

PC Interfacing and Data Acquisition

This Page Intentionally Left Blank

PC Interfacing and Data Acquisition:

Techniques for Measurement,
Instrumentation and Control

Kevin James

Newnes
OXFORD AUCKLAND BOSTON JOHANNESBURG MELBOURNE NEW DELHI

Newnes
An imprint of Butterworth-Heinemann
Linacre House, Jordan Hill, Oxford OX2 8DP
225 Wildwood Avenue, Woburn, MA 01801-2041
A division of Reed Educational and Professional Publishing Ltd

First published 2000

© Kevin James 2000

All rights reserved. No part of this publication may be reproduced in
any material form (including photocopying or storing in any medium by
electronic means and whether or not transiently or incidentally to some
other use of this publication) without the written permission of the
copyright holder except in accordance with the provisions of the Copyright,
Designs and Patents Act 1988 or under the terms of a licence issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London,
England W1P 9HE. Applications for the copyright holder’s written
permission to reproduce any part of this publication should be addressed
to the publishers

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 0 7506 4624 1

Typeset by Laser Words, Madras, India
Printed and bound in Great Britain

Contents

Preface ix
A note on software examples x

Part 1: Introduction to Data Acquisition on the PC
1 The PC as a platform for data acquisition 3

1.1 Types of PC 4
1.2 The processor 5
1.3 Memory 11
1.4 Input/output ports 15
1.5 Buses and adaptor card slots 17

2 Software considerations 26
2.1 An overview of DA&C software 26
2.2 Data acquisition and control in real time 30
2.3 Implementing real-time systems on the PC 45
2.4 Robustness, reliability and safety 61

Part 2: Sampling Fundamentals
3 Sensors and interfacing 71

3.1 Introduction 71
3.2 Digital I/O 76
3.3 Sensors for analogue signals 81
3.4 Handling analogue signals 95
3.5 Digitization and signal conversion 103
3.6 Analogue measurements 124
3.7 Timers and pacing 128

4 Sampling, noise and filtering 131
4.1 Sampling and aliasing 131
4.2 Noise and filtering 142

vi Contents

Part 3: I/O Techniques and Buses
5 The interrupt system 163

5.1 Interrupt vectors 164
5.2 Hardware interrupts 169
5.3 Software interrupts and processor exceptions 185
5.4 Interrupt priorities 189
5.5 Writing interrupt handlers 190
5.6 Re-entrancy and accessing shared resources 199
5.7 Interrupt response times 200

6 Data transfer 205
6.1 Data-acquisition interface devices 205
6.2 Data transfer techniques and protocols 211
6.3 Buffers and buffered I/O 244

7 Parallel buses 251
7.1 Introduction 252
7.2 Data acquisition using a parallel bus 253
7.3 The PC’s parallel port 254
7.4 The IEEE-488 (GPIB) bus 270

8 Serial communications 284
8.1 Some common terms 284
8.2 Introduction to asynchronous communication 286
8.3 Data acquisition via a serial link 291
8.4 Serial interface standards 296
8.5 Asynchronous serial I/O on the PC 308

Part 4: Interpreting and Using Acquired Data
9 Scaling and linearization 345

9.1 Scaling of linear response curves 346
9.2 Linearization 356
9.3 Polynomial linearization 357
9.4 Interpolation between points in a look-up table 373
9.5 Interpolation vs. power-series polynomials 381
9.6 Interactive calibration programs 381
9.7 Practical issues 383

10 Basic control techniques 387
10.1 Terminology 387
10.2 An overview of control systems 388
10.3 Programmable logic controllers 390
10.4 Safety and reliability of control systems 391
10.5 Discontinuous control systems 392
10.6 Continuous control systems 396

Contents vii

Part 5: Examples
11 Example projects 411

11.1 Dimensional gauging of railway carriage wheels 411
11.2 In-situ sensor calibration on a tube-straightening

machine 413
11.3 Dimensional gauging of turbine blades 416
11.4 Torsional rigidity testing of car bodies 420
11.5 Winch testing system 423
11.6 Brake actuator test system 426
11.7 Monitoring of bush-insertion load 429
11.8 Laboratory furnace temperature control 432
11.9 Thermoluminescence spectrometry 434

Part 6: Appendices
Appendix A Adaptor installation reference 441
Appendix B Character codes 447

References 453

Index 457

This Page Intentionally Left Blank

Preface

Until fairly recently most scientific data-gathering systems and indus-
trial control procedures were based on electromechanical devices
such as chart recorders and analogue gauges. The capability to
process and analyse data was rather limited (and in some cases error
prone) unless one had access to a minicomputer or mainframe.
Today, that situation has changed considerably. I am sure that most
potential readers of this book will be aware of the profound effect
the PC has had on the way in which engineers and scientists are able
to approach data-gathering tasks.

Despite the now widespread use of various types of PC for
automated data capture, there has been only a small number of
publications on PC-based DA&C. Most if not all of these texts have
concentrated on the hardware aspects of interfacing and measure-
ment. A book emphasizing the design of DA&C software is long
overdue.

One of the reasons for this has become increasingly apparent
to me during the course of writing the present text. The subject
spans numerous conventional disciplines and no single book can
really do full justice to every aspect of this interdisciplinary subject.
DA&C programming tends to require skills in (or at least a basic
knowledge of) a range of subjects and, for this reason, the book
draws together elements of programming, PC architecture, oper-
ating systems, interfacing, communications, sampling theory and
process control.

My task has been complicated because of the wide range of
backgrounds from which DA&C programmers tend to originate.
Amongst the readership there will, no doubt, be fairly experienced
programmers as well as engineers and scientists whose main area
of expertise lies in fields other than computer programming. Some
readers will already have a sound knowledge of data acquisition, while
for others the principles of interfacing, measurement and control
will be relatively new. With such a broad spectrum of potential

x Preface

readers, it is inevitable that some users of the book will find that
certain chapters provide unnecessary detail or that some topics are
presented too concisely.

I have not assumed that the reader possesses any particular range
of skills, although a broadly numerate or technical background and
a basic knowledge of computer programming will undoubtedly be
of benefit.

I have attempted to ensure that all information provided is correct
and unambiguous. However, it is possible that a few minor errors will
have found their way into the text. Unfortunately, it is in the nature of
DA&C software that minor errors can have catastrophic results and,
for this reason, I strongly advise you to cross-check all critical informa-
tion that you use in your software against independent sources, and
to thoroughly test all programs before ‘going live’. I would greatly
appreciate hearing of any errors in the text, whether technical or
typographic. I can be contacted at: kjames�sd@hotmail.com.

A note on software examples

The code examples are presented with the primary intention of
conveying the ideas presented in the text. In some cases this involves
a trade-off between clarity and execution speed. In most instances
I have favoured the former. You may wish to recode some of the
examples to improve their efficiency and speed.

Note that the software listings are intended only as examples of
how one might go about solving isolated coding problems. They
are not intended as complete working programs or solutions to
specific problems. For reasons of clarity, the examples are designed
to operate in a real-mode (DOS) environment. In many cases the
code may be adapted for use in protected mode or under 32-bit
multitasking operating systems such as Microsoft Windows NT.

Although I have tested every example and they work correctly
under my test conditions, factors such as execution speed and timing,
hardware variability, and incompatibilities with other software (e.g.
operating systems) may affect them. If you use them in your own
programs you should thoroughly test them to ensure that they work
correctly and reliably within the context of your application.

The examples are presented in a mixture of C and assembly
language. While assembly language is essential for some low level
programming tasks, the programmer has more scope when choosing
a high level language (HLL). I have chosen C (specifically Borland
C version 3) for the examples in this book mainly because it is the
most widely used language in DA&C and interfacing applications.

Preface xi

I recognize that C code does not have a favourable reputation
for clarity. For this reason, and to enable readers to translate easily
to other languages, I have avoided C’s shorthand notation and
have used only constructs which have analogues in other HLLs.
You should bear in mind that there tends to be subtle variations
between different dialects of C. One such variation occurs in the
various I/O instructions as described in Chapter 6. Another that is
particularly relevant here concerns integer data types. Throughout
the text, I have used the int data type as a 16-bit quantity, but in
some 32-bit compilers (e.g. Microsoft Visual C C C version 4.0) it is
treated as a 32-bit integer. Be sure that you know how your system
interprets int declarations. Those readers who have any doubts over
the meaning of C data declarations and statements should consult
one of the numerous introductory C texts as well as their C compiler’s
programming manual.

This Page Intentionally Left Blank

Part 1 Introduction to Data

Acquisition on the PC

This Page Intentionally Left Blank

1 The PC as a platform for data

acquisition

The field of data acquisition and control (DA&C) encompasses a
very wide range of activities. At its simplest level, it involves reading
electrical signals into a computer from some form of sensor. These
signals may represent the state of a physical process, such as the
position and orientation of machine tools, the temperature of a
furnace or the size and shape of a manufactured component. The
acquired data may have to be stored, printed or displayed. Often
the data have to be analysed or processed in some way in order
to generate further signals for controlling external equipment or
for interfacing to other computers. This may involve manipulating
only static readings, but it is also frequently necessary to deal with
time-varying signals as well.

Some systems may require data to be gathered slowly, over time
spans of many days or weeks. Other will necessitate short bursts of
very high speed data acquisition – perhaps at rates of up to several
thousand readings per second. The dynamic nature of many DA&C
applications is a fundamental consideration which we will repeatedly
return to in this book.

The IBM PC is, unfortunately, not an ideal platform for DA&C.
There are a number of problems associated with using it in situations
which demand guaranteed response times. However, it is used widely
for laboratory automation, industrial monitoring and control, as well
as in a variety ofother time-critical applications.Sowhy is it sopopular?

The most obvious reason is, of course, that the proliferation of
office desktop systems, running word processing, accounting, DTP,
graphics, CAD and many other types of software, has led IBM and
numerous independent PC-clone manufacturers to develop ever
more powerful and inexpensive computer systems. The technology
is now well developed and stable in most respects. For the same
reason, an enormous software base now exists for this platform. This
includes all manner of scientific, statistical analysis, mathematical and

4 PC interfacing and data acquisition

engineering packages that may be used to analyse acquired data. A
wide range of software development tools, libraries, data-acquisition
hardware and technical documentation is also available. Perhaps
the most important reason for using the PC for data acquisition
and control is that there is now a large and expanding pool of
programmers, engineers and scientists who are familiar with the PC.
Indeed it is quite likely that many of these personnel will have learnt
how to program on an IBM PC or PC clone.

This book sets out to present some of the basic concepts of DA&C
programming from a practical perspective and to illustrate how
elements of the PC architecture can be employed in DA&C systems.
Although it contains quite detailed descriptions of certain elements
of the PC’s hardware and interface adaptors, the text concentrates
on the software techniques that are required to make effective use
of the PC for DA&C. The first two chapters begin by discussing the
structure of DA&C systems and attempt to assess how well the PC
and its operating systems meet the stringent requirements of data
acquisition and real-time operation.

1.1 Types of PC

Since the first models of the IBM Personal Computer (PC) were
introduced in the early 1980s there have been many variants issued
by IBM and by numerous ‘clone’ manufacturers. Each new variant
has tended to introduce improved components or subsystems which
enhance speed or provide some other system capability. We will not
describe the various models of PC in detail here as most readers will
already be familiar with the basic differences between the XT, AT,
PS/2 and EISA machines. It is sufficient to note that the basic archi-
tecture of most types of PC is very similar. The differences in perfor-
mance between systems arise from the different types of processor,
memory subsystem and expansion bus used. These are perhaps the
most important considerations although other components, such as
the disk and video subsystems, can substantially affect throughput.

The IBM PC was originally developed as a stand-alone machine
for office desktop use. While many DA&C applications can, and
do, run successfully on such systems, desktop models do not always
provide the required degree of robustness for use in harsh environ-
ments. This has led a number of manufacturers to produce more
rugged versions of the PC. Many systems are built into rack-mounted
chassis. They may incorporate conventional motherboard designs
or they may utilize a backplane system into which a processor card,
video adaptors and disk drive controllers are inserted. Ruggedized
industrial PCs offer benefits such as sealed keyboards, positively

The PC as a platform for data acquisition 5

pressurized cooling systems, and anti-vibration shock mountings.
Both hard disks and floppy disk drives tend to be easily damaged
by dust, vibration and magnetic fields. These problems are circum-
vented in some systems by substituting a solid state (i.e. EPROM or
SRAM based) disk emulation card which is generally less susceptible
to damage.

Some industrial PCs may possess interfaces for disks, serial ports,
parallel ports, and other peripheral devices on the same circuit
board. Single-board computers are often integrated into dedicated
equipment which is used, for example, in industrial or medical
monitoring applications. These embedded systems are normally
designed so as to minimize size, power consumption and cooling
requirements. In these systems, hard disks are frequently replaced by
ROM-based devices which provide storage for all software, including
the operating system. Embedded PC controllers are also used in
mobile equipment. However, there are a number of other options
when it comes to mobile computing. There are now many notebook
PCs and ruggedized portable computers on the market. These can
easily interface to external data logging or control equipment in
order to facilitate configuration or downloading of acquired data.

Ruggedized PCs, embedded PC systems, portable machines and
desktop PCs all share the same basic architecture and are generally
capable of running the same software. The structural differences
between them are largely irrelevant to the software engineer. Indeed
software can usually be developed on a desktop system and then
transferred to a ruggedized or portable PC without modification,
although minor changes may sometimes be needed when porting to
embedded systems in order to accommodate ROM-based operating
systems or to interface to specialized external buses.

1.2 The processor

Most readers of this book will already be aware of the different types of
processor and coprocessor used in the PC range. This section summa-
rizes the most important characteristics of each of the main classes
of processor. The text by Hummel (1992) provides more detailed
descriptions of the various processors and coprocessors available.

The 80x86 family of processors

Pentium processors are perhaps the most recognized components
of today’s PCs. They originate from a long line of Intel processors
dating back to the 1970s (see Table 1.1). The capabilities of the

6 PC interfacing and data acquisition

Table 1.1 Comparison of 80x86/Pentium processors

Data Clock Approx.

Address width (internal) relative

Processor range (bits) (MHz) speed ⊲3⊳ New features and notes

8088 1 MB 8 4.77 1 Real mode only.

8086 1 MB 16 4.77, 8 1.5 Real mode only. Required

8087 floating-point unit.

80286 16 MB 16 6–16 5 Limited protection features in

protected mode. Required

80287 floating-point unit.

80386SX 16 MB 32⊲1⊳ 16–25 10 Enhanced protected V86

mode. Required 80387

floating-point unit.

80386DX 4 GB 32 16–40 15 32-bit data and address

buses. Required 80387

floating-point unit.

80486SX 4 GB 32 25–40 40 Parallel instruction execution.

8 Kbyte on-chip cache.

Internal clock doubling,

tripling and quadrupling

circuits. Required 80487

floating-point unit.

80486DX 4 GB 32 25–100 60 On-chip numeric processor.

Pentium 4 GB 32⊲2⊳ 60–166 200 Dual execution pipeline.

Enhanced branch

prediction. Enhanced V86

paging. Multiprocessor

support.

Pentium Pro 64 GB 32⊲2⊳ 200, 266 500 Triple pipelining. 256 Kbyte

L2 cache. 36-bit address

bus.

Pentium II 64 GB 32⊲2⊳ 200–450 800 Enhanced L1 and L2 caches.

Power saving features.

MMX extensions.

Pentium III 64 GB 32⊲2⊳ 500C 1000C Very efficient floating-point

unit. Katmai New

Instructions and new KNI

mode.

⊲1⊳16-bit external bus.
⊲2⊳64-bit external bus.
⊲3⊳Integer processing. Figures are a rough guide only. Actual speed depends on clock rate,

instruction mix and performance of PC subsystems.

The PC as a platform for data acquisition 7

earlier processors will be of little relevance to most readers who,
nowadays, are not likely to encounter anything more primitive than
an 80486. For this reason we will not discuss them in any further
detail. We should remember, though, that some specialized systems
(particularly embedded PC applications) still make use of the earlier
8086, 80286 and 80386 processors. Indeed, special versions have
been developed for this market. The 80186, for example, is similar
to the 8086, but also possesses on-chip DMA (Direct Memory Access)
and interrupt controllers and other support circuitry. The 80186
and similar special-purpose processors are not used in a normal PC.

From the viewpoint of application-software development, it is
convenient to divide the various PC processors into three classes:
real-mode processors (8088, 8086 and compatibles such as the NEC
V20 and V30); the intermediate 80286 processor (which we will not
discuss); and full 32-bit processors (80386, 80486, Pentiums and
Celeron processors).

In essence the early real-mode processors (used on the first models
of PC) ran only one program at a time, provided limited memory
addressing (up to 1 MB), and operated relatively slowly (being
clocked at 4.77 to 10 MHz, typically).

At the other extreme, the 80486DX and Pentium class processors
can address large amounts of memory (4 GB), and possess features
for task switching, high speed processing and memory/hardware
protection. These capabilities are used by sophisticated 32-bit oper-
ating systems such as Windows NT to implement efficient multi-
tasking and to control access to system resources.

Intel released a cheaper alternative to the Pentium in 1998: the
Celeron processor. This is similar to the Pentium II, but without the
latter’s built-in level 2 cache. Despite the fact that, by most standards,
the Celeron is significantly slower, it is becoming popular in some
industrial applications, particularly in embedded systems.

Pentium II processors operate at up to 450 MHz internally. This
and enhancements such as 64-bit external data bus, separate caches
for instructions and data, a much improved instruction handling
capability and very efficient numeric processing are responsible for
the superior performance of Pentium-based PCs. The Pentium III
offers further improvements in performance. Initial versions are
clocked at up to 500 MHz and faster versions will no doubt be avail-
able by the time this book is published. Floating-point performance
has been enhanced in the Pentium III with the addition of a special
instruction set (Katmai New Instructions, or KNI) and new regis-
ters. This provides up to about 2 ð 109 floating-point operations per
second (2 Gflops): sufficient for the processor to take on tasks that

8 PC interfacing and data acquisition

might otherwise have required a specialized Digital Signal Processor
(DSP): real-time audio processing, for example.

Because each new processor in the sequence incorporates a
superset of the instructions and features of earlier processors, they
are termed ‘backward compatible’. Software written for an 80286
processor, for example, will generally be able to run on 80386 and
all later processors. Even the latest Pentium processors can operate
in real mode, emulating the early 8086. Note, however, that the
converse is not true: an 8086 will not run most of the software written
for the Pentium. In spite of this backward compatibility, the timing
of many instructions varies between processors. The speed of most
instructions tends to be greater in the newer processors although
some instructions may execute more slowly. This point should be
borne in mind when writing very time-critical code, particularly if
the software is intended to run on a range of different processors.

Processor modes

The 8086 processor is capable of directly addressing up to 1 MB
of memory. It is designed to support the execution of only one
program (or process) at any time. This process has complete control
over the PC and has direct access to all addressable memory and
I/O locations, even those belonging to the system BIOS or to the
operating system itself. Because there are no protection mechanisms
to prevent interference between processes it is difficult to implement
safe multitasking (see Chapter 2) on the 8086. The 8086’s mode of
operation is known as real address mode (often abbreviated to just
‘real mode’). All later processors support real mode as well as other
modes that allow access to more than 1 MB of memory.

The protected mode available on 80286 and later processors helps
to circumvent the 1 MB limitation. As well as providing access to
more memory, it incorporates a number of mechanisms which help
to prevent processes from conflicting with each other or with the
operating system. All subsequent processors (i.e. 80386 and later)
also possess a virtual 8086 (V86) mode. In this mode, the processor
operates as multiple virtual 8086 machines, dividing its time between
each. Programs are allocated their own virtual machine and in this
way it appears to the program that it is running on its own 8086
processor. Each virtual machine may have its own DOS environment
and is isolated from the rest of the system. The program running on
each virtual machine believes that it has full control of the system, as
on a real 8086. Interprocess memory conflicts and I/O conflicts are
avoided by means of sophisticated protection mechanisms provided
by the processor (as described later in this chapter). In order to

The PC as a platform for data acquisition 9

perform multitasking using the processor’s protected or V86 modes
the whole machine has to be managed by suitable operating system
software. We will discuss this topic in Chapter 2.

Although the modes available on the more advanced processors
are very efficient, their protection mechanisms can involve a substan-
tial software overhead, especially if complex multitasking operating
systems are used to mediate between processes. DA&C programs are
normally relatively small and uncomplicated, and a simple real-mode
environment (e.g. a DOS-based system) is often the most suitable.
A protected-mode system can, however, provide the potential for a
greater degree of reliability. The inherent protection mechanisms
can help to prevent resource conflicts and may highlight certain
types of coding error during development.

Registers

Throughout this book I will make frequent references to an impor-
tant feature of the processor: its registers. The basic concepts are
introduced below. However, this is only a very brief overview to
aid your understanding of the examples presented in subsequent
chapters. You should consult a specialist text on processor archi-
tecture or assembly language programming – e.g. Hummel (1992),
Swan (1989) or Holzner and Norton (1991) – for a more detailed
discussion of this subject.

Each processor in the 80x86 family possesses several 16-bit regis-
ters which are used to hold data and memory addresses. In many
operations, you have a choice of which register to use. However,
most registers are designed specifically for certain operations. Some
registers, such as CS, DS and SS, address particular memory segments
(blocks of up to 64 KB addressable in real mode). Others (e.g. IP,
SP, BX) can be used to address individual bytes or words as offsets
from the beginning of an associated segment. Yet other registers are
used to hold numeric data. Some of the 16-bit registers (i.e. AX, BX,
CX and DX) allow their high and low order bytes to be addressed
separately. For example, the high order byte of AX is referenced
within an assembly language program as AH, and the low order byte
as AL. The AX register is used exclusively in certain operations such
as reading from or writing to an I/O port. The Flags register contains
various bits which indicate the results of arithmetic operations or
which control how particular features of the processor operate.

The 80386 and subsequent processors are equipped with 32-bit
registers. Each of the 16-bit registers mentioned above is actually
implemented as the low order 16 bits of the corresponding 32-bit
register. Just as it is possible to separately reference the high and low

10 PC interfacing and data acquisition

order bytes of certain 16-bit registers, one can reference either the
full 32-bit register (by preceding the normal register designation with
an ‘E’, e.g. EAX) or only the low order 16 bits (e.g. AX). For the sake
of simplicity and compatibility with the 80286 and earlier processors,
only the 16-bit register set is used in the examples presented in
the remainder of this book. Those readers who are unfamiliar with
assembly language should consult a book such as Swan (1989) for
an introduction to this subject.

The most important point to remember about the registers is
that their contents completely define the state of the processor at
any given time. The registers may hold a variety of information
relating to the current process. This includes the address of the
next instruction to be executed, intermediate results, the interrupt
state and many other essential parameters. If the register contents
are incorrectly modified or become corrupted it is very likely that
this will result in the failure of the software. You should bear this
in mind when dealing with any form of context switch such as an
interrupt or task switch, and take appropriate steps to preserve the
state of the registers. Refer to Chapter 2 for more on task switches
and concurrent processing, or to Chapter 5 for a detailed discussion
of interrupts.

Numeric processing

Predecessors of the 80486DX have a limited mathematical processing
capability. While they are able to perform a variety of integer arith-
metic, data transfer, and logical operations, they were not designed
to undertake floating-point calculations. Many compilers and devel-
opment tools incorporate floating-point software libraries. These
contain long and complex routines to facilitate floating-point compu-
tation. Unfortunately, floating-point software can be slow. When
many calculations have to be performed, the burden placed on the
processor may unacceptably degrade the system’s throughput. This
problem can be particularly acute in high speed DA&C applications.

The alternative technique is to use special hardware for numeric
processing. A numeric processing unit is dedicated to performing
floating-point calculations and operates more or less in parallel
with the main processor. It supports a number of floating-point
data types and provides facilities for performing trigonometric and
transcendental functions. The 80486DX and Pentium class proces-
sors have built-in numeric processing units, but earlier processors
required a matching numeric coprocessor IC. This hardware solution
makes very substantial increases in throughput possible, although
the degree of benefit gained does, of course, depend upon the

The PC as a platform for data acquisition 11

nature of the software. Numeric processors are not essential in all
DA&C applications. Many programs execute only integer instruc-
tions during the period of data acquisition. However, a numeric
processor can be invaluable in applications which have to execute
mathematical control algorithms (e.g. PID control) or which must
undertake any form of real-time signal processing.

The presence or otherwise of a numeric processor is normally
transparent to programmers working with C, Pascal or other high
level languages. The programmer will normally only have to select a
compiler ‘switch’ in order to generate code for a numeric processor
or to emulate one in software. He or she need not be concerned with
how floating-point calculations are actually performed. This is not
true, however, for assembly language programmers. These readers
are advised to consult more specialized texts on the subject such as
Hummel (1992) or Holzner and Norton (1991).

1.3 Memory

As we have already seen, modern PCs can address up to 4 GB of
memory, although most contain very much less. Figure 1.1 illustrates
the PC’s memory space and shows some important regions within
the address map. The addressable range is processor (and mode)
dependent.

When operating in real mode, the 80x86 and Pentium processors
employ a segmented memory addressing scheme. Each memory
address is specified in the software by the contents of a segment
register and an offset register. In real mode both of these registers are
16 bits wide and thus a memory segment is defined as a memory block
up to 65 536 bytes in length. A segment begins on any paragraph
(16-byte) boundary. The contents of the segment and offset registers
are combined to form a physical address by multiplying the contents
of the segment register by 16 and then adding the result to the
value held in the offset register. This generates a 20-bit address
which can be used to access any location in the 1 MB memory
area. The segmented memory scheme can complicate programming
somewhat, although it does have a number of practical advantages. It
provides a means of dividing memory up into convenient segments,
the beginning of each segment being addressed by the contents of
the segment register. Successive bytes within a segment can then be
easily referenced by incrementing or decrementing a single 16-bit
offset register.

The addressing method used in the 80286’s protected mode
is similar. However, the value held in the segment register no

12 PC interfacing and data acquisition

32-bit protected-mode

operating systems

and

application programs

(e.g. Windows 98/NT

Unix and OS/2)

16-bit protected-mode

operating systems

and

application programs

(e.g. DPMI / Windows 3.x)

DOS 5/6 Drivers

ROM BIOS

Real-mode (DOS)

application

programs

DOS code and data

BIOS Data Area

0000 0000h

0000 03FFh
0000 0500h

0009 FFFFh

000E FFFFh

000F FFFFh

0010 FFFFh

FFFF FFFFh

0FFF FFFFh

Interrupt vector table

Adaptor card ROMs

DOS UMBs

EMS page frames

Memory-mapped adaptors

(e.g. video)

Extended

memory

(80386 and

above only)

Extended

memory

(80286 and

above only)

High memory

area (64K)

Upper memory

area (384K)

Real-mode

addressable

memory

(all processors)
Extended BIOS Data

Area (size variable,

but typically 1K)

* The HMA is

 addressable in real

 mode by enabling

 the A20 line

 via the chipset

*

Figure 1.1 The PC’s memory map

longer corresponds to a physical segment base address. Instead,
it is used as a selector. This is a pointer to an entry in a table
maintained by the operating system. Each entry in this table is
known as a descriptor and specifies the physical address of the
segment of memory which is to be accessed. The selector and
descriptor also contain other data relating to the memory segment.
This includes the information necessary for operating systems to
implement interprocess protection and memory management. For
example, the descriptor specifies whether the segment referenced
is a code or data segment and thus provides a mechanism for the

The PC as a platform for data acquisition 13

operating system to trap actions such as inadvertent writes to a code
segment. It also specifies the size of the segment so that accesses to
memory beyond the segment limit can be detected. The 80286 can
access up to 16 MB of memory.

A similar system is used on the 80386 and later processors when
they are running in protected mode. However, these processors can
use a 32-bit flat addressing scheme in which the selector is kept fixed
by the operating system and the programmer addresses memory by
means of only a 32-bit offset. This provides access to up to 4 GB of
memory. The 80386 and later processors also provide an additional
memory management facility, known as paging. When paging is
disabled, the address determined from the descriptor represents
the physical memory address (as in the 80286 processor). When
paging is enabled, the linear (or virtual) address read from the
descriptor table has to undergo another translation step in order
to arrive at the physical address. The page translation mechanism
makes possible the V86 mode and is also essential for a number of
other advanced operations on the 80386 and later processors. Unlike
the segmentation scheme, page translation is generally transparent
to the applications programmer. It is normally managed invisibly
by the operating system. However, the paging mechanism does
have certain implications for real-time DA&C systems. It allows an
operating system, such as Windows NT, Windows 95/98 (or Windows
3.1 operating in enhanced mode), to temporarily swap blocks of
memory out to a hard disk. Although this can be a great advantage in
non-time-critical systems it may be unacceptable in real-time DA&C
applications as it has the potential to introduce variations in the time
taken for the DA&C program to respond to external events.

The protected-mode segmentation scheme, the page translation
mechanism and V86 modes are quite involved topics and full descrip-
tions of them are beyond the scope of this book. You should consult
a text on the subject of operating system architecture or on the
processor itself (e.g. Hummel, 1992) for further information.

Accessing memory above 1 MB from real mode

Many DA&C applications are relatively straightforward and may not
need the complex multitasking and protection capabilities offered
by the processor’s protected and V86 modes. Often, however, they
do require large quantities of memory in which to store acquired
data, and this is not directly available in real mode. If you prefer
the simplicity, speed and degree of control offered by a real-mode
DOS-based system (perhaps one of the specialized real-time versions

14 PC interfacing and data acquisition

of DOS), there are several ways in which to gain access to memory
above the 1 MB limit.

First, you could make use of two BIOS services provided on
the IBM AT and compatible machines. These services allow data
to be moved between real-mode-addressable memory (i.e. memory
below the 1 MB boundary) and extended memory. This technique
is rather slow and requires a degree of buffering in real-mode-
addressable memory. It also relies upon the cooperation of all other
processes running on the machine in order that they do not overwrite
another’s data.

The second method of accessing extended memory is to employ
an extended memory driver conforming to the Extended Memory
Specification (XMS). Such a driver, HIMEM.SYS, is used by Microsoft
Windows 3.1 for managing extended memory. It provides a compre-
hensive set of services which can be used to access memory above
the 1 MB boundary as well as the so-called Upper Memory Blocks
(UMBs) in the 640 KB to 1 MB area.

The third method is simply to make use of a RAM disk (also known
as a Virtual disk) device driver. This sets aside an area of memory
(usually extended memory) to emulate a disk drive. The RAM disk
operates in the same fashion as a normal hard or floppy disk.
Although it is many times faster than a typical hard disk drive, data
still has to be transferred via the DOS file and device driver system
and so this method is generally slower than direct memory storage.

The final approach is to employ an expanded memory system. This
technique is largely obsolete on the PC, but it is instructive to consider
it briefly because some specialized data-acquisition hardware makes
use of a similar system for transferring data to and from the PC’s
memory. Expanded memory has been used in embedded systems
for some time, and a number of 8086-compatible processors that
have been developed especially for embedded applications include
on-chip expanded memory support.

Expanded memory is essentially bank switched memory which can
be selectively paged in and out of a memory window (known as a
page frame) residing below the 1 MB real-mode-address limit. Data
may be read from, or written to, expanded memory through this
window as though one were accessing the PC’s memory. The DA&C
program can select new pages at any time by calling a group of
system services that are provided by an expanded memory device
driver. The services generally conform to a standard known as the
Expanded Memory Specification (EMS). Versions 3.2 and 4.0 of this
standard are the most widely used. One of the more effective EMS
implementations utilizes the paging facilities provided by the 80386

The PC as a platform for data acquisition 15

and later processors, allowing some or all of the PC’s extended
memory (i.e. that above 1 MB) to be treated as expanded memory.

Although the bank switching and paging mechanisms used on the
PC are fast and ideally suited to DA&C, they have to be managed by
some form of device driver. As with all drivers and programs written
by third parties, you should be sure that they do not compromise the
deterministic qualities necessary in real-time systems (see Chapter 2).

EMS, XMS and the extended memory BIOS services are covered
in many books on the IBM PC such as Duncan (1989), Duncan et al.
(1990) or Dettmann and Johnson (1992).

1.4 Input/output ports

In addition to its memory, the PC has another entirely separate
address space. This is dedicated to transferring data to or from
peripheral devices and is known as Input/Output space (or simply
I/O space). Just as the PC’s memory space is divided into separate
byte locations, the I/O space consists of many byte-sized I/O ports.
Each port is addressable in much the same way as memory, although
an additional control line is used within the PC to distinguish
between memory and I/O port accesses. I/O space consists of a
contiguous series of I/O addresses. Unlike memory space, the I/O
address space is not segmented and cannot be paged. In fact, the
processor references I/O ports by means of a 16-bit address and this
means that no more than 65 536 I/O ports can be supported by the
PC. In practice, this is further limited by the I/O address decoding
scheme used on the PC and its adaptor cards.

The I/O ports provide a means of sending data to, and receiving
data from, devices such as the video adaptor, the disk subsystem,
or analogue-to-digital converters (ADCs) on plug-in data-acquisition
cards. Software can use the assembly language IN or OUT instructions,
or their high level language counterparts, to communicate with
hardware devices via the I/O ports. These are discussed in more
detail in Chapter 6, but for the moment we will consider a simple
example. Suppose that a plug-in 8-bit ADC card possesses control
and data registers that are each mapped to one of the PC’s I/O
ports. The software starts the analogue-to-digital conversion process
by writing a bit pattern to the I/O port that maps to the ADC
card’s control register. When the ADC has finished the conversion
it might set a bit (known as the End of Conversion, or EOC, bit)
in another register to indicate that digitized data is now available.
In this way, the software is able to detect the EOC bit by reading
the corresponding I/O port. Knowing that the conversion had been

16 PC interfacing and data acquisition

completed, the software would then read the digitized data from a
data register mapped to a third I/O port.

I/O port allocation

Hardware devices map their registers to specific I/O ports simply
by decoding the PC’s address bus and control lines. In this way, a
specific combination of address and control lines is needed to cause
data to be transferred from the register to the PC’s data bus or vice
versa. Some I/O ports can only be read or written, while others are
capable of bidirectional data transfer. Whether ports are read-only
(R/O), write-only (W/O) or read-write (R/W) is determined by how
the hardware decodes the address and control lines. The processor
itself makes no distinction between ports in this regard. You can still
perform an IN instruction for a write-only port although the results
of such an action will generally be indeterminate.

The PC and adaptor-card hardware do not fully decode the address
lines. In fact, in the IBM PC, XT, AT and compatible machines,
including the PS/2 line, only the lower 10 lines are used. This
means that it is possible to address only 1024 separate I/O ports.
Even certain addresses within this range are not fully decoded. Thus
some devices which should require only two or three registers may
actually occupy a much larger block of I/O addresses: the same
registers being mirrored at a series of other addresses within the
block. A much more satisfactory approach is taken on EISA systems.
These decode the address lines more fully, providing additional I/O
ranges that are dedicated specifically to the system motherboard or
to adaptors residing in each of the EISA expansion bus slots. On each
class of PC, certain I/O addresses are reserved for particular devices.
Table A.3 in Appendix A provides an overview of I/O port usage and
may be used as an aid to selecting ports for use by data-acquisition
adaptor cards.

I/O protection mechanisms

The PC’s I/O ports are always accessible in real mode. In protected
and V86 modes, however, the processor can be programmed to
restrict access to I/O addresses. This facility is used in multitasking
operating systems such as OS/2 and Windows NT to control which
processes (i.e. running programs) will be allowed to read and write
the I/O ports. In this way it is possible for the operating system to
mediate between two or more processes that need to access the same
I/O device. The operating system runs at a high privilege level, which
means that it is allowed to execute certain privileged instructions.

The PC as a platform for data acquisition 17

These include instructions that access the I/O ports and those which
change the state of the processor’s Interrupt Flag (see Chapter 5).

In protected and V86 modes, when a program operating at a
low privilege level attempts to execute one of the privileged I/O
instructions, the processor generates a General Protection exception.
This causes control to be immediately passed to the operating system,
which can then oversee the I/O port access. The details of this process
are quite involved and cannot be covered here. You should consult
a text such as Hummel (1992) for more on this topic.

One of the consequences of the I/O protection mechanism is
that an application program running in protected or V86 mode
(e.g. under OS/2 or Windows) will generally be prevented from
directly accessing the I/O ports. I/O port accesses require at least
some operating system intervention and this reduces the maximum
possible throughput of the system. It also contributes to a degree of
uncertainty in the speed at which the system will respond. This can
be a particularly important consideration when designing a real-time
DA&C program.

1.5 Buses and adaptor card slots

Passing data to and from a DA&C card via an I/O port actu-
ally involves transferring the data over one or more system buses.
Figure 1.2 illustrates a variety of buses that can be interfaced to the
PC. A typical PC may not contain all of the buses shown, although
the PCI and ISA buses are present in most systems. Other types
of bus (many of them proprietary systems) can be interfaced by
means of special adaptors or bridges to the PC. The IEEE-488 bus
and the VXI bus, for example, are used in specialized instrumen-
tation applications. Of primary concern here though are the PC’s
native buses – i.e. the ones that are an integral part of the PC’s own
architecture.

The type of bus used within the PC not only has a bearing on
the type of interface card that can be connected, it may also have
a profound effect on the throughput of the system as a whole.
Although normal bus operation cannot be modified under software
control and is largely transparent to the programmer, it is of great
importance in interfacing and so a brief overview is provided below.

The ISA bus

Until the mid-to-late 1990s, the Industry Standard Architecture (ISA)
bus dominated the PC market and was the interface used for most

18 PC interfacing and data acquisition

Addr, data
& control

Addr, data
& controlDRAM

System
controller

Pentium
processor

Video
subsystem

BridgeExternal bus
e.g. VME/VXI

Analogue I/O
card

Hard
disk(s)

Hard
disk

SCSI device
interface

EIDE disk
interface

USB

I/O controller
and

PCI-ISA
bridge

Serial port
adaptor/UART

RS-232/422/485

Parallel portIEEE-1284

IEEE-488

IS
A

 b
u
s

P
C

I
b
u
s

Slow digital I/O

(e.g. relay) card

GPIB adaptor

Figure 1.2 Example bus connections and interfaces on a PC used for data

acquisition. Note that not all devices and buses shown will be present on every

system, and some systems will incorporate additional devices

plug-in DA&C cards. It is derived from the earlier, and slower, 8-bit
bus used in the IBM PC and XT (known as the PC bus or XT bus).
Note that the 16-bit ISA bus (also known as the AT bus because it
was introduced in the IBM AT computer) is in some literature also
misleadingly referred to as the PC bus.

The ISA bus incorporates a number of enhancements over the
XT bus, such as a 16-bit data path, a 16 MB addressing capability,

The PC as a platform for data acquisition 19

an increased number of interrupt request lines (see Chapter 5) and
additional DMA channels (see Chapter 6). The extra data, address
and control lines necessary to interface to ISA type adaptor cards
were added in a second connector placed in line with the original
XT type connector. Although a few of the connector pins on the XT
connector were redesignated, the ISA bus connector provides full
backward compatibility with the older XT cards. Most ISA machines
are equipped with several 16-bit ISA slots and one or two 8-bit XT
type slots. With a few exceptions (noted below), 8-bit cards can also
be inserted in the XT portion of 16-bit ISA slots.

The ISA bus clock speed is not tied to the processor clock as
it was in the XT bus. Widely differing bus and processor clock
speeds are used on ISA machines and synchronization between the
two is maintained by means of special support circuits. The IBM
AT’s bus was clocked at 8 MHz. Many newer systems allow the bus
clock speed (and indeed the processor and DMA clock speeds) to
be reprogrammed using a BIOS configuration utility. The chosen
speed is recorded in the system’s CMOS RAM. A high frequency
(e.g. 10 or 11 MHz) may be selected provided that all adaptor cards
will operate reliably at this speed. Most modern ISA adaptor cards
are capable of running at 10 or 11 MHz, but some older DA&C cards
are not.

Bear in mind that even the standard 8 MHz ISA clock speed
may be incompatible with some older ADC or counter/timer cards
that were intended specifically for IBM PC or XT systems. These
cards are designed to provide their on-board components with clock
signals derived from the PC’s 4.77 MHz bus clock and are, therefore,
unsuitable for use with the higher clock frequencies present on the
ISA bus. Indeed they are also incompatible with the 8 or 10 MHz
XT buses employed in some XT clones. Generally speaking, this is
no longer a problem with modern DA&C cards as these tend to be
driven from their own dedicated oscillator, rather than from the
system bus clock. You should, however, be wary of this potential
difficulty when using some pre-1990 DA&C cards.

Today, new desktop PCs now rarely possess more than one or
two ISA card connectors, the remaining expansion capability being
provided by the PCI bus, which we will discuss shortly. However,
the ISA bus is far from obsolete in the industrial data-acquisition
market. Many rack-mounted industrial PCs still employ this standard
and there are numerous ISA bus DA&C cards still on the market.
Before discussing the PCI bus, it is appropriate to briefly mention
two other buses: the MCA bus and the EISA bus. Although these are
both technically superior to the ISA bus in many respects, they have
not enjoyed such widespread use.

20 PC interfacing and data acquisition

The MCA bus

The MCA (Micro-Channel Architecture) bus was developed by IBM
for its range of PS/2 computers. MCA was more rigidly specified
than the ISA bus in terms of it physical, electrical and timing
characteristics, and incorporated a software-based card configura-
tion facility. The latter feature, called Programmable Option Select
(POS), circumvented the need to use DIP switches or jumpers
for selecting options such as base address or interrupt levels. As
all configuration is performed via manufacturer-supplied software,
the details of POS operation are rarely of interest to the DA&C
programmer. Readers are referred to the text by Eggebrecht (1990)
for more information on POS.

The EISA bus

The main disadvantage of the MCA bus was its incompatibility with
the earlier XT and ISA buses. A consortium of PC manufacturers
attempted to circumvent this problem by developing an enhanced
version of the ISA bus, known as the Extended Industry Standard
Architecture, or EISA, bus. This provided a number of benefits
similar to those of MCA while maintaining full backward compati-
bility with ISA cards. EISA buses, which are used in some 80386 and
later systems, incorporate a 32-bit data bus and have an enhanced
slot-specific I/O addressing capability. Like MCA, EISA cards are
configured by means of software utilities and data files supplied by
the manufacturer.

The PCI local bus

Local buses began to emerge as potential competitors to conven-
tional expansion buses such as ISA in the mid-1990s. Whereas
conventional buses have to employ special circuitry to manage bus
traffic and to synchronize high speed processors with slower bus
operations, local buses are more tightly coupled to the processor.

Currently, the dominant local bus standard is Intel’s PCI
(Peripheral Component Interconnect) bus. Although the latest PCI
standard (version 2.2) allows for 64-bit transfers at 66 MHz, standard
PC-based PCI implementations currently provide a 32-bit data path.
Because PCI operates at the processor’s clock frequency (i.e. the
frequency of the clock signal supplied to the processor, rather than
the processor’s internal clock frequency), it is capable of very high
rates of throughput. The PCI bus also supports bus mastering in
which PCI devices can take control of the bus in order to transfer

The PC as a platform for data acquisition 21

data. This is much like the DMA technique used on the ISA bus (see
Chapter 6). The principal difference is that each device supplies
its own bus-mastering hardware rather than relying on the PC’s
DMA controller. Additional performance enhancements can often
be realized by this means because bus transfers can be carried out
in parallel with certain processor operations. PCI devices can, for
example, exchange data along the bus at the same time that the
processor is accessing system memory.

Transfer rates

Table 1.2 summarizes the main characteristics of the buses discussed
so far. A 32-bit PCI bus clocked at 33 MHz can, in theory, provide a
data transfer rate of 132 MB/s. This represents a huge increase over
conventional buses. An 8 MHz ISA bus was, for example, capable of
transferring data at up to 16 MB/s. The MCA and EISA buses fare

Table 1.2 PC expansion buses

Max.

throughout

Address Data Standard at standard

width width clock rate clock

Bus (bits) (bits) (MHz) (MB/s) Notes

PC (XT) 20 8 8 8 Six IRQ lines. Three DMA

channels.

ISA (AT) 24 16 8 16 Twelve IRQ lines. Seven

DMA channels.

MCA 24 32 Variable

(typi-

cally

10–20)

20–160 Maximum transfer rates

achieved in data

streaming mode. DMA

implemented via bus

mastering with up to 16

arbitrating devices.

EISA 32 32 8 33 Quoted throughput

achieved in data

streaming mode.

PCI 32 32 or 64 33 or 66 132⊲1⊳ Intelligent bus mastering

with support for DMA.

Quoted transfer rate is

achievable in burst

mode only.⊲1⊳

⊲1⊳For a 32-bit implementation running at 32 MHz. Maximum throughput increases propor-

tionately for faster or wider versions of PCI.

22 PC interfacing and data acquisition

somewhat better. MCA supports 32-bit data transfers at rates up to
20 MB/s. Higher rates (typically 40 to 80 MB/s) are achievable with a
special data streaming mode. EISA systems provide bus transfer rates
of up to 32 MB/s. Bear in mind that these maximum transfer rates
cannot always be realized in practice. Throughput is often limited
by factors other than bus bandwidth.

The AT’s DMA controller can provide a throughput of up to
approximately 1 MB/s (or 2 MB/s, depending upon whether an
8-bit or 16-bit DMA channel is used). A greater throughput can
sometimes be achieved using programmed I/O: typically up to
3 MB/s on a fast machine. In practice, however, delays inherent
in other components (e.g. the ADC conversion time, multiplexer
settling times, signal conditioning bandwidth – see Chapter 3) tend
to be the principal throughput-limiting factors. For this reason, the
maximum bus transfer rate cannot usually be realized and in many
applications bus speed has only a minimal effect on the overall
system throughput. DMA, programmed I/O and throughput rates
are discussed in more detail in Chapter 6.

PCMCIA interface

Like local buses, PCMCIA cards (sometimes known as just PC
cards) are a fairly recent innovation in PC interfacing. The PCMCIA
(Personal Computer Memory Card International Association) stan-
dard defines a hardware and software interface for attaching minia-
ture adaptor cards to the PC. It was originally intended as a standard
bus for interfacing removable memory cards to portable computers,
although it has now been adopted for other peripheral devices
such as serial ports, modems, network interfaces and hard disks.
DA&C component manufacturers now also produce data acqui-
sition cards in PCMCIA format. At the time of writing, these
devices are largely limited to simple mainstream DA&C functions (8
channel multiplexed ADCs, dual DAC cards, counter/timers, simple
digital I/O facilities etc.) and provide reasonably high, although not
exceptional, throughput. Few PCMCIA cards offer more advanced
features such as very high speed ADCs, FIFO buffers or an on-
board processing capability. A number of industrial communications
PCMCIA cards (RS-232/422/485 or IEEE-488) are also available.

As mentioned above, PCMCIA cards are small: about 2 inches
(50 mm) across. They are produced in various thicknesses: Type I
cards are 3.3 mm thick; Type II cards are 5.0 mm thick; and
Type III are 10.5 mm thick. The extra thickness of Type III cards is
required principally to accommodate miniature hard disks and radio
frequency communications products. DA&C cards are normally of

The PC as a platform for data acquisition 23

Type II. Most notebook PCs are able to accommodate at least two of
these Type II cards, permitting moderately complex DA&C systems
to be designed around a portable computer.

PCMCIA cards offer several benefits. They are software config-
urable, so installation (I/O address selection, interrupt selection
etc.) can generally be automated. Apart from the fact that they
follow a fairly rigid specification in terms of power usage, signal
timing, and physical size, they also offer specific advantages for users
of DA&C systems. Their 16-bit data bus provides reasonably high
rates of throughput at moderate cost. Because of their size, PCMCIA
cards are extremely portable and, when used in conjunction with
notebook PCs, open up the possibility of data acquisition in awkward
environments (e.g. in moving vehicles). They can be unplugged
from the PC or from other DA&C system components, facilitating
relocation from one DA&C site to another. PCMCIA cards also have
a hot insertion capability. This permits cards to be removed from the
computer and swapped for other cards without having to switch off
the PC.

Due to the small size of the cards, subminiature connectors are
employed. This means that PCMCIA DA&C cards normally have to be
used in conjunction with extension cables and screw terminal panels
which will accept the field connections from transducers or signal-
conditioning units. In certain applications, these devices may also
include sensor excitation references or isothermal connections for
thermocouple cold-junction compensation (see Chapter 3). As the
PCMCIA circuit board is fully enclosed it is difficult to gain access to
trimpots or to test points for calibration or fault diagnosis. However,
PCMCIA DA&C cards are normally factory calibrated where neces-
sary and any subsequent recalibration can usually be performed by
adjusting scaling factors and offsets in software (see Chapter 9). Most
PCMCIA card manufacturers supply software drivers and, in many
cases, configuration, calibration and diagnostics programs as well.

Industrial and instrumentation buses

As mentioned previously, the standard desktop PC format is not
robust enough for use in harsh industrial environments. Indus-
trial DA&C systems often employ ruggedized versions of the PC in
specially designed rack-mounted enclosures. However, the physical
properties of the enclosure are not the only consideration. The stan-
dard PC architecture may not have the interfacing support needed to
directly manage some complex industrial sensing or control systems.
It does, nevertheless, have many other advantages (noted in the

24 PC interfacing and data acquisition

introduction to this chapter) which makes it highly desirable in this
type of application.

A number of manufacturers have attempted to bridge the gap
between the desktop PC and more robust industrial systems by
producing versions of the XT, ISA or PCI buses in a passive backplane
format that is suitable for use in industrial 19 inch rack-mounted
enclosures. These backplanes usually have a large number of expan-
sion slots allowing various types of processor cards, I/O interface
boards, and other adaptor cards to be attached.

Special adaptors known as bridges are available, which permit
devices on the PC bus to interface to a range of more specialized
industrial buses. These buses tend to be modular and rigidly speci-
fied, allowing them to be easily interfaced to industry-standard I/O
devices. There are three main types of bus: STE/STD, Multibus
and VME. The STE bus is an 8-bit bus capable of addressing 1 MB
of memory and 4 KB of I/O space. STE was developed from the
earlier 8-bit STD bus standard. Multibus also permits access to a
1 MB memory space, but allows 16-bit data transfers. Its successor,
Multibus II, provides an enhanced addressing capability and is suit-
able for use with 32-bit processors. The VME bus has been widely
used in embedded systems for some years. It is capable of 8-, 16-,
32- or 64-bit data transfers. 32-bit VME systems can achieve data
transfer rates of up to 40 MB/s; 64-bit implementations can achieve
twice this. Depending upon its configuration, VME can address up to
4 GB of memory, but it has no I/O space. Instead all I/O operations
are memory mapped. An important variant of the VME bus is VXI.
This incorporates the 32-bit VME data bus as well as a number of
extensions for synchronizing and managing instruments on the bus.

Finally there are specialized implementations of PCI. Several
versions of this standard bus have been developed for use in indus-
trial embedded systems. One of the most promising of these is
CompactPCI. From a functional point of view, this is very similar to a
standard PCI system, although it incorporates a number of mechan-
ical and electrical design enhancements (including a different
connector, a new circuit board format and support for hot swapping
of circuit boards) which make it more suited to industrial use.

It is necessary to employ a suitable interface (or bridge) in order
to connect an external bus, such as Multibus or VXI, to the PC’s ISA
bus. The bridge performs many functions. For example, registers
or buffers belonging to devices present on the external bus must
be mapped into the PC’s I/O space or into its memory space.
Various techniques can be used. Multibus employs DMA techniques
(see Chapter 6) to transfer data between the PC and the external
bus. Memory mapping may be accomplished using a type of page

The PC as a platform for data acquisition 25

mapping similar to that used by the EMS. This permits regions of
the external bus’s memory space to be selectively mapped into a
64 KB page frame within the PC’s addressable range. Alternatively,
the external memory is sometimes mapped to the top of the PC’s
4 GB memory space. The latter option is only possible with 80386
or later processors and with operating system software that permits
32-bit addressing. Interrupt requests on the external bus must also
be mapped onto the PC’s own interrupt levels (see Chapter 5 for
an explanation of interrupts). Again, a number of different schemes
are used. The external bus may provide more interrupt signals than
are available on the PC and, in these instances, several external
bus interrupts may be mapped to the same PC interrupt level.
Alternatively, the external bus may support shared interrupt lines
and the different interrupt allocations must be resolved by the bridge
interface (possibly in conjunction with suitable software).

In general, the interface is implemented in such a way that the PC
software can regard the external bus simply as an extension of its
own PCI or ISA bus. Manufacturers of VME and STE bus devices may
supply driver programs for use in conjunction with DOS or Windows
applications running on the PC. The presence of the external bus
is thus largely transparent to the DA&C programmer, although the
devices connected to it (e.g. other PC boards, instruments and I/O
devices) can have a profound effect on what the software is able
to do. In addition, the bus implementation and bridge circuits can
sometimes introduce interrupt (and other) latencies which may have
to be addressed in real-time systems.

Other buses

Many other buses and communications standards, which are
commonly used in PC-based DA&C systems, have not yet been
mentioned: for example, IEEE-488, the Centronics parallel port,
and a variety of serial buses such as RS-232, RS-422, RS-485 and USB.
We will describe most of these in subsequent chapters. In addition,
there are several systems and protocols, such as HART (Highway
Addressable Remote Transfer) and BitBus, used in industrial sensing
and control applications, as well as a number of proprietary DA&C
buses (e.g. DT-Connect and Metrabus), which are outside the scope
of this book.

2 Software considerations

The architecture of the PC is reasonably well suited to data acqui-
sition. Most of the problems that occur in designing DA&C systems
result from limitations imposed by software. In fact, the most serious
obstacles to writing effective data-acquisition software are usually
generated by the PC’s operating systems. In this chapter we will
discuss the main requirements of data-acquisition software and will
describe some of the problems posed by using operating systems
intended for desktop applications in the more demanding environ-
ment of a real-time DA&C system.

2.1 An overview of DA&C software

In addition to code that acquires data or issues control signals, it
is usual for DA&C software to incorporate a number of support
modules which allow the system to be configured and maintained.
Other routines may be required for sorting, analysing and displaying
the acquired data. A typical DA&C program may contain the
following modules and facilities:

ž program configuration routines
ž diagnostics modules
ž system maintenance and calibration modules
ž run-time modules
ž device drivers
ž data analysis modules.

With the exception of device drivers, these modules are executed
more or less independently of each other (although it is, of course,
possible for multitasking systems to execute two or more concur-
rently). A brief overview of the main software components of a
typical DA&C system is given below. Particular systems may, of

Software considerations 27

course, differ somewhat in the detail of their implementation but
most applications will require at least some of these modules.

Program configuration routines

These software routines may be used for initial configuration of
elements of the system that the end user would normally never
(or very infrequently) have to change. This might include facilities
for selecting and setting up hardware and driver options; for spec-
ifying how data is to be routed through software ‘devices’ (such
as comparators, triggers, data-scaling operators, software latches,
logical operators, or graphical displays etc.); for defining start, stop
and error conditions, or for selecting delays, run times and data
buffer sizes.

Diagnostic modules

Once a DA&C program has been tested and debugged, any diag-
nostic routines which the designer may have included for testing
are often removed or disabled. However, their value should not
be underestimated in ‘finished’ (i.e. operational) systems. Routines
such as these can be invaluable tools during installation and for
subsequent system maintenance. Often, the dynamic and transient
nature of input/output (I/O) signals and the complex interrelation
between them can make it very difficult to reproduce a fault during
static testing with a voltmeter, continuity tester or a logic probe. Well-
designed diagnostic routines can be a great benefit to maintenance
engineers should a fault occur somewhere in the DA&C system.

With a little care and thought it is usually quite straightforward to
implement a range of simple but useful diagnostic routines. These
can be made to monitor aspects of the DA&C system either during
normal operation or when the system is placed in a special test
mode. On the simplest level, the diagnostic routines might check for
incorrect hardware or software configuration. They might also be
designed to perform continuous tests during normal operation of the
system. This might include checking for interruptions in communi-
cation between system components, ensuring correct timing of I/O
control signals, and monitoring or validating data from individual
sensors.

Diagnostic software routines have their limitations, however, and
other means of fault finding must be used where appropriate.
Various items of test equipment such as voltmeters, logic probes, and
logic pulsers may also be needed. More sophisticated equipment is
sometimes required, especially when dealing with rapid pulse trains.

28 PC interfacing and data acquisition

Digital storage, or sampling, oscilloscopes allow high frequency
waveforms to be captured and displayed. These are especially suited
to monitoring digital signals on high speed parallel buses or serial
communications links. Where it is necessary to see the relationship
between two or more time-varying signals, logic analysers may be
used. These devices possess multiple (typically 32) probes, each of
which detects the logic state of some element of the digital I/O
circuit under test. Logic analysers are controlled by a dedicated
microcomputer and can be programmed to provide a snapshot
of the logic states present at the probes on a display screen. The
conditions for triggering the snapshot – i.e. a selected pattern of
logic states – can be programmed by the user. The device may also
be used for timing analysis, in which case it operates in a similar way
to a multiple-beam oscilloscope.

In addition to these items of equipment, purpose-built test
harnesses may be used in conjunction with diagnostic software.
Test harnesses may consist of relatively simple devices such as a
bank of switches or LEDs which are used to check the continuity
of digital I/O lines. At the other extreme a dedicated computer
system, running specially designed test software, may be required
for diagnosing problems on complex DA&C systems. See the Soft-
ware production and testing section later in this chapter for more on
this topic.

System maintenance and calibration modules

Tasks such as calibrating sensors, adjusting comparators, and tuning
control loops might need to be carried out periodically by the user.
Because any errors made during calibration or control loop tuning
have the potential to severely disrupt the operation of the DA&C
system, it is essential for the associated software routines to be as
robust and simple to use as possible.

One of the most important of these system maintenance tasks is
calibration of analogue input (i.e. sensor) channels. Many sensors
and signal-conditioning systems need to be recalibrated periodi-
cally in order to maintain the system within its specified operating
tolerance. The simplest approach (from the program designer’s
perspective) is to require the user to manually calculate scaling
factors and other calibration parameters and then to type these
directly into a data file etc. It goes without saying that this approach
is both time consuming and error prone. A more satisfactory alterna-
tive is to provide an interactive calibration facility which minimizes
the scope for operator errors by sampling the sensor’s input at
predefined reference points, and then automatically calculating the

Software considerations 29

required calibration factors. We will resume our discussion of this
subject in Chapter 9 which covers scaling and interactive calibration
techniques in some detail.

Run-time modules

These, together with the device drivers, form the core of any DA&C
system. They are responsible for performing all of the tasks required
of the system when it is ‘live’ – e.g. reading sensor and status inputs,
executing control algorithms, outputting control signals, updating
real-time displays or logging data to disk.

The nature of the run-time portion varies immensely. In some
monitoring applications, the run-time routine may be very simple
indeed. It might, for example, consist of an iterative polling loop that
repeatedly reads data from one or more sensors and then perhaps
stores the data in a disk file or displays it on the PC’s screen. In
many applications other tasks may also have to be carried out. These
might include scaling and filtering the acquired data, or executing
dynamic control algorithms.

More complex real-time control systems often have very stringent
timing constraints. Many interrelated factors may need to be consid-
ered in order to ensure that the system meets its real-time response
targets. It is sometimes necessary to write quite elaborate interrupt-
driven buffered I/O routines or to use specially designed real-time
operating systems (RTOSs) in order to allow accurate assessments
of response times to be made. The software might be required to
monitor several different processes in parallel. In such cases, this
parallelism can often be accommodated by executing a number
of separate program tasks concurrently. We will discuss concurrent
programming later in this chapter.

Drivers

A diverse range of data-acquisition units and interface cards are now
on the market. The basic functions performed by most devices are
very similar, although they each tend to perform these functions in a
different manner. The DA&C system designer may choose from the
large number of analogue input cards that are now available. Many
of these will, for example, allow analogue signals to be digitized
and read into the PC, but they differ in the way in which their
software interface (e.g. their control register and bit mapping) is
implemented.

To facilitate replacement of the data-acquisition hardware it is
prudent to introduce a degree of device independence into the

30 PC interfacing and data acquisition

software by using a system of device drivers. All I/O is routed through
software services provided by the driver. The driver’s service routines
handle the details of communicating with each item of hardware.
The main program is unaware of the mechanisms involved in the
communication: it only knows that it can perform I/O in a consistent
manner by calling a well-defined set of driver services. In this way
the data-acquisition hardware may be changed by the end user and,
provided that a corresponding driver is also substituted, the DA&C
program should continue to function in the same way. This provides
some latitude in selecting precisely which interface cards are to be
used with the software. For this reason, replaceable device drivers are
commonplace in virtually all commercial DA&C programs. Protected
operating systems such as Windows NT perform all I/O via a complex
system of privileged device drivers.

Data analysis modules

These modules are concerned mainly with post-acquisition anal-
ysis of data. This might include, for example, spectral analysis
or filtering of time-varying signals, statistical analysis (including
Statistical Process Control (SPC)), and report generation. Many
commercial software packages are available for carrying out these
activities. Some general-purpose business programs such as spread-
sheets and graphics/presentation packages may be suitable for
simple calculations and for producing graphical output, but there
are a number of programs which cater specifically for the needs of
scientists, engineers and quality control personnel. Because of this,
and the fact that the details of the techniques involved are so varied,
it is impracticable to cover this subject in the present book. A variety
of data reduction techniques are described by Press et al. (1992) and
Miller (1993).

2.2 Data acquisition and control in real time

Data-acquisition systems that are designed for inspection or dimen-
sional gauging applications may be required to gather data at only
very low speeds. In these cases, the time taken to read and respond to
a series of measurements may be unimportant. Because such systems
usually have quite undemanding timing requirements, they tend to
be relatively straightforward to implement. The choice of computing
platform, operating system and programming language is usually not
critical. A surprisingly large number of industrial DA&C applications
fall into this category. However, many don’t.

Software considerations 31

High speed DA&C normally has associated with it a variety of
quite severe timing constraints. Indeed the PC and its operating
systems cannot always satisfy the requirements of such applications
without recourse to purpose-built hardware and/or special coding
techniques. High speed processors or intelligent interface devices
may be required in order to guarantee that the system will be capable
of performing certain DA&C operations within specified time limits.

A real-time DA&C system is one in which the time taken
to read data, process that data and then issue an appropriate
response is negligible compared with the timescale over which
significant changes can occur in the variables being monitored
and/or controlled. There are other more precise definitions, but
this conveys the essence of real-time data acquisition and control.

A typical example of a real-time application is a furnace control
system. The temperature is repeatedly sampled and these readings
are then used to control when power is applied to the heating
element. Suppose that it is necessary to maintain the temperature
within a certain range either side of some desired setting. The system
detects when the temperature falls to a predefined lower limit and
then switches the heating element on. The temperature then rises to
a corresponding upper limit, at which point the monitoring system
switches the heating element off again, allowing the temperature to
fall. In this way, the temperature repeatedly cycles around the desired
mean value. The monitoring system can only be said to operate in
real time, if it can switch the heating element in response to changes
in temperature quickly enough to maintain the temperature of the
furnace within the desired operating band.

This is not a particularly demanding application – temperature
changes in this situation are relatively slow, but it does illustrate
the need for real-time monitoring and control systems to operate
within predefined timing constraints. There are many other exam-
ples of real-time control systems in the process and manufacturing
industries (such as control of reactant flow rate, controlling compo-
nent assembly machines, and monitoring continuous sheet metal
production, for example) which all have their own particular timing
requirements. The response times required of real-time systems
might vary from a few microseconds up to several minutes or longer.
Whatever the absolute values of these deadlines, all real-time systems
must operate to within precisely defined and specified time limits.

Requirements of real-time DA&C systems

As mentioned previously, normal PC operating systems (DOS,
Microsoft Windows and OS/2) do not form an ideal basis for

32 PC interfacing and data acquisition

real-time applications. A number of factors conspire to make the
temporal response of the PC somewhat unpredictable. Fortunately
there are ways in which the situation can be improved. These tech-
niques will be introduced later in this section, but first we will
consider some of the basic characteristics that a real-time computer
system must possess. In addition to the usual properties required of
any software, a real-time system must generally satisfy the following
requirements.

Requirement 1: high speed

The most obvious requirement of a real-time system is that it should
be able to provide adequate throughput rates and response times.
Fortunately, many industrial applications need to acquire data at
only relatively low speeds (less than one or two hundred readings
per second) and need response times upwards of several tens of
milliseconds. This type of application can be easily accommodated
on the PC. Difficulties may arise when more rapid data acquisition
or shorter responses are required.

Obviously a fast and efficient processor is the key to meeting this
requirement. As we have already seen, modern PCs are equipped
with very powerful processors which are more than adequate for
many DA&C tasks. However, the memory and I/O systems, as well as
other PC subsystems, must also be capable of operating at high speed.
The disk and video subsystems are notorious bottlenecks, and these
can severely limit data throughput when large quantities of data are
to be displayed or stored in real time. Fortunately, most modern PC
designs lessen this problem to some extent by making use of high
speed buses such as the Small Computer Systems Interface (SCSI)
and the PCI local bus. Modern Pentium-based PCs are very powerful
machines and are capable of acquiring and processing data at ever
increasing rates. Older XT and 80286- or 80386-based computers
offer a lower level of performance, but are still often adequate in less
demanding applications.

Requirement 2: determinism

A deterministic system is one in which it is possible to precisely predict
every detail of the way in which the system responds to specific events
or conditions. There is an inherent predictability to the sequence
of events occurring within most computer programs, although the
timing of those events may be more difficult to ascertain. A more
practical definition of a deterministic system is one in which the times
taken to respond to interrupts, perform task switches and execute
operating system services etc. are well known and guaranteed. In

Software considerations 33

short, a deterministic system has the ability to respond to external
events within a guaranteed time interval.

Determinism is an important requirement of all real-time systems.
It is necessary for the programmer to possess a detailed knowledge
of the temporal characteristics of the operating system and device
drivers as well as of the DA&C program itself. This knowledge is an
important prerequisite for the programmer to assess the worst-case
response of the system and thus to ensure that it meets specified
deadlines.

Requirement 3: high resolution timekeeping and pacing
facilities

In addition to being able to operate within given time constraints, it
is important for most real-time systems to be able to precisely measure
elapsed time. This ability is essential for the software to accurately
schedule I/O operations and other tasks. Where data is acquired
at irregular or unpredictable rates, it is particularly important to be
able to time stamp readings and other events. An accurate timing
facility is also an invaluable aid to fault finding in dynamic systems.
The PC is equipped with a real-time clock and a set of timers which
are useful for this purpose. The timers function by means of the
PCs interrupt system and provide a powerful means of pacing a
data-acquisition sequence or for generating precisely timed control
signals. The PC’s timing facilities are discussed briefly in Chapter 3.

Requirement 4: flexible interfacing capability

It should be obvious that any data-acquisition and control system
should be able to interface easily to sensors, actuators and other
equipment. This requirement covers not only the PC’s physical
interfacing capacity (i.e. the presence of appropriate plugs, sockets
and expansion slots), but also encompasses an efficient means of
transferring data in and out of the computer.

The PC possesses a very flexible interfacing system. As mentioned
previously, this is implemented by means of the standard ISA, EISA,
MCA or PCI expansion buses or PCMCIA slots. The PC also facilitates
processor-independent high speed I/O using techniques known as
Direct Memory Access (DMA) and bus mastering. These facilities
give the PC the capability to interface to a range of external buses and
peripherals (e.g. data-logging units, sensors, relays and timers) via
suitable adaptor cards. Indeed, adaptor cards for RS-232 ports and
Centronics parallel ports, which can be used to interface to certain
types of DA&C hardware, are an integral component of almost all
PCs. Interfacing, data transfer and DMA are discussed in more detail
in Chapters 3, 6, 7 and 8.

34 PC interfacing and data acquisition

Requirement 5: ability to model real-world processes

It should also be apparent to the reader that the logical structure
of a real-time DA&C system should adequately mirror the processes
that are being monitored. As we shall see on the following pages
this requirement sometimes necessitates using a specially designed
real-time operating system. In less demanding applications, however,
such a step is unnecessary provided that due care is taken to avoid
some of the pitfalls associated with standard ‘desktop’ operating
systems.

Requirement 6: robustness and reliability

Again, this is a rather obvious requirement but its importance
cannot be overstated. A number of steps can be taken to maximize
the reliability of both hardware and software. We will return to this
issue later in this chapter.

Simple DA&C systems

Some PC-based DA&C systems are fairly undemanding in regard
to the detailed timing of I/O events. Many applications involve
quite low speed data logging, where samples and other events occur
at intervals of several seconds or longer. In other cases a high
average data-acquisition rate might be needed, but the times at which
individual readings are obtained may not be subject to very tight
restrictions. Often, only a single process (or a group of closely
coupled processes) will have to be monitored and in these cases it is
usually sufficient to base the run-time portion of a DA&C program
on a simple polling loop as illustrated in Figure 2.1.

This figure shows the sequence and repetitive nature of events that
might occur in a simple single-task application. When some prede-
fined start condition occurs (such as a keystroke or external signal)
the program enters a monitoring loop, during which data is acquired,
processed and stored. The loop may also include actions such as
generating signals to control external apparatus. The program exits
from the loop when some desired condition is satisfied – i.e. after
a certain time has elapsed, after a predefined number of readings
have been obtained or when the user presses a key. In some cases,
additional processing may be performed once the data-acquisition
sequence has terminated.

There are, of course, many variations on this basic theme, but the
essence of this type of program structure is that all processing is
performed within a single execution thread. This means that each
instruction in the program is executed in a predefined sequence,

Software considerations 35

INITIALIZE

Displays, files, program
variables

WAIT FOR START CONDITION

Keystroke, external
signal, elapsed time /

alarm

WAIT FOR
PACING SIGNAL

ONE OR MORE
PHYSICAL

PROCESSES

ACQUIRE
DATA

SCALE /
LINEARIZE

CONTROL
ALGORITHM

UPDATE
DISPLAYS

LOG DATA
(File, printer etc.)

END

CONDITION?

(keystroke, time,
data count

etc.)

POST-ACQUISITION PROCESSING

Update displays, close files
analyse data, pass / fail

tests

No

Yes

Figure 2.1 Schematic illustration of the structure of a typical DA&C program

based on a simple polling loop

36 PC interfacing and data acquisition

one after the other. There is no possibility that external events will
cause parts of the program to be executed out of sequence. Any tasks
which the computer does carry out in parallel with the execution
of the program, such as responding to keystrokes, ‘ticks’ of the in-
built timer or to other system interrupts, are essentially part of the
operating system and are not directly related to the functioning of
the DA&C program.

It should be noted that events such as a timer or keyboard
interrupt will temporarily suspend execution of the DA&C program
while the processor services the event (increments the time counter
or reads the keyboard scan code). This means that the timing of
events within the interrupted program will not be totally predictable.
However, such a system is still considered to operate in real time if
the uncertainty in the timing of the data-acquisition cycle is small
compared with the timescales over which the monitored variables
change.

Systems with more stringent timing requirements

All real-time systems have precisely defined timing requirements. In
many cases, these requirements are such that the system must be
designed to respond rapidly to events which occur asynchronously
with the operation of the program. In these cases, a simple polling
loop may not guarantee a sufficiently short response time. The usual
way to achieve a consistent and timely response is to use interrupts.

Interrupts

Interrupts are the means by which the system timer, the keyboard
and other PC peripherals request the processor’s attention. When
service is required, the peripheral generates an interrupt request
signal on one of the expansion bus lines. The processor responds, as
soon as possible, by temporarily suspending execution of the current
program and then jumping to a predefined software routine. The
routine performs whatever action is necessary to fulfil the request
and then returns control to the original program, which resumes
execution from the point at which it was interrupted.

Because an interrupt handling routine is executed in preference
to the main portion of the program, it is considered to have a higher
priority than the non-interrupt code. The PC has the capacity to
deal with up to 15 external interrupts (8 on the IBM PC, XT and
compatibles) and each of these is allocated a unique priority. This
prioritization scheme allows high priority interrupts to be allotted to
the most time-critical tasks. With appropriate software techniques,

Software considerations 37

the programmer may adapt and modify the interrupt priority rules
for use in real-time applications.

The PC is equipped with a very flexible interrupt system, although
the gradual evolution of the PC design has left something to be
desired in terms of the allocation of interrupts between the processor
and the various PC subsystems. When using interrupts, you should
bear in mind two important considerations (although there are
many others): re-entrancy and interrupt latency. These topics are
introduced below. The PC’s interrupt system, and the problems of
re-entrancy and interrupt latency, are described in more detail in
Chapter 5.

Re-entrant code and shared resources

This is relevant to all types of software, not just to real-time DA&C
programs. Because external interrupts occur asynchronously with the
execution of the program, the state of the computer is undefined
at the time of the interrupt. The interrupt handling routine must,
therefore, ensure that it does not inadvertently alter the state of
the machine or any software running on it. This means that it must
(a) preserve all processor registers (and other context information),
and (b) refrain from interfering with any hardware devices or data to
which it should not have access. The last requirement means that care
should be taken when calling any subroutines or operating system
services from within the interrupt handler. If one of these routines
happened to be executing at the time that the interrupt occurred,
and the routine is then re-entered from within the interrupt handler,
the second invocation may corrupt any internal data structures that
the routine was originally using. This can obviously cause severe
problems – most likely a system crash – when control returns to the
interrupted process. Of course, software routines can be written to
allow multiple calls to be made in this way. Such routines are termed
re-entrant.

Unfortunately most MS-DOS and PC-DOS services are not re-
entrant, and so calls to the operating system should generally be
avoided from within interrupt handlers. Specially designed real-
time operating systems (RTOSs) are available for the PC and these
normally incorporate at least partially re-entrant code. The run-
time libraries supplied with compilers and other programming tool
kits may not be re-entrant. You should always attempt to identify
any non-re-entrant library functions that you use and take appro-
priate precautions to avoid the problems outlined above. A similar
consideration applies when accessing any system resource (including
hardware registers or operating system or BIOS data) which may be
used by the main program and/or by one or more interrupt handlers.

38 PC interfacing and data acquisition

Interrupt latencies

This consideration is more problematic in real-time systems. The
processor may not always respond immediately to an interrupt
request. The maximum time delay between assertion of an inter-
rupt request signal and subsequent entry to the interrupt handler
routine is known as the interrupt latency. The length of the delay
depends upon the type of instructions being executed when the
interrupt occurs, the priority of the interrupt relative to the code
currently being executed, and whether or not interrupts are currently
disabled. Because interrupts are asynchronous processes, the effect
of these factors will vary. Consequently, the delay in responding to
an interrupt request will also vary. In order to ensure that the system
is able to meet specified real-time deadlines, it is important for the
system designer to quantify the maximum possible delay or interrupt
latency.

By careful design it is possible to ensure that the code within a
DA&C program does not introduce excessive delays in responding
to interrupts. However, most programs occasionally need to call
operating system or BIOS services. The programmer must ensure
that the system will still respond within a specified time, even if
an interrupt occurs while the processor is executing an operating
system service. Unfortunately, standard desktop operating systems
such as DOS and Microsoft Windows are not designed specifically
for real-time use. These operating systems generally exhibit quite
long interrupt latencies (particularly Windows). Typical figures are
in the order of 10–20 ms, although you should not place too much
reliance on this value as it will vary quite considerably between
applications. Unfortunately, interrupt latency data for Windows and
MS-DOS is hard to come by. Such operating systems are known as
non-deterministic.

The magnitude of the problem can be reduced if real-time
operating systems (RTOSs) are used. These operating systems are
designed so as to minimize interrupt latencies. They are usually
essential if latencies of less than about 1 ms are required. The
interrupt latencies applicable to various parts of the RTOS are also
generally documented in the operating system manual, allowing the
programmer to ensure that the whole system is capable of meeting
the required response deadlines.

Concurrent processing

Systems monitored or controlled by real-time DA&C software often
consist of a number of separate processes operating in parallel. If
these processes are asynchronous and largely independent of each

Software considerations 39

other it may be very difficult to represent them adequately in a
simple, single-threaded program. It is usually more convenient to
model parallel processes within the computer as entirely separate
programs or execution threads. This arrangement is illustrated in
Figure 2.2 which shows three separate processes being executed
in parallel (i.e. three separate instances of the single-task loop of
Figure 2.1).

Ideally, each process would be executed independently by a
separate computer. We can go some way towards this ideal situa-
tion by delegating specific real-time tasks to distributed intelligent
data-logging or control modules. Many factory automation systems
adopt this approach. Dedicated data-acquisition cards, with on-board
memory buffers and an intrinsic processing ability, can also be used to
provide a degree of autonomous parallel processing. Other parallel
processing solutions are also available, but these generally involve
the use of separate multiprocessing computer systems and, as such,
are beyond the scope of this book.

The most common way of modelling parallel processes on the PC
is to employ concurrent programming (or multitasking) techniques.
Most modern PCs are equipped with 80386, 80486 or Pentium
processors and these incorporate features which greatly facilitate
multitasking. On single-processor systems such as the PC, concur-
rent execution is achieved by dividing the processor’s time between
all executing programs. The processor executes sections of each
program (or task) in turn, switching between tasks frequently enough
to give the impression that all tasks are being executed simultane-
ously. This technique is used in multitasking operating systems such
as OS/2, Windows and UNIX.

Scheduling

Clearly, there must be a set of rules governing how and when task
switching is to occur. These rules must also define the proportions of
time assigned to, and the priorities of, each program. The process of
allocating execution time to the various tasks is known as scheduling
and is generally the responsibility of the operating system. The
basic principles of scheduling are quite straightforward although the
details of its implementation are somewhat more complex.

There are several ways in which a task scheduler can operate. In
a system with pre-emptive scheduling, the operating system might
switch between tasks (almost) independently of the state of each task.
In non-pre-emptive scheduling, the operating system will perform a
task switch only when it detects that the current task has reached a
suitable point. If, for example, the current task makes a call to an
operating system service routine, this allows the operating system to

START

ACQUIRE

ANALYSE

CONTROL

END?

POST-ACQUISITION
PROCESSING

END

PROCESS 1

PHYSICAL
PROCESS

1

NO

YES

START

ACQUIRE

ANALYSE

CONTROL

END?

POST-ACQUISITION
PROCESSING

END

PROCESS 2

PHYSICAL
PROCESS

2

NO

YES

START

ACQUIRE

ANALYSE

CONTROL

END?

POST-ACQUISITION
PROCESSING

END

PROCESS 3

PHYSICAL
PROCESS

3

NO

YES

Figure 2.2 Schematic illustration of concurrent monitoring and control of parallel processes

Software considerations 41

check whether the task is idle (e.g. waiting for input). If it is idle,
the operating system may then decide to perform more useful work
by allowing another process to execute. This makes for efficient
use of available processor time, but, as it relies on an individual
task to initiate the switch, it does allow poorly behaved tasks to hog
the processor. This is obviously undesirable in real-time applications
because it may prevent other processes from executing in a timely
manner. Pre-emptive scheduling, on the other hand, provides for a
fairer division of time between all pending processes, by making the
operating system responsible for regularly initiating each task switch.

Task switching, threads and processes

Whenever the operating system switches between tasks it has to save
the current context of the system (including processor registers,
pointers to data structures and the stack), determine which task
to execute next, and then reload the previously stored context
information for the new task. This processing takes time, which
in a real-time operating system should be as short as possible.
Most multitasking ‘desktop’ operating systems use the advanced
multitasking features available on 80386 and later processors to
implement a high degree of task protection and robust task switching.
However, this type of task switching can be too time consuming for
use in high performance real-time systems.

Other operating systems, such as those designed for real-time
use, minimize the switching overhead by allowing each process (i.e.
executing program) to be divided into separate execution threads.
Threads are independent execution paths through a process. They
can generally share the same code and data areas (although they
each tend to have their own stack segment), and are normally
less isolated from each other than are individual processes in a
multitasking system. There is also less context information to be
saved and restored whenever the operating system switches between
different threads, rather than between different processes. This
reduces the amount of time taken to perform the context switch.
Although not intended for hard real-time applications, Microsoft
Windows NT supports multi-threaded processes.

The term ‘task’ is used somewhat loosely in the remainder of this
chapter to refer to both processes and threads.

Real-time design considerations: a brief overview

As mentioned previously many PC-based data-acquisition systems will
not be required to operate within the very tight timing constraints
imposed in real-time control applications. However, it is useful for

42 PC interfacing and data acquisition

programmers involved in producing any type of time-dependent
application to have a basic understanding of the fundamentals
of real-time design. Even if you do not plan to implement these
principles in your own systems, the following introduction to the
subject may help you to avoid any related potential problems.

Structure of real-time multitasking programs

A typical real-time system might consist of several tasks running in
parallel. The division of processing between tasks will usually be
assigned on the basis of the real-world processes which the system
must model. Each task will often be assigned to a separate, and more
or less independent, physical process.

A typical example is the control of a manufacturing process
for producing rolled metal or polymer sheet. One task might be
dedicated to monitoring and controlling product thickness. Another
may be assigned to regulating the temperature to which the material
is heated prior to being passed through the rollers. Yet another task
could be used for periodically transferring thickness, temperature
and status information to the display. A similar arrangement is shown
in Figure 2.3.

The interface between the various tasks and the data-acquisition
hardware is often implemented by means of one or more interrupt
handlers. These are normally contained within some form of dedi-
cated device driver and are designed to allow the system to respond
quickly to external events. Data acquired via an interrupt handler
might be stored in a memory buffer until the associated task is able
to read and process it. The individual tasks are responsible for opera-
tions such as data logging, display maintenance or data reduction. A
task might also be assigned to perform real-time calculations or tests
on the acquired data. The results can then be used as the basis for
generating control signals which are output to external equipment.
In general, time-critical operations are performed by high priority
tasks, allowing them to take precedence over less critical operations
such as managing the user interface.

There is generally a need for some form of intertask communi-
cation. This facility is often based on the use of message queues
and memory buffers. Where shared memory or other resources are
used, special protection mechanisms must be employed to mediate
between tasks. Interprocess communication and protection mecha-
nisms are provided by real-time operating systems (RTOSs). We will
consider some of these facilities in more detail in the following
sections. Additional information on real-time and multitasking
systems can be found in the texts by Evesham (1990), Adamson
(1990), Ben-Ari (1982) and Bell et al. (1992).

TASK 1−ROLLER SPACING
CONTROL

(HIGH PRIORITY)
Read, process + control

TASK 2−DISPLAY UPDATE
(LOW PRIORITY)
Real- time displays

user interface

TASK 3−TEMPERATURE
CONTROL

(HIGH PRIORITY)
Read, process + control

BUFFER/ MESSAGE
QUEUE

DATA BUFFER

Data Data

DATA BUFFER

PHYSICAL PROCESS

I/O
SERVICES

Control
signals

Control
signals

Acquired
data

and
m

essages

Current task

Acquire
d data

and messages

OPERATING SYSTEM
+

PRE-EMPTIVE SCHEDULER

INTERRUPT
HANDLER

INTERRUPT
HANDLER

Figure 2.3 Conceptual structure of a typical real-time multitasking system

44 PC interfacing and data acquisition

Accessing shared resources and interprocess communication

Although the processes in a multitasking system tend to operate
more or less independently of each other, there usually has to be
some degree of communication between them in order to transfer
data or to synchronize certain features of their operation.

Interprocess communication involves accessing a shared resource
such as a buffer or message queue that is maintained somewhere in
the PC’s memory. The operating system is generally responsible for
coordinating access to these structures, and to other system resources
such as disk drives etc.

Whenever a task or an interrupt handler needs to access any shared
resource – including hardware, operating system services and data
structures – great care must be taken to avoid conflicting with any
other tasks that may be in the process of accessing the same resource.
Consider a section of code that accesses a shared resource. If the
code could possibly malfunction as a result of being pre-empted (or
interrupted) by a task that accesses the same resource, the code is
known as a critical section. It is necessary to protect critical sections
from this type of interference by temporarily blocking task switches
and/or interrupts until the critical section has been completed. This
requirement is known as mutual exclusion.

Mutual exclusion can be enforced by means of semaphores. These
are essentially flags or tokens that are allocated by the operating
system to any process wishing to access a particular resource. A
task may not proceed into a critical section until it has obtained
the appropriate semaphore. In some systems, implementations of
semaphores, for the purpose of enforcing mutual exclusion, are
referred to as Mutexes.

Deadlocks and lockouts

A deadlock occurs when all processes within a system become
suspended as a result of each process waiting for another to perform
some action. A lockout is similar, but does not affect all tasks. It arises
when conditions brought about by two or more processes conspire to
prevent another process from running. Great care must be taken to
avoid the possibility of deadlocks or lockouts in any real-time system.

Priorities

Many multitasking systems allow priorities to be assigned to the
individual tasks. Whenever the scheduler performs a task switch it
uses the priorities assigned to each task to decide which one to
execute next. This has the obvious benefit in real-time systems of
allowing the most important or time-critical tasks to take precedence.

Software considerations 45

In some systems, priorities can be changed dynamically. Priority
systems can be quite complex to implement and a number of
special programming techniques may have to be used, both within
the application program and within the operating system itself, to
ensure that the priorities are always applied correctly.

A common problem is priority inversion. If a low priority task
holds a semaphore and is then pre-empted by a higher priority task
that requires the same semaphore, the operating system will have
to let the low priority task continue to run until it has released the
semaphore. If, meanwhile, the low priority task is pre-empted by a
task with an intermediate priority, this will run in preference to the
highest priority task. Some of the solutions to priority inversion (such
as priority inheritance which dynamically alters the priority of tasks)
raise additional problems. Certain RTOSs go to great lengths to
provide generally applicable solutions to these problems. However,
many of these difficulties can be avoided if the programmer has a
detailed understanding of all of the software components running
on the system so that potential deadlocks or other incompatibilities
can be identified.

2.3 Implementing real-time systems on the PC

Thanks to its expansion bus and flexible interrupt system, the
PC has a very open architecture. This allows both hardware and
software subsystems to be modified and replaced with ease. Although
this openness is a great benefit to designers of DA&C systems,
it can introduce problems in maintaining the system’s real-time
performance. If non-real-time code is introduced into the system,
in the form of software drivers which trap interrupts or calls to
operating system services, it may no longer be possible to guarantee
that the system will meet its specified real-time targets. It should be
clear that there is a need to exercise a considerable degree of control
over the software subsystems that are installed into the PC.

In general, the architecture of the PC itself is reasonably well suited
to real-time use. Its operating system is often the limiting factor in
determining whether the PC can meet the demands of specific
real-time applications. Standard MS-DOS or PC-DOS, Microsoft
Windows and the PC’s BIOS present a number of difficulties which
may preclude their use in some real-time systems. However, there
are several specially designed real-time operating systems (RTOSs),
including real-time versions of DOS and the BIOS, which can help
to alleviate these problems. Real-time operating systems can be quite
complex, and different implementations vary to such a degree that

46 PC interfacing and data acquisition

it is impracticable to attempt a detailed coverage here. The reader
is referred to manufacturer’s literature and product manuals for
details of individual RTOSs.

As we have already noted, standard desktop operating systems
(e.g. MS-DOS and Microsoft Windows) were not designed specifi-
cally for real-time use. Interrupt latencies and re-entrancy can be
problematic. These operating systems frequently embark on lengthy
tasks, which can block interrupt processing for unacceptable (and
possibly indeterminate) lengths of time. Some of the instructions
present on 80386 and subsequent processors, which were designed
to facilitate multitasking (and which are used on systems such as
Windows, OS/2 and UNIX), are not interruptible and can occupy
several hundred processor cycles. Using these operating systems
and instructions can increase interrupt latencies to typically several
hundred microseconds or more.

Table 2.1 lists a few example applications which require different
degrees of timing precision and different sampling rates. Notice
that where timing constraints are more relaxed, non-deterministic
operating systems such as Windows may be used in conjunction with
slow software-controlled DA&C hardware. Tighter timing constraints
(near the bottom of the table) necessitate the use of buffered DA&C
cards, hardware triggering, autonomous data loggers or specialized
RTOSs. Note that the timing figures and sampling rates listed in the
table are intended only as a rough guide and in reality may vary
considerably between applications.

The BIOS

The PC’s BIOS can be a source of problems in real-time applications.
Several of the BIOS services can suspend interrupts for unpredictable
lengths of time. Some of the BIOS may also be non-re-entrant. At
least one manufacturer produces a real-time version of the BIOS for
use with its real-time DOS, and another supplies an independent
real-time BIOS that can be used with MS-DOS or compatible systems
(including real-time DOSes). These BIOSes provide many standard
low level I/O facilities while maintaining a short and guaranteed
interrupt latency.

DOS

MS-DOS is a relatively simple operating system designed for execu-
tion in real mode. It is largely non-re-entrant, and it does not
possess multitasking capabilities or the deterministic qualities (e.g. a
short and well-defined interrupt latency) required for real-time use.

Table 2.1 DA&C applications representative of various timing regimes

Approx. Permissible

sampling timing

rate uncertainty⊲1⊳

Application (samples s�1) (ms) Possible operating system and hardware combination

Static dimensional gauging Not applicable Few ð
1000

MS-DOS, Windows 98 or Windows NT. Low speed (non-buffered) ADC

card or multichannel serial port data logger.

Furnace temperature

control

<1 100 MS-DOS, Windows 98 or Windows NT. Low speed (non-buffered) ADC

card or RS-485 intelligent temperature sensing module.

Low speed chemical

process control

1–5 50 MS-DOS with low speed non-buffered ADC card or serial port data

acquisition/control modules.

Windows NT with buffered and hardware-triggered DA&C card or

autonomous data logger/controller.

Roller control in sheet

metal production

5–50 2–10 MS-DOS with medium speed software-triggered DA&C card and SSH,

or RS-232 data logger.

Windows NT with hardware-triggered buffered DA&C card and SSH, or

autonomous data logger/controller.

Load monitoring during

manual component

testing

10–50 2–5 MS-DOS or Windows NT/98 with hardware-triggered, buffered DA&C

card or IEEE-488 instrumentation.

Dynamic

load/displacement

monitoring with

machine control

10–200 1–2 MS-DOS or Windows NT/98 with hardware-controlled, buffered DA&C

card.

Destructive proof testing

and machine control

>1000 <1 RTOS with high speed, hardware-triggered and buffered ADC card and

opto-isolated I/O cards.

Audio testing (no control) >1000 <1 MS-DOS, Windows NT or RTOS with fast, buffered ADC card.

⊲1⊳Of a single measurement, assuming accurate average sampling rate is maintained.

48 PC interfacing and data acquisition

Nevertheless, it is inexpensive and is often suitable as the basis for
simple DA&C systems provided that the real-time requirements are
not too stringent. For many low and medium speed data-acquisition
applications, in which timing accuracies of the order of 10 ms or so
are needed, DOS is ideal, being both relatively simple and compact.
Real-time control applications are often more demanding, however.

If timing is critical, it may be prudent to turn to one of the specially
designed real-time versions of DOS. These tend to be ROMable and
suitable for use in embedded PC systems. It should be noted, though,
that not all ROMable DOSes are fully deterministic – i.e. interrupt
latencies and other timing details may not be guaranteed.

There are now several real-time versions of DOS on the market
such as General Software Inc.’s Embedded DOS and Datalight Inc.’s
ROM-DOS (available in the UK from Great Western Instruments
Ltd and Dexdyne Ltd, respectively). Real-time DOS systems are
fully deterministic, having well-defined interrupt latencies, and are
generally characterized by their ability to execute multiple processes
using pre-emptive task scheduling. Other facilities, such as task
prioritization and the option to utilize non-pre-emptive scheduling
are also often included.

The multitasking capabilities of real-time DOSes contrasts with
those of desktop operating systems. Because the requirements of
most real-time applications are relatively simple, the large quantities
of memory and the task protection features offered by heavy-
weight operating systems like Windows and OS/2 can often be
dispensed with.

Real-time DOSes are designed to minimize task switching over-
heads. Each task switch may be accomplished in a few microsec-
onds and interrupt latencies are often reduced to less than about
20 μs, depending, of course, on the type of PC used. Detailed
timing information should be provided in the operating system
documentation.

These operating systems are also generally re-entrant to some
extent. This allows DOS services to be shared between different tasks
and to be safely called from within interrupt handlers. Other features
found in real-time DOSes may include mutual exclusion primitives
(semaphores) for accessing shared resources and for protecting crit-
ical sections; software timers; interprocess communication features
such as support for message queues; and debugging facilities. These
operating systems also support a range of other configurable features
which allow the operating system to be adapted for use in a variety
of different real-time or embedded systems.

Real-time DOSes retain a high degree of compatibility with MS-
DOS’s interrupts, file system and installable device drivers. Networks

Software considerations 49

may also be supported. Note that version numbers of real-time DOSes
may bear no relation to the version of MS-DOS which they emulate.
Some systems provide basic MS-DOS version 3.3 compatibility while
others also provide some of the features found in more recent
releases of MS-DOS.

In some cases, at least partial source code may also be available,
allowing the operating system itself to be adapted for more special-
ized applications. The main drawback with real-time versions of DOS
is that they can be considerably more expensive, particularly for use
in one-off systems. Royalties may also be payable on each copy of the
operating system distributed.

DOS extenders and DPMI

With the proliferation of sophisticated multitasking operating
systems, DOS extenders are now used much less frequently than
they were in the early 1990s. However, if you have to develop a
DOS-based DA&C system, an extender will allow you to access up
to typically 16 MB of memory. This is achieved by running your
program in protected mode and, when necessary, switching back to
real mode in order to access DOS and BIOS services. DOS extenders
conforming to the DOS Protected Mode Interface (DPMI) standard
are available from several vendors.

In spite of having a slightly greater potential for determinism
than processes running under Windows, for example, a DPMI-based
program may run more slowly that its real-mode counterpart. A
number of the problems outlined for Windows in the following
section also apply to DOS extenders. Mode switches are required
whenever DOS or BIOS services are called, or when the system has to
respond to interrupts. Some DOS extenders may also virtualize the
interrupt system, by providing services specifically for disabling and
enabling interrupts. To this end, they also prevent the program from
directly disabling or enabling interrupts by trapping the STI and CLI

instructions in much the same way as the processor might trap IN

and OUT instructions in protected mode. This point should be borne
in mind as it can affect the system’s interrupt performance. DOS
extenders are discussed in detail in the text by Duncan et al. (1990).

Microsoft Windows

Microsoft Windows 98 and Windows NT version 4 are the latest
releases in a long line of graphical windowing environments for
the PC. Since it was first introduced in 1985, Windows has evolved
from a simple shell sitting on top of DOS into a very powerful and

50 PC interfacing and data acquisition

complex operating system. The oldest version of Windows that is
still used in significant numbers is Windows 3.1. This version, which
was released in 1992, introduced many of the features present in
Windows today such as TrueType fonts and Object Linking and
Embedding (OLE). Windows for Workgroups, was subsequently
released in 1992. This included support for peer-to-peer networking,
fax systems and printer sharing, but in most other respects was
similar to Windows 3.1.

Subsequently, Windows development split, forming two product
lines, Windows 9x and Windows NT. At the time of writing the
latest releases are Windows 98 (which supersedes Windows 95) and
Windows NT version 4 (version 5 is due for imminent release).
Although Windows 98 and NT are distinctly different products they
share many similarities. Both are 32-bit protected mode operating
systems, supporting a 4 GB flat memory model, sophisticated security
features and support for installable file systems and long (256 char-
acter) file names. Both also use the same applications programming
interface: the Win32 API.

Several features of Windows NT and Windows 98 are important in
the context of real-time data acquisition and control. The ability to
pre-emptively multitask many threads and to interface to a range of
peripherals in a device-independent manner are especially relevant.
However, there are a number of quite serious problems associated
with using any of the current versions of Windows in real time. Rather
than having complete control of the whole PC (as is the case with
real-mode DOS programs, for example), programs running under
Windows execute under the control and supervision of the operating
system. They have restricted access to memory, I/O ports and the
interrupt subsystem. Furthermore, they must execute concurrently
with other processes and this can severely complicate the design of
DA&C programs. In order to build a deterministic Windows system, it
is necessary to employ quite sophisticated programming techniques.
The following sections outline some of the problems associated with
using Windows in real time.

While Windows NT and 98 are both essentially desktop operating
systems, Windows NT is the more robust of the two and is widely
regarded as a well engineered, secure and reliable operating system.
It contains pure 32-bit code, and possesses integrated networking
capabilities and enhanced security features. Windows NT has also
been designed to be portable across platforms, including multi-
processor and RISC systems. For these reasons Windows NT is
often used in preference to Windows 98 for industrial interfacing
applications.

Software considerations 51

A brief introduction to data acquisition under Windows is provided
in the following subsections. Those readers interested in program-
ming under Windows are advised to consult one of the numerous
books on this topic such as Solomon (1998), Templeman (1998),
Petzold (1996) or Oney (1996).

Windows overview

One of the main features of Windows NT and Windows 98 is
their ability to run 32-bit software. This offers significant (potential)
improvements in execution speed as well as many other advantages.

In contrast to Windows 95/98, Windows NT contains only 32-bit
code. This is beneficial since 16-bit portions of code within Windows
95/98 can have an adverse effect on performance. Problems can
arise when 32-bit code has to communicate with 16-bit code, and vice
versa. The process which permits such a communication is known
as a thunk. This is a complex action which, as it involves switching
between 16-bit and 32-bit addressing schemes, can slow program
execution considerably. In fact, it has been reported that Windows
95 can multitask 16-bit applications as much as 55 per cent slower
than they would run under Windows 3.1.

32-bit code offers many advantages to the programmer. Foremost
among these is the ability to use a flat memory addressing scheme.
This gives access to up to 4 GB of memory without the need to
continually reload segment registers. Access to memory is closely
supervised and controlled at the page level by the operating system.
Page level protection is implemented using the processor’s page
translation and privilege ring mechanisms. These actually virtualize
the memory map so that the memory addresses used by applica-
tion programs do not necessarily correspond to physical memory
addresses. All memory accesses are performed indirectly by refer-
ence to a set of page tables and page directories that are maintained
by the operating system. Under this scheme it is impossible for an
application to access (and thereby corrupt) memory belonging to
another 32-bit application. Memory management under Windows
is a complex business, but fortunately much of the mechanism is
hidden from the programmer.

Virtualization is not confined to memory. Windows 98 and NT
use features of the 80486 and subsequent processors to virtualize the
PC’s I/O and interrupt subsystems. All of this virtualization allows the
operating system to completely isolate application programs from
the hardware. A complete virtual machine is created in which to run
each application. Although virtualization is efficient and makes for
a robust environment for multitasking, it does introduce additional

52 PC interfacing and data acquisition

overheads, and these can be difficult to overcome in real-time data
acquisition.

As we have seen in Chapter 1, the 80486 and Pentium proces-
sors provide several mechanisms that facilitate multitasking and
task protection. Among these are the assignment of privilege levels
to different processes. The privilege level scheme allows operating
system processes to take precedence over the less privileged applica-
tion program. There are four privilege levels known as Rings 0, 1, 2
and 3. Windows uses only two of these: Ring 0 (also termed Kernel
Mode under Windows NT) for highly privileged operating system
routines and drivers; and Ring 3 (also termed User Mode) for appli-
cations programs and some operating system code. This is illustrated
in Figure 2.4. Compare the Windows NT and 98 architecture with
that of a real-mode DOS system. In the latter case, the application
effectively runs at the same privilege level as the operating system,
and it can access any part of the PC’s hardware, BIOS or operating
system without restriction.

Multitasking and scheduling

Windows 3.1 utilizes a non-pre-emptive scheduling mechanism. The
method employed is essentially cooperative multitasking in which
the currently active task has the option to either initiate or block
further task switches. Because of this, it is possible for an important
DA&C task to be blocked while some less time-critical task, such as
rearranging the user interface, is carried out. Under this scheme it is,
therefore, difficult to ensure that data is acquired, and that control
signals are issued, at predictable times.

Windows NT and Windows 98, however, employ a greatly improved
multitasking scheduler. 32-bit applications are multitasked pre-
emptively, which yields greater consistency in the time slicing of
different processes. The pre-emptive scheduler implements an idle
detection facility, which diverts processor time away from tasks
that are merely waiting for input. Another benefit is the ability
to run multiple threads within one application. It is important to
bear in mind that pre-emptive multitasking applies only to 32-bit
programs. The older style 16-bit programs are still multitasked
in a non-pre-emptive fashion and cannot incorporate multiple
threads.

Windows NT and Windows 98 also employ more robust methods
of interprocess communication. Windows 3.1 supported a system of
messages that were passed between processes in order to inform
them of particular events. As these messages were stored in a single
queue, it left the system vulnerable to programs that did not partic-
ipate efficiently in the message passing protocol. Windows NT and

Software considerations 53

Application

DOS

Installable
drivers

BIOS

Hardware

(a) DOS

Windows core modules

GDI

Video and printer

graphics

management

USER

User interface

management

KERNEL

Memory manager,

task scheduling

and file I/O

Ring 3 (.DRV) drivers

Virtual machine

manager

Installable file

system manager

Device drivers (VxDs)

Hardware

Ring 3

Ring 0

(b) Windows 95/98

Figure 2.4 Comparative architecture of DOS and Microsoft Windows

54 PC interfacing and data acquisition

Applications

Window
manager

Graphics
device
drivers

Device drivers

Hardware

Microkernel

Hardware Abstraction
Layer (HAL)

I/O manager
Process
manager

Virtual
memory
manager

Operating System Services (Executive API)

Services

Ring 3 (User mode)

Ring 0 (Kernel mode)

Environment
subsystems

Windows NT 4(c)

Figure 2.4 (continued)

Windows 98 enforce a greater degree of isolation between processes
by effectively allocating them each a separate queue.

Virtual memory and demand paging

We have already introduced the concept of virtual memory which
Windows uses to isolate applications from each other and from the
operating system. Under this scheme, Windows allocates memory
to each application in 4 KB blocks known as pages. Windows
NT’s Virtual Memory Manager and Windows 98’s Virtual Machine
Manager use the processor’s page translation mechanism to manipu-
late the address of each page. In this way, it can, for example, appear
to an application program that a set of pages occupies contiguous
4 KB blocks, when in fact they are widely separated in physical
memory.

An application’s address space is normally very much greater than
the amount of physical memory in the system. A 32-bit address
provides access to up to 4 GB of memory, but a moderately

Software considerations 55

well-specified PC might contain only 128 MB. If the memory
requirements of the system exceed the total amount of physical
memory installed, Windows will automatically swap memory pages
out to disk. Those pages that have been in memory the longest will
be saved to a temporary page file, freeing physical memory when
required. If a program attempts to access a page that resides on the
disk, the processor generates a page fault exception. Windows traps
this and reloads the required page.

This process is known as demand paging. It is performed without the
knowledge of the Ring 3 program and in a well-designed desktop
application has no significant effect on performance, other than
perhaps a slight reduction in speed. It does, however, have important
consequences in real-time systems. It is generally very difficult (or
impossible) to predict when a page fault will occur – particularly
when the page fault might be generated by another process running
on the system. Furthermore, swapping of pages to and from the disk
can take an indeterminate length of time, increasing latencies to
typically 10–20 ms (although this figure is not guaranteed). This is
clearly unacceptable if a fast and deterministic real-time response is
required.

Device drivers

In order to facilitate device-independent interfacing, Windows NT
and Windows 95/98 employ a system of device drivers. The system
used by Windows NT is complex and supports several types of device
driver. Of most interest are the kernel mode drivers, which can directly
access the PC’s hardware and interrupt subsystem. Windows 95 and
98 use a less robust system of device drivers, which are known as
VxDs (or Virtual Extended Drivers). Both types of driver operate
in Ring 0. Within the driver it is possible to handle interrupts and
perform high speed I/O predictably and independently of the host
(Ring 3) program.

Even though VxDs and kernel mode drivers provide useful facilities
for the DA&C programmer, they do not solve all of the problems
of real-time programming under Windows. Real-time control is
particularly difficult. In this type of system, acquired data must be
processed by the host program in order that a control signal can be
generated. As the host program runs in Ring 3, it is not possible for
it to generate the required control signal within a guaranteed time.
The mechanisms used for routing data between the driver and the
host program can also introduce non-deterministic behaviour into
the system.

56 PC interfacing and data acquisition

Interrupt handling and latency

Interrupt latency is one of the most problematic areas under
Windows. Latency times can be many times greater than in a compar-
able DOS-based application. They can also be much more difficult
to predict. There are several reasons for this, although they are all
associated to some degree with the virtualization and prioritization of
the interrupt system, and with the multitasking nature of Windows.

To illustrate some of the problems we will consider interrupt
handling under Windows NT. Interrupts are prioritized within a
scheme of Interrupt Request Levels (IRQLs). This mirrors the 8259A
PIC’s IRQ levels, but the IRQL scheme serves additional functions
within the operating system. When an interrupt occurs:

ž Windows NT’s Trap Handler saves the current machine context
and then passes control to its Interrupt Dispatcher routine.

ž The Interrupt Dispatcher raises the processor’s IRQL to that of the
interrupting device, which prevents it from responding to lower
level interrupts. Processor interrupts are then re-enabled so that
higher priority interrupts can be recognized.

ž The Interrupt Dispatcher passes control to the appropriate Inter-
rupt Service Routine (ISR), which will reside in a device driver or
within Windows NT’s kernel.

ž The ISR will generally do only a minimum of processing, such as
capturing the status of the interrupting device. By exiting quickly,
the ISR avoids delaying lower priority interrupts for longer than
necessary. Before terminating, the ISR may issue a request for a
Deferred Procedure Call (DPC).

ž Windows will subsequently invoke the driver’s DPC routine (using
the software interrupt mechanism). The DPC routine will then
carry out the bulk of the interrupt processing, such as buffering
and transferring data.

From the DA&C programmer’s perspective, the difficulty with this is
that the delay before invocation of the DPC routine is indeterminate.
Furthermore, although interrupts are prioritized within the kernel,
the queuing of DPC requests means that any priority information
is lost. Interrupt-generated DPCs are invoked in the order in which
the DPC requests were received. Thus handling a mouse interrupt,
for example, can take precedence over an interrupt from a DA&C
card or communications port. This arrangement makes for a more
responsive user interface, but can have important consequences for
a time-critical DA&C application.

Handling interrupts under Windows is a fairly complex and time-
consuming process which, together with the potential for lengthy
page-fault exceptions, greatly increases interrupt latency and has an

Software considerations 57

undesirable effect on determinism. It can be very difficult to predict
the length of time before an interrupt request is serviced under
Windows, because of the complex rerouting and handling processes
involved.

Re-entrancy

Much of the code in the Windows 3.1 system is non-re-entrant and
should not, therefore, be called directly from within an interrupt
handler. Other techniques have to be used in cases where acquired
data is to be processed by non-re-entrant operating system services.
An interrupt handler contained within a VxD might, for example,
read pending data from an I/O port, store it in a buffer and then
issue a call-back request to Windows. At some later time, when it
is safe to enter Windows’ services, Windows will call the VxD back.
When the VxD regains control, it knows that Windows must be in
a stable state and so the VxD is free to invoke file I/O and other
services in order to process the data which its interrupt handler
had previously stored. Note that similar techniques may be used
in simple DOS applications, although the call-back mechanism is
not supported by MS-DOS and must be built into the application
program itself.

The re-entrancy situation is somewhat better in the 32-bit environ-
ments of Windows NT and Windows 98, largely because re-entrant
code is a prerequisite for pre-emptive multitasking. Note, however,
that Windows 95/98 also contains a significant quantity of 16-bit
code. Much of this originates from Windows 3.1 and is not re-entrant.

Windows and real-time operating systems

Most recent versions of Windows can be run in conjunction with
specially designed real-time operating systems (RTOSs). The inten-
tion is to take advantage of the user interface capabilities of Windows
while retaining the deterministic performance of a dedicated real-
time operating system. This type of arrangement is useful for allowing
Windows to handle application setup and display processes while
the time-critical monitoring and control routines are run under
the supervision of the real-time operating system. The interaction
between Windows and an RTOS can be complex and only a very
brief overview will be provided here.

RTOSs work in conjunction with Windows by taking advantage of
the privilege levels provided by all post-80286 processors. Windows’
kernel operates in Ring 0 (the highest privilege level). This gives it
control of other processes and allows it to access all I/O and memory
addresses.

58 PC interfacing and data acquisition

The real-time operating system must also work at the highest
privilege level. It does this by either relegating Windows to a lower
level, while providing an environment for and responses to Windows
to make it ‘think’ that it is operating in Ring 0, or by coexisting
with Windows at the same privilege level. In the latter case the
RTOS interfaces to Windows (in part) via its driver interface – i.e.
by linking to Windows NT via its kernel mode driver interface or by
existing in the form of a VxD under Windows 95/98. Indeed, under
Windows 3.1, time-critical portions of data-acquisition software were
sometimes coded as a VxD, guaranteeing it precedence over other
processes.

Those parts of an application running under the RTOS operate in
Ring 0. Consequently, some RTOSs do not provide the same degree
of intertask memory protection as normally afforded by Windows.
This can compromise reliability, allowing the whole system to be
crashed by a coding error in just one task.

Developers have adopted very different approaches to producing
RTOSs. Several different techniques can be used, even under the
same version of Windows, but whatever method or type of RTOS
is chosen, the result is essentially that threads running under the
RTOS benefit from much lower interrupt latencies and a far greater
degree of determinism.

Other ‘desktop’ operating systems

In addition to the various versions of Microsoft Windows, two other
multitasking operating systems are worthy of mention: UNIX and
OS/2. Although these include certain features which facilitate their
use in real-time systems, they were designed with more heavyweight
multitasking in mind. They possess many features that are necessary
to safely execute multiple independent desktop applications.

UNIX has perhaps the longest history of any operating system. It
was originally developed in the early 1970s by AT&T and a number
of different implementations have since been produced by other
companies and institutions. It was used primarily on mainframes
and minicomputers, but for some time, versions of UNIX, notably
XENIX and Linux, have also been available for microcomputers
such as the PC.

In the PC environment, DOS compatibility was (and still is)
considered to be of some importance. In general, UNIX can coexist
with DOS on the PC allowing both UNIX and DOS applications to be
run on the same machine. A common file system is also employed so
that files can be shared between the two operating systems. DOS can
also be run as a single process under UNIX in much the same way as

Software considerations 59

it is under Windows NT or Windows 98. UNIX itself is fundamentally
a character-based system although a number of extensions and third-
party shell programs provide powerful user interfaces and graphics
support.

Of most interest, of course, is the applicability of UNIX to real-
time processing. As already mentioned UNIX provides a heavyweight
multitasking environment, the benefits of which have been discussed
earlier. The UNIX kernel possesses a full complement of the features
one would expect in such an environment: task scheduling, flexible
priorities as well as interprocess communication facilities such as
signals, queues and semaphores. In addition, UNIX provides exten-
sive support for multiple users. Its network and communication
features make it ideally suited to linking many processing sites.
Typical industrial applications include distributed data acquisition
and large-scale process control. UNIX also incorporates a number
of quite sophisticated security features, which are particularly useful
(if not essential) in applications such as factory-wide automation and
control.

Some of the concepts behind UNIX have also appeared in subse-
quent operating systems. IBM’s OS/2, for example, possesses many
features which are similar to those offered by UNIX. The latest
implementation for the PC, OS/2 Warp, was launched in 1994. This
is a powerful 32-bit multiprocessing operating system which is well
suited to complex multitasking on the PC. It requires only a modestly
specified PC, provides support for Microsoft Windows applications
and will multitask DOS applications with great efficiency.

Like UNIX, OS/2 provides comprehensive support for pre-
emptive multitasking including dynamic priorities, message passing
and semaphores for mutual exclusion of critical sections. OS/2
virtualizes the input/output system, but it also allows the
programmer of time-critical applications and drivers to obtain the
I/O privileges necessary for real-time use.

While both OS/2 and UNIX are extremely powerful operating
systems, it should be remembered that many real-time applications
do not require the degree of intertask protection and memory
management provided by these environments. These desktop oper-
ating systems might, in some cases, be too complex and slow for
real-time use. Nevertheless, they tend to be quite inexpensive when
compared to more specialized RTOSs and are worth considering if
robust multitasking is the primary concern.

Other real-time operating systems

We have already discussed versions of DOS and the BIOS designed
for real-time use and have also mentioned RTOSs that are capable of

60 PC interfacing and data acquisition

running in conjunction with Microsoft Windows. There are several
other real-time operating systems on the market, such as Intel’s
iRMX, Microware OS/9000, Integrated Systems pSOSystem and
QNX from QNX Software Systems Ltd. Unfortunately, space does
not allow a detailed or exhaustive list to be presented. Note that
most of these operating systems require an 80386 or later processor
for optimum performance. Some are also capable of running MS-
DOS and Windows (or special implementations of these operating
systems), although, for the reasons described previously, this may
result in a less deterministic system.

Summary

There are several options available to designers of real-time systems.
Simple and relatively undemanding applications can often be accom-
modated by using MS-DOS, although this does not provide multi-
tasking capabilities or the degree of determinism required by more
stringent real-time applications. Microsoft Windows provides an even
less deterministic solution, and interrupt latencies imposed by this
environment can often be excessive. Various real-time operating
systems (RTOSs) are also available, some of which are ROMable and
suited for use in embedded applications. These include real-time
versions of DOS and the BIOS, which can provide low interrupt
latencies and efficient multitasking.

For many programmers, however, the choice of operating system
for low and medium speed DA&C applications – particularly those
which do not incorporate time-critical control algorithms – will be
between MS-DOS and Windows. While Windows provides a far
superior user interface, this benefit may be offset by poor inter-
rupt latencies. DOS applications are generally somewhat simpler to
produce and maintain, and it is often easier to retain a higher degree
of control over their performance than with Windows programs. You
should not underestimate the importance of this. To produce a
reliable and maintainable system, it is preferable to employ the
simplest hardware and operating system environment consistent
with achieving the desired real-time performance. Only you, as the
system designer or programmer, can decide which operating system
is most appropriate for your own application.

In the remainder of this book, we will refrain from discussing
characteristics of particular operating systems where practicable.
Note, however, that the software listings provided in the following
chapters were written for a real-mode DOS environment. If you
intend to use them under other processor modes or operating
systems, you should ensure that you adapt them accordingly.

Software considerations 61

2.4 Robustness, reliability and safety

Unreliable DA&C systems are, unfortunately, all too common.
Failure of a DA&C system may result in lost time and associated
expense or, in the case of safety-critical systems, even in injury or
death! The quality of hardware components used will of course
influence the reliability of the system. Of most practical concern
in this book, however, is the reliability of DA&C software. This is
often the most unreliable element of a DA&C system especially
during the time period immediately following installation or after
subsequent software upgrades. Several development techniques and
methodologies have been developed in order to maximize software
reliability. These generally impose a structured approach to design,
programming and testing, and include techniques for assessing the
complexity of software algorithms. These topics are the preserve of
software engineering texts and will not be covered here. It is imprac-
ticable to cover every factor that you will need to consider when
designing DA&C software, and the following discussion is confined
to a few of the more important general principles of software devel-
opment, testing and reliability as they relate to DA&C. Interested
readers should consult Maguire (1993), Bell et al. (1992) or other
numerous software engineering texts currently on the market for
further guidance.

Software production and testing

The reliability of a DA&C system is, to a great extent, determined by
the quality of its software component. Badly written or inadequately
tested software can result in considerable expense to both the
supplier and the end user, particularly where the system plays a
critical role in a high volume production process.

As we have already noted, an important requirement for producing
correct, error-free and, therefore, reliable programs is simplicity. The
ability to achieve this is obviously determined to a large extent by the
nature of the application. However, a methodical approach to soft-
ware design can help to break down the problem into simpler, more
manageable, portions. The value of time spent on the design process
should not be underestimated. It can be very difficult to compensate
for design flaws discovered during the subsequent coding or testing
stages of development.

Perhaps the most important step when designing a DA&C program
(or indeed any type of program) is to identify those elements of the
software that are critical for correct functioning of the system. These

62 PC interfacing and data acquisition

often occupy a relatively small proportion of a DA&C program.
They might, for example, include monitoring and control algo-
rithms or routines for warning the operator of error conditions.
Isolating critical routines in this way permits a greater degree of
effort to be directed toward the most important elements of the
program and thus allows optimal use to be made of the available
development time.

Libraries

A common means of reducing the development effort needed for
non-critical software, thus enabling resources to be concentrated
on the most critical routines, is to make use of pre-written software
libraries. The user interface, for example, often occupies a high
proportion of the total software development time, and this may
be reduced by using appropriate tools. A number of C and Pascal
user-interface libraries are currently on the market. These allow a
standardized user interface to be incorporated into the software. As
the library routines are generally well tested and normally include
thorough range checking, validation, and error trapping facilities,
this also helps to reduce the incidence of coding errors.

Dedicated DA&C libraries, such as those included with National
Instruments’ LabWindows/CVI, provide support for real-time graph-
ical displays and virtual instruments such as digital voltmeters and
oscilloscopes. Drivers for RS-232, IEEE-488, and a range of DA&C
cards might also be supplied, particularly in libraries provided by
manufacturers of DA&C hardware. Tools for post-acquisition analysis
of data may be included as well. Typically, these incorporate a range
of facilities, from simple arithmetic array operations to support for
complex signal processing (e.g. fast Fourier transforms, filtering and
signal generation). Many libraries are oriented towards development
of Windows programs, although some provide a degree of portability
between environments.

One of the most important points to bear in mind when selecting
a library is the availability of source code. Some libraries are supplied
only in compiled object file format. This obviously limits the degree
to which the system can be adapted to a client’s needs.

Testing

Thorough testing is essential to ensure that each routine behaves as
expected when subjected to every possible combination of inputs.
In all but the simplest DA&C systems, this is usually facilitated by
testing each program module independently of the others. In this
way, the inputs supplied to each routine can be precisely controlled

Software considerations 63

in order to ensure that all possible code paths are executed. This
procedure usually involves supplying extreme or over-range inputs,
which the routine should never receive in a correctly functioning
system. Critical routines in particular should be designed to trap
erroneous inputs without propagating the error on to other code
modules.

Modular testing can be difficult to achieve in time-dependent
DA&C systems. This is particularly so in routines that measure
elapsed time or which check for timeouts in dynamic systems. The
behaviour of such a routine might vary depending upon the times at
which certain inputs are applied. In order to ensure that the dynamic
behaviour of the system can be adequately modelled during testing,
it may be necessary to build a complete test harness. This consists
of a hardware interface together with software support routines,
which provide a controlled environment for the module under test.
Test harnesses may range from a simple bank of lamps or switches
designed to monitor the states of digital I/O lines, to a complex
suite of test programs or even to a dedicated test computer. They
may also incorporate items of test equipment such as logic analysers
and digital storage oscilloscopes.

When performing time-dependence tests, allowances should be
made for any variations in timing that might occur in a fully working
system. These variations might arise from changes in the system’s
loading conditions or from occasional replacement of some system
component by a faster variant. It is generally good practice to
avoid making one routine dependent on the timing of some other
routine or hardware subsystem. There is, of course, a limit to how
far this requirement can be implemented in practical DA&C appli-
cations. Sufficient latitude should be built into the system (e.g.
by buffering data) to accommodate both transient and persistent
variations in timing.

When all modules have been independently tested, they should
be gradually combined and further checks performed to ensure
that there are no unforeseen interactions between them. Again,
thorough timing tests may have to be carried out, possibly with the
aid of a suitable test harness. Testing and optimization can also be
facilitated by using profiling techniques which accurately measure
the proportion of time spent executing each section of code.

Assertions

Coding errors can cause software to fail in one of two ways. The failure
may be immediately obvious resulting in, for example, a corrupted
display, a malfunctioning control system or the termination of a
DA&C program. Alternatively, the consequences of a failure may be

64 PC interfacing and data acquisition

more subtle, causing, for example, only a slight degradation in the
performance of a control system. These two classes of software failure
are sometimes, rather confusingly, termed hard and soft failures.

Hard failures are greatly preferable, simply because they are
immediately obvious to the user. Although soft failures are more
subtle, their consequences can ultimately be no less serious. Indeed
they may be much worse. As the user will probably be unaware of
any problem, soft failures can go undetected for long periods. Hard
failures are generally the cheapest to rectify as most are detected
during the development and testing phase, prior to delivery of the
software.

What is needed is a way to convert insidious soft failures and
latent software errors into hard failures. Assertions are invaluable
for this purpose. These are simply software statements (actually
macros in C and CCC) which terminate execution of the program
if their argument is FALSE or zero. Generally the argument of
an assertion is a logical expression that defines a set of acceptable
conditions at some point within the program. These conditions often
denote permissible ranges of selected variables. The argument of
the assertion must evaluate to TRUE (or 1) if all conditions are met,
in which case the program proceeds as normal. When an assertion
fails, however, the program is halted and the location of the failed
assertion is displayed on screen.

Assertions can be used at virtually any point within the code.
Remember though that they are suitable only to detect coding
errors and situations that should never occur within your program.
They should not be used to trap legitimate error conditions such as a
serial communications error or printer out-of-paper error. Assertions
tend to be used most frequently to range check function arguments
and function return values. An example of an assertion statement in
C is shown in the following code fragment.

double VMax; /* Maximum input */

double VMin; /* Minimum input */

void CalcPID(double V, double T, double *Y)

f
ASSERT ((V < VMax) && (V > VMin) && (T >= 0)); /* Range check V and T */

/* Function body: calculates result, Y, based on arguments V and T */

g

Most C and CCC compilers include an ASSERT macro. Code gener-
ation within the ASSERT macro is controlled by the Debug compiler
option (or equivalent compiler define) allowing executable assertion
code to be generated only during development. Prior to delivery of

Software considerations 65

the software, assertions can be compiled out so that no performance
overheads are incurred in the final build.

System monitoring and error checks

The reliability of a working DA&C system can often be improved
by incorporating facilities for automatic self-testing. Such facilities
might be used to periodically test the status of hardware components
or to check the integrity of software modules. The PC’s BIOS
executes a number of self-test routines when the computer is started
up. These Power On Self Test (POST) routines include checks to
ensure that none of the memory locations are faulty and to verify
that the keyboard and disk subsystems are working correctly. It
may be advisable to incorporate similar test routines within your
DA&C applications in order to check that data-acquisition cards or
data-logging units are operating normally. These test routines might
run automatically when the system is first started and, perhaps,
periodically thereafter.

Tests that can usually be performed on start-up include those that
check for the presence of adaptor cards or that confirm the integrity
of communications links. It may also be necessary to ensure that
all subsystems on which the DA&C program is reliant (e.g. PLCs
or intelligent data loggers) are operational and on line. In long-
term data-logging applications, where the system might have to run
unattended, it is prudent to verify that all other essential peripherals
(e.g. printer) are connected and correctly configured before data
logging commences.

In applications that require a high degree of operator intervention
it might be desirable to give the user some control over when and
how the tests are performed. Such an approach provides greater
flexibility but does require a higher level of operator skill. Certain
checks, such as monitoring and correcting for zero drift in signal-
conditioning circuits (see Chapter 9) may, in many cases, have to
be carried out manually. Others tend to be more amenable to
automation. Even if certain checks cannot be automated, it may still
be possible to incorporate routines which will prompt the operator
when activities such as rezeroing or recalibration are overdue.

Range checking inputs and outputs

One of the most important safety features that can be built into
any program is a comprehensive system of range checking. A DA&C
program must be able to handle unexpectedly large or small data
arriving at its inputs. This necessitates writing extensive checking
and validation routines to handle user-supplied data as well as

66 PC interfacing and data acquisition

data acquired from sensors. By maintaining all inputs within an
acceptable range, it is possible to guard against problems such as
numeric overflows which, if undetected, can cause the system to fail
unpredictably.

Out-of-range data may arise as a result of factors such as electrical
noise, a faulty or inadequately calibrated sensor, or the failure of
some external subsystem. It might be possible to ignore or suppress
transient faults such as those due to electrical noise, although if
they occur frequently, they could be indicative of a more persistent
problem or of an inherent design fault. Techniques, such as filtering
and hysteresis, which can make the system more immune to the
effects of noise and transient fluctuations, are described in Chapter 4.

It is usually preferable to integrate range-checking code into the
routines that are responsible for inputting data into the system.
This reduces the likelihood that any erroneous data will be passed
on to other elements of the software. Range checking may also be
necessary at a number of other critical points within the program.
The acceptable range of values that each item of data is allowed
to take might be fixed throughout the execution of the program,
or it might vary dynamically depending upon other inputs or upon
the values of previous readings. When thoroughly implemented,
range-checking and validation routines will normally make up a
considerable proportion of the whole program. Bear in mind though
that the requirement for range checking, if enforced too rigorously,
can impose an unacceptable performance penalty and should always
be applied with discretion.

Status checks

When the PC has to communicate with one or more external units
(e.g. remote data loggers, PLCs or other computers), it can be useful
for each unit to provide some form of status indication. This allows
the PC to determine whether each external device is functioning
correctly. Typically status indicators consist of simple digital signals
controlled via relays or switches. These should usually be configured
to operate in the so-called fail-safe mode (see Chapter 3).

Other status-verification techniques can be used in some cases.
The PC might repeatedly poll each external unit to determine
whether it is on line. Properly functioning units would acknowledge
the poll by generating a suitable signal. The polling procedure
might be incorporated into routines which initialize the unit or
which regularly interrogate it. This type of approach can be used
on multi-drop bus-based systems: for example, an RS-485 network of
signal-conditioning modules. A similar, alternative method requires
one element of the DA&C system to issue a periodic heartbeat signal.

Software considerations 67

This is continuously monitored by other system components, which
might then be required to respond within predefined time limits.
Any interruptions in the periodic signal would indicate the failure of
some component or a faulty communications link. Periodic signals
can also be used to refresh dedicated monitoring circuitry, such as
watchdog timers. These systems notify the PC if the periodic refresh
signal from an external unit fails to arrive on time.

Responding to faults

When a fault is detected, its severity and nature (e.g. whether the
fault is transient, intermittent or persistent) should be assessed. A
decision must also be made as to whether the system can continue to
function reliably, albeit with a reduced functionality. This decision
may be made in advance by the system designer and hard-coded into
the DA&C software. Alternatively, it might be left to the operator to
decide what actions should be taken in the context of specific faults.

In either case it is important for the system to display appropriate
error or warning messages. Messages should be clear and precise.
Although numeric error codes can help to identify a particular error,
they should always be accompanied by an informative description of
the error. It is often useful to include a suggestion of any remedial
action that might have be taken by the operator. On-screen error
messages will be of little or no value in systems intended for long
periods of unattended operation. In these cases, it can be useful
for the PC to record operational faults on some form of permanent
storage device such as a hard disk or printer. The nature of the
fault, the date and time that it occurred, and any relevant condi-
tions prevailing at the time should also be logged in order to aid
subsequent fault tracing and diagnosis.

A fault or error may be detected at any one of many possible points
within the hierarchical function structure of a program. Faults are
often detected in interface and driver routines, which typically
reside at the lower levels in the structure. Error codes or flags then
usually have to be passed back up the structure to be handled (e.g.
recorded) by higher level routines. Although this tends to allow the
programmer to create a well-structured and tidy code, it requires a
degree of care. Once an error or fault has occurred it is possible
that it might then also trigger a stream of errors in related routines,
which must be handled in a well-defined and consistent manner.

It is essential to adopt a systematic and adaptable method of error
handling. One solution is to assign each possible error condition a
unique 8-bit or 16-bit integer code. The code should be unique to
the routine which detected the error and should also indicate the
type of error that it represents. As soon as an error is detected, an

68 PC interfacing and data acquisition

error-recording routine should be called. This might store the error
code in a queue or buffer and set a flag to indicate that one or more
errors have occurred. Control should then be returned through the
function hierarchy to a high level error handling routine, which
can then process any pending errors. In this type of error-handling
model, there will be a delay between recognition of the fault and a
subsequent response. The system designer must assess this delay and
decide whether it is acceptable within the time constraints imposed
by the software specification.

The course of action taken in response to a fault will be highly
dependent upon the nature of the application. Many faults will
be minor ones that can be rectified by requesting the operator to
make some adjustment to the system. Other faults can be more
serious, leaving the system in an unstable or inoperable state. The
software should, in these cases, shut the system down in a safe and
orderly manner. Certain faults can be catastrophic, causing complete
failure of the DA&C program and/or the PC on which it is running.
Although the programmer should take whatever precautions are
necessary to ensure that the system will provide a controlled response,
there is little that can be done to prevent hardware problems such
as a disk failure, loss of power or electrostatic discharge.

PCs and the software running on them are very complex systems
and there are numerous ways in which they can fail. The potential for
failure of both hardware and software should be considered. Many
failure modes can be catastrophic and will result in complete failure
of monitoring and control systems. Because of this, PC-based systems
and software should not be relied upon to oversee safety-critical
processes without using appropriate backup mechanisms to ensure
total safety. Indeed, the information presented in this book is not
intended for use in safety-critical applications. If you use it in such,
you do so at your own risk. You are advised to cross-check each item
of information which you use in your software with independent
sources. You should also thoroughly test all program code that you
use, regardless of its source, to ensure that it works correctly and
reliably under the specific conditions of your application.

Part 2 Sampling Fundamentals

This Page Intentionally Left Blank

3 Sensors and interfacing

Hardware characteristics such as non-linearity, response times and
susceptibility to noise can have important consequences in a data-
acquisition system. They often limit performance and may necessitate
countermeasures to be implemented in software. A detailed knowl-
edge of the transfer characteristics and temporal performance of
each element of the DA&C system is a prerequisite for writing reliable
interface software. The purpose of this chapter is to draw your atten-
tion to those attributes of sensors, actuators, signal conditioning and
digitization circuitry that have a direct bearing on software design.
While precise details are generally to be found in manufacturer’s
literature, the material presented in the following sections high-
lights some of the fundamental considerations involved. Readers are
referred to Eggebrecht (1990) or Tompkins and Webster (1988) for
additional information.

3.1 Introduction

DA&C involves measuring the parameters of some physical process,
manipulating the measurements within a computer, and then issuing
signals to control that process. Physical variables such as temperature,
force or position are measured with some form of sensor. This
converts the quantity of interest into an electrical signal which can
then be processed and passed to the PC. Control signals issued by
the PC are usually used to drive external equipment via an actuator
such as a solenoid or electric motor.

Many sensors are actually types of transducer. The two terms have
different meanings, although they are used somewhat interchange-
ably in some texts. Transducers are devices that convert one form of
energy into another. They encompass both actuators and a subset of
the various types of sensor.

72 PC interfacing and data acquisition

Signal types

The signals transferred in and out of the PC may each be one of
two basic types: analogue or digital. All signals will generally vary in
time. In changing from one value to another, analogue signals vary
smoothly (i.e. continuously), always assuming an infinite sequence
of intermediate values during the transition. Digital signals, on the
other hand, are discontinuous, changing only in discrete steps as
shown in Figure 3.1.

Digital data are generally stored and manipulated within the PC
as binary integers. As most readers will know, each binary digit
(bit) may assume only one of two states: low or high. Each bit can,
therefore, represent only a 0 or a 1. Larger numbers, which are
needed to represent analogue quantities, are generally coded as

(a)

Time

Analogue
signal

Time

Digital
signal

(b)

Figure 3.1 Diagram contrasting (a) analogue and (b) digital signals

Sensors and interfacing 73

combinations of typically 8, 12 or 16 bits. Binary numbers can only
change in discrete steps equal in size to the value represented by
the least significant bit (LSB). Because of this, binary (i.e. digital)
representations of analogue signals cannot reflect signal variations
smaller than the value of the LSB. The principal advantage of digital
signals is that they tend to be less susceptible than their analogue
counterparts to distortion and noise. Given the right communication
medium, digital signals are more suited to long-distance transmission
and to use in noisy environments.

Pulsed signals are an important class of digital signals. From a
physical point of view, they are basically the same as single-bit digital
signals. The only difference is in the way in which they are applied and
interpreted. It is the static bit patterns (the presence, or otherwise
of certain bits) that are the important element in the case of digital
signals. Pulsed signals, on the other hand, carry information only in
their timing. The frequency, duration, duty cycle or absolute number
of pulses are generally the only significant characteristics of pulsed
signals. Their amplitude does not carry any information.

Analogue signals carry information in their magnitude (level) or
shape (variation over time). The shape of analogue signals can be
interpreted either in the time or frequency domain. Most ‘real-world’
processes that we might wish to measure or control are intrinsically
analogue in nature.

It is important to remember, however, that the PC can read and
write only digital signals. Some sensing devices, such as switches
or shaft encoders, generate digital signals which can be directly
interfaced to one of the PC’s I/O ports. Certain types of actuator,
such as stepper motors or solenoids, can also be controlled via digital
signals output directly from the PC. Nevertheless, most sensors and
actuators are purely analogue devices and the DA&C system must,
consequently, incorporate components to convert between analogue
and digital representations of data. These conversions are carried
out by means of devices known as analogue-to-digital converters
(ADCs) or digital-to-analogue converters (DACs).

Elements of a DA&C system

A typical PC-based DA&C system might be designed to accept
analogue inputs from sensors as well as digital inputs from switches
or counters. It might also be capable of generating analogue and
digital outputs for controlling actuators, lamps or relays. Figure 3.2
illustrates the principal elements of such a system. Note that, for
clarity, this figure does not include control signals. You should bear
in mind that, in reality, a variety of digital control lines will be

Sensor

Sensor

Sensor

Sensor

Analogue
signal
conditioning

Analogue
signal
conditioning

Analogue
signal
conditioning

Analogue
signal
conditioning

Multiplexer

Sample
and
hold

ADC

Digital device
(switches, relays etc.)

Digital
signal
conditioning

PC

DAC

Analogue
signal
conditioning

Digital
signal
conditioning

Relays
or

actuator

Actuator

Amplifier

/PGA

Figure 3.2 A typical PC-based DA&C system

Sensors and interfacing 75

required by devices such as multiplexers, programmable-gain ampli-
fiers and ADCs. Depending upon the type of system in use, the
device generating the control signals may be either the PC itself or
dedicated electronic control circuitry.

The figure shows four separate component chains representing
analogue input, analogue output, digital input and digital output.
An ADC and DAC shown in the analogue I/O chains facilitate
conversion between analogue and digital data formats.

Digital inputs can be generated by switches, relays or digital
electronic components such as timer/counter ICs. These signals
usually have to undergo some form of digital signal conditioning,
which might include voltage level conversion, isolation or buffering,
before being input via one of the PC’s I/O ports. Equally, low level
digital outputs generated by the PC normally have to be amplified
and conditioned in order for them to drive actuators or relays.

A similar consideration applies to analogue outputs. Most actuators
have relatively high current requirements which cannot be satisfied
directly by the DAC. Amplification and buffering (implemented by
the signal conditioning block) is, therefore, usually necessary in
order to drive motors and other types of actuator.

The analogue input chain is the most complex. It usually incorpo-
rates not only signal-conditioning circuits, but also components such
as a multiplexer, programmable-gain amplifier (PGA) and sample-
and-hold (S/H) circuit. These devices are discussed later in this
chapter. The example shown is a four-channel system. Signals from
four sensors are conditioned and one of the signals is selected by
the multiplexer under software control. The selected signal is then
amplified, and digitized before being passed to the PC.

The distinction between elements in the chain is not always
obvious. In many real systems the various component blocks are
grouped within different physical devices or enclosures. To minimize
noise, it is common for the signal-conditioning and preamplification
electronics to be separated from the ADC and from any other digital
components. Although each analogue input channel has only one
signal-conditioning block in Figure 3.2, this block may, in reality,
be physically distributed along the analogue input chain. It might
be located within the sensor or at the input to the ADC. In some
systems, additional components are included within the chain, or
some elements, such as the S/H circuit, might be omitted.

The digital links in and out of the PC can take a variety of
forms. They may be direct (although suitably buffered) connections
to the PC’s expansion bus, or they may involve serial or parallel
transmission of data over many metres. In the former case, the ADC,
DAC and associated interface circuitry are often located on I/O

76 PC interfacing and data acquisition

cards which can be inserted in one of the PC’s expansion bus slots
or into a PCMCIA slot. In the case of devices which interface via the
PC’s serial or parallel ports, the link is implemented by appropriate
transmitters, bus drivers and interface hardware (which are not
shown in Figure 3.2). Data transfer techniques and the various types
of I/O interface devices available are discussed in Chapters 6 to 8.

3.2 Digital I/O

Digital (including pulsed) signals are used for interfacing to a
variety of computer peripherals as well as for sensing and controlling
DA&C devices. Some sensing devices such as magnetic reed switches,
inductive proximity switches, mechanical limit switches, relays or
digital sensors, are capable of generating digital signals which can be
read into the PC. The PC may also issue digital signals for controlling
solenoids, audio-visual indicators or stepper motors. Digital I/O
signals are also used for interfacing to digital electronic devices such
as timer/counter ICs or for communicating with other computers
and Programmable Logic Controllers (PLCs).

Digital signals may be encoded representations of numeric data or
they may simply carry control or timing information. The latter are
often used to synchronize the operation of the PC with external
equipment using periodic clock pulses or handshaking signals.
Handshaking signals are used to inform one device that another
is ready to receive or transmit data. They generally consist of level-
active, rather than pulsed, digital signals and, as we shall see in
Chapters 7 and 8, they are essential features of most parallel and
serial communication systems. Pulsed signals are not only suitable
for timing and synchronization: they are also often used for event
counting or frequency measurement. Pulsed inputs, for pacing or
measuring elapsed time, can be generated either by programmable
counter/timer ICs on plug-in DA&C cards or by programming the
PC’s own built-in timers. Pulsed inputs are often used to generate
interrupts within the PC in response to specific external events.

TTL-level digital signals

Transistor–transistor logic (TTL) is a type of digital signal charac-
terized by nominal ‘high’ and ‘low’ voltages of C5 V and 0 V. TTL
devices are capable of operating at high speeds. They can switch their
outputs in response to changing inputs within typically 20 ns and can
deal with pulsed signals at frequencies up to several tens of MHz. TTL
devices can also be directly interfaced to the PC. The main problem

Sensors and interfacing 77

with using TTL signals for communicating with external equipment
is that TTL ICs have a limited current capacity and are suitable for
directly driving only low current (i.e. a few milliamps) devices such
as other TTL ICs, LEDs and transistors. Another limitation is that
TTL is capable of transmission over only relatively short distances.
While it is ideal for communicating with devices on plug-in DA&C
cards, it cannot be used for long-distance transmission without using
appropriate bus transceivers.

The PC’s expansion bus, and interface devices such as the Intel
8255 Programmable Peripheral Interface (PPI), provide TTL-level
I/O ports through which it is possible to communicate with periph-
eral equipment. Many devices that generate or receive digital level
or pulsed signals are TTL compatible and so no signal conditioning
circuits, other than perhaps simple bus drivers or tristate buffers, are
required. Buffering, optical isolation, electromechanical isolation
and other forms of digital signal conditioning may be needed in
order to interface to remote or high current devices such as electric
motors or solenoids.

Digital signal conditioning and isolation

Digital signals often span a range of voltages other than the 0 to 5 V
encompassed by TTL. Many pulsed signals are TTL compatible, but
this is not always true of digital level signals. Logic levels higher or
lower than the standard TTL voltages can easily be accommodated
by using suitable voltage attenuating or amplification components.
Depending upon the application, the way in which digital I/O signals
are conditioned will vary. Many applications demand a degree of
isolation and/or current driving capability. The signal-conditioning
circuits needed to achieve this may reside either on digital I/O
interface cards which are plugged into the PC’s expansion bus or
they may be incorporated within some form of external interface
module. Interface cards and DA&C modules are available with
various degrees of isolation and buffering. Many low cost units
provide only TTL-level I/O lines. A greater degree of isolation and
noise immunity is provided by devices which incorporate optical
isolation and/or mechanical relays.

TTL devices can operate at high speeds with minimal propagation
delay. Any time delays that may be introduced by TTL devices are
generally negligible when compared with the execution time of
software I/O instructions. TTL devices and circuits can thus be
considered to respond almost instantaneously to software IN and
OUT instructions. However, this is not generally true when additional
isolating or conditioning devices are used. Considerable delays can

78 PC interfacing and data acquisition

result from using relays in particular, and these must be considered
by the designer of the DA&C software.

Opto-isolated I/O

It is usually desirable to electrically isolate the PC from external
switches or sensors in order to provide a degree of overvoltage
and noise protection. Opto-isolators can provide isolation from
typically 500 V to a few kV at frequencies up to several hundred
kHz. These devices generally consist of an infrared LED optically
coupled to a phototransistor within a standard DIL package as
shown in Figure 3.3. The input and output parts of the circuit
are electrically isolated. The digital signal is transferred from the
input (LED) circuit to the output (phototransistor) by means of
an infrared light beam. As the input voltage increases (i.e. when
a logical high level is applied), the photodiode emits light which
causes the phototransistor to conduct. Thus the output is directly
influenced by the input state while remaining electrically isolated
from it.

Some opto-isolating devices clean and shape the output pulse
by means of built-in Schmitt triggers. Others include Darlington
transistors for driving medium current loads such as lamps or relays.
Mains and other AC loads may be driven by solid state relays which are
basically opto-isolators with a high AC current switching capability.

Opto-isolators tend to be quite fast in operation, although some-
what slower than TTL devices. Typical switching times range from

N/CN/C

OPTO-TRAN-
SISTOR

LED1

2

3 4

5

61

2

3 4

5 N/C

OPTO TRIAC

LED 6

(a) (b)

Figure 3.3 Typical opto-isolator DIL packages: (a) an opto-triac suitable for mains

switching, and (b) a simple opto-transistor device

Sensors and interfacing 79

about 3 μs to 100 μs, allowing throughputs of about 10–300 Kbit/s.
Because of their inherent isolation and slower response times, opto-
isolators tend to provide a high degree of noise immunity and are
ideally suited to use in noisy industrial environments. To further
enhance rejection of spurious noise spikes, opto-isolators are some-
times used in conjunction with additional filtering and pulse-shaping
circuits. Typical filters can increase response times to, perhaps,
several milliseconds. It should be noted that opto-couplers are also
available for isolating analogue systems. The temporal response of
any such devices used in analogue I/O channels should be consid-
ered as it may have an important bearing on the sampling rate and
accuracy of the measuring system.

Mechanical relays and switches

Relays are electromechanical devices which permit electrical contacts
to be opened or closed by small driving currents. The contacts are
generally rated for much larger currents than that required to initiate
switching. Relays are ideal for isolating high current devices, such as
electric motors, from the PC and from sensitive electronic control
circuits. They are commonly used on both input and output lines.
A number of manufacturers provide plug-in PC interface cards with
typically 8 or 16 PCB-mounted relays. Other digital output cards are
designed to connect to external arrays or racks of relays.

Most relays on DA&C interface cards are allocated in arrays of 8
or 16, each one corresponding to a single bit in one of the PC’s
I/O ports. In many (but not all) cases a high bit will energize the
relay. Relays provide either normally open (NO) or normally closed
(NC) contacts or both. NO contacts remain open until the relay
coil is energized, at which point they close. NC contacts operate in
the opposite sense. Ensure that you are aware of the relationship
between the I/O bit states and the state of the relay contacts you
are using. It is prudent to operate relays in fail-safe mode, such
that their contacts return to an inactive (and safe) state when de-
energized. Exactly what state is considered inactive will depend upon
the application.

Because of the mass of the contacts and other mechanical compo-
nents, relay switching operations are relatively slow. Small relays with
low current ratings tend to operate faster than larger devices. Reed
relays rated at around 1 A, 24 V (DC) usually switch within about
0.25 to 1 ms. The operating and release times of miniature relays
rated at 1 to 3 A usually fall in the range from about 2 to 5 ms.
Larger relays for driving high power DC or AC mains loads might
take up to 10 or 20 ms to switch. These figures are intended only as

80 PC interfacing and data acquisition

rough guidelines. You should consult your hardware manufacturer’s
literature for precise switching specifications.

Switch and relay debouncing

When mechanical relay or switch contacts close, they tend to vibrate
or bounce for a short period. This results in a sequence of rapid
closures and openings before the contacts settle into a stable state.
The time taken for the contacts to settle (known as the bounce time)
may range from a few hundred microseconds for small reed relays
up to several milliseconds for high power relays. Because bouncing
relay contacts make and break several times, it can appear to the
software monitoring the relay that several separate switching events
occur each time the relay is energized or de-energized. This can
be problematic, particularly if the system is designed to generate
interrupts as a result of each contact closure.

There are two ways in which this problem can be overcome: hard-
ware debouncing and software debouncing. The hardware method
involves averaging the state of the switch circuit over an interval of a
few milliseconds so that any short-lived transitions are smoothed out
and only a gradual change is recorded. A typical method is to use
a resistor/capacitor (RC) network in conjunction with an inverting
Schmitt buffer. Tooley (1995) discusses hardware debouncing in
more detail and illustrates several simple debouncing circuits.

The software debouncing technique is suitable only for digital
inputs driven from relays and switches. It cannot of course be applied
to relay signals generated by the PC. The technique works by repeatedly
reading the state of the relay contact. The input should be sensed
at least twice and a time delay sufficient to allow the contacts to
settle should be inserted between the two read operations. If the
state of the contacts is the same during both reads, that state is
recorded. If it has changed, further delays and read operations
should be performed until two successive read operations return
the same result. An appropriate limit must, of course, be imposed
on the number of repeats that are allowed during the debounce
routine in order to avoid the possibility of unbounded software
loops. Listing 3.1 illustrates the debouncing technique. It assumes
that the state of the relay contacts is indicated by bit 0 of I/O
port 300h. The routine exits with a non-zero value in CX and the
debounced relay state in bit 0 of AL. If the relay does not reach a
steady state after four read operations (i.e. three delay periods), CX
contains zero to indicate the error condition. The routine can easily
be adapted to deal with a different bit or I/O port address.

The delay time between successive read operations (implemented
by the DBDelay subroutine which is not shown) should be chosen to be

Sensors and interfacing 81

Listing 3.1 Contact debouncing algorithm

mov dx,300h ;Port number 300h for sensing relay

mov cx,4 ;Initialize timeout counter

DBRead: in al,dx ;Read relay I/O port

and al,01h ;Isolate relay status bit (bit 0)

cmp cx,4 ;Is this the first read ?

je DBLoop ; - Yes, do another

cmp al,bl ; - No, was relay the same as last time ?

je DBExit ; - Yes, relay in steady state so exit

DBLoop: mov bl,al ;Store current relay state

call DBDelay ;Do delay to allow relay contacts to settle

loop DBRead ;Read again, unless timed out

DBExit:

just long enough to encompass the maximum contact bounce period
expected. For most mechanical switches, this will be typically several
milliseconds (or even tens of milliseconds for some larger devices).
As a rough rule-of-thumb, the smaller the switch (i.e. the lower the
mass of the moving contact) the shorter will be the contact bounce
period. In choosing the delay time, remember to take account of
the time constant of any other circuitry that forms part of the digital
input channel.

Listing 3.1 is not totally foolproof: it will fail if the contact bounce
period exactly coincides with the time period between samples.
To improve the efficiency of this technique, you may wish to adapt
Listing 3.1 in order to check that the final relay state actually remains
stable for a number of consecutive samples over an appropriate time
interval.

3.3 Sensors for analogue signals

Sensors are the primary input element involved in reading phys-
ical quantities (such as temperature, force or position) into a
DA&C system. They are generally used to measure analogue signals
although the term ‘sensor’ does in fact encompass some digital
devices such as proximity switches. In this section we will deal only
with sensing analogue signals.

Analogue signals can be measured with sensors that generate
either analogue or digital representations of the quantity to be
measured (the measurand). The latter are often the simplest to inter-
face to the PC as their output can be read directly into one the PC’s

82 PC interfacing and data acquisition

I/O ports via a suitable digital input card. Examples of sensors with
digital outputs include shaft encoders and some types of flow sensor.

Most types of sensor operate in a purely analogue manner,
converting the measurand to an equivalent analogue signal. The
sensor output generally takes the form of a change in some electrical
parameter such as voltage, current, capacitance or resistance. The
primary purpose of the analogue signal-conditioning blocks shown
in Figure 3.2 is to precondition the sensors’ electrical outputs and to
convert them into voltage form for processing by the ADC.

You should be aware of a number of important sensor charac-
teristics in order to successfully design and write interface software.
Of most relevance are accuracy, dynamic range, stability, linearity,
susceptibility to noise, and response times. The latter includes rise
time and settling time and is closely related to the sensor’s frequency
response.

Sensor characteristics cannot be considered in isolation. Sensors
are often closely coupled to their signal-conditioning circuits and
we must, therefore, also take into account the performance of this
component when designing a DA&C system. Signal-conditioning and
digitization circuitry can play an important (if not the most impor-
tant) role in determining the characteristics of the measuring system
as a whole. Although signal-conditioning circuits can introduce unde-
sirable properties of their own, such as noise or drift, they are usually
designed to compensate for inadequacies in the sensor’s response.
If properly matched, signal-conditioning circuits are often able to
cancel out sensor offsets, non-linearities or temperature dependen-
cies. We will discuss signal conditioning later in this chapter.

Accuracy

Accuracy represents the precision with which a sensor can respond
to the measurand. It refers to the overall precision of the device
resulting from the combined effect of offsets and proportional
measurement errors. When assessing accuracy, one must take
account of manufacturers’ figures for repeatability, hysteresis,
stability and, if appropriate, resolution. Although a sensor’s accuracy
figure may include the effect of resolution, the two terms must
not be confused. Resolution represents the smallest change in the
measurand that the sensor can detect. Accuracy includes this, but
also encompasses other sources of error.

Dynamic range

A sensor’s dynamic range is the ratio of its full-scale value to the
minimum detectable signal variation. Some sensors have very wide

Sensors and interfacing 83

dynamic ranges and, if the full range is to be accommodated, it
may be necessary to employ high resolution ADCs or Programmable-
Gain Amplifiers (PGAs). Using a PGA might increase the system’s
data-storage requirements, because of the addition of an extra vari-
able (i.e. gain). These topics are discussed further in the section
Amplification and extending dynamic range later in this chapter.

Stability and repeatability

The output from some sensors tends to drift over time. Instabilities
may be caused by changes in operating temperature or by other envi-
ronmental factors. If the sensor is likely to exhibit any appreciable
instability, you should assess how this can be compensated for in the
software. You might wish, for example, to include routines which
force the operator to recalibrate or simply rezero the sensor at peri-
odic intervals (see Chapter 9). Stability might also be compromised
by small drifts in the supplied excitation signals. If this is a possibility,
the software should be designed to monitor the excitation voltage
using a spare analogue input channel and to correct the measured
sensor readings accordingly.

Linearity

Most sensors provide a linear output – i.e. their output is directly
proportional to the value of the measurand. In such cases the sensor
response curve consists of a straight line. Some devices such as ther-
mocouples do not exhibit this desirable characteristic. If the sensor
output is not linearized within the signal-conditioning circuitry, it
will be necessary for the software to correct for any non-linearities
present. Chapter 9 demonstrates several software linearization tech-
niques.

Response times

The time taken by the sensor to respond to an applied stimulus is
obviously an important limiting factor in determining the overall
throughput of the system. The sensor’s response time (sometimes
expressed in terms of its frequency response) should be carefully
considered, particularly in systems which monitor for dangerous,
over-range or otherwise erroneous conditions. Many sensors provide
a virtually instantaneous response and in these cases it is usually
the signal-conditioning or digitization components (or, indeed, the
software itself) which determines the maximum possible throughput.
This is not generally the case with temperature sensors, however.

84 PC interfacing and data acquisition

Semiconductor sensors, thermistors and thermocouples tend to
exhibit long response times (upwards of 1 s). In these cases, there
is little to be gained (other than the ability to average out noise) by
sampling at intervals shorter than the sensor’s time constant.

You should be careful when interpreting response times published
in manufacturers’ literature. They often relate to the time required
for the sensor’s output to change by a fixed fraction in response to
an applied step change in temperature. If a time constant is specified
it generally defines the time required for the output to change
by 1 � e�1 (i.e. about 63.21 per cent) of the difference between
its initial and final steady state outputs. The response time will
be longer if quoted for a greater fractional change. The response
time of thermal sensors will also be highly dependent upon their
environment. Thermal time constants are usually quoted for still air,
but much faster responses will apply if the sensor is immersed in a
free-flowing or stirred liquid such as oil or water.

Susceptibility to noise

Noise is particularly problematic with sensors which generate only
low level signals (e.g. thermocouples and strain gauges). Low-pass
filters can be used to remove noise which often occurs predominantly
at higher frequencies than the signals to be measured. Steps should
always be taken to exclude noise at its source by adopting good
shielding and grounding practices. As signal-conditioning circuits
and cables can introduce noise themselves, it is essential that they
are well designed. Even when using hardware and electronic filters,
there may still be some residual noise on top of the measured signal.
A number of filtering techniques can be employed in the software
and some of these are discussed in Chapter 4.

Some common sensors

This section describes features of several common sensors which
are relevant to DA&C software design. Unfortunately, space does
not permit an exhaustive list. Many sensors that do not require
special considerations or software techniques are excluded from this
section. Some less widely used devices, such as optical and chemical
sensors are also excluded, even though they are often associated with
problems such as long response times and high noise levels. Details
of the operation of these devices may be found in specialist books
such as Tompkins and Webster (1988), Parr (1986) or Warring and
Gibilisio (1985).

Sensors and interfacing 85

The information provided below is typical for each type of sensor
described. However, different manufacturers’ implementations vary
considerably. The reader is advised to consult manufacturers’ data
sheets for precise details of the sensor and signal-conditioning
circuits which they intend to use.

Digital sensors and encoders

Some types of sensor convert the analogue measurand into an
equivalent digital representation which can be transferred directly to
the PC. Digital sensors tend to require minimal signal conditioning.

As mentioned above the simplest form of digital sensor is
the switch. Examples include inductive proximity switches and
mechanical limit switches. These produce a single-bit input which
changes state when some physical parameter (e.g. spatial separation
or displacement) rises above, or falls below, a predefined limit.
However, to measure the magnitude of an analogue quantity we need
a sensor with a response which varies in many (typically several
hundred of more) steps over its measuring range. Such sensors are
more correctly known as encoders as they are designed to encode
the measurand into a digital form.

Sensors such as the rotor tachometer employ magnetic pickups
which produce a stream of digital pulses in response to the rotation
of a ferrous disk. Angular velocity or incremental changes in angular
position can be measured with these devices. The pulse rate is
proportional to the angular velocity of the disk. Similar sensors are
available for measuring linear motion.

Shaft encoders are used for rotary position or velocity measure-
ment in a wide range of industrial applications. They consist of a
binary encoded disk which is mounted on a rotating shaft or spindle
and located between some form of optical transmitter and matched
receiver (e.g. infrared LEDs and phototransistors). The bit pattern
detected by the receiver will depend upon the angular position of the
encoded disk. The resolution of the system might be typically š1°.

A disk encoded in true (natural) binary has the potential to
produce large errors. If, for example, the disk is very slightly
misaligned, the most significant bit might change first during a
transition between two adjacent encoded positions. Such a situation
can give rise to a momentary 180° error in the output. This problem
is circumvented by using the Gray code. This a binary coding scheme
in which only one bit changes between adjacent coded positions. The
outputs from these encoders are normally converted to digital pulse
trains which carry rotary position, speed and direction information.
Because of this it is rarely necessary for the DA&C programmer to

86 PC interfacing and data acquisition

use binary Gray codes directly. We will, however, discuss other binary
codes later in this chapter.

The signals generated by digital sensors are often not TTL compat-
ible, and in these cases additional circuitry is required to interface
to the PC. Some or all of this circuitry may be supplied with (or
as part of) the sensor, although certain TTL buffering or opto-
isolation circuits may have to be provided on separate plug-in digital
interface cards.

Digital position encoders are inherently linear, stable and immune
to electrical noise. However, care has to be taken when absolute
position measurements are required, particularly when using devices
which produce identical pulses in response to incremental changes in
position. The measurement must always be accurately referenced to
a known zero position. Systematic measurement errors can result if
pulses are somehow missed or not counted by the software. Regular
zeroing of such systems is advisable if they are to be used for repeated
position measurements.

Potentiometric sensors

These very simple devices are usually used for measurement of
linear or angular position. They consist of a resistive wire and sliding
contact. The resistance to the current flowing through the wire and
contact is a measure of the position of the contact. The linearity of
the device is determined by the resistance of the output load, but
with appropriate signal conditioning and buffering, non-linearities
can generally be minimized and may, in fact, be negligible. Most
potentiometric sensors are based on closely wound wire coils. The
contact slides along the length of the coil and as it moves across
adjacent windings it produces a stepped change in output. These
steps may limit the resolution of the device to typically 25 to 50 μm.

Semiconductor temperature sensors

This class of temperature sensor includes devices based on discrete
diodes and transistors as well as temperature-sensitive integrated
circuits. Most of these devices are designed to exhibit a high degree
of stability and linearity. Their working range is, however, relatively
limited. Most operate from about �50 to C150°C, although some
devices are suitable for use at temperatures down to about �230°C
or lower. IC temperature sensors are typically linear to within a
few degrees centigrade. A number of ICs and discrete transistor
temperature sensors are somewhat more linear than this: perhaps
š0.5 to š2°C or better. The repeatability of some devices may be as
low as š0.01°C.

Sensors and interfacing 87

All thermal sensors tend to have quite long response times. Their
time constants are dependent upon the rate at which temperature
changes are conducted from the surrounding medium. The intrinsic
time constants of semiconductor sensors are usually of the order of
1–10 s. These figures assume efficient transmission of thermal energy
to the sensor. If this is not the case, much longer time constants will
apply (e.g. a few seconds to about one minute in still air).

Most semiconductor temperature sensors provide a high level
current or voltage output which is relatively immune to noise and
can be interfaced to the PC with minimal signal conditioning.
Because of the long response times, software filtering can be easily
applied should noise become problematic.

Thermocouples

Thermocouples are very simple temperature measuring devices.
They consist of junctions of two dissimilar metal wires. An electromo-
tive force (emf) is generated at each of the thermocouple’s junctions
by the Seebeck effect. The magnitude of the emf is directly related
to the temperature of the junction. Various types of thermocouple
are available for measuring temperatures from about �200°C to in
excess of 1800°C. There are a number of considerations which must
be borne in mind when writing interface software for thermocouple
systems.

Depending upon the type of material from which the thermo-
couple is constructed, its output ranges from about 10 to 70 μV/°C.
Thermocouple response characteristics are defined by various British
and international standards. The sensitivity of thermocouples tends
to change with temperature and this gives rise to a non-linear
response. The non-linearity may not be problematic if measure-
ments are to be confined to a narrow enough temperature range,
but in most cases there is a need for some form of linearization. This
may be handled by the signal conditioning circuits, but it is often
more convenient to linearize the thermocouple’s output by means
of suitable software algorithms. Chapter 9 illustrates a number of
linearization techniques which can be applied to thermocouples.

Even when adequately linearized, thermocouple-based tempera-
ture measuring systems are not awfully accurate, although it has to be
said that they are often more than adequate for many temperature-
sensing applications. Thermocouple accuracy is generally limited by
variations in manufacturing processes or materials to about 1 to 4°C.

Like other forms of temperature sensor, thermocouples have long
response times. This depends upon the mass and shape of the ther-
mocouple and its sheath. According to the Labfacility temperature

88 PC interfacing and data acquisition

sensing handbook (1987), time constants for thermocouples in still
air range from 0.05 to around 40 s.

Thermocouples are rather insensitive devices. They output only
low level signals – typically less than 50 mV – and are, therefore,
prone to electrical noise. Unless the devices are properly shielded,
mains pickup and other forms of noise can easily swamp small signals.
However, because thermocouples respond slowly, their outputs are
very amenable to filtering. Heavy software filtering can usually be
applied without losing any important temperature information.

Cold-junction compensation

In order to form a complete circuit the conductors which make up
the thermocouple must have at least two junctions. One (the sensing
junction) is placed at an unknown temperature (i.e. the temperature
to be measured) and the remaining junction (known as the cold
junction or reference junction) is either held at a fixed reference
temperature or allowed to vary (over a narrow range) with ambient
temperature. The reference junction generates its own temperature-
dependent emf which must be taken into account when interpreting
the total measured thermocouple voltage.

Thermocouple outputs are usually tabulated in a form that
assumes that the reference junction is held at a constant temperature
of 0°C. If the temperature of the cold junction varies from this fixed
reference value, the additional thermal emf will offset the sensor’s
response. It is not possible to calibrate out this offset unless the
temperature of the cold junction is known and is constant. Instead,
the cold junction’s temperature is normally monitored in order that
a dynamic correction may be applied to the measured thermocouple
voltage.

The cold-junction temperature can be sensed using an indepen-
dent device such as a semiconductor (transistor or IC) temperature
sensor. In some signal-conditioning circuits, the output from the
semiconductor sensor is used to generate a voltage equal in magni-
tude, but of opposite sign, to the thermal emf produced by the cold
junction. This voltage is then electrically added to the thermocouple
signal so as to cancel any offset introduced by the temperature of
the cold junction.

It is also possible to perform a similar offset-cancelling operation
within the data-acquisition software. If the output from the semi-
conductor temperature sensor is read via an ADC, the program
can gauge the cold-junction temperature. As the thermocouple’s
response curve is known, the software is able to calculate the thermal
emf produced by the cold junction – i.e. the offset value. This is then
applied to the total measured voltage in order to determine that part

Sensors and interfacing 89

of the thermocouple output due only to the sensing junction. This is
accomplished as follows.

The response of the cold junction and the sensing junction both
generally follow the same non-linear form. As the temperature of
the cold junction is usually limited to a relatively narrow range, it is
often practicable to approximate the response of the cold junction
by a straight line:

TCJ D a0 C a1VCJ ⊲3.1⊳

where TCJ is the temperature of the cold junction in °C, VCJ is
the corresponding thermal emf and a0 and a1 are constants which
depend upon the thermocouple type and the temperature range
over which the straight-line approximation is made. Table 3.1 lists
the parameters of straight-line approximations to the response curves
of a range of different thermocouples over the temperature range
from 0 to 40°C.

The measured thermocouple voltage VM is equal to the difference
between the thermal emf produced by the sensing junction (VSJ)
and the cold junction (VCJ):

VM D VSJ � VCJ ⊲3.2⊳

As we are interested only in the difference in junction voltages, VSJ

and VCJ can be considered to represent either the absolute thermal
emfs produced by each junction or the emfs relative to whatever
junction voltage might be generated at some convenient temperature
origin. In the following discussion we will choose the origin of the
temperature scale to be 0°C (so that 0°C is considered to produce a
zero junction voltage). In fact, the straight-line parameters listed in
Table 3.1 represent an approximation to a 0°C-based response curve
(a0 is close to zero).

Rearranging Equation 3.1 and substituting for VCJ in Equation 3.2
we see that

VSJ D VM C TCJ � a0

a1
⊲3.3⊳

The values of a0 and a1 for the appropriate type of thermocouple
can be substituted from Table 3.1 into this equation in order to
compensate for the temperature of the cold junction. All voltage
values should be in millivolts and TCJ should be expressed in °C.
The temperature of the sensing junction can then be calculated
by applying a suitable linearizing polynomial to the VSJ value, as
described in Chapter 9. Note that the polynomial must also be

90 PC interfacing and data acquisition

Table 3.1 Parameters of straight-line fits to

thermocouple response curves over the

range 0 to 40 °C, for use in software

cold-junction compensation

Type a0 (°C) a1(°C mV�1) Accuracy(°C)

K 0.130 24.82 š0.25

J 0.116 19.43 š0.25

R 0.524 172.0 š1.00

S 0.487 170.2 š1.00

T 0.231 24.83 š0.50

E 0.174 16.53 š0.30

N 0.129 37.59 š0.40

constructed for a coordinate system with an origin at V D 0 mV,
T D 0°C.

It is interesting to note that the type B thermocouple is not
amenable to this method of cold-junction compensation as it exhibits
an unusual behaviour at low temperatures. As the temperature
rises from zero to about 21°C, the thermoelectric voltage falls to
approximately �3 μV. It then begins to rise, through 0 V at about
41°C, and reaches C3 μV at 52°C. It is, therefore, not possible
to accurately fit a straight line to the thermocouple’s response
curve over this range. Fortunately, if the cold-junction temperature
remains within 0 to 52°C it contributes only a small proportion of
the total measured voltage (less than about š3 μV). If the sensing
junction is used over its normal working range of 600 to 1700°C,
the measurement error introduced by completely ignoring the cold
junction emf will be less than š0.6°C.

The accuracy figures quoted in Table 3.1 are generally better than
typical thermocouple tolerances and so the a0 and a1 parameters
should be usable in most situations. More precise compensation
factors can be obtained by fitting the straight line over a narrower
temperature range or by using a look-up table with the appropriate
interpolation routines (see Chapter 9). You should calculate your
own compensation factors if a different cold-junction temperature
range is to be used.

Resistive temperature sensors (thermistors and RTDs)

Thermistors are semiconductor or metal oxide devices whose re-
sistance changes with temperature. Most exhibit negative temper-
ature coefficients (i.e. their resistance decreases with increasing
temperature) although some have positive temperature coefficients.

Sensors and interfacing 91

Thermistor temperature coefficients range from about 1 to 5 per
cent/°C. They tend to be usable in the range �70 to C150°C, but
some devices can measure temperatures up to 300°C. Thermistor-
based measuring systems can generally resolve temperature changes
as small as š0.01°C, although typical devices can provide absolute
accuracies no better than š0.1 to 0.5°C. The better accuracy figure
is often only achievable in devices designed for use over a limited
range (e.g. 0 to 100°C).

As shown in Figure 3.4, thermistors tend to exhibit a highly non-
linear response. This can be corrected by means of suitable signal-
conditioning circuits or by combining thermistors with positive
and negative temperature coefficients. Although this technique can
provide a high degree of linearity, it may be preferable to carry out
linearization within the DA&C software. A third order logarithmic
polynomial is usually appropriate (see Chapter 9). The response
time of thermistors depends upon their size and construction. They
tend to be comparable with semiconductor temperature sensors
in this respect, but because of the range of possible constructions,
thermistor time constants may be as low as several tens of milliseconds
or as high as 100–200 s.

Resistance Temperature Detectors (RTDs) also exhibit a
temperature-dependent resistance. These devices can be constructed
from a variety of metals, but platinum is the most widely used. They
are suitable for use over ranges of about �270 to 660°C, although
some devices have been employed for temperatures up to about
1000°C. RTDs are accurate to within typically 0.2 to 4°C, depending

10 100 1000
100

1000

10 000

100 000

Resistance
(ohms)

Temperature (°C)

a

b

Figure 3.4 Typical resistance vs. temperature characteristics for (a) negative

temperature coefficient thermistors and (b) platinum RTDs

92 PC interfacing and data acquisition

on temperature and construction. They also exhibit a good long-
term stability, so frequent recalibration may not be necessary. Their
temperature coefficients are generally of the order of 0.4 �/°C.
However, their sensitivity falls with increasing temperature, leading
to a slightly non-linear response. This non-linearity is often small
enough, over limited temperature ranges (e.g. 0 to 100°C), to allow
a linear approximation to be used. Wider temperature ranges require
some form of linearization to be applied: a third order polynomial
correction usually provides the optimum accuracy. Response times
are comparable with those of thermistors.

Resistance sensors and bridges

A number of other types of resistance sensor are available. Most
notable amongst these are strain gauges. These take a variety of
forms, including semiconductors, metal wires and metal foils. They
are strained when subjected to a small displacement and, as the gauge
becomes deformed, its resistance changes slightly. It is this resistance
which is indirectly measured in order to infer values of strain,
force or pressure. The Light Dependent Resistor (LDR) is another
example of a resistance sensor. The resistance of this device changes
in relation to the intensity of light impinging upon its surface.

Both thermistors and RTDs can be used in simple resistive
networks, but, because devices such as RTDs and strain gauges
have low sensitivities it can be difficult to directly measure changes
in resistance. Bridge circuits such as that shown in Figure 3.5 are,
therefore, often used to obtain optimum precision. The circuit is
designed (or adjusted) so that the voltage output from the bridge is
zero at some convenient value of the measurand (e.g. zero strain in
the case of a strain gauge bridge). Any changes in resistance induced
by changes in the measurand cause the bridge to become unbal-
anced and to produce a small output voltage. This can be amplified
and measured independently of the much larger bridge-excitation
voltage. Although bridge circuits are used primarily with insensitive
devices, they can also be used with more responsive resistance sensors
such as thermistors.

Bridges often contain two or four sensing elements (replacing the
fixed resistors shown in Figure 3.5). These are arranged in such a way
as to enhance the overall sensitivity of the bridge and, in the case of
non-thermal sensors, to compensate for temperature dependencies
of the individual sensing elements. This approach is used in the
design of strain-gauge-based sensors such as load cells or pressure
transducers.

Bridges with one sensing element exhibit a non-linear response.
Two-active-arm bridges, which have sensors placed in opposite arms,

Sensors and interfacing 93

Sensor

Rv R1

R2 R2

Excitation voltage

Signal voltage
(output)

Figure 3.5 Bridge circuit for measuring resistance changes in strain gauges and

RTDs

are also non-linear. However, provided that only small fractional
changes occur in the resistance of the sensing element(s), the non-
linearities of one and two arm bridges are often small enough that
they can be ignored. Strain-gauge bridges with four active sensors
generate a linear response provided that the sensors are arranged so
that the resistance change occurring in one diagonally opposing pair
of gauges is equal and opposite to that occurring in the other (Pople,
1979). When using resistance sensors in a bridge configuration, it is
advisable to check for and, if necessary, correct any non-linearities
that may be present. Linearization and calibration of strain-gauge
bridges is discussed in Chapter 9.

Conduction of the excitation current can cause self-heating
within each sensing element. This can be problematic with thermal
sensors – thermistors in particular. Temperature rises within strain
gauges can also cause errors in the bridge output. Because of this,
excitation currents and voltages have to be kept within reasonable
limits. This often results in low signal levels. For example, in most
implementations, strain-gauge bridges generate outputs of the order
of a few millivolts. Because of this, strain-gauge and RTD-based
measuring systems are susceptible to noise, and a degree of software
or hardware filtering is frequently required.

Lead resistance must also be considered when using resistance
sensors. This is particularly so in the case of low resistance devices

94 PC interfacing and data acquisition

such as strain gauges and RTDs, which have resistances of typically
120 to 350 � and 100 to 200 �, respectively. In these situations
even the small resistance of the lead wires can introduce significant
measurement errors. The effect of lead resistance can be minimized
by means of compensating cables and suitable signal conditioning.
This is usually the most efficient approach. Alternatively, the same
type of compensation can be performed in software by using a
spare ADC channel to directly measure the excitation voltage at the
location of the sensor or bridge.

Linear variable differential transformers (LVDTs)

Linear Variable Differential Transformers (LVDTs) are used for
measuring linear displacement. They consist of one primary and two
secondary coils. The primary coil is excited with a high frequency
(typically several hundred to several thousand Hz) voltage. The
magnetic-flux linkage between the concentric primary and secondary
coils depends upon the position of a ferrite core within the coil
geometry. Induced signals in the secondary coils are combined in a
differential manner such that movement of the core along the axis
of the coils results in a variation in the amplitude and phase of the
combined secondary-coil output. The output changes phase at the
central (null) position and the amplitude of the output increases
with displacement from the null point. The high frequency output
is then demodulated and filtered in order to produce a DC voltage
in proportion to the displacement of the ferrite core from its null
position. The filter used is of the low-pass type which blocks the high
frequency ripple but passes lower frequency variations due to core
movement.

Obviously the excitation frequency must be high in order to allow
the filter’s cut-off frequency to be designed such that it does not
adversely affect the response time of the sensing system. The exci-
tation frequency should be considerably greater than the maximum
frequency of core movement. This is usually the case with LVDTs.
However, the filtration required with low frequency excitation (less
than a few hundred Hz) may significantly affect the system’s response
time and must be taken into account by the software designer.

The LVDT offers a high sensitivity (typically 100–200 mV/V at its
full-scale position) and high level voltage output which is relatively
immune to noise. Software filtering can, however, enhance noise
rejection in some situations.

The LVDT’s intrinsic null position is very stable and forms an
ideal reference point against which to position and calibrate the
sensor. The resolution of an LVDT is theoretically infinite. In
practice, however, it is limited by noise and the ability of the

Sensors and interfacing 95

signal-conditioning circuit to sense changes in the LVDT’s output.
Resolutions of less than 1 μm are possible. The device’s repeatability
is also theoretically infinite, but is limited in practice by thermal
expansion and mechanical stability of the sensor’s body and mount-
ings. Typical repeatability figures lie between š0.1 and š10 μm,
depending upon the working range of the device. Temperature
coefficients are also an important consideration. These are usually
of the order of 0.01 per cent/°C. It is wise to periodically recalibrate
the sensor, particularly if it is subject to appreciable temperature
variations.

LVDTs offer quite linear responses over their working range.
Designs employing simple parallel coil geometries are capable of
maintaining linearity over only a short distance from their null posi-
tion. Non-linearities of up to 10 per cent or more become apparent
if the device is used outside this range. In order to extend their oper-
ating range, LVDTs are usually designed with more complex and
expensive graduated or stepped windings. These provide linearities
of typically 0.25 per cent. An improved linearity can sometimes be
achieved by applying software linearization techniques as described
in Chapter 9.

3.4 Handling analogue signals

Signal levels and current-loading requirements of sensors and actua-
tors usually preclude their direct connection to ADCs and DACs. For
this reason, data-acquisition and control systems generally require
analogue signals to be processed before being input to the PC,
or after transmission from it. This usually involves conditioning
(i.e. amplifying, filtering and buffering) the signal. In the case of
analogue inputs it may also entail selecting and capturing the signal
using devices such as multiplexers and sample-and-hold circuits.

Signal conditioning

Signal conditioning is normally required on both inputs and outputs.
In this section we will concentrate on analogue inputs, but analogous
considerations will apply to analogue outputs: for example, the
circuits used to drive actuators.

Conditioning analogue inputs

Signal conditioning serves a number of purposes. It is needed to
clean and shape signals, to supply excitation voltages, to amplify and
buffer low level signals, to linearize sensor outputs, to compensate
for temperature-induced drifts and to protect the PC from electrical

96 PC interfacing and data acquisition

From sensor
Passive conditioning

(resistive dividers, bridge
circuits, current-to-

voltage conversion etc.)

To ADC or
multiplexerIsolation and

surge suppression
Amplification Filtering

Figure 3.6 Elements of a typical analogue input signal-conditioning circuit

noise and surges. The signal-conditioning blocks shown in Figure 3.2
may consist of a number of separate circuits and components. These
elements are illustrated in Figure 3.6.

Certain passive signal-conditioning elements such as potential
dividers, bridge circuits and current-to-voltage conversion resis-
tors are often closely coupled to the sensor itself and, indeed,
may be an integral part of it. The sensor is sometimes isolated
from the remaining signal-conditioning circuits and from the PC
by means of linear opto-couplers or capacitively coupled devices.
Surge-suppression components such as Zener diodes and metal
oxide varistors may also be used in conjunction with RC networks to
protect against transient voltage spikes.

Because typical ADCs have sensitivities of a few millivolts per bit, it
is essential to amplify the low level signals from thermocouples, strain
gauges and RTDs (which may be only a few tens of millivolts at full
scale). Depending upon the type of sensor in use, activities such as AC
demodulation or thermocouple cold-junction compensation might
also be performed prior to amplification. Finally, a filtering stage
might be employed to remove random noise or AC excitation ripple.
Low-pass filters also serve an anti-aliasing function as described in
Chapter 4.

So what relevance does all this have to the DA&C programmer?
In well-designed systems, very little – the characteristics of the signal
conditioning should have no significant limiting affect on the design
or performance of the software, and most of the characteristics of
the sensor and signal conditioning should be transparent to the
programmer. Unfortunately this is not always the case.

The amplifier and other circuits can give rise to temperature-
dependent offsets or gain drifts (typically of the order of 0.002–0.010
per cent of full scale per °C) which may necessitate periodic recali-
bration or linearization. When designing DA&C software you should
consider the following:

ž the frequency of calibration
ž the need to enforce calibration or to prompt the operator when

calibration is due
ž how calibration data will be input, stored and archived
ž the necessity to rezero sensors after each data-acquisition cycle.

Sensors and interfacing 97

You should also consider the frequency response (or bandwidth)
of the signal-conditioning circuitry. This can affect the sampling
rate and limit throughput in some applications (see Chapter 4).
Typical bandwidths are of the order of a few hundred Hz, but this
does, of course, vary considerably between different types of signal-
conditioning circuit and depends upon the degree of filtration used.
High gain signal-conditioning circuits, which amplify noisy low level
signals, often require heavy filtering. This may limit the bandwidth to
typically 100 to 200 Hz. Systems employing low frequency LVDTs can
have even lower bandwidths. Bandwidth may not be an important
consideration when monitoring slowly varying signals (e.g. tempera-
ture), but it can prove to be problematic in high speed applications
involving, for example, dynamic force or strain measurement.

If high gain amplifiers are used and/or if hardware filtration is
inadequate, it may be necessary to incorporate filtering algorithms
within the software. If this is the case, you should carefully assess
which signal frequencies you wish to remove and which frequencies
you will need to retain, and then reconcile this with the proposed
sampling rate and the software’s ability to reconstruct an accu-
rate representation of the underlying noise-free signal. Sampling
considerations and software filtering techniques are discussed in
Chapter 4.

It may also, in some situations, be necessary for the software to
monitor voltages at various points within the signal-conditioning
circuit. We have already mentioned monitoring of bridge excitation
levels to compensate for voltage drops due to lead-wire resistance.
The same technique (sometimes known as ratiometric correction)
can also be used to counteract small drifts in excitation supply. If
lead-wire resistance can be ignored, the excitation voltage may be
monitored either at its source or at the location of the sensor.

There is another (although rarer) instance when it might be
necessary to monitor signal-conditioning voltage levels. This is when
pseudo-differential connections are employed on the input to an
amplifier. Analogue signal connections may be made in two ways:
single ended or differential. Single-ended signals share a common
ground or return line. Both the signal source voltage and the
input to the amplifier(s) exist relative to the common ground. For
this method to work successfully, the ground potential difference
between the source and amplifier must be negligible otherwise the
signal to be measured appears superimposed on a non-zero (and
possibly noisy) ground voltage. If a significant potential difference
exists between the ground connections, currents can flow along the
ground wire causing errors in the measured signals.

98 PC interfacing and data acquisition

Differential systems circumvent this problem by employing two
wires for each signal. In this case, the signal is represented by the
potential difference between the wires. Any ground-loop-induced
voltage appears equally (as a common-mode signal) on each wire
and can be easily rejected by a differential amplifier.

An alternative to using a full differential system is to employ
pseudo-differential connections. This scheme is suitable for appli-
cations in which the common-mode voltage is moderately small.
It makes use of single-ended channels with a common ground
connection. This allows cheaper operational amplifiers to be used.
The potential of the common ground return point is measured
using a spare ADC input in order to allow the software to correct
for any differences between the local and remote ground voltages.
Successful implementation of this technique obviously requires the
programmer to have a reasonably detailed knowledge of the signal
conditioning circuitry. Unless the common-mode voltage is relatively
static, this technique also necessitates concurrent sampling of the
signal and ground voltages. In this case simultaneous sample-and-
hold circuits (discussed later in this chapter) or multiple ADCs may
have to be used.

Conditioning analogue outputs

Some form of signal conditioning is required on most analogue
outputs, particularly those that are intended to control motors
and other types of actuator. Space limitations preclude a detailed
discussion of this topic, but in general, the conditioning circuits
include current-driving devices and power amplifiers etc. The nature
of the signal conditioning used is closely related to the type of
actuator. As in the case of analogue inputs, it is prudent for the
programmer to gain a thorough understanding of the actuator and
associated signal-conditioning circuits in order that the software can
be designed to take account of any non-linearities or instabilities
which might be present.

Multiplexers

Multiplexers allow several analogue input channels to be serviced
by a single ADC. They are basically software-controlled analogue
switches which can route one of typically 8 or 16 analogue signals
through to the input of the system’s ADC. A four-channel multi-
plexed system is illustrated in Figure 3.2. A multiplexer used in
conjunction with a single ADC (and possibly amplifier) can take
the place of several ADCs (and amplifiers) operating in parallel.
This is normally considerably cheaper, and uses less power, than an

Sensors and interfacing 99

array of separate ADCs and for this reason analogue multiplexers
are commonly used in multi-channel data-acquisition systems.

However, some systems do employ parallel ADCs in order to
maximize throughput. The ADCs must, of course, be well matched
in terms of their offset, gain and integral non-linearity errors. In
such systems, the digitized readings from each channel (i.e. ADC) are
digitally multiplexed into a data register or into one of the PC’s I/O
ports. From the point of view of software design, there is little to be
said about digital multiplexers. In this section, we will deal only with
the properties of their analogue counterparts.

In an analogue multiplexed system, multiple channels share the
same ADC and the associated sensors must be read sequentially,
rather than in parallel. This leads to a reduction in the number of
channels that can be read per second. The decrease in throughput
obviously depends upon how efficiently the software controls the
digitization and data-input sequence.

A related problem is skewing of the acquired data. Unless special
S/H circuitry is used, simultaneous sampling is not possible. This is
an obvious disadvantage in applications which must determine the
temporal relationship or relative phase of two or more inputs.

Multiplexers can be operated in a variety of ways. The desired
analogue channel is usually selected by presenting a 3- or 4-bit
address (i.e. channel number) to its control pins. In the case of a
plug-in ADC card, the address-control lines are manipulated from
within the software by writing an equivalent bit pattern to one of the
card’s registers (which usually appear in the PC’s I/O space). Some
systems can be configured to automatically scan a range of channels.
This is often accomplished by programming the start and end
channel numbers into a ‘scan register’. In contrast, some intelligent
DA&C units require a high-level channel-selection command to
be issued. This often takes the form of an ASCII character string
transmitted via a serial or parallel port.

Whenever the multiplexer is switched between channels, the input
to the ADC or S/H will take a finite time to settle. The settling time
tends to be longer if the multiplexer’s output is amplified before
being passed to the S/H or ADC. An instrumentation amplifier may
take typically 1–10 μs to settle to a 12-bit (0.025 per cent) accuracy.
The exact settling time will vary, but will generally be longest with
high gain PGAs, or where the amplifier is required to settle to a
greater degree of accuracy.

The settling time can be problematic. If the software scans the
analogue channels (i.e. switches the multiplexer) too rapidly, the
input to the S/H or ADC will not settle sufficiently and a degree
of apparent cross-coupling may then be observed between adjacent

100 PC interfacing and data acquisition

channels. This can lead to measurement errors of several per cent,
depending upon the scanning rate and the characteristics of the
multiplexer and amplifier used. These problems can be avoided
by careful selection of components in relation to the proposed
sampling rate. Bear in mind that the effects of cross-coupling may be
dependent upon the sequence as well as the frequency with which
the input channels are scanned. Cross-coupling may not even be
apparent during some operations. A calibration facility, in which
only one channel is monitored, will not exhibit any cross-coupling,
while a multi-channel scanning sequence may be badly affected. It
is advisable to check for this problem at an early stage of software
development as, if present, it can impose severe restrictions on the
performance of the system.

Sample-and-hold circuits

Many systems employ a sample-and-hold (S/H) circuit on the input
to the ADC to freeze the signal while the ADC digitizes it. This
prevents errors due to changes in the signal during the digitization
process (see Chapter 4). In some implementations, the multiplexer
can be switched to the next channel in a sequence as soon as the
signal has been grabbed by the S/H. This allows the digitization
process to proceed in parallel with the settling time of the multi-
plexer and amplifier, thereby enhancing throughput. S/H circuits
can also be used to capture transient signals. Software-controlled
systems are not capable of responding to very high speed transient
signals (i.e. those lasting less than a few microseconds) and so in
these cases, the S/H and digitization process may be initiated by
means of special hardware (e.g. a pacing clock). The software is
then notified (by means of an interrupt, for example) when the
digitization process is complete.

S/H circuits require only a single digital control signal to switch
them between their ‘sample’ and ‘hold’ modes. The signal may be
manipulated by software via a control register mapped to one of the
PC’s I/O ports, or it may be driven by dedicated on-board hardware.
S/H circuits present at the input to ADCs are often considered
to be an integral part of the digitization circuitry. Indeed, the
command to start the analogue-to-digital conversion process may
also automatically activate the S/H for the required length of time.

Simultaneous S/H

In multiplexed systems like that represented in Figure 3.2,
analogue input channels have to be read sequentially. This
introduces a time lag between the samples obtained from

Sensors and interfacing 101

successive channels. Assuming typical times for ADC conversion
and multiplexer/amplifier settling, this time lag can vary from
several tens to several hundreds of microseconds. The consequent
skewing of the sample matrix can be problematic if you wish
to measure the phase relationship between dynamically varying
signals. Simultaneous S/H circuits are often used to overcome this
problem. Figure 3.7 illustrates a four-channel analogue input system
employing simultaneous S/H.

The system is still multiplexed, so very little improvement is
gained in the overall throughput (total number of channels read
per second), but the S/H circuits allow data to be captured from all
inputs within a very narrow time interval (see the following section).
Simultaneous S/H circuits may be an integral part of the signal
conditioning unit or they may be incorporated in the digitization
circuitry (e.g. on a plug-in ADC card). In either case they tend to be
manipulated by a single digital signal generated by the PC.

Characteristics of S/H circuits

When not in use, the S/H circuit can be maintained in either
the sample or hold modes. To operate the device, it must first
be switched into sample mode for a short period and then into
hold mode in order to freeze the signal before analogue-to-digital
conversion begins. When switched to sample mode, the output of
the S/H takes a short, but sometimes significant, time to react to
its input. This time delay arises because the device has to charge
up an internal capacitor to the level of the input signal. The rate
of charging follows an exponential form and so a greater degree of
accuracy is achieved if the capacitor is allowed to charge for a longer
time. This charging time is known as the acquisition time. It varies
considerably between different types of S/H circuit and, of course,

Sensor

Sensor

Sensor

Sensor

Signal

conditioning

Signal

conditioning

Signal

conditioning

Signal

conditioning

Sample/

hold

Sample/

hold

Sample/

hold

Sample/

hold

Multiplexer Amplifier

CHANNEL

SELECT GAIN

SELECT
SC

PC

S/H control

EOC

ADC

Figure 3.7 Analogue input channels with simultaneous sample and hold

102 PC interfacing and data acquisition

depends upon the size of the voltage swing at the S/H’s input. The
worst case acquisition time is usually quoted and this is generally
of the order of 0.5–20 μs. Acquisition time is illustrated, together
with other S/H characteristics, in Figure 3.8. Accuracies of 0.01 per
cent are often attainable with acquisition times greater than about
10 μs. Lower accuracies (e.g. 0.1 per cent) are typical of S/H devices
working with shorter acquisition times.

While in sample mode, the S/H’s output follows its input (provided
that the hold capacitor has been accurately charged and that the
signal does not change too quickly). When required, the device is
switched into hold mode. A short delay then ensues before digi-
tization can commence. The delay is actually composed of two
constituent delay times known as the aperture time and the settling
time. The former, which is due to the internal switching time of the
device, is very short: typically less than 50 ns. Variations in the aper-
ture time, known as aperture jitter (or aperture uncertainty time),
are the limiting factor in determining the temporal precision of each
sample. These variations are generally of the order of 1 ns, so aper-
ture jitter can be ignored in all but the highest speed applications
(see Chapter 4 for more on the relationship between aperture jitter
and maximum sampling rate). The settling time is the time required
for the output to stabilize after the switch and determines the rate at
which samples can be obtained. It is usually of the order of 1 μs, but
some systems exhibit much longer or shorter settling times.

Output

Output

Input

Settling time

Aperture time

Sample HoldHold

Voltage Droop

Time

Acquisition time

Figure 3.8 Idealized sample-and-hold circuit response characteristic

Sensors and interfacing 103

When the output settles to a stable state, it can be digitized by
the ADC. Digitization must be completed within a reasonably short
time interval because the charge on the hold capacitor begins to
decay, causing the S/H’s output to ‘droop’. Droop rates vary between
different devices, but are typically of the order of 1 mV/ms. Devices
are available with both higher and lower droop rates. S/H circuits
with low droop rates are usually required in simultaneous sample-
and-hold systems. Large hold capacitors are needed to minimize
droop and these can adversely affect the device’s acquisition time.

3.5 Digitization and signal conversion

The PC is capable of reading and writing only digital signals. To
permit interfacing of the PC to external analogue systems, ADCs
and DACs must be used to convert signals from analogue to digital
form and vice versa. This section describes the basic principles of the
conversion processes. It also illustrates some of the characteristics of
ADCs and DACs which you should be aware of when writing interface
software.

Binary coding

In order to understand the digitization process, it is important to
consider the ways in which analogue signals can be represented
digitally. Computers store numbers in binary form. There are several
binary coding schemes. Most positive integers, for example, are
represented in true binary (sometimes called natural or straight
binary). Just as the digits in a decimal number represent units, tens,
hundreds etc., true binary digits represent 1s, 2s, 4s, 8s and so on.
Floating-point numbers, on the other hand, are represented within
the computer in a variety of different binary forms. Certain fields
within the floating-point bit pattern are set aside for exponents or to
represent the sign of the number. Although floating-point represen-
tations are needed to scale, linearize and otherwise manipulate data
within the PC, all digitized analogue data are generally transferred
in and out of the computer in the form of binary integers.

Analogue signals may be either unipolar or bipolar. Unipolar
signals range from zero up to some positive upper limit, while
bipolar signals can span zero, varying between non-zero negative
and positive limits.

Encoding unipolar signals

Unipolar signals are perhaps the most common and are the simplest
to represent in binary form. They are generally coded as true binary

104 PC interfacing and data acquisition

numbers with which most readers should already be familiar. As
mentioned above the least significant bit (LSB) has a weight (value)
of 1 in this scheme, and the weight of each successive bit doubles as
we move towards the most significant bit (MSB). If we allocate an
index number, i, to each bit, starting with 0 for the LSB, the weight
of any one bit is given by 2i. Bit 6 would, for example, represent
the value 26⊲D64 decimal⊳. To calculate the value represented by a
complete binary number, the weights of all non-zero bits must be
added. For example, the following 8-bit true binary number would
be evaluated as shown.

1 1 0 0 1 0 0 1 binary D 27 C 26 C 23 C 20

D 128 C 64 C 8 C 1 D 201 decimal

The maximum value which can be represented by a true binary
number has all bits set to 1. Thus, a true binary number with n bits
can represent values from 0 to V, where:

V D
iDn�1
∑

iD0

2i D 2n � 1 ⊲3.4⊳

An 8-bit true binary number can, therefore, represent integers in the
range 0 to 255 decimal (=28 � 1). A greater range can be represented
by binary numbers having more bits. Similar calculations for other
numbers of bits yield the results shown in Table 3.2. The accuracies
with which each true binary number can represent an analogue
quantity are also shown.

The entries in this table correspond to the numbers of bits
employed by typical ADCs and DACs. It should be apparent that
converters with a higher resolution (number of bits) provide the
potential for a greater degree of conversion accuracy.

When true binary numbers are used to represent an analogue
quantity, the range of that quantity should be matched to the range

Table 3.2 Ranges of true binary numbers

Number of bits Range (true binary) Accuracy (%)

6 0 to 63 1.56

8 0 to 255 0.39

10 0 to 1 023 0.098

12 0 to 4 095 0.024

14 0 to 16 383 0.0061

16 0 to 65 535 0.0015

Sensors and interfacing 105

(i.e. V) of the ADC or DAC. This is generally accomplished by
choosing a signal-conditioning gain which allows the full-scale range
of a sensor to be matched exactly to the measurement range of the
ADC. A similar consideration applies to the range of DAC outputs
required to drive actuators. Assuming a perfect match (and that
there are no digitizing errors), the limiting accuracy of any ADC or
DAC system depends upon the number of bits available. An n-bit
system can represent some physical quantity which varies over a
range 0 to R, to a fractional accuracy š1

2υR where:

υR D R

2n ⊲3.5⊳

This is equal to the value represented by one LSB. True binary
numbers are important in this respect as they are the basis for
measuring the resolution of an ADC or DAC.

Encoding bipolar signals

Many analogue signals can take on a range of positive and negative
values. It is, therefore, essential to be able to represent readings
on both sides of zero as digitized binary numbers. Several different
binary coding schemes can be used for this purpose. One of the most
convenient and widely used is offset binary. As its name suggests, this
scheme employs a true binary coding, which is simply offset from
zero. This is best illustrated by an example. Consider a system in
which a unipolar 0–10 V signal is represented in 12-bit true binary by
the range of values from 0 to 4095. We can also represent a bipolar
signal in the range �5 V to C5 V by using the same scaling factor (i.e.
volts per bit) and simply shifting the zero-volt point halfway along the
binary scale to 2048. An offset binary value of zero would, in this case,
be equivalent to �5 V, and a value of 4095 would represent C5 V.
Offset binary codes can, of course, be used with any number of bits.

Two’s complement binary can also represent both positive and
negative numbers. It employs a sign bit at the MSB location. This bit
is 0 for positive numbers and 1 for negative numbers. Because one bit
is dedicated to storing sign information, it cannot be used for coding
the absolute magnitude of the binary number and so the range of
magnitudes which can be represented by two’s complement numbers
is half that which can be accommodated by the same number of
bits in true binary. To negate a positive binary integer, it is only
necessary to complement (convert 0s to 1s and 1s to 0s) each bit
and then add 1 to the result. Carrying out this operation – which is
equivalent to multiplying by minus one – twice in succession yields
the original number. As most readers will be aware, this scheme is

106 PC interfacing and data acquisition

used by the IBM PC’s 80x86 processor for storing and manipulating
signed integers because it greatly simplifies the operations required
to perform subtractive arithmetic. A number of ADCs, particularly
those designed for audio and digital signal processing applications,
also use this coding scheme.

There are a variety of less widely used methods of coding bipolar
signals. For example, a simple true binary number, indicating magni-
tude, may be combined with an additional bit to record the sign
of the number. Another encoding scheme is one’s complement
(or complementary straight) binary in which negative numbers
are formed by simply inverting each bit of the equivalent positive
true-binary number. Combinations of these coding schemes are
sometimes used. For example, complementary offset binary consists
of an offset binary scale in which each code is complemented. The
result is that the zero binary code (all 0s) corresponds to the positive
full-scale position, while the maximum binary code (all 1s) represents
the negative full-scale position. Yet another scheme, complementary
two’s complement, is formed by simply inverting each bit of a two’s
complement value. These methods of binary coding are less impor-
tant in PC applications although some ADCs may generate signed
true binary or one’s complement binary codes. Some DAC devices
use the complementary offset binary scheme.

The various bipolar codes are compared in Table 3.3. This shows
how a 3-bit binary number can represent values from �4 to C4 using
the different coding schemes. The patterns shown in this table can
be easily extended to numbers encoded using a greater number of
bits. Note that only offset binary, complementary offset binary and
two’s complement binary have a unique zero code. Note also that
these schemes are asymmetric about their zero point. Compare in
particular the two forms of offset binary.

Table 3.3 Comparison of bipolar binary codes

Offset Two’s One’s Complementary

Value binary complement complement offset binary

C3 111 011 011 000

C2 110 010 010 001

C1 101 001 001 010

0 100 000 000 or 111 011

�1 011 111 110 100

�2 010 110 101 101

�3 001 101 100 110

�4 000 100 – 111

Sensors and interfacing 107

Conversion from offset binary to two’s complement binary is simply
a matter of complementing the MSB. Complementing it again reverts
back to offset binary encoding. It is a very straightforward task to
convert between the various bipolar codes and examples will not be
given here.

Other binary codes and related notations

There are two other binary codes which can be used in special
circumstances: the Gray code and BCD. Both of these are, in fact,
unipolar codes and cannot represent negative numbers without
the addition of an extra sign bit. We have already introduced the
Gray code in relation to digital encoders earlier in this chapter, but
because the DA&C programmer rarely needs to use this code directly
it will not be discussed further.

Binary coded decimal (BCD)

BCD is simply a means of encoding individual decimal digits in binary
form. Each decimal digit is coded by a group of 4 bits. Although
each group would be capable of recording 16 true binary values,
only the lower 10 values (i.e. corresponding to 0 to 9, decimal) are
used. The remaining values are unused and are invalid in BCD. A
number with N decimal digits would occupy 4N bits, arranged such
that the least significant group of 4 bits would represent the least
significant decimal digit. For example:

1234 decimal D 0001 0010 0011 0100 BCD

ADCs which generate BCD output are used mostly for interfacing to
decimal display devices such as panel meters. Most ADCs employed
in PC applications (e.g. those on plug-in DA&C cards) use one of the
coding schemes described previously, such as offset binary. However,
a few components of the PC do make use of BCD. For example, the
16-bit 8254 timer counter used on AT compatible machines and
on some plug-in data-acquisition cards can operate in a 4-decade
BCD mode.

Hexadecimal notation

This is not a binary code. It is, in fact, a base-16 (rather than base-2)
numeric representation. Hexadecimal notation is rather like BCD in
that 4 bits are required for each hexadecimal digit. However, all 16
binary codes are valid and so each hexadecimal digit can represent
the numbers from 0 to 15 (decimal). Hexadecimal numbers are
written using an alphanumeric notation in which the lowest 10 digits

108 PC interfacing and data acquisition

are represented by 0 to 9 and the remaining digits are written using
the letters A to F. ‘A’ corresponds to 10 decimal, ‘B’ to 11 and so
on. Hexadecimal numbers are followed by an ‘h’ to avoid confusing
them with decimal numbers. The following example shows the binary
and decimal equivalents of a 2-digit hexadecimal number:

3Ah D 0011 1010 binary D ⊲3 ð 16⊳ C ⊲10 ð 1⊳ D 58 decimal

Most numbers manipulated by computer software are coded using
multiples of 4 bits: usually either 8, 16 or 32 bits. Hexadecimal is,
therefore, a convenient shorthand method for expressing binary
numbers and is used extensively in this and other publications.

Digital-to-analogue converters

Digital-to-analogue converters (DACs) have a variety of uses within
PC-based DA&C systems. They may be used for waveform synthesis,
to control the speed of DC motors, or to drive analogue chart
recorders and meters. Many closed-loop control systems require
analogue feedback from the PC and this is invariably provided by
a DAC.

Most DACs generate full-scale outputs of a few volts (typically
0–10 V, š5 V, or š10 V). They have a limited current-driving capa-
bility (usually less than about 1–10 mA) and are often buffered
using operational amplifiers. In cases where a low impedance or high
power unit is to be driven, suitable power amplifiers may be required.
Current-loop DACs with full-scale outputs of 4–20 mA are also avail-
able and these are particularly suited to long-distance transmission
in noisy environments. Both bipolar and unipolar configurations are
possible on many proprietary DAC cards by adjusting jumpers or
DIP switches.

The resolution of a DAC is an important consideration. This is
the number of input bits which the DAC can accept. As Equation 3.5
shows, it determines the accuracy with which the device can recon-
struct analogue signals (also see Chapter 4). 8-bit and 12-bit DACs
are, perhaps, the most common in DA&C applications although
devices with a variety of other resolutions are available. Figure 3.9
shows the ideal transfer characteristic of a DAC. For reasons of
clarity, this illustration is based on a hypothetical 3-bit DAC, having
eight possible codes from 000b to 111b. Note that although there
are eight codes, the DAC can only generate an output accurate to
one-seventh of its maximum output voltage, which is one LSB short
of its nominal full scale value, Vmax.

DACs are generally controlled via registers mapped to one or more
of the PC’s I/O ports. When the desired bit pattern is written to the

Sensors and interfacing 109

Vmax

1/8
Vmax

0

000 001

A
n
a
lo

g
u
e
 o

u
tp

u
t

v
o
lt
a
g
e

010 011 100

Digital input code

101 110 111

2/8
Vmax

3/8
Vmax

4/8
Vmax

5/8
Vmax

6/8
Vmax

7/8
Vmax

Figure 3.9 Ideal DAC transfer characteristic (unipolar true binary encoding)

register, the DAC updates its analogue output accordingly. If a DAC
has more than 8 bits, it requires its digital input to be supplied either
as one 16-bit word or as two 8-bit bytes. The latter often involves a
two-stage write operation: the least significant byte is usually written
first and this is followed by the most significant byte. Any unused
bits (e.g. the upper 4 bits in the case of a 12-bit DAC) are ignored.
The two-stage method of supplying new data can sometimes cause
problems if the DAC’s output is updated immediately upon receipt
of each byte. Spurious transients can be generated because the least
significant byte of the new data is initially combined with the most
significant byte of the existing data. The analogue output settles to
its desired value only when both new bytes have been supplied. To
circumvent this problem, many DACs incorporate a double buffering
system in which the first byte is held in a buffer until the second byte

110 PC interfacing and data acquisition

is received, at which point the complete control word is transferred
to the DAC’s signal-generating circuitry.

Most devices employ a network of resistors and electronic switches
connected to the input of an operational amplifier. The network is
arranged such that each switch and its associated resistors make a
binary-weighted contribution to the output of the amplifier. Each bit
of the digital input operates one of the switches and thereby controls
the input to, and output from, the amplifier. The operational ampli-
fier and resistor network function basically as a multiplier circuit. It
multiplies the digital input (expressed as a fraction of the full-scale
digital input) by a fixed reference voltage. The reference voltage
may be supplied by components external to the DAC. Most plug-in
DA&C cards for the PC include suitable precision voltage references.
Some also provide the facility for users to connect their own refer-
ence voltage and thereby to adjust the full-scale range of the DAC.
Further details of DAC operation may be found in the texts by
Tompkins and Webster (1988) and Vears (1990).

The output of a DAC can usually be updated quite rapidly. Each
bit transition gives rise to transient fluctuations which require a short
time to settle. The total settling time depends upon the number of
bits that change during the update and is greatest when all input bits
change (i.e. for a full-scale swing). The settling time may be defined
as the time required after a full-scale input step for the DAC’s output
to settle to within a negligibly small band about its final level. The
term ‘negligibly small’ has to be defined. Some DAC manufacturers
define it as ‘within š1

2
LSB’, while others define it as a percentage of

full scale, such as š0.001 per cent. Quoted settling times range from
about 0.1 to 150 μs, and sometimes up to about 1 ms, depending
upon the characteristics of the device and on how the settling time
is defined. Most DACs, however, have settling times of the order of
5–30 μs. In practice the overall settling time of an analogue output
channel may be affected by external power amplifiers and other
components connected to the DAC’s outputs. You are advised to
consult manufacturers’ literature for precise timing specifications.

Characteristics of DACs

Because of small mismatches in components (e.g. the resistor
network), it is not generally possible to fabricate DACs with the
ideal transfer characteristic illustrated in Figure 3.9. Most DACs
deviate slightly from the ideal, exhibiting several types of imperfec-
tion as shown in Figure 3.10. You should be aware of these potential
sources of error in DAC outputs, some of which can be corrected by
the use of appropriate software techniques.

Sensors and interfacing 111

000 001 010 011 100 101 110 111

1/8
Vmax

2/8
Vmax

3/8
Vmax

4/8
Vmax

5/8
Vmax

6/8
Vmax

7/8
Vmax

Vmax

Offset

voltage

Ideal

Gain error

0

Offset

error

Digital input code

A
n
a
lo

g
u
e
 o

u
tp

u
t

v
o
lt

a
g
e

(a)

A
n
a
lo

g
u
e
 o

u
tp

u
t

v
o
lt

a
g
e

0
000 001 010 011 100 101 110 111

Digital input code

Differential

non-linearity

Non-monotonic bit

2/8
Vmax

1/8
Vmax

3/8
Vmax

4/8
Vmax

5/8
Vmax

6/8
Vmax

7/8
Vmax

Vmax

(b)

Figure 3.10 Non-ideal DAC transfer characteristics: (a) gain and offset errors and

(b) non-linearity and non-monotonicity

112 PC interfacing and data acquisition

The transfer characteristic may be translated along the analogue-
output axis giving rise to a small offset voltage. Incorrect gains will
modify the slope of the transfer characteristic such that the desired
full-scale output is either obtained with a binary code lower than
the ideal full-scale code (all 1s), or never reached at all. Gain errors
equivalent to a few LSB are typical.

Linearity is a measure of how closely the output conforms to a
straight line drawn between the end points of the conversion range.
Linearity errors, which are due to small mismatches in the resistor
network, cause the output obtained with some binary codes to deviate
from the ideal straight-line characteristic. Most modern monolithic
DACs are linear to within š1 LSB or less. Differential non-linearity
is the maximum change in analogue output occurring between any
two adjacent input codes. It is defined in terms of the variation from
the ideal step size of 1 LSB. Differential non-linearities are usually of
the order of š1 LSB or less. If non-linearity is such that the output
from the DAC fails to increase over any single step in its input,
the DAC is said to be non-monotonic. Monotonicity of a DAC is
usually expressed as the number of bits over which monotonicity is
maintained. If a DAC has a non-linearity better than š 1

2
LSB, then it

must be monotonic (it cannot be non-monotonic, by definition).
Although one can often compensate for gain and offset errors

by manual trimming, it is not possible to correct non-linear or
non-monotonic DACs – these characteristics are intrinsic properties
of the device. Fortunately, most modern DAC designs yield quite
small non-linearities which can usually be ignored. If, however,
you are using a particularly non-linear device, you may wish to
consider employing one of the linearization techniques described in
Chapter 9.

Analogue-to-digital converters

An analogue-to-digital converter (ADC) is required to convert
analogue sensor signals into a binary form suitable for reading
into the PC. A wide variety of ADCs are available for this platform,
either on plug-in DA&C cards or within remote signal-conditioning
units or data loggers. This section introduces the basic concepts
involved in analogue-to-digital conversion and describes some of
the properties of ADCs which are relevant to the design of DA&C
software.

Resolution and quantization error

It should be apparent to the reader that, because of the discrete
nature of digital signals, some analogue information is lost in the

Sensors and interfacing 113

conversion process. A small but finite range of analogue input
values are capable of generating any one digital output code. This
range is known as the code width or, more properly, as a quantum
as it represents the smallest change in analogue input which can
be represented by the system. Its size corresponds to 1 LSB. The
uncertainty introduced as a result of rounding to the nearest binary
code is known as quantization error and has a magnitude equal to
š1

2
LSB. Obviously, the quantization error is less important relative

to the full-scale input range in ADCs that are capable of generating
a wider range of output codes (i.e. those with a greater number
of bits).

Some devices have a relatively low resolution of 8 bits or less,
while others, designed for more precise measurements, may have 12
or 16 bits. ADCs usually have full-scale input ranges of a few volts:
typically 0–10 V (unipolar) or š5 V (bipolar). The quantization
error is thus of the order of a few millivolts. Precise figures can easily
be calculated by applying Equation 3.5, knowing the device’s input
range and resolution, as shown in the following example.

Consider a 12-bit ADC system designed for monitoring the
displacement of some object using an LVDT over a range 0 to
50 mm. If the full analogue range is encompassed exactly by the
available digital codes, then we can calculate the magnitude of the
LSB from Equation 3.5:

υR D R

2n D 50

212
D 0.012 mm

In this example, the quantization error imposes an accuracy of
š1

2
υR D š0.006 mm. This presupposes that we use the whole range

of available ADC codes. The effective quantization error is clearly
worse if only part of the ADC’s digitizing range is used. The quantiza-
tion error indicates the degree of precision that can be attained in an
ideal device. It is not, however, representative of the overall accuracy
of most real ADCs. We will discuss other sources of inaccuracy later
in this chapter.

Quantization noise

For a data-acquisition system equipped with an n-bit ADC and
designed to measure signals over a range R, we have seen that the
quantization error is šQ, where Q D 1

2
υR. The difference between

an analogue value and its digitized representation appears as a
varying noise signal superimposed upon the true analogue signal.
The amplitude of the noise signal varies by an amount determined
by the magnitude of the quantization error and, if the signal to

114 PC interfacing and data acquisition

be digitized consists of a pure sine wave of amplitude š1
2
R, the

root-mean-square (rms) value of the noise component is given by:

Nrms D
1
2υR
p

3
⊲3.6⊳

which, when we substitute for υR, gives:

Nrms D
1
2
R

2n
p

3
⊲3.7⊳

The rms value of the signal itself is:

Srms D
1
2
R

p
2

⊲3.8⊳

so the ratio of the rms signal to rms noise values – the signal-to-noise
ratio, SNR – is given by

SNR D Srms

Nrms
D

√

3

2
2n ⊲3.9⊳

It is normal to express SNR in decibels (dB), where SNRdB D
20 log (SNR). This gives the approximate relationship:

SNRdB ³ 1.76 C 6.02n dB ⊲3.10⊳

This equation relates the number of bits to the dynamic range of the
ADC – i.e. the signal-to-noise ratio (SNR) inherent in digitization.
Conversely, in a real measuring system, where other sources of noise
are present, Equation 3.10 can be used to determine the number
of ADC bits that will encode signal changes above the ambient
noise level. The contribution made by the low order bits of an ADC
may be considerably less than the rms level of noise introduced
by other system components. For example, differential and integral
non-linearities inherent in the ADC, electronic pickup, sensor noise
and unwanted fluctuations in the measurand itself may also degrade
the SNR of the system as a whole. In many systems the SNR is limited
to around 75 to 85 dB by these factors. Where large noise amplitudes
are present, it is fruitless to employ a very high resolution ADC. It
may, in such cases, be possible to use an ADC with a lower resolution
(and hence lower SNRdB) without losing any useful information.
Chapter 4 presents some simple techniques for removing unwanted
noise from digitized signals.

Sensors and interfacing 115

Conversion time

Most types of ADC use a multiple-stage conversion process. Each
stage might involve incrementing a counter or comparing the
analogue signal to some digitally generated approximation. Conse-
quently, analogue-to-digital conversion does not occur instanta-
neously. Depending upon the method of conversion used, times
ranging from a few microseconds up to several seconds may be
required. Conversion times are generally quoted in manufacturer’s
data sheets as the time required to convert a full-scale input. Some
devices (such as binary counter type ADCs) are capable of converting
lower level signals in a shorter time. In general, low resolution
devices tend to be faster than high resolution ADCs. The fastest 16-
bit ADCs currently have conversion times of about 1 μs. As a rough
rule-of-thumb, the conversion time of the fastest devices currently
available tends to increase by roughly an order of magnitude for
every additional 2 bits resolution. The conversion times applicable
to the various types of ADC are described in the following section.

Types of ADC

There are several basic classes of ADC. The different conversion
techniques employed make each type particularly suited to certain
types of application. Some ADCs are implemented by using a combi-
nation of discrete components (counters, DACs etc.) in conjunction
with controlling software. This approach is particularly suited to
producing very high resolution converters. However, it tends to be
used less often in recent years as high resolution and reasonably
priced monolithic ADCs are now becoming increasingly available.
The various types of ADC are described below in approximate order
of speed: the slowest first.

Voltage-to-frequency conversion ADCs

This type of ADC employs a voltage-to-frequency converter (VFC)
to transform the input signal into a sequence of digital pulses. The
frequency of the pulse train is proportional to the input voltage. A
binary counter counts the pulses over a fixed time interval and the
total accumulated count provides the ADC’s digital output. The time
period over which the pulses are counted varies with the required
resolution and full-scale frequency of the VFC. Typical conversion
times range from about 50 ms up to several seconds.

Because the input voltage is effectively averaged over the conver-
sion period, VFC-based ADCs exhibit good noise immunity. However,
their slow response restricts them to low speed sampling applica-
tions. This type of ADC is inherently monotonic, but linearities

116 PC interfacing and data acquisition

and gain errors can be variable. Devices based on lower frequency
(10 kHz) VFCs tend to be more accurate than those employing high
speed VFCs.

VFCs are sometimes used to digitize analogue signals at remote
sensing locations. The advantage of this approach is that sensor
signals can be more easily transmitted in digital form over long
distances or through noisy environments. The digital pulse train is
received by the PC or data-logging unit and then processed using
a suitable counter. The resolution and speed of such a system can
easily be modified under software control by reprogramming the
counter and timer hardware accordingly.

Dual-slope (integrating) ADCs

Dual-slope ADCs each employ a binary counter in conjunction with
an integrating circuit that sums the input signal over a fixed time
period as shown in Figure 3.11. The rate of increase of the integral
during this time is proportional to the average input signal. When
the integration has been completed, a negative analogue reference
voltage is applied to the integrating circuit and the timer is started.
The combined integral of the two inputs then falls linearly. The time
taken for the integral to fall to zero is directly proportional to the
average input voltage. The binary output from the timer is then used
to provide the ADC’s digital output.

Because the input signal is integrated over time, this type of ADC
averages out signal variations due to noise and other sources. Typical

Integrated
signal

Mean input
voltage =V3

Integration time

Increasing mean
input voltage

Discharge ramps

Timet1 ∝ V1

t2 ∝ V2

t3 ∝ V3

=V2

=V1

Figure 3.11 Signal integration in a dual-slope ADC

Sensors and interfacing 117

integration times are usually of the order of a few milliseconds or
longer, limiting the sample rate to typically 5–50 Hz. Dual slope
ADCs are particularly suited to use in noisy environments and are
often capable of rejecting mains-induced noise. For this reason, they
are popular in low speed sampling applications such as temperature
measurement. Dual-slope ADCs are relatively inexpensive, offer good
accuracy and linearity, and can provide resolutions of typically 12 to
16 bits.

The related single-slope (or Wilkinson) technique involves
measuring the time required to discharge a capacitor which initially
holds a charge proportional to the input signal. In this case,
the capacitor may be a component of circuitry used for signal
conditioning or pulse shaping. This technique is sometimes used
in conjunction with nuclear radiation detectors for pulse-height
analysis in systems designed for X-ray or gamma-ray spectrometry.

Binary counter ADCs

This type of ADC also employs a binary counter, but in this case it
is connected to the input of a DAC. The counter is supplied with
a clock input of fixed frequency. As the counter is incremented
it causes the analogue output from the DAC to increase as shown
in Figure 3.12(a). This output is compared with the signal to be
digitized and, as soon as the DAC’s output reaches the level of the
input signal, the counter is stopped. The contents of the counter
then provide the ADC’s digital output. The accuracy of this type
of converter depends upon the precision of the DAC and the
constancy of the clock input. The binary counting technique provides
moderately good resolution and accuracy, although conversion times

Voltage Voltage

0

0 Time

0

0 Timet1

DAC outputDAC output ramp

Analogue
input
signal

Analogue
input
signal

(a) (b)

Figure 3.12 DAC output generated by (a) binary counter ADCs and (b) tracking

ADCs

118 PC interfacing and data acquisition

can be quite long, particularly for inputs close to the upper end of
the device’s measuring range. This limits throughput to less than a
few hundred samples per second.

The main disadvantage with this type of converter is that the
conversion time varies with the magnitude of the input signal. A
variant of the simple binary counter method, known as the tracking
converter, provides a solution to this problem and also allows higher
sampling rates to be used. The tracking converter continuously
follows the analogue input, ramping its DAC output up or down to
maintain a match between its digital output and the analogue input
as shown in Figure 3.12(b). The software may, at any time after t1,
stop the tracking (which temporarily freezes the digital output) and
then read the ADC. After an initial conversion has been performed,
subsequent conversions only require enough time to count up or
down to match any (small) change in the input signal. This method
operates at a somewhat faster (and less variable) speed than the
simple binary counter ADC.

Successive approximation ADCs

The successive approximation technique makes use of a DAC to
convert a series of digital approximations of the input signal into
analogue voltages. These are then compared with the input signal.
The approximations are applied in a binary-weighted sequence as
shown in Figure 3.13 which, for the sake of clarity, shows only a 4-bit
successive approximation sequence. Eight to 16 bits are more typical
of actual ADC implementations.

A reference voltage corresponding to the ADC’s MSB is generated
first. If this is less than the input signal, a 1 bit is stored in the MSB
position of an internal Successive Approximation Register (SAR),
otherwise a 0 is stored. Each subsequent approximation involves
generating a voltage equivalent to all of the bits in the SAR which
have so far been set to 1, plus the value of the next bit in the
sequence. Again, if the total voltage is less than the input signal,
a 1 value is stored in the appropriate bit position of the SAR. The
process repeats, for bits of lesser significance until the LSB has been
compared. The SAR will then contain a binary approximation of the
analogue input signal.

Because this process involves only a small number of iterations
(equal to the number of bits), successive approximation ADCs can
operate relatively quickly. Typical conversion times are of the order
of 5–30 μs. Successive approximation ADCs offer between 8- and
16-bit resolutions and exhibit a moderately high degree of linearity.
This type of ADC is widely used in PC interfacing applications
for data acquisition at rates up to 100 kHz. Many manufacturers

Sensors and interfacing 119

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Digital output

Time

SAR

MSB

1 1 0 0

Signal level

Figure 3.13 DAC output generated during successive approximation

provide inexpensive general-purpose DA&C cards based on succes-
sive approximation ADCs.

Unlike some other types of ADC, the process of successive approx-
imation does not involve an inherent averaging of the input signal.
The main characteristic of these devices is their high operating speed
rather than noise immunity. To fully utilize this high speed sampling
capability, the ADC’s input must remain constant during the conver-
sion. Many ADC cards employ on-board S/H circuits to freeze the
input until the conversion has been completed. Some monolithic
successive approximation ADCs include built-in S/H circuits for this
purpose. In these cases the total conversion time specified in manu-
facturer’s data sheets may include the acquisition time of the S/H
circuit.

Parallel (flash) ADCs

This is the fastest type of ADC and is normally used in only very high
speed applications, such as in video systems. It employs a network

120 PC interfacing and data acquisition

of resistors which generate a binary-weighted array of reference
voltages. One reference voltage is required for each bit in the ADC’s
digital output. A comparator is also assigned to each bit. Each
reference voltage is applied to the appropriate comparator, along
with a sample of the analogue input signal. If the signal is higher
than the comparator’s reference voltage, a logical 1 bit is generated,
otherwise the comparator outputs a logic 0.

In this way the signal level is simultaneously compared with each
of the reference voltages. This parallel digitization technique allows
conversions to be performed at extremely high speed. Conversion
times may be as low as a few ns, but more typically fall within the range
50–1000 ns. Parallel converters require multiple comparators and
this means that high resolution devices are difficult and expensive
to fabricate. Resolutions are consequently limited to 8 to 10 bits or
less. Greater resolutions can sometimes be achieved by cascading
two flash converters. Some pseudo-parallel converters, known as
subranging converters, employ a half flash technique in which the
signal is digitized in two stages (typically within about 1 μs). The first
stage digitizes the most significant bits in parallel. The second stage
digitizes the least significant bits.

Using ADCs

As well as their analogue input and digital output lines, most mono-
lithic ADCs have two additional digital connections. One of these, the
Start Conversion (also sometimes known as the SC or START) pin,
initiates the analogue-to-digital conversion process. Upon receiving
the SC signal, the ADC responds by deactivating its End of Conver-
sion (EOC) pin and then, when the conversion process has been
completed, it asserts EOC once more. The processor should sense
the EOC signal and then read the digitized data from the ADC’s
output register.

On plug-in DA&C cards, the SC and EOC pins are generally
mapped to separate bits within one of the PC’s I/O ports and can
thus be controlled and sensed using assembly language IN and OUT

instructions. The ADC’s output register is also normally mapped into
the PC’s I/O space. In contrast, stand-alone data-logging units and
other intelligent instruments may initiate and control analogue-to-
digital conversion according to preprogrammed sequences. In these
cases ADC control is reduced to simply issuing the appropriate high
level commands from the PC.

As an alternative to software initiation, some systems allow the
SC pin to be controlled by on-board components such as counters,
timers or logic level control lines. Some ADC cards include a provi-
sion for the EOC signal to drive one of the PC’s interrupt request

Sensors and interfacing 121

lines. Such systems allow the PC’s software to start the conversion
process and then to continue with other tasks rather than waiting for
the ADC to digitize its input. When the conversion is complete the
ADC asserts EOC, invoking a software interrupt routine which then
reads the digitized data.

Most ADC cards will incorporate I/O-mapped registers which
control not just the ADC’s SC line, but will also operate an on-board
multiplexer and S/H circuit (if present) as shown in Figure 3.14.
The details of the register mapping and control-line usage vary
between different systems, but most employ facilities similar to those
described above. Often the S/H circuit on the input to the ADC
is operated automatically when the SC line is asserted. It should
be noted, however, that simultaneous S/H circuits are generally
operated independently of the ADC via separate control lines. You
should consult your system’s technical documentation for precise
operational details.

ADC characteristics and errors

Figure 3.15 illustrates the characteristics of an ideal ADC. For the
sake of clarity, the output from a hypothetical 3-bit ADC is shown.
The voltage supplied to the ADC’s input is expressed as a fraction of
the full-scale input, FS.

Note that each digital code can represent a range of analogue
values known as the code width. The analogue value represented
by each binary code falls at the mid-point of the range of values
encompassed by that code. These mid-range points lie on a straight
line passing through the origin of the graph as indicated in the
figure. Consequently the origin lies at the mid-range point of the
lowest quantum. In this illustration, a change in input equivalent
to only 1

2
LSB will cause the ADC’s output to change from 000b to

001b. Because of the positions of the zero and full-scale points, only
2n � 1 (rather than 2n) changes in output code occur for a full-scale
input swing.

8-channel

multiplexer
Inst.

amp.

Sample

and

hold

ADC

SC EOCHold

Registers

and

control

logic

Buffers

and

interface

circuitry

PC bus

3 Channel

select

Conditioned

analogue

sensor

signals

Figure 3.14 A typical multiplexed ADC card

122 PC interfacing and data acquisition

0 1/8FS 1/4FS 3/8FS 1/2FS 5/8FS 3/4FS 7/8FS FS

001

010

011

100

101

110

111

000

D
ig

it
a
l
o

u
tp

u
t

c
o

d
e

Analogue input voltage

Figure 3.15 Transfer characteristic of an ideal ADC

Like DACs, analogue-to-digital converters exhibit several forms of
non-ideal behaviour. This often manifests itself as a gain error, offset
error or non-linearity. Offset and gain errors present in ADCs are
analogous to the corresponding errors already described for DACs.
These are illustrated in Figure 3.16 which, for the sake of clarity,
shows only the centre points of each code. ADC gain errors can be
caused by instabilities in the ADC’s analogue reference voltage or by
gain errors in their constituent DACs. Gain and offset errors in most
monolithic ADCs are very small and can often be ignored.

ADCs may have missing codes – i.e. they may be incapable of
generating some codes between the end points of their measuring
range. This occurs if the DAC used within the ADC is non-monotonic.
Non-linearity (sometimes referred to as integral non-linearity) is a
measure of the maximum deviation of the actual transfer charac-
teristic from the ideal response curve. Non-linearities are usually
quoted as a fraction of the LSB. If an ADC has a non-linearity of less
than 1

2
LSB then there is no possibility that it will have missing codes.

Differential non-linearity is the maximum difference between the
input values required to produce any two consecutive changes in the

Sensors and interfacing 123

111

110

101
Offset
error

100

011

010

001

000

Analogue input voltage

D
ig

it
a
l
o
u
tp

u
t

c
o
d
e

Integral
non-linearity

Gain
error

0 1/8FS 1/4FS 3/8FS 1/2FS 5/8FS 3/4FS 7/8FS FS

Figure 3.16 Errors in ADC transfer characteristics

digital output – i.e. the maximum deviation of the code width from
its ideal value of 1 LSB. Non-linearities often occur when several bits
all change together (e.g. as in the transition from 255 to 256) and
because of this they tend to follow a repeated pattern throughout
the converter’s range.

The overall accuracy of an ADC will be determined by the sum
total of the deviations from the ideal characteristic introduced by
gain errors, offset errors, non-linearities and missing codes. These
errors are generally temperature dependent. Gain and offset errors
can sometimes be trimmed or removed, but non-linearities and
missing codes cannot be easily compensated for. Accuracy figures
are often quoted in ADC data sheets. They are usually expressed as
a percentage of full-scale input range or in terms of the analogue
equivalent of the LSB step size. Typical accuracy figures for 12-
bit monolithic ADCs are generally of the order of š1

2
to š1 LSB.

However, these figures may be significantly worse (perhaps 4 to 8 LSB
in some cases) at the extremes of the ADC’s working temperature
range. You are advised to study carefully manufacturers’ literature

124 PC interfacing and data acquisition

in order to determine the operational characteristics of the ADC in
your own system.

3.6 Analogue measurements

In this section we will discuss three topics of particular importance in
the design of analogue measuring systems: accuracy, amplification
and throughput.

Accuracy

The accuracy of the whole measuring system will be determined,
not just by the precision of the ADC, but also by the accuracy and
linearity of the sensor and signal-conditioning circuits used. Random
or periodic noise will also affect the measurement accuracy, intro-
ducing either statistically random or systematic uncertainties. The
inaccuracies inherent in each component of the system (e.g. sensor
instabilities, amplifier gain errors, S/H accuracy, ADC quantization
error and linearity) should be carefully assessed and summed with
the expected (or measured) noise levels in order to arrive at the total
potential error. A simple arithmetic sum will provide an estimate of
the maximum possible error. However, in some measurements, the
errors might be combined such that they oppose each other and
tend to cancel out. A figure more representative of the average
error which is likely to occur – i.e. the statistical root-sum-square
(rss) error – can be obtained by adding the individual errors in
quadrature, as follows:

ε D
kDj
∑

kD0

υ2
k ⊲3.11⊳

Here, ε is the rss error (equivalent to the standard deviation of many
readings of a fixed input), j is the number of sources of error and
υk is the kth source of error expressed either in terms of the units
of the measurand or as a fraction of the full-scale measurement
range. To simplify the calculation υk contributions of less than about
one-quarter of the maximum υk can usually be ignored without
significantly affecting the result. Typical errors introduced by S/H,
multiplexer and amplifiers (assuming that they are allowed to settle
adequately) are often of the order of š0.01 per cent of full scale,
or less. This may be a significant source of error, particularly in
high resolution systems (i.e. those using ADCs of greater than 10 bits
resolution).

Sensors and interfacing 125

Amplification and extending dynamic range

The conversion accuracy of an ADC is ultimately limited by the
device’s resolution. Unless the range of signal levels generated
by the signal-conditioning circuitry is accurately matched to the
ADC’s full-scale range (typically up to 5 or 10 V), a proportion of
the available conversion codes will be unused. In order to take
full advantage of the available resolution it is necessary to scale
the signal by means of suitable amplifying components. This can
easily be accommodated using fixed gain operational amplifiers or
instrumentation amplifiers. Many proprietary PC data-acquisition
cards incorporate amplifiers of this kind. The gain can generally be
selected by means of jumpers or DIP switches when the device is
installed in the PC. This approach is ideal if the system is intended to
measure some signal over a fixed range to a predetermined degree
of accuracy.

However, many sensors have wide dynamic ranges. LVDT displace-
ment sensors, for example, have a theoretically infinite resolution.
With suitable signal conditioning they can be used to measure
displacements either over their full-scale range or just over a very
small proportion of their range. To measure displacements to the
same fractional accuracy over full or partial ranges, it is neces-
sary to dynamically vary the gain of the signal-conditioning circuit.
This is generally accomplished by means of Programmable-Gain
Amplifiers (PGAs).

The gain of a PGA can be selected, from a set of fixed values, under
software control. In the case of plug-in ADC cards, gain selection
is usually effected by writing a suitable bit pattern via an I/O port
to one of the card’s control registers. It is possible to maximize the
dynamic range of the system by selecting an appropriate PGA gain
setting.

The software must, of course, compensate for changes in gain by
scaling the digitized readings appropriately. Binary gain ranges (e.g.
1ð, 2ð, 4ð, 8ð etc.) are the simplest to accommodate in the software
since, to reflect the gain range used, the digitized values obtained
with the lowest gains can be simply shifted left (i.e. multiplied)
within the processor’s registers by an appropriate number of bits.
If systems with other gain ranges are used it becomes necessary to
employ floating-point arithmetic to adjust the scaling factors.

Amplifiers may produce a non-zero voltage (known as an offset
voltage) when a zero-volt input is applied. This can be cancelled by
using appropriate trimming components. However, these compo-
nents can be the source of additional errors and instabilities (such
as temperature-dependent drifts) and, because of this, a higher

126 PC interfacing and data acquisition

degree of stability can sometimes be obtained by cancelling the
offset purely in software. Offsets can also arise from a variety of
other sources within the sensor and signal-conditioning circuits. It
can be very convenient to compensate for all of these sources in one
operation by configuring the software to measure the total offset
and to subtract it from each subsequent reading. If you adopt this
approach, you should bear in mind that the input to a PGA from
previous amplification stages or signal-conditioning components still
possesses a non-zero offset. Changing the gain of the PGA can also
affect the magnitude of offset presented to the ADC. It is, therefore,
prudent for the software to rezero such systems whenever the PGA’s
gain is changed.

One of the most useful capabilities offered by PGAs is autoranging.
This permits the optimum gain range to be selected even if the
present signal level is unknown. An initial measurement of the signal
is obtained using the lowest (e.g. 1ð) gain range. The gain required
to give the optimum resolution is then calculated by dividing the
ADC’s resolution (e.g. 4096 in the case of a 12-bit converter) by the
initial reading. The gain range less than or equal to the optimum
gain is then selected for the final reading. This technique obviously
reduces throughput as it involves twice as many analogue-to-digital
conversions and repeated gain changes.

Throughput

The throughput of an analogue measuring system is the rate at
which the software can sample analogue input channels and process
the acquired data. It is more conveniently expressed as the number
of channels read per second. The distinction between this and the
rate at which multiplexed groups of sensor channels can be scanned
should be obvious to the reader. A system scanning a group of eight
sensor channels 50 times per second will have a throughput figure
of 400 channels per second.

A number of factors affect throughput. One of the most important
of these is the ADC’s conversion time, although it is by no means
the only consideration. The acquisition time of the S/H circuit, the
settling times of the multiplexer, S/H, PGA and other components,
the bandwidth of filters, and the time constant of the sensor may all
have to be taken into account. Each component must be fast enough
to support the required throughput.

When scanning multiple channels, throughput can sometimes be
maximized by changing the multiplexer channel as soon as the S/H
circuit is switched into hold mode. This allows analogue-to-digital
conversion to proceed while the multiplexer’s output settles to the

Sensors and interfacing 127

level of the next input channel. This technique, known as overlap
multiplexing, requires well-designed DA&C hardware to avoid feed-
through between the two channels. Compare this with the usual
(slower) technique of serial multiplexing, where each channel is
selected, sampled and digitized in sequence.

Throughput is, of course, also limited by the software used. Unless
special software and hardware techniques, such as Direct Memory
Access (DMA), are employed, each read operation will involve the
processor executing a sequence of IN and OUT instructions. These
are needed in order to operate the multiplexer (and possibly S/H),
to initiate the conversion, check for the EOC signal, read one or
two bytes of data and then to store that data in memory. The
time required will vary between different types of PC, but on a
moderately powered system, these operations will generally intro-
duce delays of several tens of microseconds per channel. Provided
that no other software processing is required, a fast (e.g. successive
approximation) ADC is used, and that the bandwidth of the signal-
conditioning circuitry does not limit throughput, a well-designed
80486-based data-acquisition system might be capable of reading
several thousand channels per second. Systems optimized for high
speed sampling of single channels can achieve throughput rates in
excess of 10 000–20 000 samples per second.

Most systems, however, require a degree of additional real-time
processing. The overheads involved in scaling or linearizing the
acquired data or in executing control algorithms will generally
reduce the maximum attainable throughput by an order of magni-
tude or more. Certain operations, such as updating graphical displays
or writing data to disk can take a long (and possibly indeterminate)
time. The time needed to update a screen display, for example,
ranges from a few milliseconds up to several hundred milliseconds
(or even several seconds), depending upon the complexity of the
output. Speed can sometimes be improved by coding the time-critical
routines in assembly language rather than in C, Pascal or other high
level languages.

In assessing the speed limitations which are likely to be imposed
by software, it is wise to perform thorough timing tests on each
routine that you intend to use during the data-acquisition period.
In many cases, raw data can be temporarily buffered in memory
for subsequent processing during a less time-critical portion of
the program. By carrying out a detailed assessment of the timing
penalties associated with each software operation you should be able
to achieve an optimum distribution of functionality between the
real-time and post-acquisition portions of the program.

128 PC interfacing and data acquisition

3.7 Timers and pacing

Most real-time applications require sensor readings to be taken
at precise times in the data-acquisition cycle. In some cases, the
time at which an event occurs, or the time between successive
events, can be of greater importance than the attributes of the
event itself. The ability to pace a data-acquisition sequence is clearly
important for accurately maintaining sampling rates and for correct
operation of digital filters, PID algorithms and time-dependent
(e.g. chart recorder) displays. A precise timebase is also necessary
for measurement of frequency, for differentiating and integrating
sensor inputs, and for driving stepper motors and other external
equipment.

Timing tasks can be carried out by using counters on an adaptor
card inserted into one of the PC’s expansion slots. Indeed many
analogue I/O cards have dedicated timing and counting circuitry,
which can be used to trigger samples, to interrupt the PC, to control
the acquisition of a preprogrammed number of readings or to
generate waveforms.

Another approach to measuring elapsed time is to use the timing
facilities provided by the PC. This is a relatively easy task when
programming in a real-mode environment (e.g. DOS). It becomes
more complex, however, under multitasking operating systems such
as Windows NT or OS/2, where one has limited access to, and less
control over, the PC’s timing hardware. The PC is equipped with a
programmable system clock based on the Intel 8254 timer counter,
as well as a Motorola MC146818A Real Time Clock (RTC) IC. These,
together with a number of BIOS services provide real-mode programs
with a wealth of timing and calendrical features.

Whatever timing technique is adopted, it is important to consider
the granularity of the timing hardware – i.e. the smallest increment
in time that it can measure. This should be apparent from the
specification of the timing device used. The PC’s system timer
normally has a granularity of about 55 ms and so (unless it is
reprogrammed accordingly) it is not suitable for measuring very
short time intervals. The RTC provides a periodic timing signal with
a finer granularity: approximately 976 μs. There are various software
techniques that can yield granularities down to less than 1 μs using
the PC’s hardware, although such precise timing is limited in practice
by variations in execution time of the code used to read the timer.
The texts by van Gilluwe (1994) and Sanchez and Canton (1994)
provide useful information for those readers wishing to exploit the
timing capabilities of the PC.

Sensors and interfacing 129

When devising and using any timing system that interacts with
data-acquisition software (as opposed to a hardware-only system),
it must be borne in mind that the accuracy of time measurements
will be determined, to a great extent, by how the timing code
is implemented. As in many other situations, assembly language
provides greater potential for precision than a high level language.
A compiled language such as C or Pascal is often adequate for
situations where timing accuracies of the order of 1 ms are required.

Most programming languages and development environments
include a variety of time-related library functions. For example,
National Instruments’ LabWindows/CVI (an environment and
library designed for creating data-acquisition programs) when
running on Windows NT supplies the application program with a
timing signal every 1 ms or 10 ms (depending upon configuration).
A range of elapsed-time, time-delay, and time-of-day functions is also
provided.

Watchdog timers

In many data-acquisition applications the PC must communicate
with some external entity such as an intelligent data-logging module
or a programmable logic controller. In these cases it can be useful
for both components of the system to be ‘aware’ of whether the
other is functioning correctly. There are a number of ways in which
the state of one subsystem can be determined by another. A program
running on a PC can close a normally open contact to indicate
that it has booted successfully and is currently monitoring some
process or other. If the PC and relay subsequently lose power, the
contact will open and alert external equipment or the operator to
the situation. However, suppose that power to the PC remained
uninterrupted, but the software failed due to a coding error or
memory corruption. The contact would remain closed even though
the PC was no longer functional. The system could not then make any
attempt to automatically recover from the situation. Problems like
this are potentially expensive, especially in long-term data-logging
applications where the computer may be left unattended and any
system crash could result in the loss of many days’ worth of data.

A watchdog timer can help to overcome these problems. This is a
simple analogue or digital device which is used to monitor the state
of one of the component parts of a data-acquisition or computer
system. The subsystem being monitored is required to refresh the
watchdog timer periodically. This is usually done by regularly pulsing
or changing the state of a digital input to the watchdog timer. In
some implementations the watchdog generates a periodic timing

130 PC interfacing and data acquisition

signal and the subsystem being monitored must then refresh the
watchdog within a predetermined interval after receipt of this signal.
If the watchdog is not refreshed within a specified time period it
will generate a time-out signal. This signal can be used to reset
the subsystem or it can be used for communicating the timeout
condition to other subsystems.

The IBM PS/2 range of computers is equipped with a watchdog
timer which monitors the computer’s system timer interrupt (IRQ0).
If the software fails to service the interrupt, the watchdog generates
an NMI (see Chapter 5).

It is worth mentioning at this point that you should avoid placing
watchdog-refresh routines within a hardware-generated periodic
interrupt handler (e.g. the system timer interrupt). In the event
of a software failure, it is possible that the interrupt will continue to
be generated at the normal rate!

It is sometimes necessary to interface a watchdog timer to a PC-
based data-acquisition system in order to detect program crashes
or loss of power to the PC. The timeout signal might be fed to
a programmable logic controller, for example, to notify it (or the
operator) of the error condition. It is also possible to reboot the
PC by connecting the timeout signal to the reset switch (present
on most PC-compatible machines) via a suitable relay and/or logic
circuits. Occasionally, software crashes can (depending upon the
operating system) leave the PC’s support circuits in such a state of
disarray that even a hardware reset cannot reboot the computer. The
only solution in this case is to temporarily turn off the computer’s
power. Although rebooting via the reset switch might be possible,
the process can take up to two or three minutes on some PCs. It
is not always easy for the software to completely recover from this
type of failure, especially if the program crash or loss of power
occurred at some critical time such as during a disk-write operation.
It is preferable for the software to attempt to return to a default
operating mode and not to rely on any settings or other information
recorded on disk. The extent to which this is feasible will depend
upon the nature and complexity of the application.

4 Sampling, noise and filtering

Virtually all data-acquisition and control systems are required to
sample analogue waveforms. The timing of these samples is often
critical and has a direct bearing on the system’s ability to accurately
reconstruct and process analogue signals. This chapter introduces
elements of sampling theory and discusses how measurement ac-
curacy is related to signal frequency and to the temporal precision
of the sampling hardware. The associated topic of digital filtering is
also discussed.

4.1 Sampling and aliasing

Analogue signals from sensors or transducers are continuous func-
tions, possessing definite values at every instant of time. We have
already seen that the PC can read only digitized representations of
a signal and that the digitization process takes a finite time. Implicit
in our discussion has been the fact that the measuring system is able
to obtain only discrete samples of the continuous signal. It remains
unaware of the variation of the signal between samples.

The importance of sampling rate

We can consider each sample to be a digital representation of the
signal at some fixed point in time. In fact, the readings are not truly
instantaneous but, if suitable sample-and-hold circuits are used, each
reading is normally representative of a very well-defined instant in
time (typically accurate to a few nanoseconds).

In general, the sampling process must be undertaken in such a way
as to minimize the loss of time-varying information. It is important
to take samples at a sufficiently high rate in order to be able to
accurately reconstruct and process the signal. It should be obvious
that a system which employs too low a sampling rate will be incapable

132 PC interfacing and data acquisition

Signal

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Time

Original
signal

Reconstructed
waveform

Figure 4.1 Degradation of a reconstructed signal as the sampling rate is reduced

of responding to rapid changes in the measurand. Such a situation
is illustrated in Figure 4.1. At low sampling rates, the signal is poorly
reconstructed. High frequency components such as those predomin-
ating between sample times t4 and t6 are most badly represented by
the sampled points. This can have serious consequences, particularly
in systems that have to control some process. The inability to respond
to transient disturbances in the measurand may compromise the
system’s ability to maintain the process within required tolerances.

Clearly, the relationship between the sampling rate and the
maximum frequency component of the signal is of prime import-
ance. There are normally a number of practical limitations on the
maximum sampling frequency that can be achieved: for example,
the ADC conversion speed, the execution time of interface software
and the time required for processing the acquired data. The total
storage space available may also impose a limit on the number of
samples that can be obtained within a specified period.

Nyquist’s sampling theorem

We need to understand clearly how the accuracy of the sampled data
depends upon the sampling frequency, and what effects will result
from sampling at too low a rate. To quantify this we will examine the
Fourier transforms (i.e. the frequency spectra) of the signal and the
sampled waveform.

Typical waveforms from sensors or transducers consist of a range
of different frequency components as illustrated in Figure 4.2(a)
and (b). If a waveform such as this is sampled at a frequency �, where
� D 1/t and t represents the time interval between samples, we obtain
the sampled waveform shown in Figure 4.2(c). In the time domain,

Time

A
m

p
lit

u
d

e

(a) Signal waveform

0 Frequency

(b) Signal spectrum

(c) Sampled waveform

Time

A
m

p
lit

u
d

e

(d) Sampled spectrum

−2ν −ν 0 ν 2ν
Frequency

Figure 4.2 Representation of a sampled waveform in the time and frequency domains

134 PC interfacing and data acquisition

the sampled waveform consists of a series of impulses (one for each
sample) modulated by the actual signal. In the frequency domain
(Figure 4.2(d)) the effect of sampling is to cause the spectrum of the
signal to be reproduced at a series of frequencies centred at integer
multiples of the sampling frequency.

The original frequency spectrum can be easily reconstructed in
the example shown in Figure 4.2. It should, however, be clear that
as the maximum signal frequency, fmax, increases, the individual
spectra will widen and begin to overlap. Under these conditions,
it becomes impossible to separate the contributions from the indi-
vidual portions of the spectra, and the original signal cannot then
be accurately reproduced. Overlapping occurs when fmax reaches
half the sampling frequency. Thus, for accurate reproduction of a
continuous signal containing frequencies up to fmax, the sampling
rate, �, must be greater than or equal to 2fmax. This condition is
known as Nyquist’s sampling theorem and applies to sampling at a
constant frequency. Obviously, sampling using unequal time inter-
vals complicates the detail of the discussion, but the same general
principles apply.

Aliasing

Figure 4.2(d) shows that if any component of the signal exceeds 1
2
�,

the effect of sampling will be to reproduce those signal components
at a lower frequency. This phenomenon, known as aliasing, may
be visualized by considering an extreme case where a signal of
frequency fsig is sampled at a rate equal to fsig (i.e. � D fsig).
Clearly, each sample will be obtained at the same point within each
signal cycle and, consequently, the sampled waveform will have a
frequency of zero as illustrated in Figure 4.3(a). Consider next the
case where fsig is only very slightly greater than �. Each successive
sample will advance by a small amount along the signal cycle as
shown in Figure 4.3(b). The resulting train of samples will appear
to vary with a new (lower) frequency: one which did not exist in the
original waveform! These so-called alias, or beat, frequencies can
cause severe problems in systems which perform any type of signal
reconstruction or processing – i.e. virtually all DA&C applications.

As a digression, it is interesting to note that some systems
(although not usually PC-based DA&C systems) exploit the aliasing
phenomenon in order to extract information from high frequency
signals. This technique is used in dynamic testing of ADCs and in
various types of instrumentation.

In normal sampling applications, however, aliasing is not desirable.
It can be avoided by ensuring, first, that the signal is band limited

Sampling, noise and filtering 135

ν = fsig Signal

Time

Reconstructed waveform

(a)

ν < fsig~
Signal

Reconstructed waveform

Time

(b)

Figure 4.3 Generation of alias frequencies

(i.e. has a well-defined maximum frequency, fmax) and, second, that
the sampling rate, �, is at least twice fmax. It is usual to employ an
analogue anti-aliasing low-pass filter in order to truncate the signal
spectrum to the desired value of fmax prior to sampling. This results
in the loss of some information from the signal, but by judicious
selection of the filter characteristics it is usually possible to ensure
that this does not have a significant effect on the performance of
the system as a whole. Anti-aliasing filters are often an integral part
of signal-conditioning units. Strain-gauge-bridge signal conditioners,
for example, may incorporate filters with a bandwidth of typically
100 to 200 Hz.

It should be borne in mind that no filter possesses an ideal response
(i.e. 100 per cent attenuation above the cut-off frequency, f0, and
0 per cent attenuation at lower frequencies), although good anti-
aliasing filters often possess a steep cut-off rate. Because real filters
exhibit a gradual drop in response, it is usually necessary to ensure
that � is somewhat greater than 2f0. The sampling rate used will
depend upon the form of the signal and upon the degree of precision
required. The following figures are provided as a rough guide. Simple
one- or two-pole passive anti-aliasing filters may necessitate sampling
rates of 5f0 to 10f0. The steeper cut-off rate attainable with active
anti-aliasing filters normally allows sampling at around 3f0.

136 PC interfacing and data acquisition

Sampling accuracy

Nyquist’s sampling theorem imposes an upper limit on the signal
frequencies that can be sampled. However, a number of practical
constraints must also be borne in mind. In many applications, the
speed of the software (cycling time, interrupt latencies, transfer
rate etc.) restricts the sampling rate and hence fmax. Some systems
perform high speed data capture completely in hardware, thereby
circumventing some of the software speed limitations. In these cases,
periodic sampling is usually triggered by an external clock signal and
the acquired data is channelled directly to a hardware buffer.

The performance of the hardware itself also has a bearing on
the maximum frequency that can be sampled with a given degree
of accuracy. There is an inherent timing error associated with the
sampling and digitization process. This inaccuracy may be a result
of the ADC’s conversion time or, if a sample-and-hold (S/H) circuit
is employed, it may be caused by the circuit’s finite aperture time
or aperture jitter (see Chapter 3). The amount by which the signal
might vary in this time limits the accuracy of the sample and is known
as the aperture error.

Consider a time-varying measurand, R. For a given timing uncer-
tainty, υt, the accuracy with which the measurand can be sampled
will depend upon the maximum rate of change of the signal. To
achieve a given measurement accuracy we must place an upper limit
on the signal frequency which the system will be able to sample.

We can express a single frequency (f) component as

R D R0 sin⊲2�ft⊳ ⊲4.1⊳

The aperture error, A, is defined as

A D dR

dt
υt ⊲4.2⊳

and our sampling requirement is that the aperture error must always
be less than some maximum permissible change, υRmax, in R, i.e.

dR

dt
� υRmax

υt
⊲4.3⊳

We must decide on a suitable value for υRmax. It is usually convenient
to employ the criterion: υRmax D 1 LSB (i.e. that A must not exceed
1 LSB). It might be more appropriate in some applications to use
different values, however. Applying this criterion, and assuming that
the full ADC conversion range exactly encompasses the entire signal

Sampling, noise and filtering 137

range (i.e. 2R0), Equation 4.3 becomes

dR

dt
� 2R0

2nυt
⊲4.4⊳

Here, n represents the ADC resolution (number of bits). Differ-
entiating Equation 4.1, we see that the maximum rate of change
R is given by 2�fR0. Substituting this into Equation 4.4, we obtain
the maximum frequency, fA, that can be sampled with the desired
degree of accuracy.

fA D 1

�2nυt
⊲4.5⊳

Let us consider a moderately fast, 12-bit ADC with a conversion time
of 10 μs. Such a device should be able to accommodate sampling
rates approaching 100 kHz. Applying the Nyquist criterion gives
a maximum signal frequency of half this (i.e. 50 kHz). However,
this criterion only guarantees that, given sufficiently accurate measuring
equipment, it will be possible to detect this maximum signal frequency.
It takes no account of the sampling precision of real ADCs. To
assess the effect of finite sampling times we must use Equation 4.5.
Substituting the 10 μs conversion time for υt shows that we would
be able to sample signal components up to only 7.7 Hz with the
desired 1 LSB accuracy! This illustrates the importance of the greater
temporal precision achievable with S/H circuits. If we were to employ
an S/H circuit, υt could be reduced to the S/H’s aperture jitter time.
Substituting a typical value of 2 ns for υt shows that, with the benefit
of an S/H circuit, the maximum frequency that could be sampled to
a 1 LSB accuracy increases to around 39 kHz.

It is often more useful to calculate the actual aperture error
resulting from a particular combination of aperture time and signal
frequency. Equation 4.2 defines the aperture error. This has its
maximum value when R is subject to its maximum rate of change.
We have already seen that this occurs when R is zero and that the
maximum rate of change of R is 2�fR0. The maximum possible
aperture error, Amax, is therefore:

Amax D 2�fυtR0 ⊲4.6⊳

Figure 4.4 depicts values of the ratio Amax/2R0 as a function of
aperture time and signal frequency.

Reconstruction of sampled signals

The accuracy with which a signal can be sampled is by no means
the only consideration. The ability of the DA&C system to precisely

138 PC interfacing and data acquisition

100.0

10.0

1.0

0.1

0.01

0.001

Fractional error
(Amax/2R0)

%

1 10 100 1000 10 000 100 000

Signal frequency (Hz)

δt =1 ms δt =100 μs δt =10 μs δt =1 μs δt =100 ns

δt =10 ns

Figure 4.4 Fractional aperture error as a function of aperture time and signal

frequency

reconstruct the signal (either physically via a DAC or mathematically
inside the PC) is often of equal importance. The accuracy with which
the sampled signal can be reconstructed depends upon the recon-
struction method adopted – i.e. upon the physical or mathematical
technique used to interpolate between sampled points.

A linear interpolation (known as first order reconstruction)
approximates the signal by a series of straight lines joining each
successive sampled data point (see Figure 4.5). This gives a wave-
form with the correct fundamental frequency together with many
additional higher frequency components.

Alternatively, we may interpolate by holding the signal at a fixed
value between consecutive points. This is known as zero order
reconstruction and is, in effect, the method employed when samples
are passed directly to a DAC. In this case, the resulting reconstructed
signal will contain a number of harmonics at � š f, 2� š f, 3� š f
etc. An electronic low-pass filter would be required at the DAC’s
output in order to remove the harmonics and thereby smoothly
interpolate between samples. Note that these harmonics are artefacts
of the reconstruction process, not of the sampling process per se.

The accuracy of the reconstruction will, of course, depend upon
the ratio of the signal and sampling frequencies (�/f). There is
clearly an error associated with each reconstructed point. Ignoring
any errors introduced by the sampling mechanism, the reconstruc-
tion error will simply be the difference between the reconstructed
value and the actual signal value at any chosen instant. In those parts

Sampling, noise and filtering 139

(a)

Time

Signal

Signal

Time

(b)

Figure 4.5 Reconstruction of sampled signals: (a) zero order and (b) first order

interpolation

of Figure 4.5 where high frequency signal components predominate
(i.e. where the signal is changing most rapidly), there is a potential
for a large difference between the original and reconstructed wave-
forms. The reconstructed waveform will model the original sampled
waveform more accurately if there are many samples per signal cycle.

The values of the average and maximum errors associated with the
reconstruction are generally of interest to DA&C system designers. It
is a trivial matter to derive an analytical equation for the maximum
error associated with a zero order reconstruction, but the calculations
necessary to determine the average errors can be somewhat more

140 PC interfacing and data acquisition

Table 4.1 Coefficients of Equation 4.7

Order Desired calculation p q

Zero Maximum error 3.1 �1

Zero Average error 2.0 �1

First Maximum error 4.7 �2

First Average error 2.0 �2

involved. For this reason we will simply quote an empirical relation.
The following formula can be used to estimate the magnitudes of the
maximum and the average fractional errors (Er) involved in both
zero and first order reconstruction.

Er ³ p

(

�

f

q

ð 100% ⊲4.7⊳

The coefficients of the equation, p and q, depend upon the order of
reconstruction and whether the average or maximum reconstruction
error is being calculated. These coefficients are listed in Table 4.1.
Do bear in mind that Equation 4.7 is not a precise analytical formula.
It should only be used as a rough guide for values of �/f greater
than about 10.

Note that the sampling rate required to achieve a desired degree
of accuracy with zero order reconstruction may be several orders of
magnitude greater than that necessary with first order interpolation.
For this reason, first order techniques are to be preferred in general.
Appropriate filtering should also be applied to DAC outputs to
minimize zero order reconstruction errors.

In summary, the accuracy of the sampled waveform and the pres-
ence of any sampling artefacts will depend upon how the sampled
data is processed. Also, the extent to which any such artefacts are
acceptable will vary between different applications. All of these points
will have a direct bearing on the sampling rate used and must be
considered when designing a DA&C system.

Selecting the optimum sampling rate

In designing a DA&C system, we must assess the effect of ADC
resolution, conversion time and S/H aperture jitter, as well as the
selected sampling rate on the system’s ability to achieve some desired
level of precision. For the purposes of the present discussion, we
will ignore any inaccuracies in the sensor and signal-conditioning
circuits, but we must bear in mind that, in reality, they may affect

Sampling, noise and filtering 141

the accuracy of the system as a whole. We will concentrate here
upon sampling rate and its relationship to frequency content and
filtering of the signal. In this context, the following list outlines
the steps required to ensure that a DA&C system meets specified
sampling-precision criteria.

1. First, assess the static precision of the ADC (i.e. its linearity,
resolution etc.) using Equations 3.5 and 3.10 to ensure that it
is capable of providing the required degree of precision when
digitizing an unchanging signal.

2. Assess the effect of sampling rate on the accuracy of signal
reconstruction using Equation 4.7. By this means, determine the
minimum practicable sampling rate, �, needed to reproduce
the highest frequency component in the signal with the required
degree of accuracy. Also bear in mind Nyquist’s sampling theorem
and the need to avoid aliasing. From �, you should be able to
define upper limits for the ADC conversion time and software
cycle times (interrupt rates or loop-repeat rates etc.). Ensure
that the combination of software routines and DA&C/computer
hardware are actually capable of achieving this sampling rate.
Also ensure that appropriate anti-aliasing filters are employed to
remove potentially troublesome high frequencies.

3. Given the sample rate, the degree of sampling accuracy required
and the ADC resolution, n, use Equations 4.3 to 4.5 to define an
upper limit on υt and thereby ensure that the digitization and
S/H components are capable of providing the necessary degree
of sampling precision.

4.2 Noise and filtering

Noise can be problematic in analogue measuring systems. It may be
defined as any unwanted signal component that tends to obscure the
information of interest. There are a variety of possible noise sources,
such as electronic noise or electromagnetic interference from mains
or high frequency digital circuits. These sources tend to be most
troublesome with low level signals such as those generated by strain
gauges and thermocouples. Additionally, noise may also arise from
real variations in some physical variable – e.g. unwanted vibrations
in a displacement measuring system or temperature fluctuations
due to convection and turbulence in a furnace. As we have seen in
Chapter 3, the approximations involved in the digitization process
are also a source of noise. The presence of noise can be very prob-
lematic in some applications. It can make displays appear unsteady,

142 PC interfacing and data acquisition

obscure underlying signal trends, erroneously trigger comparators
and seriously disrupt control systems.

It is always good practice to attempt to exclude noise at its source
rather than having to remove it at a later stage. Steps can often
be taken, particularly with cables and shielding, to minimize noise
amplitudes. This topic is discussed briefly in Chapter 3 and further
guidance may be found in the text by Tompkins and Webster (1988)
or in various manufacturers’ application notes and data books, such
as Burr Brown’s PCI Handbook (1988). However, even in the best
designed systems, a certain degree of noise pickup is often inevitable.
If residual noise amplitudes are likely to have a significant effect on
the accuracy of the system, the signal-to-noise ratio must be improved
before the underlying signal can be adequately processed. This can
be accomplished by using simple passive or active analogue filter
circuits. Filtering can also be performed digitally by using suitable
software routines.

Software techniques have a number of advantages over hardware
filters. Foremost amongst these is flexibility. It is very simple to
adjust the characteristics of a digital filter by modifying one or
two parameters of the filtering algorithm. Another benefit is that
digital filters are more stable and do not exhibit any dependence on
environmental factors such as temperature. They are also particularly
suited to use at very low frequencies, where hardware filters may be
impracticable due to their size, weight or cost. In addition, they are
the only way of removing noise introduced by the ADC circuitry
during digitization.

Filtering of acquired data can be performed after the data-
acquisition cycle has been completed. In some ways this approach is
the simplest, as the complete data set is available and the filtering
algorithm can be easily adjusted to optimize noise suppression. There
are many techniques for post-acquisition filtering and smoothing of
data. Most are based on Fourier methods and are somewhat math-
ematical. They are classed as data-analysis techniques and, as such,
fall beyond the scope of this book. Press et al. (1992) describe a
number of post-acquisition filtering and smoothing techniques in
some detail.

Post-acquisition filtering is of little use if we need to base real-
time decisions or control signals on a filtered, noise-free signal.
In this case we must employ real-time filtering algorithms, which
are the topic of this section. The design of real-time digital filters
can also be quite involved and requires some moderately complex
mathematics. However, this section refrains from discussing the
mathematical basis of digital filters and, instead, concentrates on the
practical implementation of some simple filtering algorithms. While

Sampling, noise and filtering 143

the techniques presented will not be suitable for every eventuality,
they will probably cover a majority of DA&C applications. Digital
filters can generally be tuned or optimized at the development stage
or even by the end user and, for this purpose, a number of empirical
guidelines are presented to aid in filter design.

Designing simple digital filters

It is impossible for DA&C software to determine the relative magni-
tudes of the signal and noise encapsulated in a single isolated reading.
Within one instantaneous sample of the total signal-plus-noise voltage,
the contribution due to noise is indistinguishable from that due to
the signal. Fortunately, when we have a series of samples, noise and
signal can often be distinguished on the basis of their frequencies.
They usually have different frequency characteristics, each existing
predominantly within well-defined frequency bands. By comparing
and combining a series of readings it is possible to ascertain what
frequencies are present and then to suppress those frequencies at
which there is only noise (i.e. no signal component). The process of
removing unwanted frequencies is known as filtering.

Signal and noise characteristics

Many signals vary only slowly. We have already seen in Chapter 3
that some types of sensor and signal-conditioning circuits have
appreciable time constants. Noise, on the other hand, may occur at
predominantly one frequency (e.g. the mains 50/60 Hz frequency)
or, more often, in a broad band as shown in Figure 4.6. The signal
frequencies obtained with most types of sensor will generally be

Signal

Mains 50/60 Hz
pickup

Noise

log (frequency)

log (amplitude)

Figure 4.6 Typical noise and signal spectra

144 PC interfacing and data acquisition

quite low. On the other hand, noise due to radiated electromag-
netic pickup or from electronic sources often has a broad spectrum
extending to very high frequencies. This high frequency noise can
be attenuated by using an appropriate low-pass filter (i.e. one
which suppresses high frequencies while letting low frequencies
pass through unaffected). Noise might also exist at low frequen-
cies, overlapping the signal spectrum. Because it occupies the same
frequencies as the signal itself, this portion of the noise spectrum
cannot be filtered out without also attenuating the signal.

When designing a digital filter, it is advisable to first determine
the principal sources of noise in the system and to carefully assess
the noise and signal spectra present. Such an exercise provides an
essential starting point for determining which frequency bands you
wish to suppress and which bands you will need to retain.

Filter characteristics

Low-pass filters attenuate all frequencies above a certain cut-off
frequency, f0, while leaving lower frequencies (virtually) unaffected.
Ideally, such filters would have a frequency characteristic similar to
curve (a) shown in Figure 4.7. In practice, this is impossible to
achieve, and filter characteristics such as that indicated by curve (b)
are more usually obtained with either electronic or digital (software)
filters. Other filter characteristics are sometimes useful. High-pass
filters (curve (c)), for example, suppress frequencies lower than
some cut-off frequency while permitting higher frequencies to pass.
Band-pass filters (curve (d)) allow only those frequencies within a
well-defined band to pass, as shown in Figure 4.7. Although it is
possible to construct digital high-pass and band-pass filters, these

(a) Ideal low-pass filter characteristic
(b) Real low-pass filter
(c) High-pass filter
(d) Band-pass filter

(a) (b) (d) (c)

log (frequency)

Attenuation (dB)

f0

0

Figure 4.7 Typical filter characteristics

Sampling, noise and filtering 145

are rarely needed for real-time filtration and we will, therefore,
concentrate on low-pass filters.

The filter characteristic generally has a rounded shoulder, so the
cut-off point is not sharp. The attributes of the filter may be defined
by reference to several different points. Sometimes, the frequency at
which the signal is attenuated to �3 dB is quoted. In other instances,
the curve is characterized by extrapolating the linear, sloping portion
of the curve back to the 0 dB level in order to define the cut-off
frequency, f0.

In most situations, the noise suppression properties of a filter are
only weakly dependent upon f0. Small differences in f0 from some
ideal value generally have only a small effect on noise attenuation.
This is fortunate as it can sometimes allow a rough approxima-
tion to the desired filter characteristic to be used. However, it is
always important to carefully assess the dynamic behaviour of digital
filter designs to ensure that they operate as expected and within
specified tolerances. In particular, when applying a digital filter to
an acquired data stream, you should be aware of the effect of the
filter’s bandwidth on the dynamic performance of the system. It is
not only frequencies greater than f0 that are affected by low-pass
filters. The filter characteristic may also significantly attenuate signals
whose frequencies are up to an order of magnitude less than the
cut-off frequency. A signal frequency of f0/8, for example, may be
attenuated by typically 0.25 per cent.

Software considerations

When assessing the performance of a digital filter design, the
programmer should bear in mind that whatever formulae and algo-
rithms the filter is based on, the actual coded implementation will
be subject to a number of potential errors. The ADC quantization
and linearity errors will, of course, ultimately limit the accuracy
of the system. However, there is another possible source of error
which should be considered: the accuracy of the floating-point
arithmetic used.

Some filter algorithms are recursive, using the results of previous
calculations in each successive iteration. This provides the poten-
tial for floating-point rounding errors to accumulate over time. If
rounding errors are significant, the filter may become unstable. This
can cause oscillations or an uncontrolled rise in output. It may also
prevent the filter’s output from decaying to zero when the input
signal is removed (i.e. set to zero). Filter routines should normally
be implemented using high precision arithmetic. Using C’s double

or long double types, rather than the float data type, will usually be
sufficient to avoid significant rounding errors.

146 PC interfacing and data acquisition

Although floating-point software libraries can be employed to
perform the necessary calculations, a numeric coprocessor will
greatly enhance throughput. The speed of the filter routines may
be improved by coding them so as to minimize the number of
multiplication and division operations required for each iteration.
Where you have to divide a variable by a constant value, multiplying
by the inverse of the constant instead will generally provide a slight
improvement in execution speed.

Testing digital filters

It is essential that you thoroughly check the performance of all
filter routines before you use them in your application. This can be
accomplished by creating a test routine or program which generates
a series of cosinusoidal signals over a range of different frequencies.
At each frequency, f, the signal is given by:

s D cos⊲2�ft⊳ ⊲4.8⊳

where t represents elapsed time. In practice, the signal, s, can
be determined at each sample time without recourse to real-time
calculations by expressing t as the ratio of the ordinal index, k, of
each sample to the sampling frequency, �, giving

s D cos

(

2�k
f

�
⊲4.9⊳

So, we can generate the signal for a range of different relative
frequencies (f/�). Starting from a maximum value of 1

2
(the Nyquist

limit), the ratio f/� should be gradually reduced until the desired
frequency range has been covered.

For each frequency used, s should be evaluated repeatedly in a
loop (with k being incremented on each pass through the loop)
and each value of s should be passed to the digital filter routine.
The filtered cosinusoidal signal can then be reconstructed and its
amplitude and phase determined and plotted against f/�. Note that
the filter’s output will generally be based on a history of samples.
Because of this the filter will require a certain number of sampled
data points before reaching a steady state. You should, therefore,
allow sufficient iterations of the loop before assessing the amplitude
and phase of the filtered signal.

Simple averaging techniques

The most obvious way of reducing the effects of random noise is to
calculate the average of several readings taken in quick succession.

Sampling, noise and filtering 147

If the noise is truly random and equally distributed about the actual
signal level it should tend to average out to zero. This approach is
very simple to implement and can be used in applications with fixed
signals (e.g. dimensional gauging of cast steel components) or with
very slowly varying signals (e.g. temperature measurements within
a furnace). If the signal changes significantly during the sampling
period, the averaging process will, of course, also tend blur the signal.
The period between samples must be short enough to prevent this
but also long enough to allow true averaging of low frequency noise
components.

The main drawback with the simple averaging process – particu-
larly in continuous monitoring or control systems – is that the filter’s
output is updated at only 1/Nth of the sampling rate (where N is
the number of samples over which the average is calculated). If the
filtered signal is then used to generate an analogue control signal,
the delay between successive outputs will increase the magnitude of
the reconstruction error.

The simple averaging method is useful in a number of situa-
tions. However, if it is necessary to measure changing signals in the
presence of noise, a more precise analysis of the filter’s frequency
characteristics are required and it is usually preferable to employ one
of the simple low-pass filtering techniques described in the following
section.

Low-pass filtering techniques

Ideally a software filter routine should be invoked once for each new
sample of data. It should return a filtered value each time it is called,
so that the filtered output is updated at the sampling frequency.

There are two distinct classes of filter: recursive and non-recursive.
In a non-recursive filter, the output will depend on the current input
as well as on previous inputs. The output from recursive filters, on
the other hand, is based on previous output values and the current
input value. The ways in which the various input and output values
are combined varies between different filter implementations, but
in general each value is multiplied by some constant weight and the
results are then summed to obtain the filtered output.

If we denote the sequence of filter outputs by yk and the inputs
(samples) by xk , where k represents the ordinal index of the iteration,
a non-recursive filter is described by the equation:

yk D
iDk
∑

iD0

aixk�i ⊲4.10⊳

148 PC interfacing and data acquisition

Here, the constants ai represent the weight allotted to each element
in the summation. In general the series of ai values is defined so
that the most recent data is allocated the greatest weight. The ai

constants often follow an exponential form which allows the filter to
model an electronic low-pass filter based on a simple RC network.

The non-recursive filter described by Equation 4.10 is termed an
Infinite Impulse Response (IIR) filter because the summation takes
place over an unbounded history of filter inputs (i.e. xk C xk�1 C Ð Ð Ð C
x2 C x1 C x0). In practice, most non-recursive filter implementations
truncate the summation after a finite number of terms, n, and
are termed Finite Impulse Response (FIR) filters. In this case, the
non-recursive filter equation becomes:

yk D
iDn�1
∑

iD0

aixk�i ⊲4.11⊳

Recursive filters are obtained by adding a recursive (or auto-
regressive) term to the equation as follows:

yk D
iDk
∑

iD1

biyk�i C
iDk
∑

iD0

aixk�i ⊲4.12⊳

The constants bi in the new term represent weights that are applied
to the sequence of previous filter outputs. Equation 4.12 is, in fact,
a general form of the filter equation known as an Auto Regressive
Moving Average (ARMA) filter. As we shall see later, this equation can
be simplified to form the basis of an effective low-pass recursive filter.

In addition, the following sections cover two implementations of
the non-recursive type of filter (the unweighted moving average and
the exponentially weighted FIFO). Other filters can be constructed
from Equations 4.11 or 4.12, but for most applications one of the
three simple filters described below will usually suffice.

Each weight in Equations 4.11 and 4.12 may take either positive
or negative values, but the sum of all of the weights must be equal to
1. In a non-recursive filter, the output signal is effectively multiplied
by the sum of the weights and if this is not unity the output will
be scaled up or down by a fixed factor. The result of using weights
which sum to a value greater than 1 in a recursive filter is more
problematic. The filter becomes unstable and the output, effectively
multiplied by an ever increasing gain, rises continuously.

Equations 4.10 to 4.12 indicate that the time at which each sample,
xk , is obtained is not needed in order to calculate the filter output.
It is, therefore, unnecessary to pass time data to the filter routines
themselves. However, the rate at which the signal is sampled does,

Sampling, noise and filtering 149

of course, have a direct bearing on the performance of the filter.
For any given set of filter parameters (i.e. ai, bi and n), the filter’s
frequency response curve is determined solely by the sampling rate,
�. For example, a filter routine which has a cut-off frequency, f0, of
10 Hz at � D 100 Hz will possess an f0 of 5 Hz if � is reduced to 50 Hz.
For this reason we will refer to the filter’s frequency characteristics
in terms of the frequency ratio, f/� (or f0/� when referring to the
cut-off frequency).

Unweighted moving average filter

The unweighted moving average filter (also sometimes known simply
as a moving average filter) is a simple enhancement of the block
average technique. It is actually a type of non-recursive filter based
on Equation 4.11. The weights ai are each set equal to 1/n so that
they sum to unity. The filter is described by the following equation:

yk D 1

n

iDn�1
∑

iD0

xk�i ⊲4.13⊳

A FIFO buffer (see Chapter 6) is used to hold the series of x values.
The output of the filter is simply the average of all entries held in
the FIFO buffer. Because the weights are all equal, this type of filter
is also known as an unweighted FIFO filter.

Filters with large FIFO buffers (i.e. large values of n) provide
good high-frequency attenuation. They are useful for suppressing
noise and unwanted transient signal variations that possess wide-
tailed distributions, such as might be present when monitoring the
thickness of a rolled sheet product such as rubber or metal sheet.

Listing 4.1 illustrates how the moving average filter can be imple-
mented. The size of the FIFO buffer is determined by the value
defined for N. The InitFilter() function should be called before
filtering commences in order to initialize the various FIFO buffer
variables. Each subsequent reading (X) should be passed to the
Filter() function which will then return the present value of the
moving average.

The filter is, of course, least effective during its start-up phase
when part of the FIFO buffer is still empty. In this phase, the filter’s
output is calculated by averaging over only those samples which have
so far been acquired, as illustrated in the listing. N calls to the Filter()

function are required before the FIFO buffer fills with data.
The unweighted moving average filter possesses the frequency

characteristic shown in Figure 4.8. It is clear from the figure that
larger FIFO buffers provide better attenuation of high frequencies.

150 PC interfacing and data acquisition

Listing 4.1 An unweighted moving average filter

#define N 100 /* Size of FIFO Buffer */

double FIFO[N];

int FIFOPtr;

double FIFOEntries;

double FIFOTotal;

void InitFilter()

f
FIFOPtr = -1;

FIFOEntries = 0;

FIFOTotal = 0;

g

double Filter(double X)

f
if (FIFOPtr < (N-1))

FIFOPtr++;

else FIFOPtr = 0;

if (FIFOEntries < N)

f
FIFOTotal = FIFOTotal + X;

FIFO[FIFOPtr] = X;

FIFOEntries = FIFOEntries + 1;

g
else f

FIFOTotal = FIFOTotal - FIFO[FIFOPtr] + X;

FIFO[FIFOPtr] = X;

g

return FIFOTotal / FIFOEntries;

g

However, because of resonances occurring at even values of �/f
and where the FIFO buffer contains an integer number of signal
cycles (i.e. when nf/� is an integer), oscillations are present in
the characteristic curve at frequencies higher than f0. As a rough
rule-of-thumb, the cut-off frequency is given by �/f0 ¾ 2.5n to 3.0n.

As with all types of filter, a phase lag is introduced between the
input and output signals. This tends to increase at higher frequencies.
Because of the discrete nature of the sampling process and the
resonances described above, the phase vs. frequency relationship
also becomes irregular above the cut-off frequency.

This type of filter is very simple, but is ideal in applications where
high speed filtration is required. If there is a linear relationship

Sampling, noise and filtering 151

1.0

0.1

0.01

A
m

p
lit

u
d
e
 a

tt
e
n
u
a
ti
o
n

n =10

n= 30

n = 3

n =100

10−6 10−5 10−4 10−3 10−2 10−1 1

f / ν

Figure 4.8 Attenuation vs. frequency relationship for the unweighted moving

average filter

between the measurand and the corresponding digitized reading,
the unscaled ADC readings can be processed directly using a moving
average filter based on simple integer (rather than floating-point)
arithmetic.

Exponentially weighted FIFO filter

The unweighted moving average filter gives equal weight to all entries
in the FIFO buffer. Consequently, a particularly large reading will not
only affect the filter output when it is supplied as a new input, it will
also cause a large change in output when the reading passes through
the FIFO buffer and is removed from the summation. To minimize
the latter effect, we may apply a decreasing weight to the readings
as they pass through the buffer so that less attention is paid to older
entries. One such scheme employs an exponentially decreasing series

152 PC interfacing and data acquisition

of weights. In this case the weights ai in Equation 4.11 are given by:

ai D e�⊲it/�⊳ ⊲4.14⊳

Here, t represents the time interval between successive samples
(equal to 1/�) and � is the time constant of the exponential
filter-response function. In an ideal filter, with a sufficiently large
FIFO buffer, the series of exponential weights will not be truncated
until the weights become insignificantly small. In this case the time
constant, �, will be related to the desired cut-off frequency by:

f0 D 1

2��
⊲4.15⊳

Obviously, in a real filter, the finite size of the FIFO buffer will modify
the frequency response, but this effect will be small provided that
nt × �.

For the purpose of calculating the weights, it is convenient to make
use of a constant, r, which represents the number of characteristic
exponential time periods (of length �) that are encompassed by the
FIFO buffer:

r D nt

�
⊲4.16⊳

The weights are then calculated from:

ai D e�⊲ir/n⊳ ⊲4.17⊳

Substituting Equation 4.16 into Equation 4.15 (and remembering
that t D 1/�) we see that the expected cut-off frequency of the filter
is given by:

f0

�
D 1

2�
Ð r

n
⊲4.18⊳

This applies only for large values of r (i.e. greater than about 3
in practice) which allow the exponential series of weights to fall
from unity – for the most recent sample – to a reasonably low level
(typically <0.05) for the oldest sample. Smaller values of r give more
weight to older data and result in the finite size of the FIFO buffer
becoming the dominant factor affecting the filter’s response.

Listing 4.1 may be easily adapted to include a series of exponen-
tial weights as illustrated in Listing 4.2. The InitFilter() function,
which must be called before filtering commences, first calculates a
WeightStep value equivalent to the ratio of any two adjacent weights:
ai/ai�1. It also determines the sum of all of the weights. This is

Sampling, noise and filtering 153

Listing 4.2 An exponentially weighted FIFO filter

#define N 100 /* Size of the FIFO buffer */

#define R 3 /* No. of characteristic time periods within buffer */

double WeightStep;

double SumWeights;

double LowWeight;

double FIFO[N];

int FIFOPtr;

double FIFOEntries;

double FIFOTotal;

void InitFilter()

f
double T;

double Weight;

int I;

T = R;

WeightStep = exp(-1 * T / N);

SumWeights = 0;

Weight = 1;

for (I = 0; I < N; I++)

f
Weight = Weight * WeightStep;

SumWeights = SumWeights + Weight;

g
LowWeight = Weight;

FIFOPtr = -1;

FIFOEntries = 0;

FIFOTotal = 0;

g

double Filter(double S)

f
if (FIFOPtr < (N-1))

FIFOPtr++;

else FIFOPtr = 0;

if (FIFOEntries < N)

f
FIFOTotal = (FIFOTotal + S) * WeightStep;

FIFO[FIFOPtr] = S;

FIFOEntries = FIFOEntries + 1;

g
else f

FIFOTotal = (FIFOTotal - (FIFO[FIFOPtr] * LowWeight) + S) * WeightStep;

FIFO[FIFOPtr] = S;

g

return FIFOTotal / SumWeights;

g

154 PC interfacing and data acquisition

required for normalizing the filter output. LowWeight is the weight
applied to the oldest entry in the FIFO buffer and is needed in order
to calculate the affect of removing the oldest term from the weighted
total.

The Filter() function should be called for each successive sample.
This function records the N most recent samples (i.e. X values) in a
FIFO buffer. It also maintains a weighted running total of the FIFO
contents in FIFOTotal. The weights applied to each entry in the buffer
are effectively reduced by the appropriate amount (by multiplying
by WeightStep) as each new sample is added to the buffer.

Good high frequency attenuation is obtained with r > 1, partic-
ularly with the larger FIFO buffers. Phase shifts similar to those
described for the moving average filter also occur with the expo-
nentially weighted FIFO filter. Again the effects of resonances and
discrete sampling introduce irregularities in the attenuation and
phase vs. frequency relationships. As would be expected, this effect
is more prominent with values of r less than about 1 to 3. The cut-off
frequencies obtained with various combinations of r and n are shown
in Figure 4.9.

When r is greater than about 3, the f0/� data agrees closely
with the expected relationship (Equation 4.18). Slight deviations
from the ideal response curve are due to the discrete nature of the
sampling. Values of r less than about 3 result in a somewhat higher
cut-off frequency for a given value of r/n. Conversely, increasing n
will reduce f0.

0.15

0.14

0.13

0.12

0.11

0.10

0.09

0.08

0.07

0.06

0.05

0.04
n =10

n = 33
n = 50
n = 100

0.03

0.02

0.01

f 0
/ν

0.00
0.001 0.01

r /n

0.1 1.0

Figure 4.9 Cut-off frequencies vs. r/n for exponentially weighted FIFO filters

Sampling, noise and filtering 155

The data in Figure 4.9 is replotted in Figure 4.10 which may be
used as a basis for choosing values of r and n in practical applications.
To determine the values of n and r that are necessary to obtain a
given f0:

1. Determine � (remembering that it should be high enough to
avoid aliasing) and then calculate the desired f0/�.

1.0

0.1

0.01

0.001

f 0
/ν

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

n

r =10

r = 5

r = 3

r = 1
r = 0.3

Figure 4.10 Cut-off frequencies vs. n for exponentially weighted FIFO filters

156 PC interfacing and data acquisition

2. Refer to Figure 4.10 to choose a suitable combination of r and n.
The optimum value of r is generally about 3, but values between
about 1 and 10 can give adequate results (depending upon n).

3. Consider whether the FIFO buffer size (n) indicated is practicable
in terms of memory requirements and filter start-up time. If
necessary use a smaller FIFO buffer (i.e. smaller n) and lower
value of r to achieve the desired f0.

A number of points should be borne in mind when selecting r and
n. With small r values, a greater weight is allocated to older data and
this lowers the cut-off frequency.

When r < 1 the filter behaves very much like an unweighted
moving average filter because all elements of the FIFO buffer have
very similar weights. The cut-off frequency is then dependent only
on n (i.e. it is only weakly dependent on r) and is determined by the
approximate relationship f0/� ¾ ⊲2.5n⊳�1 to ⊲3n⊳�1. Only when r is
greater than about 2 to 3 is there any strong dependence of f0 on r.

When r is greater than about n/3, the performance of the filter
depends only on the ratio r/n because the exponential weights fall
to an insignificantly small level well within the bounds of the FIFO
buffer. There is usually no advantage to be gained from operating
the filter in this condition as only a small portion of the FIFO buffer
will make any significant contribution to the filter’s output. If you
need to achieve a high f0 it is far better to increase � or, if this is
not possible, to reduce n, rather than increasing r beyond n/3. Best
results are often obtained with an r value of about 3. This tends
to generate a smoothly falling frequency response curve with a well
defined f0 and good high frequency attenuation.

Recursive low-pass filter

A very effective low-pass filter can be implemented using the general
recursive filter Equation (4.12). The equation may be simplified by
using only the most recent sample xk (by setting ai D 0 for i > 0)
and the previous filter output yk�1 (by setting bi D 0 for i 6D 1). The
filter equation then reduces to

yk D axk C byk�1 ⊲4.19⊳

where a C b D 1 ⊲4.20⊳

In Equation 4.19 the 0 and 1 subscripts have been dropped from the
weights a and b respectively. As discussed previously, the condition
4.20 is required for stability. It should be clear that the filter output
will respond more readily to changes in x when a is relatively large.
Thus the cut-off frequency, f0, will increase with a. Knowing the

Sampling, noise and filtering 157

Listing 4.3 A recursive low-pass filter

#define A 0.1 /* Modify this value as necessary */

double Y;

double B;

void InitFilter()

f
Y = 0;

B = 1.0 - A;

g

double Filter(double X)

f
Y = X * A + Y * B;

return Y;

g

1.0

0.1

0.01

A
m

p
lit

u
d
e
 a

tt
e
n
u
a
ti
o
n

10−6 10−5 10−4 10−3 10−2 10−1 1
f/ν

a = 0.001 a = 0.01 a = 0.1

(a) Attenuation characteristic

Figure 4.11 Attenuation and phase characteristics of the recursive low-pass filter

158 PC interfacing and data acquisition

sampling frequency, �, the constant a can be calculated from the
required value of f0 as follows:

a D
2�f0

�
2�f0

�
C e�⊲2�f0/�⊳

⊲4.21⊳

When � × f0, the denominator tends to unity and Equation 4.21
becomes

a ³ 2�f0

�
⊲4.22⊳

Ideally, the cut-off frequency should be somewhat less than �/20 in
order to achieve reasonable attenuation at high frequencies. In this
case, the approximation given in Equation 4.22 introduces only a

110−6

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10−5 10−4 10−3 10−2 10−1

a =0.01

a = 0.1

a =0.001

f /ν

P
h
a
s
e
 (
d
e
g
re

e
s
)

(b) Phase characteristic

Figure 4.11 (continued)

Sampling, noise and filtering 159

small error in the cut-off frequency and this generally has a negligible
effect on the performance of the filter.

Listing 4.3 shows how this simple recursive filter can be imple-
mented in practice. The filter coefficient, a, is defined in the listing
as the constant A. In this case it is set to 0.1, but other values may be
used as required. The InitFilter() function must be called before
the sampling sequence starts. It initializes a record of the previous
filter output, Y, and calculates the other filter coefficient, b, which
is represented by the variable B in the listing. This function may
be modified if required to calculate coefficients a and b (i.e. the
program variables A and B) from values of f0 and � supplied in the
argument list. The Filter() function itself simply calculates a new
filter output (using Equation 4.19) each time that it is called.

Figure 4.11 illustrates the attenuation and phase lag vs. frequency
characteristics obtained with a number of different values of a.
The relationship between f0 and a follows the form expressed
in Equation 4.22 very closely. For a given value of f0/�, there is
little difference between the characteristics of the recursive low-pass
filter and the optimum ⊲r D 3⊳ exponentially weighted non-recursive
(FIFO) filter. In general, however, the recursive filter exhibits a
smoother fall-off of response and there are no resonances at high
frequencies. The phase vs. frequency curve is also more regular than
that obtained with the exponentially weighted FIFO filter. Note that
at the cut-off frequency the phase lag is 45°.

This Page Intentionally Left Blank

Part 3 I/O Techniques and

Buses

This Page Intentionally Left Blank

5 The interrupt system

The PC’s interrupt system provides a means of temporarily
suspending (or interrupting) the normal execution of a program
in order to allow the processor to respond to specific events. These
events may occur either as a result of executing certain instruction
sequences or when a peripheral device wishes to request service (e.g.
when the keyboard signals that a key has been pressed). The interrupt
system is particularly useful in DA&C applications. Interrupts permit
the system to react quickly to a variety of control and status inputs.
They also allow a degree of synchronism to be maintained between
external events and the software routines that are needed to respond
to them.

When an interrupt event occurs, the processor usually responds,
at the earliest opportunity, by saving its flags register and the address
of the next instruction it would otherwise have executed, and then
jumping to an interrupt handler routine located at a predefined
address in memory. In the case of a multitasking operating system,
additional, task-related context information is also stored before
the interrupt handler is invoked. The interrupt handler performs
whatever action is necessary (e.g. reading a key code from the
keyboard or digitized data from an ADC) and then returns control of
the system to the original process at the point that it was interrupted.
In this way, the code contained within an interrupt handler can be
executed on demand, providing timely software service for a variety
of events or error conditions.

This chapter describes the PC’s interrupt system in some detail
and illustrates software techniques for creating interrupt handlers
for use in data acquisition. It also discusses some important interrupt-
related considerations which you should bear in mind when writing
data-acquisition software for the PC.

If you are an application developer, rather than an system-level
programmer, it is likely that you will need to write interrupt-handling

164 PC interfacing and data acquisition

code only if programming in real mode, for example under MS-DOS
or a real-time version of DOS. In 32-bit protected-mode operating
systems, such as Windows NT, interrupt handling can be performed
only by highly privileged code – i.e. by operating-system code or
kernel-mode device drivers. Often, DA&C card manufacturers will
provide suitable Windows NT drivers, obviating the need to write
your own interrupt code. For this reason, and in order to convey
the principles of the topic without unnecessary complication, most
of the material in this chapter is presented in the context of a
real-mode application. Some examples will require adaptation in
order to operate under Windows NT and other protected operating
systems. Unfortunately a full discussion of protected-mode interrupts
and kernel-mode (Ring 0) drivers is beyond the scope of this book.
However, a large proportion of this chapter also applies to protected-
mode environments, and important differences, such as interrupt
response times (latency), are discussed. For further information on
Windows device drivers and interrupt handling, refer to the text by
Solomon (1998). Buchanan (1999) also provides useful examples of
interrupt processing.

The PC supports four different types of control-transfer mech-
anisms that are all loosely referred to as interrupts: the Non-
Maskable Interrupt (NMI), external interrupts, software interrupts
and processor exceptions. The nature of the various interrupt mech-
anisms and the ways in which the interrupts are initiated differ
considerably. Software interrupts and external hardware interrupts
are usually of most relevance to DA&C applications programs, but
you should also be aware of the NMI and processor exception mech-
anisms, particularly if you are involved in producing time-critical
applications or systems software. These topics are discussed in more
detail later in this chapter, but first, we will consider the mechanism
by which control is transferred to the interrupt handler.

5.1 Interrupt vectors

Whenever any type of interrupt occurs, the processor must transfer
control of the system to a suitable interrupt handler. In order for the
processor to determine where to jump, it must retrieve the address
of the interrupt handler from a table located at a known position in
memory. Each address in this table is known as an interrupt vector
and consists of 4 bytes which hold the offset (IP) and segment (CS)
portions of the address in the standard Intel low–high format. In
real mode, the interrupt vector table (IVT) is located at the bottom
of addressable memory (i.e. at location 0000:0000h). It is 1024 bytes

The interrupt system 165

long and may contain up to 256 separate interrupt vectors. The PC
system can, therefore, accommodate up to 256 different types of
interrupt. Some of these are assigned for use by the NMI, external
hardware interrupts and exceptions, but the majority are used for
software interrupts.

Not all interrupt vectors point to (i.e. contain the address of)
executable code. Depending upon the configuration of the system
and the software installed, certain interrupt vectors may be config-
ured to point to tables of data etc. Table 5.1 lists the standard
interrupt vector usage on the PC.

The BIOS possesses an Unexpected Interrupt Handler routine.
All unused hardware interrupts, user interrupts (int 1Ch and 4Ah)
and most processor exceptions with Interrupt Type Codes less than
8 are directed to this handler by the BIOS POST routines. If one
of these interrupts occur before the operating system or an appli-
cation has installed a suitable handler, the Unexpected Interrupt
Handler is invoked. This immediately sets the Carry Flag and returns
control to the interrupted process, preserving all other registers. The
Unexpected Interrupt Handler also maintains a record of the last
unexpected external hardware interrupt at offset 6Bh in the BIOS data
area. A single bit in this location is set to denote the IRQ level of the
interrupt. For example, an unexpected IRQ5 (interrupt type code
13) would cause the BIOS to store the value 00100000b. Similarly,
for an unexpected IRQ7 (type code 15), the value 1000000b would
be stored. On the IBM AT and subsequent systems, the IRQ2 bit
is set when an unexpected interrupt is detected on IRQ8–IRQ15.
External hardware interrupts and IRQ levels are discussed in the
following section.

Table 5.1 is by no means a comprehensive list of interrupt usage
on the PC. Although most BIOS and DOS interrupts are used
consistently throughout the range of PC ‘compatible’ computers
on the market, some of the interrupt vectors may be allocated
differently in specific PC systems. The applications and systems
software as well as add-in hardware (e.g. network adaptors) present
on individual machines will also determine which interrupts are
in use. In particular, some of the interrupts in the ranges 50h to
5Fh, 68h to 6Fh, 78h to 7Fh, 88h to B8h and F8h to FFh may be set
aside for specific purposes (e.g. relocating hardware interrupts when
operating systems software such as Windows, OS/2 or DESQview are
installed). Networked systems may also make use of several of the
interrupts listed in Table 5.1.

There are already many thousands of software products on the
market, all of which need to take advantage of the PC’s interrupt
system. New products continually come onto the market and these

166 PC interfacing and data acquisition

Table 5.1 Standard interrupt vector assignments on the IBM PC and

compatible machines

Type Description

00h Divide-by-zero exception.

01h Single-step trap (generated after each instruction if TF D 1).

02h NMI.

03h Breakpoint (generated by breakpoint opcode CCh).

04h Overflow (generated by INTO instruction if OF has been previously set).

05h Print screen.

06h Reserved.

07h Reserved.

08h IRQ0: System timer tick.

09h IRQ1: Keyboard data available.

0Ah IRQ2: LPT2 on PC. Reserved on XT. Cascade to slave PIC on AT

& PS/2.

0Bh IRQ3: COM2 or COM4.

0Ch IRQ4: COM1 or COM3.

0Dh IRQ5: Fixed disk on PC, XT. LPT2 on AT. Reserved on PS/2.

0Eh IRQ6: Diskette controller.

0Fh IRQ7: LPT1.

10h BIOS video services.

11h BIOS equipment-check service.

12h BIOS memory size service.

13h BIOS diskette I/O service.

14h BIOS communications service.

15h BIOS miscellaneous services.

16h BIOS keyboard services.

17h BIOS printer services.

18h BIOS ROM BASIC entry point.

19h BIOS bootstrap loader.

1Ah BIOS time-of-day services.

1Bh Ctrl-Break handler.

1Ch Timer tick user interrupt (invoked from int 08h).

1Dh Pointer to BIOS’s video parameter table. Not an interrupt vector.

1Eh Pointer to BIOS’s diskette parameter table. Not an interrupt vector.

1Fh Pointer to BIOS’s 8 ð 8 graphics font. Not an interrupt vector.

20h DOS program termination. Now obsolete, but retained for compatibility.

21h DOS services.

22h DOS program termination routine. Not an interrupt vector.

23h DOS Ctrl-C/Break handler. Invoked when DOS detects Ctrl-C or

Ctrl-Break.

24h DOS critical error handler.

The interrupt system 167

Table 5.1 (continued)

Type Description

25h DOS absolute disk read service.

26h DOS absolute disk write service.

27h DOS terminate and stay resident service.

28h DOS idle interrupt.

29h DOS fast console character output.

2Ah–2Dh Reserved.

2Eh DOS command interpreter interface.

2Fh DOS multiplex interrupt.

30h Reserved.

31h DPMI programming interface.

32h Reserved. Infrequently used.

33h Mouse driver services.

34h–3Eh Floating-point emulation in Microsoft and Borland programming

languages.

3Fh Overlay and DLL management in Microsoft and Borland languages.

40h BIOS diskette I/O (interrupt 13h revectored by hard disk BIOS).

41h Pointer to BIOS’s hard disk #0 parameter table. Not an interrupt vector.

42h BIOS default video services (revectored from int 10h by EGA/VGA

BIOS).

43h Pointer to BIOS’s graphics character table. Not an interrupt vector.

44h Pointer to PCjr BIOS’s graphics character table. Not an interrupt vector.

45h Reserved. Infrequently used.

46h Pointer to BIOS’s hard disk #1 parameter table. Not an interrupt vector.

47h Reserved. Infrequently used.

48h Keyboard on PCjr. Reserved on all other systems.

49h Keyboard on PCjr. Reserved on all other systems.

4Ah BIOS real-time clock user alarm interrupt.

4Bh SCSI device interface. Virtual DMA services.

4Ch Reserved. Infrequently used.

4Dh Reserved. Infrequently used.

4Eh Reserved. Infrequently used.

4Fh SCSI device interface.

50h–5Fh Reserved. Some vectors used by DESQview, OS/2, Windows 95 and

networks.

60h–66h User interrupts.

67h LIM EMS and VCPI.

68h–6Fh Reserved. Some vectors used by network products.

70h IRQ8: Real-time clock periodic/alarm interrupt. AT and PS/2.

71h IRQ9: Reserved. Invoked via IRQ2 bus line. AT and PS/2.

continued overleaf

168 PC interfacing and data acquisition

Table 5.1 (continued)

Type Description

72h IRQ10: Reserved.

73h IRQ11: Reserved.

74h IRQ12: Pointing device interrupt (e.g. PS/2 mouse). PS/2 and AT

compatibles.

75h IRQ13: Numeric coprocessor. AT and PS/2.

76h IRQ14: Hard disk controller. AT and PS/2.

77h IRQ15: Reserved.

78h–7Fh Reserved. Some vectors used for network products.

80h–85h Reserved for BASIC.

86h–EEh IBM ROM BASIC interpreter. Some vectors also used by network

products.

EFh–F0h IBM ROM BASIC interpreter. Compiled BASIC.

F1h–FDh User interrupt on AT and PS/2. Reserved on PC and XT.

FEh Reserved.

FFh Reserved.

also require new interrupts to be assigned. As there are only 256 avail-
able interrupt vectors, a degree of overlap is sometimes inevitable.
Fortunately, many software packages and hardware products (e.g.
data-acquisition cards) help to avoid interrupt conflicts by allowing
the user some latitude in selecting which interrupts are to be used.

For these reasons, published interrupt tables tend to differ slightly,
often listing many of the interrupts simply as ‘Reserved’ and, in
general, it is wise to avoid using any of these in your own software.

One must also bear in mind that there can in some circumstances
be ambiguity over the usage of a specific interrupt vector. Several
of the first 32 vectors are used on the PC for processor exceptions
as well as for external hardware interrupts or BIOS services. This
overlap arises from the design of the original PC and has become
more problematic as new processor features and exceptions have
been introduced. Contentions tend not to arise when the processor
is running in real mode, but protected mode software must ensure
that it can identify the source of an interrupt unambiguously. The full
implications of interrupt conflicts and techniques to resolve them
are beyond the scope of this book. However, such considerations are
usually handled by protected-mode operating systems. Windows 95
and DESQview, for example, avoid such problems by remapping
hardware interrupts to different vectors. Further details of interrupt
conflicts and the interrupt relocation technique may be found in
the text by van Gilluwe (1994).

The interrupt system 169

Brown and Kyle (1991) provide a thorough and detailed account
of interrupt usage on the PC. This publication includes a great
deal of information on the interrupts used by specific software and
hardware products, and it is recommended that this text should be
consulted whenever you need to select interrupts to be used in a
data-acquisition system. This should help to achieve compatibility
with other products by avoiding any interrupts which they might use.
However, if you are concerned only with picking a suitable external
hardware interrupt (IRQ) for interfacing to a data-acquisition card,
for example, the choice is usually much simpler and the tables
provided in Appendix A should assist in these circumstances.

5.2 Hardware interrupts

The NMI and external interrupts are, in fact, both types of hardware
interrupt. The processor is equipped with two pins known as NMI
and INTR. Signals present on either of these pins can interrupt
the processor. The INTR line carries external hardware interrupt
requests, while the NMI line carries non-maskable interrupt requests.
In the PC, a number of different subsystems and peripheral compo-
nents are able to assert the NMI or INTR lines whenever they require
attention from the processor.

External hardware interrupts

External interrupt requests may occur at any time during execution
of a program. Because they are asynchronous with the operation of
the processor, the programmer should make no assumptions about
when an interrupt might be generated. As an interrupt handler may
take control of the system for perhaps a few hundred microseconds
at a time (or more in some cases), the possibility of an interrupt
occurring can clearly affect the ability of non-interrupt code to
operate in accordance with the tight timing constraints that are
often required of DA&C systems. It is sometimes preferable to place
time-critical code inside interrupt handlers, as this can help to ensure
that the system responds to external stimuli within predefined time
limits. However, as we shall see, it is not always easy to achieve a
guaranteed response time, even with interrupts.

There are other problems inherent in using an asynchronous
interrupt system. The interrupt handler may have to read or modify
global data structures or to access hardware resources. It is clearly
important to prevent interrupt routines and non-interrupt code
from accessing shared resources (such as global data and hardware)

170 PC interfacing and data acquisition

at the same time. Suppose that the non-interrupt portion of your
program begins to execute a sequence of instructions which reads
16 bytes from a global array. If an interrupt occurs before the
reading sequence is completed and the interrupt handler changes
the contents of the array, the non-interrupt code will, when it regains
control, read the modified data from the remainder of the array.
There will consequently be a mismatch between the first and last
bytes read from the array. Similar and sometimes more catastrophic
consequences may result if the shared resource in question is a
critical item of hardware.

It is possible to circumvent these problems to some extent by
temporarily disabling the external interrupt system. The processor
can be programmed to mask external hardware interrupts by means
of the CLI (Clear Interrupt Flag) assembly language instruction. This
resets the processor’s Interrupt Flag (IF) causing the processor to
ignore any external hardware interrupt requests that it receives on
the INTR line. By this means it is possible to prevent interrupts from
occurring and thereby to protect critical portions of the code. At the
end of the critical section, interrupts may be enabled again by issuing
the STI instruction which sets IF back to 1. If you disable external
interrupts in this way, do not keep them disabled for too long as
this will affect the speed at which other interrupt driven processes
can respond. Try to confine the critical code to just a few machine
instructions if possible. This helps to ensure that all interrupts are
serviced in a timely manner.

Note that none of the other interrupts (i.e. NMI, processor excep-
tions or software interrupts) can be masked in this way although, as
we shall see later in this chapter, the design of the PC does provide a
mechanism for controlling whether NMI signals reach the processor.

Introduction to the 8259A PIC

The external hardware interrupt system was managed on the original
IBM PC and XT machines by an Intel 8259A Programmable Interrupt
Controller (PIC) as shown in Figure 5.1. The INTR line can be
asserted by the PIC whenever it receives an interrupt request signal
from one of eight peripheral devices. A similar system was adopted
for the IBM AT, but in this machine a second 8259A PIC was added
to provide seven further interrupt request (IRQ) lines. Most modern
ISA and EISA PCs provide the same dual-PIC functionality using
compatible custom circuitry. As this arrangement is functionally
equivalent, we will refer only to the 8259A PICs in the remainder of
this chapter.

All but two IRQ lines are made available to expansion cards on
the ISA/EISA bus. The PCI bus present in most modern PCs carries

The interrupt system 171

System timer

Keyboard

System bus

System bus

System bus (COMI)

System bus (fixed disk)

System bus (diskette)

System bus (LPT1)

8259A PIC 8088 CPU

IRQ0

IRQ1

IRQ2

IRQ3

IRQ4 INTA INTA

INTRINT

IRQ5

IRQ6

IRQ7

Figure 5.1 The IBM XT’s external hardware interrupt system

four separate interrupt request lines, and these are automatically
mapped by the PCI–ISA bridge hardware to one of the PIC’s IRQ
lines (i.e. IRQ3–IRQ7, IRQ9–IRQ12, IRQ14 or IRQ15).

As its name suggests, the PIC is a programmable device which
may be made to operate in a variety of different modes. It is
preprogrammed to a default operating mode by the BIOS’s start-up
code. Most applications make use of this default configuration, but
a few more specialized systems reprogram the PIC. Unless stated
otherwise, the remainder of this section will discuss how the PIC
functions in its default operating mode.

When two or more interrupt conditions occur at the same time,
the system must decide which interrupt request it will respond to
first. The processor prioritizes the various types of interrupt and, in
normal operation, gives all INTR requests (i.e. external hardware
interrupts) the lowest priority. The principal function of the PIC
is to prioritize these external hardware interrupt requests (IRQ)
signals and to issue a corresponding sequence of INTR signals to
the processor. The default operating mode assigns highest priority
to IRQ0 and the lowest priority to IRQ7. A similar sequence applies
to the secondary PIC present on the AT and compatible machines
although the highest and lowest priority interrupt lines are in this
case referred to as IRQ8 and IRQ15 respectively. This priority scheme
means that an interrupt handler may itself be interrupted by a higher
priority interrupt request (provided that the processor’s Interrupt
Flag is set), but lower priority requests must wait until the present
interrupt level has been cleared.

The PIC incorporates several 8-bit registers which are used for
manipulating the interrupt request signals as shown in Figure 5.2.
The interrupt request signals are latched in the Interrupt Request

172 PC interfacing and data acquisition

IRQ0

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

Interrupt Request
Register (IRR)

Interrupt Mask
Register (IMR)

Control

INT INTA

Priority
resolver

In Service
Register (ISR)

Internal bus (accessible via system bus)

Figure 5.2 Schematic diagram of the main elements of the 8259A PIC

Register (IRR). The IRR may be programmed to record either edge-
triggered or level-triggered interrupt signals. The trigger method
used is dependent upon the type of machine and should not normally
be changed by the programmer. The latched IRR signals are then
passed to the Interrupt Mask Register (IMR) which contains a
user-programmable bit pattern that selectively enables or disables
interrupt requests on certain IRQ lines. A low bit placed in this
register will enable the associated interrupt. Next, the interrupt
signals are then passed collectively to the priority resolver which
prioritizes all pending (and enabled) requests. The result of this
operation is that the INT line (which is connected to the processor’s
INTR line) is asserted and this initiates the interrupt sequence. In
addition, 1 bit of the In Service Register (ISR) is set to indicate which
of the pending interrupts is currently being serviced.

The IRR, IMR and ISR may be read by software in order to
determine the current state of the interrupt system. As already
mentioned, the software can also write to the IMR to selectively
enable or disable certain IRQ lines. Each bit in the IMR corresponds
to one IRQ line and has no effect on any higher or lower priority
lines. The PIC also incorporates a number of other registers which
allow the operating mode of the device to be programmed.

Many plug-in adaptor cards provide jumpers or DIP switches for
the purpose of selecting which IRQ line (if any) the card is to use. It
is, of course, important to ensure that no two devices are assigned to

The interrupt system 173

the same IRQ line unless you are able to make use of the interrupt
sharing facilities that exist on MCA and EISA machines. Table A.2
(in Appendix A) lists the standard IRQ assignments used on the PC.
Remember that the actual assignments may vary between individual
computers, so it is wise to keep a record of which IRQ lines are
utilized by each adaptor card in the system.

The interrupt sequence

When an adaptor card asserts one of the IRQ lines, it sets in motion
the following series of events which ends in the execution of an
associated interrupt handler routine.

1. When the peripheral device requires the processor’s attention,
it drives its allotted IRQ line high (on the PCI bus the interrupt
request signal is steered by bridge hardware to the appropriate
IRQ line).

2. The IRQ signal is latched into the PIC’s IRR (this is either edge
or level triggered, depending upon the class of PC in use) and if
the corresponding bit of the IMR is clear, the interrupt request is
passed (with any other pending requests) to the priority resolver.

3. If no higher priority interrupts are pending, the PIC initiates
the interrupt by asserting the processor’s INTR line. If a higher
priority interrupt is pending or currently in service, the PIC will
wait until all higher priority interrupts have been serviced before
proceeding with the new interrupt request.

4. When the processor receives the INTR signal from the PIC it
asserts the PIC’s Interrupt Acknowledge (INTA) line twice in
succession. The processor waits until it has completed the current
instruction before acknowledging the interrupt. If external inter-
rupts have been disabled (IF D 0), the processor will not acknowl-
edge the interrupt and the INTA line is not asserted. The PIC
responds to the first INTA cycle by setting the appropriate bit of
the ISR and clearing the corresponding IRR bit. The second INTA
cycle causes the PIC to transfer an 8-bit Interrupt Type Code (the
zero-based ordinal index of the interrupt vector to be used) to
the processor via the data bus. The value of this code depends
upon the IRQ line which generated the interrupt and also upon
how the PIC has been initialized (see Remapping interrupts later in
this chapter).

5. The processor retrieves the Interrupt Type Code from the data
bus and multiplies it by four to calculate the offset into the IVT
of the interrupt vector that it will use.

6. The processor saves its Flags register on the stack and then
clears its Interrupt and Trap flags. At this point, the segment

174 PC interfacing and data acquisition

and offset addresses of the next instruction that the processor
would otherwise have executed are also pushed onto the stack
(these are used to resume execution of the interrupted code
when the interrupt handler terminates). The processor retrieves
the address of the interrupt handler from the interrupt vector
and, by placing this address into its CS:IP registers, effectively
transfers control to the beginning of the interrupt handler.

7. The interrupt handler performs whatever actions are necessary
in order to respond to the peripheral device’s interrupt request.
These actions will vary, but should always result in the device
removing its request by pulling the appropriate IRQ line low
again. Before returning control to the interrupted process, the
handler should then issue an End Of Interrupt (EOI) command
(usually a value of 20h) to the PIC. The EOI command causes the
ISR to be reset, allowing further interrupt requests of an equal or
lower priority to proceed. The interrupt handler should ensure
that it saves the contents of all of the processor’s registers and
that it restores them before returning. The return itself should be
implemented with the IRET (Interrupt Return) instruction rather
than the normal subroutine return, RET. The IRET instruction auto-
matically restores the Flags register (and therefore the Interrupt
Flag) which had originally been saved by the processor on the
stack. It also loads the return address from the stack into the
CS:IP registers to effect the return.

Figure 5.3 illustrates this sequence diagrammatically. The circled
numbers refer to the stages in the foregoing list. Bear in mind that
this figure is not a precise timing diagram – indeed the timing of
certain elements can vary considerably – nor does it include all of the
control signals that are passed between the PIC and the processor.

The interrupt sequence in protected mode (e.g. under Microsoft
Windows) is similar in many respects, although there are a number of
important differences. See Hummel (1992) for more on protected-
mode interrupts.

Interrupt triggering

There are two ways in which signals present on the various IRQ
lines may become latched into the PIC’s IRR and thereby generate
an interrupt request: edge-triggered or level-triggered detection.
The former method uses the rising edge of the IRQ line to latch
the corresponding IRR bit, while the latter method relies on level-
sensing circuitry. The trigger method employed varies between
different types of computer system. It should not be changed by
the user. ISA and XT bus machines program the PIC to respond to

The interrupt system 175

1

0

1

0

1

0

1

0

1

0

1

0

IRQn

(PERIPHERAL)

HIGHER

PRIORITY

ISRs

INTR

(PIC INT)

INTA

(PROCESSOR)

PIC's

ISRn

DATA

BUS

EXECUTING

PROCESS

4b

4d

7a

4a

4c

INTERRUPT
TYPE CODE

ORIGINAL PROCESS INTERRUPT n HANDLER ORIGINAL

EOI

5 6

7b

2

1

3

IRET

,

Figure 5.3 The interrupt sequence

edge-triggered interrupts while MCA machines (i.e. most PS/2s) use
level-triggered interrupts. EISA machines default to edge triggering
for compatibility with AT systems, but may also be programmed for
level-triggered interrupts.

In an edge-triggered system, an interrupt is generated only when
the IRQ line first undergoes a low-to-high transition. The line may
remain high without further interrupts being triggered. However,
if the IRQ stays high in a level-triggered system, a second interrupt
will be generated as soon as the software issues an EOI command to
acknowledge the first interrupt. It is, therefore, essential to deactivate
the IRQ line before issuing an EOI to a level-triggered PIC.

One consequence of level-triggered interrupts is that they facilitate
sharing of IRQ lines between different devices. MCA machines
incorporate hardware that allows more than one peripheral device
to drive the same IRQ line. The IRQ remains asserted as long as
one or more peripherals are requesting service. To accommodate
this mode of operation, each peripheral must provide a software-
readable flag to indicate when it requires service. The interrupt

176 PC interfacing and data acquisition

handler routines associated with each device on the shared IRQ
line are installed in a chain-like structure. The first handler to gain
control when an interrupt occurs should check whether its own
associated device requires attention. If it does not, the handler must
immediately call the previous interrupt handler in the chain (i.e.
the one associated with the next device attached to the shared IRQ).
This process repeats until all devices that require attention have
been serviced.

Although this method provides additional scope for system expan-
sion, it does increase the overall time taken to respond to interrupts.
In some DA&C applications this additional delay might unacceptably
compromise the real-time performance of the system. In general, it is
wise to avoid using shared interrupts for any subsystem that requires
a fast interrupt response. Interrupt response times and latencies are
discussed in the section Interrupt response times at the end of this
chapter.

Cascaded PICs on ISA and MCA machines

In order to expand their interrupt processing capability from 8 to
15 IRQ lines, ISA- and PCI-based PCs (i.e. AT compatibles) and
MCA machines (i.e. IBM PS/2s) are equipped with two 8259A PICs,
connected together in a cascaded configuration. This requires the
BIOS’s Power-On Self Test (POST) routines to initialize the PICs
in a slightly different manner so that they will operate as a master
and slave. The primary (master) PIC is used in much the same
way as on PC and XT machines and is mapped to the same I/O
addresses (ports 20h and 21h). The secondary (slave) PIC appears
at ports A0h and A1h. The eight interrupt request lines provided
by the additional PIC are referred to as IRQ8–IRQ15. The slave’s
INT output line is fed to the IRQ2 input of the master PIC. In this
way any interrupt requests occurring on IRQ8–IRQ15 result in an
interrupt being signalled on the master PIC’s level 2 input. This has
obvious consequences for the interrupt priority scheme described
previously. Figure 5.4 illustrates how the two PICs are connected.

When the slave receives an interrupt request, it prioritizes it in
the same way as previously described and asserts its INT line. This
is detected by the master PIC on its IRQ2 line. The master then
prioritizes this interrupt request and asserts the processor’s INTR
pin. When the processor responds with two INTA pulses, the master
PIC effectively passes control to the slave by means of the CAS0
to CAS2 lines. These enable the slave and cause it (rather than
the master PIC) to place an Interrupt Type Code (usually in the
range 70h to 77h) on the data bus during the second INTA cycle.

The interrupt system 177

System
timer

Keyboard

IRQ2

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

IRQ8

IRQ10

IRQ11

IRQ12

IRQ13

IRQ14

IRQ15

IRQ8

IRQ9

IRQ10

IRQ11

IRQ12

IRQ13

IRQ14

IRQ15

IRQ2

IRQ3

IRQ0

IRQ1

IRQ4

IRQ5

IRQ6

IRQ7

INT

INTA

INT

INTA

CAS0 to CAS2

PIC2 (SLAVE)

PIC1 (MASTER)

Figure 5.4 Cascaded master and slave PICs on the IBM AT and PS/2

If an interrupt originates from the slave PIC the interrupt handler
routine must issue EOI commands to both PICs before exiting: the
slave should be acknowledged first and the master second. Note
that further interrupt requests made via the slave PIC will not be
recognized by the master until after the master has received an EOI
command.

Because the master PIC’s level 2 input is connected to the INT
output from the slave PIC, the IRQ2 line is no longer available

178 PC interfacing and data acquisition

to accept interrupt requests. The modern AT-compatible PCs are
designed to maintain compatibility with the IBM PC and XT (which
were able to make use of IRQ2) by connecting the IRQ2 line on
the expansion bus to the slave’s IRQ9 input. IRQ9 is mapped to
the interrupt 71h vector. The BIOS incorporates an interrupt 71h
handler which simply makes a software call to the interrupt 0Ah
(IRQ2) handler. In this way, if an adaptor card issues an interrupt
request on the IRQ2 expansion bus line, the correct interrupt
handler is still invoked (although the interrupt request is routed
through IRQ9 and the slave PIC instead of going directly to the
master). This allows software and hardware designed for earlier
systems to work without modification on AT-compatible PCs.

It is interesting to note that it is possible to expand the PC’s
interrupt system by interfacing additional PICs. Because some of
the interface lines required for cascading the additional PICs are
not available on the expansion bus, full cascading is not possible.
Software interrupt handlers must, in this case, poll the various PICs in
order to determine which device requested service. This technique
is described in detail by Eggebrecht (1990).

Remapping interrupts

During the second INTA cycle, the PIC passes an 8-bit Interrupt
Type Code to the processor. This code is actually the ordinal index
of the interrupt vector which is to be used to transfer control to the
interrupt handler. Bits 0 to 2 of the Interrupt Type Code contain a
binary-coded representation of the number (in the range 0 to 7) of
the IRQ line which generated the interrupt. The 5 highest order bits
determine which of the available 256 interrupt vectors are mapped
to the IRQ lines. These bits are programmed into the PIC during
initialization (i.e. usually by the BIOS’s POST routines). This allows
the system initialization code to map the block of eight interrupt
lines associated with each PIC to a specific region of the IVT. For
the master PIC present on all PC-compatible machines, the high
order 5 bits of the Interrupt Type Code are such that IRQ0–IRQ7
are mapped to interrupts 08h–0Fh. The value programmed into
the secondary PIC (on ISA, PCI, EISA and MCA machines only)
routes IRQ9–IRQ15 to interrupts 70h–77h. The interrupts may be
remapped simply by reinitializing the PIC(s) with a suitable value
for the 5 high order bits of the Interrupt Type Code. Remapping
hardware interrupts in this way might introduce incompatibilities
with software which expects the IRQs to invoke the usual interrupts.
If you do remap the interrupts be sure to account for any such
incompatibilities and remember to redirect the new interrupts to
the appropriate interrupt handlers.

The interrupt system 179

Programming the PIC and reading its registers

The 8259A PIC is a very flexible device and may be programmed
to operate in a variety of modes. Some of these modes are not
compatible with the PC’s architecture, or even with the 80x86 family
of processors, so you will need to exercise great care if you wish to
reprogram this device.

As explained previously, the system BIOS’s POST routines
configure the PIC to a standard operating mode, and there is
usually no need for the programmer to subsequently reprogram the
device. Indeed to do so may affect the ability of the PIC to function
correctly in conjunction with BIOS and other system components.
Nevertheless, there are rare instances when it is necessary to change
the PIC’s operating mode and so the relevant commands are
discussed briefly below. We will, however, discuss only those modes
and commands that are useful on the PC. You should refer to Intel’s
8259A Programmable Interrupt Controller Data Sheet for additional
programming details.

Mode selection and other commands may be issued to the PIC
either as an initialization sequence of 2 to 4 bytes – known as Initial-
ization Command Words (ICWs) – or subsequently as individual
Operational Command Words (OCWs). The PIC has two 8-bit ports,
each of which accepts certain command words: these are detailed
below. We will refer to these ports as port 0 and port 1. On the
master PIC, ports 0 and 1 are mapped to I/O addresses 20h and
21h respectively. The slave PIC present on ISA, PCI, EISA and MCA
systems uses ports A0h and A1h.

Initialization command sequence

An application program may reinitialize the PIC if it wishes to
modify certain modes of operation. Initialization involves the soft-
ware writing from two to four Initialization Command Words to
ports 0 and 1. The first ICW, known as ICW1, is written to port 0.
Bit 4 of ICW1 is always set and this allows the PIC to distinguish it
from Operational Command Words which all have bit 4 reset (i.e. 0).
The values of bits 0 and 1 of ICW1 determine whether the third and
fourth ICWs are needed. Note that the format of ICW3, if needed,
depends upon whether the PIC has been configured as a master or
as a slave.

It is not usually necessary to reinitialize the PIC because the BIOS
POST routines will normally have set the device to the correct
operating mode. Consequently initialization will not be discussed
in detail here and the bit assignments listed in Tables 5.2 to 5.6
will be presented without further comment. If you need additional

180 PC interfacing and data acquisition

Table 5.2 ICW1, for output to port 0

Bit Name Description

0 IC4 1 D Use ICW4. If this bit is 0, ICW4 would not be required and the

functions controlled by ICW4 would be treated as though all

ICW4 bits were 0.

1 SNGL 1 D No cascade (used on PC and XT). ICW3 is omitted.

0 D Cascade mode (used on AT and PS/2). ICW3 is required.

2 ADI Always 0. Unused on PC and compatibles.

3 LTIM 1 D Level-triggered IRQs (MCA machines).

0 D Edge-triggered IRQs (PC, XT, AT systems).

4 Always 1. Identifies the command as being ICW1.

5–7 A5–A7 Always 0. Unused on PC and compatibles.

Table 5.3 ICW2, for output to port 1

Bit Name Description

0–2 A8–A10 Always 0. Unused on PC and compatibles.

3–7 T3–T7 High order 5 bits of the Interrupt Type Code that is

transferred to the processor during the second INTA cycle.

Master PIC uses 00001b and slave PIC uses 01110b.

Table 5.4 ICW3, for output to port 1 of the master PIC

Bit Name Description

0–7 S0–S7 Each bit represents an interrupt level used to cascade to a

slave PIC. Each bit set to 1 indicates that a slave PIC is

attached to the corresponding IRQ level. On the AT, IRQ2

is used for cascading the slave PIC so ICW3 is 00000100b.

Table 5.5 ICW3, for output to port 1 of the slave PIC

Bit Name Description

0–2 ID0–ID2 ID code of slave device (same as master’s IRQ level to

which the slave is attached): 010b on AT.

3–7 Always 0. Unused on PC and compatibles.

The interrupt system 181

Table 5.6 ICW4, for output to port 1

Bit Name Description

0 �PM Always 1. Indicates 80x86 compatibility mode.

1 AEOI Always 0. Indicates no automatic EOI.

2 M/S Always 0.

3 BUF Always 1 on PC and XT. Indicates buffered mode.

Always 0 on AT. Indicates non-buffered mode.

4 SFNM Always 0. Indicates not special fully nested mode.

5–7 Always 0. Unused on PC and compatibles.

Table 5.7 Summary of useful 8259A PIC operational commands

Port

Command code Master PIC Slave PIC Description

0Ah 20h A0h Map IRR to port 20h/A0h for reading.

0Bh 20h A0h Map ISR to port 20h/A0h for reading.

20h 20h A0h Non-specific end of interrupt (EOI).

C0h–C7h 20h A0h Set priority.

Mask 21h A1h Set interrupt mask (load IMR).

information, you should consult the Intel 8259A Programmable
Interrupt Controller Data Sheet.

Operational commands

After the PIC has been initialized by the BIOS POST routines, various
operational commands may be issued to the PIC in order to perform
actions such as reading the ISR or acknowledging an interrupt.
We have already introduced some of the operational commands:
accessing the IMR and issuing a non-specific end-of-interrupt (EOI),
for example. A number of other useful commands are available to
the programmer. These allow the software to read the PICs’ status
registers (i.e. the IRR and ISR) and to select various operating modes.
A selection of Operational Commands are listed in Table 5.7. Unlike
the Initialization Commands, the Operational Command Words do
not need to be issued in sequence. Note that any interruptible
command sequence (e.g. reading the IRR) should be carried out
with processor interrupts disabled.

Map IRR to Port 0 command (write 0Ah to port 0 (20h/A0h))

This command maps the IRR to port 0 so that subsequent reads from
I/O port 20h (or A0h for the slave PIC) will return the contents of

182 PC interfacing and data acquisition

the IRR. Each of the eight IRQ inputs is represented by 1 bit of
the IRR: bit 0 indicates whether an IRQ0 request is pending; bit 1
indicates whether an IRQ1 request is pending and so on. All pending
interrupt requests are denoted by a 1 bit. It is sometimes useful to
read the IRR in order for an interrupt handler to check whether
any lower priority interrupts are pending. Other software routines
can also use this facility to determine whether an interrupt request
has occurred while external hardware interrupts may have been
masked.

Map ISR to Port 0 command (write 0Bh to port 0 (20h/A0h))

This command maps the ISR to port 0 to that subsequent reads from
I/O port 20h (or A0h for the slave PIC) will return the contents of
the ISR. The ISR contains 1 bit for each possible IRQ level in much
the same way as the IRR. However, a high ISR bit indicates that
the corresponding interrupt level is currently being serviced (i.e. the
interrupt has been invoked, but the handler has not yet issued an
EOI). All interrupts which are currently in service will be represented
by high ISR bits. Only one bit of the ISR will usually be set during
execution of an interrupt handler, but if one or more higher priority
requests have interrupted a lower priority handler before the latter
has issued an EOI (and thus cleared its associated ISR bit), more
than one ISR bit will be set. Reading the ISR also provides a means
for a shared interrupt handler (e.g. one written to handle input
from two or more serial ports) to determine which device issued the
interrupt.

Non-specific End-of-Interrupt command (write 20h to port 0 (20h/A0h))

The non-specific EOI command should be issued by each inter-
rupt handler before returning control to the interrupted process.
This command clears the ISR bit corresponding to the highest
priority interrupt currently in service. This will normally be the
interrupt which issued the EOI command. By clearing the ISR bit,
the command allows further interrupts of equal or lower priority to
occur. On dual-PIC systems (e.g. ISA, PCI or MCA), any interrupt
handlers which are invoked via the slave PIC (i.e. via IRQ8–IRQ15)
must issue EOI commands to both PICs. The slave PIC should be
acknowledged first and then the master.

Set Priority command (write C0h-C7h to port 0 (20h/A0h))

This set of commands allows different priorities to be assigned
to each IRQ input. Normally, the PIC is programmed to allocate
IRQ0 requests the highest priority and IRQ7 the lowest. Table 5.8

The interrupt system 183

Table 5.8 Interrupt priorities defined by the set priority command

IRQ priority order

Priority C0h C1h C2h C3h C4h C5h C6h C7h

1 (highest) 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

8 (lowest) 0 1 2 3 4 5 6 7

illustrates the priorities assigned to each IRQ input by the Set
Priority commands. Note that, in the case of the slave 8259A PIC, the
interrupt request levels listed as 0–7 actually refer to IRQ8–IRQ15.

Suppose that it is necessary to incorporate a section of time-critical
code within a DA&C program. It may be desirable in some situa-
tions to install the code within a high priority interrupt handler.
This prevents other external hardware interrupts from taking prece-
dence and thereby delaying execution of the code. The hardware
which is to generate the interrupt requests might, for example,
be connected to IRQ7. In the case, the C6h command would be
issued. This would allocate the highest priority to the new IRQ7
process: higher than even the system clock interrupt on IRQ0. You
should exercise great care when reassigning interrupt priorities and
should be aware of all possible consequences of doing so. You should
also confine any high priority processes to as short a time span as
possible in order to avoid adversely affecting other interrupt-based
subsystems.

Define Interrupt Mask command (write mask byte to port 1 (21h/A1h))

It is possible to modify the Interrupt Mask Register (IMR) by writing
to this port. The IMR may also be read by reading from port 1.
Each bit masks or unmasks the corresponding interrupt level. Bit 0
is associated with IRQ0, bit 1 with IRQ1 etc. Each low bit in the IMR
enables the corresponding IRQ level and a high bit disables the IRQ.

The Non-Maskable Interrupt

The processor’s Non-Maskable Interrupt (NMI) facility provides a
means for the various PC subsystems to notify the processor when

184 PC interfacing and data acquisition

some critical event, such as a hardware failure, has been detected. On
ISA and XT-bus machines, there are three possible sources of NMIs:
RAM parity failure, I/O channel error or a numeric coprocessor
error. On MCA systems, channel 3 of the system timer (i.e. the
watchdog timer) can also initiate an NMI. There are a number of
additional sources of NMIs on EISA machines.

One important difference between NMIs and external hardware
(INTR) interrupts is that the processor does not attempt to retrieve
an Interrupt Type Code from the data bus. Instead, it always uses
interrupt type 2 to service the NMI. This is a fixed feature of the
processor and cannot be changed by the programmer.

NMI handler routines are normally implemented by the system
BIOS. In situations such as a memory parity error, the BIOS’s NMI
handler will usually display a message to indicate the nature of the
fault. In such cases there is generally no way to recover reliably from
the problem and so the BIOS closes down the system.

NMIs have the highest priority of all hardware interrupts and
this guarantees a more or less immediate response to a pending
error condition. The only conditions that can delay execution of an
NMI are:

ž The NMI has been disabled by software (e.g. by code that reads
the CMOS RAM or Real Time Clock).

ž The processor is responding to a higher priority interrupt (such
as an exception).

ž The processor has begun execution of an instruction that changes
the SS (stack segment) register. In this case the NMI will not be
recognized until after the following instruction has been executed.

Enabling and disabling the NMI

As its name suggests, and unlike external interrupts on the INTR line,
the NMI cannot be masked (disabled) within the processor itself.
However, the AT and compatible machines incorporate circuitry for
gating off the NMI signal before it reaches the processor. The BIOS
POST routines ensure that the NMI is enabled during start-up, so
that any subsequent memory or I/O errors will generate an NMI.
An application program may disable the NMI by setting bit 7 of I/O
port 70h to 1. The NMI may be re-enabled by clearing the same bit.
Port 70h is also used to access the AT’s Real Time Clock and CMOS
RAM. The NMI should normally be disabled in this way whenever
you attempt to read from, or write to, the CMOS RAM. It is generally
inadvisable to disable the NMI for an appreciable length of time.

The interrupt system 185

Signalling a system failure

In most DA&C applications it is unnecessary to install your own NMI
handling routines. If a RAM parity or other critical error occurs,
there is little that the programmer can do to recover. However, there
are situations where you might wish to inform an external device
of the fault by, for example, closing a relay or otherwise asserting a
digital I/O line. This might be facilitated by intercepting the NMI,
but this technique will not normally be foolproof. There are likely
to be many other possible (and more probable) failure modes in a
typical data-acquisition system: obvious examples are loss of power
or a software crash due a coding error. If it is necessary to inform
external equipment of a general system failure, it will usually be more
reliable to make use of a watchdog timer as described in Chapter 3.
If you need to write your own NMI handlers you may wish to consult
the text by van Gilluwe (1994) which provides further information
on this topic.

It should be noted at this point that you should not rely on the PC,
its software or peripheral devices to control or monitor a potentially
hazardous system. Reliable as most modern PCs are, they are very
complex machines and, as a general rule, the more complex a system
is, the more scope there is for it to fail! Any PC-based DA&C system
should always be supplemented by whatever fail-safe mechanisms
might be necessary to ensure total safety. This point may (indeed,
should) be obvious to the reader, but it is of such importance that it
cannot be overemphasized.

5.3 Software interrupts and processor exceptions

Software interrupts and processor exceptions are both generated by
events which occur within the confines of the processor itself. They
arise as a result of the processor executing a specific instruction
or sequence of instructions. Software interrupts may be initiated by
special interrupt instructions placed in the program. They are gener-
ally used to provide a means of communicating with other software
processes such as DOS or the PC’s BIOS. Processor exceptions, on
the other hand, generally arise from some form of error condition,
such as an attempt to divide a number by zero.

Software interrupts

Software interrupts are used on the PC as a way of implementing
address-independent interprocess software calls. Many PC programs

186 PC interfacing and data acquisition

use the software interrupt mechanism for accessing the BIOS and
operating-system services.

The interrupt sequence

Because software interrupts are generated by interrupt instructions
placed within a program sequence they always operate synchronously
with the processor. Consequently the precautions outlined previously
in regard to accessing global data structures and other shared
resources do not apply. In other respects, however, the operation
of the two types of interrupt are very similar. On encountering
a software interrupt instruction, the processor pushes the Flags
register, clears the Interrupt Flag (IF) and the Trap Flag (TF)
and then pushes the CS and IP registers onto the stack. During
this process the processor also retrieves the address (CS:IP) of the
interrupt handler from the IVT and then transfers control to the
handler. After all necessary processing has been completed, the
interrupt handler should return control to the calling process by
issuing an IRET instruction. Because the interrupt was generated
within the processor, there is, of course, no need to acknowledge
the PIC with an EOI command.

The Interrupt Type Code (i.e. the index into the IVT) is usually
obtained from the interrupt (INT) instruction itself. A few instruc-
tions (such as the INT0 and BOUND instructions or the Breakpoint
opcode) will only generate an interrupt under specific conditions.
The Interrupt Type Code used in these cases is not received from the
instruction sequence, but is instead generated by the processor. We
will not discuss these instructions here. See Hummel (1992) or your
assembly language programming manuals for further information
on these interrupts.

When a software interrupt occurs, the processor always clears the
Interrupt Flag immediately after pushing the original Flags register
onto the stack. This means that all maskable (i.e. external hardware)
interrupts will be disabled until the interrupt handler either issues
an STI instruction or returns with an IRET (which restores the original
contents of the Flags register). Unless there is a good reason to do
otherwise, it is sensible for a software interrupt handler to unmask
the external hardware interrupts (i.e. issue an STI instruction) as
soon as it gains control. Software interrupts have a higher priority
than either of the hardware (INTR or NMI) interrupts. Note that
software interrupts are not maskable and so are not affected by the
state of the Interrupt Flag.

The interrupt sequence in protected mode is similar in many
respects, although there are some important differences. See
Hummel (1992) for more on protected-mode interrupts.

The interrupt system 187

Issuing a software interrupt in assembly language

A software interrupt may be invoked from an assembly language
program by means of the 2-byte INT instruction. The first byte is
always the CDh opcode and the second byte may be any number from
0 to 255: this is actually the Interrupt Type Code which the processor
uses to retrieve the associated interrupt vector. The INT instruction is
capable of invoking any available interrupt, even one reserved for a
processor exception or hardware interrupt. The following real-mode
code fragment illustrates how interrupt 21h (the DOS Function
interrupt) may be called from an assembly language program. This
particular example calls the Get DOS Version function, as denoted
by the value of 30h placed into the AH register, and then checks to
see whether it is version 3.0 or later.

mov ah,30h ;Get DOS Version function number

int 21h ;Call DOS using software interrupt

cmp al,3 ;Is it version 3.0 or later ?

jge DOSVersionOK ; - Yes, proceed

jmp DOSVersionError ; - No, jump to error routine.

The details of calls to other functions (i.e. the register usage) will
differ, but the same interrupt call mechanism applies.

Note that the actual value of the Interrupt Type Code (in this
case 21h) is coded into the instruction sequence. It is not possible
to code an interrupt call using a variable Interrupt Type Code. If
you wish to do this you will need to build a table of int instructions
and then use the Interrupt Type Code as an index for jumping
into the table. A more efficient, but in some ways a less satisfactory,
alternative is to use self-modifying code – i.e. software that writes
the Interrupt Type Code directly into the instruction sequence in
memory prior to executing the int instruction. It is often inadvisable
to use this technique, however. One has to account for the operation
of caches and prefetch queues within the processor and circumvent
problems with writing to the code segment in protected mode. Self-
modifying code can also be difficult to debug and cannot be run
from ROM – e.g. in embedded applications.

For further information on the prefetch queue and protected
mode programming refer to Hummel (1992). A discussion of
interrupts under Microsoft Windows can be found in the text by
Solomon (1998).

Issuing a software interrupt from a high level language

Many compiled high level languages such as C and Pascal include
functions or procedures for issuing software interrupts. A jump

188 PC interfacing and data acquisition

table, or self-modifying code similar to that described above allows
the function to receive the Interrupt Type Code as a variable param-
eter. Although not defined by the ANSI C standard, compilers
such as Borland C provide the int86() and int86x() functions for
invoking software interrupts (refer to your programming language
technical manual for further information on these functions). Other
languages provide similar functions: Borland Pascal, for example,
has a procedure known as Intr(). In all cases these functions or
procedures allow the calling process to pass data to the interrupt
handler via the processor’s registers and to receive any results back
in the same way. The registers are encoded in a data structure such
as a union in C or a variant record in Pascal.

The following code fragment illustrates how the C language’s
int86() function may be used to call a BIOS service. In this example,
we invoke the service which moves the cursor to position X,Y on the
display screen.

void SetCursorPos(unsigned char X, unsigned char Y)

/* Changes the text screen cursor position on page 0.*/

f
union REGS In, Out;

In.h.ah = 0x02;

In.h.bh = 0x00;

In.h.dl = X - 1;

In.h.dh = Y - 1;

int86(0x10, &In, &Out);

g

The h qualifier in the In.h.dl = X - 1 line, for example, provides
access to byte-sized registers. To access a word register, such as
DX, it would be necessary to use In.x.dx = ... etc. Hexadecimal
constants are denoted by the 0x prefix in C, so in this example the
int86(0x10...) instruction actually calls interrupt 10h: the BIOS video
services. Note that the addresses of the In and Out register structures
are passed to the int86() function as denoted by the & prefixes.

A number of other interrupt functions and procedures are avail-
able for making calls direct to DOS using interrupt 21h. Borland
C provides the intdos() and intdosx() functions for this purpose.
Similar functions are available in other high level languages.

Processor exceptions

Processor exceptions are generated internally by the processor as
a result of executing a specific sequence of instructions. They are
generally used to signal some form of error condition. As they

The interrupt system 189

are not generated independently of the processor, exceptions are
always synchronous. Like software interrupts, processor exceptions
cannot be masked. They have the highest priority of all types of
interrupt: higher even than the NMI. Most types of exception are
only generated in protected mode or V86 mode. A full discussion of
processor modes and exceptions is beyond the scope of this book.
Interested readers are referred to the text by Hummel (1992) which
provides a very detailed account of this topic.

5.4 Interrupt priorities

The priorities which the processor and PIC assign to the various
types of interrupt have already been mentioned. A high priority
interrupt request will, if it occurs simultaneously with one of a lower
priority, be recognized first. Lower priority interrupts are generally
inhibited until the interrupt handler acknowledges the source of
the interrupt, issues an EOI command to the PIC and, if necessary,
sets the processor’s Interrupt Flag. Table 5.9 illustrates the default
prioritization applied by the 8259A PIC(s) to the various external
hardware interrupts.

Note that although this prioritization is implemented by the PC’s
hardware, it is possible for software to modify the effective priorities

Table 5.9 Normal external hardware interrupt priorities of the 8259A PIC

Priority PC and XT AT, PS/2 and EISA

1 (highest) IRQ0: System timer IRQ0: System timer

2 IRQ1: Keyboard IRQ1: Keyboard

3 IRQ2: LPT2/ReservedŁ IRQ8: Real-time clock

4 IRQ3: COM2Ł IRQ9 (labelled IRQ2 on bus): ReservedŁ

5 IRQ4: COM1Ł IRQ10: SpareŁ

6 IRQ5: Hard disk controllerŁ IRQ11: SpareŁ

7 IRQ6: Diskette controllerŁ IRQ12: Spare (AT); Pointing device (PS/2)Ł

8 IRQ7: LPT1Ł IRQ13: CoprocessorŁ

9 IRQ14: Hard disk controllerŁ

10 IRQ15: SpareŁ

11 IRQ3: COM2Ł

12 IRQ4: COM1Ł

13 IRQ5: LPT2 (AT): Reserved (PS/2)Ł

14 IRQ6: Diskette controllerŁ

15 (lowest) IRQ7: LPT1Ł

ŁAvailable on expansion bus.

190 PC interfacing and data acquisition

of the interrupts by reprogramming the PIC(s) as described in
Programming the PIC and reading its registers earlier in this chapter.

The processor itself must prioritize all interrupts that it
receives – i.e. hardware interrupts occurring on the INTR line
together with the NMI, processor exceptions, traps and software
interrupts. The processor’s prioritization scheme varies with the
type of processor and with the state of its flags, and in some cases
also depends upon which combination of interrupt requests are
pending. In general though, certain processor faults (e.g. divide-by-
zero errors) and traps (e.g. debug trap) have the highest priority, and
external hardware interrupts have the lowest (although the 80486
and later processors assign even lower priorities to some faults and
exceptions). Unmaskable interrupts, including the NMI, software
interrupts and processor exceptions have intermediate priorities.
The details of the various processors’ prioritization schemes are
beyond the scope of this book. Interested readers are referred to
Hummel (1992) for further information.

The point of this discussion is that the NMI, some types of trap
and software interrupts can take precedence over external hardware
interrupts. This has obvious implications for developers of real-
time systems where the presence of higher priority interrupts might
adversely affect interrupt latencies.

5.5 Writing interrupt handlers

Interrupt handlers have a multitude of applications within DA&C
software. They can, for example, be used to enable the processor to
read an ADC or the serial port whenever new data becomes available.
They are also commonly used for timekeeping and pacing. Periodic
interrupts from the system timer or from an external device allow the
software to perform actions at regular intervals. These actions might
include tasks such as checking the status of a limit switch or relay (via
an I/O port) or controlling an actuator. Various PC subsystems can
be manipulated by hooking interrupts. For example, it is possible to
detect or filter out specific key combinations (such as Ctrl-Alt-Del)
by intercepting the keyboard interrupt.

Finally, and perhaps most importantly, the interrupt system allows
the programmer to trap specific error conditions (e.g. a divide
by zero) and events such as a Ctrl-C or Ctrl-Break interrupt. The
application software can install routines to handle the error and
to provide a suitable recovery mechanism. This consideration is
generally of most importance to assembly language programmers
since most high level languages (HLLs) incorporate mechanisms

The interrupt system 191

for automatically trapping these interrupts. Nevertheless, all users
of HLLs should be familiar with the error trapping facilities of
their compiler. This topic is covered adequately in many books on
DOS programming (e.g. Duncan (1988) and Dettmann and Johnson
(1992)) and so will not be discussed here.

The following subsections describe how interrupt handlers can be
installed in a real-mode data-acquisition program. They also illustrate
how the functionality of existing interrupt handlers may be preserved
by adding new handlers in a chain-like structure. Similar principles
will apply to interrupts in protected mode, but you should be aware
that the structure of the interrupt handler may be governed by
the operating system in use. Indeed the operating system may even
hide the mechanics of the interrupt process from the application.
Windows NT, for example, allows only privileged operating-system
code or device drivers to directly handle interrupts, although there
are callback facilities that allow less privileged user-mode code to be
invoked indirectly as a result of an interrupt.

Additional information on using the PC’s interrupt system in
real-mode is provided in the texts by Swan (1989) and Holzner
and Norton (1991). Solomon (1998) describes interrupt processing
under Windows NT in some detail.

Installing an interrupt handler

In order to install an interrupt handler, the corresponding interrupt
vector must be modified so that it points to the new routine. Before
doing this, however, the original value of the interrupt vector should
be recorded so that it can be restored before the program terminates.
A record of the original interrupt vector is also essential in cases
where control must be passed to the old interrupt handler. There are
two ways in which the individual interrupt vectors may be modified:
via operating system functions or by directly accessing the IVT in
low memory. For reasons of simplicity and portability, the former
method is normally to be preferred. In fact, a number of high
level languages provide library functions which are based on these
services. Borland’s implementations of C provide the getvect() and
setvect() functions for reading and modifying interrupt vectors.

However, there are circumstances, in a real-mode program, where
it is preferable to read from, or write to, the IVT directly. This is
often perfectly acceptable provided that there is no possibility of an
interrupt occurring while the IVT is being accessed. It is usually safest
to disable all hardware interrupts during IVT accesses. The IVT is
1024 bytes long and, in real mode, is located at the very bottom of
the PC’s memory (i.e. at 0000:0000h). Each vector occupies 4 bytes

192 PC interfacing and data acquisition

and so the offset of the vector with type code n is at 4n. Vector 0 is
at offset 0000h, vector 1 is at offset 0004h, vector 2 is at offset 0008h
and so on.

Masking and unmasking the interrupt

If you are installing a handler for an external hardware interrupt it
may be necessary to unmask the associated IRQ by modifying the
contents of the PIC’s IMR. This action will, of course, be required
only if the interrupt was previously unused. If the new handler is
intended to replace, or link into, an existing interrupt handler, the
IRQ level will already be unmasked and it will not be necessary to
modify the IMR.

Each bit of the IMR corresponds to one IRQ line: bit 0 is associated
with the level 0 interrupt, bit 1 with the level 1 interrupt and so
on. Each zero IMR bit causes the corresponding IRQ level to be
unmasked (enabled). Note that you can read the IMR from I/O
port 21h (or A1h in the case of the secondary PIC) in order to
determine which interrupts are presently enabled. Only the bit
corresponding to the desired interrupt should be modified. Because
many of the remaining IRQ levels are used by other subsystems,
masking or unmasking these interrupts may have undesired effects.
It is wise to take the precaution of disabling interrupts (with a
CLI instruction) while accessing the PIC’s IMR. The example in
Listing 5.2 illustrates how to modify the IMR.

The structure of the interrupt handler

The basic structure of software and hardware-interrupt handler
routines is quite simple. In both cases, the handler must first save
the contents of all of the processor’s registers so that they can be
restored before exiting. If the registers are not preserved in this way,
it is likely that the interrupt handler will corrupt data belonging to
the interrupted process. The usual technique is to save the registers
on to the stack as shown in Listing 5.1. Obviously, only those registers
which are actually modified by the interrupt handler need to be saved
and restored.

After saving the registers, the handler may service the interrupt
and carry out whatever processing is necessary. In the case of a
hardware interrupt handler, the code should usually acknowledge
the device which caused the interrupt so that it deactivates its
interrupt request line.

The interrupt system 193

Listing 5.1 Basic interrupt handler shell

PROC IntHandler FAR

;

; General purpose interrupt handler shell.

;

push ax ; Save registers on stack

push bx ;

push cx ;

push dx ;

push di ;

push si ;

push bp ;

push es ;

push ds ;

; Perform interrupt processing here

pop ds ; Restore regs. from stack

pop es ;

pop bp ;

pop si ;

pop di ;

pop dx ;

pop cx ;

pop bx ;

pop ax ;

iret ; Return from interrupt

ENDP IntHandler

Returning from the interrupt and restoring the interrupt flag

When the interrupt is invoked, the processor pushes the Flags register
and the CS and IP registers on to the stack before transferring
control to the interrupt handler. The handler can easily read the
return address by accessing the appropriate location in the stack
segment. This technique is useful for handling some processor
exceptions and for creating profiling routines. Note that if you are
writing interrupt handlers in a language such as C or Pascal using
high level interrupt-type functions or procedures, the compiler will
automatically save and restore the registers for you. The order in
which they are pushed onto the stack may, however, differ from that
shown in Listing 5.1.

When a software or hardware interrupt handler first gains control,
the processor’s Interrupt Flag (IF) will be clear so no further external
hardware interrupts will be recognized until after the handler termi-
nates with the IRET instruction. Depending upon the nature of the

194 PC interfacing and data acquisition

application, you may wish to unmask the interrupts by issuing an STI

instruction at an earlier point within the handler.
When external hardware interrupts are unmasked by means of

the STI instruction or by restoration of the Flags register during
an IRET, any pending INTR requests will remain unrecognized until
after the instruction which follows the STI or IRET! This facility allows
the programmer to prevent multiple interrupt handlers from being
called in a nested fashion. It therefore helps to eliminate excessive
stack usage, by keeping further interrupts disabled until after the
final IRET instruction has been executed.

When writing a software interrupt handler, you may need to return
status information or other data in the Flags register. In this case
you should not use an IRET because this instruction would over-
write the new Flags status with the original contents of the Flags
register! The handler should, instead, unmask interrupts and exit
with an RETF 2 instruction which will leave the new contents of the
Flags register intact. Some system interrupts, such as DOS interrupt
21h, use this technique to return information in the Flags register.
Remember, however, that this technique only applies to software
interrupt handlers. You should, of course, always use IRET to return
from any interrupt handler that is entered asynchronously (i.e. a
hardware interrupt handler).

Hardware interrupt handlers

Unmasking the processor’s Interrupt Flag will allow only interrupts of
a higher priority than the one currently executing to be recognized.
To allow lower priority interrupts to execute it is necessary to issue
a non-specific EOI command to each of the PICs involved in the
interrupt request:

; Send EOI commands to PICs

mov al,20h ; Non-specific EOI command

out 0A0h,al ; Send EOI to slave PIC

out 20h,al ; Send EOI to master PIC

If the interrupt request is not routed through the slave PIC (i.e. on
XT-bus systems or on ISA systems if the interrupt is on IRQ0–IRQ7),
the out 0A0h,al line is not required and should be omitted.

The EOI command clears the ISR bit that corresponds to the
current interrupt, which allows lower priority interrupt requests
to be serviced. Even if you are content with keeping low priority
interrupts disabled, the EOI command should always be issued at
some point within the interrupt handler. It is possible to determine
whether other interrupt requests are pending or currently in service

The interrupt system 195

by reading the PIC’s IRR and ISR as described in the section
Programming the PIC and reading its registers earlier in this chapter.

Listing 5.2 illustrates how a handler routine may be implemented
in C for an external hardware interrupt. This example installs a
handler for interrupt 0Dh (IRQ5), but can easily be adapted for
other interrupts.

The interrupt keyword available in Borland and Microsoft imple-
mentations of C informs the compiler that the associated function
is an interrupt handler. This causes the compiler to generate special
entry and exit code for the function which preserves the contents
of the processor’s registers and terminates the routine using an IRET

instruction. The entry and exit code is similar, although not identical,
to that shown in Listing 5.1. When an interrupt function is called,
the DS register is initialized to point to the program’s data segment
(in medium memory models), and this allows the interrupt handler

Listing 5.2 Installing an interrupt handler for interrupt 0Dh (IRQ5)

#include <dos.h>

unsigned char OrigIMR; /* Original PIC int mask register */

void interrupt (*OrigIntDVector)(void); /* Storage for orig int 0Dh vector */

:

:

/* Function Prototypes */

void InstallIntDHandler(void);

void RestoreIntDHandler(void);

:

:

void interrupt IntDHandler()

f
/* Do any required processing here */

outportb(0x20,0x20); /* Issue non-specific EOI */

g

void InstallIntDHandler()

f
OrigIntDVector = getvect(0x0D); /* Get original interrupt vector */

disable(); /* Disable interrupts */

setvect(0x0D,IntDHandler); /* Point int 0Dh vector to IntDHandler */

OrigIMR = inportb(0x21); /* Get original IMR */

outportb(0x21,(OrigIMR | 0xDF)); /* Load new IMR value to enable int 0Dh */

enable(); /* Enable interrupts */

g

void RestoreIntDHandler()

f
disable(); /* Disable interrupts */

outportb(0x21,OrigIMR); /* Restore original IMR */

setvect(0x0D,OrigIntDVector); /* Resore original int 0Dh vector */

enable(); /* Enable interrupts */

g

196 PC interfacing and data acquisition

to access global variables. Other compiled languages, such as Pascal,
support similar interrupt-type functions or procedures. Depending
upon your compiler it may be necessary to disable stack-overflow
checking when using interrupt functions.

The InstallIntDHandler() function installs the new interrupt
handler by changing the interrupt 0Dh vector. It then modifies
the PIC’s IMR in order to enable the corresponding IRQ level.
The RestoreIntDHandler() function effectively removes the handler
by restoring the IMR and interrupt vector to their original states.
The interrupt handler itself, IntDHandler(), is very simple. After any
necessary processing has been completed, it just issues a non-specific
EOI command and terminates.

Chained interrupts

So far we have seen how an independent interrupt handler can be
installed on its own dedicated interrupt vector. In this scenario, the
new handler completely replaces any previous interrupt handler.
However, there are some cases where, although a new interrupt
handler is required, the functionality of an existing handler must
also be retained. It is then necessary to call the original interrupt
routine whenever the new handler is invoked. In fact, it is possible
to install a series of handlers on the same interrupt vector. The
newest handler gets control first, performs whatever processing may
be necessary and then calls the previous handler. This handler then
calls the next one in the chain and so on until all handlers have been
executed.

The chaining technique is widely used on the PC and is extremely
useful in a variety of circumstances. You will need to chain interrupt
handlers if you wish to add extra functionality to the system’s timer or
keyboard interrupts, for example. These are both external hardware
interrupts, but software interrupts can also be chained in order to
provide a means of communicating between applications programs
and memory-resident driver software. The C language provides
two methods of interrupt chaining: the chain intr() function and
direct calls.

The chain intr() C function

This function is supported by Microsoft C and later versions of
Borland’s Turbo C. It takes, as a parameter, a far pointer to the
previous interrupt handler (i.e. the one which is to be chained
to). The chain intr() function may be called only from within an
interrupt-type function. When chain intr() is invoked, it restores
all of the processor’s registers from the values previously saved on

The interrupt system 197

the stack (removing them from the stack in the process) and passes
control directly to the old interrupt handler. The old handler then
executes as though it had been invoked directly. When the old
handler has completed its processing, it returns with an IRET directly
to the interrupted code – i.e. it does not return control to the new
handler. The following code fragment illustrates this technique.

void interrupt (*OldIntHandler)(); /* Storage for original int vector */

void interrupt NewIntHandler()

f
/* Do interrupt processing here */

chain intr(OldIntHandler); /* This function does not return */

/* Code here will never be executed! */

g

Some languages such as Pascal (and some early C compilers) do not
include a chain intr() or similar function. In these cases it will be
necessary to resort to assembly language programming or at least
to use inline opcodes. For the benefit of Pascal programmers, the
following inline macro performs a similar service to C’s chain intr()

function. It assumes that, on entry to the new interrupt handler,
the registers are pushed in the order AX, BX, CX, DX, SI, DI, DS,
ES, BP and that a stack frame is then set up by copying SP to BP
(as is the case with Borland/Turbo Pascal compilers). Readers using
C compilers that do not support chain intr() may wish to adopt
a similar technique. If you try this, remember to account for the
different order in which your compiler might save the registers on
entry to the interrupt handler.

Procedure ChainIntr(OldIntHandler: pointer);

Inline($5B/ f POP BX ; Get OldIntHandler pointer g
$58/ f POP AX ; from top of stack g
$87/$5E/$0E/ f XCHG BX,[BP+OE] ; Insert OldIntHandler in stack g
$87/$46/$10/ f XCHG AX,[BP+10] ; at "return address" posn. g
$89/$EC/ f MOV SP,BP ; Simulate Pascal exit code by g
$5D/ f POP BP ; restoring all registers g
$07/ f POP ES ; from the stack. When this g
$1F/ f POP DS ; has been completed, the g
$5F/ f POP DI ; next two words on the top g
$5E/ f POP SI ; of the stack are the new g
$5A/ f POP DX ; "return addr": OldIntHandler g
$59/ f POP CX ; g
$CB); f RETF ; "Return" to OldIntHandler g

Chaining with a direct call

If you need to carry out interrupt processing after the old interrupt
handler has been executed, your new interrupt handler will have to

198 PC interfacing and data acquisition

call the old handler directly. The interrupt call to the old handler
can be simulated by pushing the Flags register and then issuing a far
call. Note that this does not simulate an interrupt exactly (i.e. it does
not clear the processor’s Interrupt or Trap flags), so appropriate
allowances must be made. This technique can be implemented in C
as follows.

void interrupt (*OldIntHandler)(); /* Storage for original int vector */

void interrupt NewIntHandler()

f
/* Do interrupt processing here */

(*OldIntHandler)(); /* SAME AS: pushf */

/* call DWORD PTR OldIntHandler */

/* Do further processing here */

g

Note that the direct call technique does not restore the registers
or stack to their original state before passing control to the old
interrupt handler. This is an important consideration when dealing
with chained software interrupts, as most software interrupt handlers
expect to receive certain values in the registers. In this case you must
ensure that the new handler restores the original register contents
before calling the old interrupt handler. When the old handler
exits via its IRET instruction, control is returned directly to the new
interrupt handler, allowing the latter to perform further processing
before finally returning to the interrupted code.

Chaining hardware interrupt handlers

Because data cannot be passed via registers to an interrupt handler
that is entered asynchronously, it is generally unnecessary to pass the
original register contents down along a chain of hardware interrupt
handlers. In this case the direct call chaining technique may be used.
Listing 5.3 illustrates how an additional handler can be chained onto
interrupt 8 (the system timer interrupt) using this technique. It is very
similar to Listing 5.2, but there are three important differences. First,
the new interrupt handler invokes the previous interrupt handler
when it has completed its own processing. Second, because the old
interrupt handler will issue the required EOI command, the new
handler does not need to do this (you will need to issue an EOI if
your routine does not pass control to the previous interrupt handler,
however). Finally, the installation and deinstallation routines do not
modify the PIC’s IMR because the required interrupt level would
already have been enabled by the BIOS.

The interrupt system 199

Listing 5.3 Chaining an interrupt handler on to interrupt 08h

#include <dos.h>

void interrupt (*OrigInt8Vector)(); /* Storage for original int 8 vector */

:

:

/* Function Prototypes */

void InstallInt8Handler(void);

void RestoreInt8Handler(void);

:

:

void interrupt Int8Handler()

f
/* Do interrupt processing here */

(*OrigInt8Vector)(); /* Call original int 8 handler */

g

void InstallInt8Handler()

f
OrigInt8Vector = getvect(0x08); /* Get original interupt vector */

setvect(0x08,Int8Handler); /* Point vector to Int8Handler */

g

void RestoreInt8Handler()

f
setvect(0x08,OrigInt8Vector); /* Restore original interrupt vector */

g

5.6 Re-entrancy and accessing shared resources

We have already noted some of the problems inherent in sharing
resources between interrupt routines and non-interrupt code. If an
interrupt occurs while a program is accessing a shared hardware
device, and the interrupt handler then attempts to manipulate the
same hardware, it is likely that this will affect the status of the device
and so disturb the operation of the interrupted code. A similar
consideration applies when two or more asynchronous processes
need to call shared operating system services.

Any software routine that can be interrupted and then safely
called again from within an interrupt handler is known as a re-
entrant routine. Most DOS services are non-re-entrant and for this
reason they should not normally be called from within an interrupt
handler. Some BIOS services are also non-re-entrant. Fortunately
there are techniques which allow access to certain DOS services
from within an interrupt handler. These work by checking DOS to
discover whether one of its services was being executed at the time
that the interrupt occurred. Only if DOS had not been interrupted
is it safe to access a DOS service from within the interrupt handler.

200 PC interfacing and data acquisition

Further information may be found in the texts by Dettmann and
Johnson (1992) and Schulman et al. (1990).

It should be noted at this point that the re-entrancy issue is less
problematic in multitasking operating systems and real-time versions
of DOS that are used in embedded PC applications. These support
a number of re-entrant services which can be called from within
interrupt handlers.

It is not just operating system calls that can present re-entrancy
problems. You should be careful to avoid calling any non-re-entrant
code from within an interrupt handler. This includes some driver
services and routines contained within your own program. Suppose
that an interrupt handler issues a call to a non-re-entrant subroutine.
If your program (or another interrupt handler or task) happened
to be executing that subroutine at the time of the interrupt, it is
likely that the subroutine’s internal data structures will have been
corrupted by the time that control returns to the interrupted process.

To make a routine re-entrant it is necessary to ensure that all data
structures used within the routine are dynamically allocated from a
pool of free memory whenever the routine is entered. This prevents
corruption of any data that might have been in use when the routine
was interrupted. The most common way to accomplish this is to
allocate space for new local variables on the stack each time that
the routine is called. Global variables must, of course, be avoided as
there can only ever be a single copy of each global variable. Care
must also be exercised when accessing any other global resources,
such as an item of hardware which is shared with other software
subsystems. If it is necessary for an interrupt handler to access any
shared device or data structure, steps must be taken to ensure that
the handler can never be invoked (e.g. by disabling interrupts) while
other sections of code (i.e. critical sections) are also accessing the
same resource.

Re-entrancy is an issue not just for interrupt handling, but also
in the design of multitasking systems. Windows NT, for example,
employs a pre-emptive task scheduler that can switch between tasks
or threads more or less independently of the state of the current
thread. Resource conflicts are avoided by the use of re-entrant code,
mutexes, semaphores and other sophisticated mechanisms built into
the operating system.

5.7 Interrupt response times

The presence of asynchronous interrupts disturbs the continuous
flow of a program. Hardware interrupt handlers can often cause

The interrupt system 201

execution of the underlying process to be suspended for several
hundred microseconds at a time. As most DA&C applications include
portions of time-critical code, this disturbance can be problematic.
If you use time-critical code in the non-interrupt portion of your
software, you will have to either disable interrupts during execution
of the code (which is practicable over only short time intervals) or be
prepared for the code to be interrupted at unpredictable intervals.

A more satisfactory alternative is to place the important code
within an interrupt handler. This has two advantages. First, the
routine will only be executed when it is needed: the software will
not have to perform continual checks to determine when the code
should be activated. Second, if priorities are carefully assigned, the
interrupt handler will also be less likely to be interrupted itself.

A certain amount of overhead is always involved in responding
to an interrupt and transferring control to and from the associated
interrupt handler. This can often result in a lower throughput than
if a non-interrupt polling loop is used. As well as limiting the rate
at which I/O and other operations can be performed, the interrupt
overhead also delays the response of the system to individual interrupt
requests.

At this point it should be noted that interrupt sharing, which
is possible on MCA systems, can introduce a small but potentially
significant additional overhead because the interrupt handler has to
determine which of the attached devices requires service. Sharing an
interrupt line between two (or more) subsystems should be avoided
in situations where the fastest possible interrupt response is required.

The time taken to respond to an interrupt request (i.e. to perform
some useful action) is determined by two components: the interrupt
latency time and the speed at which the interrupt handler itself
performs its allotted task. The latter is dependent upon the nature
of the application and is often relatively easy to optimize by adopting
efficient coding practices. The interrupt latency time, on the other
hand, is much more difficult to quantify or control. It represents
the worst-case time taken for the system to respond to an interrupt
request. It is defined as the maximum interval between the point in
time where the interrupt request is asserted and the instant that the
processor commences execution of the associated interrupt handler.
The interrupt latency time is composed of three elements:

1. The interrupt recognition time (TR).
2. The time required to complete the current instruction (TI).
3. The interrupt processing time (TP).

TR is the time taken by the processor to recognize that the interrupt
request is pending. If interrupts have been masked by means of

202 PC interfacing and data acquisition

a CLI instruction, or temporarily disabled at the PIC, TR can be
quite considerable. Unfortunately, it is not always easy to determine
how long the system keeps interrupts disabled. Device drivers and
operating system services, which the program might have cause to
invoke, may disable interrupts for an indeterminate length of time.
The time during which an interrupt may be blocked by a higher
priority routine can contribute significantly to its latency time. All
possible combinations of interrupts occurring at the same time (or
nearly the same time) must be taken into account when assessing the
worst-case value of TR. Certain instructions can also temporarily mask
interrupts. We have already mentioned the STI and IRET instructions
which do not allow interrupts to be enabled until after the next
instruction has been executed.

In addition, the processor disables interrupts between LOCK and
segment-override prefixes and the instructions to which they relate.
Instructions which modify the contents of the segment registers on
the 8086 and 8088 processors also cause interrupts to be disabled
until after the following instruction has been completed. However,
this only applies to instructions which modify the SS register on 80286
and later processors. The occurrence of higher priority interrupts
can also increase TR by preventing lower priority handlers from
executing for perhaps several hundred microseconds, or more.

The second component of the interrupt latency time, TI, depends
on the nature of the instruction that is being executed at the time
the processor detects the interrupt. Most instructions take a few
microseconds to execute on an 8088 processor (often much less
than 1 μs on more modern systems). However, some operations such
as multiply or divide may take approximately five or ten times longer
to execute.

The interrupt processing time (TP) is usually of less significance
than TR, although it is an important factor in determining the
minimum possible interrupt latency. It represents the time taken
by the processor, after it has recognized the interrupt request, to
acknowledge the interrupt (i.e. to issue the necessary INTA cycles),
save the Flags, CS and IP registers, retrieve the interrupt vector and
transfer control to the interrupt handler. For external hardware
interrupts on a 4.77 MHz 8088-based machine, this procedure takes
approximately 12.7 μs. A slightly shorter processing time is required
for an NMI: typically 10 to 11 μs on an 8088 processor. Later
processors running at higher clock speeds are, of course, able to
perform the same operations in considerably less time.

In order to calculate the interrupt latency time, the worst-case
values for TR, TI and TP must be added together. In most applica-
tions TR is by far the most important contributor to the interrupt

The interrupt system 203

latency time. Nevertheless, it can be a difficult task to determine the
maximum value of just this one quantity, particularly on systems
running DOS or Microsoft Windows, which were not designed
specifically to meet the stringent timing requirements of real-time
applications.

Chaining of interrupt handlers can further complicate the
problem, making interrupt latencies more difficult to predict. This
is especially so if you have no control of what other software the end
user may install on the same interrupt.

The programmer must always ensure that the interrupt response
of the system is adequate regardless of what portion of the software
is being executed. Consideration should be given to the effect on
interrupt latency of all sections of code in the system. This includes
critical code sections (i.e. code executed with interrupts disabled),
calls to operating-system (and BIOS) services and execution of other
interrupt handlers.

In DOS and Windows-based systems, one largely unknown quantity
(and one over which the programmer has little control) is the
interrupt latency introduced as a result of operating-system code.
Often, there is little information available on interrupt masking
within the various system services. In addition, task and mode switches
under Windows can make interrupt latencies much more difficult to
predict.

Details such as this tend to be precisely quantified in specialist
real-time operating systems. These include ROMable versions of
DOS and the BIOS which are widely used in embedded PC systems.
They are designed for use in multitasking real-time environments,
offering well-defined interrupt latencies, and are essential if the PC
is to be used for high speed real-time applications. They are also
often (at least partially) re-entrant and this allows operating-system
services to be called from within interrupt handlers.

Interrupt latencies are, generally speaking, greatest for systems
running under Microsoft Windows and those executing in protected
mode under a DPMI server. In these systems, calls to operating-system
services may involve switching the processor from protected mode to
real (or V86) mode and then back again. Mode switches as well as task
switches are frequently necessary in order to service hardware inter-
rupts. Whether a mode switch occurs depends upon the mode of the
processor at the time of the interrupt and whether a suitable inter-
rupt handler exists for that mode. In normal operation, Windows 3.1
might perform, perhaps, 20 or more mode switches every second.
Mode switches can be quite time consuming (a few microseconds
up to a few hundred microseconds on an 80286 processor) and
unless great care is taken they can severely degrade the system’s

204 PC interfacing and data acquisition

real-time performance. When Windows is running several processes
concurrently, interrupt requests have to be routed to the appropriate
thread or task in order for them to be handled properly. The time
required for this routing and consequent context switches is variable
and depends upon many factors. This can make it very difficult to
predict interrupt response times under Windows. Whatever oper-
ating system is used, careful design and a detailed knowledge of the
peculiarities of the operating system are of paramount importance
in assessing the interrupt performance and real-time characteristics
of the system.

In many applications the real response to an event does not occur
until after the interrupt handler has terminated. The handler may,
for example, only transfer data to a buffer or set flags: the data or
flags are then acted upon by another portion of the software (e.g.
a loop within the interrupted process or, in the case of a real-time
multitasking system, by a related task). The response of the software
as a whole (e.g. the loop cycle time or the time required to invoke
the task) will then determine the actual performance of the system.

Often the only feasible course of action is to determine the overall
response of the system by thorough and exhaustive testing. Bear
in mind that the actual latency time measured empirically for any
one interrupt may not be representative of the worst-case interrupt
latency. This figure is often difficult to measure because hardware
interrupt processes are, by their nature, asynchronous. This means
that interrupt requests can occur while the system is in almost any
state and it may, therefore, be impracticable to reproduce all possible
combinations of interrupts and system conditions during testing.

6 Data transfer

We will now turn our attention to a topic of central importance in
data acquisition and control: transferring data between the PC and
a peripheral DA&C device. The data transfer techniques that can be
adopted in a DA&C program will depend, to a great extent, upon the
nature of the DA&C hardware to be used. This chapter introduces the
types of device that are available for interfacing to DA&C systems and
discusses a number of issues and software techniques related to data
transfer. The following two chapters continue this theme, covering
parallel and serial buses and associated devices in more detail.

6.1 Data-acquisition interface devices

By a DA&C interface device, I mean a device that facilitates connec-
tion of sensors and actuators to the PC. These take many different
forms. It is convenient to classify them according to their processing
capability and the way in which they transfer data to and from the
PC. These considerations govern how the software communicates
with the DA&C device and determine, to a great extent, the internal
structure and capabilities of the software.

In the following discussion I will use the terms ‘intelligent’ and
‘dumb’ to refer, respectively, to programmable devices that are able
to autonomously process and manipulate acquired data, and to
devices that possess no such processing capability. These informal
terms are used only for convenience. This usage is somewhat impre-
cise and does not, of course, indicate the presence, or otherwise, of
any form of artificial intelligence.

Connection to the PC

The simplest DA&C interface devices consist of circuit boards that are
plugged directly into the PC’s system-bus (e.g. ISA or PCI) expansion

206 PC interfacing and data acquisition

sockets. These devices each provide one or more hardware registers
that are mapped into the PC’s memory or I/O space. Because such
devices connect directly to the system bus, data can be transferred
between the device and software in one operation. For example, a
simple assembly language OUT instruction might be all that is required
to change the state of a group of eight digital output lines or relays.

Communication with intelligent devices involves an intermediate
step. They buffer and translate command codes sent via the registers
and then act on the command, transmitting the appropriate digital
bit patterns to the ADC, relays or to other interface components.

Although plug-in interface cards are the cheapest and, perhaps,
the most widely used interfacing solution, they are not practicable
if, for example, sensors are to be located at a remote site. Where
signal losses preclude the use of long sensor leads, the PC and
digitizing device may have to be positioned some distance apart. In
these situations an external serial link or parallel bus (e.g. RS-232,
RS-485 or IEEE-488) will usually be required to carry commands
and digitized signals between the PC and a remote DA&C unit.
Interfacing techniques for serial and parallel buses are discussed in
Chapters 7 and 8.

Intelligent DA&C devices

Devices that possess a degree of on-board intelligence may assume a
number of data collection, storage and processing tasks which would
otherwise have to be undertaken by the PC. These devices are usually
designed to facilitate deterministic operation and provide guaran-
teed response times and data-acquisition rates. Such capabilities can
obviate the need for complex deterministic and/or multitasking PC
operating systems and can often help to simplify the DA&C software.
A dedicated on-board processor may, for example, be programmed
to execute a deterministic control algorithm while leaving the PC
free to perform other tasks (e.g. to manage the user interface or to
provide disk storage).

It is often somewhat simpler to communicate with intelligent
DA&C devices than to directly manipulate the control lines and
registers of dumb I/O cards. The PC programmer does not have to be
aware of how the various DA&C subsystems (e.g. ADC, multiplexer,
sample and hold) function; all that needs to be understood are the
end results of issuing particular high level commands to the device’s
microcontroller. These commands may be used to configure the
device or to initiate simple tasks such as reading an analogue input
channel. They may also perform more complex operations such

Data transfer 207

as programmed scanning of multiple input channels, buffering
acquired data or even scaling and linearizing each reading.

High level command sets offered by most devices are both
simple and flexible, but they do introduce an additional layer
of complexity between the PC and the low level data-acquisition
hardware. Depending upon the nature of the device, the PC
software may have to accommodate a more complex communi-
cation protocol – particularly in the case of serial bus devices (see
Chapter 8). The extra processing required to formulate, issue and
interpret commands may in some applications limit the speed
and efficiency of the system as a whole.

An important characteristic of some intelligent DA&C units is the
ability to transmit data to the host PC in the form of ASCII encoded
character strings. This permits both scaled and unscaled data to
be transferred. Many devices take advantage of such a capability
by providing facilities for on-board scaling or linearization of data.
The capacity to scale acquired data allows the device to support a
number of more advanced features, such as the ability to operate as
an autonomous controller, to respond to trigger events or to record
only data that falls outside predefined limits. The penalty paid for
these facilities is, in many cases, significantly reduced throughput.

Plug-in coprocessor and DSP cards

One of the simplest solutions for DA&C applications that require
intelligent I/O is to employ a plug-in coprocessor card. These are
simply single-board computers that are designed specifically for
data acquisition, analysis and control. The DA&C coprocessor can
be programmed to perform all of the time-critical operations. As
the host PC is normally used only in a supervisory role and/or to
supply mass storage, user I/O and peripheral interfacing facilities,
its performance is normally not critical. This type of system is
particularly suited to computationally intensive tasks where acquired
data must be mathematically processed in real time. Typical examples
include audio signal and vibration analysis and a variety of real-time
process-control applications. Although most coprocessor cards do
not incorporate analogue signal conditioning (to minimize wide-
band noise pickup from the digital circuitry), many possess a number
of ADC channels, DACs, digital I/O ports and timers.

80x86 coprocessor cards

A small number of coprocessor cards are based upon the 80x86
family of microprocessors and have an architecture similar to that
of the PC. They are suited to a wide range of real-time DA&C appli-
cations and usually permit high speed operation, with maximum

208 PC interfacing and data acquisition

sampling rates ranging from about 50 to 300 000 samples/s. With
suitable buffering, some cards can stream data directly to the host
PC’s hard disk at rates up to about 100 KB/s. These devices are
often equipped with a moderate amount of system RAM. Some also
include dedicated FIFO memory buffers to facilitate high speed data
capture. A few models will operate in PC and XT class machines, but
most require an AT compatible (ISA) bus slot.

The I/O facilities offered usually include high speed analogue
inputs, analogue outputs and digital I/O lines. Some manufacturers
supply modular boards which can be tailored to specific applications
by adding additional ADCs, DACs or digital I/O ports. Direct memory
access (as described later in this chapter) is often supported, together
with flexible interrupt and timing systems.

Some cards have their own ROM-based real-time operating systems
(RTOSs). These provide dedicated DA&C functions and facilitate
communication with the host PC. Special drivers and develop-
ment utilities are usually supplied with these systems, allowing
data-acquisition, data-processing and control algorithms to be down-
loaded to the target processor. Depending upon the type of processor
and operating system used, these programs may be in executable
form or may be written in a specialized script language that is
interpreted by the RTOS.

Digital signal processors

80x86-based cards are suitable for a variety of DA&C tasks, but
for high speed signal-processing applications a specialized Digital
Signal Processor (DSP) is generally a more satisfactory alternative.
A DSP is essentially a microprocessor that is optimized for running
numerically intensive signal-processing algorithms. Key features of
such systems are high accuracy and, in most cases, very high rates of
throughput. A number of manufacturers supply ISA cards equipped
with one or more DSP chips. At least one presently provides a DSP
card for the PCI bus. A number of DSP-equipped PCMCIA cards are
also now becoming available for notebook computers.

As well as allowing the PC’s processor to execute concurrently with
the DSP, a plug-in DSP card can itself form the basis of an inherently
parallel architecture. Some implementations permit multiple DSPs
to be connected together in a variety of powerful parallel-processing
topologies. Each DSP can be programmed to execute different
signal-processing functions or to perform the same processing on
different sets of data. This inherent parallelism means that DSP cards
are ideal platforms for real-time applications or when large arrays of
data have to be processed.

Data transfer 209

DSPs can be programmed to execute a variety of high speed data-
processing and control algorithms. Some of the most common are
signal comparison, fast Fourier transforms, convolution, frequency
measurement, scaling, linearization, statistical functions, waveform
synthesis, PID control and digital filtering. Many of these can also
be performed by the PC itself (albeit somewhat less efficiently)
and these are discussed at various points throughout this book.
Typical DSP applications include vibration analysis, machine condi-
tion monitoring, spectral analysis, audio frequency applications,
engine analysis, digital image processing and high speed real-time
control. DSPs are also often used in embedded systems. In these
cases, the PC is used only as a convenient platform for development
of DSP code and takes no part in the actual data acquisition.

The I/O facilities provided by DSP coprocessor cards tend to
vary between different models, but most are equipped with between
one and 16 high speed analogue input channels and a number of
analogue outputs, digital I/O ports and timers. FIFO memory buffers
are often used to decouple the digitization and DSP circuitry. They
usually possess flexible interrupt and DMA (Direct Memory Access)
systems, which support high speed transfer of data to the host PC.
Data transfer is facilitated on some cards via a block of dual-ported
RAM mapped into the PC’s memory space.

DSP cards are normally controlled via on-board firmware. This
includes DSP libraries that contain commonly used algorithms.
Many manufacturers also provide complete software development
environments (including an assembler, compiler and debugging
software). Source files are edited and compiled on the PC and the
executable software is then downloaded to the DSP card. Library
functions may also be included to allow access to the host PC’s
console and I/O facilities.

Remote DA&C units

Most remote DA&C units are capable of some degree of independent
processing. These devices generally incorporate dedicated microcon-
trollers and possess their own ROM-based operating systems. Many
allow moderately high speed operation, although the degree of
determinism that they offer does tend to vary between different
models. Because of their autonomous processing and data-storage
capabilities they are often used for stand-alone data logging and
control. Facilities for analogue and digital output may be supple-
mented by software comparators or control algorithms. These can
help to relieve the less deterministic PC of the burden of real-time
control: a considerable benefit to the DA&C programmer. There

210 PC interfacing and data acquisition

are three main classes of remote DA&C unit (as well as many hybrid
devices):

1. Single-channel I/O units are usually connected to the PC via a
multi-drop network such as RS-485. These devices are commonly
used where many sensors have to be widely distributed over a large
structure such as a bridge or dam. In these cases there are usually
numerous devices attached to a single network. Each unit or I/O
channel is usually addressed by means of a unique identification
code. This type of device frequently has only a limited capacity
for on-board buffering or data processing.

2. Multi-channel data loggers are normally connected to the PC on
a one-to-one basis via a serial or parallel interface. Most devices
possesses at least eight or 16 analogue input channels. This may
be expandable up to several hundred channels on some systems.
A numeric code is assigned to each I/O channel and the software
must use this code in order to configure that channel or to
read data from it. Many of these devices have quite sophisticated
processing abilities. Some are able to buffer large quantities of
data, to store data on disk drives or to interface to modems,
printers or plotters. For this reason they are often used for stand-
alone data logging and may only need to be connected to the PC
for programming or to download acquired data.

3. Stand-alone laboratory instruments and test equipment can also,
in many cases, be interfaced to the PC for data acquisition. Most of
these instruments have a degree of intelligence and are capable
of periods of independent operation. Many are designed for
specialized test and measurement work and the facilities which
they provide are often tailored to specific applications such as
spectrometry, pH sensing, chromatography or audio frequency
analysis. The RS-232 or IEEE-488 buses (see Chapters 7 and 8)
are normally used for interfacing to this type of device.

Most remote DA&C devices possess the signal-conditioning circuitry
necessary to interface to sensors and/or actuators. They often have
a modular construction, which allows the end user to select the
appropriate type of analogue signal-conditioning unit and/or digital-
I/O interface. In this way the system is able to accommodate various
types of sensor (e.g. thermocouples, strain gauges, or LVDTs) as
well as relays and opto-isolated digital I/O devices. The PC software
may have to support all possible configurations and may need
to interrogate the DA&C unit to determine which modules are
installed.

Data transfer 211

Dumb interface devices

Many simple analogue or digital I/O cards that connect directly to
the ISA bus, PCI bus or PCMCIA slot have little or no on-board
processing capability. Instead, virtually all aspects of the inter-
face device’s operation are controlled by the PC via I/O-mapped
or memory-mapped registers. The PC initiates data transfer and
manages the flow of data across the interface. These duties can be
quite processor intensive, particularly where many I/O channels and
high sampling rates are involved.

Although directly manipulating the registers and control lines of
plug-in cards can be somewhat more involved than communicating
with an intelligent DA&C unit, such an arrangement often provides a
greater degree of control over the data-acquisition process. Because
the PC is usually responsible for managing each component of the
device, there is generally much more scope for varying the timing
and order of channel selection, sample-and-hold triggering, gain
selection and ADC reading operations. For this reason the data-
acquisition process can, in some circumstances, be carried out more
efficiently than would be possible using an intelligent DA&C unit.

The fact that the PC’s software is responsible for all aspects of
the data collection and control operations can also be a serious
disadvantage. If you are working to a tight timing specification, it
may be necessary to adopt a specialized real-time operating system
and to dispense with any non-deterministic, but otherwise desirable,
features of the software. You should also bear in mind that when
directly manipulating registers and control lines there is a greater
potential for software errors to find their way into your DA&C
program. These can be quite subtle and time dependent. They may
not become apparent during static testing, only showing themselves
at high rates of throughput, on certain high speed models of PC or
when a specific sequence of events occurs. Time-dependent software
errors can be very difficult to reproduce and trace during testing.

6.2 Data transfer techniques and protocols

There is usually no inherent synchronization between DA&C hard-
ware and the software running on the PC. Components such as
ADCs and multiplexers are said to operate asynchronously with the
PC. In such a system, it is not possible to predict the state of the
DA&C hardware at any particular time and the PC must, therefore,
have some way of determining whether a peripheral device is busy
or whether it is safe to access it. In order to ensure that data is not

212 PC interfacing and data acquisition

presented to the PC at too fast a rate (and, conversely, to prevent the
PC from demanding data at too fast a rate) it is essential to establish
a set of rules, or protocol, for data transfer.

Handshaking

In the case of a simple plug-in ADC card, it is usually necessary
to initiate analogue-to-digital conversion and then wait until the
conversion is complete in order that valid data can be read from
the ADC. We have seen in Chapter 3 that this requirement can
be implemented by a handshaking protocol that uses the ADC’s
Start Conversion (SC) and End of Conversion (EOC) control lines.
Intelligent DA&C devices, which often communicate with the PC
via a serial link (e.g. RS-232, RS-485 etc.), must also operate in
accordance with a strict communication protocol.

Protocols are usually effected by means of handshaking or control
signals that indicate the state of readiness (or otherwise) of some
element of a device. These signals are usually transmitted via digital
I/O lines (e.g. an ADC’s SC and EOC lines). Other types of I/O
interface employ slightly more complex handshaking techniques, but
the basic principle is the same: to facilitate an orderly, synchronized
transfer of data.

Many serial communications systems provide for an alternative
protocol known as software handshaking or character flow control.
Installations that do not use the serial port’s handshaking lines
can transmit special control characters to regulate the flow of data
along the serial bus. This technique is described in more detail in
Chapter 8.

Data I/O strategies

The protocols involved in communicating with any DA&C device
will, of course, depend upon the nature of the communications
interface employed (e.g. serial or parallel bus or direct connection
to the PC’s expansion bus) and upon the degree of synchronization
inherent between the PC and the device. Because communications
mechanisms and protocols vary considerably, it is not appropriate
to discuss details of specific devices here (although certain standard
protocols and handshaking techniques for use with parallel and
serial bus-based systems are discussed in Chapters 7 and 8). Of more
general interest are the strategies that you can adopt within your
data-acquisition programs for requesting and receiving data from
DA&C devices. What follows applies, in general, to both intelligent

Data transfer 213

and dumb DA&C devices, although the details of the mechanisms
involved will, of course, be somewhat different in each case.

Input

The simplest technique for inputting data from a device is to
configure it so that it operates in a free-running mode, providing
data at its fastest possible rate. The software can then periodically
poll the device to detect whether it has new data. An example of
this is the free-running ADC technique in which the ADC’s End of
Conversion (EOC) output is connected (if necessary, via suitable
logic) to its own Start Conversion (SC) input. This results in contin-
uous analogue-to-digital conversion. The PC software monitors the
EOC signal to detect when the ADC has completed each conversion
and then reads the new digitized value from the ADC’s output buffer.

Alternatively the DA&C device (i.e. ADC or intelligent data logger)
may be configured to take readings at regular intervals under the
control of a hardware timer. This technique is useful where readings
are to be taken at precise intervals. From the software’s point
of view, it is similar, in principle, to the free-running technique.
Both approaches free the software from having to decide when to
initiate analogue-to-digital conversions. They do, however, require
the DA&C program to be ready to respond at any time that new data
is made available.

Other techniques give the software more control over the timing
of the data-input process. The PC software may be designed to
request data either by issuing a suitable high level command or by
outputting an SC signal to an ADC. The timing of a data-request
command may be controlled in several ways. The software might
request a new reading as soon as previous data has been processed;
when it detects user input (e.g. a key press or mouse click); on
receipt of digital handshaking signals from other components of the
DA&C system; or by reference to an elapsed time timer. In the latter
three cases it is possible (and often preferable) to issue data request
commands from within a hardware interrupt handler.

Data may not always be immediately available after the PC has
requested a new reading. The software will generally have to wait
(or continue with some other task) while the DA&C interface device
interprets the command, selects the appropriate input channel, or
digitizes and processes (e.g. scales or linearizes) the data. The DA&C
program must incorporate some mechanism for determining when
valid data is available. The software may poll a designated I/O port in
order to determine the state of a ‘data available’ flag. Alternatively, a
handshaking signal could be fed to an IRQ line in order to generate
an interrupt whenever the DA&C device wishes to transmit new data.

214 PC interfacing and data acquisition

The interrupt handler may then read the acquired data or it may
just set a flag to cause the main data-acquisition routine to read the
data when interrupt processing has been completed.

Summary

The following strategies are available for determining when to
request data or for initiating ADC conversions:

1. Polling. Software or hardware flags may be periodically checked
from within a software loop in order to determine when the
system is ready to supply and/or process more data. The state of
these flags may be controlled via user input, digital control inputs
or software timers.

2. Hardware interrupts. Interrupt handlers for system timers, user-
input devices, serial/parallel ports or other peripheral devices are
often convenient locations for code which initiates or manages
I/O operations. The software is free to perform other tasks when
not processing interrupts.

3. Direct hardware control. Hardware devices such as simple
counter/timer circuits can be configured to periodically initiate
actions such as analogue-to-digital conversion or to control the
timing of handshaking signals.

The software may subsequently detect and read new data, either
by polling the DA&C device or by installing interrupt handlers
that respond whenever new data becomes available. DA&C devices
that continuously transmit a stream of data without any form of
handshaking (e.g. some RS-232 systems) will generally require the
software to employ an interrupt-driven input mechanism in order to
ensure that no data is lost.

Output

Outputting analogue data often involves only a single write operation
to an I/O port. For this reason it is usually more straightforward
than inputting analogue data which normally requires a two-stage
‘request and read’ operation. However, the system must regulate the
flow of output data, which is normally accomplished by means of
handshaking signals (in addition to any high level communications
protocols that may be required). These may be used to strobe data
out to a peripheral device, thus allowing outputs to be updated
only when it is safe to do so. Handshaking may be implemented
using digital I/O control lines or via high level commands or status
polling facilities (depending upon the nature of the DA&C device).
Both polling and interrupt-based techniques can be used for sensing
handshaking signals and for managing data output.

Data transfer 215

Comparison of interrupt and polled I/O

We have seen that there are two techniques at the programmer’s
disposal that can be used for sensing the state of handshaking signals:
polling or interrupts. Each method has its own particular advantages
and disadvantages. Which is most appropriate will depend upon the
nature and structure of your application. This section provides some
general guidance.

Polling is the most straightforward technique. It simply involves
reading the state of a digital I/O line via either an I/O-mapped
or memory-mapped register. This is done by means of an IN or
MOV instruction or high level language counterpart. Polling can be
performed in a data-acquisition software loop together with any
other operations that may be necessary. Alternatively, a dedicated
polling loop can be used. In this case, the handshaking line or flag is
repeatedly checked until it changes state, at which point the loop is
terminated and control is passed to an appropriate routine. Efficient
polling loops written in assembly language – such as that illustrated
in the following code fragment – can provide a very rapid response
to changes in the state of handshaking lines or other digital inputs.

mov dx,300h ;I/O Port address to read

mov bl,80h ;Mask to select bit 7 of input byte

LoopStart: in al,dx ;Read port

test al,bl ;Select status bit (i.e. bit 7)

jz LoopStart ;Loop if status bit = 0

: :

;Status bit = 1 so perform

;any necessary processing here

: :

Interrupts can also provide a rapid response, but because of the over-
head involved in recognizing an interrupt, invoking the interrupt
handler, acknowledging the 8259 PIC and then transferring control
back to the interrupted process (see Chapter 5) the maximum
throughput achievable is often lower than if a well-written polling
loop were to be used.

As well as limiting the rate at which I/O operations can be
performed, the interrupt overhead also delays the response of the
system to individual interrupt requests. The overheads inherent in
managing interrupts can mean that timing precision is often much
worse (by a factor of at least 5 to 10) than if using a polling loop.
For reasons outlined in Chapter 5, interrupt response times are
variable and often relatively long. Depending upon the operating
system used, they may also be indeterminate. This is an important

216 PC interfacing and data acquisition

consideration when writing software that must respond quickly to
time-critical events.

In spite of their less efficient response times, interrupts provide a
number of very important advantages over polling. First, they allow
the software to continue with other tasks instead of simply waiting
for input. The more efficient use of available processor cycles can
often compensate for the inefficiencies inherent in responding
to individual interrupts, improving the overall throughput. An
interrupt-based event-driven I/O system also permits a more modular
software structure to be employed, and this can go some way to
improving the reliability of the DA&C program.

Memory- and I/O-mapped transfers

Whether data acquisition is performed via a serial link, external
parallel bus or via a DA&C card connected directly to the PC’s
expansion bus, all I/O operations are ultimately performed via
registers mapped to either the PC’s memory or I/O space.

In the memory-mapping scheme, control registers and I/O latches
are assigned to one or more (usually contiguous) memory locations.
These are often within the PC’s 1 MB real-mode addressable region:
particularly in the upper memory region between 640 KB and 1 MB.
Hardware designed for use with 32-bit processors and operating
systems may use other physical memory addresses up to 4 GB. Data is
transferred to and from memory-mapped registers by simply reading
or writing the appropriate memory address. Memory-mapped I/O is
not widely used on PC adaptor cards.

The majority of data-acquisition interface products possess a group
of (typically 4, 8 or 16) control and data registers, and these are
mapped to a configurable address range within the PC’s I/O space.
The registers may be accessed using assembly language IN or OUT

instructions or their high level language counterparts. Although a
detailed discussion of programming languages is outside the scope
of this book, I/O instructions and functions are of such central
importance to the subject of data acquisition that we shall briefly
consider this topic below. Only three implementations are covered,
but most PC programming languages provide similar facilities. There
may, however, be slight differences between dialects of the same
language. You should consult your programming language manual
for more precise information.

Accessing I/O-mapped registers in assembly language

Assembly language provides a wealth of instructions for performing
8-, 16- and 32-bit I/O operations. All members of the 80x86

Data transfer 217

family of processors support the basic IN and OUT instructions. Newer
members (i.e. 80386 and later) also support a number of string
I/O instructions (i.e. INSB, INSW, INSD, OUTSB, OUTSW and OUTSD) which
are very useful for transferring large quantities of data between a
memory buffer and a peripheral device. The various I/O instructions
are listed in Table 6.1.

IN and OUT instructions

The IN and OUT instructions have already been introduced in
Chapter 1. These instructions always transfer data to or from the
accumulator; no other registers can be used. 1-, 2- or (on 80386 and
later systems) 4-byte transfers are allowed, depending upon whether
the AL, AX or EAX register is specified. If the I/O port number is
less than 100h, it can be coded as an immediate byte constant. If it
is greater than or equal to 100h, the port number must be specified
in the DX register. The various forms of the IN and OUT instructions
are summarized in Table 6.2.

Table 6.1 Assembly language I/O instructions

Instruction Processor Description

IN Ł8086C Reads 8-, 16- or 32-bit values from the I/O

ports to the accumulator.

OUT Ł8086C Writes 8-, 16- or 32-bit values to the I/O ports

from the accumulator.

INSB Ł80186C Byte-by-byte string input to ES:[DI/EDI].

OUTSB Ł80186C Byte-by-byte string output from DS:[SI/ESI].

INSW Ł80186C Word-by-word string input to ES:[DI/EDI].

OUTSW Ł80186C Word-by-word string output from DS:[SI/ESI].

INSD 80386C Dword-by-dword string input to ES:[DI/EDI].

OUTSD 80386C Dword-by-dword string output from

DS:[SI/ESI].

Ł80386C required for 32-bit transfers/addressing.

Table 6.2 The assembly language IN and OUT instructions

Direction Port Byte I/O Word I/O Double word I/O

In <100h IN AL, port IN AX, port IN EAX, port

In Any IN AL, DX IN AX, DX IN EAX, DX

Out <100h OUT port, AL OUT port, AX OUT port, EAX

Out Any OUT DX, AL OUT DX, AX OUT DX, EAX

218 PC interfacing and data acquisition

String I/O instructions

The string I/O instructions work in much the same way as the
equivalent string move (MOVS, MOVSB, MOVSW and MOVSD) instructions.
The former allow 8-bit, 16-bit or (on 80386 and later processors)
32-bit data to be transferred directly between memory and an I/O
location specified in the DX register. This is a very efficient way of
transferring large amounts of data between a peripheral device and
a memory buffer. It is a useful alternative to Direct Memory Access
(DMA) for block data transfers, although DMA can provide better
throughput under some circumstances.

The INSB, INSW and INSD instructions all read data from the I/O port
address specified in DX directly into the memory location addressed
by ES:[DI] (or ES:[EDI] in 32-bit address mode). The DI (or EDI)
register is automatically incremented or decremented, depending
upon the state of the direction flag, by an amount equal to the
number of bytes (i.e. 1, 2 or 4) transferred.

The OUTSB, OUTSW and OUTSD instructions complement the string
input instructions. Data is written from the 1-, 2- or 4-byte memory
location specified by DS:[SI] (or DS:[ESI] in 32-bit address mode).
The SI (or ESI) register is automatically incremented or decre-
mented, depending upon the state of the direction flag, by an
amount equal to the number of bytes (i.e. 1, 2 or 4) transferred.

The string I/O instructions can be used in conjunction with the
REP prefix to transfer a string of bytes, words or double words. The
number of elements in the string is specified in the CX register (or
optionally the ECX register on 80386 and later processors) as follows:

mov es,SEG InputBuf ;ES:DI --> Start of InputBuf
mov di,OFFSET InputBuf ;

mov dx,PortNum ;DX contains I/O port number
mov cx,40h ;CX = Number of times to repeat

cld ;Clear Direction Flag so DI increments
rep insw ;Read string

The generic form, INS or OUTS, can be used instead of specifying the
data size explicitly in the instruction mnemonic. If this form is used,
you will have to specify the size of data to be transferred by including
a BYTE PTR, WORD PTR or DWORD PTR operator in the source or destination
memory reference. For example, a 16-bit string output instruction
(in 16-bit address mode) could be specified either as:

outs WORD PTR ds:[si],dx

or simply as:

outsw

Data transfer 219

Both instructions have the same effect. Similar constructs may be
used in the case of the other string I/O instructions. If you use the
generic INS or OUTS form, you should bear in mind one important
peculiarity. As with the string manipulation (MOVS etc.) instructions,
the effective address of the destination/source operand specified
in the instruction is actually ignored. This operand is only used to
specify the size of the data transfer; the actual address contained in
the instruction operand does not matter. Inputs are always directed
to the memory address specified by the current ES:[DI/EDI] regis-
ters, while output values are always sourced from the memory
address specified by DS:[SI/ESI]. You could, for example, specify
the following instruction in place of either of the preceding forms:

outs WORD PTR [bx],dx

where the BX register contains some undefined value. The operand
address governed by the contents of the BX register actually has no
effect. All three of the above forms would have the same end result.

According to Hummel (1992), some versions of the 80286, 80386
and 80486 processors do not execute the string input instructions
correctly under certain circumstances, particularly in protected
mode. In addition to these problems, the I/O protection mech-
anisms used in protected and virtual-8086 modes add a number
of additional complications which tend to negate the advantages
offered by the string I/O instructions. It is often simplest to avoid
using the string I/O instructions unless your software will run
only in real mode. If you do wish to use these instructions in a
protected-mode environment such as Windows, OS/2 or under a
DOS extender, you should consult a text such as that referenced
above for additional information.

Back-to-back I/O

Perhaps the most important potential sources of error are related
to the timing of I/O operations. Many I/O registers require a short
amount of recovery time after an I/O operation is performed. If, for
example, two I/O operations are performed on the same I/O port in
quick succession, data transferred during the second I/O port access
may become corrupted. This can be particularly problematic if the
string I/O instructions are used with the REP prefix, as successive
repetitions of the I/O instruction occur immediately after the last
operation has been performed. Some ISA systems employ hardware
solutions such as inserting wait states in all I/O operations. EISA
systems are designed to avoid these difficulties.

220 PC interfacing and data acquisition

The software solution is, however, very simple and easy to imple-
ment. To make your software as immune as possible to I/O timing
problems it is prudent to include a short delay immediately after
each IN or OUT instruction. A safe delay period is typically of the order
of 1 μs (although this figure can be variable). On slow 80486 and
earlier computer systems, a few short jumps will normally suffice. For
example:

out dx,ax

jmp SHORT $ + 2

jmp SHORT $ + 2

jmp SHORT $ + 2

in ax,dx

Because the timing of JMP instructions varies between different
systems, this method will result in a variable delay time. On faster
machines, many JMP instructions may be needed to provide the
required delay. A more robust alternative is to create a calibrated
software delay loop.

Delays are not included in the examples in this book unless back-
to-back I/O is performed. These examples will work satisfactorily on
many systems, but you may need to add an I/O delay when accessing
slow peripherals or when using a fast PC.

Timing of multiple-byte transfers

Under certain circumstances multiple-byte data transfers using I/O
instructions require more than one bus cycle. The timing of data
transfers is governed by the processor and type of expansion bus
in use. You should be aware that more than one bus cycle may be
required to transfer 2- or 4-byte data to unaligned port addresses. An
unaligned address is either a group of two ports that is not aligned
on a word boundary (i.e. an even address) or a group of four ports
that is not aligned on an address divisible by four. The fact that more
than one bus cycle is required for unaligned I/O means that data
may be transferred in two or three discrete steps. The precise order
with which the component ports are accessed is undefined and may
vary between different systems. For this reason, it is inadvisable to
use such transfers within your program if you need to retain control
over the order in which the individual ports are accessed. In such
cases you should code the individual port accesses explicitly, or at
least use a data size small enough to ensure that only aligned I/O
operations are performed.

Data transfer 221

Accessing I/O-mapped registers using a high level language

The C and CCC programming languages provide several functions
and macros for reading and writing both byte- and word-sized
I/O ports. There are slight differences between the Microsoft and
Borland implementations as shown in Table 6.3. Note, however, that
Borland C also supports the Microsoft I/O functions. In both cases,
I/O is performed by calling the function whose declaration is shown
in the table. Examples illustrating how Borland C can be used for
accessing I/O-mapped peripheral devices are given in Chapters 7
and 8. BASIC programs also use a similar method, providing an INP

function and OUTP statement. Some dialects of BASIC will support
only 8-bit I/O operations.

Borland Pascal (including versions of Turbo Pascal) adopts a
different, and arguably more intuitive, approach. I/O functions and
macros are not used. Instead the I/O port addresses are declared
as one-dimensional arrays called Port and PortW. The ports are read
or written in the same way as any normal array element would be
accessed, as shown in Table 6.3. The elements of the Port array are
of type byte and those of the PortW array are of type word.

The delays inherent in calling high level I/O functions are usually
sufficient to avoid the recovery problems that occur when performing
back-to-back I/O. However, some hardware may take an unusually
long time to process data and in these cases you may have to include

Table 6.3 I/O port access from high level languages

Language Direction Bytes Declaration/usage

Microsoft C In 1 int inp(unsigned port)

Out 1 int outp(unsigned port, int data)

In 2 unsigned inpw(unsigned port)

Out 2 unsigned outpw(unsigned port, unsigned data)

Borland C In 1 unsigned char inportb(int port)

Out 1 void outportb(int port, unsigned char data)

In 2 int inport(int port)

Out 2 void outport(int port, int data)

Borland In 1 Data8 := Port[PortNum];

Pascal Out 1 Port[PortNum] := Data8;

In 2 Data16 := PortW[PortNum];

Out 2 PortW[PortNum] := Data16;

222 PC interfacing and data acquisition

appropriate delay loops or other synchronization mechanisms within
your code.

Direct memory access (DMA)

The processor’s IN and OUT instructions are often capable of providing
more than adequate rates of throughput. However, some high speed
systems demand faster I/O techniques. Input instructions require
data to be transferred in two stages: from the peripheral device
to the accumulator (AL, AX or EAX registers) and then from the
accumulator to memory. The alternative technique of Direct Memory
Access (or DMA) allows data to be channelled directly from an I/O
device to memory, or vice versa, without any processor intervention.
For this reason, DMA is one of the fastest means of passing blocks of
data between a peripheral device and memory. Data transfer rates
of up to 800 to 900 KB/s are possible on the ISA bus using this
technique.

DMA is ideal where large blocks (many kilobytes) of word- or byte-
sized data are to be transferred. It is commonly used to implement
disk I/O on the PC, but is equally suited to high volume data-
acquisition applications.

During a DMA operation, the processor relinquishes control of
the system bus to a dedicated DMA controller. Before the data
transfer can take place, the DMA controller is programmed with the
address of a source or target memory buffer, the number of bytes
to be transferred and a number of other parameters. DMA then
proceeds under hardware control. The DMA controller manipulates
the system bus control lines in order to effect the transfer without
involving the processor.

Direct memory access can take place over the ISA bus only in
conjunction with a peripheral device that possesses the special
circuitry needed to interface to the DMA controller. As we shall see
later, all DA&C cards for the PCI bus possess their own bus-control
circuitry which lets them initiate bus transfers without the need for
a general-purpose DMA controller. A few ISA DA&C adaptor cards
provide driver software and/or ROM-based firmware which takes
care of programming the DMA controller. In other cases, however,
this software may have to be built into the DA&C application itself.
The following sections discuss how to program the DMA controller
on the PC’s ISA bus and give a brief overview of PCI bus mastering.

The DMA controller

All XT bus PCs possess a single Intel 8237A-5 DMA controller.
ISA, EISA and MCA machines have either two such controllers

Data transfer 223

or functionally equivalent custom circuitry. The EISA and MCA
controllers provide a high degree of backward compatibility together
with a number of useful enhancements, but because these machine-
specific features are used in relatively few systems they will not
be covered in this section. Readers interested in the enhanced
features of the MCA’s DMA controller should consult, for example,
Eggebrecht (1990), Sanchez and Canton (1994) or van Gilluwe
(1994). The latter also describes EISA-specific DMA features. The
techniques described in this section can be used for data acquisition
on all members of the PC family that possess an ISA, EISA or
MCA bus.

DMA channels

DMA controllers provide a number of separate channels for
data transfer. The controllers used on the original IBM PC and
XT possessed four DMA channels. The additional or enhanced
controllers present on ISA, EISA and MCA machines provide a
total of eight DMA channels, although some of these channels
are dedicated to specific functions and are unavailable for data
acquisition.

Table A.1 in Appendix A illustrates the standard DMA channel
assignments used in the various classes of PC. In all cases, channels
0 to 3 permit only 8-bit transfers. Channels 5 to 7 (where available)
allow data to be transferred 16 bits at a time. These channels do not
support 8-bit transfers. Each channel can be programmed to transfer
a maximum of 64 K data units. This means that channels 0 to 3 are
able to transfer blocks up to 64 KB in length. Because channels 5 to
7 carry words, rather than bytes, data blocks of up to 128 KB can be
transferred without having to reprogram the DMA controller.

The dual 8237A arrangement provides a total of seven, rather
than eight, usable DMA channels. The first channel of controller 2
(i.e. channel 4) is used for cascading to controller number 1 and is
unavailable to application programs.

Channel 0 was used for refreshing the system DRAM on the
original IBM PC and so cannot be used for data acquisition. Modern
PCs possess dedicated memory refresh circuits, freeing channel 0 for
other use. However, the control lines necessary to initiate DMA on
channel 0 are not present on the system bus so this channel is also
unsuitable for data acquisition. Any of the remaining channels (i.e.
1 to 3 or 5 to 7) can be used for interfacing to DA&C cards provided,
of course, that the card supports that channel and that the DMA
channel is not already in use.

It is difficult for an application program to determine whether
a DMA channel is currently allocated to another device simply by

224 PC interfacing and data acquisition

reading the DMA controller’s registers. Although it is possible to
discover if a channel is currently in use (i.e. actively transferring
data) by monitoring the Status, Address and Count registers (see
the section DMA controller registers later in this chapter), there is no
guarantee that an apparently unused channel will remain so. The
responsibility for selecting DMA channels must ultimately rest with
the end user.

Types of data transfer

Three types of DMA data transfer operations are possible. The
transfer type is programmed by means of bits 2 and 3 of the DMA
controller’s Mode register. The three transfer types are:

1. Verify
2. Memory to I/O port (also known as DMA read)
3. I/O port to memory (also known as DMA write)

The purpose of the DMA read and DMA write operations should be
self-explanatory. The Verify feature performs pseudo-data transfers.
It generates DMA cycles with programmed memory addresses, but
does not actually read or write data. This mode is not generally used
in the PC.

In addition to these transfer modes, it is possible to program the
8237A for memory-to-memory transfers. This type of DMA transfer
is also of limited usefulness for a number of reasons. First, it requires
channels 0 and 1 to cooperate in the transfer. On the original
IBM PC, channel 0 was dedicated to refreshing the system DRAM,
making it difficult to use this channel without losing the contents
of memory. DRAM refresh is performed by custom circuitry on
later PCs. Second, 80386 and subsequent processors can generally
perform memory-to-memory transfers more quickly than the DMA
controller, by means of their string move (MOVS etc.) instructions.
Consequently, memory-to-memory DMA is rarely used.

These disadvantages do not apply to DMA read and DMA write
operations. Direct memory access is one of the fastest methods of
transferring large blocks of data between memory and an I/O port,
or vice versa. The remainder of this section will deal only with DMA
read and write operations, which are of most relevance to PC-based
data acquisition and control.

Overview of the DMA transfer mechanism

Before a DMA transfer can take place, the DMA controller must
be programmed with the address of the target (or source) memory
buffer, the number of bytes to be transferred, the direction of data

Data transfer 225

flow and several other parameters which we will discuss later in
this section. The software must then enable DMA on the selected
channel. After the controller has been properly configured, the
adaptor card initiates the transfer process (possibly in response to a
hardware event or as a result of a command issued by the software).
The transfer proceeds as follows.

1. Whenever an adaptor card wishes to perform DMA it asserts the
appropriate DMA Request line. The DMA controller possesses one
DMA Request line for each channel. The XT bus makes three
of these request lines, DREQ1, DREQ2 and DREQ3, available
to adaptor cards. The ISA bus provides an additional three
DMA Request lines: DREQ5, DREQ6 and DREQ7. The remaining
request lines, DREQ0 and DREQ4, are used internally and are
not available on the expansion bus.

2. When the DMA controller senses the DREQn signal it first checks
to ensure that DMA is enabled for that channel (i.e. the channel
denoted by n). DMA channels can be individually enabled and
disabled by software. The controller also prioritizes DMA requests
with any that may be pending on other channels.

3. If DMA is enabled, the DMA controller asserts its Hold Request
(HRQ) line. The processor responds to this signal when the
bus becomes idle by freeing the system bus and issuing a Hold
Acknowledge (HLDA) signal to the 8237A DMA controller. This,
in turn, asserts the Address Enable (AEN) line and places the
address of the source or target memory location onto the address
bus. This is shortly followed by activation of the appropriate DMA
Acknowledge (DACKn) line (each DMA channel has its own
DACK line).

4. The adaptor card detects the DACKn signal which informs it that
the data transfer is now in progress.

5. The DMA controller, having taken over the system bus, asserts
the appropriate I/O or memory read/write lines. In the case of
a DMA Write operation, the IOR and MEMW lines are asserted.
For a DMA Read, the MEMR and IOW lines are asserted. This
causes data to be transferred directly between the I/O device
and memory. The DMA controller adjusts the target (or source)
memory address after each transfer has been completed so that
subsequent transfers access the next byte or word in the memory
buffer.

6. Depending upon the transfer mode selected, the adaptor card
may release the DREQn line after each byte or word has been
transferred or at other times necessary to regulate the flow of
data. In response, the DMA controller releases the HRQ line
enabling the processor to take control of the bus. The whole

226 PC interfacing and data acquisition

process repeats until the specified number of bytes or words have
been transferred.

7. When the programmed number of bytes or words have been
transferred, the DMA controller asserts the Terminal Count (TC)
line of the system bus. This informs the adaptor card that the
transfer operation is complete. The DMA controller may then
either automatically disable DMA on the current channel or, if
autoinitialization has been selected (see the following section),
prepare itself for another DMA sequence.

You may be wondering how the adaptor card’s I/O port is selected,
if the address bus holds only a memory address. It is, in fact, the
receipt of the DACKn signal, rather than decoding of an I/O address,
that enables the contents of the I/O port onto the data bus. Other
I/O ports, which may otherwise decode the memory address, are
prevented from doing so by the AEN signal issued by the DMA
controller. The AEN line is asserted only when a DMA bus cycle is in
progress. This signal is used on the system bus to disable normal I/O
port address decodes. The DMA process is summarized in Figure 6.1.
The circled letters denote the order in which the various operations
take place.

A more detailed account of the transfer procedure is provided
by Eggebrecht (1990). Most of the handshaking that occurs during
DMA is transparent to the programmer. It is only necessary to under-
stand that the adaptor card initiates, and in some cases regulates,

8237A DMA CONTROLLER

Mask register Control logic
B

A

H H

F

C

D

E

G

I J IJ

DREQn DACKn

Current address
register

Page
register

80×86 PROCESSOR

HRQ

HLDA

AEN

CPU removed
from bus

Address bus

Data bus

Control bus

SYSTEM MEMORY

IOR/IOW

DA&C ADAPTOR CARD

Enable
address

MEMW/

MEMR

Figure 6.1 Schematic illustration of the DMA process

Data transfer 227

data transfer by means of a selected DREQn line. The DREQn line is
used in a variety of ways, depending upon the programmed transfer
mode (see DMA transfer modes later in this chapter) to control the
flow of data and interweaving of DMA and processor bus cycles.

Autoinitialization

The 8237A DMA controller possesses a number of 16-bit registers
for each channel. Two of these hold the current memory address for
the transfer and the current word count (i.e. the number of bytes or
words transferred). These values are incremented or decremented,
as appropriate, on each transfer cycle. When the 8237A is first
programmed, the initial memory address and word count are loaded
into these registers. The initial values are also recorded in two
other registers, the Base Address and Base Word Count registers.
The values held in these registers do not change during the DMA
process.

The 8237A can be programmed (via the Mode register) to auto-
matically reinitialize the Current Address and Current Word Count
registers at the end of a programmed DMA sequence. During this
autoinitialization, the contents of the Base Address and Base Word
Count registers are copied to the associated Current Address and
Current Word Count registers, thereby preparing the 8237A for
another DMA sequence. The DMA channel remains enabled so that
the DMA sequence can be repeated as soon as the next DREQ signal
is detected. If the autoinitialization facility is not enabled, the DMA
channel disables itself (by setting the appropriate Mask bit) after the
programmed quantity of data has been transferred.

DMA priorities

Although the 8237A can be programmed to operate according to
one of two priority schemes – fixed or rotating – the PC should
generally only operate the 8237A in the fixed priority mode. In
this mode, channel 0 (memory refresh) always has the highest
priority, channel 1 the next highest and so on. The dual-controller
arrangement employed on ISA, EISA and MCA systems extends the
priority scheme to the second controller. Thus the priority order
is channel 0, 1, 2, 3, 5, 6 and 7 (remember that channel 4 is used
for cascading the two controllers and is not available for interfacing
to peripheral devices). If one or more devices request DMA service
while a transfer is in progress on another channel, they must wait
until the current transfer is complete. The device with the highest
priority will then be serviced first.

228 PC interfacing and data acquisition

DMA transfer modes

Apart from a special Cascade mode which is used for connecting
dual DMA controllers, the 8237A provides three data transfer modes.
These can be selected via the controller’s Mode register (see DMA
controller registers later in this chapter). Note that the adaptor card
hardware must be specifically designed to operate in each mode. You
should use only those modes that are supported by your hardware.

Single Transfer mode

In this mode only one byte or word is transferred at a time and
when each transfer is complete, the 8237A releases the system bus to
the processor. If the adaptor card holds DREQn active throughout
the transfer, the processor will be allowed only one bus cycle before
the 8237A reasserts the HRQ line and takes control once more. In
this way ordinary processor bus cycles can be interwoven with DMA
cycles.

Demand Transfer mode

This mode allows the adaptor card to regulate the DMA transfer by
temporarily deactivating DREQn. While DREQn is active the transfer
proceeds in much the same way as the Single Transfer mode except
that no processor bus cycles are interwoven with the DMA cycles.
The controller will continue with the transfers (provided DREQn
remains active) until the programmed number of bytes or words has
been transferred.

Block Transfer mode

In Block Transfer mode, the device issues one DREQn pulse to
initiate the transfer of a whole data block (i.e. the number or bytes
or words specified in the Base Word Count register). Processor bus
cycles are not interwoven with the DMA cycles. The DREQn signal
need not be asserted throughout the transfer; it may go inactive as
soon as the DACKn signal becomes active.

DMA controller registers

Each DMA controller is programmed via a number of internal
registers. These are listed in Table 6.4. The first controller (which
supplies DMA channels 0 to 3) is located at I/O port base address
0000h. The second 8237A in dual-controller systems has a base
address of 000Ch. Note that writes to addresses 0Ch, ODh, 0Eh,
D8h, DAh and DCh do not directly access any registers. The actual
value of the data written to these addresses is unimportant, however.

Data transfer 229

Table 6.4 8237A DMA controller register map

Port Direction Controller Description

00h R/W 1 Channel 0: Current/Base Address.

01h R/W 1 Channel 0: Current/Base Word Count.

02h R/W 1 Channel 1: Current/Base Address.

03h R/W 1 Channel 1: Current/Base Word Count.

04h R/W 1 Channel 2: Current/Base Address.

05h R/W 1 Channel 2: Current/Base Word Count.

06h R/W 1 Channel 3: Current/Base Address.

07h R/W 1 Channel 3: Current/Base Word Count.

08h R 1 Status register.

08h W 1 Command register.

09h W 1 Request register.

0Ah W 1 Mask register.

0Bh W 1 Mode register.

0Ch W 1 Not a register. Writing to this address clears the

byte pointer flip-flop.

0Dh R 1 Temporary register.

0Dh W 1 Not a register. Writing to this address resets the

controller.

0Eh W 1 Not a register. Writing to this address clears the

Mask register.

0Fh W 1 Write-all-mask register.

C0h R/W 2 Channel 4: Current/Base Address.

C2h R/W 2 Channel 4: Current/Base Word Count.

C4h R/W 2 Channel 5: Current/Base Address.

C6h R/W 2 Channel 5: Current/Base Word Count.

C8h R/W 2 Channel 6: Current/Base Address.

CAh R/W 2 Channel 6: Current/Base Word Count.

CCh R/W 2 Channel 7: Current/Base Address.

CEh R/W 2 Channel 7: Current/Base Word Count.

D0h R 2 Status register.

D0h W 2 Command register.

D2h W 2 Request register.

D4h W 2 Mask register.

D6h W 2 Mode register.

D8h W 2 Not a register. Writing to this address clears the

byte pointer flip-flop.

DAh R 2 Temporary register.

DAh W 2 Not a register. Writing to this address resets the

controller.

DCh W 2 Not a register. Writing to this address clears the

Mask register.

DEh W 2 Write-all-mask register.

230 PC interfacing and data acquisition

Simply performing an OUT instruction to these addresses (with any
data) initiates the actions listed in the table.

In addition to the registers present within the 8237A itself, all
members of the PC family possess a set of page registers that are used
in DMA memory addressing. These are not contained in the 8237A
itself. Instead 74LS612 Memory Mapper ICs, or equivalent devices,
supply the necessary registers. Page registers are required because
the 8237A’s internal address registers are 16 bits wide and so can
address only 65 536 different memory locations. In order to access
any region of the PC’s memory, the page registers are programmed
with the most significant bits of the physical memory address for
each transfer, as indicated in Table 6.5. On XT-bus systems, only
the lower 4 bits of the page register are required for accessing any
part of available memory (i.e. up to 1 MB). The low order nibble of
the page register contains address bits A16 to A19. Bits A0 to A15 are
programmed into the 8237A itself.

ISA, EISA and MCA systems use either 7 or 8 bits of each page
register in order to access physical addresses within the first 16 MB.
In the case of channels 0 to 3, the 8237A is programmed with
address bits A0 to A15 and the page register contains bits A16 to A23 as
shown in Figure 6.2. In order to access 16-bit words at even memory
addresses, address bit A0 is ignored on channels 5, 6 and 7. For these
channels, the 8237A is programmed with address bits A1 to A16 while
the page register holds bits A17 to A23.

Because of the need to use page registers, the location and size
of memory buffers is restricted. Transfers on channels 0 to 3 must
not cross an absolute 64 KB address boundary and consequently may
not exceed 64 KB in total. Similarly, 16-bit transfers on channels
5 to 7 must not cross a 128 KB boundary and so cannot exceed
128 KB. Transfers that cross these address boundaries require the

Table 6.5 Page register map

PC and XT AT, MCA and EISA

I/O port DMA channel Address lines DMA channel Address lines

81h 2 A16–A19 2 A16–A23

82h 3 A16–A19 3 A16–A23

83h 1 A16–A19 1 A16–A23

87h 0 A16–A23

89h 6 A17–A23

8Ah 7 A17–A23

8Bh 5 A17–A23

Data transfer 231

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Channels

5 to 7

Channels

0 to 3

A19A20A21A22A23 A18 A17

A19A20A21A22A23 A18 A17 A16

A15A16 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1X

Page register

X = Not used

8237A address registers

(a) AT, MCA and EISA systems

A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
Channels

0 to 3
XXXX

Page register

X = Not used

8237A address registers

(b) PC and XT systems

Figure 6.2 Address mapping using page registers

controller’s address register and associated page register to be reini-
tialized by software. Some embedded systems avoid these problems
by employing DMA controllers with a larger addressing capability.
These are, unfortunately, unavailable on standard ISA PCs.

A note on channel numbers

The following sections describe the registers present in a single
8237A DMA controller. Because ISA, EISA and MCA systems possess
two such controllers (or compatible custom circuits), the same infor-
mation also applies to the DMA channels of the second controller.
Channel numbers 0, 1, 2 or 3 referred to in the following discussion
represent either channels 0 to 3 in the case of the first controller, or
channels 4 to 7 in the case of the second controller.

Current Address and Base Address registers

Each channel has a Current Address and Base Address register. These
16-bit registers are initialized together in one operation by software.
The address is written in two 8-bit bytes. The low byte is written first
and this must always be followed by the high byte. The contents of
the Current Address register are either incremented or decremented
when each byte or word is transferred (increment/decrement is
software selectable). Reading from these register addresses returns
the value of the Current Address register. The Base Address register,
which is used to implement the autoinitialization function, always
retains the last value written.

The 2-byte read and write operations are controlled by an internal
Byte Pointer flip-flop. This is toggled each time a byte is read
or written. When the flip-flop is clear, the controller receives or

232 PC interfacing and data acquisition

supplies the low order byte of the address. When it is set, the
controller processes the high order byte. It is wise to clear the flip-
flop before commencing any read or write operations. This may be
accomplished by writing any value to I/O port 0Ch (or D8h in the
case of the second controller).

Current Word Count and Base Word Count registers

Each channel also has a Current Word Count and Base Word Count
register. The word count is written in two 8-bit bytes. The low order
byte is written first and this must always be followed by the high byte.
The contents of the Current Word Count register are decremented
after each byte or word is transferred. When the count reaches
zero the next transfer causes the count to roll over to FFFFh which
signifies the end of the transfer. The Current Word Count register
always holds the number of transfers to be performed, minus 1. If,
for example, 0800h bytes are to be transferred, you should initialize
the Current Word Count register with the value 07FFh.

Reading from these I/O addresses returns the value of the Current
Word Count register. The Base Word Count register, which is used
to implement the autoinitialization function, always retains the last
value written.

The two-byte read and write operations are controlled by an
internal Byte Pointer flip-flop. This is toggled each time a byte is
read or written. When the flip-flop is clear, the controller receives
or supplies the low order byte of the word count. When it is set,
the controller processes the high order byte. It is wise to clear the
flip-flop before commencing any read or write operations. This may
be accomplished by writing any value to I/O port 0Ch (or D8h in
the case of the second controller in AT systems).

Status register

The Status register is a read-only port that provides the application
program with information about the current state of the DMA
controller. Bits 0 to 3 are set when the corresponding channel has
reached its terminal count (i.e. when the programmed number of
bytes or words has been transferred). These bits are automatically
cleared after the Status register has been read. Bits 4 to 7 are set
high whenever a DREQ is active on DMA channels 0 to 3. This is
summarized in Table 6.6.

Command register

To maintain hardware compatibility, most of the bits in this write-only
register should be zero on the PC. Only bit 2 is normally manipulated

Data transfer 233

Table 6.6 The Status register (read only)

Bit Controller 1 Controller 2

0 1 D Channel 0 terminal count Used for channel 4 cascade

1 1 D Channel 1 terminal count 1 D Channel 5 terminal count

2 1 D Channel 2 terminal count 1 D Channel 6 terminal count

3 1 D Channel 3 terminal count 1 D Channel 7 terminal count

4 1 D DREQ0 pending Used for channel 4 cascade

5 1 D DREQ1 pending 1 D DREQ5 pending

6 1 D DREQ2 pending 1 D DREQ6 pending

7 1 D DREQ3 pending 1 D DREQ7 pending

by PC software. This bit enables or disables the controller and is used
to prevent the controller from responding to DREQ signals while
it is being programmed. Setting bit 2 disables the controller, and
clearing the bit enables the controller. Note that, in order to avoid
disrupting the memory refresh subsystem, you should not disable
the DMA controller in XT-bus machines. For information on the
remaining bits in this register you should consult the Intel 8237A-5
data sheet.

Request register

The Request register allows DMA requests to be initiated by software
rather than by a hardware DREQ signal. The binary-coded channel
number is loaded into bits 0 and 1 (channels 4 to 7 on the second
DMA controller should be coded as 00b to 11b respectively). Bit 2
controls the setting of the controller’s internal DREQ signal. This
bit should be set in order to perform a software DMA request. So, to
initiate a DMA request on channel 1, for example, you should write
the value 00000101b to the request register. Table 6.7 summarizes
the operation of the Request register.

Table 6.7 The Request register (write only)

Bit Description

1,0 Channel number to which the request applies (channels 4–7 of

controller 2 are represented by bit patterns 00b to 11b).

2 0 D Clear request.

1 D Initiate DMA request.

7–3 Not used.

234 PC interfacing and data acquisition

Table 6.8 The Mask register (write only)

Bit Description

1,0 Channel number to which the mask bit applies (channels 4–7 of

controller 2 are represented by bit patterns 00b to 11b).

2 0 D Enable DMA channel.

1 D Disable DMA channel.

7–3 Not used.

Mask register

This is a write-only register. It is used for selectively enabling or
disabling DMA channels according to the scheme shown in Table 6.8.
A hardware or software reset will set all mask bits, disabling all DMA
channels. Only those channels actually used should be enabled. You
should not disable channel 0 on systems that use it for refreshing
memory.

Mode register

The Mode register determines how the 8237A operates. It controls
the type of transfer, autoinitialization, address increment/decrement
selection and the transfer mode to be used. The bit assignments in
this write-only register are listed in Table 6.9.

Temporary register

This read-only register holds data between read and write cycles
during memory-to-memory transfers. It is of little interest for data
acquisition.

Write-All-Mask register

This allows DMA channels to be enabled or disabled in one oper-
ation. The normal Mask register permits control only of individual
channels. The bit assignments for the Write-All-Mask register are
shown in Table 6.10. This is a write-only register. Alternatively, if
it is necessary to enable all four DMA channels, your software can
simply write any value to address 0Eh (for controller 1) or DCh (for
controller 2). Only those channels actually used should be enabled.
You should not disable channel 0 on systems that use it for refreshing
memory.

DMA in protected and V86 modes

During DMA transfers the address contained in the 8237A’s Current
Address and Page registers refers to physical memory. This causes

Data transfer 235

Table 6.9 The Mode register (write only)

Bit Description

1,0 Channel number to which the mode settings apply (channels 4–7 of

controller 2 are represented by bit patterns 00b to 11b).

3,2 Transfer type (ignored in cascade mode):

00b D Verify

01b D DMA write (I/O to memory)

10b D DMA read (memory to I/O)

11b D Illegal.

4 0 D Disable autoinitialization.

1 D Enable autoinitialization.

5 0 D Increment address during DMA.

1 D Decrement address during DMA.

7,6 Transfer mode:

00b D Demand mode

01b D Single mode

10b D Block mode

11b D Cascade mode.

Table 6.10 The Write-All-Mask register (write only)

Bit Controller 1 Controller 2

0 Channel 0 mask. 0 D Enabled Channel 4 mask. Should be 1 on PC

1 Channel 1 mask. 0 D Enabled Channel 5 mask. 0 D Enabled

2 Channel 2 mask. 0 D Enabled Channel 6 mask. 0 D Enabled

3 Channel 3 mask. 0 D Enabled Channel 7 mask. 0 D Enabled

7–4 Not used Not used

problems with software running in the protected and virtual 8086
modes offered by 80386 and later processors. Because of the selector
addressing and page translation mechanisms used in these modes,
the application software that is responsible for programming the
DMA controller has no knowledge of the physical memory address
of its DMA buffer.

Some memory managers address this problem by using the
processor’s I/O protection mechanisms (see Chapter 1) to trap
accesses to the DMA controller. The memory manager can then
translate the address of the application program’s virtual buffer
into a physical address. A temporary mirror buffer may be allocated
by the memory manager if the physical address falls outside the

236 PC interfacing and data acquisition

16 MB addressable range of the DMA controller. This interme-
diate buffering stage may significantly affect the throughput of
DA&C application. However, provided that DMA buffers are allo-
cated within the 16 MB range, this technique should not affect the
real-time performance of the system.

Microsoft Windows virtualizes DMA by providing a set of Virtual
DMA software services. These services are essential in the ’386
Enhanced Mode of Windows 3.1 and in later versions of Windows
or when independent bus master DMA controllers are used. Bus
masters are additional DMA controllers that may be provided as an
integral part of an I/O device. Because the I/O addresses of the bus
master’s registers are not fixed (as they are with the PC’s standard
DMA controllers) it is more difficult for the operating system or
memory manager to trap I/O accesses to their registers. For this
reason, the DA&C application should not attempt to access the DMA
controller directly. Instead, all DMA requests must be routed via
the operating system’s Virtual DMA services. These include function
calls for allocating DMA buffers, for copying data to and from
the DMA buffers, and for locking memory addresses in order to
prevent remapping or conflicts with other DMA operations. As with
the virtual I/O system used under Microsoft Windows, the overhead
incurred with virtual DMA can seriously affect overall data-acquisition
rates, especially in high speed applications. Further information on
virtual DMA may be found in the texts by Brown and Kyle (1991)
and van Gilluwe (1994).

DMA programming

Programming a system for DMA involves configuring two compo-
nents: the peripheral DA&C device which supplies or receives data,
and the DMA controller itself. The DA&C device is usually config-
ured via one or more control registers. Because of the wide variety
of data-acquisition cards available, we will not discuss the DMA facil-
ities offered by individual devices. You should consult your DA&C
interface card manual for programming details.

Instead, this section illustrates how the PC’s DMA controller can
be programmed to manage the I/O transfer. After programming
the 8237A controller, data transfer is usually initiated in one of
three ways:

1. Software commands issued direct to the DA&C device, causing it
to activate DREQ.

2. Software commands issued to the 8237A’s Request register.
3. Hardware signals such as event triggers or periodic clock pulses.

Data transfer 237

Programming the DMA controller is quite straightforward provided
that you take a few fairly simple precautions. Most of these are just
common sense, but are listed here as they can be easily overlooked.

ž Your software should ensure that DMA requests are disabled
on the channel that is being programmed. This will prevent
the controller from attempting to service a DMA request until
the buffer addresses and word counts etc. have been properly
configured. Only enable the DMA channel after programming is
complete.

ž It is also a sensible precaution to disable interrupts in order to
prevent other processes from accessing the 8237A until it has been
fully programmed.

ž Only enable those channels that you actually use, and do not alter
the mask bits of any other channels.

ž Before terminating your program or disposing of a memory buffer,
always ensure that the DMA channel is left disabled.

ž Before writing address and word count values, clear the Byte
Pointer flip-flop by outputting any value to I/O port 0Ch (for
channels 0 to 3) or D8h (for channels 5 to 7).

ž When loading the Address and Page registers (particularly for
channels 5 to 7), be sure to preserve the bit pattern indicated in
Figure 6.2.

ž Load the Count registers with a value one less than the number of
bytes (or words in the case of channels 5 to 7) to be transferred.

ž Avoid using Block Transfer mode, particularly on XT class
machines, where this mode might interfere with the memory
refresh subsystem.

ž Use the smallest memory buffers consistent with your application.

Listing 6.1 illustrates how a DMA channel can be configured. For the
sake of clarity, the various DMA parameters and register addresses
are passed to the SetupDMA procedure in the form of global variables.
In a real program, all of these variables would have to be initialized
before calling SetupDMA. Separate code and data segments are not
shown in the listing. However, the code assumes that DS has been
initialized to point to the data segment. The SetupDMA routine itself
should be self explanatory.

Data acquisition using DMA

DMA is an essential technique for high speed data acquisition. It
is suitable for collecting ADC data as it is digitized; for reading the
contents of on-board memory buffers or for transferring data to and
from a communications interface card such as an IEEE-488 adaptor.
It is also an ideal mechanism for signal generation. Data can be

238 PC interfacing and data acquisition

Listing 6.1 Configuring 8237A channel 7 for a DMA write operation

;Register addresses

PageRegAddr dw ;Address of page register

AddrRegAddr dw ;Address of address register

CountRegAddr dw ;Address of count register

MaskAddr dw ;Address of Mask register

ModeAddr dw ;Address of Mode register

FlipFlopAddr dw ;Address of Clear Flip Flop port

;Variables for SetupDMA

Controller db ;Controller number (1 or 2)

Channel db ;8237A channel number (0 to 3)

BufOfs dw ;Pointer to buffer (buffer must not cross an

BufSeg dw ; absolute 64K / 128K boundary).

Count dw ;Number of bytes/words to be transferred

Direction db ;0 = Output (DMA read); 1 = Input (DMA Write)

Mode db ;0 = Demand; 1 = Single; 2 = Block

| |

| |

SetupDMA PROC FAR

;Sets up a DMA channel according to the parameters listed above.

;Address increment (rather than decrement) is always selected and

;autoinitialization is always turned off.

;Entry: Controller, Channel, BufOfs, BufSeg, Count, Direction

; and Mode variables, as well as the various register

; addresses, must all be defined.

; DS must point to the segment containing these variables.

; Other registers may contain any values.

;Exit: AX, BX, CX, DX and Flags registers are corrupted.

;Convert BufSeg:BufOfs into 24-bit physical address in BL,CX.

mov ax,BufSeg ;AX = Segment of buffer

xor bx,bx ;BX = 0

mov cx,4 ;Loop counter

clc ;Clear Carry Flag

Multiply16: rcl ax,1 ;Rotate BX,AX left via Carry Flag

rcl bx,1 ;

loop Multiply16 ;Repeat 4 times to multiply BX,AX by 16

add ax,BufOfs ;Add buffer offset

adc bx,0 ;Add Carry Flag in case of carry from ADD

mov cx,ax ;BX,CX now holds the physical adddress

;Check controller

mov al,Controller ;Get DMA controller number

cmp al,2 ;Is it controller 2 ?

je Ctrl2 ; Yes, adjust count and address

push Count ; No, no need to adjust

jmp LoadRegs ;

Ctrl2: ;Controller 2, so adjust count and address for word transfer

rcr bl,1 ;CF = A16; MSB of BL is undefined

rcr cx,1 ;A16 --> MSB of CX; CF = A0

rcl bl,1 ;Restore page reg bit pattern; LSB = A0

mov ax,Count ;Get number of bytes

shr ax,1 ;AX is now number of words

push ax ;Save on stack

Data transfer 239

Listing 6.1 (continued)

LoadRegs: cli ;Disable interrupts

;Mask (disable) DMA channel

mov dx,MaskAddr ;Address Mask register

mov al,Channel ;Channel number

or al,04h ;Set mask bit

out dx,al ;Load Mask register

;Load page register

mov dx,PageRegAddr ;Address Page register

mov al,bl ;Get high order address bits

out dx,al ;Load Page register

;Clear Byte Pointer flip flop

mov dx,FlipFlopAddr ;Address Flip Flop Control

out dx,al ;Clear flip flop

;Write 8237A address register

mov dx,AddrRegAddr ;Address 8237A's Address register

mov al,cl ;Load low byte

out dx,al ;

mov al,ch ;Load high byte

out dx,al ;

;Write Count register

mov dx,CountRegAddr ;Address Count register

pop ax ;Get byte/word count from stack

dec ax ;Count is one less than no. of transfers

out dx,al ;Output low byte

mov al,ah ; followed by

out dx,al ; high byte.

;Write Mode register

mov dx,ModeAddr ;Address Mode register

mov al,Channel ;Channel number

mov ah,Direction ;Include Direction bits

mov cx,2 ;

shl ah,cl ;

or al,ah ;

mov ah,Mode ;Include Mode bits

mov cx,6 ;

shl ah,cl ;

or al,ah ;

out dx,al ;Load Mode register

;Unmask (enable) DMA channel

mov dx,MaskAddr ;Address Mask register

mov al,Channel ;Define channel. Mask bit is left clear

out dx,al ;Load Mask register

sti ;Enable interrupts

retf ;Return to caller

SetupDMA ENDP

240 PC interfacing and data acquisition

easily clocked out from the PC’s memory to a device controlled by
a hardware pacer clock. Both DMA read and write operations can
be performed in the background with minimal disturbance to the
foreground DA&C program.

DMA transfer rate

The maximum theoretical DMA transfer rate, which would be achiev-
able only in Block Transfer mode, can be calculated by multiplying
the number of bus clocks required to transfer each byte by the length
of each clock period.

On the XT-bus systems, each DMA read/write transfer takes at
least six bus clocks. A higher number of clock intervals are required
if bus wait states are used. Bus frequencies of 4.77, 8 and 10 MHz
are commonly used on XT compatible systems, although in 8 and
10 MHz systems the DMA controller may operate at one half of the
bus clock frequency. A 4.77 MHz XT system will take approximately
1260 ns to transfer 1 byte.

ISA systems require at least five bus clocks to transfer each byte
or word. A 10 MHz ISA PC may therefore take 500 ns to perform
a single transfer, so the maximum theoretical transfer rate is about
2 MB/s. These figures will, of course, vary with bus clock speed.

The maximum transfer rate is rarely achieved, however. Delays
due, for example, to the finite ADC conversion time and multi-
plexer settling time may restrict throughput. The DMA controller
is also usually programmed to operate in Single Transfer (or occa-
sionally Demand Transfer) mode. This allows normal processor
bus cycles to be interwoven with DMA cycles and consequently
limits the maximum achievable transfer rate. Fast ADC cards that
provide DMA facilities will typically provide sustained throughputs of
the order of 50 000–250 000 samples/s (i.e. about 100–500 KB/s).
However, some high speed cards are claimed to allow burst DMA
rates approaching 2 MB/s over a 10 MHz ISA bus.

Dual-channel DMA

The limited DMA buffer size of 64 KB (or 128 KB for channels 5 to
7) can be a serious drawback. In order to stream a larger quantity of
data to the PC’s memory, it is necessary to suspend data acquisition
whenever the terminal count is reached so that the DMA controller
can be reprogrammed with the address of a new buffer. The DA&C
system may be unable to sample data during this time and there is
a danger that important readings will be lost. Average throughput
rates can be significantly reduced if more than 64 KB (or 128 KB for
channels 5 to 7) are to be transferred. This is a particularly severe
problem in high speed applications.

Data transfer 241

One solution is to employ dual-channel DMA. This requires special
hardware support, but is relatively straightforward to implement. Two
DMA buffers are allocated and a separate DMA channel is set up
for each buffer. The digitized readings are transferred via one DMA
channel and when this reaches its terminal count the DA&C adaptor
card switches to the second channel. The terminal count signal also
causes the card to issue a hardware interrupt. The software can
respond to the interrupt either by reading and processing the first
buffer or by reconfiguring the first DMA channel so that it addresses
a third buffer. The procedure is repeated when the second channel
reaches its terminal count, allowing data to be transferred alternately
via the two DMA channels.

Dual-channel DMA is most useful when data is transferred in short
isolated bursts. This allows the processor sufficient time between
bursts to respond to the terminal count interrupt and to perform any
other processing that may be necessary. DA&C cards which support
dual-channel DMA also often incorporate FIFO memory buffers.
These are usually large enough to hold 1–2 KB of data (sometimes
considerably more). When sufficient data has been recorded in the
buffer, it is transferred in small blocks (typically 256 or 512 bytes)
using the dual-channel DMA technique.

DMA latency

It is not only the data transfer rate which may be important in
a DA&C application. The time between assertion of the DREQ
line and transferring the first data byte is often an equally crucial
consideration. This latency time depends upon the priority of the
DMA channel and whether other DMA requests are pending. The
minimum time for completion of a single-byte transfer (i.e. a full
DMA write or read cycle) is at least six bus clocks on the XT bus or
five clocks on ISA and MCA machines. Additional clock cycles will
be required if the system is configured to include bus wait states.
The latency time will typically be longer than this minimum transfer
time. If a DMA channel is programmed for multiple-byte transfers
this can increase the latency of other channels.

When should you use DMA?

Although DMA is one of the fastest methods for transferring large
quantities of data, it is not always the most appropriate technique.
You should consider the following points when deciding whether to
use DMA.

ž Would programmed I/O be fast enough? For relatively low
acquisition rates, you may prefer the simplicity of polled or

242 PC interfacing and data acquisition

interrupt-driven I/O. The throughput obtainable with these tech-
niques will be highly dependent upon the speed of the DA&C
hardware as well as on the amount of processing to be performed
by the software. Assembly language routines may achieve rates
of up to about 20 000–30 000 samples/s without the benefit of
hardware buffering (i.e. direct from an ADC). Higher acquisition
rates may be possible by using a tight polling loop.

ž Will DMA provide an adequate throughput? Most DA&C hardware
manufacturers provide typical DMA throughput figures. If you
require a higher throughput than is possible using DMA, or if the
DMA latency is unacceptable, it may be necessary to use a DA&C
card that provides high speed buffered input. Burst acquisition
rates of up to a few MHz are supported by some devices of this
type. At the end of a data-acquisition run, the contents of the
card’s memory buffer can be transferred to the PC’s memory
(albeit somewhat more slowly) by using either programmed input
or DMA techniques. The rate at which this transfer is performed
is usually also an important consideration.

ž Would programmed I/O be faster than DMA? Single or Demand
Transfer DMA can be used for reading data from hardware buffers.
These techniques provide transfer rates from several hundred
KB/s up to approximately 1 MB/s. On 80286 and later processors
the REP INSW instruction allows data to be transferred from a
hardware buffer at up to about 1 to 2 MB/s, depending upon
processor type. This is significantly faster than DMA. The 32-bit REP
INSD instruction may provide an additional increase in throughput,
but because of delays inherent in the DA&C hardware, 32-bit I/O
will not generally provide twice the throughput of 16-bit transfers.
Whether 16-bit or 32-bit transfers are employed, the hardware
registers must, of course, be capable of responding to back-to-
back I/O instructions. REP INSW and REP INSD are only suitable for
reading buffered data. ADCs cannot generally supply a sequence
of digitized readings quickly enough to satisfy the repeated input
requests.

ž Will DMA programming overheads be significant? You should
consider whether the overhead involved in reprogramming the
DMA controller will exceed the time saved by using DMA. This
will, of course, depend upon the DMA rate achievable and the
speed of the processor. It will be relatively more efficient to use
programmed I/O with faster processors. This consideration is only
relevant if the 8237A programming is carried out in a time-critical
portion of the program.

ž How will DMA bus cycles affect the software? Interweaving of bus
cycles in Single Transfer mode will reduce the average execution

Data transfer 243

speed of the DA&C program by approximately one half. Because
the DMA controller takes over the system bus whenever it needs
to service a DREQ, DMA cycles take precedence over even high
priority interrupt handlers and tasks. Systems that use Demand
Transfer mode will also periodically suspend processing while
blocks of data are transferred.

ž Is the data stream suitable for DMA? DMA is intended for trans-
ferring a regular stream of data to or from the PC’s memory. If
individual readings, or blocks of varying size, are to be input at
irregular intervals, it might be more appropriate to use polled or
interrupt-driven I/O.

ž Will background operation be important? DMA is particularly
suited to background data acquisition. Once the DA&C hardware
and DMA controller are configured, data acquisition can proceed
with very little software intervention.

ž Are there other reasons to avoid polled or interrupt-driven I/O?
Data-acquisition programs running under non-deterministic oper-
ating systems and/or those with high interrupt latencies, such
as Microsoft Windows, may benefit from the more predictable
response of DMA-based hardware techniques.

PCI bus mastering

The preceding discussion relates to the DMA system available on
the ISA, EISA and MCA buses. Transfers analogous to DMA can
also take place on the PCI bus, although a somewhat different
and more flexible approach is adopted. The PC’s motherboard
does not provide a general-purpose DMA controller for the PCI
bus. Instead the system allows for bus mastering . Each PCI device
(e.g. adaptor card) possesses its own special DMA-type circuitry
for initiating control of the PCI bus. This allows any PCI device
to communicate with another without involving the processor. A
DA&C card could, for example, continuously acquire data at a high
rate into an on-board FIFO buffer and periodically transfer the
buffer contents over the PCI bus into system memory. The whole
process can be carried out without processor intervention, other
than that required to initially program the DA&C card and, perhaps,
trigger the acquisition sequence. This capability provides a means
for high speed data transfers that have a minimal effect on software
execution times. 32-bit implementations of the PCI bus, clocked at
33 MHz, can transfer data to or from a contiguous block of memory
at up to 132 MB/s. This requires that a special addressing mode
(burst mode) is used. The maximum data rate drops to 44 MB/s for
normally addressed data (multiplexed mode).

244 PC interfacing and data acquisition

The PCI bus arbitrates between different devices wishing to take
control of the bus. To request control of the bus, a bus master (on,
for example, a DA&C card) will activate the REQ bus line. The PCI
arbitration logic then asserts the GNT line, passing control of the
bus to the requesting device (which is known as the initiator).

The transfer is similar in principle to ISA-based DMA, although
there are some important differences. The initiator provides the
32-bit (or 64-bit) address of the target device, placing it on the
bus’s Address/Data lines. Addressing is performed in one of two
ways. In burst mode the target address for the first transfer is
transmitted over the bus and then the target device calculates the
address for each subsequent transfer by incrementing the address
by the data size (4 or 8 bytes). As the bus undergoes only an initial
addressing phase, transfer speed is maximized, but it is possible to
access only contiguous blocks of memory in this way. In multiplexed
mode, however, each transfer is explicitly addressed. It is these
additional addressing phases that reduce bus throughput. The type
of data transfer – e.g. memory read, memory write, I/O read or
I/O write – is specified by sending a command (i.e. a bit pattern on
special bus lines) to the PCI bus logic.

The initiator indicates the start of a transfer by asserting
the FRAME bus line. The initiator and target then control the
transfer sequence via the IRDY and TRDY lines. When the transfer
is complete, the initiator deactivates the FRAME signal (see
Buchanan (1999)).

An important feature of the PCI bus mastering system is that it
allows DA&C cards with a degree of on-board intelligence to indepen-
dently initiate and control the transfer of large quantities of digitized
data into system RAM. Some DA&C hardware manufacturers, such
as National Instruments, have developed optimized PCI bus master
circuits which employ techniques analogous to dual-channel DMA.
These facilitate continuous high speed transmission of acquired data
into multiple buffers or non-contiguous memory blocks.

6.3 Buffers and buffered I/O

As we have seen in the previous section, buffering is a useful
technique for decoupling DA&C hardware interfaces from the super-
vising software. By providing temporary storage for acquired data
it is possible to average out the irregularities in software timing
that are introduced by interrupt latencies, task switching or DMA
operations. This allows data acquisition to proceed at a regular and
guaranteed rate. Memory buffers are normally used in conjunction

Data transfer 245

with DMA and interrupt-driven data-acquisition systems to facilitate
asynchronous I/O. Choosing the correct type of buffering system can
greatly simplify subsequent management of data. We will consider
two classes of buffer: hardware memory buffers, which are managed
by the data-acquisition device, and software buffers maintained by
the DA&C application program itself.

Hardware buffering techniques

Many DA&C devices have a limited capacity for on-board buffering
of acquired data. FIFO buffers ranging from typically 1 to 64 KB are
used on some of the more sophisticated dumb data-acquisition cards.
Intelligent devices are often equipped with considerably larger data
buffers.

Acquired data can be channelled to a hardware buffer at very high
speed (often up to several MB/s). This type of facility can allow
data acquisition to proceed at much higher rates than would be
possible if each reading had to be individually recorded by the PC.
The relatively time-consuming task of transferring data to the PC’s
memory can then be performed at the end of the data-acquisition
sequence. Many DA&C devices allow access to their memory buffers
at the same time as new readings are being stored. When sufficient
data has been recorded in the hardware buffer, the device’s interface
circuits generate an interrupt or DMA request in order to initiate
transfer to the PC’s memory.

The principal benefit offered by hardware buffering is that the
DA&C system is not impaired by the variable response times inherent
in most PC software. Hardware FIFOs are often essential where a non-
deterministic operating system such as Microsoft Windows is used.
Because of task switching and associated high interrupt latencies,
I/O requests are not always serviced promptly under Windows.
Hardware buffers can help to overcome this problem by storing data
until the PC is ready to receive it.

Software buffers

The DA&C program itself may also possess its own memory buffers.
Such buffers not only supply the decoupling necessary for asyn-
chronous I/O, they can, if carefully implemented, also provide a
convenient framework for subsequent data processing. They are
usually used for receiving or supplying data during DMA transfers
or in interrupt-driven I/O.

Systems employing drivers, or many interacting interrupt handlers,
tasks or threads might also make extensive use of temporary buffers.

246 PC interfacing and data acquisition

In an analogue input system, for example, an interrupt handler
may place each successive reading in a buffer, from where it can be
subsequently retrieved and processed by the main (non-interrupt)
portion of the program. This minimizes the processing required
within the interrupt handler, allowing it to return quickly and
be ready to respond should more data become available. Rapid
completion of the interrupt also ensures that lower priority code has
the opportunity to run.

Memory buffers can take many forms. We will consider only
two basic structures, of which there are a large number of imple-
mentations: LIFO buffers and FIFO buffers. All programmers will
be familiar with arrays in which each constituent element can be
accessed via a numeric index. In high level languages, arrays are
used as the basis of various types of buffer. The characteristics of a
buffer are determined by the locations in which data is stored and
by the order in which it is transferred to and from the buffer.

LIFO buffers

As the name implies, the last item of data to be recorded in a
Last-In-First-Out (LIFO) buffer is the first one to be made available
when the buffer is read. You should already be familiar with one
implementation of LIFO buffers: the 80x86 processor’s stack. The
usual analogy is that LIFO buffers operate like a pile of books. Just
as it is possible to gain access to only the last book placed on the
pile (i.e. the one on the top), items of data stored in a LIFO buffer
can be retrieved only in the reverse of the order in which they were
stored. This property is of limited use in most DA&C systems, but
it is occasionally useful if it is necessary to process a sequence of
measurements in reverse time order.

Listing 6.2 illustrates two simple C functions that can be used to
implement a LIFO buffer. Each element of the buffer is a single
16-bit word, but the example can be readily adapted to handle other
data types. The BufCount variable should be initialized to zero before
storing data in the buffer. If your program reads from or writes to the
LIFO buffer from within an interrupt handler, you should disable
interrupts whenever non-interrupt code accesses the buffer.

FIFO buffers

Also known as a circular buffer or a ring buffer, the First-In-First-
Out (FIFO) buffer is perhaps the most useful buffer structure in
DA&C systems. FIFO buffers have many uses in DA&C applications
and are essential to facilitate communication between asynchronous
processes. They are used as the basis of event-driven systems, for

Data transfer 247

Listing 6.2 Accessing a LIFO buffer

unsigned int Buffer[256];

unsigned int BufCount;

:

:

void WriteLIFO(unsigned int Data, unsigned char *Full)

f
if (BufCount < 256)

f
Buffer[BufCount] = Data;

BufCount++;

*Full = 0;

g
else *Full = 1;

g

void ReadLIFO(unsigned int *Data, unsigned char *Empty)

f
if (BufCount > 0)

f
BufCount--;

*Data = Buffer[BufCount];

*Empty = 0;

g
else *Empty = 1;

g

storing keyboard scan codes and for implementing message queues.
They also have many applications in DA&C software: for driver-client
interprocess communication, DMA-based I/O and in filtering algo-
rithms. As we shall see in Chapter 8, FIFO buffers are also important
features of interrupt-driven serial communications software.

The first item of data recorded in the FIFO buffer is the first one
retrieved when the buffer is read. Thus the order in which data is
read from the buffer is the same as that in which it was originally
stored. FIFO buffers can be visualized as a ring structure such as
that shown in Figure 6.3. This example shows only 16 entries in the
buffer, but much larger buffers are often used in practice. As the
buffer fills, new readings are placed in successive locations around
the ring, defined by an index labelled BufIn in the figure. When the
buffer is read, the oldest item of data is taken from the tail of the
buffer. This is addressed by a second index, BufOut.

Listing 6.3 shows C functions which can be used for reading
from and writing to a FIFO buffer. In this example, the buffer is
implemented as an array named Buffer and has 256 entries. The
buffer is managed by means of the two indices BufIn and BufOut.
BufIn addresses the next free location in the buffer and BufOut points

248 PC interfacing and data acquisition

D5

D4

D3

D2

D1

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

BufO
ut

B
u
fIn

Figure 6.3 The structure of a FIFO buffer

to the oldest item of data. Although not shown in the listing, these
indices should both be initialized to 0 before accessing the buffer.
Likewise, the BufCount variable, which is simply a count of the number
of readings held within the buffer, should be initialized to 0. Notice
that the BufIn and BufOut indices are incremented until they reach
255 (the end of the Buffer array). Subsequent accesses cause the
indices to wrap around to the first element in the buffer in order to
emulate the structure shown in Figure 6.3.

If the buffer is accessed by two or more asynchronous processes
(e.g. from within a hardware interrupt handler and by a non-
interrupt routine), calls to the WriteFIFO() or ReadFIFO() functions
will constitute a critical section and must be appropriately protected.
You should, for example, disable interrupts when accessing the buffer
from non-interrupt code. See Chapter 2 for more on critical sections.

Because memory buffers have a finite (and often quite limited)
size it can be easy to run out of space if data is stored at too high
a rate, or if the routine that reads the buffer is delayed for some

Data transfer 249

Listing 6.3 Accessing a FIFO buffer

unsigned int Buffer[256];

unsigned int BufIn;

unsigned int BufOut;

unsigned int BufCount;

:

:

void WriteFIFO(unsigned int Data, unsigned char *Full)

f
if (BufCount < 256)

f
Buffer[BufIn] = Data;

if (BufIn < 255)

BufIn++;

else BufIn = 0;

BufCount++;

*Full = 0;

g
else *Full = 1;

g

void ReadFIFO(unsigned int *Data, unsigned char *Empty)

f
if (BufCount > 0)

f
*Data = Buffer[BufOut];

if (BufOut < 255)

BufOut++;

else BufOut = 0;

BufCount--;

*Empty = 0;

g
else *Empty = 1;

g

reason. The programmer has several options when this happens. One
possible course of action is to pass an error flag back to the caller,
as in Listing 6.3. However, to preserve the relationship between the
data stream and the point at which the error occurred, it is often
preferable to record the error in the buffer itself. The routine that
reads the buffer can then detect the discontinuity in the data stream
and take appropriate action.

A third option is simply to record the new data, overwriting the
oldest data in the buffer. This may be desirable in certain situations.
Some statistical process control applications require the software
to maintain a process history of predefined depth (i.e. the N most
recent sets of readings). This can be easily accommodated by allowing
a FIFO buffer to continuously overwrite the oldest data as each new
item of data is received.

250 PC interfacing and data acquisition

Another situation where automatic overwriting of data is advanta-
geous is in pre-trigger logging – i.e. where a number of readings must
be recorded immediately prior to some unpredictable trigger event.
An example would be destructive proof testing of steel member.
An increasing load may be applied until the member buckles or
fractures. The applied load and deformation of the component are
measured continuously, but only those readings taken immediately
prior to failure may be of interest. The readings can simply be
recorded in a FIFO buffer, such that at any given time during the test
the buffer holds only the N most recent readings. If data acquisition
is halted when the component fails, the final contents of the buffer
will represent the period leading up to the point of failure.

7 Parallel buses

As far as interfacing to the PC is concerned, it is convenient to divide
bus systems into two categories: the PC’s internal buses (such as ISA
and PCI) and external buses. Although internal buses are an integral
part of the PC and a necessary element of all DA&C systems, their
operation is largely transparent to the programmer. For this reason,
and because they are adequately covered in several books on PC
architecture, they will not be described in further detail here. Instead,
the present chapter (together with Chapter 8) concentrates on the
various external buses that can be used for communicating with
devices such as data-logging modules and programmable controllers.

Chapter 8 will deal with serial bus systems, in which data is trans-
ferred one bit at a time along a single conductor (or pair of
conductors). Parallel buses, which we shall consider in this chapter,
possess a separate signal line for each bit. This enables a whole byte,
word or double word to be transmitted in one operation, allowing
potentially higher data transfer rates.

We will deal with two widely used parallel interfaces: the Centronics
parallel port and the IEEE-488 bus (or GPIB). These are of particular
interest in PC-based data-acquisition systems. The former is a stan-
dard component of virtually all PCs, and there are now a number of
parallel-port DA&C devices on the market. The well-known IEEE-488
bus is popular in test and instrumentation applications and is often
used for PC-based laboratory interfacing.

This chapter by no means constitutes a comprehensive coverage
of parallel bus systems. The popular Small Computer Systems Inter-
face (SCSI) bus, and a number of more specialized backplane buses
such as STE and VME, have been excluded. As we have seen in
Chapter 1, the latter are used principally for interfacing in industrial
DA&C applications. From the PC programmer’s perspective they
often appear as an extension of the PC’s ISA bus. Tooley (1995)
provides a useful introduction to these systems. Other bus systems

252 PC interfacing and data acquisition

(such as Metrabyte’s MetraBus and the DT-Connect system avail-
able from Data Translation Inc.), which are designed specifically
for interconnecting components of DA&C systems, have also been
excluded because of their proprietary nature.

7.1 Introduction

External parallel buses are usually somewhat simpler in their design
than the PC’s internal expansion buses. They do not, for example,
possess most of the address or control lines that are present on the
ISA bus. However, many parallel bus systems do incorporate some
form of handshaking in order to strobe data into the receiving device
and to control the flow of data across the bus. Handshaking signals
used with specific buses are discussed in more detail in the following
sections. In contrast to the ISA and PCI buses, some external buses
support only 8-bit data transfers.

Most parallel buses operate synchronously – i.e. a common timing
or strobe signal is used to synchronize transmission and reception
of data. Often, the handshaking signals are automatically generated
and sensed by the interface hardware. This relieves the software of
the time-consuming burden of having to poll the handshaking lines.
An interrupt channel may also be available on the bus, and this
allows the interface circuitry to request processor service whenever
it is ready to transmit a new byte or whenever new data is received.

Some parallel interfaces operate without the benefit of hand-
shaking or synchronization, and are said to be asynchronous. Because
data may arrive at any time, the software must sample the state of
the interface frequently enough to accommodate the highest trans-
mission rate. Sampling at too low a rate may result in data bytes
being missed. This obviously imposes a considerable overhead on
the software. Asynchronous parallel interfaces are employed most
often in situations in which the ‘data’ lines are used, not to carry a
byte of data, but instead to sense the state of one or more external
devices, such as a limit switch or relay. Interfaces of this nature are
more accurately described as a collection of digital control lines
rather than a parallel bus. There are now, on the market, a number
of parallel digital I/O cards designed for this type of operation.
These cards, which are often equipped with isolating circuitry (e.g.
relays or opto-isolators), have numerous uses and form an important
part of many DA&C systems.

Some parallel interface devices may be suitable for both
synchronous and asynchronous communication, depending upon
the nature of the software that drives them. For example, the 8255A

Parallel buses 253

Programmable Peripheral Interface, which is used to implement
digital I/O on a number of commercial DA&C cards, can be
configured for several different operating modes. The Basic
I/O mode is suitable for asynchronous digital I/O while more
sophisticated modes implement the hardware handshaking features
that are necessary to connect to synchronous parallel buses.

7.2 Data acquisition using a parallel bus

The principal benefit of using parallel, rather than serial, buses
for data acquisition is that they usually offer significantly higher
throughput. As a general rule, most serial buses provide transfer
rates of up to about 10 KB/s, whereas a data rate of a few hundred
KB/s is achievable with typical external parallel buses (i.e. IEEE-
488 and Centronics systems). This speed advantage does not always
apply, however. As we will see in Chapter 8, some newer serial bus
designs offer the potential for extremely high speed data transfers:
up to several tens of MB/s!

One of the most serious restrictions imposed by parallel buses is
that they are mostly designed for use with relatively short cables.
Unless fibre optic links are employed, this precludes their use for
communicating with remote data loggers and similar systems. It is
not usually advisable to employ cables longer than about 1 metre
with buses driven directly from TTL devices such as an 8255A
Programmable Peripheral Interface (PPI). Up to about 2 to 3 metres
of good quality shielded cable may normally be used in conjunction
with the Centronics parallel port, while the IEEE-488 bus supports
a total cable length of not more than 20 m. This compares with
distances of up to several thousand metres that are permissible
with some serial interfaces. The maximum practicable transmission
distance with any parallel bus does of course depend upon the
impedance of the cable and the rate at which data is to be transmitted.
The degree of coupling between the bus lines may also be an
important consideration. Slow transmission rates can, in some cases,
permit slightly longer cables to be used.

Most parallel systems employ a ‘multi-drop’ bus topology – i.e.
several devices connected in parallel to the same data and control
lines. A good example of this is the IEEE-488 (GPIB) bus which we
will discuss later in this chapter. Point-to-point topologies are also
sometimes used. This configuration is often employed with devices
connected to the PC’s parallel (Centronics) port.

Parallel buses are used in a great variety of data-acquisition systems.
Their principal role is for high speed communication with laboratory

254 PC interfacing and data acquisition

test equipment and instruments such as digital voltmeters, frequency
counters or logic analysers. A number of products are available which
make use of, for example, the PC’s Centronics port to interface
directly to an ADC. When used in conjunction with suitable line
drivers, relays, or opto-isolators, parallel interfaces can also be used
in industrial systems to interface to Programmable Logic Controllers
(PLCs), control panels, indicators, motor drives and a multitude of
other devices.

7.3 The PC’s parallel port

Almost all PCs are equipped with at least one parallel port, but
most machines will accommodate up to three separate ports. The
parallel port was designed specifically for interfacing to printers. The
terminology used to describe the various connector pins and signals
reflects this. On some systems the parallel port may be used for other
purposes, such as connecting to external disk drives, tape devices
or to copy-protection keys (dongles). It also provides a convenient
means of interfacing to data-acquisition and/or control systems. We
will not discuss in detail how to drive a printer via the parallel port – it
is normally preferable to use the operating system or BIOS services
that are provided for this purpose (see, for example, the texts by
Norton and Wilton (1988), Phoenix Technologies Ltd (1989) or
Dettmann and Johnson (1992)). Instead, this section will concen-
trate on the operation of the parallel port’s hardware and will discuss
how it can be programmed for use in DA&C applications.

Parallel port standards

Modern PCs are equipped with parallel ports conforming to a variety
of standards. There are four basic classes of parallel port:

1. The standard unidirectional port: present on IBM PC, XT and
AT machines.

2. The bidirectional port which was introduced in the IBM PS/2
range.

3. The Enhanced Parallel Port (EPP) developed by Xircom Inc.,
Intel and Zenith Data Systems.

4. The Enhanced Capabilities Port (ECP) developed by Hewlett
Packard and Microsoft.

The standard parallel port was designed primarily for unidirectional
output. As such, it possesses only one 8-bit output port and a group of
five digital input lines. The latter usually carry control information,

Parallel buses 255

but in some applications they provide a means of inputting data
from external devices. Data is usually read one nibble (4 bits) at a
time: the fifth input line carries control or interrupt signals.

The bidirectional parallel port is present on the IBM PS/2 range
and on some older AT ‘clone’ machines. For compatibility with
earlier systems, this port emulates the standard unidirectional port
by default. However, it can be switched, by software, to an input
mode, allowing its 8-bit data port to receive a byte of information
from a peripheral device.

More modern ISA/PCI machines are equipped with an Enhanced
Parallel Port (EPP) which is a further extension of the standard
parallel port. This type of system employs a bidirectional data bus,
but also carries out the data transfer handshake automatically as soon
as the software writes data to the port. This removes the burden of
handshaking from the software and allows a byte to be transferred in
only one I/O cycle. At least four OUT or outportb()/outp() instructions
would be required for a software-controlled handshaking sequence
using a standard parallel port. The EPP can, of course, emulate a
standard parallel port if the high speed data transfer capability is
not required. To maintain compatibility with the standard port, the
EPP defaults to this emulation mode when power is first applied.
The enhanced high speed mode may subsequently be activated by
software. A number of the parallel port’s connector pins (STROBE,
AUTOFEED, and SELECT-IN: see Connector pin assignment later
in this chapter) are used for different purposes when the EPP’s
enhanced mode is activated, although they revert to their normal
function in the default standard mode. The EPP is used on some
portable computers to circumvent their limited expansion capability
and to provide a means of interfacing them to peripherals other
than printers.

The ECP provides similar facilities to those of the EPP, but, in
addition, implements data compression and error detection facilities
as well as an addressing scheme that allows a single port to address
one of up to 128 separate I/O devices.

The IEEE-1284 (1994) standard encompasses all four classes of
parallel port and defines every aspect of the parallel port interface. It
reclassifies the previous port designs as separate modes of a new type
of port. This standard is becoming widely adopted for interfacing
to peripherals and to some DA&C devices, but there are still a very
large number of the older port designs in use.

Most data-acquisition applications do not require the very high
rates of throughput possible with the EPP, ECP and IEEE-1284 ports.
In the remainder of this chapter, we will concentrate on the basic
features offered by the unidirectional and bidirectional parallel

256 PC interfacing and data acquisition

ports or modes. Unless specified to the contrary, the following
text excludes any discussion of the more advanced features of
EPP, ECP and IEEE-1284. Remember, however, that these standards
maintain backward compatibility with the earlier devices and so
the information provided will also be of use on modern IEEE-1284
compliant machines. Further information on the EPP may be found
in the texts by van Gilluwe (1994) and Buchanan (1999). Rosch
(1996) also provides a detailed account of the various parallel port
standards.

Data acquisition via the parallel port

The parallel port offers several advantages for DA&C. First, it is
cheap to use – it is a standard component of all PCs – and it is often
only necessary to purchase or construct a suitable connector and
cable. Also, the computer can be easily unplugged from the external
device: there is no need to insert special adaptor cards in the PC’s
expansion slots. This is a particularly relevant consideration when
the number of expansion slots is limited (e.g. when using a portable
PC). Finally, and often most importantly, the parallel port offers the
potential for quite high speed data transfer.

Speeds of up to about 150 KB/s are possible on a standard unidi-
rectional parallel port, although the actual maximum data transfer
rate will, of course, depend upon the speed of the controlling soft-
ware and upon the response time of the device attached to the
port. Most printer interfaces, for example, are driven at a fraction
of the maximum rate: perhaps 10 KB/s or less. Some new versions
of the parallel port, conforming to the EPP standard or the more
recent IEEE-1284 standard, are capable of transmitting data at up
to 2 MB/s, although it is difficult in practice to sustain data rates of
more than about 800 KB/s.

A number of manufacturers now produce DA&C modules which
connect directly to the PC’s parallel port. Some devices are very
simple and inexpensive, incorporating, for example, a single channel
8-bit ADC. Others provide a more comprehensive set of features:
multiplexed analogue input, multi-channel analogue output, digital
I/O or complex counter/timer devices for digital pulse and
frequency measurement.

The main disadvantage with using a parallel port for data acqui-
sition is that cable lengths must be limited to less than about 1.5 to
3 m, depending upon port design and cable quality. Transmission
distance can be extended by using fibre optic adaptors.

A further limitation is that the port provides only a small number of
I/O lines. There are five input lines on the standard unidirectional

Parallel buses 257

parallel ports and this may be inadequate in some applications.
The parallel ports present on a few older clone machines do not
even conform to the basic unidirectional port standard and have
an even smaller number of active input lines! Some peripheral
devices (most notably copy protection ‘dongles’) circumvent this
limitation by transferring data bits in a serial manner, using just
one of the available I/O lines. This does negate the parallel port’s
speed advantage and complicates programming somewhat. In the
absence of bidirectional, EPP or ECP ports, the most satisfactory
means of increasing the number of I/O lines and of implementing
bidirectional data transfers is to interface the port to a device such
as an 8255A PPI via non-inverting octal buffers and suitable logic.

Parallel port addresses

Each parallel port appears to the programmer as a set of three
registers in the PC’s I/O space. The starting (or base) address of
each register group is recorded by the BIOS’s POST routines in a
four-word table at address 0040:0008h in the BIOS Data Area. This
is shown in Table 7.1. The total number of parallel ports present in
the system is stored as a binary-coded number in bits 14 and 15 of
the word at 0040:0010h in the BIOS Data Area.

The IBM PC and XT, and compatible machines, will accommodate
up to four separate parallel ports. All four of the above locations
may be occupied on these systems. However, on the IBM AT and
modern PCs, the location previously used to hold the fourth parallel
port address (i.e. 0040:000Eh) is reserved. On the PS/2 range of
machines (and some AT compatibles) this location contains the
segment address of the Extended BIOS Data Area. The parallel port
base addresses that are normally used on the various models of PC
and PS/2 are listed in Table 7.2. As there can be some variation

Table 7.1 Parallel port address table in the BIOS Data Area

Address Contents

0040:0008h I/O address of first parallel port.

0040:000Ah I/O address of second parallel port (or 0 if less than 2 ports present).

0040:000Ch I/O address of third parallel port (or 0 if less than 3 ports present).

0040:000Eh IBM PC, XT: I/O address of fourth parallel port (or 0 if not present).

IBM AT: Reserved.

IBM PS/2: Segment address of extended BIOS Data Area.

0040:0010h Bits 14 and 15 hold the number of parallel ports detected by the

BIOS.

258 PC interfacing and data acquisition

Table 7.2 Usual parallel port addresses

Base address on Base address on Base address on

Parallel port PC, XT AT MCA systems

1 3BCh or 378h 378h 3BCh

2 378h or 278h 278h 378h

3 Undefined Undefined 278h

between the various ‘compatible’ machines, it is prudent to obtain
the port’s base address from the BIOS Data Area rather than to code
the address into your program.

Note that the BIOS printer services obtain the parallel port
addresses from the BIOS Data Area and, if all parallel-port driver
software is designed to do likewise, it is then very simple to redirect
I/O operations to a different port by simply rearranging the contents
of the address table.

The structure of the parallel port

Although the parallel port is a fairly simple device, there are a number
of difficulties associated with using it for two-way data interchange.
Before considering the topic of communication we will first discuss
the parallel port’s structure and method of operation.

Overview

Figure 7.1 is a schematic representation of the structure of the
parallel port. Each parallel port contains three registers which occupy
contiguous addresses in the PC’s I/O space. Actually, read and write
operations performed on two of these I/O addresses (i.e. the Data
and Control Register addresses) cause different internal registers to
be accessed. However, most of the bits within each pair of registers
are mapped to the same signal lines and, for this reason, it is more
convenient to think of reading and writing operations as accessing
the same register.

The majority of the bits that can be addressed via these registers
are used to directly control or sense the state of the various signal
pins present on the connector (see the following section for a list of
pin connections). In most cases, a logical 1 bit corresponds to a high
voltage ⊲C5 V⊳ at the associated connector pin, but the SELECT-IN,
AUTOFEED, STROBE and BUSY lines are inverted as shown in
Figure 7.1. Other bits present in the various registers are used to
enable or disable interrupts and, on bidirectional ports, for selecting

Parallel buses 259

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

CONTROL
PORT

Direction
control

1

25-way connector

STROBE

AUTOFEED

INIT

SELECT-IN

To 8259A PIC

Interrupt
enable

Interrupt
pending

STATUS
PORT

ERROR

SELECT

PE

ACK

BUSY

Read enable

1

1

2

2
D0

D1

D2

D3

D4

D5

D6

D7

DATA
PORT

NOTE Present only on PS/z extended (bidirectional) ports, EPP and ECP ports.

NOTE Output only on standard PC/XT/AT parallel ports.

S
Y

S
T
E

M
 D

A
T
A

 B
U

S

Figure 7.1 Schematic representation of the parallel port

260 PC interfacing and data acquisition

the direction of data transfer. Note that the overstrike (e.g. in
STROBE) indicates only that the signal is active, or asserted, when at
a logic-low level: it is not meant to indicate that the signal is inverted
between the Status or Control Register and the connector pin.

The standard unidirectional parallel port, does not allow data to
be input via the Data Register. However, the bidirectional type of
parallel port can be programmed (via bit 5 of the Control Register)
to permit both input and output via the Data Register. Listing 7.1,
shown later in this chapter, includes a function which illustrates
how to determine whether the parallel port hardware supports this
‘extended’ mode.

The ACK input line may be sensed via bit 6 of the Status register. As
shown in Figure 7.1, this line can also be used to generate interrupts.
The falling edge of a pulse on ACK will cause an interrupt to occur,
but only if bit 4 of the Control Register is set. The 8259 PIC’s interrupt
mask must also have been modified in order to enable interrupts on
the appropriate IRQ line. The first parallel port is usually assigned
to IRQ7 and the second to IRQ5. No specific interrupt levels are
reserved for other parallel ports which might be present in the
system. In these cases it is usual to configure the port to use any free
interrupt channel. The IRQ level may usually be selected by means
of a jumper or DIP switch. Once an interrupt signal has occurred on
the ACK line, bit 2 of the Status Register indicates that an interrupt
is pending. Note that the BIOS’s printer services do not make use of
the parallel port’s interrupt facilities, although some Windows EPP
or ECP drivers do.

Connector pin assignment

The PC’s parallel port employs a female 25-way D-type connector.
This usually connects to a printer via a cable terminated with a
male 36-way Amphenol connector. The pin assignments for both
connector types are listed in Table 7.3.

Registers and programming details

The Standard parallel port has three registers: the Data Register, the
Status Register and the Control Register. These are also supported
by the more advanced implementations of the parallel port (e.g.
IEEE-1284 compliant ports).

The Data Register (offset 0, R/W)

This is normally used for sending 8-bit characters to a printer, but in
DA&C applications it may also be used for sending out commands,
data or other signals to data-logging or control units.

Parallel buses 261

Table 7.3 Parallel port connector pin assignments

Pin number

25-way D-type 36-way Amphenol Signal

1 1 STROBE

2 2 D0

3 3 D1

4 4 D2

5 5 D3

6 6 D4

7 7 D5

8 8 D6

9 9 D7

10 10 ACK

11 11 BUSY

12 12 PE

13 13 SELECT

14 14 AUTOFEED

15 32 ERROR

16 31 INIT

17 36 SELECT-IN

18–25 19–30, 33 Signal ground

– 15 Not connected

– 16 0 V (logic ground)

– 17 Chassis ground

– 18 Not connected

– 34 Not connected

– 35 Logic 1

On the standard parallel port, or on the bidirectional port when
read mode is disabled (Control Register, bit 5 D 0), all bytes written
to the Data Register are latched so that the data remains on the
corresponding connector pins. Any subsequent read operations will
return the last byte written to the register. Note that reading the
Data Register will return the data previously latched: it is not possible
to read the state of the connector’s D0–D7 pins on the standard
unidirectional parallel port.

When data reads have been enabled (Control Register, bit 5 D 1),
the data output latch is isolated from the connector pins so that any
bytes written to the Data Register are prevented from reaching the
parallel port connector. In this mode, it is possible to sense the state
of the D0–D7 connector pins by reading the Data Register.

262 PC interfacing and data acquisition

Table 7.4 The Status Register

Bit Description

0 Unused/reserved.

1 Unused/reserved.

2 Interrupt request (IRQ) pending on MCA systems. Unused on

non-MCA systems.

3 ERROR line status (1 D C5 V nominal).

4 SELECT line status (1 D C5 V nominal).

5 PE line status (1 D C5 V nominal).

6 ACK line status (1 D C5 V nominal).

7 BUSY line status – inverted (0 D C5 V nominal).

The Status Register (offset 1, R/O)

This register is normally used for reading the status of an attached
printer. Bits 3 to 7 of the Status register reflect the state of the five
input lines listed in Table 7.4. Note that the BUSY line is inverted
so that a high voltage ⊲C5 V⊳ on the connector pin will result in a
zero BUSY bit. As mentioned previously, a low pulse on the ACK line
can be made to generate an interrupt if required. On a bidirectional
parallel port, bit 2 indicates whether an interrupt is pending.

The Control Register (offset 2, R/W)

When a printer is connected to the parallel port, the Control
Register is normally used to control data transfers to the printer.
This is accomplished by means of four digital output lines which
can be manipulated via the four low order bits of the Control
Register. When interfacing to equipment other than a printer, these
lines can be used for a variety of different purposes. The STROBE,
AUTOFEED and SELECT-IN lines are inverted so that each bit
must be set to 0 in order to generate a high ⊲C5 V⊳ voltage at the
corresponding connector pin. However, the INIT output line is not
inverted. The four output lines are all latched so that, once written,
the same bit pattern will normally remain on the connector pins.
Reading from this register will return the values previously written
to these lines.

Two other bits are also present in the Control Register. These are
used for enabling the parallel port interrupt and, on a bidirectional
parallel port, for controlling the direction of data flow through the
Data Register. Table 7.5 lists the bits present in this register.

Parallel buses 263

Table 7.5 The Control Register

Bit Write Read

0 STROBE pin (0 D C5 V nominal). STROBE pin status (0 D C5 V

nominal).

1 AUTOFEED pin (0 D C5 V nominal). AUTOFEED pin status (0 D C5 V

nominal).

2 INIT pin (1 D C5 V nominal). INIT pin status (1 D C5 V nominal).

3 SELECT-IN pin (0 D C5 V nominal). SELECT-IN pin status (0 D C5 V

nominal).

4 0 D Disable parallel port interrupt. Current interrupt-enable status.

1 D Enable parallel port interrupt.

5 0 D Write via Data register enabled Unused/reserved.

(standard/compatibility mode).

1 D Read via Data register enabled

(write via Data register

disabled).

6 Unused/reserved. Unused/reserved.

7 Unused/reserved. Unused/reserved.

Driving a printer via the parallel port

So far we have seen how each control and status line present in the
parallel port is mapped to the various registers, but we have refrained
from discussing the mechanisms used to transfer data to a printer.
This information is, of course, superfluous if the parallel port is to
be used for interfacing to devices such as relays, stepping motors or
data-logging equipment. However, if it is necessary to interface to
a printer, or to a DA&C device which operates in a similar way, it
is important to understand the basic principles of the data transfer
sequence involved.

Table 7.6 indicates how the various control and status signals are
used to control a printer. Normally, the printer-driving software will
force the SELECT-IN line low to select the printer. This may occur
once only, perhaps at the beginning of a program. The printer will
subsequently set the SELECT line high. To transfer each character,
the following sequence of events occurs:

1. The software waits until the printer’s BUSY signal goes low, which
indicates that the printer is ready to receive a character.

2. The software places a character code on the D0–D7 lines and,
after a short delay pulses the STROBE line low. The falling edge

264 PC interfacing and data acquisition

Table 7.6 Printer control and status signals

Pin/signal Direction Description

BUSY Input High when the printer is busy and unable to accept any

further data. Goes low when ready to receive more data.

ACK Input Pulses low to acknowledge receipt of data.

STROBE Output Pulses low to indicate that valid data is present on D0–D7.

The printer must read D0–D7 when it detects the

STROBE pulse.

PE Input High when the printer has run out of paper.

SELECT Input High when the printer is selected and active.

ERROR Input Low when the printer detects a paper out (PE) error

condition, when the printer is off line, or when some

other error is detected.

SELECT-IN Output Low selects the printer. This signal is ignored on some

printers.

INIT Output Low pulse, lasting at least 50 μs, initializes the printer.

AUTOFEED Output Low causes the printer to automatically generate a Line

Feed character immediately after receiving each Carriage

Return character. This signal is ignored by some printers.

The auto-line feed facility is often selectable via the

printer’s DIP switches or front panel.

of the STROBE pulse causes the printer to immediately set the
BUSY line high and then to read the data from the D0–D7 lines.

3. When the printer has read and stored the data, it pulses the ACK
line low in order to acknowledge receipt of the data. As ACK
returns to a high state, the printer pulls the BUSY line low again
to signal that it is ready to receive the next character.

The ACK pulse can be made to generate an interrupt. Using this
facility, you can install an interrupt handler to transfer a series of
characters from a memory buffer to the printer.

The PC may pulse the INIT line at any time to reset the printer.
The driving software should monitor the PE and ERROR lines in
order to detect error conditions such as the printer running out of
paper or being switched off line. Many different types and models
of printer can be connected to the parallel port. Most have stable
and noise-free interfaces, but in some cases electrical noise, caused
by badly shielded or grounded cables, may be problematic. When
writing interface software to sense the condition of the ACK, BUSY,
PE, SELECT and ERROR lines it is advisable to sample the relevant
bits in the Status Register at least two or three times. This reduces

Parallel buses 265

1

0

1

0

1

0

1

0
ACK

STROBE

DO−D7

BUSY

A B

Printer stores
data

C D

Figure 7.2 Handshake sequence for data transfer via the parallel port to a printer

the likelihood that spurious noise spikes will disturb the handshake
sequence. The data transfer handshake is illustrated in Figure 7.2.

The timing specification for the transfer is only loosely defined,
particularly in the case of older hardware designs. The minimum
delay times required to transfer data to a fast printer are A D B D
C D D D 0.5 μs. Some printers may require the various signals to
be held for a greater length of time. Sanchez and Canton (1994)
recommend that the STROBE pulse should last for 5 μs or more.
Buchanan (1999) gives similar figures while the IEEE monographs by
Maine (1986) and Marnham (1994) specify the following minimum
timings:

A. STROBE pulse delay 50 μs
B. STROBE pulse period 1 μs
C. ACK pulse period 100 ns
D. Delay after ACK before removing data 10 μs

The variation in the quoted timing figures reflects the loosely
defined standards adopted by early parallel port implementations.
According to Rosch (1996), the more rigorous IEEE-1284 standard’s
Compatibility mode (which emulates a unidirectional port) speci-
fies a STROBE pulse period (B) of 0.5–500 μs and an ACK pulse
period (C) of 0.5–10 μs.

266 PC interfacing and data acquisition

A simple parallel port driver

Listing 7.1 is an example of a basic parallel port driver which provides
access to the various I/O lines present at the connector. The listing
consists simply of a library of (almost) independent C routines that
can be called to perform specific tasks. Functions are included to
determine the address of each parallel port in the system and to
check whether the ports are of the bidirectional type.

To use this driver, the caller must first invoke the
SearchForLPTPorts() function. This will initialize the array of LPT

structures according to the number, type and location of LPT (i.e.
parallel) ports found. The caller may then examine the BaseAddr and
ExtMode fields of each element in the array to determine whether
the corresponding parallel port is available and, if so, whether it
supports the so-called ‘extended’ (read) mode of the bidirectional
port. Thereafter, the remaining functions contained within the
listing can be called as and when needed to read or write data via
the parallel port. Each function is individually documented and its
purpose should be self-explanatory.

The driver automatically inverts the states of the SELECT-IN,
AUTOFEED, STROBE and BUSY signals so that a high bit passed
between the calling routine and the driver functions always corre-
sponds to a high voltage ⊲C5 V⊳ at the corresponding connector pin.
When using this driver, the programmer need not be concerned
with the locations of each bit within the various registers: all I/O

Listing 7.1 A parallel port software driver

/* Bidirectional Parallel Port Driver

This driver allows access to the three parallel port registers. The connector

pins corresponding to the various bits in the bit patterns passed to/from

these driver procedures are mapped as follows:

Port Bit pattern passed to or from driver procedures

7 6 5 4 3 2 1 0

Data port D7 D6 D5 D4 D3 D2 D1 D0

Status port --- --- --- BUSY ACK PE SLCT ERROR

Control port --- --- --- --- SL-IN INIT AFD STROBE

All high bits passed as arguments to the driver procedures correspond to

logical high signals at the corresponding connector pins - i.e. the software

compensates for the logical inversion of some of the LPT port lines (BUSY,

-SL-IN, -AFD and -STROBE are all inverted in hardware and this is compensated

for by the software).

Parallel buses 267

Listing 7.1 (continued)

The driver allows individual bits in the data port or control port to be set

without disturbing any other bits in the port. It also allows the bit pattern

of the whole port to be changed in one operation. The five status lines may

also be read in one operation.

Extended read mode can be enabled (if supported) to allow read operations to

be performed via the data port.

The -ACK line can be used to generate an interrupt whenever it pulses low.

The interrupt can be enabled or disabled as required using this driver

(although code for manipulating the 8259 PIC and for intercepting the

interrupt is not included).

*/

#include <dos.h>

#define MaxNumLPTPorts 3

#define True 1

#define False 0

/* =========================== Data Declarations =========================== */

struct LPTPortRec

f
unsigned int BaseAddr; /* Base address of parallel port hardware */

unsigned char ExtMode; /* >0 if extended mode supported */

unsigned char LastData; /* Last data output via the Data register */

unsigned char LastCtrl; /* Last data output via the Control register */

g;

struct LPTPortRec LPT[MaxNumLPTPorts]; /* One structure for each port */

/* ========================== Function Prototypes ========================== */

unsigned int LPTPortBaseAddress(unsigned char Port);

unsigned char ExtendedModeSupported(unsigned char Port);

void SearchForLPTPorts(void);

void WriteData(unsigned char Port, unsigned char Data);

unsigned char ReadData(unsigned char Port);

unsigned char ReadStatus(unsigned char Port);

void WriteCtrl(unsigned char Port, unsigned char Data);

void SetDataBit(unsigned char Port, unsigned char BitNum, unsigned char High);

void SetCtrlBit(unsigned char Port, unsigned char BitNum, unsigned char High);

void SetExtendedMode(unsigned char Port, unsigned char Enable);

void SetACKInterrupt(unsigned char Port, unsigned char Enable);

void InitializeLPTPort(unsigned char Port);

/* ======================= Function Implementations ======================== */

unsigned int LPTPortBaseAddress(unsigned char Port)

268 PC interfacing and data acquisition

Listing 7.1 (continued)

/* Returns the base address of the specified LPT port. The Port parameter is

zero based. */

f
return peek(0x40,(0x08 + (2 * Port)));

g

unsigned char ExtendedModeSupported(unsigned char Port)

/* Determines whether the specified LPT port supports extended read mode. */

f
unsigned char CtrlPort;

unsigned char BitPtn;

unsigned char Supported;

CtrlPort = inportb(LPT[Port].BaseAddr+2); /* Get control port status */

outportb(LPT[Port].BaseAddr+2,(CtrlPort | 0x20)); /* Try to activate the */

/* Extended mode */

/* Check whether we can still read back data */

Supported = False;

BitPtn = 0x00;

do

f
outportb(LPT[Port].BaseAddr,BitPtn);

if (inportb(LPT[Port].BaseAddr) != BitPtn) Supported = True;

BitPtn++;

g
while (BitPtn != 0xFF);

outportb(LPT[Port].BaseAddr+2,CtrlPort); /* Restore original control port */

return Supported;

g

void SearchForLPTPorts()

/* Searches through the BIOS data area locations at offsets 08h, 0Ah and 0Ch

to determine the addresses of LPT1, LPT2 and LPT3 ports. A value of zero in

any one of these locations indicates that no corresponding parallel port is

available. This function checks whether each port supports extended mode

(i.e. bidirectional data transfer). */

f
unsigned char Port;

for (Port = 0; Port < MaxNumLPTPorts; Port++)

f
LPT[Port].BaseAddr = LPTPortBaseAddress(Port);

if (LPT[Port].BaseAddr != 0)

LPT[Port].ExtMode = ExtendedModeSupported(Port);

else LPT[Port].ExtMode = False;

g
g

void WriteData(unsigned char Port, unsigned char Data)

/* This function writes the specified Data byte to the data register of the

LPT port specified by Port. A low bit corresponds to a logical low signal

on the corresponding connector pin. */

Parallel buses 269

Listing 7.1 (continued)

f
LPT[Port].LastData = Data;

outportb(LPT[Port].BaseAddr,Data);

g

unsigned char ReadData(unsigned char Port)

/* This reads the data port if extended mode is supported and data reads are

enabled (via the Direction Control bit in the control port). If reads are

not possible, this function returns the last data written to the control

port. A low bit in Data corresponds to a logical low signal at the

corresponding connector pin. */

f
if ((LPT[Port].ExtMode) && ((LPT[Port].LastCtrl & 0x20) == 0x20))

return inportb(LPT[Port].BaseAddr);

else return LPT[Port].LastData;

g

unsigned char ReadStatus(unsigned char Port)

/* Reads the Status port lines and returns them, coded as follows (MSB first):

BUSY, -ACK, PE, SLCT and -ERROR. A low bit corresponds to a logical low

signal on the corresponding connector pin. */

f
return (((inportb(LPT[Port].BaseAddr+1) ^ 0x80) >> 3) & 0x1F);

g

void WriteCtrl(unsigned char Port, unsigned char Data)

/* This function writes the low order four bits of Data to the Control register

leaving the Interrupt Enable and Direction Control bits unchanged. The four

bits are, in order from MSB to LSB: -SL-IN, -INIT, -AFD and -STROBE. A low

bit corresponds to a logical low signal on the corresponding connector

pin. */

f
LPT[Port].LastCtrl = ((Data ^ 0x0B) & 0x0F) | (LPT[Port].LastCtrl & 0xF0);

outportb(LPT[Port].BaseAddr+2,LPT[Port].LastCtrl);

g

void SetDataBit(unsigned char Port, unsigned char BitNum, unsigned char High)

/* Sets the state of a single bit (BitNum = 0 to 7) in the specified LPT port's

data port. If High is True, the corresponding connector pin is set to a

logical high state. */

f
unsigned char Mask;

Mask = 0x01 << (BitNum % 8);

if (High)

LPT[Port].LastData = LPT[Port].LastData | Mask;

else LPT[Port].LastData = LPT[Port].LastData & QMask;
outportb(LPT[Port].BaseAddr,LPT[Port].LastData);

g

void SetCtrlBit(unsigned char Port, unsigned char BitNum, unsigned char High)

/* Sets the state of a single bit (BitNum = 0 to 3) in the specified LPT port's

control port. If High is true, the corresponding connector pin is set to a

logical high state. */

270 PC interfacing and data acquisition

Listing 7.1 (continued)

f
unsigned char Mask;

Mask = 0x01 << (BitNum % 4);

LPT[Port].LastCtrl = LPT[Port].LastCtrl ^ 0x0B; /* Uninvert bits in LastCtrl */

if (High)

LPT[Port].LastCtrl = LPT[Port].LastCtrl | Mask;

else LPT[Port].LastCtrl = LPT[Port].LastCtrl & QMask;
LPT[Port].LastCtrl = LPT[Port].LastCtrl ^ 0x0B; /* Reinvert bits in LastCtrl */

outportb(LPT[Port].BaseAddr+2,LPT[Port].LastCtrl);

g

void SetExtendedMode(unsigned char Port, unsigned char Enable)

/* Enables or disables the parallel port's extended mode (if available). This

procedure has no effect if the port does not support extended mode. */

f
if (LPT[Port].ExtMode)

f
if (Enable)

LPT[Port].LastCtrl = LPT[Port].LastCtrl | 0x20;

else LPT[Port].LastCtrl = LPT[Port].LastCtrl & 0xDF;

outportb(LPT[Port].BaseAddr+2,LPT[Port].LastCtrl);

g
g

void SetACKInterrupt(unsigned char Port, unsigned char Enable)

/* Enables or disables the parallel port's interrupt. */

f
if (Enable)

LPT[Port].LastCtrl = LPT[Port].LastCtrl | 0x10;

else LPT[Port].LastCtrl = LPT[Port].LastCtrl & 0xEF;

outportb(LPT[Port].BaseAddr+2,LPT[Port].LastCtrl);

g

void InitializeLPTPort(unsigned char Port)

/* Sets all outputs to logical low levels and disables the parallel port

interrupt and extended mode (if available). */

f
WriteData(Port,0x00);

WriteCtrl(Port,0x00);

SetExtendedMode(Port,False);

SetACKInterrupt(Port,False);

g

lines are mapped to the low order bits of each register as noted in
the listing.

7.4 The IEEE-488 (GPIB) bus

The IEEE-488 bus standard is also known as the General Purpose
Interface (or Instrument) Bus or GPIB. It originates from the HP-IB
bus originally developed by Hewlett Packard in the mid-1960s. It

Parallel buses 271

was adopted by the Institute of Electrical and Electronics Engineers
(IEEE) as the basis of a new standard for parallel communica-
tions designated IEEE-488. This was revised in 1978 and updated
again in 1987. These two revised standards are often referred to
as IEEE-488.1 and IEEE-488.2 respectively, the latter maintaining
backward compatibility with the earlier standard. The original IEEE-
488 specification relates mainly to the hardware elements of the
bus. IEEE-488.2, however, is concerned more with command proto-
cols, defining such things as the order of multiple bus commands
and transaction timeouts. Error handling and status reporting were
also standardized along with some commonly used commands and
data structures. In the remainder of this chapter we will refer to
both standards simply as ‘IEEE-488’ except where discussing specific
differences between them.

The IEEE-488 bus was originally used for interfacing to laboratory
test equipment (e.g. frequency meters, spectrum analysers, calorime-
ters, logic analysers etc.) and to printers or plotters. Today the bus
has become very popular in both manufacturing and research envi-
ronments, and a great diversity of instruments are equipped with
IEEE-488 interfaces. It is now possible to connect many common and
relatively inexpensive measuring instruments – digital voltmeters, for
example – to the IEEE-488 bus.

Overview of the IEEE-488 bus

The IEEE-488 standard allows up to 15 devices (including the PC)
to be connected together on the same party-line bus as illustrated in
Figure 7.3. The total length of the interconnecting cables must not
exceed 20 m and the distance between any two bus devices must be
no more than 2 m.

Each of the 15 possible devices is assigned a unique address
in the range 0 to 30. This is known as the primary address and

Controller IEEE-488 BUS

Device 1
(listener)

Device 2
(talker)

Device 3
(listener)

Figure 7.3 IEEE-488 bus topology

272 PC interfacing and data acquisition

is usually configured by means of a DIP switch or an analogous
programmable facility. Each bus device may also incorporate up
to 32 sub-units which are capable of operating independently of
each other. These sub-units may be individually addressed using
secondary addresses in the range 0 to 31. The sub-units within each
bus device consist of logically independent (although not necessarily
physically separate) units. Secondary address allocation is generally
device specific. In some cases, the secondary addresses are used to
select specific features or data processing modes of a single unit.
One secondary address may, for example, be reserved for receipt
of configuration commands, while another is reserved for receiving
operational commands. Alternatively, a device connected to multiple
sensors might use different secondary addresses to configure and
access each sensor.

As indicated in Figure 7.3, three classes of device may exist at each
primary address on the bus. These are referred to as listeners, talkers
and controllers.

Listeners

A listener can only receive data and commands from the bus; it
cannot transmit them. A typical example of a listener is a printer
which only receives data and control characters from other devices
on the bus. There may be up to 14 active listeners present on the
bus at the same time.

Talkers

Talkers are capable of transmitting data to other devices on the bus,
but are incapable of receiving data or commands. Only one talker is
allowed to be active at any one time.

Controllers

The controller supervises the transfer of data along the bus. This
role is usually (but not always) performed by a PC equipped with
a suitable IEEE-488 adaptor card. The controller can assign any
device on the bus to act as a talker or listener. Many instruments
are capable of acting as both a talker and a listener (and sometimes
also as a controller). These devices are often dynamically switched
(via commands sent from the current controller) between listener
and talker modes. There may be more than one controller in the
system but only one controller can be active at any time. The active
controller can pass control to any other suitable device by issuing
a Take Control (TCT) command. Before any data or messages can

Parallel buses 273

be transferred over the bus, it is the responsibility of the active
controller to initialize all other devices as either talkers or listeners.

Throughput

The IEEE-488 standard specifies that the maximum bit rate present
on any one line of the bus must not exceed 1 Mbit/s. Some propri-
etary systems will allow significantly higher transfer rates. In practice,
throughput will depend upon the performance of the IEEE-488
adaptor used, the PC’s host bus (ISA, EISA, PCI, parallel port or RS-
232 port) and driver software. In many cases, however, it is possible
to attain data transfer rates of no more than about 250 KB/s using
a standard IEEE-488 system. Transfer rates of a few hundred bytes
per second are more typical when very slow devices are present on
the bus.

The IEEE-488 handshake protocol guarantees that the overall
speed of data transfer is determined by the slowest active listener
present. This prevents data from being transferred too quickly for
the listener to handle.

The handshaking protocol (discussed in more detail in the
Data transfer handshake section later in this chapter) is fairly time
consuming and can restrict throughput in some cases. National
Instruments Corporation have developed a faster protocol, known
as HS488. This is compatible with the standard IEEE-488.1 protocol,
in so far as HS488 devices will employ the normal protocol to com-
municate with standard IEEE-488 devices. If all talkers and listeners
on the bus are HS488 compliant, the faster protocol is automatically
adopted. HS488 is implemented using special hardware and is soft-
ware compatible with standard IEEE-488 systems. Slightly different
cable-length restrictions apply, however. Throughput is dependent
upon the host PC’s bus and driver software, but 7.7 MB/s have been
claimed for HS488 using a PCI bus-based adaptor under Windows
NT. As HS488 is less widely used than the standard IEEE-488 protocol
it will not be discussed further here.

The structure of the IEEE-488 bus

The bus consists of 16 signal lines together with a number of ground
and shield wires. The IEEE-488 cable is usually terminated with a
24-pin Amphenol connector. The connector pin assignments are
shown in Table 7.7.

Eight bidirectional data lines (DIO1–DIO8) are used for carrying
data and command messages. The messages are transferred in ac-
cordance with a handshaking protocol implemented with the DAV,

274 PC interfacing and data acquisition

Table 7.7 IEEE-488 bus lines and connector pin assignment

Pin Mnemonic Name Function

1 DIO1 Bidirectional data Transfer data or command codes.

2 DIO2 bus lines

3 DIO3

4 DIO4

13 DIO5

14 DIO6

15 DIO7

16 DIO8

6 DAV Data valid Asserted by talker to indicate bus

holds valid data.

7 NRFD Not ready for data Asserted by listener to indicate that it

cannot receive data.

8 NDAC Not data accepted Asserted by listener while reading

data.

5 EOI End or identify Asserted by talker to identify the last

byte of data in a block or message.

Also used in parallel poll.

9 IFC Interface clear Asserted by controller to initialize all

bus devices.

10 SRQ Service request Asserted by any device to request

the attention of the controller.

11 ATN Attention Asserted by the controller to indicate

that the data bus holds a

command/address rather than

data.

17 REN Remote enable Asserted by controller to disable any

front panel controls.

18 DAV gnd Ground.

19 NRFD gnd Ground.

20 NDAC gnd Ground.

21 IFC gnd Ground.

22 SRQ gnd Ground.

23 ATN gnd Ground.

24 Logic gnd Ground.

12 Shield Shield.

NRFD and NDAC lines. In addition, five interface management lines
(ATN, IFC, SRQ, REN and EOI) are used for carrying control and
status information. All signals on the bus are active low – i.e. the lines
are considered to be asserted (or active) when at a low logic level

Parallel buses 275

⊲<0.4 V⊳. All signal lines use TTL logic levels, although DAV, NRFD
and NDAC employ open collector outputs. This allows them to be
used in a wired-OR configuration so that any one of the bus devices
can independently assert these lines. When unasserted, these lines lie
at the logical high level of about 3.3 V.

Data transfer handshake

All message bytes are transferred from the talker to one or more
listeners by means of a sequence of handshake signals. As mentioned
previously, this process is designed to allow the slowest device on the
bus to control the rate of data transfer. The handshaking sequence
is illustrated in Figure 7.4 and is described below.

1. Each listener asserts the NRFD line while it is busy, only releasing
it when it is ready to receive a message byte on the DIO lines from
another device. Consequently, NRFD will go high (inactive) only
when all active listeners are ready and have released NRFD. Each
listener should also normally hold the NDAC line in an active
state when ready for the next message byte.

2. Upon detecting that NRFD is inactive and NDAC is asserted, the
talker places a message byte on the DIO lines.

3. The talker waits for 2 ms to allow the DIO lines to settle. It
then asserts the DAV line to indicate that a valid message byte is
present.

NRFD

DIO1−8

DAV

NDAC

New data byte

Data valid

All devices ready
for data

All devices have
accepted data

Figure 7.4 IEEE-488 handshaking sequence

276 PC interfacing and data acquisition

4. The listeners, detecting that the DAV line has been asserted,
begin to read the DIO lines. While performing this action, they
each assert NRFD to indicate that they are busy.

5. Each listener acknowledges receipt of the message byte by
releasing NDAC.

6. When all listeners have released NDAC, it goes high. This indicates
to the talker that all of the listeners have accepted the message.
The talker then completes the handshaking sequence by releasing
the DAV line. At this point NRFD is still asserted, NDAC has been
released, and the whole sequence may then be repeated in order
to transfer the next byte.

Note that both NDAC and NRFD must be released by all listeners
before they will go high. Each active listener releases these lines at
its own rate and in this way the handshaking sequence is controlled
by the slowest listener present on the bus. This prevents data from
being transferred too quickly for the slowest listener to handle.

Interface management lines

The IEEE-488 bus possesses a number of lines for controlling devices
on the bus, for issuing commands and for requesting service.

The IFC (Interface Clear) line may be asserted by the active
controller to reset and initialize all bus devices. On receipt of this
signal, the actions performed by each instrument connected to the
bus will be device dependent. The IFC line is normally used by the
controller at the beginning of a communications session to ensure
that all devices are in a known default state. The controller asserts
the ATN (Attention) line whenever it transmits a message that must
be interpreted as a bus-management command, as opposed to a
device-specific message or data (the differences between message
types are described later in this chapter). When ATN is asserted, all
devices on the bus will read any transmitted message byte, regardless
of whether they have been configured as active listeners.

REN (Remote Enable) must be asserted to enable an instrument
to be controlled by commands received over the bus. When REN is
unasserted, the device can be controlled only via its front panel (if
such facilities are available).

When a device on the bus requires attention from the
controller – for example, if it has valid data available or if an error
has occurred – it may assert the SRQ (Service Request) line. Upon
detecting the SRQ signal, the controller will finish whatever task
it is currently engaged in and then determine which device issued
the request for service. Remember that the same SRQ line is shared
between all bus devices, so when it is asserted, the controller only

Parallel buses 277

knows that one (or possibly more than one) device requires attention.
In order to detect which device issued the SRQ the controller initiates
either a serial or parallel poll (see the following section). Each device
responds to the poll command by issuing status information which
informs the controller whether it requires service. The controller
then services the appropriate device(s) by, for example, reading any
available data.

Finally, the EOI (End or Interrupt) line is asserted by the active
talker during transmission of the last byte of a multi-byte message.
This provides a convenient means of identifying the end of a message
or block of data. The EOI line also has an alternative use. It may be
asserted by the active controller in conjunction with ATN in order
to initiate a parallel poll as described in the following section.

Polling

The IEEE-488 interface implements a polling facility that allows the
active controller to determine the status of each device on the bus.
This is used, after the controller has received a Service Request
(SRQ) signal, to determine which device needs attention. Two types
of polling may be performed: serial or parallel.

A serial poll is enabled by issuing a universal SPE command
(see the following section). This enables all devices on the bus in
preparation for a serial poll. The controller then addresses each
device, in turn, to talk by transmitting a TAG command. The device
responds by transmitting a single status byte on the data bus. Bit 7 of
the status byte is set if the addressed device is requesting service. The
remaining bits carry device-dependent status information. When
the serial poll has been completed, the controller usually issues the
universal SPD (Serial Poll Disable) command so that normal bus
operation can be resumed.

A parallel poll provides a faster alternative to the serial poll. This
allows the controller to poll up to eight separate devices in one simple
bus transaction. The devices participating in a parallel poll each
transmit a status bit on one of the eight data lines. The bit allocations
used by each device must previously have been programmed by
means of the PPC (Parallel Poll Configure) command. The PPC
command is first transmitted by the controller to a specific device.
This is followed by a supplementary command byte, which assigns
one of the eight data lines to the device for use in the subsequent
parallel poll. The three low order bits of the supplementary byte
contain the binary-coded ordinal index of the data line to be used.
Note that the index runs from 0 (000b) for DIO1 to 7 (111b) for
DIO8. Bit 3 of the supplementary byte indicates the polarity of the

278 PC interfacing and data acquisition

device’s status bit that is needed to request service: if bit 3 is high,
the status bit must also be high during the poll in order to request
service.

After all devices have been suitably configured, the controller is
able to initiate a parallel poll at any appropriate time by simulta-
neously asserting the EOI and ATN lines. The devices on the bus
respond by asserting (or unasserting) the appropriate data lines, indi-
cating to the controller which devices require service. The universal
PPU (Parallel Poll Unconfigure) command may be issued by the
controller to disable the parallel poll facility.

Messages

So far we have referred only to messages being transmitted over the
IEEE-488 bus. In fact, these messages can each be one of two types:
data messages or bus-management commands.

Data messages

Data messages can represent just about anything that makes sense
to a specific device. They can be pure data (e.g. the result of a
measurement) or they may be device-specific commands. The form
of a data message is purely device specific and is not defined by
IEEE-488.1. Although some aspects of data messages are standard-
ized in IEEE-488.2, many instruments employ completely different
command sets. In an attempt to overcome some of the difficulties
inherent in developing multi-instrument applications, a consortium
of prominent IEEE-488 equipment manufacturers proposed a stan-
dard command set for IEEE-instruments in the early 1990s. This
is known as Standard Commands for Programmable Instruments
or SCPI. It visualizes every instrument as a hierarchical group of
functional blocks and provides standard commands to control each
block. This additional degree of standardization has the potential
to greatly simplify programming and interchanging of instruments.
A description of SCPI is beyond the scope of this book. For details,
the reader is referred to programming guides supplied with SCPI
compliant instruments.

Bus-management commands

Bus-management commands are not device specific. They are an
essential part of the IEEE-488 standard and all devices on the bus
must respond to them. The active controller can transmit bus-
management commands to any or all devices on the bus. During
transmission, the normal handshake protocol is used, except that

Parallel buses 279

Table 7.8 The IEEE-488 bus-management command byte

Bit Description

4–0 If bits 6,5 D 00: bits 0–4 hold the code of the Universal or Addressed

Command.

If bits 6,5 6D 00: bits 0–4 hold a primary or secondary address.

6,5 Command type:

00 D Bus command (for sending both Universal and Addressed

Commands).

01 D Listen Address Group (for commanding a specific device to listen).

10 D Talk Address Group (for commanding a specific device to talk).

11 D Secondary Command Group (for accessing sub-units in a device).

7 Unused.

the controller first asserts the ATN line. This causes the active talker
to relinquish control of the DAV line. The controller then becomes
the active talker and is able to transmit command bytes.

When ATN is asserted, all devices read the commands that are
transmitted by the controller, and participate in the handshake
sequence regardless of whether they are configured as listeners.
When the ATN line is unasserted, only the devices previously config-
ured as talkers and listeners take part in subsequent communications.

The bus-management commands transmitted by the controller
each take the form of a single byte, as shown in Table 7.8. Bit 7
(i.e. DIO8) is unused and should be zero. Bits 5 and 6 indicate the
command group (i.e. the type of command that is being sent) and
the remaining bits are interpreted either as a command code or as a
primary or secondary address.

Addressed Command Group (ACG)

The commands in this group affect only those devices that have
previously been addressed to listen. Bits 0 to 4 of the command byte
specify the type of Addressed Command as shown in Table 7.9.

Universal Command Group (UCG)

The Universal Commands affect all devices connected to the bus.
Bits 0 to 4 of the command byte specify the type of Universal
Command as shown in Table 7.10.

Listen Address Group (LAG)

This group contains two commands which may be used to activate or
deactivate a device’s listen mode. In both cases bit 5 of the command

280 PC interfacing and data acquisition

Table 7.9 Addressed command group

Command

byte Name Description

01h GTL Go to local. Causes the device to be programmed locally

(i.e. via its front panel). The device must be addressed to

listen using the LAG command (see Table 7.8) in order for

it to exit local mode. This command cancels the Universal

LLO command for the listening device.

04h SDC Selected Device Clear. Initializes the listening device and

resets it to its default state. The action performed is

device dependent.

05h PPC Parallel Poll Configure. Configures the device to respond to

a parallel poll signal (EOI C ATN asserted).

08h GET Group Execute Trigger. Simultaneously configures all

devices configured to listen. Used to synchronize a group

of devices to perform some pre-programmed task.

09h TCT Take Control. Issued by the active controller to cause the

recipient of the command to take control of the bus. The

new controller then becomes the active controller.

Table 7.10 Universal command group

Command

byte Name Description

11h LLO Local Lockout. Disables the local (front panel) controls of all

bus devices.

14h DCL Device Clear. Resets all devices. The action performed will

be device dependent.

15h PPU Parallel Poll Unconfigure. Removes the parallel poll

configuration of each bus device and prevents the

devices from participating in a parallel poll.

18h SPE Serial Poll Enable. Sets all devices to serial poll mode. In this

mode, each device will return one status byte when it is

addressed to talk.

19h SPD Serial Poll Disable. Disables serial poll mode.

byte is set to 1 and bits 0–4 contain a primary address. The LAG
command configures a specific device as a listener. The primary
address of the device that is to listen (coded in bits 0–4) may fall in
the range 0 to 30. The address value of 31 (i.e. bits 0–4 all set to 1)
is invalid in the LAG command. Address 31 is known as the ‘unlisten

Parallel buses 281

address’ and a Listen Address Group command byte containing
the unlisten address (i.e. 00111111b) defines the UNL (unlisten)
command. This is used to globally disable all listeners on the bus.

When a device detects a LAG command in which bits 0 to 4 match
its own primary address, it becomes an active listener. Thereafter,
it reads all data bytes transmitted on the bus until it detects a UNL
command.

Talk Address Group (TAG)

The talk address group contains two commands, TAG and UNT
(untalk), which are analogous to the LAG and UNL commands
described above, except that the TAG and UNT commands control
which bus device is configured to talk. Commands in this group are
distinguished from other command groups by the states of bits 5 and
6, as indicated in Table 7.8.

Secondary Command Group (SCG)

The Secondary Commands work in a similar way to the LAG and TAG
commands in so far as they control which sub-unit in a previously
defined talker or listener is active (i.e. transmits or receives data).
Bits 5 and 6 identify the command as belonging to the Secondary
Command Group.

Typical command and data transfer sequences

A simple example follows which will illustrate the sequence of
commands and bus signals required to configure the talker and
listener devices on the bus. The current controller must issue the
following commands:

1. Assert the ATN line to identify the following as commands.
2. Issue an UNL command to unlisten all devices.
3. Issue a TAG command (including the appropriate talk address)

to specify one talker.
4. Issue one or more LAG commands to specify one or more

listeners.
5. Unassert ATN.

Suppose we subsequently wish to select the measurement range of a
digital voltmeter on the IEEE-488 bus. The appropriate message to
select measuring range 2 may, for example, be ‘R2’. Note that this
message will be device specific and may vary between different volt-
meters. In the case of a SCPI compliant instrument, an appropriate
SCPI command sequence would be used instead. If the message has

282 PC interfacing and data acquisition

to be sent to primary address 10, secondary address 5, the following
sequence would then be used.

1. Assert the ATN line to identify the following as commands.
2. Issue a UNL command to unlisten all devices.
3. Issue a LAG 10 command to cause the voltmeter (primary

address 10) to listen.
4. Issue a SCG 5 command to access secondary address 5.
5. Unassert ATN.
6. Transmit an ‘R’ character.
7. Transmit a ‘2’ character. This may be followed by a CR, LF pair.

The EOI line is asserted during transmission of the last character
in the sequence.

8. Assert ATN.
9. Issue an UNL command to unlisten the voltmeter.

10. Unassert ATN.

It is not practicable to attempt to cover device-specific command
sequences here. Please refer to manufacturer’s manuals for detailed
information on configuring and operating specific equipment.

Interfacing IEEE-488 devices to the PC

The PC is usually interfaced to the IEEE-488 bus by means of an
ISA, EISA or PCI adaptor card, although parallel port and serial
port adaptors are also available. Most of these devices are software
compatible with the ‘industry standard’ National Instruments GPIB-
PCII and GPIB-PCIIA cards. The latter is functionally identical to
IBM’s GPIB adaptor. These cards conform to the IEEE-488.1 stand-
ard, but enhanced cards, which support the additional functions
specified by IEEE-488.2, are also available. Adaptor cards usually
allow the PC to act as a talker, listener or controller and allow up to
14 bus devices to be interfaced to the PC. The throughput offered by
these cards varies, but most permit data transfer rates of up to about
300 KB/s.

Some adaptor cards include firmware drivers contained in ROM.
The services provided by these drivers can be accessed via an inter-
rupt interface in much the same way as BIOS services are invoked.
Most cards, however, are accompanied by disk-based software which
can be used by an applications program to communicate with the
various instruments on the bus. Software drivers tend to take two
forms: object files which can be linked to user written programs; or
operating system device drivers (e.g. installable DOS device drivers
or kernel-mode drivers under Windows NT) which are usually loaded
into memory when the PC is booted. Operating system device drivers

Parallel buses 283

are usually accessed from an application program via a special HLL
library file supplied by the driver’s manufacturer. Some manu-
facturers also supply configuration, diagnostics and development
utilities, often as an integral part of the driver’s API.

Software drivers are controlled with a variety of commands. Some
commands are roughly equivalent to the single-byte bus commands,
while others initiate lengthy sequences of bus transactions. Higher
level commands are usually also available. These facilitate, for
example, on-board buffering of data, control of multiple devices,
and sophisticated bus management. Such a command mix provides
the optimum combination of power and flexibility and means that
there is usually no need for the programmer to be concerned
with manipulating the interface hardware directly. The form and
syntax of the commands tends to vary between the drivers offered
by different manufacturers, but most provide a broadly similar set
of functions. Note, however, that IEEE-488.2 drivers will include an
extended API in order to accommodate the additional functionality
encompassed by this standard. It is advisable to carefully study the
manuals accompanying your IEEE-488 driver for full programming
details.

8 Serial communications

As we have seen in the previous chapter, parallel buses provide
a simple means of transferring data rapidly between the PC and
external test instrumentation. They do, however, suffer from a
number of limitations. Foremost amongst these are the expense
associated with using long runs of multi-core cable and indeed the
inability of many parallel buses to transmit over distances of more
than a few metres. Each parallel interface also requires at least eight
line drivers for the data bus and often several more to accommodate
the various control lines, further increasing the cost of parallel bus
interfaces.

Serial buses, on the other hand, provide a relatively cheap method
of communicating over long distances. In serial systems, the data
is broken down into a series of bit patterns and transmitted one
bit at a time over a single wire (or pair of wires). This not only
reduces the number of bus drivers needed and minimizes cable
costs, it also allows data to be transmitted over very much greater
distances. The RS-422 serial interface standard, for example, permits
communication over distances of 1200 m using relatively inexpensive
twisted-pair cable.

Serial transmission is normally slower than parallel I/O (although
some serial systems allow for very high bit rates). With one or
two exceptions, typical maximum serial transmission rates are about
10 KB/s with the PC. This is often quite adequate in data-acquisition,
automation and industrial control applications where a throughput
of 1–2 KB/s is more typical.

This chapter discusses the basic principles of serial communication
and describes common standards and techniques that can be used
for linking PCs and data-acquisition equipment.

8.1 Some common terms

Before proceeding with a description of serial communication
systems, it is useful to define a few common terms.

Serial communications 285

Simplex and duplex communications

The terminology used to describe communication traffic can be
confusing, primarily because different definitions of the terms
simplex and duplex are used in the USA and in Europe. Because
a majority of DA&C hardware, software and related literature orig-
inates from the USA, we will use the American National Standards
Institute (ANSI) definitions throughout this book. The European
alternatives are noted in the following paragraph.

The simplest form of serial communication involves transmission
in a single direction, such as from a PC to some form of actuator
or remote display unit. Unidirectional communication is termed
simplex communication. Systems which allow data to be transmitted
in two directions (i.e. to be transmitted and received by the same
device) may be full duplex or half duplex. Half duplex interfaces
(also known as simplex interfaces in Europe) accommodate trans-
mission and reception, but not both at the same time, while a full
duplex (duplex in Europe) device may transmit and receive data
simultaneously.

Synchronous transmission

Synchronous serial transmission is the most efficient method of
transmitting large quantities of data along a serial communications
link. In a synchronous system, the link carries timing information
which is used to synchronize the operation of the transmitting and
receiving elements. The widely used RS-232 standard includes a
number of control lines for this purpose, although these are not
normally used in PC-based RS-232 implementations.

Data is generally transmitted in blocks which also contain various
flags and header information. The advantage of this technique is
that separate serial frames and the associated start and stop bits
(see the following section) are not required for each transmitted
character. This minimizes the overall time taken to transmit each
byte. Synchronous transmission is used mainly in telecommunication
and mainframe computer systems. As it is rarely used for data
acquisition, it will not be discussed further in this book.

Asynchronous transmission

Asynchronous serial transmission is of more relevance to PC-based
data acquisition. In an asynchronous system, the transmitter and
receiver are not synchronized and each character is transmitted
along the serial link independently of the last. In this case the

286 PC interfacing and data acquisition

receiver automatically detects the start of each character and it then
assumes that all subsequent data (and control) bits which constitute
the character will arrive at a predetermined rate.

Usually a start bit is transmitted first and this alerts the receiver to
the beginning of each new character. A series of up to 8 data bits
are then transmitted and these are followed by one or more stop
bits which mark the end of the character. An optional parity bit,
which provides a limited error checking facility, is also sometimes
transmitted immediately before the stop bit(s).

Transmission rate

The rate at which information is carried along the serial bus is
measured in bits per second (bps) or, alternatively, baud. There is
an important difference between these two terms although in many
systems they are equivalent and are used synonymously. Technically,
the baud rate refers to the number of discrete signal events (i.e.
signalling elements or potential number of logical state transitions)
occurring per second. In almost all asynchronous systems (with the
exception of modem to modem communications), the state of each
bit is coded by only one discrete signal event and thus the baud rate
is numerically equal to bps. An exception to this is Hewlett Packard’s
Interface Loop (HP-IL) system in which each bit is represented by
three state changes (or two discrete states). In this case the baud rate
is not equal to the number of bits per second. Serial transmission
rates usually range from about 50 baud to 115 200 baud and above,
but most PC data-acquisition and industrial communications systems
use baud rates in the range 1200 to 38 400.

8.2 Introduction to asynchronous communication

Asynchronous communication techniques are popular for industrial
communication and for interfacing the PC to remote data-logging
systems. PCs are normally equipped with at least one RS-232 port,
although they can accommodate two or sometimes four separate
ports. A number of other adaptor cards can be added to the basic
PC architecture in order to provide RS-422 or RS-485 compatible
communications facilities. Each additional port employs the same (or
functionally compatible) type of controller (UART) as the standard
RS-232 port and thus appears to the driving software to be identical
at the register level.

Serial communications 287

The serial character frame

All characters transmitted asynchronously are packaged into a serial
frame. This includes a start bit, the data bits and one or more stop
bits. Asynchronous serial data can be framed and transmitted over
RS-232, RS-422 or RS-485 buses in a variety of ways. However, the
same protocol is used in the vast majority of cases.

When the transmitter is idle, the transmission line is forced to
a logical high (or marking) state. The start bit consists of a single
bit period (the length of which is dependent upon the baud rate
or bps) during which the transmission line is placed in the logical
low (spacing) state. The receiver detects the high-to-low transition
which marks the beginning of the start bit and then prepares to
receive a stream of up to 8 further data bits and an optional parity
bit. Within the 8 data bits, the least significant bit is sent first. The
serial frame is terminated by one or more stop bits, each consisting
of a single bit period during which the transmission line is held in
the marking (high) state. Figure 8.1 illustrates the usual form of the
serial character frame. In this example the value 45h (i.e. ASCII ‘E’
or 01000101b) is coded into a stream of 8 bits. This is preceded by
the start bit (which is always low) and in this example followed by an
odd parity bit and 2 stop bits.

The parity bit provides a limited error checking facility by indicat-
ing whether the total number of high data bits is odd or even. In an
even parity system, the state of the parity bit transmitted within each
serial frame is such that the number of high bits contained within
the data-plus-parity bit pattern is even. If odd parity is selected, the
converse is true. Thus if 1 data bit is incorrectly detected by the
receiver (due to noise on the transmission line, for example), there
will be a mismatch between the high bit count and the parity bit.
The receiver will then be able to flag the received character as being

Marking
level

Spacing
level

LSB MSB

Time

Stop bits (always marking state)

Parity bit (odd in this case)

8 data bits (45h = `E)

Start bit (always spacing state)

0 1 0 1 0 0 0 1 0 0 1 1

`

Figure 8.1 The serial character frame

288 PC interfacing and data acquisition

corrupted. This technique does not, of course, allow more than one
erroneous bit to be detected in each serial frame.

In order to discover the state of each bit, the receiver samples
the transmission line at times corresponding to the centre of each
bit. In fact, each bit is usually sampled more than once in order to
enhance the system’s noise immunity. The timing of each sample
is performed relative to the beginning of the start bit. Both the
transmitter and the receiver contain clocks, which are used to time
the transmission and sampling of the bit stream. Because the start
bit provides a means of synchronizing both devices, this method of
communication is relatively insensitive to small inaccuracies in the
timing elements. Timing variations of up to about 5 per cent can be
accommodated in most systems.

Handshaking

It is obviously essential for the transmitting and receiving devices
to agree when to allow data to be transferred. This requires some
independent method of communication so that the transmitter does
not place characters on the bus until the receiver is ready. Additional
control lines are incorporated into some serial buses for this purpose.
These enable the bus device to signal that it is ready to communicate
and to request (and then to receive) clearance to transmit data. This
technique is termed hardware handshaking.

A number of control lines are specified by the different serial
communications standards (such RS-232 or RS-422), but within each
standard, there is some variability as to which of the available control
or handshaking lines are actually used. Some systems employ quite
extensive handshaking, using three or four control lines, while
others dispense with hardware handshaking completely. Hardware
handshaking in RS-232 systems is discussed in the section Control
lines, handshaking and null modems later in this chapter.

In cases where no hardware handshaking is used, other techniques
must be employed. These can range from simple timing loops, which
prevent devices from transmitting at certain pre-arranged times,
to rules governing the type and length of messages that may be
transmitted. Often one of the devices on the serial bus (usually the
PC) is designated as a controller and only this device is allowed to
initiate activity on the bus. The listening device (e.g. a remote data
logger) might then be required to respond to commands from the
controller within a predetermined time limit. Often the controller
will transmit characters one at a time and wait for the listening device
to respond by echoing the character back. This has the benefit of

Serial communications 289

simplifying error detection, although it does slow down the overall
transmission rate.

Conventional software flow-control protocols allow the receiving
device to control the rate of data flow by transmitting special
control characters. When these are detected by the transmitter,
it temporarily suspends transmission. Flow control protocols usually
use the XON (DC1) and XOFF (DC3) ASCII control characters
to enable and disable transmission, although other characters are
sometimes employed for this purpose.

Timing, echoing and XON/XOFF flow-control techniques are
usually quite simple to implement in PC-based data-acquisition
systems. Because no control lines are needed, inexpensive two-
or three-core cable can be used. This tends to make software
flow control somewhat cheaper to implement than hardware hand-
shaking, particularly where long cable runs are required.

The UART

The PC’s asynchronous serial communications interface is controlled
by a device known as a UART (standing for Universal Asynchronous
Receiver/Transmitter). This component usually takes the form of
a single IC, although a few data-acquisition and intelligent signal-
conditioning products simulate the actions of a UART in software.
The UART automatically converts all data which the software writes to
its transmitter register into serial format and then adds the necessary
start, stop and parity bits. The serial bit pattern is transmitted at a
frequency consistent with an agreed and preprogrammed baud rate.
A UART in the receiving device detects each bit in the serial frame,
strips out the start, stop and parity bits and converts the data back
into a parallel (byte) format which can be read by the receiving
software. The receiving UART usually performs some limited error
checking (e.g. for parity and errors in the composition of the serial
frame) and sets status and error flags which may be read by the
receiver’s software.

UARTs usually also possess several digital inputs and outputs.
These are used primarily to drive and sense the hardware hand-
shaking lines although, as we will see later, they sometimes serve
other purposes. The digital I/O lines are generally accessed by the
software via the UART’s registers.

The UART may also provide interrupt facilities. These allow the
communications port to interrupt the current program in order for
the processor to perform an urgent task such as reading the next
received character. Interrupt facilities can, in many instances, reduce

290 PC interfacing and data acquisition

the software overhead by allowing the transmitting or receiving
process to continue with other tasks until the UART requires service.

The various UARTs used on the PC are discussed in more detail
later in this chapter.

Serial protocols

The term ‘protocol’ refers to the set of rules that specify how
data is to be encoded as a serial bit stream, transferred along the
communications link and then interpreted by the receiver.

Handshaking and the serial frame together form what might be
termed the low level or byte-transfer protocol. This specifies how
communication is to be established and how individual bytes are
encoded into a serial bit pattern.

A higher level protocol defines the format of data as well as the
timing and the nature of messages that pass between the various
devices on the bus. With a few exceptions, there is very little
standardization between serial-bus DA&C devices. Most devices use
a command protocol based on short strings of characters. Because
of the variety of different command sets in use, it is inappropriate to
attempt to cover them here other than to mention some common
character encoding schemes. The most widespread of these is the
ASCII scheme which is described in Appendix B. This assigns each
of 128 characters to a unique 7-bit binary number. The first 32 of
these characters are designated as control characters and are used
for actions such as software flow control. The XON, XOFF, SOH,
ENQ, ACK, NAK and EOT characters referred to below are all ASCII
control characters. Several other character coding schemes may be
used and these are discussed in Appendix B.

Networks of serial devices (see the Serial network and bus structure
section later in this chapter) will usually be designed to operate in the
absence of any synchronization mechanism – i.e. using a so-called
asynchronous protocol. In such a system, one device is designated as
a bus controller. Typically, when power is first applied, all devices on
the bus will enter their receive mode. The controlling device (usually
the PC) will then initiate each bus transaction by sending commands
to one or more devices, which will respond by transmitting a block
of data or some form of acknowledgement back to the PC. Timeouts
are usually applied in order to guarantee that the network returns to
a known state in the event of a communication error. Error checking
schemes may also be incorporated into the protocol.

There are several ways in which data can be packaged and trans-
mitted. The most efficient protocols allow data to be buffered and
transmitted as one large block. Block transmission techniques, which

Serial communications 291

are normally referred to as file transfer protocols, usually require
a header block to be transmitted before any data. The header
might contain information to identify the data block being sent, the
number of bytes in the block, and special control characters (e.g.
ASCII 01h, SOH) to mark the start of each header. The header
can also facilitate implementation of error detection schemes by
allowing checksums to be transmitted along with the data block. The
data encapsulated in each block might represent text (using, for
example, the ASCII encoding scheme) or it might represent a series
of binary codes – ADC readings, for example.

Protocols such as XMODEM or KERMIT are commonly used for
transferring files between computers. These are generally less useful
in data-acquisition applications although similar, but less complex,
systems are sometimes employed for downloading readings from a
remote data logger.

Block transfer usually requires some form of software handshaking
in order to allow the receiver to control the rate of data flow.
The XON/XOFF protocol has already been discussed, but other
techniques employing, for example, ENQ/ACK or ACK/EOT can
be used.

The ENQ/ACK protocol allows the transmitting device to poll the
receiver in order to determine whether it is ready to receive a block
of data. The transmitter first sends the ENQ character and waits until
it receives an ACK character back from the receiver before it starts
transmitting the block of data. When the transmission is complete,
the transmitter continues polling the receiving device by sending
ENQ characters.

In the ACK/EOT protocol, the receiver initiates transmission by
sending an ACK character to the transmitter which, in turn, transmits
a block of data. When it has finished, the transmitter then sends
an EOT character to mark the end of transmission. The XMODEM
protocol employs a similar technique, but uses ACK only to request
the next data block in a sequence. The NAK character is sent
instead to initiate transmission or to request retransmission of the
previous block.

The reader is referred to Stallings (1997) for more on hand-
shaking, protocols and error detection.

8.3 Data acquisition via a serial link

Serial interfaces are often used to communicate with remote data-
logging stations or signal conditioning modules. The simplest
serial data-acquisition and control devices possess no on-board

292 PC interfacing and data acquisition

processing capability and these usually operate as basic parallel-to-
serial converters, allowing digital I/O lines and ADCs to be controlled
or sensed via the serial port.

More typical data-logging modules incorporate their own
processing units that can be configured or programmed via the
PCs serial port. Often, these devices can acquire and log data
independently of the host PC. Many can also perform basic control
operations and execute simple data-reduction algorithms which
obviate the need to transmit large quantities of data back to the PC.
Indeed, some data-logging stations can operate independently in the
field for many days or weeks and can then periodically download the
acquired data to a portable PC for permanent storage and analysis.

Intelligent data-acquisition units can usually be configured to
automatically scale and linearize acquired data. Calibration scaling
factors and linearizing polynomials (see Chapter 9) can be down-
loaded to the unit prior to the data-gathering period. By issuing
suitable commands, the PC can cause the data-acquisition unit to
perform operations such as correcting for zero-drift, setting the
sampling rate or configuring comparators. Acquired data might be
transmitted back to the PC in text or 16-bit binary-word format.
The latter is suitable for transmission of unscaled ADC readings.
However, text transmissions are usually used for scaled data which
has to be represented in floating-point format. (One may, of course,
encode floating-point scaled data in 48-bit, 64-bit or 80-bit binary
format for transmission, but this is rarely done in data-acquisition
applications.)

Apart from the independence and parallelism which intelligent
data-acquisition units offer, one of their main advantages is that they
are often small, portable devices and can usually be sited in quite
remote and inhospitable environments. This type of installation
requires a robust, long-distance communications link. Such a link
can be established using one of the serial interface standards such
as RS-422. In long-distance communications systems, the cost of
cabling can be a significant consideration and in order to minimize
this, handshaking and other control lines are often dispensed with.
Communication then takes place using only single or double twisted-
pair cables. Data-acquisition systems of this type tend to employ
software flow-control and/or character-echoing techniques instead
of a hardware handshaking protocol.

Serial network and bus structure

A number of different interconnection schemes can be used in serial
data-acquisition systems. Several examples are shown in Figure 8.2.

Serial communications 293

(a) POINT- TO - POINT

(b) LOOPED

(c) FAN (SIMPLEX AND FULL DUPLEX TRANSMISSION)

PC

TD

RD

PC

TD

RD

PC

TD

RD

RD

TD

DEVICE 1

RD

TD

DEVICE

RD

TD

DEVICE 2

RD

TD

DEVICE 3

RD

TD

DEVICE 1

RD

DEVICE 2

RD

DEVICE 3

Figure 8.2 Serial network topologies

294 PC interfacing and data acquisition

(d) MULTI-DROP NETWORK (HALF DUPLEX TRANSMISSION)

PC
TD

RD

TD/RD

DEVICE 1

TD/RD

DEVICE 2

TD/RD

DEVICE 3

Figure 8.2 (continued)

Each interconnection line in this figure represents a single-ended
electrical connection in the case of RS-232, or a differential connec-
tion in the case of RS-422/485 interfaces. The simplest scheme is
the linear, point-to-point arrangement shown in Figure 8.2(a). This
is the ideal arrangement where only one device has to be connected
to the PC. Simplex, half duplex and full duplex systems can be
supported using this structure. All of these can be implemented
using the RS-232 or RS-422 standards. Point-to-point systems can
be extended to form a loop structure in which each device on the
network receives data or a command from an adjacent device and
then relays it to the next device in the loop as shown in Figure 8.2(b).
The data continues to be passed around the loop until it returns to
the device that originally issued it. As well as making for an orderly
communication protocol, this also allows the originator of the data to
check that the echoed character matches that originally transmitted
and thus to ensure complete data integrity. However, the repeated
relaying of data does tend to slow the whole operation, particularly
when low baud rates or slow devices are present on the loop.

Figure 8.2(c) shows an alternative serial network topology that
can be used with interfaces conforming to the RS-422 standard. This
allows the PC to transmit data to a number of separate devices, but
only one of these devices can transmit data back to the host PC.

Finally, we have the so-called multi-drop, or bus, arrangement
shown in Figure 8.2(d). This allows several transmitting and receiving
devices to be connected to the same bus without the need to relay
data from one device to the next. The multi-drop bus topology can
be implemented with devices conforming to the RS-485 standard.
Because it allows multiple transmitters and receivers to reside on
the same bus, this arrangement can accommodate only simplex or
half duplex operation. It is, however, very useful for interconnecting
distributed signal-conditioning modules, such as might be employed

Serial communications 295

to monitor movement or loads at different points on a bridge, for
example.

Speed and transmission distance

The maximum practicable rate of transmission along a modemless
serial communications link varies with the total distance between the
transmitter and receiver. The resistance and capacitance inherent
in long cables tends to round off the sharp transitions present in
digital signals. The effect of this rounding is most apparent when
short duration pulses have to be detected (i.e. at high baud rates)
and there is consequently a reciprocal relationship between the
maximum baud rate and the total transmission distance. Note that
while a system might operate satisfactorily with cables of a certain
length it is always good practice to use the shortest practicable
cable runs. Marnham (1994) discusses cable length calculations in
some detail.

The RS-232 standard is capable of transmitting data over distances
of up to 15 m, and speeds of up to 20 Kbps can be employed.
Although this is often adequate for use within the limited confines
of a laboratory, RS-232 is not a suitable solution for communicating
with remote and inaccessible devices.

The RS-422 and RS-485 standards accommodate total transmission
distances of up to 100 m at 1 Mbps using suitable twisted-pair cable.
The maximum transmission rate is also much greater, being up to
10 Mbps. Typically this transmission speed is used over distances of
less than 15 m. Such high rates cannot normally be achieved with
the PC and an upper limit of 115 200 baud is imposed by the baud
rate generator circuitry present in the PC’s UART. Because of the
lower transmission speeds possible with the PC, the recommended
maximum cable lengths can be exceeded in some situations without
introducing an unacceptable level of communication errors. If suit-
able drivers and/or cables are employed in RS-422/485 systems it is
possible to extend transmission distances up to around 1200 m.

The highest transmission rates normally employed for long-
distance (i.e. up to 1200 m) communications via RS-422 and RS-485
interfaces are about 19 200 to 38 400 baud. If lower baud rates
are used, these interfaces will often tolerate even longer cables.
RS-422/485 transmitters are available for transmission up to 11 000 m
(7 miles) at 1200 baud.

Special signal converters are also available to extend the trans-
mission range of standard RS-232 interfaces. These use fibre optic
or current loop techniques. The latter will generally accommodate

296 PC interfacing and data acquisition

data rates of 9600 baud or greater and will transmit over distances of
several kilometres (typically 1000 to 8500 m).

8.4 Serial interface standards

We have already mentioned the standards, such as RS-232, developed
by the Electronic Industries Association (EIA). This section outlines
some important characteristics of these standards.

The RS-232 standard

The RS-232 standard was developed in the 1960s for transferring data
between computers and peripheral devices (teletypes and printers),
and for intercomputer communications. The RS-232C revision is
most widely complied with, although it was superseded in 1987 by
RS-232D and then in 1991 by revision E. From the PC programmer’s
perspective, however, the differences between the various revisions
are of little significance and so this standard will be referred to simply
as RS-232 in the remainder of this book. Additional information can
be found in the texts by Putman (1987), Maine (1986), Marnham
(1994) and Tooley (1992).

RD

SG

TD

DTE DCE

Figure 8.3 Single-ended serial transmission over an RS-232 interface

Serial communications 297

This standard is used for interfacing computers to modems for
long-distance communication via the telephone network. RS-232 was
originally designed with this application in mind and much of the
terminology used (e.g. names of control signals etc.) reflects this.

RS-232 specifies a single-ended transmission system in which trans-
mitted signals and received signals are each carried on a single
wire. The voltage on each wire is measured with reference to a
common signal ground as indicated in Figure 8.3. As mentioned

Table 8.1 RS-232D connector pin assignments

Signal/circuit I/O relative

25 way 9 way mnemonic to DTE Full name

1 – FG/AA – Frame ground

2 3 TD/BA Out Transmit data

3 2 RD/BB In Received data

4 7 RTS/CA Out Request to send

5 8 CTS/CB In Clear to send

6 6 DSR/CC In Data set ready

7 5 SG/AB – Signal ground

8 1 DCD/CF In Data carrier

detect/received line

signal detect

9 – – – Reserved/Testing

10 – – – Reserved/Testing

11 – – – Unassigned

12 – SCF In Secondary CF (DCD)

13 – SCB In Secondary CB (CTS)

14 – SBA Out Secondary BA (TD)

15 – DB In Transmitter signal element

timing

16 – SBB In Secondary BB (RD)

17 – DD In Receiver signal element

timing

18 – LL Out Local loop-back signal

19 – SCA Out Secondary CA (RTS)

20 4 DTR/CD Out Data terminal ready

21 – CG In Signal quality detector

22 9 RI/CE In Ring indicator

23 – CI/CH In/Out Data signal rate selector

24 – DA Out Transmitter signal element

timing

25 – – – Unassigned/Testing

298 PC interfacing and data acquisition

in the previous section, this single-ended operation restricts the
maximum baud rate and transmission distance.

The RS-232 specification allows for only one transmitter and
one receiver to be present on each signal line and this limits the
topology to a linear point-to-point arrangement or a loop structure
(see Figure 8.2). Full duplex, half duplex and simplex transmission
modes can be used.

Connector pin assignments

RS-232 specifies a 25-way D-type connector with the pin assignments
listed in Table 8.1. Two separate serial communications channels
are supported by the standard, but only one of these – the Primary
channel – is used on the PC’s serial ports. The slower Secondary RS-
232 channel is not available on the PC and this is reflected in the
connector pin usage. All 25 pins are defined by the RS-232 standard,
although only nine of these are in common use. Most modern PCs
make only these nine signals available via a 9-way D-type connector
(also listed in the table). Some IBM PC/XT or AT clones possess a 25-
way connector, but with only the nine commonly used pins connected.

The RS-232 signals can be divided into four classes: data, control,
timing and ground. The timing signals are defined for use in
synchronous communication systems. Because the PC’s serial ports
support only asynchronous communication, these timing signals are
not present.

Voltage levels

RS-232 defines the digital logic levels shown in Table 8.2. These
levels are used on both the data and control lines.

This definition of logical states is used to represent the bit pattern
within each serial frame. A logic 1 level, equivalent to a negative
voltage, represents a high (1) data bit. The control lines are, however,
generally active (i.e. on or asserted) when at logic zero (i.e. a positive
voltage).

DTE and DCE

When considering the RS-232 interface you should remember that
it was originally designed for connecting a computer terminal to a

Table 8.2 RS-232 voltage and logic levels

Logic level Voltage Data line state

0 C3 V to C25 V Space

1 �3 V to �25 V Mark

Serial communications 299

modem in order to facilitate communication with a remote (usually
mainframe) computer. The modem performed the task of commu-
nicating over a long distance (i.e. telephone) link with a remote
modem. At one end of the link, the local modem was connected to a
computer terminal using an RS-232 interface and, at the other end,
the remote modem was coupled to the remote computer, also by
means of an RS-232 standard interface.

For this reason, RS-232 systems use terminology relevant to this
mode of communication. Data Terminal Equipment (DTE) refers
to those elements of the system that reside at the termini of the
communications link. In the terminal-to-computer example, both
the terminal itself and the remote computer would be classed as
DTE. The modems, which established the long-distance link, are
classed as Data Communications Equipment (DCE).

Of course, in the context of PC-based data-acquisition systems, the
computer (i.e. PC) and the terminal are one and the same, and the
RS-232 communications link is established between the PC and a
device such as a data-logging unit, without the aid of a modem. In
this case both the PC and the data logger are classed as DTE. No
DCE (modem) is used.

Control lines, handshaking and null modems

The handshaking protocols used in RS-232 systems stem from the
standard’s original function as a way of connecting DTE and DCE.
Table 8.3 lists the common handshake lines available on the standard
RS-232 connector.

These lines are also present on the PC’s 9-way connectors. The
table provides a summary of the original usage of the various control
lines, but this should be treated as only a very rough guide. In PC-
based data-acquisition (and other) systems, the handshaking lines
are actually used in a variety of different ways. In some cases, most
or all of the lines are used; in others, only one or perhaps two of
the available signals are needed. A number of systems dispense with
hardware handshaking altogether. The timing of the handshaking
signals also varies to some extent.

Some common handshaking sequences are listed below. Note
that the RI and DCD inputs to the DTE are not checked in these
examples, although they may be used in some applications. The RI
signal indicates that the DCE has detected a ringing signal from
the remote equipment. DCD is generally asserted when the DCE
(modem) detects a carrier signal from the remote equipment. In
applications where the DCE is actually a data logger or similar,
the DCD line may be asserted when the logger is switched on and

300 PC interfacing and data acquisition

Table 8.3 Common RS-232 handshaking lines

Mnemonic I/O relative to DTE Usual use

DTR Out Indicates that the DTE is ready and causes

the modem to establish the long-distance

(telephone) link.

DSR In Indicates that the modem is ready, but does

not necessarily indicate that the remote

communications link has been established.

DCD In Indicates that the local modem has detected

the data carrier signal from the remote

modem and that the remote

communications link has been established.

RTS Out Indicates that the DTE is ready to transmit.

CTS In The modem asserts this line, in response to

DTR and RTS, when it is ready to allow the

DTE to transmit. RTS should go inactive

after CTS has been asserted. RTS should

not then be activated again until CTS is

unasserted.

RI In Indicates that the local modem is receiving a

ringing signal from a remote device. This is

normally used by communications

software to answer an incoming call.

functioning correctly. More commonly in this type of application,
however, neither DCD or RI are used.

Transmission

1. DTE asserts DTR to indicate that it is ready to communicate.
2. DTE waits for the DCE to respond. DCE responds by asserting

DSR. The assertion of DSR generally means that the DCE is
ready; it does not necessarily mean that the DCE has established
a communications link to the remote equipment. If the DSR line
is not asserted within a predetermined timeout period (usually
about 2 to 10 ms), the DTE assumes communication with the
DCE cannot be established and times out.

3. DTE asserts RTS to request permission to transmit.
4. DTE waits for the DCE to assert CTS. If this line is not asserted

within a predetermined timeout period (usually about 2 to 10 ms),
the DTE assumes communication cannot be established and times
out.

Serial communications 301

5. If a timeout did not occur, the DTE transmits the data. Either
single characters or a block of several characters may be trans-
mitted.

6. The DTE deactivates RTS at the end of transmission. Once RTS
is deactivated, it should not be reasserted until after the DCE has
deactivated CTS. DTR may remain active if the DTE wishes to stay
on line.

Note that, in some systems, the transmission handshake is imple-
mented using only the RTS/CTS handshake and the DTR and DSR
lines are unused. The above transmission sequence is illustrated
diagrammatically in Figure 8.4. The circled numbers in the figure
refer to the steps in the foregoing sequence.

Reception

1. DTE asserts DTR to indicate that it is ready to communicate.
2. DTE waits for the DCE to respond. DCE responds by asserting

DSR. If this line is not asserted within a predetermined timeout
period (usually about 2 to 10 ms), the DTE assumes communica-
tion cannot be established and times out.

3. If a timeout did not occur, the DTE waits to receive data from the
DCE. Either single characters or a block of several characters may
be transmitted.

4. The DTE may deactivate DTR at any time to suspend the DCE’s
transmission.

1

0

1

0

1

0

1

0

1

0

DTR

DSR

RTS

CTS

TD ONE OR MORE SERIAL CHARACTER

FRAMES

1

2

3

4

5

6

6

Figure 8.4 Typical handshaking sequence used during serial transmission

302 PC interfacing and data acquisition

Null modems

In a PC-based data-acquisition system, there is generally no modem
(DCE), and the PC is usually connected directly to a data logger
or signal-conditioning module. Both the PC and data logger (etc.)
are classed as data terminal equipment (DTE). In this case it is
often necessary to make it appear to each DTE element that the
handshaking signals have originated from a modem. To this end,
special cables or adaptors, known as null modems, can be used.
These employ crossed wiring which causes, for example, the TD pin
of one terminal to be connected to the RD pin of the other (and vice
versa). The handshaking lines are also crossed and/or looped back
so as to emulate the signals that would otherwise have been provided
by a modem. The exact design of these adaptors depends upon the
requirements of each application and there is some variability in the
wiring schemes used.

Figure 8.5 illustrates the connections employed in a variety of
common null modem adaptors. These fall into two categories. Loop-
back adaptors feed the control outputs (DTR and RTS) back to
the input lines (DSR, DCD and CTS) of the same device. These
connections do not provide any real handshaking facilities: they
are merely used to circumvent any handshake requirements that

(a) Loop back

TD

RD

RTS

CTS

DSR

DCD

DTR

TD

RD

RTS

CTS

DSR

DCD

DTR

(b) Crossover with RTS-DCD/DTR-DSR
handshaking

TD

RD

RTS

CTS

DSR

DCD

DTR

TD

RD

RTS

CTS

DSR

DCD

DTR

Figure 8.5 Some common null modem connections

Serial communications 303

(c) Crossover with RTS-DCD/DTR-CTS
handshaking

TD

RD

RTS

CTS

DSR

DCD

DTR

TD

RD

RTS

CTS

DSR

DCD

DTR

Figure 8.5 (continued)

may have been imposed by the DTE’s communications software.
The second class of null modems does implement some degree of
handshaking between the two DTEs. In this case, crossed wiring is
used to simulate the effect of communicating with a local modem.

There are several other types of null modem and crossed-wire
adaptors. Some are required specifically for applications such as
interfacing to a printer via the serial port. Devices, known as breakout
boxes, are available which allow the various interconnections to be
made and easily modified. These are ideal for experimentation in
order to establish the correct null modem connections for use with
an unfamiliar system.

The RS-422 standard

This standard is used widely in industry for communicating over
longer distances than is normally practicable with RS-232. It was
revised in 1994 and this revision is known as RS-422B (or EIA/TIA-
422-B). Unlike the RS-232 standard, in which the signal voltages
are all measured with reference to a common ground wire, RS-422
systems employ balanced differential transmission. In this mode,

304 PC interfacing and data acquisition

TD+

TD−

RD+

DCEDTE

RD−

Figure 8.6 Balanced differential transmission over an RS-422 interface

signals are transmitted by means of pairs of wires which are labelled
TDC and TD� for the transmission circuit or RDC and RD� at
the receiver (also sometimes referred to as TD and TD Common
or RD and RD Common). This transmission mode is illustrated in
Figure 8.6 and should be compared with the single-ended mode
employed by RS-232 (Figure 8.3).

Differential transmission permits some RS-422 compatible line
drivers to achieve data rates of up to 10 Mbps over distances of
around 300 m, although many standard RS-422 devices are capable
of transmitting up to only 12–15 m at this speed. However, this is
largely academic when using the PC as the standard 16450 UART can
transmit at up to only 115 200 baud, and the maximum practicable
transmission rates are often considerably lower. The transmitter and
receiver can be separated by up to 1200 m provided that lower trans-
mission rates (i.e. no more than 19 200 to 56 000 baud) and suitable
twisted-pair cables and line drivers are employed. As noted earlier,
RS-422 compatible transmitters are available for communicating over
distances of up to 11 000 m (7 miles) at 1200 baud. Note, however,
that the maximum recommended cable lengths tend to vary some-
what between different proprietary RS-422 compatible systems and
you are advised to consult the manufacturer of your equipment for
precise details.

Because separate TD and RD circuits are used, RS-422 is suitable
for full duplex communication. RS-422 can also accommodate up
to ten receivers on the same bus although, like RS-232, only one
transmitter can be present. This allows a point-to-point, looped or
fan topology to be employed.

Serial communications 305

The connector pin assignments used on industrial RS-422 devices
tend to vary somewhat, although most interfaces and converters
employ a 9-way male D-type connector incorporating pairs of pins for
the TD, RD, RTS and CTS signals together with a single signal-ground
pin. Only RTS/CTS handshaking is normally possible, because lines
such as DTR, DSR, DCD are normally not required for RS-422
communications and are not present on the RS-422 connector.

The RS-485 standard

The RS-485 standard (introduced in 1983) can be considered an
adaptation of RS-422 which allows many drivers and receivers to be
present on the same bus (although only one driver may be active at
any time). RS-485 employs balanced differential signal lines, much
like RS-422. Full duplex implementations are possible using a point-
to-point topology and separate twisted-pair conductors for the receive
and transmit signals. In addition, RS-485 facilitates construction of
multi-drop networks. This arrangement uses the same pair of wires
for both transmission and reception of data. Although this helps to
reduce cabling costs, it precludes full duplex operation. Figure 8.7
illustrates the structure of the half duplex RS-485 bus.

Notice that both the transmitter and receiver are connected to
the same pair of wires. The transmitter and receiver are collectively
known as a transceiver. Each device controls whether the transmitting
or receiving element of the transceiver is active by means of the digital
TE (Transmit Enable) line. This line may be driven either by software
or by circuitry which senses when the device begins to transmit.

TD

TE

TD+/RD+

TD−/RD−

RD

RD

TE

TD

Figure 8.7 Half duplex transmission over a balanced differential RS-485 bus

306 PC interfacing and data acquisition

The maximum permissible data transfer rates and cable lengths
are similar to those described for the RS-422 standard. RS-485 will,
however, support up to 32 drivers and 32 receivers on the same bus,
although only one driver may be allowed to transmit at any time.

Like RS-422, the connector pin assignments used on many indus-
trial RS-485 devices also tend to vary. In fact, the connector type and
pin-out are not defined under the standard (Marnham, 1994). Some
interfaces and converters employ a 9-way male D-type connector
incorporating a pair of pins for the TD/RD signal together with
ground and C5 V connections. Some devices offer both RS-422 and
RS-485 operation and provide a dual-purpose connector. In RS-422
mode, the connector provides the normal RS-422 pins described
in the previous section. In RS-485 mode, the RD pair of inputs is
unused – the TD pins may then be used for both transmission and
reception.

The half duplex nature of the RS-485 bus, together with the lack
of handshaking in many implementations can make the design of
protocols and message timing more complicated than with RS-232
or RS-422, and can place an additional burden on the software
designer. In addition, as noted previously, it is necessary for each
device on the bus to independently enable and disable its transmitter
and receiver by controlling the state of the TE line. (Note that the
TE line is not part of the RS-485 bus: it simply controls the direction
of data flow through the transceiver.)

Some RS-232 to RS-485 converters that connect directly into the
PC’s RS-232 serial ports use one of the handshaking lines (e.g. RTS
or DTR) to control TE. RS-485 interfaces on plug-in expansion
cards generally have their own UART which also drives the TE
line via the RTS or DTR (or occasionally the OUT1) lines etc.
These are accessible via the normal UART registers. In some cases,
custom circuits permit the receiver and transmitter to be enabled or
disabled independently and these devices map the transmit-enable
and receive-enable controls to different portions of the PC’s I/O
space: e.g. so as to overlap the UART’s scratch-pad register.

Fortunately, an increasing number of RS-485 devices on the market
are beginning to employ circuits which sense when the device begins
to transmit and automatically enable the transceiver’s transmitting
element.

Because of its low cabling costs, high speed, and capability to
transmit over long distances, the RS-485 standard is ideal for use in
distributed control applications. It has been adopted as the basis for a
number of industrial communications networks such as Profibus and
Intel’s Bitbus. These buses implement long-distance communication
between distributed PCs and local controllers or sensors. Fieldbus

Serial communications 307

systems such as Profibus employ protocols for passing messages
and data within fixed real-time constraints. So-called cyclic data
transfers provide a means of implementing control loops via the
network with guaranteed latency times. High transmission rates are
also possible: 1.25 Mbps with Profibus. Bitbus operates in either a
synchronous transmission or self-clocked mode. In the latter mode,
two differential pairs are used. One carries transmitted data and the
other is used for transceiver control. Self-clocking allows data to be
transferred at up to 375 Kbps over distances up to approximately
300 m or 62.5 Kbps up to 1200 m. Bitbus can also operate using
a synchronous protocol based on IBM’s Synchronous Data Link
Control (SDLC). This allows transmission at much higher rates – up
to 2.4 Mbps over distances less than 300 m. The Bitbus interfaces to
the PC via a dedicated adaptor unit and software drivers.

Other serial buses and standards

A number of other serial interfaces are also suitable for data acqui-
sition, although, for PC-based applications, they are less widely
used than the standards discussed previously. Standards such as
the unbalanced differential RS-423 bus and RS-449 are discussed
more fully in the texts by Maine (1986), Marnham (1994) and
Tooley (1992).

Current loop systems

A variant of RS-232 employs current loop drivers in order to extend
the maximum transmission distance. This type of interface was
originally developed for driving devices such as teletypes, but several
manufacturers now offer RS-232 current loop converters for use
with industrial communications systems. These drivers represent the
logical states within the serial character frame by the magnitude of
current flowing through the loop. Most operate in the industrial
standard 4–20 mA range and some allow transmission up to several
kilometres (typically up to 8500 m).

The Universal Serial Bus (USB)

Intel’s Universal Serial Bus is supported by a number of prominent
PC and component manufacturers. It was introduced in the mid-
1990s and most new PCs possess a USB controller that provides a
USB root hub and two USB ports.

USB is a very high speed serial link that is capable of transfer
rates rivalling some parallel buses (up to 12 Mbps). Each USB port
can address up to 63 separate devices via a simple and inexpensive

308 PC interfacing and data acquisition

4-conductor cable. Cable length is limited to 5 m for 12 Mbps trans-
mission rates. USB devices can be daisy-chained so that in many
applications the PC will require just one USB port.

Only a small number of DA&C products are currently available for
the USB. Most of these are laboratory or test instruments (oscillo-
scopes or high precision voltmeters etc.) although this may change
in the next few years as USB is implemented more widely. Because
USB devices mostly require their own enclosures and external power
supplies, USB implementations of simple DA&C products (digital
I/O cards or simple ADC cards) may not be cost effective. In the
field of data acquisition, it is likely that USB will be used first for
interfacing to more complex devices. Another potential use for USB
is as the primary interface between the PC and an external fieldbus
or instrumentation bus such as IEEE-488.

Firewire (IEEE-1394)

Like the USB, IEEE-1394 is a relatively new development in serial
buses. It is derived from a high speed supplementary serial bus
intended for use in VME-based computers. IEEE-1394 (also known
as Firewire) has many potential uses and implementations on PC
compatible computers although, at the time of writing, most of these
have yet to be realized. Microsoft’s recently announced plans to
use the bus in PC-based home entertainment systems may help to
enhance the popularity of IEEE-1394. It is conceivable that in the
long term IEEE-1394 will become the standard communications and
networking interface present on the PC; possibly even replacing the
RS-232 and Centronics interfaces.

The most important feature of IEEE-1394 is its capability to transfer
data at very high speeds. The bus permits transmission at up to several
hundred Mbps (400 Mbps and 1 Gbps in its fastest implementations)
over cables up to 4.5 m long. Such rates of throughput make IEEE-
1394 suitable for video disk drives and other high speed applications.
Up to 63 devices can be connected on one daisy-chained network.
Devices are linked via simple and relatively cheap cables which
employ two double-shielded twisted-pair signal wires together with a
pair of power lines.

8.5 Asynchronous serial I/O on the PC

Modern PCs are normally equipped with one or two RS-232 compat-
ible serial ports. Some machines (particularly those of the PS/2 line)
can accommodate up to four serial ports. Real-mode (e.g. DOS)
programs may require drivers to be specially written because serial

Serial communications 309

I/O via the DOS file system or the BIOS is usually too slow and
inflexible for data acquisition. It is less likely that Windows and
OS/2 programmers will need to write serial port drivers as suitable
software is available from most manufacturers of serial communi-
cations products. Whatever your interest in serial communications,
it is instructive to investigate the workings of the UART as its
features will have an important bearing on the capabilities of your
communications software.

With the exception of one or two older PC clones, there is a
great deal of standardization, in terms of UART types and addresses,
between the various IBM compatible machines on the market. This
greatly simplifies programming the UART and means that it is not
always necessary (or desirable) to resort to the BIOS’s serial port
services. However, certain aspects of the serial port BIOS are useful
and we will briefly discuss these before progressing to the topic of
UART programming.

Serial port parameters in the BIOS Data Area

The BIOS Data Area contains a block of four words that hold the
base addresses of each UART present in the system’s I/O space.
These are initialized by the BIOS’s POST routines. On most PCs,
only the first two of these ever contain valid addresses, but on some
clone machines and PS/2 machines, all four may be defined. All
undefined entries in this table of addresses are set to zero. The table is
constructed beginning at address 0040:0000h such that the addresses
of all ports are placed in contiguous positions in the table – i.e. a
blank (zero) entry will never be placed between two valid UART
addresses. Bits 9 to 11 of the word at 0040:0010h contain a binary-
coded representation of the total number of UARTs detected by the
BIOS. These addresses are summarized in Table 8.4.

In most systems the first two UARTs reside at addresses 3F8h and
2F8h in the I/O space. It is not advisable to rely on this, however, as
the UARTs may be mapped to different addresses in some machines.
You should always obtain the UART addresses by referring to the
table at 0040:0000h as shown in Listing 8.1.

A second table in the BIOS Data Area contains the serial port
timeout values that are used by the BIOS’s serial port services. The
table starts at 0040:007Ch and contains 1 byte for each of the four
possible ports. Each byte represents a timeout interval in units of
approximately 2 ms (although the actual timing will vary somewhat
between different machines).

Both the address table and the timeout table will always include
space for up to four entries even though, on most PC and AT

310 PC interfacing and data acquisition

Table 8.4 Serial port parameters in the BIOS Data Area

Address Size (bytes) Description

0040:0000h 2 Serial port 1 I/O address

0040:0002h 2 Serial port 2 I/O address

0040:0004h 2 Serial port 3 I/O address

0040:0006h 2 Serial port 4 I/O address

0040:0010h 2 Bits 9–11 D Number of serial ports detected

0040:007Ch 1 Serial port 1 timeout

0040:007Dh 1 Serial port 2 timeout

0040:007Eh 1 Serial port 3 timeout

0040:007Fh 1 Serial port 4 timeout

Listing 8.1 Determining UART addresses

:

unsigned char NumSerialPorts;

unsigned int BaseAddr[4];

unsigned char PortNum;

:

:

NumSerialPorts = 0;

for (PortNum = 0; PortNum <= 3; PortNum++)

f
BaseAddr[PortNum] = peek(0x0040,(2 * PortNum));

if (BaseAddr[PortNum] != 0) NumSerialPorts++;

g
:

compatible systems, the BIOS’s POST routines will only search for
the first two serial ports at addresses 3F8h and 2F8h.

Serial I/O using the BIOS

The BIOS services available on most modern PCs allow single charac-
ters to be transferred at up to 9600 baud via any of the available serial
ports. The PS/2 BIOS permits a higher maximum (documented)
transmission rate of 19 200 baud. These services do not provide inter-
rupt driven or buffered I/O (in fact, the BIOS POST routines disable
the UART’s interrupts) and, because of this and the maximum trans-
mission rate of 9600 or 19 200 baud, they are generally unsuitable
for high speed I/O. However, the BIOS services (accessed via inter-
rupt 14h) do provide a very simple means of accessing the serial
ports and so this method may be preferable when throughput is not
critical. The reader is referred to one of the many PC programmers’

Serial communications 311

reference books, such as Sanchez and Canton (1994), Dettmann
and Johnson (1992) or van Gilluwe (1994) for more information on
this topic.

Programming the UART

The IBM PC, XT, AT, PS/2 and the various compatible machines
are equipped with a range of different UARTs. The original PC
used the 8-bit National Semiconductor INS 8250 UART, but most
later machines possess the faster 16-bit National Semiconductor
16450 IC which in other respects is identical to the 8250 and may be
programmed in the same way. Some newer models are equipped with
the 16550 UART instead. This is compatible with the earlier 8250 and
16450 UARTs but also includes a facility for buffering both received
data and data that is to be transmitted. The buffer holds up to
16 bytes and allows the UART to process more data before requiring
service from the processor, thus reducing the software overhead. This
is a particularly useful feature in multitasking and real-time systems.
Note that on some machines the UART functionality is provided on
the motherboard by a device such as an 82091AA integrated circuit.
This is software compatible with the standard 16450 UART.

Many serial port adaptor cards that plug into the PC’s expansion
sockets are equipped with 16450 or 16550 UARTs. High speed
industrial communications adaptors, in particular, often make use
of the 16550 UART to enhance throughput. A number of other
compatible UARTs are also available and these may be used in a few
systems. Because most UARTs used in the PC and in PC-based DA&C
systems are software compatible with the 8250, 16450 or 16550,
reference will be made only to these basic UART devices in the
remainder of this chapter. Serial ports based on enhanced designs
(such as the 82510, 161450, 161550 and compatible devices) can also
be programmed on the basis of the information supplied.

Overview of the UART and serial port

The main functional components of the PC’s serial port are shown
in Figure 8.8. This illustrates an RS-232 port in which an 8250 or
16450 UART is interfaced to the serial port connector via an array
of inverting line drivers. In the case of an RS-422 or RS-485 port,
some or all of the handshaking lines may not be connected even
though they are present on the UART. As mentioned previously, an
RS-485 port would employ a transceiver (see Figure 8.7), which may
be enabled to transmit or receive by means of one of the unused
control lines (e.g. RTS) or by additional circuitry.

312 PC interfacing and data acquisition

IRQ
Enable

To 8259A PIC

INTRPT

IIR

IER

LCR

MCR

LSR

MSR

FCR*

RBR

THR TSR

RSR

DLM

DLL

UART

Baud
rate

generator

Oscillator
1.8432 MHz

RS - 232
Connector

TD

RD

CTS

DSR

RI

DCD

DTR

RTS

S
Y

S
T
E

M
 D

A
T
A

 B
U

S

Interrupt
control

OUT2

*FCR is present only on the 16550 and compatible UARTs (see text).

Figure 8.8 Main functional components of the PC’s serial port

Serial communications 313

The blocks shown along the left-hand side of the UART each
represent one 8-bit register that can be read or written by software.
Most of the registers are mapped permanently to different I/O
addresses, but the THR and RBR both occupy the same address.
Writing to this address loads a byte into the THR, while a read
operation accesses the contents of the RBR. On the 16550 UART,
the THR and RBR are each supplemented by a 16-byte FIFO buffer
(not shown). The operation of these buffers is controlled by means
of the FIFO Control Register (FCR) as described in the FIFO Buffer
Control Register section later in this chapter. The Transmitter Shift
Register (TSR) is used internally by the UART for composing the
serial bit stream. The Receiver Shift Register (RSR) performs the
converse function. Neither the TSR nor the RSR can be accessed
directly by software.

The baud rate divisor latch registers, DLL and DLM, are mapped
to the same locations as the RBR/THR and IER, respectively. DLL
and DLM are accessible only when the DLAB bit in the LCR is set
to 1. DLAB should be set when accessing these registers: it should
always be reset to zero for normal transmission and reception of data.
Table 8.5 summarizes the various registers and lists their addresses
(i.e. their offsets) relative to the UART’s base address.

The UART’s registers

The following sections describe each of the UART’s registers and
the conditions under which they can be accessed. It is necessary to

Table 8.5 8250, 16450 and 16550 UART registers

Offset Mnemonic Name R/W Notes

0 RBR Receiver Buffer Register R/O DLAB D 0

0 THR Transmitter Holding Register W/O DLAB D 0

0 DLL Divisor latch LSB R/W DLAB D 1

1 DLM Divisor latch MSB R/W DLAB D 1

1 IER Interrupt Enable Register R/W DLAB D 0

2 IIR Interrupt Identification Register R/O

2 FCR FIFO Buffer Control Register W/O 16550 and

compatibles

3 LCR Line Control Register R/W DLAB is bit 7

4 MCR Modem Control Register R/W

5 LSR Line Status Register R/O

6 MSR Modem Status Register R/W

7 SCR Scratchpad Register R/W Not present on

some 8250s

314 PC interfacing and data acquisition

set DLAB to either 0 or 1 in order to read or write certain registers.
Where registers can be accessed independently of the state of DLAB,
it is advisable always to set DLAB to 0 in order to ensure compatibility
with later devices.

Transmitter Holding Register (THR, offset 0, W/O, DLAB D 0)

This register holds the next data byte to be transmitted. Once data
has been written to the THR, the UART will automatically convert it
into serial format, adding the appropriate start, parity and stop bits.
It will then begin transmitting the serial frame via the Transmitter
Shift Register (TSR). The low order bit is transmitted first. If fewer
than 8 data bits have been specified, the unused high order bits
in the THR are ignored. The driving software should not attempt
to load data into the THR until the THRE flag in the Line Status
Register is 1.

Receiver Buffer Register (RBR, offset 0, R/O, DLAB D 0)

As the UART receives each successive data byte via its Receiver Shift
Register (RSR), it strips off the start, parity and stop bits and converts
the data bits into parallel format. The resulting byte is then stored
in the RBR from where it can be read by the software. If fewer than
8 data bits are included in the serial frame, the high order bits in
RBR are all set to 0. The DR bit in the Line Status Register is set high
whenever new data is transferred into the RBR. The driving software
should check the state of the DR bit and, when it is 1, the software
should read the RBR. Failing to read the RBR when new data is ready
will result in it being overwritten when a new byte is received. This
condition, known as an overrun error, is detected by the UART and
flagged by means of the OE bit in the Line Status Register.

Divisor Latch LSB (DLL, offset 0, R/W, DLAB D 1)

This register contains the least significant byte of the 16-bit divisor
used to generate the required baud rate. It can be accessed only
when the DLAB bit in the Line Control Register is set.

Divisor Latch MSB (DLM, offset 1, R/W, DLAB D 1)

This register contains the most significant byte of the 16-bit divisor
used to generate the required baud rate. It can be accessed only
when the DLAB bit in the Line Control Register is set.

Interrupt Enable Register (IER, offset 1, R/W, DLAB D 0)

The IER contains the 4 bits listed in Table 8.6. These are used to
enable or disable the UART’s interrupts. The UART can generate

Serial communications 315

Table 8.6 The Interrupt Enable Register (IER)

Bit Mnemonic Description

0 DRI 1 D Enable Data Ready interrupt. Interrupt occurs

whenever data is available in RBR. On the 16550 if

FIFO is enabled, this bit enables the character timeout

interrupt.

1 THREI 1 D Enable THR Empty interrupt. Interrupt occurs when

the THR is empty and ready for the next byte.

2 RLSI 1 D Enable Receiver Line Status interrupt. Interrupt

occurs when framing, overrun or parity errors are

detected or when Break is detected.

3 MSI 1 D Enable Modem Status interrupt. Interrupt occurs

whenever CTS, DSR, RI or DCD is asserted.

7–4 – Unused – set to 0.

interrupts as a result of several conditions and these can be selectively
enabled or disabled by writing to this register. A high bit in any of the
four low order positions will enable the corresponding interrupt. Any
combination of interrupts can be enabled. A detailed description of
the UART’s interrupt system is provided later in this chapter.

Interrupt Identification Register (IIR, offset 2, R/0, DLAB D 0/1)

Once an interrupt has been generated, it is important for the
interrupt handling software to be able to check the source of the
interrupt in order to respond appropriately. The bits contained
in the IIR (see Table 8.7) indicate, first, whether an interrupt is
pending and, second, what particular UART condition generated
the interrupt.

On the 16550 (or compatible UARTs), but not the 8250 or 16450,
this register also contains bits that can be used to identify the type of
UART and whether the FIFO buffers are enabled.

FIFO Buffer Control Register (FCR, offset 2, W/O, DLAB D 0)

This register provides a means for the software to enable and control
the transmit and receive FIFO buffers which are present on the 16550
and compatible UARTs (e.g. the 16552 and 16554). The FCR is not
present on the 8250 or 16450. The bit assignments for this register
are shown in Table 8.8. Please refer to the later section Operation of
the 16550 FIFO buffer for further details on interrupt generation.

316 PC interfacing and data acquisition

Table 8.7 The Interrupt Identification Register (IIR)

Bit Mnemonic Description

0 IP 0 D Interrupt is pending

3–1 ID Table 000b D Modem Status interrupt

001b D Transmit Holding Register Empty interrupt

010b D Data Read interrupt (received data is present in

RBR)

011b D Receiver Line Status interrupt

110b D Character timeout interrupt (16550 in FIFO mode)

5,4 – Unused – should be 0

7,6 FIFO 00b D FIFO disabled, or not 16550

Indicator 10b D FIFO disabled (16550 with faulty FIFO)

x1b D FIFO enabled

Table 8.8 The FIFO Buffer Control Register (FCR)

Bit Mnemonic Description

0 FE FIFO buffer enable. 0 disables and flushes both the transmit

and receive FIFOs. 1 enables both FIFO buffers. NB. When

writing to this register, bit 0 must be 1 in order to change the

states of any of the remaining bits.

1 RRF Reset receiver FIFO. A 1 bit empties the receiver FIFO. It has

no effect on the RSR.

2 RTF Reset transmitter FIFO. A 1 bit flushes the transmitter FIFO

buffer. It has no effect on the TSR.

3 – Unused on the PC.

4 – Unused.

5 – Unused.

7,6 RTL Receiver trigger level. Specifies the number of bytes which

must be available in the receiver FIFO before a Data Ready

interrupt will be generated:

00b D Interrupt triggered by 1 byte in FIFO

01b D Interrupt triggered by 4 bytes in FIFO

10b D Interrupt triggered by 8 bytes in FIFO

11b D Interrupt triggered by 14 bytes in FIFO.

Line Control Register (LCR, offset 3, R/W, DLAB D 0/1)

The LCR is used to specify the composition of each serial frame. Its
contents define the parity as well as the number of data and stop bits
to be used, as shown in Table 8.9.

Serial communications 317

Table 8.9 The Line Control Register (LCR)

Bit Mnemonic Description

1,0 WLSB Word length select bits. Specifies the number of data bits in

the serial frame:

00b D 5 data bits

01b D 6 data bits

10b D 7 data bits

11b D 8 data bits

2 STB Number of stop bits. This is interpreted differently, depending

upon the number of data bits specified:

STB D 0 always indicates 1 stop bit

STB D 1 indicates 2 stop bits with 6, 7 or 8 data bits, but

only 1.5 stop bits if 5 data bits have been selected.

3 PEN Parity enable. A 1 bit enables parity. A 0 bit disables parity,

regardless of the states of bit 4.

4 EPS Even parity select. A 1 bit selects even parity. A 0 bit selects

odd parity.

5 SP Stick parity. A 1 bit forces the parity bit in the serial frame to a

fixed state, regardless of whether there are an even or odd

number of data bits. In this case the actual state of the parity

bit is equal to the inverse of EPS.

6 SB Set break. When this bit is set to 1, the UART forces the TD

line to a spacing state. If this state is maintained for more

than one character transmission period, the receiving UART

will detect the break condition and (if programmed to do so)

will generate a break interrupt.

7 DLAB Divisor latch access bit. This bit should normally be 0 and only

set to 1 while accessing the divisor latch (DLL and DLM)

registers. It should always be reset to 0 after programming

the divisor.

The Divisor Latch Access Bit (DLAB) is also contained in this
register. This bit should be 0 for normal operation. It should be set
to 1 only to access the baud rate divisor latches.

Modem Control Register (MCR, offset 4, R/W, DLAB D 0/1)

The primary purpose of this register is to allow driving software
to control the state of the serial port’s DTR and RTS lines. This
is accomplished by setting or resetting bits 0 and 1 as shown in
Table 8.10.

318 PC interfacing and data acquisition

Table 8.10 The Modem Control Register (MCR)

Bit Mnemonic Description

0 DTR 1 D Assert the RS-232 DTR line.

1 RTS 1 D Assert the RS-232 RTS line.

2 OUT1 Unused on the PC.

3 OUT2 1 D Enable UART interrupts to be passed to the 8259A PIC.

4 LOOP 1 D Loop-back mode active.

7–5 – Unused.

The OUT2 bit controls whether any interrupt signals generated
by the UART reach the PC’s 8259A PIC and thus cause an interrupt.
OUT2 should be set high to enable UART interrupts.

The UART’s loop-back facility can be enabled by setting the LOOP
bit to 1. When loop-back mode is active, the modem control bits and
OUT1 and OUT2 defined in the MCR are automatically fed back to
the modem status input bits of the MSR. This feature is provided in
order to facilitate testing.

Line Status Register (LSR, offset 5, R/O, DLAB D 0/1)

The Line Status Register contains a number of bits which indicate the
status of the receiver and transmitter. These are listed in Table 8.11.
The various error flags (PE, FE etc.) should be read at the time
that the high DR bit is detected. These flags indicate whether any
errors occurred during reception of the character currently waiting
in the RBR. If the 16550’s FIFO buffers are enabled, the receiver’s
error status is stored along with each received character in the FIFO
buffer. As each new character is presented at the RBR, the UART
loads the corresponding error status bits into the LSR.

Modem Status Register (MSR, offset 6, R/O, DLAB D 0/1)

The various RS-232 control lines can be sensed via the high order
4 bits of this register. In addition, the low order bits indicate whether
the control lines have changed state since the last time that the
software read the MSR. These are listed in Table 8.12.

Scratchpad Register (SCR, offset 7, R/W, DLAB D 0/1)

This register may be used for temporary storage of data: it is not
actually used by the UART’s internal circuitry and therefore the
contents of this register have no effect on the functioning of the
UART. It is present on most 16450-compatible UARTs.

Serial communications 319

Table 8.11 The Line Status Register (LSR)

Bit Mnemonic Description

0 DR Data ready. A 1 bit indicates that data is available in the RBR.

On a 16550 with FIFO mode enabled, a 1 bit indicates that

the FIFO holds one or more bytes of data.

1 OE 1 D Overrun error occurred. Cleared by reading LSR.

2 PE 1 D Parity error occurred. Cleared by reading LSR.

3 FE 1 D Framing error occurred. Cleared by reading LSR.

4 BI 1 D Break detected. Cleared by reading LSR.

5 THRE 1 D THR is empty and ready for a new byte to be loaded. In

16550 FIFO mode, a 1 bit indicates that the transmit FIFO is

empty.

6 TEMT 1 D THR and TSR are both empty. In 16550 FIFO mode, a 1 bit

indicates that the TSR and transmit FIFO are both empty.

7 ERF Error in receiver FIFO. Present only on 16550 and compatibles

when FIFO mode is enabled. A 1 bit indicates that the

receiver FIFO contains one or more characters for which an

error occurred (i.e. framing, parity, overrun or break). Note

that the error status of each received character is recorded in

the FIFO and presented at the appropriate bits in the LSR

each time a new character from the FIFO is presented at the

RBR. If FIFO mode is unsupported or disabled, this bit is

unused and is set to 0.

Table 8.12 The Modem Status Register (MSR)

Bit Mnemonic Description

0 DCTS 1 D CTS input has changed state. Cleared by reading MSR.

1 DDSR 1 D DSR input has changed state. Cleared by reading MSR.

2 TERI 1 D RI input has changed state. Cleared by reading MSR.

3 DDCD 1 D DCD input has changed state. Cleared by reading MSR.

4 CTS 1 D CTS input is asserted.

5 DSR 1 D DSR input is asserted.

6 RI 1 D RI input is asserted.

7 DCD 1 D DCD input is asserted.

Baud rate selection

The PC’s UART can be configured to operate at baud rates between
2 and 115 200 baud. Its baud rate generator circuit operates by
dividing down the frequency of a periodic signal provided by an

320 PC interfacing and data acquisition

external clock. The divisor (and hence baud rate) can be modified
by loading an appropriate 16-bit value into the UART’s divisor latch
registers DLL and DLM. The divisor, D, can be calculated from the
following formula:

D D fck

16 ð b
⊲8.1⊳

where fck is the frequency of the clock and b is the desired baud
rate. On the IBM PC and all compatibles (except for the PCjr), fck

is 1.8432 MHz. The frequency used on the PCjr is 1.7895 MHz. Thus
on all machines except for the PCjr, this equation reduces to

D D 115 200

b
⊲8.2⊳

where the maximum value of b is 115 200 (D cannot be less than 1).
Table 8.13 lists the divisors necessary to generate a range of common
baud rates using Equation 8.2. Note that some baud rates cannot be
set exactly and that there is consequently a slight error in the timing
of the serial frame when using these settings. Fortunately, the UART
is generally capable of tolerating an error of up to about 5 per cent
in the baud rate.

Table 8.13 Divisors for common baud rates on the IBM PC, XT, AT, PS/2 and

compatible machines

Nominal baud rate Divisor Error Notes

2 E100h No practical use other than for testing and

debugging.

50 900h

75 600h

110 417h 0.026%

150 300h

300 180h

600 C0h

1 200 60h

2 400 30h

4 800 18h

9 600 0Ch

19 200 6h

38 400 3h

56 000 2h 2.86%

115 200 1h Not available on 8250.

Serial communications 321

Listing 8.2 Loading the divisor into the UART’s Divisor Latch Registers

union dbyte /* For accessing high and low order bytes of */

f /* the baud rate divisor */

unsigned int I;

unsigned char Ch[2];

g;
union dbyte Divisor;

:

:

AddrDLL = BaseAddr; /* Usually 3F8h for COM1 or 2F8h for COM2 */

AddrDLM = BaseAddr + 1; /* Usually 3F9h for COM1 or 2F9h for COM2 */

AddrLCR = BaseAddr + 5; /* Usually 3FDh for COM1 or 2FDh for COM2 */

:

OrigLCR = inportb(AddrLCR); /* Get current state of LCR */

outportb(AddrLCR,(OrigLCR | 0x80)); /* DLAB = 1 to access baud div regs. */

outportb(AddrDLL,Divisor.Ch[0]); /* Output LSB of baud rate divisor */

outportb(AddrDLM,Divisor.Ch[1]); /* Output MSB of baud rate divisor */

outportb(AddrLCR,(OrigLCR & 0x7F)); /* DLAB = 0 */

:

:

Once the required divisor has been determined, it is necessary
to load it into the UART’s DLL and DLM registers as shown in
Listing 8.2. Note that, in this listing, the Divisor is defined as a dbyte

union in order to access its high and low order bytes individually.
For brevity, other variable declarations are not shown.

After defining the addresses of the various registers in the PC’s
I/O space, the next task is to set the DLAB bit in the Line Control
Register to 1 in order to permit the divisor latch registers DLL and
DLM to be accessed. Each register holds only 8 bits of the 16-bit
divisor: the least significant byte is loaded into the DLL and the most
significant byte into DLM. Finally, the DLAB bit in the LCR should
be restored to zero.

Serial transmission errors

The UART is capable of detecting a number of different error
conditions during transmission and reception of the serial bit stream.
Parity errors have already been mentioned. If a parity error is
detected, the UART sets the PE bit in the LSR. Two other error
conditions – overrun and framing errors – are flagged in a similar
way. The OE and FE bits are used for this purpose.

Overrun errors occur during reception of data if the software does
not read the received data bytes from the RBR at a high enough
rate. On UARTs without a FIFO, the RBR can hold only one byte
of received data. The software must ensure that it reads this byte
before it is overwritten by any subsequent bytes. If the byte is not read
quickly enough, the UART sets the OE bit in the LSR to indicate
that one or more bytes have been overwritten.

322 PC interfacing and data acquisition

Framing errors occur if the UART cannot detect a valid stop bit.
Each stop bit should consist of a logic-high pulse, but if the received
data line is in a low state when the UART expects to sample a
stop bit, a framing error will be generated and flagged by means of
the FE bit in the LSR. Framing errors can be caused by noise on
the transmission line. They might also arise if the transmitter and
receiver have been erroneously programmed to operate at different
baud rates.

Note that for the software to detect a parity, overrun or framing
error it must read the PE, OE and FE flags from the LSR before it
reads the received data from the RBR, since these flags are reset by
the act of reading the RBR. Ideally, the routine that checks the DR
flag in order to determine whether any new data is available should
also record the state of PE, OE and FE at the same time.

Although these error detection facilities are very useful, they
cannot detect certain types of error in the received data. If an even
number of data bits in a single character frame are corrupted, due
to excessive noise on the transmission line, for example, the UART
will not be able to detect a parity error. A number of more robust
schemes may be used to verify the integrity of received data. One
such scheme is to transmit checksums or cyclic redundancy checks
with each block of data sent.

One (almost) fail-safe error checking technique, which has already
been mentioned, is for the receiving device to immediately retransmit
each byte of received data. This can be implemented in point-to-
point or looped networks and allows the transmitter to check that
the echoed byte exactly matches the one originally transmitted.

Polled transmission and reception of data

The simplest, and often the fastest, method of transferring data via
the UART is to continuously poll the UART’s status flags. This allows
the software to determine when the UART is ready to transmit a
new byte, and when it has received a character over the serial link.
Listing 8.3 illustrates the procedures involved.

These functions illustrate how the software should wait for the DR
or THRE flags to go high before attempting to read data from the
RBR or to write data to the THR, respectively. Both routines also
include a facility to return to the caller after a predetermined timeout
period (controlled by the global TxTOLimit or RxTOLimit variables).

Polling the RD or THRE flags provides a very fast response,
particularly if the polling routines are written in assembly language.
This technique is ideal if the maximum possible throughput is
required and if it is feasible to dedicate the processor to polling and
servicing the UART. However, the software overhead involved in

Serial communications 323

Listing 8.3 Polled half duplex transmission and reception of data

void ReadCom(unsigned char *Data, unsigned char *OE,

unsigned char *PE, unsigned char *FE)

/* Reads the next character received by serial port. If no characters become

available within approximately RxTOLimit milliseconds the global TxTimeout

flag is set. If an overrun, parity or framing error is detected, ReadCom

returns with the OE, PE or FE flags set as appropriate.

*/

f
unsigned char DataReady;

unsigned char LSR;

unsigned int Timer;

/* Wait for DR bit to go high before reading the RBR */

Timer = 0;

do

f
Timer++;

delay(1); /* Delay for 1 ms */

LSR = inportb(AddrLSR);

DataReady = ((LSR & 0x01) == 0x01);

g
while ((!DataReady) && (Timer < RxTOLimit));

if (DataReady)

f
Data = inportb(AddrRBR); / Read received data byte from RBR */

OE = ((LSR & 0x02) == 0x02); / Check for overrun error */

PE = ((LSR & 0x04) == 0x04); / Check for parity error */

FE = ((LSR & 0x08) == 0x08); / Check for framing error */

g
if (Timer >= RxTOLimit) RxTimeout = 1; /* Signal timeout error */

g

void WriteCom(unsigned char *S, unsigned char *NumCopied)

/* This writes each character contained within the ASCIIZ string S to the

serial port's THR for transmission. If the THR does not empty within

TxTOLimit milliseconds, this function sets the global TxTimeout flag and

returns. The number of bytes actually copied to the THR is returned in the

NumCopied parameter.

*/

f
unsigned int Timer;

unsigned char THREmpty;

*NumCopied = 0;

while ((S[*NumCopied]) && !(Error.TxTimeout))

f
/* Check THR is empty before writing next character */

Timer = 0;

do

f
Timer++;

delay(1); /* Delay for 1 ms */

THREmpty = ((inportb(AddrLSR) & 0x20) == 0x20);

g

324 PC interfacing and data acquisition

Listing 8.3 (continued)

while ((!THREmpty) && (Timer < TxTOLimit));

if (THREmpty)

f
outportb(AddrTHR,S[*NumCopied]);

(*NumCopied)++;

g
else TxTimeout = 1;

g
g

continuous polling would be impracticable in many data-acquisition
applications and, in these cases, it is necessary to make use of the
UART’s interrupt facilities.

The UART’s interrupt system

The UART is capable of generating an interrupt whenever one
of a predetermined set of events occurs. This allows it to request
processor service when, for example, a new character has been
received.

By using interrupts in this way, rather than polling the UART’s
line status flags, it is possible for the software to continue with other
tasks until the UART requires service. Interrupt latencies and the
software overhead involved in responding to interrupts can, in a few
instances, outweigh this advantage, and in order to achieve the fastest
possible throughput it may be necessary to use tightly coded polling
loops instead. However, most applications benefit from the interrupt
facilities offered by the UART. It is feasible to use interrupt-driven,
buffered I/O at baud rates up to 56 000 or even 115 200, depending
upon the speed of the PC and the software it is running.

If it is possible for processes (e.g. interrupt handlers) with higher
priorities than the serial port interrupt to retain control of the system
for longer than the time interval between reception of successive
bytes, data may be lost as a result of an overrun error. A similar
problem occurs in multitasking environments, such as Microsoft
Windows, which periodically disable interrupts while performing a
task switch. In such operating systems interrupt latencies tend to be
much longer and less predictable than under DOS. One solution to
the problem is to use a hardware FIFO buffer such as that present
in the 16550 UART. Note that Windows 3.1 assumes that a 16450
is present and must be specially configured to take advantage of
the 16550.

The first (COM1) serial port interrupt is usually assigned to
IRQ4 and the second (COM2) is assigned to IRQ3. There are no
specific interrupts reserved for other UARTs present in the system

Serial communications 325

(those controlling an additional RS-422 port, for example) and these
devices may be assigned to any available interrupt (IRQ) channel.
The PS/2 range of computers permit different devices to share the
same IRQ level and on these machines all serial ports in the system
often share IRQ 4.

The 8250 and 16450 UARTs support four types of interrupt as
listed in Table 8.14. The 16550 incorporates an additional interrupt
facility which allows the software to read the contents of the receiver’s
FIFO buffer. Each type of interrupt can be enabled by setting one
of the low order 4 bits of the Interrupt Enable Register (IER) – see
Table 8.6. When an interrupt occurs, the interrupt handler routine
must read the Interrupt Identification Register (IIR) to determine
what caused the interrupt. Bits 1 to 3 of the IIR indicate the nature
of the pending interrupt as shown in Table 8.7.

Table 8.14 UART interrupts and reset actions

Priority Type Causes Reset action IIR Bits 1–3

1 Receiver Line

Status

Overrun, parity or

framing errors, or

break detected.

Read LSR 011b

2 Data Ready Received data is

available in RBR

⊲DR D 1⊳.

Read RBR 010b

2Ł Data Ready FIFO trigger level

exceeded.

FIFO contents

fall below

trigger

010b

2Ł Character

Timeout

Receiver FIFO is not

empty and the FIFO

contents have

remained static over

the last four-frame

period.

Read RBR 110b

3 Transmitter

Holding

Register

Empty

THR is now empty

⊲THRE D 1⊳.

Read IIR or

write THR

001b

4 Modem Status Any of the DCTS,

DDSR, TERI or DDCD

bits of the MSR go

high.

Read MSR 000b

Ł16550 and compatible devices only.

326 PC interfacing and data acquisition

When it has determined the cause of the interrupt and taken
whatever action is necessary, the interrupt handler must also reset or
clear the interrupt. This is performed by reading or writing specific
registers as detailed in Table 8.14. The software must, of course,
also acknowledge the 8259A PIC through which the interrupt was
generated.

Listing 8.4 illustrates how to enable all four of the UART’s inter-
rupts. As the Data Ready and Transmitter Holding Register Empty
interrupts are enabled, an interrupt will be generated whenever the
DR or THRE bits in the LSR are set. This allows an interrupt handler
to either copy received data from the RBR to a memory buffer or to
write the next character to the THR so that the UART can transmit it.

This listing includes several lines which are required to circumvent
two quirks of the 8250’s interrupt operation. First, the software waits
for a time period equal to that required to transmit one serial
frame. This period will, of course, vary with the baud rate being
used. The delay is necessary because, when power is first applied to
the 8250, the THRE flag will automatically be set high. When the
THRE interrupt is first enabled, the high THRE flag will cause a
THRE interrupt to be generated even if the THR is not empty (i.e.
if previous data is still in the process of being transmitted). Waiting
for a short time ensures that the UART has had sufficient time to
empty the THR. Another problem arises the first time the software
writes to the IER in order to set the THREI bit (i.e. to enable the
THRE interrupt). On the 8250 UART, this may not actually result in
the THRE interrupt being enabled. To circumvent this problem, it
is necessary to write to the IER twice in succession.

Note that, on the PC, the interrupt signal from the UART is
channelled through a gate which must be enabled by setting the
OUT2 bit of the Modem Control Register. The 8259A PIC must

Listing 8.4 Enabling serial port interrupts

delay(FrameTime); /* Ensure THR is empty before proceeding */

disable(); /* Disable interrupts while configuring UART */

/* Initialize UART interrupts */

outportb(AddrMCR,0x08); /* Enable UART interrupt via OUT2 bit */

outportb(AddrIER,0x0F); /* Enable all UART interrupts */

outportb(AddrIER,0x0F); /* Bug fix for 8250 - requires two writes */

/* Clear any status bits which may already be pending */

LSR = inportb(AddrLSR);

RBR = inportb(AddrRBR);

IIR = inportb(AddrIIR);

MSR = inportb(AddrMSR);

enable(); /* Re-enable interrupts */

Serial communications 327

also be enabled to generate interrupts on the appropriate channel,
although this is not shown in Listing 8.4. As mentioned previously,
IRQ4 is used for ports 0 and 2 (COM1 and COM3) and IRQ3 is used
for ports 1 and 3 (COM2 and COM4) on most PCs.

The UART may also generate interrupts in response to conditions
such as parity, framing or overrun errors, or in response to a change
occurring in the state of one of the Modem Status lines. Listing 8.5,
presented at the end of this chapter, illustrates how the interrupt
system allows the software to monitor for these UART conditions.

The character timeout interrupt can occur only on the 16550
UART (and compatible devices) and is not activated in Listing 8.4.
This interrupt and an extension of the Data Ready interrupt are
described in more detail in the following section.

Operation of the 16550 FIFO buffer

The 16550 UART, and compatible devices such as the 16552 and
16554, are equipped with a pair of ‘First-In-First-Out’ (FIFO) buffers.
One holds data in readiness for transmission, the other stores
received data. The transmitter’s FIFO can be loaded with up to
16 bytes at once and the UART will then transmit these in sequence.
Similarly, the receiver’s FIFO can hold several bytes of received data
before requiring service from the processor. This greatly reduces the
software overhead involved in serial communications and enhances
the rate of data throughput. The FIFO buffers allow the system
greater latitude in the regularity with which the UART is serviced.
This is particularly helpful if there is a possibility that high priority
interrupts or task switches will temporarily block the serial port’s
interrupt. For these reasons, the 16550 UART is used on a number
of RS-422 and RS-485 plug-in cards for industrial communication.

It is interesting to note that some proprietary serial-port adaptor
cards incorporate longer FIFO buffers: typically around 8 KB. These
are often used in conjunction with some form of on-board processing
capability to increase data throughput while minimizing software
overheads. These devices are particularly suited to transferring large
blocks of data, but may be less beneficial when single bytes or short
command strings are to be transmitted. In many PC-based data-
acquisition systems, the 16-bit FIFOs present on the 16550 provide
an optimum (and relatively cheap) way of performing buffered
serial I/O.

Initializing the 16550’s FIFO buffers

The 16550’s FIFO buffers are unused by default – i.e. at power up,
both the transmit and receive FIFOs are disabled and the device

328 PC interfacing and data acquisition

functions in the same way as a normal 16450. In order to enable the
FIFO mode of operation, it is necessary to set bit zero of the FIFO
Control Register (FCR) to 1.

In order to achieve compatibility with earlier UARTs, the software
should then check to ensure that the FIFO mode has indeed been
enabled by reading bit 6 of the IIR. If the UART is an 8250 or 16450
device (or one of the early versions of the 16550 that happened to
possess a faulty FIFO buffer), FIFO mode will not be supported and
this bit will be zero. If the FIFO mode has been enabled successfully,
bit 6 will be set to 1. Unfortunately, the 16550 ‘compatible’ UART
present in some AT clones (the UM82C550) does not set bit 6
even though it supports a fully working FIFO. If the driver software
determines that bit 6 is zero, it is advisable to perform an additional
check to determine whether the FIFO mode is actually available.
This may be accomplished by switching the UART into loop-back
mode and then transmitting 16 test bytes. The same sequence of
bytes should be subsequently detected at the RBR if the FIFO buffer
is supported. If the UART does not possess working FIFO buffers, an
overrun error will occur.

When enabled, the FIFO buffers effectively replace the normal
THR and RBR, buffering both transmitted and received data. The
THR and RBR then act only as ‘windows’ through which to access
the respective FIFO buffers. For simple polled operation, both
transmission and reception via the FIFO buffers are performed
transparently to the driving software.

Polled transmission via the FIFO

To transmit data via the FIFO buffer, the software may load up to
16 bytes at a time into the THR at offset 0 from the UART’s base
address, provided that the THRE flag (in the Line Status Register)
is set. The UART will then transmit the bytes in sequence. When all
of the bytes have been transmitted, the THRE flag will be set again
to indicate that the transmitter’s buffer is empty and ready for up to
16 further bytes.

According to van Gilluwe (1994), precautions should be taken
if only 1 byte is to be loaded into the transmitter’s FIFO. If the
FIFO has just emptied and the last byte from the FIFO is still
being transmitted via the Transmitter Shift Register (TSR), and then
a single byte is loaded into the FIFO, the new byte will not be
transmitted immediately. It will remain in the transmitter’s FIFO
until 1 or more further bytes are also loaded into the buffer. To
prevent this problem occurring, it is advisable to wait until the
TEMT flag in the Line Status Register is set before loading a single

Serial communications 329

byte into the FIFO buffer. If more than 1 byte is to be loaded, the
software need not wait for the TEMT signal.

Polled reception via the FIFO

As successive bytes are received via the UART’s Receiver Shift
Register, they are stored, together with any error information (i.e.
parity or framing errors, or a break interrupt), in the receiver’s
FIFO. When there are 1 or more bytes present, the DR bit in the
Line Status Register is set to indicate that data can be read via the
RBR. Only when all available bytes have been read from the FIFO
buffer, will the UART reset the DR flag.

Interrupt-based transmission via the FIFO

Interrupt-based transmission is similar to that used on the 8250
and 16450. If the THRE interrupt is enabled, an interrupt will be
generated when the transmit FIFO becomes empty, thereby allowing
the software to load one or more further bytes into the buffer.

Interrupt-based reception via the FIFO

Interrupt-based reception via the FIFO is slightly more complex. A
Data Ready interrupt will be generated only when a preprogrammed
number of bytes are present in the receiver’s FIFO. This number,
known as a Receiver Trigger Level, may be set to 1, 4, 8 or 14 by
means of the RTL bits in the FIFO Control Register. This allows the
driving software to reduce the interrupt rate (and thus to enhance
the system’s throughput) by using a higher trigger level. The UART
also provides a facility to periodically flush the receiver FIFO if there
has been no FIFO activity for a time period equivalent to four serial
frames. This is accomplished by another type of interrupt known
as the Character Timeout Interrupt which is generated only if the
FIFO is not empty and if no bytes have been added to, or read from,
the receiver’s FIFO during the four-frame timeout period. When
the software detects a Character Timeout Interrupt, it should read
the entire contents of the receiver’s FIFO. This type of interrupt is
cleared whenever the software reads a byte from the FIFO.

Error flagging in the FIFO

As mentioned previously, any errors which are detected in the
received data byte are stored along with the data itself in the receiver’s
FIFO buffer. As each successive byte is presented at the RBR the asso-
ciated error flags (PE, FE and BI) are also presented in the Line
Status Register. If the FIFO receives more characters than it is able

330 PC interfacing and data acquisition

to handle (i.e. more than 16 characters) it generates an overrun
error which is flagged by means of the OE bit in the Line Status
Register. An overrun error occurs only if the FIFO buffer is full and
an additional received byte causes it to overflow.

Loop-back mode

The UART provides a loop-back facility, which is intended for
testing the UART’s transmit, receive and control circuits. It can
also be a useful means of testing and debugging communications
driver software, circumventing the need to connect the serial port
to any external test equipment. The UART may be configured for
loop-back operation by simply setting the LOOP bit in the Modem
Control Register (MCR). This is illustrated in Listing 8.5 at the end
of this chapter.

When the loop-back mode is enabled, the UART’s serial output
(SOUT) pin is held in the marking (inactive) state. The serial input
(SIN) pin is disconnected from the UART’s internal circuits and
the output of the Transmitter Shift Register (TSR) is internally
connected to the input of the Receiver Shift Register (RSR). In
this way all ‘transmitted’ data is immediately received at the RSR.
Similarly, the DTR, RTS, OUT1 and OUT2 pins are forced into their
inactive state and the corresponding bits in the MCR are looped
back internally and connected to the DSR, CTS, RI and DCD bits in
the MSR. These loop connections are summarized in Table 8.15.

Note that the OUT2 pin goes high, so it is not possible to interrupt
the processor while the UART is in loop-back mode. Although the
UART will generate an interrupt signal if a preprogrammed interrupt
condition occurs, the signal will be prevented from reaching the PC’s
8259A PIC. In order to test interrupt handlers in loop-back mode, it is
necessary to employ a polling loop which monitors the IP (Interrupt
Pending) bit of the IIR and issues a software interrupt whenever a
UART interrupt is detected. Remember that in such a test mode, the

Table 8.15 Internal rerouting of signals in the UART’s

loop-back mode

Output signal Input signal

Transmitted Data (from TSR) Received Data (input to RSR)

DTR (from MCR) DSR (in MSR)

RTS (from MCR) CTS (in MSR)

OUT1 (from MCR) RI (in MSR)

OUT2 (from MCR) DCD (in MSR)

Serial communications 331

interrupt handler should not issue an End of Interrupt instruction
to the PIC!

The break facility

If the UART’s receive input is held in the spacing state for a time
greater than one serial frame, a Break condition is generated. The
Break may be detected by polling the BI bit in the UART’s Line Status
Register (LSR) or by enabling the Receiver Line Status interrupt.
In the latter case, upon determining that a Receiver Line Status
interrupt is pending, the interrupt handler must check the BI bit. If
this bit is set, a Break condition has been detected. In this case, the
software should read the RBR, as the receiver will have placed a null
character (all bits zero) into the RBR.

To generate a Break condition, the transmitting UART must hold
its transmit line in the spacing state. This can be accomplished
by setting the SB bit of the LCR for a short time (typically for
a few character frames). The software should then reset SB after
this interval has elapsed so that communications can resume. Note
that the UART that initiated the Break cannot transmit any further
characters (although it can still receive them) while the SB bit is set.

The Break facility originates from RS-232 mainframe/terminal
communications systems and was designed to allow the receiving
terminal to suspend the communication session. It is of limited
use in data-acquisition applications, but it is possible to use it in
proprietary systems to control transmission or, perhaps, to reset a
network of data-logging modules.

An 8250/16450 UART driver for buffered serial I/O

This section draws upon the information presented previously to
construct a suite of driver routines for use with 8250 and 16450
UARTs. The driver software, which is shown in Listing 8.5, is also
compatible with enhanced UARTs such as the 16550 or 16552, but
does not make use of the FIFO buffer facilities available on these
devices. Neither hardware handshaking nor software flow control
are supported, but these can easily be added if required.

To begin communication you should first use InitializeCom() to
define the various serial communications parameters, and then call
OpenCom() which initializes the UART and activates the interrupt
system. At this point, you can undertake serial communications
by means of the ComCharAvail(), ReadCom() and WriteCom() functions.
These functions can be invoked independently of each other as and
when required by the calling program. Each function is thoroughly
commented and should be self-explanatory.

332 PC interfacing and data acquisition

Listing 8.5 An 8250/16450 UART driver

/*

HALF DUPLEX DRIVER FOR AT MACHINES EQUIPPED WITH 8250 AND 16450 UARTS

Instructions for Use:

1. Call InitializeCom() to define the various serial communications parameters.

2. Call OpenCom() to configure the port and begin the communications session.

3. When needed call ComCharAvail() and ReadCom() to read received characters

via the selected serial port, or call WriteCom() to transmit characters via

the port.

4. To terminate communications call CloseCom().

See text for more detailed instructions.

*/

#include <dos.h>

#include <stdlib.h>

/* ============================== DEFINES ================================== */

#define MaxComPort 3 /* Supports up to 4 serial ports */

#define RxBufLim 1023 /* Receive buffer size = 1024 bytes */

#define TxBufLim 255 /* Transmit buffer size = 256 bytes */

#define True 1 /* Boolean flag values */

#define False 0 /* " " " */

/* ========================= DATA DECLARATIONS ============================= */

union dbyte /* For accessing high and low order bytes of */

f /* the baud rate divisor */

unsigned int I;

unsigned char Ch[2];

g;

struct AddrRec /* UART register addresses */

f
unsigned int THR; /* Transmitter holding register */

unsigned int RBR; /* Receiver buffer register */

unsigned int DLL; /* Divisor latch LSB register (if DLAB = 1) */

unsigned int DLM; /* Divisor latch MSB register (if DLAB = 1) */

unsigned int IER; /* Interrupt enable register */

unsigned int IIR; /* Interrupt identification register */

unsigned int LCR; /* Line control register */

unsigned int MCR; /* Modem control register */

unsigned int LSR; /* Line status register */

unsigned int MSR; /* Modem status register */

g;

Serial communications 333

Listing 8.5 (continued)

struct SerialFrameRec /* Serial communications parameters */

f
unsigned char BaudCode; /* 0 = 2; 1 = 50; 2 = 75 .. 14 = 115200 */

unsigned char DataBits; /* 0 = 5 bits; 1 = 6 bits; 2 = 7 bits; 3 = 8 bits */

unsigned char StopBits; /* 0 = 1 bit; 1 = 2 bits */

unsigned char ParityCode; /* 0 = None; 1 = Odd; 3 = Even; 5 = Sp; 7 = Mk */

g;

struct ComRec /* Serial port and PIC data */

f
unsigned char PortNum; /* Serial port number: 0 to MaxComPort */

unsigned char Available; /* Set >0 if active COM port is present */

unsigned char IRQNum; /* IRQ number used, or 0xFF */

unsigned char IntNum; /* Interrupt vector type code */

unsigned int PICAddr; /* Base address of primary 8259A PIC */

unsigned char PICMask; /* Interrupt enable mask for PIC */

unsigned char OrigPICMask; /* Original int enable mask for PIC */

unsigned char OrigIER; /* Original contents of IER */

struct AddrRec Addr; /* UART register addresses */

struct SerialFrameRec SerialFrame; /* Baud, parity, data, stop bits etc. */

unsigned int RxTOLimit; /* Receive timeout in ms */

unsigned int TxTOLimit; /* Transmit timeout in ms */

g;

struct RxRec /* Received data buffer */

f
unsigned char Buf[RxBufLim+1]; /* Receive buffer */

unsigned int BufIn; /* Index of next free location in Buf[] */

unsigned int BufOut; /* Index of oldest byte in Buf[] */

unsigned int Count; /* Number of bytes in Buf[] */

g;

struct TxRec /* Transmitted data buffer */

f
unsigned char Buf[TxBufLim+1]; /* Transmit buffer */

unsigned int BufIn; /* Index of next free location in Buf[] */

unsigned int BufOut; /* Index of oldest byte in Buf[] */

unsigned int Count; /* Number of bytes in Buf[] */

unsigned char Restart; /* Transmission restart flag */

g;

struct ErrorRec /* Error flags */

f
unsigned char RxOverflow; /* Set >0 if Rx buffer overflowed */

unsigned char RxTimeout; /* Set >0 if Rx data not available */

unsigned char TxTimeout; /* Set >0 if Tx buffer is full */

unsigned char BreakInt; /* Set >0 when Break is received */

unsigned char Framing; /* Set >0 if framing error occurs */

unsigned char Parity; /* Set >0 if parity error occurs */

unsigned char Overrun; /* Set >0 if overrun error occurs */

g;

struct ComRec Com; /* COM port data */

struct RxRec Rx; /* Received data buffer */

struct TxRec Tx; /* Transmitted data buffer */

struct ErrorRec Error; /* Error flags to be read/reset by caller */

334 PC interfacing and data acquisition

Listing 8.5 (continued)

void interrupt (*OrigComVector)(); /* Previous interrupt handler */

/* ========================= FUNCTION PROTOTYPES =========================== */

unsigned char ComCharAvail(void);

unsigned char ReadCom(void);

void WriteCom(unsigned char *S, unsigned char *NumCopied);

void SetBreak(unsigned char Active);

void SetLoopBackMode(unsigned char Active);

void InitializeCom(unsigned char PortNum);

void OpenCom(void);

void CloseCom(void);

/* ======================= FUNCTION IMPLEMENTATIONS ======================== */

void interrupt ComIntHandler()

/* UART interrupt handler. Invoked by Transmit Holding Register Empty

interrupt, Received Data Available interrupt or Line Status (break, parity,

framing or overrun error) interrupt.

*/

f
unsigned char IIR;

unsigned char LSR;

unsigned char Null;

IIR = inportb(Com.Addr.IIR);

switch (IIR & 0x0F)

f
case 2: /* THR is empty - Priority 3 */

if (Tx.Count > 0)

f
/* One or more bytes are yet to be transmitted */

outportb(Com.Addr.THR,Tx.Buf[Tx.BufOut]);

if (Tx.BufOut < TxBufLim)

Tx.BufOut++;

else Tx.BufOut = 0;

Tx.Count--;

Tx.Restart = False;

g
else Tx.Restart = True;

break;

case 4: /* Received data is available - Priority 2 */

if (Rx.Count <= RxBufLim)

f
Rx.Buf[Rx.BufIn] = inportb(Com.Addr.RBR);

if (Rx.BufIn < RxBufLim)

Rx.BufIn++;

else Rx.BufIn = 0;

Rx.Count++;

g
else Error.RxOverflow = True;

Serial communications 335

Listing 8.5 (continued)

break;

case 6: /* Overrun, parity, framing or break - Priority 1 */

LSR = inportb(Com.Addr.LSR);

if ((LSR & 0x10) == 0x10)

f
/* Break received */

Null = inportb(Com.Addr.RBR); /* Read and discard null character */

Error.BreakInt = True;

g
else f

if ((LSR & 0x08) == 0x08) Error.Framing = True; /* Framing error */

if ((LSR & 0x04) == 0x04) Error.Parity = True; /* Parity error */

if ((LSR & 0x02) == 0x02) Error.Overrun = True; /* Overrun error */

g
break;

g

/* Acknowledge interrupt by issuing a non-specific EOI to PIC(s) */

if (Com.IRQNum > 7) outportb(0xA0,0x20);

outportb(0x20,0x20);

g

unsigned char ComCharAvail()

/* Returns True if a received character is available in the Rx.Buf buffer */

f
unsigned char Avail;

disable();

Avail = (Rx.BufOut != Rx.BufIn);

enable();

return Avail;

g

unsigned char ReadCom()

/* Reads the next character from the Rx.Buf buffer. If no character becomes

available within approx. Com.RxTOLimit milliseconds, this function sets

the Error.RxTimeout flag and returns a Null character.

*/

f
unsigned int Timer;

unsigned int Cnt;

unsigned char Data;

Timer = 0;

disable();

do

f
disable();

delay(1);

enable();

Timer++;

Cnt = Rx.Count;

g

336 PC interfacing and data acquisition

Listing 8.5 (continued)

while ((Cnt == 0) && (Timer < Com.RxTOLimit));

if (Cnt > 0)

f
Data = Rx.Buf[Rx.BufOut];

if (Rx.BufOut < RxBufLim)

Rx.BufOut++;

else Rx.BufOut = 0;

Rx.Count--;

Error.RxTimeout = False;

g
else f

Data = 0;

Rx.BufOut = 0;

Rx.BufIn = 0;

Rx.Count = 0;

Error.RxTimeout = True;

g
enable();

return Data;

g

void WriteCom(unsigned char *S, unsigned char *NumCopied)

/* This function copies the ASCIIZ string S (which must contain no more than

256 characters) into the transmission buffer, Tx.Buf, from where the UART's

interrupt system will transmit them. If the buffer remains full for longer

than approx. Com.TxTOLimit milliseconds, WriteCom will return with

the Error.TxTimeout flag set. If the transmission sequence has stopped,

this function will attempt to restart it by writing to the THR directly.

The number of bytes successfully copied to the Tx.Buf is returned in the

*NumCopied parameter. If no timeout has occurred, *NumCopied should be

equal to the length of the string S.

*/

f
unsigned char I;

unsigned int Timer;

unsigned char THREmpty;

I = 0;

*NumCopied = 0;

disable();

while ((S[I]) && !(Error.TxTimeout))

f
if (Tx.Count >= Com.TxTOLimit + 1)

f
/* Tx.Buf is full so wait for a byte to become free, or timeout */

Timer = 0;

do

f
enable();

Timer++;

delay(1);

disable();

g

Serial communications 337

Listing 8.5 (continued)

while ((Tx.Count > TxBufLim) && (Timer < Com.TxTOLimit));

if (Timer >= Com.TxTOLimit) Error.TxTimeout = True;

g
if (!(Error.TxTimeout))

f
/* Copy the next character to Tx.Buf */

Tx.Buf[Tx.BufIn] = S[I];

if (Tx.BufIn < TxBufLim)

Tx.BufIn++;

else Tx.BufIn = 0;

Tx.Count++;

(*NumCopied)++;

g
I++; /* Address next character in string S */

g

/* If the previous transmission sequence has ended, the last THRE interrupt

did not cause a character to be loaded into the THR and there will,

consequently, be no more THRE interrupts to continue transmitting the new

characters. In this case, "manually" load the first of the new characters

into the THR to restart transmission.

*/

if ((Tx.Restart) && (Tx.Count > 0))

f
/* Check THR is empty before writing next character */

Timer = 0;

do

f
enable();

Timer ++;

delay(1);

disable();

THREmpty = ((inportb(Com.Addr.LSR) & 0x20) == 0x20);

g
while ((Timer < Com.TxTOLimit) && !(THREmpty));

if (Tx.Count > 0) /* Has Tx.Buf emptied while we have been waiting? */

f /* No, so restart transmission */

if (THREmpty)

f
outportb(Com.Addr.THR,Tx.Buf[Tx.BufOut]); /* Transmit new char */

if (Tx.BufOut < TxBufLim)

Tx.BufOut++;

else Tx.BufOut = 0;

Tx.Count--;

Tx.Restart = False;

g
else Tx.Restart = True; /* Postpone transmission restart */

g
g

enable();

g

void SetBreak(unsigned char Active)

/* If Active = True, this function forces the TD line to a spacing state.

If this state is maintained for more than one serial frame time, it

338 PC interfacing and data acquisition

Listing 8.5 (continued)

generates a break condition (and possibly an interrupt) in the receiver.

*/

f
unsigned char LCR;

LCR = inportb(Com.Addr.LCR);

if (Active)

outportb(Com.Addr.LCR,(LCR | 0x40));

else outportb(Com.Addr.LCR,(LCR & 0xBF));

g

void SetLoopBackMode(unsigned char Active)

/* This allows the UART's loopback facility to be activated. When active,

TD is connected to RD internally and the UART's output pins are connected

to its inputs as follows: DTR-->DSR; RTS-->CTS; OUT1-->RI; OUT2-->DCD.

This mode is used only for debugging and UART testing.

*/

f
unsigned char MCR;

MCR = inportb(Com.Addr.MCR);

if (Active)

outportb(Com.Addr.MCR,(MCR | 0x10));

else outportb(Com.Addr.MCR,(MCR & 0xEF));

g

void InitializeCom(unsigned char PortNum)

/* This initializes the Com structure for the specified serial port.

PortNum = 0 refers to COM1, PortNum = 1 refers to COM2 etc. PortNum should

not exceed MaxComPort. Default IRQ and register addresses are defined

automatically. If you are using a non-standard IRQ level you will need to

redefine the appropriate variables manually. InitializeCom also defines

default communications parameters: 9600 baud, 8 data, 1 stop, even parity.

Again, these can be modified, if required, before calling OpenCom().

*/

f
unsigned int BaseAddr;

if (PortNum <= MaxComPort)

f
BaseAddr = peek(0x40,(2 * PortNum));

if (BaseAddr != 0) /* Does port exist? */

f
Com.PortNum = PortNum;

Com.Available = True;

switch(PortNum)

f
case 0: Com.IRQNum = 4; break; /* COM1 */

case 1: Com.IRQNum = 3; break; /* COM2 */

case 2: Com.IRQNum = 4; break; /* COM3 */

case 3: Com.IRQNum = 3; break; /* COM4 */

g

Serial communications 339

Listing 8.5 (continued)

Com.IntNum = 8 + Com.IRQNum;

Com.PICAddr = 0x20;

Com.PICMask = 0x01 << Com.IRQNum;

Com.Addr.THR = BaseAddr;

Com.Addr.RBR = BaseAddr;

Com.Addr.DLL = BaseAddr;

Com.Addr.DLM = BaseAddr + 1;

Com.Addr.IER = BaseAddr + 1;

Com.Addr.IIR = BaseAddr + 2;

Com.Addr.LCR = BaseAddr + 3;

Com.Addr.MCR = BaseAddr + 4;

Com.Addr.LSR = BaseAddr + 5;

Com.Addr.MSR = BaseAddr + 6;

Com.SerialFrame.BaudCode = 10; /* 9600 baud */

Com.SerialFrame.DataBits = 3; /* 8 data bits */

Com.SerialFrame.StopBits = 0; /* 1 stop bit */

Com.SerialFrame.ParityCode = 3; /* Even parity */

Com.RxTOLimit = 2000; /* Approx. 2.0 seconds */

Com.TxTOLimit = 100; /* Approx. 100 ms */

g
else Com.Available = False;

g
else Com.Available = False;

g

void OpenCom()

/* OpenCom() prepares the system for serial communication. This function must

be called before any communication can take place. It initializes the

Rx and Tx buffers, the UART and the PIC according to the values previously

stored in the Com structure. For this reason all fields within Com must be

properly initialized (by calling InitializeCom()) before OpenCom() is

invoked.

*/

f
unsigned char MSR;

unsigned char LSR;

unsigned char RBR;

unsigned char IIR;

union dbyte Divisor;

unsigned char Settings;

if ((Com.Available) && (Com.IRQNum < 16))

f
/* Initialize the Rx and Tx buffers */

Rx.BufIn = 0;

Rx.BufOut = 0;

Rx.Count = 0;

Tx.BufIn = 0;

Tx.BufOut = 0;

Tx.Count = 0;

Tx.Restart = True;

/* Initialize Error status record */

Error.RxOverflow = False;

Error.RxTimeout = False;

340 PC interfacing and data acquisition

Listing 8.5 (continued)

Error.TxTimeout = False;

Error.BreakInt = False;

Error.Parity = False;

Error.Overrun = False;

Error.Framing = False;

/* Setup baud rate, parity, data bits and stop bits */

switch (Com.SerialFrame.BaudCode)

f
case 0: Divisor.I = 0xE100; break; /* Debugging */ /* 2 baud */

case 1: Divisor.I = 0x0900; break; /* 50 baud */

case 2: Divisor.I = 0x0600; break; /* 75 baud */

case 3: Divisor.I = 0x0417; break; /* 110 baud */

case 4: Divisor.I = 0x0300; break; /* 150 baud */

case 5: Divisor.I = 0x0180; break; /* 300 baud */

case 6: Divisor.I = 0x00C0; break; /* 600 baud */

case 7: Divisor.I = 0x0060; break; /* 1200 baud */

case 8: Divisor.I = 0x0030; break; /* 2400 baud */

case 9: Divisor.I = 0x0018; break; /* 4800 baud */

case 10: Divisor.I = 0x000C; break; /* 9600 baud */

case 11: Divisor.I = 0x0006; break; /* 19200 baud */

case 12: Divisor.I = 0x0003; break; /* 38400 baud */

case 13: Divisor.I = 0x0002; break; /* 56000 baud */

case 14: Divisor.I = 0x0001; break; /* 115200 baud */

default: Divisor.I = 0x000C; break; /* 9600 baud */

g
Settings = ((Com.SerialFrame.ParityCode << 3) & 0x38) |

((Com.SerialFrame.StopBits << 2) & 0x04) |

(Com.SerialFrame.DataBits & 0x03);

outportb(Com.Addr.LCR,0x80); /* DLAB=1 to access baud div. regs. */

outportb(Com.Addr.DLL,Divisor.Ch[0]); /* Output LSB of divisor */

outportb(Com.Addr.DLM,Divisor.Ch[1]); /* Output MSB of divisor */

outportb(Com.Addr.LCR,Settings); /* Output settings & reset DLAB */

disable(); /* Disable hardware interrupts */

/* Initialize UART interrupts */

/* The value loaded into the IER determines */

/* interrupts are enabled */

outportb(Com.Addr.MCR,0x08); /* Enable UART int via OUT2 bit */

Com.OrigIER = inportb(Com.Addr.IER);

outportb(Com.Addr.IER,0x0F); /* Enable all UART interrupts */

outportb(Com.Addr.IER,0x0F); /* Bug fix for 8250 - needs 2 writes */

/* Clear any status bits pending by reading registers */

LSR = inportb(Com.Addr.LSR);

RBR = inportb(Com.Addr.RBR);

IIR = inportb(Com.Addr.IIR); /* <-- This line is also an 8250 bug fix */

MSR = inportb(Com.Addr.MSR); /* in case loading IER previously */

/* generated a false THRE int. */

/* Install int handler */

OrigComVector = getvect(Com.IntNum); /* Save original vector */

setvect(Com.IntNum,ComIntHandler); /* Redirect vector */

/* Update PIC's interrupt enable mask */

Com.OrigPICMask = inportb(Com.PICAddr+1); /* Get original PIC mask */

outportb(Com.PICAddr+1,

Serial communications 341

Listing 8.5 (continued)

(Com.OrigPICMask & Com.PICMask)); /* Enable UART's IRQ */

enable(); /* Re-enable hardware interrupts */

g
g

void CloseCom()

/* This closes down the UART interrupt system and restores the original

interrupt vector. CloseCom() must be called before the program terminates.

*/

f
disable(); /* Disable hardware interrupts */

outportb(Com.PICAddr+1,Com.OrigPICMask); /* Disable UART's IRQ */

setvect(Com.IntNum,OrigComVector); /* Restore original int vector */

outportb(Com.Addr.IER,Com.OrigIER); /* Restore UART's original IER */

enable(); /* Re-enable hardware interrupts */

g

Periodically, and after each call to ReadCom() and WriteCom(), you
should examine the various fields of the Error structure to detect
events such as buffer overflows, timeouts, break interrupts or parity,
framing and overrun errors. Note that, for illustrative purposes, break
conditions and overrun, parity and framing errors are recorded in a
single global Error structure by the interrupt handler in Listing 8.5.
Often, however, this is not the best way of detecting such error
conditions, because the point at which the calling program detects
that one of the Error flags has been set will not necessarily fall
correctly in sequence with the character stream retrieved from the
Rx.Buf buffer. Rx.Buf may hold, for example, 10 unread characters
at the time that the interrupt handler detects an error in the 11th
character. The resulting error flag might be retrieved by the caller
before it has read the previous 10 correctly received characters. If
you wish to preserve the temporal relationship between detection
of the error flags and reception of each individual character, you
should convert each entry in the Rx.Buf into a structure containing
both data and error code fields. The UART’s PE, OE, FE and BI
flags must then be recorded along with each received character in
the receive buffer, Rx.Buf.

To terminate a communications session your program should call
CloseCom(). This function must be called at some point before the
application terminates in order to restore the interrupt vector and
disable the UART’s interrupt system.

Note that InitializeCom() defines a set of default values for the
serial parameters. You may need to modify the interrupt para-
meters (IRQNum, IntNum, PICMask and PICAddr) if you are working with

342 PC interfacing and data acquisition

a non-standard hardware configuration. Different serial frame para-
meters can easily be substituted by changing the BaudCode, DataBits,
StopBits, and ParityCode fields of the SerialFrameRec structure. If you
need to modify any of these variables, you should do so after calling
InitializeCom(), but before invoking OpenCom().

Part 4 Interpreting and Using

Acquired Data

This Page Intentionally Left Blank

9 Scaling and linearization

The task of a data-acquisition program is to determine values
of one or more physical quantities, such as temperature, force
or displacement. We have seen in Chapter 3 that this is accom-
plished by reading digitized representations of those values from
an ADC. In order for the user, as well as the various elements
of the data-acquisition system, to correctly interpret the read-
ings, the program must convert them into appropriate ‘real-world’
units. This obviously requires a detailed knowledge of the char-
acteristics of the sensors and signal-conditioning circuits used.
The relationship between a physical variable to be measured (the
measurand) and the corresponding transduced and digitized signal
may be described by a response curve such as that shown in
Figure 9.1.

Each component of the measuring system contributes to the shape
and slope of the response curve. The transducer itself is, of course,
the principal contributor, but the characteristics of the associated
signal-conditioning and ADC circuits also have an important part to
play in determining the form of the curve.

In some situations the physical variable of interest is not measured
directly: it may be inferred from a related measurement instead. We
might, for example, measure the level of liquid in a vessel in order
to determine its volume. The response curve of the measurement
system would, in this case, also include the factors necessary for
conversion between level and volume.

Most data-acquisition systems are designed to exhibit linear
responses. In these cases either all elements of the measuring
system will have linear response curves, or they will have been
carefully combined so as to cancel out any non-linearities present in
individual components.

Some transducers are inherently non-linear. Thermocouples and
resistance temperature detectors are prime examples, but many

346 PC interfacing and data acquisition

Physical
variable
(measurand)

Transduced (ADC) ouput

a

b

Figure 9.1 Response curves for typical measuring systems: (a) linear response

and (b) non-linear response

other types of sensor exhibit some degree of non-linearity. Non-
linearities may, occasionally, arise from the way in which the
measurement is carried out. If, in the volume-measurement example
mentioned above, we have a cylindrical vessel, the quantity of interest
(the volume of liquid) would be directly proportional to the level.
If, on the other hand, the vessel had a hemispherical shape, there
would be a non-linear relationship between fluid level and volume.
In these cases, the data-acquisition software will usually be required
to compensate for the geometry of the vessel when converting the
ADC reading to the corresponding value of the measurand.

To correctly interpret digitized ADC readings, the data-acquisition
software must have access to a set of calibration parameters that
describe the response curve of the measuring system. These parame-
ters may exist either as a table of values or as a set of coefficients of an
equation that expresses the relationship between the physical vari-
able and the output from the ADC. In order to compile the required
calibration parameters, the system must usually sample the ADC
output for a variety of known values of the measurand. The resulting
calibration reference points can then be used as the basis of one of
the scaling or linearization techniques described in this chapter.

9.1 Scaling of linear response curves

The simplest and, fortunately, the most common type of response
curve is a straight line. In this case the software need only be
programmed with the parameters of the line for it to be able to

Scaling and linearization 347

convert ADC readings to a meaningful physical value. In general,
any linear response curve may be represented by the equation

y � y0 D s⊲x � x0⊳ ⊲9.1⊳

where y represents the physical variable to be measured and x is
the corresponding digitized (ADC) value. The constant y0 is any
convenient reference point (usually chosen to be the lower limit
of the range of y values to be measured), x0 is the value of x at
the intersection of the line y D y0 with the response curve (i.e. the
ADC reading at the lower limit of the measurement range) and s
represents the gradient of the response curve.

Many systems are designed to measure over a range from zero
up to some predetermined maximum value. In this case, y0 can be
chosen to be zero. In all instances y0 will be a known quantity. The
task of calibrating and scaling a linear measurement system is then
reduced to determining the scaling factor, s, and offset, x0.

The offset

The offset, x0, can arise in a variety of ways. One of the most common
is due to drifts occurring in the signal-conditioning circuits as a result
of variations in ambient temperature. There are many other sources
of offset in a typical measuring system. For example, small errors
in positioning the body of a displacement transducer in a gauging
jig will shift the response curve and introduce a degree of offset.
Similarly, a poorly mounted load cell might suffer transverse stresses
which will also distort the response curve.

As a general rule, x0 should normally be determined each time
the measuring system is calibrated. This can be accomplished by
reading the ADC while a known input is applied to the transducer.
If the offset is within acceptable limits it can simply be subtracted
from subsequent ADC readings as shown by Equation 9.1. Very large
offsets are likely to compromise the performance of the measuring
system (e.g. limit its measuring range) and might indicate faults
such as an incorrectly mounted transducer or maladjusted signal-
conditioning circuits. It is wise to design data-acquisition software
so that it checks for this eventuality and warns the operator if an
unacceptably large offset is detected.

Some signal-conditioning circuits provide facilities for manual
offset adjustment. Others allow most or all of the physical offset to
be cancelled under software control. In the latter type of system
the offset might be adjusted (or compensated for) by means of the
output from a digital-to-analogue converter (DAC). The DAC voltage

348 PC interfacing and data acquisition

might, for example, be applied to the output from a strain-gauge-
bridge device (e.g. a load cell) in order to cancel any imbalances
present in the circuit.

Scaling from known sensitivities

If the characteristics of every component of the measuring system
are accurately known it might be possible to calculate the values of
s and x0 from the system design parameters. In this case the task of
calibrating the system is almost trivial. The data-acquisition software
(or calibration program) must first establish the value of the ADC
offset, x0, as described in the preceding section, and then determine
the scaling factor, s. The scaling factor can be supplied by the user
via the keyboard or data file, but, in some cases, it is simpler for the
software to calculate s from a set of measuring-system parameters
typed in by the operator.

An example of this method is the calibration of strain-gauge-
bridge transducers such as load cells. The operator might enter the
design sensitivity of the load cell (in millivolts output per volt input
at full scale), the excitation voltage supplied to the input of the
bridge and the full-scale measurement range of the sensor. From
these parameters the calibration program can determine the voltage
that would be output from the bridge at full scale, and knowing
the characteristics of the signal-conditioning and ADC circuits it can
calculate the scaling factor.

In some instances it may not be possible for the gain (and other
operating parameters) of the signal-conditioning amplifier(s) to be
determined precisely. It is then necessary for the software to take
an ADC reading while the transducer is made to generate a known
output signal. The obvious (and usually most accurate) method of
doing this is to apply a fixed input to the transducer (e.g. force
in the case of a load cell). This method, referred to as prime
calibration, is the subject of the following section. Another way of
creating a known transducer output is to disturb the operation of
the transducer itself in some way. This technique is adopted widely
in devices, such as load cells, which incorporate a number of resistive
strain gauges connected in a Wheatstone bridge. A shunt resistor
can be connected in parallel with one arm of the bridge in order
to temporarily unbalance the circuit and simulate an applied load.
This allows the sensitivity of the bridge (change in output voltage
divided by the change in ‘gauge’ resistance) to be determined, and
then the ADC output at this simulated load can be measured in
order to calculate the scaling factor. In this way the scaling factor
will encompass the gain of the signal-conditioning circuit as well as

Scaling and linearization 349

the conversion characteristics of the ADC and the sensitivity of the
bridge itself.

This calibration technique can be useful in situations, as might
arise with load measurement, where it is difficult to generate precisely
known transducer inputs. However, it does not take account of
factors, resulting from installation and environmental conditions,
which might affect the characteristics of the measuring system. In
the presence of such influences this method can lead to serious
calibration errors.

To illustrate this point we will continue with the example of load
cells. The strain gauges used within these devices have quite small
resistances (typically less than 350 �). Consequently, the resistance of
the leads which carry the excitation supply can result in a significant
voltage drop across the bridge and a proportional lowering of the
output voltage. Some signal-conditioning circuits are designed to
compensate for these voltage drops, but without this facility it can be
difficult to determine the magnitude of the loss. If not corrected for,
the voltage drop can introduce significant errors into the calibration.

In order to account for every factor which contributes to the
response of the measurement system it is usually necessary to cali-
brate the whole system against some independent reference. These
methods are described in the following sections.

Two- and three-point prime calibration

Prime calibration involves measuring the input, y, to a transducer
(e.g. load, displacement or temperature) using an independent
calibration reference and then determining the resulting output,
x, from the ADC. Two (or sometimes three) points are obtained
in order to calculate the parameters of the calibration line. In this
way the calibration takes account of the behaviour of the measuring
system as a whole, including factors such as signal losses in long
cables.

By determining the offset value, x0, we can establish one point
on the response curve – i.e. ⊲x0, y0⊳. It is necessary to obtain at least
one further reference point, ⊲x1, y1⊳, in order to uniquely define
the straight-line response curve. The scaling factor may then be
calculated from

s D y1 � y0

x1 � x0
⊲9.2⊳

Some systems, particularly those which incorporate bipolar trans-
ducers (i.e. those which measure either side of some zero level)
do not use the offset point, ⊲x0, y0⊳, for calculating s. Instead, they

350 PC interfacing and data acquisition

obtain a reading on each side of the zero point and use these values
to compute the scaling factor. In this case, y0 might be chosen to
represent the centre (zero) value of the transducer’s working range
and x0 would be the corresponding ADC reading.

Accuracy of prime calibration

The values of s and x0 determined by prime calibration are needed
to convert all subsequent ADC readings into the corresponding
‘real-world’ value of the measurand. It is, therefore, of paramount
importance that the values of s and x0, and the ⊲x0, y0⊳ and ⊲x1, y1⊳
points used to derive them, are accurate.

Setting aside any sampling and digitization errors (see Chapters 3
and 4) there are several potential sources of inaccuracy in the ⊲x, y⊳
calibration points. Random variations in the ADC readings might be
introduced by electrical noise or instabilities in the physical variable
being measured (e.g. positioning errors in a displacement-measuring
system).

Electrical noise can be particularly problematic where low level
transducer signals (and high amplifier gains) are used. This is
often the case with thermocouples and strain-gauge bridges, which
generate only low level signals (typically several mV). Noise levels
should always be minimized at source by the use of appropriate
shielding and grounding techniques. Small amplitudes of residual
noise may be further reduced by using suitable software filters (see
Chapter 4). A simple 8ð averaging filter can often reduce noise
levels by a factor of 3 or more, depending, of course, upon the
sampling rate and the shape of the noise spectrum.

An accurate prime calibration reference is also essential. Inaccu-
rate reference devices can introduce both systematic and random
errors. Systematic errors are those arising from a consistent measure-
ment defect in the reference device, causing, for example, all
readings to be too large. Random errors, on the other hand, result in
readings that have an equal probability of being too high or too low
and arise from sources such as electrical noise. Any systematic inaccu-
racies will tend to be propagated from the calibration reference into
the system being calibrated and steps should, therefore, be taken to
eliminate all sources of systematic inaccuracy. In general, the refer-
ence device should be considerably more precise (preferably at least
2 to 5 times more precise) than the required calibration accuracy.
Its precision should be maintained by periodic recalibration against
a suitable primary reference standard.

When calibrating any measuring system it is important to ensure
that the conditions under which the calibration is performed match,

Scaling and linearization 351

as closely as possible, the actual working conditions of the transducer.
Many sensors (and signal-conditioning circuits) exhibit changes in
sensitivity with ambient temperature. LVDTs, for example, have
typical sensitivity temperature coefficients of about 0.01 per cent/°C
or more. A temperature change of about 10°C, which is not
uncommon in some applications, can produce a change in output
comparable to the transducer’s non-linearity. Temperature gradients
along the body of an LVDT can have an even more pronounced
effect on the sensitivity (and linearity) of the transducer.

Most transducers also exhibit some degree of non-linearity, but in
many cases, if the device is used within prescribed limits, this will
be small enough for the transducer to be considered linear. This
is usually the case with LVDTs and load cells. Thermocouples and
resistance temperature detectors (RTDs) are examples of non-linear
sensors, but even these can be approximated by a linear response
curve over a limited working range. Whatever the type of transducer,
it is always advisable to calibrate the measuring system over the same
range as will be used under normal working conditions in order to
maximize the accuracy of calibration.

Multiple-point prime calibration

If only two or three ⊲x, y⊳ points on the response curve are obtained,
any random variations in the transducer signal due to noise or
positioning uncertainties can severely limit calibration accuracy.
The effect of random errors can be reduced by statistically averaging
readings taken at a number of different points on the response
curve. This approach has the added advantage that the calibration
points are more equally distributed across the whole measurement
range. Transducers such as the LVDT tend to deviate from linearity
more towards the end of their working range, and with two- or three-
point calibration schemes this is precisely where the calibration
reference points are usually obtained. The scaling factor calculated
using Equation 9.1 can, in such cases, differ slightly (by up to about
0.1 per cent for LVDTs) from the average gradient of the response
curve. This difference can often be reduced by a significant factor
if we are able to obtain a more representative line through the
response curve.

In order to fit a representative straight line to a set of calibra-
tion points we will use the technique of least-squares fitting. This
technique can be used for fitting both straight lines and non-linear
curves. The straight-line fit which is discussed below is a simple case
of the more general polynomial least-squares fit described later in
this chapter.

352 PC interfacing and data acquisition

It is assumed in this method that there will be some degree of
error in the yi values of the calibration points and that any errors
in the corresponding xi values will be negligible, which is usually
the case in a well-designed measuring system. The basis of the
technique is to mathematically determine the parameters of the
straight line that passes as closely as possible to each calibration
point. The best-fit straight line is obtained when the sum of the
squares of the deviations between all of the yi values and the fitted
line is least. A simple mathematical analysis shows that the best-fit
straight line, y D sx C h, is described by the following well-known
equations.

h D

iDn
∑

iD1

yi

iDn
∑

iD1

x2
i �

iDn
∑

iD1

xi

iDn
∑

iD1

xiyi

�

s D
n

iDn
∑

iD1

xiyi �
iDn
∑

iD1

xi

iDn
∑

iD1

yi

�

υh D
˛2

iDn
∑

iD1

x2
i

�
⊲9.3⊳

υs D ˛2n

�

where

� D n

iDn
∑

iD1

x2
i �

iDn
∑

iD1

xi

iDn
∑

iD1

xi

˛2 D

iDn
∑

iD1

[yi � y0⊲xi⊳]
2

n � 2

In these equations s is the scaling factor (or gradient of the response
curve) and h is the transducer input required to produce an ADC
reading (x) of zero. The υs and υh values are the uncertainties in
s and h, respectively. It is assumed that there are n of the ⊲xi, yi⊳
calibration points.

Scaling and linearization 353

Listing 9.1 C function for performing a first order polynomial (linear) least-

squares fit to a set of calibration reference points

#include <math.h>

#define True 1

#define False 0

#define MaxNP 500 /* Maximum number of data points for fit */

struct LinFitResults /* Results record for PerformLinearFit function */

f
double Slope;

double Intercept;

double ErrSlope;

double ErrIntercept;

double RMSDev;

double WorstDev;

double CorrCoef;

g;

struct LinFitResults LResults;

unsigned int NumPoints;

double X[MaxNP];

double Y[MaxNP];

void PerformLinearFit()

/* Performs a linear (first order polynomial) fit on the X[],Y[] data points

and returns the results in the LResults structure.

*/

f
unsigned int I;

double SumX;

double SumY;

double SumXY;

double SumX2;

double SumY2;

double DeltaX;

double DeltaY;

double Deviation;

double MeanSqDev;

double SumDevnSq;

SumX = 0;

SumY = 0;

SumXY = 0;

SumX2 = 0;

SumY2 = 0;

for (I = 0; I < NumPoints; I++)

f
SumX = SumX + X[I];

SumY = SumY + Y[I];

SumXY = SumXY + X[I] * Y[I];

SumX2 = SumX2 + X[I] * X[I];

SumY2 = SumY2 + Y[I] * Y[I];

g
DeltaX = (NumPoints * SumX2) - (SumX * SumX);

DeltaY = (NumPoints * SumY2) - (SumY * SumY);

354 PC interfacing and data acquisition

Listing 9.1 (continued)

LResults.Intercept = ((SumY * SumX2) - (SumX * SumXY)) / DeltaX;

LResults.Slope = ((NumPoints * SumXY) - (SumX * SumY)) / DeltaX;

SumDevnSq = 0;

LResults.WorstDev = 0;

for (I = 0; I < NumPoints; I++)

f
Deviation = Y[I] - (LResults.Slope * X[I] + LResults.Intercept);

if (fabs(Deviation) > fabs(LResults.WorstDev)) LResults.WorstDev = Deviation;

SumDevnSq = SumDevnSq + (Deviation * Deviation);

g
MeanSqDev = SumDevnSq / (NumPoints - 2);

LResults.ErrIntercept = sqrt(SumX2 * MeanSqDev / DeltaX);

LResults.ErrSlope = sqrt(NumPoints * MeanSqDev / DeltaX);

LResults.RMSDev = sqrt(MeanSqDev);

LResults.CorrCoef = ((NumPoints * SumXY) - (SumX * SumY)) /

sqrt(DeltaX * DeltaY);

g

These formulae are the basis of the PerformLinearFit() function
in Listing 9.1. The various summations are performed first and the
results are then used to calculate the parameters of the best-fit
straight line. The Intercept variable is equivalent to the quantity h in
the above formulae while Slope is the same as the scaling factor, s. The
ErrIntercept and ErrSlope variables are equivalent to υh and υs, and
may be used to determine the statistical accuracy of the calibration
line. The function also determines the conformance between the
fitted line and the calibration points and then calculates the root-
mean-square (rms) deviation (the same as ˛2) and worst deviation
between the line and the points.

It is always advisable to check the rms and worst deviation figures
when the fitting procedure has been completed, as these provide
a measure of the accuracy of the fit. The rms deviation may be
thought of as the average deviation of the calibration points from
the straight line.

The ratio of the worst deviation to the rms deviation can indicate
how well the calibration points can be modelled by a straight line. As
a rule-of-thumb, if the worst deviation exceeds the rms deviation by
more than a factor of about 3 this might indicate one of two possibili-
ties: either the true response curve exhibits a significant non-linearity
or one (or more) of the calibration points has been measured inac-
curately. Any uncertainties from either of these two sources will be
reflected in the ErrorIntercept and ErrorSlope variables.

Although there is a potential for greater accuracy with multiple-
point calibration, it should go without saying that the comments
made in the preceding section, concerning prime-calibration accu-
racy, also apply to multiple-point calibration schemes.

Scaling and linearization 355

To minimize the effect of random measurement errors,
multiple-point calibration is generally to be preferred. However,
it does have one considerable disadvantage: the additional time
required to carry out each calibration. If a transducer is to be
calibrated in situ (while attached to a machine on a production
line, for example) it can sometimes require a considerable degree
of effort to apply a precise reference value to the transducer’s input.
Some applications might employ many tens (or even hundreds) of
sensors and recalibration can then take many hours to complete,
resulting in project delays or lost production time. In these situations
it may be beneficial to settle for the slightly less accurate two- or
three-point calibration schemes. It should also be stressed that two-
and three-point calibrations do often provide a sufficient degree
of precision and that multiple-point calibrations are generally
only needed where highly accurate measurements are the primary
concern.

Applying linear scaling parameters to digitized data

Once the scaling factor and offset have been determined they must
be applied to all subsequent digitized measurements. This usually
has to be performed in real time and it is therefore important to
minimize the time taken to perform the calculation. Obviously, high
speed computers and numeric coprocessors can help in this regard,
but there are two ways in which the efficiency of the scaling algorithm
can be enhanced.

First, floating-point multiplication is generally faster than division.
For example, Borland Pascal’s floating-point routines will multiply
two real type variables in about one-third to one-half of the time
that they would take to carry out a floating-point division. A similar
difference in execution speeds occurs with the corresponding 80x87
numeric coprocessor instructions. Multiplicative scaling factors
should, therefore, always be used – i.e. always multiply the data
by s, rather than dividing by s�1 – even if the software specification
requires that the inverse of the scaling factor is presented on displays
and printouts etc.

Second, the scaling routines can be coded in assembly language.
This is simpler if a numeric coprocessor is available, otherwise
floating-point routines will have to be specially written to perform
the scaling.

In very high speed applications, the only practicable course of
action might be to store the digitized ADC values directly into RAM
and to apply the scaling factor(s) after the data-acquisition run has
been completed, when timing constraints may be less stringent.

356 PC interfacing and data acquisition

9.2 Linearization

Linearization is the term applied to the process of correcting the
output of an ADC in order to compensate for non-linearities present
in the response curve of a measuring system. Non-linearities can
arise from a number of different components, but it is often the
sensors themselves that are the primary sources.

In order to select an appropriate linearization scheme, it obviously
helps to have some idea of the shape of the response curve. The
response of the system might be known, as is the case with ther-
mocouples and RTDs. It might even conform to some recognized
analytical function. In some applications the deviation from linearity
might be smooth and gradual, but in others, the non-linearities
might consist of small-scale irregularities in the response curve.
Some measuring systems may also exhibit response curves that are
discontinuous or, at least, discontinuous in their first and higher
order derivatives.

There are several linearization methods to choose from and what-
ever method is selected, it must suit the peculiarities of the system’s
response curve. Polynomials can be used for linearizing smooth and
slowly varying functions, but are less suitable for correcting irregular
deviations or sharp ‘corners’ in the response curve. They can be
adapted to closely match a known functional form or they can be
used in cases where the form of the response function is indeter-
minate. Interpolation using look-up tables is one of the simplest
and most powerful linearization techniques and is suitable for both
continuous and discontinuous response curves. Each method has
its own advantages and disadvantages in particular applications and
these are discussed in the following sections.

The capability to linearize response curves in software can, in
some cases, mean that simpler and cheaper transducers or signal-
conditioning circuitry can be used. One such case is that of LVDT
displacement transducers. These devices operate rather like trans-
formers. An AC excitation voltage is applied to a primary coil and
this induces a signal in a pair of secondary windings. The degree of
magnetic flux linkage and, therefore, the output from each of the
secondary coils is governed by the linear displacement of a ferrite
core along the axis of the windings. In this way, the output from the
transducer varies in relation to the displacement of the core.

Simple LVDT designs employ parallel-sided cylindrical coils.
However, these exhibit severe non-linearities (typically up to about
5 or 10 per cent) as the ferrite core approaches the ends of the coil
assembly. The non-linearity can be corrected in a variety of ways,
one of which is to layer windings in a series of steps towards the

Scaling and linearization 357

ends of the coil. This can reduce the overall non-linearity to about
0.25 per cent. It does, however, introduce additional small-scale
non-linearities (of the order of 0.05 to 0.10 per cent) at points in the
response curve corresponding to each of the steps.

It is a relatively simple matter to compensate for the large-scale
non-linearities inherent in parallel-coil LVDT geometries by using
the polynomial linearization technique discussed in the following
section. Thus, software linearization techniques allow cheaper LVDT
designs to be used and this has the added advantage that no
small-scale (stepped winding) irregularities are introduced. This,
in turn, makes the whole response curve much more amenable to
linearization.

There are many other instances where software linearization tech-
niques will enhance the accuracy of the measuring system and at the
same time allow simpler and cheaper components to be used.

9.3 Polynomial linearization

The most common method of linearizing the output of a measuring
system is to apply a mathematical function known as a polynomial.
The polynomial function is usually derived by the least-squares
technique.

Polynomial least-squares fitting

We have already seen that the technique of least-squares fitting can
generate coefficients of a straight-line equation representing the
response of a linear measuring system. The least-squares method can
be applied to fit other equations to non-linear response curves. The
principle of the method is the same although, because we are now
dealing with more complex curves and mathematical functions, the
details of the implementation are slightly more involved.

A polynomial is a simple equation consisting of the sum of several
separate terms. For the purposes of sensor calibration we can define
a polynomial as an equation which describes how a dynamic variable,
y, such as temperature or pressure (which we intend to measure)
varies in relation to the corresponding transduced signal, x (e.g.
voltage output or ADC reading). Each term consists of some known
function of x multiplied by an unknown coefficient.

If we can determine the coefficients of a polynomial function that
closely fits a set of measured calibration reference points, it is then
possible to accurately calculate a value for the physical variable, y,
from any ADC reading, x.

358 PC interfacing and data acquisition

Formulating the best-fit condition

This section outlines the way in which the conditions for the best
fit between the polynomial and data points can be derived. A more
detailed account of this technique can be found in many texts on
numerical analysis and, in particular, in the books by Miller (1993)
and Press et al. (1992).

Suppose we have determined a set of calibration reference points
⊲x1, y1⊳, ⊲x2, y2⊳ to ⊲xn, yn⊳, where the xi values represent the ADC
reading (or corresponding transduced voltage reading) and yi are
values of the equivalent ‘real-world’ physical variable (e.g. tempera-
ture, displacement etc.).

In certain circumstances, some of the yi values will be more
accurate than others and it is advantageous to pay proportionally
more regard to the most accurate points. To this end, the data points
can be individually weighted by a factor wi. This is usually set equal
to the inverse of the square of the known error for each point.
The wi terms have been included in the following account of the
least-squares method, but, in most circumstances, each reference
point is measured in the same way, with the same equipment, and
the accuracy (and therefore weight) of each point will usually be
identical. In this case all of the wi values can effectively be ignored
by setting them to unity.

The polynomial which we wish to fit to the ⊲xi, yi⊳ calibration
points is:

y0⊲x⊳ D a0g0⊲x⊳ C a1g1⊲x⊳ C a2g2⊲x⊳ C Ð Ð Ð C amgm⊲x⊳ D
kDm
∑

kD0

akgk⊲x⊳

⊲9.4⊳

There may be any number of terms in the polynomial. In this
equation there are m C 1 terms, but it is usual for between 2 and
15 terms to be used. The number m is known as the order of the
polynomial. As m increases, the polynomial is able to provide a more
accurate fit to the calibration reference points. There are, however,
practical limitations on m which we will consider shortly. In this
equation the ak values are a set of constant coefficients and gk⊲x⊳
represents some function of x, which will remain unspecified for the
moment.

At any given order, m, the polynomial will usually not fit the data
points exactly. The deviation, υi, of each yi reading from the fitted
polynomial y0⊲xi⊳ value is

υi D
kDm
∑

kD0

[akgk⊲xi⊳] � yi ⊲9.5⊳

Scaling and linearization 359

The principle of the least-squares method is to choose the ak co-
efficients of the polynomial so as to minimize the sum of the squares
of all υi values (known as the residue). Taking into account the
weights of the individual points the residue, R, is given by

R D
iDn
∑

iD1

wiυ
2
i ⊲9.6⊳

The condition under which the polynomial will most closely fit the
calibration reference points is obtained when the partial derivatives
of R with respect to each ak coefficient are all zero. This statement
actually represents m C 1 separate conditions which must all be satis-
fied simultaneously for the best fit. Space precludes a full derivation
here, but with a little algebra it is a simple matter to find that each
of these conditions reduces to:

iDn
∑

iD1

wigj⊲xi⊳

kDm
∑

kD0

⊲akgk⊲xi⊳⊳ � yi D 0 ⊲9.7⊳

As the best-fit is described by a set of m C 1 equations of this type
(for j D 0 to m) we can represent them in matrix form as follows.

˛0,0 ˛1,0 ˛2,0 Ð Ð Ð ˛m,0

˛0,1 ˛1,1 ˛2,1 Ð Ð Ð ˛m,1

˛0,2 ˛1,2 ˛2,2 Ð Ð Ð ˛m,2

Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
˛0,m ˛1,m ˛2,m Ð Ð Ð ˛m,m

Ð

a0

a1

a2

Ð Ð Ð
am

D

ˇ0

ˇ1

ˇ2

Ð Ð Ð
ˇm

⊲9.8⊳

where

˛kj D
iDn
∑

iD1

wigk⊲xi⊳gj⊲xi⊳

ˇj D
iDn
∑

iD1

wigj⊲xi⊳yi

Solving the best-fit equations

The matrix equation (9.8) represents a set of simultaneous equations
which we need to solve in order to determine the coefficients, aj, of
the polynomial. The simplest method for solving the equations is to
use a technique known as Gaussian Elimination to manipulate the
elements of the matrix and vector so that they can then be solved by
simple back-substitution.

360 PC interfacing and data acquisition

The objective of Gaussian Elimination is to modify the elements
of the matrix so that each position below the major diagonal is
zero. This may be achieved by reference to a series of so-called
pivot elements which lie at each successive position along the major
diagonal. For each pivot element, we eliminate the elements below
the pivot position by a systematic series of scalar-multiplication
and row-subtraction operations as illustrated by the following code
fragment.

for (Row = Pivot + 1; Row <= M; Row++)
f
Temp = Matrix[Pivot][Row] / Matrix[Pivot][Pivot];
for (Col = Pivot; Col <= M; Col++)

Matrix[Col][Row] = Matrix[Col][Row] - Temp * Matrix[Col][Pivot];
Vector[Row] = Vector[Row] - Temp * Vector[Pivot];
g

The variable M represents the order of the polynomial. Matrix is a
square array with indices from 0 to M. This algorithm is used in the
GaussElim() function shown in Listing 9.2 later in this chapter. Once
all of the elements have been eliminated from below the major
diagonal, the matrix equation will have the following form. The
new matrix and vector elements are identified by primes to denote
that the Gaussian Elimination procedure has generated different
numerical values from the original ˛k,j and ˇj elements.

˛0
0,0 ˛0

1,0 ˛0
2,0 Ð Ð Ð ˛0

m,0

0 ˛0
1,1 ˛0

2,1 Ð Ð Ð ˛0
m,1

0 0 ˛0
2,2 Ð Ð Ð ˛0

m,2
Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
0 0 0 Ð Ð Ð ˛0

m,m

Ð

a0

a1

a2

Ð Ð Ð
am

D

ˇ0
0

ˇ0
1

ˇ0
2

Ð Ð Ð
ˇ0

m

⊲9.9⊳

The equations represented by each row of the matrix equation can
now be easily solved by repeated back-substitution. Starting with the
bottom row and moving on to each higher row in sequence we can
calculate am then am�1 then am�2 etc. as follows

am D ˇ0
m

˛0
m,m

then am�1 D
ˇ0

m�1 � am˛0
m,m�1

˛0
m�1,m�1

etc. ⊲9.10⊳

In general we have the following iterative relation which is coded as a
simple algorithm at the end of the GaussElim() function in Listing 9.2.

aj D
ˇ0

j �
lDm
∑

lDjC1

al˛
0
l,j

˛j,j

⊲9.11⊳

Scaling and linearization 361

The curve fitting procedure would not usually need to be performed
in real time and so the computation time required to determine
coefficients by this method will not normally be of great importance.
A 15th order polynomial fit can be carried out in several hundred
milliseconds on an average 33 MHz 80486 machine equipped with a
numeric processing unit, but will take considerably longer (up to a
few seconds, depending upon the machine) if a coprocessor is not
used. The total calculation time increases roughly in proportion to
cube of the matrix size.

A number of other methods can be used to solve the matrix
equation. These may be preferable if Gaussian Elimination fails
to provide a solution because the coefficient matrix is singular,
or if rounding errors become problematic. A discussion of these
techniques is beyond the scope of this book. Press et al. (1992)
provide a detailed description of curve fitting methods together
with a comprehensive discussion of their relative advantages and
drawbacks.

Numerical accuracy and ill-conditioned matrices

All computer-based numerical calculations are limited by the finite
accuracy of the coprocessor or floating-point library used. Gauss-
ian Elimination involves many repeated multiplications, divisions
and subtractions. Consequently rounding errors can begin to accu-
mulate, particularly with higher order polynomials. While single
precision arithmetic is suitable for many of the calculations that
we have to deal with in data-acquisition applications, it does not
usually provide sufficient accuracy for polynomial linearization.
When undertaking this type of calculation, it is generally benefi-
cial to use floating-point data types with the greatest possible degree
of precision. The examples presented in this chapter use C’s long

double data type, which is the largest type supported by the 80x87
family of numeric coprocessors.

Even when using the long double data type, rounding errors can
become significant when undertaking Gaussian Elimination. For this
reason it is generally inadvisable to attempt this for polynomials of
greater than about 15th order. In some cases, rounding errors may
also be important with lower order polynomials. If the magnitudes of
the pivot elements vary greatly along the major diagonal, the process
of Gaussian Elimination may cause rounding errors to build up to a
significant level and it will then be impossible to calculate accurate
values for the polynomial coefficients. The accuracy of the Gaussian
Elimination method can be improved by first swapping the rows of
the matrix equation so that the element in the pivot row with the
largest absolute magnitude is placed in the pivot position on the

362 PC interfacing and data acquisition

major diagonal. This minimizes the difference between the various
pivot elements and helps to reduce the effect of rounding errors on
the calculations.

If one of the pivot elements is zero the matrix equation cannot
be solved by Gaussian Elimination. If one or more of the pivot
elements are very close to zero the solution of the matrix equation
may generate very large polynomial coefficients. Then when we
subsequently evaluate the polynomial the greatest part of these coef-
ficients tend to cancel each other out, leaving only a small remainder
which contributes to the actual evaluation. This is obviously quite
susceptible to numerical rounding errors.

The combination of elements in the matrix might be such that
rounding errors in some of the operations performed during the
elimination procedure become comparable with the true result of
the operation. In this case the matrix is said to be ill-conditioned
and the solution process may yield inaccurate coefficients.

It is usually advisable to check for ill-conditioned matrices by
examining the pivot elements along the major diagonal to ensure
that they do not differ by very many orders of magnitude. Obviously,
if higher precision data types are used for calculation and storage
of results (e.g. extended or double precision rather than single
precision), it is possible to accommodate a greater range of values
along the major diagonal.

It is also possible to detect the effect of ill-conditioned matrices
and rounding errors after the fit has been performed. This can be
achieved by carrying out conformance checks, as described in the
next subsection, for a range of polynomial orders. This is not a
foolproof technique, but in general, the root-mean-square deviation
between the calibration reference points and the fitted polynomial
will tend to increase with increasing order once rounding errors
become significant.

Accuracy of the fitted curve

In the absence of any appreciable rounding errors, the accuracy with
which the polynomial will model the measuring system’s response
curve will be determined by two factors: the magnitude of any random
or systematic measurement errors in the calibration reference points
and the ‘flexibility’ of the polynomial.

Although the effect of random errors can be offset to some
extent by taking a larger number of calibration measurements,
any systematic errors cannot generally be determined or corrected
during linearization and so must be eliminated at source. There
are many possible sources of random error. Electrical noise can
be a problem with low voltage signals such as those generated

Scaling and linearization 363

by thermocouples. There are also often difficulties in setting the
measurand to a precise enough value, especially where the sensor is
an integral part of a larger system and has to be calibrated in situ.
Whatever the source of a random error, it generally introduces some
discrepancy between the true response curve and the measured
calibration reference points.

A second source of inaccuracy might arise where the polyno-
mial is not flexible enough to fit response curves with rapidly
changing gradients or higher derivatives. Better fits can usually be
achieved by using high order polynomials, but, as mentioned previ-
ously, rounding errors can become problematic if very high orders
are used.

Whenever a polynomial is fitted to a set of calibration reference
points it is essential to obtain some measure of the accuracy of the
fit. We can determine the uncertainties in the coefficients if we
solve the best-fit equation (9.8) by the technique of Gauss–Jordan
Elimination. As part of the Gauss–Jordan Elimination procedure we
determine the inverse of the coefficient matrix and this can be used
to calculate the uncertainties in the coefficients. The Gauss–Jordan
method is somewhat more involved than Gaussian Elimination and,
apart from providing an easy means of calculating the coefficient
errors, has no other advantage. This method is discussed by Press
et al. (1992) and will not be described here.

A simpler way of estimating the accuracy of the fit is to calculate
the conformance between the fitted curve and each calibration
reference point. We simply evaluate the polynomial y0⊲xi⊳ for each xi

value in turn and then determine the deviation of the corresponding
measured yi value from the polynomial (see Equation 9.5). This is
illustrated by the following code fragment.

SumDevnSq = 0;

WorstDev = 0;

for (I = 0; I < NumPoints; I++)

f
Deviation = Y[I] - PolynomialValue(Order,X[I]);

if (fabs(Deviation) > fabs(WorstDev)) WorstDev = Deviation;

SumDevnSq = SumDevnSq + (Deviation * Deviation);

g
RMSDev = sqrt(SumDevnSq / (NumPoints-2));

In this example, the polynomial is evaluated for the Ith data point
by calling the PolynomialValue() function (which will, of course, vary
depending upon the functional form of the polynomial). A function
of this type for evaluating a power-series polynomial is included in
Listing 9.2 later in this chapter.

364 PC interfacing and data acquisition

It is important not to rely too heavily on the conformance values
calculated in this way. They show only how closely the polynomial fits
the calibration reference points and do not indicate how the poly-
nomial might vary from the true response curve between the points.
It is advisable to check the accuracy of the polynomial at a number
of points in between the original calibration reference points.

Choosing the optimum order

In general the higher the order of the polynomial the more closely
it will fit the calibration reference points. One might be tempted
always to fit a very high order polynomial, but this has several
disadvantages. First, high order polynomials take longer to evaluate
and, as the evaluation process is likely to be carried out in real time,
this can severely limit throughput. Second, rounding errors tend
to be more problematic with higher order polynomials as already
discussed. Finally, more calibration reference points are required in
order to obtain a realistic approximation to the response curve.

For any polynomial fit, the number of calibration reference points
used must be greater than m C 1, where m is the order of the
polynomial. If this rule is broken, by choosing an order which is
too high, the fitting procedure will not provide accurate coefficients
and the polynomial will tend to deviate from a reasonably smooth
curve between adjacent data points. In order to obtain a smooth fit
to the response curve it is always advisable to use as many calibration
reference points as possible, and the lowest order of polynomial
consistent with achieving the required accuracy. As the order of the
fit is increased, the rms deviation between the fitted polynomial and
the reference points will normally tend to decrease and then level
out as shown in Figure 9.2.

The shape of the graph will, of course, vary for different data sets,
but the same general trends will usually be obtained. In this example,
there is little to be gained by using an order greater than about 11
or 12. At higher orders rounding errors may begin to come into
play causing the rms deviation to rise irregularly. If the requirements
of an application are such that a lower degree of accuracy would
be acceptable, it is generally preferable to employ a lower order
polynomial, for the reasons mentioned above.

Linearization with power-series polynomials

So far, in the discussion of the least-squares technique, the form
of the gk⊲x⊳ function has not been specified. In fact, it may be
almost any continuous function of x such as sin⊲x⊳, ln⊲x⊳ etc. For
correcting the response of a non-linear sensor it is usual to use a

Scaling and linearization 365

1 2 3 4 5 6

Order of polynomial

Log
rms
deviation

7 8 9 10 11 12 13 14 15 16

Figure 9.2 Typical rms deviation vs. order for a power-series polynomial fit

power-series polynomial where each successive term is proportional
to an increasing power of x. For a power-series polynomial, the
elements of the matrix and vector in Equation 9.11 become

˛kj D
iDn
∑

iD1

wix
k
i x

j
i and ˇj D

iDn
∑

iD1

wix
j
i yi ⊲9.12⊳

By setting all weights to unity, substituting these elements into
the matrix equation for a first order polynomial and then solving
for a0 and a1 we can arrive at Equations 9.3 for the parameters
of a straight line which were presented in the Multiple-point prime
calibration section. (Note that the following substitutions must be
made: a1 D s; a0 D h.)

Power-series polynomials are a special case of the generalized
polynomial function fit and are useful for correcting a variety of
non-linear response curves. They are, perhaps, most often employed
for linearizing thermocouple signals but they can also be used with
a number of other types of non-linear sensor. The resistance vs.
temperature characteristic of a platinum RTD, for example, can be
linearized with a second order power-series polynomial (Johnson,
1988), but for higher accuracy or wider temperature ranges a third
or fourth order polynomial should be used. Higher (typically 8th
to 14th) order polynomials are required to linearize thermocouple
signals, as the response curves of these devices tend to be quite
non-linear. Power-series polynomials are most effective where the

366 PC interfacing and data acquisition

response curve deviates smoothly and gradually from linearity (as
is usually the case with thermocouple signals), but they normally
provide a poorer fit to curves that contain sudden steps, bumps or
discontinuities.

Non-linearities often stem from the design of the transducer and
its associated signal conditioning circuits. However, power-series
polynomials can also be used in cases where other sources of non-
linearity are present. For example, the mechanical design of a
measuring system might require a displacement transducer such as
an LVDT to be operated via a series of levers in order to indirectly
measure the rotational angle of some component. In this case,
although the response of the LVDT and signal conditioning circuits
are essentially linear, the transducer’s output will have a non-linear
relation to the quantity of interest. Systems such as this often exhibit
smooth deviations from linearity and can usually be linearized with
a power-series polynomial.

Fitting a power-series polynomial

To fit a polynomial of any chosen order to a set of calibration
reference points, it is first necessary to construct a matrix equation
with the appropriate terms (as defined by Equations 9.12). The
matrix should be simplified using the Gaussian Elimination tech-
nique described in the previous section and the coefficients may
then be calculated by back-substitution.

Listing 9.2 shows how a power-series polynomial can be fitted to
an unweighted set of calibration reference points. As each point is
assumed to have been determined to the same degree of precision,
all weights in Equations 9.12 can be set to unity. If required, weights
could easily be incorporated into the code by modifying the first
block of lines in the PolynomialLSF() function.

The code in this listing will automatically attempt to fit polynomials
of all orders up to a maximum order which is limited by either the
matrix size or the number of available calibration points. The present
example accommodates a 16 ð 16 matrix which is sufficient for a
15th order polynomial. If necessary, the size of the matrix can be
increased by modifying the #define N line. Bear in mind, however,
that if larger matrices and polynomials are used, rounding errors
may become problematic. As mentioned in the previous section,
polynomial fits should not be attempted for orders greater than
n � 2, where n represents the number of calibration reference
points. The code will, therefore, not attempt to fit a polynomial if
there are insufficient points available.

The ⊲xi, yi⊳ data for the fit are made available to the fitting func-
tions in the global X and Y arrays. The results of the fitting are

Scaling and linearization 367

Listing 9.2 Fitting a power-series polynomial to a set of calibration data points

#include <math.h>

#define True 1

#define False 0

#define MaxNP 500 /* Maximum number of data points for fit */

#define N 16 /* No. of terms. 16 accommodates 15th order polynomial */

struct OrderRec

f
long double Coef[N]; /* Polynomial coefficients */

double RMSDev; /* RMS deviation of polynomial from Y data points */

double WorstDev; /* Worst deviation of polynomial from Y data points */

g;

struct PolyFitResults

f
unsigned char MaxOrder; /* Highest order of polynomial to fit */

struct OrderRec ForOrder[N]; /* Polynomial parameters for each order */

g;

struct PolyFitResults PResults;

long double Matrix[N][N]; /* Matrix in equation 10.11 */

long double Vector[N]; /* Vector in equation 10.11 */

unsigned int NumPoints; /* Number of (X,Y) data points */

double X[MaxNP]; /* X data */

double Y[MaxNP]; /* Y data */

long double Power(long double X, unsigned char P)

/* Calculates X raised to the power P */

f
unsigned char I;

long double R;

R = 1;

if (P > 0)

for (I = 1; I <= P; I++)

R = R * X;

return(R);

g

void GaussElim(unsigned char M, long double Solution[N], unsigned char *Err)

/* Solves the matrix equation contained in the global Matrix and Vector arrays

by Gaussian Elimination and back-substitution. Returns the solution vector

in the Solution array.

*/

f
signed char Pivot;

signed char JForMaxPivot;

signed char J;

signed char K;

signed char L;

long double Temp;

long double SumOfKnownTerms;

368 PC interfacing and data acquisition

Listing 9.2 (continued)

*Err = False;

/* Manipulate the matrix to produce zeros below the major diagonal */

for (Pivot = 0; Pivot <= M; Pivot++)

f
/* Find row with the largest value in the Pivot column */

JForMaxPivot = Pivot;

if (Pivot < M)

for (J = Pivot + 1; J <= M; J++)

if (fabsl(Matrix[Pivot][J]) > fabsl(Matrix[Pivot][JForMaxPivot]))

JForMaxPivot = J;

/* Swap rows of matrix and vector so that the largest matrix */

/* element is in the Pivot row (ie. falls on the major diagonal) */

if (JForMaxPivot != Pivot)

f
/* Swap matrix elements. Note that elements with K < Pivot are all */

/* zero at this stage and may be ignored. */

for (K = Pivot; K <= M; K++)

f
Temp = Matrix[K][Pivot];

Matrix[K][Pivot] = Matrix[K][JForMaxPivot];

Matrix[K][JForMaxPivot] = Temp;

g

/* Swap vector "rows" (ie. elements) */

Temp = Vector[Pivot];

Vector[Pivot] = Vector[JForMaxPivot];

Vector[JForMaxPivot] = Temp;

g

if (Matrix[Pivot][Pivot] == 0)

*Err = True;

else f
/* Eliminate variables in matrix to produce zeros in all */

/* elements below the pivot element */

for (J = Pivot + 1; J <= M; J++)

f
Temp = Matrix[Pivot][J] / Matrix[Pivot][Pivot];

for (K = Pivot; K <= M; K++)

Matrix[K][J] = Matrix[K][J] - Temp * Matrix[K][Pivot];

Vector[J] = Vector[J] - Temp * Vector[Pivot];

g
g

g

/* Solve the matrix equations by backsubstitution, starting with */

/* the bottom row of the matrix */

if (!(*Err))

f
if (Matrix[M][M] == 0)

*Err = True;

else f
for (J = M; J >= 0; J--)

f
SumOfKnownTerms = 0;

Scaling and linearization 369

Listing 9.2 (continued)

if (J < M)

for (L = J + 1; L <= M; L++)

SumOfKnownTerms = SumOfKnownTerms + Matrix[L][J] * Solution[L];

Solution[J] = (Vector[J] - SumOfKnownTerms) / Matrix[J][J];

g
g

g
g

void PolynomialLSF(unsigned char Order, unsigned char *Err)

/* Performs a polynomial fit on the X, Y data arrays of the specified Order

and stores the results in the global PResults structure.

*/

f
long double MatrixElement[2 * (N - 1) + 1]; /* Temporary storage */

unsigned char KPlusJ; /* Index of matrix elements */

unsigned char K; /* Index of coefficients */

unsigned char J; /* Index of equation / vector elements */

unsigned int I; /* Index of data points */

/* Sum data points into Vector and MatrixElement array. MatrixElement is */

/* used for temporary storage of elements so that it is not necessary to */

/* duplicate the calculation of identical terms */

for (KPlusJ = 0; KPlusJ <= (2 * Order); KPlusJ++) MatrixElement[KPlusJ] = 0;

for (J = 0; J <= Order; J++) Vector[J] = 0;

for (I = 0; I < NumPoints; I++)

f
for (KPlusJ = 0; KPlusJ <= (2 * Order); KPlusJ++)

MatrixElement[KPlusJ] = MatrixElement[KPlusJ] + Power(X[I],KPlusJ);

for (J = 0; J <= Order; J++)

Vector[J] = Vector[J] + (Y[I] * Power(X[I],J));

g

/* Copy matrix elements to Matrix */

for (J = 0; J <= Order; J++)

for (K = 0; K <= Order; K++)

Matrix[K][J] = MatrixElement[K+J];

/* Solve matrix equation by Gaussian Elimination and backsubstitution. */

/* Store the solution vector in the Results.ForOrder[Order].Coef array. */

GaussElim(Order,PResults.ForOrder[Order].Coef,Err);

g

long double PolynomialValue(unsigned char Order, double X)

/* Evaluates the polynomial contained in the global PResults structure.

Returns the value of the polynomial of the specified order at the

specified value of X.

*/

f
signed char K;

long double P;

370 PC interfacing and data acquisition

Listing 9.2 (continued)

P = PResults.ForOrder[Order].Coef[Order];

for (K = Order - 1; K >= 0; K--)

P = P * X + PResults.ForOrder[Order].Coef[K];

return P;

g

void CalculateDeviation(unsigned char Order)

/* Calculates the root-mean-square and worst deviations of all Y values from

the fitted polynomial.

*/

f
unsigned int I;

double Deviation;

double SumDevnSq;

SumDevnSq = 0;

PResults.ForOrder[Order].WorstDev = 0;

for (I = 0; I < NumPoints; I++)

f
Deviation = Y[I] - PolynomialValue(Order,X[I]);

if (fabs(Deviation) > fabs(PResults.ForOrder[Order].WorstDev))

PResults.ForOrder[Order].WorstDev = Deviation;

SumDevnSq = SumDevnSq + (Deviation * Deviation);

g
PResults.ForOrder[Order].RMSDev = sqrt(SumDevnSq / (NumPoints-2));

g

void PolynomialFitForAllOrders(unsigned char *Err)

/* Performs a polynomial fit for all orders up to a maximum determined by the

number of data points and the dimensions of the Matrix and Vector arrays.

*/

f
unsigned char Order;

*Err = False;

if (NumPoints > N)

PResults.MaxOrder = N - 1;

else PResults.MaxOrder = NumPoints - 2;

for (Order = 1; Order <= PResults.MaxOrder; Order++)

f
if (!(*Err))

f
PolynomialLSF(Order,Err);

if (!(*Err)) CalculateDeviation(Order);

g
g

g

Scaling and linearization 371

stored in the global PResults structure (of type PolyFitResults). The
PolynomialFitForAllOrders() function performs a polynomial fit to
the same data over a range of orders by calling the PolynomialLSF()

function once for each order. This constructs the matrix and vector
defined in Equation 9.11 using the appropriate power-series polyno-
mial terms and then calls the GaussElim() function to solve the matrix
equation. After each fit has been performed the CalculateDeviation()

function determines the rms and worst deviation of the ⊲xi, yi⊳ points
from the fitted curve.

All of the fitting calculations employ C’s 80-bit long double floating-
point data type. This is the same as Pascal’s extended type and
corresponds to the Intel 80x87 coprocessor’s Temporary Real data
type. These provide 19 to 20 significant digits over a range of about
3.4 ð 10�4932 to 1.1 ð 10C4932.

The listing incorporates two functions that are actually included
in some standard C libraries. Calls to the Power() function can
be replaced by calls to the C powl() function if it is supported
in your library. The function has been included here for the
benefit of readers who wish to translate the code into languages
such as Pascal, which might not have a comparable procedure.
Users of Borland CCC or Turbo C/CCC may wish to replace the
PolynomialValue() function with the poly() or polyl() library func-
tions. However, these are not defined in ANSI C and are not
supported in all implementations of the language.

Evaluating a power-series polynomial

In order to calculate the rms and worst deviation, it is necessary for
the code to evaluate the fitted polynomial for each of the xi values.
The most obvious way to do this would have been to calculate each
term individually and to sum them as follows.

PolyValue = 0;

for (K = 0; K <= Order; K++)

PolyValue = PolyValue + Coef[K]*Power(X[I],K);

However, this requires xk
i to be evaluated for each term, which results

in many multiplication operations being performed unnecessarily by
the Power() function. The following algorithm is much more efficient
and requires only Order C 1 multiplications to be performed. Note
that the index K is, in this case, a signed char.

PolyValue = Coef[Order];

for (K = Order-1; K >= 0; K--)

PolyValue = PolyValue * X[I] + Coef[K];

372 PC interfacing and data acquisition

For a 15th order polynomial the first method requires 121 separate
multiply operations while only 16 are needed in the more effi-
cient second method. The second method minimizes the effect of
rounding errors and will often make a significant improvement to
throughput.

Polynomials in other functions

A power-series polynomial can be useful where the functional form
of a response curve is unknown or difficult to determine. However,
the response of some measuring systems might clearly follow a
combination of simple mathematical functions (sin, cos, log etc.)
and in such cases it is likely that a low order polynomial in the
appropriate function will provide a more accurate fit than a high
order power-series polynomial.

Thermistors, for example, exhibit a resistance (R) vs. temperature
(T) characteristic in which the inverse of the temperature is propor-
tional to a polynomial in ln R (see Tompkins and Webster, 1988):

T�1 D a0 C a1 ln R C a3⊲ln R⊳3 ⊲9.13⊳

A response curve based on a simple mathematical function might
also arise where the non-linearity is introduced by the geometry of
the measuring system. One example is that of level measurement
using a float and linkage as shown in Figure 9.3.

The float moves up and down as the level of liquid in the tank
changes and the resulting motion (i.e. angle a) of the mechanical

FLOAT

a

h

ROTARY
POTENTIOMETER

Figure 9.3 Measurement of fluid level using a float linked to a rotary poten-

tiometer

Scaling and linearization 373

link is sensed by a rotary potentiometric transducer. The output of
the potentiometer is assumed to be proportional to a, and the level,
h, of liquid in the tank will be approximately proportional to cos⊲a⊳.

The best approach might initially seem to be to scale the output
of the potentiometer to obtain the value of a and then apply the
simple cos⊲a⊳ relationship in order to calculate h. This might indeed
be accurate enough, but we should remember that there may be
other factors which affect the actual relationship between h and
the potentiometer’s output. For example, the float might sit at a
slightly different level in the liquid depending upon the angle a
and this will introduce a small deviation from the ideal cosinusoidal
response curve. Deviations such as this are usually best accounted for
by performing a prime calibration and then linearizing the resulting
calibration points with the appropriate form of polynomial.

The polynomial fitting routine in Listing 9.2 can easily be modi-
fied to accommodate functions other than powers of x. There are
only two changes which usually need to be made. The first is that the
PolynomialLSF() function should be adapted to calculate the matrix
elements from the appropriate gk⊲x⊳ functions. The other modifica-
tion required is in the three lines of code in the PolynomialValue()

function which evaluates the polynomial at specific points on the
response curve.

9.4 Interpolation between points in a look-up table

Suppose that a number of calibration points, ⊲x1, y1⊳, ⊲x2, y2⊳ to
⊲xn, yn⊳, have been calculated, or measured using the prime calibra-
tion techniques discussed previously. If there are sufficient points
available, it is possible to store them in a look-up table and to use this
table to directly convert the ADC reading into the corresponding
‘real-world’ value. In cases where a low resolution ADC is in use
it might be feasible to construct a table containing one entry for
each possible ADC reading. This, however, requires a large amount
of system memory, particularly if there are several ADC channels,
and it is normally only practicable to store more widely separated
reference points. In order to avoid having to round down (or up)
to the nearest tabulated point it is usual to adopt some method of
interpolating between two or more neighbouring points.

Sorting the table of calibration points

The first step in finding the required interpolate is to determine
which of the calibration points the interpolation should be based on.

374 PC interfacing and data acquisition

Two (or more) points with x values spanning the interpolation point
are required, and the software must undertake a search for these
points. In order to maximize the efficiency of the search routine
(which often has to be executed in real time), the data should
previously have been ordered such that the x values of each point
increase (or decrease) monotonically through the table.

The points may already be correctly ordered if they have been
entered from a published table or read in accordance with a strict
calibration algorithm. However, this may not always be the case. It is
prudent to provide the operator with as much flexibility as possible
in performing a prime calibration and this may mean relaxing any
constraints on the order in which the calibration points are entered
or measured. In this case it is likely that the look-up table will
initially contain a randomly ordered set of measurements which will
have to be rearranged into a monotonically increasing or decreasing
sequence.

One of the most efficient ways of sorting a large number (up to
about 1000) of disordered data points is shown in Listing 9.3. This is
based on the Shell–Metzner sorting algorithm (Knuth, 1973, Press
et al., 1992) and arranges any randomly ordered table of ⊲x, y⊳ points
into ascending x order.

The ShellSort() function works by comparing pairs of x values
during a number of passes through the data. In each pass the
compared values are separated by DeltaI array locations and DeltaI

is halved on each successive pass. The first few passes through the
data introduce a degree of order over a large scale and subsequent
passes reorder the data on continually smaller and smaller scales.

This might seem to be an unnecessarily complicated method of
sorting, but it is considerably more efficient than some of the simpler
algorithms (such as the well-known Search-and-Insert or Bubble Sort
routines), particularly if the data set contains more than about 30 to
40 points. The time required to execute the ShellSort() algorithm
increases in proportion to NumPoints to the power of 1.5 or less, while
the execution time for a Bubble Sort increases with NumPoints squared.
However, if there are only a small number of calibration points (less
than about 20 to 30) to be sorted the simpler BubbleSort() routine
shown in Listing 9.4 will generally execute faster than ShellSort().

The C language includes a qsort() function which can be used
to sort an array of data according to the well-known Quick Sort
algorithm. This algorithm is ideal when dealing with large quantities
of data (typically >1000 items), but for smaller arrays of calibration
points, a well-coded implementation of the Shell–Metzner technique
tends to be more efficient.

Scaling and linearization 375

Listing 9.3 Sorting routine based on the Shell–Metzner (Shell Sort) algorithm for

use with up to approximately 1000 data points

#define True 1

#define False 0

#define MaxNP 500 /* Maximum number of data points in lookup table */

void ShellSort(unsigned int NumPoints, double X[MaxNP], double Y[MaxNP])

/* Sorts the X and Y arrays according to the Shell-Metzner algorithm so that

the contents of the X array are placed in ascending numeric order. The

corresponding elements of the Y array are also interchanged to preserve the

relationship between the two arrays.

*/

f
unsigned int DeltaI; /* Separation between compared elements */

unsigned char PointsOrdered; /* True indicates points ordered on each pass */

unsigned int NumPairsToCheck; /* No. of point pairs to compare on each pass */

unsigned int I0,I; /* Indices for search through arrays */

double Temp; /* Temporary storage for swapping points */

if (NumPoints > 1)

f
DeltaI = NumPoints;

do

f
DeltaI = DeltaI / 2;

/* Compare pairs of points separated by DeltaI */

do

f
PointsOrdered = True;

NumPairsToCheck = NumPoints - DeltaI;

for (I0 = 0; I0 < NumPairsToCheck; I0++);

f
I = I0 + DeltaI;

if (X[I0] > X[I])

f
/* Swap elements of X array */

Temp = X[I];

X[I] = X[I0];

X[I0] = Temp;

/* Swap elements of Y array */

Temp = Y[I];

Y[I] = Y[I0];

Y[I0] = Temp;

PointsOrdered = False; /* Not yet ordered so do same pass again */

g
g

g
while (!PointsOrdered);

g
while (DeltaI != 1);

g
g

376 PC interfacing and data acquisition

Listing 9.4 Bubble Sort routine for use with fewer than approximately 20 to 30

data points

#define MaxNP 500 /* Maximum number of data points in lookup table */

void BubbleSort(unsigned int NumPoints, double X[MaxNP], double Y[MaxNP])

/* Sorts the X and Y arrays according to the Bubble Sort algorithm so that

the contents of the X array are placed in ascending numeric order. The

corresponding elements of the Y array are also interchanged to preserve the

relationship between the two arrays.

*/

f
unsigned int I;

unsigned int I0;

double Temp;

for (I0 = 0; I0 < NumPoints - 1; I0++)

f
for (I = I0 + 1; I < NumPoints; I++)

f
if (X[I0] > X[I])

f
/* Swap elements of X array */

Temp = X[I];

X[I] = X[I0];

X[I0] = Temp;

/* Swap elements of Y array */

Temp = Y[I];

Y[I] = Y[I0];

Y[I0] = Temp;

g
g

g
g

The Bubble Sort algorithm is notoriously inefficient and should
be used only if the number of data points is small. Do not be tempted
to use a routine based on the Bubble Sort method with more than
about 20 to 30 points. It becomes very slow if large tables of data have
to be sorted and, in these cases, it is worth the slight extra coding
effort to replace it with the Shell Sort routine.

There are many other types of sorting algorithm. Most of these
are, however, designed specially for sorting very large quantities of
data and there is usually no significant advantage to be gained by
using them in preference to the ShellSort() function. See Press et al.
(1992) and Knuth (1973) for more detailed discussions of this topic.

The sorting process should, of course, be performed immedi-
ately after the calibration reference points have been entered or
measured. It should not be deferred until run time as this is likely
to place an unacceptable burden on the real-time operation of the
software.

Scaling and linearization 377

Searching the look-up table

In order to determine which calibration points will be used for the
interpolation, the software must search the previously ordered table.
The most efficient searching routines tend to be based on bisection
algorithms such as that identified by the Bisection Search comment
in Listing 9.5. This routine searches through a portion of the table
(defined by the indices Upper and Lower) by repeatedly halving it. It
decides which portion of the table is to be bisected next by comparing
the bisection point (Bisect) with the required interpolation point
(TargetX). The bisection algorithm rapidly converges on the pair of
data points with x values spanning TargetX and returns the lower of
the indices of these two points. This is similar, in principle, to the
successive-approximation technique employed in some analogue-to-
digital converters.

Listing 9.5 Delimit-and-bisect function for searching an ordered table

#define True 1

#define False 0

#define MaxNP 500 /* Maximum number of data points in lookup table */

void Search(unsigned int NumEntries, double X[MaxNP], double TargetX,

signed int *Index, unsigned char *Err)

/* Searches the ascending table of X values by bracketing and then bisection.

This procedure will not accommodate descending tables. NumEntries specifies

the number of entries in the X array and should always be less than 32768.

Bracketing starts at the entry specified by Index. The bisection search then

returns the index of the entry such that X[Index] <= TargetX < X[Index+1].

If Index is out the range 1 to NumEntries, the bisection search is performed

over the whole table. If TargetX < X[1] or TargetX >= X[NumEntries], Err is

set true.

*/

f
signed int Span;

signed int Upper;

signed int Lower;

unsigned int Bisect;

if (X[0] > X[NumEntries-1])

*Err = True; /*Descending*/

else *Err = ((TargetX < X[0]) || (TargetX >= X[NumEntries-1])); /*Ascending*/

if (!*Err)

f

/* Define search limits */

if ((*Index >= 0) && (*Index < NumEntries))

f
/* Adjust bracket interval to encompass TargetX */

Span = 1;

if (TargetX >= X[*Index])

378 PC interfacing and data acquisition

Listing 9.5 (continued)

f
/* Adjust upwards */

Lower = *Index;

Upper = Lower + 1;

while (TargetX >= X[Upper])

f
Span = 2 * Span;

Lower = Upper;

Upper = Upper + Span;

if (Upper > NumEntries - 1) Upper = NumEntries - 1;

g
g

else f
/* Adjust downwards */

Upper = *Index;

Lower = Upper - 1;

while (TargetX < X[Lower])

f
Span = 2 * Span;

Upper = Lower;

Lower = Lower - Span;

if (Lower < 0) Lower = 0;

g
g

g
else f

/* *Index is out of range so search the whole table */

Lower = 0;

Upper = NumEntries;

g

/* Bisection search */

while ((Upper - Lower) > 1)

f
Bisect = (Upper + Lower) / 2;

if (TargetX > X[Bisect])

Lower = Bisect;

else Upper = Bisect;

g
*Index = Lower;

g
g

The total execution time of the bisection search algorithm
increases roughly in proportion to log2⊲n⊳, where n is the number
of points in the range of the table to be searched.

The bisection routine would work reasonably well if the Upper

and Lower search limits were to be set to encompass the whole
table, but this can often be improved by including code to define
narrower search limits. The reason is that, in many data-acquisition
applications, there is a degree of correlation between successive
readings. If the signal changes slowly compared to the sampling

Scaling and linearization 379

rate, each consecutive reading will be only slightly different from
the previous one. The Search() function takes advantage of any such
correlation by starting the search from the last interpolation point.
It initially sets the search range so that it includes only the last
interpolation point (x value) used and then continuously extends
the range in the direction of the new interpolation point until the
new point falls within the limits of the search range. The final range
is then used to define the boundaries of the subsequent bisection
search.

The Search() function uses the initial value of the Index parameter
to fix the starting point of the range-adjustment process. The calling
program should usually initialize Index before invoking Search() for
the first time and it should subsequently ensure that Index retains its
value between successive calls to Search(). It is, of course, possible to
cause the searching process to begin at any other point in the table
just by setting Index to the required value before calling the Search()

function.
If successive readings are very close, the delimit-and-bisect strategy

can be considerably more efficient than always performing the bisec-
tion search across the whole table. The improvement in efficiency
is most noticeable in applications which use extensive calibration
tables. However, if successive readings are totally unrelated, this
method will take approximately twice as long (on average) to find
the required interpolation point.

The Search() function will work only on tables in which the x
values are arranged in ascending numerical order, but it can easily
be adapted to accommodate descending tables.

Interpolation

There are many types of interpolating function – the nature of each
application will dictate which function is most appropriate. The
important point to bear in mind when selecting an interpolating
function is that it must be representative of the true form of the
response curve over the range of interpolation. The present discus-
sion will be confined to simple polynomial interpolation which
(provided that the tabulated points are close enough) is a suitable
model for many different shapes of response curve.

Any n adjacent calibration points describe a unique polynomial
of order n � 1 that can be used to interpolate to any other point
within the range encompassed by the calibration points. Lagrange’s
equation describes the interpolating polynomial of order n � 1

380 PC interfacing and data acquisition

passing through any n points, ⊲x1, y1⊳, ⊲x2, y2⊳ Ð Ð Ð ⊲xn, yn⊳:

P⊲x⊳ D ⊲x � x2⊳⊲x � x3⊳ Ð Ð Ð ⊲x � xn⊳

⊲x1 � x2⊳⊲x1 � x3⊳ Ð Ð Ð ⊲x1 � xn⊳
y1

C ⊲x � x1⊳⊲x � x3⊳ Ð Ð Ð ⊲x � xn⊳

⊲x2 � x1⊳⊲x2 � x3⊳ Ð Ð Ð ⊲x2 � xn⊳
y2 C Ð Ð Ð

C ⊲x � x1⊳⊲x � x2⊳ Ð Ð Ð ⊲x � xn�1⊳

⊲xn � x1⊳⊲xn � x2⊳ Ð Ð Ð ⊲xn � xn�1⊳
yn ⊲9.14⊳

The Lagrange polynomial can be evaluated at any point, xi, where
1 � i � n, in order to provide an estimate of the true response
function y⊲xi⊳.

The interpolating polynomial should not be confused with the
best-fit polynomial determined by the least-squares technique. The
(n � 1)th order interpolating polynomial passes precisely through the
n reference points; the best-fit polynomial represents the closest
approximation that can be made to the reference points using a
polynomial of a specified order. In general the order of the best-fit
polynomial is considerable smaller than the number of data points.

It is usually not advisable to use a high (i.e. greater than about
fourth or fifth) order interpolating polynomial either, unless there
is a good reason to believe that it would accurately model the real
response curve. High order polynomials can introduce an excessive
degree of curvature. They also rely on reference points that are
more distant from the required interpolation point and these are, of
course, less representative of the required interpolate.

The other important drawback with high order polynomial inter-
polation is that it involves quite complex and time-consuming
calculations. As the interpolation usually has to be performed in
real time, we are generally restricted to using low order (i.e. linear
or quadratic) polynomials. The total execution time can be reduced
if the calibration reference points are equally spaced along the x

axis. We can see from Lagrange’s equation that, in this case, it would
be possible to simplify the denominators of each term and thus to
reduce the number of arithmetic operations involved in performing
the interpolation.

In order to avoid compromising the accuracy of the calibration,
it is necessary to ensure that sufficient calibration reference points
are contained within the look-up table. The points should be more
closely packed in regions of the response curve that have rapidly
changing first derivatives.

Scaling and linearization 381

If the points are close enough, we can use the following simple
linear interpolation formula

y D ⊲x � xi⊳⊲yiC1 � yi⊳

⊲xiC1 � xi⊳
C yi ⊲9.15⊳

A number of other interpolation techniques exist and these may
occasionally be useful under special circumstances. For a thorough
discussion of this topic the reader is referred to the texts by Fröberg
(1966) and Press et al. (1992).

9.5 Interpolation vs. power-series polynomials

Interpolation can in some circumstances provide a greater degree
of accuracy than linearization schemes that are based on the best-fit
polynomial. A 50-point look-up table will approximate the response
of a type-T thermocouple to roughly the same degree of accuracy as
a 12th order polynomial. It is relatively easy to increase the precision
of a look-up table by including more points, but increasing the order
of a linearizing polynomial can be less straightforward because of
the effect of rounding errors.

Interpolation using a look-up table can also be somewhat faster
than evaluating the best-fit polynomial, particularly if the PC is
not equipped with a numeric co-processor. The speed advantage
obtained with look-up tables will, of course, depend upon the
number of points in the table and the order of the polynomial.
The time required to evaluate a power-series polynomial increases
in proportion to its order. Using the Search() function in Listing 9.5,
the total search time required prior to performing an interpolation
increases approximately in proportion to log2⊲�⊳ where � represents
the average number of elements to be searched. As mentioned previ-
ously, if successive readings are correlated, � can be quite small. As a
rough rule-of-thumb, if a numeric coprocessor is used, it takes about
the same length of time to evaluate a 12th order polynomial as to
search a 25-point table and then perform a linear interpolation. If a
co-processor is not available, the balance will tend to shift in favour
of the search-and-interpolate technique.

9.6 Interactive calibration programs

The users of a data-acquisition program will probably be familiar
with the measurements that it will be required to make. Indeed, it
is quite possible that the software will have been commissioned in

382 PC interfacing and data acquisition

order to computerize some process that the operator has already
been carrying out for a number of years. The calibration procedure
is not generally related to the logic of the data-acquisition process
and, consequently, the end user is probably less likely to under-
stand the steps involved in calibration than any other part of the
measuring system. Calibration often requires quite a high degree
of operator involvement. Any mistakes will have the potential to
introduce serious errors into the measuring system and may disrupt
the system’s control functions.

For these reasons, calibration can be one of the most problematic
aspects of a data-acquisition system and it is worthwhile making
the calibration software as efficient, informative and easy to use as
possible. This benefits not only the end user but also the supplier in
fewer maintenance call-outs and telephone queries.

From the programmer’s point of view, the simplest calibration
routines are those which require the user to calculate scaling factors,
offsets or polynomial coefficients and to type in these values for
subsequent storage in a data file. Clearly, this procedure can be quite
error prone. A more satisfactory alternative it to produce an interactive
calibration program which continuously displays the output from
the sensor and, when commanded to do so, samples the ADC
output and automatically calculates scaling factors or linearization
parameters. This reduces the operator’s job to simply adjusting the
sensor input and/or the signal-conditioning (e.g. amplifier gain) and
then selecting the appropriate menu options on the PC. Whatever
method is chosen, it cannot be overemphasized that the calibration
program should be as simple to use as possible, and should minimize
the potential for operator errors.

The user interface

The computer should, as far as possible, oversee the sequence of
events that occur during the calibration process. The software might,
for example, require the transducer’s zero offset to be measured
first, and a second calibration reference point to be obtained at the
transducer’s full-scale setting. It is, however, advisable to provide the
operator with the option to abandon the calibration procedure and
to either restart the whole process or to restore the scaling factor
and other calibration parameters to their original values.

The calibration program’s display screen should be as clear and
informative as possible. Large digital displays might be used to
indicate the current scaled and unscaled sensor readings, while
analogue bar charts can provide a more graphic representation.
Different colours can be used for the scaled and unscaled displays

Scaling and linearization 383

in order to enhance clarity. It is sometimes useful to change the
colours of the displays whenever the input is scaled or linearized,
thereby shifting the visual emphasis from one set of indicators to
the other. Other useful facilities might include a noise-monitoring
facility to ensure that the level of noise present will not compromise
calibration accuracy.

The calibration software should be designed to trap operator
errors wherever possible. It should, for example, detect when obvi-
ously incorrect inputs are applied to the transducer. Clear on-screen
instructions, information panels and help screens are of considerable
value. Diagrams or other pictorial representations of the positions or
status of the various sensors can also be a useful aid to understanding
the calibration process.

9.7 Practical issues

Calibration is usually a straightforward matter if easy access is avail-
able to the sensor and if it is possible to use the appropriate type
of measuring jig or calibration reference device. In many situations,
however, the transducer forms part of a larger system – perhaps part
of a machine working on a production line – and in these cases
the transducer may have to be calibrated in situ. This often intro-
duces a number of practical difficulties into the calibration process.
By designing the software to take account of these difficulties it is
possible to greatly simplify the procedures involved in calibration. A
few of the relevant considerations are described below.

Flexible calibration sequence

At its simplest, prime calibration involves the following steps:

1. Sample the output of the measuring system with zero input.
2. Sample the output of the measuring system at (or near to) full

scale.
3. Calculate the offset and scaling factor from the two previous

calibration points.

Each of these steps may be performed in response to specific inputs
from the user (e.g. a key press, menu selection or mouse click).
Obviously, three-point and multiple-point calibration schemes would
require more than two reference points to be obtained, but the basic
principle still applies.

It should be borne in mind that, in multi-channel systems, there
may be a correlation between the readings obtained with two or

384 PC interfacing and data acquisition

more of the sensors – i.e. the various sensors might actually measure
different aspects of the same physical process or object. For example,
consider a system which uses 100 LVDTs in a gauging jig to measure
the displacement at different locations on the surface of some
manufactured component. It might be difficult to individually set
each transducer to its zero position and then to its full-scale position
using a set of gauge blocks. A more practical method would be to
place two dummy components, or spacers, inside the jig: one to
define each of the two calibration reference points. In this case,
the zero-level spacer would be inserted, to set all transducers to
their respective zero levels, and step 1 would be carried out for each
transducer in turn. A similar sequence would then be performed
with a different spacer for step 2 and so on.

The calibration program should not, in this case, assume that the
whole calibration procedure will be completed for each transducer
in turn. The user should be allowed to change sensor channels at
any stage between the various calibration steps, in order to begin
calibrating another channel. At some later time the user should then
be able to resume calibration of the original channel.

Offset correction

As mentioned previously, there are many possible sources of offset,
some of which might change over time or with successive repetitions
of a measuring process. Offsets can be introduced by factors such as
tare weights of containers or other variables which affect the baseline
of the measured quantity.

Most measuring systems should be recalibrated periodically. Fortu-
nately, the sensitivity and linearity of many systems remains fairly
constant, and in these cases, it may be sufficient to check only for
variations in the offset in each channel. This facility is essential in
dimensional gauging systems such as that described in the previous
section. In these systems a master or reference component is period-
ically placed in the gauging jig so that the software can measure and
subtract out any offsets that might be caused by thermal expansion
or sensor movement etc.

If possible, the data-acquisition program should repeatedly check
for any drifts that might have occurred in the zero offset of each
sensor. This is most easily accomplished in systems which perform
repetitive tasks (e.g. component assembly machines on a production
line) where the measurand returns to some known starting value
after each measuring cycle is completed. This value can be compared
on successive cycles in order to detect and correct for any changes
in offset.

Scaling and linearization 385

Generating a precise measurand

Prime calibration requires that the output of the measuring system
is determined for a number of precisely known values of the
measurand. However, it is sometimes impracticable for the sensor’s
input to be set precisely to any fixed value (e.g. the full-scale limit of
the measuring system). In such cases it is clearly undesirable for the
calibration software to require any specific value of the measurand
to be applied, and the operator should be allowed some leeway in
selecting or adjusting the calibration reference levels.

The following example may illustrate this point. Suppose that
an LVDT displacement transducer is attached to a hydraulic arm.
While the operator can accurately measure the displacement of the
transducer’s armature, it might be difficult to adjust the position
of the hydraulic arm with the degree of precision needed to bring
about any specific displacement. If, during a calibration sequence, a
reference point must be obtained near to the end of the transducer’s
range, it would be preferable for the software to allow the operator
to set the calibration point anywhere within, perhaps, 90–100 per
cent of full scale, rather than demanding that the transducer is set
precisely to full scale. Provided that the operator enters the value of
the calibration point actually used, the software should be able to
account for the difference between the ideal and actual values of the
measurand when calculating the scaling factor.

Remote indication and control

Interactive calibration is normally straightforward provided that the
PC is located close to the measuring system, but if the sensors
happen to be positioned in a separate room or high up on the
support pillars of a bridge, for example, this procedure can be
highly impracticable. The operator may be unable to see any visual
display of the sensor’s output on the computer’s screen. It may also be
difficult to continually move between the sensor and PC during the
calibration process. However, with a little foresight, the programmer
or system designer can circumvent such difficulties with features
such as extra large displays, audible indicators, remote keypads or
remote numeric indicators or simply by using a portable PC.

Security

It is often important to restrict access to the measuring system’s cali-
bration facilities. This can be achieved by means of password protec-
tion schemes and file encryption techniques. In some applications

386 PC interfacing and data acquisition

security can be enhanced by appropriate choice of operating system.
A discussion of these topics is unfortunately beyond the scope of this
book, but Grover (1989) provides a useful overview of cryptography
and software security issues in general.

Traceability

It is quite often necessary, for quality assurance purposes, to record
precise details of every calibration performed. The identity of the
operator who performed the calibration procedure might have to
be recorded along with the calibration data itself. It is also usually
essential to record which instrument or gauge has been used as the
prime calibration reference so that the whole calibration is traceable
to a higher level standard. Collet and Hope (1983) discuss the subject
of traceability in greater detail.

10 Basic control techniques

Many machines and industrial processes are not inherently self-
regulating. These systems usually require some form of control
mechanism in order to maintain their operational parameters within
predefined limits. A control system serves two purposes. It can
preserve some steady operational state or it can be used to facilitate
adjustments to the state of the process. Many data-acquisition systems
are required to generate control signals in order to, for example,
start or stop a process or to implement dynamic regulation.

This chapter introduces some simple software techniques that can
be used as a basis for controlling actuators and peripheral devices
via the PC. The following material is presented in the context of
industrial process control systems, but much of what is said can
also be applied to systems for use in laboratory, civil engineering,
domestic or other environments.

It is not intended to cover the theory of control systems in
any depth. Nor shall we discuss choosing and designing control
systems – this is the province of the control engineer. Instead, this
section is presented from the point of view of software engineers
needing to incorporate control facilities within their data-acquisition
programs. The design of control systems is a complex subject which
cannot be covered in the space available. Personnel charged with
such tasks may need a more detailed understanding of control
theory than it is possible to impart here and are advised to consult
an appropriate specialist text.

10.1 Terminology

While I have attempted to avoid unnecessary jargon, the use of
some process-control terminology inevitably streamlines the text. It
is, therefore, helpful to define a few basic terms before proceeding.

388 PC interfacing and data acquisition

Generally, a process is some system which we wish to control. It might
be a manufacturing process, involving a series of discrete operations
such as moving a component into place, lowering a hydraulic ram,
applying a quality control marker and then ejecting the component.
Alternatively it may consist of some continuous activity such as
a chemical reaction. The reaction rate may be dependent upon
parameters such as temperature and reactant concentration which
have to be accurately and continuously regulated.

Process variables are those quantities that affect the balance of the
process and, therefore, its end result. The process will, in general,
be characterized by several variables. Some will have a greater effect
than others on the outcome of the process, and it is generally
these variables that are regulated by the control system. Any process
variable that is directly manipulated by a control system is known
as a controlled variable. There may be other process variables that
are not directly controlled. As they can also affect the balance of
the process, these uncontrolled variables characterize a process load
which will affect the way in which the control system maintains the
process within desired operating tolerances.

When a process receives some form of control signal, there will be a
delay before it responds. This process lag may be due to several factors.
In a process involving a continuous chemical reaction, for example,
the process lag may arise from the thermal inertia of a heated
reaction vessel or from the time taken for reactants to flow in or out
of the vessel. Similarly, actuators and control mechanisms do not
respond instantaneously. Heating elements or mechanical devices
such as valves generally take some time to respond to changes in
their control signal and they have an associated controller lag. Sensing
systems also have finite response times (see Chapter 3), and this
introduces a measuring lag. As will become clear later in this chapter,
lag times have a profound effect on the dynamic behaviour of control
systems.

10.2 An overview of control systems

Control signals can be issued independently of the current or
previous state of the process. This type of control is generally referred
to as open-loop control as it does not involve any feedback from the
process. In closed-loop systems, on the other hand, the PC measures
one or more process variables and then interprets these measure-
ments in order to decide what control signals should be transmitted
back to the process. Any changes in the process brought about by the
control signal will then be reflected in subsequent measurements

Basic control techniques 389

of the process variables. The whole sample-and-control cycle is
repeated in order to maintain the variable(s) within some desired
operating range.

A variety of different closed-loop systems are used for controlling
industrial processes. These fall into two categories: discontinuous
and continuous. Discontinuous controllers respond to changes in
the process variable by switching the control element (i.e. a device that
directly influences the process) from one discrete state to another.
A discontinuous temperature controller might respond to a fall in
temperature by switching on a heater. When the temperature rises
sufficiently, the heating element is then switched off again. Contin-
uous controllers provide a more gradual response and generally are
capable of reacting proportionately to both large and small changes
in the process variable.

Figure 10.1 illustrates continuous and discontinuous control
loops. Both use a PC to convert measurements of the process variable
into control signals. The main differences between the two systems
arise from the types actuator and PC interface used. The controlling
software algorithms will, of course, also differ considerably. These
will be discussed in detail in the following pages.

The control element shown in Figure 10.1 is usually an integral
part of the process itself. It may be a valve which controls the flow of
reactant, or a heating element within a furnace. The actuator, on the
other hand, is the mechanism which drives the final control element.
It may be an electric motor, solenoid or a hydraulic or pneumatic

(a)

Process

Sensor S/C ADC
PC and
control

software
DAC S/C

Analogue
actuator

Control
element

Controlled
variable

Process
variable

Process
variable

Process

Sensor S/C ADC
PC and
control

software
S/C Control

element

(b)

Controlled
variable

Digital
output

Digital
actuator

Figure 10.1 Schematic diagrams of PC-based control loops: (a) continuous

control and (b) discontinuous control

390 PC interfacing and data acquisition

device. It may even consist of a simple relay or electrical circuit which
regulates the voltage supplied to the control element (e.g. a heater).
Some actuators provide the capability for continuous variation over
their working range, while others provide only two-position control.

10.3 Programmable logic controllers

In many cases, the PC drives actuators via analogue or digital outputs
and signal-conditioning circuits. In other instances, the process may
require a dedicated controller to be used. This may take several
forms. Electronic controllers are commonly used to implement
continuous analogue control loops. Discontinuous control systems
are often built around digital microprocessor-based controllers.
These devices, which may be programmed to suit a wide variety
of processes, are known as Programmable Logic Controllers (PLCs).
Although they are most often used for discrete state process control
or machine control, some PLCs have the capability to operate as
continuous controllers.

In certain applications, the PC may be required to interface
to a PLC. The PLC then directly controls the process while the
PC acts in a supervisory role, perhaps monitoring certain process
variables, dynamically adjusting set points or logging data for subse-
quent quality-assurance checks. Communications may be established
between the PC and PLC by means of specially designed PLC commu-
nications modules which use an RS-232, RS-422 or RS-485 link and
a vendor specific communications protocol (such as Allen-Bradley’s
DataHighwayC). Alternatively, status information and commands
may be passed between the PC and PLC via relays and suitable digital
I/O ports as indicated in Figure 10.2.

Like the PC, PLCs are sequential devices that execute their
control programs one instruction at a time. This means that a PLC
does not provide an instantaneous response to its inputs. Neither
does it respond simultaneously to two or more inputs. The PLC
program executes in a continuous loop, scanning its inputs and then
evaluating and updating its outputs repeatedly. The loop-execution
time varies between different models of PLC and, of course, also
depends upon the nature of the control program and the number
of I/O channels which have to be processed. Typical loop-execution
times are of the order of 2 to 50 ms. Careful programming is required
to circumvent problems associated with PLC response times. The
system designer must take account of the effect of the PLC’s scan
time on the control system. He must also be aware of the poten-
tial problems which the inherent time lag might introduce when
interfacing to the PC.

Basic control techniques 391

PLC

Input
module

Communications
module

Communications
adaptor

Output
module

RS-232/422/485

Digital
input

Digital
output

PC

DAC ADC

PROCESS

Figure 10.2 A PLC-based control system using the PC in a supervisory role

10.4 Safety and reliability of control systems

Before discussing the elements of a control system, we should
mention the most important consideration: safety. Many processes
are intrinsically hazardous. The consequences of a control-system
failure and the ensuing loss of control can sometimes be catastrophic,
resulting, at best, in lost production time or at worst in injury or

392 PC interfacing and data acquisition

death. A PC-based control system is founded on a number of complex
interacting subsystems which may provide a significant potential for
failure. Although various steps can be taken to make the software
element of such systems as robust as possible (see Chapter 2), it is
still often the most unreliable element. Software-based controllers
should not be used in isolation in potentially hazardous or safety-
critical applications. Suitable backup mechanisms, processes and
quality checking schemes should always be employed to ensure
safety in the event of failure of the control system. Determining the
types of safety feature appropriate for any given system may require
a detailed knowledge of the dynamic behaviour of the process and
of the control system itself. This task should be undertaken only by
a suitably qualified process engineer.

The following is a list of some basic (and, hopefully, obvious)
points which you should bear in mind when programming a PC-based
control system.

ž Consider the state of the controller’s output(s) when power is first
applied or when a process is started up. Assess how this will affect
the subsequent stability of the system.

ž All inputs on which controller calculations are based should be
thoroughly range checked in order to prevent invalid data from
corrupting the control signal.

ž The controller outputs may also be range checked, helping to
guard against the effects of errors in the control algorithm.

ž When testing the system, always attempt to use inputs represen-
tative of the actual operational characteristics of the process to
be controlled and check the system thoroughly under extreme
conditions and with full-scale or out-of-range inputs.

ž Be wary of accumulating significant rounding errors from repeated
floating-point calculations. This is particularly important when
using iterative control algorithms where any calculation errors
have the potential to be multiplied many times over. It is prudent
to test the software for stability over periods comparable with the
expected operating timescale of the system.

10.5 Discontinuous control systems

Because of their simplicity and relatively low cost, discontinuous
controllers are popular in a broad range of control applications.
As described previously, they operate by simply switching some
operational parameter (such as the power supplied to a heating
element) between two or more discrete states. Such systems are
very amenable to digital control using the PC. A process variable is

Basic control techniques 393

monitored via an analogue-input channel interfaced to the PC. This
provides a stream of data which is passed to a software comparator
(see below) or similar algorithm. The resulting Boolean data is then
used to drive the control element via a suitable digital I/O port and
actuator.

Most discontinuous control systems operate in a two-position mode
offering only two possible states. These states may, for example,
determine whether or not power is applied to a heater, or whether
a motor is switched on or off etc. Such systems do not respond to
variations of the process variable between the two switching levels:
they react only when the variable exceeds or falls below one or other
of the levels. Other types of discontinuous controller employ three
or more discrete switching levels. These might, for example, be used
to drive a control element to its zero, halfway or full-scale position.

Software comparators

These are simple routines which compare an analogue value (typi-
cally a sensor reading) with one or more predefined trip levels (or
set points as they are sometimes known). The comparator routine
generates a Boolean output (i.e. an integer value 0 or 1) depending
upon the value of the analogue input in relation to the trip level(s).
The comparator’s output may then drive a discontinuous control
element via a suitable digital output port and actuator.

Comparators generally possess either one or two trip levels.
Facilities are often incorporated in the software to allow the trip levels
to be adjusted by the end user. Single-trip comparators are suitable
for virtually any application where only an upper or lower limit need
be applied. They are widely used in discontinuous control systems.
They are also often used for starting or stopping a data-acquisition
run when data exceeds some predefined level. In addition, they may
be applied to elapsed-time readings in order to trigger certain oper-
ations or events at appropriate times. In the case of comparators that
have a pair of trip levels, the Boolean output might, for example,
be set to a 0 when the analogue value falls between the levels, and
to 1 when it falls outside. These are used principally for applying
tolerance bands to sensor readings (e.g. in pass/fail testing).

Hysteresis and stability

When an analogue signal is close to one of the trip levels, small
variations in the signal (e.g. noise) may cause a series of rapid
changes in the comparator’s output. This is often problematic. If
the comparator is used to drive a discontinuous control system it will
cause the actuator and control element to repeatedly cycle between

394 PC interfacing and data acquisition

their ‘on’ and ‘off’ conditions. Depending upon the nature of the
control system, such cycling can result in poor control or excessive
wear of the actuator or control element. Another example where
noise may cause problems is in real-time displays. If a comparator
is used to control the colour of an on-screen digital display or
annunciator, any rapid changes in the comparator’s output will
cause the display to flicker or appear unstable.

These problems can be easily circumvented by introducing a
degree of hysteresis into the comparator. Hysteresis is a lag between
a change in one variable and some consequent change in another
variable – i.e. a lag between cause and effect. It influences the
behaviour of a system such that changes occurring in one vari-
able are affected by a ‘memory’ of the previous state of the system.
Hysteresis often manifests itself in real devices or processes by
preventing a state change induced by a certain sequence of condi-
tions from being reversed by simply applying the opposite sequence
of conditions.

We can incorporate hysteresis into software comparator routines
as follows. A neutral zone (or dead band) is applied to each trip
level in such a way that the comparator’s output does not change
state while the input to the comparator is within the dead band. This
is illustrated in Figure 10.3 and may be implemented in software
as shown in the following code fragment (which is meant to be
executed repeatedly within a loop).

Output = PreviousOutput;

if (Input > TripLevel + Deadband) Output = 1;

if (Input < TripLevel - Deadband) Output = 0;

PreviousOutput = Output;

Note that hysteresis results in the loss of some sensitivity. The
technique must be applied with care if the accuracy of the
comparator or control system is not to be adversely affected. It is
obviously important, when selecting the width of the dead band(s), to
achieve a sensible compromise between stability and responsiveness.

It should be remembered that, although it can enhance stability,
hysteresis cannot guarantee a smooth controller action. By their
very nature, discontinuous controllers affect the controlled variable
in a series of discrete steps. Consider, for example, a two-position
controller used to regulate the temperature of a furnace. When
the temperature rises above some upper limit (equal to the desired
temperature plus dead band), the controller switches off the heating
element. The temperature then begins to fall until it reaches a
predefined lower limit (desired temperature minus the dead band),
at which point the controller switches the heater on again. The

Basic control techniques 395

procedure is repeated indefinitely, thereby allowing the temperature
to cycle between upper and lower operational limits as shown in
Figure 10.4.

The presence of any lags in the system mean that an instantaneous
response is generally not possible. This will result in cyclic variations
of the controlled variable that will exceed the controller’s switching
levels. One can often compensate for such a behaviour by simply
reducing the width of the dead band, although this will tend to make
the system more susceptible to noise.

Input
signal

Trip level

Output
signal

(Boolean)

1

0

Dead bands

Time

Time

Figure 10.3 Implementing hysteresis in comparators by means of dead bands

Heater on

Heater off

Overshoot

Set point

Lower switching
limit

Upper switching
limit

Te
m

p
e
ra

tu
re

Time

Set point
−dead band

Set point
+dead band

Figure 10.4 Temperature cycling induced by a two-position discontinuous

control system

396 PC interfacing and data acquisition

10.6 Continuous control systems

Continuous control systems maintain a process variable at or near
some desired value by providing a smooth, rather than stepwise,
change in the control signal. The process is monitored via an
appropriate form of sensor, and a series of digitized and scaled
sensor readings is then passed to a continuous-control routine within
the software. The output from this routine is scaled, and used to
regulate some aspect of the process via a DAC, actuator and control
element as indicated previously in Figure 10.1.

A key feature of properly tuned continuous control loops is their
ability to provide a timely and proportionate response to process
load changes and to transient disturbances. Very small, or slowly
changing, deviations can be corrected by a correspondingly small
change in the control signal. Many (but not all) continuous control
loops are also characterized by the absence of any oscillation in the
process variable.

The central question which we must address is: what form does the
continuous control signal take and how should it react to changes
in the measured variable? There are a number of general-purpose
continuous control techniques. Most of these are based on the
concept of the error, E, in the process variable. This is the measured
deviation of the variable from its desired operating value (i.e. the set
point) and is usually expressed as a fraction of the range of allowable
input values:

E D v � vsp

vmax � vmin
⊲10.1⊳

In this equation, v represents the value of the controlled process
variable, vsp is the set point (i.e. the desired ideal value of v) and vmin

and vmax represent the limits of the full-scale range of the variable.
The error, E, may take either positive or negative values. The signal
generated by the control unit (i.e. the PC) is related to the current
value of E and/or the history of E values.

Proportional–integral–derivative (PID) control

Continuous control systems generate signals which are some contin-
uous function of E. Often this function is a simple proportionality
(i.e. / E) or is proportional to the integral or derivative of E with
respect to time. Proportional, integral and derivative control modes
each have specific advantages and disadvantages. Combinations of
these three terms are normally used in real control applications.

Basic control techniques 397

This not only provides the cumulative benefits offered by each term,
it also helps to negate some of the drawbacks of using certain modes
(i.e. terms) in isolation. The most generally useful (and widely used)
type of continuous control system employs all three modes. This
PID, or three-term, controller can be easily modelled in software to
allow the PC to manage a variety of process-control applications. The
following equation illustrates how a PID controller is formulated.

y D PE C PI
t

0

E dt C PD
dE

dt
⊲10.2⊳

Here, y is the controller output and is dimensionless; t is the
elapsed time, and P, I and D are constants which are chosen
to match the characteristics of the control loop to those of the
process being controlled. P is known as the proportional gain and
is also dimensionless. It controls the scaling of all three terms in
the equation. Its sign determines whether the controller provides
a direct or reverse action (i.e. whether y increases or decreases
in response to an increasing error, E). The contribution supplied
by the integral term is determined by the magnitude of the reset
rate constant, I. The dimensions of I are time�1. This constant is
sometimes expressed in terms of its inverse, known as the reset time
or integral time, T⊲DI�1⊳. Similarly, the derivative time constant, D,
governs the effect of the derivative term. D has dimensions of time.

Note that, while E remains zero, the contribution from each of
the three terms, and hence the controller’s output, is also zero. In
a practical application this operating point may have to be offset
(by adding an appropriate constant) and the controller’s output
scaled in order to correctly drive the actuator and control element
via a DAC. The offset and scaling factors used will be specific to
individual processes and control-loop implementations, and will be
disregarded in the following discussion.

Programming a PID algorithm

The integral and differential terms in Equation 10.2 can be approx-
imated by the following equation, which may be used with a series
of discrete samples. In this equation the n subscript represents the
latest sample or calculation, while the i subscript is used simply as
an index over which to sum values from all previous iterations of the
control algorithm.

yn D PEn C PI

2

iDn
∑

iD1

⊲Ei C Ei�1⊳⊲ti � ti�1⊳ C PD
En � En�1

tn � tn�1
⊲10.3⊳

398 PC interfacing and data acquisition

Here, a simple linear approximation has been used to estimate the
derivative term. The integral term is evaluated using the well-known
trapeziodal rule. These approximations should be adequate for
most control applications, provided that the error is sampled at a
rate of more than about ten times the maximum frequency of the
input signal. You should, however, assess the accuracy of such an
approximation and its potential consequences in your own particular
application. If in doubt, it is generally wise to use a sampling rate
as high as reasonably achievable, which will help to minimize any
errors inherent in the approximation. Indeed, it is a requirement
of digital control systems in general (even those without an integral
term) that any lags introduced by the controller (in our case, the
software) should be as small as possible and this in practice means
at least an order of magnitude less than the process lag.

You should also bear in mind the potential effects of timer accuracy
and granularity on integral and derivative calculations. Fortunately,
most process-control applications require sampling to be carried out
at quite low frequencies – often once every few seconds or even every
few minutes. In most cases, this rate can be easily accommodated
on the PC without incurring any serious problems associated with
timing inaccuracies.

Listing 10.1 illustrates how Equation 10.3 may be implemented.
The PID calculation is performed by repeatedly calling the CalcPID()

function and passing a new sample of the process variable, V, together
with the time, T, at which the sample was taken. The time values may
be derived from the PC’s system clock, RTC or any other convenient
source. The controller output, Y, is then calculated and passed back
to the caller. Each V value should be obtained from an appropriate
sensor and suitably scaled and/or linearized before being passed to
the CalcPID() function. Similarly, scaling of the controller output, Y,

Listing 10.1 A simple PID algorithm

/* PID Variables - The following must be initialized before starting PID */

unsigned int FirstLoop; /* Flag for first loop */

double P; /* Proportional gain constant */

double I; /* Integral (reset rate) constant */

double D; /* Derivative time constant */

double VSP; /* Set point */

double VMax; /* Maximum input */

double VMin; /* Minimum input */

double YMax; /* Maximum output */

double YMin; /* Minimum output */

/* PID Variables - The following need not be initialized */

double Integral; /* Summation for integral term */

double LastE; /* Last error value */

double LastT; /* Last time value */

Basic control techniques 399

Listing 10.1 (continued)

void

CalcPID(double V, double T, double *Y)

/* This function calculates the PID controller output, Y, for the new value of

the variable V at time T. The first time that this function is called it

returns Y = 0.

*/

f
double E;

double DeltaT;

/* Check V is within its specified limits */

if (V > VMax) V = VMax;

if (V < VMin) V = VMin;

/* Calculate the error, E */

E = (V - VSP) / (VMax - VMin);

if (FirstLoop)

f
Integral = 0;

*Y = 0.0;

FirstLoop = 0;

g
else f

DeltaT = T - LastT;

Integral = Integral + DeltaT * (E + LastE);

*Y = P * (E + I * Integral / 2.0 + D * (E - LastE) / DeltaT);

g

/* Clip controller output to required range */

if (*Y > YMax) *Y = YMax;

if (*Y < YMin) *Y = YMin;

/* Update record of last E and T values */

LastE = E;

LastT = T;

g

will also be necessary before outputting the signal via a DAC to the
actuator and control element.

A number of global variables are declared at the beginning of
the listing. Several of these must be initialized before calling the
CalcPID() function for the first time. The P, I and D variables are
simply the PID constants defined previously. VSP is the set point for
the process variable. VMax and VMin specify the range of the process
variable (they are the same as vmax and vmin in Equation 10.1), while
YMax and YMin define the limits of the controller’s output range. The
FirstLoop variable should also be initialized to 1 before commencing
a sequence of PID calculations. This variable acts as a flag to prevent
the CalcPID() function from attempting to perform a PID calculation
the first time that it is called. The Integral, LastE and LastT variables

400 PC interfacing and data acquisition

are initialized automatically by CalcPID() and may be left undefined
by the caller.

You should ensure that the units of all variables are consistent.
The derivative time, D, and the sample time, T, have dimensions of
time and should be allocated units of minutes or seconds. The reset
rate constant, I, should be expressed in minutes�1 or seconds�1 as
appropriate. Listing 10.1 can be modified in practical applications to
incorporate the global variables as fields within a structure or object.
By allocating a separate instance of the structure (or object) to each
process variable, the same function may be used to operate several
PID loops.

The technique employed for the PID calculation will accommo-
date slight variations in the sampling rate (provided that those
variations are accurately reflected in the T values passed to the
CalcPID() function). It also employs the trapezoidal method of calcu-
lating the integral term. However, if we fix the sampling rate and
employ a rectangular, rather than trapezoidal, approximation for the
integral (i.e. each discrete panel in the E⊲t⊳ function is approxi-
mated by a series of rectangles of height E⊲ti⊳) it is possible to greatly
simplify calculation of the controller output. In this case, the nth
output is given by:

yn D P En C I

iDn
∑

iD1

Ei1t C D

(

En � En�1

tn � tn�1
⊲10.4⊳

where 1t is the time interval between successive samples. An equation
of the same form can also be written for the controller output
obtained at the previous stage, yn�1. Then by subtracting the expres-
sion for yn�1 from that for yn we obtain:

yn D yn�1 C En P C PI1t C PD

1t

� En�1 P C 2D

1t
C En�2

PD

1t
⊲10.5⊳

The terms in brackets consist simply of constants and can be eval-
uated before commencing the PID calculations. This formula is
often used in computer-based PID controllers as the basis of an
iterative control method. It is somewhat simpler than Equation 10.3
and requires calculation of only the change in controller output at
each step. It is a simple matter to adapt Listing 10.1 for use with
Equation 10.5.

There is an obvious, although sometimes overlooked, considera-
tion when designing a PC-based continuous control system. The

Basic control techniques 401

discrete nature of the digitization processes inherent in reading
samples and outputting control signals may limit the accuracy of the
control loop. This can prevent the system from achieving a steady
equilibrium (E D 0) state and can cause the controlled variable to
fluctuate by an amount equivalent to the combined resolution of the
measuring and control subsystems.

Characteristics of the P, I and D terms

It is instructive to briefly examine the contribution that each of the
three PID terms makes to the controller’s output. The proportional
term (also known as the modulating term) provides a smooth linear
response to changes in E. As shown in Figure 10.5, the proportional
response curve saturates at the extremities of the controller’s output
range. Thus, there is a limited range of E values – known as the
proportional band – over which proportional control is maintained.
In the absence of any contribution from the other terms, an error
value of E D 0 is usually chosen to generate an output halfway along
the controller’s range.

FS

Proportional band

Saturation

Slope = P

Error (E)

FS/2

C
o
n
tr

o
lle

r
o
u
tp

u
t

(y
)

0
0

Figure 10.5 Contribution from the proportional term

402 PC interfacing and data acquisition

The slope of the curve is simply the proportional gain constant, P,
and may be either positive or negative (a negative slope is shown).
Larger values of P will lead to a smaller proportional band. They can
also give rise to oscillations in the controlled variable. If P is too large,
it can cause the controller’s output to overshoot the desired setting,
which may result in cycling of the process variable. An element of
proportional control is, however, usually desirable as it gives a one-
to-one correspondence between the error and controller output and
has an effect which is independent of the frequency at which the
error changes.

The contribution from the integral term changes at a rate propor-
tional to E. It increases (or decreases) steadily during periods when
E is non-zero. Positive errors cause the output to increase while nega-
tive errors cause it to decrease. The longer that E deviates from zero,
the greater will be the controller output. The inverse of the reset rate
constant, I, is actually the time taken for the integral contribution to
duplicate the proportional output. The integral term is capable of
providing a response to large errors and has a greater effect on low
frequency variations in E. It is extremely useful in control systems
that are subject to sizeable load changes. Without this term, a large
proportional gain would be required in order to maintain E within
some desired range, and this may induce cycling of the controlled
variable.

While the integral term provides a slow response to long-term
trends, the derivative term responds quickly to transient disturbances
in the controlled variable. It supplies an initial response to sudden
changes in E which, if left unchecked, might quickly give rise to larger
deviations from the set point. For this reason the derivative mode
is also sometimes referred to as anticipatory control. An important
property of the derivative term is that it provides a degree of
damping. This helps to suppress oscillations that tend to occur when
a high proportional gain is used in systems with large process lags.

The derivative term cannot be used alone, because it always
provides a zero output when E remains constant. It does not reflect
the magnitude of E. A large but constant error would still give rise
to a zero derivative term. The derivative term will also accentuate
any noise present on the input signal, so steps should be taken to
minimize noise amplitude. Care should be taken when filtering the
input signal to ensure it does not excessively suppress any real high
frequency variations in the process variable.

The contributions made by each term, in response to a load
change and change in E, are illustrated in Figure 10.6.

The proportional mode exhibits one characteristic which
precludes its use, in isolation, in some PID systems. If the process load

Basic control techniques 403

Time

Time

Error (E)

Controller
output

(y)

Total

Integral

Proportional

Derivative

Figure 10.6 Contributions of the P, I and D terms

changes, this will induce a non-zero error, E. The controller’s output
will then automatically adjust to maintain a zero error. As we are
dealing with a semi-permanent load change, rather than a transient
disturbance, the level of controller output required to achieve zero
error will then be offset from its nominal (halfway) point towards one
end of its operating range, thereby asymmetrically truncating the
proportional controller’s operating range. The integral term helps
to eliminate the effects of this proportional offset. If a load change
occurs that would require a shift in controller output to maintain E
at zero, this shift can be provided (after a certain integration time)
by the integral term. This consideration is of most importance in PID
control systems implemented using separate electromechanical or

404 PC interfacing and data acquisition

pneumatic controllers. It is of less concern in computer-based PID
systems as the three terms are not individually constrained within
limited operating ranges.

The proportional and integral terms can be used in isolation
under certain circumstances. More useful, however, are the
combined proportional–integral (PI) and proportional–derivative
(PD) modes. The former tends to be suited to systems with large, but
slow, changes in process load. The PD mode is capable of dealing
with rapid changes in load. Equations 10.3 and 10.5, and Listing 10.1,
may be adapted for PI or PD control by setting the coefficient of the
unwanted term to zero.

Tuning PID loops: a brief overview

In order to provide a stable and responsive control mechanism,
control-loop characteristics must be matched to the dynamic
behaviour of the process. This requires PID loops to be properly
tuned by careful selection of parameters such as the sampling rate
and the P, I and D constants. Designing, tuning and maintaining a
control loop can be a complex task, requiring a detailed knowledge
both of the specific process and of control-loop optimization
techniques in general. This section does not attempt to describe
tuning techniques in any depth. The texts by Edgar (1996), Johnson
(1988) and Wightman (1972) provide a good introduction to these
and related topics. The intention here is to present an overview of the
operations and activities involved in control-loop optimization and
thus to enable the DA&C programmer to comprehend any related
facilities that may need to be incorporated in control software.

The transfer function

Any signal applied to the input of a control system will be modified
in some way before being fed back to the process. In general, this
modification incorporates two components: amplification and phase
shift. We can define a transfer function that embodies the frequency
dependence of both of these components. The transfer function of a
process and associated control loop is, in many cases, not amenable
to analytical representation. Empirical techniques must be employed
to assess the behaviour of the control loop.

The transfer function must be such that the controlled variable
remains stable at all frequencies. Instabilities arise if the gain and
phase shift of the transfer function at any one frequency are such
that the feedback signal from the controller tends to reinforce a
periodic disturbance. If this were to happen, the magnitude of
the disturbance (and, therefore, of the error E) would increase

Basic control techniques 405

unchecked. The parameters of the control system must be chosen
so as to prevent any such instabilities. They must also be chosen
to provide the best possible degree of control. The criteria used
for determining the optimum control conditions will vary to some
extent between different applications.

Response to a load change

Whenever a load change occurs, the control system should act to
restore the process variable to its set point. A stable, controlled
process variable may exhibit one of several types of behaviour in
response to a change in process load. The type of response depends
upon the parameters of the control loop and upon the process and
controller lag times.

The response of the controlled variable over time is of interest as
it provides a measure of the efficiency or quality of the control loop.
Oscillations or cycling of the process variables sometimes occur as
shown in Figure 10.7. This phenomenon arises when the system is
underdamped and it results in a periodic deviation of the process
variable about the set point. Oscillations may also occur when some
control systems are started up. An overdamped system on the other
hand will not oscillate when subjected to a load change, but it may
take an unacceptably long time to restore the variable to its set point.

It should be clear that, whether the system is underdamped,
overdamped, or critically balanced between the two regimes, it will

Load
change Underdamped

Critically
damped Overdamped

Time
0

Error (E)

Figure 10.7 Responses of a stable, controlled variable to a load change

406 PC interfacing and data acquisition

never be possible to instantaneously restore the process variable to its
set point. The best that can be done is to ensure that the control
loop is tuned, by careful selection of the P, I and D constants, so as to
provide the best possible degree of control. This means minimizing
the deviations of E from zero and also minimizing the time intervals
during which E falls outside the desired tolerance band.

PID tuning methods

Several methods can be used to determine the optimum values
of the PID constants. Some methods involve measuring the phase
shift and gain components of the transfer function over a range
of frequencies. The transfer function is then repeatedly modified
by adjusting the controller’s P, I and D constants until the desired
functional form is obtained. Other methods, however, involve a more
empirical approach in which the transfer function is not explicitly
determined.

One such technique, known as the open-loop response method,
may be used only in inherently stable and self-regulating processes.
This requires the control loop to be broken, by disconnecting the
controller’s output from the actuator and control element. A small
disturbance is then manually induced in the control signal and the
process variable should then change in response to the disturbance.
The rate at which it changes, the magnitude of the change and the
time lags inherent therein are then measured, and the optimum
values of P, I and D are calculated from these parameters.

Another technique, which is more suited to processes that are
not inherently self-regulating, leaves the control loop intact. This
method, known as the Process Cycle method, induces oscillations of
the process variable about its set point. The cycling characteristics
are first measured and then used to calculate the optimum values
of P, I and D. The method involves setting the derivative and
integral constants to zero and gradually increasing P. Small transient
disturbances are also regularly applied to the process in order
to trigger oscillations. When steady oscillations finally begin, their
frequency and the proportional gain at which the oscillations started
can be used to calculate the optimum values of P, I and D.

You should refer to a process-control text such as Johnson (1988)
or Edgar (1996) for the formulae required for calculating the PID
constants. The formulae used in any program for calculating P, I
and D should always be specified by a qualified process engineer. It is
not appropriate to discuss details of such calculations here – indeed,
they might vary somewhat between different applications. Instead we
will make a few general comments on the facilities that you might

Basic control techniques 407

need to include in your software in order to facilitate control-loop
optimization.

Software facilities

The first thing that should be borne in mind is that (as previously
stated) many process-control systems are so complex that a simple
analytic calculation of the transfer function is not possible. Conse-
quently, the tuning techniques which have to be employed are at
least semi-empirical and generally involve a degree of informed trial
and error. Second, set-point changes or changes in the PID constants
of any one control loop may have an effect on the behaviour of other
interacting process variables. The process engineer will usually need
to monitor the state of at least one, and possibly several, process
variables after any changes to the control system are made.

For both of these reasons, an interactive approach such as that
advocated for calibration and linearization in Chapter 9 is likely to
be one of the most usable solutions. This might allow the state of the
process to be continually monitored on screen, while adjustments
to the control parameters are made via the keyboard or mouse.
Graphical chart-recorder type displays, showing the history of one,
or more, process variables, may be required, together with numeric
representations of the current readings. Certain derived quantities
may also be of interest. Displays showing the maximum value of E,
the lengths of time during which E exceeds acceptable limits, or
the total accumulated error (i.e. the integral of E) over user-defined
intervals may be needed in order to assess the quality of the control
system.

When tuning closed-loop systems, it may also be necessary for the
software to incorporate facilities for measuring cycling frequencies,
process and controller lags, and phase differences between the
process-variable inputs and the resulting controller outputs. These
parameters are required in order to determine the optimum values of
the PID constants. Other facilities, such as the ability to label points,
insert comments into the process-history graphs and to log the
process variable data to disk may also be helpful in some instances.

In addition, it is possible for the software to provide a degree of
automation in the tuning process. Open-loop tuning techniques are
facilitated if the control loop can be broken within the software,
thereby removing the need for physical disconnection. Oscillations
or periodic disturbances which might have to be applied to the
process can, in some cases, be generated via the software. Clearly,
the facilities required and the details of their implementation will
depend upon the nature and complexity of the process to be
controlled.

This Page Intentionally Left Blank

Part 5 Examples

This Page Intentionally Left Blank

11 Example projects

This chapter presents several examples, based on real projects, which
illustrate how some of the topics discussed so far can be applied. A
few of the examples are parts of much larger systems or suites of data-
acquisition programs, and a complete analysis of (and justification
for) certain elements of the design cannot be presented in the space
available.

Also, bear in mind that the projects described here are merely
representative examples of typical applications. Data-acquisition
techniques may be applied to a diverse range of measurement
tasks, such as fuel-flow monitoring, bridge jacking, strain measure-
ment, control of rolled sheet metal production, pile testing or brick
manufacturing. You may encounter many others. It is important to
remember that the techniques described here will not always be the
most appropriate solution for your own applications.

The examples presented encompass measurement of
displacement, load, torque, temperature and light intensity;
dynamic sampling issues; linearization; cold-junction compensation;
interrupt-based I/O; serial I/O; discontinuous control, and PLC
interfacing functions. We will begin with two examples illustrating
some of the practical problems associated with sensor calibration.

11.1 Dimensional gauging of railway carriage
wheels

An example of how linearization techniques can be applied to overcome deficiencies
in the sensor’s response and poor measurement geometries.

Overview

The purpose of the project was to provide instrumentation and
software for a portable gauging system intended to measure the

412 PC interfacing and data acquisition

LVDT

PROBE

WHEEL RIM

P2P1

A

Figure 11.1 Apparatus for measuring railway carriage wheel diameters

radius of curvature (and thus the degree of wear) of railway carriage
wheels. The client’s gauging jig consisted of a rigid frame into which
the body of an LVDT displacement transducer was to be fixed (see
Figure 11.1). The displacement of the tip of the probe (point A in
Figure 11.1) was measured relative to two fixed reference points P1

and P2. As all three points were in contact with the wheel rim, the
measured displacement provided an indication (albeit a non-linear
one) of the wheel’s radius of curvature.

The LVDT was coupled via a portable signal-conditioning module
and 16-bit ADC (PCMCIA) card to an 80486-based laptop PC. The
principal programming task was to derive linearization factors that
could be used to convert the probe displacement (ADC counts) to
a readout of wheel radius. These factors were readily obtained from
an analysis of the geometry of the apparatus.

Special problems and considerations

The client had designed the measurement geometry such that a large
range of wheel diameters (0.7–1.8 m) could be encompassed by a
relatively small displacement of the LVDT (full-scale range 50 mm).
This introduced two problems. First, there was the potential for
small pits and irregularities in the vicinity of points A, P1 and P2 to
significantly affect the accuracy of the system. Second, the very small

Example projects 413

inaccuracies inherent in the LVDT and electronic components were
expanded into relatively large uncertainties in wheel diameter. The
former problem could be circumvented to some extent by training
the operators to avoid irregularities on the wheel rim and to average
several readings taken at various positions around the rim. The latter
consideration was more problematic.

The principal source of inaccuracy in the electronic components
was the non-linearity of the LVDT itself. This was minimized by
using an LVDT with parallel coil geometry. The smooth response
of this type of transducer can, when linearized using a power-
series polynomial, offer a greater precision than an LVDT with
conventional stepped windings (see Chapter 9). In this case the
non-linearity of the LVDT was reduced to 0.05 per cent of full scale,
leading to a theoretical precision of š0.2 mm and š1.5 mm in the
wheel radius readout for diameters of 0.7 m and 1.8 m respectively.

These figures were difficult to realize in practice, however. The
effects of thermal expansion on the gauging jig and LVDT can
easily introduce significant errors in the gauge’s output. Neverthe-
less, provided reasonable handling precautions and environmental
restrictions were observed, the device was able to provide the
required degree of accuracy and repeatability.

11.2 In-situ sensor calibration on a
tube-straightening machine

An illustration of some of the problems encountered during in-situ calibration of
sensors in a production environment.

Overview

The client required software for in-situ calibration of a multi-channel
array of displacement transducers used on a tube-straightening
machine. The machine possessed 16 sets of angled rollers, through
which lengths of steel tube were passed after manufacture. The
positions of the rollers were varied hydraulically under computer
control in order to remove bends from the tubes. A series of
displacement transducers (two per roller set) was used to monitor
the position of the rollers.

The displacement transducers were interfaced to an 80486-based
PC via an intelligent 64-channel data logger (only 32 channels of
which were used). The data logger provided transducer excitation,
signal conditioning and a 16-bit ADC. The unscaled ADC readings

414 PC interfacing and data acquisition

were transmitted back to the host PC via an RS-232 link. The PC was
in turn interfaced to the tube-straightening machine via three 16-bit
digital output cards, an accessory relay panel and PLC. In this way,
the roller positions could be varied and monitored by the control
program running on the PC.

Because vibrations, temperature fluctuations and other environ-
mental factors could influence the accuracy of the roller position
readings, a facility to periodically recalibrate the displacement trans-
ducers was required. A separate program was used on the PC for this
purpose and it is the design and operation of this element of the
system that we shall concentrate on here.

DATA LOGGER

SIGNAL
CONDITIONING

PROCESSING UNIT

ADC UART

RS-232

SERIAL
PORT

DIGITAL
I/O

RELAY
PANEL

MACHINE

CONTROL

PANEL

PLC

ACTUATORS

ROLLERS

LVDTs

LVDT
CONNECTION

PANEL

HYDRAULIC
ACTUATOR
CONTROL

PC

TUBE-STRAIGHTENING MACHINE

Figure 11.2 PC-based control and monitoring system for a tube-straightening

machine

Example projects 415

Calibration program

The function of this program was to perform two-point linear cali-
bration on each displacement transducer. The calibration factors
determined in this way were then stored in a space-delimited ASCII
file on the PC’s hard disk, and were subsequently used by the machine
control program to convert ADC readings to values of roller position
in millimetres.

The program was designed to run under Microsoft MS-DOS
version 5 and was written using a combination of Borland Pascal
and assembly language, the latter being used to implement a serial
port driver.

The interface to the data logger consisted of a half-duplex RS-232
link running at 19 200 baud. The serial port driver programmed
the PC’s UART directly (i.e. at the register level) in much the
same way as the example given in Chapter 8. This is a particularly
simple task in real mode, which is fortunate because it is not
possible to obtain 19 200 baud via DOS’s own serial port services. The
serial port driver employed interrupt-driven reception techniques.
Transmission, being less time critical in this instance, was initiated
when required from the main program thread, rather then from an
interrupt handler. A 10 ms delay was inserted after transmission of
each character as a simple means of avoiding overrun errors in the
data logger’s UART.

The communications protocol employed by the data logger
consisted of a proprietary high level ASCII command set incor-
porating 16-bit true-binary data transmission. Flow control was
implemented entirely in software using a combination of simple
timing techniques and echoing of a special acknowledgement
character.

In-situ calibration was potentially time consuming as it required
each of the 32 displacement transducers to be set manually (via
the machine’s control panel) to both limits of its range, and
for these displacements to be independently measured by some
mechanical means (gauge blocks or dial gauges). The measured
displacements were then entered into the PC, at which point they
could be compared with the ADC readings in order to calculate the
calibration scaling factors.

Frequent recalibration of the displacement transducers was
deemed to be necessary in the initial stages of development and
operation, i.e. until the long-term stability of the equipment could
be proved in a production environment.

To minimize lost production time, it was important for the cali-
bration program to be as easy to use as possible and to reduce the

416 PC interfacing and data acquisition

likelihood of operator errors. To this end, an interactive approach
was adopted. The program was designed to lead the operator through
the calibration process, providing prompts to indicate the next
operation required of the user. Commands were entered via a simple
menu, which allowed calibration data to be reset and new calibra-
tion reference points to be sampled. All numeric data entered by
the operator were range checked and facilities were provided for the
operator to edit or re-enter the data. A number of other features were
incorporated into the program to simplify the calibration procedure:

ž Large digital readouts and bar graphs were displayed on screen
to indicate the current ADC reading and, when appropriate, the
corresponding scaled displacement reading.

ž The operator was allowed a degree of latitude in selecting the
displacement values that would be used as calibration reference
points. This simplified the adjustment of the transducer/roller
assembly, which was controlled via a powerful hydraulic system
and could be varied only in coarse steps.

ž The operators found it simpler to reposition all of the rollers in
one operation. To accommodate this, the software allowed the
lower calibration reference points to be sampled for all trans-
ducers before requiring the upper calibration reference points
to be obtained, rather than requiring both the upper and lower
reference points to be obtained for each transducer in turn. The
distinction between the two sampling sequences was a minor one
in terms of software structure, but it had a profound effect on
usability.

11.3 Dimensional gauging of turbine blades

This is a particularly interesting example of a technique that is widely used for
checking the dimensions of castings or other components with complex shapes.

Background

Because of the very high speed of rotation inherent in aircraft
engines, the geometry of the engines’ turbine blades is critical. In
order to avoid turbulence in the air flowing across the blade’s surface
its dimensions and shape have to be controlled very precisely during
manufacture. Verifying the dimensions of each blade is quite an
involved task because of its complex shape. The thickness of the
aerofoil portion of the blade varies along its length and width; the
upper and lower surfaces are both precisely curved, and the blade is
twisted along its length.

Example projects 417

Overview

To measure the dimensions of the blade, it is placed in a gauging jig
where its aerofoil portion rests on the tips of three datum probes.
A number of gauging probes are then brought into contact with
the upper and lower surfaces of the blade and their displacement
(relative to the plane defined by the three datum probes) is recorded.
The probes are positioned in a grid-like structure across the blade’s
surface and are arranged in pairs (one on the upper surface and one
on the lower) so as to facilitate measurement of the blade thickness
(see Figure 11.3).

In this instance, the probes were high precision gauging LVDTs,
each possessing a full-scale range of 2.0 mm. These were connected
to a 256-channel data logger, which provided excitation, signal
conditioning and 16-bit digitization. As in the previous example the
data logger was interfaced to the host PC via a half duplex RS-232
link and the same ASCII communications protocol was employed.
A baud rate of 9600 was chosen in order to accommodate slightly
longer RS-232 cables.

Each displacement reading was required to be accurate to within
š0.02 mm. As is often the case in this type of application, the
main contribution to the total inaccuracy of the system arose from
the linearity of the gauging transducers (0.004 mm). The signal-
conditioning and digitization modules of the data logger contributed
comparatively small inaccuracies. As this was a static data-acquisition
system (i.e. the parameters being measured do not vary during

LDVT DISPLACEMENT TRANSDUCERS

LDVT DISPLACEMENT
TRANSDUCERS LDVT DISPLACEMENT

TRANSDUCERS

DATUM
PROBE

DATUM
PROBE

END STOP

TURBINE
BLADE

AEROFOIL SECTION

Figure 11.3 Dimensional gauging of turbine blades

418 PC interfacing and data acquisition

the time required to sample them), the dynamic behaviour of the
system (aperture time, aperture error etc.) was not an important
consideration.

The data-acquisition software was designed to run on a 350 MHz
Pentium II PC under Microsoft Windows NT 4. It was written in
ANSI C using National Instruments’ LabWindows/CVI version 5
development environment. This allowed the serial communication
routines to be implemented easily using the RS-232 library supplied
with LabWindows/CVI. The facilities offered by the Windows GUI
were also highly beneficial in this instance because of the high
proportion of user I/O required.

Gauging procedure

In the late stages of manufacture, the surfaces of the turbine blades
are repeatedly etched, ground and buffed until they attain the
desired shape. After each etching or buffing step, the operator places
the blade in the gauging jig and the PC records the displacement
of the upper and lower surface of the blade at each probe position.
Depending upon the stage of manufacture, other parameters such as
thickness, twist angle and rate of twist are calculated and compared
against predefined tolerances. The probe position and derived data
are then displayed on a graphical representation of the blade, and
out-of-tolerance readings are highlighted. Using this information,
the operator is able to adjust the amount of etching or buffing
applied in the next stage.

The display also includes a number of other features such as
pass/fail indicators, the maximum and minimum thickness still to
be removed from the blade and recommended strength of etchant
to be used.

One of the most important benefits that automation of the gauging
procedure affords is the ability for the PC to maintain a record of
the current stage of manufacture of each blade and to store detailed
size and shape information. This data is extremely useful for quality
control purposes and is collated and analysed by the client using a
commercial SPC (Statistical Process Control) software package.

Configuring the system

The gauging software and the multi-channel data logger were both
designed to be highly configurable. By removing or adding gauging
LVDTs and signal-conditioning modules (and also replacing the
gauging jig), different models of turbine blade could be accommoda-
ted. The software incorporated facilities for setting up the system

Example projects 419

for use with different blade geometries and probe configurations. A
number of parameters had to be defined prior to gauging. These
included:

ž blade model number
ž blade orientation
ž datum surface (upper, lower, convex or concave)
ž probe grid size and distribution
ž probe channel assignment and calibration
ž probe orientation (parallel orientation or normal to the nominal

blade surface)
ž datum probe positions
ž display options (i.e. whether certain types of display will be shown

during gauging) and
ž tolerances for each probe position and thickness reading.

Probe calibration and zeroing

During high precision dimensional gauging, it is particularly im-
portant that the probes and their mountings are mechanically stable.
Although errors due to thermal expansion or movement of the
probes in their mountings are small, they are not always insignificant.
One must also remember that the output from gauging transducers
and other electronic components are liable to drift slightly over time,
particularly in response to temperature changes. The software was
designed to accommodate these variations by allowing the probes to
be periodically recalibrated and rezeroed.

Initially, all probes were calibrated against a precise standard
before being mounted into the gauging jig. A three-point prime
calibration technique was used (see Chapter 9) and the PC recorded
the scaling factor and zero offset for subsequent use during gauging.
A reference blade (with accurately known dimensions) was then
placed into the gauging jig and the probe-offset readings were
displayed on screen. Each of the probe mountings was then adjusted
so as to give an offset reading of zero.

Fortunately, the probe (LVDT) scaling factors tend to be relatively
stable, so in this case the full calibration procedure had to be
carried out only infrequently. A much greater potential source of
measurement error affects the probes’ zero positions. This arises due
to thermal expansion of the mechanical components and movement
of the transducers in their mountings. For this reason, the software
enforced a strict zero-offset checking regime in which the operator
was required to periodically verify the accuracy of the system against
a reference blade.

420 PC interfacing and data acquisition

The system supervisor would enter a limit on the number of
gauging operations that could be performed (typically 20) before
the operator would be forced to check the probe offsets. If any
offset exceeded a predefined limit, the operator would be warned
and asked to confirm acceptance, in which case the software would
record the probe offsets and use them to correct all subsequent
displacement readings. If any of the offset readings was found to
be greater than a second predefined limit (indicating that a probe
had moved appreciably in its mounting) further gauging would be
prohibited until the fault had been rectified.

11.4 Torsional rigidity testing of car bodies

This is another, rather specialized, example of a multi-channel static data-acquisition
system. Although the nature of the application is rather different, this project is
based on a similar configuration of data-acquisition hardware to that used in turbine
blade gauging.

Background

One of the numerous tests required during development of a new
model of automobile is to determine the torsional rigidity of its
body shell. This is effectively the resistance to a twisting moment
applied between the axes of the front and rear wheels. The client
had, for many years, been performing these tests manually. The body
shell was clamped to a test rig that could be adjusted hydraulically
to apply various torques between the front and rear wheel axes.
Up to 80 dial gauges (devices with analogue dial readouts, used
for measuring linear displacements) were distributed symmetrically
about the centre line of the body shell. The applied torque was
increased in a number of steps and at each stage the displacements
registered by the dial gauges were recorded manually (using pen
and paper). Readings were then taken over a decreasing range of
torque values until the torque returned to its initial value of zero
and any residual deformation would be recorded. In some cases the
whole cycle of measurements would be repeated several times using
both clockwise and anticlockwise twisting moments.

Overview

Because the measurement process was carried out manually, it was
very time consuming and potentially error prone. The client wanted
to automate the data-gathering procedure by substituting linear

Example projects 421

displacement transducers for the dial gauges and in this way to
record the displacements and applied load electronically.

The client wished to introduce the electronic components gradu-
ally, both for reasons of cost and to allow the performance of the new
technology to be verified against the old measuring system. Initially,
only about half of the dial gauges were to be replaced by electronic
sensors. The remainder would still be read manually, but the data
would now be entered directly into a handheld electronic keypad.
The most appropriate solution (at the time of developing the system)
was a Psion Organiser II. This was a small, programmable, battery
powered unit with an alphanumeric keypad. It had sufficient memory
to store all of the data required as well as a specially written data-entry
program, and possessed an RS-232 interface for downloading data
to the PC.

The PC itself was equipped with a 25 MHz 80386 processor, 4 MB of
RAM, 80 MB hard drive, one Centronics parallel port and two RS-232
serial ports. One serial port was used for the Psion Organiser Comms
Link interface, the other for linking to an intelligent multi-channel
data logger.

Data-acquisition hardware

The data logger was equipped with signal-conditioning and exci-
tation modules for up to 80 LVDT and eight strain-gauge-bridge
transducers. Only one of the strain-gauge-bridge channels was used
and this was connected to a tension/compression load cell with a
full-scale measurement range of š2500 N. This channel was scaled,
in accordance with the geometry of the torsion rig, to generate
torque readings of š5000 Nm, accurate to š25 Nm. LVDTs with
various full-scale ranges were used for the displacement measure-
ments. Each possessed a linearity figure better than 0.25 per cent.
All other sources of inaccuracy in the electronic components of the
system were comparatively small and could be ignored. As in the
previous two examples, the data logger communicated with the PC
via a half-duplex link using a proprietary ASCII communications
protocol.

Data-acquisition software

The software was designed to run under Microsoft MS-DOS version 5
and had three principal components: calibration routines, test
configuration facilities and the data-acquisition routines.

422 PC interfacing and data acquisition

All of the displacement sensors were removed from the test rig
prior to calibration. The LVDT displacement transducers were cali-
brated against a precision micrometer standard, using an interactive
linear three-point technique (see Chapter 9). Three-point prime cali-
bration is a particularly appropriate method because LVDTs possess
an intrinsic null position at the centre of their measurement range
(see Chapter 3). Prime calibration techniques were also employed
for load cell calibration. The scaling factors and zero offsets for each
channel were recorded in a binary file on the PC’s hard disk for use
during subsequent torsion tests.

The test configuration routines allowed the operator to specify all
of the parameters needed to identify and automate each test, for
example:

ž body shell part/model identification
ž the identification code and channel assignments of each displace-

ment sensor
ž the longitudinal and lateral coordinates of each sensor
ž the body component (roof, underframe, valance etc.) to which

each sensor was assigned
ž whether each displacement reading would be carried out

electronically or manually
ž the number of load steps to be employed during the test.

Once all of the configuration data had been defined, it was saved
on the PC’s hard disk and a file of configuration information would
then be downloaded to the handheld keypad in order to provide a
template for manual data entry.

The data-acquisition process itself was quite straightforward.
Various torque values would be applied in a series of increasing
or decreasing steps. The applied torque was monitored on a digital
display (updated three times per second) until each desired level of
torque was obtained. At this point the applied torque would be held
at a constant value and the operator would commence acquisition on
all displacement channels by means of a single keystroke. The data
logger returned a stream of unscaled readings in true binary format,
and these were scaled by the PC’s software to give displacement
readings in mm. In fact, to reduce the effect of random noise,
the LVDTs were scanned eight times and an average reading was
obtained for each transducer. The operator would then record all of
the dial gauge readings on the keypad before proceeding to apply
the next torque value.

At the end of the test, the software would combine the readings
acquired via the data logger with those recorded on the keypad and
would then sort them according to the longitudinal coordinate of

Example projects 423

the corresponding sensor. Finally, the data were packaged into a
comma-delimited ASCII file and loaded into a spreadsheet program
(Lotus 123). Specially written worksheets and macros were provided
for the test engineers to facilitate analysis and plotting of the data.

11.5 Winch testing system

This is a simple example of low speed, but real-time, data-acquisition employing
the technique of simultaneous sample and hold. Digital I/O channels are used to
interface to external apparatus.

Overview

The client manufactured winches for various automotive functions
such as manipulating spare tyres and wheels on trucks. A data-
acquisition system was required for checking the performance and
structural integrity of each winch.

During the test procedure, load cells were used to monitor the
load developed at various points on the winch mounting and rollers,
and to measure the torque applied by the winch mechanism. The
speed of rotation was measured using an optical encoder coupled
to a conditioning circuit that produced a DC output in proportion
to the rotational speed. There were seven channels in total and it
was required to sample each channel ten times per second and to
provide a real-time display of the sampled data on the PC’s screen.

Reconstruction accuracy

The maximum fractional rate of change of the signals to be measured
was specified as 250 per cent of full scale per second, which was equiv-
alent to a frequency of approximately 0.8 Hz. However, the average
rate of change was likely to be closer to 10 per cent of full scale per
second ⊲D0.03 Hz⊳. As the data was to be displayed and interpreted
graphically, it was appropriate in this case to estimate the average
accuracy inherent in signal reconstruction using the first order
reconstruction equation – i.e. linear interpolation between points
(see Chapter 2). On this basis, a sampling rate of 10 samples/s (per
channel) was selected. This yields a 1 per cent average reconstruction
error at the maximum signal frequency and about 0.002 per cent
error at the average signal frequency. Both figures compared well
with the specified accuracy requirements.

424 PC interfacing and data acquisition

Data-acquisition hardware

The sensors were connected to a high speed signal-conditioning
unit possessing simultaneous sample-and-hold circuitry and slots for
up to eight single-channel conditioning modules. The (differential)
conditioned outputs from this unit were fed to an eight-channel
multiplexed ADC card with 12-bit resolution. The ADC possessed a
total non-linearity better than 1 LSB and contributed a negligible
inaccuracy to the readings. The ADC card’s fixed-gain instrumenta-
tion amplifier was able to settle to better than 1 LSB accuracy within
10 μs of a multiplexer channel change, and the ADC conversion time
was 30 μs. Both of these figures could be easily accommodated while
maintaining the required sampling rate and dynamic accuracy.

The simultaneous sample-and-hold (SSH) facility of the signal-
conditioning unit was controlled by a TTL-level signal generated via
one of four digital output lines provided on the ADC card. The SSH
circuit possessed an acquisition time of 10 μs (to an accuracy 0.01
per cent) and a settling time of 2 μs. Again, these figures did not
impose any undue limitations on the sampling rate.

Only seven of the eight available channels read data from sensors.
The eighth channel carried an excitation reference voltage from
the signal-conditioning unit and this allowed the software to correct
the load readings for small excitation drifts caused by temperature
variations etc.

A number of digital input and output channels were provided for
optional interfacing to a control panel, indicator lamps and motor-
control apparatus. An eight-channel optically isolated digital input
card allowed external equipment to control (i.e. start or abort) the
test, and a 16-channel relay output card was used to signal test-status
information. The optically isolated inputs provided a degree of noise
immunity, but imposed a lower limit of about 1 ms on the duration of
detectable digital pulses. The relay switching time was 500 μs. Both of
these figures were negligible compared with specified performance
requirements.

The PC itself was based on the 33 MHz 80486 DX processor and
was equipped with 8 MB of RAM, a 170 MB hard disk drive and a
VESA SVGA video system.

Test procedure

In preparation for the test, the operator would configure the soft-
ware, defining parameters such as the file name for logging of test
data, the test title and the duration of the test (up to 200 s).

Example projects 425

The test would then be started either manually from the keyboard
or automatically via one of the digital input lines. Automatic
operation was facilitated by a handshaking sequence involving
PC-controlled relays designated as ‘Ready to begin’ and ‘Test in
progress’. Both of these relays were assigned to operate in failsafe
mode: closed contacts indicated their active state. When power was
removed (i.e. the PC is switched off) the contacts return to their
inactive (open) state.

During the test, the channels were scanned ten times per second
and the acquired data was displayed on the screen in both graphical
and digital format. The various channels were colour coded for
clarity. Also shown were upper and lower limits that could be applied
to selected channels. These limits could be adjusted manually prior to
commencing the test and were used to control software comparators
and associated relays. Again these relays operated in failsafe mode:
a closed contact indicating that the signal was within a specified
tolerance band. When power was removed, the contacts would open
indicating an out-of-tolerance condition.

At the end of the test, the acquired data would be logged (in
seven-column space-delimited ASCII format) to a user specified disk
file or could be downloaded to a printer for permanent storage.

Software

As the user interface requirements were quite modest, the facilities
offered by Windows were outweighed by the greater degree of deter-
minism and easy control over I/O possible with MS-DOS version 5.
The software was written using the Borland Pascal 7 compiler and
assembly language.

The sampling itself was interrupt based. The PC’s system timer was
reprogrammed to generate interrupts 20 times per second. A new
interrupt 08h routine (written in assembly language) was installed
to handle the interrupts and care was taken to call the original BIOS
handler at the correct average rate (18.2 Hz). As this interrupt has
the highest priority, it is suitable for performing certain time-critical
tasks provided, of course, that lower priority handlers and the main
program thread do not disable interrupts for a significant length
of time.

On every second timer interrupt (i.e. every 100 ms), the ADC was
commanded to sample each channel and the readings, and then
scaled, corrected for excitation drift (if appropriate) and stored in
a FIFO buffer. The buffer provided a degree of decoupling between
the interrupt handler and main program thread, allowing the latter
to perform the relatively time-consuming task of displaying the data

426 PC interfacing and data acquisition

on screen. As the timing of the limit-relay signals was not critical (a
delay of up to 2 s was acceptable in this case) the task of updating the
relay outputs was delegated to the main program thread. Obviously,
in applications where a more rapid (and deterministic) response is
required, interrupt-based I/O might be more appropriate.

11.6 Brake actuator test system

The requirement to dynamically measure the load vs. displacement characteristic
of a component under test is common in manufacturing industries. This example
uses an external timer to pace the load/displacement sampling sequence at 100 Hz.

Overview

As part of a quality control programme, a manufacturer of high
performance brake actuators manually tested every assembly coming
off the production line. The actuator was placed into a test jig and its
piston was moved using a hand-operated screw drive, as illustrated
in Figure 11.4. The resistance to motion offered by the piston arose
from the combined action of a spring and friction bush and would
vary throughout the test as a function of axial displacement.

APPLIED LOAD

LOAD CELL

LVDT

MULTIPLEXOR AMP ADC

ANALOGUE INPUT CARD

SIGNAL
CONDITIONING

Figure 11.4 Brake actuator test apparatus

Example projects 427

A data-acquisition system was required to record the load
(resistance to motion) vs. displacement characteristic of the actuator
and to display this graphically at the end of each test. The
load/displacement curve was expected to pass through four distinct
regimes, characterized by the action of the spring, friction bush and
other elements of the actuator. The loads at various points on the
curve and the displacements at which one regime gave way to the
next represented critical design parameters.

Hardware

The sensors used consisted of an LVDT with a full-scale range of
10 mm, and an 8000 N load cell, linked to single-channel AC and DC
signal-conditioning modules respectively. The latter provided the
appropriate sensor-excitation supply but did not include facilities
for excitation monitoring. The conditioned signals were fed to
differential inputs of an eight-channel multiplexed ADC card placed
in one of the PC’s ISA expansion slots. The ADC card also provided
a timer/counter circuit, which could be configured to trigger ADC
conversions and to generate interrupts within the PC. The hardware
did not provide simultaneous sample-and-hold capabilities so the
potential delay between sampling of the load and displacement
channels was of some concern.

The PC used was a 25 MHz 80386 unit, with numeric coprocessor,
4 MB of RAM and a 90 MB hard disk. The system was designed to
operate under Microsoft MS-DOS and the software was written in a
combination of CCC and assembly language.

Dynamic accuracy

The maximum permissible errors specified for the load and displace-
ment channels were š1.0 per cent and š0.25 per cent of full scale
respectively.

The ADC card provided 12-bit resolution with a total non-linearity
better than 1 LSB (i.e. accuracy of š0.025 per cent of full scale).
The load cell and LVDT signal-conditioning units were of a high
quality and contributed comparatively small non-linearities and
temperature coefficients. The principal sources of inaccuracy in the
measurement system arose from the non-linearities of the sensors
themselves (š0.1 per cent for the LVDT and š0.5 per cent for the
load cell) and from the effects of dynamic sampling.

The maximum rate of change of the displacement signal was
specified as 50 per cent of full scale per second, which is equivalent
to a maximum frequency component in the signal of about 0.16 Hz.

428 PC interfacing and data acquisition

The corresponding figures for the load signal were somewhat greater,
being 1000 per cent of full scale per second and 3.2 Hz.

The aperture time of the sample-and-hold amplifier on the front
end of the ADC was specified as 2 μs to an accuracy of 1 LSB. This
enabled the ADC to sample signal frequencies up to around 60 Hz
to š1 LSB – considerably higher than either of the maximum signal
frequencies.

The interchannel slew error was of greater concern, however.
As a simultaneous sample-and-hold circuit was not available, the
slew error was determined by the speed at which the system could
sample the load and displacement channels. The settling time of
the ADC card’s instrumentation amplifier (10 μs for 1 LSB accuracy)
and the ADC conversion time (25 μs) were not limiting factors. The
sampling routine, which was part of an interrupt handler, was written
in assembly language and, in the context of this application, it was
possible to consistently obtain an interchannel slew time of less than
100 μs and an associated slew error of š0.15 per cent.

Sampling rate

In order to allow the data to be unambiguously interpreted from
its graphical representation on screen, it was necessary to sample
at a sufficiently high rate. The average error involved in visually
interpolating between points was approximated by the first order
reconstruction equation presented in Chapter 2. This showed that
an acquisition rate of at least 32 load samples per second would be
required in order to maintain an average reconstruction error of
2.0 per cent of full scale. Clearly, this exceeds the specified accuracy
figures, but because the PC would not make decisions or issue control
signals on the basis of the reconstructed signal, this degree of error
was acceptable.

An upper limit on the number of samples that could usefully be
obtained per second was imposed by the bandwidths of the signal-
conditioning units. These were quoted as 500 Hz for the LVDT
conditioner and 200 Hz for the strain-gauge-bridge (load cell) unit.

An intermediate sampling rate of 100 Hz per channel was selected.
This rate, rather than the lower limit of 32 samples/s, was chosen so
as to facilitate the addition of a moderate degree of filtration should
this be subsequently required.

Test sequence and sampling

The test was started and stopped via the keyboard. Because data was
to be recorded in an internal memory buffer of limited size, the test

Example projects 429

duration was limited to 120 s. During the test, the load and displace-
ment signals were sampled within an interrupt handler. An 8254
timer/counter IC provided on the ADC card was programmed to
generate interrupts on IRQ3 at 100 Hz (the COM2 serial port, which
usually uses IRQ3, was not fitted in this instance). Within the inter-
rupt handler, the software first obtained one load reading and then
one displacement reading from the ADC. The interrupt code was
written in assembly language in order to minimize interchannel slew.

A potential problem with using IRQ3 for data acquisition is that
it has a lower priority than some other hardware interrupts in the
system (e.g. system timer and keyboard). Interrupt processing could
be temporarily and unpredictably blocked if the processor happened
to be responding to one of the higher priority interrupts at the
time that IRQ3 was asserted. However, the maximum variability in
interrupt latency was assessed to be just a few hundred microseconds.
This was within acceptable limits provided that it did not affect the
interchannel slew time. The latter possibility was circumvented by
careful control of processor interrupts within the IRQ3 handler.

11.7 Monitoring of bush-insertion load

This example is very similar to the brake actuator test system in that almost identical
sampling techniques are used to measure load and displacement. Additional features
in this example include a machine-control interface implemented via an array of
relays and PLC, and pass/fail component testing.

Overview

The client used a twin-ram hydraulic press to insert bushes into
circular apertures in car suspension arms. Each hydraulic ram
performed an identical function: two rams simply allowed twice as
many components to be processed. Once inserted into the suspen-
sion arm, each bush was held in place by friction (assisted by a
shallow recess around the rim of the bush), and consequently the
insertion load was an important indicator of the integrity of the
assembly. Too low a load would denote a loose fit; too great a load
might result from an obstructed aperture or defective bush.

It was necessary to devise a data-acquisition system for monitor-
ing the load vs. displacement characteristics of the bush-insertion
process. The client required the data to be monitored for both
hydraulic rams independently. In each case the data was to be
compared against upper and lower tolerance curves in order that
components with improperly seated bushes could be rejected. The

430 PC interfacing and data acquisition

load vs. displacement data would then be recorded on a batch-by-
batch basis for quality control purposes. An additional requirement
was that the software had to interface, via an array of relays, to a PLC
that was used to control the operation of the press.

Hardware

Each hydraulic ram was fitted with a 250 kgf load cell and
200 mm LVDT having linearities of 0.5 per cent and 0.25 per cent
respectively (see Figure 11.5). The sensor signals were conditioned
using an eight-slot unit fitted with four single-channel signal-
conditioning cards. The LVDT conditioning cards had bandwidths
of 800 Hz (to �3 dB) and those for the load cells had bandwidths
of 500 Hz (to �3 dB). The conditioning rack was equipped with a
simultaneous sample-and-hold circuit and a facility for monitoring
excitation reference voltages. The conditioned signals were digitized
with a 12-bit ADC mounted on a plug-in card inside the PC.
The ADC card had eight (differential) multiplexed inputs and
exhibited a linearity of š1 LSB, an aperture time of 8 μs to 1 LSB,
an instrumentation amplifier settling time of 20 μs to 1 LSB and a
conversion time of 35 μs.

The PC was a 16 MHz 80286 unit, equipped with 1 MB RAM and
a 40 MB hard disk drive. The software was written in a mixture of
Pascal and assembly language and ran under Microsoft MS-DOS
version 3.3.

LVDT

Signal
conditioning
with
simultaneous
sample and hold

Hydraulic
control

RAM

Suspension
arm and
bush

Load cell

Hydraulic
press (one ram
only is shown)

Timer

MUX AMP ADC

Analogue-input card

IRQ3

PC

Relay
card

Opto-
input
card

Relays

PLC
Machine
control
panel

Figure 11.5 PC-based control and monitoring system for a bush-insertion

machine

Example projects 431

Dynamic accuracy and sampling

In terms of software design, this application has many similarities
with the brake actuator test system. Load and displacement are
again monitored at a rate of 100 samples/s (on each channel) using
an almost identical technique. For this reason we will not discuss
the dynamic analysis or interrupt-based sampling technique again,
except to note that a simultaneous sample-and-hold circuit was used
in this instance in order to minimize interchannel slew.

Press control functions

The PC was housed in a locked industrial enclosure, sealed to IP65.
Although the screen was visible to the press operator, the keyboard
could be accessed only by the production-line supervisor. During
normal operation, therefore, the software could accept commands
only via the machine’s control panel and PLC interface. Control
commands issued by the PLC consisted of digital pulses on specific
opto-isolated input lines. The relay card allowed the PC to send
level-sensitive status information back to the PLC.

A simple handshaking sequence was devised to synchronize the PC
software with the operation of the press. When ready to begin moni-
toring, the PC would activate a ‘Ready’ relay. When the hydraulic
press was ready (i.e. components in place; rams at start position; safety
guard closed), the PLC would generate a 240 ms pulse on one of the
PC’s opto-isolated inputs. This would cause the data-acquisition soft-
ware to begin monitoring the displacement channels. At the same
time, the PC would issue a second relay signal to indicate that the
hydraulic rams could begin to descend (see the safety note below).

The software would monitor the rams’ displacement as they passed
a sequence of user-specified trip levels. Each level was assigned an
individual channel on the PC’s relay card. The relay contacts were
closed on the rams’ down stroke as the measured displacement fell
below each trip level in turn. They opened again in reverse order
as the rams returned to their start positions. In determining the
optimum settings for these trip levels, careful attention was paid to
the scan time of the PLC (40 ms in this instance). The hydraulic ram
could move a considerable distance in the time taken by the PLC
to recognize that a trip level had been reached and this had to be
accounted for in setting the trip levels.

The control functions were implemented in the software as part
of the sampling algorithm – i.e. within the same interrupt handler.
Each ADC reading increased monotonically (and linearly) with
the corresponding measurand, and this allowed scaling of the

432 PC interfacing and data acquisition

data to be deferred. Instead, each displacement trip level was
converted to the corresponding ADC value prior to commencing
the sampling cycle, permitting the interrupt handler to manipulate
and compare unscaled data (i.e. ADC counts) using relatively fast
integer arithmetic.

Additional trip levels were defined for starting and stopping
the load-sampling sequence. As these were used internally by the
software, no corresponding relay signals were generated. During the
sampling sequence, the acquired data was plotted on twin load vs.
displacement graphs. The plotting algorithm was implemented in
the main program thread and decoupled from the input and output
functions in the interrupt handler by means of a FIFO buffer. At the
end of sampling, the recorded data points were compared against
load tolerance curves and a pass/fail signal was transmitted to the
PLC via the PC’s relay card. The PLC and press used this signal to
mark every component passing the test with a dot of paint.

Safety notes

1. The polarity of the relay signals was chosen in relation to their
power-off state and to the logic of the PC–PLC handshaking
sequence in order to achieve fail-safe operation.

2. It is unsafe to entrust control of potentially hazardous machinery
such as a hydraulic press to PC-based software. For this reason,
mechanical interlocks were used to prevent ram activation until
the machine’s safety guard had been closed.

11.8 Laboratory furnace temperature control

A simple example illustrating thermocouple cold junction compensation, lineariza-
tion and discontinuous control techniques.

Overview

Fission tracks are microscopic trails of radiation-induced damage in
the crystal lattice of geological minerals. Elevated temperatures tend
to modify their structure, and thermal studies of fission-track-bearing
minerals are employed to infer the thermal history of rocks in the
oil exploration industry.

Thermal stability studies of fission tracks have been carried out
in the laboratory by heating samples at constant temperatures for a
variety of fixed time intervals. The client required a means of auto-
matically applying more complex temperature profiles, the results of

Example projects 433

which could be compared with conventional isothermal annealing
experiments. The heating episodes were required to last from 15
minutes (isothermal) up to several weeks and would span tempera-
tures from 50°C to 550°C, although most experiments would require
temperatures in the range 200–450°C.

Hardware

The samples were heated in a Gallenkamp Tube Furnace. The
furnace’s manual temperature control circuitry was adapted for
interfacing to a PC. Its electrical heating element was controlled by
a power relay which was in turn switched by a low current relay on
an 8-bit digital output card in one of the PC’s expansion slots. The
PC was an IBM AT model running at 8 MHz and equipped with an
EGA display and 20 MB hard disk drive.

The sample temperature was sensed using a type K thermocouple,
connected to a low noise thermocouple amplifier. The amplified
signal was fed to one differential input of an eight-channel, multi-
plexed ADC card. A second channel received the output from a
semiconductor temperature sensor, which was placed in close prox-
imity to the thermocouple’s reference (cold) junction. The ADC
possessed a 12-bit resolution and a total non-linearity of 4 LSB.

Software

The software, written in IBM compiled BASIC, allowed the exper-
imenter to specify, in tabular format, the temperature profile
required. This consisted of a series of up to 20 isothermal episodes,
linear heating episodes and exponential cooling episodes. The
heating and cooling rates specified were checked against the pre-
determined maximum heating and cooling rates that could be
obtained with the furnace, and any unattainable settings were noti-
fied to the experimenter before the heating sequence began.

Throughout the heating sequence, the software displayed the
current heating step and provided a continuous digital indication of
the sample temperature (thermocouple reading). In addition, any
temperature excursions outside a user-specified band were indicated
on the screen.

Sampling and control

The thermocouple signal and reference-junction temperature were
sampled approximately nine times per second. To minimize noise,
groups of 16 consecutive readings were averaged. After compensating

434 PC interfacing and data acquisition

for the reference-junction temperature (see Chapter 3), the thermo-
couple signal was linearized using a 12th order polynomial. Inac-
curacies in the temperature measurement arose from the thermo-
couple and amplifier (š1°C), the semiconductor temperature sensor
(š0.5°C), the combined error of both ADC channels (š1.5°C),
accuracy of the cold-junction-compensation parameters (š0.1°C),
and the accuracy of the linearizing polynomial (š0.2°C). The total
uncertainty in the temperature measurement was thus š3.3°C.

The measurand was used to regulate the furnace’s temperature
using a discontinuous (on/off) control technique. When the temper-
ature reading reached the desired temperature plus 2°C the heater
relay was deactivated. When the temperature fell to 2°C below the
desired temperature, the heater element was switched on again. In
this way the temperature cycled in a narrow band about the desired
level. The thermal inertia of the furnace introduced a degree of
overshoot and it was found that the sample temperature could be
confined to a band of width š3°C about the desired setting.

11.9 Thermoluminescence spectrometry

This example illustrates how, in a real-time data-capture application, much of
the burden of time-critical I/O can be off loaded to dedicated control and
interfacing hardware, allowing data-acquisition software to run under the largely
non-deterministic Windows operating system.

Background

Thermoluminescence (TL) is a phenomenon exhibited by crystalline
media that have been subjected to a field of ionizing radiation. It
is used for radiation dosimetry and to study the thermal history
of archaeological, geological and meteoritic material. Radiation
incident upon a crystalline medium will tend to displace electrons
within the crystal lattice to so-called trap sites, where they may remain
for long periods (up to thousands or even millions of years). Heating
episodes – either natural or induced in the laboratory – allow some
of the trapped electrons to return to their normal sites, releasing
their stored energy in the form of visible light. The temperature at
which this occurs provides researchers with information about the
traps, and the wavelength (colour) of the TL emissions indicates the
nature of the luminescence centres within the crystal.

Overview

The client wished to construct a PC-based system for determining TL
intensity as a function of temperature and wavelength. Figure 11.6

Example projects 435

Temperature Direction Step

pulse

rate

Scan Wavelength

interval
Interval

complete

Photon

count

Buffer
Initial

count

Counting

element

Divider/

counter
Direction

latch

ADC

(Free running)
Counting

element

LoadGate

Zero

CLK
CLK

Direction

Stepper

motor

controller

Thermocouple

signal

conditioning

and CJC

Step

TTL

Discriminator

PM

signal

conditioning

Buffer

Latch

Heater control

unit

(programmable)

Thermocouple

Monochromator

Thermocouple

Sample

Stepper

motor

Photomultiplier

tube

Figure 11.6 Schematic representation of a PC-based data-acquisition system for

a thermoluminescence spectrometer

is a schematic illustration of the equipment used. The sample is
heated in a partial vacuum to prevent oxidation. A dedicated
heater control unit is programmed with the desired heating rate
and maximum temperature. This unit then controls the tempera-
ture of the sample, using feedback from a sensing thermocouple,
during the test. A second type K thermocouple supplies temperature

436 PC interfacing and data acquisition

information to the PC via suitable signal-conditioning and cold-
junction-compensation circuitry.

As the temperature is gradually increased, the sample emits light
in a series of ‘glow peaks’, and the spectrum of the light is measured
by means of a grating monochromator. This allows only light that
falls within a selected narrow band of wavelengths to enter the aper-
ture of a sensitive photomultiplier. The photomultiplier is operated
in photon-counting mode and individual photon pulses are condi-
tioned and passed through a high speed ECL discriminator and
converted to TTL-level pulses.

The wavelength band transmitted by the monochromator is deter-
mined by the orientation of its diffraction grating, which is controlled
using a stepper motor and associated driving circuit. The rate of wave-
length change is determined by a programmable counter, which
divides the clock rate down to the required stepping speed. The
extent of motion of the monochromator’s grating is controlled by
a second counter. The programmed count represents the change
in wavelength required (usually the wavelength increment between
successive readings). While a scan bit is held in an active state,
the counter automatically reloads and resumes counting when it
reaches zero. The transition through zero generates a digital pulse
that serves two functions. First, it latches the photon pulse count and
thermocouple ADC readings into 24-bit and 10-bit buffers, zeroing
the photon-pulse counter in the process. Second, it indicates to the
PC’s software that the monochromator has moved to the required
wavelength. The PC uses this signal as a trigger to read the photon
pulse count and thermocouple readings from the buffers. This
action proceeds while the monochromator is moving on to the next
wavelength.

By performing the time-critical portions of the control sequence
in hardware, some of the burden of real-time operation is removed
from the PC and this allows a non-deterministic operating system
to be employed. The instrument-control program was designed to
run under Microsoft Windows NT 4 on a 266 MHz Pentium II-based
PC. It was written using an ANSI C compiler and the National
Instruments LabWindows/CVI development environment.

Software facilities

After configuring the software for the required wavelength range
and scanning rate, the experimenter was required to commence
wavelength scanning by means of a single keystroke. At the same
moment, the heater control unit’s ramp generator would be started,
also by manual means. Small timing errors introduced by this manual

Example projects 437

synchronization were unimportant because the PC measured the
temperature of the sample independently each time a photon count
was obtained.

Throughout the test, the monochromator scanned many times
through all wavelengths of interest. During each scan the soft-
ware recorded typically 20 to 50 sets of temperature, light intensity
(photon count) and wavelength readings. The total number of read-
ings obtained per test was usually of the order of several hundred to
two thousand, depending upon the range of experimental variables
selected.

The software automatically interpolated between readings
to obtain average temperature and wavelength values over
each measurement interval. It also possessed facilities for
interpolating between the skewed matrix of readings on the
temperature–wavelength plane in order to provide either
temperature-independent or wavelength-independent subsets of
the data.

Calibration and measurement accuracy

The thermocouple signal was linearized using a 12th order poly-
nomial to an accuracy of š0.2°C. Other sources of inaccuracy were
the electronic cold-junction-compensation module (š0.5°C) and the
thermocouple itself (š1°C). The thermocouple signal was amplified
such that the ADC input range would encompass temperatures from
0°C to just over 360°C. At a 10-bit resolution, this corresponds to a
quantization error of š0.2°C. ADC linearity errors were negligible.
These sources introduced a total uncertainty in the temperature
measurement of just under š2°C.

Calibration of the optical system was more problematic. The
photocathode of the photomultiplier tube, the monochromator’s
diffraction grating and other optical components exhibit wavelength-
dependent transmission efficiencies. In many cases, the transmission
curves do not vary smoothly with wavelength over the entire visible
range (350–700 nm) and so a look-up table was constructed, into
which the experimenter could load transmission-efficiency factors.
These would either be measured directly using calibrated optical
sources or be derived from manufacturer’s specifications.

An additional correction was necessary because the finite width
of the TTL pulses generated by the photomultiplier’s discriminator
unit meant that if two or more photons arrived within one TTL pulse
cycle (typically 1 μs) they would generate only a single TTL pulse.
This so-called dead time is problematic at very high pulse rates and
statistical correction techniques, based on the proportion of total

438 PC interfacing and data acquisition

detection time occupied by dead time, were applied automatically
by the software.

The software allowed the experimenter to select subsets of the
data and to record them in comma-delimited ASCII format on the
PC’s hard disk. Commercial spreadsheet programs and specialized
analysis software were then used for data reduction and graphing.

Part 6 Appendices

This Page Intentionally Left Blank

Appendix A Adaptor installation

reference

When installing data-acquisition cards or communications adaptors
within the PC, it is usual to have to configure the card’s I/O port base
address, and other settings. This is normally accomplished by means
of DIP switches, jumpers or installation software. To avoid memory,
I/O or interrupt conflicts, these settings should be different from
those chosen for other adaptor cards. Reference tables are provided
in this appendix to aid in card configuration.

It is clearly impossible to list the settings used by every PC interface
card on the market. Instead, only information relating to standard
PC configurations and some of the more common options is shown.
You should bear in mind that the information provided here is
for guidance only. The assignments and addresses used in some
machines may vary in certain respects from those listed here. In
addition, equipment already installed in the PC might occupy the
IRQ levels, DMA channels or memory and I/O addresses that appear
as unused in the following tables.

Table A.1 DMA channel assignments

Channel Bits PC XT AT and EISA PS/2

0 8 DRAM refresh Unused Unused1 Unused

1 8 Unused2 Unused2 Unused2 Unused2

2 8 Diskette Diskette Diskette Diskette

3 8 Hard disk Hard disk Unused Unused

4 16 Not available Not available Cascade DMA1 Cascade DMA1

5 16 Not available Not available Unused Hard disk

6 16 Not available Not available Unused Unused

7 16 Not available Not available Unused Unused

Notes:

1. DMA channel 0 may be unavailable on some AT clones.

2. DMA channel 1 may be used for an SDLC serial port, if installed.

442 PC interfacing and data acquisition

Table A.2 Hardware interrupt (IRQ) assignments

Usual AT/ISA Compatible

IRQ vector PC XT and EISA PS/2

0 08h System timer System timer System timer System timer

1 09h Keyboard Keyboard Keyboard Keyboard

2 0Ah LPT2 Reserved Slave PIC Slave PIC

3 0Bh COM2/4 COM2/4 COM2/4 COM2/4

4 0Ch COM1/3 COM1/3 COM1/3 COM1/3

5 0Dh Hard disk Hard disk LPT2 Reserved

6 0Eh Diskette Diskette Diskette Diskette

7 0Fh LPT11 LPT11 LPT11 LPT11

8 70h Reserved2 Reserved2 Real-time clock Real-time clock

93 71/0Ah Reserved2 Reserved2 Reserved Reserved

10 72h Reserved2 Reserved2 Reserved Reserved

11 73h Reserved2 Reserved2 Reserved Reserved

12 74h Reserved2 Reserved2 Reserved4 Pointing device

13 75h Reserved2 Reserved2 Coprocessor Coprocessor

14 76h Reserved2 Reserved2 Hard disk Hard disk

15 77h Reserved2 Reserved2 Reserved Reserved

Notes:

1. Not used by BIOS. LPT1 interrupt is often disabled. IRQ7 is also generated if an unknown

interrupt, caused, for example, by noise on any of the IRQ lines, is detected.

2. IRQ is not available on the PC and XT.

3. IRQ9 is software redirected on AT, PS/2 and EISA systems so that an interrupt request

on this line ultimately invokes the IRQ2 handler via vector 0Ah.

4. IRQ12 is used for the pointing device (i.e. usually a PS/2 style mouse) interface on some

AT clones and EISA machines.

5. On many systems, certain IRQs marked as Reserved are used by add-in adaptor cards.

Other IRQs may be adopted for different purposes. IRQ3, for example, may be allocated

to a network adaptor card if COM2 or COM4 is not installed. On AT, PS/2 and EISA

systems, IRQ5 is commonly employed by network adaptor cards, rather than for LPT2.

Table A.3 I/O port map for IBM PC, XT, AT and PS/2 machines

Address AT/ISA compatible

range PC, XT and EISA MCA

000–0FFh Used by motherboard Used by motherboard Used by motherboard

100–107h Reserved for motherboard I/O channel POS

108–10Fh Reserved for motherboard I/O channel Undocumented

110–11Fh Reserved for motherboard I/O channel Undocumented

120–12Fh Reserved for motherboard I/O channel Undocumented

130–13Fh Reserved for motherboard I/O channel Undocumented

Appendix A Adaptor installation reference 443

Table A.3 (continued)

Address AT/ISA compatible

range PC, XT and EISA MCA

140–14Fh Reserved for motherboard I/O channel Undocumented

150–15Fh Reserved for motherboard I/O channel Undocumented

160–16Fh Reserved for motherboard I/O channel Undocumented

170–177h Reserved for motherboard Hard disk 1 Undocumented

178–17Fh Reserved for motherboard Reserved Undocumented

180–18Fh Reserved for motherboard I/O channel Undocumented

190–19Fh Reserved for motherboard I/O channel Undocumented

1A0–1AFh Reserved for motherboard I/O channel Undocumented

1B0–1BFh Reserved for motherboard I/O channel Undocumented

1C0–1CFh Reserved for motherboard I/O channel Undocumented

1D0–1DFh Reserved for motherboard I/O channel Undocumented

1E0–1EFh Reserved for motherboard I/O channel Undocumented

1F0–1F8h Reserved for motherboard Hard disk 0 Undocumented

1F9–1FFh Reserved for motherboard Reserved Undocumented

200–207h Games adaptor Games adaptor Undocumented

208–20Fh Reserved Reserved Undocumented

210–217h Expansion unit Reserved Undocumented

218–21Fh Reserved Reserved Undocumented

220–22Fh Reserved I/O channel Undocumented

230–23Fh Reserved I/O channel Undocumented

240–24Fh Reserved I/O channel Undocumented

250–25Fh Undocumented Reserved Undocumented

260–26Fh Undocumented I/O channel / Reserved Undocumented

270–277h Reserved Reserved Reserved

278–27Ah LPT2 LPT2 LPT2

27B–27Fh Reserved Reserved Reserved

280–28Fh Undocumented I/O channel Undocumented

290–29Fh Undocumented I/O channel Undocumented

2A0–2AFh Undocumented I/O channel Undocumented

2B0–2BFh Video subsystem

(alternate)

Video subsystem

(alternate)

Undocumented

444 PC interfacing and data acquisition

Table A.3 (continued)

Address AT/ISA compatible

range PC, XT and EISA MCA

2C0–2CFh Video subsystem

(alternate)

Video subsystem

(alternate)

Undocumented

2D0–2DFh Video subsystem

(alternate)

Video subsystem

(alternate)

Undocumented

2E0h Undocumented Video subsystem

(alternate)

Undocumented

2E1h Undocumented GPIB adaptor 0 Undocumented

2E2–2E3h Undocumented Data-acq. adaptor 0 Undocumented

2E4–2EFh Undocumented Reserved Undocumented

2F0–2F7h Reserved Reserved Reserved

2F8–2FFh COM2 COM2 COM2

300–30Fh Prototype card Prototype card Undocumented

310–31Fh Prototype card Prototype card Undocumented

320–32Fh Hard disk Hard disk Undocumented

330–33Fh Undocumented Reserved / I/O channel Undocumented

340–34Fh Undocumented Reserved / I/O channel Undocumented

350–35Fh Undocumented I/O channel Undocumented

360–36Fh Undocumented Reserved Undocumented

370–377h Reserved 370–377h Diskette controller Undocumented

378–37Ah LPT1 or LPT2 LPT1 LPT2

37B-37Fh Reserved Reserved Undocumented

380–38Fh SDLC or BSC controller 2 SDLC or BSC controller 2 Undocumented

390–39Fh Undocumented Cluster adaptor Undocumented

3A0–3AFh BSC controller 1 BSC controller 1 Undocumented

3B0–3BBh Video subsystem Video subsystem Video subsystem

3BC-3BEh LPT1 (with MDA only) Reserved LPT1

3BFh Video subsystem Video subsystem Video subsystem

3C0–3CFh Video subsystem Video subsystem Video subsystem

3D0–3DFh Video subsystem Video subsystem Video subsystem

3E0–3E7h Reserved I/O channel Undocumented

3E8–3EFh Undocumented I/O channel Undocumented

3F0–3F7h Diskette controller Diskette controller Diskette controller

3F8–3FFh COM1 COM1 COM1

Appendix A Adaptor installation reference 445

Table A.3 (continued)

Notes:

1. Those ports labelled ‘I/O channel’ may normally be used for DA&C cards provided, of

course, that they are not already utilized by existing adaptors. Some of those addresses

listed as ‘Reserved’ or ‘Undocumented’ may also be used, but you should be aware that

there is a greater potential for conflicts to occur with other installed equipment. It should

be remembered that many systems incorporate devices which are not listed. Network

cards for instance are often located at I/O address 360h.

2. The most commonly used addresses for ADC, DAC or digital I/O cards are within the

Prototype Card address range – i.e. 300h to 31Fh, although other addresses are possible.

When installing additional serial communications (e.g. RS-422/485) cards on AT clones

and EISA systems, it is usual to select addresses 3E8h to 3EFh for COM3 and 2E8h to

2EFh for COM4.

3. EISA machines employ an extended I/O address scheme whereby each expansion slot

is allocated 1024 unique addresses. This address space is divided into four blocks of

256 contiguous I/O addresses starting at X000h, X400h, X800h and XC00h, where X is

the EISA slot number: 1, 2, 3 etc. In addition to this slot-specific address space, EISA

systems also incorporate the AT I/O ports which may be used with ISA compatible cards.

Address ranges 400h to 4FFh, 800h to 8FFh and C00 to CFFh are also reserved for use

by the EISA motherboard, although only the range 400h to 4FFh is currently used.

Table A.4 PC, XT, AT and PS/2 conventional-memory map

From To Size Description

00000h 003FFFh 1K Interrupt vector table

00400h 004FFh 256 bytes BIOS Data Area

00500h 9FFFFh1 638.75K DOS & BIOS data; DOS; DOS drivers; transient

program area

A0000h BFFFFh 128K Display adaptor video buffers

C0000h C7FFFh 32K Video adaptor ROM

C8000h DFFFFh 96K Non-video ROM expansion

E0000h EFFFFh 64K Reserved for system ROM expansion (used by

system ROM on MCA)

F0000h FFFFFh 64K System ROM

Note:

1. The upper limit varies. Older systems may be equipped with less than 640K conventional

memory, leaving space below the 640K barrier for memory-mapped I/O devices and

BIOSes.

446 PC interfacing and data acquisition

Table A.5 Common usage for display adaptor and ROM expansion areas

From To Size Use

B0000h B7FFFh 32K Monochrome display adaptor’s video buffer

B0000h BFFFFh 64K Hercules monochrome graphics adaptor’s video buffer

B8000h BFFFFh 32K CGA video buffer

A0000h BFFFFh 128K EGA, MCGA, VGA and SVGA video buffers

C0000h C3FFFh 16K EGA BIOS

C8000h CBFFFh 32K Hard disk BIOS (XT)

D0000h D7FFFh 32K Cluster adaptor BIOS

D0000h DFFFFh 64K LIM EMS page frame (although this may appear at other

addresses)

Notes:

1. Adaptor ROM BIOSes and memory-mapped I/O devices may be mapped to any unused

memory address range. Note, however, that many other installable devices may make

use of the available memory space so care should be taken to avoid conflicts with existing

adaptor cards. Unoccupied addresses within the range C0000h to DFFFFh should normally

be used.

2. On 80386 and later PCs using DOS version 5 or subsequent releases, some of the

memory areas above A0000h (i.e. between the adaptor BIOSes and buffers etc.) may

have physical RAM mapped into them. These areas, known as Upper Memory Blocks

(UMBs) can be used to run drivers and TSR programs. After installing a new adaptor card,

it will normally be necessary to reconfigure the system software in order to remap the

UMBs accordingly.

Appendix B Character codes

Computers, data-acquisition units and process-control devices gener-
ally communicate by transmitting and receiving a series of characters.
Each character is, in fact, a binary number which is simply interpreted
as a character by the receiving device. Both the transmitter and the
receiver must of course agree on the numbers which will be used to
represent each character.

Many character encoding schemes have been devised and some
are now largely obsolete. Baudot and Transcode, for example, were
compiled many years ago for telexes and paper-tape systems. The
former is a 5-bit code which utilizes a special shift character to
distinguish between letters and digits, while Transcode is a full 6-bit
code which can represent 64 different characters without the need
for a shift character.

The most popular character code currently in use is known as
ASCII, standing for American Standard Code for Information Inter-
change. This is a 7-bit code, established by ANSI in the 1970s.
It is capable of representing 128 different characters as listed in
Table B.1. An extended, 8-bit version of the ASCII code, which can
represent a total of 256 characters, is also in widespread use. The
additional characters available in the 8-bit ASCII code are listed
in Table B.2. Other 8-bit codes include EBCDIC (Extended Binary
Coded Decimal Interchange Code) which is used almost exclusively
in IBM mainframe systems. Although EBCDIC has 256 possible char-
acter codes many of these are unassigned. Because of its limited
applicability to DA&C systems it will not be discussed here.

Virtually all character sets include a number of control codes.
These are generally non-printable character codes, although some
will display as special graphics characters on the PC. They are
intended for text and message formatting and for controlling the
receiving device. The common meanings and usage of these control
codes are listed in Table B.3.

448 PC interfacing and data acquisition

Table B.1 The 7-bit ASCII character set

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char

00 0 O@ 20 32 SP 40 64 @ 60 96 ‘

01 1 OA 21 33 ! 41 65 A 61 96 a

02 2 OB 22 34 ” 42 66 B 62 98 b

03 3 OC 23 35 # 43 67 C 63 99 c

04 4 OD 24 36 $ 44 68 D 64 100 d

05 5 OE 25 37 % 45 69 E 65 101 e

06 6 OF 26 38 & 46 70 F 66 102 f

07 7 OG 27 39 ’ 47 71 G 67 103 g

08 8 OH 28 40 (48 72 H 68 104 h

09 9 OI 29 41) 49 73 I 69 105 i

0A 10 OJ 2A 42 * 4A 74 J 6A 106 j

0B 11 OK 2B 43 C 4B 75 K 6B 107 k

0C 12 OL 2C 44 , 4C 76 L 6C 108 l

0D 13 OM 2D 45 - 4D 77 M 6D 109 m

0E 14 ON 2E 46 . 4E 78 N 6E 110 n

0F 15 OO 2F 47 / 4F 79 O 6F 111 o

10 16 OP 30 48 0 50 80 P 70 112 p

11 17 OQ 31 49 1 51 81 Q 71 113 q

12 18 OR 32 50 2 52 82 R 72 114 r

13 19 OS 33 51 3 53 83 S 73 115 s

14 20 OT 34 52 4 54 84 T 74 116 t

15 21 OU 35 53 5 55 85 U 75 117 u

16 22 OV 36 54 6 56 86 V 76 118 v

17 23 OW 37 55 7 57 87 W 77 119 w

18 24 OX 38 56 8 58 88 X 78 120 x

19 25 OY 39 57 9 59 89 Y 79 121 y

1A 26 OZ 3A 58 : 5A 90 Z 7A 122 z

1B 27 O[3B 59 ; 5B 91 [7B 123 f
1C 28 On 3C 60 < 5C 92 n 7C 124 j
1D 29 O] 3D 61 D 5D 93] 7D 125 g
1E 30 O O 3E 62 > 5E 94 O 7E 126 Q
1F 31 O � 3F 63 ? 5F 95 � 7F 127 1

Notes:

1. The first 32 characters are defined as non-printable control characters. On the PC these

characters may be entered by means of the Ctrl key (represented by ‘O’ in the table) and

the character shown, although they may display as graphics characters (i.e. happy face,

card-suit symbols, arrows and other characters).

2. Depending upon the software running on the PC, the control characters may have other

effects on the display such as moving to a new line or clearing the screen (also see

Table B.3).

Appendix B Character codes 449

Table B.2 Additional characters available in 8-bit ASCII

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char

80 128 Ç A0 160 Ka C0 192 b E0 224 ˛

81 129 Ru A1 161 Kı C1 193 ? E1 225 ˇ

82 130 Ke A2 162 Ko C2 194 > E2 226 0

83 131 Oa A3 163 Ku C3 195 E3 227 �

84 132 Ra A4 164 Qn C4 196 � E4 228 6

85 133 Ja A5 165 QN C5 197 † E5 229 �

86 134 å A6 166 a C6 198 E6 230 �

87 135 ç A7 167 o C7 199 E7 231 �

88 136 Oe A8 168 C8 200 E8 232 8

89 137 Re A9 169 C9 201 E9 233 �

8A 138 Je AA 170 : CA 202 EA 234 �

8B 139 Rı AB 171 1/2 CB 203 EB 235 υ

8C 140 Oı AC 172 1/4 CC 204 EC 236 1
8D 141 Jı AD 173 ¡ CD 205 D ED 237 �

8E 142 RA AE 174 − CE 206 EE 238 2
8F 143 Å AF 175 × CF 207 EF 239 \
90 144 KE B0 176 D0 208 F0 240 �
91 145 æ B1 177 D1 209 F1 241 š
92 146 Æ B2 178 D2 210 F2 242 ½
93 147 Oo B3 179 j D3 211 F3 243 �
94 148 Ro B4 180 D4 212 F4 244

95 149 Jo B5 181 D5 213 F5 245

96 150 Ou B6 182 D6 214 F6 246 ł
97 151 Ju B7 183 D7 215 F7 247 ³
98 152 Ry B8 184 D8 216 F8 248 °

99 153 RO B9 185 D9 217 c F9 249 ž
9A 154 RU BA 186 DA 218 d FA 250 Ð
9B 155 BB 187 DB 219 FB 251

p

9C 156 £ BC 188 DC 220 FC 252 n

9D 157 ¥ BD 189 DD 221 FD 253 2

9E 158 BE 190 DE 222 FE 254

9F 159 f BF 191 e DF 223 FF 255

Notes:

1. These characters are available only in 8-bit ASCII. Characters 00h to 7Fh in 8-bit ASCII

are identical to the standard 7-bit ASCII characters listed in Table B.1.

2. Character FFh is a non-printing character.

450 PC interfacing and data acquisition

Table B.3 ASCII control codes

Hex Name Description

00 NUL Null: has no effect and contains no information; often used

to pad the beginning of a transmission

01 SOH Start of Header: identifies beginning of message header

02 STX Start of Text: identifies beginning of text / data block;

usually follows a message header and may be used to

mark the end of the header

03 ETX End of Text: identifies end of text / data block

04 EOT End of Transmission: signals end of transmission; may also

be used to terminate a communications session

05 ENQ Enquiry: general request for status, information or

identification

06 ACK Acknowledgement: general affirmative response to

queries/enquiries; receiving device may transmit ACK to

indicate a data block has been received without error

07 BEL Bell: sounds bell, buzzer or speaker on receiving equipment

08 BS Backspace: move cursor/print position back one space on

terminal

09 HT Horizontal Tab: move cursor/print position to next tab-stop

position on the current line

0A LF Line Feed: move cursor/print position down to next line

0B VT Vertical Tab: move cursor/print position down to next

vertical tab line

0C FF Form Feed: move cursor/print position to top of next page;

or eject printed page

0D CR Carriage Return: move cursor/print position to beginning of

current line

0E SO Shift Out: indicates that subsequent characters with codes

greater than 1Fh are not ASCII encoded; all characters

with codes less than or equal to 1Fh are still interpreted

as ASCII control codes

0F SI Shift In: all subsequent characters are ASCII encoded

10 DLE Data Link Escape: marks escape sequences that are used to

control transmissions

11 DC1 Device Control 1: application specific; often used as XON

character in software flow control

12 DC2 Device Control 2: application specific

13 DC3 Device Control 3: application specific; often used as XOFF

character in software flow control

14 DC4 Device Control 4: application specific

15 NAK Negative Acknowledgement: general negative response to

queries / enquiries

Appendix B Character codes 451

Table B.3 (continued)

Hex Name Description

16 SYN Synchronous Idle: transmitted during synchronous

communications to ensure synchronization

17 ETB End of Transmission Block: indicates the end of each

transmitted data block

18 CAN Cancel: cancels previous data (usually up to the last CR

character); may indicate that previous data contained

errors

19 EM End of Medium: no more medium (e.g. printer paper or tape)

1A SUB Substitute: used to replace a character that is known or

suspected to be erroneous

1B ESC Escape: signifies the start of an escape sequence that is

used to control devices such as printers; also used as a

general ‘abort’ command in PC applications

1C FS File Separator: terminates transmitted files; usage is

application-specific

1D GS Group Separator: terminates data blocks within files; usage

is application-specific

1E RS Record Separator: terminates records within groups; usage

is application-specific

1F US Unit Separator: terminates units within records; usage is

application-specific

7F DEL Delete: deletes character at cursor position

Note:

Many systems make use of only a few of these control codes. Their usage may not

always be entirely consistent with that outlined. DC1 to DC4 and FS, GS, RS and US all

have application-specific meanings. Their usage will vary between different devices and

protocols.

Recently, a 16-bit character encoding scheme known as Unicode
has been developed as an international standard by a consortium
of companies, including IBM, Microsoft and Apple. This scheme
includes not only the Roman alphabet, but also Russian, Greek,
Arabic, Chinese and other character sets as well as a number of
mathematical symbols and punctuation marks. It is capable of repre-
senting up to 65 536 different characters in total. The first 128
Unicode characters are identical to the standard 7-bit ASCII char-
acter set. Unicode is presently used in Microsoft’s Windows NT.
Because of its size and complexity, it seems unlikely that Unicode
will supersede ASCII in industrial communications and real-time
data-acquisition systems, at least for some considerable time.

This Page Intentionally Left Blank

References

I have tried, as far as possible, to refrain from referencing original
manufacturer’s technical literature, which can sometimes be difficult
or expensive to obtain. Instead, the majority of references are for
easily accessible books: most will (hopefully) still be in print by the
time that the present work is published. However, the text does
contain a small number of references to manufacturers’ data sheets
relating to common PC components and subsystems. These can
usually be obtained, individually or in the form of published data
books, direct from the manufacturers concerned or from various
component suppliers.

Application notes, which often accompany manufacturers’
product catalogues, can be a very useful source of information.
In spite of this, and because of their proprietary and sometimes
transient nature, I have included only a few references to such
publications in the text. Of particular note are the series of
Applications Handbooks published by Burr Brown Corporation,
PO Box 11400, Tucson, AZ 85734-1400, USA, and Data Translation
Inc., 100 Locke Drive, Marlborough, MA 01752-1192.

Adamson M. (1990) Small Real Time System Design: From Microcontrollers
to RISC Processors. Sigma Press.

Bannister B.R. and Whitehead D.G. (1991) Instrumentation: Trans-
ducers and Interfacing. Chapman & Hall.

Bell D., Morrey I.I. and Pugh J.R. (1992) Software Engineering:
A Programming Approach, 2nd edn. Prentice-Hall International
(UK) Ltd.

Ben-Ari M. (1982) Principles of Concurrent Programming. Prentice-
Hall Inc.

Brown R. and Kyle J. (1991) PC Interrupts: A Programmer’s Reference
to BIOS, DOS and Third Party Calls. Addison-Wesley Publishing
Company Inc.

454 PC interfacing and data acquisition

Buchanan W. (1999) PC Interfacing, Communications and Windows
Programming. Addison-Wesley Longman Limited.

Collett C.V. and Hope A.D. (1983) Engineering Measurements, 2nd
edn. Longman Scientific and Technical.

Crozier P. (1985) Electronic Instruments and Measurements. Breton
Publishers.

Dettmann T. and Johnson M. (1992) DOS Programmer’s Reference, 3rd
edn. Que Corporation.

Duncan R. (1988) Advanced MS-DOS Programming, 2nd edn. Microsoft
Press.

Duncan R. (1989) MS-DOS Extensions. Microsoft Press.
Duncan R., Petzold C., Baker M.S., Schulman A., Davis S.R.,

Nelson R.P. and Moote R. (1990) Extending DOS. Addison-Wesley
Publishing Company Inc.

Edgar T.F. (1996) Process Dynamics and Control, in The Electronics
Handbook (J.C. Whitaker, ed.), pp. 1823–1839. CRC Press Inc.

Eggebrecht L.C. (1990) Interfacing to the IBM Personal Computer, 2nd
edn. Howard Sams.

Evesham D.A. (1990) Developing Real-Time Systems – A Practical Intro-
duction. Sigma Press.

Fröberg C.-E. (1966) Introduction to Numerical Analysis. Addison-
Wesley Publishing Company Inc.

Grover D. (ed.) (1989) The Protection of Computer Software – Its Tech-
nology and Applications. Cambridge University Press.

Hogan T. (1988) The Programmer’s PC Sourcebook. Microsoft Press.
Holzner S. and Peter Norton Computing Inc. (1991) Advanced

Assembly Language. Brady.
Hummel R.L. (1992) PC Magazine Programmer’s Technical Reference:

The Processor and Coprocessor. Ziff-Davis Press.
IBM Corporation (1989) PS/2 BIOS Interface Technical Reference. IBM

Corporation.
Johnson C.D. (1988) Process Control Instrumentation Technology, 3rd

edn. Prentice-Hall Inc.
Knuth D.E. (1973) The Art of Computer Programming, Volume 3: Sorting

and Searching. Addison-Wesley Publishing Company Inc.
Labfacility Ltd (1987) Temperature Sensing with Thermocouples and Resis-

tance Thermometers: A Practical Handbook. Labfacility Ltd, Middlesex
TW11 8LR.

Lai R.S. (1987) Writing MS-DOS Device Drivers. Addison-Wesley
Publishing Company Inc.

Maguire S.A. (1993) Writing Solid Code. Microsoft Press.
Maine A.C. (1986) Interfacing Standards for Computers. The Institution

of Electrical and Electronics Incorporated Engineers.

References 455

Marnham D.J. (1994) Interfacing Standards for Computers, 2nd edn. The
Institution of Electronics and Electrical Incorporated Engineers.

Miller A.R. (1993) Borland Pascal Programs for Scientists and Engineers.
Sybex Inc.

Mitchell E. (1993) Borland Pascal Developer’s Guide. Que Corporation.
Norton P. and Wilton R. (1988) The New Peter Norton Programmer’s

Guide to the IBM PC and PS/2. Microsoft Press.
Oney W. (1996) Systems Programming for Windows 95. Microsoft Press.
Parr E.A. (1986) Industrial Control Handbook, Volume 1: Transducers.

Collins.
Petzold C. (1996) Programming Windows 95. Microsoft Press.
Phoenix Technologies Ltd. (1989) System BIOS for IBM

PC/XT/AT Computers and Compatibles. Addison-Wesley Publishing
Company Inc.

Pople J. (1979) BSSM Strain Measurement Reference Book. The
British Society of Strain Measurement, Newcastle-upon-Tyne NE6
5QB, UK.

Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.
(1992) Numerical Recipes in Pascal: The Art of Scientific Computing.
Cambridge University Press.

Putman B.W. (1987) RS-232 Simplified – Everything You Need to Know
About Connecting, Interfacing, and Troubleshooting Peripheral Devices.
Prentice-Hall Inc.

Rosch W.L. (1996) Printer Bible. MIS Press.
Sanchez J. and Canton M.P. (1994) PC Programmer’s Handbook, 2nd

edn. McGraw-Hill Inc.
Schulman A., Michels R.J., Kyle J., Paterson T., Maxey D. and

Brown R. (1990) Undocumented DOS. Addison-Wesley Publishing
Company Inc.

Solomon D.A. (1998) Inside Windows NT, 2nd edn. Microsoft Press.
Stallings, W. (1997) Data and Computer Communications, 5th edn.

Prentice-Hall Inc.
Swan T. (1989) Mastering Turbo Assembler. Hayden Books.
Templeman J. (1998) Beginning Windows NT Programming. Wrox

Press Ltd.
Tompkins W.J. and Webster J.G. (eds) (1988) Interfacing Sensors to the

IBM PC. Prentice-Hall Inc.
Tooley M.H. (1992) Data Communications Pocket Book, 2nd edn.

Butterworth-Heinemann Ltd.
Tooley M.H. (1995) PC-based Instrumentation and Control, 2nd edn.

Butterworth-Heinemann Ltd.
van Gilluwe F. (1994) The Undocumented PC: A Programmer’s Guide

to I/O, CPUs, and Fixed Memory Areas. Addison-Wesley Publishing
Company Inc.

456 PC interfacing and data acquisition

Vears R.E. (1990) Microprocessor Interfacing. Butterworth-Heinemann
Ltd.

Wadlow T.A. (1987) Memory Resident Programming on the IBM PC.
Addison-Wesley Publishing Company Inc.

Warring R.H. and Gibilisio S. (1985) Fundamentals of Transducers.
Tab Books Inc.

Index

16450, 311, 313, 318, 325
See also UART

16550, 311, 313, 315, 318, 324–5
FIFO buffer 327–30
See also UART

80186, 7
80286, 6–8, 10, 13
80386, 6–9, 13, 39, 41, 217–8,
80486, 6, 10, 39, 52, 220
8086, 6, 8, 217
8088, 6
8237A, 222, 227–30

See also DMA controller
8250, 311, 325–6

See also UART
8254, 107, 128
8255A. See PPI
8259A. See PIC

A20 line, 12
Accuracy:

of analogue measurements, 124
sampling, 136, 138
signal reconstruction, 138–41,

423
Actuator, 71, 73–5, 95, 98, 387–90,

393, 397
ADC, 73–5

accuracy, 113–23
card, 15, 76, 99, 120–1, 125, 208,

212, 240

conversion time, 115, 117–20,
126, 138, 141–2, 240, 423

full-scale range, 105, 113, 121,
125

gain error, 99, 122–3
monotonicity, 111–2, 115–6
missing codes, 122
multiplexed inputs, 98–9
non-linearity, 114–5, 117–8,

122–4
offset error, 99, 122–3
resolution, 104–5, 112–4, 117,

120, 125–6, 141, 373
See also Quantization error;

Quantization noise
sensitivity, 96
throughput, 117–8

Alias frequency, 135
Aliasing, 135–6
American Standard Code for

Information Interchange. See

ASCII
Amplifier, 98–9, 108, 110, 124–5,

423
See also PGA

Analogue input, 73
Analogue output, 73
Analogue-to-digital converter. See

ADC
Anti-aliasing filter. See Filter,

anti-aliasing

458 Index

Anticipatory control. See Derivative
control mode

Aperture error, 138, 430
ASCII character codes, 290, 447–9

control codes, 450–1
Assembly language, 127, 129, 216
Assertions, 63
Asynchronous parallel interface,

252
Asynchronous serial transmission,

285–6, 298
AT bus. See ISA bus
Autoranging, 126
Autoregressive filter. See Filter

algorithm

Backplane, 4, 24
Back-to-back I/O, 219–21
Band-limited signal, 136
Bank-switched memory. See

Expanded memory
Baud rate, 286, 295, 319–21

See also Bits per second
BCD, 107
Beat frequency. See Alias frequency
Binary Coded Decimal. See BCD
Binary coding:

complementary Offset binary,
106

complementary Two’s
Complement, 106

floating point, 103, 292
natural binary. See Binary coding,

True binary
offset binary, 105–7
one’s complement, 106
true binary, 85, 103–5
two’s complement, 105–7
See also BCD; Gray code

Binary counter ADC, 117–8
Binary digit. See Bit
BIOS, 37, 165, 168, 179, 184–5, 188

real-time performance, 38
See also Real-time BIOS

re-entrancy, 46
serial I/O, 310

BIOS Data Area, 257–8, 309–10
Bisection search algorithm, 377–9
Bit, 72, 104–7
Bitbus, 306, 307
Bits per second 286

See also Baud rate
Break-out box, 303
Bridge circuit:

and resistive sensors, 92–4, 96,
348

lead resistance, 93–4, 97, 349
linearity, 93
self heating, 93
See also Noise, resistive bridges

Bubble sort, 374, 376
Buffers, 244–5

See also FIFO buffer; LIFO buffer
Bus mastering, 243–4

Cable length, 253, 256, 295, 304,
307–8

Calibration:
accuracy, 350–1, 355, 362–4
frequency, 96
from known sensitivity, 348–9
in-situ, 413–6
interactive facility, 28, 381–3, 416
prime, 348–54, 422
procedure, 382–3, 385, 422
reference points, 351–2, 354,

357–8, 364, 366, 374, 416
reference standard, 350
traceability, 386

Celeron, 7
Centronics parallel port, 251,

253–4
See also Parallel port

Circular buffer. See FIFO buffer
chain intr() function, 196–7

Checksum, 322
CLI instruction, 170, 202
CMOS RAM, 19, 184

Index 459

Code width, 121
See also ADC, resolution

Cold-junction compensation:
hardware, 88, 96, 437
software, 88–90, 433–4
See also Thermocouple

Common mode voltage, 98
CompactPCI, 24
Comparator, 393–95
Concurrent processing, 38–40, 50

See also Multitasking
Contact debouncing. See Relay,

debouncing
Context switch, 10

See also Task switch
Control algorithm, 29, 392
Control element, 389, 397
Controlled variable, 388

error, 396, 402
See also PID

oscillation, 395, 402, 405
Controller lag, 388, 405
Control loop tuning, 28
Control system, 387

algorithm, 205
closed-loop, 388–90
continuous, 389–90, 396–407
discontinuous, 389–90, 392–5,

434
open-loop, 388
start-up, 392

Coprocessor. See Numeric
coprocessor

Coprocessor card, 207–8
See also Single board computer

Counter, 128
See also Timer

Critical section, 44, 170
Cross coupling, 99, 100
Current loop, 307
Cut-off frequency. See Filter, cut-off

frequency
Cyclic redundancy check, 322

DA&C software:
configuration, 27
diagnostics, 27–8
drivers, 29–30

See also Device drivers
run-time modules, 29
structure, 34

DAC, 73–75:
as component of ADC, 117–9
conversion process, 110
current-loop output, 108
double buffering, 109
gain error, 111–2
linearity, 111–2
monotonicity, 111–2, 122
offset error, 111–2
reference voltage, 110
resolution, 105, 108
settling time, 109
transfer characteristic, 108–12

Damping, 402, 405
See also Controlled variable

Data Communications Equipment.
See DCE

Data I/O strategies:
DMA vs. programmed I/O, 218,

241–3
free running ADC, 213
interrupts, 214–6, 324, 328–9,

415, 425
polling, 213–6, 322–4, 328–9,
throughput, 215–6

Data loggers, 66, 209, 291–2
Data Terminal Equipment. See DTE
Data transfer protocol, 211, 273
DCE, 298–302
Deadband, 394–5
Deadlock, 44
Deferred Procedure Call. See DPC
Demand paging. See Memory,

paging
Derivative control mode, 396,

402–3
Derivative time, 397, 400

460 Index

Descriptor, 12
DESQview, 165, 168
Determinism, 32–3, 48–50

with remote DA&C units, 205,
209

under Windows, 46, 55, 57–8
Device drivers, 29, 30, 55, 163, 202

See also DA&C software, drivers
Diagnostic routines, 28

See also Software, testing
Differential inputs, 97–8

See also Pseudo-differential
inputs; Single-ended inputs

Digital filter. See Filter; Filter
algorithm

Digital input, 73
Digital output, 73, 390
Digital Signal Processor. See DSP
Digital storage oscilloscope, 28, 63
Digital-to-analogue converter. See

DAC
Direct controller action, 397
Direct Memory Access. See DMA
DMA 33, 127, 222, 244

channels, 223–6, 230–3
channel assignment on the PC,

441
dual-channel, 240–1, 244
enabling and disabling, 234, 237
in protected mode, 234, 236
latency, 241–2
mirror buffer, 235
page registers, 230–1, 237
request, 225, 245
transfer mechanism, 224–6
transfer rate, 240, 242
under Windows, 236
virtual, 236

DMA controller, 222–7
autoinitialization, 227
Base Address register, 227, 231
Base Word Count register, 227,

232

Block Transfer mode, 228, 237,

240

Byte Pointer flip-flop, 231–2, 237

cascading, 223

Command register, 232–3

Current Address register, 227,

231

Current Word Count register,

227, 232

Demand Transfer mode, 228,

240, 243

I/O port base address, 228

Mask register, 234

Mode register, 227, 234–5

on-chip, 7

priorities, 227

programming, 224, 236–7

read operation, 224

Request register, 233, 236

Single Transfer mode, 228, 240,

242

Status register, 232–3

write operation, 224

Write-All-Mask register, 234–5

See also 8237A

DOS, 37, 53, 164–5, 185, 188

file system, 48

real-time performance, 48

See also Real-time DOS

DOS extender, 49

See also DPMI

DOS Protected Mode Interface. See

DPMI

DPC, 56

DPMI, 49, 203

See also DOS extender; Protected

mode

DSP, 207–9

DTE, 298–303

Dual slope ADC, 116–7

Dynamic range, 125–6

See also SNR

Index 461

EBCDIC, 447
EISA bus, 33, 170, 175, 184

slot-specific addressing, 16, 20
See also I/O address, decoding

transfer rate, 21–2
Embedded PC, 5
EMS, 14–5
Encoder, 85–6

See also Sensor
End-of-Conversion pin. See EOC pin
End of Interrupt. See EOI
Enhanced Industry Standard

Architecture bus. See EISA bus
EOC pin, 15, 120–1, 212–3
EOI, 174–5, 186, 189, 198

non-specific, 181–2, 194, 196
See also PIC

Error code, 67
Error messages, 67
Error handling, 62, 64
Excitation voltage, 93, 95, 97, 348
Expanded memory, 14–5
Expanded Memory Specification.

See EMS
Expansion bus, 36, 76, 205, 220

See also EISA bus; ISA bus; MCA
bus; PC bus

Extended Binary Coded Decimal
Interchange Code. See EBCDIC

Extended memory, 14–5
Extended Memory Specification.

See XMS

Fan network topology, 293–4, 304
Faults, responding to, 68, 185
FIFO buffer, 150–3, 155–7, 208–9,

245–50, 324, 425
See also LIFO buffer

Filter:
anti-aliasing, 96, 136
bandwidth, 146
characteristic, 145
cut-off frequency, 136, 145–6,

149–50, 153–5, 157–9

electronic, 79, 84, 94

Finite Impulse Response, 148

Infinite Impulse Response, 148

low-pass, 144–5

phase lag, 150, 155, 159, 160

response, 136, 149, 152

software, 128, 143, 148

See also Filter algorithm

Filter algorithm, 97, 247

accuracy, 146–7

Auto-Regressive Moving Average,

149

averaging, 147–8, 350

exponentially weighted FIFO,

149, 151–7, 160

non-recursive, 148–50

recursive, 148–9, 157–60

stability, 157

testing, 146–7

unweighted moving average,

150–2, 160

weights, 150, 152–3

Filtering, 66, 97, 141, 143–4

Firewire. See IEEE-1394

Flash conversion. See Parallel

digitization

Floating point:

calculations, 11, 355

data transmission, 292

rounding errors, 146, 361–2,

364, 366, 392

software libraries, 10, 146, 355

speed, 355

unit. See Numeric coprocessor

Flow control. See Handshaking;

Serial communications

protocol

Flow sensor, 82

Full duplex, 285, 294, 298

Full scale, 82

See also ADC, full-scale range

Furnace control, 31

462 Index

Gauging, 347, 384, 411–3, 416–20
Gaussian Elimination, 359–63
GPIB. See IEEE-488
Gray code, 85, 86

See also Shaft encoder

Half duplex, 285, 294, 298, 305
Handshaking, 76, 212–3

IEEE-488, 273
parallel buses, 252
parallel port, 255, 265
serial communications, 288–9,

299–302, 305–6
software, 212, 415

Heartbeat signal, 66
Hexadecimal notation, 107–8
High level language, 127, 129, 190,

221
High Memory Area. See HMA
HIMEM.SYS, 14
HMA, 12
Hold capacitor, 102–3

See also S/H
Hysteresis, 66, 393–5

IEEE-1284. See Parallel port
IEEE-1394, 308
IEEE-488:

adaptor card, 282–3
addressed command group,

279–80
bus, 210, 251, 253, 271
bus structure, 273–6
commands, 276, 278–83
connector pin assignments,

273–4
controller, 272, 282
drivers, 282–3
handshaking, 273, 275–6
HS488 protocol, 273
listen address group, 279–80
listener, 272, 276, 282
logic levels, 274–5
parallel poll, 277–8

protocol, 271, 273
primary address, 271
SCPI commands, 278, 281
secondary address, 272
secondary command group, 281
serial poll, 277–8
status byte, 277
talk address group, 281
talker, 272, 276, 282
transfer rate, 273
universal command group,

279–80
unlisten address, 280

Ill-conditioned matrix, 361–2
Industrial buses, 23–5
Industry Standard Architecture bus.

See ISA bus
IN instruction, 15, 215–7, 220
Initialization Command Word. See

ICW
inp() function, 221
inportb() function, 221
inport() function, 221
Input/Output ports. See I/O ports
Input/Output space. See I/O space
inpw() function, 221
INSB instruction, 217–8
INSD instruction, 217–8
INS instruction, 218–9
INSW instruction, 217–8
int86() function, 188
int86x() function, 188
-INTA, 171–3, 176–8
intdos() function, 188
intdosx() function, 188
Integral control mode, 396, 402
Integral time. See Reset rate
Interfacing, 33
Interpolating function, 380
Inter-process communication, 42,

44, 48, 59
under Windows, 52

Interrupt 21h, 188, 194

Index 463

Interrupt handler, 42, 44, 163, 186,
204, 246, 248, 425, 429

and servicing a watchdog timer,
130

chaining, 176, 196–8, 203
installing, 191–2
hardware, 192, 194, 198, 200,

213–4
NMI, 184–5
serial port, 341
structure, 192–3
Unexpected, 165

Interrupt handling, 37
under Windows, 56

interrupt keyword, 195
Interrupt latency, 37–8, 46, 60,

201–2, 244–5, 324
in operating system services, 202
under DOS, 38, 46, 203
under Windows, 38, 46, 56, 58,

203–4
Interrupt request. See IRQ
Interrupts:

edge triggered, 175
external, 164–5, 168–70, 182,

184
in real time, 36
level triggered, 175
NMI, 164, 170, 183–5
priority, 171, 176, 183–4, 186,

189–90
processor exceptions, 164, 168,

185, 188–9
protected mode, 164, 174
remapping, 168, 178
software, 164–5, 185–7
timer, 33
See also Data I/O strategies

Interrupt sharing, 173, 201
Interrupt Type Code, 173, 176, 178,

184, 186–8
Interrupt vector, 164, 165–8, 191–2
Interrupt vector table. See IVT
INT instruction, 186–7

INTR line, 170–3, 176
Intr() procedure, 188
I/O address, 16

allocation, 16
decoding, 15–6

See also EISA bus, slot-specific
addressing

unaligned, 220
I/O mapped registers, 221
I/O port, 15

address, 15, 217
map, 442–5
read only, 16
recovery time, 219
write only, 16

I/O protection mechanisms, 16–7
I/O space, 15, 205
I/O timing, 220
IRET instruction, 174, 186, 193–5,

197–8, 202
IRQ, 165, 169–78, 182–3, 192, 214

assignments on the PC, 442
IRQL, 56
ISA bus, 17–9, 33, 170, 174, 184,

222
clock speed, 19

Isolation , 77
IVT, 164–5, 178, 186, 191

KERMIT protocol, 291
Kernel mode, 52, 55, 163

Lagrange polynomial, 379–80
Least significant bit. See LSB
Least squares fitting:

best-fit condition, 358–61
conformance, 362–4
polynomial, 357–73

See also Gaussian Elimination
polynomial coefficients, 357–8
polynomial order, 358, 364–5,

366
power-series polynomial, 364–72
rms deviation, 354, 362, 364–5

464 Index

Least squares fitting: (contd.)
straight line, 351–4
weights, 358, 365
worst deviation, 354

LIFO buffer, 246–7
Linearization:

in software, 83, 89, 93, 127,
356–81

interpolation, 356, 373, 379–81
searching a look-up table, 377–9
sorting a look-up table, 373–6
polynomial, 91–2, 292, 356–73,

413
See also Least squares fitting
polynomial evaluation, 371–2
techniques compared, 381

Linear Variable Differential
Transformer. See LVDT

Linux, 58
Load cell, 92, 347–9, 351, 421–3,

427, 430
Lockout, 44
Logic analyser, 28, 63, 253
Looped network topology, 294,

304, 322
LPT port. See Parallel port
LSB, 72, 104–5, 108, 113, 123
LVDT:

calibration, 94, 419
high-precision, 417
linearity, 95, 351, 356–7, 413,

427, 430
null position, 94
resolution, 94–5

Marking state, 287–8, 298
MCA bus, 19–21, 33, 175

Programmable Option Select, 20
transfer rate, 21–2

Measurand, 81–2, 132, 137, 345,
385

Measuring lag, 388
Memory:

above 1MB, 13–4

addressing, 13, 51
address map, 11–2, 445
paging, 13, 54
physical address, 13, 54–5, 235
segmentation, 11

Message-passing protocol, 52
Micro-channel Architecture bus. See

MCA bus
Modem, 299, 303
Mode switch, 203
Monochromator, 436–7
Moving Average filter. See Filter

algorithm, non-recursive
MS-DOS. See DOS
Multibus, 24
Multi-drop network, 66, 253, 294,

296,
Multiplexer, 98–100, 121, 124

settling time, 99–101, 126, 240,
423

Multitasking, 39, 43–4, 52
prioritization, 44–5
real time, 42–3
under Windows, 7, 51–2

Mutex, 44, 48, 200
Mutual exclusion. See Mutex

Neutral zone. See Deadband
NMI. See Interrupt handler, NMI;

Interrupts, NMI
Noise, 66, 79, 117, 142–3, 393

during calibration, 350–1, 362
electrical, 86, 142, 144, 350
resistive bridges, 93
signal conditioning, 82, 84
See also Filter, Hysteresis,

Quantization noise
Non-linearity, 92–3

See also Sensor, linearity;
Linearization

Non-maskable interrupt. See

Interrupt handler, NMI;
Interrupts, NMI

Null modem, 302–3

Index 465

Numeric coprocessor, 10, 146, 355,
381

Nyquist’s sampling theorem,
132–4, 136, 142

Offset, 125–6, 347–9, 384, 419
Opto-isolator, 78–9
OS/2, 16, 39, 59
OUT instruction, 15, 205, 217, 220
outp() function, 221
outportb() function, 221
outport() function, 221
OUTSB instruction, 217–8
OUTSD instruction, 217–8
OUTS instruction, 218–9
OUTSW instruction, 217–8
outpw() function, 221
Overlap multiplexing, 127

Pacing, 33, 128, 190
Page translation. See Memory,

paging
Parallel buses, 253
Parallel digitization, 120
Parallel port:

base address, 257–8
bidirectional, 254–5
connector pin assignment, 260–1
Control Register, 258–63
Data Register, 258–62
data acquisition using, 256
driver, 266–70
driving a printer, 263–5
ECP, 254–7
Enhanced Capabilities Port. See

Parallel port, ECP
Enhanced Parallel Port. See

Parallel port, EPP
EPP, 254–7
IEEE-1284, 255, 260
interrupts, 260, 262, 264
standards, 254–5
Status Register, 259–62
structure, 258–60
timing, 265

unidirectional (standard),
254–5, 260, 262

See also Centronics parallel port
Parallel processing, 39, 208
PCI bus, 17, 19–21, 33, 171, 173

bus mastering, 20–1, 222, 243–4
transfer rate, 21, 243

PC-DOS. See DOS
PCMCIA, 22, 33, 76
Pentium, 5–8, 39, 52
Personal Computer Memory Card

International Association. See

PCMCIA
PGA, 75, 83, 125–6
Photomultiplier, 436
PIC, 170–4

cascaded, 176–8
ICW, 179–81
IMR, 172–3, 181, 192, 196, 198
Initialization Command Word.

See PIC, ICW
In Service Register. See PIC, ISR
Interrupt Mask Register. See PIC,

IMR
Interrupt Request Register. See

PIC, IRR
IRR, 172–4, 181–2, 195
ISR, 172–3, 181–2, 194–5
OCW, 179, 181
Operational Command Word. See

PIC, OCW
priority resolver, 172
programming, 179

PID:
algorithm, 128, 397–401
contribution from each term,

401–4
control, 396–407
transfer function, 404–6
tuning, 404–7

PLC, 65, 76, 254, 390–1, 431
Point-to-point bus topology, 293–4,

298, 304, 322

466 Index

Polling loop, 34–5
See also Data I/O strategies

Port and PortW arrays, 221
POST, 65, 165, 178–9, 257, 309
Potentiometric sensors, 86
Power-On Self Test. See POST
PPI, 77, 253
Pressure transducer, 92
Pre-trigger logging, 250
Printer port. See Parallel Port
Priority inheritance, 45

See also Multitasking
Priority inversion, 44–5

See also Multitasking
Privilege level, 52, 57–8

and I/O operations, 16, 17
Privilege ring, 52
Process, 132, 387–9, 396
Process lag, 388, 398, 405
Process load, 388, 402–5
Processor, 5
Process variables, 388, 392

error in, 396
oscillation, 395–6, 405

Profibus, 306–7
Programmable Gain Amplifier. See

PGA
Programmable Interrupt

Controller. See PIC
Programmable Interval Timer. See

8254
Programmable Logic Controller.

See PLC
Programmable Peripheral

Interface. See PPI
Proof testing, 250
Proportional band, 401–2
Proportional control mode, 396,

401–2
Proportional gain, 397
Proportional-Integral-Derivative. See

PID
Protected mode, 8, 9, 13, 17, 163
Pseudo-differential inputs, 97–8

See also Differential inputs,
Single-ended inputs

Quantization error, 112–3, 124
See also ADC

Quantization noise, 113–4
See also ADC; Noise Quantum,

121
See also ADC; DAC

Queue, 52, 54
Quick Sort algorithm, 374

RAM disk, 14
Range checking, 65, 392
Ratiometric correction, 97
Real address mode. See Real mode
Real mode, 14, 164

on 8088/86, 7–8
Real-time, 15, 30–4, 38

DA&C systems, 13, 31, 34, 37, 50,
52, 55, 128

deadline, 33, 38
response, 29, 31–2, 36
system requirements, 32–4, 36
under DOS, 38, 45, 46, 48
under Windows, 45–6, 55

Real-time BIOS, 46, 60
Real-time clock, 33, 128, 184
Real-time control, 29, 48, 55, 207
Real-time DOS, 46, 48–9, 60, 203
Real-time operating system. See

RTOS
Reconstruction (of sampled

signals), 136, 138–9
accuracy, 138–9, 423
artefacts, 139
error, 139–40, 148

Re-entrancy, 37, 199–200
BIOS, 199
under DOS, 37, 48, 199
under Windows, 57, 200

Registers, 9, 37, 188, 192–3, 197–8,
217–9, 222

Index 467

32-bit, 10
Flags, 9, 173–4, 186, 193–4, 198,

202
Relay, 75–9, 390

cards, 79
debouncing, 80–1
fail-safe operation, 66, 79, 425
solid state, 78
switching time, 79, 424

Reliability, 34, 58, 61, 391–2
REP prefix, 219
Reset rate, 397, 400
Resistance temperature detector.

See RTD
Response curve (of a measuring

system), 345, 379–80
non-linear, 356–7, 365–6, 372
straight-line, 346–7

See also Calibration; Offset;
Scaling factor; Sensor;
Linearization

RET instruction, 174
RETF instruction, 194
Reverse controller action, 397
Ring 0 driver. See VxD
Ring buffer. See FIFO buffer
Rotor tachometer, 85
Rounding error. See Floating point
RS-232, 210, 285–6, 294–303, 308,

390
connector pin assignment,

297–8, 312
handshaking, 299–301
logic levels, 298

RS-422, 286, 292, 294–5, 303–5,
327, 390

RS-485, 210, 286, 294–5, 305–7,
327, 390

RSS error, 124
RTDs, 90–4, 96, 351, 365
RTOS, 29, 37–8, 42, 45–6, 57–9,

208
Ruggedized PC, 4, 5

Safety, 391–2
Sample, 143–4
Sample-and-hold, 74–5, 131

simultaneous, 98, 424, 430
See also S/H

Sampling accuracy, 136
Sampling rate, 46–7, 97, 117–20,

131–2, 136, 141–2, 428
coprocessor card, 208
PID control, 397, 400
See also Throughput

SC pin, 120, 212–3
Scaling, 127

algorithm, 355
on-board, 207

Scaling factor, 292, 347–50, 255,
382, 419

Scheduling, 39, 59
non pre-emptive, 39, 52
pre-emptive, 41, 48, 50, 52
See also Multitasking

Selector, 12–3
See also Descriptor

Self-modifying code, 187
Self test, 65
See also POST
Semaphore, 44, 48, 200
Semiconductor temperature

sensor, 84, 86–7
Sensor, 71, 74

accuracy, 82, 91, 124
analogue, 81–95
digital, 85
dynamic range, 82–3
linearity, 82–3, 86, 93–5, 124,

345–6, 351
repeatability, 82–3, 86, 95
resolution, 82, 86, 94–5
response , 91–2
response time, 82–4, 87, 91–2
sensitivity, 348
stability, 82–3, 86, 92, 94
temperature coefficient, 351

468 Index

Sensor (contd.)

time constant, 84, 91, 126
See also Encoder; Transducer

Serial buses:
balanced differential, 303–5
hardware handshaking, 288,

299–303, 305–6
interface standards, 296–308
single-ended, 296–7
topology, 292–4
transmission distance, 295–6,

304, 307–8
transmission rate, 284, 286,

295–6, 307–8
See also Baud rate

Serial communications errors:
framing, 322, 327, 341
overrun, 314, 321–2, 324, 327,

330, 341
parity, 287, 321–2, 327, 341

Serial communications protocol:
asynchronous, 290
byte-transfer, 290
character echoing, 288, 294, 322
file transfer, 291
flow control, 288–90
high-level, 290–1
See also Handshaking; Serial

frame
Serial frame, 287–9, 314

data bits, 286–7, 316–7
parity bit, 287–8, 316–7
start bit, 287–8
stop bits, 286–7, 316–7
timing, 288, 320

Serial port:
parameters in the BIOS Data

Area, 309–10
structure, 311–2
timeout, 309–10
See also RS-232; UART

Serial multiplexing, 127
Set point, 390, 393

See also Trip level

S/H, 75, 121
acquisition time, 101–2, 126
aperture jitter, 102, 137–8, 141
aperture time, 102, 137–8
circuits, 99–100
droop rate, 103
operation, 101
settling time, 102–3
simultaneous, 100

Shaft encoder, 73, 82, 85
Shared resources, 44, 170, 199, 200
Shell-Metzner sorting algorithm,

374–6
Shunt resistor, 348. See also Bridge

circuit; Load cell
Signal:

analogue, 72–3, 81, 103, 131
bipolar, 103, 105
digital, 72–3
pulsed, 73, 76
unipolar, 103

Signal conditioning:
analogue, 74–5, 82, 95–6
bandwidth, 97, 428, 430
digital, 74–7
drift, 347
units, 136, 210

Signal-to-noise ratio. See SNR
Simplex, 285, 294, 298
Single board computer, 5
Single-ended inputs, 97

See also Differential inputs;
Pseudo-differential inputs

SNR, 114
Software:

failures, 63, 185
libraries, 62
testing, 62, 392

Spacing state, 287–8, 298
SPC, 30
Spectrum:

noise and signal, 144
sampled waveform, 132–4

Stack, 174, 186, 193, 197–8, 246

Index 469

Start Conversion pin. See SC pin
Statistical Process Control. See SPC
STD bus, 24
STE bus, 24–5
STI instruction, 170, 186, 194, 202
Strain gauges, 92–3, 96, 348
Successive approximation ADC,

118–9
Surge suppression, 95–6
Synchronous serial transmission,

285, 298
System timer, 128, 214, 425

Tare weight, 384
Task, 41
Task switch, 41, 44, 52, 203, 244,

327
overhead, 48

Temperature coefficient, 90–1
Test harness, 28, 63
Timekeeping, 33, 190
Timer, 33, 76, 128, 214

accuracy, 38
granularity, 128, 398

Time stamp, 33
Thermistors, 84, 90–3, 372
Thermocouple

linearization, 87, 365–6, 434, 437
reference junction, 88

See also Cold-junction
compensation

response time, 84, 87–8,
sensing junction, 89
tolerance, 87, 90

Thread, 41, 52
Three-term controller. See PID
Throughput:

DMA, 240
of analogue measuring systems,

126–7, 207
parallel buses, 253, 255–6, 273
programmed I/O vs. DMA, 218,

241–3
sensor limited, 83
serial buses, 295–6, 307–8, 327

signal-conditioning limited, 97
software limited, 127

Thunk, 51
Tracking ADC, 118
Transceiver, 305, 311

See also RS-485
Transducer, 71, 346–7
Transistor-transistor logic. See TTL
Trip level, 393–4

See also Set point
TTL, 76–7

UART, 286, 289–90
base address, 309–10
baud rate generator, 312–3, 319
break condition, 331
Character Timeout interrupt,

325, 327, 329
Divisor Latch Access Bit. See

UART, DLAB
DLAB, 314, 317, 321
DLL, 312–4, 321
DLM, 312–4, 321
Driver, 331–42
FCR, 312–3, 315–6, 328–9
FIFO buffer, 313–5, 327–30
FIFO Control Register. See

UART, FCR
IER, 312–4, 325
IIR, 312–3, 315–6, 325
Interrupt Enable Register. See

UART, IER
Interrupt Identification Register.

See UART, IIR
interrupts, 289, 310, 314, 316,

318, 324–7, 329–30, 341
LCR, 312–3, 316
Line Control Register. See UART,

LCR
Line Status Register. See UART,

LSR
Loop-back mode, 318, 328,

330–1
LSR, 312–3, 318–9, 331

470 Index

UART (contd.)
MCR, 312–3, 317–8, 326, 330
Modem Status Register. See

UART, MSR
Modem Control Register. See

UART, MCR
MSR, 312–3, 318–9, 330
OUT2, 312, 318, 326
RBR, 312–4, 326, 328, 331
Receiver Shift Register. See

UART, RSR
Receiver Trigger Level, 329
RSR, 312–3, 330
Scratchpad Register, 318
THR, 312–4, 326, 328
Transmitter Shift Register. See

UART, TSR
TSR, 312–3, 330

UMB, 14
Unicode, 451
Universal Asynchronous Receiver

Transmitter. See UART
Universal Serial Bus. See USB
UNIX, 39, 58–9
Upper Memory Block. See UMB
Upper memory region, 216
USB, 307–8

V20, 7
V30, 7

V86 mode, 8–9, 13, 17
Virtual 8086 mode. See V86 mode
Virtual address, 13, 51
Virtual disk. See RAM disk
Virtual machine, 51
Virtual memory, 54
VME bus, 24–5
Voltage-to-frequency conversion

ADCs, 115
VxD, 55, 57–8
VXI bus, 17, 24

Watchdog timer, 67, 129–30, 185
Win32 API, 50
Windows, 38–9, 245, 324
Windows 3.1, 13, 50, 52, 57, 324
Windows 95, 13, 53, 55, 168
Windows 98, 49–55, 57–9
Windows for Workgroups, 50
Windows NT, 13, 16, 30, 49–52,

54–9, 164, 191, 451

XENIX, 58
XMODEM protocol, 291
XMS, 14–5
XT bus. See PC bus

Zero drift, 65, 96, 384, 419
Zero offset. See Offset

