphical overview of data

and control work breakdown structure. Figure 4-6 is a graph summarizing documents

involving this process. There are various forms to express the PSPEC and CSPECs; one is

Figure 4-5.  The WBS in action, a top-down view of a system’s data-related
functionalities

Chapter 4 Requirements Model

98

structured English or Pseudo-Codes, or mathematical formulas, logical relationships, or

a combination of all. The following is an example of a Pseudo-Code:

Measure Motion:

For each pulse of shaft rotation:

add 1 to 'Distance Count'

then set:

'Distance' = 'Distance Count'/'Mile Count'...

Figure 4-6 gives an overview of the position and relationship of PSPECs and

CSPECs with respect to the rest of our architecture. In simple words, PSEPC defines the

functionality of a component and only components, not the modules or submodules.

CSPEC defines the relationship between control and data flow in our architecture,

whether at the component or module level, wherever they occur. Since control has

a special vitality to the embedded systems it matters to define them through CSPEC

documents at any level of architecture. On the other hand, we are not required to define

the data at all levels of architecture because the data organization can change at any

Figure 4-6.  The relationship between PSPEC and CSPEC

Chapter 4 Requirements Model

99

time depending on new discoveries in the development. This gives us flexibility on our

data side while keeping the integrity of the functions. Therefore, it is safe to assume that

PSPECs and CSPECs document the product function in both control and data domains.

Please remember this diagram, as it shows how data and control functionalities of the

same product stem from the same architectural ground but follow two different paths of

growth.

�The Requirements Dictionary
Based on Hatley and Pirbhai [1], the requirements dictionary is the most important part

of the requirements model. This is because the dictionary defines the data and control

functionalities of the hardware and software layers. It groups and organizes control and

data functions alike, and identifies the sources and destinations of the data and control

signals. This is like having to define all the I/O’s to and from a software or hardware

functions and to verify the scales, type, unit, limits, and dependencies on every single

input and output signals. Since there are two types of signals, Data and Control, there

will be two classes of I/O definitions: Continuous and Discrete.

The examples in Figure 4-7 are arbitrary just to portray that you can define the

signals in any format and shape that fits your application. The goal here is to define

all I/Os thoroughly in a universal fashion. These definitions are very important as they

come in handy for the duration of the development and thereafter for years to come.

Figure 4-7.  How to define parameters and signals in terms of continuous and
discrete signals

Chapter 4 Requirements Model

100

�Timing Specifications
If you remember, at the beginning of this book, in the WBS section we asked you not

to limit yourself by applying resource constraints on functional specifications. One of

these constraints is the timing. Since in a real-time system, time is a very valuable and

scarce resource, we must put a special emphasis on managing this resource. Once the

requirements model is completed and all of the PSPEC and CSPECs are ready, the timing

constraint must apply to each function. The next step would be to identify the frequency

of execution of each function and tabulate this process. This is solely at a designer’s

discretion on what timing to be assigned to each function. The designer can pick an

entire module to be executed at a certain rate or decide to customize the execution by

the components. Figure 4-8 is only an example of a control scheme for a mechanical

system.

Beside the tabulated timing schedule, a timing diagram is also utilized to visualize

the timing constraints. Figure 4-9 is the example that Hatley and Pirbhai [1] have utilized.

A timing diagram is a very useful tool to represent various timing characteristics side by

side to organize and manage the control signals in addition of forming control patterns

and themes.

Figure 4-8.  Table of timing specifications for signals

Chapter 4 Requirements Model

101

�A Note on Requirements Model
Although the HP method is a powerful tool to specify the product requirements, there

are inherently a few somewhat major issues with it. Since this method was introduced

at the time when CPM and CPD were at the height of their popularity, developing

requirements through this method has a project-based outlook toward product

development; and it is systematic, structured, and deterministic. However, developing

PSPECs and CSPECs at the beginning of the development would be ideal if all the

changes during the discovery phase are identified and all the project objectives at the

beginning of the development phase are clear and well-defined. However, we know this

will never happen. In the real world these and many other aspects of the project are

subject to change. Additionally, the P and CSPEC documents do not cover the majority

of product development activities of which many have tremendous impact on product

and development. To name a few, they are manufacturing, prototyping, optimization,

engineering and manufacturing testing, and so forth.

So why am I discussing the HP method here? It’s because despite the fact that the

world is not a perfect place and having a detailed and deterministic plan for a project

that can be easily breached by changes is impractical, we must have short-term plans

with clear objectives. I am looking for a middle ground in between complete chaos and

Figure 4-9.  Timing diagram for various signals

Chapter 4 Requirements Model

102

absolute organization. In our approach, the short-term objectives based on empirical

data are good enough to develop PSPEC and CSPEC documents for each layer of product.

In other words, we won’t have one single PSPEC and CSPEC document that defines

the entire project. Each layer of PBS has PSPEC and CSPEC documents that are live

documents. As we progress deeper into the lower layers of the product the upper layers

become more deterministic. This is how we build up confidence in our development.

We are still following a deterministic and structured framework, but at the same time we

have created a good degree of freedom to accept unforeseen changes. As we explained

earlier, the cone of uncertainty about the project/product scopes and features narrows

down as the project/product development sprints toward the release date.

The moral of the story here is to develop a general description for each layer of

PBS and be open to visit it again for revisions and expansions. This in Scrum is called

“Inspect and Adapt,” similar to the iterative “Design and Review” process in the V-Model;

however in Scrum this process is confined within each Sprint but we expect to perform

these activities throughout the project in order to redefine the scopes and features even

for the past activities. Why for the past activities, you might ask? Because as it has been

observed for the Scrum-based development, fine-tuning the previous features leads us

to get a better picture of the future features and activities resulting in slimming down

the future tasks. By now, it should be clear that by doing this we change the weight of the

future tasks by balancing them out with respect to what has been completed.

Hatley and Pirbhai [1] talk about Process Model extensively. They covered a number

of practices including methods on archiving and numbering the records. Their method

is more fit for the time that archiving paper copies was required as one of the few

means of communications and record retention. However, in the age of cloud storage

and computing, piling up papers would be a costly and time-consuming practice.

We can discuss the basics of data processing here and it would be up to you to decide

how to carry out the process. Normally a real-time system faces two types of data and

various data handling methods. The data can be categorized to two groups, external

and internal. The external data is what is being fed to the system from outside via Input

and Output Processing units and also a User Interface unit. The internal data is what

the Main Control and Monitoring unit generates as a result of receiving external data.

In the digital world, unless a massive amount of EMI exists or system design is flawed,

the internal data behave predictably; therefore there is no need to frequently check the

integrity of the internal data.

Chapter 4 Requirements Model

103

However since the external data comes from an analog world, it is prone to all sorts

of noise and perturbations. It is fair to say that typically in a real-time system, a large

portion of firmware and hardware is utilized to safeguard the integrity of external data.

This includes all the software routines, hardware protection components, nonvolatile

off-chip memories, and so forth. Manufacturing processes that employ various methods

such as checking data ranges, user inputs and data-type limits, hardware component

characterization, calibration, self-test, auto-tuning, safety-monitoring, and so forth are

also considered as part of external data safeguarding methods. The majority of these are

designed because of the human factors. For example, many electric motors encounter

violent vibration at certain frequencies where the inputted frequency matches the

fundamental or high-order natural frequency of the motor. A well-informed user will

avoid these frequencies, however, to protect the motors from users’ mistakes that the

motor drive manufactures including predefined frequency bands called skip bands. If a

misinformed user accidentally sets the frequency in these skip bands, the set frequency

would jump up or down, not allowing the user to operate in these bands. Creating these

skip bands are a complex task with complex algorithms since you have several bands

that can overlap each other. Algorithms like these do not directly contribute to the

motor’s main function but they are there to protect the motor. These additional tasks,

components, and algorithms are often considered as overhead to the core functionality

of the system, but unfortunately necessary evil for various reasons.

In reference to documenting control and data flow of your system, it’s worth

to mention that Hatley and Pirbhai [1] went into details on how to carry out the

requirements model for a real-time system with respect to CSPEC and PSPEC,

which are Control and Process Specifications respectively. They illustrated a very

comprehensive model that would satisfy the most difficult clients, such as military and

medical specifications in terms of document traceability. However since the time their

concept is introduced the computers have greatly changed the landscape of modern

communications, including documentation processes. As we highlighted before, the

modeling tools have blurred the line between documentation and product development,

lending a helping hand to Agile methodologies. However, modeling, simulations,

rapid prototyping and UML tools in no way have brain of their own therefore, having

a well-thought architectural perspective of the entire system is absolutely necessary.

In addition, documentation and traceability is still one of the major requirements for

various industries including but not limited for military and medical applications.

Chapter 4 Requirements Model

104

�Structured Scrum
So far we have discussed two major outlooks in life of modern product development

and project management. One is project-based and deterministic in nature, which in

a classical fashion uses CPM as a tool for project management and the Requirements

Model to be used in the planning phase of real-time system projects and follows a CPD

developmental model. The other one is process based and empirical in nature and

called Agile methodology, which follows no specific structure. The structured Scrum

is the middle ground, combining the goods of both worlds by empowering the product

architects to also manage the development process since. Let’s remember that we

learned from the requirements model that process is in the heart of product architecture.

The structured Scrum is organized enough to create effective communication channels

and it’s agile enough to reduce unnecessary organizational constraints.

Although Scrum is the most successful and pragmatic method in software

development, its main shortcoming is to follow its co-location principal where most

of today’s engineering team is composed of members who are spread across the

globe. To overcome the lack of co-location, the use of requirements model becomes

more important than ever. A requirement model ensures that we establish a clear

communication channel to the parties involved with developing the product. This by

itself would have a tremendous impact on the quality of the work, cost of development,

and the product time to market. However a requirement model as we know, is largely

massive and definitely not Agile.

Now the question is, if we want to have an Agile and robust product development

process, what should it look like? To achieve a robust and Agile process we need more

than combining the classical and Agile methodologies. We should think out-of-the-box

and look into the origin of these methods and the reason behind why they were invented.

In previous chapters we tried to cover the most iconic tools in project management

and product development methods and now we know enough about them that we can

understand the principals of structured Scrum.

�Simplified V-Model
You might have noticed in our earlier discussion about the V-Model that the

requirements, design. and implementation phases in this model and CPD are very

similar. Also often in the real world the same team of developers works on these phases.

If we were to use any of Modeling Languages or MBD tools, the requirement, design, and

Chapter 4 Requirements Model

105

implementation phases can be bundled up to one super phase. This is because these

tools enable you to use the modeling environment for all three phases. If we combine

these three phases of the V-Model, the resultant phase will be longer in duration than

each individual phase but shorter than cumulative phases. However the deployment

phase would be much shorter than its respective phase in the traditional model.

Figure 4-10 illustrate the use of Scrum utilizing Model-based development tools.

The first release, Release A, would be comprised of only high-level models outlining

the overall architectural modules of the system but also at the same time becoming

a working prototype with limited features and functionalities. This release might be

limited in features and functions but it is covers the entire product. Later we will learn

how the MIL, SIL, and HIL methods can help to create a working prototype at this level.

Once the high-level system is designed we can move to the lower level and expand

the functionalities and add more features to the product. The release B of our product

would be significantly functional but not complete.

Figure 4-10.  V-Model in a structured Scrum environment

Chapter 4 Requirements Model

106

On the component level, which we’d like to call it Release C of the product, the

modules of the higher level would be detailed out with components. This release would

present our product, wholesome in features and complete in functionalities.

One should take caution as this development model is still project based and

deterministic in nature, hence very rigid against accepting unforeseen changes in

development, the changes which are the consequence of knowledge gained about

our product’s capabilities and limitations. On the other hand, we know a real-time

system development is not just the software development but also the hardware design,

implementation, and testing along with additional major developmental activities such

as manufacturing.

But keep in mind that it is the software that always creates a bottleneck in the project,

not hardware. If we could give a head start to the software activities by letting them start

sooner, then we could remove this bottleneck. But we know the software must run on a

hardware platform and often needs to be tested under a load or on a plant hardware. As

we discussed before at the prototyping section, the project developers can utilize MIL,

SIL, HIL, or any combination of them until the hardware is developed. Therefore as parts

of product hardware become available to the software development team the prototype

could gradually remove the development dependencies from in-the-loop parts and

rely more on the actual hardware. This approach has also numerous other benefits for

hardware development by reducing the hardware bugs, faster hardware development,

and achieving a more optimized hardware design in size and function.

�Continuous Integration

Continuous Integration (CI) is a popular process in software development but it can also

be carried out for the real-time system development. Assuming the embedded system

development is heavy on the software side and lighter on the hardware side, by defining a

suitable system architectural model, one can still carry out an effective CI process for the

real-time systems. The continuous integration in software environment is mainly to build

the code that is being checked in to a common repository. It can be as simple as building

the code or as complex as building and testing the code at the same time. In an embedded

environment we can apply the same concept to hardware and software simultaneously.

But keep in mind that the frequency of software changes significantly outnumbers the

hardware build versions. While a software build number can increment several times a day,

a hardware build number might increment once per few months. But this won’t change

our CI process. Any changes on the software or hardware side can trigger a CI process.

Chapter 4 Requirements Model

107

It is up to the architect to coordinate between hardware and software development,

which the continuous integration process would follow accordingly. The CIs can be

categorized to major and minor or in a Scrum environment to CIs dedicated to epics and

stories respectively. The epic CIs occur when a new version of hardware introduced to

the development and story CIs assigned to software development. This will elevate our

understanding of the CI concept from a software-only process to a product development

process.

�Progressive Product Test

Based on the HP method, process development is part of the requirements model

and a requirements model builds the product architecture. In every facet of product

development whether in hardware or software, the end of development is considered a

major milestone and it is preceded by passing a set of acceptance criteria in the form of

validation tests. By now we should all agree that before achieving any milestone in our

developmental process, we should plan and perform testing. In Scrum, a test should

validate the state of potentially shippable product. This test looks a lot like the End of

Line testing in the manufacturing environment. CPD also has the same type of testing

right before the product launch when the engineering and manufacturing checked

samples are being distributed among various engineering groups to be validated. In a

software development according to the V-Model, integration, module and component

testing are considered to be milestone tests. Some companies have started introducing

smoke tests in their Agile processes that do the same thing as milestone tests with a

difference that it can be carried out much more frequently than other comparable tests

in other development environment.

Let’s step back for a moment and look at the concept of test as a whole and think

what the real purpose is of testing during development? In classical methods whether

it was V-Model or CPD, in hardware or software departments, the test is always a sign

of achieving a new milestone at the end of each phase. In Scrum also, testing is to verify

if the story has met the acceptance criteria. Once all stories in a sprint are reached, the

same level of success than the product is potentially ready to be shipped. All these tests

in different developmental environments are there to test the product. After the product

is passed the research phase, all the tests perfumed on the product during development

are to verify and validate, not to discover. In development, we aren’t doing scientific

testing to discover new things; we do all these to see if we have achieved the level of

confidence in our product, which can allow us to release it into the hands of customers.

Chapter 4 Requirements Model

108

Since all development teams perform milestone testing at various release stages, we

can always find useless redundant test routines performed concurrently on the same

product. This is because the lower-level tests often are subset of higher-level product

testing. The lack of interdepartmental communications, proper product documentation,

and the hovering hammer of project managers rushing the developers through the

development makes it very easy to create unnecessary test activities. Right now,

somewhere in the world, a team of manufacturing engineers are struggling to come up

with a functional test procedure for which the research team has had to face and then

overcame the same challenge months earlier but failed to document and communicate

their achievements with the teams downstream.

However there might be a way to reduce the unnecessary redundancies and to

minimize this massive amount of waste in development. In the next example we borrow

the “Smoke Test” concept from the software development and merge it with the Scrum’s

shippable product concept; then we create a testing stage – a recurring milestone test

before each product release. Let’s call this test the “product test,” whether it tests only

a blinking LED or is intended to test a fantastic light show for a legendary Rock-n’-Roll

band.

�Flat V-Model

A flat V-Model is a modified V-Model to be followed during a Sprint in Scrum. Since

Scrum has its own iterative process of inspect and adapt, also, considering the duration

of a Sprint is much shorter than the product’s life cycle in a V-Model, we no longer need

the feedback process of design and review during a Sprint. All the design feedback will

be added as an item to the backlog. Also, since the concept and release phases are very

short and happen very frequent in every Sprint we can simplify the V-Model as it is

shown in Figure 4-11.

Chapter 4 Requirements Model

109

The next simplification happens as a direct benefit of utilizing Scrum and

Continuous Integration concept. As we discussed it before, the testing activities on the

system, module, and component levels happen at the same time. So we can further

simplify the V-Model as in Figure 4-12.

Figure 4-11.  Revised V-Model with Omitted Concept and Release Phases

Figure 4-12.  V-Model, Further Modified for Scrum

Chapter 4 Requirements Model

110

Furthermore, let’s imagine you have only two weeks to finish your product. For the

given time, testing requirements/architecture, modules, and components individually

while meeting the deadline in two weeks would be almost impossible. If you are using

an automated continue integration concept then as soon as a change happens, the test

will be triggered automatically. Therefore, all your developers need to do is to test their

assigned components, making sure they won’t break the build. They develop their test

cases then add them to the list for the product testing. The MIL, SIL, and HIL now will be

doing the rest of the testing activities. Figure 4-13 shows the concept of a flat V-Model in

a Scrum framework.

Figure 4-13.  Scrum-based flat V-Model

Figure 4-14.  Flat V-Model in Action in a Scrum framework

Figure 4-14 shows the case when the flat V-Model is utilized during many Sprint

iterations.

Chapter 4 Requirements Model

111

�An Example of a New Product Development

Let’s assume we are required to develop a minimum number of modules to perform the

absolute minimum core functionality of a real-time system. We are also required to have

a single algorithm in the core processing unit in order to satisfy the absolute minimum

marketing/customer requirements for a function that would satisfy the acceptance

criteria so the product can be pronounced a “potentially shippable product.” Now let’s

see if we can merge the CPD into the V-Model so our software development would be

more stakeholder friendly.

We do this because there are many similarities between these two, so merging

should be easy. But the main purpose behind all these is that by migrating CPD

to V-Model we make the software the main driving force in embedded system

development; and also as you can see later it is easier to modify the V-Model in order

to make it Agile friendly. Making a CPD process Agile friendly would be much harder

because CPD is a framework for the entire project, mostly used by the stakeholders as

a decision-making tool. V-Model, on the other hand, is a product life-cycle road map,

designed specifically for software development. However V-Model can be used for the

hardware development if it’s merged with CPD.

As we discussed, the minimum number of modules that any real-time system needs

to incorporate in order to become a true “potentially shippable product” needs to have

four main modules: the user interface, system inputs, system outputs, and the main

processing unit. This is also the base of our system architecture.

In Chapter 3 we discussed that the system architecture comprises hardware and

software architectures. Earlier we saw that the idea for creating a flat V-Model was to

squeeze the entire CPD/V-Model phases into any Sprint of our new Structured Scrum

process. As you can see in Figure 4-15, for each development effort at the architectural

level there will be a minimum of 4 tasks on the modular level and 16 tasks on the design

level. This is because for each architectural modules of 4 essentials (user interface,

system inputs and outputs, and main processing unit), there will be four design-level

tasks (Module Requirement Development, Module design, Module Implementation, and

Module Testing) for each module and if there is only one component per module, then

there will be also four component level tasks (Component Requirement Development,

Component Design, Component Implementation, and Component Testing).

Chapter 4 Requirements Model

112

But doing all these nine activities for each main module, we still would not be able

to encompass the notion of “a potentially shippable product.” We need to perform 4

module optimizations and tests, 1 architectural optimization and test, and 1 product test.

Each hardware and software development process needs the same minimum number

of tasks. Technically in a V-Model, the tests performed for the architectural/requirement

level are same as product test but this is for a pure software product. You can apply

the same principles to the hardware development and then merge the hardware and

software product test in a single test.

Since hardware, software, and manufacturing development might not progress as the

same pace, or there might be some expected lapses due to readiness, having to design

architectural structures for each will allow some flexibilities in order to synchronize

all the project activities. Scrum tries to address this synchronization issue through

introducing the T-shape skill set concept in sprint activities. This issue was initially

identified by CPM and their remedy was to delay, break up, and overlap tasks in order to

level resource utilizations, ideally utilizing all the project resources at a constant rate of

100% for every working day.

However, there is a problem with both methods. In Scrum, the T-shape skill set

concept works for similar stories under one engineering discipline, which is mostly

software engineering; but in reality, you don’t see every day a software specialist to work on

the hardware. In CPM, introducing delays in a project that is deadline driven seems to be

defeating the purpose of project management. The solution to the resource utilization and

also tasks synchronization problem is to introduce architectural structure for each of these

special project functions with their prospective engineering disciplines involved. After we

create the architecture layer and their subsequent modules and components, then we can

identify task components that can share the common resources across the entire project.

The identification of task and their necessary resources shouldn’t happen at the end

of the project planning like how CPM treats this problem. This activity can be activated

Figure 4-15.  A flat V-Model visualization in a Scrum environment for each
module comprising only one component

Chapter 4 Requirements Model

113

as soon as the first version of our shippable product of the project is introduced. In

the following picture, we see three major life cycles for the product of each major

engineering discipline, which are lending their hand to create the final product. Each life

cycle has its own product with a flat V-Model life cycle.

As we explained before, from a flat V-Model we have an architectural layer. If our

potentially shippable product is ready at the end of this phase then all three V-Models

can share one common test phase that is the product test; if not then we proceed with

each V-Model until all three converge to this first shippable product. The natural choice

would be to form the shippable product as early as possible preferably at the concept

phase. If it’s not then each life cycle has its own product test phase: for example, we

would have three separate products test at the end of each phase of manufacturing,

hardware, and software development. In addition, as the project pans out, the details

of the product emerge more clearly, which can help to identify what task components

can be shared among our resources. The goal is to converge all the parallel development

activities at one point. Please see Figure 4-16.

Figure 4-16.  Flat V-Model for various engineering functions during product
development

Chapter 4 Requirements Model

114

�PBS Development
As we previously discussed, the building blocks of any architecture are components.

Components also make modules, which is another way to take functionally similar

components under one module. In the real-time systems there are two major

functionalities: control-based functionalities and data-based functionalities. An efficient

architecture will try to have one layer for all controls and a different one for data layers.

Depending on the size and complexity of design there might be a need to create interface

to connect one data module to another or one data module to a control module. These

interfaces either reside on their own layers or take part in the existing data or control

layers. This all completely depends on where your system architecture will take you.

All control and data modules and components carry information via data and control

buses. Figure 4-17 shows the Data Buses are comprised of several Data Signals. In a

programming environment these buses will be translated to the data structures.

We should perform the same process to the control layer and try to keep the data

separate from the control elements including the buses and signals. This will greatly

reduce the programming bugs and will expose the design and implementation flaws,

allowing clear and transparent interfaces to form. Another advantage of separating

the control and data signals is to break down complex elements of designs into much

simpler components. So you must always separate the data from control.

Figure 4-17.  How DFD and CFD interact in a Layers environment

Chapter 4 Requirements Model

115

Each level of product design can be consistent with a minimum of four layers:

Application Software layer, Control and Data Firmware layers, and hardware physical

layer. For example, for turning an LED on an electronics board, we might need to touch

all four layers, from GUI on the host PC to a central control unit in the firmware in order

to carry out a simple task. Figure 4-15 depicts a template of what you would normally

expect to see in a PBS.

As an example, a software application layer has more overall control over the whole

product functionality but the control is in terms of user commands. The software

control layer on the other hand has a better grip on product function. So from a software

perspective, the software application layer defines the architecture layer of our software.

Since the architecture is the result of requirements, consequently, customer stipulation

directly translates to application software. The application software then will drive the

lower control and data layers, even the hardware physical layer. This is the true meaning

of requirements traceability. The spirit on the customer’s requirements then will also

drive manufacturing processes by defining the product.

The question here would be how these product functionality layers fit into our flat

V-Model? The software application layer, as we expressed, clearly falls into the software

architecture layer, which will serve the marketing requirements closely. This layer

might be also supported by a hardware architecture layer in terms of displays and the

means of system inputs and outputs. What comes after are the module and components

either with software or hardware platforms. Having a flat V-Model for each one of these

developments can help to align the hardware and software components to converge to a

certain point at one time in the near future.

The underlying ideal concept is that we try to advance all the layers involved at

the same pace with a uniform complexity. This is another reason we need to form our

first potentially shippable product as early in development as possible, which means

it requires that we should focus our activities to develop our product initially in its

most basic form. We will explain this later in greater detail. At this point we explore the

design approaches for each level whether it’s at architecture, module, submodule, or

component levels.

Additionally, when you are developing the PBS, do not apply any constraints

whether they are physical, logical or resource-based on your product design. The nature

of constraints has nothing to do with how a module should function. If you do not have

enough staff for designing a control algorithm it shouldn’t mean to have some product

features and functions underdeveloped. Let the Agile framework worry about the

resource planning and scope modification.

Chapter 4 Requirements Model

116

�A Different Approach in Design
We discussed the decompositions rules a little earlier. We now know that the software

application layer is an architectural layer; therefore it follows the architectural template

that we described earlier. The software application layer might have a hardware layer

that directly supports it, such as LCD displays, keyboards, sensors, and so forth; however

the interaction between this layer and hardware might not be as direct as it seems.

Depending on the complexity of the application, our system is required to carry out, we

might need some intermediary layers to connect the dots in between our user interface

and the hardware. We might also need two or more sets of architectural layers for our

application: one on the hardware side and the other on the software platform.

The picture in Figure 4-18 only depicts the data architecture from the data layer.

The breaking-down rule is exactly as you are developing a WBS for a Gantt Chart or

composing a Backlog for your next sprint. As you saw, we call this a product breakdown

structure (PBS). Obviously when there is a data PBS there must be also a control

PBS. The control PBS is not shown here. Defining and organizing the relationship

between a control and data PBS are going to be explored later in detail. Again when you

are developing your requirements model you are also creating your PBS.

Chapter 4 Requirements Model

117

Please note that in order to minimize the number of algebraic operations at the

higher layers, do the least or no operations you have to and wait until you are at the

component level of your product. Be careful when you are developing your requirements

model and PBS, not to share modules/ components with other modules/components.

It is ok to have identical submodules/components and let the architecture and tools

decide to handle this situation. This is because at this stage of function definition, your

goal is to identify functionalities involved with constructing modules. As you can see

later there will come a phase called design optimization that will allow us do just that.

As we stated before, we should never overdesign. Your focus should be to

develop very simple modules as there will be many opportunities later to complicate

things. Simple design has another significant advantage: it will set the stakeholders’

expectations at a manageable level. The combination of all these simple components

will make your system a mighty complex and capable system at the end. Depending on

the size of our team, we can have people work on developing control and data paths

independently because the design is now divided into independent layers. Later you

can marry these layers for final product deliverables at each product release. Using finite

Figure 4-18.  A reminder of functional hierarchy in an embedded system

Chapter 4 Requirements Model

118

state machine methodologies are always helpful for the systems with critical control

objectives because they have a modular nature and are much more in lined with the PBS

approach.

Since the size of efforts and code involved regarding data handling in any real-time

system is multiple fold compared to control and algorithm efforts and code, in the next

two paragraphs we discuss how to handle external and internal data.

�Processing the External Data
Consider the system template in Figure 4-19 that we discussed earlier:

Figure 4-19.  A reminder of functional modules in the grand view of system
architecture

Any data that passes through the boundaries of the central unit, which in here is

called Main Process and Control, is considered external data. This includes the user data

such as set points, limits, ranges, and scaling factors and also the values that are read and

written via the external component such as sensors, switches, and actuators, whether

they are of a continuous or discrete nature.

A common recurring theme in external data processing with respect to data handling

is that the data integrity, due to noise and user errors, needs to be checked frequently.

To save some crucial code space and microprocessor time we can perform much of

Chapter 4 Requirements Model

119

the external data handling locally at the user interface or sensor level (smart sensors).

From the architectural perspective these functions still will be on a data layer but will be

marked to be executed locally. Additionally, some of this processing can be performed

in the hardware such as RLC filters but with an additional cost. From the requirements

model and PBS points of view, these are design constraints that need to be addressed at

a later time by the corresponding functional teams.

�Processing the Internal Data

The internal data is assumed to be uncorrupted unless your algorithm software,

hardware design with respect to PCB layout, EMI shielding, and so forth are flawed. For

this very reason the processes that you put in place at the user interfaces to validate the

data integrity, filtering the noise, or preventing the user errors need not be employed

for the internal data processing. However you might need to employ some handshaking

mechanism to validate the data such as using checksum algorithms and so on to validate

the internal data occasionally.

In addition, we should be mindful of brief, descriptive, intuitive, and consistent

naming conventions for the data flows. The data flow/buses must be defined in a

homogeneous format in a place called the data dictionary. The data dictionary would

also include the list of abbreviations used throughout the design documents. To get a

better idea, consider an industrial or civil engineering drawing. The document must

be intuitive to follow and must be all inclusive of terms, special notes, symbols, and

instructions so that the user can follow and build the system. It is not our goal to create

documents. Our duty is to create a cost-effective product in an efficient way. The

documentation is only a vehicle taking us to these objectives.

�Operating Systems, a Proper Mean of Data Handling

Unfortunately, the majority of software and firmware engineers in the real-time system

development environment are not aware of the science behind software engineering. In

the majority of companies the firmware engineers come from a hardware background

and to them OS’s are there only to create software overhead. However in real life and due

to the ever-increasing complexity of the modern applications, it is OK to pay for some

extra memory to have a more deterministic and secure data handling process in our

processors.

Chapter 4 Requirements Model

120

In addition, many of the modern real-time operating systems provide us with

debugging tools that are proven to be vital in shortening the troubleshooting time

and securing a quicker time to market while guaranteeing the data integrity with high

confidence. On the other hand, the use of operating systems goes hand in hand with the

use of databases, which are a means to create uniform data interfacing systems.

�Databases in Real-Time Systems

Another foreign concept to most firmware engineers who develop real-time systems

is how to develop and utilize various types of databases in the embedded system

development. Similar to operating systems, the databases are also used to organize the

data and feed the computational engines with a timely stream of data. This ensures the

data integrity for a small cost of additional memory and processor utilizations. One of

the most popular method of databases is the producer-consumer scheme. This pattern

is most useful where some of the system functions run at different speeds and there are

many producer and consumers contributing to the same sets of data. A producer would

queue the data for a consumer to grab at its earliest possible time.

�Bringing It All Together
The idea here, as we discussed before, is to follow a CPD/V-Model life cycle in an Agile

and structured Scrum format. Why a structured Scrum format and not a popular Scrum

format? It’s because Scrum is not designed to address hardware aspects of the real-time

systems and it also does not reflect the reality of today’s global engineering efforts. Also,

why do we want our development to be in an Agile framework? This is because the

CPD and CPM were introduced for a different sets of problems. Software is increasingly

becoming the dominant part of the real-time system development and the quality of it

has become the major concern of other engineering disciplines.

Figure 4-20 illustrates the idea of layers architecture, which will be extensively

explained in the later chapters. Considering the essential development layers involved

in producing a real-time system product consists of two major layers, data and control;

additional auxiliary layers can be added under the coverage of system architecture,

manufacturing, and hardware layers. A CPD or a Modified V-Model would touch each

layer through a vertical slice at each iteration of the product development especially at

the product release milestones. While from the outside world the progress of the product

Chapter 4 Requirements Model

121

looks familiar as a CPD progression, at each slice all layers of the product will be touched

by the CPD’s phases.

As the product progresses through the horizontal axis there will be more emphasis

on that phase on the vertical axis. For example at the concept phase on the horizontal

axis, the manufacturing engineering activities focus more on the prototyping and

proof of concept tasks. Since at this stage the activities would be around prototyping,

a minimum amount of optimizations and implementation would take effect and the

majority of the efforts would be on POC. This trend will continue and each time the bulk

of developmental activities would focus on the phases on the horizontal axis.

Figure 4-20.  Bringing functions and forms together by integrating Layers model in
the product development model

Chapter 4 Requirements Model

122

�Utilizing MBD Tools for PBS
As Hatley and Pirbhai explained in their book, creating the process specification (PSPEC)

and control specifications (CPSEC) are to document what the objective of each layer of

PBS is. In an MBD environment there is no need for this because the design diagrams

along the usage of proper naming conventions, legends, and design hierarchy will be

self-explanatory. In addition, the MBD tools will greatly help in developing the necessary

documentation embedded in the modeling environment.

If there is one strong reason to justify the added cost of MBD tools for the project

stakeholders and the dinosaurs in the finance, it is to create a strong case for the

amount of energy, time, and effort these tools save at the PBS and onward phases. As

we discussed earlier there will be many design revisions and implementation iterations.

MBD tools can make the process of reshuffling, recombining, and repartitioning the

modules much more manageable and less tedious than they normally are.

In addition, having reliable design tools will free up the team’s brain power at the

decomposition stage so they can focus on functionality of the modules rather than

worrying prematurely on how to cope with the complexity of the oncoming modules and

components. This is well aligned with the natural human brain function as the brain is

more efficient in improving than creating. Once all the modules at one level are created,

revising them would advance much faster and smoother. Therefore, the MBD tools will

become increasingly useful at the design stage.

The additional and much appreciated feature of these tools is their ability to

simulate the results. Working on a computer is faster and less expensive than hardware

prototyping. Simulation also will establish design benchmarks that will greatly help the

hardware and firmware troubleshooting at the implementation and optimization stages

and later on in establishing pass and fail criteria at the manufacturing stage.

�Summary
Through reading this chapter, we learned to organize a project around a product, not

tasks. We should let the product dictate what needs to be done, not what we think needs

to be done. The product already exists through marketing requirements and customers’

demands, so the developers are there to materialize it.

Chapter 4 Requirements Model

123

The first step in any product development methodology is developing the first

prototype. We like to call it the first potentially shippable product. It doesn’t matter what

we call it, but a first prototype is one that includes the main functionality of the product

envisioned in the MRD. It will look ugly, bulky, and primitive but it proves the original

concept. This would be the keystone of our project.

The first release of our potentially shippable product will be heavily reflective of

product architecture in hardware and software. The product test will be performed

before each release, and it will slice through all the product layers starting from,

hardware, to control, data, and finally software application layers. The nature of test will

be regressive and it will grow with the product.

Finally, we’d like to see that the product development follows an Agile methodology,

which is based on the HP requirements model and follows a modified V-Model in a

two-dimensional CPD framework. We call this new Agile method a structured Scrum.

The first dimension of the CPD runs in every sprint to make sure communication

channels are clear and the second CPD runs in the life line of the project to interface

with the stakeholders. As the product progresses across its life line from one phase

to another CPD to another, the emphasis on that CPD phase will get stronger. Agile

creates organization from chaos. Just gather the expertise needed and then let the

teams self-organize. It’s all common sense.

�Bibliography
[1] Harley, Derek J., and Imtiaz A. Pirbhai, Strategies for Real-Time System Specifications.

New York: Dorset House Publishing Co. Inc., 1988, p. 274.

Chapter 4 Requirements Model

© Mohsen Mirtalebi 2017
M. Mirtalebi, Embedded Systems Architecture for Agile Development,
https://doi.org/10.1007/978-1-4842-3051-0_5

125

CHAPTER 5

Problem Statement
The scope of this chapter is to build a requirements model based on a product in its

classical form. What we discuss here covers only the basics. We don't go into much

details because this particular paper-based management system was most practical

before personal computers introduced us to the world of a paperless information

management system. In the chapter after this, the same example will be presented

but with a difference, that is, we will construct the entire project in a structured Scrum

framework utilizing MBD. The following example from the Hatley and Pirbhai [1].

The customer requirements developed here is a new embedded real-time product

for a smart automobile management system:

•	 Cruise Control: The driver can choose to activate the system in order

to maintain a constant speed. The system should be designed in a

manner that gives the driver total control to interrupt the system via

brake and accelerator pedals or manual control.

•	 Average Speed Monitoring: The driver by pushing the start trip button

will acquire the average speed of the vehicle for the entire trip.

•	 Fuel Consumption Monitoring: The driver at each refueling stage can

add the amount of fuel and ask the system to calculate and display

the fuel consumption over the forthcoming period.

�Understanding the Problem
Let's settle for a marketing definition of the system and ignore the architectural mandate

for having three distinct modules. What they really meant was that they wanted a system

that specifically addresses three functionalities. The subject of architectural layout of

our real-time system is entirely an engineering process that must be left alone to the

engineers to decide how to design the system based on various factors including system

126

resources, computational power, hardware design, and many other factors. However, it

won't hurt, until we learn more about the problem at hand, to settle with the marketing's

vision. To understand how these three functionalities correlate and coexist we need

to attack the problem from various angles of which one of them would be the function

diagram shown in Figure 5-1.

Figure 5-1.  A simple control diagram emphasizing the relationship between the
user and the product

The Control and Monitor unit is the system we are trying to develop. This is simply

a graph that shows the relationship between our system and other major units in the

vehicle. I marked the arrows of which I need to refer to in the text. The other arrows

have less to no significance to our discussion. This diagram does not show any data and

control flow. The driver sends and receives data and sends commands to the control

and monitor unit. This unit controls the throttle mechanism through which the engine is

controlled to produce appropriate torque (T). The drive shaft will convert the torque to

velocity (v) and send the speed data to the control and monitor unit. Consequently, the

data will be relayed to the driver for monitoring purposes.

�Requirements Model
The requirements model at this stage will help us to decompose the functional

requirements to much simpler and smaller parts. This process in its traditional form is

not Agile friendly but can fit into a Scrum framework using a flat V-Model. However, for

the sake of providing comparison, we do this example in its traditional format but in the

next chapter we will utilize structured Scrum to develop the same example.

Chapter 5 Problem Statement

127

�Data Context and Control Context Diagrams (DCD, CCD)
According to Hatley and Pirbhai [1], the first stage of the requirements model is to

develop a DCD and CCD. As you might remember from the previous sections, these

two diagrams show the relationship between the systems under development with the

external parts. Therefore the Control and Monitor system needs to interact with brake,

engine, drive shaft, driver, and throttle mechanism. The following graphs illustrate

the data and control flows for the highest level of the requirements model. Figure 5-2

portrays the DCD.

Figure 5-2.  DCD Graph of the product

The engine unit does not need to send any data to our Control and Monitor or

otherwise known as Electronics Control Module (ECM). This is because for our product,

all we need from the engine is speed data, which can get from the drive shaft unit. You

might remember from the MRD, the driver needs to enter into the ECM the amount of

fuel s/he put in the car’s tank. That’s why the data flow is toward the ECM, not the other

way around. The ECM then will provide the driver with a bunch of data with respect to

this specific application. Finally the ECM will provide the throttle mechanism to let the

cruise control maintain speed.

Chapter 5 Problem Statement

128

As it is illustrated in Figure 5-3, the CCD mirrors the same components as DCD

but for the purpose of showing the control flow at system level. This figure is especially

interesting as you can distinguish between control and monitor signals applicability. The

ECM receives the engine status from the engine unit and this would fulfill the purpose

of monitoring for the ECM. On the other hand, the ECM receives control signals, here

a command signal from driver. As you noticed, there is no command or monitoring

signals from and to the drive shaft and throttle mechanism. The relationship was

established through the data flow in Figure 5-2. In simple words, what connects the ECM

to these units is the data. You might think there must be more signals connecting all

these modules; however for this simple application and for the purpose of keeping the

concept simple we should avoid overcomplicating the design at this stage. Later on when

we learn more about our product and application, we can come back and revise these

diagrams.

Figure 5-3.  CCD Graph of the product function

Chapter 5 Problem Statement

129

�Data Flow and Control Flow Diagrams (DFD, CFD)
At this level the functionality of the Control and Monitor unit would be defined in a very

abstract fashion. Let's start with DFD. The functions within the large dotted circles are

the ones considered as the Control and Monitor unit and therefore it outlines our system

that we intend to develop.

The DFD 0 and CFD 0 are the highest level of modules that express the system

functions in its initial stage. Then DFD and CFD graphs would be gradually decomposed

to smaller and more detailed contents. After all, the PSPEC and CSPEC would be

developed according to these contents.

Since this is a simple example, the Measure Motion and Measure Mile modules

won't be decomposed to the smaller components. Therefore, we will directly address

their functionalities in their respective PSEPCs. On the other hand the Control Throttle

and Monitor Status modules are more complex; hence we will go one layer deeper in

DFD and CFD so we could address their complexities with a more detailed explanation

for their function definitions.

Figure 5-4 shows both DFD and CFD for our first module, control and monitor. This

module comprises of four submodules. If you can be patient at the PSPEC and CSPEC

levels we will discuss the functionalities and flows of each submodule in detail. The rule

of thumb is that, if there is a module with data and control flows attached to them, they

need to be decomposed to smaller pieces until they cannot be broken down further. This

is where we need the PSPECs and CSPECs to define the functions of these components

via formulas or pseudo-codes.

Chapter 5 Problem Statement

130

After finishing the first and second layers of the requirements model, we can proceed

to the next level. The title of this level of DFDs and CFDs is accompanied with a number

that denotes the corresponding number on the prior level. For example, control throttle

is denoted with number 3.0. The title of the next level DFD and CFD is accompanied

with the number 3.0. Since the Measure Motion and Measure Mile modules are simple

modules, there is no need for further DFD and CFD development. Therefore, the next

Figure 5-4.  The first layer of DFD and CFD for Control and Monitor module

Chapter 5 Problem Statement

131

requirement level of these modules will end in PSPECS and/or CSPECS. Figure 5-5 is the

DFD for our next complex module, Control Throttle.

From level 1, the only remaining module is Monitor Status to be broken down to

more details. This module as you can see later is more complex and requires further

decompositions. Figure 5-6 shows the data structure for our Monitor Status module, and

Figure 5-7 shows the corresponding control structure.

Figure 5-5.  The second layer of overall product function, DFD, and CFD of
Control Throttle submodule

Chapter 5 Problem Statement

132

Figure 5-6.  The first layer of DFD for Monitor Status module

Figure 5-7.  The first layer of CFD for Monitor Status

Chapter 5 Problem Statement

133

After finishing defining all the functionalities in the first layer of the requirements

model, we can move on confidently to the next layer. Figure 5-8 shows the data and

control structures for our first module in the second layer of our design, Monitor Average

Speed submodule. Please note the dashed line ending in the middle of the diagram in

CFD 4.1. These are HP’s way of showing storing the parameter values in non-volatile

memory locations to be passed on to other parameters. System flags and monitors are

examples of utilizing this notation. The engine running status will be stored in a memory

location that can be used by other modules at a later time.

Chapter 5 Problem Statement

134

Figure 5-8.  The second layer for the submodule Monitor Average Speed

Chapter 5 Problem Statement

135

�PSPEC and CSPEC
It seems we have broken down the DFDs and CFDs to the extent that we are ready to

draw the PSPECs and CSPECs to define the functionalities. The following is HP’s

pseudo-code to define these functions. As a kind reminder, please don’t dwell too much

on the accuracy of these formulas as they are defined in a digital domain and depending

on your module dependencies and how your interrupt routines are structured, you

might arrive in different versions of the same function definitions. Since we haven’t

defined our timing specifications yet, it’s best that you bring only physical and

mathematical formulas here rather than trying to write the program code at once. As I

said this is just to show you can define your PSPECS and CSPECS in any fashion you see

fits the best. You will see in the next chapter we will bypass these classical definitions all

together and will utilize graphical methods in MBD.

PSPEC 1.0: Measure Motion

Distance_Count ++;

Distance = Distance_Count/Mile_Count;

Speed = Pulse_Rate/Mile_Count;

Accel = Rate_Change/Mile_Count;

The alternative description would be:

x distance

v dx dt velocity

a dv dt acceleration

=
= =
= =

;

/ ;

/ ;

PSPEC 2.0: Measure Mile

Shaft_Rotation_Pulse += ;

Calculate_Pulse_Count (Shaft_Rotation_Pulse);

If Lower_Limit<= Shaft_Rotation_Pulse <=Upper_Limit

 set Mile_Count = Shaft_Rotation_Pulse;

Otherwise

 set Mile_Count = Default_Mile_Count;

CSPEC 3.0: Control Throttle

Chapter 5 Problem Statement

136

ON, OFF, Start Accel, Resume, Cancel, Maintain Speed. Please see Figure 5-9 to see

how these variables correlate in the Control Throttle state machine.

Figure 5-9.  A cruise control state machine to visualize the CSPEC of the Control
Throttle module

PSPEC 3.1: Select Speed

Issue Desired_Speed = Speed;

PSPEC 3.2: Maintain Speed

Throttle_Position = 0 if Desired_Speed – Current_Speed > 2

 �= 2*(Desired_Speed – Current_Speed) if -2 <=Desired_

Speed – Current_Speed <= 2

 = 8 if Desired_Speed – Current_Speed < -2

PSPEC 3.3: Maintain Accel

Throttle_Position = 0 if Acceleration > 1.2

 = 20*(1..2-Acceleration) if 0.8<= Acceleration <=1.2

 = 8 if Acceleration < 0.8

Chapter 5 Problem Statement

137

CSPEC 4.1: Monitor Average Speed

Start Trip Time will activate process 4.1.1

Running will activate process 4.1.2

Average Speed Request will activate process 4.1.3

PSPEC 4.1.1: Start Trip Time

Issue Trip_Time = 0;

Issue Start_Distance = Distance;

PSPEC 4.1.2: Clock Trip Time

Accumulate seconds for every second the process is on;

PSPEC 4.1.3: Issue Average Speed

Issue Average_Speed = (Distance – Start_Distance)/Trip_Time;

PSPEC 4.2: Monitor Fuel Consumption

Issue Fuel_Consumption = (Distance – Start_Distance)/Fuel_Qty;

then set Refuel_Distance = Distance;

Please note the PSPEC and CSPEC are not design specifications nor are they there

to replace them. In our example we utilized various formats from Pseudo-Codes, to

C-codes, mathematical equations, and a state machine to represent the functionalities

of the components. At this stage you should not bound yourself to a specific format to

express functions. The goal is to describe a function in the clearest way, quickly.

�Timing Specification
Obviously, HP’s philosophy was hinged on project-based product development and as

a result the requirements model is very deterministic in nature and in a stark contrast

with more modern Agile methodologies, which are more fluid about team dynamics and

product architecture. The timing specification is an example of rigidity of HP’s method

but in some applications it’s a necessity. However with MBD tools, you can have come

up with your own timing method that fits your application where you can simulate the

system in non or real-time environments to find out whether your timing schemes meet

the requirements.

Chapter 5 Problem Statement

138

The first step in developing your own timing spec is to create a Time response

schedule for each transition action in your CEPCs. For example, in Figure 5-9. all the

transition actions in our state machine can be specified in a table in Figure 5-10. This

table shows the time responses as well as the dependencies between the functions. With

this in mind now we can develop our own timing specification that is the collection of

the timing responses of all CSPECs actions.

Figure 5-10.  Timing specification table

�Requirements Dictionary
Part of the requirements model is the requirement dictionary. As simple as it might

sound, the requirement dictionary is essential in overall product development. The

requirement dictionary works not only as a communication protocol that unifies

all the different languages across various engineering disciplines involving product

development, but also it works as a quick checklist of various functions building the

product. It also acts like a table of contents for Data or Control Flow diagrams. Please see

Figure 5-11.

Chapter 5 Problem Statement

139

�Architectural Model
If you combine the architectural template with DFD0 and CFD0 for this example we

can call the resultant Architectural Flow Diagrams. Consequently, if the architectural

template is combined with DCD and CCD, we can call it Architectural Context Diagram.

Please see Figures 5-12 and 5-13.

Figure 5-11.  Requirement dictionary

Figure 5-12.  System architecture with an integrated data flow visualization

Chapter 5 Problem Statement

140

�Summary
Although the example we discussed here was very simple and only represented a very

small portion of an actual product, by only looking at the relative amount of paper works

being generated for this small product, you realize how much work needs to be done

before even starting to write a line of code or soldering a wire on your board. The main

dilemma is how an engineer can write down the details of a project so well without

knowing what the end product will look like. Remember the cone of uncertainty that we

discussed in the earlier chapters? You can squeeze the base of the cone with the help of

the requirements model but you can never diminish the cone to be a straight line. This

means that changes are always inevitable anywhere outside of the fairyland of classical

methods. The classical methods of project development are stiff against changes

because their outlook is idealistic. This attitude toward changes can cause unwarranted

reactions from the developers against changes. In the worst cases, either the developers

ignore the change or they mistreat it but never welcome them.

Figure 5-13.  System architecture with an integrated control flow visualization

Chapter 5 Problem Statement

141

�Bibliography
[1] Hartley, Derek J., and Imtiaz A. Pirbhai. Strategies for Real-Time System Specifications.

New York: Dorset House Publishing Co. Inc., 1988, p. 283.

Chapter 5 Problem Statement

© Mohsen Mirtalebi 2017
M. Mirtalebi, Embedded Systems Architecture for Agile Development,
https://doi.org/10.1007/978-1-4842-3051-0_6

143

CHAPTER 6

Process Architecture
In the previous chapter we discussed a practical problem for the requirements model

of an automobile monitor and control system. Because having a requirement model is

one of the major parts that Scrum lacks, it is deemed necessary to discuss the problem

through the Hatley and Pirbhai method first. However, we know that the paperwork

era that used to make us feel productive is long gone. The majority of design package

software offers services that make you able to create and organize the design documents.

On the other hand, we all know going into a project with no clear development plan will

let the tools dictate the methods. For example, some of the MBD tool manufacturers

allow you to use parallel programing for some of your specific applications and some

vendors can’t offer tools with this capability. If you try to choose your tools first, then you

have to fit your architecture to match the tool’s capabilities.

Although Hatley and Pirbhai's method is out of date, their philosophy still carries

a powerful force that can bring back a dead project to life, rescue troubled ones, and

create fine architectures that can mature beautifully. This beauty is envisioned in a

systematic and constant development growth, resulting in functional parts meeting all

the requirements with minimum waste spent in resource utilization.

In this chapter we look at the entire process of developing the same system through

a different approach. This approach as we discussed before includes a very important

and decisive part. Although the requirements model cannot answer all the problems that

a real-time system development will face, it will answer the most important questions.

What does it take to have a cost-effective product that meets all the requirements?

How don’t we get lost in the complexity of our own product? How do we make hard

architectural decisions and how do we back up our decisions with facts? How can we

create an architecture that can be utilized in other product development processes?

How should we keep track of things necessary for the product and to prioritize functions

and processes in both product and development? We leverage this powerful tool and

add even more powerful tools to it such as V-Model and DFM in a structured Scrum

environment so the product would have a sharp take-off at the concept phase and

144

smooth landing at the manufacturing phase. The requirement model will address the

co-location problem in Scrum and a host of other issues because now you have a tool

that lets you communicate effectively and accurately with your colleagues around the

globe. On the other hand, the “potentially shippable product” concept will address the

lack of the requirements model's flexibility in the face of process/product changes. All

these efforts stem from the base of requirements model leading to a functional and

flexible system architecture that is now interlocked with the development efforts.

Since now we have decided to follow structured Scrum over CPD, we need to

rephrase some terminologies. One of these terms is the word “phase” that is the

reminiscent of the good old phase-gate method of development. We'd like to replace

this word with a more Agile friendly word, “release.” If you remember from Chapter 3,

we introduced the release concept in the modified V-Model structure. Therefore from

here on we will call each product phase a product release referring to the same concept

of product release in Scrum. Please see an example of a traditional V-Model in a modern

Agile framework in Figure 6-1.

Figure 6-1.  A reminder of V-Model in a Scrum environment

Chapter 6 Process Architecture

145

Consider that more than half a million patent applications were filed in the United

States last year, of which maybe only a handful of have made it on the manufacturing

stage successfully. If you are the owner of a hi-tech start-up company who needs money

for her/his product and services, the investors and bankers require you to demonstrate

your ability of starting and managing your company successfully by providing them with

a business plan, grant application, and so forth. In a large corporation, the marketing

personnel for starting a new product are required to follow a similar method to be able to

fund the project, and so are the professors who like to submit grant applications for their

research.

The inspiration for dividing the project into major components is a product of a

logical process that is deep-rooted in human logics. Since the phase-gate concept of

CPD is inspired by this process and not based on project management techniques, it will

never suffer from the lashes of time. It also can apply to any facets of life, let it be arts,

business, research, banking, manufacturing, and so on. What this means is that new

idea development should be the first phase of the development process. Although our

method here does not follow a phase-gate process distinctively, we’ll let the spirit of it

flow through our process. As a result the ideas hereafter are organized in a CPD fashion.

You might recall from our earlier discussion that the first phase on the CPD was to

develop the product concept.

�Proof of Concept
A CPD process or any logical process such as CPD that is for developing new ideas starts

off with the most important step of the process, which is to conceptualize the idea in a

way that would be presentable to the criticizing eyes of the investors, bankers, project

stakeholders, government agents, public eyes, and so on. Since we are specifically talking

about developing a real-time system a presentable idea is normally conceptualized as a

prototype in a phase that is called the proof of concept phase. To show how important

this process is, CPD in its phase-gate method has assigned an entire phase to it.

However, it is also the most underestimated phase of all CPD phases. The reason why

this phase is often underprocessed is that this process can hardly commit to any specific

time, budget schedule, process, or guidelines.

Chapter 6 Process Architecture

146

Although every project that works based on a CPD framework must complete the

proof of concept phase, some projects tend to finish their concept phase stronger than

others. By stronger we mean how much of real engineered forms and engineering

methods are going to be put in the first prototype of which they can be later recycled in

other aspects of development, downstream. This phase is also very important for our

structured Scrum framework as it will produce our first “potentially shippable product.”

Since the proof of concept by itself is a product, as we saw in our modified V-Model,

the conceptualization phase should follow the steps in our flat V-Model. Although we

have always emphasized creating a proof of concept as close as possible to the form of

final product, we know that this is not always possible. Therefore engineering methods,

algorithms, simulations, and virtual models are also considered prototypes. But the point

I am making here is not to limit your prototyping efforts but to remind you that while you

are creating your first prototype, you should have other teams and functions in mind.

Because, what you create has used company’s resources; therefore what you create in

terms of model, engineering efforts, scientific facts, formulas, algorithms, simulations,

and test methods to be reused in other phases of development by different teams.

When the developers create prototypes, they normally try to pursue a few different

goals with it. One of the misconceptions about the purpose of this phase is that a

prototype is to provide the project stakeholders with some visual aids to grasp the

concept. But the actual purpose of this phase is to create the theory and all its supporting

documents to be transferred to the next phase. A working prototype is also very useful

for the development team who would take over the concepts and prototypes from the

research team. However in many actual cases, because of the misconception described

earlier, the prototypes are not scalable or expandable to the next phases, and they will

be disposed of when they serve their sole purpose of demonstrations. Therefore a strong

finish for a concept phase is to create and pass on as many documents, developmental

tools, software, and hardware as possible to the next phase. This is not possible unless

your prototype is relevant to the next phases of development, in form and functions,

following homogenous and active product architecture.

This will create a dilemma for CPD-based processes because then the prototyping

comes before architectural development. If you assume your prototype is also your

product, then you can have architecture before prototyping, because you are going to

follow a flat V-Model process (Figure 6-2). But how can you produce architecture without

a clear view on what a product looks like? You don’t have to know everything about the

product in order to lay out a priliminary architectural layer. The MRD implemented in

an active architecture utilizing MBD and requirements model allows you to take the first

Chapter 6 Process Architecture

147

solid steps without knowing the product and the processes involved entirely. You don’t

have to take these first steps blindfolded either. There are tools and signs along the way.

The principles of recycling in methods and resources are the signs. If you are able to

recycle your prototype then you are pretty much on the right path to creating an active

architecture that will be expandable and scalable to the next phases of development.

In the remainder of this chapter we will be discussing the principles of recycling in

engineering efforts.

�Hardware Recycling
Unfortunately, unless it contains a cutting edge and propriety technology, most of

hardware prototypes nowadays are of little to no value for the next phase of CPD,

because no matter how complex they are, they are created for the sole reason of

demonstrating the physical aspect of the product. We create the prototypes thinking they

can be replaced by other hardware with the same functionalities or they can be easily

simulated or animated by the software. Unless the hardware is precisely created to work

as a model or template for the next generation of products, they are often of little to no

use for the next phases of the same development. In structured Scrum and in the spirit

of Agile methods the waste should be contained; therefore the prototypes should be

designed to be recycled because the prototype is another release of product.

Figure 6-2.  A flat V-Model compared to traditional V-Model

Chapter 6 Process Architecture

148

�Software Recycling
During the concept development the researchers not only create original ideas in form of

hardware but most importantly create some invaluable intellectual properties expressed

in the form of models and algorithms of which both are or can be expressed in software

format. Because software seemingly looks easy to scale and expand, then recycling

the software should be inherently an uncomplicated task. But we all know that this

statement can’t be more wrong. The reason the software development always fails to go

according to plan is because there is no plan when its first sparks are ignited.

On the other hand, we should change our attitude toward software whether it is used

directly in product, process, or both. Software is no longer a commodity like hardware.

It carries a tremendous amount of trade secrets, intellectual properties, and wealth of

knowledge. Software is a conduit to let the knowledge flow. If we see the software in the

right light, then there won’t be any option but to let it easily flow from product concept to

deployment and product return when it makes a full cycle.

�Method Recycling
If you have already decided to have your hardware and software to be designed for

recycling purposes, then method recycling would be easy to implement. By now we

know that our active architecture not only covers the product but also the processes.

At the concept development phase the developers would come up with methods as

part of processes for benchmarking and testing the unique software and hardware

features. There might be also some special hardware and software tools developed

for that purpose in the form of software test cases and hardware test fixtures. The

methods and tools for product benchmarking and testing are of a direct use in design,

implementation, and manufacturing phases. The test methods can be polished and

scaled up or down to be utilized in the succeeding phases, downstream in engineering

and manufacturing groups.

�Team Dynamics in Concept Release
The team dynamics is also part of product process; hence it should be considered in

our active architecture model. In the traditional view of product development it might

not seem too relevant but it is, according to DFM principles. As we can also see in an

example later in this chapter, that software development is the key in which it creates

Chapter 6 Process Architecture

149

a common forum among various development departments. The following are only a

handful of major players in the embedded system development.

�Purchasing Department

Although in many companies purchasing is not considered as part of the core

developmental team, what they can bring to the table can surprise you. Let's assume

halfway through the prototyping efforts the purchasing team realizes that the

manufacturer of our new microprocessor is acquired by another company with the

intention of making the new micro obsolete. Now we have to carry out the process of

new parts qualification again. If our purchasing team is equipped with software and

hardware test methods then we can recycle the software, hardware, and methods used

in our old part to qualify the new part. This is part of what makes your development

Agile. Again, this is not possible unless you have an active product architecture. Let's

remember that active product architecture includes processes too.

�Manufacturing Department

You might think these two phases of CPD, concept development and manufacturing,

which are on the opposite sides of the development process, have nothing to do with

each other – but they do, much more than one might think. What is common between

these two phases is the core functionality of the product. In the concept phase a

prototype is being created with minimum features to address the core functions and

there are some studies or tests performed to estimate the possibility of achieving the core

functions. In manufacturing the product is being tested against the same core functions.

The level of product attraction and the tests to validate those principle functions is same.

The similarities in the scope of the tests, making the tools, whether to use hardware

and/or software platforms, and the methods for carrying out the tests, should be

shared between research and manufacturing departments. This tremendously helps

to shorten the manufacturing process and eventually shorten the time to market of the

product with the least amount of problems and waste in time and money. If we let the

manufacturing get exposed to the concept phase, it, along with the purchasing function,

can carry materials planning, product distribution, vendor qualifications, and project

logistics far ahead of the development schedule. This might seem too early to have

everyone involved in development, but the inputs or the lack thereof, from these teams

will either make or break your development process. This is something that needs to

Chapter 6 Process Architecture

150

happen sooner rather than later before the product starts sprinting toward the finish

line. This approach also is useful in traditional CPD framework as it provides an early

estimate of the product’s finished cost, which can facilitate the decision-making process

of the stakeholders shortly after the connect phase is completed. The stakeholders’ logic

is to cut the losses at the earliest time. No need to remind that to achieve all these, we

need to unify tools utilized in research and manufacturing. No development framework

is more suitable to do the unification but Agile and no tool are more effective in Agile for

embedded systems than having an active product architecture developed by MBD and

requirements model.

�Marketing and Research Departments

We would not discuss the marketing and research engineering role at this time because

many companies by default have defined these two departments as the default owners

of the concept phase. Marketing is one of the stakeholders and one of the generators of

the new ideas in this phase. The research engineering function is to materialize these

ideas into prototypes. Therefore the involvement of these two disciplines at this stage is

essential. It’s worth to mention that, in many companies, the research engineering and

marketing constitute one entity.

�Scrum and the Concept Release
There is a popular idea among Scrum practitioners that allows the existence of an

informal time period that happens at the beginning of the development. This almost

open ended and loosely defined duration of development is called sprint zero or in some

cases sprint minus one. The purpose of this chunk of time is to allow the stakeholders

and developers to get ready for the formal project kickoff milestone. The idea of sprint

zero is believed to apply also to the projects with distinct concept phases. It also applies

to where there is no prototyping phase allowed, because it is thought that each sprint

creates a “potentially shippable product.” Bottom line, the applicability of sprint zero

depends on whether the developers and stakeholders view a prototype as s potentially

shippable product or not. This is the point where Scrum starts to wobble. Since we

don’t want loose ends in critical applications, we have decided earlier on to consider a

prototype a product.

Chapter 6 Process Architecture

151

However we can still take advantage of the idea of sprint zero with no time

restrictions to be assigned to our prototyping activities. In this case, we can introduce

the prototyping phase in our structured Scrum as another product release and then

plan accordingly. Structured Scrum is an integral part of creating an active product

architecture. The flat V-Model makes the backbone of team dynamics, and it will

directly impact the flow of knowledge through our development process including

in our product. We should believe processes are initiated form product functions

and these functions need an active architecture to flourish. Therefore, without the

Scrum framework we cannot architect the processes involved in our development and

product. However there is another way and it’s the good old way of having distinctive

developmental phases such as CPD. I don’t recommend going on that route, if you are

expecting different results.

�An Example of DFM in Action in Concept Release

Let's consider our last example on the Automobile Monitor and Control project.

Figure 6-3 illustrates the control diagram of and existing system. The torque (T) from

the engine was transferred to the shaft and converted to speed (v). In a new marketing

proposal we are required to improve upon the accuracy of the measured speed by

creating an algorithm that reads the data provided by the gyroscopes in the airbag

system in addition to the traditional method of reading the drive shaft sensors. Figure 6-4

shows the conceptual diagram of the new product. As a note, the gyroscopes are used to

calculate the automobile's speed vector as well as GPS data for an accurate displacement

measurement in order to calculate a very precise speed value.

Figure 6-3.  A control diagram for an existing automobile speed measurement system

Chapter 6 Process Architecture

152

Since the new algorithm requires additional input pins to accommodate the added

data volume, the microprocessor should be replaced by a faster and computationally

more powerful microprocessor with additional input pins. Unfortunately the footprint

of current microprocessors is not compatible with the new microprocessor; therefore

the PCB layout also needs to be changed to facilitate the new required real estate on the

existing PCB.

On the other hand, marketing wants to start the project as soon as possible, and the

research team can't wait until the control hardware is complete for two reasons: the new

hardware needs firmware in order to be tested by the hardware engineers, and there is a

12-week lead time for the delivery of a new microprocessor, including PCB modification

and the first hardware prototype build.

There are a few possible scenarios that can be taken into account:

•	 The research team can work with the existing control boards by

kludging some existing parts in order to make the new algorithm and

test it on some universal hardware on the bench. (HIL)

•	 The research team can build a control model and simulate it with the

rest of the control software as a plant model on a host computer. (MIL)

•	 The research team can simulate the control model, generate code

from the model, integrate the code into the existing control code, and

test it on the existing hardware or just test the software on a general

purpose target. (SIL)

Figure 6-4.  A scaled control diagram

Chapter 6 Process Architecture

153

As you can see these are just a few different ways to accomplish what we need while

waiting on the actual hardware. In all three cases, the existing hardware is very useful

but worthless for the next release. In all these three scenarios, all the tools developed to

test along the code generated from the core algorithm can be transferred as is to the next

phase. The fixtures for testing the hardware can also be transferred to manufacturing

engineering to become the base for their functional testing. Also the test cases and codes

can be transferred to the engineering and manufacturing team for product verification

and validation.

�Architecture and Planning
The next phase in the CPD framework is architectural design and planning the project.

Since in structured Scrum these activities happen throughout the development, there is

no need for a distinctive architecture and planning phase. Rather the project architect

can design and implement a simplified version of the product architecture that is fully

functional resulting in a “potentially shippable product” at the end. This relates to

release A of Figure 6-1 and the first layer of system architecture in Figures 5-12 and 5-13.

The first architectural layer of product will be in its most simple and general form.

The essence of simplicity and general form will leave less room for mistakes. If there

will be changes introduced to the project later, it wouldn't be about the general form of

the project but rather the details of the design. The details would most likely change the

components or will modify the existing modules. In any case, if the product architecture

is changed it will be easy to absorb the changes because of the modularity of this

concept. Again, at this release there is plenty of work for other team members including

the design engineers. Figure 6-5 illustrates the flow of work on the second layer of the

development process.

Chapter 6 Process Architecture

154

�Hardware Recycling
The prototype that is being received from the previous release needs to be improved

upon. For example, its simulated parts might need slowly to be replaced with the actual

parts. With the help of manufacturing engineers, the prototype can work as a test

platform for hardware and software functional testing and so forth.

�Software Recycling
There might be two types of software that were developed during the concept

proofing release: core functional software and the test software for verifying the said

functionalities. The separation of software types at this stage might not be as easy as it

seems, but during the concept release if we had an eye on the architecture and design

release we could have rolled out the software the way it would be easier to be separated.

The core functional programs will be used directly in the product architectural layer and

the test portion of the software can be utilized for validating the system.

Figure 6-5.  Visualizing the second layer of development in a flat V-Model
environment

Chapter 6 Process Architecture

155

�Method Recycling
Similar to the previous release, all the methods can be easily recycled by the current

release only if the team intends to design them in such a way to minimize waste with

respect to the entire development performance. This again emphasizes having active

product architecture.

�Team Dynamics
Assuming the same DFM-compliant team is still involved with the product development,

they create an appropriate backlog that would highlight the work needed to be done.

Since the team dynamic is the same as Scrum, the team creates the backlog items and

they also address the responsibilities, objectives, and deliverables.

�Modules and Components Releases
We saw how structured Scrum is performed in the more difficult and challenging

releases such as concept and architecture releases. Life seems much easier when it gets

to merging V-Model and CPD with Scrum for the module and concept releases, because

these two releases directly correspond with the design phase of CPD where the product

design, implementation, and testing are performed consequentially.

We've observed previously that the module and component releases follow the same

trend as the concept and architecture releases. The team dynamics would also look

much similar to these releases. Figures 6-6 and 6-7 depict the module and component

releases respectively.

Chapter 6 Process Architecture

156

Figure 6-7.  The final phase of a V-Model and flat V-Model

Figure 6-6.  The third phase of a V-Model relative to a flat V-Model

Chapter 6 Process Architecture

157

�The Final Release
As we saw in all phases of the traditional V-Model the tasks on a flat V-Model would stay

the same. This is not by accident or useless repetition of the same tasks in every release.

This is precisely designed to make all the product release processes the same regardless

of the progression of product development. This is done by practically departing from

the phase-gate concept in product development and applying its logic to every release

of product. This is because the structured Scrum, like its counterpart CPD, is disciplined

and systematic to product development but more accepting to changes.

This method is developed to ensure the integrity of design is safeguarded with

traceability and via minimizing the variability in the development processes. We want

to leave the variability only to be introduced by the changes necessary to better our

product. On the other hand, it follows an Agile methodology that would keep the team

motivated, sensitive, and responsive to the product development changes. As a result,

the optimization and V&V phase of CPD is performed at every release. After all, if there is

any need for additional optimization and V&V phases, there would not be any need for

another product release as traditional Scrum prescribes.

�Departing from CPD and Landing on Structured Scrum
In a structured Scrum framework, the CPD process seems to be spread across every

sprint, so every one of them carries a small scale but a complete set of CPD. We will

describe the layers architecture, which is based on requirements model, in more details

in the next chapter. In the meantime, Figure 6-8 shows how layer architecture interacts

with structured Scrum.

Chapter 6 Process Architecture

158

The CPD process runs in two dimensions throughout the development. One is in

its classical form during the project time line and it runs horizontally. This is for budget

purposes and also communicating with other departments outside of the development

group. For example, if the project architect needs to provide a progress report to the

finance department s/he could present it to the them in a fashion that they are familiar

with. This would have no effect on how the project is being carried out as it only plays as

a presentation tool to the outside world.

However, the Agile development process that runs vertically slices through every

function involved in the product for the duration of each sprint. The manufacturing tag

on the last layer simply applies to the physical layer to denote the concept of product

validation, which leads to the release of our potentially shippable product at the end

of each sprint. The product validation can be performed at the system, module, or

component level together or separately. Let’s remember that each hardware or software

module or component needs to be verified at least once as long as they are not modified

Figure 6-8.  Layer architecture in an Agile development process

Chapter 6 Process Architecture

159

but the product validation needs to be performed at the end of each sprint. Since the

product validation in our new Scrum-based process is very similar to product validation

in the old CPD-based process in manufacturing, this task can involve the manufacturing

engineers. The advantage of involving the manufacturing engineers at this stage of

development is countless. Finally, the minimum number of layers of our product can

contain Software Application, Control Structure, Data Structure, and Physical layers.

However you can add more layers to it depending on your application.

Referring to the example of new product development in Chapter 3, the simplest

form of a product in a real-time system might have a minimum number of 21 activities

that would touch up on all the named architectural layers. This might represent a very

simple project of turning an LED on.

The first row of the activities we see in Figure 6-9 is consistent with all the activities

on the architectural layer of the product. If this layer is planned to be finished on

one sprint then we could have a potentially shippable product at the end of the same

sprint. However the project architect can decide by adding more resources to finish

all 21 tasks in one shot on the same sprint. This might sound logical but because of

the task dependencies, some tasks can't start before another one is complete. So the

resource assignment might be too complicated, which complicates the delivery date as a

consequence.

Figure 6-9.  A reminder of flat V-Model in an Agile framework

�Smoke Test
The term “smoke test” is usually used in the software environment and it is a test being

performed on a server that builds the product software, anytime there is a new version of

code checked into the source control system. Any checked-in code will trigger the build

server to build the entire software including incorporating the built firmware for the

hardware. This test is completely automatic with a pass-fail criterion, which means at the

end of the build process either the build has been successful or the build has failed. The

Chapter 6 Process Architecture

160

smoke test can be developed further to include the product hardware, which means the

product software will be automatically downloaded on the hardware and then the entire

product is going to be validated.

�Agile Testing
At the end of each row in Figure 6-9 there is a common task occurring every time and

it's called “product test.” Ideally, this is a test performed with growing cumulative test

cases. The growth comes from the fact that at each sprint we are adding more functions

and features to our product. We could compare this with a regression testing in software.

This is an integral part of sprint activities and if this task is not complete, the sprint is

not complete. We can combine this test with a smoke test in order to avoid surprises at

the end of the sprint. However this test can also be designed to act as software/hardware

black box testing as well as white box testing in addition to regression testing. It is at the

discretion of the team to decide. Once the hardware prototype is added, the test will

cover both hardware and software. The types and combinations of tests you can carry

out are almost limitless. Again, the guidance comes from the active product architecture.

�Summary
Scrum has no preferences on what type or sees no interruption from any type of

phase-gate frameworks similar to CPD. It can peacefully coexist with traditional

methods but it should be in control of development. However, the development

management of real-time systems can’t accept CPD because the software faction

of it is more prone to the changes than a rigid phase-gate method can bear. On the

other hand, the firmware in real-time systems due to its criticality needs a firmer and

more defined structure than what Scrum can offer for a mixed software-hardware

development. Because the real-time system by definition carries critical applications

and as a result is under a higher level of scrutiny from various governmental and

certification agencies, this and the co-location issue in Scrum has forced us to find

a method in between Agile and classical processes. We called it structured Scrum.

The underlying principle of structured Scrum of real-time systems is still Agile but

to provide both, better communication channels between engineers in different

geographical locations and time zones and better traceability, we have inserted the

Chapter 6 Process Architecture

161

classical method of requirements model. To be compliant with the requirements

model we need to form clear product architecture. Because the requirements model

is heavily based on paper-based processes, with the introduction of MBD tools we

were able to create the foundation of an active product architect that can utilize a

layers model.

Chapter 6 Process Architecture

© Mohsen Mirtalebi 2017
M. Mirtalebi, Embedded Systems Architecture for Agile Development,
https://doi.org/10.1007/978-1-4842-3051-0_7

163

CHAPTER 7

Layers Model
The layers model of embedded systems architecture is based on model-based

design (MBD) to facilitate Agile development. In any development framework

we’d like to minimize the development constraints while maximizing the quality of

engineering work. This model not only achieves those, but also it reduces the waste

incurred during the development. The fundamental of the layers model architecture

is based on the fact that engineering principles are not in any kind of conflict with

business decisions, and these two can both be aligned with our environmental

responsibilities. In fact, how much our development impacts our environment is

a sign of how well we have applied the engineering principles to make sound and

ethical business decisions. For doing so, the layers model distinguishes between

process and product. The fundamental of layers model is based on MBD.

�What Is a Model?
As we discussed before, the earliest traces of model-based design comes from the

UML program. This is a software tool created by IBM to enable software engineers to

define software behavior and its architecture through graphical representations rather

than in textual format. There are many companies whose software tools carry various

capabilities that allow design engineers to create system architecture and develop,

simulate, and test systems and codes. These tools are ideal for an Agile environment

because they eliminate unnecessary documents by merging requirements, design, and

implementations phases of development. This is the main reason that a model is also

known as executable specification, which acts as both a software program and a design

document. Although there are many advantages in utilizing programming models such

as facilitating the design and also design validation and verification (V&V), requirements

traceability, a much shorter integration phase, higher-quality end product, faster time

to market, reduced waste in developmental resources, and so forth, the tool cannot

164

guide us how to lay out our architectural model, nor will it tell us how to decompose

the requirements into functional software and hardware units. It does not tell us how to

organize our software modules, and most importantly it doesn’t show us in what order to

develop and implement these modules for minimizing the waste. In a much larger scale,

the tool cannot guide us on how to merge hardware and software functionalities in an

embedded system development so our process and product become the most efficient.

This is because a model is only a graphical representation of a system in terms

of its static and dynamic behavior with respect to its surroundings of which can also

be represented as a model. The best a programming model can do is in a HIL case

where it can model a real-world scenario to simulate a physical system. Nevertheless,

a model can be a very strong tool to control a physical system in a predictable manner.

For example, a CAD model can be materialized into a physical model by a 3D printing

machine or a control algorithm model into a C code to be downloaded into a target

microprocessor. But none of these means that we have achieved our business goals. Let’s

not forget that the difference between an engineering firm and a toolmaking shop is in

efficiency.

However, the most important advantage of creating models is their capabilities to not

only represent a product but also a process. This is a unique advantage that the new age

computerized tools have brought us. Before computers, the products were represented

by concept prototypes and processes through diagrams on papers. The MBD has

introduced this new but very useful concept of an “executable specification” that a

model can represent a product while it can specify the processes involved in making the

product. For our example, a requirements model can be identified as a process model

that can be embedded into a product architectural model and so forth. A requirement

model can organize our activities in breaking down the product into modules and

components while at the same time acting like glue, holding all the product and process

components together.

�Process and Product Models
A developmental framework from a grand view consists of two major categories:

product and process. The requirements model directly relates to the product portion

of the project by organizing activities around the product development such as

product architecture, task management, scheduling, and so on. It will also highlight

the necessary processes for us. MBD is able to address the needs of both product

Chapter 7 Layers Model

165

and process by providing models. A component model depicting a control algorithm

is a product model, and a module holding these components together can be

considered a process model. The idea of process is abstract enough that it can have any

product components and activities under its wings, whether its hardware, software,

or manufacturing models activities. Process models are similar to integration or

architectural models; they define how product models interact with each other. [1]

Let’s assume you have a team of 18 firmware engineers who are responsible for

developing control algorithms for your solid state transformer (SST) to be sold in the

automotive market. The product has three major units: a bidirectional rectifier, dc-dc

converter, and an inverter. You equally distribute your engineers among these three

functional development teams and require them to kickstart the development to initiate

all three developments simultaneously. There is no way on earth you can start three

highly correlated developments at the same time without creating massive waste unless

you have a clear picture of the system architecture in mind. Even though if you opt to

start the three developments sequentially rather in parallel, the lack of architecture

will directly impact the quality of your work, time to market, development resources,

customer satisfaction, and finished product cost.

But where does the clear picture of architecture come from? If you remember, when

we talked about Cone of Uncertainty, I argued that the more time spent at the design

stage the narrower the cone gets for the rest of the development process; hence the

clearer and faster the image of product architecture will emerge. We discussed these

before we brought up the concept of Agile development. With Agile we won’t have

phases of product; we will have a product that starts with lesser features and as the

development progresses, it will be loaded with more features.

Going back to our SST product and our 18-member team, let’s assume we have a

clear architectural road map in front of us. Each product module is being developed

simultaneously and according to the architecture. Let’s assume these control units

are also functional as an isolated unit. The rectifier unit performs well with our HIL

system. All the data from our validation test indicates the design is sound. The same

thing happens with the other two units. Let’s also assume all these designs and

implementations arrive at the same time so there is no waste of development time while

waiting for a unit to be completed. Do you think we are done? The answer is this: far

from it. Now we have to make sure all these three units are glued together seamlessly and

function flawlessly as one major unit. This is where the process model comes to rescue.

Chapter 7 Layers Model

166

A product’s process model, which is also an MBD model, facilitates the integration

of all these individual units into what we like to call our product. The beauty of process

model is that it is purely product based unlike the process models used in the project

management. It is absolutely architecture dependent as it will not even come to existence

without it. Finally, it will not require us to have a fixed sequential or parallel development

process. It will give you a significant amount of flexibility that you are able to mix and

match models, processes, resources, and tools, enabling you to reshuffle, add, and

remove any items or resources related to the development.

So far, we have realized the development for our embedded system product requires

a control layer, but what we failed to see is the big elephant in the room. As engineers,

we are so occupied with the algorithms and functions we sometimes are not able to

see the massive amount of data that is being manipulated across our product. The

data is the main ingredient of the glue in our process model. Once we know how the

data flows, we know the system architecture. The data is purely in a software form.

This is the main reason software is the main ingredient of modern embedded systems

architecture and the nightmare we are facing day by day. Therefore the process model

is more important than your product model. Given, the product model here is the

functional models containing the control algorithms. This level of importance comes

from the fact that functional codes and control algorithms make up a tiny portion of

the amount of code written for an embedded system. Consequently, the process model

is from the architecture mode and the architecture model is submerged in the data

layer. Unfortunately, people who know data don’t know control, and the ones who

know control don’t know data. If you let the data people develop the process model

the product function would suffer, and if you let the control people develop the process

model the product and development will become inefficient for the remaining life of

that product. So the process model provides a unique environment to let these two very

different expertises to come together and design the system that we’d like to call a system

architecture.

�Product’s Process Model
The process of designing the product model is defined by the requirements model. We

can choose any other way to define products’ functional models but the requirements

model will create an environment that invites the data people to collaborate more closely

with the product functions. The requirements model also adds the flexibility to the glue

Chapter 7 Layers Model

167

in case of scope and on-the-fly design changes. Remember, every product is unique and

unknown at the beginning, according to the Cone of Uncertainty.

Since a model-based design is considered an executable specification, following a

requirements model will perfectly shape the MBD activities combining requirement,

design, and implementation phases at the same time. Although there are some MBD

vendors who can equip you with tools for mechanical, electrical, and software models

under the same modeling environment, it is not necessary to model everything as long

as MIL, SIL, and HIL are performed in such a way that they can validate the product

and process models. The flexibility of the requirement model is highly noted here when

we slowly replace the simulated parts with the actual released software or hardware

modules and components.

The product model as the requirement model has outlined its boundaries, comprised

of two hierarchical branches, data and control. This is because this is the first opportunity

we give the data people to have their inputs into design, resulting in a tightly integrated

data system with control algorithms. This also prevents the control people from avoiding

developing the system in a bottom-up fashion, which goes directly against the core

principles discussed here. There are a tremendous amount of disadvantages in designing

a system in this manner, which I will let you learn by experience and see the results.

In a Simulink environment, there are two types of wire connections between the

design elements, signals, and parameters. Signals are time-variant lines of data flow that

change values with time. Parameters are the time-invariant values. Signals are analogous

to data flow and parameters to control signals.

However, unlike many CAD vendors, so far none of the MBD tool vendors have

provided layering mechanisms in their environment. The two main required layers in an

MBD environment are control and data flow layers. This will separate the data flow from

the control and avoid unnecessary complexity in design. It also greatly helps to scale the

models when the system becomes more complex. It later will become vital in debugging

and troubleshooting the system.

In Figure 7-1, the data and control layers represent the core functionality of our

system. The data and control signals from the user interface or, in other words, the

application layer will target the corresponding control and data structure layers. From

Figure 4-4, the control signals are noted as dashed arrow lines and data signals are

indicated in solid arrow lines. The user interface module of our architecture carries

command – in this case, control signals to the control layer and sometimes to the

physical layer. The control layer then processes and carries the control command to the

data and physical layers. Nowadays some physical layers command the data and control

Chapter 7 Layers Model

168

layers also, but this is the root cause of many system security breaches; therefore there is

no dashed arrow line from the physical layer to the control and data layers shown here.

Instead there are modules on the control layer that control other modules in this layer.

For embedded systems with smart sensors, which are computationally autonomous

subsystems, this architecture still applies since the control and data layers of smart

sensor systems can be placed on the corresponding system layers. The communication

protocol between a subsystem control layer and other control modules however

are more elaborated due to physical distance between the processors but makes no

difference how they are presented on the control abstraction layer.

Since the layers are common across all the architectural modules mentioned in

Figure 4-3, the system’s input and output processing will interface with the respective

hardware components. Some data and control signals might have a final destination

of user interface for monitoring and user processing purposes. If you have noticed the

solid lines on the first layer in Figure 7-1, it resembles that of Figure 4-3, the architectural

model of the system. Please also note that how each layer is carefully isolated from the

other ones. The control layer has one direction, dashed arrow line to lower layers but

the data layer has a solid arrow line drawn to every layer in each direction except the

physical layer. This is because with having a dedicated data layer for our architectural

model, we can handle the data flow for all layers on the data layer. However there are

some solid data lines going to some modules on the control layer. This is because

oftentimes to let a control algorithm of one module decide what path to take, we need a

secondary set of data to provide to the control module to facilitate that.

Figure 7-1.  An example of embedded system’s architectural layers

Chapter 7 Layers Model

169

Like modules and components in the requirements model, product models don’t

address task scheduling, system interfacing, hardware-software mapping, mass data

handling, system requirements, and so forth. The product model, instead, is to help the

developers to define, design, simulate, and test algorithms and concepts.

�Development Process Model
Models at module and component levels deal with product functions and features;

however at the architecture level, models deal with activities, scopes, and marketing

requirements also. A process in simple words is a group of activities to develop a

real-time system. In our case the architectural portion of requirements model, the

integration part of implementation, testing segments of manufacturing, the debugging

part of optimization, and the V&V phase and the troubleshooting of deployment are

all activities that can utilize MBD tools. At this time, however, there is no MBD tool

vendor that offers a development process model due to the size and complexity of these

processes, which also require business expertise. However the layer architectural model

is aware of these complexities and is designed in such a way that allows the architectural

model to easily embed into the existing development processes. As a matter of fact the

model is designed specifically with an eye on such processes.

While various engineers, whether they are software or hardware engineers, are

developing each portion of the system, the project architect, and the team under the

structured Scrum discipline put pieces of the systems together to deliver each version

of a potentially shippable product under certain product releases. All these activities are

part of the product development process.

A process or architecture model must be able to fully address the following. These items

are directly correlated to the items in the requirements model at the architectural level:

•	 Product Features Scopes and Interfaces

•	 Data Dictionary and Data Management

•	 Task Scheduling and System Performance

•	 Hardware-Software Mapping and Interface Management

•	 Safety-Critical Functionalities

•	 V&V and Optimizations

Chapter 7 Layers Model

170

•	 System Integration and Testing

•	 Manufacturing

In the following figure, Figure 7-2, each aspect of the product development has

its own process, utilizing a fast V-Model system and architectural activities based on

the requirements model of that specific segment of product development. We have

discussed the details of these processes before in earlier chapters. However if any of

these processes follow the same development process, the use of MBD is absolutely

crucial to the well-being of the development process in terms of cost and time. This is

because the MBD will arm the engineers with a powerful tool that unifies all the tools

and consequently activities across the development process from development to

manufacturing. This by itself is the definition of an Agile process, and Agile processes

are created to cut waste and optimize project resources by introducing uniform methods

and tools. Some business tool vendors have become aware of this market demand on

uniform processes and developed Scaled Agile Framework (SAFe). The problem with

these tools is that the focus is primarily on business development rather than product

development, putting the product function at risk, especially for the embedded systems

that are often designed to carry out critical missions. The other issue that one can run

into is the complexity and weight of SAFe tool becomes so heavy that maintaining

the system requires as many resources as the product development. This is the same

problem that CPM and CPD ran into when the system became so heavy to carry and

eventually collapsed under its own weight. In theory there is a likely possibility that a

Scales Agile Framework becomes so big that it becomes practically an anti-Agile entity.

Chapter 7 Layers Model

171

The scaling of the framework happens in an organic way, meaning as unique as each

product is, the architecture becomes unique and so does the scaled framework resulting

in avoiding unnecessary activities in the product development. We will let the product,

through architecture, dictate the development processes. For example, let’s imagine you

have the product line that is developed and manufactured in the United States, and the

same product with some minor changes (let’s say cost reduction and less features) is

going to be developed and manufactured in another country. The SAFe for these almost

identical products would be greatly different because two countries would have certainly

different governmental policies, certification processes, design and manufacturing

cultures, resource planning, and many other differences. This is why every product is

unique so let’s not make the illusion of one-can-fit-all real.

Therefore the layer model creates an additional product development process

layer on top of other product layers. So far we have unified the hardware, software, and

manufacturing developmental processes by requiring these developments to follow

the same tools; MBD; same development processes; Structured Scrum; and same

architectural development process, the requirements model.

Figure 7-2.  Scaling up Agile to cover all the processes involved in the product
development

Chapter 7 Layers Model

172

If you are coming from a design background you might question how manufacturing

processes can follow the same processes as developmental processes. That’s a very valid

question if you believe in building walls. The popular belief in the design environment is

that once you are done with the design you throw it over the wall to the manufacturing.

We’ll let them figure out how to manufacture the product. We have discussed this before

and this is not an indication of the Agile process even though the manufacturing follows

closely an Agile process. This is like saying it’s ok to manufacture a very inefficient

product with very efficient manufacturing processes.

If you have experience with the manufacturing processes then you know once a

manufacturing engineer is faced with a new design s/he has to go through the same

CPD phases of concept, design, implementation, and deployment in order to be able

to manufacture the product. The devilish detail in this is how soon you are willing

to get the manufacturing involved to prevent wastes and improve the quality of your

product. Realistically it would be wise to get the manufacturing involved as early on in

the design stages as possible. If you do so then the product test process would be the

ground showing how ready and robust your design is.

Figure 7-2 illustrates the points discussed so far. Each process, whether they are

software or hardware of manufacturing development process, follows a harmonized flat

V-Model in a Structured Scrum framework synched by a product test process. The test

will provide not only feedback to the design and product function, it also shows how

effective our development processes are. Additionally it creates a cadence among all

teams and team members involved.

�MBD Tools
Whether you have a complex system of highly nonlinear differential equations

that model the dynamics of a physical system for your plant model or you are after

implementing a system of cascaded state machines for your control layer of your

product, the MBD tools are there to help you solve, simulate, and implement them for

the physical world. Like CAD tools, the MBD tools create a virtual model of the system

you are designing as well as allowing you to generate functional codes that can be

implemented on the hardware to carry out your applications for your final product. In

addition, the MBD tools let you optimize your overall system in an unprecedented way

as you develop your product.

Chapter 7 Layers Model

173

It is wrongfully believed that the automatic code generation part adds some

overhead to the overall size of your code but if that’s even true, these tools compensate

that by shorting the path from design to implementation and integration. They also make

the overall system very efficient by preventing redundancies, unifying coding styles, and

using robust coding methods. All in all, utilizing MBD guarantees a faster time to market

for your product that otherwise would take much longer to achieve due to reworks.

Among all the benefits that MBD brings us, rapid prototyping is the first one that we

get to experience. We discussed various configurations of MBD in rapid prototyping such

as MIL, SIL, and HIL. Figure 7-3 shows some of these configurations. In this case PSIM,

which is a power electronics modeling and simulation software, either converts the

model to code and then code is being downloaded onto a target hardware to be utilized

for a hardware-in-the-loop test, or there is hardware adaptor that takes the model and

then it will be interfaced with the rest of the hardware loop.

Figure 7-3.  Different stages of in-the-loop processes from MIL to HIL (Courtesy of
Typhoon HIL)

�MBD Utilization Steps
The first step in model-based design does not start with drawing the models. It starts

with understanding the model’s requirements. The requirements model method that

we discussed earlier in detail, specifically at the PSPEC and CSPEC level, can translate

the requirements to models almost in a one-to-one relationship. In other words, the

requirements model can be fully implemented in an MBD environment. This is because

the majority of functional specifications are either in mathematical or conditional form.

Chapter 7 Layers Model

174

Although model-based design methodologies and tools are still at their infancy to be

able to cover all the needs of a real-time system development with sophistication but

they still can address the majority of the developers’ needs.

A model in a model-based design environment is considered an “executable
specification.” This is because a model can gather all the following information in one place:

•	 System-Level Architecture

•	 Hierarchical Structures

•	 Graphical Representation

•	 Interactive Product specification (place mouse over element

to "hover" over element and see information regarding

element)

•	 Multidomain Functional Definitions with One Common Method

•	 Algorithm Design

•	 Data Analysis

•	 Highlighting Dependencies

•	 Simulation

•	 Code Generation

•	 Real-World Interaction

�Layer Model and MBD
After the mathematical and logical form of the requirements model is designed as

a model, it then can be simulated and tested to verify its functionality. Testing the

design at model level is very important as it shortens the length of time at integration

into the final product. It also creates meaningful test values for benchmarking the

product and to be used later in V&V, optimization, and even manufacturing tests and

product return. Figure 7-4 illustrates how MBD is used in a traditional V-Model. Since

this is a common practice among firmware developers utilizing MBD in a traditional

V-Model environment, the deployment of MBD in a flat V-Model and Structured Scrum

framework is even easier and comes as more natural since MBD is keen to early and

often V&V tests. But this is not the end of the story. The tool can be utilized at every stage

Chapter 7 Layers Model

175

of the product life cycle from requirements development to manufacturing and beyond.

Consequently, this makes the layer model highly organic to the embedded systems

development processes.

Figure 7-4.  In-the-loop solutions for various phases on V-model (Courtesy of
Control Lab)

In addition, since all the stages of the V-Model are developed in the same tool,

they can be summarized and manifested as a unit of the development process. This is

absolutely an Agile process by definition and in accordance to DFM. This is the tool that

marries the CPD framework to Agile methodology and eliminates various steps that

were previously required by the CPD and V-Model processes. Now we can see how layer

models facilitate the development process among various teams that otherwise could

not find a common ground to stand on and start communicating with each other.

The proof-of-layer model practicality is that there are MBD vendors who also

make hardware and software that not only are used in the research environment but

the very same tools are used by the development team as well as in the manufacturing

environments. We need to take advantage of the fact that there are tool vendors who

have already recognized the unification need and they have commercially available

products utilized among various engineering departments. All we need to do is to let our

products tell us how and when to use these tools. The layer model embedded in an Agile

method does just that.

Chapter 7 Layers Model

176

Figure 7-5 shows only the product side of the story, but by now we know the

number of layers on top of the product are greater than what is shown in this figure.

I avoid crowding the picture in order to facilitate your understanding of it. The layer

model utilizing the requirements model tells us what is needed to be designed and

implemented in the first Sprint. The start of the Sprint is marked clearly by the arrow

as “Sprint One.” Therefore what you see is one unit of Sprint from concept to design,

implementation, test, and release. In this Sprint the architectural layer is designed;

the major modules for the data and control layers are identified and implemented;

and either a dummy hardware or MIL, SIL, CHIL, and HIL is utilized to implement the

design. Then we either run the prototype in a purely simulated environment, run on the

target hardware, or anything in between. At the test stage of this Sprint the Product Test

Process will be performed in order to make sure manufacturing is also following the

rest of development. This image is the unification of all developmental processes and a

true Agile framework by definition. At the end of any Sprint you will have a potentially

shippable product that is tested. The test provides design and manufacturing feedback

by giving you a taste of a vertical slice of the product. Bon Appetit!

Figure 7-5.  Layers architecture for Scrum development

Chapter 7 Layers Model

177

In the second Sprint the modules are developed more in details and another test is

being performed at the end. The progression of details development follows the same

path shown in Figure 4-15 following a requirements model utilizing MBD tools. The core

idea here is that you draw a very narrow and continuous path from the user interface

to the hardware with the minimum product functionality and featurization. As the

development advances, this line becomes bolder and broader until it covers the entire

product features and functionality. This incremental delivery of values to the customer

creates cadence among the team members.

As we will discuss in the next section, the layers model also is very compatible with

the existing MBD build processes, as you can assign to different teams the data and

control layers that can work hand in hand during each sprint. The layers model provides

the path of what functionalities are required for the current Sprint and how data and

control layers interact with each other. This is a huge win for the layers model since we

know as the system developed the functionalities become much more complicated;

hence going back and redesigning the earlier modules is hugely costly and time

consuming. The MBD build process also comes naturally to the added manufacturing

process layer because many manufacturing methods have already adopted some

derivation of the Agile framework in one form or another: as an example, lean

manufacturing comes to mind.

�MBD’s Build Process
As soon as the requirements for a function in the system are ready we can develop the

model. This is as simple as knowing the problem before starting to solve it. There is no

complicated logic in this process and there are no shortcuts. Following an Agile process

gives us no excuse to bypass the requirements model development. However in a

process utilizing MBD as a tool, we can get creative and combine the requirements and

design documents with the actual function we are trying to design.

Another tremendous benefit of using MBD is that we can visualize the performance

of our system before it is physically realized. For that we not only need our algorithm

model but also a behavioral model that would together create a test bed for our design.

The behavioral models contain various parts of which one is the plant models. If you are

designing a cruise control system for an existing power train system, the model of power

train system is a plant model for your cruise control model. These two models then make

a behavioral model.

Chapter 7 Layers Model

178

The behavioral model then can be simulated in addition to individual function

models to reduce the design flaws and improve functionality and performance of the

system. Although there is some skepticism regarding how well a model can represent

a physical system, the models can be used for benchmarking for the future physical

system, to say the least. However a model is as good as its designer. An incomplete

model will generate incomplete results.

After designing your function in a form of a model, you can either integrate it with

other functional models and then integrate with the rest of the system, or you can

individually integrate it with the system. At this stage you also have the option to do HIL,

MIL, and SIL.

Furthermore, we can generate automatic code from the model and then integrate

it into the system. At this stage again, we can perform another set of HIL and SIL tests

to improve the design and generate more benchmarking. Please note the behavioral

models are one that model the system under development as a black box. The only

known elements of black box systems are the inputs and outputs because we can control

the input and measure the output. There are regression and mathematical tools that

are able to express the black box’s behavior in mathematical forms without knowing

what really is inside the box. For example, Matlab provides a toolbox called System

Identification that would just do that. Please see Figure 7-6.

Chapter 7 Layers Model

179

�MBD in Layers Model
No matter how we look at the real-time system development, the first step is to create a

requirements model. From an architectural standpoint, the models that are in the form

of components and modules must be placed in a system that might be composed of

various platforms whether in the form of hardware or software. This means that your

system architecture comprises both hardware and software functionaries but at the same

time agnostics to either platforms. Then as we discussed before, the system simulation

can be carried out in many different fashions of which HIL and SIL are among the

most popular tests. In our case any of the in-the-loop methods are not restricted to one

platform. They test architectural functionalities regardless of their platforms.

Figure 7-6.  A build model for MBD

Chapter 7 Layers Model

180

The system analysis then will follow to provide feedback to the task scheduler in

our system software, individual performance reports of components and modules, and

the effectiveness of the assumed architecture with respect to timing specification. All

these will provide us with a massive amount of invaluable data that would empower

us to better our design while keeping the costs of development down. In a structured

Scrum environment utilizing a layers model, the system is complete at the end of each

Sprint but it contains less features. The product will acquire more and more features

and functionalities as it grows with time. The project architect is in charge of the process

model and then the engineers are in charge of the product model. This will empower

the product architect to act as a program manager consolidating responsibilities and

making faster decisions. Earlier in this chapter we introduced the process and product

models. Figure 7-7 illustrates a modified version of Figure 7-6, which is tailored for our

flat V-Model process.

Figure 7-7.  MBD in flat V-Model

Chapter 7 Layers Model

181

�MBD Platforms
There are many platforms that can provide you with tools ranging from model design to

simulation and implementations that cover many aspects of the product from software

to simulating mechanical parts. Simulink and LabView are the most used modeling

software from Mathworks Inc. and National Instruments Inc. respectively.

In addition, in our examples we referenced graphs from various different companies

whose logo is presented on the pictures. You can consult with their corresponding

websites in order to inquire about more information. In many cases, the graphical user

interfaces seemingly look similar. For example, in LabView the graphical user interface

looks like that in Figure 7-8.

Figure 7-8.  NI sample MBD in its native visual language, LabView. (Courtesy of
National Instruments Corporation)

For Simulink samples, please visit: http://www.mathworks.com.

Chapter 7 Layers Model

http://www.mathworks.com/

182

�Summary
Engineering documentations are of grave importance even more so for embedded

systems because most of these devices are for mission-critical applications. However,

for various reasons, engineers are reluctant to develop or still more hesitant to

maintain these documents. Additionally, creating and maintaining documents are time

consuming and takes valuable engineering resources away when these resources can

contribute directly to the product development. The layers model with the help of MBD

creates a long overdue shortcut to combine what is necessary with what is functional.

Aside from documentations, requirements traceability is also another important

aspect of engineering work that is not only used for the internal operations to keep the

checks and balances but also for product certifications and governmental compliance

processes. But let’s not forget that the main benefit of requirements traceability is to

keep the product development aligned with what is absolutely necessary for the product

and at the end to keep the customers happy. The layers model is there just to do that

by providing a practical road map to not only product development but also processes

involved in a product’s development.

The layers model started from what is absolutely necessary for our product to meet

the requirements and then provide a path to organize the product functionality in such

a way that is Agile friendly. From a functional standpoint, Agile is there to help the

quality of the work in implementation phases. From the business standpoint, it’s there

to facilitate time to market of our product. Finally, from the environmental standpoint,

Agile is there to reduce intangible or tangible wastes that directly or indirectly contribute

to exploitation of our natural resources and create pollutants in terms of material

waste, low-quality products, and overusage of energy sources as a result of inefficient

developmental processes and products.

�Bibliography
[1] Schätz, Bernhard, Alexander Pretschner, Franz Huber, and Jan Philipps.

“Model-Based Development of Embedded Systems.” OOIS Workshops (2002).

Chapter 7 Layers Model

© Mohsen Mirtalebi 2017
M. Mirtalebi, Embedded Systems Architecture for Agile Development,
https://doi.org/10.1007/978-1-4842-3051-0_8

183

CHAPTER 8

MBD and Requirements
Model
In this chapter we will bring a practical example of an automobile cruise control that

we discussed earlier in the requirements modeling chapter. The steps of developing a

requirement model will follow in parallel with its MBD equivalent. The MBD models

then will be divided into two categories: product and process models. The product

model will follow the PBS and the process model will benefit from the architectural

template, timing specification, data dictionary, and more.

From the previous chapters we know that the requirements model starts with

DCD and CCD, which defined the boundaries of the system architecture. To avoid

unnecessary complications, we used a very simple cruise control example. In Figure 8-1,

the two top figures show the DCD and CCD respectively and the bottom figure the

architectural template.

184

Figure 8-1.  An overview of high-level functional specs, DCD and CCD, in
conjunction with system architecture

Chapter 8 MBD and Requirements Model

185

Combining the DCD and CCD diagrams within an architectural template in a MBD

environment will produce a model that is presented below. As it is evident, there is a

one-to-one relation between our requirements model and our MBD model.

The highlighted area in Figure 8-2 represents the system we are trying to design. It

contains all four major modules of our architectural template. As you can see, the wire

connectors represent two types of intermodule connections, data and control. Although

Simulink lacks providing separate layers for control and data, we can still distinguish

between these two by creating data and control buses. Any signal that is labeled as

control, status, state, and monitor are all with a control nature and the rest are data

based.

Figure 8-2.  How architecture and specifications come together in an MBD
environment

The input and output processing modules can have an architecture of their own,

depending on their level of complexity and sophistication. Various types of database

schemas, handshaking mechanisms, hardware-software interfaces, and much more are

handled through these modules. Nevertheless, regardless of any complex applications,

any real-time system at the architectural level can be represented with these four

modules.

Chapter 8 MBD and Requirements Model

186

�Product Model
Since we picked up a very simple design example, the input and output processing

modules don’t act much on the signals other than simple scaling and range checks.

Therefore the heavy load would fall on the Control and Monitor modules. As we

discussed, before and after performing PBS, we created four submodules as the

following. Please note that, based on our requirement model these submodules are

also divided to be based on two different subfunctions, data and control, DFD0, and

CFD0. Please see Figure 8-3 for details.

Figure 8-3.  A reminder of DFD and CFD in the order to be converted to their
equivalent models in MBD

Chapter 8 MBD and Requirements Model

187

As is evident from the requirements models, the number or the nature of the inputs

and outputs of the Control and Monitor modules do not change as we proceed to the

lower layers of design, they just become more defined and consequently assigned

to various submodules for further processing. In Figure 8-4, the MBD version of the

Control and Monitor module is being represented. The number and nature of all inputs

and outputs is being projected from the higher level of the requirements model. As we

decomposed the higher module to four different submodules, we might create more

data and control signals. As a result we can combine or decompose the data and control

buses to fewer or more signals and buses respectively. In this case we decided not to

combine the local signals with the global signals for the memory space considerations.

In addition to the data bus, we decomposed the input control signal to two signals

for the ease of use and the application requirement. These techniques can be used

throughout the development process and will be considered as activities under Process

Model development. As we discussed before the process model deals with architectural

concerns, V&V, optimizations, and process design. Again, the MBD model represents the

requirements model in a one-to-one fashion. In the following paragraphs we follow the

same trends in the requirements model until we get to the PSPEC and CPSEC documents.

Figure 8-4.  An equivalent CFD and DFD in MDB

Chapter 8 MBD and Requirements Model

188

Further decomposing the product, we have decided that the modules, Measure

Motion 1.0 and Measure Mile 2.0, are simple enough that they won’t need further

decomposition. The remaining modules are Control Throttle 3.0 and Monitor

Status 4.0 modules that seem to be complex enough to need to be broken down into

detailed submodules. On a side note, when a module appears not to need additional

decomposition, therefore by definition the module is called a component. As a reminder,

components are the simplest building blocks of the product that can be designed and

tested in one sprint (Task-Component). The followings are the requirements model

Control Throttle module that will follow with the MBD equivalent model.

In accordance with the requirements model for this level of the product, the Control

Throttle module is decomposed to three submodules: Select Speed 3.1, Maintain

Speed 3.2, and Maintain Accel 3.3. Again, the data and control models are presented in

separate representations. However, due to MBD tools shortcomings, there is no separate

representation for each; rather we should organize the MBD model in a way that control

signals are separate from their data counterparts. Please see Figure 8-5.

Figure 8-5.  The CFD and DFD modules to be converted to MBD

Chapter 8 MBD and Requirements Model

189

As we can see in Figure 8-6 of the MBD model, it shows how the InputControls

control signal can interact with the data selection. Depending on what the value of

InputControls is, either we maintain a constant acceleration or we disregard any

acceleration and continue with the zero acceleration, which is also the constant speed.

The vertical dark bar on the left side denotes a bus selector in Simulink for selecting

and routing signals whether it is of a data or control nature. The vertical dark bar on the

right side is a bus creator that would multiplex signals regardless of their nature. In our

process we don’t mix and match data signals with control signals. This is the only way

to overcome the MBD tools shortcomings to allow the users to create separate data and

control layers.

We continue our journey on the same level to develop the Monitor Status module.

This module comprises of two submodules, Monitor Fuel Consumption and Monitor

Average Speed. By inspecting the requirements model we realized there are three inputs

to the module and one display output. Two of the inputs are of a data nature and the one

remaining is of a control nature. Since Running is one of the EngineStatus conditions

it is of a control nature. As we have remembered the InputControls bus contains both

EngineStatus and CruiseControl signals. StartTrip and AverageSpeedRequest are part of

the CruiseControl control signals (Figure 8-7).

Figure 8-6.  An equivalent MBD of the previous CFD and DFD

Chapter 8 MBD and Requirements Model

190

Figure 8-8 represents the MBD model for the Figure 8-7 requirements model. As we

expected, the relationship between modules, inputs, and outputs are one to one. The

average speed and Fuel Consumption are the result of the process and they are out to

be displayed to the driver.

Figure 8-7.  The last set of CFD and DFD on the first tier of architecture to be
converted to MBD

Chapter 8 MBD and Requirements Model

191

Since the module Monitor Fuel Consumption has reached its simplest form, it is now

considered to be a component. However this is not true for the other module at the same

PBS level, Monitor Average Speed. Figure 8-9 is the PBS of this module, which is comprised

of three different components: Start Trip Time, Clock Trip Time, and Issue Average Speed.

Figure 8-8.  The equivalent model in MBD

Figure 8-9.  The second tier of requirements model to be converted to MBD

Chapter 8 MBD and Requirements Model

192

At this point, we can design our data layer with the help of the above DFD 4.1 but

we need more info to be able to design the CFD4.1 in conjunction with the DFD4.1. The

interdependency of these two data and control entities are needed. As a result we define

the following for the CFD4.1. Since this definition concludes our control layer we will call

it the CSPEC:

CSPEC 4.1: Monitor Average Speed
Start Trip Time will activate process 4.1.1

Running will activate process 4.1.2

Average Speed Request will activate process 4.1.3

With these new definitions we can now design our MBD model. The control arrows

on top of each module are trigger points that would be activated if their corresponding

conditions are met. Please see Figure 8-10.

Figure 8-10.  The equivalent MBD

At this point our last module has been successfully decomposed to its last layer

of DFD. We call these three units as components. With the exception of component

CSPEC4.1 that was needed to be implemented a layer higher before other components

were reached, we can address all the components throughout the project at the same

time and on the same architectural level.

Chapter 8 MBD and Requirements Model

193

For the Measure Motion component we have the following function definition:

PSPEC 1.0: Measure Motion

Distance_Count ++;

Distance = Distance_Count/Mile_Count;

Speed = Pulse_Rate/Mile_Count;

Accel = Rate_Change/Mile_Count;

In the MBD environment this will translate to the following executable model in

Figure 8-11.

Figure 8-11.  The equivalent MBD for PSPEC 1.0

Since the inputs and outputs of the component were already defined, the function

definition was easy to implement. This also would streamline the workload for the

development engineers, thus speeding up the development process. The next step

would be to develop the Measure Mile functionality. Although the functionality of

Measure Mile component precedes the Measure Motion component, it has no effect on

the development process as a whole. This makes task distribution easy for the project

Chapter 8 MBD and Requirements Model

194

architect leading to overlapping tasks and saving even more time. Below is the function

definition of the Measure Mile component in requirements model form:

PSPEC 2.0: Measure Mile

Shaft_Rotation_Pulse += ;

Calculate_Pulse_Count (Shaft_Rotation_Pulse);

If Lower_Limit<= Shaft_Rotation_Pulse <=Upper_Limit

 set Mile_Count = Shaft_Rotation_Pulse;

Otherwise

 set Mile_Count = Default_Mile_Count;

Figure 8-12 is the representation of the above pseudo-code in MBD language. There

are various ways to implement conditional statements via MBD tools, and they are all the

right way based on the developer’s style in programming. Try to have an open mind with

the programming styles.

Figure 8-12.  MBD model for PSPEC 2.0

The CSPEC3.0 is described rather in a finite state machine fashion. This method

of expressing requirements is exactly translatable to a MBD model. However we found

a simpler way to express the requirement for control and data all in one place. This

part was also implemented when the Control Throttle PSEPC was implemented. The

remaining PSPEC and CSPECs can be easily defined based on the same method we have

demonstrated so far.

Chapter 8 MBD and Requirements Model

195

The main advantage of utilizing an MBD tool is that at the end of the process of

defining the requirements, you have also designed and implemented the product

functionalities and features. In addition, you have the option of simulating the results

before implementing the design on real hardware. This will save a tremendous amount

of work and prevent a massive amount of waste.

Next we will revisit what we’ve learned about the process and product model

through studying the requirements model in the light of MBD.

�MBD and Process Model
The process model covers a host of different and often complex activities that

might seem related or even not directly related to the product development. Timing

Specifications, Requirement Dictionary, Operating Systems, Database Architecture,

DCD & CCD, Optimization, V&V(MBD Model Testing, Product Bench Testing, Smoke

Test), Continuous Integration, Manufacturing Process (Functional Test, End-of-the-Line

Test), and the Deployment (product optimization, troubleshooting, and diagnostics) are

just some of them.

In Agile and DFM processes all these activities are part of what is called the product

infant care period. This shows that the development process continues even after the

product is released for at least a few months or years. This is why there should be a

uniform method and tool that can connect all these activities like a thread that holds

together a series of beads. Fortunately, MBD tools have the capability to properly

connect all these activities. However, the MBD environment as a tool is only capable

of providing the means to materialize your concept but are not able to show you the

road map of how to organize, design, and implement these activities in order to create a

uniform development process from research to manufacturing. Yet, if you are utilizing

MBD tools, the requirements model can be implemented much easier and that will

provide you the road map you are looking for to carry your product from concept

through manufacturing and beyond.

One of the most important things that a road map is able to provide you with is a

prioritization task list. If you let the product speak to you, then function with higher rates

of executions, or in other words, high-frequency functions take the higher priority over

lower-frequency functions. This is because in real-time systems the critical tasks execute

on a more frequent basis than the others. These functions contain the core functionality

of the product. To make a list of these functions based on their priority ranking, you need

Chapter 8 MBD and Requirements Model

196

to develop your timing specifications. The development of timing specs is on a layers

basis because as you remember you are developing your product based on PBS and the

top-down approach. Do not worry about reshuffling the functions around as the design

constraints kick in. With MBD this would be much easier than what you think.

�Timing Specifications
As you might remember from the requirement models, we asked you not to worry about

the timing specification of the product functions while you are developing the product

models on each layer. This was for when the requirements model was executed at on

phase-gate basis. Once you move to the realm of MBD then you can take advantage

of early V&V processes while you are developing your product as early as the concept

phase with all the in-the-loop methods. In MIL at concept, you don’t need timing specs

because you can run all the functions at the same time. This is when you are testing

your algorithms. Once you moved to the SIL and HIL stages then you can start worrying

about assigning execution time to each module. The software timing requirement is a

constraint that the real world imposes on the product. This is because during SIL and

HIL testing, the computation power of your microprocessors and the valuable resource

of time are not limitless. In an ideal world, while doing MIL, all functions in a real-time

system can be executed simultaneously, but that’s not always possible. This is when we

create Interrupt Service Routines that run with different frequencies and priorities. So

the rule of thumb is to run your algorithms in an ideal and pure simulation environment.

In the meantime we don’t want to impose the timing constraints at the beginning

of the design process because this would sidetrack our brainstorming process and

would impose unrealistic restrictions on the product functions and features, often

creating unreliable test results for your algorithms. Assign execution time when you

have benchmarked your algorithms in an ideal environment. You never know, as the

timing spec is a fluid concept and often changes as we learn more about our product

and its applications. This concept is also evident in CPM when the project manager

starts to define the project tasks and activities. The rule of thumb is to apply constraints

after the concept is developed. For this very reason, the requirements model also asks

you to define the timing specifications at the end when all the product modules and

components at least on the same layer are defined. For our example of automobile cruise

control, we developed the Figure 8-13 timing specification from the CSPEC of the core

cruise control module.

Chapter 8 MBD and Requirements Model

197

After analyzing the table and realizing it is inefficient to have individual timing

requirements for each component, also for the sake of this example, we decided to group

the similar functionalities together based on the architectural template. The system

inputs and outputs plus the main computational module will run at the fastest speed

and the noncritical user interface data will run at the slowest rate. You can also at this

stage rehash the architectural layout and move the components and modules from one

speed bracket to another or mix and match various function speeds to lower or higher

depending on the applications. We decided to do Figure 8-14 for our example here.

Figure 8-13.  Timing specification table for cruise control module

Figure 8-14.  The timing spec integrated into the top level model

Chapter 8 MBD and Requirements Model

198

So as you see, we weren’t worried about our timing until we go to the CSPEC level

and then we allowed the application to dictate the timing spec to the product. The timing

spec then was applied to the top layer. The function calls in Figure 8-14 can be triggered

at a certain point in time independent from each other with adjustable frequency.

The MBD limitation here would be to create asynchronous and preemptive interrupt

schemes. However each function call can be packaged neatly and manually placed in

the right Interrupt service routine.

Now if the plant model is a dynamic model, then we can dynamically simulate

the model before deploying it on a real hardware or we can do a host of different

methods such as MIL, SIL, and HIL. I can’t put enough emphasis on simulation before

I am being accused of prejudice against traditional methods. The simulation will

significantly reduce the time to market of the product not at the design stage but at the

troubleshooting, optimization, and deployment phases. The data collected from the

system can also be used for troubleshooting and diagnostics efforts in the field. This data

works as a product signature for benchmarking purposes.

�Requirements Dictionary
Figure 8-15 is a simplified requirements dictionary for our example.

Figure 8-15.  The requirements dictionary from the requirements model

These data such as input and output value units along the range of acceptable values

for each input and output of the components can be easily implemented via executable

scripts and can be implemented in the code automatically. The absolute min and max

values are vital to many system inputs as the digital world has its own limitations. For

Chapter 8 MBD and Requirements Model

199

example, a divide by zero can result in a catastrophic system failure. These MBD scripts

can not only document the knowledge, but they can also help you to implement a

bounded input, bounce output (BIBO) control scheme.

�Real-Time Operating Systems
It is impossible to talk about timing specification for a real-time system without

mentioning real-time operating systems. In a digital control system the sampling time

is an integral part of every routine. The sampling time in a real-time system technically

translates to the frequency of interrupts that call those specific routines. Since time is a

scarce resource not all routines can run at the same time or with the same frequency.

That’s why we go a long way to identify which routines are absolutely critical and which

are not. This is when the application of hard and soft real-time routines can make a

difference in how a critical application differs from a noncritical one.

Depending on the memory availability, the routines can be categorized as either

processes or threads. Processes use separate memory locations where threads use the

same memory locations. High integrity applications usually use processes and threads

are for lightweight, noncritical applications or background tasks. Processes can then be

categorized to hard deadline, soft deadline, periodic, and aperiodic processes. This is

where the real-time operating systems comes to play hard. Real-time operating systems

are to manage processes and threads through various means and methods. Discussing

operating systems in detail is beyond the scope of this book but we will discuss how

some of the MBD tools have integrated operating systems into their toolboxes. The

morale of the story is that, assigning execution frequency to each module is not enough.

We also have to manage the timing specifications via operating systems that would

oversee not only the software but also hardware and the entire system’s architecture.

Mathworks Simulink environment in conjunction with the Texas Instrument DSP/

BIOS operating system have created a MBD feature that allow integrating the operating

system of the TI microprocessors into the Simulink models. This feature uses almost

every object and tools that the TI DSP/BIOS offers without requiring you to hand-code

the OS. You can create and embed, hardware interrupts (HWI), software interrupt (SWI),

and many other software objects.

Chapter 8 MBD and Requirements Model

200

�Database Architecture
Similar to operating systems, databases are also complicated and come with various

architectures. Discussing this topic is also far beyond the scope of this book, but after, all

with the timing specifications comes the operating systems and with operating systems

there you must use some types of databases to handle data among processes and threads

that run at different speeds. This is very important especially for the critical processes

not to be starved of their data. Some processes need the most accurate data and some

need the most recent data and some need both. For the most recent data processes the

example that comes to mind is LIFO buffers where the first data reading in the stack is

the last data out, which means the most recent data is always retrieved from the stack.

For the most accurate data we can bring an example from moving average filters where

a series of data will be averaged out and the most accurate estimate would be provided

to the consumer of the data. In motor control application, the current value read off

the motor windings should be the most accurate and recent data. Just as an example

for databases, one of the most popular database structures used in real-time system

architecture is called the Producer-Consumer model. Figure 8-16 is a model created in

the National Instrument LabView environment. The main idea here is that, the producer

and consumer routines are running at different speeds; however there is a buffer in

between that would allow for a reliable data exchange between these two entities.

Chapter 8 MBD and Requirements Model

201

When it comes to data handling, electrical or computer engineers have no say. This

is the domain for software engineers who can remedy various situations with their tools

and methods. Layers models make the interaction between these two very different

engineering disciplines much smoother. It will actively involve the software engineers in

the process of developing the architecture of a real-time system.

The level of involvement of software engineers is more visible at the beginning of the

development as they lead the module structures; however they will continue supporting

the developers throughout the process in order to organize and manage the data, define

architectures, and set up an effective operating system that looks beyond the product

function into manufacturing, deployment, and field service.

�Verification and Validation (V&V)
One of the tools that often comes with MBD software is used for automated requirement

tracing, standard compliance checking, and the coverage analysis. Some of them also

can create automated test harnesses for each model to check model functionality, testing

against the requirements and model coverage. Figure 8-17 is an example of Mathworks

Figure 8-16.  Database schema implementation in NI LabView

Chapter 8 MBD and Requirements Model

https://doi.org/10.1007/978-1-4842-3051-0_8#Fig17

202

Simulink V&V toolbox. For the highly regulated industries such as medical, defense, and

aviation, these documents are required by the government and are vital to the life of the

development in order to acquire appropriate certifications. Since the majority of these

documents are created automatically at the time that models are created, it is a good

practice to perform the V&V processes right after the models are developed whether

or not the norm of your industry requires them. This way the design flaws will be

identified earlier on in the design process and can be resolved much quickly and easily

than later. Postponing the V&V process will push the design bugs to the intergeneration

and deployment phases, where the product is much more complex and debugging

takes longer time to carry out and bugs will be much more expensive to fix. Some small

software to hardware bugs can delay or even kill the product. Another advantage of

utilizing MBD’s V&V tools is that the requirement specification, design, V&V, and later

optimization can be performed one after another, leaving less workload on the shoulders

of the integration process.

Please note that there are examples on the Mathworks website that illiterate how

requirements specs are created via the Doors application, where the requirement

statements are created and stored. Doors software looks a lot like MS Excel but it can

capture the marketing definition of the product in hierarchical and cascaded style much

or less similar to our requirements model. Also the automatically generated code is

embedded in the requirements model definition as comments in the body of the code.

This is required with some agencies for traceability purposes, creating a one-to-one

relationship between requirements items and their counterpart design MBD model

with the automated test harness created by the Simulink according to the requirement

specifications and design. Again, this stage is also required for traceability but aside

from the government enforcement, it is a very useful method of debugging the design.

Creating test cases for each model will allow the designer to explore the design in a

way that it was not possible before, allowing them to create complex test situations to

study the functionality of design under different circumstances. Additionally, in the

Simulink environment you can create test cases for each requirement item. This is how

to demonstrate that each test harness is testing the design, item by item. Finally Simulink

can provide you with coverage test results that would test the design against common

flaws, such as the following: if the bounded input creates a bounded output, whether the

module outputs are going to converge or diverge, if there are dead logics used, and so on.

These and a handful of other reports can create a concrete V&V process with a host of

useful documents, all generated automatically.

Chapter 8 MBD and Requirements Model

203

�Continuous Integration
In an MBD environment, the automated code generation and continuous integration

can be combined. Obviously the entire process can be automated and performed

without any interruption as the configuration parameters of the automated code

generation process can be fully programmed and controlled. The generated code from

the model can then be automatically inserted into the hand-coded system programs,

creating homogeneous code. As the code is generated from the models, the code

can be automatically passed on to the next process, the smoke test. The last stage of

development is the smoke test, which marks the end of continuous integration process.

These process-from-design to integration and smoke tests all can happen in one Scrum’s

Sprint.

�Smoke Test
If you remember, we talked about creating test cases for each MBD model. The

component test cases have different natures as the higher-level integration model tests.

Architecting the development tests from component to integration can fill up a few book

volumes. As in the manufacturing processes, the subassembly’s functional testing is

different than the end-of-line testing of the complete product; the component testing is

normally much more detailed where the integration testing is more streamlined, leaving

studying the details of a component’s function to the more detailed component tests.

The smoke test is also an integration test but with the difference that the test is being

performed on the latest version of our final product, not just the software. Having an eye

on the integration and smoke testing while we are designing our functional modules and

components, we can create a systematic method to extract integration test cases from

the component test cases. In other words, the integration test is the collection of the best

detailed test cases at the component level. If we decide to have an integration model

for our MBD models, these test cases can be used to simulate the integration model,

which is a tremendous help with troubleshooting as the architecture gets more crowded

and complicated. The integration model is the equivalent architectural model of the

requirement model for our product. Finally an abstract of the integration model’s test

cases can be utilized in the smoke test, and then these test cases are transferred to the

manufacturing for product testing.

Chapter 8 MBD and Requirements Model

204

�Manufacturing Tests
Manufacturing tests are nothing but the subsets of component and integration models test

cases. As we discussed before, the manufacturing tests have two distinct styles with respect

to product functionality coverage. The subassembly functional tests are compared to

module test cases and the end-of-the-line tests are similar to integration and smoke tests.

The test plans and codes generated in the development process can accordingly be

used in the manufacturing process with zero to minimal changes. The industry leaders

use the actual module test cases for the manufacturing tests. By doing so, they eliminate

the need for introducing other sets of software packages along expertise with different

skill sets. For example, if you are using MBD to develop your product software and then

you are using C language to develop your manufacturing test routines, then you will

need separate hardware platforms compatible to MBD and C, respectively, in addition

to hiring programmers with special domain expertise to develop these codes. Keep

in mind, you also need to maintain two different development systems. Otherwise by

using only one development tool across the board, the tool can be utilized throughout

the development and manufacturing process. By unifying the tools for the two major

players of the development, design, and manufacturing, the rest of development will

follow. Diagnostics aside from promoting user friendliness for your product creates a

major source of income in form of service that also buys you customer loyalty, which

consequently gives you an unprecedented advantage over your competitors.

�Diagnostics
Among all product testing processes you do to ensure the integrity of product quality

and function, diagnostics is the most complex and most useful one to the customers.

This product feature makes a tremendous differentiating factor between you and your

competitors. However, many products fail to offer such a hugely beneficial feature to

their users despite the fact your product developers have already done most of the work

for it without knowing it. The diagnostics is a subset of developmental process with

respect to component and module testing. The developer engineers as a part of their

routine processes create benchmarks and methods to distinguish a good functional

performance against a faulty one. If these efforts are abstracted, organized, and offered

to the customer through a user-friendly interface, they are what the customer likes to use

to find out if the product is functioning properly or there are signs of wear and tear that

can cause failures in the future.

Chapter 8 MBD and Requirements Model

205

The diagnostics algorithms can either be extracted directly from the MBD models

and offered in their native style to the customers through plug-in packages, and/or

they can be packaged and sold separately as diagnostics and monitoring tools. If you

use plug-in packages of product software, then you can activate and deactivate the

diagnostics layer by some digital keys.

�Summary
As we demonstrated in this chapter, the MBD tools can be utilized throughout the

development process from very early stages of product inception until it’s released to

the customers and even after the release. Historically, most MBD tools were originated

to help the research engineers to materialize their ideas and concepts. As the tools

structurally and architecturally evolved and were equipped with more features intended

to help the design engineers with their needs, their evolutionary process didn’t stop at

design. Modern MBD tools, as they are evolving, tare growing toward system integration

and product deployment.

The MBD tools have provided us with powerful means that enable us to unify the

language of experts involved in design and manufacturing of the real-time systems.

Utilizing one development tool can eliminate distractions in the development process,

allowing the engineers to focus more on product development rather than developing

skill sets for different tools. This also eliminates the tools’ compatibility issues, reduces

the risk of tools’ early obsolescence, and simplifies the tools’ maintenance programs

resulting in much lower development costs.

Additionally, by removing the tool variation in the development process and

eliminating unnecessary interfaces between phases of product development from

concept to requirement, to design, to implementation, to test, to manufacturing, we

shorten the time to market of the product via two methods, removing unnecessary utility

work such as codes and hardware that translate the output of one development phase

to the input of another one. It also facilitates the product development by unifying the

technical languages and methods, which in return will save time in understanding the

product and development issues regardless of their geographical differences.

Finally, the tools are dumb. Only a well-thought-out process gets the best of your

tools. This process needs an active architecture. The layers model is able to provide

your development process a structure flexible enough that can welcome changes while

ensuring the integrity of the product functions.

Chapter 8 MBD and Requirements Model

207
© Mohsen Mirtalebi 2017
M. Mirtalebi, Embedded Systems Architecture for Agile Development,
https://doi.org/10.1007/978-1-4842-3051-0

Index

A
Agile methods

meaning, 37
overview, 36
principals, 58
project control

burn-down/up charts, 41
cone of uncertainty, 41
cost, quality, time and scope, 40
daily stand-ups, 39
design phase, 42
done-done list, 39
interfaces, tools and methods, 39
potentially shippable product, 39
pyramid, 40
release planning, 42
sprint, 40
team members, 39

Scrum, 37
rooming, 38
master, 37
sprint planning, 38

Analog to digital converter hardware
(ADC), 67

Architectural drawing, 12
building construction, 24
construction engineers, 21
cross-sectional view, 20–21
first floor, 16
flow structure, 13
front and east elevation, 18
garage floor, 15

layer creation, 22
numbering system, 23
reusability, maintainability, readability

and scalability, 22
second floor, 17
stack of, 23
west and rear elevation, 19

Architectural model, 139

B
Building industry vs. PCBs, 24

C
Collaborative product development

(CPD), 43
concept development, 44
design, 45
financial tool, 43
gate one, 44
gate two, 45
manufacturing, 46
phases, 43
product launch, 46
product planning/project and

architecture, 45
project completion, 47
software process, 52
tasks, deliverables

and decisions, 44
testing, 46
V&V and optimization, 46

https://doi.org/10.1007/978-1-4842-3051-0

208

Conceptual design
product development, 76
prototypes, 75
rapid prototyping

hardware in the loop, 79
model in the loop, 77
proof of concept, 81
software in the loop, 78

Scrum concept, 75
simulation prototyping, 76

Context diagram, 92
abstract document, 92
architectural units, 94

control flow diagrams, 92
customer’s view, 92
DCD and CCD

comparison, 94
embedded system, 92–93
HP’s method, 93
submodules, 94

Continuous integration (CI)
process model, MBD, 203
software environment, 106

Control Flow Diagram (CFD), 95
Control specifications (CPSEC)

MBD tools, 122
problem statement, 135

Critical path methods (CPM), 28
definition, 29
effectiveness of, 29
Robust Gantt Chart, 29
WBS, 30

D
Data context and control context diagrams

(DCD and CCD), 127
control and monitor system, 127

electronics control module, 127
graph, 127, 128

Data flow and control flow diagrams
(DFD and CFD), 129

complex module and control throttle, 131
components, 129
data and control structures, 133–134
module, control and monitor, 129–130
monitor status module, 132

Data flow diagram (DFD), 95
Design for manufacturing (DFM), 54

E, F, G
Electronics control module (ECM), 127
Embedded systems, 7

H, I, J, K
Hardware interrupts (HWI), 199
Hardware in the loop (HIL), 79
Hatley and Pirbhai (HP) method

process architecture, 143
progressive product test, 107
requirement model, 91, 101

Highly accelerated life testing (HALT), 52

L
Land survey drawings, 10
Layers architecture

Agile methods, 3
bottlenecks, 8
building industry vs. PCBs, 24
clash of

cultures, 5
thoughts, 5

construction industry, 9

Index

209

construction project, 1
control functions, 3
draw (see Architectural drawing)
efficient development method, 2
embedded systems, 1, 7
firmware, 7
green process, 2
history of, 5
intelligent product development, 8
land survey drawings, 10
mission creation, 4
people and product development, 6
project manager, 3
projects and processes, 6
requirement model, 4
software and hardware, 4
software development, 7

Layers model. See Model-based
design (MBD)

M, N, O
Management process and architectural

tool, 61
architecture design, 82
classical method, 61
documentation process, 63
phase (see Requirement model)
requirement model, 62
software and hardware, 62
traditional methods, 61
vehicle cruise control, 82

Marketing requirements document
(MRD), 74, 91

Model-based design (MBD), 163
architecture, 176
behavioral model, 178
build process, 177

control and data, 85
layers model, 174, 179
in-the-loop solutions, 175
model creation, 164
platforms, 181
product and process, 164

architectural layers, 168
control algorithms, 165
development model, 169
embedded systems, 166
manufacturing processes, 172
MBD model, 166
modeling languages, 56
process model, 166
product development, 171
product’s process model, 166
rapid prototyping, 77
Simulink environment, 167
SST product, 165

rapid prototyping, 173
requirements model, 183

architecture and specifications, 185
overview, 184
process model, 195
product model, 186

tools, 172
UML program, 163
utilization steps, 173

Model in the loop (MIL)
hardware loop, 77
software loop, 78

P, Q
Polaris defense system, 29
Problem statement

automobile management system, 125
control and monitor unit, 126

Index

210

control diagram, 126
requirements model, 126

architectural model, 139
DCD and CCD, 127
DFD and CFD, 129
PSPECs and CSPECs, 135
timing specification, 137

system architecture, 140
understand, 125

Process architecture
Agile testing, 160
design and planning project, 153

development process, 153–154
hardware, 154
method recycling, 155
software, 154
system architecture, 153
team dynamics, 155

final phases
Agile development

process, 158–159
layer architecture, 158
phase-gate concept, 157
structured Scrum framework, 157

HP method, 143
inspiration, 145
modules and components, 155
POC (see Proof of Concept (POC))
potentially shippable product

concept, 144
smoke test, 159
V-Model structure, 144

Process model, MBD, 195
continuous integration, 203
database architecture, 200
diagnostics, 204
frequency functions, 195

manufacturing tests, 204
product infant care, 195
real-time operating systems, 199
requirements dictionary, 198
smoke test, 203
timing specifications, 196

brainstorming process, 196
cruise control module, 197
dynamic model, 198
functions, 196
top level model, 197

verification and validation, 201
Process specification (PSPEC)

MBD tools, 122
problem statement, 135

Product breakdown structure (PBS)
component design, 86
data layer, 116
development, 114
DFD and CFD interact, 114
hardware and software platforms, 68–69

Product development team, 69
Product life cycle, 67
Product model, MBD, 186

control and monitor module, 187
data counterparts, 188
definition concludes, 192
DFD and CFD models, 186
equivalent model, 191, 192
executable model, 193
first tier architecture, 190
function definition, 193
measure mile component, 194
representation, 194
second tier, 191

Project management methods
Agile methods, 36, 58
collaborative product development, 43

Problem statement (cont.)

Index

211

CPM (see Critical path methods
(CPM))

design for manufacturing, 54
documentation process, 57
interfaces, 59
modeling languages, 56
optimization, 57
pyramid, 36
real-time system, 27
Scrum functions, 57
software, 47
time-critical and predictable

basis, 28
V-Model, 58

Proof of concept (POC), 81
architectural development, 146
conceptualization phase, 146
CPD phases, 145
forms and engineering

methods, 146
hardware recycle, 147
logical process, 145
method recycling, 148
prototypes, 146
Scrum practitioners

concept phases, 150
concept release, 150
DFM, 151
prototyping phase, 151
scaled control diagram, 152

software recycle, 148
team dynamics, 148

concept development and
manufacturing, 149

marketing and research
engineering role, 150

purchasing department, 149
V-Model, 146

R
Real-time operating systems, 199
Requirement model

Agile methodologies, 64
architectural template

development process, 64
functional modules, 65–66
hardware/software modules and

interfaces, 66
reusability section, 64
system architecture, 65
user-interface processing, 66

communication theory
control firmware, 71
functional requirements, 73
interfaces, 70
internal and external customers, 71
system architecture, 71
temperature compensation, 73
temperature sensitivity, 71
V-Model and CPD frameworks, 71

conceptual design (see Conceptual
design)

consequential requirements, 92
context diagrams, 92
control and process specifications, 103
creation, 70
design and review process, 102
development team, 69
dictionary, 99
flow diagrams

DFD and CFD representations, 95–96
top-down view, 95, 97

HP method, 101
inputs, outputs and functions, 63
inspect and adapt, 102
internal and external data, 102–103
marketing requirements document, 74

Index

212

modeling tools, 103
module design, 83

constitutes, 85
data and control layers, 84
MBD control modules, 85
super-modules constitute, 83
time-series representation, 86

PBS components, 86
product breakdown structure, 68
product life cycle, 67
process and controls, 91
PSPEC, CSPEC specification, 97
Scrum, 63 (see also Scrum structure)
time-consuming practice, 102
timing specifications, 100

Robust Gantt Chart, 29

S
Scaled Agile Framework (SAF), 170
Scrum structure

Agile process, 104
CPD/V-Model life cycle, 120
design approach

architectural layer, 116
functional hierarchy, 116–117
PBS approach, 118

external data process, 118
integrating layers model, 121
MBD tools, 122
PBS development, 114
pragmatic method, 104
project management, 104
robust, 104
V-Model (see V-Model)

Smoke test, 159
Software interrupt (SWI), 199

Software in the loop (SIL), 78
Software project

management, 47
CPD process, 52
development process, 49
drivers, 48
embedded system, 49
layers, 47
maintainability, 51
readability, 51
reusability and scalability, 51
V-Model, 53

Solid state transformer (SST), 165

T
Timing specifications, 100

U
Unified modeling language (UML), 56
Unit Under Test (UUT), 78

V
Verification and Validation (V&V), 201
V-Model, 104

component level, 106
continuous integration, 106
CPM method, 53
design branch, 53
flat

modification, 109
omitted concept and release

phases, 109
Scrum framework, 110

hardware and software
platform, 106

Requirement model (cont.)

Index

213

highly document oriented, 53
implementation, 50, 58
parallel phases, 54
product development

Agile friendly process, 111
core processing unit, 111
engineering functions, 113
identification of, 112
life cycle, 113
potentially shippable

product, 111
product test phase, 113
system architecture, 111
T-shape concept, 112
visualization, 112

progressive product test
End of Line testing, 107
milestone testing, 108
smoke test concept, 108
testing process, 107
validation tests, 107

requirements, design and
implementation phases, 104

software development process, 54
software life cycle, 53
structured Scrum environment, 105

W, X, Y, Z
Work breakdown structures (WBS), 30

constraints, 33
decomposing processes, 30–31
development process, 33
direct contents, 32
Gantt chart representation, 34
product functions, 30
project and product developments, 30
project control, 35
project scope, 31
resource planning, 35
scopes and deliverables, 32
task delegation, 30

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: The History of Layers Architecture
	 The New and the Old
	 Clash of Cultures
	 Clash of Thoughts
	 Projects and Processes
	 Products and People
	 Product Software
	 Embedded Systems
	 Process Bottlenecks
	 Intelligent Product Development
	 Architecture in the Construction Industry
	 Land Survey Drawings
	 Architectural Drawings
	 Drawing’s Reusability, Maintainability, Readability, and Scalability

	 Making Buildings versus Making PCBs
	 Summary

	Chapter 2: Project Management Methods
	 The Basics
	 Project Management Using Critical Path Methods (CPM)
	 What Is CPM?
	 Creating a Robust Gantt Chart
	 Work Breakdown Structures (WBS)
	 Project Constraints
	 Project Resource Planning
	 Project Control

	 Project Management Using Agile Methods
	 What Does Agile Mean?
	 The Ideal Scrum
	 Scrum Master
	 Project Backlog
	 Sprint Planning
	 Project Control

	 Collaborative Product Development (CPD)
	 Tasks, Deliverables, and Decisions
	 Phase One (Concept Development)
	 Gate One
	 Phase Two (Project/Product Planning and Architecture)
	 Gate Two
	 Phase Three (Design)
	 Gate Three
	 Phase Four (V&V and Optimization)
	 Gate Four
	 Phase Five (Product Launch)
	 Gate Five

	 Software and Project Management
	 Software Layers
	 Software Development Process
	 Software Reusability, Maintainability, Readability, and Scalability
	 Software throughout CPD Process
	 V-Model (Software Life Cycle)

	 Design for Manufacturing (DFM)
	 Modeling Languages and Agile
	 Unified Modeling Language (UML)
	 Model-Based Design (MBD)

	 Summary
	 Bibliography

	Chapter 3: Convergence of Management and Architecture
	 Convergence of Management and Architecture
	 A Requirement Model
	 An Architectural Template
	Hardware/Software Modules and Interfaces

	 Product Life Cycle
	 Product Breakdown Structure (PBS)
	 Product Development Team

	 Creating Requirements
	 Every Problem Is a Communication Problem
	 Marketing Requirements Document (MRD)
	 Conceptual Design
	 Simulated Prototyping
	 Rapid Prototyping
	Model in the Loop (MIL)
	Software in the Loop (SIL)
	Hardware in the Loop (HIL)

	 Proof of Concept

	 Architecture Design
	 Module Design
	 What Constitutes a Module?
	 Control and Data in Model-Based Design (MBD)

	 Component Design and Product Breakdown Structure (PBS)
	 Identifying a Component

	 Summary
	 Bibliography

	Chapter 4: Requirements Model
	 Process and Control Requirements Model
	 Context Diagrams
	 Flow Diagrams
	 Process and Control Specification (PSPEC, CSPEC)
	 The Requirements Dictionary
	 Timing Specifications
	 A Note on Requirements Model

	 Structured Scrum
	 Simplified V-Model
	 Continuous Integration
	 Progressive Product Test
	 Flat V-Model
	 An Example of a New Product Development

	 PBS Development
	 A Different Approach in Design
	 Processing the External Data
	 Processing the Internal Data
	 Operating Systems, a Proper Mean of Data Handling
	 Databases in Real-Time Systems

	 Bringing It All Together
	 Utilizing MBD Tools for PBS

	 Summary
	 Bibliography

	Chapter 5: Problem Statement
	 Understanding the Problem
	 Requirements Model
	 Data Context and Control Context Diagrams (DCD, CCD)
	 Data Flow and Control Flow Diagrams (DFD, CFD)
	 PSPEC and CSPEC
	 Timing Specification
	 Requirements Dictionary
	 Architectural Model

	 Summary
	 Bibliography

	Chapter 6: Process Architecture
	 Proof of Concept
	 Hardware Recycling
	 Software Recycling
	 Method Recycling
	 Team Dynamics in Concept Release
	 Purchasing Department
	 Manufacturing Department
	 Marketing and Research Departments

	 Scrum and the Concept Release
	 An Example of DFM in Action in Concept Release

	 Architecture and Planning
	 Hardware Recycling
	 Software Recycling
	 Method Recycling
	 Team Dynamics

	 Modules and Components Releases
	 The Final Release
	 Departing from CPD and Landing on Structured Scrum

	 Smoke Test
	 Agile Testing
	 Summary

	Chapter 7: Layers Model
	 What Is a Model?
	 Process and Product Models
	 Product’s Process Model
	 Development Process Model

	 MBD Tools
	 MBD Utilization Steps
	 Layer Model and MBD
	 MBD’s Build Process
	 MBD in Layers Model
	 MBD Platforms
	 Summary
	 Bibliography

	Chapter 8: MBD and Requirements Model
	 Product Model
	 MBD and Process Model
	 Timing Specifications
	 Requirements Dictionary
	 Real-Time Operating Systems
	 Database Architecture
	 Verification and Validation (V&V)
	 Continuous Integration
	 Smoke Test
	 Manufacturing Tests
	 Diagnostics

	 Summary

	Index

