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Preface 

Several of the key elements of the mission statement for the Nicaraguan-aid organi-
zation, Agua Para la Vida (www.aplv.org), follow: 

• Help small, rural communities of Nicaragua develop and maintain access to 
safe drinking water. 

• Provide training and education to local people in all aspects of designing, build-
ing, and maintaining drinking water systems so that they can achieve autonomy 
in rural drinking water development. 

• Develop design tools and teaching methods for use by other groups involved 
in village water system construction. 

Even with the considerable aid of the many organizations like Agua Para la Vida and 
Youth Action For Rural Development (YARD) in Kenya (www.wsp.org), much of 
the population of these countries and others like them lack access to clean water. In 
Nicaragua it is most ironic that this deficit occurs in mountainous regions where the 
wet-season lasts 8 months of the year or more and rain water is plentiful! The need 
for the careful design of gravity-driven clean water networks in these, and many other 
similar parts of the world community is well established. This book is a small attempt 
to help in this worthy endeavor by presenting information to support technologists, 
engineers and engineering students, and practitioners who carry out these designs. 

XIII 
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When the topic of analysis and design for water flow in pipes is raised, the saying 
"...there is nothing new under the sun" likely comes to mind. Certainly, many refer-
ences on this are readily available. I began to teach this subject as a part of service 
learning projects at Villanova University in early 2004. The focus of the projects was 
to provide clean water for the people of central Nicaragua who had no easy access to 
this and often drank nearby, but contaminated water with dire consequences. With the 
guidance of faculty, the mostly mechanical engineering students assessed, analyzed, 
and designed the networks, and in some cases followed up by helping to install the 
network they or others had designed. I found teaching the analysis of gravity-driven 
water networks to the students to be a challenge. Most had already taken a course 
in fluid mechanics and had learned some things about pipe flow. However, gravity-
driven flow in a closed pipe is very different than the flow problems to which they had 
been exposed. In my lectures that stressed fundamentals related to the importance 
of mean slope in a single-pipe network, local static pressure distributions near low 
and high points, and cost-minimization to determine unique solutions to the energy 
equation, it was as if I were teaching an entirely new subject. After some reflection, 
I would recall from my own teaching of fluid mechanics that the elevation change in 
nearly all problems was neglected (certainly for gases) or assumed negligible com-
pared with a specified pressure difference between the pipe ends. The important 
elements of gravity-driven pipe flow are, in fact, never taught! I recognized a clear 
need for a good learning and teaching tool on this topic. 

The literature was of little help. The treatment of gravity-driven flow in the existing 
text, trade, and hand books, if presented at all, is technology based so there were few, 
if any, fundamentals to which the students could relate and use as a sound basis for un-
derstanding and insight. In short, in the literature where gravity-driven flow appeared 
there was little educational value, and in sources like textbooks where the educational 
value is high, there was little or no treatment of gravity-driven flow networks. Simple 
and fundamentally sound design tools and algorithms using modern-day software 
were also missing. 

Thus, this book is written in an attempt to place the analysis and design of gravity-
driven water networks on a sound fundamentals footing and to provide easy-to-use 
algorithms and charts for analysis and design computations. In this way, I have 
attempted to bridge the gap between fundamental fluid mechanics and the applied 
and useful technology-based material in the various existing references on gravity-
driven water networks. In particular, the topics have been chosen to add clarity, a 
sound technical basis, and support to many of those contained in the currently popular 
handbook by Thomas Jordan, Jr. (2004), which is cited in many places in this text. 
A benefit of the fundamentals approach is the production of original design graphs, 
formulas, and computational algorithms for the correct, sustainable designs of single-
and multiple-pipe gravity-driven water networks. 

Both theory and design are covered in this work, along with the analysis that must 
join the two. It is a considerable challenge to span this range effectively. For the 
theory I have, of course, relied on past work from classical fluid mechanics in which 
the focus may be thought of as the discipline of engineering. The design and practical 
content, that is, the practice of engineering, comes from reflection on past written 
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works and our team's experience in the field with actual gravity-driven water networks 
and with industry applications. 

In addition to practitioners, this book is written for engineers, technologists, and 
scientists and for students preparing for these fields. To help the readers relate to the 
technical material, the presentation style has been chosen to be consistent with what 
students normally encounter in an undergraduate college-level course in the United 
States. In some cases, an advanced-level high school physics course that covers the 
energy equation for a moving fluid and the topic of flow in a pipe may suffice as 
adequate background to understand much of the material presented in this text. 

Most of this book can be covered in about half of a 14-week term. This is the time 
that could perhaps be allotted for a college or high school level design course. The 
main Chapters 1-13, and 15 should be coverable in ~7 weeks, along with most of the 
relevant problems in Chapter 16. Chapters 10 and 14, on optimization and air blocks, 
may be added at the discretion of the instructor. 

Double-outlined textboxes, like this one, will be employed to provide periodic 
breaks for the reader where there is an extended amount of technical material 
and will include examples, clarifying and reinforcing comments, supplemental 
information, and questions for exploration. 

Fundamental equations and final forms of the most useful ones will be boxed. 

This should not be confused with the double-outlined textboxes. 
In addition to textboxes, annotations in the form of footnotes appear very frequently 

throughout the text. This is a personal preference of the author1. 
Other than the chapter on optimization and local static pressure, the mathematics 

required to understand the material in this book is algebra including the solution 
of single and simultaneous nonlinear algebraic equations using numerical methods. 
Many chapters require this. For readers who have forgotten or are not familiar with 
nonlinear algebraic equations, a section in Chapter 4 is included to refresh memories 
or introduce the basics of this topic. References to integrals and to ordinary differential 
equations are made in several chapters including those on local static pressure and 
minor losses, so it is worthwhile for the reader to recall some of the basics surrounding 
the calculus when covering this material. Some understanding of the calculus is 
needed for optimization, which always requires the derivative to determine so-called 
"stationary" points for a function. Of course, it is assumed that the reader has, at 
least, a familiarity with fluid mechanics. 

Most pipe-flow problems of the types considered in this book require numerical 
solutions carried out on a computer. The traditional way of solving the systems 
of nonlinear algebraic equations that arise in pipe flows is iteration and linearized 
scaling (often referred to as "Regula Falsi" in texts on numerical methods), covered 
in Chapter 11, which for simple problems, could be executed by hand. A similar 

1 It is hoped that the readers will find the history, clarifications, and extensions presented by these aids 
useful without distracting from the principal thrust of the material. 
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method that "compartmentalizes" the terms from the energy equation and then uses 
trial-and-error to determine pipe diameter is the normal method of solution where 
just a single pipe is involved (Chapter 4). However, computer programs to quickly 
and efficiently solve the equations of pipe flow are well developed and have been for 
very many years. These fall into two classes. Nearly all are "opaque" in that the user 
is not made aware, or chooses not to be aware, of the program's basis. This means 
that an executable file is run on a computer, which is the result of a compilation of a 
source program written in perhaps Fortran or C++ (see comments below). 

The other class is composed of "transparent" computer programs that present 
the solution in an easy-to-read manner, and appear as if written on paper. The so-
lution for a given design is obtained by modifying an already-developed program 
for a closely related one. The commercial package Mathcad2 is chosen for use in 
this book. In particular, the root and Given.. .Find constructs in Mathcad are 
very valuable for the solution of nonlinear algebraic equations. There are frequent 
references to these. Mathcad is also the only commercial package that explicitly 
includes units in equations. The conversion from one unit to another, say inches 
to mm, as required by the problem is accomplished automatically and is transpar-
ent. For various reasons, the use of units and the associated need to include them 
when solving engineering problems are a challenge for students today. Mathcad 
worksheets that solve the equations for many types of gravity-driven water networks 
are supplied with this text (downloaded from h t t p : //www. wiley. com/WileyCDA/ 
WileyTitle/productCd- 0470289406, descCd-DOWNLDAD .html). If familiariza-
tion with Mathcad is needed, a brief tutorial is presented in Appendix C. 

As is the case with all technological tools, the lifetime of Mathcad may be finite. 
That is, at some time in the future it may be replaced with a "new and improved" 
version or it may even disappear. This is not a concern because the fundamental 
equations for analysis and design appearing in this text remain unchanged and can be 
solved with any programming language or tool, such as C++, Mat lab3, Microsoft's 
Excel, or a new and improved Mathcad. Even a programmable hand-held calculator 
is sufficient for some problems. More-senior engineers may recall a similar discus-
sion in the 1970s concerning Fortran, then the dominant programming language in 
engineering, as to what the computational tool of the future will be. The answer that 
was often given was that no one knew for certain, but it would probably be called 
Fortran. Presently, after numerous revisions over the years, Fortran continues to 
be used by scientists and engineers worldwide. 

G. F. JONES 

Villanova, Pennsylvania 

September, 2006 

2Mathcad, Parametric Technology Corporation, 140 Kendrick Street, Needham, Massachusetts 
3Matlab, The MathWorks, Inc. 3 Apple Hill Drive, Natick, Massachusetts 01760, USA. 
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CHAPTER 1 

INTRODUCTION 

"Give a Man a Fish, and Feed Him for a Day. Teach Him to Fish, and Feed Him for 
Life." 

- Traditional 

1.1 WATER DISTRIBUTION NETWORKS AND THEIR DESIGN 

It is generally recognized that water distribution networks date to thousands of years 
BC. Those in Greece, Syria, Jordan, Turkey (Mays, 2000), Palestine, Persia (Salzman, 
2006), and Crete (Trifunovic, 2006), as well as Rome (Chanson, 2002; Salzman, 
2006; Trifunovic, 2006), Machu Picchu (Wright et al., 1997) and, later, New York 
City (Koeppel, 2000) have been extensively documented in print and the visual media. 
The networks consisted of "aqueducts," open channels and lead and wooden pipes, 
that used gravity to move water over large distances with reasonable losses. Despite 
these very early successful efforts at the design and construction of water distribution 
networks, it is estimated that today nearly 1 billion people live without access to clean 
drinking water throughout the world (Trifunovic, 2006); more than 15% of the total 
population. In particular, the probability of access to clean water in rural populations 
in South and Central America and Africa ranges from a scant 40-60%. 

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 1 
Copyright © 2010 John Wiley & Sons, Inc. 



2 INTRODUCTION 

The design of water networks has undoubtedly had a much shorter history, at least 
in terms of what we now know as engineering design. Consider evidence of the 
different elements used in the aqueducts in Rome in the first century, AD (Chanson, 
2002). Culverts,1 flow regulation with overflow and underflow gates,2 and dropshafts 
to dissipate energy in steep regions using vortical motion appeared frequently. The 
relatively high levels of technical and construction expertise for this time period are 
remarkable. However, design was carried out by rules-of-thumb, based on simple 
observations and experiences, passed down through generations and across vast re-
gions by word of mouth or perhaps script, not through the understanding of mass, 
momentum, and energy conservation that we use today. Certainly, there were no fast 
computational tools in ancient times to carry out the sophisticated calculations for the 
design and performance of these networks.3 

In contrast to the likely design of the Roman aqueducts, imagine the following 
exchange that may occur on a day this week in the District Engineer's Office in a 
remote town in a developing country. 

Community Member: Good morning Sr. Engineer. Last year, our community 
of San Pedro identified clean water as a priority development concern. In addition 
to this, we understand that your office has also been promoting small hydroelectric 
facilities for rural areas such as ours. There are currently 23 families living in the 
main section of San Pedro, which also has a school, a church, and a community center. 
There are an additional 80 families who live in more isolated areas of San Pedro and 
we believe that these families will start to build their homes closer to the village center 
once we have completed a water supply system and have reliable access to electricity. 

District Engineer: Well, the local government is very interested in assisting areas, 
such as San Pedro, and we hope to be able to work with your community in the near 
future. Perhaps you can help us by providing some more information. For example; 
how many sources of water are there in San Pedro? Where will you get the water? 

Community Member: There are several sources for water that we have already 
been using, but the water sometimes is dirty, especially during the rainy season. Also, 
every household does not have equal access to this water, so only a few families are 
benefiting from these sources. Most of these sources are from natural springs and are 
usually very clean because they are in a forested area in the mountains. There are 
some people who use this forested area for collecting wood for cooking or building 
houses but, we believe that the land owners will offer these sites for our needs if we 
have funding from the municipal government. 

District Engineer: Okay, this is very useful information. Before we can even 
consider developing a water system, we will have to have an agreement with the local 
land owner and designate a protected area above the source so that no one can enter or 

1A culvert is a passageway for flow constructed under a larger structure, such as a roadway or bridge. 
2A gate, or sluicegate, is a plate of material that is used to partially or fully block flow, usually in an open 
channel. An overflow type allows the flow pass over the upper edge of the sluice; an underflow forces the 
flow below its lower edge. 
3The abacus dates from about the 5th century BC and would have been used where appropriate by the 
Romans at later times. It was primarily a tool for the merchant rather than the hydraulic engineer. 
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disturb the watershed that is supplying these springs. This will ensure that the sources 
will continue to produce clean water. We will also have to design a protected spring 
intake so that runoff does not contaminate the source. Finally, if other conditions look 
favorable, I will have my assistant and one of our student interns visit your community 
to survey the site. Bear with me as I make a few quick calculations. Taking out his 
calculator, the engineer enters numbers, speaking the entries as he pushes buttons. 
"23 families x 6 persons per family x 100 liters per day per person x 1.1 raised to the 
tenth power is about 35,800 liters of water per day." Punching a few more numbers 
into his calculator the engineer notes, "any single water source that produces more 
than 0.42 liters per second will be able to satisfy your water needs." 

Community Member: Is there any funding that we can use to build the system? 
How much do you estimate the water network will cost? 

District Engineer: Assuming the community provides the labor for installation, 
there are several costs including the pipe, fittings, and valves, concrete, and rein-
forcement for a storage tank and the reservoir at the source, and we will need to 
build several tapstands4 to distribute water at several locations including the school. 
Once my team surveys the site and determines the flow rate from an acceptable water 
source, I will have enough data to locate and size the reservoir and storage tank. I 
will also know where the pipes need to be run from the source to the tank, and from 
the tank to the delivery locations and tapstands. Once I have this information, I will 
calculate the volume of cement and amount of reinforcing steel mesh. I can then 
calculate the cost for these materials.... 

Community Member: . . . (Impatiently interrupting) but, the distances to the 
water sources I have in mind are great, more than two kilometers each. And, the 
houses are spread over large distances. Surely, this much pipe will be very expensive. 
Do we need to have any counterpart funding from the community? 

District Engineer: Well, first we will need to calculate the sizes of all pipes. I 
have a computer program that solves dozens of equations and models the flow of water 
in the network before it is actually built. This way, I can investigate many different 
designs and how they will perform before we actually build them. This saves money 
because if we do not design the system properly, your community will not have a 
reliable distribution of clean water even after we finish construction. I will pick from 
among the many designs the one that works the best from an engineering viewpoint 
and that has a reasonable cost. 

Community Member: Interesting... (being curious, the community member con-
tinues), how can you trust that your equations will really work? We have tried many 
times to improve the water supply system in our community and have never really 
succeeded in making a difference because the water flow is always small and does 
not have good pressure. 

Taking the opportunity to teach the community member about engineering, the 
District Engineer explains: 

4See Section 1.3.5. 
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District Engineer: In engineering school we study fluid systems and hydraulics 
for an entire year and we learn about the equations and their history. We even verify 
the results from these equations in carefully designed experiments in a laboratory; we 
learn to have confidence in them. These equations are over 150 years old and have 
been used to design water systems all over the world. We almost always see that the 
designs work according to what the computer model predicts. Once the computer 
model is "validated" in this manner, we can trust that the equations will accurately 
predict how the system will work and we can make designs based on these results. 

The reason why I am explaining this to you is because, after the water system 
is built, we will ask you to monitor the water flow rate from the source and the 
demand in your community. This is done for two reasons. First, if the network is not 
performing as we designed, there may be a need for correction to our design equations 
and methods, or construction techniques. This, we would certainly want to do for 
future designs. Second, we can perhaps correct your network so that it will perform 
as designed. 

Community Member: Wow! This sounds like magic to me but, (being tentative) 
I am sure that it will work. Thank you for considering this request. 

District Engineer: You are welcome Sr. Member. Engineers call this "analysis 
and design" and it is something that engineers are trained to do. I am very comfortable 
with this. 

I will ask my assistant and his team to meet you later this week to begin to collect 
these data for your network. Now, regarding your request for hydroelectric power, 
we will need to discuss this after we determine the cost of the water network. You 
may wish to reconsider your request once you see this figure. 

Community Member: Thank you again, Sr. Engineer, I look forward to working 
with you on this project. 

We see from this exchange that the engineering design of gravity-water networks 
is really analysis and design, based first and foremost, on the mathematical solution 
of the equations for fluid flow in networks; equations that have been validated in the 
laboratory and field for more than a century. Essentially, we are confident of the 
ability of these equations to predict the future (that is, how networks will perform 
based on the solutions to these equations). There is a strong focus on analysis in this 
book. We will also see the importance of network cost. Cost is of interest not only 
because of its fundamental importance, but also since it is used to supply a needed 
constraint on the flow problem. The design is based loosely on fundamentals but, in 
addition, has a large contribution from engineering wisdom accumulated over many 
years of successful practice. We also see from the above dialog that measurements 
taken in the field before and after the analysis and design (collecting measurements 
before is sometimes referred to as "assessment") are crucial to assure a high-quality 
design that meets all requirements and provides feedback to the analysis and design 
process for continuous improvement where needed. 
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B.l.l The Different Types of Water Sources 

There are three different types of water sources that we commonly encounter. 
The first is surface water like a flowing stream or river, or a nonflowing pond. 
Second, a groundwater source is a quantity of subsurface water similar to a river 
or pond, except that it resides below the surface and is recharged by rain and 
run-off from rain. These subsurface reservoirs are known as aquifers. A spring 
is where groundwater rises to the surface of the ground due to an impermeable 
layer near the surface. Springs are typically located in mountainous areas and 
form because of the large rate of change of elevation of the terrain. 

1.2 FEASIBILITY FOR GRAVITY-DRIVEN WATER NETWORKS 

Communities that are candidates for a successful gravity-driven water network will 
have the following physical and social characteristics (Mihelcic et al., 2009): 

• A source(s) of clean water, free from pathogens and large amounts of suspended 
solids, within relatively short distance from the community, elevated above the 
highest point of water delivery to the community, and with a flow rate sufficient 
to meet the present and future demands of the community, 

• If the source(s) is a spring, it should be properly protected by its native vegeta-
tion (to preserve ground-water movement) and, for all types of sources, from 
possible surface contamination, such as pasture runoff, 

• Level surface areas located between the source(s) and the highest point of 
water delivery to the community on which to site a storage tank and, if needed, 
a break-pressure tank, 

• Binding commitments from the land owner(s) of the source(s), and that where 
the tank(s) will be located and pipelines run, 

• Commitment from members of the community to provide labor for construc-
tion, maintenance, and continued successful operation of the network. 

1.3 THE ELEMENTS 

The elements of a gravity-driven water network are shown in the schematic of Fig. 1.1. 
As discussed in further detail below, the network is composed of a reservoir at the 
source, pipe, valves and fittings (fittings, such as elbows and tees, which are not shown 
in this figure), storage and perhaps break-pressure tanks, and points where the water 
is available for distribution to the communities, referred to as tapstands. Elements, 
such as vacuum breakers and air vents, may be necessary in the network under certain 
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Figure 1.1 The elements of a gravity-driven water network. 

conditions that are described below. The pipe segments that transport water between 
two points without a change in the flow rate between them are sometimes referred 
to as "gravity mains." Those that deliver water to branches are called "distribution 
mains." Valve types, such as globe and gate, will always be used to isolate parts of 
the network for maintenance and repair, and for flow control. 

1.3.1 Reservoir at the Source 

Reservoirs and several of their features are shown in Fig. 1.2. For example, a spring or 
freshwater stream may be dammed using reinforced concrete, as in Fig. 1.2. Besides 
providing for the water outlet through a gate-valved (see Section 1.3.4) pipe, a clean-
out drain of at least 4-in. diameter, and an overflow pipe need to be provided for in 
the dam. A filter screen is normally installed at the point of water intake inside of 
the reservoir. A clean-out pipe accommodates periodic cleaning of the reservoir, if 
needed. The overflow pipe allows the water to drain away from the tank in a sanitary 
manner. A concrete cap, also shown in this figure, ensures cleanliness of the reservoir 
over time and reduces the frequency of screen cleaning. A door in the cap provides 
access to the filter. 

1.3.2 Pipe and Fittings 

Pressure pipe is used to transport water in these networks. As discussed in detail in 
Chapter 3, plastic pipe [poly vinyl chloride (PVC), high-density polyethylene (HDPE), 
acrylonitrile-butadiene-styrene (ABS)] is normally chosen because of economy, per-
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Figure 1.2 Photos of reservoirs. All are constructed of poured concrete. Clockwise from 
upper left: a covered reservoir separated from uncovered section by a screen filter (PVC pipe 
in foreground awaits installation), a totally covered reservoir with a concrete valve box in front, 
a totally covered reservoir with cover partially removed for access to clean filter inside, a dam 
to hold back water before construction of the reservoir (the vertical PVC pipe downstream 
from the dam is a vacuum breaker; see the discussion in Section 1.3.6), inside view of a totally 
covered reservoir. 
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Figure 1.3 A nut union of PVC. Photo courtesy of Nicki Jones. 

formance, and availability. In cases where large pressures are expected, galvanized 
steel (galvanized iron or GI) pipe is used, however this is heavy and more expensive 
than plastic so its use is chosen carefully. Rigid-wall pipe is manufactured in various 
lengths up to about 6 m. Flexible-wall pipe is supplied in long rolls. 

The scale of the networks addressed in this work is such that pipe diameters of the 
order of 6 in. are about the largest encountered.5 Dimensional and pressure data for 
pipe up to nominal 12-in.-size are presented in Chapter 3. 

Typical fittings that join segments of pipe are elbows (90°, 45°, and 22.5°), which 
turn the flow at the angle specified, tees for flow branching, reducers (or expanders) 
for decreasing (or increasing) the pipe diameter, and couplings. Unions (or "nut" 
unions, Fig. 1.3) are sometimes used in situations where there is a need to separate 
assemblies of pipe for maintenance or repair. Unions allow pipe segments to be 
removed without cutting and reassembly. 

A photo of workers preparing to glue a PVC pipe joint with a coupling is shown 
in Fig. 1.4. The transition between PVC (at the top) and galvanized iron pipe (at the 
bottom) is visible in Fig. 1.5. A 22.5° elbow joins the two. 

1.3.3 Tanks 

In all water-supply networks, there is nearly always a mismatch between water demand 
and supply flow rates. Storage tanks, such as shown in Fig. 1.6, accumulate water from 
the source over time for use as required by the time-dependent demand. The topic 
of sizing a storage tank is addressed in Chapter 13. Where it is available, large tanks 
(say, > 30 m3) are almost always constructed on site of cement block or reinforced 
concrete. Plastic tanks are becoming more common and can be cost-competitive with 
concrete tanks, but for large volumes may be difficult to transport to the site. The 
reinforced concrete tank in Fig. 1.6 is typical of those built in central Nicaragua and 
in the Pacific rim. A close inspection of this photo will reveal an access ladder built 
into the side of the tank on its left and a water overflow pipe on the right. As with 

5The exception to this is for microhydroelectric power systems (Chapter 12) where pipe sizes can be 12 in. 
and larger. 
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Figure 1.4 Workers preparing to glue a PVC pipe joint. 

Figure 1.5 A 22.5° elbow joining PVC (top) and galvanized iron pipe (bottom). 
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Figure 1.6 A concrete storage tank. The capacity is -14 m3. 

those installed in dams, the overflow pipe allows the water to drain away from the 
tank in a sanitary manner. 

A break-pressure tank, such as that shown in Fig. 1.7, is not used for water storage 
but to reduce the static pressure in the flow to atmospheric pressure. Break pressure 
tanks are used in high-head gravity-driven water networks where the build-up of 
static pressure at lower elevations would require thick-wall plastic or GI pipe; both are 
expensive alternatives. The capacity of these tanks is not a major design consideration 
since there should be no accumulation within the tank; inflow and outflow rates should 
match. 

The design of a beak-pressure tank is discussed briefly in Chapter 13. 
If there are considerable suspended solids in the water, a sedimentation tank will 

be needed. This type is different than the previous two in that its role is to filter 
and to reduce the flow speed of water while passing through the tank. The filtration 
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Figure 1.7 A break-pressure tank. 



12 INTRODUCTION 

Figure 1.8 Outer view of bronze-body |-in. gate valve. Valve height is ~3 in. Valve photos 
courtesy of Nicki Jones. 

directly removes some of the larger suspended solids, while the long residence time 
in the tank allows most of the remaining solids to settle under the effect of gravity. 
From this description, a sedimentation tank will look very different than a storage 
tank. Contrasted with the storage tanks in Fig. 1.6, a sedimentation tank has a filter 
bed, provides a long flow path for water between its inlet and outlet, and has a large 
cross-sectional flow area to slow down the flow. 

1.3.4 Valves 

Both gate and globe valves are heavily used in gravity-driven water networks. A gate 
valve belongs to a class that may be generally thought of as "block" valves. The 
purpose of these is to either allow the full flow to pass or be totally turned off. No 
throttling or pressure reducing should be performed with a gate valve because they 
are not designed for this purpose and will prematurely fail if operated in this way6. 
The gate in this valve is moved up or down by rotating the handle. When the gate is 
down, the flow is blocked, and when up fully open. The slot in which the gate travels 
creates a characteristic rectangular shape for the mid-section of the body of the gate 
valve as seen from the outside (see Fig. 1.8).7 

Another type of block valve is a ball valve. A ball valve of PVC construction is 
shown in Fig. 1.9. In this valve, a spherical ball with a hole drilled through its middle 
is rotated to either allow the flow to pass (the hole aligned with the valve inlet and 
outlet) or be blocked (no part of the hole is aligned with the valve inlet and outlet). 
Because of difficulties with fine flow control, throttling is not recommended for a ball 
valve. 

6The "gate" in a gate valve is just that, a metal plate the slides up or down in a slot to open or close the 
valve. There is considerable play in this slot, such that the gate can move back and forth with the passing 
flow. When partially closed, it will do so and prematurely wear. The first piece of knowledge I learned as 
a project engineer at an oil refinery in the early 1970s was never to use a gate valve to attempt to throttle 
the flow in a pipe. 
7The photographs in this chapter are intended to simply familiarize the reader. Where possible, actual 
hardware, such as small gate and globe valves, and a union should be inspected to get a better sense for 
the components actually used in water networks. 
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Figure 1.9 Outer view of |-in. plastic ball valve. Valve height is -2.5 in. 

Figure 1.10 Outer view of bronze-body |-in. globe valve. Valve height is ~3 in. 

Although a globe valve (Figs. 1.10 and 1.11 (Wikipedia, 2009)) can be used as 
an "on-off" valve, its primary function is to throttle or reduce the static pressure in 
the flow. The flow passageway between the metallic disk and valve seat, as seen in 
Fig. 1.11, is adjustable. When the passageway is adjusted to be small, a large pressure 
drop occurs in the flow between the valve inlet and outlet. Because of the importance 
of energy management in gravity-driven water networks (see Section 1.5.1), the globe 
valve is used in many locations, especially where appropriate for control and flow 
balancing, in addition to intentional energy dissipation. 

1.3.5 TheTapstand 

A tapstand (Fig. 1.12) is often the final delivery location for water. The tapstand 
consists of a suitably supported delivery pipe normally of PVC and ~^-in. nominal 
size, a water tap valve8 or a ball valve, and a base of concrete that maintains cleanliness 
of the tapstand area and allows unused water to drain away from the site. 

Tapstands, as well as other elements discussed in this introduction, are covered 
more completely in the design sections of this text (chapters 13 and 15). 

8This valve is recommended to be bronze and will have a flow pattern that resembles that for a globe valve. 
The seat that is opposite the disk (see Fig. 1.11 ) is normally made of a rubber-type material for a water tap 
valve. 
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Figure 1.11 cross-sectional view of large globe valve. 

1.3.6 Miscellaneous Elements 

There is a need for air vents at local high points to vent trapped air in any water 
distribution network. This is discussed more fully in Chapter 14, where models for 
the potentially penalizing effect of trapped air in the network are also developed. A 
bucket-type air vent, shown in Fig. 1.13, automatically opens to vent air when there 
is an air-water interface in the body of the unit. This level indicates the presence of 
air in the network. Alternately, a gate valve on the branch of a tee fitting installed at 
the local high point can be used to manually vent trapped air. A long vertical pipe 
attached to the local high point may also be used to vent air automatically. In this 
case, the top end of the pipe is open to the atmosphere and its elevation must be 
approximately above the surface level of the reservoir or nearest tank upstream from 
it. 

A vacuum breaker prevents the formation of negative gage pressure in a flowing 
pipe. Negative pressures in the flow are undesirable for several reasons that will be 
described in detail later in this book. A vacuum breaker can be a purchased unit that 
is installed in-line in the pipe. In this case, a spring in the body of the vacuum breaker 
allows air from the outside to enter the flow should the pressure fall below a preset 
value. In a more-simple form, a vacuum breaker can be a vertical piece of pipe with 
an open end at the top. This would automatically bring air into the network when the 
pressure of the flow falls below atmospheric. 

Pipe anchors (Fig. 1.14) are used to support pipe where there may be large forces 
due to water flow, such as where the flow turns in a 90° elbow. Buried concrete and 
steel rods are normally used for this purpose. 
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Figure 1.12 A completed tapstand. 
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Figure 1.13 An air vent. 

Figure 1.14 A pipe anchor. 
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1.4 ENGINEERING DESIGN 

Engineering design is distinguished from graphical or conceptual design by its quan-
titative nature. The latter two types of design use drawings or sketches to convey 
information about the object intended to be produced. For example, an artist would 
produce a conceptual design for the shape and perhaps features of a new car. In engi-
neering design, not only are the conceptual elements addressed, all of the equations for 
the appropriate physical laws of nature are included and solved to produce results that 
successfully demonstrate feasibility of the design. The equations referred to here are 
normally the conservation laws of mass, energy, momentum, and electrical charge, 
where appropriate, the particular laws that relate fundamental properties to measur-
able or observed quantities,9 and perhaps others including economics, environmental 
impact, and safety. Clearly, engineering design is broader and more comprehensive 
and challenging than conceptual or graphical design alone. 

1.4.1 Hydraulic and Nonhydraulic Design 

Hydraulic design forms the largest piece of the overall design for gravity-driven 
water networks. Hydraulic design is engineering design that consists of mathematical 
models and calculations, drawings, and reports that characterize all of the hydraulic 
components of the network, including the reservoir, pipe, fittings and valves, tanks, 
and associated components that are discussed in detail in Section 1.3. Only the fluid-
flow aspects of these components are included in the hydraulic design. Nonhydraulic 
design consists of the engineering design of all of the remaining components and 
elements of components. 

For example, the hydraulic design of the pipe network will determine the pipe ma-
terials and diameters, wall thicknesses, lengths, and the internal pressure distribution 
under various operating and nonoperating conditions. The support of the pipe, say 
across a stream or river, the structural means to connect the pipe to a reservoir or 
tank, and the location of possible clean-out connections are part of the nonhydraulic 
design phase of the project. Another example is the storage tank. The volume of the 
tank will be calculated from the results of a water demand model for the community 
in need and the volume flow rate of water that can be supplied to the tank from the 
source or sources. In addition to locating the tank in the network, these are parts of 
the hydraulic design. The nonhydraulic design of the tank addressed its structural 
attributes, including the wall thickness and reinforcement if needed, and perhaps even 
methods to build the tank, as well as a cover for water cleanliness. The location and 
size of an overflow pipe and possible clean-out connections, even though related to 
water flow, may also likely fall under the nonhydraulic design umbrella. 

'Examples of this are laws that relate heat to temperature, stress to strain in a solid, shear stress to velocity 
gradients in a fluid, and flow of electrical current to charge potential. As we will see in Chapter 2, there 
are also quantities, like Reynolds number (Re) , that are not laws, but simply definitions to support an 
analytical framework. 
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In this text, hydraulic design will include conservation of mass (referred to as 
the continuity equation) and mechanical energy (referred to as the energy equation). 
For multiple-pipe networks there is the need for an additional equation to produce 
unique solutions where pipe diameters are sought. In this case, engineering economy 
comes into play and we will consider minimizing network cost where appropriate. In 
equation form this is dCr = 0, where CT is the total cost of the network. Loosely, 
this simple expression may be though of as an equation of "cash conservation" in 
addition to mass and energy conservation. 

Hydraulic analysis and design forms the bulk of this book. This includes Chap-
ters 2-12, most of which are based on analysis. Chapter 3 considers pipe materials, 
dimensions, and pressure ratings. Chapter 4, which discusses the classes of pipe-flow 
problems, is included as a supplement. Readers who are already familiar with solving 
these problems may need to spend little time on this chapter. Design results for a 
single-pipe network, described below, appear in Chapter 5. The important role played 
by local pressure in the pipe is emphasized in Chapter 6, and energy losses from pipe 
fittings and valves in Chapter 7. The treatment of single-pipe networks culminates 
with Chapter 8 in which several examples of these are presented and solutions for 
them obtained. Simplified design formulas are useful to obtain quick, approximate 
design results for single-pipe networks and as a supporting role in the understanding 
of multiple-pipe networks. These are explored in Chapter 9. Optimization, where the 
network cost is minimized, will be highlighted (Chapter 10) because of its usefulness 
in allowing us to calculate unique pipe sizes for our designs. The basics covered in 
this chapter are applied in Chapter 11 to multiple-pipe networks, which forms the 
technical core and largest fraction of this book. This topic covers all of the types of 
multiple-pipe designs encountered in gravity-driven water networks including serial 
networks, multiple branches, loops, and large-scale, complex networks. 

The complimentary topic of microhydroelectric power is briefly presented in Chap-
ter 12. Design, including hydraulic and nonhydraulic design, is the focus in Chap-
ters 13-15, which includes the design process and some hydraulic-design issues, as 
well as those concerned with air pockets in the network. The treatment of gravity-
driven water networks is completed with Chapter 15 where a case study is thoroughly 
presented. 

Exercises, with solutions, appear in Chapter 16. 

1.5 GRAVITY-DRIVEN WATER NETWORK DISTINGUISHING 
CHARACTERISTICS 

1.5.1 Energy Management 

In water networks, where the flow is driven by a pump, the designer normally has 
some degree of control over how much and where the energy is put into the network. 
This is done by either adding a pump or increasing or decreasing the pump size or 
power to meet the design specifications. Analysts and designers of gravity-driven 
water networks are not afforded the same luxury. In these networks, for all points 
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beyond the atmospheric-pressure source of water, the energy that drives the flow 
comes from only static pressure in the water when converted from potential energy. 
This statement will become clearer after we have digested material related to the 
energy equation in Section 2.2. The concept that underlays this statement will be 
explored in more detail and in various contexts at several locations in this book. 
Thus, the overarching problem, and our challenge as analysts and designers, is to 
effectively manage the conversion of pressure energy because no energy from an 
outside source can be supplied. Energy management and cost of the network are also 
related. Pipe sizes that are too small cost less than large ones, but dissipate too much 
of the pressure energy in friction that gives the designer little flexibility at distances far 
from the source. More freedom in a design would come about if pipe sizes are larger 
than needed, but this increases the cost of the network and could present flow control 
problems including possible premature failure of throttling valves. Static pressure 
in the flow network is our friend because it allows us flexibility in our designs and 
potential for expansion of the network in the future should the need arise. 

The dissipation, or removal, of pressure energy from the network is the same for 
both pumped and gravity-driven types. Dissipation must come from friction in the 
pipe either at discrete locations ("minor" losses; see Section 2.2.1) or distributed over 
the pipe length (referred to as a "major" loss; see Section 2.2.2). As will be discussed 
frequently, one of the more useful minor-loss devices is the throttling, or globe, valve. 

Of course, it is clear that once the source and delivery locations are fixed for 
a gravity-driven water network, the contour of the ground in which the network is 
installed plays no role in the network overall performance. For example, changing 
the run of a pipeline to pass through regions of locally large slope has no effect on the 
overall potential available to drive the flow. A locally large slope simply means that in 
other parts of the network the slope must be locally small or even of the opposite sign. 
There may, however, be adverse effects on the performance of the network should the 
local elevations be too large or too small, as discussed in the next paragraph. 

While recognizing that the energy from static pressure is our friend, we also need 
to be aware that we may have an enemy in the same pressure. Should the pressure 
rise above that which can be withstood by the pipe or fittings that join pipe, the 
pipe or joint will rupture with obvious dire consequences. At the other extreme, 
low-pressure conditions are also a concern. If the static pressure in a pipe falls 
below that outside the pipe, possible contamination of the clean water flow with dirty 
surroundings outside of the pipe will occur if there is any leakage path in the pipe wall. 
Vacuum conditions,10 which can easily occur in an improperly design gravity-driven 
water network, are worse yet. Not only is the contamination potential present but, 
as discussed in Chapter 8, the collapse of pipe walls could occur under an extreme 
vacuum. 

'Pressures below atmospheric. 
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1.5.2 Single- and Multiple-Pipe Networks 

It is convenient to categorize gravity-driven water networks or parts of them as single-
or multiple-pipe types. In networks or parts of networks that consist of branches or 
loops of multiple numbers of pipes, it is clear to the analyst/designer that the design 
methodologies associated with multiple-pipe networks (presented in Chapter 11) will 
apply. The distribution main appearing in Fig. 1.1 is an example of a segment of 
a gravity-driven network that is a multiple-pipe type because of the branches. The 
definition of a single-pipe network, which may be part of a larger network, is one 
where a pipe of a single diameter is used, the pressures at each end of the pipe are 
known or prescribed, and the flow rate of water remains unchanged between the 
pipe inlet and outlet (that is, there are no branches). See, for example, the gravity 
mains in Fig. 1.1." The most elementary case for a single-pipe network is flow in 
a pipe of a single diameter that is run directly from an atmospheric-pressure source 
to a delivery location like a reservoir or break-pressure tank. The flow for this case 
remains at atmospheric pressure at each and every point12 along the flow path. This 
simple result makes for a simple design procedure to determine, for example, the 
pipe diameter required to pass a prescribed water flow rate. We can take advantage 
of this simplicity once we recognize the single-pipe character of the network. The 
easy-to-use design charts in Chapter 5 and the elementary algebraic formulas for pipe 
diameter in Chapter 9 are evidence of this simplicity. 

If we now imagine the pipe to have locally very high and/or very low points along 
the flow path, the problem takes on a different character. Along with the local high 
and low points comes the need for us to investigate the flow at, and near, these extreme 
points to determine static pressures. This is done for two reasons. First, we want 
to be certain that the pressures are not too large or small such that the undesirable 
consequences noted in the above section will occur. Second, the designer will want to 
consider possible pipe diameter changes at the extreme points and to investigate the 
effects of these changes on the network performance and cost. If the diameters change 
in an otherwise single-pipe network the pipe is called a "serial" network, which is a 
multiple-pipe type. 

Thus, we see that a single-pipe network must satisfy not only the condition of being 
just one pipe of a single diameter with no branches and known pressures at each end, 
but it must also be absent of large local high or low points that would necessitate a 
local investigation of the flow and static pressures. If large local high or low points 
are present in a single pipe, the network is then treated as if it were a multiple-pipe 
type and the analysis and design methodologies of Section 11.5.1 would apply. 

Once we consider the energy equation for pipe flow in Chapter 2, the meaning of 
"locally very high and/or very low points" in the above paragraphs will be quantified 
to some extent. 
1 ' The gravity main leading from the source to the reservoir (or storage) tank is sometimes referred to as 
the "intake pipe." 
12This statement will be interpreted in light of the energy equation for pipe flow in the Chapter2. 
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1.6 THE FUNDAMENTAL PROBLEM 

We begin this book by considering the basic problem of steady liquid flow in a single 
full pipe due to an elevation change between its inlet and outlet. The ideas for 
flow in a single pipe are extended to multiple pipes in Chapter 11 ; a more general 
and challenging problem. The intended application is the analysis and design of 
a clean-water distribution network that is fed by a reservoir (the "source," see the 
textbox B.l.l) and delivered, possibly through a storage and/or break-pressure tanks, 
to a "delivery" location for distribution to multiple houses in a community. Other 

applications come to mind, including water flow from an elevated reservoir to a turbine 
for producing mechanical or electrical power to end users. We touch briefly on this 
topic in Chapter 12. 

Although the scale of the networks targeted by this text is that for small commu-
nities in developing countries, the fundamental principles and analysis and design 
methodologies are exactly those for much larger networks, including large urban 

areas and towns. As will be discussed in Chapter 11, the technology (that is, the 
computer programs) is the primary change when traversing from the small to large 
scale. 

The fundamental problem of hydraulic design for a gravity-driven water distri-
bution network of the type considered in this book is normally as stated in textbox 
B.1.2. 

B.1.2 Fundamental Problem of Hydraulic Design for a Gravity-Driven 
Water Network 

For a required volume flow rate of water to be delivered to an end use, and known 
dimensions of the site (positions and elevations of source, storage tank, and tap-
stands, total length of pipe, contour of the land, etc.), calculate the pipe diameters 
and wall thicknesses for the network that satisfy these conditions, produce an 
acceptable static pressure distribution throughout the network, and if needed or 
desired, minimize network cost. 

Included in the overall design will be sizing and locating storage and break-pressure 
(if required) tanks, the locations and types of valves and fittings, and the consideration 
of issues like the elimination of undesirable low-pressure conditions along the flow 
path that may lead to infiltration of contaminated water into the pipe flow. 

The statement on the fundamental problem in textbox B.1.2 is an example of a 
"demand-driven" design for a fluid-flow network. This is one where the fluid flow rates 
are specified and the pipe diameters calculated such that they provide these flows. Al-
ternatively, one could specify the pipe diameters in the network and calculate the flow 
rates at all relevant points with the intent of finding one or more combinations of pipe 
diameters that meet the desired delivered flow rates. This "supply-driven" approach 
requires tedious and time-consuming trial-and-error calculations where guesses are 
made for the pipe size for each segment of the network. Analyses for designs carried 
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out in this way are especially taxing for large multiple-pipe networks where there may 
be hundreds or more possible pipe-size combinations. For example, a relatively small 
multiple-pipe network consisting of 10 pipe segments where one might guess the pos-
sibility of any one of three pipe diameters for each segment requires considering more 
than 59,000 total possible diameter combinations. 

1.7 A BRIEF BACKGROUND 

Among the references for the design of gravity-driven water networks,13 none present 
a strong foundation for fluid flow that can be connected with design-related material. 
For example, see Jordan Jr. (2004); Corcos (2004). A recently published and very 
thorough text on water-network design by (Trifunovic, 2006) contains < 4 pages on 
gravity-driven flow networks. The work of Swamee and Sharma (2000) addresses de-
sign based on cost minimization (discussed in Chapter 11) and presents a criterion for 
choosing between gravity-driven and pumped networks. One of the better references 
to date is the recent one by Swamee and Sharma (2008) that has broad coverage and 
is generally well written, but lacks a consistent and strong connection with pipe-flow 
fundamentals that are crucial for pedagogical soundness when teaching inexperienced 
students. Most of the qualitative and sparse quantitative data for gravity-driven wa-
ter networks are published by various Non-Governmental Organizations (WaterAid, 
2008), and the Neat Work code (Agua Para La Vida, 2002-2008), usually available on 
the internet, and government agencies (U.S. Peace Corps., 2008; National Park Ser-
vice, 2008). There are also several sources from master's thesis work at various 
universities (Niskanen, 2003). Surprisingly, even the latest (7th) edition of the Piping 
Handbook (Nayyar, 2002) contains no obvious reference to gravity-driven fluid flow 
in pipes, nor does the Plastic Piping Handbook (Willoughby et al., 2002). 

Because the aforementioned references focus heavily on design, the present work 
is not intended to be a comprehensive treatment of the design subject matter. It is, 
however, an attempt to bridge the gap between the classical fluid mechanics that may 
have been learned in an undergraduate engineering or perhaps physics curriculum, 
with which the reader may already be familiar, and the applied, technology-oriented 
coverage of this topic in a book, such as Jordan Jr. (2004), and a tool such as the 
NeatWork code from Agua Para La Vida (Agua Para La Vida, 2002-2008). Al-
though the book of (Jordan Jr., 2004) contains a wealth of information on many of the 
important aspects of a gravity-water system, all of the technical topics like flow in sin-
gle and parallel pipes, and air blocks are explained in ways that target a nonengineer, 
and in some cases a nontechnical, audience. This, apparently, is author intended. 
For engineers or engineering students, the solutions to many of these problems may 
greatly benefit from a sound, more-fundamental approach that their education and 

13The scale of the water flow rates for the networks addressed here is of the order of liters per second. 
Gravity-driven water networks for major population centers that require tens of liters per second and larger, 
for example, can be designed with the methods presented in this book, but will require larger-size pipe and 
associated hardware than is discussed here. As noted in Chapter 11, the scale of the computational tool 
used to carry out the analysis and design will need to be larger as well. 
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training can provide. Indeed, after completing this book, the reader may consider it 
an engineering analysis and design companion to the handbook of Jordan Jr. (2004). 

Another purpose for this book is to provide original design graphs, formulas, and 
computational algorithms for the fundamental problem of determining pipe sizes for a 
single- and multiple-pipe gravity-driven water systems that produce acceptable static 
pressure distributions, and to provide information concerning other critical technical 
and design topics pertinent to a gravity-driven water distribution network. Among 
these is included optimization of the network to achieve minimum cost. 

1.8 APPROACH 

In this text, we will focus on two levels of analysis and design. The first level will 
key on the performance of a water flow network based on overall characteristics, 
(that is, the mean slope, and inlet and outlet states). The second level addresses the 
distribution of properties, say static pressure, in the flow. The former is valuable in 
predicting the pipe size needed for a required volume flow rate and a given set of 
design conditions, and the latter is critical to assure the integrity of a design at each 
and every point along the flow path in a network having local peaks and valleys. The 
concept of "Natural flow" in a pipe (explored in Chapter 2) and a new concept of the 
"Natural diameter" for a pipe (in Chapter 6) are outgrowths of these two levels of 
analysis and design. 

Following the review of the fundamentals of fluid flow in a pipe (in Chapter 2), 
including the all-important mass conservation and energy equations, we will first 
focus on several cases of interest and, in Chapters 5 and 9, provide a series of design 
formulas and graphs to calculate the diameter, D, for a single-pipe network to satisfy 
a prescribed water flow rate, Q. A design worksheet in Mathcad, a copy of which 
appears in the text and supplied herewith, extends this analysis by including the effects 
of minor losses and eventually flow in the more-complex multiple-pipe networks that 
are most common for this application. Note that all of the theory and results presented 
in this book can be applied to the flow of any common fluid having constant density and 
viscosity, but all design graphs and numerical calculations will be for water, which 
is obviously the principal focus in this work. Of course, although the term "fluid" 
is being used here, only dense fluids (that is, liquids) can flow in a gravity-driven 
network. 

1.9 KEY FEATURES OF THIS BOOK 

The following lists several of the principal features of this text. As a group, these 
will provide an effective, distinctive, and innovative framework for the analysis and 
design of gravity-driven water networks. 

1. The fundamental theory of flow in pipes, including mass and mechanical energy 
conservation, the Darcy-Weisbach equation, Darcy friction factor, laminar and 
turbulent flow, and major and minor losses is thoroughly covered in its own 
chapter. 
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2. Every topic begins with, or references, fundamentals of pipe flow and other rel-
evant theory. This enables readers with technical backgrounds to quickly relate 
to new ideas, methodologies, and solutions. Also, because all developments 
have a solid, well-defined background, the assumptions on which the topics are 
based will be clear as will the range of problems appropriate to the topics. 

3. Single- and multiple-pipe networks are precisely defined. These classifications 
provide the analyst and designer with the ability to use simple analysis and 
design methodologies where appropriate. The generally weak role played by 
minor losses is discussed and quantified, the outcome that allows the neglect 
of minor loss as a first approximation to a design. Thus, simple design charts 
and formulas are presented for the case of minor-lossless flow in single-pipe 
networks, not computer programs with their inherent complexity. 

4. Where computer programs are necessary for solutions to multiple-pipe and 
some single-pipe network problems, the Mathcad worksheets supplied with the 
text (see the list of these in Appendix A) are described in full detail including 
input and output information, solution methodologies, and if needed hints on 
how to run the programs effectively. Many textboxed examples in this book 
that address the worksheets take the reader through a step-by-step process of 
the changes to an existing worksheet, perhaps already understood by the reader, 
to solve a related, but different, problem. The intent is to supply worksheets 
that perform all of the fundamental calculations covered in this book. Clearly, 
not all problems, nor variations of them, can or should be included. In addition, 
there may be user-preference mismatches, like the preferred use of metric pipe 
data in the worksheets on multiple-pipe networks (which are supplied with pipe 
data in in.). One of the reasons for choosing Mathcad is that adjustments of 
preferences and modifications to solve different problems are easily made in 
Mathcad ' s transparent graphical interface.14 To assist in this, a brief Mathcad 
tutorial is included in Appendix C. 

5. The inclusion and relevance of cost minimization to produce a unique solu-
tion to the problem of determining pipe sizes in multiple-pipe networks subject 
to designer-prescribed volume flow rates is explained in detail. The underly-
ing theory behind this is developed and equations derived and then applied to 
several example problems and exercises. The Given.. . Minimize construct is 
liberally used for cost minimization, which is fully explained and demonstrated 
in the Mathcad worksheets supplied with this text and in the Mathcad tutorial 
in Appendix C. 

14The graphical interface referred to makes Mathcad simpler to use compared with line-by-line-type 
programming languages such as C++ and Fortran, as well as Matlab. For example, an equation written 
in Matncad appears as it would on paper. There is no need for the user to "translate" the equation and, 
in fact, the logical flow of the entire solution, all of which would be necessary if using line-by-line-type 
programming languages. 
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6. Where appropriate in many places throughout the text where nontraditional 
approaches are used to analyze problems, new methods are compared with the 
traditional ones to emphasize the benefits of the new methodologies and place 
them in proper perspective. 

7. More than 100 exercise and example problems and their solutions appear in the 
final chapter or elsewhere throughout this book. 
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CHAPTER 2 

THE FUNDAMENTAL PRINCIPLES 

"If you don't know where you're going, you will probably end up somewhere else." 
- The Peter Principle, 1969 

2.1 THE PROBLEM UNDER CONSIDERATION 

Generally, there are four properties of interest to engineers and designers when solving 
a problem of fluid flow in a pipe. The first is the elevation since, for the present context, 
this property provides the driving force for the flow. The second is the velocity. As 
we will see below, velocity is proportional to the fluid flow rate, the value of which is 
often one of the specified conditions in a design. The third property is static pressure,1 

defined in more detail below. We all have a sense of pressure from our experiences, 
say, from a deep dive into a swimming pool where we sense water pressure on our 
ears. Lastly, because of the fluid property of viscosity, a moving fluid experiences 

1 Static pressure is often simply referred to as pressure in some texts on fluid flow in pipes. For clarity 
purposes, the choice is made in this text to distinguish between static pressure in a moving fluid and 
hydrostatic pressure in a standing column of fluid. 
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shear where it meets the walls of pipe, valves, and fittings that gives rise to frictional 
energy losses. 

It is very interesting that the modifier "gravity-driven" that appears in this book title 
produces quite a different problem than engineers normally encounter when solving 
pipe-flow problems where the difference in pressure between the pipe inlet and outlet 
is often specified as the driving force. Instead, when the weight of the water (referred 
to as its body force) drives the flow, the pressure takes on a different role in the 
problem. Where both ends of a single pipe are open to the atmosphere, pressure does 
not appear at all in the design formulas. In other cases, the pressure at the delivery 
point of the water may be prescribed by the designer so that this value appears as a 
constant in the design. In still other cases, for example, in multiple-pipe networks, 
the pressure can be prescribed or it may be a dependent variable whose value must 
be within a range of acceptability as defined by the designer. All of these instances 
will be explored fully in the chapters that follow. 

In this chapter, first we consider the problem of developed fluid flow in a single 
round pipe due to an elevation change between the pipe inlet and outlet. The flow is 
assumed to be steady, the pipe flows full, and we ignore the presence of dissolved gases 
and any suspended foreign matter in the fluid, both in its physical properties and in the 
equations for flow. The reader will note that this problem differs from the transient 
flow of a fluid and that in a partially filled pipe. These types of flows, which may 
include that resulting from the flushing of a toilet or the short-term running of water 
from a wash basin or sink in a house, are characterized by constant (atmospheric) 
pressure and are very different than those treated in this text. Another category, 
called "open-channel" flow, also differs in that not only is the pressure constant at 
the atmospheric value, but the pipe itself does not bound the fluid on all sides. Open-
channel flows are covered in nearly every undergraduate fluid mechanics textbook, 
many of which are referenced herein (White, 1999; Fox and McDonald, 1992; Gerhart 
et al., 1992; Munson et al., 1994; Potter and Wiggert, 2002). 

2.2 THE ENERGY EQUATION FOR STEADY PIPE FLOW: FLUID 
DYNAMICS 

The movement of fluids in pipes is well understood and is described in various levels 
of detail in many texts and handbooks. For our purposes, the analysis of the problem 
of pipe flow comes down to solving the equations for mass and energy conservation 
for the fluid between any two locations along the water-flow path. For a single-pipe 
network that was discussed in Chapter 1, the two locations referred to above are the 
beginning and end of the pipe that connect the source and delivery locations. For 
a multiple-pipe network, the upstream and/or downstream locations are normally at 
naturally occurring branch points, such as a tee fitting. In still other cases, where 
there is an interest in the local distribution of fluid properties in the pipe flow, the two 
locations are separated by a differential distance measured along the flow path. This 
approach, for example, is used in Chapter 6. 
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First, we define some of the variables needed for this work. Throughout this book, 
the pipe inside diameter is D, the cross-sectional average flow speed2 in the pipe is 
ü, and the water has constant density p. The static pressure at any location in the pipe 
is p, and the elevation measured from an arbitrary location in the pipe is the vertical 
coordinate z. 

Static pressure is the pressure that would be measured in a flowing, incompressible 
fluid where there is no direct effect from the flow speed. In a conceptual sense, the 
static pressure would be measured by a pressure gage that flows along with the fluid. 
In a practical sense, it would be measured by a small tap or hole installed in the pipe 
wall so that the opening of the tap is parallel to the motion of the fluid and thus sees no 
direct impact from the fluid velocity. A pressure gage would be connected by a small 
hose or pipe to this hole. By understanding the conceptual idea of how to measure 
static pressure, we can begin to appreciate the true meaning of the modifier "static," 
namely, static pressure is really a dynamic quantity. It is static only in the sense that 
the value of p has no direct effect from the local velocity of the moving fluid and the 
measurement of p does not affect the local velocity. 

We begin with the energy equation for steady, hydrodynamically developed flow 
of an incompressible fluid, like water, in a long, round pipe. In a hydrodynamically 
developed flow that exists in all long pipelines, the shape of the velocity distribution3 

is the same at all locations along the flow path. Another consequence of hydrody-
namically developed flow for a horizontal pipe of constant diameter is that the static 
pressure gradient is constant in the direction of fluid flow. Thus, the static pressure 
decreases linearly along the flow path. For an incompressible fluid, the flow is inde-
pendent of the size of the static pressure; it depends only on the gradient of this. The 
above comments apply to laminar, as well as turbulent flow.4 The energy equation 
for pipe flow is covered in a variety of formal courses including thermodynamics, 
fluid mechanics, and physics. The highlights of this coverage will be presented in 
this chapter.5 

2Velocity is a vector. Flow speed is the component of the velocity vector in the direction of fluid flow. 
If there is no need to calculate reaction forces and thus no use for a vector, the term flow speed is more 
appropriate to use for u. 
3This is the distribution of the local flow speed of the fluid as a function of the local radial position through 
the pipe cross section. 
4The character of laminar and turbulent flows is discussed in detail below with the presentation of the 
friction factor. As a preview, a laminar flow is orderly with no mixing of the fluid in the directions normal 
to the principal movement of the flow. In turbulent flow, cross-mixing dominates over nearly all of the flow 
cross section. Turbulent flow is most common in pipes of diameters typical of most gravity-driven water 
networks. Laminar flow can occur in small gravity-driven water networks where the water flow rates are 
small. 
5 A word of caution is appropriate here. As noted above, the literature on water distribution networks 
abounds. Some of these works, even those of reputable governing bodies (American Water Works As-
sociation, 2006), may use different definitions and sometimes inappropriate formulas for gravity-driven 
water networks of the scale considered in this book. For example, at least one book has been uncovered 
that defines static pressure in the hydrostatic sense, meaning no motion of the fluid. This is unfortunate 
because of confusion caused by an alternate definition of an important concept at such a fundamental level. 
The reader should be aware that such writings exist, and that the basics presented in this book are classical 
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Figure 2.1 Geometry and nomenclature for flow in a single pipe. Gravity acts in the negative-
z direction. 

Referring to Fig. 2.1, the energy equation for an open system, that is, a system with 
mass flow through its boundaries, consisting of a pipe of variable diameter having a 
single inlet and outlet is6 (see any text on thermodynamics or fluid mechanics) 

m[{— + e i + α ι — + gzx} 
P 2 

,V2 
( - + e2 + α 2 γ +gz2) w (2.1) 

where ra is the mass flow rate, e is the internal energy per unit mass, g is the ac-
celeration of gravity, and q and w are the rates of heat transfer to and work done by 
the system, respectively. States 1 and 2 are at any two arbitrary locations along the 
pipe-flow path where the normal convention is that state 1 is upstream and state 2 is 
downstream. The terms in each parentheses on the left side of Eqn (2.1) account for 
pressure energy,7 kinetic energy, and potential energy, all per unit mass of fluid. The 
term a is the ratio of the kinetic energy in the flow to the kinetic energy based on the 
mean flow speed, ü. It accounts for the non-uniform velocity distribution through the 
cross section of the flow and is connected with the acceleration of the flow between 
two different flow speeds in the pipe. For example, if the velocity distribution were 
uniform through the cross section of the pipe, a would equal 1. For fully developed 
turbulent flow, normal for most gravity-driven water flows, a « 1.05, which reflects 
a nearly uniform velocity distribution. A sketch depicting the velocity distributions 

in that the concepts, definitions, and terms are consistent within the narrow framework of gravity-driven 
water flows and over the broader framework of the body of fluid mechanics. 
6Equation (2.1) is alternately referred to as the first law of thermodynamics. 
7In the fundamentals treatment of fluid mechanics, (pi —pi)/p is often referred to as "flow work" that is 
the work required to move the fluid between states 1 and 2. However, p/p is the pressure energy per unit 
mass of fluid associated with a given state. 
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Figure 2.2 Velocity distributions for flow in a round pipe and accompanying values of a. The 
velocity where the fluid meets the pipe wall is zero. The main focus is on laminar and turbulent 
flow. Uniform flow, which would occur if the flow were inviscid, is shown for comparison 
purposes only. 

for laminar and turbulent flows and the accompanying values of a for each is shown 
in Fig. 2.2. 

For readers already familiar with the above developments, Eqn (2.1 ) is sometimes 
referred to as the "steady-flow energy equation" (White, 1999). 

The field of thermodynamics provides us with the definition of work. Work is a 
quantity that passes through the boundary of the system and has the effect of raising or 
lowering a weight. Clearly, since there is no turbine installed in the pipe, the rotation 
from which could be used to lift or lower a weight (this case will be considered in 
Chapter 12), there is no work for incompressible flow in a pipe. Upon rearranging 
Eqn (2.1), we obtain 

P 2 
gzi) 

fP2 , «2 
(7 + a 2T 

■9*2) + e2 - ei = HL (2.2) 

This is the energy equation for pipe flow (the flow must be steady, but we will not 
include this modifier in the interest of brevity) and this equation and its solutions will 
be the principal focus of the analysis content of this book. Readers who may not be 
familiar with the energy equation and the terms that comprise it will find the example 
in textbox B.2.1 useful. 
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Equation (2.2) is sometimes referred to as a "modified Bernoulli equation" because 
it resembles the Bernoulli equation.8 Jordan Jr. (2004) refers to it as the "Bernoulli 
equation for a real system". In contrast to the Bernoulli equation, 

(— + — +gz1) - — + — +gz2) = 0 (2.3) 
p i p i 

which is only valid for steady, inviscid (that is, frictionless) flow of an incompressible 
fluid along a streamline (see the discussion in textbox B.2.3), included in the energy 
equation for pipe flow is a positive-valued term that accounts for energy loss due 
to friction, HL, which is referred to as "head9 loss." Head can be expressed as a 
height, a dimensional length given the symbol h, or as the product of height and the 
acceleration of gravity, g, given the symbol H. Then, 

H = gh (2.4) 

By comparing Eqs (2.2) and (2.4), we obtain an equivalence between static pressure 
and head as 

h= — 
~ pg 

(2.5) 

where h is referred to as "static pressure head." This is a term we will use frequently, 
especially where we deal with multiple-pipe networks. If subscript L appears with h 
or H, as indicated above, it would be referred to as "head loss." 

We see that the energy equation for pipe flow equates the change in total mechanical 
energy (the sum of pressure, kinetic, and potential energy) between the pipe inlet and 
outlet to the energy "loss" in the pipe due to friction. Any gravity-driven water 
network will flow provided the change in total mechanical energy between the pipe 
inlet and outlet is positive valued. Our inspection of Eqn (2.2) shows that this energy 
loss is really a transformation from mechanical energy to internal energy and heat 
transfer from the pipe wall. If heat transfer, q is nonzero and negative valued (heat 
transfer from the pipe to the surroundings). If internal energy, the temperature of the 
water increases slightly as it flows along its path. To see this, we focus on the internal 
energy equation of state for a liquid, which is 

e2-e1=cv(T2-Ti) (2.6) 

where cv is the specific heat at constant volume. Thus, the change in internal energy 
from factional effects from the flow inlet to outlet causes a temperature increase 

8The Bernoulli equation has a very interesting history. Its origin as it appears in Eqn (2.3) is traced loosely 
to Daniel Bernoulli (in his book of 1738, Hydrodynamicd) but apparently his father Johann (1667-1748) 
in his book Hydraulica first recognized the static pressure as a dynamic quantity. Leonhard Euler (1707-
1783) was the first to characterize pressure as a pointwise quantity. He developed a differential form of 
an equation that relates the forces acting on a moving inviscid fluid and integrated it to obtain what we 
now call the Bernoulli equation. As discussed by Anderson (1990), because of these contributions, the 
Bernoulli equation could legitimately be called the Bernoulli-Euler equation. 
9The word head comes from early developments in hydraulics in the 19th century and described an elevation 
of water above an arbitrary location. Though it is not certain, head probably referred to the elevation at 
eye level or the level of the human head. 
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between these two points. It turns out that for most cases this change is so slight 
it is ignorable (see Exercise 3). From this outcome, we conclude that all thermal 
contributions to the energy equation are negligible and, for design purposes, the fluid 
behaves as if it is isothermal. An exception to this will be made in Chapter 10, where 
we may consider temperature changes in the fluid when optimizing the design. 

B.2.1 Example: The Energy Equation Applied to Human Movement 

You and your partner are planning a hike through the hilly woods in a Pennsylvania 
state park. Though you are both not fluids, interpret as well as possible the three 
terms in the energy equation, pressure, kinetic, and potential energy, in light of 
your characteristics while on this trek. Assume that your speed is uniform once 
you begin the walk and that potential energy is relative to that at the lowest point 
on the hike. 

The interpretation: The three terms of interest on the right side of Eqn (2.2) are, 
in order, the change between any two states for pressure, kinetic, and potential 
energy; all written per unit of mass. Once you are moving at uniform walking 
speed u, the kinetic energy of the system (you and your partner) remains constant. 
If you would write Eqn (2.2) between any two states along your walking path, 
the kinetic energy change is zero and thus does not contribute to the mechanical 
energy of your system. However, if the starting state is you at rest, the kinetic 
energy at this state is zero and ü2 /2 at any other state. The kinetic energy would 
contribute in this case. 

By contrast, the change in potential energy per unit mass, g(z\ — ζ·ί), will not be 
zero because you are told that the route is hilly. For example, an upward climb 
will require an energy input to the system (supplied by the chemicals in your 
body) that power the muscles needed to make the climb. One could imagine this 
coming from a chemical form of the pressure energy, or a new energy "source" 
term that could be included in Eqn (2.2). The character of the pressure energy 
will be explored more fully below. A downward descent results in the reduction 
of potential energy of the system. This change in potential energy per mass, 
g{z\ — z-ì), where z\ > z<i, must be balanced by a dissipation of energy that 
occurs in the loss term, HL [see Eqn (2.2)]. This is why the muscles in our legs 
ache or "burn" during a long downhill hike or run as they must work internally 
to dissipate the potential energy change. Of course, in both our bodies and in 
fluids there is always an energy loss due to friction (shear in fluids and muscular 
contractions in us) whenever there is motion in either. 

Pressure is unique to a fluid, which you are not, so it is a challenge to apply the 
concept of pressure energy to the movement of your body. Nonetheless, we can 
get a good sense for static pressure and pressure energy if we use our imagination. 



34 THE FUNDAMENTAL PRINCIPLES 

Example: The Energy Equation (Cont'd) 

One property of the process that results in the change of pressure in a flow is 
that of reversibility. This means that pressure energy may increase or decrease 
in response to a change in another form of energy and the conversion between 
the two forms of energy is reversible. Another way of saying this is that the 
energy transformation process is 100% efficient or "loss-free." A good example 
of this is within a static fluid (see Section 2.3), where we see a balance between 
pressure energy and potential energy; a decrease in one causes an increase in the 
other. The pressure felt on your eardrums upon a deep dive into a swimming pool 
provides evidence of this. 

How can this translate to our hike? Imagine that you have a spring attached to 
you in such a way that it can reversibly (that is, without friction) wind up using 
the potential energy as we descend a hill. Thus, potential energy on the descent 
is stored in the form of energy in the spring in what is really another form of 
potential energy. The sense that our bodies would get during this downward trek 
is equivalent to a walk on level ground. In the ascent that may follow, we allow 
the spring to reversibly unwind, adding energy to the system to aid in the climb. 
Again, because of the energy added to the system from the unwinding spring, 
this upward walk would feel as though it is on level ground. 

The simple analog in the above paragraph implies that in a conceptual sense, 
pressure energy is like stored spring energy in a fluid; indeed, modeling the 
"spring of air" is a topic several hundred years old (Brockman, 2009; Boyle, 1660). 
Anyone who has cracked open a valve on a pressurized water pipe, or worse yet, 
mistakenly drilled through the side of a pressurized pipe, can bear witness to 
this fact. It is worthwhile remembering this concept for several reasons. One of 
these is that it will become clear after digesting Chapter 6 that pressure energy 
is the sole energy source for the motion of fluid from the lower to higher parts 
of a gravity-driven water network. While the spring (potential) energy analog is 
valuable from a conceptual standpoint, from fundamental ideas, pressure energy 
is really a form of internal energy ox flow work that will be described in Section 2.3. 

There are two classifications for the energy loss in the pipe. The first is the 
energy loss due to shear stress between the moving fluid and the stationary pipe wall 
(major loss). The second is the energy loss due to the same process in pipe fittings 
and valves installed in the flow path and is referred to as a "minor loss."10 Various 
investigators have determined through laboratory experiments that the head loss, HL, 
is proportional to the kinetic energy per unit mass of the flow. With this, the energy 

10The terms major and minor are standard in fluid dynamics. Of course, the loss in a very short length of 
pipe may be of the same order of magnitude as that in a number of fittings. The terminology of major and 
minor is based on assumed large pipe lengths. 
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equation for flow in a pipe of diameter D and length L becomes 

where Hi, is frc 

/Pi M? . .»2 Un . 
(-+a^+ gZl) -{'- + a2^-+ gz2) - HL p i p 2 

>m 

M 

Η, = [/(5 + Σ § 
i = l 

ΛΓ _ 2 

1 i=l 

(2.7) 

(2.8) 

The term on the right side of Eqn (2.7) is the energy change due to friction, Hi. 
It is an extended form of the classical, empirical-based, Darcy-Weisbach equation 
(White, 1999), 

HL = f D 2 (2.9) 

where terms for the minor loss (see Section 2.2.1) have been included. Combining 
Eqn (2.4) with Eqn (2.9) produces an alternate form for the Darcy-Weisbach equation. 
Obtain, 

hL 
L f 2gD 

(2.10) 

where hi/L is the dimensionless group head loss per unit length of pipe that appears 
frequently in the pipe-flow literature. The Darcy-Weisbach equation has, through 
observation, been validated extensively for major and minor energy losses in pipe 
flow. 

The first term on the right side of Eqn (2.7) is the major loss and the second and 
third terms account for the minor loss. The parameter / in the major loss will be 
discussed in detail in Section 2.2.2 and the minor losses in Section 2.2.1. 

2.2.1 The Minor Loss 

The minor loss can be characterized by a dimensionless loss coefficient K which, 
when summed over all minor-loss elements (N), accounts for the total minor loss 
along the pipe-flow path [see Eqn (2.7)]. For example, the minor loss coefficient 
for flow entering a pipe protruding through and beyond the wall of a reservoir (this 
condition is termed a "re-entrant") ranges from 0.8 to 1.0 depending on wall thickness, 
pipe diameter, and length of the protrusion (Streeter et al., 1998). 

There is an alternate, less-common, way of expressing minor losses. In Eqn (2.7), 
Le is called the "equivalent length" and the procedure for accounting for the minor 
losses is called the "equivalent-length" method. In the equivalent-length method, we 
calculate the energy loss for a pipe fitting or similar minor-loss element as if it occurs in 
a number of pipe-diameters of straight-pipe length that is referred to as the equivalent 
length. This method is commonly used for certain types of fittings. For example, 
the minor loss for an elbow is sometimes accounted for using the equivalent-length 
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method. For a standard 90° elbow, the reported equivalent length11 is Le/D = 30 
(Fox and McDonald, 1992). In Eqn (2.7), the total minor loss for those elements 
using the equivalent length method is from the sum of M total elements. Please note 
that only the loss-coefficient approach or the equivalent length method is used, never 
use both methods for the same minor loss elements or else the effect of the minor 
losses will be erroneously doubled. Also, note that the energy equation for pipe flow 
developed here [Eqn (2.7)] applies to a length of pipe of a fixed diameter. Therefore, 
the summations in the minor loss terms in these equations must likewise be taken 
over a pipe of a single diameter. 

B.2.2 Why The Bernoulli Equation Does Not Apply to Pipe Flows 

The Bernoulli equation is simple and thus very appealing to use, including pipe 
flow and other cases where it should not be, so we need to give serious consid-
eration to the problem at hand before possibly applying it. The assumptions on 
which it is based are sometimes not well understood or ignored by its potential 
users. Fundamentally, Eqn (2.3) applies only if the flow is steady, incompressible, 
inviscid, and states 1 and 2 lie on a single streamline. In steady flow, a streamline 
is the locus of points traversed by a small "particle" of fluid as it travels in the 
flow. Steady says that the flow cannot depend on time (that is, the flow cannot be 
accelerating or decelerating with time.) Incompressible means that the density 
can be approximated as constant in value. Flows of liquids are normally incom-
pressible, as well as gases, if the flow speed is sufficiently small. Inviscid implies 
that there is no effect of shear acting on the flow along the streamline on which 
Eqn (2.3) is written. For nearly all real flows, the viscosity of the fluid will never 
be zero, so inviscid does not mean the absence of viscosity. Rather, inviscid is 
a statement of the lack of a velocity gradient in the direction normal to the fluid 
flow (perhaps, recall Newton's law of viscosity from fluid mechanics). Even 
with the restrictions, there are many examples of where the Bernoulli equation 
accurately applies. Namely, in the free-stream of external flows over wings and 
other streamlined surfaces, and in laminar, internal flow in a pipe or other internal 
flow along only the centerline. It can be approximately applied in some turbulent 
flows, although with less certainty of the results since many of these are highly 
viscous, and there is little hope of following a streamline. 

To be fair, many authors of undergraduate texts on fluid mechanics are at least 
partly to blame for some misunderstanding concerning the Bernoulli equation. 
For example, illustrative problems like internal flow in a tube that are clearly 
viscous but, without explanation, the students are instructed to treat as inviscid 
are a possible source of confusion. 

1 ' The equivalent length under discussion here is a number for a particular fitting. This number is the value 
of the ratio Le/D. 
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Minor loss coefficients and/or equivalent lengths for the most common fittings and 
valves are presented in Table 2.1. Included are the elbow, tee, union, coupling; gate, 
globe and ball valve; expander and contractor; and loss coefficients for entry and exit 
losses. More comprehensive lists and charts and, for readers unfamiliar with them, 
descriptions of these fittings and valves can be found in nearly all undergraduate fluid 
mechanics textbooks. Munson et al. (1994), for example, has numerous sketches 
of valves and fittings among their minor-loss charts. The globe valve, which is 
commonly used to dissipate the potential energy in a gravity-driven water network, is 
discussed in many locations in the this text. A few comments on the data in Table 2.1 
are in order. Much of these data are extracted from industry publications, such as 
The Crane Company ( 1970) and data from the Hydraulic Institute (Hydraulic Institute, 
1990). As pointed out by White (1999) these data are relatively old and many are 
questionable. After comparing a few published results with data obtained from tests 
of more-recently manufactured fittings, one concludes that most data from the above 
sources are likely very conservative. For example, the value of K for a standard 90° 
elbow in Table 2.1 calculated from the recent correlation appearing in White (1999) 
is -0.31 for Re of 5 x 105. This is clearly much less than the other two reported values 
of 0.9 and 1.5. Also, note the variability of the reported values for the same fitting 
or valve in Table 2.1. This is not surprising since the loss coefficients will reflect 
variations in specific manufacturing methods and dimensional details of the fitting 
or valve. This is expected because standards at this level of manufacturing detail 
generally do not exist. Fortunately, the sensitivity of our designs to these variabilities 
is expected to be weak because the minor loss is not large for most gravity-driven water 
networks, except where needed for flow control. The latter concerns the intentional 
dissipation of energy in a partially closed globe or faucet valve, an important function 
that is to produce a minor loss. 

An exception to the conservative estimates for K values in Table 2.1 is that for a 
fully-open globe valve. Gray (1999) suggests that the effect of diameter dependence 
on K may be written as 

^ , -2/0.0135 mm, 
K = 85 logio ( ■=. ) globe or faucet valve (2.11) 

which, for the pipe sizes of interest in this work, gives K in the range of 6-10, or 
about twice that from Table 2.1. It would appear that a conservative estimate of K 
for a fully-open globe or faucet valve ranges from 8-10. Swamee and Sharma (2008) 
report a value of 10. Of course, K values increase unbounded with continued closing 
of the valve. As demonstrated in Exercise 7, K values can approach 500,000 before 
nearly fully restricting the flow in this valve. 
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2.2.2 The Friction Factor 

The term / in Eqs (2.8)-(2.10) is the Darcy friction factor12 that accounts for energy 
loss due to friction for flow in a straight, horizontal pipe. We write it as /(ix, D) to 
keep in mind that the friction factor depends on the mean flow speed in the pipe and 
the pipe diameter through the Reynolds number, Re, defined below. For laminar flow, 
an exact formula for f(u,D) may be developed from the solution of the momen-
tum equations (referred to as the Navier-Stokes equations) and the equation for mass 
conservation for fluid flow and is explored in textbox B.2.3. Recourse to data from 
experiments is needed to write f(u,D) for turbulent flow, wherein the friction factor 
is also known to depend on the relative roughness of the pipe wall, e/D, discussed 
further below. In design, e is always a prescribed value (that is, a parameter) from lab-
oratory measurements and we normally do not include this parameter in the argument 
list along with u and D. For smooth pipe, typical values for f(u, D) range from-0.05 
to -0.01 for turbulent flow from the near-transition regime to highly turbulent, respec-
tively. That is, an order-of-magnitude estimate is / » 0.03 ± 0.02 = 0.03(1 ± 0.67) 
for turbulent flow. 

The value of f(u, D) is determined from different formulas for laminar and tur-
bulent flow. These are (White, 1999) 

( 64/Re, laminar, Re < 2300 
f(%D) = i {-21ogl0[ 2.51 +lZg]}-2 turbulent (2·12) 

where Re is the Reynolds number 

R e = — (2.13) 
v 

that clearly depends on ü and D, but is never written as Refu, D), and v is the 
kinematic viscosity of water at its ambient temperature. The value for v can be 
found in most textbooks on fluid mechanics or heat transfer. The kinematic viscosity 
for water at, or near, atmospheric pressure as a function of temperature can also be 
estimated to accuracies within < 1% over the temperature range 1 ~ 99°C from the 

12The Darcy friction factor can be obtained from Moody's publication (Moody, 1944) of the now-famous 
friction factor chart. This chart appears in many sources including textbooks on fluid mechanics and in 
Fig. 2.4. An interesting and very readable history of the friction factor for pipe flow and the Darcy-
Weisbach equation is available (Brown et al., 2000). To produce his diagram for friction factor, Moody, 
in a relatively simple manner, restructured the existing friction-factor diagram of Rouse (1943) "in a more 
conventional form". According to Ettema (2006), in addition to / and Re, plotted on secondary axes, 
Rouse included on the primary axes two different quantities. One of these was / _ 1 / 2 , and the other 
R e / 1 / 2 . This was done to identify the turbulent-smooth curve / _ 1 / 2 = —0.8 + 21og(Re/1 /2) from 
the then-recent work of Colebrook and White (1937) and Colebrook (1938, 1939). Since very few, if any, 
of us use the "Rouse" diagram today, this is one among several instances in engineering of an individual 
whose archival contributions came from very basic observations and actions. From Rouse and Ince (1963) 
and the inclusion of an exclamation point in Rouse (1975), Rouse thought Moody received undue credit 
for the work of himself and his colleagues. Further brief discussion on the history of / for turbulent flow 
is presented in Chapter 9. 



40 THE FUNDAMENTAL PRINCIPLES 

formula (Streeter et al., 1998), 

15.72 x l (T 6m2/s 
(T/Tref +4.25)1·5 (2.14) 

where T/Tref is dimensionless and Tref = 283.16 K (K = 273.16 + °C). A plot of 
the kinematic viscosity of water and Eqn (2.14) is presented in Fig. 2.3. For reference 
and convenience, the kinematic viscosity of water at 10°C is v = 1.307 x 10~6 m2/s. 

50 

Temperature f C) 

Figure 2.3 Kinematic viscosity of water. Data are from Streeter et al. ( 1998) and correlation 
is from Eqn (2.14). 

From fundamental fluid mechanics, we know that Re "characterizes"13 the flow 
regime. In particular, flow is very likely to be laminar for Re < 2300 (and will be 
laminar for Re slightly less than 2300) and turbulent flow occurs for Re >3000-
4000. In a laminar flow, there is no mixing of the fluid in the directions normal to the 
principal movement of the flow. This is contrasted with turbulent flow where mixing in 
all directions dominates over most of the flow cross section14. The transition regime, 

13 Another word for characterize is "describe" or "distinguish," like the term "mile-high city" is used 
in United States-based jargon to describe the elevation of Denver, Colorado. While true that Denver is 
approximately 1 mile above sea level, there are probably relatively few locations that are exactly 5280 feet 
above sea level within the limits of the city. 
14We do not yet have a complete understanding of turbulence due, in part, to the complexity of turbulent 
flows and the multiplicity of length and time scales that it possesses. Sir Horace Lamb, the notable 
British hydrodynamicist and applied mathematician is reported to have said "I am an old man now, and 
when I die and go to Heaven there are two matters on which I hope for enlightenment. One is quantum 
electrodynamics and the other is the turbulent motion of fluids. And about the former I am rather more 
optimistic" (Anderson et al., 1984). 
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which lies between the laminar and turbulent limits, is a region of some uncertainty for 
the friction factor, even though the recommended Eqs (2.16) and (2.17) for f(ü, D), 
presented below, model this regime. In general, it is best to stay clear of the transition 
regime when designing a water network. In the results presented below, we will see 
that for small values of z\ and volume flow rate Q, the flow in the pipe may indeed 
be laminar or transitional though turbulent flow is most common. 

The formula for f(ü, D) from Eqn (2.12) for laminar flow is from the solution of 
the Navier-Stokes equations for incompressible, constant-viscosity flow (see textbox 
B.2.3). The formula for /(ü, D) from Eqn (2.12) for turbulent flow is referred to as 
the Colebrook equation (Colebrook and White, 1937; Colebrook, 1938, 1939) and 
is the industry-accepted design formula for the friction factor for turbulent flow in 
pipes. Note that it is implicit in / (ΰ , D) and requires iteration or a numerical root-
finder to solve. An explicit approximation that produces results to within ±3% of the 
Colebrook equation is 

_ . 64/Re laminar, Re < 2300 
/ ( « . * > ) - i { _ 1 . 8 i o g l o [ | | + (£^)1.n]}-2 t u r b u l e n t (2.15) 

which is from Haaland (White, 1999), and is easier to implement. A similar expression 
is from S wamee and Jain ( 1976) although many explicit and implicit forms for / (ü, D) 
have been proposed (see Romeo et al. (2002) for a brief review up to 2001). 

As noted, the term e in Eqs (2.12) and (2.15) is the absolute roughness of the 
pipe inside wall that is relevant for only turbulent flow. The roughness is an average 
height, in a root-mean-square sense, of the roughness elements on the wall surface. 
For plastic pipe (Polyvinyl Chloride, etc., see Chapter 3), e « 5 x 10~6 ft ±60% 
(White, 1999) or « 1.5 x 10~3 mm ±60%; generally considered to be smooth15. For 
galvanized steel or iron pipe, e is -100 times larger than this value. It is well known 
that e itself does not affect f(ü, D), but rather the ratio e/D, which is referred to as 
the relative roughness of the pipe. This is not surprising since, as demonstrated by 
dimensional analysis, often a part of a course in fluid mechanics, only dimensionless 
groups ultimately appear in homogeneous mathematical formulas. Both e and D have 
dimensions of length. 

In this book, use is made of f(û, D) from a correlation of friction factor data 
[for a representative set of friction factor data, see Schlichting (1979)], which spans 
the laminar, transition, and turbulent regimes from Churchill (1977)16 and Churchill 
et al. (2002). Thus, no conditional statement (e.g., an if statement) in a computer 
algorithm, is needed to evaluate f(ü, D) as would be needed for Eqs (2.12) and (2.15). 

15The term smooth means that the scale of pipe-wall roughness is much less than the thickness of the 
viscous sublayer in a turbulent flow. The sublayer is a thin layer of moving fluid immediately next to the 
pipe wall that has a laminar character. 
16From Churchill (2006), the correlation of Eqs (2.16) and (2.17) has appeared in the literature in the past 
with several typographical errors. The expression presented here is error free. 
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The friction factor correlation is written as 

f* 4 
0=J—-{( % 

2 U R e v / / V 8 ' 
Γ + [( 

18765 

+(3.29 227 
R e / T / S 
^0 )2 

ReVTV» ReyTVS 

0. 
ln( RevTV« 

436 v l + 0.602^Rev//*78 ) ) " ] - ' } * 

(2.16) 

where 

/(«,£>) = 4 / * (2.17) 

Swamee (1993) presents a slightly simpler variation of this formula that spans all 
regimes. 

Though it is surprising to most, research continues on the understanding and models 
for turbulent flow in pipes and over surfaces (Marusic et al., 2010). The recent data 
for flow in rough and smooth pipes for 57 x 103 < Re < 21 x 106 reported by 
Allen et al. (2007) and others (McKeon et al., 2004, 2005; Shockling et al., 2006; 
Langelandsvik et al., 2008) have not yet been incorporated into Eqs (2.16) and (2.17). 

The rather cumbersome-looking equation, Eqn (2.16), is just an implicit formula 
for f(u, D) as a function of Re and relative roughness of the pipe. Just like Eqn (2.12), 
its solution requires iteration or a numerical root-finder. A plot of Eqn (2.16) for a 
broad range of Re appears in Fig. 2.4 which is commonly referred to as the Moody 
chart or Moody diagram (see footnote 12). Shown in Fig. 2.5 is the friction factor 
for PVC and galvanized iron pipe, two materials normally used in gravity-driven 
water networks, over a Re range normally encountered in them. Also in Fig. 2.5 is 
the friction factor for the "smooth" limit (e/D —>· 0). The implicit formula for the 
friction factor for this limiting case is from the work of Colebrook (1938, 1939) and 
Colebrook and White (1937), 

f(%D) -1/2 -0.8 + 2\og[Ref{ü,D)1/2} (2.18) 

Note from our inspection of Fig. 2.5 that the friction factor for PVC and smooth pipe 
are practically indistinguishable. This outcome will be very useful when we explore 
the development of simplified design formulas in Chapter 9. 
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Figure 2.5 Friction factor for PVC and galvanized iron pipe, and the "smooth" limit (e/D —► 
0) from Eqn (2.16). Laminar flow occurs for Re < 2300 and turbulent flow for Re > 3000. 
Transition flow is sandwiched between the two. Assumed is D = 2.067 in. to provide a value 
for e/D. The friction factor for PVC and smooth pipe are practically indistinguishable. 

B.2.3 The Navier-Stokes Equations 

The Navier-Stokes equations are the momentum equations, Newton's second law 
of motion, for a Newtonian fluid. Together with the equation of mass conser-
vation, the solution of the Navier-Stokes equations gives the velocity and static 
pressure distributions for any flow of a Newtonian fluid, like water and many 
other fluids encountered every day. Thus, the Navier-Stokes equations are the 
universal equations for fluid flow, including turbulent flow. Because they are a set 
of second-order, nonlinear, partial differential equations, they are very difficult 
to solve for most practical problems. Numerical methods (referred to as Com-
putational Fluid Dynamics, or CFD) must normally be used. For pipe flow there 
is one very common case where the length of the pipe is very large compared 
with the diameter. Here, the velocity distribution in a laminar, incompressible, 
constant-viscosity pipe flow is termed "fully developed," and a closed-form solu-
tion for the velocity can be obtained from the Navier-Stokes equations. From this, 
an expression for the friction factor, f(ü, D) = 64/Re, can then be developed 
that appears in Eqs (2.12) and (2.15). An approximate solution for the friction 
factor may be obtained in the same manner for turbulent flow, but modifications 
guided by experimental data are needed for accuracy. Please see the chapter on 
Differential Analysis of Fluid Flow in any fluid mechanics textbook for more 
details. 
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The solution for f(ü, D) using Mathcad, which includes the use of the root 
function to solve Eqs (2.16) and (2.17), is illustrated in Fig. 2.6. Fortunately, this 
solution is included in all of the Mathcad worksheets presented in this text so there 
is no need for the designer to type Eqs (2.16) and (2.17) into Mathcad. 

Figure 2.6 Mathcad solution for f(ü, D) for 2.067-in. inside-diameter galvanized iron (or 
steel) pipe and Re of 10,000. f(u, D) is from the function f r i e f ac evaluated by the root 
solver. The term ebyD is relative roughness t/D. The final two arguments in the function 
root(funct(fi,Re,ebyD),fl,0.0001,fl) of 0.0001 and 0.2 are the assumed lower 
and upper bounds, respectively, for the value of the friction factor, frict_fac(Re,ebyD). 
Compare the result from this example with that from Fig. 2.5. Mathcad worksheet friction 
f actor, xmed. 

An approximation to the friction factor is the Blasius formula [from Blasius in 
1913 appearing in Munson et al. (1994)], 

f(ü,D) = 0.316 Re"~1/4 (2.19) 

normally reported as being valid for turbulent flow, where 104 < Re < 105 and for 
smooth pipe. As noted in the above paragraph, the smooth-pipe approximation applies 
to PVC and other plastic pipe but less accurately to steel or cast iron, the galvanized 
form of which is sometimes referred to as galvanized iron or GI. On the Moody chart, 



46 THE FUNDAMENTAL PRINCIPLES 

Figure 2.7 Friction factor in turbulent regime for smooth pipe and the Blasius approximation 
toit. 

the limiting-case of smooth pipe appears as the lowest (that is, smallest e/D) curve 
in the turbulent regime. A form of the energy equation where this approximation is 
evoked for f(ü, D) is developed in Chapter 9 [Eqs (9.2)-(9.10)]. A plot of the friction 
factor for smooth pipe and the Blasius approximation to it appears in Fig. 2.7 and the 
extent of agreement between the two appears in Fig. 2.8. The relative error between 
the two at Re of-4000 is 12% and about twice this value at Re of 1 x 106. For Re 
between 4,000 and 325,000, the relative error is 12% or less; except for a small band 
near the middle of this range the Blasius approximation underestimates the friction 
factor over this span of Re. 

B.2.4 A Brief Assignment 

Take a few minutes to compare the plot appearing in Figs. 2.4 or 2.5 with a 
few points calculated from Eqn (2.16) using the Mathcad worksheet f r i c t i o n 
fac to r . xmcd. Convince yourself that Eqn (2.16) is indeed an accurate represen-
tation of the friction factor. In particular, focus on how the friction factor changes 
from the laminar regime, through transition, and into the turbulent regime. Can 
you attribute a cause to the trends that you observe? How does the friction factor 
behave as a function of Re for pipe that is very rough, say, in the upper-right 
corner of Fig. 2.4? What do you think causes this? Why does the friction factor 
for smooth pipe show the greatest dependence on Re? 
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Figure 2.8 Percentage difference between the friction factor for smooth pipe and the Blasius 
approximation to it. 

2.3 A STATIC FLUID 

A condition that is sometimes of interest in a fluid-flow network is that where the 
fluid motion ceases. In this case, the fluid is referred to as "static". A subfield of fluid 
mechanics called fluid statics was developed to study fluids under this condition where 
applications include manometer theory and forces that are exerted on flat and curved 
surfaces (e.g., some dams and submarine hulls). Since there is no motion in a static 
fluid, all terms in the energy equation [Eqn (2.7)] that relate to fluid motion including 
head loss and velocity are zero. The energy equation for a static fluid becomes17, 

^—^+9{Zl-z2)=Q (2.20) 

This equation shows that in the absence of fluid motion, there is simply a balance 
between the pressure and potential energy; an increase in one results in the decrease 
in the other. If the fluid motion is zero, the pressure is referred to as "hydrostatic" 
pressure to distinguish the stationary state of the fluid from that in motion. However, 
the concept of pressure as stored energy in a fluid spring (as discussed in textbox 
B.2.1) still loosely applies. One of the reasons why the static state of a gravity-driven 
water network is of interest to analysts and designers is that the maximum pressures 

17For readers knowledgeable about fluid statics, Eqn (2.20) is easily rewritten in the more-familiar form 
of the energy equation for a static fluid, dp/dz + pg = 0, by assuming the difference z\ — Z2 to be 
differential in size. This equation is immediately obtained once we recognize zi — 22 = dz and thus 
Pi - Pi = dp. 
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in the network are most severe under this condition. This is because the frictional 
head loss, the right side of the energy equation [Eqn (2.7)], always serves to reduce 
static pressure along the fluid flow path. If the flow ceases, the pressures, which are 
then termed hydrostatic, become larger than when fluid is in motion. 

2.4 LENGTH SCALES FOR GRAVITY-DRIVEN WATER NETWORKS 

It is interesting to note that the ratio L/z\ in the energy equation [Eqn (2.25)] contains, 
as a single term, two of the three lengths associated with a gravity-driven water system. 
These are the elevation of the source, z\, and the length of the pipe, L. To further 
explore this term, and to set the stage for the solutions of the energy equation for 
the pipe diameter needed to supply a prescribed volume flow rate of water, we will 
consider two cases below. The first is an ideal case (Section 2.6.1), where the pipe 
is straight (that is, no bends or curves in the pipe) between the source and delivery 
location, and the second is for a case where the pipe may have curves and bends and, 
thus, is of arbitrary length. The latter case appears in Section 2.6.5. 

The third length in the problem is D. D contributes to the characterization the 
regime of flow in the pipe through the Re. Actually, the ratio of D to v/ü characterizes 
the regime of the flow. As noted above, for values of Re less than about 2300, the flow 
is orderly, has no mixing in the direction normal to fluid flow, and is termed laminar. 
For values of this ratio much greater than 2300, the length scale D is large enough 
such that disturbances normally present in the flow become amplified. After some 
distance downstream from the disturbance, the flow becomes chaotic and possesses 
large rates of mixing in the direction normal to fluid flow in what we know as turbulent. 

Through the ratio with z\, D also characterizes the strength of the minor loss in 
the problem, as we will see from the discussion in Section 2.6.2. It is appropriate 
to note how all three lengths characterize the problem. First, recalling that Z2 = 
0 by definition, it is clear that z\ establishes the potential energy that drives the 
flow. Second, it is also clear that the pipe length, L, contributes to characterizing 
the frictional head loss; larger pipe lengths have larger frictional head loss than do 
shorter lengths. However, the dependence of L on the details of where the pipe is 
run unnecessarily complicates this characterization. Instead, the appropriate length 
scale that characterizes the pipe length is indeed the straight-pipe length which, as 
is explored in Section 2.6.1, is completely defined by z\ and the location of the 
delivery point of the water relative to the source. The use of the straight-pipe length, 
in combination with z\, produces a very simple dependence of the problem on the 
"mean," or average, slope of the pipe and eliminates the dependence on both of these 
lengths. 

2.5 MASS CONSERVATION 

Conservation of energy is the first of two fundamental equations that are our focus 
in the analysis and design of water-flow networks. The second is mass conservation 
which states that mass can neither be created nor destroyed during any process of 
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interest in this text. For the one-dimensional (ID), steady flow in a round pipe that 
occurs in the networks considered, mass conservation is written as (refer to Fig. 2.1), 

Q = ÜA = ÜTTD2/4 (2.21) 

where Q is the volume flow rate18 and A is the cross-sectional flow area. Equa-
tion (2.21) is often referred to as the "continuity equation" for it must be satisfied for 
the flow to be continuous. Application of Eqn (2.21) to quasi-lD flow between two 
pipes of the same or different diameters clearly leads to, 

Q+ = Q- (2.22) 

where the + and - superscripts refer to just downstream and upstream of the pipe 
junction, respectively. For the more general case of flow through a junction of multiple 
pipes, we have 

/ _, Win / j ^io 0 (2.23) 

where Qin and Qout are inflows and outflows from a junction, respectively. Unless 
otherwise stated, all values for Q are positive values. 

Where it may be needed, the mass flow rate, m, is related to the volume flow rate 
through the density of the fluid. Thus, 

(2.24) 

B.2.5 A Problem for Exploration 

A waterfall (Fig. 2.9) is an example where water flows at constant atmospheric 
pressure from high-to-low elevations. Suppose a particular site has a clean water 
source that feeds an existing waterfall. The flow rate in the waterfall is large 
enough to supply a community downstream. You are to consider the alternative 
of piping water from the source for delivery to the community. Discuss the energy 
changes in the waterfall and pipe flow for these two cases and identify each with 
the relevant terms in the energy equation. How does the continuity equation 
enter the problem? Suggestions to focus your discussion include the nature of 
the energy loss in the waterfall versus that for the pipe flow, water cleanliness in 
both cases, and the possibility of delivering electrical power to the community in 
addition to water. 

18Normally reported in liters per second, L/s, or m3/s. There are 1000 L in 1 m3. A liter is about 0.264 
gallons, or slightly more than a quart. 
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Figure 2.9 The waterfall at Taughannock Falls, New York. Photo courtesy of Nicki Jones. 

Exploration (Cont'd) 

A start of the exploration. We first consider piping the flow. The static pressure 
and vertical velocity of the flow are both zero at the top of the falls. Application 
of the energy equation [Eqn (2.7)] between this location and any lower point 
in the pipe flow shows that the reduction in potential energy is balanced by the 
increase in static pressure less the energy loss from accumulated friction. The 
kinetic energy change of u2/2, where ü is the flow speed in the pipe, is generally 
negligible. For instance, if ΰ = 3 m/s, the change in kinetic energy is 4.5 m2/s2, 
whereas the change in potential energy is more than 100 times this for the falls 
of Fig. 2.9 (65 m high). Application of the continuity equation between the top 
of the pipe and any location downstream shows that ü is constant throughout the 
flow. 
Next, consider the waterfall where the static pressure is atmospheric everywhere 
despite the reduction in potential energy from the fall. The local kinetic energy 
for the waterfall can be estimated by considering that the flow accelerates during 
its downward movement under the influence of gravity. Since the volume flow 
rate, Q, is constant, the continuity equation [Eqn (2.21)] requires a reduction 
in cross-sectional flow area as the water proceeds downward. This is seen by 
noting that the waterfall appears wispier at the lower elevations compared with 
the middle. If we apply Eqn (2.7) to the flow between the top of the falls and the 
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Exploration (Cont'd) 

point just before it reaches the pool of water below, there is a near-perfect balance 
in energy between potential and kinetic as the loss in potential energy fuels the 
increase in kinetic energy during the fall; any difference is attributable to energy 
supplied to evaporate water, an effect that tends to cool the water along its flow 
path. However, because the velocity in the vertical direction is zero at both the 
origin of the waterfall and in the pool, there is a zero net change in kinetic energy 
between these two points. By applying the energy equation between these points 
we see that, overall, the energy loss (H^) balances the potential energy, g{z\ — Z2), 
where z\ — z-i is the elevation change of the waterfall. The energy loss in this case 
comes from mixing and splashing in the pool and, more importantly, evaporation 
at the pool surface. The mist rising from the pool surface and wetted walls of the 
canyon in Fig. 2.9 are evidence of this dissipation. This case is an example where 
the energy loss is not a true "head loss" (that is, a reduction in static pressure) but 
turbulent mixing and a partial evaporation of the flow. The thermal energy change 
in the flow must be considered to complete the understanding of this problem. 

We see from this brief analysis that piping the flow is desirable if static pressure 
is needed to transport the flow to a community beyond the reach of the stream. 
It also allows for the installation of a microhydroelectric power plant if desired 
(see Chapter 12). Piping also facilitates greater control over maintaining water 
cleanliness in the supply. 

B.2.6 The Friction Factor and Head Loss 

As an illustration of the calculation of f(u, D) and the head loss due to pipe 
friction, consider the following simple problem. Calculate the friction factor and 
the head loss per 100 m of nominal 1-in. PVC pipe (D= 1.049 in.) for a flow rate, 
Q, of 0.45 L/s. Is the flow laminar or turbulent? 

With the flow rate specified, the Re can be written from the continuity equation 
(see Eqn (2.21)) as 

R c = 4Q 
ττνΌ 

For water at 10°C, refer to Fig. 2.3 or Eqn (2.14) to find v = 1.307 x 10~6 m2/s. 
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State 1: "Source" (Reservoir or Tank) 

Pipe of Diameter D 

m, Q,u 

State 2: "Delivery" 

Figure 2.10 Single-pipe geometry with source at atmospheric pressure. The source is located 
at (xi, zi) and the delivery location is at (x2, 22), where x\ = zi = 0. 

The Friction Factor and Head Loss (Cont'd) 

Then 

Re 4 · 0.45 x IO"·3 m 7 s 
π · 1.307 x IO"6 m2/s · (1.049/39.372) m 

16,450 

clearly a turbulent flow. For 1.049-in. inside diameter PVC pipe with e = 5 x 
10"6 ft, e/D = 5.720 x IO"5 and Eqs (2.16) and (2.17) gives f(ü, D) = 0.0278. 
This result can be calculated using the Mathcad worksheet as seen in Fig. 2.6. 
Please take this opportunity to compare this result with what you would obtain 
graphically from the Moody chart in Figs. 2.4 or 2.5. The values for / should 
be identical from both sources. The head loss per unit length of pipe is from 
Eqn(2.10), 

hL f(ü,D)^-=8f(ü,D) Q2 IL 

L 

hL 
L 

8 · 0.0278 

2gD 

(0.45 x 10"3 m3/s)2 

gn2D5 

0.0346 = 3.46% 
9.807 m/s2 · 7Γ2 · ((1.049/39.372) m)5 

Thus, head loss of 3.46 m/100 m of straight, horizontal 1-in. nominal PVC pipe 
occurs due to friction. Head loss per length of pipe is referred to as the "hydraulic 
gradient" in the hydraulics community. Normally given the symbol S, if using S 
do not confuse it with the lower-case s used in this book for mean slope. 
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2.6 SPECIAL CASE OF RESERVOIR AT STATE 1 

In this section we begin our discussion of a single-pipe network by first referring 
to Fig. 2.10, which is Fig. 2.1 applied to the case of flow from a large reservoir or 
reservoir tank (the "source") at atmospheric pressure to a pipe of uniform diameter, D. 
State 1 is labeled the source and state 2 is the delivery point. All remaining material 
in this section is based on this geometry and the assumptions that follow. We will 
assume that the static pressure is to be measured from the local atmospheric value, so 
that at the reservoir surface (state 1) pi = 0 by definition. Also at the surface of the 
reservoir Hi may be approximated as zero because the reservoir is assumed to contain 
a very large volume. The large volume translates into a large cross-sectional area for 
water flow. The continuity equation, Eqn (2.21), predicts a vanishingly small value 
for ΰ in the limit of infinitely large cross-sectional flow area. In addition, since we 
define the coordinate z to be measured from the lowest point in the pipe, z2 = 0 (see 
footnote 19 for the definition of the mean and local slope of the pipe.). With these 
developments, Eqn (2.7) simplifies to, 

T n M T n N —2 

l - - ^ - = [/(H,D)(^ + ^ X ; ^ ) + - (« 2 + I > ) ] ^ (2.25) 
pgzi Zi z i ^ D j zi j ^ 2gD 

As noted, for turbulent flow, a2 ~ 1-05 and for laminar flow, a-i = 2. A schematic 
diagram of Fig. 2.10 is presented in Fig. 2.11, where the pipe is shown as a single 
line and other details that will be needed below appear. The use of a single line to 
represent a pipe is consistent throughout the remainder of this book, except where it 
is necessary to show liquid levels in, or size of, a pipe, such as in Chapter 14. 

2.6.1 The Straight-Pipe Limit 

We now consider the first of the two cases referred to in Section 2.4. As illustrated in 
Fig. 2.11, if the pipe is straight, the pipe length L is related through the Pythagorean 
theorem to the elevation, z\, and the horizontal run of the pipe, £, which is equal 
to X2 — x\, the distance between the inlet and outlet of the pipe measured in the 
horizontal plane. Thus, 

L=y/zî+P = Zl y/1 + {£/Zl)
2 = ziy/l + s"2, (2.26) 

where s (lower case) is the mean slope19 of the pipe (rise/run) or s = z\jl. z\ and £ 
may be determined by an instrument such as a GPS, an altimeter (for z\), perhaps a 

19The following convention is used throughout this book. The mean slope s is the ratio of the elevation 
of the source above the delivery location measured in the downward direction to the run (i.e., the distance 
between the source and the delivery location measured in the horizontal plane). Thus, s is positive valued 
for water flow downward. In later chapters, the local slope, given the symbol s;, will be needed that 
depends on local position along the flow path. This too is taken to be a positive number if the orientation 
of the pipe assists the flow of water downward. The upward direction of the coordinate z in Fig. 2.11 and 
similar figures is conventional. The issue of whether the slope is positive or negative valued is mitigated 
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Mean Slope, s = |—I 

Local Length Measured 
Along Flow Path, LJx) 

Actual Contour of 
Total Pipe Length (L) 

/Valve 

State 2: Delivery 
z 2 = 0 

xr° 
Figure 2.11 Schematic diagram for a single-pipe geometry of Fig. 2.10. The mean slope 
is average rise/run of pipe, where run is the distance measured between the pipe ends in the 
horizontal plane and the rise is the height of the source above the delivery location. See footnote 
19. 

tape measurement of the site (for ί), or from commercial satellite data (e.g., Google 
Maps®, maps.google.com). See Appendix B for a sample calculation of s. 

With Eqn (2.26), Eqn (2.25) becomes, 

1 Vi [/frDXvT 
n M 

+ - Σ ) + —{a2 

N 

■Σ* '2gD 
= 0 

(2.27) 
Equation (2.27) is the energy equation for gravity-driven flow in a single pipe of 
uniform D. We see from Eqn (2.27) that the mean slope of the pipe, s, and the 
dimensionless static pressure at the delivery location, p2/'pgz\, are the controlling 
parameters in the design. All other terms in Eqn (2.27) are related to the minor losses 
that, as discussed below, generally play a weak role in the design except where needed 
for flow balancing. In later chapters, the static pressure at the delivery location will 
be written as the static pressure head at the delivery location, or 

hdel 
P2_ 

pg 
(2.28) 

by the fact that s relates to the overall or local path length for flow along the pipe that, by definition, is 
always positive. Mathematically, s almost always appears as s2 in all of the relevant equations so that the 
sign of s is immaterial. In cases where the slope is written as simply s, normally by taking the square root 
of 1/(1 + 1 / s - 2 ) , where s <g 1, the absolute value sign that formally appears after the square root is 
taken will be suppressed for the sake of convenience. 
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from which p2/' PQZi — hdei/zi. The term /idei will appear frequently throughout 
this book. To emphasize and reinforce the fundamentals in this chapter and the few 
that follow, we will treat the pressure at delivery as a pressure for now. 

It is intuitive to expect the mean slope to be important in the problem that we are 
considering. For any system that is gravity driven, whether solid (say, a pendulum) 
or, as in the present case of a fluid, the inclination of the system in the direction of 
the gravity vector affects the net driving force. For example, if a pipe containing 
water is oriented horizontally (perpendicular with respect to the gravity vector), we 
expect no gravity-driven flow to occur. At the other extreme, with the pipe oriented 
in the direction of the gravity vector, we would expect the largest possible fluid flow, 
since there can be no larger value for the inclination. The latter case is referred to as 
"terminal" and will be explored in further detail in Section 5.3. 

Before the final form of the energy equation for flow in a straight pipe is presented, 
a discussion of two facets of this problem is needed. These are the importance of the 
minor loss term and the significance of the term Pij pgz\ in the energy equation. 

B.2.7 Appearances can be Deceiving; Eqn (2.27) is Really the Energy 
Equation! 

Though its appearance is probably unfamiliar, it is easy to demonstrate that 
Eqn (2.27) is the energy equation. Ignoring for the moment all minor losses 
(terms that contain D/z\), and multiplying Eqn (2.27) by gz\, we obtain 

_2 

gZl - ^ - f(ü, D) Zl ^ 1 + 5 - 2 ^ = 0 (2.29) 

Ap}r/p 

where Apfr is the positive-valued pressure drop due to major-loss friction. In 
Eqn (2.29), we see the balance between the potential energy at the source (state 
1), pressure energy at the delivery point (state 2), and frictional energy due to the 
major loss, all per unit of mass flow. Recalling that s — z\/i and L2 = z\ +I2, 
the major-loss term in Eqn (2.29) may be rewritten using the following steps, 

HL=^ = /(«,£>) ^ v T T F ^ 

= f(%D)ZlJl + (-)2u2 

zi 2D 
2 L Έ2 

= /(ü, D) — Jzi +i2^= / (« , D) 
K ' z x V l 2D Jy ' D 2 

which is the Darcy-Weisbach equation, Eqn (2.9). 
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Figure 2.12 Graphical illustration of s = tan(<5) = z\/t ~ z\/L in the limit of small 
slope, s. 

Appearances (Cont'd) 

For a straight pipe, it is worthwhile to rewrite Eqn (2.26) for emphasis, 

or 
— = Vl + s-2 = |s | -1(H-s2)1/2 (2.30) 

For the normal case of s <C 1, expanding the square-root term in a binomial series, 
which states (1 + e)n — 1 + ne to dominant order where e is a dimensionless 
number, e < l , and n is an exponent, gives 

£ = v / l + s - 2 = | S | - 1 + ^ « | S | - 1 for | s | « l (2.31) 
Z\ Δ 

For convenience, we will suppress writing the absolute value of s in this book. 
Forexample,ifs = 0.10orl0%, L/zi = s/\ + s-"2 = 10.05 or 10.05 m of pipe 
length for every 1 m of rise. From Eqn (2.31), the approximation L/z\ — s~l = 
10 differs from the exact answer by just 0.5%. We see that the approximation 
of Eqn (2.31) to Eqn (2.30) is clearly acceptable for small values of the mean 
slope. From our inspection of Fig. 5.30, which we will focus on in Chapter 5, the 
practical meaning of s -C 1 is s < 0.5 (an angle between a line drawn from the 
source to delivery location and level ground of < 27°). This condition is satisfied 
by most gravity-driven water networks. 

A graphical illustration of this approximation appears in Fig. 2.12, where it is 
clear that s = tan(i) = z\jl —> Ζχ/L in the limit as s —> 0. 

2.6.2 Justification for Neglect of Minor Losses 

For all gravity-driven water networks, the ratio D/ζχ <S 1. For example, if a pipe 
of diameter of 1 \ in. has an elevation head of 100 m, D/zj = 4.09 x 10 - 4 , clearly 
a very small number. Thus, the minor losses and Q2 in Eqn (2.27) can be neglected 
as a first approximation. We will assess the effect of these terms on the flow speed 
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in Chapter 7, but because the minor losses are generally not large (except where 
needed for flow balancing; more on this in Chapter 11), in future treatments we will 
sometimes neglect the effect of the minor loss and a2 terms in the energy equation, 
even though there may be minor-loss elements installed in the network. 

2.6.3 The Meaning of p2/pgz1: "Natural Flow" in a Pipe 

The term P2I' pgz\ in Eqn (2.27) is the ratio of the static pressure at the delivery 
location (i.e., at the low end of the pipe to the hydrostatic pressure caused by the 
reservoir). Alternately, it is the ratio of the static head at the delivery location, p2/pg, 
to the elevation head, z\. Before discussing the concept of Natural flow, which is the 
main thrust of this section, several observations are worth noting. First, this ratio is 
dimensionless, which means that the numerical values for it are independent of the 
system of units used in the analysis and design of the network. At this point it is also 
worthwhile to recall that the hydrostatic pressure, pgz\, is that caused by a stationary 
head of fluid, z\. This should not be confused with the static pressure, which is the 
pressure measured in a fluid when it is in motion; as discussed in Section 2.2, static 
pressure is a dynamic quantity. Finally, the term pijpgz\ is a design parameter that 
we, as designers, are either free to adjust to our needs or the value of it is constrained 
by other parts of the design. For the case of a single pipe with only a single delivery 
location, P2Ipgz\ is a parameter whose value we prescribe. In contrast with multiple-
pipe networks, considered in Chapter 11, the value of P2Ipgz\ may depend on other 
parts of the design including the flow in every other pipe segment in the network. 

Referring to Fig. 2.11, we will consider two bounding values for p2· For the 
first one, imagine that the valve at the delivery point in Fig. 2.11 is fully opened 
and presents no restriction to the water flow that leaves the end of the pipe at this 
location. When water leaves the delivery point it is surrounded by an environment at 
atmospheric pressure. The result is that the pressure within each point in the water 
flow at state 2 is at atmospheric pressure. Thus, P2 or P2Ipgz\ has a lower-bound 
value of 0; the case for which water flows from the end of the pipe due only to its 
kinetic energy and has no assistance from static pressure at this point. This condition 
is the "Natural flow" of the system [Jordan Jr. (2004) and others]; the flow rate that 
will be moved by gravity for a given pipe and system geometry (including elevations, 
diameters, and lengths). In other words, the flow speed for Natural flow in a pipe is 
that which exactly balances the frictional energy loss with the potential energy at the 
source, pgz\. The concept of Natural flow in a pipe, though introduced in the present 
context of flow in a straight pipe, applies to any pipe, straight or otherwise. 

At the other extreme, imagine that the valve at the delivery point in Fig. 2.11 is 
fully closed so that there is no flow. Recalling the developments from Section 2.3, 
for this bounding case P2I'pgz\ — 1 and the static pressure at the delivery point is 
termed hydrostatic. The pressures within the network achieve their largest possible 
values for the hydrostatic case. Because of this, the designer will always check to 
ensure that the pipe and fittings in the network can withstand the pressures that will 
exist in this limiting case. Also note that the pipe diameters have no effect on the 
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pressures in the network since pressure comes from from only the local elevation in 
the pipe (see Section 2.3). 

To summarize the above discussion, we can write 

(Natural flow) 0 < -^- < 1 (Hydrostatic limit) 
pgzi 

(2.32) 

It is worthwhile noting that for Natural flow, where the static pressure at delivery is 
zero, no pressure term will appear in the energy equation. This is because both the 
reservoir and the delivery locations are at atmospheric pressure. In addition, the case 
for Natural flow will provide a lower bound on the pipe diameter(s) in the network. 
This is because without any other flow restrictions, the pipe itself must dissipate the 
total potential energy of the source. The smallest of acceptable pipe sizes are needed 
to accomplish this. Another consequence of Natural flow is that minor-lossless flow 
in a straight, constant-diameter pipe between the source and delivery location will 
be at atmospheric pressure at all points along the flow path. The explanation for this 
comes from the following. The static pressures at the source and delivery locations 
are atmospheric and at each and every location along the pipe-flow path there is an 
exact balance between the potential energy and the energy dissipated by friction both 
per unit length of pipe. Thus, there is no "excess" energy at any point in the flow 
available to raise the static pressure of the flow above atmospheric conditions. 

It is recommended that the reader keep the simple limiting-case values ior p2 j pgz\ 
from Eqn (2.32) in mind as an aid in understanding and interpreting the material in 
several of the following chapters and, certainly, in the execution of a design. 

The normal case for p2 would be between the extremes of p2j' pgz\ — 0 and 
P2I'pgz\ = 1, where there is a need to control the flow rate of water from the end 
of the pipe at the delivery location or to distribute water from the delivery point to 
houses in a village far from this point. This requires 0 < p2j' pgz\ < 1 so that flow is 
possible. To accommodate a realistic range of possible static pressures at the delivery 
location for use in the design charts presented in Chapter 5, we will give the designer-
specified term p2/' pgz\ the symbol F, that is, F = p2/pgzi. For the design charts 
presented in this chapter, we will allow F to take on the specific fixed values of 0, 
0.1, 0.25, and 0.50; a reasonable range of interest for gravity-driven water networks. 

2.6.4 Final Form of Energy Equation for Flow in a Straight Pipe 

With the substitution for F in Eqn (2.27), the final form of the energy equation for 
the case of a straight pipe of diameter D becomes 

n M T 1 - * Μ / ( ΰ , ΰ ) ( ν Τ Τ ^ + ^ Σ ^ ^ ( α , + Σ ^ ) ] J L · =0(2.33) 
zi f-f D 

1=1 

n N -2 

*ι έ ί '"2gD 
where, if we neglect the minor loss (the terms involving D/z{) as discussed in Sec-
tion 2.6.2, we obtain 

1 - F - f(ü, D)NA + S - 2 ; ^ = 0 (2.34) 
2.9 D 
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where the approximation of y/1 + S~2 = | s | _ 1 from textbox B.2.7 is valid for 
\s\ <C 1. For convenience, we will suppress the absolute value sign in the foregoing 
expressions throughout this book (see footnote 19). 

From our inspection of Eqs (2.33) or (2.34), we see that ü is indeed a maximum 
for F = 0 (i.e., Natural flow). Also, the only solution possible from either of these 
equations is ü = 0 for F = 1, the hydrostatic case. Both of these observations 
provide support and validation for the discussion in Section 2.6.3. 

Of course, few gravity-driven water networks have only a single pipe and even 
fewer have a single straight pipe. In Section 2.6.5, we will turn our attention to 
the extension of Eqs (2.33) and (2.34) applied to single-pipe networks that have 
an arbitrary length. The topic of multiple-pipe networks is covered in Chapter 11 
which, along with the treatment of air pockets in the network and optimization, is the 
culmination of the analytical content of this book. 

B.2.8 An Interim Recap 

Thus far in this chapter we have applied the principle of conservation of en-
ergy, one of the fundamental conservation laws in engineering and science, to 
the steady flow of an incompressible, constant-viscosity fluid in a pipe. The 
outcome is a balance between the change in total mechanical energy (consisting 
of pressure, kinetic, and potential energy) and energy loss between known inlet 
and outlet states. From many past observations in the laboratory and in practice, 
the energy loss is known to be proportional to the kinetic energy per unit mass, 
ü2 /2 , through a friction factor to account for the loss in a run of straight pipe 
(the "major loss") and empirical minor loss coefficients accounting for the loss 
in fittings and valves (the "minor loss"). For laminar flow, the friction factor 
is from the solution of the Navier-Stokes equations and for turbulent flow from 
a correlation of data collected in experiments. With the generally small minor 
losses neglected for gravity-driven water flow in a straight pipe we see that the 
mean flow speed, or volume flow rate, of water depends on just D, the slope of 
the pipe, and the dimensionless static pressure at the delivery location, F. Here F 
is bounded from above by 1, where there is no flow in the pipe (hydrostatic limit) 
and below by zero, where there is maximum flow in the pipe (Natural flow limit) 
for the given conditions. Since pressures are maxima for the hydrostatic limit, 
the required wall thicknesses of the pipe in the network are determined based 
on this case. In addition to conserving energy, we saw that mass also needs to 
be conserved. The equation for mass conservation, referred to as the continuity 
equation [Eqn (2.21)], is simple in form for ID pipe flows that are of interest in 
the present context. 

The reader should keep in mind that the energy equation that is the basis for all 
of the analysis and design in this book is the same one that the reader may have 
encountered in courses in thermodynamics, fluid mechanics, heat transfer, and 
other subjects. The only differences that you might observe are the appearance 



60 THE FUNDAMENTAL PRINCIPLES 

Recap (Cont'd) 

or disappearance of terms that model processes that may not be relevant to the 
topic being considered. An example of this is the "disappearance" of the work 
term for the case of pipe flow where there clearly is none of this. 

2.6.5 A Circuitously Run Pipe of Arbitrary Length 

In this case, the pipe length, L, is not unique to the elevation of the reservoir and the 
run, but is arbitrary. The length may consist of straight pipe and fittings including 
elbows, and so on, or it may be bent in a curved manner to conform to the contour of 
the earth in which it is buried. For the case of a pipe of arbitrary length, L is written 
as 

L>ìjz\+P = zi χ/l + s-2 (2.35) 

or 
L = X<Jz2 + £2 = Xzi y/l + s-2 (2.36) 

where A is a dimensionless number normally greater than one20, defined as 

L L 
(2.37) v ^ f + 7 2 z1VT+P 

Thus, 
L ^ Π~, Ö Zl A A/I + S"2 , or 4 = — . (2.38) 
z\ ' L A y T + s~ 2 

A is the ratio of the actual length of the pipe to the pipe length if it were straight 
between the source and delivery points (see Fig. 2.11). In the field of hydrogeology 
(or hydrology) where engineers and scientists explore the movement of groundwater 
in the earth, A is referred to as the tortuosity (Domenico and Schwartz, 1998), one of 
terms we will use in this text. Here A also appears as a characterizing parameter in 
the treatment of fluid flow and heat transfer in porous media (Nield and Bejan, 1992). 
A porous medium is a permeable solid generally having nonregular shaped passages 
through which a fluid can flow. In terms of the length scales discussed in Section 2.4, 
A may be thought of as a "dimensionless length" of the pipe in a flow network. For a 
pipe of arbitrary length, it is worthwhile to note from Eqn (2.38) and the normal case 
of s <C 1, we can write 

S Z\ 

A ~ ~L 
(2.39) 

Please see textbox B.2.7 for the development of Eqn (2.39) for A = 1. 

'See textbox B.2.10 and the discussion in Section 5.4 on the effective size-limitations of the parameter λ. 
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Substitution of Eqn (2.36) into Eqn (2.25) produces the final form of the energy 
equation for the case of flow in a pipe of diameter D and arbitrary length, 

fl"L 

X — 1 

1 - F - [/(«,DXAv/l + s"2 + - Σ 

r> N 

2 l '2gD 

(2.40) 

where, if we neglect the minor loss (the terms involving D/z{), we obtain 

/ ü2 

l - F - f{u, D) X ^l + s-2-— = 0 2gD 

or 
■ / ( " , £ > ) 

u2 

2gD 
0 

(2.41) 

(2.42) 
λ ν Ί + s" 

The approximation of \ / l + s^2 ~ s _ 1 from textbox B.2.7 is valid for s « l , the 
practical meaning of which is s < 0.5 (an angle between the source and level ground 
of < 27°), a condition satisfied by most gravity-driven water networks. Substituting 
this into Eqn (2.42), we obtain a simpler form of Eqn (2.42), 

s(l-F) 
X 

f(u,D) 
2gD 

= 0 for s < 0.5 (2.43) 

We recognize the second term in each of Eqs (2.42) and (2.43) as the dimensionless 
frictional head loss per length of pipe, h^/L, in the network [see Eqn (2.10)]. This is 
referred to as the "hydraulic gradient" in the hydraulics community and often given 
the symbol S (not to be confused with the lower-case s used for mean slope). Thus, 
the first terms in Eqs (2.42) and (2.43), (1 - F)/(X y/l + s~2) or s(l - F)/X are, by 
equivalence, the dimensionless frictional head loss per length of pipe and both can be 
given the symbol S. For Natural flow, where F = 0, the hydraulic gradient becomes 
S = s/X . An example of the calculation of the hydraulic gradient is presented in 

textbox B.2.6. 
For the demand-driven designs that are the focus in this book, it is always of interest 

to solve any one of Eqs (2.40)-(2.43) for D in terms of Q instead of ü. One equation 
is easily obtained from the other by using the continuity equation, Eqn (2.21), to 
eliminate ΰ in favor of Q. The resulting form of energy equation from Eqn (2.42) for 
example, is one the more useful forms for minor-lossless flow (see next paragraph) 
in a single-pipe network, 

1 - 8Q2 f(Q, D) 
n2g D5 (2.44) 
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For the case of small s, this is written as 

8Q2 f(Q,D) _ 
n2g £>5 

Equation (2.40) is the energy equation for steady, gravity-driven, incompressible, 
developed flow in a full round pipe of diameter D, tortuosity λ, and where the source is 
a reservoir at atmospheric pressure. The existence of laminar, transition, or turbulent 
flow in the pipe is accommodated by the friction factor, f(ü, D), through Eqs (2.16) 
and (2.17). The variants of the energy equation for pipe flow are Eqs (2.42)-(2.45) 
where minor losses are neglected (i.e., they apply to "minor-lossless" flow). Equa-
tions (2.40)-(2.45) are nonlinear algebraic equations in D and u or Q [recall that the 
friction factor depends on u (or Q) and D]. The solutions for any of these equa-
tions requires a numerical root-finder or, as is the tradition, iteration. Both of these 
methods are explored in Chapter 4. Several chapters in this book will be devoted to 
the solutions of Eqn (2.40) and its variants including Chapter 5, where design charts 
for minor-lossless flow in a single-pipe network from the solution of Eqn (2.44) are 
presented, Chapter 9 where an approximation to the friction factor is considered, and 
Chapter 11 where Eqn (2.40) is extended to include flows in multiple-pipe networks 
as defined in Chapter 1. In the case of multiple-pipe networks, where the static pres-
sure at the inlet to a pipe segment may not be zero, there will be the need to modify 
Eqn (2.40) slightly to account for the addition of this pressure. See Section 2.9 for 
this adjustment. 

It is enlightening to inspect the roles played by the terms s, λ, and 1 — F in 
the analysis and design of a single-pipe network where the source is a reservoir at 
atmospheric pressure. Our inspection of Eqn (2.45) shows that s and 1 — F enter 
the problem as multiplicative factors. That is, a change in s has the same effect on 
D and Q as the same change in 1 — F. The term λ enters the problem as an inverse 
multiplicative factor. For example, this means that an increase in λ of, say, 10% is 
equivalent to decreasing s by -10%. It is convenient to think about the roles of s, λ, 
and 1 - F in this manner as you move forward with the tools for further analysis and 
design. In fact, at this point the astute reader will question why the role of a single 
parameter, s(l - F)/\, which is the hydraulic gradient, is not being discussed. This 
is a legitimate question, but because the parameters s, λ, and 1 — F are prescribed 
independently and have very different meanings, a deliberate choice is made to treat 
each one separately for now, including this chapter, and in Chapter 5, where design 
charts are presented for diameter as a function of the delivered volume flow rate of 
water for independently fixed values of s, X, and F. In Chapter 9, it will be convenient, 
however, to treat the group s(l — F)/\ as a single parameter. 
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B.2.9 Example: A Circuitously Run, Single-Pipe Network 

Consider a single-pipe network that is required to pass 4.8 L/s of water flow from 
the source at atmospheric pressure to an open reservoir tank. The mean slope, 
s, is 6.3% as determined by a few simple measurements made with an Abney 
level (see Section 8.2), and the tortuosity, λ, is estimated as 1.35. Calculate the 
theoretical pipe diameter required to meet these design conditions. Neglect all 
minor loss and assume the pipe to be galvanized iron (GI). To investigate the 
possibility of using plastic pipe, calculate the diameter if the pipe were PVC. 

The slope is small enough (s < 0.5) that the energy equation of Eqn (2.45) applies 
to this problem. F = 0 because the reservoir is at atmospheric pressure. Upon 
substitution of numbers and units into Eqn (2.45), we get 

0 
0.063 8(4.8 x !Q- 3 m 3 /s ) 2 f(Q,D) 
1.35 ~~ 7Γ2 · 9.807 m/s2 D5 

or 
f(Q,D) _ 2.591 x 1Q-4 

The friction factor from Eqs (2.16) and (2.17) depends on Re, which is written 
as it was in textbox B.2.6. Obtain 

40 1.841 x 105 

Re = —— = 
■KVD D 

where D is in inches. For Gì pipe e ss 1.5 x IO"1 mm. Using the Mathcad 
worksheet f r i ct ion f ac to r . xmcd for the friction factor, we obtain the solution 
D = 2.52 in. For these conditions, the flow speed in the pipe is 1.50 m/s, the 
friction factor is 0.0260, and Re is 73,200, which corresponds to turbulent flow. 

For PVC pipe e « 1.5 x 10~3 mm and the results become D = 2.48 in. The 
diameters for GI and PVC pipe are nearly identical. The larger roughness of 
the GI pipe, by a factor of 100 compared with PVC, plays a minor role in this 
problem. For larger flow rate and slope, differences will be greater. 
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B.2.10 The Scales of X, s, and F 

As it turns out, and as discussed in more detail in Chapter 5, the dimensionless 
length of the pipe, λ, does not have a strong influence on the outcomes of most 
designs for two reasons. First, the common-sense practice is to connect the 
source, tank, and tapstands at the delivery locations by as short a pipe length as 
possible to minimize pipe cost. Thus, L will approach the value it would have if 
run along a straight path between the source and delivery locations. Second, the 
mean slope of a typical design is small. Thus, the run of a water-delivery pipe 
is very much larger than the elevation of the source so that peaks and valleys in 
the pipeline and also a normal amount of circuitousness in the horizontal plane 
does not add much overall length to the pipe. For both of these reasons, values 
for λ larger than one plus a small fraction are unusual for most actual designs. To 
support this observation, consider Table 2.2, where we present dimensional data 
for several gravity-driven networks in central Nicaragua and other countries that 
were assessed and designed by students and faculty at Villanova University. From 
our inspection of these data, we see that values for λ for real networks are clearly 
of the order of 1. In fact, an estimate of λ « 1.2 ± 0.15 is representative of this 
data set. Based on the dependencies established in Chapter 9 for a restricted range 
of Re and smooth pipe wall, the effect of λ on D may be written as D « λ0,211, 
or D « (1.2 ± 0.15)0'211. Thus, the variation in λ for the range of real networks 
appearing in Table 2.2 has only a ±2.5% effect on pipe diameter, D. Obviously, 
the scales of s and F are expected to vary greatly among the networks. Table 2.2 
shows a sampling of these for s. In the case of F, for a shallow network with 
small s, F of 0.5 may be required to provide the static pressure needed for water 
distribution beyond the point where the distribution main meets the branches. 
For a larger network where the mean slope is greater, F of 0.1 may be more than 
adequate. 

2.7 SINGLE- AND MULTIPLE-PIPE NETWORKS REVISITED 

Single- and multiple-pipe networks were introduced in Chapter 1. A single-pipe 
network, or gravity main, must satisfy not only the condition of being just one pipe 
of a single diameter with no branches and known pressures at each end, but it must 
also meet one additional condition as described in this section. The existence of local 
peaks or valleys in a pipe will require that we investigate the network at a greater level 
of detail than for cases where these do not appear. A local peak or valley is defined by 
the vertical distance between the actual local elevation of the pipe and the elevation 
at this point if the pipe were run straight between the source and delivery locations 
(Fig. 2.13). For convenience, we refer to this distance as Azp and take as positive 
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X 

Figure 2.13 Geometry to support definition of local peak and valley. 

for both a peak and valley. If Azp is nonexistent or small,21 and the peak occurs far 
enough downstream of the source, we are generally not concerned with the local static 
pressure distribution in the network. The term local refers to each position along the 
water flow path. Alternately, for networks where local peaks or valleys are not small, 
there will be a need to prescribe or bound the static pressures at each peak and valley 
to ensure the proper performance of the network. A possible outcome of prescribing 
or bounding static pressures at these locations might be a change in the pipe diameter. 
For these cases, the need to address the local static pressures at, or near, each peak 
or valley, along with the possible consequence of a change in the pipe diameter, will 
classify the design as a multiple-pipe network. Analysis of networks where there is 
a single flow path in a pipe of varying diameter is covered in Section 11.5.1. 

In summary, a single-pipe network where there are local peaks or valleys with large 
changes in elevation, or with a local peak near the source, should be analyzed as if it 
is a multiple-pipe type. The procedures described in Chapter 11 apply. Otherwise, 
the network may be analyzed as single-pipe using the energy equation for pipe flow, 
Eqn (2.40) and its variants, and the graphical solutions of these equations that are 
presented in Chapters 5, 8, and 9. 

Aside from the practical need for the treatment of a single-pipe network, note 
that there is another benefit of discussing them in detail. It is easier to understand 
and appreciate the energy equation and its application in the simpler context of a 
single-pipe network than for one that has multiple branches that add to complexity 

21The meaning of small is arbitrary. Δ ζ ρ of less than about 20% of Aze as seen in Fig. 2.13 may be 
considered small for a peak. The size of Azp for a local valley has a smaller effect than that for a local 
peak provided the valley is not lower than the delivery location. 
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and where the same fundamental principles apply. Therefore, for both practical and 
pedagogical reasons we will spend time on this type of network and its solutions. 

B.2.11 Understanding of Concepts and Use of Precise Terminology in 
Engineering 

There have been numerous terms defined and described in precise ways in this 
chapter. Precision is crucial for success in engineering and science. In the 
present context, precision refers to the understanding, appreciation, and accurate 
use of the terminology and technical concepts. Terms that appear above like 
steady state, incompressible, and constant viscosity have precise, well-defined 
meanings that collectively fully characterize the nature of the flow that we are 
analyzing. This precision also serves to improve our own level of understanding. 
Analysis and design are always performed in a team environment. This demands 
precise and accurate communication among team members. Loose, or imprecise, 
terminology and hazy, or inaccurate, concepts are not desirable for effective 
communication. If a designer says to her teams members, " . . . our design will 
provide for the steady water flow of 0.25 L/s in a straight, round pipe, assuming 
to flow full, with a mean slope of 3% and a static pressure at the delivery location 
equivalent to a 3 m head," others in the team will know precisely about the 
conditions at hand and can proceed with the next steps to execute a successful 
design. This may be considered "over-stating" the problem from certain cultural 
points of view, but the idea behind it is clear and the intent is sound. 

An illustration of the above comes from the popular Web site Wikipedia (ht tp : 
/ / en .wik ipedia . org), used by many including students, concerning the defi-
nition of the power term Btu per hour. "When used as a unit of power, BTU per 
hour (BTU/h) is the correct unit, though this is often abbreviated to just 'BTU'." 
When confronted with a mislabeled unit such as this, the designer needs to de-
cide either to let the context guide the correct units or, alternately, question the 
author. Both the uncertainty or extra time required are undesirable outcomes of 
this imprecision. 

The engineer, as an individual in the design team, cannot expect a design to suc-
ceed if they, themselves, do not have a thorough understanding of the terminology 
and technical concepts associated with the design work. This is one reason why 
much attention has been paid to precise wording in the above writings. See, for 
example, the discussion in textbox B.2.2, and the common error of referring to 
the energy equation for pipe flow as the Bernoulli equation. However, we must 
be aware that most engineers, as well as some engineering professors, often fall 
short in the use of precise and accurate words, terminology, and concepts. As 
with most skills, improvements in these areas are realized with practice, matu-
rity, and broadened experiences, and given sufficient time and thought about a 
technical problem. 
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2.8 THE ROLE OF THE MOMENTUM EQUATION 

It is well understood that the analysis and design of components and systems requires 
the fundamental laws of engineering science be satisfied. These are conservation 
of mass, momentum, energy, and electrical charge. It is clear that mass and energy 
conservation have been thoroughly addressed through Eqs (2.7) and (2.21) and that 
conservation of electrical charge is irrelevant in the present context. 

At this point, the curious student may wonder where momentum conservation, 
or Newton's second law of motion, F = ma, fits into the picture. The momentum 
equation for developed (that is, nonaccelerating) flow in a straight pipe reduces to 
a force balance on a flowing fluid and accounts for pressure and shear forces, and 
ultimately the reaction force, or the force that is required to be applied on the pipe to 
keep it from moving. If we focus on the fluid flow, Newton's second law enables us 
to calculate the force arising from pressure and shear on the pipe wall, both of which 
result from the major and minor losses discussed above (Gerhart et al., 1992). In 
turn, if we focus on the interaction between the fluid and pipe wall, the pressure and 
shear force may then be used to calculate the reaction forces in the pipe wall.22 The 
reaction forces in the pipe wall may be internal, if the pipe wall itself resists them, 
or external if the pipe wall needs support from an outside force. Internal reaction 
forces are normally balanced by the strength of the pipe itself and joints between the 
pipe and fittings. External reaction forces always require an outside "restraining" 
force. A good example of this is water flow from a hose when the nozzle at the end 
of the hose is opened. If the hose is released (or unrestrained), it undulates wildly 
as the momentum from the discharging water flow seeks a balance by a restraining 
force. Since this force can come only from the inherent stiffness of the hose, which is 
flexible, the undulations are the result of the movement of the variable stiffness hose. 

Thus, we see that the momentum equation is especially valuable when used to 
calculate forces required to hold the pipe in place when, in particular, the pipe is not 
straight. For example, the design of an anchor to tie down the pipe in the region of 
a 90° elbow needs to begin with the solution of the momentum equation considering 
the momentum changes in two directions, one leading into the elbow where there is a 
loss of momentum in one coordinate direction, and the other away from it where there 
is a gain of momentum in a coordinate direction orthogonal to the first. These types 
of problems are covered in all textbooks on fluid mechanics in the chapters on the 
control-volume or open-system formulations of Newton's second law for a flowing 
fluid. 

Another application for the momentum equation relevant to water networks is 
water hammer. Water hammer is a condition that occurs when the momentum from 
a flowing liquid is suddenly stopped, such as by the sudden closing of a valve. It is a 

22The details of this are as follows. The reaction force may be obtained by first solving the problem where 
the focus is only on the fluid. This means that the control volume surrounds only the fluid. To satisfy 
equilibrium, we recognize that at the fluid-pipe wall interface, the shear and pressure force acting on the 
fluid must be balanced by that supplied by the pipe wall. A control volume that focuses on the pipe and 
the attachment to its surroundings enables the calculation of the reaction force for the pipe. 
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rapid-transient process and the resulting "shock," similar to that of a sonic-boom or 
shock wave in the air when disturbed by an explosion or a vehicle moving at a speed 
from below to above the local speed of sound, produces a pressure wave that travels 
at high speeds through the fluid, causes noise, and normally results in movement of 
the pipe. The perturbation could be severe enough to break joints between pipe and 
fittings, or loosen pipe anchors. This topic is treated in Section 13.17. 

Although not of primary interest in the present work, calculations of forces from 
momentum changes and shear in pipe flows are very important in pipe systems where 
the successful anchoring of pipe and stresses in the pipe wall and fittings are always 
critical, such as in power and chemical processing plants, and oil refineries. 

2.9 FORCED FLOWS 

For comparison purposes, and to broaden the range23 of use for the analysis and design 
tools developed in this book, it is of interest to consider the energy equation for pipe 
flow where the flow is driven by a static pressure at the source, ρχ, where p\ > 0. 
This type of flow is referred to as "forced" and is contrasted with a gravity-driven 
flow for which p\ = 0. Forced flow, where the flow is driven by a pump (for a liquid) 
is the primary type of pipe flow considered in an most courses on fluid mechanics. 
Retaining p\ in the energy equation, Eqn (2.40) becomes, 

(2.46) 

If minor losses are negligible, we get 

1 P2 - Pi , , _ n x L - f(u,D) — 
Û2 

pgzi •zi 25£> 
= 0 (2.47) 

where the L/z\ appears instead of X/s [Eqn (2.39)] because it is more convenient to 
write the pipe length directly in terms of L for the present situation. 

If we compare Eqs (2.40) and (2.41) with Eqs (2.46) and (2.47), respectively, we 
see that their forms are identical provided F takes on the meaning (p2 — p\)jpgz\ 
instead of simply p^j' pgz\. Thus, we define a modified term, Fmod, where 

* mod 
P2 " P i 

pgz\ 
(2.48) 

23Parts of some networks that are candidates for gravity-driven flow may also be candidates for pump-
driven flow. Thus, the fit of the treatment of forced-flow in this text along with gravity-flow is a natural 
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Substituting Eqn (2.48) into Eqn (2.47) the energy equation for the case of minor-
lossless forced pipe flow is 

Z l ( 1 " F m o d ) - f(ü, D)^-=0 (2.49) 
L Igu 

By comparing Eqs (2.49) with Eqs (2.42) or (2.43), we see that any analysis and 
design result in this book where F, s, and λ appear in the context of a gravity-driven 
flow may be applied to a forced-flow problem by simply replacing 

F with F, mod 

• λ \/l + s 2 or X/s (for s < l ) with the ratio L/z\. 

It is worth noting that in contrast to gravity-driven flow where F is always a positive 
value, in most cases where the flow is pump or blower-driven24 p\ > p2 such that 
Fmod is negative valued. In fact, in many industrial pipe flows, especially where the 
fluid is a gas, Fmo<j is so large in an absolute-value sense that the contribution from 
gravity [the 1 in Eqn (2.49)] becomes numerically negligible. 

The solution of Eqn (2.49) for D, where through the continuity equation ü is 
eliminated in favor of a prescribed volume flow rate Q, is included in several chapters 
including Chapters 4 and 5. 

As a closing comment to this section, a small amount of reasoning can be applied 
to convince oneself of the validity of the form of the energy equation for a pipe flow 
like Eqn (2.49). It is most easy to explain for the case of Natural flow, where the 
pressure at the delivery location is atmospheric, or zero gage pressure. For this case, 
Fmod = 0 and Eqn (2.49) is written as 

τ-^^έ = 0 (2·50) 

As noted in Section 2.6.5, the second term in this equation is the head loss per length 
of pipe, hL/L. Substituting this into Eqn (2.50), we get the simple result 

z\ = hL, 

which is simply the obvious statement that the head loss must be equivalent to the 
elevation for a Natural flow. Voilà! 

Once the fundamentals of any subject are understood, small exercises like the one 
just performed here are great for reinforcing our understanding of the material, and to 
convince ourselves that "we are on the right track." They can also serve the uncertain 
student by being a point of illumination; much like the proverbial light bulb that 
suddenly glows over the student's head. 

24The fluids of interest in this text are liquids, but the energy equation for pipe flow applies to any fluid 
including gases where, for forced flow, a blower or fan is used. 
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2.10 SUMMARY 

There is a wealth of information in this chapter, so it is worthwhile for the reader to 
take some time to digest it, reflect, and pursue some of the exercises in Chapter 16. 
Moving forward from textbox B.2.8, we have discovered that the analysis and design 
of a gravity-driven (or forced flow, for that matter, as we saw in Section 2.9) network 
consists of requiring that energy and mass be conserved. Practically, this means that 
we must be sure that the energy and continuity [Eqn (2.21)] equations are satisfied. 
The above treatment for a straight pipe reduced the energy equation to a relatively 
simple form [Eqn (2.33)], especially for minor-lossless flow [Eqn (2.34)]. For the 
more common case, where the pipe is of arbitrary length, we saw that the energy 
equation remained nearly unchanged from these forms; the only difference being the 
inclusion of the tortuosity, λ, for which data show is of the order of 1.2 for small 
gravity-driven water networks. The most-useful form of the energy equation for our 
purposes will be Eqn (2.42) or its minor-lossless variant, Eqn (2.45). Considerable 
attention will be given to the application of these forms of the energy equation in the 
few chapters that follow. 

As discussed in Chapter 1, the classification of single-pipe and multiple-pipe net-
works allows us to establish a framework that leads to insight and understanding 
about how gravity-driven water networks perform, in addition to the development of 
easy-to-use design formulas and charts for the simpler single-pipe networks. Thus, 
it is important to recognize the characteristics that distinguish the two. In short, a 
single-pipe network acts as if it is multiple-pipe if it possesses significant local low 
and high points, and if there is a need to examine the properties of the flow at these 
points. This was addressed in more detail in Section 2.7. 

References 

J. J. Allen, M. A. Shockling, G. J. Kunkel, and A. J. Smits. Turbulent flow in rough 
and smooth pipes. Trans. Roy. Soc, (London), 365:699-714, 2007. 

The American Water Works Association. PE Pipe-Design and Installation, Manual 
of Water Supply Practices, M-55. h t t p : //www. awwa. org, 2006. 

D. A. Anderson. Modern Compressible Flow. McGraw Hill, New York, NY, 1990. 

D. A. Anderson, J. C. Tannehill, and R. H. Pletcher. Computational Fluid Mechanics 
and Heat Transfer. Hemisphere, New York, NY, 1984. 

R. Boyle. New Experiments in Physico-Mechanicall, Touching the Spring of Air, and 
its Effects. H. Hall, Oxford, UK, 1660. 

J. B. Brockman. Introduction to Engineering. John Wiley & Sons, Inc., Hoboken, 
NJ,2009. 



7 2 THE FUNDAMENTAL PRINCIPLES 

G. Brown, J. Rogers, and J. Garbrecht. Task Committee Planning: Darcy Memorial 
Symposium on the History of Hydraulics. J. Hydraulic Eng., 126(11):799—801, 
2000. 

S. W. Churchill. Friction factor equation spans all regimes. Chem. Eng. J., 84:91-92, 
1977. 

S. W. Churchill. Personal communication. 2006. 

S. W. Churchill, M. Shinoda, and N. Arai. An appraisal of experimental, predictive 
and correlative contributions to fully developed turbulent flow in a round tube. 
Thermal Sei. Eng., 10(2):1-11, 2002. 

C. F. Colebrook. Turbulent flow in pipes. Proc. Inst. Civil Eng., 11:133-156, 1938. 

C. F. Colebrook. Turbulent flow in pipes with particular reference to the transition 
region between the smooth and rough pipe laws. Proc. Inst. Civil Eng., 12:393^122, 
1939. 

C. F. Colebrook and C. M. White. Experiments with fluid-friction in roughened pipes. 
Proc. Roy. Soc. (London), 161:367-381, 1937. 

P. A. Domenico and W. Schwartz. Physical and Chemical Hydrogeology. John Wi-
ley & Sons, Inc., New York, NY, 2nd edition, 1998. 

R. Ettema. Hunter Rouse - His Work in Retrospect. J. Hydraulic Eng., 132:1248— 
1258, 2006. 

R. W. Fox and A. T. McDonald. Introduction to Fluid Mechanics. John Wi-
ley & Sons, Inc., New York, NY, 4th edition, 1992. 

P. M. Gerhart, R. J. Gross, and J. I. Hochstein. Fundamentals of Fluid Mechanics. 
Addison Wesley, New York, NY, 1992. 

D. D. Gray. A First Course in Fluid Mechanics for Civil Engineers. Water Resources 
Publications, LLC, 1999. 

Hydraulic Institute. The Engineering Data Book, 2nd Edition. Cleveland, OH, 1990. 

T. D. Jordan Jr. Handbook of Gravity-Flow Water Systems. ITDG Publication, 
London, UK, 2004. 

L. I. Langelandsvik, G. J. Kunkle, and A. J. Smits. Flow in a commercial steel pipe. 
J. Fluid Meek, 595:323-339, 2008. 

I. Marusic, R. Mathis, and N. Hutchins. Predictive model for wall-bounded turbulent 
flow. Science, 329:193-196, 2010. 

B. J. McKeon, C. J. Swanson, M. V. Zagarola, R. J. Donnelly, and A. J. Smits. Friction 
factors for smooth pipe flow. J. Fluid Mech., 511:41^44, 2004. 



REFERENCES 73 

B. J. McKeon, M. V. Zagarola, and A. J. Smits. A new friction factor relationship for 
fuly developed pipe flow. J. Fluid Meek, 538:429-443, 2005. 

L. F. Moody. Friction factors for pipe flow. Trans. ASME, 66:671, 1944. 

B. R. Munson, D. F Young, and T. H. Okiishi. Fundamentals of Fluid Mechanics. 
John Wiley & Sons, Inc., New York, NY, 2nd edition, 1994. 

D. A. Nield and A. Bejan. Convection in Porous Media. Springer-Verlag, New York, 
NY, 1992. 

M. C. Potter and D. C. Wiggert. Mechanics of Fluids. Brooks/Cole (Thomson), 
Tampa, FL, 2002. 

E. Romeo, C. Royo, and A. Monzón. Improved explicit equations for estimation of 
the friction factor in rough and smooth pipes. Chem. Eng. J., 86:369-374, 2002. 

H. Rouse. Evaluation of boundary roughness. Technical report, Iowa Institute of 
Hydraulics Research, University of Iowa, Iowa City, I A, 1943. 

H. Rouse. Hydraulics in the United States, 1776-1976. Technical report, Iowa Institute 
of Hydraulics Research, University of Iowa, Iowa City, IA, 1975. 

H. Rouse and S. Ince. History of Hydraulics. Dover, New York, NY, 1963. 

H. Schlichting. Boundary Layer Theory. McGraw-Hill, New York, NY, 1979. 

M. A. Shockling, J. J. Allen, and A. J. Smits. Roughness effects in turbulent pipe 
flow. J. FluidMech., 564:267-285, 2006. 

V. L. Streeter, E. B. Wylie, and K. W. Bedford. Fluid Mechanics. McGraw-Hill, New 
York, NY, 1998. 

P. K. Swamee. Design of a submarine oil pipeline. J. Trans. Eng., 119(1):159-170, 
1993. 

P. K. Swamee and A. K. Jain. Explicit equations for pipe-flow problems. J. Hydraulic 
Div.,ASCE, 102(5):657-664, 1976. 

P. K. Swamee and A. K. Sharma. Design of Water Supply Pipe Networks. John Wi-
ley & Sons, Inc., Hoboken, NJ, 2008. 

The Crane Company. Flow of Fluids Through Valves, Fittings, and Pipe. New York, 
NY, 1970. 

F. M. White. Fluid Mechanics. McGraw-Hill, New York, NY, 4th edition, 1999. 



7 4 THE FUNDAMENTAL PRINCIPLES 

Villanova University engineering and nursing students and 
faculty in Managua enroute to Waslala, Nicaragua. 



CHAPTER 3 

PIPE MATERIALS AND DIMENSIONS 

"... Give us the tools and we will finish the job." 
- W. Churchill, 1941 

3.1 INTRODUCTION 

In this chapter, we present pipe sizes, dimensions, and pressure ratings for several 
different kinds of materials and for the dimensioning systems normally used in gravity-
driven water networks (iron pipe size, standard diameter ratio, and metric). There is 
a considerable body of data in this chapter that has been culled and distilled from the 
many sources referenced herein. Only a few text and handbook sources were found 
worthwhile in this regard. As seen below, most data come from the technical literature 
of trade groups like the Plastic Pipe and Fitting Association, and piping manufacturers 
and marketers. The wide range of materials including metals and plastics, together 
with vastly different standards that govern pipe sizes and dimensions in different 
parts of the world, contribute to the lack of ability for the designer to find these 
data in even a few sources; the search is often challenging and time consuming. For 
example, the Plastic Piping Handbook (Willoughby et al., 2002) surprisingly presents 
no dimensional data whatever for plastic pipe. The latest (7th) edition of the Piping 
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Handbook (Nayyar, 2002) contains dimensional data for some pipe (both steel and 
plastic from the IPS and SDR systems) though not a complete set. Even worse is the 
near-total absence of data for metric pipe in the available US-based literature. 

It is the hope that engineers, engineering students, technologists, and designers 
will find the pipe data in this chapter useful as a stand-alone final source for at least 
polyvinyl chloride (PVC), chlorinated polyvinyl chloride (CPVC), and polyethylene 
(PE), or as a productive first step toward this end. 

3.2 PIPE MATERIALS 

The industry manufactures pressure pipe from many different types of materials. As 
the name indicates, pressure pipe is designed to transport fluids under pressure. There 
are also types of pipe used for liquid service, including water, that are not suitable for 
internal pressure. Plastic drainage or sewer pipe, where the pressure at any point in the 
pipe is nearly atmospheric, are examples of this. From everyday observations, most 
of us are aware that common materials for pressure pipe are steel (pipes supplying 
natural gas to a heater in many houses in the United States), copper (hot and cold water 
supply pipes in many houses in the United States), cast iron (sewer pipe in older houses 
in the United States), and aluminum. The latter two are generally not of interest for 
gravity-driven water systems because of their cost, weight, and lack of availability 
in developing regions, among other reasons. In addition to these there are several 
varieties of plastic pipe including PE (produced in a range of densities); the high-
density polyethylene given the abbreviation HDPE, PVC, sometimes abbreviated as 
PVC-U or uPVC, where U or u stands for unplasticized1), CPVC, and acrylonitrile-
butadiene-styrene (ABS). Plastic pipe was introduced in the United States around 
1940, it is comparably inexpensive, lightweight, rugged and strong, UV-resistant or 
easily treated to be so, will not corrode like ferrous metals, is immune to attack from 
most organics and other chemicals in soil, resistant to abrasives at normal flow speeds, 
and available in many countries around the world. For these reasons, it is normally 
the candidate of choice for pipe in many applications including many gravity-driven 
water networks. 

Plastic pipe is produced from polymers that belong to a class called thermoplas-
tics. Thermoplastics soften with increased temperature and harden upon cooling. A 
thermosetting plastic is a different class that does not have this characteristic. Ther-
moplastics are ideal for the formation (at elevated temperatures) of extruded tube and 
other shapes like fittings including elbows, tees, reducers, nut unions, and so on, and 
valve bodies. 

Among all thermoplastic materials, PVC has the largest strength and the least cost 
per unit volume making it the most commonly used type of plastic pressure pipe. 
Polyvinyl chloride pipe is rigid and strong. It is sold in lengths ranging from «10 ft 
to >6 m («20 ft). The preferable method of joining is by solvent cementing, where 

1 Plasticizers may be added to PVC to soften it for use in plastic covers, luggage, and so on. The type of 
PVC used in the manufacture of pressure pipe is unplasticized making it rigid and stiff. 



PIPE MATERIALS 77 

the inside of the fitting and outside of the pipe are coated with a volatile solvent 
and quickly joined together. Over a few minutes time, the solvent melts the PVC 
material in the region of the joint and effectively welds the two pieces together. Heat 
fusion, where the pipe and fitting are simultaneously heated to their melting point, is 
not generally used since the melt viscosity of PVC is too large for the two pieces to 
blend and form a joint with integrity (Nayyar, 2002). Threaded PVC is not common 
because of the increased installation time and additional equipment and labor to carry 
this out. If the pipe is to be joined by threading, sch. 80 pipe should be used because 
the penetration depth of the threads would weaken the joints of a thinner pipe wall. 

The impact strength of PVC is very low. As such, the pipe should be buried 
underground where possible in a stabilized or backfilled trench with a depth of « 1 m. 
The use of sharp rock or stone near the pipe should be avoided in favor of fine gravel 
or sand. Depths >6 m should be avoided to reduce the possibility of too large an 
earth loading. Burying also protects the pipe from the UV part of solar radiation that, 
over time, can make the pipe brittle. Most types of PVC pipe have additives to resist 
UV which will often be indicated on the pipe outside diameter (OD) (Plastic Pipe & 
Fittings Association, PPFA). For exposed pipe that is not treated with these additives, 
painting the outside of it with a light-colored latex or water-based acrylic paint will 
protect the pipe. Exposure of the pipe to UV during installation is normally not a 
problem. 

Both PVC and PE pipe have smooth inside surfaces. The absolute roughness, as 
noted in Chapter 2, is « 5 x 10~6 ft ±60% (White, 1999) and is about 100 times 
less rough than steel or galvanized iron. Thus, PVC pipe has very good abrasion 
resistance from particulates that may find their way into the water flow. 

Expansion of PVC and PE pipe need not be accommodated (say, with expansion 
joints) in situations where the pipe is buried because the temperature of the water 
and its surroundings are approximately equal. Long runs of straight pipe of large 
diameter, say 4 in. or more, should have expansion accounted for if the pipe is run 
above ground. Often, several 90° elbows are adequate for this purpose. 

The PE pipe is available in a range of densities. Low-density PE is relatively 
flexible and, for the smaller diameters, is often found in spooled form. Medium-
density PE pipe is less flexible, and high-density PE pipe is the most rigid. Coiled PE 
pipe has the advantage of much longer native lengths than PVC, say in the hundreds 
of feet. This feature requires fewer joints in the system and a subsequent saving on 
labor and installation time. The reliability of the system also increases relative to that 
of PVC because of the fewer number of joints. 

The joining process for PE pipe is not as simple as that for PVC. The PE pipe 
cannot be joined by solvent cementing. For small pipe sizes, PE pipe may be joined 
by insert fittings or compression fittings. Insert fittings fit tightly inside the pipe 
and compression fittings fit over the outside of the pipe. For large PE pipe sizes, a 
butt-fusion process is required where a tool heats the two pieces to be joined to their 
melting temperature to establish a weld. This machine requires electrical power and 
movement into remote locations. Thus, large-size PE pipe would not be suitable for 
use in cases where electrical power is not available. 
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3.3 THE DIFFERENT CONTEXTS FOR PIPE DIAMETER 

There are two contexts in which we deal with pipe diameter. The first is a calcula-
tion from an equation that produces the inside diameter, D, for a pipe. This is the 
theoretical value for the pipe inside diameter needed to satisfy a prescribed set of 
conditions for a design. In this context, D will almost always be an irrational number 
that we write to two-to-four significant digits of accuracy. It is not, however, the pipe 
diameter that will be installed for a given design. This is the second context. The 
manufacturers of pipe of all kinds, including plastic, steel, copper, and so on, produce 
pipe in "nominal" sizes, such as | in., 1 in., and so forth. The nominal diameter is 
not the inside or outside diameter, but a label that loosely characterizes the size of the 
pipe. Because the nominal pipe size is a label and not an actual number for the inside 
diameter, in this book we will generally write the nominal pipe sizes as, say, 11 in. 
instead of the decimal representation, 1.5 in. 

The worldwide standard of specifying pipe by its nominal size, rather than an actual 
dimension, and the fact that a pipe has at least two dimensions (wall thickness, inside 
diameter, or outside diameter) that may, in principle, be independently specified, 
necessitate a mapping of sorts between nominal size and actual pipe dimensions. 
These will be explored for different pipe materials in the sections that follow. 

3.4 SYSTEMS FOR SPECIFYING PIPE DIMENSIONS 

In this section, we will discuss the most common systems that define the dimensions 
of pipe normally used for gravity-driven water networks. There are two categories 
within this framework. The first are the English-based systems including the Iron Pipe 
Size (IPS) and the Copper Tube Size (CTS). The pipe in these systems appears in the 
United States as well as in many other developed and developing countries outside 
the United States. The second is the metric-based system. Metric pipe enjoys mostly 
international use and is not widely available or installed in the United States. The 
Standard Diameter Ratio (SDR) series, described below, spans both the English- and 
metric-based classifications and is perhaps the widest used system for the specification 
of pipe dimensions. 

3.4.1 English-Based Pipe Sizes 

The most commonly used system for pipe dimensions in this category is IPS. Cast 
iron, ductile iron, steel (plain or galvanized inside and outside the pipe to help prevent 
corrosion), and nearly all plastic pipe is manufactured to meet the dimensional spec-
ifications, including diameters and wall thicknesses, of the IPS system. Copper tube, 
which is not generally used for the present application because of its cost and subse-
quent lack of good availability, follows the CTS system, which is different than IPS. 
In the CTS system, the outside diameter of the tube is |-in. larger than the nominal 
tube size. For a fixed pipe size, the inside diameter decreases in value with increased 
pressure rating and thus increased wall thickness. There are three wall thicknesses 
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available when choosing a copper tube: type "K" tube pertains to thick wall, type 
"L" tube standard wall thickness, and type "M" tube thin wall. Domestic hot water 
systems of copper tube typically use a wall thickness corresponding to type L. 

For a given pipe diameter, the wall thickness determines the maximum allowable 
working pressure. If the wall thickness for an IPS pipe is of a standard value, we 
refer to this pipe as "schedule 40" or a sch. 40 wall thickness. For higher-pressure 
resistance pipe, the terminology for an IPS pipe is "schedule 80" or a sch. 80 wall 
thickness. Pipe dimensions for the IPS series of pipe sizes are designed so that the 
outside diameter is independent of the wall thickness. Thus, sch. 40 and 80 pipes 
of the same nominal pipe size have the same outside diameter so that they can both 
use the same fittings (like elbows and tees), which require that the pipe be fit into 
them; for this reason the IPS system is sometimes referred to as an "outside diameter 
controlled" system. Pipe walls thicker than sch. 80 (schedules 120, 160, etc.) are 
manufactured, but these are generally not needed or used for gravity-driven water 
systems. 

The correspondence between nominal pipe sizes and actual dimensions for sched-
ule, 40 and 80 IPS pipe is given in Tables 3.1 and 3.2 (Fox and McDonald, 1992; 
Gagliardi and Liberatore, 2002) for the range of pipe sizes normally used in gravity-
driven water systems. Note that there are relatively few nominal sizes from among 
which to choose; a result of manufacturing companies producing just a few nominal 
sizes of a pipe of a particular material, and local suppliers of the pipe who choose to 
stock only a few nominal sizes. This is one small example of the interplay between 
economics and engineering in real-world terms. 

The dimensions of plastic pipe can alternately be characterized by another outside-
diameter-controlled series referred to as the "Standard Diameter Ratio" (SDR) sys-
tem2 or series. The objective of this system is to maintain equal pressure ratings 
for all pipe diameters of a fixed type of pipe material. In the SDR system, this is 
accomplished by increasing the wall thickness in direct proportion to the OD of the 
pipe3. Thus, SDR is defined as the ratio of the outside diameter to the minimum wall 
thickness. Rated pressures are larger for pipes that have smaller SDR values (that is, 
larger wall thicknesses for a given pipe OD) and vice versa. With the SDR series, 
there may be many more wall thickness (that is, pressure rating) choices available 
compared with IPS pipe. For example, a particular type of 2-in. nominal plastic 
pipe that has an outside diameter of 2.375 in. (consistent with the OD of sch. 40 and 
sch. 80 IPS pipe) is manufactured with SDR values of 7.3, 9.0, 11.0, 13.5, and 17.04. 
Recall from the discussion above that only two commonly used wall thickness for 
the IPS system, schedules 40 and 80. Since the SDR system is OD controlled, any 

2This is sometimes referred to as the SDR-PR system or series where PR refers to pressure rating. Also, 
there exists a less-popular, inside-diameter-controlled series called SIDR. Information on this series, which 
is not covered in this book, can be found mostly in the trade literature. 
3The formula for the circumferential or "hoop" stress in a pipe (referred to as a "thin-wall" pipe because 
the wall thickness is much smaller than the pipe radius) shows that for a given material the ability of the 
pipe to resist internal pressure is proportional to the ratio of wall thickness and pipe diameter. 
4Note that each number differs from the previous one by-25%. This has the effect of producing pressure 
ratings in approximately the same steps; 25% smaller than that for the previous SDR value. 
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Table 3.1 Correspondence Between Nominal Pipe Sizes and Actual Dimensions 
for sch. 40 IPS Pipe 

Nominal Outside Max. Inside Min. Wall Equivalent 
Size Diameter Diameter Thickness SDR 
(in.) (in.) (in.) (in.) 

1 

I 
f 4 
2ή 

2k 
3 

3^ 
4^ 
5 
6 
8 
10 
12 

0.840 
1.050 
1.315 
1.900 
2.375 
2.875 
3.500 
4.000 
4.500 
5.563 
6.625 
8.625 
10.75 
12.75 

0.622 
0.824 
1.049 
1.610 
2.067 
2.469 
3.068 
3.548 
4.026 
5.047 
6.065 
7.981 
10.02 
12.00 

0.109 
0.113 
0.133 
0.145 
0.154 
0.203 
0.216 
0.226 
0.237 
0.258 
0.280 
0.322 
0.365 
0.375 

7.71 
9.29 
9.88 
13.1 
15.4 
14.2 
16.2 
17.7 
19.0 
21.6 
23.7 
26.8 
29.5 
34.0 

"Note the local increase in SDR for 2-in. pipe indicating a reduction in the relative wall thickness for 
this size compared with the neighboring sizes. 
'The inside diameter is within 1% of the nominal size for nominal size of 4 in. and larger. 

Table 3.2 Correspondence Between Nominal Pipe Sizes and Actual Dimensions 
for sch. 80 IPS pipe 

Nominal 
Size 
(in.) 

1 

I 
ί 

H 2 
H 3 
3± 
4s 

5 
6 
8 
10 
12 

Outside 
Diameter 

(in.) 

0.840 
1.050 
1.315 
1.900 
2.375 
2.875 
3.500 
4.000 
4.500 
5.563 
6.625 
8.625 
10.75 
12.75 

Max. Inside 
Diameter 

(in.) 

0.546 
0.742 
0.957 
1.500 
1.939 
2.323 
2.900 
3.364 
3.826 
4.813 
5.761 
7.625 
9.594 
11.376 

Min. Wall 
Thickness 

(in.) 

0.147 
0.154 
0.179 
0.200 
0.218 
0.276 
0.300 
0.318 
0.337 
0.375 
0.432 
0.500 
0.593 
0.687 

Equivalent 
SDR 

5.71 
6.82 
7.35 
9.50 
10.9 
10.4 
11.7 
12.6 
13.4 
14.8 
15.3 
17.3 
18.1 
18.6 
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given nominal pipe size will be able to use the same fittings whether it is SDR or IPS 
based; only the wall thickness, and thus pressure rating, will differ depending on the 
schedule (if IPS based) or SDR (if SDR based). 

We present pressure ratings for PVC (and CPVC), PE, and ABS IPS series pipe 
in Tables 3.3 and 3.4 for the most commonly available SDR-series PVC pipe. Our 
inspection of the latter table reveals that SDR 26 is probably the most recommended 
wall thickness, with a pressure rating of 160 psig, for SDR-series, PVC pipe. From 
Table 3.3 for IPS pipe, sch. 40 should be used in most cases for all plastic pipe. In 
networks of PVC pipe where the pipe is joined by threading instead of the normal 
solvent cementing, sch. 80 is recommended to improve reliability in the joint regions 
by having a thicker-wall pipe. For PE pipe, the pressure ratings are considerably 
smaller than PVC for the same schedule and pipe size. This may necessitate using 
sch. 80 PE pipe for the larger pipe sizes in certain instances where pressure ratings 
>90 psig are needed. Dimensions and pressure ratings for a broad range of SDR-
series, PVC pipe appear in Table 3.5. 

Note that the local reduction in pressure ratings for the 2-in. nominal IPS pipe 
size, as seen in Table 3.3 for ABS, PVC (and CPVC), and PE materials, is the result 
of the dimensions for this pipe size. This is explained by noting that the equivalent 
SDR (see Tables 3.1 and 3.2 for these) for 2-in. pipe is locally high compared with the 
neighboring pipe sizes indicating a relatively thinner wall thickness for 2-in. nominal 
IPS pipe. For conversion purposes, note that 100 psig is equivalent to 70.31 m of 
water head. 

Dimensions and pressure ratings for a range of SDR-series, English-based PE pipe 
is presented in Table 3.6 where, as with the recommended pressure rating for PVC 
from above, SDR 11 is the recommended wall thickness for PE pipe with a pressure 
rating of 160 psig. 

3.4.2 Metric Pipe Sizes 

Though not used very often, if at all, in the United States, metric-dimensioned PVC 
and PE pressure pipe is used throughout the rest of the world. In central America, as 
well as many other locations, both English- and metric-based pipe enjoy wide use. 
Manufacturing facilities in Asia, Europe, England, Australia, and New Zealand pro-
duce metric pipe to various standards. Unfortunately, the differences in the standards 
can create considerable uncertainty in availability and the correspondence between 
actual dimensions and nominal metric sizes. Dimensional and pressure-ratings data 
for metric-based, SDR series PVC pipe are presented in Tables 3.7 and 3.8 and in 
Tables 3.9 and 3.10 for metric-based, SDR-series PE pipe. For metric pipe, the pres-
sure rating is defined through a "PN" {pressure nominel) value. In Table 3.11, the 
mapping between the PN value and pressure in various units is displayed. 

One thing to note by inspecting Tables 3.7-3.10 is that the OD and nominal pipe 
size (sometimes referred to as the "DN" or diamètre nominel) are equal for the metric-
based plastic pipe manufactured to the standards on which these tables are based. As 
briefly noted above, there are several different standards, normally associated with 
distinct geographic regions of the world, that when followed produces pipe with 
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Table 3.3 Pressure Rating (in psig) at 73.4°F for Selected Types of IPS series, 
English-Based Plastic Pipe 

Nominal 
Size (in.) 

1 

I 
le 2 
2 | 
3 

5 
6 
8 
10 
12 

ABS Pipe" 
Sch. 40 

480 
390 
360 
260 
220 
240 
210 
190 
180 
160 
140 
120 
no 110 

Sch. 80 

680 
550 
500 
380 
320 
340 
300 
280 
260 
230 
220 
200 
190 
180 

PVC & CPVC Pipe" 
Sch. 40 

600 
480 
450 
330 
280 
300 
260 
240 
220 
190 
180 
160 
140 
130 

Sch. 80 

850 
690 
630 
470 
400 
420 
370 
350 
320 
290 
280 
250 
230 
230 

PE Pipe0 

Sch. 40 | Sch. 80 

240 
195 
180 
130 
110 
120 
105 
95 
90 
80 
70 
60 
55 
55 

340 
275 
250 
190 
160 
170 
150 
140 
130 
115 
110 
100 
95 
90 

"From Plastic Pipe & Fittings Association (PPFA) and Harvel Plastics, Inc. (2005-2006). 

Table 3.4 Dimensions and Pressure Ratings for Common SDR-Series, 
English-Based PVC Pipe 

Nominal 
Size 
(in.) 

1 

I 
Ï 

15 
2 

2 1 

s2 

i 
5 
6 
8 
10 
12 

Outside 
Diameter 

(in.) 

0.840 
1.050 
1.315 
1.900 
2.375 
2.875 
3.500 
4.000 
4.500 
5.563 
6.625 
8.625 
10.75 
12.75 

Inside 
Diameter 

(in.) 

0.696 
0.910 
1.175 
1.734 
2.173 
2.635 
3.210 
3.672 
4.134 
5.108 
6.084 
7.921 
9.874 
11.711 

Min. Wall 
Thickness 

(in.) 

0.062 
0.060 
0.060 
0.064 
0.073 
0.091 
0.110 
0.135 
0.173 
0.214 
0.255 
0.332 
0.413 
0.490 

SDR 

13.5 
21.0 
26.0 
26.0 
26.0 
26.0 
26.0 
26.0 
26.0 
26.0 
26.0 
26.0 
26.0 
26.0 

Pressure 
Rating12 

(psig) 

315 
200 
160 
160 
160 
160 
160 
160 
160 
160 
160 
160 
160 
160 

"Temperature is based on 73.4°F. Note that the pressure rating corresponds only to the SDR value, 
which is the objective of this series, and that the OD corresponds to the IPS series for the given nominal 
size (see Tables 3.1 or 3.2). The ratio of OD to the min. wall thickness is not exactly equal to SDR 
because of dimensional tolerances. The same reason applies to any inequality between OD-2-Wall 
Thickness and ID (Gagliardi and Liberatore, 2002; Harvel Plastics, Inc., 2005-2006). 
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T
able 3.6 

D
im

ensions and Pressure Ratings for SD
R

 Series, English-Based PE Pipe
0 

N
om

. 
Size 
(in.) 

SD
R

 7.3 
254 psig 

TD~ 
H

T
 

SD
R

9 
200 psi 

ID
 

| 
W

air 
^

S
 

SD
R

 11 
160 psi 

T
D

 
%

T
: 

alT 

SD
R

 13.5 
128 psi 

Τ
Ε

ΓΠ
 %

?
; 

SIT 
SDR

 17 
100 psi 

"TJJ 
^W

i 'äTT 

2 3 4 5 

10 
12 

0.600 
0.750 
0.940 
1.349 
1.686 
2.485 
3.194 
3.948 
3.815 
4.700 
6.261 
7.804 
9.256 

0.115 
0.144 
0.180 
0.260 
0.325 
0.479 
0.616 
0.762 
0.736 
0.908 
1.182 
1.473 
1.747 

0.650 
0.816 
1.023 
1.453 
1.815 
2.675 
3.440 
4.253 
4.109 
5.065 
6.709 
8.362 
9.916 

0.093 
0.117 
0.146 
0.211 
0.264 
0.389 
0.500 
0.618 
0.597 
0.736 
0.958 
1.194 
1.417 

0.680 
0.850 
1.070 
1.533 
1.917 
2.826 
3.633 
4.490 
4.338 
5.349 
7.057 
8.796 
10.432 

0.076 
0.095 
0.120 
0.173 
0.216 
0.318 
0.409 
0.506 
0.489 
0.602 
0.784 
0.977 
1.159 

1.601 
2.002 
2.915 
3.794 
3.469 
4.531 
5.584 
7.347 
9.158 
10.862 

0.141 
0.176 
0.259 
0.333 
0.412 
0.398 
0.491 
0.639 
0.796 
0.944 

2.078 
3.063 
3.938 
4.870 
4.705 
5.798 
7.611 
9.486 
11.25 

0.140 
0.206 
0.265 
0.327 
0.316 
0.390 
0.507 
0.632 
0.750 

"Tem
perature is based on 73.4°F. ID

 is inside diam
eter (in.) and W

all is m
inim

um
 w

all thickness (in.). The O
D

 corresponds to the IPS series for the given nom
inal size (see 

Tables 3.1 or 3.2). The ratio of OD
 to the m

in. wall thickness is not exactly equal to SDR
 because of dim

ensional tolerances. The sam
e reason applies to any inequality 

betw
een OD-2-W

all Thickness and ID. From
 Am

erican W
ater W

orks A
ssociation (2006); The Plastic Pipe &

 Fittings A
ssociation (2002); PolyPipe, Inc. (2005). 
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considerably different specifications for the same nominal sizes. For example, the 
Islex dimensional data (Islex, 2005) for PVC pipe differs greatly from that in the above 
referenced tables. The Australian/New Zealand standard is AS/NZS 1477:1999 for 
PVC pipe, whereas the PVC pipe data in Tables 3.7 and 3.8 are based on standard 
IS04422-2 (International Organization for Standardization, 1996). Dimensional data 
for PVC pipe from British and Chinese manufacturers appear to follow the latter 
standard. There is evidently little or no difference between the PE pipe manufactured 
in Australia and New Zealand and that made elsewhere in the world, however. 

The main message for the designer to be derived from this discussion is the need 
to obtain reliable information on local pipe materials and dimensions certainly before 
finalizing a design, but perhaps even before beginning it. Engineering tradeoffs on the 
pipe sizes for a system and their availability from near (say, local hardware stores) and 
remote sources (like plumbing supply houses in larger but more-distant cities) will 
need to be considered. For example, larger and more costly pipe from a local supplier 
may be more economical than smaller sizes once the transportation and delivery costs 
are factored into the design. 

As a final note on this topic, the United States and other countries sometimes 
report metric-based sizes for IPS series pipe. Table 3.12 shows this conversion that 
is sometimes referred to as a "soft metric conversion". Note that the pipe having 
these metric dimensions is not metric pipe but IPS series pipe with its English units 
converted to the metric system. 

3.5 CHOOSING AN APPROPRIATE NOMINAL PIPE SIZE 

When the designer calculates the theoretical value for the inside diameter, D, from 
the energy equation he/she must choose an appropriate corresponding nominal pipe 
size5. Normally, the choice is made for the nominal size that produces an inside 
diameter slightly larger than the theoretical value.6 The logic here is that a pipe of 
diameter slightly greater than that required by theory will, for a fixed pressure drop, 
accommodate more flow than that required for the design. For the end user, having 
more flow is usually better than less, at least in the situations where it can indeed 
be supplied; the larger-than-theoretical pipe size can be viewed as a safety factor 
of sorts. Alternately, for a fixed water flow rate, a larger pipe diameter will produce 
larger static pressures along the flow path (for a fixed flow rate the flow in a larger pipe 
diameter will have less friction since the flow speed is reduced). Higher pressures 
give the designer more flexibility since the flow will have more energy. This point is 
subtle. Pressure energy can always be dissipated in a pipe flow by using an energy 
dissipation device like a throttling valve but, once potential energy is converted into 

5 Note that the designations ID, OD, and Wall are labels for dimensions of pipe. D and ID have the same 
reference but D is a mathematical symbol whereas ID is a label. 
6One exception to this is when the theoretical size is just slightly larger than that for a nominal size. In 
this case the choice is made for the nominal size that produces an inside diameter slightly smaller than the 
theoretical value. Also note that the need for an increase in water flow rate due to population growth in 
the future is systematically accounted for in the design. This topic is treated in Chapter 13. 
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D

im
ensions and Pressure R

atings for SD
R

 Series, M
etric-B

ased PV
C

 Pipe" 

N
orn. 

Size 
and 
O

D
 

(m
m

) 

SD
R

 9 
PN

25 
M

in. W
all 

Thickness 
(m

m
) 

ID
 

(m
m

) 

SD
R

 13.6 
PN

 16 
M

in. W
all 

Thickness 
(m

m
) 

ID
 

(m
m

) 

SD
R

 17 
PN

 12.5 
M

in. W
all 

Thickness 
(m

m
) 

ID
 

(m
m

) 

SD
R

 21 
PN

 10 
M

in. W
all 

Thickness 
(m

m
) 

ID
 

(m
m

) 

16 
20 
25 
32 
40 
50 
63 
75 
90 
110 
125 
140 
160 
180 
200 
225 
250 
280 
315 

1.8 
2.3 
2.8 
3.6 
4.5 
5.6 
7.1 
8.4 
10.1 

12.4 
15.4 
19.4 
24.8 
31.0 
38.8 
48.8 
58.2 
69.8 

1.5 [1.2] 
1.5 (2.0) [1.5] 
1.9 (2.0) [1.9] 
2.4 (2.4) [2.4] 
3.0  (3.0) [3.0] 
3.7 (3.7) [3.7] 
4.7 (4.7) [4.7] 
5.6  (5.6) [5.6] 
6.7 (6.7) [6.7] 
8.1 (7.2) [8.1] 

9.2 
10.3 
11.8 
13.3 
14.7 
16.6 
18.4 
20.6 
23.2 

13.0 [13.6] 
17.0(16.0) [17.0] 
21.2 (21.0) [21.2] 
27.2 (27.2) [27.2] 
34.0 (34.0) [34.0] 
42.6 (42.6) [42.6] 
53.6 (53.6) [53.6] 
63.8 (63.8) [63.8] 
76.6 (76.6) [76.6] 
93.8 (95.6) [93.8] 

106.6 
119.4 
136.4 
153.4 
170.6 
191.8 
213.2 
238.8 
233.6 

1.5 
1.9(2.0) 
2.4 (2.4) 
3.0 (3.0) 
3.8 (3.8) 
4.5 (4.5) 
5.4(5.4) 
6.6 (5.7) 
7.4 (7.4) 
8.3 (8.3) 
9.5 (9.5) 

10.7 
11.9 
13.4 
14.8 
16.6 
18.7 

22.0 
28.2 (28.0) 
35.2 (35.2) 
44.0 (44.0) 
55.4 (55.4) 
66.0 (66.0) 
79.2 (79.2) 
96.8 (98.6) 

110.2(110.2) 
123.8(123.8) 
141.0(141.0) 

158.6 
176.2 
198.2 
220.4 
246.8 
242.6 

1.6 
1.9(2.0) 
2.4 (2.4) 
3.0(3.0) 
3.6 (3.6) 
4.3 (4.3) 
5.3 (4.8) 
6.0 (6.0) 
6.7 (6.7) 
7.7 (7.7) 

8.6 
9.6 
10.8 
11.9 
13.4 
15.0 

28.8 
36.2 (36.0) 
45.2 (45.2) 
57.0 (57.0) 
67.8 (67.8) 
81.4(81.4) 

99.4(100.4) 
113.0(113.0) 
126.6 (126.6) 
144.6(144.6) 

162.8 
180.8 
203.4 
226.2 
253.2 
250.0 

"Tem
perature is based on 20°C

. ID
 is inside diam

eter. O
D

 is outside diam
eter. The m

apping betw
een PN

 and pressure is given in Table 3.11. See continuation of this 
table in Table 3.8. From

 IS04422-2, International O
rganization for Standardization (1996). Parenthetical values from

 Fujian Zhenyun Plastic Industry C
o., Ltd.. Square 

bracketed quantities from
 IS015493, International O

rganization for Standardization (2003). 
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0.

8 
25

8.
6 

29
0.

8 

SD
R

 3
3 

PN
6.

3 
M

in
. W

all
 

Th
ic

kn
es

s 
(m

m
) 

1.5
 

1.6
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Table 3.11 Mapping Between PN and Pressure for Metric-Based Pipe 

PN 

3.2 
4 

6.3 
8 
10 

12.5 
16 
20 

Head of 
water (m) 

32 
40 
63 
80 
100 
125 
160 
200 

kPa 

320 
400 
630 
800 
1000 
1250 
1600 
2000 

Head of 
water (ft) 

105 
131 
207 
262 
328 
410 
524 
655 

psig 

47 
58 
92 
117 
147 
183 
235 
294 

bar" 

3.2 
4 

6.3 
8 
10 

12.5 
16 
20 

Class 

~B (6 bar) 
~C (9 bar) 
-C (9 bar) 

-D (12 bar) 

"One bar is 100 kPa which is approximately 1 atm (101.325 kPa or 14.7 psia). From Islex (2005); 
Plastics Industry Pipe Association of Australia, Ltd. (2010). 

Table 3.12 The Metric Equivalent of IPS series sch. 40 and 80 Nominal Pipe 
Sizes 

Nominal 
Size" 

(IPS - in .) | (Metric - mm) 
1 
2 

3 
4 

1 

H 

2 

2± 

3 

15 

20 

25 

40 

50 

65 

I 
3ì 
ύ2 

4 

6 

80 

90 

100 

150 

Outside 
Diameter 

(mm) 

21.336 

26.670 

33.401 

48.260 

60.325 

73.025 

88.900 

101.60 

114.30 

168.28 

Sch. 

40 
80 

40 
80 
40 
80 

40 
80 
40 
80 

40 
80 
40 
80 

40 
80 
40 
80 
40 
80 

Min. Wall 
Thickness 

(mm) 

2.769 
3.734 

2.870 
3.912 
3.378 
4.547 

3.683 
5.080 
3.912 
5.537 

5.156 
7.010 
5.486 
7.620 

3.048 
5.740 
6.020 
8.560 
7.112 
10.97 

Inside 
Diameter 

(mm) 
15.798 
13.868 

20.930 
18.846 
26.645 
24.307 

40.894 
38.100 
52.501 
49.251 

62.713 
59.005 
77.928 
73.660 

95.504 
90.120 
102.26 
97.180 
167.77 
146.33 

"See Tables 3.1 and 3.2 for the equivalences in English units. Note that the actual inside diameters 
and wall thicknesses of metric dimensioned pipe can vary especially in developing regions where 
dimensional standards for pipe may be different than other regions or not followed. From The Engi-
neering Toolbox (2010). 
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pressure energy in a gravity-driven water network, energy from the outside is never 
added to the flow. A companion consideration is that the local slope of the pipe is 
determined by the contour of the ground; it cannot be simply adjusted as needed by 
the designer to add potential energy. This scenario is in contrast to a pumped-water 
network where a larger or additional pump may perhaps be added where needed to 
meet the design specifications. 

In summary, the choice of a larger pipe diameter than required by the solution of 
the energy equation adds flexibility to the values of the flow parameters including flow 
rate and static pressure at the delivery location by use of a throttling valve. Throttling 
valves are discussed in greater detail in Sections 4.7, 11.6.5, and 13.14. 

In addition to footnote 6, there may be cases encountered where it is desirable to 
choose a nominal pipe size corresponding to a slightly smaller diameter. Examples of 
this are in designs where costs need to be tightly controlled, since larger pipe sizes are 
more costly, or where the choice of the larger pipe produces a flow speed well below 
that recommended to prevent the internal build-up of debris. A composite pipe, two 
series-connected pipes of different diameters as discussed in Section 13.16, may be 
used in place of a single pipe to more-precisely match the design constraints for a 
pipe network. 

Some details on these topics and the broader problem of designing a pipe having 
too large a diameter for a prescribed flow rate are considered in Chapter 13. 
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CHAPTER 4 

CLASSES OF PIPE FLOW PROBLEMS 
AND SOLUTIONS 

"When you drink the water, remember the spring." 
- Chinese Proverb 

4.1 THE CLASSES 

To place the present developments in perspective, it is worthwhile to compare the 
problem of gravity-driven flow in a pipe with the other pipe-flow problems normally 
encountered in the fields of fluid mechanics or hydraulics. The energy equation, 
Eqn (2.7), is obviously the same for all pipe-flow problems but, traditionally, the 
manner of how the solutions have been executed depended on the type of problem, or 
class, being solved. Four classes of problems for flow in a single pipe are considered. 

1. L, Q, and D are known, p2 - Pi is unknown. 

2. Vi — V\ , Q, and D are known, L is unknown. 

3. p2 —pi,L, and D are known, Q is unknown. 

4. p2 - pi, L, and Q are known, D is unknown. 

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 9 3 
Copyright © 2010 John Wiley & Sons, Inc. 
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The first two classes are particularly simple because with both Q and D known, the 
flow speed, ü, is easily calculated from the continuity equation (that is, the equation 
of mass conservation), Eqn (2.21). From this, the Reynolds number (Re) and friction 
factor (/(w, D)) are calculated and the remaining unknown, either L or p2 — Pi, is 
easily found from application of the energy equation, Eqn (2.7). 

The last two classes are slightly more challenging since, with Q or D unknown, 
Re is not known so that f(ü, D) is also not known. That is, the unknown of either 
Q or D appears in a nonlinear way in the energy equation. Either a pencil-and-paper 
iterative method is needed or a root-finder in a program like Mathcad or Excel may 
be used to solve Eqn (2.7) for ü. An example of this is presented in Section 4.2. 
The present work is a special case of class 4, where the inlet static pressure, p\, is 
zero and the effect of gravity on the flow is critically important. Thus, the reader 
may have already solved a problem similar to that being considered in this work in a 
course like fluid mechanics. However, examples in a typical fluid mechanics course 
focus mostly on systems where the flow is driven by a pump (that is, p\ φ 0) and 
particular attention is paid to the calculation of the major and minor losses.1 In fact, 
the elevation change in many problems is most often neglected, certainly when the 
fluid is a gas. Of course, this effect is the only driving force for flow in the present 
case. 

4.2 AN ILLUSTRATIVE PIPE FLOW PROBLEM OF CLASS 4 

Consider the following example of a pipe flow problem of class 4. The object of this 
exercise is to compare and contrast the different approaches to the solution of a pipe-
flow problem where D is unknown. With the value for D, and thus Re and f(ü, D), 
unknown as discussed above, the approaches used below may also be employed to 
solve flow problems of Class 3, where Q is unknown. 

4.3 THE PROBLEM STATEMENT 

A processing plant requires a flow rate of 1.100 m3/min (18.33 L/s) from a water 
main located 275 ft from the plant and 10 m below the plant delivery location. It is 
known that the run of the pipe is relatively straight so that only a few 45° elbows will 
be required. Determine the minimum sch. 40, galvanized-iron (GI) pipe size required 
if the supply (that is, the source) and delivery static pressures are known to be 950 
and 120 kPa, respectively. Assume the water temperature to be 10°C. 

1 As noted at numerous places in this text, except where needed for flow balancing, minor losses are not 
very important for many gravity-driven water distribution systems. 
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4.4 SETTING UP THE PROBLEM 

We begin by writing the energy equation, Eqn (2.7), and simplify it by noting that 
22 = 0 as above. Also, because the pipe is uniform diameter, ΰ\ = Ü2 is obtained 
from the continuity equation [Eqn (2.21)]. We may also assume that the total minor 
loss will be small compared with the major loss since the pipe is relatively long and 
there will be but a few elbows. For instance, a 45° elbow has an equivalent length 
of 16 (Table 2.1). Three elbows would then increase the pipe length by about 50 ft, 
about a 20% increase in the true length. We can often accommodate this by choosing 
the nominal pipe size having the next largest value for D, once it is calculated; the 
normal procedure as discussed in Section 3.5. In all cases, we can check for the 
accuracy of neglecting the minor loss after the solution for D is obtained. 

Using Eqn (2.4), Eqn (2.7) becomes 

^ + ^τ^Α 
Also note that this equation appears in a slightly different form as Eqn (2.49) [Fmo<i 
includes the pressure difference in Eqn (2.49)]. 

The flow rate is prescribed for this problem, not u. Thus, it is convenient to write 
ü in terms of Q using Eqn (2.21), 

4Q 
- - V (4.2) π ΰ 2 

whereupon Eqn (4.1) becomes 

P1-P2 £l = /IL = 8Q2 f(Q,D) 

pgL L L TT2g D5 ( ' 

where z\ = —10 m (see Fig. 2.11). 
The left side of Eqn (4.3) contains only constants and for the far right side, constants 

and the dependent variable, D. Because D appears in a nonlinear way through both 
D5 and f(Q, D), Eqn (4.3) is a nonlinear algebraic equation and will be solved by a 
numerical method. Inserting the values for all parameters along with their units into 
Eqn (4.3), we get 

0.8904 =-4L = 2.628 x 103 ̂ ^ (4.4) 
L D5 

where the unit of D is inches. It is interesting to note that the potential energy term 
in Eqn (4.3), zi/L, is 0.0364 in absolute value or only -4.1% of the total energy of 
0.8904 dimensionless units. This is clearly a problem that is dominantly pressure 
driven, very different than those that are gravity driven. 

To solve this equation, Re will be needed to calculate the friction factor. Written 
in terms of Q (as in textbox B.2.6), this becomes 

6.463 x 105 

Re = (4.5) 
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Equations (4.4), (4.5), and that for friction factor, Eqs (2.16) and (2.17), are a 
system of three nonlinear algebraic equations in three unknowns, D, Re, and f(Q,D). 
Three methods for the solution of this problem will be considered below. 

4.4.1 The Nonlinear Algebraic Equation3 

In informal terms, a nonlinear algebraic equation is one where the unknown variable, 
while appearing in just a single location, is not able to be positioned alone on one side 
of the equal sign in the equation. The more-formal definition is that it is an equation 
where the unknown appears in a nonlinear way. Examples of a nonlinear algebraic 
equations are 

g{x) = x 4 + x - 1 0 = 0 
g(x) = sin(x) + 5 = 0 
g(x) = cosh(2x) + 2x + 3 = 0 (4.6) 
g{x) = ln(a;) + 2xe6x = 0 

2 _ 
g(x) — x H h 5yx = 0 

x 

where g(x) denotes a function of the unknown variable, x (the symbols in this section, 
g, x, a, b, and c, as well as superscripts new and old below, are used only in their 
contexts in this section; as such, they do not appear in the Nomenclature and where 
possibly used in other parts of this book will have different meanings). For each of 
these examples, we are unable to isolate the unknown variable x, alone, on one side 
of the equal sign in the respective equation and not have it appear elsewhere in the 
equation. That is, the terms x4, sin(x), cosh(2x), ln(x), e6x, 2/x, and \/x are all 
nonlinear functions of x. In the same way, Eqn (4.4), rewritten here in a slightly 
different form, 

r{Q, D) = D- 4.943/(Q, D)l/h = 0 

is also a nonlinear algebraic equation because, in the function r (Q, D), the unknown D 
appears in a nonlinear way through term f{Q,D)1/5. We have seen by our inspection 
of Eqs (2.16) and (2.17) or Fig. 2.6 that f(Q, D) is also a nonlinear function of D 
through Re which appears in a nonlinear way in the f(Q, D) function. 

Some nonlinear algebraic equations can be solved by analytical methods; that 
is, we can obtain an exact solution in terms of elementary functions. A quadratic 
equation is an example of this, 

ax2 + bx + c - 0 (4.7) 

where a, b, and c are real numbers. From algebra, we will recall that Eqn (4.7) has 
the solution 

- 6 ± VV - 4ac 
x = ^ (4.8) 

2a 

3This section may be skipped if appropriate without loss of continuity. 
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We refer to the values for x that satisfy the algebraic equation as the "roots" of that 
equation. In a graphical sense, a real root (one that is not imaginary) of a single 
nonlinear algebraic equation is the value of x that results in g(x) = 0, or the value of 
x where the function g(x) crosses the x axis. 

In general, the roots of nonlinear algebraic equations may be real, imaginary, or 
a combination of the two. The latter is referred to as a "complex" number. For 
example, in the illustrative case presented below the function possesses two real 
and two imaginary roots. Since the volume flow rate and pipe diameter, normally 
determined from the solution of the energy equation for pipe flow, are real quantities 
we are concerned only with real roots from the solution of this equation. In addition, 
since the pipe diameter is always positive-valued, the requirement D > 0 must always 
be satisfied. 

Except for quadratic and cubic polynomials that are known to have solutions written 
as a function, such as Eqn (4.8) was for a quadratic polynomial (we refer to these as 
"analytical" solutions), no general solution of nonlinear algebraic equations exists. 
Thus, the lack of analytical solutions requires that nearly all nonlinear algebraic 
equations be solved by numerical methods. Normally, these solutions are carried out 
on a computer although, in principle, iteration using paper and pencil may be used. 

As an example of a solution carried out on paper, consider the first of Eqs (4.6). 
Begin the solution by rewriting this equation in the following form, 

x = ( 1 0 - x ) 1 / 4 (4.9) 

We will solve this equation by iteration, a method referred to Gauss-Seidel iteration 
(Gerald and Wheatley, 1999). The procedure is simple. We guess a value for x and 
substitute this value into the right side of Eqn (4.9). Upon evaluation of the right 
side, which is equal to x, we are presented with an updated estimate of x. Again, 
upon substituting into the right side and evaluating, we obtain another, hopefully 
more accurate, estimate for the value of x. This procedure continues until, with 
further iterations, the value of x no longer changes to our desired level of accuracy. 
The solution is then said to have "converged." The results of this procedure are best 
presented in a table (Table 4.1), where the iteration number and the values for x at 
that iteration number are written. From our inspection of Table 4.1, we see that one 
root of Eqn (4.9) is x = 1.697. Other roots may exist, but what we have found is 
the root closest to the guessed value for x of 1. A plot of the function of Eqn (4.9) 
may perhaps reveal other real roots and we can find their values by following the 
procedure of Table 4.1 after making a guess for x near this root.4 

Clearly, one could implement this iterative solution on a computer, and provided 
with a meaningful initial guess, obtain a single root of a nonlinear algebraic equation, 
such as that from the energy equation for pipe flow, Eqn (4.4). However, Gauss-
Seidel iteration is not very efficient and the success at converging to a solution in the 

4For this example, there are two real roots, 1.697 and-1.856, and two complex conjugate roots, 0.0791 ± 
1.780Î, referred to as a "complex conjugate" pair. If, for example, x were the pipe diameter, the value for 
the diameter would be 1.697 units. That is, since the diameter is a quantity that is both positive and real 
(not imaginary), the only physically allowable root is 1.697. 
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Table 4.1 Solution of a Nonlinear Algebraic Equation by Gauss-Seidel Iteration 

Iteration" x o l d x n e w 

Î Ì 1.732 
2 1.732 1.696 
3 1.696 1.698 
4 1.698 1.697 

"The value for the initial guess is 1. The designation "new" means the updated value of x after the 
"old" value of x is substituted into the right side of Eqn (4.9). 

region of the initial guess depends on the way in which the nonlinear equation [say, 
Eqn (4.9)] is written. In other words, convergence to a solution is not guaranteed with 
the Gauss-Seidel method. Fortunately, more robust numerical methods, such as the 
Newton-Raphson method (Gerald and Wheatley, 1999), have been developed and 
are very widely used by engineers and scientists in everyday practice. In particular, 
in Mathcad the function root is used to find a single root of a nonlinear algebraic 
equation is known to be quite robust. 

In Chapter 11, we will need to solve not just a single nonlinear algebraic equation, 
but many such algebraic equations simultaneously. These are referred to as systems 
of nonlinear algebraic equations. The idea behind the numerical solution for these 
systems is similar to that from the discussion above. Numerical methods of solution, 
such as Newton-Raphson, are very good at solving systems of nonlinear algebraic 
equations. In Mathcad, the Given.. .Find construct is used for this purpose so 
there is no need to write a computer program when carrying out the solution. The 
designer needs to be aware that the root function and Given.. .Find construct in 
Mathcad are numerical-based, like the example explored in this section. Thus, a good 
initial guess5 for each of the unknowns in the single or system of nonlinear algebraic 
equations needs to be provided as a start for the solution. 

4.5 DIFFERENT APPROACHES TO THE SOLUTION 

4.5.1 Method 1 : Trial and Error 

The first method, presented in most textbooks on fluid mechanics, is trial and error. 
The values for D corresponding to a series of guessed values of nominal sizes for GI 
pipe are substituted into the above system of equations. The value of D that satisfies 
the equality required by Eqn (4.4) is the solution. The results from this procedure 

5The meaning of good is that guesses should not be too far from the eventual solution. For a single equation, 
it is easy to find the approximate solution (i.e., the guess) by plotting the equation for the variable whose 
value you wish to obtain, thus finding its approximate root. For a system of nonlinear algebraic equations 
coming up with a good set of values for the initial guesses may be more challenging. Often, good guesses 
for the system are had by using the solutions for a similar case that has already been solved. Other than 
this, trial and error is usually needed, along with a sense for approximately what the solutions will be. 
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are presented in Table 4.2, where we see that Eqn (4.4) is satisfied for a nominal pipe 
size between 2 and 3 in., that is, right-side values for Eqn (4.4) of 1.779 and 0.2277 
bound the left-side value of 0.8904. As discussed in Section 3.5, we choose a nominal 
3-in. pipe, the larger of the two6. An inspection of Fig. 5.31 will reveal that, under 
the prescribed conditions, a 3-in. nominal GI pipe will pass -40 L/s of water flow, 
much larger than required for this design. The problem with this "oversized" pipe is 
discussed in Section 4.7. 

4.5.2 Method 2: Use of Head-Loss Data 

In this method, which has found the broadest usage when the graphical hydraulic-
gradient-line method is employed for the design of gravity-driven water networks 
(Section 6.6.2), we focus on the middle term in Eqn (4.4), the hydraulic gradient, 
which is sometimes referred to as the "head loss per unit length of pipe" or "head-loss 
factor." This was the subject of a calculation in textbox B.2.6. Tables and plots of 
hydraulic gradient, IIL/L, for different types of pipe and a range of wall thicknesses 
are published in the literature including tables in handbooks (Jordan Jr., 2004) and 
technical trade publications, such as The Plastic Pipe & Fittings Association (2002) 
both for PE pipe. Two such plots, one for sch. 40 GI pipe and the other for sch. 80, 
were generated and appear in Figs. 4.1 and 4.2.7 These were produced by the two 
right-most terms in Eqn (4.3), 

hL = 8Q2 f(Q,D) 
L n2g D5 

where f(Q, D) is the friction factor from Eqs (2.16) and (2.17). From our inspection 
of Fig. 4.1, we find that nominal 3-in.pipe is required for Q of 18.3 L/s and hi/L 
of -0.9. Obviously, this is a relatively quick and simple method compared with the 
trial-and-error approach of Method 1. However, this method can be used only if the 
designer has the head loss table or curves for the particular pipe of interest.8 That is, 
the head-loss data are specific to pipe material (because of roughness) and schedule 
or SDR because the inside diameter (ID) changes with wall thickness for all outside 
diameter (OD)-controlled pipe. Since it is not always practical or possible to obtain 

6Note that if 2^ -in. nominal pipe (which has D of 2.469 in.) is available, this would be the best choice. 
Though they exist, local suppliers of plastic pipe may not stock the larger pipe sizes, say >2 in., in half-inch 
increments. 
7Note there is very little quantitative difference in these two graphs, especially for the larger pipe sizes. 
The differences between the inside diameters for sch. 40 and sch. 80 pipe are not large. For this detail, see 
Section 3.4.1. 
8Many such tables have been found to have values for the head-loss that differ by as much as 35% from 
those calculated from the friction factor recommended for use in this book. Before relying on the accuracy 
of data from these tables, the designer should verify several of these tabular entries over the range where 
they will be used. This can be easily done with the Mathcad worksheet HydraulicGradient.xmcd. 
Please see Exercise 13. One source reporting reliable head-loss data from the Darcy-Weisbach equation is 
Appendix 4 of Trifunovic (2006), for specified wall roughness e, and D in integer metric sizes (not actual 
ID for nominal pipe sizes). 
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these sources of head-loss data, Method 2 will not always be the choice of the designer. 
In the next method, we will use a commercial software package to solve the problem; 
the preferential method is used in this book. 

An additional difficulty with Method 2 is including minor losses. Because of 
the limitless combinations of fittings and valves that could be installed in a pipe 
network, head-loss data are only for a straight pipe and, thus, do not include minor 
loss. Iteration must be used to include minor losses as illustrated in Exercise 12; 
specifically, h^jL for straight pipe is multiplied by (1 + j^ $2 i = 1 jf\), where jf |. 
is the equivalent length of the minor loss contributors, to obtain h^/L for the network 
that includes minor loss. At most, about one or two iterations will be required to 
accurately determine D using Method 2 because, as discussed above, minor losses 
are not large for gravity-driven water networks. However, for networks where the 
minor loss is > 10 ~ 20% of the major loss, several iterations may be required. 

Figure 4.1 Head-loss factors, HL/L, for sch. 40 galvanized iron (that is, galvanized steel) 
pipe. Horizontal line at IIL/L = 1 corresponds to Natural flow in a vertical pipe (please see 
Fig. 5.3). Gravity-driven water flow in the pipe corresponds to the region below this line. 
Pump-driven water flow, where pi > 0, can occur above this line. 
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Figure 4.2 Head-loss factors, hi,/L, for sch. 80 galvanized iron (that is, galvanized steel) 
pipe. Horizontal line at \ILJL = 1 corresponds to Natural flow in a vertical pipe. Gravity-
driven water flow in the pipe corresponds to the region below this line. Pump-driven water 
flow, where pi > 0, can occur above this line. 

B.4.1 Care When Using Head-Loss Charts 

Care should be taken when using head-loss data from the available charts and 
tables. There are several assumptions concerning the friction-factor model (for 
example, Darcy-Weisbach or Hazen-Williams, please see Chapter 9), actual 
pipe inside diameters versus nominal pipe sizes versus inside diameter values not 
connected with actual dimensions or nominal sizes, the pipe roughness, and the 
kinematic viscosity of the water (that is, the temperature upon which this property 
is based) that vary among the sources. The kinematic viscosity of water should 
be based on 10°C. See Exercises 13, 14, and 28. 

4.5.3 Method 3: Use of a Computer Program 

In the previous two methods two independent calculations are made based on terms in 
the energy equation. The first is the net mechanical energy, the left side of Eqn (4.3). 
This part may be thought of as the net mechanical energy "compartment". The fric-
tional losses in the pipe are calculated next from the right side of Eqn (4.3), the result 
from which may be thought of as the frictional energy or dissipation "compartment". 
The results of these two independent calculations are compared through the energy 
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equation [Eqn (4.4)] and a choice made for the pipe diameter that best matches the 
values from the two compartments. This is how the pipe flow problems of class 4 
have traditionally been solved. 

A different approach is taken in Method 3. The flow in the pipe in this example 
must satisfy energy conservation. Thus, by writing the energy equation for pipe flow, 
Eqn (4.4), between the inlet and outlet states, we can solve (using a root solver in 
the package Mathcad) this equation for the unknown pipe diameter. The solution for 
Re and friction factor are also solved along with the energy equation in a procedure 
referred to as the "simultaneous" solution of the subject three algebraic equations. 
This is the approach used throughout this book. The main benefit of the use of a 
software package to solve pipe-flow problems of the current type is that it eliminates 
compartmentalization of the solution by simultaneously solving the three nonlinear 
algebraic equations that determine the solution for D; energy, and the equations for 
friction factor and Re. Thus, the numerical value for D is determined directly from 
the solution after which the designer can easily choose the nominal pipe size having 
an ID equal to or slightly larger than this value. A copy of the Mathcad worksheet 
that shows this calculation is presented in Fig. 4.3 where use is made of the root 
function.9 The result (D of 2.360 in., the nominal pipe size having the next largest 
value for D is 3 in.) is, of course, identical to that from the first two methods. 

The clear advantages of Method 3 are that, given the Mathcad worksheet and, of 
course, a working copy of Mathcad on a computer, this approach is just as quick as 
Method 2 and, most importantly, it requires no source of head-loss data. That is, these 
data are produced by the friction factor function already in the worksheet. Method 
3, which automatically accommodates any minor losses, is clearly much quicker and 
less tedious and prone to error than the approach of Method 1. Should the designer 
not have Mathcad, other programs, such as Excel or a hand-held calculator, may be 
programmed with the same equations that appear in the Mathcad worksheet. This 
has been done by the author and other practitioners in piping system design. An 
additional benefit of Method 3 compared with Method 2 is that uncertainty in the 
accuracy of head-loss data is eliminated. The friction factor that is used [Eqs (2.16) 
and (2.17)] is accurate and includes not only the turbulent flow regime over the range 
of Re encountered in gravity-driven and forced-flow water networks, but the laminar 
and transition regions should they arise. 

4.6 A NOTE OF CAUTION 

After completing this chapter, it may be tempting for readers with a background in pipe 
flow calculations to be cavalier about the material that remains ahead, including local 
pressure distribution and analysis and design of multiple-pipe networks. If among this 
group, do not let this premature sense of understanding interfere the learning process. 
Unless you have had considerable experience analyzing and designing gravity-flow 

9The root function in Mathcad is equivalent to the Given.. .Find construct except that it solves for the 
root of a single nonlinear algebraic equation instead of multiple ones. 



104 CLASSES OF PIPE FLOW PROBLEMS AND SOLUTIONS 

Figure 4.3 Mathcad worksheet solution for solving a pipe-flow problem where D is 
unknown. The function fric_fac is the friction factor evaluated by the root solver. 
The final two arguments in the function root ( funct ( f 1,Re,ebyD.fl) ,0 .0001, f l ) of 
0.0001 and f 1 are the assumed lower and upper bounds for the value of the friction factor, 
frict_fac(Re,ebyD). Here, D is determined using the same root solver where the lower 
bound is assumed to be 0.0001 in. and the upper bound 8 in. Re(-D) = 4Q/(-KI/D) is Re 
written as function of D. Mathcad worksheet s ingle pipe example-method 3. xmcd. 
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networks, the content awaiting you is not trivial nor obvious. To entice participation 
in service projects that use the theory and applications in this book, I have heard 
one student say to another that the material is "easy." Indeed, in the overall scale 
of college-level learning in engineering, for example, all evidence points to the fact 
that the material is not. In particular, the solution of systems of nonlinear algebraic 
equations (using Mathcad or any other technology) is never simple. Minimization 
of network cost to provide static pressure heads at junctions of multiple pipes (a 
uniqueness problem), the modeling of flow in a loop network where flow rates and 
pipe sizes are unknown, and the effect of trapped air in network pipelines, among 
many others, are not simple topics. 

Whether you are an experienced engineer/designer or a novice engineering or 
technology student, you are encouraged to move forward with an open mind while 
exploring the remainder of this book. 

4.7 SUMMARY 

To summarize the solution of a pipe-flow problem of class 4, where either D or Q 
is the unknown, three basic methods are described to carry out the solution. Trial 
and error is a "brute force" method that will normally work, but is tedious and time 
consuming, especially, as we will see in Chapter 11, for multipipe flow networks. 
Method 2 requires that the designer have access to the head-loss curves or tables for 
the specific pipe material and wall thickness under consideration, and to include minor 
losses using potentially tedious iteration. Since this is not always practical, Method 
3, which uses the computer package Mathcad and the friction factor presented in 
Chapter 2 instead of head-loss charts, is the method of preference. 

A closing comment is needed concerning the lack of ability to choose a nominal 
pipe size that has the exact value for D calculated from the energy equation. The ID of 
a sch. 40 nominal 3-in. pipe is 3.068 in. whereas the pipe diameter required to satisfy 
the conditions stated in the above example problem is 2.360 in. One or more of the 
parameters must therefore be adjusted in value to accommodate this change. Often, 
industry restricts adjustability of the prescribed flow rate and static pressures p\ and 
Pi because they are constrained by other parts of the flow network. This also applies 
to gravity-driven water networks. A quick calculation with the Mathcad worksheet 
shown in Fig. 4.3, where we fix D at 3.068 in. and allow pi to vary, shows that a 3-in. 
nominal pipe will supply the required flow rate (subject to the given inlet pressure and 
elevation change) for p2 equal to 665 kPa. Thus, a throttling valve is needed at the 
point of delivery of the water to reduce the static pressure from 665 kPa to the required 
120kPa. As discussed in Section 13.14, this type of adjustable valve, a globe valve, is 
used at various locations in nearly every pipe network to allow flexibility in the flow 
and pressure conditions (i.e., for flow control). From this, we see that a globe valve 
in the pipe has the effect of a reducing the pipe diameter from one corresponding 
to a nominal size. The globe valve allows the designer to more-closely match the 
diameter corresponding to the chosen nominal pipe size with the required theoretical 
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inside diameter. The reader may find it convenient to remember that a globe valve is, 
in effect, a device that can reduce the diameter of the pipe in which it is installed. 
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CHAPTER 5 

MINOR-LOSSLESS FLOW IN A 
SINGLE-PIPE NETWORK 

"Do Something for Somebody Everyday for which you do not get Paid." 
-A. Schweitzer 

5.1 INTRODUCTION 

This chapter presents results pertaining to the analysis and design of a single-pipe 
network. This refers to a pipe of uniform diameter, and possible fittings and valves, 
that connect a source of water to a delivery location. If, for any reason, the pipe has 
multiple diameters, then the network is of the multiple-pipe type. The theory and part 
of the design for multiple-pipe networks is presented in Chapter 11. Applications for 
the material in this chapter include any water source, such as groundwater or a spring 
(see Chapter 1 for these definitions), that is open to atmospheric pressure, or a storage 
or break-pressure tank under the same condition. The static pressure at the delivery 
location can be atmospheric (that is, zero-gage pressure) or any positive value such 
that P2/pgz\ < 1, as discussed in Chapter 2. The positive static pressure at the 
delivery location is physically produced by a minor-loss element, such as a faucet or 
globe valve. Only in this sense is minor loss considered in this chapter; that is, no 
minor losses are considered at any other location along the pipe-flow path. 

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 107 
Copyright © 2010 John Wiley & Sons, Inc. 
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As indicated in Chapter 2, although the minor loss elements may certainly be 
present in the network, their effects on the selection of pipe sizes is normally small 
except where intentionally included for flow control. The reader is referred to Chap-
ter 8 for the appropriate Mathcad worksheet where minor losses are to be considered. 
Because single-pipe networks are so common, the design charts presented in this 
chapter are expected to be useful, especially in the field, for rapid estimation of pipe 
sizes for these simple networks. 

Also included in this chapter are design charts for the more-general case of forced 
flow in a single-pipe, uniform-diameter, minor-lossless flow network. In this case, 
the pressure at the source can take on any nonzero value. These formulas and design 
charts are useful as a complement to the present work on gravity-driven water networks 
in cases where a pump is used to deliver the flow. 

From our inspection of the general form of the energy equation for gravity-driven 
pipe flow, Eqs (2.33) and (2.40), we see that Eqn (2.33) is a special case of the more-
general Eqn (2.40) with tortuosity λ set equal to 1. Thus, Eqn (2.40) and its restrictive 
cases, Eqs (2.41) and (2.43), are the energy equations of interest. In any of these, 
mean slope s, tortuosity λ, and the dimensionless static pressure at delivery, F, can 
be given any values specified by the designer. The neglect of minor losses means 
ignoring all terms in Eqn (2.40) that include D/zi. This gives Eqs (2.41) or (2.42). 
After being written in terms of Q instead of u as in Section 5.2, the solution of 
Eqn (2.42), a nonlinear algebraic equation, is carried out in Mathcad using the root 
function.1 The friction factor is from Eqn (2.16). 

5.2 SOLUTION AND BASIC RESULTS 

The focus of this chapter is on the solution of the energy equation for minor-lossless 
pipe flow, Eqn (2.44), rewritten here for convenience 

l-F _8Q^f(Q,D) = 

λ Vl+s-2 π2# D5 

A comment on the dependencies appearing in Eqn (2.44) is in order. Equation (2.44) 
includes Q, D, F, s, f(Q, D), and λ, along with constants. From among this list, 
f(Q, D) will always be a function of the solution though Eqn (2.16). That is, the 
value for f(Q, D) will never be prescribed by the designer. Each of the terms F, s, and 
λ are almost always treated as either a parameter or an independent variable;2 in many 
of the design graphs appearing in this book for a single-pipe network, s is normally 
the independent variable. Q and D are either the dependent variable or a parameter. 
For example, in the next paragraph, we will plot Q = Q(s), where D, F, and λ are 
parameters. In the design plots that form the bulk of this chapter, D = D(s, Q), 

'The root function in Mathcad is equivalent to the Given.. .Find construct except that it solves for the 
root of a single nonlinear algebraic equation instead of multiple ones. 
"An independent variable is one that is varied according to our wishes to investigate the response of a 
dependent variable. A parameter is typically a variable held constant during this investigation. 
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which produces a contour plot, where there are two independent variables, s and Q, 
and F and λ are parameters. Throughout all of this discussion and for all cases, the 
solution for the problem of pipe design is from the same energy equation, the only 
thing that changes is for what variable we are solving. 

B.5.1 Example: The Solution of Eqn (2.44) 

The solution of Eqn (2.44) will ultimately be carried out using a root-finder 
in Mathcad. However, here we will use Gauss-Seidel Iteration, discussed in 
Chapter 4, to illustrate the solution. For this example, Q = 1.43 L/s, s — 3.3%, 
λ = 1.32, and F = 0.20 and the pipe is SDR-26 metric polyvinyl chloride (PVC, 
where e = 1.52 x 10~3 mm). Following the procedure of Chapter 4, Eqn (2.44) 
is rewritten as 

Note that the friction factor f(Q, D) depends on the Reynolds number (Re) and 
relative roughness as discussed previously. Thus, 

f(Q,D) = f(Re,e/D) 

where, as we saw in Section 2.5, Re is 

Re = AQ/nvD 

After substituting the values for Q: s, X, e, and F and rewriting the above expres-
sion for D to accommodate the Gauss-Seidel algorithm, we get 

n n » 8 · (1.43 x 10"3 m3/s)2 ■ 1.32 ld f/Tyold.]1/6 
D =[ π*- 9.807 m/s*· 0.033- 0.8 ' / ( R e ' e/° ) ] 

or 

where 

Dnew = 9 6 7 0 m m . y(Re°Wj e/Doldy/5 (g j } 

ReoM = Re(Q, Dold) 

We begin by supplying a guess for D = Dold of 25 mm. Substituting this into the 
rightsideofEqn(5.1)givesD"euj = 44.53 mm. This procedure is repeated until, 
after just three iterations, we obtain a converged solution for D = 45.72 mm 
(Table 5.1). From Table 3.8, a nominal 50-mm size [inside diameter (ID) of 
46.0 mm] is chosen based on this value of D. 

The fundamental results from the solution of Eqn (2.44) are now explored. We 
present a graph of Q versus s for two pipe diameters and two values for λ and 
F = 0.5 (see Fig. 5.1). We see that the water flow rate increases with slope and 
with pipe diameter. This can be explained from an intuitive argument. Imagine a 
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Table 5.1 Solution of Eqn (2.44) by Gauss-Seidel Iteration 

Iteration Dold (mm) Dnewa (mm) 
Î 25 44.53 
2 44.53 45.61 
3 45.61 45.72 

"The term Dnew is the updated value of D after the "old" value of D (Dold) is substituted into the 
right side of Eqn (5.1). 

single, straight, open-ended pipe of length L held in your hands where the pipe has 
a constant source of water at the top opening. If the slope of the pipe is zero, (i.e., 
horizontal), there is no effect from gravity pulling the water downward because of 
the zero slope and the flow rate is zero. Note how all of the curves in Fig. 5.1 tend 
to zero flow rate as the slope approaches zero. As the slope of the pipe increases, the 
flow rate increases because of the increase in z\\ recall Eqn (2.39) where s « z\/L 
for small slope. For example, for a pipe with a slope of one, a pipe inclination of 45°, 
the flow rate increases to the largest value seen in Fig. 5.1. It is easy to explain how 
energy is conserved as s increases. An increase in flow rate in a pipe of fixed diameter 
caused by an increase in s means an increase in flow speed. The greater flow speed, 
in turn, means greater energy dissipation over the pipe length and this comes from 
the increase in potential energy caused by increasing z\ and s. 

Water flow rate also increases with pipe diameter, as seen in Fig. 5.1. For a given 
length of pipe, the frictional energy loss (which comes from shear between the pipe 
wall and water) is proportional to the circumference of the pipe (πΌ) and for a given 
flow speed, the flow rate is dependent on the pipe cross-sectional area {πΌ2/A). The 
ratio of the area to the circumference is proportional to D so that, as D increases, 
more water can pass through the cross section of the pipe per unit of shear stress at 
the pipe wall. We also see in Fig. 5.1 that, as expected, the water flow rate decreases 
as the pipe gets longer because of the additional friction. This is the effect of λ. 

5.3 RESULTS FOR LIMITING CASE OF A VERTICAL PIPE: FROUDE 
NUMBER 

As the slope of the pipe approaches infinity (that is, a vertical pipe), the pipe length 
becomes equal to the elevation at the top of the pipe and the flow rate reaches a 
maximum value. This is seen in Fig. 5.2, which is identical to Fig. 5.1 except that 
the slope axis now ranges from 0.2 to 10. The maximum flow rate in this case can be 
compared with the classical "terminal velocity" of a body falling in a fluid under its 
own weight. In this situation, the speed of the fall is such that the drag acting on the 
body is exactly balanced by the body's weight. The acceleration is zero and the speed 
that the body achieves under this condition is referred to as "terminal." Thus, with a 
large slope (10 is large enough to be considered infinite), water is simply free-falling 
vertically in the pipe and will reach a speed where the weight of the water is exactly 
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Figure 5.1 Volume flow rate of water versus mean slope of pipe for two different diameters 
of PVC IPS pipe and two values for pipe length, λ = 1 corresponds to the straight pipe case. 
Here, λ = 1.5 is for a pipe length 50% greater than the straight pipe case. Dimensionless static 
pressure at delivery corresponds to F = ·ριΙpgz\ = 0.5. No minor loss. 

balanced by the friction force at the pipe wall. Under these conditions the energy 
equation to be solved for the terminal velocity of the water is from Eqn (2.40) with 
s —> oo. With minor losses neglected, λ = 1, and the delivery pressure of zero for 
Natural flow [Eqn (2.43)], we get 

l - / ( u O O ) J D ) ^ = 0 (5.2) 

The solution of Eqn (5.2), with UQO converted to volume flow rate, Qoo, appears 
in Fig. 5.3 for a broad range of pipe diameter (see related Exercise 15). 

While this limiting case is of interest from a theoretical perspective and as an upper 
bound on the volume flow rate of water in a gravity-driven flow, it has little relevance 
in an actual design since few, if any, reservoirs are located vertically or near vertically 
above the delivery spot. 

It is worth mentioning at this point that since 1 and f(u, D) in Eqn (5.2) (dropping 
subscript oo) are clearly dimensionless numbers, then the group u2 /2gD must be a 
dimensionless group. In fluid dynamics, H2/2gD is related to the Froude number, Fr, 
defined as 
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Figure 5.2 Same as Fig. 5.1 except slope axis ranges from 0.2 to 10. Terminal values for Q 
are seen in this figure as slope—> co. 

Figure 5.3 Limiting case for the terminal volume flow rate of water in a vertical pipe. The 
circles correspond to PVC IPS nominal pipe sizes of | , | , 1, l | , 2, and 3 in. 
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which may be interpreted as proportional to the ratio of the inertia force to the body, 
or gravity, force on the flow. 

Thus, we see that Eqn (5.2) can be rewritten as 

/ (« , D)Fr2 = 2 (5.4) 

where Fr depends on the flow speed w, as in Eqn (5.3). 
If the reader has covered Dimensional Analysis, normally part of a fluid mechanics 

course, Fr may be readily recalled. Fr always arises in fluid dynamics when there 
is gravity or a similar force field, such centrifugal force in the problem. Since the 
friction factor is of the order of 0.02, Fr is seen through Eqn (5.4) to be of the order of 
10, a result that reflects the small length scale (that is, the pipe diameter) for gravity-
driven flow in a pipe. As the length scale increases, say, for example, for large waves 
acting on the bow of a ship, the value of Fr decreases indicating a greater effect from 
the gravitational influences in the problem. No further discussion of Fr is necessary 
here. It is more convenient to deal with the group u2/2gD rather than Fr since in the 
present work we will be solving for u, or Q derived from u, directly. 

5.4 DESIGN GRAPHS FOR A SINGLE PIPE FOR MINOR-LOSSLESS 
FLOW 

The design graphs for a single-pipe network for minor-lossless gravity-driven flow are 
presented in Figs. 5.4-5.11 below for English-based, sch. 40 PVC pipe (Section 5.4.2), 
Figs. 5.13-5.20 for sch. 40 galvanized-steel pipe, often referred to as galvanized iron 
(GI) pipe (Section 5.4.3), and in Figs. 5.22-5.29 for metric-based, SDR 21 PVC pipe 
(Section 5.4.5). The plots are of Q as a function of the mean slope, s, for a range 
of nominal pipe diameters (the actual inside diameters differ from the nominal size 
as discussed in Chapter 3 and were used as D in the calculations)3 and for different 
values for F and λ as parameters. The F values are 0 (atmospheric pressure at the 
delivery location or Natural flow), 0.1, 0.25, and 0.5, and the λ values are 1 (straight 
pipe) and 1.5 (50% longer than straight pipe). This relatively large value for λ is 
chosen as a realistic upper bound of its affect on Q and D. The plots noted above are 
similar to that of Fig. 5.1 except that the design plots are presented with log-log axes 
and grid lines to be able to better read the numbers for s and Q over a large range of 
values. 

Generally, all figures show that the volume flow rate increases in proportion to 
nearly the square root of s for a given D. Increasing D also increases Q, as discussed 
above, with the largest changes from size to size in the smallest diameter range. 
Increasing the pipe length by 50% over the straight-pipe case of λ = 1 (Figs. 5.4-
5.7) decreases Q by -25% (see Figs. 5.8-5.11 for λ = 1.5), which is not a very 

3The pressure ratings for the sch. 40 pipe range from 600 to 180 psig for the smallest to the largest pipe 
size appearing in these figures (see Table 3.3). The pressure rating for metric-based, SDR 21 PVC pipe is 
PN 10 or 147 psig (please see Table 3.7). These results from these charts are expected to approximately 
apply to the lower pressure rated, SDR 26 PVC pipe because the ID values for SDR 21 and SDR 26 are 
nearly identical. 
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large impact on the design. As discussed in textbox B.2.10, the tortuosity λ is not 
a strong influence for two reasons. First, the common-sense practice is to connect 
the source, tank, and tapstands by as short a pipe length as possible to minimize pipe 
cost. Second, the mean slope of a typical design is very small. Thus, the run of a 
water-delivery pipe is very much larger than the elevation of the source so that peaks 
and valleys in the pipeline and a normal degree of circuitousness in the horizontal 
plane does not add much overall length to the pipe. For both of these reasons values 
for λ larger than one plus a very small fraction are unusual for most actual designs. 

In Fig. 5.13, for galvanized straight steel pipe and delivery static pressure of zero, 
we see that the water flow rate is considerably smaller than that for the smoother PVC 
pipe (cf. Fig. 5.4) of the same diameter. A quick consult with the Moody chart from 
Fig. 2.5 or any fluid mechanics textbook shows that, for Re approximately < 105, 
the difference between the friction factors for relative roughness of 1 x 10~6 and 
100 x 10~6 is as much as a factor of two. The difference becomes larger with larger 
Re, but these are not common for gravity-driven water flows. It is also noteworthy 
in Fig. 5.12 that laminar flow is obvious for the smallest values of s and the smallest 
pipe sizes. Note the marked difference in slopes of the curves for this range compared 
with the rest of the figure that are in the turbulent regime. 

A Mathcad worksheet has been produced that solves for the nominal pipe diameter 
for prescribed values of Q, s, λ, and F and includes the effects of minor losses. This 
code, a copy of which appears in Fig. 8.1, is supplied with this book. Compared with 
the above design graphs, the program has the advantages of including the minor losses 
where they may be needed. The Mathcad worksheets for multiple-pipe networks 
where the inlet and outlet static pressures may not be zero for one or more of the 
pipes are also supplied with this text. Copies of these appear throughout the text. 

The design charts are presented below as a tool that can be used in the field for 
rapid estimation of pipe sizes. For more-thorough design calculations, the Mathcad 
worksheet is a more-appropriate tool, but may not be convenient in the field. 

5.4.1 Use of the Design Graphs 

First, we address the choice of the appropriate figure to use. It is assumed that values 
for Q and s are known from assessment of the potential site. In many cases, the 
designer will not know accurate values for F and λ for the proposed network at an early 
point in the design process. Even if they were known, the graphs corresponding to 
these exact values are not likely to appear in Figs. 5.4-5.29. The suggested procedure 
for using these figures in this situation is as follows. This discussion will use English-
based, sch. 40 PVC pipe as an example (Figs. 5.4-5.11). If the designer is interested 
in GI pipe, Figs. 5.13-5.20 should be used, and for metric sizes, Figs. 5.22-5.29. 

• Use Fig. 5.4 to estimate the pipe diameter based on the known volume flow rate 
and mean slope between the source and delivery. This is for assumed values 
of F = 0 (Natural flow) and λ = 1 which, as discussed in Section 2.32, will 
produce a lower-bound estimate of the pipe size. The pipe size will always be 
the smallest possible for the given site geometry because friction is the only 
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effect balancing the potential energy for Natural flow. That is, a small pipe size 
is required to produce the large flow speeds needed to generate the necessary 
friction. 

• Repeat this step using Fig. 5.8, which is for F = 0 and λ = 1.5. If there is 
a difference in pipe sizes between these two steps, either choose the largest 
pipe size between the two or a more-detailed analysis needs to be carried out 
to calculate the diameter. This step addresses the effect of pipe length on the 
pipe diameter. Note, however, that D determined from this step is likely to 
be "worst case" or larger than required by the design because values for λ are 
normally < 1.5 for most networks. 

• To determine the sensitivity of D to static pressure at the delivery location, 
repeat the first step using Fig. 5.5, for F = 0.1 and λ = 1, then Fig. 5.6, for 
F = 0.25 and λ = 1, and so on. If necessary, repeat with Fig. 5.9, for F = 0.1 
and λ = 1.5, then Fig. 5.10, for F = 0.25 and λ = 1.5, etc. For most systems, 
where the elevation head of the source is >20 m, a pipe having F > 0.5 is not 
likely. An inspection of the results by sequential use of the above figures will 
give the designer a sense for the appropriate pipe diameter to use. 

Recall that in all of the figures presented in this section, minor losses have been 
neglected. We will consider the impact of minor losses on the design in Chapter 7. 
For all design graphs, water temperature is assumed to be 10°C. 

In Section 5.5 and in Chapter 9, we demonstrate that all of the design graphs for a 
given pipe material and wall thickness or schedule can be condensed to a single plot. 
Essentially, this is done by simply rearranging the solution for the dimensionless form 
of the energy equation, say in terms of Q or D. See Eqn (9.7) or Fig. 9.4. Note that 
the two dimensionless groups that appear in these plots are what would be obtained 
if dimensional analysis, say the use of the Buckingham Pi theorem, is performed on 
the problem of gravity-driven flow in a single pipe. See the topic of Dimensional 
Analysis in most fluid mechanics textbooks for information on the Buckingham Pi 
theorem. 

5.4.2 Design Graphs for IPS, Sch. 40 PVC Pipe 

The design graphs for English-based (IPS), sch. 40 PVC pipe are presented in this 
section in Figs. 5.4—5.11. A plot of Re for this type of pipe appears in Fig. 5.12. 

5.4.3 Design Graphs for IPS, Sch. 40 GI Pipe 

The design graphs for English-based (IPS), sch. 40 GI pipe are presented in this 
section in Figs. 5.13-5.20. A plot of Re for this pipe appears in Fig. 5.21. 
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Figure 5.4 Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40 
PVC pipe diameters. Delivery pressure corresponds to F = p2/pgzi = 0 (Natural flow) and 
λ = 1 (straight pipe case). Laminar flow is evident for the smallest pipe sizes and the lowest 
values for the slope. This is followed by the transition regime, and then fully turbulent flow. 
These characteristics appear in the remaining design plots in this chapter. 

Figure 5.5 Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal 
PVC pipe diameters. Delivery pressure corresponds to F = pij pgz\ — 0.1 and λ = 1. 
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Figure 5.6 Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal 
PVC pipe diameters. Delivery pressure corresponds to F = pi/pgzi = 0.25 and λ = 1. 

Figure 5.7 Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal 
PVC pipe diameters. Delivery pressure corresponds t o F s p2/pgzi = 0.5 and λ = 1. 
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Figure 5.8 Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal 
PVC pipe diameters. Delivery pressure corresponds to F = p2/pgzi = 0 (Natural flow) and 
λ = 1.5 (50% longer than straight-pipe case). 

Figure 5.9 Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal 
PVC pipe diameters. Delivery pressure corresponds to F = p2/pgz\ = 0.1 and λ = 1.5. 
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Figure 5.10 Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal 
PVC pipe diameters. Delivery pressure corresponds to F Ξ p2/pgzi = 0.25 and λ = 1.5. 

Figure 5.11 Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal 
PVC pipe diameters. Delivery pressure corresponds to F = P2/pgzi = 0.5 and λ = 1.5. 
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Figure 5.12 Reynolds number versus mean slope of pipe for nine sch. 40 nominal PVC pipe 
diameters. Delivery pressure corresponds to F = pz/pgzi = 0 (Natural flow) and λ = 1 
(straight-pipe case). Recall that the flow is laminar for Re < 2300 and that turbulent flow is 
assured for Re >3000. 

Figure 5.13 Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40 
galvanized-steel (GI) pipe diameters. Delivery pressure corresponds to F = p^lpgz\ = 0 
(Natural flow) and λ = 1 (straight pipe case). Compare with Fig. 5.4 for PVC pipe. 
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Figure 5.14 Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40 
galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F = p?/pgz\ = 0 . 1 
and λ = 1. 

Figure 5.15 Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40 
galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F = p2/pgzi = 0.25 
and λ = 1. 



122 MINOR-LOSSLESS FLOW IN A SINGLE-PIPE NETWORK 

Figure 5.16 Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40 
galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F = pi/pgzi = 0.5 
and λ = 1. 

Figure 5.17 Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40 
galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F = p2/pgzi = 0 
(Natural flow) and λ = 1.5 (50% longer than straight-pipe case). 
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Figure 5.18 Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40 
galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F = p2/pgzi = 0.1 
and λ = 1.5. 

Figure 5.19 Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40 
galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F = p-if pgz\ — 0.25 
and λ = 1.5. 
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Figure 5.20 Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40 
galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F = p2/pgzi = 0.5 
and λ = 1.5. 

Figure 5.21 Reynolds number versus mean slope of pipe for nine nominal sch. 40 galvanized 
steel (GI) pipe diameters. Delivery pressure corresponds to F = p2/pgzi = 0 (Natural flow) 
and λ = 1 (straight-pipe case). Recall that the flow is laminar for Re < 2300 and that turbulent 
flow is assured for Re >3000. 
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5.4.4 Approximate Formulas for D: A Preview 

In Chapter 9, we will explore the use of an approximation for the friction factor for 
smooth pipe and a restricted range of Re. One consequence of this approximation is 
a simple formula for theoretical pipe diameter D as a function of Q, s, and λ. The 
result [Eqn (9.3)] is previewed here for convenience, 

D « 0.741 [lilzZ)]-*/« ( 4 ^ ) 7 / 1 9 (5.5) 
λ gqi< 

where g = 9.807 m/s2 and, for water at 10°C, v = 1.307 x 10~6 m2/s. Recall that 
based on previous discussions, λ may be approximated to leading order as λ « 1.2. 
Equation (5.5), which assumes a restricted range of Re and smooth pipe4, is easily 
programmed on a handheld calculator and may be used to make a quick estimate of 
D or a verification of D obtained by the design charts in this chapter or Mathcad 
worksheets. 

Swamee and Sharma (2008) report an extension of this approximate formula to 
include laminar flow and, for turbulent flow, the effect of pipe roughness, e, for 
nonsmooth pipe. They present, 

D « 0.66 {[214.75 
VQ 16.25 

9(hL/LY 

+ e125 [^τττ]4-7 5 + vQ9A(ghL/L)-^YM (5.6) 

where the hydraulic gradient, h^/L, is s (1 — F)/\, as discussed in textbox B.2.6. 

B.5.2 Example: Use of the Design Charts for Gravity-Driven Flow 

Calculate the minimum IPS PVC nominal pipe size for a single-pipe, minor-
lossless flow network having a maximum volume flow rate of Q = 0.40 L/s and 
a mean slope of s = 6%. Investigate the sensitivity of the pipe size to delivery 
pressure and pipe length. Calculate Re for the recommended pipe size. Compare 
your result with that from Eqn (5.5). 

We begin with Fig. 5.4 to estimate D. This is for assumed values of F = 0 
and λ = 1 which will produce a lower-bound estimate of the pipe size. For the 
prescribed values of Q and s, we obtain a pipe diameter between | and 1 in. We 
choose the larger of the two, D = 1 in. From Fig. 5.8, which is for F = 0 and 
λ = 1.5, find the same result. We move on to examine the effect of delivery 
pressure to determine if a larger pipe size will be required with higher pressures 
at delivery. Using Fig. 5.9 (for F = 0.1 and λ — 1.5), we find the same result as 
above for D. From Fig. 5.11 (for F = 0.5 and λ — 1.5), we find that D of 1 in. 
is slightly too small. 

Refer to Section 9.3 for the details. 
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Use of the Design Charts for Gravity-Driven Flow (Cont'd) 

Thus, we conclude if the delivery pressure is to be at least 50% of the elevation 
head, a 1^-in. PVC pipe is recommended. For static pressure at the delivery 
location less than this value and tortuosity < 1.5, D =1 in. is adequate. Keep in 
mind that the flow rate was stated to be a maximum. We must be aware of the 
need for increasing Q, if appropriate, to accommodate growth of the population 
overtime. From Fig. 5.12, Re for 1 §-in. PVC pipe is -50,000, clearly a turbulent 
flow. For the given conditions, Eqn (5.5) becomes 

D = 0.930(1 - F)~4/ig in. 

ForF = 0,0.1,and0.25,weobtainD = 0.930,0.951, and 0.988 in., respectively. 
From Table 3.1, we see that this simple design formula predicts the need for a 
1-in. PVC pipe. This is a slight under-prediction for the largest λ compared with 
the above charts. Note that Eqn (5.5) is valid for only smooth pipe, such as PVC 
and PE. This excludes its use for GI pipe. However, Eqn (5.6) may be used in 
this case. 

5.4.5 Design Graphs for Metric, SDR 21 PVC Pipe 

The design graphs for metric-based, SDR 21 PVC pipe are presented in this section 
in Figs. 5.22-5.29. 

5.5 COMPREHENSIVE DESIGN PLOTS FOR GRAVITY-DRIVEN OR 
FORCED FLOW 

Gravity-driven water flows are the principal topic in the book. However, the curious 
reader will wonder if the formulas and design charts in this and Chapters 2 and 9 can 
be applied when flow in a pipe network is driven by a pump or, for a gas, a blower 
(both referred to as "forced" flow). The answer to this question is yes, and was 
addressed in Section 2.9, where we saw that upon rearranging the energy equation 
for pipe flow, Eqn (2.42) (for gravity-driven flow), and comparing with Eqn (2.49) 
(for forced-flow), the term 

S= {]-F) (5.7) 

and 
s = * i ( l - Fmod) = f i _ P-2 - Pi 

L L pgL 

play the exact same roles for flow in a pipe of diameter D. The first of these two 
equations applies to a minor-lossless gravity-driven flow, and the second, under the 
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Figure 5.22 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters. 
Delivery pressure corresponds to F Ξ p2/pgzi = 0 (Natural flow) and λ = 1 (straight pipe 
case). Laminar flow is evident for the smallest pipe sizes and the lowest values for the slope. 
This is followed by the transition regime, and then fully turbulent flow. 

Figure 5.23 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters. 
Delivery pressure corresponds to F = p2/'pgz\ = 0.1 and λ = 1. 
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Figure 5.24 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters. 
Delivery pressure corresponds to F =. pij'pgzi = 0.25 and λ = 1. 

Figure 5.25 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters. 
Delivery pressure corresponds to F = p2/pgzi = 0 . 5 and λ = 1. 
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Figure 5.26 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters. 
Delivery pressure corresponds to F = p2/pgzi = 0 (Natural flow) and λ = 1.5 (50% longer 
than straight-pipe case). 

Figure 5.27 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters. 
Delivery pressure corresponds to F = p2/pgzi = 0.1 and λ = 1.5. 
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Figure 5.28 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters. 
Delivery pressure corresponds to F = p2/pgzi = 0.25 and λ = 1.5. 

Figure 5.29 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters. 
Delivery pressure corresponds t o f s p2/pgzi = 0.5 and λ = 1.5. 
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same conditions for flow driven by a pump or blower5 Thus, both Eqs (2.41) and 
(2.49) may be written as the same comprehensive equation in terms of Q, 

S-XP'-ŒjP-O (5.9) 

Plots of Q versus S for forced or gravity-driven flow are presented in Figs. 5.30 
and 5.31 for nine nominal IPS, sch. 40 PVC and GI pipe sizes, and in Fig. 5.32 for 
nine metric, SDR 13.6 PVC pipe sizes, respectively. Our inspection of either reveals 
the same trends evident in any one of the design graphs above, as well as the terminal 
effect for gravity-driven flow. This occurs for S > 1 as terminal flow speed, and 
thus volume flow rate, is encountered. Note that Fig. 5.30 is the same as Fig. 5.4 and 
Fig. 5.31 the same as Fig. 5.13 except that the group 5, as defined above, appears on 
the abscissa, and the upper range on the abscissa is larger to accommodate the larger 
values for S that typically occur for forced-flow problems. The reason for comparing 
the gravity-driven results with those for forced flow in Figs. 5.30-5.32 is to show 
that the physics of the flow problem is identical; only the mechanism that drives the 
flow is different. In fact, the designer will use Figs. 5.30-5.32 only for forced-flow 
networks, since Figs. 5.4-5.29, as they appear, apply only to gravity-driven water 
flow networks. 

In Eqs (5.5) and (5.6), we have approximate formulas for D for gravity-driven 
flow in single-pipe networks based on an approximation for the friction factor.6 The 
equivalent forms for these for the case of gravity-driven or forced flow is, 

D « 0.741 S - 4 / 1 9 ( ^ ^ ) 7 / 1 9 (5.10) 

and 

D « 0.66 {(214.75^) 6 · 2 5 + e1 2 5 Ä 4 ' 7 5 + vQ9A(gS)-6-2}0M (5.11) 
9& gb 

where g = 9.807 m/s2 and, for water at 10°C, v = 1.307 x 10"6 m2/s. As noted 
above, these may be easily programmed on a handheld calculator to facilitate making 
a quick estimate of D, or a verification of D obtained by the design charts in this 
chapter or Mathcad worksheets. 

5.6 THE FORGIVING NATURE OF SIZING PIPE 

Because of the limited number of pipe sizes from which one has to choose, the process 
of selecting a pipe size for a given set of design conditions can be, by its very nature, a 
forgiving process. To illustrate this, consider any one of Figs. 5.4—5.11, say Fig. 5.5. 

5The fluids of interest in this text are liquids, but as noted in Chapter 2, the energy equation for pipe flow 
applies to any fluid including gases. 
6Please refer to Chapter 9 for the details and restrictions on the accuracy of these formulas. 
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Figure 5.30 Volume flow rate of water versus S = (1 — (p2 — Pi)/pgzi)/(L/zi) (for 
forced flow) and S = (1 — F)/(\\/l + s~2) for gravity-driven flow for nine nominal sch. 40 
PVC pipe diameters. The curves for gravity-driven flow are for Natural flow and λ = 1 
and become horizontal at an abscissa value of -2, indicating terminal flow. For s <C 1, 
S = (1 — F)/{\\/\ + s~2) = s for Natural flow and λ = 1. Our inspection of this figure 
shows the practical meaning of s <C 1 is s < 0.5. 
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Figure 5.31 Volume flow rate of water versus S = (1 — (p2 — pi)/pgzi)/(L/zi) (for 
forced flow) and 5 = (1 — F)/(\\/l + s~2) for gravity-driven flow for nine nominal sch. 40 
GI pipe diameters. The curves for gravity-driven flow are for Natural flow and λ = 1. 

Figure 5.32 Volume flow rate of water versus S = (1 — (p2 — pi)/pgzi)/(L/z\) (for 
forced flow) and S = (1 — F)/(\\/l + s - 2 ) for gravity-driven flow for nine metric, SDR 21 
PVC pipe diameters. The curves for gravity-driven flow are for Natural flow and λ = 1. 
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Figure 5.33 A replot of Fig. 5.5 demonstrating the forgiving nature of sizing pipe. 

We have modified this figure to emphasize certain points for discussion as follows 
and present it as Fig. 5.33. 

Consider the following example. The design slope and flow rate are given as 0.04 
and 0.6 L/s, respectively, for a minor-lossless flow where F — 0.1 and λ = 1. The 
specified design point can be easily located in the appropriate design plot for these 
conditions (Fig. 5.5) and is labeled in Fig. 5.33. Since the design point requires a 
tube size slightly >l-in. nominal PVC, we choose a l^-in. pipe to satisfy the flow 
requirements. By our inspection of Fig. 5.33, we see that by choosing this pipe size, 
we have changed the design point from that specified to an infinite number of actual 
design points that lie along a line (the operating line) connecting points a and b as 
seen in Fig. 5.33. In particular, the system can pass the required flow of 0.6 L/s for a 
slope of-0.008 (much less than the specified 0.04; see point a), and will pass a much 
larger-than-specified flow of nearly 1.2 L/s for the specified slope of 0.04 (point b). 
As long as F — 0.1, λ = 1, and the minor losses are negligible, the system will 
operate at some point on the operating line. Of course, this assumes that the source 
can supply the peak flow rate of water (of-1.2 L/s) that sits on this line. In general, 
this may not be possible and to accommodate the lack of the source's ability to provide 
this flow, the designer needs to plan for a fitting in the pipeline to reduce the static 
pressure7 in the pipe under consideration (see Section 13.15 for issues on oversized 
pipe). Normally this is installed at the lowest end of the pipe. 

7 For example, a globe valve. With the pressure drop that it causes, a globe valve essentially acts like a 
reduction in the pipe size. In this way, the effective pipe size for this example is somewhere between 1 in. 
and 1 ì-in. See Section 13.14 for a discussion on energy dissipation and globe valves. 
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We see from this brief discussion that selecting the next largest pipe size above the 
theoretical value for D adds a degree of forgiveness to the design process. Of course, 
the extent of forgiveness depends on the location of the design point relative to the 
operating line for the selected nominal pipe size. If the design point is very close to 
this line there will not be much forgiveness. Because of this, small errors in slope, flow 
rate, F, and λ may not adversely impact the success of the operation of the network. 
However, the conscientious designer will never rely solely on this forgiveness when it 
comes to planning for an expansion of the network to accommodate additional water 
flow rate for more houses, schools, community centers, and churches. This should 
be built into the design in the normal, systematic way. 

B.5.3 Example: Comprehensive Design Chart for Forced Flow 

Investigate the sensitivity of the volume flow rate Q to the range of nominal-GI 
pipe sizes from | in. to 1 ^ in. The elevation of the pump is 14 m below the 
delivery location, the pipe length is 730 m, the discharge pressure of the pump is 
Pi = 281 kPa, and the delivery pressure is atmospheric. 

The problem is clearly one of forced flow. Therefore we plan to use Fig. 5.31 
which applies to GI pipe. First calculate the value for parameter S from Eqn (5.8), 

zi p 2 - p i _ - 1 4 m 0-281 ,000N/m 2 ■ 1 kg ■ m/(s2 · N) 
L pgL 730 m lOOO kg/m3 · 9.807 m/s2 · 730 m 

= -0.0192 + 0.0393 = 0.0201. 

Note that the elevation, z\, is —14 m since the discharge of the pump (the source) 
is below the delivery location. 

The volume flow rates for S = 0.02 from Fig. 5.31 for GI nominal pipe sizes of 
| in., 1 in., and 1 \ in. are 0.15, 0.29, and 0.90 L/s, respectively. 
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Students and faculty from Villanova University work with technicians 
in Waslala, Nicaragua preparing to construct a reservoir. 



CHAPTER 6 

"NATURAL DIAMETER" FOR A PIPE: 
LOCAL STATIC PRESSURE 

"How do you get the water to flow uphill?" 
- Anita D. Jones (age 84) 

6.1 MOTIVATION 

In Section 2.6.1, we saw the concept of Natural flow in a pipe as the constant value of 
flow that produces a balance between the potential energy of the source and energy 
dissipated by pipe friction. In this brief chapter, we explore a related concept. For 
a prescribed volume flow rate in a minor-lossless flow and a given geometry of the 
network (elevations and pipe lengths), there exists a theoretical pipe diameter dis-
tribution that produces a desired constant value of static pressure at each and every 
location in the pipe. We refer to this theoretical diameter as the "Natural diameter" 
or "Natural diameter distribution" for a pipe.1 For example, the desired local static 

1 Although the concept of a Natural diameter distribution of a pipe is valid for all flow networks in principle, 
in practice it can be obtained only for those networks where the pipe possesses a downward slope at all 
points. This slope is referred to as a "favorable slope" for a gravity-driven water network; one that at each 
and every point assists the flow with the addition of potential energy that is in turn dissipated as friction. 

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 137 
Copyright © 2010 John Wiley & Sons, Inc. 
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pressure may be a (positive-valued) gage pressure needed to produce flow at a dis-
tance or eliminate possible flow of contaminants from the surroundings into a buried 
pipe. Jordan Jr. (2004) has recommended a static head of water (p/pg) of a minimum 
of 10 m, or -1 atm of pressure. 

As a prelude to this idea, we will need to develop the energy equation for local flow 
conditions along the pipe flow path. If desired, the solution from this equation is the 
local static pressure. This is the first instance in the text where attention is being given 
to the local static pressure, otherwise referred to as the static pressure distribution, 
p(z). In the developments in the previous chapters, our focus was on only the inlet 
and outlet states for the flow; no attention was paid to those states in between. The 
static pressure varies continuously in a pipe flow and must generally be positive— 
valued throughout the network for the reasons described above. In addition, and to 
answer the quotation above, it is a positive (i.e., greater than gage in value) static 
pressure that forces water to flow, locally, uphill. These needs may be a challenge 
from a design standpoint especially in networks where there are local peaks that have 
an elevation near that of the source. A sound design approach must consider the local 
static pressure distribution to ensure that the performance of the network meets the 
design specifications. 

For simplicity, in the first few sections below we restrict our interest to a pipe that 
runs in just a vertical plane, that is, a two-dimensional (2D) network (see Fig. 2.11). 
The local static pressure distribution in a fully three-dimensional (3D) network will 
be covered in Section 6.5. 

6.2 THE ENERGY EQUATION WRITTEN FOR LOCAL STATIC 
PRESSURE 

We begin by writing the energy equation for pipe flow, Eqn (2.7), in differential form. 
We have 

d( — ) + \d(a(z)ü2(z)) + gdz = dHL(z) = - d ( ^ £ l ) (6.1) 
P L p 

where the negative sign in right-side friction term (—dpfr is a differential pressure 
drop) accounts for the dissipative nature of friction (i.e., a reduction of static pressure 
with distance in the direction of water flow). Note that this negative sign would also 
appear as a multiplier of the friction term of Eqn (2.7) if its left side were written in 
reverse order, state 2 energy values minus those at state 1. The argument z is included 
in the appropriate terms in Eqn (6.1) to remind us that the terms may depend on local 
elevation. Ultimately, z, in turn depends on the local horizontal coordinate, x, through 
the geometry of the pipe network. This gives z = z(x), where x is assumed to be 
measured from the location of the source. 
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Upon integrating Eqn (6.1) from z(x = 0) to any arbitrary z(x) location, we obtain 

P{Z)'P1 + l-Hz)ü\z)-alu\]+g{z-zl) 
P 2 

f(ü(z),D(z))-±-f-dL(z) (6.2) 
o lü{z) 

where Lg is the length of the flow path to any arbitrary location, and z = z{x). In 
Eqn (6.2) the differential form of the Darcy-Weisbach equation, Eqn (2.9), was used, 

2 

d(P^) = f(u,D)^dL (6.3) 

where dL is a differential pathlength for the flow. 
As usual, pi and ΰ\ are both zero (at the source). Dividing Eqn (6.2) by gz\, where 

z\ is the elevation of the source, and rearranging, Eqn (6.2) becomes 

pgZl ζγ 2gZl 2gzx J0
 M W ' K ,J D{z) 

f(ü{z),D{z))^-dL{z) (6.4) 

In Eqs (6.2) and (6.4), the static pressure p, elevation z, and flow speed ü are 
states and, as such, the differentials of them are exact differentials.2 For an exact 
differential da, J1 da = a,2 — ai. In particular, note that the static pressure at any 
location depends only on the local value for u, not an integrated value to that point; an 
effect that is referred to as the "static pressure regain", which you may have discussed 
in fluid mechanics. The exact-differential nature of p, z, and ü is the reason why these 
terms do not appear under an integral sign in Eqs (6.2) and (6.4). Friction, however, 
is not a state but a path-dependent quantity. Friction arises from work done by shear 
forces on the pipe wall from motion of the fluid; it is well understood work (and 
heat transfer, for that matter) are path-dependent quantities; longer path lengths cause 
larger total frictional forces on the fluid. In the frictional term in Eqs (6.2) and (6.4), 
the length from the origin to any arbitrary location along the flow path affects the 
local static pressure, not simply the friction at that location. This is why the frictional 
term appears under an integral sign in Eqs (6.2) and (6.4). 

The differential flow-path length, dL, may be written in terms of differential ele-
vation change, dz, and differential coordinate, dx, as 

, dz, 
dL = Vdx2 +dz2 = Jl + ( —)2 dx = yjl + s\ dx (6.5) 

where se is the local slope of the pipe. For a discussion on the sign of st, see 
footnote 18 in Section 2.6.1. 

2The distinction between a "state" variable like energy, static pressure p, elevation 2, and flow speed ΰ and 
"nonstate", or path-dependent, variables like work due to friction is made in classical thermodynamics. 
Please see any thermodynamics textbook for this. 
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With Eqn (6.5), Eqn (6.4) becomes 

p(x) z(x) a(x)ü2(x) 

pgzi zx 2gzi 

~ 2^: [ f m ) > m ) D § y V l + s e { ° 2 άξ (6-6) 

where ξ is a dummy variable of integration. 
As a final step we employ the continuity equation, Eqn (2.21), to write u in terms 

of Q as done above. Equation (6.6) is written as 

p{x) _ z(x) 8Q2 . a(x) 
pgzi z\ ~ïï2gz\ D(x)4 

Equations (6.6) and (6.7) are the energy equations (the first in terms of ü and 
the second in terms of Q) for gravity-driven, minor-lossless3 flow in any straight or 
curved pipe, of constant or variable diameter, which govern the local static pressure 
distribution in the flow, p(x). The first two terms on the right side of Eqs (6.6) and 
(6.7) account for a static pressure increase with reduction in elevation and the last 
term on the right side represents the major frictional loss and the energy to accelerate 
the flow locally. It is a relatively straightforward task to show that Eqn (6.6), when 
written at x = i, reduces to Eqn (2.34) for a straight pipe of constant cross section 
(where Sf, and D are both constant)4, and to Eqn (2.41) for any general curved pipe 
of constant cross section.5 In both cases, recall that F in Eqs (2.34) and (2.41) are 
defined as p(z = 0)/pgzi or p(x = i)/pgz\. A variation of Eqn (6.6) will appear in 
Chapter 7 to describe the static pressure distribution in a pipe where minor losses are 
included. 

In the present context, the static pressure, p(x), is taken to be a prescribed constant 
and we solve the energy equation for the diameter. For this case, we designate this 
theoretical diameter from the solution of Eqn (6.7) as D(x) = Dn(x) to show that it 
is special (i.e., the Natural diameter distribution that produces the required uniform 
static pressure in the pipe). 

'Note that the term a, which accounts for the local acceleration of the flow over a small length of the pipe, 
has been included; this is not a minor loss. 
4Please see Exercise 18. 
'Note that for constant D and constant volume flow rate, / is also constant and the integral in Eqn (6.7) 
reduces to JQ χ/ΐ + s^(£)2<i£ = f£ dLe = L((x), where Lj(x) is the pipe length from the source to 
any arbitrary x (that is, horizontal) location measured along the flow path. Please take a few minutes to 
prove this to yourself. 
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6.3 AN ILLUSTRATION:THE "NATURAL DIAMETER" 

Once the geometry of the pipe is specified, z{x) and slope se(x) are known and with 
a prescribed uniform value for p(x)/pg, Eqn (6.7) can be solved for Dn{x). The 
numerical solution of Eqn (6.7) was carried out (in the package Matlab) for two 
cases of straight pipe (λ = 1) in a minor-lossless flow having a uniform slope of 1% 
(small slope) and 100% (large slope of 45°), respectively, with Q of 1.0 L/s and z\ 
of 100 m. The value for p(x)/pg was set to 0 (atmospheric pressure throughout the 
pipe)6. The friction factor, f(Q, D) from Eqs (2.16) and (2.17), is used in obtaining 
this solution. The kinetic energy correction factor, a, is 2 for laminar flow and 1.05 
for turbulent flow. 

The results for this case are shown in Fig. 6.1, where Dn(x) is plotted against the 
x coordinate. Our inspection of this figure reveals a considerable variation in pipe 
diameter that occurs over the first meter, or so, of a;. Over this distance7 the pathlength 
for the flow is small enough that friction may be neglected in favor of acceleration in 
Eqn (6.7). With the neglect of the integral term, and for p[x)j pgz\ of zero, we may 
rewrite Eqn (6.7) as 

Dn
app(x) = {-Ψ*-)1'4 (6.8) 
μμ πζ gx s 

where the subscript app indicates an approximate value for Dn (x) and s is the mean 
slope. A plot of this function appears in Fig. 6.1, where we note near-perfect agree-
ment between Eqn (6.8) and the numerical solution of Eqn (6.7) for the entrance 
region of the pipe. From our inspection of Fig. 6.1, we see that Dn(x) approaches a 
large value (in theory, approaching infinity) as x —> 0, a reflection of the need for the 
water to remain quiescent to satisfy the imposed zero static pressure. For x values 
larger than -10 meters, friction dominates the flow and Dn(x) becomes constant. 
This is a consequence of the constant slope for this example. For a fixed value of 
p{x)/pgz\ and constant slope, the only solution admitted by Eqn (6.7) is constant D. 
To explain this, first note that for constant slope the incremental decrease in potential 
energy per unit change in x is constant over the entire flow path of the pipe. Since 
this energy change must be consumed by friction, the frictional energy change per 
unit change in x must be constant. This can only occur with a uniform value for D 
over the entire flow path.8 

Finally, by our inspecting Fig. 6.1, we see that the value of D from this figure 
in the friction-dominated region is in perfect agreement with that from Fig. 5.4, the 

6This value is chosen because the required static pressure is arbitrary and a zero value is the simplest case. 
The results presented below will be identical in character for any value of p(x)/pg, say p(x)/pg equal to 
10 m, except that the designer will not be able to satisfy this condition for at least the first 10 m of pipe 
measured vertically from the source. 
7The distance referred to in this sentence is established by comparing the friction and inertia terms on 
the right side of Eqn (6.7). A balance between them shows that the water will need to travel about 10-30 
pipe-diameter lengths before friction becomes of the same order of magnitude as inertia. 
8From a mathematical viewpoint, note that Eqn (6.7), when written for constant D and slope, contains 
two terms that are linear in x. The first is 1 — z(x)/z\, and the second is the friction term f(Q,D)/D4 ■ 
L((x)/D. Thus, the value for D is established by a balance between these two terms. 
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Figure 6.1 The Natural diameter distribution, Dn(x), for p(x)/pgzi = 0 and large and 
small constant-slope pipes. The approximate values for D(x) = DaPP{x) are from Eqn (6.8) 
for the first few meters of the pipe where friction is negligible and, after this location, from 
Fig. 5.4, where friction dominates. The values for D for the two slopes are 1.83 and 0.748 in., 
respectively, in the friction-dominated region. 
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Figure 6.2 A realistic contour for a gravity-driven water pipe. 

appropriate design curve for the set of conditions in this example. It is worthwhile 
checking for this consistency in problems that present us with this opportunity. 

Let us consider a more realistic example where the slope of the pipe varies with x 
(see Fig. 6.2). The results for this example are presented in Figs. 6.3 and 6.4, where 
the focus is on Dn(x) for the inertia-dominated region near the pipe entrance, and the 
bulk of the pipe flow, respectively. Two points concerning Fig. 6.4 are noteworthy. 
First, there is a variation in pipe diameter of about a factor of 3 as the result of 
the variation in local slope, S((x), and the need for the constancy of the local static 
pressure. Second, it is clear that the pipe diameter varies inversely with local slope. 
Note that the largest change in Dn (x) occurs where the contour of the pipe has a near-
zero value for a local slope that occurs between x of 6000 and 7000 meters. This 
observation is explained as follows. As the local slope decreases, the local driving 
force (or potential energy) per unit of pipe length decreases. To satisfy the energy 
equation, the energy dissipated by friction must also decrease. This is accomplished 
by reducing the flow speed or, since Q is constant for these examples, increasing the 
pipe diameter, Dn{x). 

6.4 COMMENTARY 

From the above examples, it is clear that the pipe diameter and local static pressure are 
intimately connected by the contour of the pipe (along with Q and z\ whose effects 
were not investigated in the examples presented here). In particular, 

• The pipe diameter and local slope are inversely proportional to each other, 
where there is a uniform local static pressure in the pipe flow, 
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Figure 6.3 Natural diameter distribution, Dn(x), for p(x)/pgzi = 0, Q = 1.0 L/s, s 
0.01, zi = 100 m, and the pipe contour of Fig. 6.2. Only the near-source region is shown. 

Figure 6.4 Natural diameter distribution, Dn(x), for p(x)/pgzi = 0, Q = 1.0 L/s, s = 
0.01, zi = 100 m, and the pipe contour of Fig. 6.2. The bulk of the pipe flow is shown. The 
pipe contour appears for reference. 
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• For the region away from the pipe inlet, where the flow is dominated by fric-
tion not inertia, D is constant and finite for the case of constant nonzero 
slope (cf. Fig. 6.1) and approaches infinity as the local slope approaches zero 
(cf. Fig. 6.4). 

Of course, no one designs a gravity-driven water network with a variable-diameter 
pipe as depicted in Figs. 6.1, 6.3, and 6.4; pipes of infinitely variable diameters do 
not exist and if they did their cost would likely make them prohibitive to install. 
Instead, we use pipes of constant diameter over large flow paths and the designer 
needs to choose nominal pipe sizes that produce a static pressure distribution that 
is acceptable. This designation means a static pressure large enough to prevent 
contaminants from entering the water flow from the outside but not too large such 
that the pipe costs will become prohibitive. This is clearly where engineering tradeoffs 
need to be considered. 

In summary, the combination of the need to provide acceptable pressures and the 
lack of ability for the designer to control these pressures by locally varying the pipe 
diameter as he/she chooses, necessitates that close attention be paid to the effect of 
pipe size distribution in networks that have local peaks and valleys. A good example 
for this is presented in Section 8.6. 

The ideas from the this section will now be extended to a 3D pipe flow network. 

6.5 LOCAL STATIC PRESSURE FOR A THREE DIMENSIONAL 
NETWORK 

For a 3D flow network, where the flow path can be described as z(x,y), we begin 
with Eqn (6.5) and extend this to include a second coordinate in the horizontal plane, 
y. The differential of the flow path length becomes 

dL = y/dx2 + dy2 + dz2 (6.9) 

where dy is the differential length of the pipe in the y direction. If we restrict our 
interest to those cases where the pipe diameter, D, is uniform over the flow path, 
Eqn (6.7) is written as 

p{x,y{x)) _Λ z(x,y(x)) SQ2
 r a , f(Q,D) fL'^v^)) ^ 

pgzi z\ K2gz\ D4 D5 / άξ]. 
Jo 

The symbol ξ is a dummy variable of integration as before. Le(x, y(x)) is the length 
from the source to any arbitrary location along the pipe flow path as a function 
of the position of the pipe in the y direction (y(x)) and the assumed independent 
variable, x. That is, the coordinates of the pipe at any location are (x, y(x), z(x)). 
We see from our inspection of Eqn (6.10) that there is little need to refer to local 
slope as we did for the simpler case of a 2D network. In the present 3D case, there 
are two slopes that affect the local flow path length along the pipe, dz(x)/dx and 
dz/dy = (dz(x)/dx)/(dy(x)/dx). These are cumbersome to use. Instead, the 
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designer normally solves the energy equation in the coordinate of the pipe itself, the 
local pipe length Le, or "pipeline coordinate.9" Thus, the final form of the energy 
equation for minor-lossless pipe flow and constant D for a 3D flow network is 

P(Le(x)) 1 z(Le(x)) 8Q2 f(Q,D) fL'M 
pgzi z1 KzgziD4 D J0 

or, after carrying out the integration, 

p(x) 

pgzi 
= 1 - z(x) 

Z\ 

SQ2 \a 1 f(C D)Lax)\ 
nigzM ' }{Q'D> D J (6.12) 

An inspection of Eqn (6.12) for a 3D flow network shows that it is identical to that 
for the 2D analysis above for constant D. That is, Eqn (6.7) when written for constant 
D and combined with Eqn (6.5) is identical to Eqn (6.12) if the independent variable 
x is replaced by L((x). Since the quantities of interest are energies (which are sealer, 
not vector in character), any 3D flow network described by the coordinates (x, y, z) 
may be effectively "flattened" in the y direction so that the component of the network 
in this direction is eliminated. This is valid provided that the overall length of the 
pipe is unchanged and the elevation, z, as a function of the independent variable x 
or L((x) is maintained. Thus, we see that the independent variable x takes on a new 
meaning in light of this discussion, x can be the horizontal coordinate in the usual 
Cartesian coordinate sense, or the coordinate measured along the line of the pipe. We 
will refer to the x coordinate in the latter case as a "pipeline coordinate." 

A consequence of the above discussion is that there is no need to distinguish 
between 2D and 3D flow networks provided the horizontal coordinate is measured in 
the vertical plane of the pipe for which the energy equation is written. The energy 
equation, written for local conditions in a minor-lossless pipe flow [Eqn (6.12)], will 
be referred to as needed in the chapters that follow. 

6.6 GRAPHICAL INTERPRETATIONS: ENERGY LINE AND HYDRAULIC 
GRADE LINE 

6.6.1 Energy Line 

Engineers working in the field of hydraulics, who perform calculations for pipe and 
open-channel fluid flows, sometimes rewrite Eqn (2.2) by dividing both sides by g. 
With the use of Eqn (2.4), we obtain 

^+a2^+z = hT-hL(z) (6.13) 
pg 2g 

9The reader may remember from fluid mechanics that this is the usual way that the Bernoulli equation 
is developed; by integrating the inviscid momentum equation along a streamline thereby putting it in a 
"streamline coordinate system." 
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where hr is the total head at z = z\, and hL(z) is the z-dependent head loss due 
to frictional energy losses, both major and minor. In writing Eqn (6.13), we have 
taken state 2 to be at any arbitrary location z along the flow path. At z = z\, 
üi = pi = h,L = 0 and Eqn (6.13) gives hr = z\. Thus, Eqn (6.13) may be written 
as 

p(z) u(z)2 

^-L + a2~r-+ z = ζχ -hL(z) (6.14) 
99 25 

Since Eqn (6.14) must be dimensionally homogeneous, each term on the left side is 
a height, or "head," above z = 0. Specifically, p(z)/pg is the "pressure head" due to 
the static pressure p(z), ct2Ü(z)2/2g is the "velocity head," (also referred to as inertia 
or acceleration in this text) and z is the "elevation head." We see from Eqn (6.14) that 
the three heads must add up to the total head less that due to energy losses. A plot of 
z\ — hi, (2), or alternately, p(z)/pg + a2Ü{z)2/2g + z, versus horizontal distance over 
which the pipe runs produces on the vertical axis an "Energy Line" or EL (Munson 
et al., 1994). For a lossless flow (inviscid, for which the energy equation becomes the 
Bernoulli equation), hL = 0 and the EL is a constant height, z\. Otherwise, the EL 
has a negative slope for real flows, the value of which depends on the major frictional 
loss and the distribution and magnitude of the minor loss coefficients. For example, 
a minor loss will result in a sudden (i.e., vertical) reduction in the EL height, whereas 
the major loss affects only the slope of the EL over a finite distance. This slope of 
the EL is h^/L, which is the hydraulic gradient or head-loss factor, is seen in many 
places in this text [e.g., Eqs (2.42) and (2.43)]. 

6.6.2 Hydraulic Grade Line 

As pointed out by Jordan Jr. (2004), the maximum recommended flow speed for pipe 
flow is ~3 m/s. The velocity head calculated from this flow speed is -0.5 m (< 1 psig). 
This is normally small compared with the other head terms in the energy equation so 
that it is sometimes able to be neglected. This conclusion is consistent with the above 
justification for the neglect of minor loss and inertia for cases where D/zi is small. 

The "Hydraulic Grade Line" or HGL is defined as (Munson et al., 1994), 

^ + z » z i - / i i ( z ) (6.15) 
99 

or 
ζγ « z + h(z) + hL{z) (6.16) 

and thus includes only the pressure and elevation heads; the change in kinetic energy 
per unit mass is neglected. However, the kinetic energy due to acceleration from zero 
speed to u near the source can be included among the minor losses in hi. 

Equation (6.16) states that the potential energy at the source is conserved and is 
composed of the sum of the potential (z) and pressure energy [or static pressure head, 
h{z)], and the frictional energy loss [/IL(Z)] at any elevation, z. For a horizontal 
pipe, the HGL height is a measure of the static pressure distribution in the pipe and 
for any flow of a viscous fluid, will have a negative slope due to frictional loss. The 



148 "NATURAL DIAMETER" FOR A PIPE 

difference between the EL and the HGL is a measure of the velocity in the pipe. For 
a pipe of uniform diameter, the velocity is constant and the difference between the 
EL and HGL lines will be constant (i.e., the slopes of each line will be the same, and 
the differences between the two will be small). Minor loss will affect the HGL in the 
same manner as they do the EL; a minor loss results in a sudden drop in the HGL due 
to a localized loss of static pressure. 

An example where the results are presented in terms of the HGL and compared 
with a plot of local static pressure distribution is presented in Section 8.6. For further 
details on the EL and HGL, and examples of pipe flow with the EL and HGL illustrated, 
please consult any undergraduate fluid mechanics textbook. 

6.6.3 The Relevance of the HGL and EL 

In engineering, we often need to calculate and plot the distribution of a property in 
space. For example, in solid mechanics this may be the stress in, or deformation of, 
a material due to a prescribed set of loading conditions, say a beam loaded uniformly 
over its span. In a similar manner, in fluid mechanics, we often need to calculate 
the pressure or velocity distribution in a flow. For example, a graph of the HGL is 
nothing more than a distribution of pressure and potential energy per unit mass in 
the flow. That is, the same information would come from a plot of just static pressure 
and elevation versus local horizontal distance or local distance measured along the 
pipe flow path, L((x). Mechanical engineers, by virtue of their training, tend to do 
the latter, whereas hydraulic engineers for the same reason tend toward the former. 

Since the local static pressure is of key importance when designing networks with 
peaks and valleys, a plot of p(x) and z(x) are adequate to highlight and understand 
the performance of a gravity-driven water network design; no plot of HGL or EL 
is needed. The personal preference of the author is to plot the dimensionless static 
pressure, p{x)j pgz\, and dimensionless elevation, z(x)/z\. The reasons are that 
both of these are dimensionless quantities (values are independent of the system of 
units) have maximum values of 1 in any system of units and zero for their lower limit. 
Also, the value of p(x)/ pgzj between 1 and 0 at the delivery location is a measure 
of the frictional losses in the design; as discussed in Section 2.6.3 the friction losses 
increase as p(x2)/pgz\ approaches 0. 

An example for flow in three dimensional gravity-driven flow network and the use 
of the HGL and EL is presented in Section 8.6. 

6.7 SUMMARY 

In this chapter, we began our focus on the local states between the source and delivery 
for a gravity-driven water network. This is motivated by the need to assure that 
acceptable pressure conditions will exist at all points along the flow path, including 
possible low points, where pressures will be locally high, and possible high points, 
where the pressure will be locally low. As a companion to the Natural flow defined 
in Chapter 2, and to emphasize and quantify the distinct connection between the pipe 
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diameter and local static pressure, we defined a concept called the "Natural diameter" 
for a pipe. The Natural diameter distribution is that needed to produce a desired static 
pressure distribution in the pipe flow. The results from a simple integration along the 
flow path of the energy equation for pipe flow showed that for a specified uniform 
local static pressure: 

• Large pipe sizes are needed in the region of the reservoir due to the acceleration 
of the flow from the quiescent source to the flow conditions in the pipe, 

• In the regions away from the source, very large pipe sizes are needed where 
the local slope approaches zero, 

• From the examples given in this chapter, we conclude that the pipe diameter 
and local slope are inversely proportional to each other to maintain a uniform 
static pressure. 

Of course, pipe sizes that are infinitely variable do not exist. Therefore, the designer 
needs to choose pipe sizes that produce an acceptable pressure distribution in the flow 
where this designation means a static pressure large enough to prevent contaminants 
from entering the water flow from the outside. This means a pipe size large enough to 
maintain a sufficiently large static pressure, but small enough to keep network costs 
within budget. The combination of the need to provide acceptable pressures and the 
lack of ability for the designer to control these pressures by locally varying the pipe 
diameter as (s)he chooses, necessitates that close attention be paid to the effect of 
pipe size distribution in networks that have local peaks and valleys. 

Because the energy equation is a sealer, not vector, any three dimensional gravity-
driven water network may be modeled as if it is 2D by measuring the x coordinate 
along a line that is the projection of the vertical center plane of the pipe onto the 
horizontal plane. This is referred to as the "pipeline coordinate". 

The traditional HGL plot for a gravity-driven water network is appropriate for 
us to assess network performance. This is most convenient as a tool to quickly 
highlight potential problems with a proposed design, such as unacceptably low static 
pressure heads at junctions, and so on. The HGL has enjoyed broad use in the 
hydraulics community because graphical data are easy to understand and interpret. 
However, the energy equation (or systems of energy equations), which the HGL 
graphically represents, still need to be solved to determine pipe diameters in designs 
where these are unknown. Otherwise, as pointed out in Section 1.6, tedious and 
time-consuming trial-and-error methods are required. In addition, as we will see in 
Chapter 11, there will be a need for us to work with the energy equations, not their 
graphical representations, to uniquely determine the static pressure heads at junctions 
in multiple-pipe networks. The HGL approach will fail in this regard. The bottom 
line is that just a plot of p(x) and z(x) are adequate to highlight and understand how 
the network will function; no plot of HGL is needed. It is most convenient, and 
hence strongly recommended, for the designer to plot the dimensionless elevation 
and static pressure distribution; both of these quantities have maximum values of 1 
in any system of units and 0 for their lower limits. 



150 "NATURAL DIAMETER" FOR A PIPE 

References 

T. D. Jordan Jr. Handbook of Gravity-Flow Water Systems. ITDG Publication, 
London, UK, 2004. 

B. R. Munson, D. F. Young, and T. H. Okiishi. Fundamentals of Fluid Mechanics. 
John Wiley & Sons, Inc., New York, NY, 2nd edition, 1994. 

A motivation for continued efforts in 
water network development. 



CHAPTER 7 

THE EFFECTS OF MINOR LOSSES 

"Rivers and Streams Forming Springs, These Belong to Every Man." 
- The Talmud 

7.1 NATURE OF THE MINOR LOSS 

Minor losses, embodied by the terms K and Le/D in Eqn (2.40), enter into the 
design as an energy loss added to that due to friction in the straight pipe. There is 
a subtle difference between the major and minor losses. The major loss is one that 
is uniformly distributed along the pipe length. In contrast, the minor losses occur at 
discrete locations along the flow path. By acting at discrete locations, minor losses 
impose a localized effect on the static pressure in the flow. For example, the minor 
loss associated with a partial blockage in a pipe flow will cause a reduction in static 
pressure at the blockage location and immediately downstream. Should the pressure 
fall to vacuum conditions, contaminated ground water may enter the pipe flow, which 
is obviously undesirable. 

From a modeling perspective, one must consider a localized model of the pipe flow 
to investigate the effect of the minor loss. This is contrasted with a "lumped" type 
of model when one considers just an entering and an exiting state, say Eqn (2.40). 
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The latter model will yield only "overall" performance, never local conditions at any 
arbitrary point along the flow path. 

The energy equation for local conditions is Eqn (6.7), which was developed in 
Chapter 6. We now rewrite this equation here and include minor losses, 

(7.1) 

where, for this general form, we have allowed D and the local slope, se, to vary along 
the pipe flow path. The form of the energy equation for the case of constant D is 
presented in Eqn (7.2). 

All terms on the right side of Eqn (7.1) contribute to the dimensionless static 
pressure, p{z{x))/pgz\, on the left side. The term 1 — zjz\ in Eqn (7.1) is the 
increase in dimensionless static pressure as the result of reducing z from z\ at the 
source to z — 0 at the delivery location. This is the hydrostatic pressure contribution 
to the static pressure. The integral term that includes f(Q,Dfê)) is the change in 
the dimensionless static pressure due to major-loss friction. The rest of Eqn (7.1) 
represents the pressure change due to the acceleration from zero flow speed at the 
source to ü in the pipe (embodied by the term a and referred to a acceleration or 
inertia in this text) and the minor losses. The integral in Eqn (7.1) that involves Κ(ξ) 
can be thought of as a running sum of the minor loss coefficient values between the 
top of the network (at z = z\ or x = x{) and the location at any elevation z{x) along 
the pipe. These need to be specified by the system designer. Also note in Eqn (7.1) 
that we have chosen to include the effects of the minor loss using the more-common 
K coefficients alone (i.e., any equivalent-length-type coefficients, if they exist, have 
been converted to K-type). 

We see from our inspection of Eqn (7.1) that the value of the local static pressure 
results from a competition between the tendency for it to increase with a reduction 
in elevation z (the hydrostatic effect) and the loss of static pressure due to major and 
minor losses along the flow path (note the negative sign before the major and minor 
loss terms in Eqn (7.1)). The major loss causes a uniformly distributed static pressure 
loss along the flow path, but the minor loss causes sudden losses in static pressure 
at specific locations where the minor loss elements, such as fittings and valves, are 
installed. 

Equation (7.1) shows that the dimensionless static pressure distribution in the pipe, 
p(z(x)) Ipgz\, depends on the dimensionless elevation of the pipe, z(x)/zi, the local 
slope, s, pipe diameter, D, and reservoir elevation, z\, as well as the distribution and 
size of the loss coefficients, K. 
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7.2 A NUMERICAL EXAMPLE 

Because of the near-limitless combinations of types and locations of minor loss ele-
ments there is no simple way to represent the solution of Eqn (7.1) in the form of a 
few graphs, as done in Chapter 5, where we neglected minor losses. Instead, we will 
consider a few cases of interest and attempt to draw some general conclusions from 
these. 

We consider a gravity-driven water network consisting of a single straight pipe of 
uniform slope and pipe diameter with a re-entrant loss or larger at the inlet (the end 
of the pipe protrudes into the reservoir) at z = z\, where K — Kx = Kentry and 
two other minor losses. One is at z = 0.5z\, where K = K2 = 50 and the other is at 
z = 0, where K — K3 = 100. Normally, there is a filter installed at the pipe inlet to 
prevent the entry of dirt and debris that could, over time, plug the system. To model 
this effect, we consider 20 and 200 times the re-entry K = Kentry value of 0.78 (see 
Table 2.1); the factor 20 corresponds to a small filter blockage, and 200, a larger one. 
We consider two nominal polyvinyl chloride (PVC) pipe sizes of 2 in. and | in., 
and assume a slope, s, of 1 and 10%. The case that will produce the lowest static 
pressures in the pipe (i.e., worst case) is one where the static pressure at the delivery 
location, p2, is zero. We assume this value here to produce the most conservative 
results relative to this parameter. We also take z\ = 50 m. The results will show not 
much sensitivity to z\, but large sensitivity to s and D, as well as the K distribution. 

The local static pressure distribution is shown in Figs. 7.1 and 7.2 for the small 
and large filter blockage, respectively. Both figures show a sharp reduction in static 
pressure immediately after the flow leaves the reservoir at z/z\ — 1. As the flow 
moves down the pipe toward smaller z the static pressure increases due to the fact that 
the pressure gain due to the decrease in potential energy is more than the frictional 
energy loss per unit ofpipe flow path. Atz/ζι = 0.5, the static pressure falls suddenly 
due to the minor loss at this location. Between zjz\ = 0.5 and the bottom of the pipe, 
the static pressure rises again and then falls suddenly due to the minor loss at z = 0. 
Clearly, the main region of concern in the pipe is immediately downstream from the 
reservoir where the pressure may be very low; further downstream the hydrostatic 
pressure has contributed to the increase in static pressure. For the small blockage, 
there is slight concern for the designer due to ~—3 psig (gage) pressure or 3 psi less 
than atmospheric pressure. For the large blockage, the results are clearly catastrophic. 
If the values for static pressure appearing in Figs. 7.2 are realized, all PVC pipe would 
fail under the extreme vacuum conditions. However, the volume flow rate will surely 
decrease in response to the vacuum, lessening the extent of the vacuum seen in this 
figure. One way to correct the problem of unacceptably low pressures in the pipe is 
to install vacuum breakers (valves that automatically allow air into the system should 
the pressure become too small) at the low-pressure locations. This will be discussed 
in more detail in Chapter 13. 

An additional concern with the formation of negative gage pressures in a pipe 
is that small leaks in the pipe wall or fitting joints may cause contaminated ground 
water to pass into clean water in the pipe. This problem is particularly egregious 
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Figure 7.1 Minor loss effects on static pressure in a single straight pipe. Small blockage at 
entrance to pipe in reservoir. 2/21 = 1 is located at the reservoir. 2/21 = 0 is at the delivery 
location. 

Figure 7.2 Minor loss effects on static pressure in a single straight pipe. Large blockage at 
entrance to pipe in reservoir. 2/21 = 1 is located at the reservoir. 2/21 = 0 is at the delivery 
location. 
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since such leaks are virtually impossible to find and, if found, very expensive and 
time consuming to repair. 

From this example, we conclude that minor losses may be an issue especially as 
they affect the design of the filter system in the reservoir. We may generalize the 
results of this study by noting that static pressure will become more negative with 
increases in s, D, and z\. For all other parameters fixed, increasing the delivery static 
pressure, p2, reduces the velocity in the pipe and thus, reduces the effect of the minor 
loss. 

7.3 THE CASE FOR UNIFORM D 

For a pipeline of uniform diameter starting at the source, the equation to be solved 
for the static pressure distribution is Eqn (6.12) where the minor loss coefficient 
distribution K is included, 

(7.2) 

As in Eqn (6.12), L((x) is the distance from the reservoir (at x = x±) measured along 
the run of the pipe. This function needs to be specified by the designer. 

7.4 IMPORTANCE THRESHOLD FOR MINOR LOSSES 

When determining the pipe diameter, it may be of interest to the designer to identify 
the threshold value of the sum of the minor loss coefficients below which minor losses 
may be neglected. With minor losses justifiably neglected, the design graphs from 
above or a simple closed-form design formula [Eqs (9.2)-(9.6)] may be confidently 
applied to determine D. Consider Eqn (2.40) and focus on the competition between 
the major and minor loss terms, λ\/ΐ + s~2 and j - X) i = 1 jf | ·, respectively. If the 
minor loss term is significant with respect to the major loss, say, > 10% of it, then 
the minor loss may be considered to affect the calculation of the pipe diameter. If the 
ratio of the minor loss term to the major loss term is < 10%, then we may be able 
to ignore the minor loss when calculating the diameter.1 For this condition, take the 
ratio of the minor loss to the major loss to get 

(7.3) 

'By integrating Eqn (7.2) over the entire length of pipe in the network, the energy equation relates Q to 
L,z\,v,g, and the total minor loss in the network. Based on the dependencies established in Chapter 9 
for a restricted range of Reynolds numbers (Re) and smooth pipe wall, we use this equation to calculate 
that the 10%-threshold affects D by, at most, 4%. 



156 THE EFFECTS OF MINOR LOSSES 

where the "run," £, is the pipe length from inlet to outlet measured in the horizontal 
plane. 

Equation (7.3) addresses the relative strength of the minor loss if it is in the form 
of Le/D terms. If the minor loss is in terms of K values, the same procedure as 
above gives, 

Y,Ki> 0.003^ 
i= l 

(7.4) 

That is, the minor losses are important only if Eqs (7.3) or (7.4) are satisfied.2 Oth-
erwise, we may ignore minor losses inasmuch as they affect the determination of the 
pipe diameter. Because the ratio \i/D is generally very large, normally of the order 
of 1000 or more for most gravity-driven water distribution networks, minor losses 
may often be ignored when calculating the pipe diameter? The exception is where a 
partially open globe valve is used for flow control. For a partially closed globe valve, 
the value of K may be very large. The conclusion drawn from these developments 
was the motivating factor for the neglect of minor loss in the design graphs presented 
in Chapter 5. However, particular attention needs to be paid to the minor loss for 
systems where the run, £, is small. 

Examples of pipe flow that include the effect of minor losses are presented in the 
Chapter 8. 

7.5 FIXED AND VARIABLE MINOR LOSSES 

Before completing this brief chapter, we discuss the distinguishing features of fixed 
and variable minor loss elements. A fixed minor loss is one that is geometrically 
constant over time. The elbow, tee, coupling, union, and a fully open valve (e.g., gate 
valve)4 are fixed minor loss elements since, except for a small amount of fouling from 
elements in the flowing fluids, their shapes do not change over time. By contrast, 
a globe valve, which is a variable minor-loss element, is designed for the user to 
partially restrict the flow by opening it a fraction of its full-open position; the changing 
geometry is the degree of openness.5 The reason for the need to distinguish between 
these two classes of minor loss elements is that when a variable minor loss is included 
in the design, the loss coefficient that is included in the analysis is always based on 

2With little loss of accuracy, D in these equations may be first estimated by neglecting minor losses. 
3This observation is made in Jordan Jr. (2004), but with different quantification. He notes "frictional losses 
caused by fittings . . . are considered negligible if the distance between the individual fittings is at least 
1000 pipe diameters." 
4The design of a gate valve is such that its purpose is to allow all or no flow to pass. Thus, a gate valve is 
operated as fully open or fully closed and should never be used to partially restrict the flow. Please see a 
further discussion on this topic in Section 13.14. 
5Note that a ball valve may also be used to partially restrict flow, but these are used for this purpose less 
frequently than a globe valve. For one reason, a ball valve has a much greater nonlinear loss characteristic 
than does a globe valve. This means that a very fine adjustment may need to be made near its fully closed 
position to achieve the desired flow rate. Slight shifts in this position due to a small disturbance will 
adversely affect this setting. 
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a minimum or, in the case of a globe or faucet valve, a fully open condition. From 
Section 3.5, recall that, when sizing pipe for a network, the designer normally chooses 
the nominal pipe size having an inside diameter slightly larger than that calculated 
from the solution of the energy equation. The resulting oversized pipe will not perform 
as designed because the frictional loss is less than that for the specified water flow 
rate. The globe valve enters the design by adding friction loss to the flow while 
simultaneously reducing the volume flow rate to meet the design value. In this way, 
the variable-minor loss globe value is an integral part of a gravity-driven water 
network because of its ability to control the flow and, ultimately, to shut off the flow 
completely to facilitate inspection and repair to parts of the network. 

Note that the minor-lossless flow approximation, on which the charts in Chapter 5 
are based, includes the neglect of all minor losses, including those from any globe 
valves in the network. From Table 2.1, we saw that the loss coefficient for a fully 
open globe is valve is of the order of 10 and thus not a large contributor to the total 
frictional loss. 
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CHAPTER 8 

EXAMPLES FOR A SINGLE-PIPE 
NETWORK 

"When the well is dry, we know the worth of water." 
- Poor Richard's Almanac, 1746 

8.1 INTRODUCTION 

It is worthwhile to summarize the models for pipe flow that have been developed thus 
far. After identifying the energy equation as the fundamental governing equation for 
this text (Chapter 2), first we focused on the performance of a single-pipe network 
driven only by the end states (i.e., the pressure at the inlet, at atmospheric conditions, 
and at the outlet). It was quantitatively demonstrated that minor losses are small in 
many gravity-driven networks. Because of this, a single chapter (5) was devoted to 
the solution of the energy equation for minor-lossless flow in a single pipe of a fixed 
diameter. Several simple design charts were the outgrowth of these solutions. The 
energy equation for pipe flow where minor losses are important (say, for flow control 
purposes), and its solution, is a hint at the importance of the local flow conditions in 
the pipe; this because of the local nature of a minor loss (see Chapter 7). The local 
character of the flow also bears on the integrity of a design, as we found that the local 
static pressure at each and every point along the flow path needs to be maintained at a 
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positive gage pressure, first explored in Chapter 6. Also introduced in this chapter was 
the concept of the Natural diameter distribution for a pipe, developed to emphasize 
the strong connection between pipe size and static pressure distribution. From these 
ideas, we are led to understand the importance of assessing local states in networks, 
especially for those where there are local peaks. 

Several examples for single-pipe systems are presented in this chapter to con-
solidate the material appearing in the above chapters and to reinforce the concepts 
presented therein. One example is for a straight pipe for which we can use the design 
graphs from above (minor losses are negligible) or the Mathcad worksheet. The 
second example is one where the pipe run is circuitous and has numerous fittings and 
valves that contribute to the minor loss. A variation of this example is included for a 
pipe delivering water from a reservoir tank to a tapstand, where there is a prescribed 
static pressure just upstream from the tapstand. Finally, in the last few examples 
we explore the importance of accessing the static pressure distribution in a network 
where there is a local peak. The classical problems of the time to drain a tank (the 
only time-dependent problem in this book) and flow in a syphon are two of these ex-
amples. We also explore the design of a simple gravity-driven water network where 
site is mapped by survey data. 

The object of each of the examples presented below is to determine the pipe size 
to meet the specified design requirements. Unless otherwise specified, IPS sch. 40 
polyvinyl chloride (PVC) pipe is to be used. Where minor loss coefficients are used 
they reference Table 2.1 unless otherwise noted. 

8.2 A STRAIGHT PIPE 

Consider the example for the following system where the contour of the ground 
provides a uniform slope from the source to a storage tank. Because of this, we will 
consider the pipe between the source and the tank region to be straight (i.e., it will 
have no bends from elbows). A flow rate measurement at the source has determined 
Q = 0.40 L/s and an Abney level1 is used to find the slope of the system of s = 0.0080. 
Both an altimeter and a GPS give the elevation difference between the source and the 
tank (zi) of 64 m. Two instruments are used to find elevation since this may be one 
of the most uncertain of all of the measurements characterizing the network. Four 
or more satellites are required to obtain a reliable altitude measurement from a GPS. 
This is difficult to achieve if there is a tree canopy that covers the source. Even with 
a multitude of satellites, the altitude reading from a GPS is still subject to a minimum 

1 An Abney level is an optical device, like a small telescope, which is used to determine the position of an 
object in space. By sighting a point at a distance to the position of the Abney level, the angle between this 
point and the Abney level can be read directly from a scale on the body of the level. When complemented 
with readings from a measuring tape, an approximate topographical survey of land may be produced 
by repeated measurements of angles and distances between successive locations along a potential pipe 
flow path. This may be compared with the survey obtained from GPS latitude, longitude, and elevation 
measurements as discussed below. See Chapter 13 or (Jordan Jr., 2004) for further details. 
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of ± 10 m uncertainty.2 The uncertainty dictates that the designer consider the lowest 
value of z\ rather than the reading. Thus, we take z\ = 64 — 10 m = 54 m. 

A filter at the inlet of the source is known to give a K value of 200 [extrapolation 
from Potter and Wiggert (2002)], there are 2-90° elbows (Le/D = 2-30) entering 
the tank, a full-open globe valve (K = 4, but if a conservative estimate is used, this 
should be increased to K = 10) at the inlet to the tank, and a sudden enlargement 
from the supply pipe where it enters the tank (K=l). 

The surface of the storage tank is at atmospheric pressure (jp2 — 0) and, thus, 
F = 0 for this example. If we neglect minor losses for the moment, the solution 
for the pipe diameter is from Fig. 5.4 for a straight pipe (A = 1) with zero delivery 
static pressure. For the prescribed values for Q and s, obtain D to be < 1^ in.. The 
designer would specify a 11 in. pipe to satisfy the prescribed conditions. 

Consider the effect of the minor losses. The solution from the Mathcad worksheet 
(Fig. 8.1) with the prescribed values for Le/D and K as above gives D — 1.381 in.. 
This corresponds to a 1 |-in. pipe (.0=1.61 in. for a nominal 1 \ in. pipe). Thus, we 
see that the minor losses have no effect on the pipe size for this example. The values 
for K and/or Le/D would need to increase > 1000-fold to necessitate a 2-in. pipe 
size. However, should the elevation head, z\, be reduced to a small value of 4 m, and 
the slope maintained as above, I is reduced by a factor of 13.5 and the solution shows 
that a 2-in. pipe size will be required. Thus, we see further evidence that minor losses 
are important when sizing pipe for networks where there is a small run. 

8.3 FORMAT OF MATHCAD WORKSHEETS FOR SINGLE-PIPE 
NETWORKS 

Before continuing with examples, the format of the Mathcad worksheets for a single-
pipe network, such as that for Fig. 8.1, is presented. With slight variations, the entries 
appearing in the worksheets are as follows: 

1. Definition of water properties of density, p, and viscosity, v. 

2. A convergence tolerance, T0L, used in Mathcad to determine when a root-
finding algorithm has found the root to sufficient accuracy. 

3. Definition of Reynolds number (Re) as a function of Q and D. 

4. Definition of the absolute roughness of the pipe wall. 

5. The friction factor function as defined by Eqs (2.16) and (2.17). 

6. The correspondence between nominal pipe size and D for the pipe material 
and type (schedule or SDR) of pipe under consideration. 

2Errors come from several sources including ionospheric effects, shifts in the satellite orbits, errors of 
the satellites" clocks, multipath effects, tropospheric effects, and calculation and rounding errors (Anon., 
2009). Recent reports of a GPS and coupled barometric altimeter with auto-calibration may provide 
elevation accuracies of better than ±10 m. See Appendix B. 
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Figure 8.1 Mathcad worksheet SinglePipeNetworkDesign_Appendix.xmcd for 
example problem of Section 8.2. 
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7. Definition of a as a function of Re. 

8. Initial guesses for the values of D (diameters ranging from 0.2 to 4 in. are good 
guesses for nearly all problems considered in this book). 

9. The energy equation with the needed functional dependence. 

10. Values for the input parameters including F, X, and Q, the appropriate minor 
loss coefficients, K and Le/D (referred to as Le), elevation z\, and the mean 
slope, s. 

11. The solution of the energy equation using the root function. 

12. The results that include the theoretical value for D, flow speed based on this 
value, Re, and the value for the friction factor. 

The worksheets for a single-pipe network appearing in various places in this text 
are intended for general cases instead of those specific to the examples in this chapter. 
These have results that are slightly more extensive which may include the following: 

• Definition of nominal diameter and actual inside diameter based on the nominal 
size. 

• In addition to the value for friction factor, the recommended nominal pipe size 
based on the theoretical value for D, and the value for Q that is based on 
nominal pipe size are reported. 

• A message called "warning." If warning says "Pipe size out of range", dimen-
sional data for the pipe need to be extended to include either smaller or larger 
pipe sizes. 

Though not visible in the figures of Mathcad worksheets in this book, input param-
eters in the worksheets are colored green, output parameters are red, and comments 
are generally yellow. A tutorial in Mathcad is presented in Appendix C. 

8.4 A CIRCUITOUSLY RUN PIPE WITH ATMOSPHERIC DELIVERY 
PRESSURE 

Consider the same example as in Section 8.2, but allow the pipe to follow a contour 
different than the straight path from the source to the tank. This would be required 
when there is a structure between the source and the tank, such as a mountain or a 
house and, in this case, the ratio of the actual pipe length to the one if the pipe were 
straight, λ, is > 1. In Section 2.6.5, we saw that for a range of actual water-driven 
networks, the values for λ are not much more than 1 plus a small fraction. However, 
in the present example, let us assume an extreme case where there is a hill separating 
the source reservoir from the delivery location whose peak elevation is larger than 
that of the source. Even with the neglect of friction in the flow, water cannot flow to 
an elevation > z\. Thus, the designer must route the pipeline around the hill instead 
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of over it. In this case, because of the size of the hill, the pipe length is extreme such 
that A = 2.5 and, because of the circuitousness, there are 20-90° elbows in the flow 
path (Le/D — 20 · 30 = 600). Assuming a total K value of 205 as above, we obtain 
D — 1.67 in. from the Mathcad worksheet (Fig. 8.2). This corresponds to a 2-in. 
pipe (.D=2.067 in. for a nominal 2-in. pipe and .0=1.61 in. for a nominal \\ in. 
pipe). Because the diameter required to satisfy the given conditions is only slightly 
larger than 1 \ in. and we choose a 2-in. pipe, the volume flow rate that the 2-in. pipe 
can pass is Q = 0.716 L/s, a value nearly twice that currently produced by the source. 
Under most conditions, this pipe size would accommodate plenty of additional flow 
rate for the possible planned flow rate increase in the future, assuming the source can 
produce it. Calculating water demands in the future is presented in Chapter 13. 

Figure 8.2 Mathcad worksheet SinglePipeNetworkDesignJVppendix.xmcd for 
example problem of Section 8.4. 
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8.5 A CIRCUITOUSLY RUN PIPE WITH SPECIFIED NONZERO 
DELIVERY PRESSURE: "SENSITIVITY" STUDIES 

We reconsider the example of Section 8.4 where, instead of the pipe running from 
the source to a reservoir tank, it goes from the tank to a tapstand. At the tapstand 
there is required a static pressure equivalent to h del = 5.4 m of water. The tank 
surface is open to the atmosphere so p\ = 0. As above, the ratio of the actual pipe 
length to the one if the pipe were straight is λ. Let us consider the situation where 
λ = 1.5 instead of the value of 2.5 as above. There are 20-90° elbows in the flow 
path (Le/D = 20 ■ 30 = 600) and a total K value of 205. With an elevation for the 
source ofzi = 54 m as above, we obtain F =p2/pgzi = hdei/zi = 5.4/54 = 0.10. 
Ignoring minor losses for the moment, we use Fig. 5.9 to predict a pipe size of nominal 
1 ì in. PVC. From the same figure, the actual volume flow rate of water for this pipe 
size is about 0.46 L/s, not too much larger than that specified for this problem. With 
minor losses include (the design charts Figs. 5.4-5.13 can no longer be used because 
they neglect minor losses) the Mathcad worksheet (Fig. 8.3) produces the need for a 
1 \ in. nominal pipe. Thus, there is no measurable effect from the minor loss for this 
example. The maximum flow rate for this condition of 0.454 L/s is even less than 
when minor losses were neglected. This provides very little excess if water demand 
in the future increases even slightly. If the cost differential between the 1 \ in. and 
2-in. nominal pipes could be absorbed, the careful designer would require a 2-in. 
PVC pipe for this problem. 

It is interesting to note that if the value for λ of 2.5 is used as in the example 
of Section 8.4, a 2-in. PVC pipe is necessary and, with a maximum flow rate of 
0.673 L/s, there is plenty of additional capacity for expansion in the future. The 
maximum flow rate of 0.673 L/s is less than that for the example of Section 8.4 of 
0.716 L/s because the static pressure at the delivery location in the current example is 
larger than zero (the value from the previous example). The smaller driving force for 
flow in the current example, which is proportional to pi — p2, reduces the flow rate. The 
reader is encouraged to make this change to verify the above outcome. In fact, with the 
Mathcad worksheets in hand, it is very easy to investigate the sensitivity of the designs 
to changes in the values for all of the design parameters. In analysis and design, these 
small investigations are referred to as "sensitivity studies" ("parametric studies" or 
"case studies" are often used as substitute terms) and are universally considered part 
of a sound analysis and design procedure. The results from the sensitivity studies will 
be very educational in that the designer will get a better "feel" for their designs. This 
is also a first step toward making engineering "tradeoffs," where parameter values are 
changed to produce a design that, in a overall sense, satisfies the needs of multiple 
constituencies. When making an engineering tradeoff, the designer will need to, in 
some sense, relinquish an aspect of the design to produce a gain in a different aspect. 



166 EXAMPLES FOR A SINGLE-PIPE NETWORK 

Figure 8.3 Mathcad worksheet SinglePipeNetworkDesignJVppendix.xmcd for 
example problem of Section 8.5. 

8.6 THE EFFECT OF LOCAL PEAKS IN THE PIPE 

The above examples have ignored the possibility of local peaks in the pipe. In 
networks where these exist, as discussed in Section 2.7, the local static pressure 
should be calculated along the flow path to insure that a minimum positive static 
pressure, as specified by the designer, is satisfied at all locations. This was discussed 
in some detail in Chapter 6. As noted elsewhere in this text, a positive elevation of 
about 10 m, or-1 atm of pressure, is considered adequate although a lower pressure 
than this may be quite acceptable. A negative gage pressure (i.e., the pressure relative 
to atmospheric pressure) may allow the passage of contaminants from the ground 
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Figure 8.4 Contour of pipe to illustrate the effect of peaks on local static pressure, s = 0.01 
and z\ = 100 m. Note the large difference between the vertical and horizontal scales in this 
figure. If both axes were drawn in the horizontal scale, the contour of the pipe would appear 
nearly straight between the source and delivery locations. 

into the pipe flow and in extreme cases, could result in pipe-wall collapse because 
of the negative pressure difference between water in the pipe and the surroundings. 
This is obviously undesirable. If there are no local peaks in the pipe, with downward 
flow, the static pressure generally increases as the loss of potential energy converts 
to pressure energy less that removed by major and minor losses (see Figs. 7.1 and 
7.2. If there are local peaks in a uniform-diameter pipe, this situation is reversed. 
That is, the local static pressure decreases as the flow proceeds upward toward the 
peak, reaching a local minimum at a location slightly downstream from the peak, and 
increases in the direction of flow further downstream. This behavior resembles that 
for a syphon where vacuum conditions at the network peak can lift a liquid upward 
from a much lower point. See Section 8.9 for this example. 

To illustrate this problem, consider the example, as shown in Fig. 8.4, for minor-
lossless flow in a pipe having a high peak. The volume flow rate, mean slope, and 
elevation of the source are Q = 0.5 L/s, s = 0.01, and z\ — 100 m, respectively.3 

After determining the local slope distribution, by taking the derivative [se(x) = 
dz(x)/dx] for this geometry, the local static pressure distribution is calculated using 
Eqn (6.7) by assuming three values for D: 1-in., 1^-in., and 2-in. nominal sch. 40 

3In several example and exercise problems in this book, elevations that appear in them may be greater than 
recommended in the design chapters (13 and 15) when pressure limitations of valves are considered. The 
large values of elevation are simply illustrative for that problem and not to be interpreted as recommended. 
Elevation head limitations on pipe, valves, and fittings must be taken seriously by the designer. 
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Figure 8.5 Mathcad worksheet example problem on peaks. xmcd for example problem 
of Section 8.6. The functions z(x, a, b) (the local height) and sl(y, a, b) (the local slope), as 
well as the preliminaries (items 1-7 in Section 8.3), are defined elsewhere in this worksheet 
and do not appear. 

PVC pipe. The evaluation of this equation is straightforward and was done in Mathcad 
(Fig. 8.5). The resulting local static pressure distribution, p(x)/pgzi, is presented in 
Fig. 8.6 as a function of local coordinate, x. 

In Fig. 8.6, we see that the static pressure distribution for the 1-in. pipe falls 
below atmospheric pressure after about x = 1000 m. Obviously, this pipe size is 
unacceptable for the specified volume flow rate. On the other hand, the nominal 2-in. 
pipe has a local static pressure that is positive throughout its length and greater than 
an assumed minimally acceptable static pressure corresponding to p(x)/pgzi =0 .1 
[i.e., p(x)/pg equal to 10 m]. This pipe size is an acceptable candidate. In between 
these two pipe sizes, the local static pressure for the 15-in. nominal pipe is positive 
everywhere. However, the static pressure becomes very close to zero (atmospheric 
pressure) near x — 6000 m. Depending on the economics of the design (the cost of 
the 2-in. pipe versus that for the 1 |-in. one), the designer may choose this marginal 
candidate. If the cost differential is not a significant factor, the 2-in. pipe would be 
recommended for this problem. 
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Figure 8.6 Dimensionless local static pressure distribution, p{x)/pgz\, for geometry of 
Fig. 8.4. Q = 0.5 L/s, s = 0.01, and z1 = 100 m. 

As a final note on this example, the pipe size as determined from Figs. 5.4 (for 
λ = 1) for this minor-lossless flow4 and F = 0 is l |-in. nominal PVC. That is, 
the use of the design charts in Chapter 5, or the associated design formulas, both 
of which are based on only the inlet and outlet states do not reveal the local static 
pressure approaching atmospheric at some point along the flow path. Equation (6.12) 
needs to be evaluated to shed light on this important aspect of a design. 

Upon further inspection of Fig. 8.6, we see that the dimensionless static pressure, 
p(x)/pgz\, at the pipe outlet at x = 10,000 m is -0.80 for the 2-in. and -0.45 for 
the 1^-in. pipe. Recalling that the largest value for p{x)/pgz\ is 1 under hydrostatic 
conditions, we see that the dimensionless frictional pressure drop for the two pipes 
(neglecting the inertia or acceleration of the flow which, as discussed above, is small 
for small D/zi) is 0.20 and 0.55, respectively. The static pressure available at the 
outlet of the pipe speaks to the network's ability to distribute the flow, say, to houses 
in the surrounding community, though a distribution pipe network. It also points to 
the need for a globe valve at the bottom of the pipe to control the volume flow rate by 
dissipating some or all of the energy represented by the static pressure at this location. 

The HGL for this example is presented in Figs. 8.7-8.9 for each of the three 
pipe diameters under consideration in this problem. Please see Section 6.6.2 for a 
discussion of the HGL. Several things are noteworthy from our inspection of these 
three figures. First, if the major friction loss is not dominant, the pressure and elevation 
heads are complementary; when elevation head falls, the pressure head rises. Second, 

4The value for λ for this example is 1.0021, corresponding to a nearly straight pipe between the source 
and delivery locations. 
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the HGL is nearly a linear function of x as seen in all three figures5 This outcome, 
which is a result of the small value for mean slope, is not valid for all gravity-driven 
networks in general, but is certainly true for this example where s = 100/10,000 = 
0.01. In addition, the uniform diameter of the pipe results in a constant flow speed6 

and therefore a constant friction loss per unit of pipe length. The slope of the HGL is 
thus a measure of the frictional energy loss in the pipe. Finally, and most importantly, 
the proximity of the HGL to the elevation head at any x location is a measure of value 
of static pressure above atmospheric pressure at this location. That is, if the elevation 
head is equal to the HGL, the pressure head must be zero or the static pressure is 
equal to atmospheric pressure [see Eqn (6.12)]. 

Figure 8.7 The HGL for geometry of Fig. 8.4 and 2-in. nominal PVC pipe, where Q = 
0.5 L/s, s = 0.01, and z1 = 100 m. 

In Fig. 8.7, we see that the elevation head approaches the HGL to within -25 m at 
x K, 6000 m. The static pressure is much greater than the recommended value of the 
product of 10 m and pg, or~l atm of pressure. This condition produces a satisfactory 
design. In Fig. 8.8, the elevation head and HGL are nearly equal at this x location. 
That is, the static pressure at this location is only slightly above atmospheric in value; 
the design is marginal in this case. Finally, in Fig. 8.9, for 1-in. nominal pipe, the 
friction loss per unit length of pipe is so large that the elevation head crosses over the 
HGL at x « 1700 m resulting in a negative pressure head from this point onward along 

5The HGL is, in fact, a linear function of distance traveled along the pipe flow path if the pipe is of constant 
diameter. However, if plotting HGL against x instead of against L((x) possible changes in the local values 
for the slope of the pipe may make the HGL nonlinear with x. That is, the HGL will be nonlinear with x if 
Li{x) is a nonlinear function of x. For an example of this, see the syphon problem in Section 8.9 below. 
6Recall that mass conservation requires that the volume flow rate be constant in the pipe. 
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Figure 8.8 The HGL for geometry of Fig. 8.4 and l |- in. nominal PVC pipe, where Q 
0.5 L/s, s = 0.01, and zi = 100 m. 

Figure 8.9 The HGL for geometry of Fig. 8.4 and 1-in. nominal PVC pipe, where Q 
0.5 L/s, s = 0.01, and zx = 100 m. 
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the flow path. The large negative pressures, even below that for a perfect vacuum that 
cannot exist, imply that the flow rate of 0.5 L/s is not possible for a 1-in. nominal 
pipe and the other conditions of this problem. 

The effects of local peaks are treated more-fully in Chapter 14, which covers the 
potential problem of air pockets in the pipe. 

8.7 A NETWORK DESIGNED FROM SITE SURVEY DATA 

The first step in the design of gravity-driven water network is most often an assessment 
of the site. This is normally an identification of the proposed coordinate location of 
the pipe, z(x, y). These data are obtained by using a transit or an Abney level and a 
measuring tape. A brief note on the Abney level is given in Section 8.2. 

We consider a data set obtained from a site survey for a network in San Benito, 
Nicaragua, where the measured flow rate of water from the source is 0.5 L/s. The 
survey data is presented in Table 8.1. A contour plot of z as a function of {x, y) 
is shown in Fig. 8.10 and z versus y is the focus of a plot shown in Fig. 8.11. For 
information purposes, a plot of the local pathlength distribution from these data is 
shown in Fig. 8.12. 

Table 8.1 Survey Data for the San Benito Site 

Station x (m) y(x) (m) z(x) (m) Le(x) (m) 
0 
5 
8 

C3 
C4 
C5 
C6 
C7 
C8 
C9 

Cl l 
C12 
C13 
C15 
C17 
C19 
C21 
C23 
C24 
C28 

0.0 
-37.2 
-77.4 
-241.0 
-277.8 
-312.5 
-336.2 
-374.7 
-420.8 
-439.1 
-412.6 
-428.9 
-481.8 
-471.9 
-533.9 
-544.5 
-536.1 
-688.4 
-712.3 
-920.1 

0.0 
-52.1 
9.6 
75.7 
95.8 
148.4 
184.7 
208.4 
216.0 
228.7 
335.1 
373.1 
463.7 
552.1 
659.1 
720.5 
864.9 
974.3 
988.9 
1073 

24.7 
11.1 
9.93 
14.8 
16.8 
12.6 
8.8 
11.2 
10.9 
10.0 
11.2 
6.7 
8.3 
7.5 
12.4 
21.5 
19.5 
2.6 
2.0 
0.0 

0.0 
65.5 
139.0 
315.6 
357.6 
420.7 
464.2 
509.6 
556.2 
578.6 
688.2 
729.8 
834.8 
923.7 
1047 
1110 
1255 
1443 
1471 
1695 

A quick inspection of the data in Table 8.1 (or Fig. 8.10 or 8.11 ) reveals that one of 
the challenges in this problem is to design the pipe to produce a positive static pressure 
at station C19 where the z = 21.52 m, just 3.12 m less than that at the source. This 
problem is made more difficult because the pathlength between the source and this 
station, over which pipe friction occurs, is 1110 m. 
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Figure 8.10 Three dimensional plot for proposed pipe contour of the San Benito site. 

Figure 8.11 Elevation plot for the San Benito site. 
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Figure 8.12 Local pathlength distribution for the San Benito site. 

The Mathcad worksheet used to solve this problem is shown in Fig. 8.13. A 
plot of pressure head for station C19 from the solution of Eqn (6.12) as a function 
of pipe diameter for z = 21.52 m, z\ = 24.65 m, and Le = 1110 m is presented 
in Fig. 8.14. This figure also appears in the above-referenced Mathcad worksheet. 
From our inspection of this figure, we see that a vacuum occurs at this station if 1^-in. 
PVC pipe is used. For 2-in. pipe and larger, the gage pressure is positive at about 
1.3 m of head and larger. Further, for pipe sizes > 3 in., there is little increase in the 
static pressure at this station. Therefore, nominal 2^-in. PVC pipe, if available, will 
result in an acceptable, but relatively low, static pressure corresponding to ~2 m of 
head. 

For the remaining length of this network, where the elevation change is 21.52 m 
and the pipe length is 1695 m—1110 m = 585 m, we can use the design charts in 
Chapter 5 if we approximate the pressure at station C19 as atmospheric. However, 
it is not simple to calculate s and λ from station C19 to the delivery location using 
the data of Table 8.1. Instead of the design charts, we again solve Eqn (6.12) for D 
required to produce a zero delivery pressure assuming zero pressure at station C19, 
z\ = 21.52 m and L( = 585 m. Obtain D = 1.077 in. or a nominal 1-in. PVC pipe. 
Note that we have neglected all minor losses including that for a coupling to join the 
nominal 2-in. or 2^ -in. PVC pipe to the 1-in. pipe at station C19. This minor loss is 
indeed negligible (see Table 2.1). 

It is interesting to note that if we ignored the local peak at station C19, and con-
sidered just the mean slope, s of 0.01743, between the source and delivery locations 
and overall flow pathlength embodied by λ (of 1.199), the design charts in Chapter 5 
would give D of 1.310 in., or a nominal l^-in. pipe. As noted above, this would lead 
to a negative gage pressure at station C19. This is yet another example of the need 
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Figure 8.13 Mathcad worksheet for example using site survey data. Mathcad worksheet 
site_survey_data. xmcd. 
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Figure 8.14 Pressure head versus pipe size for highest local peak for the San Benito site. 
Circles correspond to l | , 2, 2 | , 3, 3 | , and 4-in. nominal sch. 40 PVC pipe. 

to solve Eqn (6.12), for at least at the local high points in the network, to verify that 
positive gage pressures are established throughout. 

8.8 DRAINING A TANK: A TRANSIENT PROBLEM8 

So far, we have focused only on steady flow problems that are of general interest in 
our analysis and design of gravity-driven water networks. However, there are several 
relevant cases where transient, or unsteady, flows are of prime interest. One of these 
is the time required to drain a tank through a long pipe. 

A related, but simpler, problem is to predict the time that it takes to drain a tank 
through an opening at its bottom with no attached pipe. The Bernoulli equation, 
Eqn (2.3), is easily applied in a quasi-steady manner to solve for the instantaneous 
discharge flow speed, Ü2(t), at the base of a tank of instantaneous height of liquid, 
Azt(t). The result is referred to as Torricelli's formula, 

u2(t) = V2ffAzt(i) (8.1) 

Since it is known that the discharge flow speed is not cross-sectionally uniform nor 
one dimensional (the converging nature of the flow at the opening causes a radially 

8Though most relevant to the topic at hand, this problem came to light while the author was watering 
a Christmas tree with a watering can. The process took more time than expected and prompted the 
developments in this section to determine why this was so. 
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Reservoir Tank: Area A 

Azt 

AZr 

Zl'Pl 
(State 1) 

Pipe Diameter D, 
Length L 

Z2,p2 

(State 2) 

X, X 

Figure 8.15 Geometry for draining a tank through a long pipe. 

inward fluid motion), we apply a discharge coefficient, Co, and express the volume 
flow rate through the use of the continuity equation, Eqn (2.21), 

Q(t) = CDADü2{t) (8.2) 

where AD is the cross-sectional area at the tank discharge. Empirically determined 
values for Co range from-0.6 to 1.0 depending on the shape of the discharge opening 
and flow regime. 

The above results were obtained by assuming the flow to be inviscid. This is 
accurate because the flow speeds are small where they occur in the presence of a 
walled structure (the tank) and, where the flow speeds are large at the discharge, the 
surface area for friction is small. Thus, frictional effects are negligible in all regions. 
However, when the discharge is through a long pipe, it is clear that the flow cannot 
be assumed inviscid. This requires use of the energy equation, not the Bernoulli 
equation, to model draining of a tank with a connected pipe. 

Consider the geometry in Fig. 8.15. The tank of cross-sectional area At having an 
initial height of water Azt is to drain through a long pipe of length L. The pipe may 
have valves and fittings that we can characterize with a combined loss coefficient K, 
and the elevation change between the two ends of the pipe is fixed at Azp. Over time, 
Azt decreases as the tank is drained. The problem is to find the time at which Azt is 
zero, which is the time required to drain the tank. 

The energy equation is from Eqn (2.2), 

/Pi ui , x 
(— + a1— +gzi) 

P ^ 

,P2 (— + a2—+gz2) H, i dV_ 
~dt 

dx (8.3) 
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where an integral term has been included.9 Ĵ  ^ dx is the energy per unit mass 
required to accelerate the fluid at speed V between points 1 and 2 in Fig. 8.15 at any 
instant in time.10 When the flow reaches steady state, ^ = 0, and the integral's 
contribution to the energy equation disappears as it should. 

The friction term in Eqn (8.3) is from the Darcy-Weisbach equation, Eqn (2.9), 

HL = [f(V,D)^ + K\Ç (8.4) 

The flow speed V varies over distance between the tank and pipe and is üi in the tank 
and ÏÏ2 in the pipe. 

In Eqn (8.3) pi — p2 = 0 since the static pressure at both ends of the pipe is zero 
and the elevation change is z\ — z2 = Azt + Azp. With these substitutions, a\ = 1, 
and Eqs (8.3) and (8.4) become, 

ï72 Ti2 T v2 r2 civ 
^+g(Azt + Azp)-a2f = [f(V,D)-+K]^-+J^ ^ dx (8.5) 

At time zero and earlier, the fluid in the tank and pipe is at rest, V(0) = 0. 
For t > 0, two time scales appear for this problem. The first is the time required 
to accelerate the flow from zero speed to that corresponding to the elevation head 
Azt + Azp; over the span of this time scale the elevation in the tank has changed very 
little. We will refer to this as the "short" time solution. The energy equation for this 
case is Eqn (8.5) that becomes, 

L ^ = g(Azt + Azp) - [/(ïï2) £>) i l + 1 + tf]M (8.6) 

where ü\ = 0 reflects the fact that the elevation change in the tank is negligible over 
the short time scale. In addition, the acceleration of the fluid, ^ = ^ , is spatially 
uniform and takes place only over the pipe-length L. 

Equation (8.6) has been solved for constant friction factor and the use of equivalent 
length, Le, instead of the additive K (Streeter et al., 1998). The result is 

i99% = 2-646 ^ 1 (8.7) 
g{Azt + Azp)/L 

where Ü2i00i is the flow speed in the pipe subject to the hydraulic gradient (Azt + 
Azp)/L, and £gg% is the time that it takes to reach 99% of this flow speed; a reasonable 
approximation for the short time scale. Thus, Ü2,ooi is the solution of 

L u2 

g(Azt + Azp)-f(u2,ool,D)^-^=0 (8.8) 

The symbol V means velocity, not volume, in this section. 9· 

10From Newton's second law of motion, we note that ^ is force per mass. Integrating this force over 
distance x between points 1 and 2 produces the energy per mass resulting from this force. 
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B.8.1 Draining a Tank: Short Time Solution 

A tank of 30,000 L capacity and 3.5 m high is to be drained. The tank is connected 
to a 1 i-in. nominal sch. 40 PVC pipe, 240 m long, open to the atmosphere at 
its end. There are 6-90° elbows and an open globe valve in this pipeline. The 
elevation change from the bottom of the tank to the end of the pipe is 4 m. 
Calculate the steady state flow speed (subject to the initial height in the tank), 
Ü2,ooi> and the time that it takes to reach 99% of this flow speed. 

The hydraulic gradient is (Azt + Azp)/L = 0.0313. Neglecting minor losses 
for the moment, use the Mathcad worksheet HydraulicGradient. xmcd to cal-
culate U2,ooi = 0.900 m/s for the pipe of inside diameter D = 1.61 in. (see 
Table 3.1). The friction factor is f{ü2lO0i,D) = 0.0309. From Eqn (8.7), we 
obtain 

0.900 m/s 
t99% = 2.646 ψ1 = 7.77 s 

9.807 m/s2 · 0.0313 
We see that the short time scale is of the order of seconds for tank dimensions of 
the scale given in this example. 
The assumption of constant / is approximate because / is undefined for zero flow. 
Here, / increases immediately as flow becomes nonzero, decreases through the 
laminar regime, and increases as flow perhaps passes from laminar to turbulent, 
where it decreases thereafter. Thus, the solution from Eqn (8.7) is approximate 
but is an excellent indicator of the scale of the short-time solution. 

The length equivalent of an open globe valve [K = 10; see Eqn (2.11)] and 6-90° 
elbows is -504 · D « 20.5 m. This reduces the hydraulic gradient by only -8%. 
If minor losses were included, the value for t99% will be nearly that as above. 

The solution for longer times (i.e., the actual draining of the tank) is now con-
sidered. The integral in Eqn (8.3) for the long time solution may be written in two 
parts, 

dV , . dui r duo 
- d x = A„-+L- (8.9) / 

Since L 3> Azt, the first term on the right side of Eqn (8.9) is neglected in favor of 
the second term. In addition to this, u\ -C u\ because of the of the large surface area 
of the tank relative to the cross-sectional area of the pipe. 

We see from this that Eqn (8.6) is also the governing equation for the long time 
solution except that Azt is not constant. It depends on time so that Azt = Azt(t). 
This effect may be included by taking the time derivative of Eqn (8.6) and recognizing 
that 

d(Azt) ngD2 
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where the second term on the right side is from the continuity equation. With 
Eqn (8.10), Eqn (8.6) becomes upon taking the time derivative of each term, 

L^ + ixrii2 + Jt{[f^D)D+1+KH^0 ( 8 · Π ) 

Equation (8.11) is the governing equation for the pipe flow speed, «2, correspond-
ing to the long time solution for draining a tank. The initial conditions are 

«2(0)=ü2 i O O l , ^ ^ = 0 (8.12) 

where «2,001 is from the solution of Eqn (8.8). 
We may define a time scale for tank draining as the ratio of the initial tank volume 

to the volume flow rate at based on the initial flow speed in the pipe, Ü2,ooi> 

Λ , , ^ ί ^ (8.13) 

which is of the order of thousands of seconds or more for realistic tank sizes. This is the 
"scale" or order of magnitude of the tank-draining time. By scaling Eqn (8.11) with 
this time scale, we see that the acceleration term, Ld2Ü2/dt2, is negligible compared 
with the remaining two terms. With this term eliminated, Eqn (8.11) becomes 

ί η ^ + ί + ̂  + ̂ ίψ1 + ΐί£-_0 (,14) 

The single initial condition is the first of Eqs (8.12). The time to drain a tank is from 
the solution of Eqn (8.14). 

Because of the time dependence of Azt it is not possible to obtain a closed-form 
solution of Eqn (8.14) of the type above for the short time case. Equation (8.14) is 
solved numerically in Mathcad (see textbox B.8.2 example). The derivative in the 
second term of Eqn (8.14) is evaluated symbolically in Mathcad. The time to drain 
the tank is found when the solution of Eqn (8.14) is equal to the flow speed in the 
pipe, ïÎ2,oo2> resulting from the hydraulic gradient Azp/L. The solution for «2,002 
comes from Eqn (8.8) with g(Azt + Azp) replaced by gAzp alone (i.e., Azt = 0). 

The flow speeds in the drain pipe, Ü2(i), are plotted in Fig. 8.16 for three cases and 
for an initial tank volume of 30,000 L, initial Azt of 4.5 m, L = 100 m, D = \ in. 
nominal GI pipe, and Azv = 0.1,1.0, and 10 m. Each curve terminates when the tank 
is empty. We see that u2(i) decreases linearly over time for the largest value of Azp, 
but nonlinear U2 (i ) occurs for the two smaller elevation heads. Evidence of transition 
and laminar flow is visible beginning at the knee of the curve for Azp = 0.1 m, It 
is clear that drain times ranging from more than a day to many days are possible for 
large tanks and under the conditions of Fig. 8.16. 
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Figure 8.16 Tank-draining results. 

B.8.2 Draining a Tank: Long Time Solution 

Calculate the time to drain the tank for the example in textbox B.8.1. 
Use the Mathcad worksheet Tank-Draining. xmcd to calculate «2,002 = 
0.643m/sforthedatagivenintextboxB.8.1. The friction factor is f(U2,002, D) = 
0.03924. Equations (8.11) and (8.12) are solved numerically to obtain a drain 
time of -8.7 h. The few seconds to accelerate the flow from zero speed in the 
short time solution are clearly negligible here. 

The minor losses were included in this solution. 

A quick check on the validity of this result can be made by averaging the flow 
speeds «2,001 and «2,002- The ratio of the tank volume to the mean volume flow 
rate obtained by averaging the flow speeds gives a drain time of 8.2 h, within 
30 minutes of the exact solution. For cases where there are small D and Azp, and 
large values of L, the use of the average value of the volume flow rate to estimate 
the drain time can under-predict the exact value by 40% or more (see Fig. 8.16). 
For these cases there is considerable curvature in the flow speed U2(t) versus t. 

For comparison, Torricelli's formula [Eqn (8.1)], predicts a drain time of 1.26 h. 
This is much less than the actual solution because of the neglect of friction. 
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8.9 THE SYPHON 

A syphon is a pipe arranged such that it is capable of lifting a liquid from a reservoir 
upward against gravity. This happens when the weight of water in a pipe below the 
reservoir level is greater than the weight of water in the pipe above the reservoir. 

To model the performance of a syphon we consider a pipe of inside diameter D 
having a circular arc of radius r. The open end of this pipe is immersed in the water 
at the source at elevation z\. At the other end, the pipe is joined by a vertical pipe 
of length z\, (i.e., this leg of pipe extends to elevation Zi — 0). The contours of 
three different syphons are shown in Fig. 8.17. All syphons have z\ = 20 m, constant 
diameter, assumed minor-lossless flow, and a static pressure of zero (atmospheric 
pressure) at the delivery location at Z2 = 0. They each have a different value for r. 
The larger the value for r the further the water will need to be raised above z\ and 
delivered to the outlet of the syphon. 

Figure 8.17 Contours for three syphon geometries. 

If we let 7 = z\/r, the expressions for mean slope, s, tortuosity, λ, and the energy 
equation are able to be written in simplified forms. For s and λ, we have 

s=l (8.15) 

and 

λ = -=±2= (8.16) 
V4 + 72 
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The theoretical values for the volume flow rate, Q, can be estimated using figures 
in Section 5.4 or calculated from the Mathcad worksheet.1 ' Note that this result could 
also be obtained by solving Eqn (6.12) at x = x<i, with L((x) = Lg(x2) = L, where 
L is the total length of the pipe, and with the delivery pressure p(x) = p{x2) = 0 and 
z(x) = z(x2) = 0. Thus, Q is determined from the solution of the energy equation 
where the static pressure is zero at both ends of the syphon, 

0=l--P^-4(a + f{Q,D)Z-^pl) (8.17) 
nzgziD* ■jD 

In this equation, the term z\ (1 + π/7) is the total length of the pipe, L. 
The values for s and λ for the three syphon geometries in Fig. 8.17 having 7 of 

2, 4, and 8 are 1 and 1.818, 2 and 1.597, and 4 and 1.351, respectively. A plot of Q 
versus D (Fig. 8.18) shows Q ranging from < 1 L/s for nominal |-in. PVC pipe to 
nearly 40 L/s for 3^-in. PVC pipe. However, the question that remains unanswered 
at this point is what is the local static pressure distribution in the syphon. In particular, 
is the static pressure distribution in the pipe even possible? 

To answer this question, we need to solve Eqn (6.12) for p(x) using the local path 
length distributions for the three syphons appearing in Fig. 8.19. These are obtained 
by breaking up the syphon into small pieces having components Ax wide and Az 
high. Then, a running sum of \/Ax2 + Az2 is calculated, which is the pathlength 
distribution Lg(x). The dimensionless static pressure distribution, p(x)/pgz\, is 
presented in Fig. 8.20 for a nominal l^-in. PVC pipe. The static pressure for all 
syphons behaves in the same manner. We see a reduction of pressure with distance 
in the direction of flow as the liquid climbs upward (potential energy is increasing 
at the expense of pressure energy). The pressure continues to fall even as the liquid 
begins to move downward. This is the result of pipe friction. At some distance 
beyond the highest point of the syphon, the static pressure starts to increase and, once 
in the vertical leg of the pipe, increases sharply to atmospheric pressure at the outlet 
as required by this problem. Note that the pressure in the entire syphon is negative 
relative to the atmospheric pressure conditions that surround it.12 The question posed 
above is answered by considering the smallest static pressure possible of —14.7 psig 
at which we have a perfect vacuum.13 The value of the dimensionless static pressure, 
p/pgz\, for this condition is —0.517. From our inspection of Fig. 8.20, the static 
pressures at some locations for the syphons having 7 = 2 and 7 = 4 fall below the 

"Recall that Q is obtained from the solution of Eqn (2.41) for minor-lossless flow in a pipe that is not 
straight. This equation can first be solved for u and then Q calculated using the continuity equation, 
Eqn (2.21). 
12If the surroundings were at a sufficiently large positive gage pressure, the static pressure in the syphon 
would still operate below this pressure but the gage pressure in the syphon will be positive everywhere. 
This condition is required where there may be syphoning in a gravity-driven water flow. 
13This condition is used as a convenient benchmark. Really, the pressure can fall no lower than that which 
causes the water to vaporize. When the pressure of a constant-temperature fluid is reduced, a value of the 
pressure is eventually reached where the water begins to form vapor. This is referred to as the saturation 
pressure for the given temperature, or more simply, the "vapor pressure." For water at 10°C, the vapor 
pressure is -0.178 psia (absolute), very close to absolute zero pressure (see Exercise 26). 
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case of a perfect vacuum. Because no pressure can be less than that of a perfect 
vacuum, no flow will occur in the syphon for the cases of 7 = 2 and 7 = 4. This is 
easily verified in your own kitchen with a length of tubing, a sink filled with water, 
and a bucket into which the water can run. With the syphon running (after you have 
"primed" it) gradually move the tube upward creating a greater height for the water to 
rise. At some point, the flow will reduce to a trickle and eventually stop. The above is 
the correct result despite the calculations of volume flow rate based on overall states 
of the syphons appearing in Fig. 8.18. The flow rates appearing in this figure will 
occur only if the pressure is greater than a perfect vacuum at each and every point in 
the flow. 

This is yet another example of the need to consider performance of the network 
based on both overall and local conditions. Of course, syphoning in gravity-driven 
networks does occur in many designs. The acceptability of these cases relies on the 
static pressure being large enough so that if syphoning does occur, the reduction in 
pressure is not severe enough to cause negative gage pressures in the network. Please 
see the nearby footnote for additional comments on this. 

To solve the interesting problem of the maximum height of a syphon of diameter 
D and elevation z\ for a fluid at a prescribed temperature, we first need to determine 
the l o r z coordinate location where the pressure is a minimum. Then, knowing 
that the pressure at this location can be no smaller than the vapor pressure at the 
prescribed temperature, the problem can then be solved for the value of 7 that produces 
this pressure. The height of the syphon, r is easily found from r = ζχ/η. The x 
coordinate where pressure is a minimum is found by taking the derivative, d/dx, of 
the dimensionless static pressure, p(x)/pgz\, setting it equal to zero, and solving for 
the x value (see Exercise 26). 
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Figure 8.18 Theoretical volume flow rates, Q, for the syphon geometries of Fig. 8.17 for 
range of pipe diameters. 

Figure 8.19 Local pathlength distribution, Li(x), for the syphon geometries of Fig. 8.17. 
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Figure 8.20 Dimensionless local static pressure distribution, p{x)jpgz\, for the syphon 
geometries of Fig. 8.17 and nominal l |- in. PVC pipe. 



CHAPTER 9 

THE ENERGY EQUATION BASED ON 
APPROXIMATE FRICTION FACTOR 

"Things should be made as simple as possible, but not any simpler." 
- A. Einstein 

9.1 THE PROBLEM 

There are many types of design tools employed in engineering practice. For flow in 
pipes, these range from commercially available and in-house-written computer codes 
to formulas and nomographs for restrictive applications (The Crane Company, 1970; 
Copper Development Association, 2006). One such group of formulas is from Hazen-
Williams (Williams and Hazen, 1933), first developed-1906. In various forms, they 
are curve fits of pipe-flow data that relate the head loss to flow speed or volume flow 
rate through a "hydraulic resistance." Hazen and Williams developed their formulas 
in the years before Rouse and his colleagues were formalizing the use of design charts 
for pipe flow from the data and correlations of Blasius (in 1913), von Karman (1930); 
Nikuradse (1950); Colebrook and White (1937); Colebrook (1938, 1939), among 
others. These correlations were based on knowledge of fundamentals of fluid flow 
in pipes, where the friction factor is known to depend only on the Reynolds number 
(Re) and, for turbulent flow, relative roughness. Obviously, there were no widely 
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used high-speed electronic calculators or computers at the time, so comprehensive, 
easy-to-use design charts were the order of the day. As pointed out in footnote 12 in 
Chapter 2, the Rouse chart (Rouse, 1943,1975) ultimately spawned the Moody chart 
that is familiar to many. 

One of the problems with the Hazen-Williams formula is that, until very recently, 
its accuracy and range of applicability have not been widely understood and quantified 
(Liou, 1998). Consequently, it has probably been used in many instances where it 
should not have been. This is unfortunate because the generally broad acceptance of 
this formula by designers of fluid flow networks has evolved, especially in the United 
States, and extensive data bases on coefficients for the curve fits for a variety of pipe 
sizes and inside surface treatments have been produced and compiled. Even today, 
there continues an active debate on the suitability of these formulas for analysis 
and design driven partially by their past widespread acceptance in the hydraulics 
community and the recently understood lack of accuracy for a wide range of pipe 
flows1; see Christensen (2000); Locher (2000); Swamee (2000); Travis and Mays 
(2007); Bombardelli and Garcia (2003). 

One such Hazen-Williams formula reported by Liou (1998) is 

Q = 0.278 C f l 2 1 6 3 ( ^ f 5 4 (9.1) 
L· 

where C is a coefficient that depends on the friction factor, D, the flow speed, and the 
kinematic viscosity of the fluid which, we recall, depends on the fluid temperature. 
In addition, the coefficient 0.278 is a dimensional quantity whose value needs to be 
increased by -55% if working in the English system of units, rather than S.I. Only 
the numerical values for C are reported Potter and Wiggert (2002), which for smooth 
pipe is -140. The lack of units for 0.278, C, and D makes Eqn (9.1) dimensionally 
nonhomogeneous.2 From a fundamentals standpoint, the nonhomogeneous character 
of the Hazen-Williams formulas forms the basis of a difficulty that is explored further 
in the next paragraph. For this reason, and the accuracy limitations noted above, 
the use of these formulas is strongly discouraged in favor of the Darcy-Weisbach 
equation. The possible exception to this would be for cases where the pipe-wall 

1 In particular, Christensen (2000) concludes that the minimum value for D, wherein the Hazen-Williams 
formula may be accurately applied is 1.44 m (56.7 in.). The pipe sizes typical of gravity-driven water 
networks considered in the present context are considerably smaller than this size. Cristensen concludes 
"...that usage of the Hazen-Williams formula should be strongly discouraged." An additional dimension 
to this issue was noted by Rouse (1975), "In the long run, however, it is debatable whether it [the Hazen-
Williams formula] did more good or harm, for it not only concealed the principles behind the resistance 
phenomenon but made acceptance of later, more rigorous analyses like those of Blasius a very slow 
process." The reference to "...concealing the principles..." in this quote pertains to the Hazen-Williams 
approach of ignoring that simple dimensional analysis shows that the hydraulic gradient depends on just 
two quantities, the relative roughness of the pipe wall and Re. 
2 In a dimensionally homogeneous equation, like F = ma, all terms, F and ma, have the same dimensions. 
For a dimensionally nonhomogeneous equation, the dimensions of two or more terms are not the same. In 
the case of Eqn (9.1) this comes about because 0.278C and D are dimensional quantities written without 
units. For example, a dimensionally nonhomogeneous form of Newton's second law of motion would be 
F = 9.807 m. 
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conditions are special, such that the friction factor is unknown and the value for C is 
available. 

Our inspection of the nonhomogeneous formula of Eqn (9.1) shows it to be like 
a "pencil-and-paper" computer program where numbers alone are input and a nu-
merical answer is the output; the units for both input and output are ignored in the 
calculations. The potential problems with this type of model are twofold. First, 
one must be certain of the units for input and output, as would be the case with any 
computer program. Second, there is considerable variability in the Hazen-Williams 
coefficient that depends on the fluid type and temperature as well as D and flow 
speed (Trifunovic, 2006)3. The restriction of the Hazen-Williams formulas to tur-
bulent flow is particularly egregious. Since the calculation of Re is not part of the 
design process when Hazen-Williams formulas are used, the user is left to either 
calculate this for themselves or, as is often the case, the possibility of laminar flow is 
just simply ignored. Note that this flow regime will occur for the lower left side of 
Figs. 5.4-5.13 for gravity-driven water networks; perhaps not likely with many large 
industrial liquid flows. 

The combined effect of the above limitations means that the Hazen-Williams for-
mula may provide only a coarse approximation to the solution for flow in a gravity-
driven pipe-flow problem. Potter and Wiggert (2002) show a plot of the friction 
factor, / , from several sources including the Colebrook equation [Eqn (2.12], the 
industry-accepted formula for friction factor [or Eqn (2.16)] and the equivalent one 
from Hazen-Williams. The lack of agreement between these two is clear with dif-
ferences varying to about ±35%.4 The results from the Hazen-Williams formula 
bear considerable uncertainty when compared with those from the Darcy-Weisbach 
equation. 

9.2 A RECOMMENDATION 

The bottom line of this story is, where possible, adhere to the fundamentals in the work 
that you do including pipe-flow calculations. For the equations and formulas you use, 
know and understand the assumptions on which they are based5. In general, the use 
of nonhomogeneous formulas in engineering should be cautiously approached. This 
includes formulas as well as computer programs which, with the exception of at least 
Mathcad and EES6, are always nonhomogeneous. Remember that nonhomogeneous 
implies that there are one or more simplifications that have been incorporated, such as 
the substitution of a fixed number for an algebraic symbol of a quantity that is dimen-
sional. These simplifications are sometimes ignored or not completely understood, 
which could easily result in the inappropriate use of the formula. 

3 Similar variability does not exist in the use of the Darcy-Weisbach equation where the only free parameter 
is the absolute wall roughness which is normally well characterized, at least for new pipe. There is no 
explicit dependence on D and flow speed other than through the dimensionless Reynolds number. 
4Perform Exercise 13 to verify this result. 
5See textbox B.2.2. 
6F-Chart Software, Madison WI, available at info@fchart.com. 



190 THE ENERGY EQUATION BASED ON APPROXIMATE FRICTION FACTOR 

In particular, for the pipe flow calculations that are made in the normal course of 
formal or informal (that is, self-taught) learning, where interest is in understanding and 
acquiring insight as opposed to mere practice and application, there is no good reason 
to use nonhomogeneous formulas like the Hazen-Williams type. However, be aware 
that for a number of reasons mostly related to economy, tradition, and consistency 
with supporting methodologies, restrictive formulas are used every day in industry, 
including the Hazen-Williams variety in the hydraulics and related communities. The 
reader will also find Hazen-Williams formulas in use in Corcos (2004); Trifunovic 
(2006) and in many other common references that you will perhaps use in further 
study of gravity-driven water networks. 

9.3 ENERGY EQUATION: FRICTION FACTOR FROM THE BLASIUS 
FORMULA 

If we wish to use a simple, approximate formula to get a sense for or make a quick 
estimate of pipe diameter, the following development should be considered. We 
restrict our interest to minor-lossless flow [the assumption oiD/ζχ = 0 in Eqn (2.40)], 
and further assume that the flow is turbulent (and 4,000 < Re < 325,000, the region 
where agreement between the approximate and exact friction factors is 12% or better; 
see Section 2.2.2) and that the pipe is smooth. The Blasius formula from Eqn (2.19), 
}{u,D) = 0.316 Re" 1 / 4 , applies (Munson et al., 1994). Upon substituting this 
formula for f(u, D) into Eqn (2.41) we obtain after several steps of algebra7 

r A ( l + s - 2 ) 1 / 2
l 4 / 1 9 vQ\llw 

l-F J V D = 0.741["^I_F' ]4/i»(^j_)i / i9 (9.2) 

which, for the normal condition of s <C 1, may be simplified to 

D = 0 . 7 4 1 [ — ^ - ] 4 / 1 9 ( ^ ) 1 / i 9 (9.3) 

The group vQ1/g4 has the dimension of length raised to the power of 19 and all 
of the remaining terms on the right-hand sides in Eqs (9.2) and (9.3) are dimension-
less. We can clearly see that this group raised to the one-nineteenth power gives a 
dimension of length. For cases that obey the assumptions on which they are based, 
the dimensionally homogeneous Eqs (9.2) and (9.3) can be used to predict the pipe 
diameter quite accurately.8 

7lt is very easy to develop this formula yourself and you are encouraged to do so. See Exercise 29. Be 
aware that you first need to substitute the continuity equation into Eqn (2.41) to eliminate u in favor of Q. 
8 A simple, first-order estimate of the accuracy can be made by assuming that the friction factor is 0.03±0.02 
as cited in Section 2.2.2. After a few steps of algebra and for minor-lossless flow, Eqn (2.41) becomes 
D = 0.455(1 ±0.158){AQ2/[(1 - F)gs]}1/5. The accuracy of this formula is thus ±15.8%. Amore 
detailed assessment is shown in Fig. 9.3. 
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Figure 9.1 The parameter D from Eqn (9.4). The contour lines from bottom-to-top 
correspond to | , f, 1, l | , 2, 2 | , 3, 3 | , and 4 in. nominal sch. 40 PVC pipe. Compare 
with the design graphs in Chapter 5. 

For ease of use in graphical form, Eqn (9.3) can be recast as, 

(9.4) 

A plot of Eqn (9.4), D as a function of Q and the hydraulic gradient, s(l — F)/X (one 
can visualize this as a modified slope), is presented in Fig. 9.1, where the contour 
lines correspond to \, | , 1, l | , 2, l\, 3, 3^, and 4 in. nominal PVC pipe. The 
reader may wish to compare this figure with Fig. 5.30. Note that the parameters 
s, F, and λ appear as a group in Fig. 9.1,9 whereas the effect of the parameters 
F and λ is presented on individual design graphs in Chapter 5. When making this 
comparison, recall the restrictions concerning the results shown in Fig. 9.1. Namely, 
minor-lossless, turbulent flow with 4,000 < Re < 325,000, s < 0.5, and smooth 
pipe. Because of the restriction to turbulent flow, an inspection of Fig. 9.1 reveals no 
laminar or transition regions that appear in the lower-left corners of each of the pipe 
design plots in Chapter 5. 

9That is, increasing λ and F(= p2/'pgz\) have the same effect as reducing the mean slope, s. In all of 
these cases, the hydraulic gradient would decrease. 
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Swamee and Jain (1976) report an extension of Eqn (9.4) to include the effect of 
pipe roughness, e, for nonsmooth pipe, 

D « 0.66 {e125 [ ^ τ τ ] 4 · 7 5 + vQgA[ghL/Lr™f™ (9.5) 

where the hydraulic gradient is h^/L, as noted in Chapter 2. A comparison between 
Eqs (9.4) and (9.5) for smooth pipe shows agreement to within ±2% over 0.1 L/s < 
Q < 3 L/s and 0.001 < hi/L < 1. The inclusion of roughness in the correlation 
of Eqn (9.5) necessarily excludes its application to laminar flow. The stated ranges 
for Q and hL/L generally produce 4,000 < Re < 325,000. Swamee and Sharma 
(2008) present a correlation for D that spans from laminar to turbulent flow 

D « 0.66 {([214.75 
VQ 16.25 

g(hL/L)> 

+ ^25[^7Jx}4-75 + ^Q9A[9hL/L)-^}0M (9.6) 
g(tiL/L) 

For minor-lossless flow in a GI pipe, differences between D evaluated by Eqn (9.6) 
and the Mathcad worksheets of Chapter 5 are < 12% (see Exercise 31). For smooth 
pipe, the agreement is 5% or better. Recall that the worksheets include minor losses 
if important, such as a partially closed throttling valve needed for flow control. 

As an aid, a plot of Re, AQ/πιΌ, versus Q and s ( 1 — F) /λ is presented in Fig. 9.2 
from which we note that Re < 4,000 are likely for small values of the hydraulic 
gradient, s(l — F)/X. In Chapter 2, a comparison of the friction factor and the Blasius 
approximation revealed agreement to within 12% for 4,000 < Re < 325,000. Thus, 
we expect the accuracy of the results from Fig. 9.1 and Eqn (9.4) to be questionable in 
the left-most region of Fig. 9.2, where Re < 4000, a region that spans a broad range of 
practical values for the flow rate and hydraulic gradient.10 We wish to further explore 
the extent of agreement between the solutions from the approximate and exact forms 
of the energy equation. Figure 9.3 shows the ratio of the pipe diameter from two 
independent calculations, one from the solution of the complete energy equation 
(Dexact) and one from Eqn (9.4) (Dapprox). This ratio varies from 1 to -1.05 for 
large values of the hydraulic gradient, and -0.65-0.70 for small slope." For the case 
of s — 0.001 and Q = 0.1 L/s, for example, Dapprox/Dexact « 0.9. Obviously, 
under-sizing of pipe by using the approximate solution from Eqn (9.4) is not generally 
desirable, but because the object of this section is to get a sense for or make a quick 
estimate of D from the simpler, approximate form of the energy equation, the results 
from Eqn (9.4) may very well be accurate enough depending on the problem at hand 
and the demands of the designer. Of course, a final analysis and the complete design 
should be carried out using the appropriate Mathcad worksheet where the effects of 
minor losses and sensitivity studies may be easily investigated. 

'"Values for the hydraulic gradient of 0.01 and smaller are not unusual. 
1 ' For small values of hydraulic gradient the flow is laminar or transitional so one would expect D from 
Eqn (9.4) to be approximate. 
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Figure 9.2 Reynolds number versus hydraulic gradient, s(l — F)/X, and Q. Region of 
inaccuracy is to the left of the line corresponding to Re of 4000. 

Figure 9.3 Dapprox/Dexact versus hydraulic gradient, s(l — F)/X, and Q. 
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As a final comment on Fig. 9.2, note that it reveals that Re> 105 are not to be ex-
pected; the upper limit on Re of 325,000 for the accuracy of the Blasius approximation 
is not an issue. 

A particularly simple result is obtained if Eqn (9.4) is put into dimensionless form, 

Qv1'1 

gi/7 £)19/7 2.25 
ΛΙ-F) 
[ X 

j4/7 (9.7) 

where the group on the left side of Eqn (9.7) can be interpreted as the dimensionless 
volume flow rate and the one on the right side is the hydraulic gradient. In this form, 
we see that the solution of the energy equation for minor-lossless, turbulent flow 
(where 4000 < Re < 3.25 x 105) in smooth pipes gives a power-law relation between 
the dimensionless volume flow rate and the hydraulic gradient according to Eqn (9.7). 
A plot of this equation appears in Fig. 9.4. Also made clear by our inspection of either 
Eqs (9.4) or (9.7) is that for any given set of conditions, Q is proportional to D1 9/7 . 
This result is discussed in the paragraph that follows. 

Figure 9.4 A plot of Eqn (9.7). 

As we will see in Chapter 11, it is worthwhile at this point to rewrite Eqs (9.4) and 
(9.7) in general form. That is, both of these equations are based on Z2 = pi — 0. If 
we allow nonzero values for these two parameters, we obtain 

D = 0.741 ( Az + Ah 4 /19 t / / 7 Q 7/19 
/ \ „4 /7 I L S 

4/7 
(9.8) 
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and 

Qu1'7 nnriAz + Ah 4 / 7 
= 2.25(-

^4/7£)19/7 · V L 
(9.9) 

where Az is the elevation change between the two ends of a single-diameter pipe, 
and Ah = Ap/pg is the change in static pressure head between these two locations. 
Both Eqs (9.8) and (9.9) will be convenient for use in the analysis and design of 
multiple-pipe networks where the values for the static pressures and elevations at the 
ends of each pipe are nonzero. The term (Az + Ah)/L = h^/L is the hydraulic 
gradient. 

Besides the obvious utility of these simple formulas, the origins of which are clear 
because they were derived by the readers themselves, we can see that D depends 
only on Q7/19 = Q0·368, A4/19 = A0·211, (1 - F)~^w and, for the normal situation 
where s < l , s~4/19. The sensitivity of D to the key parameters that determine it is 
thus established. It is interesting to note that the lack of sensitivity of D to s, A, and 
F for a prescribed value for Q makes the task of sizing a system for D particularly 
forgiving, especially when one considers the narrow choice of nominal pipe sizes 
from among which to choose (see Section 5.6). The more challenging task is to 
determine pipe sizes for a multiple-pipe network as discussed in Chapter 11 because 
the static pressures at both ends of a given pipe are nonzero and unknown. 

If the designer requires a delivery static pressure of head hdei, say, at a tapstand, 
where pdel = pghdei, knowing that F = 1 - Pdei/pgzi = 1 - hdei/zi, Eqn (9.3) 
becomes 

D = 0 7 4 1 [ £ l i ^ W £ l ) ] _ 4 / 1 9 [ Q ^ ] 7 / 1 9 ( 9 1 0 ) 

From the above results, we see that for values of the hydraulic gradient > 0.001, 
where D from the approximate form of the energy equation for pipe flow is to 
within reasonable agreement with the exact value, the dimensionally homogeneous 
Eqs (9.2)-(9.10), subject to their restrictive assumptions may be considered accept-
able alternatives to the Hazen-Williams formulas discussed above. Also, one of the 
key observations from the material presented in this section is the importance of cal-
culating Re for all parts of the network. Combining Eqs (9.4) or (9.10) with the 
definition of Re, we obtain 

R e = ! . 7 1 8 {Q
39s(l-F) /19 = Q*gs(l W s 0 

L \v5 J L Ai/5 J 

valid for 4000 < Re < 3.25 x 105. 
For reference and convenience, the kinematic viscosity of water at 10°C is v — 

1.307 x 10~6m2/s. 
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9.4 FORCED FLOWS 

As discussed in Section 2.9 if the flow is driven by a pump the energy equation applies 
where 

1 - F 

or 
-^— for s « 1 

Λ 

is replaced by 
Z l ( l - Fmod) _ Ζχ_ _ P2 - P i 

L L pgL 

Thus, the appropriate equations and graphs in Section 9.3 will apply to pump-
or blower-driven flows by simply making this replacement. To ensure accuracy, the 
restriction of 4000 < Re < 3.25 x 105 still applies. 

B.9.1 Example: Blasius Formula Approximation to Friction Factor for 
Gravity-Driven Flow 

Consider a gravity-driven single-pipe network that is required to flow 1.7 L/s. 
The mean slope between the source and delivery locations is 6.3% based on 
measurements taken by an Abney level (see Chapter 13 for a discussion of this 
instrument). The pipe length is unknown, but is estimated to be between straight 
from the source to delivery locations and 25% longer than this length. Using the 
results based on the Blasius formula approximation to the friction factor, calculate 
the minimum polyethylene (PE) English-based pipe size required for this flow. 
The rated pressure for the recommended pipe should be no less than 160 psig. 
Assume the delivery pressure is such that F — hdei/ζι = 0.15 and that minor 
losses are small. Verify that your answer is accurate. 

PE pipe is smooth, so that we can use Eqn (9.10) to calculate the actual diameter. 
Then, the appropriate table in Chapter 3 can be inspected to recommend a PE 
nominal pipe size. Equation (9.10) becomes with λ = 1.25 and v = 13.07 x 
10~7 m2/s, 

D = 0 . 7 4 1 [ 0 · 0 6 3 · ( 1 - ° · 1 5 ) ] - ν » 1.25 
(13.07 x IO"7 m2/s)1 /7 ■ 1.7 x 10~3 m3/s 7 / 1 9 

[ (9.807 m/s2)4/? J 

D = 0.741 · 1.941-0.0289 m 
D = 0.0416 m = 1.638 in. 

For λ = 1, this result becomes D — 1.563 in. 
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Example: Blasius Formula Approximation (Cont'd) 

From Table 3.6 for PE pipe, for a rated pressure of 160 psig and D between 1.64 
and 1.56 in., we recommend 2-in. nominal pipe with a standard diameter ratio 
(SDR) of 11 (ID of 1.917 in.). If a pipe in the IPS system is chosen, a consult with 
Tables 3.2 and 3.3 shows that a sch. 80, 2-in. pipe is needed (ID of 1.939 in.). 

From Eqn (9.11), Re for this flow is 

_ (1.7 x I P ' 3 m3/s)3 · 9.807 m/s2 ■ 0.063 (1 - 0.15) 4 / 1 9 
1 1.25· (13.07 x l 0 - 7 m 2 / s ) 5 J 

Re = 39,805 

This is a turbulent flow and Re> 4000. Therefore the equations in this section 
are valid and the results are judged to be accurate. Additional confidence in 
the solution is obtained by a quick comparison with Fig. 5.9 for IPS polyvinyl 
chloride pipe (PVC) for λ — 1.5 and F = 0.1 which gives D between 1^ and 
2 in. nominal. This finding is in agreement with the above solution. 

9.5 SUMMARY 

As analysts and designers, the use of nonhomogeneous formulas should be approached 
with some caution. This includes formulas, as well as computer programs, that are 
always nonhomogeneous.12 Nonhomogeneous implies that there are one or more sim-
plifications incorporated, such as the substitution of a fixed number for an algebraic 
symbol of a quantity that is dimensional. This may result in the formula's inappropri-
ate use. For pipe-flow calculations, there is no good reason to use nonhomogeneous 
formulas like the Hazen-Williams type because the Darcy-Weisbach equation and the 
friction factor are well established and documented, and have virtually no restrictions 
on their use.13 

In this chapter, a set of formulas to estimate D for prescribed values of s, F, X, 
and Q to within possible acceptable levels of accuracy were produced. The summary 
forms of this result appear in Eqs (9.7)-(9.10) and Figs. 9.3-9.4. Two dimensionless 
groups appear in these formulas. The first is a combination of s, F, and λ is the hy-
draulic gradient or "modified slope" (s ( 1 — F) /λ). The other group is a dimensionless 
volume flow rate made up of the dimensional terms Q, g, u, and D. For example, for a 

12Mathcad and EES are exceptions to this. 
13The Darcy-Weisbach equation and the friction factor apply not only to the steady-state pipe flows of 
incompressible fluids considered in this text but, almost without exception, in all cases including transient 
and compressible flows (high-speed gas flows), and flows having variable viscosity. The only restrictive 
assumptions on the use of the friction factor is that the flow must be a continuum (no rarified gas flows) and 
the fluid must be Newtonian. A Newtonian fluid is discussed in Chapter 1. Clearly, these two conditions 
place no restrictions at all in the context of water flow in pipes. 
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hydraulic gradient > 0.001, D from the approximate form of the energy equation for 
pipe flow is to within ~ 10% of the exact value. The assumptions that must be satisfied 
for the successful use of these formulas are minor-lossless, turbulent flow (4000 < Re 
< 3.25 x 105), s < 0.5, and smooth pipe. The recent correlations from Swamee and 
Sharma (2008) appear to be adequate substitutions for the Mathcad worksheets from 
Chapter 5 for minor-lossless flow in a single-pipe network. However, it is important 
we note that the worksheets can include minor losses where they are critical such as 
a partially closed globe valve needed for flow control. 

Finally, one of the substantive learning outcomes from this chapter is the impor-
tance of calculating Re for all designs. Recall that Re characterizes the flow, so that 
the value of Re tells the designer about the nature of the flow occurring in the design. 

Consistent with the developments in Section 2.9, the energy equation for pipe flow 
based on the approximate friction factor that was solved to produce the simplified set of 
formulas to estimate D, could also be applied to cases where there is forced, instead 
of gravity-driven, flow. The only difference is the representation of the hydraulic 
gradient term as discussed in Section 9.4. 

B.9.2 Example: Blasius Formula Approximation to Friction Factor for 
Forced Flow 

Consider a pressure-driven single-pipe network where water at 10°C is to be 
pumped upward a distance of 67 m through a 3-in. nominal sch. 40 PVC pipe. 
The discharge pressure is 225 psig, and pressure at the delivery location is 7 m of 
head. Calculate the volume flow rate, Q, delivered by this single-pipe network if 
the length of the pipeline is 1280 m. Neglect minor losses. 

PVC pipe is smooth, so that Eqn (9.7) can be used to calculate Q. As directed in 
Section 9.4, the term 

λ 
in this equation is replaced by 

Zl( ! - Fmod) _ £l_ _ V2 " P i = ç 

L L pgL 

to accommodate forced flow. Rearranging Eqn (9.7) as if solving for Q, we get 

V-Z-Zb „in ^L pgL ) 
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Blasius Formula Approximation for Forced Flow (Cont'd) 

With v = 13.07 x 1CT7 m2/s, p2 = pghdeÎ = 1000 kg/m3 · 9.807 m/s2 ■ 
7 m = 6.865 x 104 Pa (recognize that 1 kgm/s2 = 1 N and 1 Pa = 1 N/m2), 
p1 = 225 psig = 1.551 x 106 Pa, z1 = -67 m, and D= 3.068 in = 0.0779 m, 
Eqn (9.7) becomes 

(9.807 m/s2)4 /7 ■ (0.0779 m)1 9/7 

^ ~ (13.07 x IO"7 m2/s)i/r 

- 67 m 6.865 x 104 Pa - 1.551 x 106 Pa 4 / 7 

1280 m 1000 kg/m3 ■ 9.807 m/s2 · 1280 m 
Q = 2.25· 0.02505 m3/s · (0.06577)4/7 = 2.25· 0.02505 m3/s · 0.2112 
Q = 11.92 L/s 

This result can be checked by using Fig. 5.30. In this problem, 5 — 0.06577 « 
0.066 and for nominal 3-in. PVC pipe, we obtain Q « 12 L/s, in agreement with 
the above result. A quick calculation of Re [Eqn (9.11)] will show that this flow 
is turbulent. Therefore, the formulas from the above section are valid. It is also 
worthwhile to verify that the pressure rating of the PVC pipe is acceptable for the 
conditions stated in the problem. From Table 3.3, the rated pressure for sch. 40 
3-in. PVC pipe is 260 psig. Thus, the pipe will withstand the 225-psig pump 
discharge pressure with a factor of safety of (260-225)/260 = 0.135 = 13.5%. 

References 

F. A. Bombardelli and M. H. Garcia. Hydraulic design of large-diameter pipes. J. 
Hydraulic Eng., 129(11):839-846, 2003. 

B. A. Christensen. Discussion on 'Limitations and proper use of the Hazen-Williams 
equation'. J. Hydraulic Eng., 126(2): 167-168, 2000. 

C. F. Colebrook. Turbulent flow in pipes. Proc. Inst. Civil Eng., 11:133-156, 1938. 

C. F. Colebrook. Turbulent flow in pipes with particular reference to the transition 
region between the smooth and rough pipe laws. Proc. Inst. Civil Eng., 12:393-422, 
1939. 

C. F. Colebrook and C M . White. Experiments with fluid-friction in roughened pipes. 
Proc. Roy. Soc. (London), 161:367-381, 1937. 

The Copper Development Association. The Copper Handbook, http://www. 
copper.org, 2006. 



200 THE ENERGY EQUATION BASED ON APPROXIMATE FRICTION FACTOR 

G. Corcos. Air in water pipes, a manual for designers of spring-supplied gravity-
driven drinking water rural delivery systems. Technical report, Agua Para La Vida, 
Berkeley, CA, 2004. 

C. P. L. Liou. Limitations and proper use of the Hazen-Williams equation. J. Hy-
draulic Eng., 124(9):951-954, 1998. 

F. A. Locher. Discussion on 'Limitations and proper use of the Hazen-Williams 
equation'. J. Hydraulic Eng., 126(2): 168-169, 2000. 

B. R. Munson, D. F. Young, and T. H. Okiishi. Fundamentals of Fluid Mechanics. 
John Wiley & Sons, Inc., New York, NY, 2nd edition, 1994. 

J. Nikuradse. Laws of flow in rough pipes. Technical Report NACA Tech. Mem. 62, 
NACA, Washington, DC, 1950. From German, 1933. 

M. C. Potter and D. C. Wiggert. Mechanics of Fluids. Brooks/Cole (Thomson), 
Tampa, FL, 2002. 

H. Rouse. Evaluation of boundary roughness. Technical report, Iowa Institute of 
Hydraulics Research, University of Iowa, Iowa City, I A, 1943. 

H. Rouse. Hydraulics in the United States, 1776-1976. Technical report, Iowa Institute 
of Hydraulics Research, University of Iowa, Iowa City, IA, 1975. 

P. K. Swamee. Discussion of 'Limitations and proper use of the Hazen-Williams 
equation'. J. Hydraulic Eng., 125(2): 169-170, 2000. 

P. K. Swamee and A. K. Jain. Explicit equations for pipe-flow problems. J. Hydraulic 
Div., ASCE, 102(5):657-664, 1976. 

P. K. Swamee and A. K. Sharma. Design of Water Supply Pipe Networks. John Wi-
ley & Sons, Inc., Hoboken, NJ, 2008. 

The Crane Company. Flow of Fluids Through Valves, Fittings, and Pipe. New York, 
NY, 1970. 

Q. B. Travis and L. W. Mays. Relationship between the Hazen-Williams and 
Colebrook-White roughness values. J. Hydraulic Eng., 133(11):1270-1273,2007. 

N. Trifunovic. Introduction to Urban Water Distribution. Taylor & Francis, New 
York, NY, 2006. 

T. von Karman. Mechanical similitude and turbulence. Proc. Third Inter. Cong. Appi. 
Mech. Part 1 (NACA Tech. Mem. 611), 1930. 

G. S. Williams and A. Hazen. Hydraulic Tables. John Wiley & Sons, Inc., New York, 
NY, 1933. 



CHAPTER 10 

OPTIMIZATION 

"You're an Engineer, Everything You Say is Abnormal." 
- The Boss in the Comic Strip Dilbert, by S. Adams, 2008 

10.1 FUNDAMENTALS 

Optimization is an important part of any design process. Generally, the goal of a 
designer is to produce a design that has the best performance at the lowest possible 
total cost. Thus, with an optimized design, the design characteristics (geometry, heat 
and fluid flows, temperatures, materials, weight, volume, etc.) are not just acceptable, 
but are the best possible subject to constraints that are imposed on the design. 

A word like "best" used in the above description implies an optimal ("maximal" 
or "minimal") value if we are able to cast all aspects of the design in quantitative 
terms. Not all aspects that affect a design are quantitative. We sometimes refer to 
nonquantitative aspects as "intangibles." Some soft-engineering topics such as those 
involved with safety, the law, environment, society, manufacturability, and sustain-
ability among others, are sometimes intangible. In this regard, the relatively new 
field of sustainability, or sustainable engineering, has attempted to quantify aspects 
of production, manufacturing, design, and retirement of materials and products that 

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 201 
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were formerly difficult to do so. Even though intangibles are not able to be explicitly 
modeled, we nonetheless consider them in our selection of the final design. In this 
way, experience, engineering judgment, and good sense contribute to the selection of 
an optimal design. 

In the optimization process, the designer considers not only the mathematical 
optimal cases, but also the sensitivity of the total cost to less-than-optimal ("off-
optimal") designs and the relation of the design to the intangibles. In some cases, 
off-optimal designs may be given serious consideration if they produce a better design 
once the intangibles are considered. 

The existence of an optimum for a design requires that there be a competition 
between at least two different effects in the problem, both of which influence a common 
element, such as cost. To illustrate this, consider as a simple example the optimization 
of a cylindrical water storage tank of fixed volume, V, the cost for which we are told 
is proportional to tank surface area, A. Thus, to minimize cost, we wish to minimize 
the surface area of the tank. The problem is to solve for the optimal tank radius and 
height that produce the smallest, or optimal, tank area, and thus cost. 

Let the radius and height of the tank be r and h, respectively. The volume of the 
tank is then written as 

V = nr2h 

and the surface area of the tank is 

A = 2πτ·2 + 27rr/i 

where the first term accounts for the surface area of the tank top and bottom, and the 
second term the tank side. 

We wish to minimize A. To do this, we first write h in terms of V as 

V 
/ i=—5· (10.1) 

and, upon substitution into the expression for A, obtain 

A = 27Γ7·2 + — (10.2) 
r 

where only one independent parameter, r, now appears. 
Our inspection of Eqn (10.2) reveals that r affects the surface area of the tank in 

opposite ways for the tank top and bottom, and the tank sides. The first term on the 
right side of Eqn (10.2) indicates that the top and bottom surface area increases in 
proportion to r2. The second term on the right side of Eqn (10.2) shows that the 
sidewall surface area is proportional to 1/r (recall that this is for a fixed tank volume 
where, from Eqn (10.1), h is proportional to 1/r2). Thus, we can see the competing 
effects on A from r; decreasing r produces a smaller value of A based on the first 
term in Eqn (10.2), but a larger value of A based on the second term in Eqn (10.2). 
The question to be answered is what is the value of r the produces the smallest value 
for A. 
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Figure 10.1 Optimal tank area as a function of tank radius. The radius that minimizes tank 
area is obtained by inspection. The value of r at this location is called ropt. For r < ropt, the 
area is dominated by the sidewall, for r > ropt the area is dominated by top and bottom. 

One way to provide this answer is to make a plot of A versus r to locate the optimal 
point for A, Aopt, in a graphical manner (see Fig. 10.1). While acceptable for this 
simple example, this graphical method is time consuming and lacks generality that 
will be needed for more complex, realistic problems. We will explore two alternate 
methods for optimization in the sections below and obtain the solution for this example 
problem. 

10.2 THE OPTIMAL FLUID NETWORK 

There are at least two contexts in which we discuss optimization of fluid flow networks. 
The first refers to optimization of a network of a specific type, say a gravity-driven 
water system, where we size the components and carry out the design based on 
minimum cost, or another related outcome. The second context refers to the choice 
of the most-desirable among several systems of different types, such as a water supply 
from a gravity-driven system, an electrical pump system, and a dug-well system. Each 
of these systems may first be optimized within its own structure using the first context 
and then an appropriate choice made from among these optimized units. Both are 
important but, because the first is more fundamental than the second, we will focus on 
only the first context in this chapter. That is, once each system in a group is optimized 
subject to an over-arching set of constraints, it is a straightforward task to pick the 
most appropriate solution from among this group. 
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There are several instances that come to mind where there optimal conditions exist 
for a gravity-driven water network. By far, the most important from among these is 
the optimal static pressure head at a branching junction (where three or more pipes 
meet through which water is distributed). As will be discussed in Chapter 11, this 
arises from competition between upward and downward changes in pipe diameters 
at opposite sides of the branch with increasing head. Cost is proportional to pipe 
diameter, so this competition results in the existence of minimal cost, which yields 
optimal pipe diameters. Other instances may be considered from the following list. 

1. In a network, where there is a water storage tank and a prescribed water flow 
rate, increasing the elevation of the tank to supply a larger elevation head of 
water will enable a reduction in the pipe diameter. In this case, there is added 
cost to elevate the tank and reduced cost due to the smaller pipe size. The 
competition here is evident. This problem is solved in Section 10.6. 

2. In any network having multiple delivery points, increasing the number of de-
livery points, say, from one every 10 houses to one every 2 houses, will result 
in the need for smaller delivery pipe sizes, since each pipe will carry a smaller 
flow rate. The competition is between the larger number of pipes, on the one 
hand, and smaller diameter pipes on the other. 

3. In systems where there are multiple sources, there is a choice between inde-
pendent piping of small diameter from each source to a common water storage 
tank, and a much larger, single pipe that is manifolded near the sources. Note 
here that there is an embedded complication of a potential flow from one source 
to another, instead of to the tank (see Exercise 50). 

4. In a single-pipe network with or without local peaks, should the pipe diameter 
change, and at what locations, to cause a gradual reduction in excess static 
pressure due to the elevation change? In addition to the cost of throttling 
valves, certain nontangibles will need to be considered in this problem including 
maximum acceptable pressure drop across a valve, vibration and noise in the 
network, and possible premature valve wear and leakage (see Exercise 35). 

5. In a hybrid gravity-driven water and microhydroelectric power network, what 
is the optimal fraction of electrical power and what are the pipe sizes that satisfy 
this fraction? See Section 12.4.1 for more on this topic. 

6. In a hybrid gravity-driven water and photovoltaic-powered pumped network, 
what is the optimal pumped fraction and what are the pipe sizes that satisfy this 
fraction? 

Other examples can be given based on the reader's experience and creativity (see 
Exercise 33). 
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10.3 THE OBJECTIVE FUNCTION 

Optimization is performed by first defining an objective function. The objective 
function is one that we choose to maximize or minimize1 that contains all of the 
relevant information about the design. Designating the objective function as F, we 
may write2 

F(xi,X2,X3,... ,£„) —> Minimum or Maximum (10.3) 

where xi, x2, £ 3 , . . . , xn are the independent parameters in our design. For instance, 
F may be the total cost of the design that we wish to minimize, the surface area of 
a tank that we wish to minimize, or the heat transfer from the heating system that 
we wish to maximize. Since the objective function F is so often the total cost of a 
system, we often refer to the objective function as the "cost" function. 

In nearly every real case, optimization is not without restrictions. We refer to the 
restrictions placed on the optimization of a design as "constraints." These arise from 
perhaps conservation principles (mass, momentum, energy, and charge conservation) 
or physical limitations in the problem, such as pressure, temperature, length, volume, 
or weight. Constraints are categorized as equality or inequality types. These are, 
respectively, 

k(xi,X2,x:i,...,xn) = 0 (10.4) 

and 

gj(xi,x2,X3,...,Xn)<Cj (10.5) 

where Cj is the largest allowable value for the inequality constraint g y For example, 
an equality constraint placed on the above tank example is that the volume is fixed. 
There are no inequality constraints for the tank problem. 

For the simple case of a design having an objective function, F, that depends on 
a single parameter x, an optimization is carried out by taking the first derivative of 
F with respect to î. The optimal x (referred to as xopt) is obtained by equating this 
derivative to zero, and solving for the xopt value. Thus 

dF 
—r = 0 —» solve for x = xOT>t (10.6) 
ax 

This method falls into a class of methods referred to as Indirect and is illustrated in 
textboxB.10.2. 

1 Note that maximizing a function is equivalent to minimizing the negative of the function and vice versa. 
2The appropriate symbols in this and the following sections in this chapter have been given hats to distin-
guish them from those used for different meanings elsewhere in this book. 
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B.10.1 Calculus I Refresher 

It is worthwhile to recall from calculus that the point where a function is a max-
imum or minimum is an extreme point and has a zero slope (i.e., a zero first 
derivative). This is the reason for setting the first derivative to zero to obtain 
the location of this extreme point or "extremum." The reader may also recollect 
that if the second derivative of the function at the extremum is negative valued (a 
tendency for the value of the function to decrease with an increase in the value of 
x measured from the point of the extremum), then the extremum is a maximum. 
Otherwise, the extremum is a minimum. 

B.10.2 Tank Example Completed 

Consider the numerical solution for the above example of the water storage tank 
for which V = 2 m3. In Eqn (10.2), we differentiate A with respect to r and set 
the derivative equal to zero and solve to determine the optimum. Obtain 

dA 2V 
-— = 4πΓ = 0 
ar rz 

Solving for r = ropt and then hopt gives 

ropt f Z \ l / 3 lopt _ V _ (4ν\1/3 
{2π> ' ~ π(Γορψ - y π ) 

and from Eqn (10.2), 
Aopt = 3 (2π) 1 / 3 ^ 2 / 3 

With V = 2 m3, get ropt = 0.683 m, hopt = 1.37 m, and Aopt = 8.79 m2 in 
agreement with the results of Fig. 10.1. This area is the smallest possible value 
for a cylindrical tank of the given volume and, since we were told that cost is 
proportional to A, we have then found the smallest, and thus optimal, tank cost. 

To assure that the minimum area has been found, we take the second derivative 
of A with respect to r to get 

d2A W 
dr2 r3 
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The Tank Example (Cont'd) 

which is always positive. Therefore, because the second derivative of A with 
respect to r is positive, the extremum found above is indeed a minimum. If the 
second derivative of A with respect to r is negative, the extremum found above 
is a maximum. 

10.4 A GENERAL OPTIMIZATION METHOD 

Several methods have been developed to obtain possible optimal solutions to math-
ematical functions. Among these are Lagrange Multipliers, Gradient Methods (in-
cluding the Conjugate Gradient method), Search Methods, and Linear Programming. 
The commercial package Mat lab has a variety of very powerful built-in functions for 
optimization that are contained in the basic package and in the Optimization Tool-
box. This package is recommended for optimization of large, complex problems. The 
commercial package Mathcad also contains a small number of functions available 
for use in optimization problems one of which is the Given . . . Minimize construct, 
as discussed below. 

The method of Lagrange multipliers will be covered here. While the Indirect 
method, as described above, can be used for only the simplest of problems (e.g., the 
above tank example) where the design problem contains only a single independent 
parameter, the method of Lagrange Multipliers is among the most fundamental of 
methods for more than one independent parameter where the objective function and 
constraints may be nonlinear. The curious reader is encouraged to pursue the above 
methods presented in many references (Burmeister, 1998; Bejan et al., 1996; Jaluria, 
1998) including several directed specifically at water-distribution networks (Swamee 
and Sharma, 2000, 2008). 

10.4.1 Lagrange Multipliers 

As discussed above, we wish to optimize the objective function 

F(xi,X2, ■■■ ,xn) —* Optimum (10.7) 

subject to the equality constraints 

î1(x1,X2,...,Xn) = 0 
h{xi,X2,-..,Xn) = 0 

: (10.8) 

lm(xi,X2,---,Xn) — 0 

If there are inequality constraints, they may be converted to the equality type by using 
one or more "slack" variables. For example, the inequality constraint of Eqn (10.5) 
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may be written as an equality constraint by defining s? as the difference between zero 
and Cj. Thus Eqn (10.5) may be written as an equality constraint as 

&(Χΐ,Χ2)£3,-··,£η) -Cj+ê'j =0 (10.9) 

The term Sj is the unknown slack variable for the jth inequality constraint. The terms 
Sj for all of the inequality constraints are determined in the solution procedure as 
described below. 

In the Lagrangian Multiplier method, we convert the discrete equations appearing 
in Eqs (10.7) and (10.8) into a single equation by adding the zeros of Eqn (10.8) to 
the objective function of Eqn (10.7). Obtain 

Υ(χι,Χ2,-··,Χη,λΐ,λ2,·-·Απι) = F(x1,X2, . . . ,Xn) 

+ \1l1(xi,X2,...,Xn) 

+ X2h{Xl,X2,---,Xn) 

+ ■■■ + Xmlm(xi,X2,--- ,Xn) 

(10.10) 

where the as-yet unknown terms λχ, λ2, · · ·, Xm are referred to as Lagrange multi-
pliers. 

Following the above procedure, the optimal is obtained when the first derivative 
of Y with respect to all of the independent parameters is equal to zero. Thus, 

or 

dY n ΘΥ n 

ax\ dx2 

dY n dY 
— = 0, — = 0, 
dXi 9λ2 

dP . dh - dî2 
Tr: r Λι — h Ä2 ΤΓΓ-

ox\ ox\ dx\ 

. . . , 

. . . , 

+ 

dY - o 
dxn 

dY = o 
dXm 

• ' ' + Xml 

(10.11) 

dim = 0 

dx\ 

dP ~ dh Î dî2 Î dlm 

0x2 dx2 dx2 dx2 

Ä 7 *~ lW~ "" Λ 2 ο Γ - + H A m — -
Ctt-71 (Jdjji (JJJJI ο\Ζγί 

li(xi,x2, . . . , x n ) = 0 

h(x\,X2, ■■■ ,Xn) = 0 

lm(xi,X2, ■■■ ,Xn)—0 

(10.12) 
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If F is continuous and differentiable, all derivatives in Eqn (10.12) are obtainable. 
Thus, Eqn (10.12) represents a system of n + m algebraic equations that may be 
solved for the n values of the independent parameters x and the m values for the 
Lagrange multipliers Â. 

If the system of equations from Eqn (10.12) is linear, matrix inversion may be 
used in a straightforward manner to obtain the solutions for the optimal values for 
xi, X2, ■ ■ ■, xn and the Lagrange multipliers Ai, Â2,. . . , Xm· Otherwise, when the 
system of equations is nonlinear, successive substitution of one equation into another 
or a formal numerical method, such as Newton-Raphson (Gerald and Wheatley, 1999) 
or the Given... Find construct in Mathcad is used to obtain the solution. 

B.10.3 A Nonfluid Example 

Consider a shell-and-tube type of heat exchanger that perhaps you have seen in a 
large industrial plant. The purpose of this device is to transfer heat between a hot 
fluid stream and a cooler one, but this is the extent of involvement with fluids for 
this example. The exchanger length, L, and diameter, d, are to be selected such 
that the total cost for the exchanger is minimized. The cost function is 

F(L, d) = $4450 + $37.70/m3-5Ld2-5 + $28.Q0/m2Ld (10.13) 

where F is in dollars, and d and L are in meters. The terms in Eqn ( 10.13) account 
for tube cost, shell cost, and floor space cost, respectively. The overall volume 
of the exchanger is fixed at V = 15m3. 

The single equality constraint is the fixed volume, 

l(L,d) = ^d2L-V = 0 

We will use Lagrange multipliers to solve this problem. Equation (10.10) be-
comes, 

Y(L, d) = F(L, d) + XÎ(L, d) 

where λ is the single Lagrange multiplier. Equation (10.12) becomes for this 
example, 

A y 

— = 0 + $37.70/m3-5d2·5 + $28.60/m2d + X^-d2 = 0 (10.14) 
ÖL· 4 

and, 

— = 0 + $94.25/m3-5Ld1·5 + $28.60/m2L + X-Ld = 0 (10.15) 
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A Nonfluid Example (Cont'd) 

To solve these two equations simultaneously, eliminate λ between Eqs (10.14) 
and (10.15) to get 

$18.85/m3-5Lii2·5 - $28.60/m2Ld = 0 

or d1-5 = ($28.6/m2)/($18.85/m35). From this, we obtain d = d°pt = 1.32 m 
and from Eqn (10.4.1), L = L°pt = 10.96 m. The optimal total cost is then 
popt = F (L°P\dopt) =$5691. 

Next, the second derivatives of F with respect to d and L individually, and the 
mixed second partial derivative of F with respect to d and L need to be evaluated 
to verify that a minimum for F has been found. This is left as an exercise for the 
student. 

As a final note, there are many problems for which no optimal solutions exist. 
For example, consider a heat-conducting metal fin, like those seen on the engine of 
a motorcycle, that transfers heat to a fluid moving next to it. For a motorcycle, the 
fluid is air passing across the hot engine. The heat transfer rate at the base of the fin 
increases monotonically with the fin length such that there is no optimal fin length in 
an unconstrained situation. Constraints on the other dimensions of the fin, flow rate 
of fluid, or the weight or volume of fin may produce an optimal fin length. Therefore, 
when the above algorithms or optimizing functions in Matlab or Mathcad produce 
suspicious, obviously incorrect optimal values, then perhaps no optima exist. In any 
event, a thorough inspection of the equations for the system will reveal this behavior 
without any numerical computations. 

10.5 OPTIMIZATION USING MATHCAD 

Let us reconsider textbox B.10.3 example and propose to solve it in Mathcad. We 
will use the Given.. .Minimize block. This is similar to the Given.. .Find block 
that we have already seen, except that it seeks to minimize a function of one or more 
variables and returns the (optimal) values of the variables once the minimal value for 
the function has been found. With this construct we need to define the function that 
we wish to minimize and provide initial guesses for the unknowns. The constraints, 
if any, are placed inside of the Given.. .Minimize block. For this example, there is 
a single constraint of fixed volume, V. Mathcad does the rest. 
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Figure 10.2 Mathcad worksheet for optimization of a heat exchanger. 

The worksheet for this solution is shown in Fig. 10.2. The solution is reported in a 
column vector3 and the values for d and L are identical to that in textbox B. 10.3. Note 
that solution is compact, units are used, and it appears as it would if on paper. This 
construct will be used extensively for larger optimization problems in Chapter 11. 

10.6 OPTIMIZING A GRAVITY-DRIVEN WATER NETWORK 

10.6.1 The Problem and Cost Optimization 

For some locations where there is a supply and demand for a relatively large flow 
rate of water, but not much elevation to drive the flow, and where the length of this 
single-pipe network is large, it may be cost effective to build an elevated water storage 
tank to produce additional elevation head. The schematic of Fig. 10.3 focuses on this 
situation. The flow rate is Q and the length of pipe and elevation head between the 
base of the tank and the delivery location are L and Δζ0, respectively. The elevation 
of the tank measured from its base is Azt. 

The competition in this problem is as follows. The cost of the network includes 
pipe cost, typically proportional to the pipe diameter D, and the cost of the tank and 
structure to support it. The latter cost is composed of two terms. The first is the fixed 
cost of the tank (we assume the volume of the tank is fixed based on water demand) 
and a cost for the structure that is proportional to its height. With no tank (low 
elevation head) the pipe diameter will need to be large to reduce the effect of friction. 
In this limit, pipe cost dominates the problem. At the other extreme, where there is the 
tank and structure, the resulting higher elevation head will reduce the required pipe 
diameter and thus cost, but at the added expense of tank and structure. The question 

3The unit of both d and L is identical, so this is not a problem. If the units of two or more dependent 
variables are not the same, the Given.. .Minimize block must solve as if the results are dimensionless. 
To do this, just divide by the unit of each term in the Minimize statement. 
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Figure 10.3 Geometry for optimization of low-head network with constructed tank. 

posed is "what is the optimal height of the tank, Az°pt, that minimizes total pipe and 
tank/structure cost?" After this answer is obtained, we can then calculate the optimal 
pipe diameter, Dopt, and optimal network cost, C£pi. 

For the case where there is an elevated tank, water is supplied to it from the source 
by a small pump (not shown in Fig. 10.3), perhaps powered by photovoltaic cells. 
The pump is large enough to raise the water from the source to the tank, but not large 
enough to supply the water to the communities. It would be too large and costly to 
do this. It would also need to run nearly continuously to provide static pressure to 
the network, which would perhaps increase operating costs for electrical power. 

We begin by recognizing that the pipe diameter is obtained from the solution of 
the energy equation, as we have seen in many problems is the past. Equation (2.23) 
is combined with Eqn (2.7) to eliminate ü in favor of flow rate Q, to get 

Az0 + Azt + Ah={K + a + f(Q, D)[±±£* + §]} J ^ j 
D 

(10.16) 

where Ah — h\ — h% = (p\ — p$)/pg = 0, since both the tank and delivery location 
are at atmospheric pressure. The two minor losses embodied by K and Le/D are 
included in the energy equation, as well as a to account for flow acceleration from 
the quiescent water in the tank to flow speed ü in the pipe. The total length of the 
pipe is L + Azt and the total elevation head is AZQ + Azt. Note that the continuity 
equation is identically satisfied for this problem. 

The data that apply here are Q = 2.5 L/s, L = 2000 m, Az0 = 4 m, K = 20, and 
Le/D = 60. The flow rate and pipe length are both relatively large, and the elevation 
head, Δζο, is small. 

The total cost for the network is written as 

CV $1.067( — )1A(L + Azt) + $1200 + SUO/m^Azl2 (10.17) 
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where the first term on right side accounts for pipe cost, the second term for the 
tank and base cost of pump and structure, and the third for the height dependence of 
structure and pump. The coefficients and exponents are approximate and based on 
2007 data from central Nicaragua. 

The competition that was described above is made clear by our inspection of 
Eqn (10.17). The energy equation gives the solution that D is inversely proportional 
to Azt- Knowing that L ^> Azt, in the limit of small Azt, Eqn (10.17) shows that 
the pipe cost dominates the total cost, and for large Azt the tank and structure costs 
dominate. 

10.6.2 Mathcad Worksheet 

The solution is carried out in Mathcad and the worksheet appears in Fig. 10.4. A 
description of this worksheet is supplied here. 

• The basics: 

- Definition of water properties of density, p, and viscosity, v. 

- A convergence tolerance, TDL, used in Mathcad to determine when a 
root-finding algorithm has found the root to sufficient accuracy. 

- Definition of Reynolds number (Re) as a function of Q and D, and a as 
a function of Re. 

- Definition of the absolute roughness of the pipe wall. 
- The friction factor function as defined by Eqs (2.16) and (2.17). 
- Cost data for the pipe as a function of nominal pipe size, and for pump, 

tank, and structure. 

• The solution: 

- Initial guesses for the values of D (diameters ranging from 0.2 in. to 4 in. 
are good guesses for nearly all problems considered in this book). 

- Values for the input parameters for each leg in the network, including L, 
Q, the appropriate minor loss coefficients, and elevation changes. 

- Definition of the energy equation for the network. This is given a symbol 
r and the needed functional dependence. 

- A formula for the total pipe material cost, Tcost. 

- The solution of the energy equation to get D as a function of Azt using 
the Given.. .Find construct and definition of the cost function, Tc, which 
depends on just Azt. 

- Plots of the results to investigate the existence of an optimum. 
- Optimization using the Given.. .Minimize construct and the solution for 

Az°pt, Dopt, and optimal cost. A constraint on the maximum height of 
the tank of Azt < 25 m was used to prevent the structure from being 
unrealistically too high (a different, more nonlinear, cost model would 
need to be included for very tall structures). 
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Figure 10.4 Mathcad worksheet for optimization of low-head network with constructed 
tank. 
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Figure 10.5 Cost versus tank height for optimization of low-head network with constructed 
tank. 

10.6.3 Results 

A plot of the total network cost as a function of Azt is shown in Fig. 10.5. The optimal 
point of Az°pt =8.23 m is clearly identifiable on this graph. The solution from the 
Mathcad worksheet gives Dopt = 2.86 in, and optimal network cost of $12,041. 
From data in Chapter 3, we would select a nominal 3-in., sch. 40 IPS PVC pipe for 
this design. The inside diameter of this pipe is 3.068 in. Because this is larger than 
the theoretical diameter of 2.86 in., we would include in the design a throttling, or 
globe, valve to effectively reduce the pipe diameter and satisfy the design flow rate 
of 2.5 L/s. Otherwise, the flow rate will exceed that specified in the design. To allow 
for the possibility of more flow in the future, the valve opening is simply increased. 
This part of the design would be carried in what we refer to as the "reverse solution", 
which will be described in Chapter 11. 

Finally, a further inspection of Fig. 10.5 reveals that halving or doubling the optimal 
value for Azt will add -$500 to the total network cost. This result gives the designer 
a "feel" for the degree of sensitivity of the design to off-optimal conditions. 

10.7 MINIMIZING ENTROPY GENERATION 

Minimizing network cost is one way, and given the importance of economy in en-
gineering designs perhaps the most meaningful way, of optimizing the water-flow 
network. It is not the only one, however. The thermodynamic property entropy pro-
vides us with an alternate approach for this optimization. Entropy, in some contexts 
discussed as a measure of disorder in a system or component, is used in the classical 
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second law of thermodynamics to model the behavior of a system or component. In 
particular, the entropy increase in a real process4 is always positive when the total ef-
fects of the process (that is, within the process itself and the influence of the process on 
its surroundings) are considered. Thus, we often seek to minimize the rate of entropy 
generation, Sgen, in a process and, by doing so, guarantee the smallest possible ex-
tent of irreversibilities, or inefficiencies, associated with the process (Poulikakos and 
Bejan, 1982; Bejan, 1996). Many publications on entropy and the associated topics 
of second law, availability, and exergy analyses have appeared in the past couple of 
decades. In recent years, the popular concept of sustainability5 has been formalized 
and frameworks for the life-cycle or sustainable analysis have been proposed and 
exercised. Entropy is a potentially very useful tool in sustainability analysis 

The rate of entropy generation for adiabatic6 flow in a pipe is, 

c„en _ pgQi^z + Ah) 
Tin+g(Az + Ah)/2cv

 K ' ' 

where cv is the specific heat for water (-4190 J/kgK). Az + Ah is the head loss due to 
friction in the flow. The denominator in Eqn ( 10.18) is the absolute mean temperature 
of the water along the pipe flow path, where Tin is the water temperature at the pipe 
inlet. 

Equation ( 10.18) may be used to solve for unknowns in the pipe-flow problem. For 
example, if the entropy generation for the tank and support structure, Sf*"k, for the 
above example were known, this information could be combined with Eqn ( 10.18) to 
get an expression for the total entropy change as, 

SÇn = S9
tZk + f Seen dt = S9

tZk +
 P9V^Z+^/n (10.19) 

T tank Jo tank Tin+g{Az + Ah)/2cv 

where y is the volume of water in the pipe. The static pressure head at the base of the 
tank, /i2, is unknown and can be solved for by taking the derivative of Eqn (10.19) 
with respect to Ah, setting this result equal to zero as done in the above examples, 
and solving for Ah to get h^-

In Chapter 11, we will have the need to also solve for the unknown static pressure 
heads at the junctions of a multiple-pipe network. Taking the derivative of Eqn (10.18) 
with respect to Ah and setting it equal to zero will give us an equation for this unknown. 
Obtain 

0 = CyTin9PQ (10 20) 
[2cvTin+g{Az + Ah)f U a Z U ; 

Entropy minimization is included here mostly in the interest of completeness. 
Cost minimization will almost certainly be considered more important than issues 
of sustainability in developing regions so it is very unlikely that the equations from 

4As opposed to one that has been idealized to obtain a limiting- or bounding-case result. 
5 Sustainability has been defined as that which "meets the needs of the present without compromising the 
ability of future generations to meet their own needs" (Anon., 1987). 
6No heat transfer between the flow and its surroundings. 
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this section will be used in a design in this context. However, the readers should be 
aware of the existence of a physical law like mass and momentum conservation (i.e., 
the second law of thermodynamics, not economics, that can be used to determine 
unknown quantities like static pressure heads at junctions in multiple-pipe networks). 

10.8 SUMMARY 

Briefly, in this chapter we saw the importance and relevance of optimization in the 
analysis and design of gravity-driven water networks. The concept is very basic 
and we now recognize that an optimal solution may exist for problems where there 
is a competition of effects, as described above. A corollary to this competition is 
that we should be able to identify at least two limiting-cases for each optimization 
problem. For example, for the last problem these are zero height of the tank, where 
all cost is associated with only the pipe, and an infinite height of the tank, where 
only the tank/support cost enters the problem. It is useful to look for these limiting 
cases when trying to determine if a problem has an optimal solution. The Lagrange 
multiplier method is important and powerful for this application and we will use it 
again in Chapter 11. We also saw the relative simplicity of obtaining optimal solutions 
using the Given.. .Find and Given.. .Minimize constructs in Mathcad. These will 
also appear frequently when we consider multiple-pipe networks, where numerical 
solutions are nearly always required. 
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CHAPTER 11 

MULTIPLE-PIPE NETWORKS 

"... Learn as if you will Live Forever." 
-M. Gandhi 

11.1 INTRODUCTION 

Thus far, we have focused on two levels of analysis and design for a single-pipe 
network. The first level considered the performance of a network based on overall 
characteristics (i.e., the mean slope, site geometry, and inlet and outlet states). This 
gave rise to a relatively simple form of the energy equation for pipe flow, Eqn (2.40) or 
(2.41), that linked the fluid flow rate, pipe diameter, site geometry, and static pressure 
at the delivery location. The second level addressed the distribution of properties, 
namely the static pressure distribution, in the flow and produced a different form of the 
energy equation, Eqn (6.12). The former equation is very convenient for calculating 
the pipe size needed for a required volume flow rate and given site geometry and 
delivery pressure. In Chapter 6, we saw that assessing the solution of the latter 
equation is crucial to assure the integrity of a design; a requirement to achieve a 
minimum static pressure at each and every point along the flow path in a network 
having local peaks. The concept of "Natural flow" in a pipe explored in Section 2.6.3 
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and a new companion concept of the "Natural diameter" for a pipe in Chapter 6 were 
outgrowths of these two levels of analysis. 

As we saw with the examples in Chapter 8, single-pipe networks are important 
in a gravity-driven water supply. For instance, a single pipe (a "gravity main") is 
used to supply water from a single source to a storage or break-pressure tank and 
another single pipe may be used to deliver water from the tank to a single tapstand in a 
community. However, a multiple-pipe network is always needed for water distribution 
to more than a tank or a single tapstand. Other needs would be branching flows from 
a "main" or "trunk" pipeline (a "distribution main") to branches of smaller-diameter 
distribution pipes, and networks where there are multiple water sources. Because 
the need for branching and single pipes of multiple diameters is so common, this 
substantial chapter is devoted to their study. 

The developments in the above chapters may be extended to a network having 
more than a single pipe by making just a few changes and generalizations. We will 
solve energy equation for pipe flow, Eqn (2.44) (or its equivalent where minor losses 
are included), in a slightly modified form. The modification is very simple. In a 
single-pipe network, the static pressures at the end points of the network are pi = 0 
(atmospheric pressure) at the source and a specified static pressure at the delivery 
location, p2, which we wrote in dimensionless form, F = ρ^ι'pgz\. Given the 
geometry of the site, including mean slope s and tortuosity λ, the specification of 
F allowed us to solve Eqn (2.44) for D required to pass a specified volume flow 
rate of water, Q. The analysis was straightforward and the solutions were obtained 
either graphically (in Chapter 5) or by using a Mathcad worksheet, which allowed 
the inclusion of minor losses (Chapter 8). In the case of a multiple-pipe network, 
the static pressures at the locations where the multiple pipes are connected are not 
known. We must determine the values for the static pressures at these "junctions" 
(or internal "nodes") from other information or guidelines1 and, using these values, 
evaluate D for each pipe by solving a system of (nonlinear) energy equations for 
the flow in multiple pipes in a simultaneous manner. The solution of simultaneous 
nonlinear algebraic equations was discussed in Section 4.4.1. It is important to note 
that the need to specify the junction pressures to be able to solve for D uniquely is 
entirely consistent with the developments in Chapter 6 where, to solve for the Natural 
diameter distribution in the network, we first prescribed a static pressure distribution. 
The resulting solution for D from the energy equation is, in fact, the definition of the 
Natural diameter. 

Other information could be the condition of minimum cost, the requirement of a suitably large static 
pressure at the junction to eliminate potential contamination of the clean water, or an acceptably low static 
pressure such that pressure limitations for the pipe and fittings are not exceeded. 
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11.2 BACKGROUND 

11.2.1 Past Approaches to the Problem 

The analysis and design of multiple-pipe networks forms the bulk of the few books 
and chapters of books written on the topic water distribution (Jeppson, 1976; Nayyar, 
2002; Trifunovic, 2006; Swamee and Sharma, 2008). As opposed to the relatively 
simple representations of the solutions for single-pipe networks that we saw in Chap-
ter 5, those for multiple-pipes will always require a numerical solution even for 
minor-lossless flow. The literature shows two different approaches to the problem. 
The first assumes values for all pipe diameters (D) and solves for volume flow rates 
(Q) and static pressure head values (hj) at all junctions. The second assumes known 
values of Q and solves for D and hj. Both approaches will be thoroughly considered 
in the sections that follow. Optimization is often employed such that network total 
cost is minimized. Linear programming, where optimization is performed with the 
energy equations in linearized form, is sometimes used [see Schrijver (1998)]. 

11.2.2 Pressure Head Recommendations 

For pumped water flow networks, the hydraulic design requires a specification of a 
minimal static pressure in the distribution mains. These are ranges of values set by 
the communities or their legislators. In mountainous regions like parts of Austria, the 
standard for these pressures can be as large as 120 m, while in other locations like 
Rio de Janeiro are as small as 25 m (Trifunovic, 2006). A reasonable average range is 
-40-60 m. In gravity-driven water networks, for all points beyond the source,2 only 
static pressure can drive the flow once it has been converted from potential energy. 
Thus, static pressures may be considerably larger in these. For example, analysts and 
designers of these networks may encounter the need for static pressure heads nearing 
100 m to satisfy the requirements of a design. Pipe materials and wall thicknesses, 
along with rated pressures for the different pipe candidates, need to be seriously 
considered, in addition to sound construction and operation practices. This includes 
the method of joining pipe including cementing for plastic pipe and threaded joints 
for galvanized iron (see Chapter 3). The need for break-pressure tanks, air vents, 
and vacuum-breakers in the network will also enter the design and, as discussed in 
Chapter 13, will be crucial for its successful operation. 

11.3 OUR APPROACH 

Consistent with the developments and terminology in Chapter 2, we will designate the 
unknown static pressure, pi, at one end of the pipe (state l )asFi = p\/ pg(z\ — z2) = 
h\/(z\— Z2) and the one at the other end of the pipe (state 2) as F2 = P2/ pg{z\— z2) = 
h2j{z\ — z2). Equation (2.44), the energy equation for minor-lossless flow in a pipe, 

2 A reservoir or reservoir tank at atmospheric pressure 
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becomes 
l + F1-F2 8Q2 f(Q,D) 0 (11.1) 
Wl + s~2 7T2g D5 

where D and, in general, Fi and F2 are unknowns. It is understood that the heads 
h\ and h2 in the definitions for F are the static pressure heads at the pipe ends. The 
reader will note that Eqn (11.1) is consistent with Eqn (2.44) for a single-pipe (i.e., 
Fi = 0 if the static pressure at state 1 is atmospheric). Also, recall from Fig. 2.11 that 
z2 = 0 for a single-pipe network. However, in the present situation where we have 
any number of pipes of any lengths, z2 is not generally zero as it was for a single-pipe 
network. Because of this, the denominator of each F term is z\ — z2, instead of just 
z\ as it appears in the definition of F. 

In previous chapters, the energy equation for pipe flow was able to be simplified 
if s « 1. Obtain 

• (1 + A _A).!£/&£)_„, for „<o.5 a u , 
If minor losses in the network are to be considered, we include them by writing 

Eqn (11.2) as, 

sn+p n 8Q* f(Q,D) D^Le - ( l + F 1 - F 2 ) - ^ - o ï — [ l + - ^ -
N 

1 D(a + Y/Ki)}=0 
f(Q,D)L 

(11.3) 
where, in the square braces, the major loss is represented by 1 followed by the minor 
terms using either the equivalent length (Le/D) or loss-coefficient (K) methods.3 

From our inspection of Eqn ( 11.3), the origin of the recommendations in Section 7.4 
concerning the threshold level for minor losses to be significant becomes clear. They 
are established by comparing the size of the major loss, the 1 in Eqn (11.3), with 
those of the minor loss terms. 

As an aid to understanding, the reader may wish to consider the term in square 
brackets in Eqn (11.3) as a dimensionless factor > 1 (for nonzero minor losses) that 
multiplies the major loss term and, in this way, accounts for the effect of minor losses 
in the network. 

The term a is included in Eqn (11.3) if it is needed. Recall that, to this point, a 
is known to account for the kinetic energy change between a quiescent reservoir at 
the source or open tank and the developed flow speed in a downstream pipe. At the 
junction of two pipes each having a different diameter, for example, the flow speed in 
each will not be very different. This means that the kinetic energy change experienced 
by the flow passing between the pipes will be negligibly small. In other words, in 
this case the effect of a may be neglected and a dropped from Eqn (11.3). 

Where there is a junction of three or more pipes, either one of two approaches 
may be used. If there are many outlets, one can imagine the mixing of flows from/to 

3Remember that only the loss-coefficient (K) approach or the equivalent length method (Le/D) is used, 
never use both methods for the same minor loss elements or else the effect of the minor losses will be 
erroneously doubled. 
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multiple pipes as taking place in a small mixing "box". In this box, the static pressure 
is approximated as uniform throughout; p is the same for all pipes at that location. 
The mixing box will also need to be relatively large, compared with a pipe diameter to 
accommodate the flow from/to multiple pipes. Therefore, for the first approach, the 
designer may approximate the velocity in this mixing box as small compared with the 
velocity in a pipe (i.e., the approximation ü = 0 at a junction may be invoked). This 
approximation is conservative because it will add a small "minor loss" of a to the 
flow entering each pipe from a junction. Recall that the value of a is ~ 1 for turbulent 
flow and 2 for laminar flow (see Fig. 2.2). Both of these values are small compared 
with many of the minor-loss K values appearing in Table 2.1. 

The second approach applies if there is a single inlet and two outlets, such as what 
occurs with branching flow in a tee fitting. In this case, the minor loss from Table 2.1 
would be applied to either the "branch" flow (a turning of the flow of 90°) or the 
"run" flow, which is straight through the tee; a in Eqn ( 11.3) is ignored in favor of the 
minor-loss term. This model for energy losses in a branch is most frequently used. 

It is worthwhile to emphasize in our discussion of losses associated with branching 
flows that the effect of the acceleration term in the energy equation is generally small 
compared with the pressure and potential energy terms for flows in gravity-driven 
water networks.4 Low-flow networks, where the elevation heads are small, are a 
possible exception to this guideline. 

The general procedure for analyzing a multiple-pipe network is as follows: 

1. Apply the energy equation for pipe flow, Eqn (2.7) or (11.3), to each leg of 
the network for which there is a pipe of uniform diameter. This means that 
the energy equation is written between the inlet and outlet for the uniform-
diameter pipe. The inlet of a pipe of one diameter joined by a reducer or an 
expander to the outlet of a pipe of a different diameter forms a "junction" or 
"node". Junctions also occur at all sources and wherever pipes join a tank5 or 
any branch fitting such as a tee, even though the pipe diameter may not change 
across the tank or tee6. Besides these junctions, all appropriate local high and 
low points in the network, as defined in Section 2.7, should also be treated as 
junctions (we may refer to these as "design points" rather than junctions) even 
though the pipe diameter may not change at these locations. Local high and 
low points, where the values for the static pressures may be locally too low or 
high, are worthy of our inspection. 

4As discussed in Section 13.13 the normally recommended peak flow speed in a plastic pipe is -3 m/s. 
From this, a simple calculation of the kinetic energy per unit mass gives -0.5 m of head. This is what is 
meant by the acceleration term in the energy equation is generally small compared with the pressure and 
potential energy terms. However, for a low-head gravity-driven water network, small minor losses and a 
should be considered. This was emphasized in Section 7.4. 
5This is because the pressure at the surface of the source or tank is atmospheric and is thus known. The flow 
upstream and downstream of the tank and downstream from the source is affected by this fixed condition. 
6The inlets and outlets of a tee may have the same or different diameters; if different, the tee is referred to 
as a "reducing" or "expanding" tee. 
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2. At each junction in the network, mass conservation requires that the sum of 
the volume flow rates into the junction must be zero. For example, if there are 
n pipes at a junction, mass conservation requires Σ Q;n — Σ Qout = 0 as 
discussed in Section 2.5, where the summation is implied over n pipes. For 
the simplest case, where there is a connection of two pipes, each of a different 
diameter, the volume flow rates in each pipe are clearly equal. 

3. In pipe networks where closed loops appear, use is made of the fact that the 
pressure change around any closed loop must be zero. This arises because the 
static pressure at any point in the network must be single valued. A loop network 
will be considered below. Further information on looped networks is presented 
in a Section 11.7 and in Gagliardi and Liberatore (2002) and Swamee and 
Sharma (2008). The Hardy Cross method, presented in some fluid mechanics 
books (Potter and Wiggert, 2002), is used to solve this type of network problem 
for arbitrarily specified pressure at pipe junctions. 

The following simplifications apply to the energy equation for each leg of the 
network as appropriate: 

1. For all reservoirs and tanks open to atmospheric pressure, p = 0 and ü = 0, as 
discussed in Chapter 2. 

2. In all mixing boxes, as discussed in the preceding paragraph, the static pressure 
is uniform and ΰ = 0. 

3. As noted and discussed in Section 7.5, for a faucet valve at a tapstand, the pipe 
network leading to the tapstand is designed based on flow conditions occurring 
for a fully open valve. The same applies to a globe valve at the entrance to a 
tank. When the faucet is open, the static pressure of the fluid at the valve outlet 
is zero (atmospheric pressure or zero gage pressure). When a globe valve at 
the entrance to a tank is open, the static pressure of the fluid at the valve outlet 
is equal to the hydrostatic head of the water in the tank. In both cases, the 
minor loss for the full-open valve could be included if carrying out a complete 
analysis using, say, a Mathcad worksheet. From Table 2.1 and the associated 
discussion, we see that the K value for a full-open valve is~8-10, small enough 
so that it may be neglected in a preliminary analysis. For an example where the 
minor loss is included, see the simple-branch network in Section 11.4. Note in 
this discussion that the minor loss K value for the highly dissipative (that is, 
nearly closed) globe or faucet valve can be 100 or larger (Table 2.1). Of course, 
if the valve is shut, the pipe diameters have no effect on the static pressure in 
the system, which depends on just the local elevation. 

In this chapter, we will consider the following cases for flow in multiple-pipe 
networks: 

• A simple-branch network; this could be applied to water distribution from a 
single pipe to multiple delivery locations, or tapstands, and serves as a simple 
introductory case for more complicated multiple-pipe networks. This case is 
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the building block for branching flows that occur frequently in all multiple-pipe 
networks in large urban areas including those that are pressure driven. 

• A number of pipes of different diameters in series, often used in large networks, 
where the dissipation of potential energy is tailored to match of contour of the 
pipeline, 

• A multiple-branch network; an extension of the first case. This is probably the 
most common type of multiple-pipe network for rural applications. 

• A loop network. 

As a group, these encompass nearly all the situations encountered in the design of 
gravity-driven water distribution networks.7 In the case where there is needed a 
more-complex model of any number of pipes connected in any manner, typical of 
a large urban water-distribution network, please see Jeppson (1976); Streeter et al. 
(1998); Gagliardi and Liberatore (2002); Trifunovic (2006), and Swamee and Sharma 
(2008). In these, general but more complex than those used in this text, computer 
codes are available to solve the nonlinear equations of the flow network. This topic 
is considered in Section 11.8. 

For uniformity, pipe is assumed to be IPS sch. 40 PVC for all of the numerical 
examples presented in this chapter. Application of the methodologies in this chapter 
to other pipe of interest is clearly very easily done (see Chapter 3). 

11.4 A SIMPLE-BRANCH NETWORK: FLOW FROM A JUNCTION TO 
MULTIPLE TAPSTANDS 

Consider the three-pipe network as shown in Fig. 11.1. The pipes are labeled a, b, 
and c and they meet at the junction (subscript j) where the pressure is pj. Each pipe 
has a mean flow speed ü, volume flow rate Q, diameter D, and length measured along 
the path of the pipe L. The change in elevation between the top and bottom of each 
pipe is Az. For example, Aza is the elevation change between the top and bottom 
of pipe a, where the bottom of this pipe is located where the static pressure is pj. 
The required head at each outlet for pipes ò and c, hdei, is nonzero as indicated in 
Fig. 11.1. 

The values appearing in Table 11.1 apply to this problem. Note that the volume 
flow rates are prescribed for each pipe, which are based on the measured, or perhaps 
measured and projected into the future, demands of the communities to be served. 
As specified in Table 11.1, the continuity equation is satisfied. The elevation changes 
for pipes a and b are positive, and that for pipe c is negative meaning that the flow is 
moving upward against gravity toward the delivery location at the end of this pipe. 

7Note that the case of flow from multiple sources or tanks to a single pipe is identical to the first of these 
cases. The only difference is that the flow is into the branch from multiple pipes instead of from the branch 
through multiple pipes. 
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Figure 11.1 A three-pipe branch network. Possible application is flow from a branch to 
multiple tapstands located at the delivery locations (ends of pipes b and c). The source is at the 
top of pipe a. 

Table 11.1 Values for the Design Parameters for the Branch Three-Pipe Network of 
Fig. 11.1 

Pipe 

a 
b 
c 

Mm) 
365 
120 
210 

Q (L/s) 

0.5 
0.2 
0.3 

K 

50 
10 
10 

Le/D 

60 
120 
90 

Az(m) 

33 
5 
-1 

hdei (m) 

7 
7 

As an introduction to the topic of multiple-pipe networks, we will formulate this 
problem two ways. The first will be in terms of "primitive variables" (i.e., p, z, and 
L, along with D and Q). The word primitive refers to the solution of a problem 
where its fundamental dimensional quantities appear as opposed to the variables 
rewritten in dimensionless forms. With the primitive approach we begin by writing the 
fundamental energy equation for pipe flow for each pipe, simplify them to eliminate 
the energy terms that appear, but are not relevant to the problem at hand, and then 
solve them to obtain, for example, the sought-after values for D. 

The second approach to the formulation is to use the framework developed earlier in 
this book for single-pipe networks where p, z, and L are replaced by the dimensionless 
parameters F, s, and λ [see Eqn (11.3)]. As we will see, this approach, while very 
convenient for a single-pipe network, is less so for one with multiple pipes because 
elevations and static pressures at the pipe ends are generally nonzero. 

Whether the problem is solved in primitive or dimensionless form, there will 
always be the need for three steps to the solution of a multiple-pipe problem, where 
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D for each segment (or leg) of the network is unknown.8 The first step is referred 
to as the "forward solution." In this step, we solve the energy equation for pipe flow 
to determine the theoretical values for D needed to satisfy the prescribed volume 
flow rates in the network, network overall geometry, and specified or calculated static 
pressures at all pipe junctions. Once the values for D are obtained, in step 2, the 
designer adjusts these to correspond to actual inside diameters for the nominal pipe 
sizes chosen. As discussed in Chapter 3, the nominal pipe size normally chosen is 
one where its inside diameter is slightly larger than D. 

In step 3, the "reverse solution" is obtained where, given the actual values for D 
corresponding to the nominal pipe sizes, the actual volume flow rates of water along 
with the actual static pressures at each junction are determined.9 The differences 
between the actual and specified values for p at each junction and Q may be small, 
such that the actual values will satisfy the needs of the design to an acceptable level. If 
not, the actual D may be adjusted by choosing different nominal pipe sizes and step 3 
repeated. Other adjustments in the design that will bring the calculated flow rates more 
in agreement with those required by the design include simulating the presence of 
globe valves (and thus including them in the design) by adding the appropriate values 
for their minor loss coefficients at specific locations. This, in particular, is employed 
in the first type of multiple-pipe network explored in this section. Thus, we see that 
engineering design enters this process in all three steps, where the designer needs to 
choose static pressure at the junctions in step 1, choose corresponding nominal pipe 
sizes in step 2, and decide on adjustments to these after inspecting the results from 
step 3. 

To summarize, the three-step process is illustrated schematically below. 

Knownz, L, K, Le/D, Prescnbedpj, Qa,Qb,Qc,... —* TheoreticalDa, Db, Dc ■ ■ ■ 

"Forward Solution" 

Theoretical Da,Db,Dc... -> Actual Da,Db,Dc... 
1 v ' 

From Pipe Data (see Chapter 3) 

Known z, L, K, Le/D, Actual Da, Db,Dc ... —> Actualp3l Qa, Qb, Qc. ■ ■ ■ 
, v , 

"Reverse Solution" 
Embedded in this process will be the need for the designer to determine the accept-

ability of the static pressures at all pipe junctions. Solutions of the energy equations 

8This was done for single-pipe networks above, but the process was never formalized because of the 
simplicity of this type of network. In the case of multiple-pipe networks, the first and last steps are more 
computationally intensive so that it is worthwhile providing structure to the three-step solution process. 
This process has been referred to as a "continuous diameter approach" to distinguish it from one where the 
diameters corresponding to only nominal pipe sizes are considered as candidates in the solution (Swamee 
and Sharma, 2008). 
9For networks where there are branching pipes, such as those illustrated in Fig. 11.1, the actual volume 
flow rates of water along with the actual static pressures at each junction are determined in step 3. For a 
network of pipes in series, each having a different diameter, only the actual static pressures at each junction 
are determined in this step since the volume flow rate is the same for each pipe and is thus known. 
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for pipe flow may need to be adjusted to meet this need along with an assessment of 
the impact of these adjustments on performance of the network and, perhaps, cost. 
We will consider the pipe material cost of the network in this chapter. In contrast with 
a single-pipe network, the multiple-pipe network is characterized by the existence of 
an optimal design point because the static pressures at pipe junctions, which do not 
exist for a single pipe, affect the diameters of different pipes in competing ways. This 
will become clearer as we explore the next few sections. 

11.4.1 Solution in Terms of Primitive Variables 

11.4.1.1 Setting up the Problem and Solving The energy equation is from 
Eqn (2.7), 

,Ρι ΰ? . .pò WT . _ Lu2 , „ , JN - + « ι γ +gzi) - ( - + a2^+gz2) = CL—-- (11.4) 
p i p i IL) 

where CL is the loss coefficient that includes the major and minor loss terms, 

M , ^ N 
D ^ L, 

i=l 

D CL = f(%D)(i + ̂ Y^^ ) + γΣκ> (u·5) 
L 

i=\ 

Note that CL for each pipe depends on u, or flow rate Q, and D through the Reynolds 
number (Re) ) for each pipe, and the values of the minor loss coefficients, K and 
Le/D. Our inspection of Eqn (11.5) shows that CL is of the order of / which, as 
noted in Chapter 2, is of the order of 0.01 for order-of-magnitude purposes. 

From Fig. 11.1 and the guidelines discussed in Section 11.1, we recognize that 
Pai = pghi and the flow speed in the (assumed for this example) mixing box at the 
pipe junction is zero. With these, Eqn (11.4) is written for pipes a, b, and c to get 

(CL,a + a ^ ) ^ , Pipe« 
La 2gDa 

(CL,b + a ^ ) ^ , Pipe 6 (11.6) 

where hj = Pj/pg and hdel = pdei/pg-
The continuity equation for each pipe relates Q to ü through ü = ÌQ/TTD2 [see 

Eqn (2.21)]. Substituting this into Eqn (11.6), we obtain 

&zb 

Azc 

Δζα 

+ hj-

+ hj~ 

- h j 

hdel 

hdel 

Aza - hj = (CL}a + α γ ^ ) 2 " °, Pipe a 
DaSLaQl 

Azb + hj-hdei = (CL,6 + a ^ ) ^ % , Pipe 6 (11.7) 
Lb K2gDl 
Ό RL O2 

Azc + hj-hdel = (C^c + a-jA) ° c, Pipe c 
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Equation (11.7) is the energy equation written for flow in pipes a, b, and c. By 
choosing a value for the head, hj, the three nonlinear algebraic equations of Eqn (11.7) 
are solved with the continuity equation, 

Qa-Qb-Qc = 0 (11.8) 

to obtain diameters Da, Db, and Dc. Equation (11.8) is satisfied by the flow-rate data 
in Table 11.1. Note that the only unknown in each of the equations in Eqn ( 11.7) is the 
respective pipe diameter, D. Because only a different, single unknown appears in each 
equation, the system of equations represented by Eqn ( 11.7) is not simultaneous. This 
means that each equation may be independently solved for Da, Db, and Dc which, 
as noted above, is the forward solution. It is important to keep in mind that the pipe 
diameters are a function of static pressure, pj, or equivalently head hj, and vice versa. 

Once acceptable nominal pipe sizes are selected based on D from the solution of 
Eqn (11.7), the problem is then re-solved with the known values for Da, Db, and Dc 

(corresponding to the selected nominal pipe sizes) to get the actual head, hj, and the 
actual flow rates, Qa, Qb, and Qc.10 This is the reverse solution and we note that for 
this a simultaneous solution of Eqn (11.7) is needed because a change in the flow rate 
in one pipe affects those in the remaining two through the continuity equation. 

The results of the solution, obtained in Mathcad using the Given.. .Find construct, 
are presented in Fig. 11.2 for a wide range of values for hj. The Mathcad worksheet 
for this example appears in Figs. 11.3-11.5, for the preliminaries, and the forward 
and reverse solutions, respectively. Before the results for this problem are explored, 
the format of the Mathcad worksheets for multiple-pipe networks is presented and 
discussed. 

11.4.1.2 Format Of the Mathcad Worksheets Most worksheets are divided 
into three sections. These are preliminaries, and the forward and reverse solutions. 
The preliminary calculations needed for a solution using Mathcad are as follows: 

• Definition of water properties of density, p, and viscosity, v. 

• A convergence tolerance, TOL, used in Mathcad to determine when a root-
finding algorithm has found the root to sufficient accuracy. 

• Definition of Re as a function of Q and D, and a as a function of Re. 

• Definition of the absolute roughness of the pipe wall. 

• The friction factor function as defined by Eqs (2.16) and (2.17). 

• The correspondence between nominal pipe size and D for the pipe material 
and type (schedule or SDR as necessary) of pipe under consideration. 

10Note that Eqn (11.7) consists of 3 equations and 4 unknowns (hj, Da, Db, and Dc) when solving 
for diameters as a function of head, hj, when all flow rates are known. However, there are 4 equations 
[Eqs (11.7) and (11.8)] and 4 unknowns (hj, Qa, Qb, and Qc) when solving for head, hj, and flow rates 
when all pipe diameters are known. Thus, this is proof that the problem is uniquely specified in the latter 
case and subject to an arbitrary value for hj in the former. 
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• Cost data for the pipe as a function of nominal pipe size. 

The forward solution using Mathcad includes the following: 

• Initial guesses for the values of D (diameters ranging from 0.5 in. to 4 in. are 
good guesses for nearly all problems considered in this book). 

• Values for the input parameters for each pipe segment in the network, including 
L, Q, the appropriate minor loss coefficients, and elevation changes. 

• Definition of the energy equation for each pipe segment of the network. Each 
is given a symbol r and the needed functional dependence. 

• A formula for the total pipe material cost, Tcost. 

• The solution of the energy equations using either the Given.. .Find construct 
or Given.. .Minimize construct. The latter was first discussed in Chapter 10 
and further in Section 11.4.4. 

• Plots of the results or secondary calculations, such as checking to ensure that 
all equations are satisfied to the desired tolerance. 

The reverse solution using Mathcad includes the following: 

• Initial guesses for the values of Q (from earlier in the worksheet) and static 
pressure heads at the junctions. 

• Values for the input parameters for each leg in the network as in the forward 
solution; normally only K will be included here. 

• The solution of the energy equations using either the Given.. .Find construct 
or Given.. .Minimize construct, as above. 

• Secondary calculations as above. 

While presented in the context of Figs. 11.3-11.5, the above format is generally 
consistent with all Mathcad worksheets for multiple-pipe networks. 

11.4.1.3 Discussion Of the Solution We now return to the solution of the 
problem at hand. From inspection of Fig. 11.2, we see that the diameter for pipe b 
is not very sensitive to the head, hj ; D& corresponds to | in. nominal. On the other 
hand, Dc is very sensitive to hj at small values of hj, where the driving force for 
the flow in pipe c approaches the elevation head of Azc = — 1 m. Recall that the 
negative value for Azc means that there is an elevation increase from the junction to 
the delivery location for pipe c. Likewise, Da is very sensitive to h3 at large values of 
hj where hj approaches the hydrostatic head at the junction of 33 m. These bounding 
cases will be used to provide a guideline for choosing the junction pressures for this 
simple-branch network (see Section 11.4.2). 

The total pipe material cost for this three-pipe network is plotted in Fig. 11.6. The 
cost data for the assumed IPS sch. 40 PVC pipe appear in the worksheet of Fig. 11.3. 
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Based on this calculation, we see that minimal cost for the pipe for this network occurs 
at hj « 15 m of head (21.3 psig). At this head, the results from Fig. 11.2 provide 
the final values for pipe diameters Da,D(„ and Dc of 1, | , 1 in. nominal sizes, 
respectively1 '. With these pipe sizes and the specified design parameters, the reverse 
solution from Fig. 11.5 shows that all flow rates will not meet the design specifications. 
However, by partially closing globe valves installed in all pipes corresponding to 
values Ka = 120, Kb = 20, and Kc = 80, all design conditions are satisfied with 
the static pressure at the junction, hj, of 12.2 m. This value is large enough such 
that no vacuum conditions will exist at the junction under any ordinary operating 
conditions. The globe valves at the end of pipe segments b and c would be faucet 
valves normally planned as part of the design. A globe valve before the junction in 
Fig. 11.1 in pipe a, on the other hand, would not normally be planned, but its need 
is made clear by recognizing these results. This example shows the important role 
played by throttling valves in providing acceptable flow balance in a branch network. 
This was first discussed in Chapter 1 and emphasized in Section 11.6.5. 

Figure 11.2 Pipe diameters for the case of a branch three-pipe network versus head at the 
pipe junction. 

We may generalize the equations for the case of any number of pipes, a,b,c,...n, 
connected in the manner shown in Fig. 11.1. The energy equation for flow in pipe a 
remains as it is written as the first of Eqn (11.7). For every other pipe in the network, 
the form is identical to the remaining two equations in Eqn (11.7). That is, for the ith 

"Where it is necessary for clarity, we will designate the diameters and other variables and parameters 
from an optimized solution with the superscript opt. In most places, this is cumbersome and will not be 
used. The optimized nature of these results should be clear from the text that describes them. 
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Figure 11.3 Mathcad worksheet for a simple three-pipe branch network: preliminaries 
include Re definition, pipe material costs, friction factor, a definition, and pipe-size 
equivalences. Mathcad worksheet BranchingPipeExample .xmcd. 
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Figure 11.4 Mathcad worksheet for a simple three-pipe branch network for the forward 
solution. Note that the minimum pipe material cost for this network occurs at hj « 10 m. 
See Fig. 11.3 for the preliminary material needed for this calculation. Mathcad worksheet 
BranchingPipeExample.xmcd. 
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Figure 11.5 Mathcad worksheet for a simple three-pipe branch network for the reverse 
solution. Note that Ka and Kb were increased in value to account for the partially open globe 
valves installed at the end of these pipes (see Fig. 11.3 for the preliminary material needed for 
this calculation). Mathcad worksheet BranchingPipeExample .xmcd. 

Figure 11.6 Pipe material cost of three-pipe branch network versus head at the pipe junction. 
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pipe, i = b, c, d,..., n in the network we can write the energy equation as 

Γ) ΗΓ Ο^ 
^Zi + hj-hdel = (CL,i + a-^)-^% (11.9) 

Li π gJJi 

The continuity equation is written in the usual way [Eqn (2.23)] as 

The solution of the resulting n nonlinear algebraic equations in termsof D a , Db, Dc... Dn 

is obtained once a value for static pressures at the pipe junction is prescribed. For the 
reverse solution, Qa,Qb,Qc- ■ -Qn a nd the value for static pressure at the pipe junc-
tion are determined once the inside diameters corresponding to the chosen nominal 
pipe sizes are established. 

11.4.2 Bounds on Junction Pressures 

The head at any junction in a network has a maximum in the limit of zero flow. Thus, 
the upper bound on the static pressure head at any junction is from hydrostatics and 
is 

^j^maxK,^} ^ Z\ (11.10) 

where z\ is the elevation of the source. Evidence of this limiting case for the above 
example is obtained by inspecting Fig. 11.2 as hj approaches the hydrostatic head 
of 33 m at the junction. In this limiting case, the pipe diameter plays no role in the 
problem because there is no flow. That is, the energy equation reduces to Eqn (2.20), 
where D does not appear. However, the pipe must be able to withstand the hydrostatic 
pressures that are larger than the static pressures, once motion begins, at all points in 
the network. 

In multiple-pipe networks, the lower bound on the static pressure head at any 
junction is imposed by considerations of water quality and integrity of the network. 
Values in the range of 7-10 m of head are often prescribed. The reasons for this 
have been noted in several places in this book and will not be visited again here. 
Alternately, unique junction pressures, provided they are > 7-10 m, may be obtained 
by considering other constraints, such as minimized network cost. In the sections 
below that follow this particular strategy, a simple network cost model is considered. 
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Table 11.2 Values for Design Parameters for Four-Pipe Network 

Pipe 

a 
b 
c 
d 

Urn) 

135 
54 
38 
79 

Q (L/s) 

1.5 
0.7 
0.3 
0.5 

K 

50 
10 
10 
10 

LJD 
80 
100 
40 
90 

Δζ(ιτι) 
48 
21 
4 
12 

hdei (m) 

7 
7 
7 

B.ll . l Exploration: Extension to a Four-Pipe Branch Network 

Consider the network of Fig. 11.1 and extend to four pipes, a, b, c, and d, where 
the end of pipe a joins the beginning of pipes b, c, and d. The data from Table 11.2 
apply. Modify the Mathcad worksheet BranchingPipeExample. xmcd to ac-
commodate the four pipe network and determine the static pressure head at the 
junction that minimizes the pipe material cost. Report this cost and the optimal 
values for the theoretical pipe diameters Da, Df,,Dc, and Dd-

We begin by making the following additions and changes to the worksheet 
BranchingPipeExample.xmcd: 

• Add the initial guess of Dd = 1 in. 

• Add the data from Table 11.2. Need an additional row for pipe d data. 

• Under the energy equation for pipe c, add (by copy-and paste to reduce 
typing) the energy equation for pipe d [from Eqn 11.9]. In Mathcad syntax 
is will appear as 

rd{hj,Qd,Dd) = Azd + hj-hdet-lKd + aiRedQdl^Dd)) 

+ fric-fac(Re{\Qd\, Dd), -τς-){-τ- + LebyDd)} ■ 
t>d Ld 

8QI 

• In the expression for Tcost, add "+linterp(diam, cost,Dd)" and Dd 

as an argument in the Tcost function (after the addition it should read 
Tco8t(Da,Db,Dc,Dd) = ...). 

• In the Given.. .Find block, add 0 — rd{hj,Qd,Dd) after 0 = 
rc(hj,Qc,Dc). 

• Change Find to include Dd- It will appear as 
Dp(hj)=Find(Da,Db,Dc,Dd). 
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Extension to a Four-Pipe Branch Network (Cont'd) 

Using the guidance from Section 11.4.2 on the range of hj, we plot results of 
the solution for 7 m < hj < 48 m (the lower bound is considered minimally 
acceptable and the upper bound is the hydrostatic limit), we find the minimum cost 
of -$1363 occurs at hj « 30 m. At this static pressure head, Da, Db: Dc, Dd = 
1.57,0.959,0.888,0.530 in., respectively. 

11.4.3 Solution in Terms of Dimensionless Variables 

In this section, we wish to write Eqn (11.3), which is the energy equation for pipe flow 
written in dimensionless form, for each of the three pipes in the network. Referring 
to Fig. 11.1, the data from Table 11.1 is used to produce expressions for values for 
s/X [recall Eqn (2.38)], JF\, and F2. The details are as follows: 
Pipe a: 

s„ Az„ 33 
T- = ~ή = 7ÏÏ7 = ° · 0 7 5 9 
λα La 435 

Fai = - ζ τ - = 0 (11.11) 
pgAza 

p - Pa2 

ΓαΊ - T 
pgAza 

Pipe 6: 

Sb 

Xb 

Ai = 

Fb2 -

Azb 5 
= LT = i 5 = ( M 1 7 

Pa2 _ ΔΖαρ 
pgAzb Azb 

Vbl _ hdel _ 1 

pgAzb Azb 

6.60Fa2 (11.12) 

1.40 

Pipe c: 

Ac L·c ZL 
-0.0476 

ti = -1~^^Fa2 = -33.0Fa2 (11.13) 
pgAzc Azc 

p - Pc2 - hdel - 7 nn bc2 - — - — - - — - - 7 . 0 0 
pgAzc Azc 
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Equation (11.3) is written for pipes a, b and c to get, 

Pipe a 

Pipe 6 (11.14) 

Pipe c 

The next step is to substitute the results from Eqs (11.11 )—( 11.13) into Eqs (11.14) 
and solve for Da, Db, and Dc using Mathcad. Note that the single free parameter in 
the dimensionless form of the energy equations [Eqs (11.14)] is not hj as it was for 
the primitive variables form of Eqs (11.7). Instead, it is the dimensionless parameter 
Fa2-

Once the terms and values from Eqs (11.11 )—( 11.13) are included, we note that 
Eqn (11.14) becomes identical to Eqn (11.7).12 Thus, the only difference between 
the primitive and dimensionless variables approach is the need to calculate the values 
of the dimensionless groups that appear in Eqs (11.11)—(11.13). Since the end result 
is identical either way, and it is normally not desirable to spend extra time calculating 
the values of the dimensionless groups, the use of the dimensionless form of the en-
ergy equation for multiple-pipe networks is discouraged compared with the primitive 
variables form. In fact, the reason why the dimensionless groups were used at all for 
single-pipe networks is that the simplifications of pi = z<i = 0 reduced the energy 
equation so that it could be written in terms of just a few parameters, namely, s, X, and 
F and the application is only a single pipe. The easy-to-use design charts of Chap-
ter 5 were the result of this simple representation. Evidence from the example in this 
section shows that this outcome is clearly not the same for multiple-pipe networks. 

11.4.4 Minimal-Cost Solution 

In Section 11.4.1.3, we saw that the static pressure at the junction in a simple three-
pipe branch network was, in fact, uniquely valued if we required the cost of pipe to 
be minimized. We wish to further explore this finding to understand why this has 
occurred and if it is to be generally expected. Specifically, we will try to answer 
the question what is the optimal value for the static pressure at the junction that 
produces D values that minimize total pipe cost? To facilitate insight, we assume 
turbulent flow in smooth pipe and that minor losses are negligible. The requirement 
that Re of > 3000 can be verified after we perform the design calculations. The 
results of Section 9.3 correspond to these conditions so that we are able to write an 

l2Obviously, this must be the case because the energy equation is the same whether written in dimensional 
or dimensionless form. The reader is encouraged to verify this either by substituting the terms and numbers 
as indicated or by simply moving L for each pipe to the left side of Eqn ( 11.7) and extracting Δζ/' L, which 
is the mean slope. After a few steps of algebra, the equivalence of Eqs (11.7) and (11.14) will become 
clear. 

ÎJa + Λ,-Α,) = (C^ + a f i ) ^ , 

£(1 + A,-A.) - (CWagÄ, 
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Table 11.3 Values for Design Parameters for a Branching Three-Pipe Network of 
Fig. 11.1 

Pipe L (m) Q (L/s) K Le/D Az (m) hdel (m) 

~a 464 L5 Ö Ö 77 
6 199 0.75 0 0 11 7 
c 199 0.75 0 0 11 7 

explicit formula for each of the pipe diameters that appear in Fig. 11.1. To illustrate 
a minimal-cost solution for a multiple-pipe network problem, values for each of the 
design parameters as appearing in Table 11.3 will be assumed. For simplicity, and to 
reduce the number of free parameters, the conditions for pipes 6 and c are assumed 
to be identical. The results of this analysis are in no way less general because of this 
assumption. 

Equation (9.8) is written for each of the three pipes in the geometry of Fig. 11.1 
to obtain 

Da = 0.741 {^a + Ah _4/ Q^n /l9 

Db = Dc = 0.741 ( ^ + ̂ Γ 4 / ι 9 ( ^ _ ) 7 / ι 9 ( 1 U 5 ) 

where Az and Ah are the change in z and static pressure head at the junction, 
respectively, along the pipeline coordinate measured from the top of the pipe. 

Our inspection of Fig. 11.1 shows that Aha = hia - h2a = 0 - h3■. — —hj, 
Ahb = h\b — h?b = hj — hdei, and Ahc = h\c — h2c = hj — hdei- With these, 
Eqn (11.15) becomes 

Da = 0.741 ( Δ ^ - ^ Γ 4 / 1 9 ( 0 α ^ Ι ) 7 / 1 9 
L'a 94/ ' 

Db = Dc = 0.741 (Azb - h
T

dei + k> )-Vi9(g^)7/i9 ( 1 1 1 6 ) 
Lb 9 ' 

As we first saw in Chapter 10, the cost per unit length for pipe over a nominal 
range of pipe diameters normally follows a power-law relationship, 

(11.17) 

where D is the inside diameter (ID), a is a coefficient, b is an exponent, and Du is 
a unit diameter taken to be 1 in.13 For the calculations presented in this chapter, we 

"Even though Eqn (11.17) is a continuous function that predicts a cost for any pipe diameter, we clearly 
understand that it is applied only to the diameters that correspond to nominal pipe sizes. 
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will assume 2007 cost data for IPS-series sch. 40 PVC pipe in central Nicaragua. 
A correlation of these data gives a = 1.067 $/m and b = 1.40. A quick glance 
at Eqn (11.17) will convince the reader that pipe material cost per unit length is 
proportional to pipe diameter; large-diameter pipe costs more than small-diameter 
pipe per unit length. 

With Eqn (11.17) the general expression for the total cost for the pipe material, 
CT, is obtained by summing over all pipe segments ij, 

\^fDiJ\bi (11.18) 

For the present problem this becomes, 

CT = aAbLa + AbLb + (^)bLc} = aAbLa + 2(^)bLb] (11.19) 

A close inspection of Eqn (11.16) in combination with Eqn. (11.19) will reveal 
the origin of the existence of an optimal hj for the design of this network. From the 
discussion in Section 11.1, recall that we are free to vary hj·, the static pressure head 
where the three pipes meet. As hj increases, say from a small value like 1 m, the static 
pressure difference between the junction and the bottom of pipe b (and c) increases. 
Since the volume flow rates in each pipe are fixed, as specified in Table 11.3, an 
increase in pressure drop across pipe b (and c) requires a reduction in Db (and Dc). 
This is evident from our inspection of the second of Eqn (11.16), where we see that 
Db and Dc are both proportional to (Aza — hdei + hj)~4/19; (Aza — hdei + hj)~4^19 

decreases as hj increases. 
How is the diameter of pipe a affected by the increase in hj ? Because the top of 

pipe a is at atmospheric pressure (-10 m, absolute) an increase in hj will decrease 
the pressure drop between the top of pipe a and the junction.14 Thus, compared with 
pipes b and c, the opposite effect occurs in pipe a; Da increases with increasing hj. 
For insight on how the energy equation supports this explanation, note that the first 
of Eqs (11.16) requires that Da « (Δζα — hj)~~4^19 increases as hj increases. 

It is clear from the above brief discussion that for increasing hj there is a compe-
tition between the decrease of Db (and Dc) and an increase in Da. Once the effect 
of D on pipe cost is included through Eqn (11.19), as hj increases we see that the 
cost for pipes b and c decrease, and the cost for pipe a increases. A consequence of 
this competition is the existence of an optimum, in this case an optimal value for hj, 
that produces the smallest possible cost. A plot of the total pipe material cost over a 
range of hj is presented in Fig. 11.7, where we see that the total pipe cost is indeed 
minimized for hj = h°pt ss 25 m. Values of hj either smaller or larger than h°pt will 
increase cost; in fact, large deviations from h°pt will result in large cost increases. 
Once the optimal value for hj is identified, either by a plot or by a more-formal and 

The varaiable hj is not restricted to be less than atmospheric pressure. In fact, the pressure drop for pipe 
a could actually be negative valued. The only constraint on hj is that it cannot be > Aza [see the first of 
Eqn (11.16), where the calculation of Da would be meaningless for hj > Aza]. 
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more-general method to be discussed below, the values for all pipe diameters can 
be calculated from Eqs (11.16). For this problem we will find Da = 1.28 in. and 
Db = Dc = 0.937 in. The appropriate corresponding nominal pipe sizes can be se-
lected from these. A graph showing the sensitivity to the head at the junction appears 
in Fig. 11.8, where we note there to be a very large range of possible pipe diameters 
depending on the value of hj. A plot such as this, when used with Eqn (11.19), will 
instruct the designer on the extent of the cost increase due to an non-optimal choice 
of hj for his/her design. 

Figure 11.7 Sensitivity of pipe material cost for a three-pipe network versus head at the pipe 
junction. 

The smallest value of Re for this three-pipe network is -48,000, thus validating the 
assumption of turbulent flow. 

A few comments are needed to complete our discussion on this topic. First, the 
equations that determine total pipe cost for even the simple-branch network consid-
ered in this section are highly nonlinear. Because it is very difficult, if not impossible, 
to generalize the solutions for optimal hj for any pipe network, we will use a method-
ology implemented in Mathcad that attempts to find the minimum pipe material cost 
subject to the following two constraints: 

• A designer-specified minimum value of static pressure at all junctions in a 
network. 

• A maximum value of static pressure based on hydrostatics. 

In cases where obtaining the minimum cost solution from Mathcad is too time con-
suming, a trial-and-error approach can be used to get approximate results for a min-
imum cost design. This is pursued in Section 11.7. In addition to this, an alternate 
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Figure 11.8 Sensitivity of pipe material cost and pipe diameters for a three-pipe network 
versus head at the pipe junction. 

approach is to use the approximate formula developed in Section 11.6.6, where no 
minimization function is needed. Wherever it is practical, plots of pipe diameters as 
functions of a range of reasonable junction pressures should be part of the process 
in any good design methodology. These will normally provide insight and under-
standing about the network and the sensitivity of pipe sizes, and ultimately costs, to 
junction pressures. This exploration is highly recommended. However, it is neither 
practical nor efficient to produce plots of pipe sizes versus all of the junction pressures 
in a complex network having many branches or loops. 

Second, the use of pipe material cost in this section as the function to be minimized 
was assumed for convenience, simplicity, and to an extent, relevance. The choice 
was made because in many of gravity-driven water networks designed and installed 
by service-learning students, the installation labor comes from the local community 
and, as such, has no well-defined associated cost. In addition, the material cost 
for the network is of prime importance since it normally comes from funds raised by 
Nongovernmental organizations or grants, where there is seldom a required repayment 
(no mortgage on these funds) but where the funds are always in short supply. For 
these reasons material cost as a stand-alone quantity was chosen as the objective 
function in this work. Note, however, that the economics of gravity-driven water 
networks in other cases is most likely more complex and includes costs associated 
with materials, labor, operation and maintenance, depreciation, taxes (if any), and 
salvage, among others. The time value of money also needs to be considered, which 
includes interest rates, amortization, and estimation of network lifetimes. Several of 
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these are fixed costs that are independent of pipe sizes and lengths and others, as we 
saw from the example above, are pipe-diameter- and length-dependent. For a more 
thorough treatment of network costs, and their minimization [see Burmeister (1998); 
Swamee and Sharma (2000) or any good textbook on thermal or hydraulic system 
design]. 

Finally, publications on optimizing branching networks based on a variety of sim-
plifying assumptions exist (Bhave, 1983; Chiplunkar and Khanna, 1983; Varma et al., 
1997). For example, frictional head loss is written simply as the product of Q and 
D raised to different powers. Others convert a looped network to the branching type 
before solving. While the methodologies in these works have varying degrees of 
soundness, the fundamentals approach in the present treatment imposes few, if any, 
assumptions that are unrealistic under a broad range of design conditions. 

B.11.2 An Interim Recap 

Thus far, we have applied the fundamental principles of conservation of energy 
and mass to flow in a simple-branch network. Along the way we have learned 
a few things about the approach, assumptions, method of solution, and a few 
interesting outcomes from the solutions that can be summarized by 

• The analysis of multiple-pipe networks follows closely that for a single 
pipe; the fundamental difference is that static pressures (or static pressure 
heads) at both ends of each pipe segment are generally not zero [for a 
single pipe, flow from a reservoir or into a tank was always from/to zero 
(atmospheric) pressure]. The continuity equation also needs to be included 
in the solution for a network where there is branching. Because of both 
of these differences, numerical methods, like those used in Mathcad are 
normally needed to solve multiple-pipe network problems. 

• Because of the additional complexity of possibly two nonzero static pres-
sures for each pipe segment, the solution of pipe-flow problems using 
primitive variables (the fundamental dimensional quantities) is preferred 
over the use of the dimensionless form of the governing equations that 
enjoyed success for single-pipe networks. Only the primitive form of the 
energy equation will be used for the solutions of multiple-pipe networks. 

• The usual, realistic assumptions of zero flow speed in a reservoir, the in-
clusion of the kinetic energy correction factor (a) only where there is flow 
from a reservoir or tank into a pipe, and the inclusion of (at least) minor 
loss factors for open globe valves in many segments of the network will be 
made in multiple-pipe networks. The strategic placement and use of the 
throttling globe valve, as we will see below, is important for flow balancing 
and network maintenance. 
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An Interim Recap (Cont'd) 

• There are typically three steps in the analysis and design of a multiple-pipe 
network. In the forward solution, the theoretical values for D needed to 
satisfy the prescribed volume flow rates, overall geometry, and designer-
specified static pressures at all pipe junctions are obtained. After this step, 
the designer adjusts D to correspond to actual inside diameters for the 
nominal pipe sizes chosen. The reverse solution is then obtained where, 
given the actual values for D corresponding to the nominal pipe sizes, the 
actual volume flow rates along with the actual static pressure heads at each 
junction are determined. 

• For the forward solution, we use the energy and continuity equations to 
solve for D. In this solution, the following apply: 

- In the absence of any other constraints, like cost, the static pressure 
head at each junction is arbitrary but always bounded by hydrostatic 
conditions from above and a designer-prescribed constraint from be-
low. The latter is a minimum value of -7 m. 

- Once pipe cost is considered, a unique value for the static pressure 
heads at all junctions can be found as a result of the competition of 
increasing and decreasing pipe sizes on either side of each junction. 
The constraint of minimum cost adds additional equations that pro-
vide uniqueness to the forward solution for multiple-pipe networks. 

11.5 PIPES OF DIFFERENT DIAMETERS IN SERIES: CONTROLLED 
DISSIPATION OF POTENTIAL ENERGY 

11.5.1 The Problem 

In gravity-driven water distribution systems, the contour of the pipe follows that of the 
land, which generally has a non-uniform slope. If a pipe of a single diameter is used, 
the rate of dissipation of potential energy due to the major loss is uniform along the 
flow path. Recall the discussion of the HGL from Chapter 6. For example, when the 
contour changes from a small slope to a larger one, the static pressure in the pipe will 
build because the rate of potential energy loss (that is, the conversion from potential 
into pressure energy) is greater than that dissipated by the constant-volume flow rate 
in the constant-diameter pipe. To remedy this difficulty, designers often require a 
diameter change (for this example, a reduction in pipe diameter) to better match the 
dissipation due to friction with the rate of change of elevation head. In this way, the 
HGL will more closely follow the contour of the land in which the pipe is buried and 
there will be less static pressure build-up in the pipe. The excess energy in the flow 
at the delivery point, say a tank or tapstand, will not need to be dissipated by a single 
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Figure 11.9 A three-pipe serial network. 

nearly-closed globe valve. The latter could be noisy and produce unwanted vibrations 
in the system, experience premature wear, and is not considered good engineering 
practice. 

Consider the series-connected three-pipe system as shown in Fig. 11.9.15 The 
pipes are labeled a, b, and c, and each has a mean flow speed, u, diameter, D, and 
length measured along the path of the pipe, L. As before in this chapter, the change 
in elevation between the top and bottom of each pipe is Az. The volume flow rate, 
Q, is the same for each pipe, thus satisfying the continuity equation. 

The energy equation is from Eqn (11.4). As above, we first use the continuity 
equation, Eqn (2.21), to rewrite Eqn (11.4) in terms of Q instead of u. The energy 
equations for each of the three pipes becomes 

Aza + Aha Da 8Q2 

~T7- = ^ ^ Î : ^ · Pipea 

^ ψ ^ = Cv-%1, P i p e . (11.20) 

Azc + Ahc 8Q2 

F = C L > C 2 r>5 ' Pipec 

5This type of network is sometimes referred to as a serial, or serial-pipe, network. 
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where Ah = (p\ - ρ·ί)Ιpg for all pipes. Note that only in pipe a is there included an 
acceleration from zero flow speed (at the surface of the reservoir) to the flow speed in 
the pipe.16 For pipe junctions a-b and b-c, the acceleration of the flow is negligible. 

Referring to Fig. 11.9, the static pressure at all junctions is continuous, so that 
pbl = pa2 and pei = pb2- With the static head at the delivery location of hdei and the 
static pressure of zero at the source (hC2 — hdeu Pai = 0), we obtain 

Aza-hjtab Da 8Q2 

—LT— = ^ ' ^ L : ^ ' P i p e a 

- CLtb-y _,,, Pipe 6 (11.21) 
Lb L'b^gD5

b' 
12 hj,bc — hdei „ 8Q π . 

= CL,c n „c, Pipec 

where the term /ij,af> is the static pressure head at junction of pipes a and b, and so 
on. 

11.5.2 Solution and Mathcad Worksheet 

Equation (11.21) contains three nonlinear algebraic equations in the unknowns Da, 
Db, and Dc. To solve, we need to supply the static pressure heads at the two junctions, 
hjtab and hj^c- To illustrate the solution, consider the data of Table 11.4. The value 
for Q is 2.10 L/s. Guided by the discussion in Section 11.4.2 and from the previous 
example, we choose 7 m of head for h^ab and hj^c- The solution is carried out 
in the Mathcad worksheet using the Given.. .Find construct (see Figs. 11.10 and 
11.11). The forward solution for Da, Db, and Dc gives 2.287, 1.623, and 1.352 in., 
respectively. Thus, we choose nominal 22-in„ 2-in, and l | PVC pipe. The reverse 
solution shows a considerable increase in the values for the junction pressure heads 
compared with the values that we initially prescribed. Though large, they are within 
acceptable pressure limits for IPS series, sch. 40 PVC pipe (Table 3.3).17 A throttling 
valve, normally installed at the bottom of pipe c, will reduce the static pressure head 
before the tapstand at the outlet. 

11.5.3 An Extension: Sensitivity Study Revisited 

Suppose we wish to extend our analysis of this problem and perform a sensitivity (or 
"parametric') study on the effect of junction pressure head on D. The results of this 
are presented in Figs. 11.12 and 11.13. In Fig. 11.12, the effect of junction pressure 
head hj^b is shown for fixed values of hj^c = 7 m and hdei = 10 m. Diameters Db 

and Dc show little sensitivity to hj>ab because the dominant source of energy for flow 

16The numerical value for aDa/La may, in fact, be negligible compared with C L I Q . 
17Recall from the discussion in Section 3.5 that pressure energy in a gravity-driven water network is the 
only local energy source over which the designer normally has control. Thus, high pressures are desirable 
for a design provided they are not unacceptable from the standpoint of the pipe pressure rating. 
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Figure 11.10 Mathcad worksheet for a three-pipe series network. Forward solution (see 
Fig. 11.3 for the preliminary material needed for this calculation). Mathcad worksheet 
NumberPipesSeries.Example.xmcd. 
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Table 11.4 The Design Parameter Values for a Serial Network of Three Pipes 

Pipe 

a 
b 
c 

Urn) 

427 
710 
187 

K 

50 
0 
0 

Le/D 

0 
0 
0 

Az(m) 

14 
46 
6 

hdei (m) 

10 

Solved in reverse way (specify pipe diameters and solve for the junction pressure heads): 

Figure 11.11 Mathcad worksheet for a three-pipe series network. Reverse solution (see 
Figs. 11.3 and 11.10 for the preliminary material needed for this calculation). Mathcad 
worksheet NumberPipesSeries_Example. xmcd. 
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in these two pipes is potential energy, not pressure, as we can see from inspection of 
Table 11.4. This is contrasted with Da, which demonstrates considerable sensitivity 
to hj}ab especially as hj^ approaches the elevation head of 14 m between the source 
and the pipe junction. The plot of Da versus hj^ in this figure is also consistent with 
the results seen in Fig. 11.11. That is, the actual diameter associated with nominal 
2^-in. pipe, which is greater than the calculated theoretical diameter for/ijaf, = 7 m, 
produced a pressure head at the a-b junction of > 9 m. 

Figure 11.12 The diameters for a serial three-pipe network, hj^c = 7 m and hdei = 10 m. 

Figure 11.13 shows no sensitivity of Da to hj$c simply because hj<ab and Q are 
both fixed values. However, Dc decreases and Db increases with increased hj^c. 
To understand this, recall that Az values, Q, and hdei are all fixed. Increasing h^bc 

increases the pressure drop between junction be and the delivery location. To balance 
this increase in pressure drop the friction must increase between these two points. For 
fixed Q and Azbc, this is accomplished with reducing Dc (the smaller cross-sectional 
area for pipe c increases the flow speed, üc, and thus friction). The same argument 
applies to Db where the pressure drop between junctions ab and be decreases with 
an increase in hj^c- Here, Db must increase to balance this decreasing pressure 
difference. 

For ann-numberof series connected pipes of different diameters, £>a, Dbl Dc,..., Dn 

where the flow passes from pipe i — a, then pipe i = b, and so on, the energy equations 
can be generalized from Eqn (11.21) and written as 
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Figure 11.13 The diameters for a three-pipe serial network, hj^b = 7 m and hdei = 10 m. 

Aza-hj^ Ραχ 8Q2 

- \^L,a+OÌ-—) P i p e a La v 1"° La\igDr 
Azi + hj^i-i)i ~ /ij,i(i+i) l 2 

U ^TPQD* 
= CLA „ V - , Pipe 6 < i <n- 1 (11.22) 

Azn + /lj i(n_1)„ - /idei 12 

CL.T» 2 r-r » Pipen 
Ln ^π29θΙ 

where the pipes are lettered i = a,b,c,...,n, and it is understood that letter se-
quencing 6 = a — 1, c = b — 1, d ~ c — 1, . . . and a = 6 + 1, 6 = c + 1, 
c = d + 1, . . . apply. With known pressure heads at all junctions and the deliv-
ery location, hj = hjtab,hjtbc,hjtCd,..., hj,(n_i)„, hdei, the solution of Eqn (11.22) 
is carried out to determine D = Da: Db, Dc,..., Dn in the forward solution and, 
upon setting the values of actual D based on chosen nominal pipe sizes, we solve for 
hj = hjtab, hjjbc, hj,cd,.. ·, hj^n_1-)n,hdei in the reverse solution. 

We recognize that the indexing scheme in Eqn (11.22) is cumbersome for large 
problems of the type considered here; using letters as numbers, and so on. See 
Exercise 41 for a representation of Eqn (11.22) in nodal format that will be used 
starting with Section 11.6.1. The result is Eqn (16.22), which is recommended over 
the form appearing as Eqn (11.22). 

In Section 11.4, we saw that optimal pipe diameters existed for a branch network 
if we add the constraint of minimum overall pipe cost. The same calculation is 
performed for the present case of flow in a series of pipes of different diameters. The 
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static pressure head at the junctions is required to be no less than 7 m and hdei = 10 m. 
As we see by inspection of Fig. 11.14, the minimum-cost solution is found where hj 
is equal to 7 m for all junctions. Thus, pipe cost <$2872 can be obtained only by 
reducing the allowable values for hj. 

B.11.3 A High-Head, Single-Pipe Network with Local Peak 

Communities that are candidates for gravity-driven water networks located in 
very mountainous regions often need to analyze and design networks of the type 
in this textbox. Consider the network of Fig. 11.15 and accompanying data in 
Table 11.5. The topography of the region requires a sharp fall-off in elevation 
from the source at atmospheric pressure to junction b-c, and a 43-meter climb 
to a local peak at junction c-d. You are asked to determine the theoretical pipe 
diameters for each of the five segments of this network that minimize the total 
pipe cost. The following constraints apply: static pressure heads at the junctions 
must be 10 m or more and less than hydrostatic. Before beginning the analysis, we 
will assure ourselves that the hydrostatic pressure is less than the rated pressure 
for the pipe material and wall thickness we are considering. A factor of safety 
should be included in this, as will be discussed in Chapter 13. Report all values 
for D and hj. For this problem, Q = 3.6 L/s and hdei = 10 m. 

Modify the Mathcad worksheet SeriesPipeExample_equalQ_3pipe_ 
withcost .xmcd to include the data in Table 11.5. Accurate initial guesses can 
be supplied by considering hydrostatic conditions and the above constraints. We 
use hj%ab — 37 m, hj^c = 55 m, hjiCd = 10 m, and hj^e — 35 m. The guess 
for hjtab comes from the fact that the head at this location will be slightly less 
than hydrostatic (39 m), and head hj^c must be large enough to drive the flow 
upward 43 m in pipe c with a reserve head of 10 m at junction c-d and overcome 
friction along the way. 

The solution appears in Table 11.6. The high head at junction b-c of ~6 atm 
(87.5 psig) is not excessive and, with the resulting diameter for pipe c, guarantees 
a minimum of 10 m of head at junction c-d [from Section 8.9, the minimum static 
pressure occurs slightly downstream from junction c-d because of friction; we 
can investigate this by solving for the local pressure distribution from Eqn (6.12)]. 
The total pipe cost is $3523. A sensitivity study shows that a variation of ±8 m 
for the heads hj^ and hj be about their respective optimal values of 33.9 m and 
61.5 m increases the pipe cost to-$4200. This gives the designer an feel for the 
sensitivity of the design to off-optimal conditions. 

This completes the forward solution. The next step, if we were to continue this 
problem, would be to select nominal pipe sizes corresponding to the theoretical 
diameters, and then complete the reverse solution to determine flow rates and 
static pressure heads for the actual pipe sizes. 
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Figure 11.14 Mathcad worksheet for a three-pipe serial network with minimum cost. 
Forward solution (see Fig. 11.3 for the preliminary material needed for this calculation). 
Mathcad worksheet SeriesPipeExample_equalQ_3pipe-witricost .xmcd. 
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Figure 11.15 A high-head network with local peak. 

Table 11.5 Design Parameters for High-Head Network with a Local Peak 

Pipe 

a 
b 
c 
d 
e 

L(m) 

187 
310 
280 
220 
155 

Az(m) 

100 - 61 = 39 
61 - 24 = 37 
24 - 67 = -43 
67 - 35 = 32 
35 - 0 = 35 

K 

50 
0 
0 
0 
0 

Le/D 

0 
20 
20 
20 
20 

Table 11.6 Results for High-Head Network with a Local Peak 

Pipe D (in.) hj (m) 

2.71 
2.33 
2.33 
1.68 
1.53 

fcj,ab — oö.y 
hj,bc = 61.5 
rij,cd = 10 
hj,de — 10 
hdel = 10 
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Figure 11.16 A multiple-branch network. Globe valves are installed in all pipe segments 
except 1-2. Not to scale. 

11.6 MULTIPLE-BRANCH NETWORK 

11.6.1 The Problem 

The multiple-branch network, as an example Fig. 11.16, has elements of both the series 
and simple-branching networks from the above sections. Specifically, the diameter 
of the trunk or main18 normally changes in the direction of flow to account for flow 
to (for multiple sources) or from the many branches. Because of its ability to cover 
very large areas having large elevation changes, and the possibility of branching-
off of branches in a repeatable manner, it may be the most common of all types of 
multiple-pipe networks. We will consider this construct now. 

First, as the complexity of the network increases it becomes necessary to use a 
different method than above (where letters were used to designate each pipe) for 
labeling pipe and other network parts. Each junction, including all starting (source) 
and ending (delivery) points are labeled with a node number, as shown in Fig. 11.16. 
It is common to start the order of numbering with the source as node 1 and label each 
node sequentially along the trunk line. Note that in the present case, the trunk line may 
be thought of as arbitrarily composed of four pipe segments; 12, 23, 34, and 45. The 
distribution pipes are normally labeled last. Any characteristic for a pipe connected by 
any two nodes has a symbol (like D, Q, etc.) with the two node numbers appearing as 
subscripts (a hyphen is used if double-digit nodes are encountered, and if desired for 
single digit nodes). For example, the pipe connecting nodes 2 and 3 in Fig. 11.16 has 
an as-yet unknown nominal diameter D23, actual length L23 = 615 m, and volume 
flow rate Q23 = 0.78 L/s, as shown. The elevations for each node are presented in 
this figure. For diagrams of large networks where there may be inadequate space 

,8This part of network is sometimes referred to as a "distribution main" which we will adopt in this book. 
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Table 11.7 The Design Parameters for a Multiple-Branch Network 

Pipe Subscript, ij 

12 
23 
34 
45 
26 
37 
48 

Lij (m) 

435 
615 
210 
530 
128 
439 
118 

Qij (Lfc) 

1.10 
0.78 
0.51 
0.25 
0.32 
0.27 
0.26 

Zi — Zj = Azij (m) 

257 - 231 = 26 
231 - 167 = 64 
167 - 149 = 18 
1 4 9 - 131 = 18 
231 - 224 = 7 
167 - 123 = 44 
149 - 145 = 4 

Kij 

50 
10 
10 
10 
10 
10 
10 

{Le/D)ij 

0 
20 
20 
20 
60 
60 
60 

for all of the labels and numbers that characterize the network, or insufficient detail 
given concerning pipe fittings and valves, a table can be produced with the relevant 
information (Table 11.7).19 Note that we have included several minor losses for each 
leg of the network that correspond to either entry losses (for pipe 12) or losses from 
elbows, reducers, and fully opened globe valves, which are shown in Fig. 11.16. Here, 
hdei (= h5 = h6 = hi = h$) is fixed at 10 m for this design. 

As we have seen in the past, the static pressure heads at each internal node (nodes 
2, 3, and 4) are arbitrary and can be determined either by specifying a safe positive 
value say, 7 m or greater, or by minimizing the cost of the network. We will perform 
both solutions for the present example. 

Using the primitive variable approach, as discussed above, we begin by writing 
the energy equation for each of the seven pipes in this network. By now, we should be 
comfortable with doing this. We recognize that the energy equation is from Eqn ( 11.4) 
and write it in terms of Q using the continuity equation [see Eqn (2.21)]. With this, 
the energy equation in general form for a multiple-branch network is 

Azij + Ahi3 = (CL<ij + an-**-) 'ZI3 (11.23) 

where the subscript ij is a placeholder to identify a pipe with node numbers at its 
beginning, i, and end, j , and Ahij = hi — hj — (pi — Pj)/pg ■ For programming in 
Mathcad, we introduce the definition of CL from Eqn (11.5) to get 

(11.24) 

In Eqn (11.24), the summation symbols for minor loss terms have been suppressed 
for simplicity. Thus, it is understood that Κ^ = Σ-Κ-υ anc^ (lf)ij = S ( l f )ϋ> 
where each summation is performed over all minor loss elements in pipe ij. 

l9The peak elevation head of > 100 m was chosen for this example for illustrative purposes only. Though 
even sch. 40 PVC pipe could withstand the hydrostatic pressure for this design, elevations this large would 
normally prompt the use of a break-pressure tank thus reducing the peak elevation head. 
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Following Eqn ( 11.24), the energy equations for the seven pipes in Fig. 11.16 are 

0 - Δ ζ 1 2 - Λ 2 - { # ΐ 2 + αι2 + / 1 2 [ ^ + ( % ) ι 2 ] } 4 % - . Pipe 12 

0 - Az23 + Ah23-{K23 + f23{^ + (I£)23)}^^r, Pipe 23 
1^23 υ π 9υ

23 

r-̂ 34 ,Le. n 8Q3 

.Li- T e n 2 

0 = Δζ34 + Δ/ΐ34-{Χ34 + / 3 4 [ Τ Ρ + ( 7 τ ) 3 4 ] } - γ : τ ^ 5 Pipe 34 

ΔΖ45 + Λ4 - /»de/ - {#45 + Λ δ ^ + ("^f ^ Ι ί ^ Τ Ρ Γ , P Ì P e 4 5 

0 = Δ326 + Α2-Λ<ω-{#26 + / 2 6 [ ^ + ( ^ ) 2 6 ] } 4 % - ' ^ P e 26 

0 = A237 + / l 3 - / l d e / - { ^ 3 7 + / 3 7 [ ^ L + ( % ) 3 7 ] } 4 % - . P Ì P e 3 7 

0 = Δ248 + / ι 4 - ^ 6 ; - { Χ 4 8 + / 4 8 [ ^ + ( - | ) 4 8 ] } ^ % - , Pipe 48 LAP, '^e\ n ^ ^ 4 8 . 

(11.25) 

where/ij for zj = 12,23,.. .means f(Qij, Dij). As we saw in the previous sections, 
only in pipe 12 is there included an acceleration from zero-flow speed at the surface 
of the reservoir to the flow speed in the pipe (i.e., an a term). For the remainder 
of the pipe junctions, the acceleration of the flow through a tee is accounted for 
with a .fi-type loss coefficient. As noted in the above paragraph, in Eqs (11.25) the 
terms h2,h3, and h\ are unknown. Finally, we note that the continuity equation is 
identically satisfied by the specification of the volume flow rates for this problem. 
That is, the sum of the volume flow rates at each node is zero. 

The solution for this design is performed in the Mathcad worksheet BranchPipe 
Example_4pipe_withcost_ver2. xmcd. It appears in Figs. 11.17 and 11.18 for the 
forward solution and for the reverse solution, Fig. 11.19. As a reminder, the forward 
solution uses the specified volume flow rates and dimensional data (pipe lengths and 
elevations) to determine the theoretical inside diameter for each pipe in the network. 
After selecting pipes of nominal sizes corresponding to this solution (from Chapter 3), 
the actual inside diameters of the pipes are used together with the specification of the 
delivery pressures to determine the actual volume flow rates and junction pressures. 
Most of the design content in sizing pipe for the network comes in the latter step where 
adjustments to pipe sizes and minor loss coefficients (corresponding to the opening 
or closing of a globe valve) are made to meet the design specifications. 

11.6.2 Mathcad Worksheet 

The Mathcad worksheet of Figs. 11.17-11.19 is slightly more involved than those 
from above so a brief description of the entries in this worksheet will be given before 
the results are discussed. 
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• To begin the forward solution, initial guesses for pipe diameters are made (all 
equal to 1 in.) and the data from Table 11.7 are entered into the worksheet as 
seen at the top of Fig. 11.17. 

• A function for the total cost of the pipe, Tcost, is defined and the energy 
equations from Eqn (11.25) are input, where each is defined as a function r^, 
where y = 12,23,34,... ,48. 

• The energy equations are then solved in functional form in the Given.. .Find 
block at the top of Fig. 11.18 and the solution for the pipe diameters Di2, D23, 
D34, -D45, D26, D37, and £)48 stored in the row vector Ds(h2, h3, /i4). Ds 
stands for the Diameter solution. For example, diameters D\2 and D23 occupy 
the first two positions in Ds, which means Di2 = Dsi, D23 = Ds2, and so 
on. The arguments h2,h3, h4 appear for Ds because the diameters are known 
to depend on the static pressure heads at nodes 2, 3, and 4. 

• The total cost of the pipe material, Tc(h2, h3, /i4), is defined next based on the 
function Tcost identified in Fig. 11.17. 

• Preparation for the numerical solution for the minimum pipe cost is done next. 
The initial guesses for h2,h3, h4 are made (see Section 11.6.4). 

• To provide a check on the accuracy of the worksheet thus far, and to get a sense 
for the pipe diameters, Ds(h2, h3, Λ4) is evaluated for h2 = h3 = /14 = 10 m. 
The values range from 1.49 to 0.696 in. These results are in scale with the 
range of pipe sizes typical for moderate-size, gravity-driven water networks. 
An estimate of the total pipe cost at these values of h is -$2415. 

• In a Given.. .Minimize block in the middle of Fig. 11.18, we solve for the 
junction heads and pipe diameters that produce a minimum pipe cost. The first 
part of this block is the constraints. These are that the static pressure heads at 
each junction must be at least equal to a minimum value; in this case hdei of 
10 m, 

h2>hdeh h3>hdei, h4>hdel (11.26) 

This establishes the lower bound for the junction pressure heads. The upper 
bound is that the junction pressure heads must be less than the hydrostatic 
pressure at the respective locations. Thus, 

h2 < Azi2, h3 < Az12 + Az23, /i4 < Az12 + Az23 + Az3i (11.27) 

Of course, it is assumed that the designer has already checked to ensure that 
the hydrostatic pressure is always less than the rupture pressure of the pipe. 
The second part of the Given.. .Minimize block is the Minimize function. 
This, together with the constraints, produces the solution for the junction heads 
and pipe diameters. The run time on a dual-core laptop PC with a 2.66-MHz 
processor for Mathcad ver. 14 is ~1 min. Earlier versions of Mathcad will run 
slower. 
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• The results for total cost, diameters, and junction pressure heads, are shown in 
the last two lines in Fig. 11.18. 

• In Fig. 11.19, actual nominal pipe sizes are first chosen from the results of the 
forward solution. 

• The reverse solution begins next by copying and pasting in the worksheet the 
values for the minor loss (K) coefficients from Fig. 11.17. These will be 
adjusted as needed (see Section 11.6.3) as part of the design process. 

• The total cost based on the selected nominal pipe sizes is calculated. 

• The energy equations and continuity equations for flow at each node are solved 
in a Given.. .Find block for the actual flow rates for each pipe and actual static 
pressure heads at each junction. The values are reported on the last two lines 
of this figure. 

11.6.3 Solution 

The results for this problem are presented in Table 11.8. Nominal l |-in. sch. 40 
PVC pipe is chosen for pipe segment 12 (1.61-in. ID) where the required pipe size is 
1.49 in. Globe valves downstream from this segment will compensate for the larger-
than-required ID of the chosen pipe size. A 1-in. nominal pipe is chosen for segment 
23, this despite the required diameter of 1.12 in. (the ID for 1-in. nominal pipe is 
1.049 in.). The reason for this choice is the cost savings between a nominal 1-in. and 
nominal 1 |-in. PVC pipe because of the large length of this segment (615 m). While 
the cost savings is an obvious benefit, the penalty in using the smaller pipe is that the 
flow rate in pipe segment 37 is reduced from its design value by < 10% (worst case). 
While this is not large, the slightly reduced Q37 may be undesirable. In this case, the 
possibility of obtaining l|-in. sch. 40 PVC pipe should be investigated, though it is 
not always available. The pipe sizes for the rest of the segments follow the usual rule 
of selecting the nominal size that produces an inside diameter slightly larger than the 
theoretical value. 

Our inspection of Table 11.8 shows that the results were obtained by balancing 
the flow using partially closed globe valves. The solution with full-open valves gives 
results in decent agreement with the design specifications of Table 11.7. Adjustments 
to the valves (meaning an adjustment to the K values)20 allows the designer to gage 
the sensitivity of the design to the flow-rate demand variations in the various segments 
of the network. For example, Ä34 = 100 for the globe valve installed in this segment 
functions to slightly reduce D34, increasing the friction in this segment, and forcing 
additional flow into segments 26 and 37. If, for instance, ΑΓ34 = 10 (corresponding 
to an open globe valve), Q37 = 0.24 L/s; if K34 = 400 (corresponding to partially 
closed globe valve), Q37 — 0.27 L/s. The designer is encouraged to perform this 
sensitivity study to get a sense for the balance characteristic of the network. 

'The equivalent-length minor loss coefficients are unchanged from those specified. 
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Table 11.8 Solution for a Multiple-Branch Network 

Subscript, ij Lij (m) Qij" (L/s) Azij (m) Kif £>»/ (in.) Nom. D (in.) 
12 
23 
34 
45 
26 
37 
48 

435 
615 
210 
530 
128 
439 
118 

1.09 [1.10] 
0.77 [0.78] 
0.52 [0.51] 
0.27 [0.25] 
0.32 [0.32] 
0.25 [0.27] 
0.25 [0.26] 

26 
64 
18 
18 
7 

44 
4 

50 
100 
100 
100 
100 
10 
10 

"Actual flow rates from the reverse solution. Values in square braces are design-specified flow rates 
(all valves open) from Table 11.7. 
'Required to produce flow rates Qij. 
Trom the forward solution. 

An extension of this sensitivity study would be to assess the performance of the 
design when parts of the network are turned off. In the reverse solution (only) in the 
Mathcad worksheet this is done by: 

• In the Given.. .Find block, setting the flow rate for this segment to zero (using 
CTRL =). 

• Removing21 the energy equation for the turned-off segment from inside the 
Given.. .Find block, 

Examples of this type of sensitivity study are given in Figs. 11.20 and 11.21. In the 
first of these, the flow in segment 48 is turned-off. In the second, flows in segments 
45 and 48 are turned-off. Note in the latter case, the energy equation for segments 48, 
45, and 34 are removed since there is no flow in segment 34 if the flow in segments 
45 and 48 stops. The reader will note that, for this type of branching network, flow 
rates in the remaining active branches generally increase over their design values once 
flows in other parts of the network are turned-off. In all of the above results, the static 
pressure heads at nodes 2, 3, and 4 are > 10 m, as required by the solution. 

Evidence that the minimum-cost solution has indeed been found for this problem 
is presented in Figs. 11.22-11.24, where total pipe cost is plotted as a function of the 
static pressure heads at nodes 2,3, and 4, respectively. The trend in these plots follows 
those in Figs. 11.25-11.27, where the pipe-size sensitivity to the static pressure heads 
at nodes 2, 3, and 4 is shown. 

21 Note that the equation need not be physically removed. Mathcad allows for disabling an evaluation. 
Right click the mouse while the cursor sits on the equation to get this option. A disabled equation will 
have a square black dot at its upper-right-most corner. 

1.49 l\ 
1.13 1 

0.996 1 
0.694 | 
0.853 | 
0.637 | 
0.556 \ 
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Figure 11.22 Sensitivity of pipe material cost to /i2 for a branch network. 

Figure 11.23 Sensitivity of pipe material cost to hi for a branch network. 
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Figure 11.24 Sensitivity of pipe material cost to h^ for a branch network. 

Figure 11.25 Sensitivity of D to hi for a branch network with minimum cost. Forward 
solution. 
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Figure 11.26 Sensitivity of D to /13 for a branch network with minimum cost. Forward 
solution. 

Figure 11.27 Sensitivity of D to /14 for a branch network with minimum cost. Forward 
solution. 
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11.6.4 Choosing Initial Guesses for Static Pressure Heads at 
Junctions 

The numerical solution of the system of equations for multiple-pipe networks requires 
initial guesses for D and hj. For convergence of the numerical method, the guessed 
values of hj must be realistic for the problem under consideration (so do the initial 
guesses for D but, as indicated in earlier sections, values ranging from 0.5 to 4 in. are 
reasonable selections for the scale of networks considered in this book). Inappropriate 
initial guesses for hj will cause divergence of the numerical method and no solution 
will be obtained. In Mathcad the equation where the divergence is encountered will 
turn red, thus indicating a problem. 

There are two methods for providing initial guesses for hj. The first is simply to 
choose them by following a few basic rules from fluid mechanics. These are 

1. hj < z\ — z, the hydrostatic head, where z is the local elevation of the junction 
and z\ is the maximum elevation of the network. See 4 below for details. 

2. hj > 0. As noted in Section 11.4.2, hj >7—10 m for network integrity. 

3. For a local low point in the network, hj must be greater than that needed 
to provide a specified positive head at the highest point downstream when the 
elevation head difference between this point and the local low point and friction 
are considered. In equation form this is 

hj > Azh igh — low 

Az between highest point downstream and local low point 
Ahfrict + 

Frictional head loss between highest point downstream and local low point 
tlj,peak 1

 v ' 
Static pressure head at higest point downstream 

For example, if a local low point is followed by a peak 25 m higher than it, 
an initial guess for hj of 25 m or less will cause divergence of the numerical 
solution. 

4. For a local high point in the network, hj must be less than the elevation head 
at the source less the friction between the source and the local high point. In 
equation form this is 

hj < z\ — z — 

Az between source and local high point 
Ahfrirt 

' „ ' 
Frictional head loss between between source and local high point 

For example, an initial guess for the static pressure head at any junction greater 
than the elevation of the source is clearly incorrect. 
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5. For cases where the junction is neither a local high or low point, any initial 
guess for hj between hydrostatic and 7-10 m is adequate. 

In 3 and 4, Ahfrict must be estimated by the designer. Many of the Mathcad work-
sheets supplied with this book have initial guesses for hj that use this method.n 

The second method is a more systematic approach to supplying the initial guesses 
for hj by using the energy equation. Rearranging Eqn (11.24), we obtain 

-Ahij = Az%3 - {Kij + aij + f(Qij,Dij)[jg- + ( § ) ^ ] } ^ ï 0L28) 

Once initial guesses for D are made, the entire right side of Eqn (11.28) is known 
and Eqn (11.28) may be applied repeatedly for each node along the distribution main 
starting from the source, where hj = 0. 

To illustrate this procedure, apply Eqn (11.28) to the multiple-branch network of 
Fig. 11.16. Initial guesses for h2, h3, and h4 are needed for the solution of this 
problem, along with initial guesses for all £)»,·. h2,h3, and h4 are calculated from 

£ l 2 . ,Les n 8Q 
h2-hx=h2 = A z 1 2 - { K 1 2 + a 1 2 + / ( Q 1 2 ) J D 1 2 ) [ - ^ + (-^)1 2]} 

D12
 yD'LAi'^gDf2 

L23 , /Le·. n 8Q 
h3-h2 = Az23-{K23 + f{Q23,D23)[-^ + {-^)23]} 

D23
 KD>"u^gD\ 

L34 . fLe. n 8Q 
23 

h4-h3 = Az34-{K34 + f(Q34,D34)[-^ + (-f)3 4]} 
D34 "D'^'^gD, 2ηΓ>± 

34 

where the value of h2 is calculated from the first of these, h3 from the second, and 
h4 from the third. 

Care must be taken to ensure that hj > 0 for all junctions when using this method; 
see 2 above. Negative hj values may appear if the initial guesses of D are too small 
for one or more of the pipe segments upstream from the junction under consideration. 
Thus, cases where negative values of hj are calculated can be easily corrected by 
increasing the size of the initial guesses of D for one or more these pipe segments. 

With correct application of either of the above methods, AZÌJ + Ah^ > 0 for 
all segments of the distribution main22, and the numerical method of solution for the 
equations of the network should proceed toward convergence. 

11.6.5 Importance of Throttling Valves and Their Placement for Flow 
Balancing 

One of the key "takeaway" points from Section 11.6.3 is the importance of strategically 
placed globe valves in most of the segments of a multiple-branch network. This was 
first noted in Section 3.5 and included here for re-emphasis. For most networks, an 

This is a necessary condition since the frictional head loss must be positive. See Eqn (11.24). 
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open globe valve [having K —^ 10; see Eqn (2.11)] does not measurably penalize 
performance. Thus, other than possibly valve cost, there is little or no disadvantage 
to their strategic installation. As discussed in Section 3.5, and illustrated with the 
example above, globe valves give the designer flexibility in balancing flows in multiple 
branch and (and as we will see below, loop) networks and, when closed, allow the 
removal of pipe and components for maintenance and repair. 

B.11.4 Getting Started: Working with Mathcad Worksheet for a 
Multiple-Branch Network 

The first step in gaining confidence to solve the more challenging multiple-branch 
network problems is to just "dive in" to an appropriate Mathcad worksheet. The 
easiest way to do this is to make a simple change to an existing worksheet, like 
with the serial-network problem above, and examine and scrutinize the results of 
the change. This can be repeated for several cases until we begin to feel com-
fortable with the worksheet and get a sense for cause and effect in the networks 
we are modeling. With this in mind, consider the network of Fig. 11.16 and ac-
companying data in Table 11.7. In the worksheet BranchPipeExample_4pipe_ 
withcost_ver2. xmcd, increase all flow rates by 50% and reduce all elevations 
by a product of 80% and examine the solutions for the cases listed below. Report 
the theoretical pipe diameters and total pipe cost. Comment on the changes. Do 
they make sense from an engineering standpoint? How do the pipe sizes and total 
cost change with different values for the junction static pressure heads over their 
range as recommended in Section 11.4.2? To reduce the execution time, ignore 
by deleting or disabling the lines beyond the text line "Minimize Tc subject to in-
equality constraints below" and calculate the diameters for fixed values of h2, h$, 
and hi. Choose h2, /13, and Λ4 of 7 m (lower limit; Case 1), 10 m (Case 2), 15 m 
(Case 3), 20 m (Case 4) and, as an upper limit, 90, 80, and 70% of the hydrostatic 
pressures at nodes 2, 3, and 4, respectively (Case 5). 

Make the requested changes in Qij and Δζ^ to obtain the values for actual pipe 
diameters. Examine the cases where the pressure heads at the junctions are: 

• Uniform at 7, 10, 15, and 20 m (Cases 1-4). 

• Vary according to 90, 80, and 70% of the hydrostatic pressures at nodes 2, 
3, and 4 (0.9 · Δζι , 0.8 · [Αζλ + Az2), 0.7 ■ {Az1 + Az2 + Az3) (Case 5). 

Our inspection of the results presented in Table 11.9 prompts several interesting 
observations. First, as hi increases, we expect Di2 to increase as seen in Ta-
ble 11.9 because a larger pipe size is needed to reduce the segment-12 friction 
loss to achieve the larger values of hi. The difference between the static pressure 
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Working with Mathcad Worksheet for a Multiple-Branch Network (Cont'd) 

heads at nodes 2, 3, and 4 is zero for cases 1-4. The pipe sizes for segments 
23 and 34 are thus determined solely by the elevation changes Δ223 a nd Δ234, 
respectively [see Eqs (11.25)], so D23 and D34 do not change for these cases 
as observed in Table 11.9. The competition between the increase in D12 and 
decrease in D45, D26, -D37, and D^ produces an optimal result for h of-10 m 
at each internal node. The actual result determined by running the worksheet 
for the flow rates and elevations modified as above does indeed give h2 of 10 m. 
Another observation is that D2e, D37, and D4 8 all reduce in value for cases 1-4 
as expected because of the increasingly larger pressures at nodes 2-4. Finally, 
we see that the largest total cost is associated with the largest static pressure 
heads at nodes 2-A, case 5. Thus, we see different engineering tradeoff here. 
The desirable larger pressures at internal nodes, which can allow flexibility in the 
network, say for unanticipated future expansion, come at a price of larger pipe 
sizes. 

Keep in mind that it is seldom necessary to start a worksheet in Mathcad from 
scratch. Always modify an existing worksheet that already successfully performs 
calculations similar, or identical, to those you are attempting. For example, you 
would modify an existing worksheet for an 18-leg network if you have one that 
already runs for a 12-leg network. 

B.11.5 The Effect of Turning Off Segments of a Multiple-Branch Network 

The following exercise is worthwhile to become familiar with the sensitivity of 
flow in the remaining active parts of the network when flow is shut off in the other 
parts. Consider the network of Fig. 11.16 and accompanying data Table 11.7. In 
the worksheet BranchPipeExample_4pipe_withcost_ver2.xmcd, indepen-
dently turn off the flow in the branches of segments 26,37,48, and 45 in the reverse 
solution. The nominal pipe sizes for the network as shown in Table 11.8 apply 
as well as the final values for K. Examine the response of the flow rates through 
the remaining segments. Follow the procedure described in Section 11.6.3. 

There are two simple changes to the worksheet BranchPipeExample_4pipe 
_withcost_ver2. xmcd needed for the solution of any one of these four cases: 

• Inside the Given.. .Find block, set the flow rate to zero for the segment 
you wish to shut-off. 

• Disable the energy equation for this segment (inside the Given.. .Find 
block). 
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T
able 11.9 

Results from
 Textbox В. 11.4 - W

orking w
ith a M

athcad W
orksheet for a M

ultiple-Branch N
etw

ork 

C
ase 
1 2 3 4 5 

hi (m
) 

7 10 
15 
20 

18.72 

h
2  (m

) 
7 10 
15 
20 

57.60 

h
3  (m

) 
7 10 
15 
20 

60.48 

D
i2 (in.) 
1.801 
1.899 
2.173 
3.354 
2.719 

£>2з ( in·) 
1.245 
1.245 
1.245 
1.245 
1.681 

Ö
34 (in.) 
1.116 
1.116 
1.116 
1.116 
1.170 

Ö
45 (in.) 
1.090 
1.037 
0.973 
0.927 
0.754 

-D26 (in.) 
1.227 
1.040 
0.908 
0.836 
0.851 

£>37 (in.) 
0.865 
0.849 
0.825 
0.805 
0.708 

D
A

S (in.) 
1.949 
1.068 
0.873 
0.789 
0.585 

Total Cost ($) 
3259 
3111 
3314 
4750 
4207 
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The Effect of Turning Off Segments of a Multiple-Branch Network 
(Cont'd) 

The result reported by Mathcad should show that the flow rate in the segment 
that is turned off is indeed zero. Refer to Figs. 11.20-11.21 for the appearance 
of the worksheet with these changes. 

The results of this analysis are presented in Table 11.10. From our inspection of 
this table, we see that when the flow to one segment is shut off, the flow rates to 
the remaining active segments of the network increase over their respective values 
that existed when all segments were open. Thus, a general conclusion from this 
exercise is that shutting off segments of a multiple-branch network of the type 
seen in Fig. 11.16 will provide more than the design-specified flow rates to those 
segments that remain open. Of course, the designer can modify the Mathcad 
worksheet to investigate the effects of turning off various combinations of two or 
more segments, but it expected that the above conclusion will apply in all cases. 

11.6.6 Contribution of Cost Minimization to the Solution 

In this section, we look at how imposing cost minimization on the problem of gravity-
driven water flow in networks makes the forward solution unique. Refer to the 
example of the four-pipe, three-branch network of Fig. 11.16 for a moment. Note 
that there are seven energy equations [Eqs ( 11.25)] and seven unknown pipe diameters. 
The volume flow rates are specified and thus mass conservation is identically satisfied. 
However, the three static pressure heads, h2, h3, and h4, at the junctions are unknown 
and in the absence of any other constraint, have arbitrary values. With no additional 
constraint the forward solution, which gives the theoretical pipe diameters, is clearly 
non-unique. This issue was the subject of footnote 10. In this note, we also saw that 
the reverse solution is unique because the energy and continuity equations are used. 

We have claimed above that introducing cost minimization adds the constraint 
needed to determine the static pressure heads to make the forward solution unique. 
But, exactly how does it perform this task? We will explore the answer to this question 
now. 

In addition to pipe lengths (the values for which are fixed), the total cost depends 
on the diameters for all of the pipes in the network. For the case of Fig. 11.16, we 
get, 

CT = CT(D12, D23, D34, D45, D26, D37, D48) (11.29) 

Our inspection of Eqs (11.25) shows that D12, D23, and D2e, in turn, depend on h2\ 
D23, D34, and D37 depend on h3, and so on. With this, Eqn (11.29) is written in 
"functional form" as, 

CT = CT{D12(h2), D23{h2, h3), D34(h3, h4),D45(h4), D26{h2), D37(h3), D48{h4)) 
(11.30) 



T
able 11.10 

R
esults from

 Effect of Turning 

Case 
hi (m

) 
hi (m

) 
/13 (m

) 
Q

12 (L/s) 
Q

23 (L/s) 
Segm

ent 26 O
ff 

19.83 
16.95 

20.45 
0.789 

0.789 
Segm

ent 37 O
ff 

16.61 
32.25 

29.03 
0.998 

0.658 
Segm

ent 48 O
ff 

16.45 
30.54 

40.78 
1.008 

0.670 
Segm

ent 45 O
ff 

16.23 
28.14 

37.54 
1.021 

0.686 

O
ff Segm

ents of a M
ultiple-B

ranch N
etw

ork" 

Q
34 (L

/s) 
Q

45 (L
/s) 

Q
26 (L

/s) 
Q

37 (L/s) 
Q

48  (L/s) 
0.535 

0.278 [0.26] 
0 [0.32] 

0.255 [0.27] 
0.256 [0.25] 

0.658 
0.323 [0.26] 

0.340 [0.32] 
0 [0.27] 

0.335 [0.25] 
0.378 

0.378 [0.26] 
0.338 [0.32] 

0.292 [0.27] 
0 [0.25] 

0.401 
0 [0.26] 

0.335 [0.32] 
0.286 [0.27] 

0.401 [0.25] 

"Values in square braces are design-specified  flow
 rates (all valves open) from

 Table 11.7. 



MULTIPLE-BRANCH NETWORK 2 7 5 

Using the chain rule from calculus, the total differential of Eqn (11.30) is written as, 

,_ 8CT dPl2 dCT 3P23 8CT dP26 

aP\2 oh2 oP23 oh2 oD2& oh2 

, dCT 3D23 dCT dP34 8CT 3P37 

dh3 + —— —— dh3 + -— —— dn3 

23 

dD23 dh3 dP3i dh3 dD37 dh3 

^ dCT dD34 dCT dD45 dCT dP48 
+ ΈΤΓ~~ΟΓ~ dh* + -̂ τ̂ — -^τ— ahi + -^—-^ττ'dh^ oP34 oh4 uD45 oh4 OP4% óh4 

(11.31) 

Recalling material from Chapter 10, the minimum value of CT is found once dCr = 0 
(this condition is necessary, but not sufficient; we also need to verify that the second 
derivative of CT is positive thus indicating that CT is a minimum). Require this 
and group terms common to multipliers of dh2, dh3, and dh4, respectively, from 
Eqn (11.31) to obtain three independent algebraic equations, 

dCT dDl2 dCT dD23 dCT dD26 

dDu dh2 dD23 dh2 dD26 dh2 

0 = dC^dD^ + OC^ODM + dC^dD^ 
dD23 dh3 dD34 dh3 dD37 dh3 

0 = dCT dD34 | dCT dP45 | dCT dD48 

dP34 dh4 dP45 dh4 dP48 dh4 

The cost CT is from Eqn (11.17), so the derivatives like dCr/dP\2 in Eqn (11.32) 
are written in general as 

dCT , Db~l 

mrah-kUi (1133) 

for any segment ij, where a, b, and Pu are the constants defined in Section 11.4.4. 
The derivatives like dP\2/dh2 in Eqn (11.32) are obtained by taking the partial 

derivative of the pipe diameter with respect to the relevant static pressure head in the 
appropriate energy equation. For equations like Eqs (11.25), where P appears in a 
nonlinear way in more than one location, this is done using numerical methods. How-
ever, for illustrative purposes, if we restrict our interest to a range of minor-lossless, 
turbulent flow in smooth pipe, we can use the energy equations like Eqs (11.16), where 
the friction factor has been approximated based on the developments in Chapter 9. 
We obtain for segment 12, for example, 

dh2 - ° ' 1 5 6 ( Ll2
 } V J W (U34) 

23 For uniformity and ease, all derivatives on the right side of this equation are written as partial derivatives 
though in some cases it is clear that a particular diameter depends on just a single static pressure head, not 
two or more. In these cases, it is mathematically correct to write these derivatives as ordinary. 
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For segment 23, we get 

dg23 = _ 0 Az23 + h2- h3 23/19, v 
dh2 

and for segment 26, 

dD 

L 23 

1 / 7 Q23 v7/i9 

dh 
2 6 - 0 1 5 6 ( Δ ^ 2 6 + ^ 2 - / l d e ' 1 - 2 3 / 1 9 

,4/7 4»/r-

, ^ 1 / 7 Q 2 6 ^7/19 

^26 J4/7L, 19/7 ' 

(11.35) 

(11.36) 

Equations 11.33)—(11.36 are combined with the first of Eqs (11.32) to produce a 
single algebraic equation that depends on h2 and /13, as well as D\2, D23, and D26, 

0 
b-ln7/19(^Zl2-h2 

D\2
lQ[ -23/19 

-Ί2 

J J 6 - 1 Q 7 / 1 9 , A Z 2 3 + h 2 ~ ^ - 2 3 / 1 9 

L· 

(11.37) 
23 

Db~lÓJ,ly( 
-^26 ^ 2 6 v. 

19 Az26 + h2 -^dei- -23/19 
^26 

Introducing D\2, D23, and D26 from Eqs (11.16), we get, 

0 = Q 7 b / 1 9 , A z 1 2 - fe2x-(i+4fe/19) 

■̂ 12 

n 7 b / 1 9 , A z 2 3 + h2 
V23 \ 

^ 3 \ _ ( i + 4 6 / i 9 ) 

Q7b/19, 

L2z 
Az26 + h2 

" ) ■ (11.38) 

Ì26 L 26 

-(1+46/19) 

The same procedure is repeated for the second and third equations in the group 
designated as Eqn (11.32) to obtain a total of three algebraic equations for h2, /13, h\. 
In the forward solution, these three equations are included with the energy equations 
and solved to obtain unique solutions for the static pressure heads at the three junctions, 
as well as all of the values for D in the distribution main and branches. 

The general form of Eqn (11.38), written at any junction, is 

Q _ y ^ Q7b/l9,&Zij + Ahjj a + 4 b / 1 9 ) 

■L'i 
ij,zn 

Σ QT9^ 
Ah Ü \ - ( l + 4 6 / 1 9 ) 

ijfout 

(11.39) 

where, as usual, hi = 0 (at the source, Ah\2 — h\ — h2 = —hi), and h = h dei at the 
end of each delivery pipe segment. The convention that we apply to the continuity 
equation also applies to Eqn (11.39). This is the meaning of the index ij,in and 
ij, out on the summations. 
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A reminder that Eqn (11.39) applies strictly to minor lossless, turbulent flow in 
smooth pipes. From our experience, however, we can use it as a first-approximation 
for optimal hj for flow in the rougher-wall, GI pipe and, in fact, with all pipe under 
all minor lossless flow conditions. 

Equation (11.39) is an alternative to the Given.. .Minimize block in Mathcad to 
minimize the network cost and determine optimal hj. One difference between the two 
is that the block evaluates all of the above derivatives numerically24 and thus includes 
Eqs (11.32) in the solution process, even though it is not evident. This increases 
the accuracy compared with Eqn (11.39). However, the Given.. .Minimize block, 
though a little simpler to implement in Mathcad, takes considerable longer to execute. 

B.11.6 Use of Eqn (11.39): Optimal Static Pressure Heads at Branch 
Junctions 

To demonstrate the use of Eqn (11.39), we apply it to the simple-branching 
network of Fig. 11.1. We make the following assumptions to enable an analytical 
solution: La = Lb = Lc = L, Qb = Qc = Qa/2, hdeÎ = 0, and Aza = Azb = 
Azc = Az. Substitute these into Eqn (11.39) and, after some rearranging, we 
get hf = (1 - C) / ( l + C)Az, where C = 2(7fe-19)/(46+19). The optimal head 
hp depends only on Az for this case because of the simplifying assumptions. 
For b = 1.4 as above, obtain C = 0.772 and hp = 0.129Δζ. For example, for 
Az = 60 m, hp = 7.74 m. See Exercises 37 and 38 related to this textbox. 

Table 11.11 Comparison Between Given.. .Minimize Block and Eqn (11.39): D 

Subscript, ij Dij (in.) Dy (in.) 
From Given.. .Minimize Block From Eqn ( 11.39) 

12 1.49 1.45 
23 1.13 1.10 
34 0.996 0.937 
45 0.694 0.732 
26 0.853 0.922 
37 0.637 0.651 
48 0.556 0.603 

24Derivatives like dD\ijdh,2 are produced from the complete form of the energy equation, not the 
approximate one that was used in the above example. 
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Table 11.12 Comparison Between Given.. .Minimize block and Eqn (11.39): Cost 
and hj 

From Given.. .Minimize Block From Eqn (11.39) 
cost ($) 2292.53 2298.54 
h2 (m) 10.0 7.88 
h3 (m) 33.7 27.1 
hi (m) 39.5 28.9 

B.11.7 Comparison of Results Using Eqn (11.39) and the 
Given.. .Minimize Block 

To gain confidence in the ability of Eqn (11.39) to produce the same re-
sults achieved with the Given.. .Minimize block in Mathcad, we apply 
Eqn (11.39) to the multiple-pipe network of Fig. 11.16. The results using 
the Given.. .Minimize block appear in Table 11.8. The Mathcad work-
sheet BranchPipeExample_4pipe_withcost.ver3.xmcd was used that con-
tains Eqn (11.39) written at the three branches of this network instead of the 
Given.. .Minimize block. The results compare very favorably as we see by in-
specting Tables 11.11 and 11.12. In particular, the total cost is nearly identical 
for the two approaches. The differences in results come from linear interpolation 
among the pipe cost data used in the Given.. .Minimize approach instead of the 
curve-fit to the same cost data as reflected in Eqn (11.39). The execution time 
using Eqn (11.39) is considerably less than for the Given.. .Minimize block. 

11.7 LOOP NETWORK 

11.7.1 Characteristics 

Because of the greater cost and complexity, single loop networks25 like the example 
appearing in Fig. 11.28 are less common than the multiple-branch type just considered. 
However, loop networks have a couple of advantages which are 

• Greater reliability; a loop network is designed so that flow can approach each 
delivery point from more than one direction. With appropriate placement of 
valves, repairs to the network may be made without complete service interrup-
tion. 

• In some cases, because the flow can approach a delivery point from more than 
one direction, the cross-sectional area for flow is effectively greater than for a 

Multiple loop networks that have common pipe segments also exist, but are unusual for the scale of 
gravity-driven water networks considered here. 
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Figure 11.28 A loop network having six distribution segments (see Table 11.13 for data). 

comparable branch-type network. This allows for possible increase in water 
demand and lessens sensitivity of flow rates at a given tap to the demands 
elsewhere in the network. 

Generally, loop networks are candidates for water supply in communities in which 
there is not much elevation change among water taps. The character of the loop re-
quires a zero change in elevation around the loop measured from any point. Therefore, 
the assistance of the flow due to a reduction in elevation is always balanced by a loss 
in assistance as the flow climbs back to its original elevation. Since static pressure is 
the only energy source driving flow upward against gravity, it is not desirable to have 
large elevation changes that require large changes in static pressure to accomplish 
this. 

11.7.2 The Approach 

The approach for analysis and design of a loop network follows closely to that for a 
multiple-branch type. There are four fundamental differences. 

1. The volume flow rates in the various segments of the loop are not known a 
priori. This means that we need to solve for the volume flow rate distribution 
in the loop using the continuity equation written for each node. 

2. A corollary to the above is that flows will occur in opposite directions at different 
locations in a loop network. This requires that we define a sign convention for 
positive flows. We will assume flow rates in the clockwise direction around 
the loop to be positive in value. Values for flow rates that move in the counter-
clockwise direction around the loop will be negative. The continuity equation 
for flow at a branch, Eqn (2.23), remains unchanged. 
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Table 11.13 The Design Parameters for a Loop Network 

Pipe Subscript, ij" 

12 
23 
34 
45 
56 
67 
78 
82 
39 

4-10 
5-11 
6-12 
7-13 
8-14 

Lij (m) 

235 
415 
210 
330 
539 
108 
147 
183 
111 
98 
118 
143 
85 
101 

Qij (L/s) 

2.89 
TBD 
TBD 
TBD 
TBD 
TBD 
TBD 
TBD 
0.35 
0.46 
0.81 
0.26 
0.63 
0.38 

Zi — Zj = Azij (m) 

81 - 25 = 56 
25 - 27 = - 2 
27 - 29 = - 2 
2 9 - 3 1 = - 2 
31 - 28 = 3 
28 - 28 = 0 

28 - 32 = - 4 
32 - 25 = 7 

27 - 30 = - 3 
2 9 - 3 0 = - 1 
31 - 28 = 3 

28 - 31 = - 3 
28 - 32 = - 4 
32 - 34 = - 2 

Kij 

50 
0 
0 
0 
0 
0 
0 
0 
10 
10 
10 
10 
10 
10 

{Le/D),, 

16 
32 
32 
32 
32 
32 
32 
32 
60 
60 
60 
60 
60 
60 

"Refer to Fig. 11.28. hdei = 10 m for this design. 

3. In the past, as we saw with single-pipe and branching multiple-pipe networks, 
the direction of the flow was always known. In the absence of any elevation 
change, head losses from friction always had the effect of reducing static pres-
sure in a known direction. However, in the case of a loop network, the flow can 
move in either direction in a pipe segment. This means that the friction term in 
the energy equation needs to be directionally sensitive. To account for this, we 
will make a small addition to the friction term for the energy equation written 
for any segment on the loop. 

4. Along any flow path, the pressure at any fixed location is clearly single valued. 
If we apply this to a loop network, the change in elevation and static pressure 
head around a closed loop must be identically zero. A quick inspection of 
the energy equation applied around a closed loop will reveal this. By further 
considering the energy equation, this also means that the change in pressure 
due to friction from node-to-node around a closed loop must sum to zero. This 
is referred to as the "loop equation", which is an auxiliary equation unique to 
a loop network. We will explore this more thoroughly in Section 11.7.3. 

11.7.2.1 An Introductory Problem It is worthwhile to first consider a simpler 
variation of the loop network of Fig. 11.28 (see Fig. 11.29). The reason for this is 
that with several simplifying assumptions we are able to develop simple analytical 
solutions for the pipe diameters and total pipe cost. By our inspecting and understand-
ing these solutions, issues concerned with determining static pressure heads at the 
junctions and the associated cost optimization the loop network will be highlighted. 
Later on, we may better be able to deal with these in more complex loops. 

The loop of Fig. 11.29 consists of four, equal-elevation, loop segments of smooth 
pipe each having equal lengths (L23 = L34 = L45 = L52 = L12/2 = 50 m). Valves 
on each of the equal-elevation branches are adjusted such that the flow rate in each 
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Figure 11.29 Geometry for a simple loop network. 

branch is equal to Q12/3, where we assume Q\2 = 3.10 L/s for this design. The flow 
rate distribution in the network is from the continuity equation. Thus, 

Q23 = ^ , Q34 = ^ , Q36 = 9f, Q« = ^f (11-40) 

Because of symmetry, we need only solve for the flow in branches 36 and 47 (the 
flow in branch 58 is identical with that in branch 36). To simplify the solution, we 
will neglect the major friction loss in favor of a minor loss having a large value of 
K — 200 in each branch and segment of the loop. We will assume K = 50 for 
segment 12. 

The energy equations, Eqn (11.24), for each segment of the loop and branch are 
written as 

0 = Azl2-h2-K12
 SQl2 

V9DÎ2 

0 = h2-h3- K-
2Q 

0 = h3~h4-K34n ,""»« (11.41) 

2 - «3 - " 23 -5— τ ςχ -

- 8 Q 3 6 
Τ-3 - ridel - Λ 3 6 7Γ^ ^ΤΓ 

9π2 g D*6 

0 = ha - hdni - Ka 

?47 
0 = hi - hdel - K47 o r.4 

7Γ g -D 47 

where hdei is assumed to be 7 m. To allow us to represent the solution as a function 
of just a single parameter, we will let h2 — h3 = h3 — h4 Ξ Ah. With this, the 
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formulas for h2 and the pipe diameters become, 

h2 = Az12-K12
 SQl2 

4 ■w2gD-

Γ) - \K 2 Q l 2 i l / 4 -^23 - Λ 2 3 - 5 -rr\ 

■κ1 g Ah 

n _ [jz 8 Q i 2 11/4 

-^36 — [K367T^ 77 Γ ΓΤΤ 

2 

£47 = [K 47 
SQÎ 

9n2g(h2-hdel-2Ah)' 
11/4 

By assuming a value of Di2 = 2 in., we solve for the first of Eqn (11.42) to get 
a fixed value of h2(= 32.04 m), and then solve the remaining four equations for 
D23,D34, D36, and Di7, respectively, as a function of Ah. The results of these 
calculations are shown in Figs. 11.30-11.32. The relationships between h3, /i4, and 
Ah are 

h3 = h2- Ah, h4 = h2- 2Ah (11.43) 

Finally, we note that the loop equation does not appear here, because it is identically 
satisfied because of the symmetry of this problem. 

Our inspection of Eqs (11.42) shows the following: 

• D23 and D34 are proportional to Δ/ ι - 1 / 4 ; both decrease as Ah increases. 

• -D36 and D47 are proportional to (h2 — hdei — Ah)~llA and (h2 — hdei — 
2Δ/1)-1/4, respectively. This means that both D3 6 and D47 increase as Ah 
increases. 

Both of these observations are evident from Fig. 11.30, although the increase of D3& 

over the range of Ah that is plotted is not very striking. As noted several times 
before in this text, the competing effects of the decrease of D23 and D34 and increase 
L>36 and D47 with increase in Ah leads to the existence of an optimal value for the 
diameters as a function of Ah, once cost is considered. The pipe cost for the loop is 
from Eqn (11.18), rewritten here for convenience, 

where a, b, and Du are the constants defined in Section 11.4.4 and the summation in 
Eqn (11.18) is taken over four pipe segments, 23, 34, 36, and 47. 

A plot of the total pipe cost as a function of Ah is shown in Fig. 11.31. The existence 
ofaminimumcostatA/iof~7.9m(/i3Pt = 24.2mand/i4P* = 16.3 m; see Fig. 11.32) 
is clear. Note that there are very large cost increases due to increased pipe sizes at 
small Ah and h2 — h^ei — 2 Ah approaching zero (Ah —> (h2 — h del) I ̂  ~ 12.5 m). 
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From the above value for optimal Ah, the optimal theoretical pipe diameters for Z)23, 
D34, D36 and D47 are 1.87, 1.08, 1.25, and 1.46 in., respectively. 

The important observations from our inspection of this introductory problem are 
the following: 

• Generally, there exist optimal static pressure heads at the junctions of a loop 
network, just as there was for simple- and multiple-branch networks. These 
are hj values that, as an ensemble, minimize the cost of the network. 

• A close inspection of a loop network of length L reveals that it acts like two 
parallel flow paths, connected at both ends, each over approximate length L/2. 
This is because of clockwise flows in one leg of the loop over a distance of'~L/2, 
and counterclockwise flow in the opposite leg. Thus, compared with a multiple-
branch network of an equal overall length, the loop network is effectively 
shortened by about half. Accordingly, because of this and the lack of elevation 
changes along the flow path, the range of variation of the static pressure heads at 
the junctions may be expected to be smaller for a loop than for an equal-length 
multiple-branch network. 

• A consequence of the previous bullet is that as the number of nodes in the loop 
increases, it becomes increasingly challenging to find solutions for optimal 
junction-^ values. Because of this, care needs to be taken in the numerical 
solution of loop problems to achieve a solution with reasonable execution times. 
We will elaborate on this below. In cases where the number of nodes in the 
loop is fewer than -20, a trial-and-error approach with just the reverse solution 
is probably the quickest and most reliable way to determine near-optimal static 
pressure heads at the branches of loop network and near-optimal cost. The 
forward solution is skipped. This is very tedious, however. Trial-and-error 
is employed below in the solution of the loop of Fig. 11.28 along with the 
Mathcad solution using the usual Given.. .Minimize structure. Recall that 
the reverse solution uses actual inside diameters from chosen nominal pipe sizes 
to calculate actual flow rates and actual static pressure heads at all junctions. 

11.7.3 Formulation 

We return to the problem of Fig. 11.28 and begin by writing the governing equations. 
The energy equation for each segment of the loop network is written as done for 
Eqn (11.25). The segment label is the subscript on the function r^ for each. Obtain 

L\2 , ,Le n 8Q 
r12 - Az12 - h2 - {Kl2 + a12 + fi2[~ + (-^)ι2]} , Λ = 0 

D12 "D'^'^gD* 2 

r23 = Az23 + h2 -h3 - {K23 + fei-j^- + (-ρτ)23]}-LD23 'D'^" **gD. 23 ■ 

Λ , U U ITS I f Γ^34 , / ^ Ì li 8Q34|Q34| 
r34 = Δ234 + /ΐ3-/ΐ4 -{-^34+/34[τ^— + (77)34]}-lD34

 V D ^ J J ^gD% 34 
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Figure 11.30 Pipe diameters versus Ah for loop network. 

Figure 11.31 Total pipe cost versus Ah for loop network. 

Λ i », U [IS i f ί i 5 , / ^e x 118Q45Q45 n 

r45 = Az45 + h4 - h5 - {K45 + f45[— h (-=7)45}—, n 4 = 0 
D45 D VgV25 

r56 = Az56 + h5 -h6 - {K56 + f56 —— + (— 56 } — 2 η 4 = 0 
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Figure 11.32 Static pressure heads, /12, /13, and h4, versus Ah for loop network. 

r 6 7 = Δ ζ 6 7 + / ι 6 - / i 7 - { i i 6 7 4-/67 Ιτ^— + ( 7 7 ) 6 7 ] } — 2 n 4 = 0 
-Ö67 -ϋ 7Γ 5-^67 

Λ , i, i, r Kr' 1 #· Γ ^ 7 8 , / ̂ e x U 8 < 3 7 8 | Q 7 8 | n 

r78 = Az78 + h7-hs-{K78 +f78[——+ { — )78\\—2 4 = 0 

A , j , », i f , ί r ^ 8 2 ι / " ^ TI 8Q82IQ82I n r 8 2 = Δ ζ 8 2 + Ais - h2 - \K82 + /s2[jz I-(77)82 I — 2 n 4 = 0 

r39 = Δζ39 + ή3-Λ,ίβΙ-{^39 + / 3 9 [ ^ + (^ )39]}- |%-= 0 

Ll39 V K*gU39 

r4io = Az4W + h4 - hdel - {K410 + f4io[-^ H (77)410]}: 
410 

n ' *· n ' , 4 1 U 1 „ 2 „ η 4 
Ano D KlgDl 

r 5 n = Δ2511 +h5 - hdei - {K5U + / 5 i i [ - p : — + (77)511]}- 5 n 
lD511 ' "D'^^gD^ 

r6i2 = Δζ6ΐ2 + h6 - hdel - {K612 + fei2[-^. l· (77)612]}- 6 1 2 
in ' \ n yoizjj _2„n4 

-^612 -^ 7Γ (7-^6 1 2 
Γ 713 , /■i'ex n 8<2713 r 7 1 3 = Δ ζ 7 1 3 + Λ , 7 - / i d e i - { K 7 i 3 + / 7 i 3 [ — — + (77)713]} 7-> ' *- n ' ' I ' i J 2„r>4 

D 7 i 3 D T^gDj-^ 

r 8 i 4 = Δ 2 8 ι 4 + /18 -/irfeZ - {^814 + / s i 4 [ 7 7 ^ ^ + ( 7 7 ) 3 1 4 ] } " 8 W ■^814 . /Les. n 8Q; 
ri r V77J814 j - 5 7 7 n 
-Ö814 D n^gD814 

2 „ n 4 

(1 
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where/ij for ij = 12,23, . . . means f(Qij,Dij). As we saw for the multiple-branch 
network, only in pipe 12 is there included an acceleration from zero flow speed at 
the surface of the reservoir to the flow speed in the pipe (i.e., an a term). For the 
remainder of the pipe junctions, the acceleration of the flow through a tee is accounted 
for with a K-type loss coefficient, h dei is taken to be 7 m for this design. Also as 
above, in Eqn (11.44) the static pressure heads at all branches, hi are unknown. These 
are constrained through pipe material cost minimization as we have seen in the past. 

The term QÌJ\QÌJ\ in Eqn (11.44) behaves like Q? and accounts for the possible 
change in direction of the friction head loss for energy equations written for segments 
on the loop. QÌJ\QÌJ | > 0 for Q^ > 0 and Q^ \Q^ | < 0 for Q^ < 0. 

As discussed above, the loop equation states that the sum of the head loss (this can 
be positive or negative valued depending on the direction of flow) between consecutive 
nodes around the loop must be zero. Note that the sum of difference in static pressure 
heads and elevation heads between consecutive nodes around the loop must also sum 
to zero. This is identically satisfied by summing, around the loop, the elevation head 
and static pressure-head terms, respectively, in Eqn (11.44). The loop equation is 

-̂ 23 . ,Le n Q23IQ23I 
0 = {K23 + f23[-^ + (-^)23]} D23

 KD,Aói> D*3 

+ 1-̂ 34 +J34I77- + (77)34]} fU 

_L SK 4- f r ^ 4 5 4- (Le\ n Q45IQ45I 

_i_ Sis _i_ f \Lh& -L(Le\ n Q56IQ56I 
+ |A56+/56Ì7J— + (77)56]} P74 

i^56 L> -^56 
■^67 . ,Le Q67 |Q67 | + { ^ 6 7 + / 6 7 [ T 7 ^ + ( T ^ ) 6 7 ] } D67 "DJ0'S> D | 7 

^78 . ,Le Q78 |Q78 | 
+ {*78 + /78[Τ7^ + (77)78» D78 ^D"*" D|8 

+ {Ks2 + fs2l^ + a u } ^ § ^ 01-45) 
■^82 L) V82 

From Eqn (2.23), the continuity equat ions for each branch starting from node 2 
and moving c lockwise are written as 

<2s2 - Q23 + Q12 = 0 
Q23 — Q34 — Q39 = 0 

Q34 — Q45 — Q410 = 0 

Q45-Q56-Q511 = 0 (11.46) 
Q56 — QÔ7 ~ Qei2 — 0 

Qö7 - QlS, ~ Q713 = 0 

ζ?78 — ζ?82 — ζ?814 = 0 
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In the forward solution only, one continuity equation is replaced by the loop equa-
tion. In fact, by substituting the continuity equations, Eqs (11.46), successively into 
Eqn (11.45), we can show that the loop equation depends only on the known values 
of Qi2 and the branch flow rates, and just a single unknown, for example, Q$2. In 
this case, the loop equation replaces the final continuity equation in Eqs (11.46). 

11.7.4 Mathcad Worksheets 

A Mathcad worksheet, LoopExample_withcost_ver3.xmcd, was written to solve 
this problem in the usual way. First, the forward solution is carried out where the 
theoretical pipe diameters and optimal static pressure heads at the junctions are found 
using the Given.. .Minimize structure. Then, the reverse solution is performed after 
choosing appropriate nominal pipe sizes. This worksheet is too large for presentation 
here,26 but the following list highlights the principal features of the solution procedure. 

• We chose to solve this problem by assuming a fixed value for Du = 2 in. 
(nom.). Together with the prescribed value of Q i 2 this produces hi = 42.89 m, 
which remains fixed, along with D\2, for the forward calculation. 

• The choice of initial guesses for the unknowns in Mathcad is crucial to obtain 
a solution with reasonable execution times. This is done by the following 
sequence: 

- Based on the prescribed branch flow rates and segment lengths, provide 
reasonable guesses for the unknown pipe diameters. 

- Initial guesses for the flow rate distribution in the loop are made by as-
suming that nearly half the flow goes clockwise starting at node 2. This is 
referred to as the "flow split" in LoopExample_withcost_ver3. xmcd. 

- After defining the energy equations for each segment in the usual way, 
initial guesses for h at each junction are obtained by solving each energy 
equation around the loop for hj. For example, h3 comes from the solution 
(in Mathcad syntax) h3 := root(r23(/i2, h3, D23, Q23, K23), h3), and so 
on. 

- Finally, the loop equation, Eqn (11.45), is used to improve the values for 
the flow rate distribution in the loop. 

• The energy and continuity equations, and the loop equation are solved as 
a function of the unknown hj values at the six junctions (nodes 3-8) in a 
Given.. .Find block in the usual way. 

• Optimal values for hj at the junctions are obtained from the Given.. .Minimize 
block wherein the inequality constraints of hj > hdei and hj < z\ — Zj {hj 
must be less than the hydrostatic head) at each junction node, j . 

'It is included with this book, however. 
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• An optimal (minimum cost) solution is obtained in -18 min on a dual-core 
laptop PC with a 2.66-MHz processor for Mathcad ver. 14. 

For comparison purposes, a trial-and-error method was also used to solve just the 
problem (just the reverse solution) where actual inside diameters from a series of 
nominal pipe sizes were selected. The worksheet for this calculation, LoopExample 
_withcost_ver8.xmcd, appears in Figs. 11.33-11.36. The procedure in this work-
sheet follows the reverse solutions seen in previous sheets. The input for the calcula-
tions is nominal pipe sizes for all segments of the loop and branches. The execution 
time on a dual-core laptop PC with a 2.66 MHz processor for Mathcad ver. 14 was 
< 30 s/case. 

11.7.5 Results 

The results for this analysis and design are presented in Tables 11.14-11.16. The re-
sults of the Mathcad worksheet, LoopExample_withcost_ver3. xmcd are presented 
in Table 11.14. The forward solution converges where the minimal cost is -$4077. 
The nominal pipe sizes are assigned as shown in column 7 of Table 11.14 based on the 
usual guideline for selecting these and the theoretical values for Dij from column 5. 
We see that the design flow rates can be achieved with slight adjustments to globe 
valves located in segment 12 and in the branches. The total pipe cost based on actual 
pipe sizes selected is -$4500. 

For the trial-and-error solution, candidate values for D range from 2-in. (nom.) 
for segments 12, 23, and 82 to \ in. (nom.) for some of the distribution segments. To 
save time, values for the minor loss coefficients used in this analysis are as specified 
in Table 11.13 with the exception of Ki2, which is adjusted to match the required 
flow rate of2.89L/s in segment 12. We see in Table 11.15 that the total pipe cost falls 
as the average pipe size of the network decreases. The minimum cost satisfying all 
of the branch flow requirements and static pressure head constraints (hj > 10 m and 
hj less than hydrostatic) is ~$4791 (case 5). The volume flow rates for all distribution 
pipes appear in Table 11.16. For all cases some of the branch flow rates are below 
specification and must be adjusted upward. This is done by partially closing the 
globe valves (meaning increasing their K values) in the branch segments that have 
flow rates higher than specified. 

Although it is straightforward and will normally return a converged solution, the 
designer should be aware that the trial-and-error method is very tedious and subject 
to errors because of this. Though execution times are considerable, the Mathcad 
worksheet is generally preferred. Of course, as the number of nodes increases, the 
trial-and-error method becomes prohibitively cumbersome and should be used only 
for cursory investigation purposes or to verify a calculation performed using another 
method. 
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Table 11.16 Branch Flow (Q in L/s) Results from Solution for Loop Network 

Case Q39 Q410 Q511 Qei2 Q713 <5ei4 
1 0.588 0.489 0.518° 0.360 0.459 0.487 
2 0.648 0.554 0.576 0.235 0.573 0.317 
3 0.429 0.392 0.696 0.287 0.698 0.385 
4 0.268 0.443 0.772 0.183 0.802 0.436 
5 0.317 0.534 0.926 0.239 0.567 0.310 
6 0.516 0.487 0.859 0.220 0.522 0.284 

"Italicized entries are below specified values for this design. 

B.11.8 Reinforcement of Concepts for Loop Network 

We can gain confidence to solve the loop-network problem as we did for multiple-
branch networks by diving in to the appropriate Mathcad worksheet. Modify the 
existing worksheet LoopExample.withcost_ver3. xmcd to solve the following 
problem. The neglect of the major friction loss in the Introductory Problem above 
(Section 11.7.2.1) is the most restrictive of all the assumptions made. Resolve this 
problem by adding pipe friction to produce an improved, more realistic solution. 
The energy equations will now be nonlinear and nonseparable so that we will 
be unable to write explicit formulas for the pipe diameters in the manner of 
Eqs (11.42). Mathcad will be used instead. Keep all of the other conditions in 
the problem statement the same, except for the K values. For this exercise, set 
K for each segment in the loop and branches to 10 (an open globe valve). To 
simplify, assume h2 = 32.04 m (for Di2 = 2 in.) so that the calculations in the 
Mathcad worksheet will not include segment 12. 

Modify the worksheet LoopExample_withcost_ver3. xmcd to include the pa-
rameter values, energy equations, and solutions in the Given.. .Find and 
Given.. .Minimize blocks for only pipe segments 23, 34, 36, and 47. The total 
pipe cost also depends on these diameters only. The resulting Mathcad worksheet 
appears in Fig. 11.37. The optimal value of Ah is 7.94 m, and the theoretical 
pipe diameters D23, D34, D36 and Di7 are 1.27, 0.827, 0.917, and 1.05 in., 
respectively. All of these values are smaller than when major pipe friction was 
neglected. It is reasonable to expect the pipe diameters to decrease when major 
friction loss is included; the additional friction loss (above that for the minor loss 
already included) is due to a reduction in pipe diameters. 

As an alternate solution, if we let h3 and h\ vary independently rather than letting 
h2 — h3 = h3 — hi, the solution will depend on h3 and /14 and not simply Ah. 
In this case, we obtain the optimal values for h3 and /14 of 22.7 and 16.2 m, 
respectively, and the theoretical pipe diameters D23, D3i, D3Q and D47 are 1.23, 
0.863, 0.934, and 1.05 in., respectively. The Given.. .Minimize block takes 
< 30 s to converge. The interested reader is encouraged to modify the worksheet 
of Fig. 11.37 to verify these results. 
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Figure 11.37 Mathcad worksheet for solution of example in textboxB.11.8. 
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B.11.9 A Reminder 

It is worthwhile to periodically recall one of the important points discussed 
in Chapter 1. In gravity-driven water networks, for all points beyond the 
atmospheric-pressure source, energy that drives the flow comes from only static 
pressure when converted from potential energy. The challenge as analysts and 
designers is to manage this energy. Pipe sizes that are too small cost less than 
large ones but dissipate too much energy in friction. Pipes that are too large 
may unnecessarily increase the cost of the network and possibly present control 
problems. Thus, energy from static pressure in the network is our friend because 
it allows us flexibility in our designs and potential for future expansion of the 
network. 

11.8 LARGE, COMPLEX NETWORKS 

11.8.1 Comments 

Water distribution networks having hundreds of nodes or more, joined in branch and 
loop patterns, with pipe lengths extending over many kilometers are typical of large 
towns and urban areas. The analysis and design of these large-scale networks is 
the subject of a number of books (Jeppson, 1976; Nayyar, 2002; Trifunovic, 2006; 
Swamee and Sharma, 2008) and many journal and conference publications covering 
the network subfeatures. Although this application is not the target of the present book 
of small-scale networks and emphasis on fundamentals, it is worthwhile spending 
some time discussing the approaches and methodologies for the analysis and design 
of these large systems, along with a few pertinent results. 

Among the differences between the approaches explored so far in this book and 
those used for the solution to large, complex networks are the following: 

• Large computer codes, written in classical programming languages like Fort ran 
to solve large systems of nonlinear simultaneous equations, are nearly always 
used. 

• Indexing of the elements of the problem is done so that the computer pro-
grams can take advantage of execution speed increases resulting from the use 
of vectorization. 

• As the scale of the network increases, it is appropriate to make simplifying 
assumptions that are at least slightly more applicable in the large scale but less 
so with smaller-scale networks. Lumped-equivalent and distributed-equivalent 
models for branching flows from a distribution main (Swamee and Sharma, 
2008) and equivalent diameters and lengths (Trifunovic, 2006) that, in some 
cases, come from treating the friction factor as constant are examples of this. 
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Two examples of large computer codes are those presented in Swamee and Sharma 
(2008), written in Fortran, and the EPANET 2 code (Rossman, 2000) of the United 
States Environmental Protection Agency. In general, numerical methods like Newton-
Raphson (Gerald and Wheatley, 1999), Hardy Cross (Potter and Wiggert, 2002), 
Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963), and Conjugate Gradient 
(Hestenes and Stiefel, 1952) are used to solve the systems of nonlinear algebraic equa-
tions that arise in water-flow networks. Iteration, starting with initial guesses of the 
solutions and repeating of the calculation until suitable convergence of the solution 
is found, is common among all of these methods. 

From our experience thus far with the analysis of water distribution networks, we 
see there are many examples of the same calculations repeated for different parts of 
the network. For example, for a given problem we solve the same energy equation 
many times over for different segments of the network to obtain the diameter of 
each segment. With vectorization, if it can be used in our computer program or 
platform, this calculation is done as if it were for just a single segment. The result is 
a considerable savings in execution time. 

Vectorization is implemented by first defining a vector of diameter values D = 
\D1D2D3 ... Dn], flow rates Q = [Q1Q2Q3 ■ ■ ■ Qn], lengths L — [LiL2L3 ... Ln], 
and changes in elevation heads Az = \Az\Az2Azy, ■ ■ ■ Azn], and so on. Instead of 
writing the energy equation for a particular segment ij, in which there would appear 
Dij, Qij, Lij, and AZÌJ, etc., we write it for the entire vector of D, Q, L, and Az 
values. The energy equation, Eqn (11.24), in vectorized form becomes 

Az + Ah={K + a + f(Q, D)A + &)}}- ^ 
D £> Vc/D4 (11.47) 

Normally, a vectorized calculation on a computer takes much less time, and can be 
programmed in a much more compact form, than one that is not vectorized (that is, 
performed on each of the sealer quantities that are components of the vector). For 
these reasons, vectorization of calculations is highly recommended where possible. 

Major losses dominate as the size of a network increases. With the exception of 
those for throttling valves, minor losses at branches27 and other parts of the network 
are ignored for large water-flow networks. In most cases, this is justified because of 
the weak effect that the minor loss has on the solution. In other cases, the neglect of 
things like minor loss and changes in acceleration are made out of the need to simplify 
an equation to obtain a tractable problem. In this case, validation of the solution, or 
solutions to a class of problem, is needed to give confidence in the accuracy of the 
result. 

One simplification related to the latter case is the occasional treatment of the friction 
factor as a constant in the governing equations of some developments (Swamee and 

27As has been discussed previously, when flow to a branch is directed either with or against another flow, 
there is a local change in static pressure that adds to or subtracts from the energy at that location (Jones 
and Galliera, 1998; Jones and Lior, 1994). For a combining flow where the branch and main run of pipe 
are perpendicular, this is a very weak effect. If a dividing flow, there is a stronger effect. Minor loss 
coefficients appearing in Table 2.1 account for these losses. 
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Sharma, 2008; Mihelcic et al., 2009). The friction factor is clearly not constant but 
can vary considerably, as discussed in Chapter 2. By making this simplification, the 
analyst is freed from the task of having to consider the dependence of pipe diameter, 
and perhaps flow rate, in the function for friction factor. The benefit of this assumption 
is simplification of the analytical result but a price is paid because of the need to include 
in the solution an iterative procedure to account for the above dependencies. 

11.8.2 Optimization for Large Multiple-Branch Networks: Use of 
Vectorization 

For large multiple-branch networks, where we expect only turbulent flow, Swamee 
and Sharma (2008) report closed-form expressions for minimal network cost for both 
gravity-driven and pumped flows. The analysis begins with the energy equation 
written for the entire distribution main (composed of segments 12, 23, 34, and 45), 
as seen in Fig. 11.16. We will neglect minor losses since they are normally small 
relative to friction in this long pipeline. With this assumption, the energy equation 
[Eqn (11.24)] becomes 

1 = 0 = Azn-hdei- } 5—g S (11.48) 
iUi π 9D*i 

where Azn = z\ — zn and n is the index for the final segment of the main. That 
is, Azn is the total elevation change between the source and the delivery location 
at the bottom of the distribution main. Following the developments for Lagrange 
multipliers in Chapter 10,1 is an equality constraint that is equal to zero. 

The total network cost (pipe cost in the present work) is from Eqn (11.17) and is 
written for this problem as 

CT = aYj{^)bLlj (11.49) 

where a, 6, and Du are the constants defined in Section 11.4.4. 
We wish to minimize CT subject to the constraint of Eqn (11.48). We will use 

Lagrange multipliers. Obtain for the overall cost function, CT,O, 

CT,O = « έ (jr)bL*J + λϊ ( 1 1 ·5°) 

or 

CT,o = a 2 ^ {j^YUj+XiAzn-hdei- 2^ - 3—5 ) (11.51) 

Immediately clear from our inspection of the cost function of Eqn (11.51) is the 
competition between the first term on the right side where cost increases with D^ · (6 > 
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0) and that due to friction where cost is approximately proportional to 5^™-=12 V-^fj : 
the opposite effect on cost. Following the procedure for Lagrange multipliers, we 
take the partial derivative of CT,0 with respect to Dij, set it equal to zero, and solve 
for the optimal diameter, ϋ°?*. Obtain 

yyypt MXfiQ^D^DlQl 
ix2 gab 

f)Opt 
ij dfa 

$f(QlvD°f) dDi0 
(11.52) 

D«=orr 
The term dfij/dDij is obtained from taking the derivative of the Colebrook equation, 
Eqn(2.12), 

9fa 
dDi 

2.650[eij/3.7D?- 4 .156(^ /Q? ,Ai) ü l ] 
Sij \n(Sij) 

\0.9 

(11.53) 

where <% = eij/i.7Dlj + 4.618(i/ D^jQ^, · 
The unknown Lagrange multiplier, λ, in Eqn ( 11.52) is eliminated by the following 

procedure: 

1. Write Eqn (11.52) for the first pipe segment (ij — 12) and divide this by 
Eqn (11.52), which is for D°f. This ratio is D^/D°f; independent of λ. 

2. Substitute this expression into Eqn (11.48) to eliminate D^ in favor of Di2-
Keep / written as f(Qij,D°ft). 

3. Equate this result, which is an expression for D12, to the formula for D12 from 
step 1. The result of this step is a final equation for D opt 

where ft,- is from 

(11.54) 

(11.55) 

and it is understood that fa = f(Qij,D°?T) (or fa - f(Qij,Dij) in dfa/dDij). ,D%t)(pTfa=f{Qij,Di. 
Equation (11.54) is a single nonlinear algebraic equation for the optimal diameters 

for the distribution main of a multiple-branch network. This equation is nonlinear 
because of fa and β^ on the right side, both of which depend on D°J*. The term 
ßij does not appear in the development of Swamee and Sharma (2008) since they 
assumed constant fa. The diameter-dependence of fa in their solution was included 
in the problem through iteration. 
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Once D°j are obtained, and with Δζ^· and Qij known for all indices ij, the energy 
equations for the distribution main segments are easily used to determine the static 
pressure heads at the junctions, hj, at the branches. The diameters for the branching 
distribution pipes are also determined by their respective energy equations with AZÌJ , 
Qij, and hj as known quantities. The selection of nominal pipe sizes follows this, 
together with the reverse solution as usual. 

11.8.3 Example Problem: Use of Vectorization 

Consider the example below based on Fig. 11.16, which is a variation of the example in 
Section 11.6.1. The relevant design data are presented in Table 11.17. The focus is op-
timization ofthe pipe sizes for the distribution main, £>i2, A23, D34, andJ945. We will 
solve this problem in two different ways: using the analytical result of Eqn ( 11.54) and 
using the Given.. .Minimize block both of which will be in Mathcad. The Mathcad 
worksheet for the approach using Given.. .Minimize is as discussed in Section 11.6.1 
and will not be shown because of its length. The worksheet that implements the so-
lution of Eqn (11.54) (BranchPipeExample_4pipe_withcost_vectorized_ver3 
.xmcd) appears in Figs. 11.38-11.40. 

Vectorization is used in the latter worksheet to demonstrate its benefits of speed 
and compactness. The first task is to convert all input parameters from the nor-
mal designation, Dij, Qij, and so on, to vector notation (see Fig. 11.39). Thus, 
D\ — D12, D2 = D23, D3 = D34 28 The next several lines in Fig. 11.39 are 
devoted to producing good initial guesses including those for Dm (the vector of di-
ameters for the distribution main), / , and ß. The solution for Dm is obtained in 
the Given.. .Minimize block at the bottom of Fig. 11.39. Only three simultaneous 
equations sit inside this block: / , ß, Dm. Note that all are vectorized in the manner 
as required by Mathcad. It turns out that Eqn (11.54) is somewhat challenging to 
solve with the default value of convergence tolerance (CTOL) of 0.001. Instead, CT0L 
is set to 0.1, and a procedure to improve the initial guesses was used. This is done 
using the WRITEPRN and READPRN statements in Fig. 11.39. WRITEPRN is first used 
to write the initial guess for Dm to a file, D-fi le. prn. The WRITEPRN statement just 
after the Find statement writes the most recent values of Dm to this file. By keep-
ing the cursor on the READPRN, positioned just before the Given.. .Find block, and 
pressing the F9 key to execute the program, successively improved solutions for Dm 

will be calculated29. This happens because READPRN reads the most recent solutions 
for Dm, the Given.. .Find block improves them, and WRITEPRN writes Dm so that 
it may be read again by READPRN. After -3^1 cycles of this, the values for Dm no 

28In Mathcad there are two types of subscripts. The first is a literal one like L that modifies the definition 
of h in hi to produce the symbol for head loss. The second one designates the component of a vector. 
In the expression D\ = D12, the subscript 1 is the component of the D vector and the subscript 12 is a 
literal label, not really a number. The literal subscript in Mathcad is produced by a period after a symbol. 
A placeholder for the vector component is produced using CTRL-[. Care should be taken to not confuse 
these or else considerable head-scratching will be needed to debug your worksheets. 
29Automatic Calculat ion must be turned off in the Tools . . . Calculate menu before performing 
this step. 
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Table 11.17 Design Parameters for a Multiple-Branch Network with Vectorization 
(see Fig. 11.16) 

Pipe Subscript, ij 

12 
23 
34 
45 
26 
37 
48 

Lij (m) 

435 
615 
410 
530 
128 
439 
118 

Qa (L/s) 
2.20 
1.56 
1.02 
0.50 
0.64 
0.54 
0.52 

Zi — Zj = AZÌJ (m) 

236 - 195 = 41 
1 9 5 - 177= 18 
1 7 7 - 159 = 18 
1 5 9 - 151 = 8 
195 - 185 = 10 
177 - 176 = 1 
1 5 9 - 151 = 8 

Kij 

0 
0 
0 
0 
10 
10 
10 

(Le/Dkj 

0 
0 
0 
0 
60 
60 
60 

Table 11.18 Results for Multiple-Branch Network with Vectorization (Solution by 
Eqn (11.54) and Given.. .Minimize block in Mathcad) 

Pipe Subscript, ij D°Jl (in.) D"f (in.) 
From Eqn (11.54) From Given.. .Minimize 

12 1.758 1.761 
23 1.593 1.594 
34 1.411 1.411 
45 1.153 1.152 

longer change and convergence is achieved. The solution for static pressure heads at 
junctions of all branches is obtained next (Fig. 11.40) by solving the energy equation 
for the distribution main in vectorized form. From this result, we define the vector 
of Ah values at the three junctions having components /12 — hdei, Ί3 — hdei, and 
hé — hdeu and solve the energy equations for the branches. The solution is the vector 
of branch diameters, Db- The execution time for the entire worksheet is few seconds. 

Results are presented in Table 11.18. The diameters calculated by both methods 
are in near-perfect agreement. Because of the much greater execution speed using 
Eqn (11.54) compared with the Given.. .Minimize block, the former method is gen-
erally recommended. However, the designer needs to be aware that with Eqn (11.54), 
the optimization is performed only for the distribution main, not the entire network. 
With the Given.. .Minimize block-approach, the diameters determined are based on 
optimization of the entire network. For cases where the distribution main, because if 
its larger diameter and/or length, is much more costly than the distribution branches, 
there will be little difference between the results of the two approaches. 

If the flow rates in each pipe segment in the distribution main are equal, the problem 
becomes that studied in Section 11.5.1, where we considered the characteristics of 
single, variable-diameter pipe. With constant Q^, our inspection of Eqn (11.54) 
shows that it produces the same D^ for all ij. In fact, if Qij = 2 L/s for all pipe 
segments for the example considered in this section, Eqn ( 11.54) yields Dij = 1.79 in. 
for all ij. Thus, we conclude from this brief inspection that the minimal cost design 
for the problem of series-connected pipes of possibly different diameters is, in fact, 
a network of uniform diameter pipe. Of course, the designer may wish to vary the 
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Figure 11.38 Page 1 of Mathcad worksheet for solution of vectorized 
optimization of a multiple-branch network. Worksheet BranchPipeExample_4pipe 
_withcost_vectorized_ver3. xmcd. 
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Figure 11.39 Page 2 of Mathcad worksheet for solution of vectorized 
optimization of a multiple-branch network. Worksheet BranchPipeExample_4pipe 
_withcost_vectorized_ver3. xmcd. 
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Figure 11.40 Page 3 of Mathcad worksheet for solution of vectorized 
optimization of a multiple-branch network. Worksheet BranchPipeExample_4pipe 
_withcost_vectorized_ver3. xmcd. 
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pipe diameters to satisfy considerations other than cost (like too large a peak static 
pressure) for a series-connected single-pipe network. A slightly different problem 
is where we require a minimum static pressure head at each junction. Under some 
conditions, and subject to this constraint, we note that a minimum cost solution does 
indeed exist as illustrated in Section 11.5.3. This solution produces different Dij than 
those from Eqn (11.54). No constraint on static pressure heads at the junctions was 
made in the development of Eqn ( 11.54). 

Unfortunately, there is no optimization formula, like Eqn (11.54), for a loop net-
work. Either the Given.. .Minimize block in Mathcad can be used, as in the problem 
of Section 11.7, or a "loop-cutting" approach as discussed in Swamee and Sharma 
(2008) and Trifunovic (2006). The latter method is like that used in Section 11.7.2.1, 
where we cut the loop into two parts and treat each part as the distribution main (a 
"quasimain') of a branching network. Equation (11.54) can the be used. Iteration, as 
well as the choice of the larger of the two pipe diameters for the same pipe segments 
that are common to more than one quasimain, are used. Generally, this solution is 
carried out using large computer programs as discussed above. 

In Section 11.6.6, we obtained an equation [Eqn (11.39)] that can be solved to find 
optimal values for static pressure heads at the junctions of a multiple-branch network. 
The principal difference between Eqn (11.39) and Eqn (11.54) is that solutions from 
Eqn (11.39 reflect optimization of the entire branch network, including branches, 
whereas Eqn (11.54) is based on only an optimal distribution main. 

B.11.10 Optimization of 16-Node Multiple-Branch Network: Use of 
Mathcad with Vectorization 

Consider the 16-node branching network in Fig. 11.41. Modify the Mathcad 
worksheet BranchPipeExample_4pipe_withcost_vectorized_ver3. xmcd 
by including the data from Table 11.19. Calculate the theoretical pipe diame-
ters that minimize the cost of the distribution main part of this network. Report 
all pipe diameters and the vector of static pressure heads at the junctions. Cal-
culate the cost of the distribution main and compare with the total pipe cost. 
How confident are you that your diameter results optimize the overall network? 
h del = 8 m for this problem. 

Follow the worksheet and the discussion in Section 11.8.3 to make the modifica-
tions to the worksheet. Make CT0L as large as 0.1 if needed and reduce in size to 
0.001 as Dm converges. The results for optimal pipe diameters, (D°pt =) Dm 

and Db, appear in Table 11.20. Nominal sizes are selected next based on the theo-
retical diameters in this table. The static pressure head vector for the junctions in 
the distribution main is h°pt = [0 19.2 20.2 23.8 23.3 19.0 11.9 9.98 8.00] m. 
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Figure 11.41 Geometry for optimization of a 16-node multiple-branch network. Refer to 
Table 11.19 for values of design parameters. 

Table 11.19 Parameter Values for Optimization of a Multiple-Branch Network (See 
Fig. 11.41) 

Pipe Subscript, ij Lij (m) Qi3 (L/s) zt — Zj = AZÌJ (m) Kij (Le/D)ij 

12 
23 
34 
45 
56 
67 
78 
89 
2-10 
3-11 
4-12 
5-13 
6-14 
7-15 
8-16 

135 
115 
110 
230 
335 
415 
210 
230 
128 
139 
118 
128 
439 
118 
698 

3.50 
3.00 
2.75 
2.25 
2.00 
1.50 
1.25 
1.00 
0.50 
0.25 
0.50 
0.25 
0.50 
0.25 
0.25 

223 - 195 = 28 
195 - 187 = 8 
187-177= 10 
177 - 165 = 12 
165 - 152 = 13 
152 - 140 = 12 
140 - 133 = 7 
133 - 126 = 7 
195 - 180 = 15 
187 - 173 = 14 
177 - 165 = 12 
165 - 158 = 7 
152-141 = 11 
140 - 133 = 7 
143 - 120 = 23 

0 
0 
0 
0 
0 
0 
0 
0 
10 
10 
10 
10 
10 
10 
10 

0 
0 
0 
0 
0 
0 
0 
0 
60 
60 
60 
60 
60 
60 
60 

Optimization of 16-Node Multiple-Branch Network (Cont'd) 

Note that all of the components of this vector at interior branch nodes (the ones 
calculated in this problem) are > hdei ■ The cost for the distribution main is $3774, 
-72% of the total pipe cost. With just 28% of the pipe cost not included in the 
optimization calculations, we are confident that the network is nearly optimized 
in an overall sense. 
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Table 11.20 Results for Optimization of a Multiple-Branch Network 

Pipe Subscript ij 

12 
23 
34 
45 

D°f (in.) 

1.96 
1.88 
1.83 
1.73 

ij 

56 
67 
78 
89 

Of (in.) 

1.67 
1.54 
1.46 
1.37 

ij 

2-10 
3-11 
4-12 
5-13 

D°? (in.) 

0.760 
0.597 
0.739 
0.608 

ij 

6-14 
7-15 
8-16 

D°? (in.) 

1.013 
0.696 
0.842 

11.9 MULTIPLE-PIPE NETWORKS WITH FORCED FLOW 

It has been noted before in several places that the equations and methods of solution, 
as well as the Mathcad worksheets, may be used for forced (i.e., pumped) flows in 
addition to those that are gravity driven. In all cases, the only change that is needed is 
in the energy equation for the first pipe segment. Instead of the atmospheric-pressure 
source, where h\ = 0, the actual nonzero value of h\ = Pi/pgzi is entered. This is 
a very simple change so no example is needed to illustrate it. However, the reader is 
urged to modify any one of the Mathcad worksheets from this chapter in the above 
manner to obtain results with forced flow at the source for comparison with that which 
is solely gravity driven (see Exercise 51). 

11.10 PERSPECTIVE: CONVENTIONAL APPROACH TO SOLVING 
MULTIPLE-PIPE NETWORK PROBLEMS31 

To place the work from this chapter in perspective, we consider the conventional 
formulation and solution of flow problems for multiple-path networks that might be 
found in a fluid mechanics textbook. Obviously, the energy equation [Eqn (11.4)] 
solved in the present work is also solved in the conventional approach. The major 
difference between the two is the manner of the solution. It has been noted above 
that if we are solving the energy equation for the flow rate, Q, or the flow speed, 
ü, the equation or system of equations is nonlinear because Q or ü appears in the 
energy equation in a nonlinear way, (i.e., with an exponent of 2). The dependence 
of the friction factor on Q or ΰ also contributes to the nonlinear nature of the energy 
equation. 

As we discussed in Chapter 4, nonlinear problems can generally be solved using 
the method of iteration, referred to as Gauss-Seidel iteration (Gerald and Wheatley, 
1999). In this method, the equations are written so that one dependent variable appears 
alone on the left side of the equal sign for each equation, a different dependent variable 
for each equation. All other variables and parameters in each equation are moved 
to the right side of the equal sign. In cases where the dependent variable appears 
more than once in a separable way in any equation, the most dominant of these is 

This section may be skipped if appropriate without loss of continuity. 
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the one moved to the left side of the equal sign. Next, the values for the dependent 
variables (that is, the solution) are guessed so that the expressions on the right side of 
the equal sign for all equations may be numerically evaluated. This provides updated 
estimates of the values for the dependent variables which, in turn, become improved 
(in the sense that the values might be getting closer to the solution of the problem) 
guesses. These are then substituted into the right sides of all equations again and the 
calculation repeated. This "iterative" procedure continues until the value for each 
dependent variable changes very little, usually to within a relative "tolerance" of 1 %, 
or less, of the value from the previous cycle of the procedure. The Hardy Cross or 
Newton-Raphson methods are alternates to this, but still require iteration to solve. 

Iteration is the conventional method of solution for multiple-path pipe flow prob-
lems and is often supplemented with a linearization technique called "Regula Falsi" 
(Chapra and Canale, 2002). Almost every fluid mechanics textbook gives an exam-
ple of a two- or three-pipe parallel flow problem that illustrates this method (Fox and 
McDonald, 1992). A variation of this method is used by (Jordan Jr., 2004) to solve for 
flow in multiple-pipe problems. Normally, the flow rate or flow speed in each branch 
of the pipe is guessed, the friction factor calculated, and the energy and continuity 
equations applied to obtained improved estimates of the flow rate or speed in each 
branch. The procedure continues until flow rate or flow speed in each branch from 
two consecutive iterations agree to within the tolerance specified by the designer. Pa-
per and pencil are the normal means of executing such iterative methods of solution, 
though a computer program written in Excel or Mathcad could easily be used. 

In the present work, the iterative procedure described here is replaced by the 
Given.. .Find construct in Mathcad, which is a quick and efficient way for solving 
individual or systems of nonlinear algebraic equations, including the ones that arise 
in multiple-path fluid flow problems. 

To illustrate this procedure, consider the example problem in Section 11.4 for 
parallel flow in a three-pipe network. Recall that we wish to solve for the pipe 
diameters Da, Db, and Dc in this problem for prescribed values of Qa and Qb (Qc 

is determined from these two and the continuity equation) and for arbitrary values 
of P2- Equation (11.7), solved in Mathcad above, is now rewritten for solution by 
iteration as described in the above paragraphs. Obtain32 

Da = ( 4 g , 1 / 2 P ( a - C , a ( ^ ) ) 1 / 4 ; 

π 2(p2 - pg^Za) 

Db = ^Y/Y(CL,b(Db)-a) , p.peft 
π 2(p2 + pg&zb) 

{ π ' L 2(p2 + pgAzc)
 J 

32Note that for diameters to be real and physical in Eqs (11.56), the base of each exponential term must 
be positive. Since it was noted above that Cx is greater than the order of one and a is of the order of one, 
the equations for pipes b and c present no problem in this regard. For pipe a, this condition requires that 
Vi — PQ&Za < 0 or that pgAza > P2 for a real solution for Da to exist. This provides an upper bound 
for the value of p2. 
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where the loss coefficients, C/,ia(£)a), CL,Ò(A>)> and CL,C{DC) are written with 
their appropriate arguments to remind us that the CL depend on the respective pipe 
diameters, which are the dependent variables in the problem [see Eqn (11.5)]. With 
guessed values of Da, Db, and Dc, and a prescribed arbitrary value for p2, all of 
the terms on the right side of Eqn (11.56) are calculable. This provides updated 
values for Da, Db, and Dc which are then used as improved guesses. The iterative 
procedure continues in this manner until Da, Db, and Dc no longer change with 
further iterations. The solution is then said to be "converged" and the problem is 
solved. 

Of course, the static pressure at the junction, p2 is unknown in the above procedure. 
In nearly all instances, designers choose values for these static pressures based on 
lower-bound values that were discussed in Section 11.4.2. Practitioners sometimes 
refer to these as "tapping pressures." For one reason or another, network optimization 
using cost minimization as described in this chapter is seldom done for the scale of 
gravity-driven water networks considered in this book. Cost minimization is clearly 
desirable in and of itself, and the static pressure heads at all junctions in a multiple-pipe 
network could be uniquely determined once cost minimization is performed. 

11.11 CLOSURE 

At this point, we can all imagine a big sigh of relief after diligently working though 
some 90 pages of hydraulic analysis and design of multiple-pipe, gravity-driven water 
networks. Depending on your understanding of the material and comfort with it, this 
is quite an accomplishment. With a little practice, you should shortly begin to feel 
confident about your abilities to carry out successful hydraulic designs for realistic 
networks. If needed, review this chapter frequently, especially the examples, to 
increase your understanding and comfort level. We are now finished with most of 
the technical core of the book, so our hydraulic analysis and design toolbox is nearly 
complete. Now is the time to work a few exercise problems in Chapter 16 to cement 
and compliment your knowledge base. 

Here are the takeaway concepts for this chapter beginning from textbox B.l 1.2. 

• Although the focus of nearly all hydraulic analysis and design is on satisfying 
the energy and continuity equations, the addition of the economic equation (i.e., 
total cost of the network) is critical to make the forward solution unique. This 
means that minimizing the total network cost provides an additional equation 
or set of equations that, when solved, gives the solutions for optimal static 
pressure heads at all junctions of a multiple-pipe network. The reverse solution 
is always unique since values for Q and h at the junctions are the unknowns 
(see footnote 10). 

• With its Given.. .Find and Given.. .Minimize blocks and the ability to eas-
ily include the appropriate inequality constraints on static pressure heads at the 
junctions, Mathcad is a suitable platform for solving the nonlinear simulta-
neous equations that arise in small- and moderate-scale gravity-driven water 



CLOSURE 311 

networks. For large, complex networks having hundreds of nodes or more, and 
without vectorization, the large execution times will make the use of Mathcad 
prohibitive, however. Two alternatives are available in these cases: 

1. Equation (11.54), which was developed based on the minimal cost of the 
distribution main of a multiple-branch network. Recall that the solutions 
from this equation do not reflect a minimal cost for the entire network, 
just the distribution main. 

2. Large, commercially available computer programs that are described in 
Swamee and Sharma (2008) and Trifunovic (2006), including that from 
Rossman (2000). 

• Strategically placed throttling (or globe) valves in many of the segments, in-
cluding the branch segments, of multiple-branch and loop networks are crucial 
to give the designer flexibility in balancing flows and, when closed, allow the 
removal of pipe and components for maintenance and repair. For most net-
works, an open globe valve [of K = 10 or slightly less; see Eqn (2.11)] does 
not measurably penalize performance so there is little or no disadvantage to 
their strategic installation. 

• Though having greaterreliability, loop networks are less common than multiple-
branch type because of their greater cost and complexity. The analysis and 
design of loop networks is also more complex because of the need to solve 
the continuity equation for each junction and loop equation, in addition to 
the usual energy equation for each segment. The loop equation is an auxil-
iary equation unique to a loop network and comes from the requirement that 
the change in pressure due to friction from node-to-node around a closed loop 
must sum to zero. Because of large execution times in Mathcad using the usual 
Given.. .Find and Given.. .Minimize blocks, for small- and moderate-scale 
loop networks we recommend a simple trial-and-error approach to solve for 
the optimal static pressure heads at the junctions. 

• It is worthwhile to keep in mind that it is almost never necessary to start a 
worksheet in Mathcad from scratch. Always modify an existing worksheet 
that already successfully performs calculations similar, or identical, to those 
you are attempting. 

• The experienced Mathcad user will probably quickly tire of entering redun-
dant equations in a worksheet for each leg of large networks. Vectoriza-
tion, as explored in Section 11.8, can be used with the Given.. .Find and 
Given.. .Minimize blocks to greatly reduce the time to set up a worksheet for 
a given problem. For details on how to do this, see the vector structure in work-
sheet BranchPipeExample_4pipe_withcost_vectorized_ver3. xmcd. 

As noted above, all of the material in this chapter, and most in the others, is unique 
to gravity-driven water flow only because we have an atmospheric reservoir at the 
source in all of our problems. That is, all of the formulas, equations, assumptions, 
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methods of solution, interpretations of results, and other characteristics the problems 
that we have covered may be applied to forced-flow (that is, pump-driven) simply by 
setting hi to the nonzero value appropriate to the forced-flow problem. 

The next step is to move forward into the design and engineering phase. We will 
do this after covering a brief chapter on the interesting topic of microhydroelectric 
power production, which is a close companion to gravity-driven water supply. 
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CHAPTER 12 

MICROHYDROELECTRIC POWER 
GENERATION 

"It's Simple, but not Easy." 
- John C. Bogle, Founder of The Vanguard Group, Inc., 2009 

12.1 BACKGROUND 

Microhydroelectric power generation has been used in developing regions for many 
years. Installed in remote areas, and not connected to a larger electrical power grid, 
these are classified as micro because they range from -10-200 kW (Anon., 2007). 
This is contrasted with large power plants of the order of megawatts (thousands of 
kW) that are connected to a central electrical power grid for distribution over large 
areas. Many microhydroelectric power plants in the Philippines and the Pacific Rim, 
Central Asia, Africa, and Central America have been build in the recent past. 

Hydroelectric power generation works by converting the potential energy of a mass 
of water to electrical energy. Actually, there are three steps to this process. First, the 
potential energy in the water is converted to kinetic and pressure energy (if the flow is 
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in a closed pipe) by reducing its elevation.1 The conduit that carries water in this step 
is called a penstock. Next, this energy is converted to mechanical energy in a turbine. 
Finally, the mechanical energy is used to rotate the shaft of an electrical generator to 
produce electricity. In some applications, hydropower is used to drive a mechanical 
process, such as grinding of grain, in which case the final step is obviously not used. 

It can be argued that a gravity-driven water network and hydroelectric power 
are highly complementary. The former requires dissipation of energy in pipes and 
valves and the latter is a dissipator of this energy where the result is useful electric 
power; that is, energy from the source in a gravity-driven water network could be 
dissipated in a productive manner. It appears, however, that the two are seldom 
coupled. There are several likely reasons for this. Among them is that water flow 
rates required for electrical power are generally very much larger than what might 
be supplied by a spring delivering an acceptable flow of fresh water to a community. 
A subset of this is that a water storage tank is not used in a microhydroelectric plant 
(see Section 12.2), but is almost always needed for a clean-water network. Another 
reason that microhydroelectric and water-supply networks are seldom coupled could 
include water quality requirements that are significantly higher for a potable water 
system. There also may be the lack of simultaneous need for both water and power in 
a given community, or there is a strong community focus on either one or the other, 
not both. 

From a community standpoint, electrification creates opportunities for growth of 
new businesses and population, increasing the quality of life for many. The author 
has witnessed this in travels to Nicaragua. In one case, a milk-processing plant was 
built in rural Waslala that collected milk from farms in the surrounding communities. 
The facility had installed several electric-powered chillers to cool the milk to several 
degrees above freezing for transport to a pasteurization plant in Matagalpa, -4 h away 
by a tortuous road. The initially cool temperatures allowed the milk to arrive at its 
destination unspoiled. The benefit of electrification was not only to the many end-
users of the product, but also the plant owners and their families and the many who 
supplied the milk to the plant at a greatly reduced cost compared to that if they were 
to transport raw milk to Matagalpa themselves. 

12.2 THE SYSTEM 

As shown in the schematic of Fig. 12.1, the microhydroelectric power generation 
system consists of a device for diverting flow from a river, a settling basin, pipe (the 
penstock) that conducts water from the source to a turbine, and turbine discharge. 
The turbine is normally connected through a transmission (consisting of a belt or gear 
drive) to an electrical generator. From this point, the electric power passes through 
an electrical or electronic circuit that attempts to match the power output from the 

1 Of course, the relatively high elevation of water at the source is achieved by solar evaporation of the earth's 
surface water and the deposit of it at high elevations through precipitation. We see that hydroelectric power 
is simply another form of solar power. 
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Figure 12.1 Run-of-river hydroelectric schematic. Available from 
http://practicalaction.org/energy/micro Jiydro (with permission). 

turbine (and proportionally, the power input to the turbine from the water flow) to the 
electrical demand (or load). If required for power transmission over large distances, 
a transformer is used to increase the voltage, otherwise the voltage output from the 
generator is distributed to the community through overhead transmission lines. 

The flow diversion device is a characteristic of a so-called "run-of-river" system, 
where water flow through the turbine comes directly from the river. This means there 
is no dam or storage tank and, consequently, reduced costs. The run-of-river system 
is contrasted with a gravity-driven water network where there is almost always the 
need for a storage tank because of the mismatch in water supply and demand. 

The turbine is classified as an "impulse" or "reaction" type. In an impulse turbine, 
a cylindrical or planar jet of water impacts a "bucket" or "blade" attached to the wheel 
that rotates a shaft that is connected to the generator. Atmospheric pressure surrounds 
this entire process so that the electrical power comes from the change of momentum, 
or impulse, of the water when striking the wheel. The most common forms of an 
impulse turbine are the Pelton (Lester A. Pelton, 1829-1908) and Cross-flow types. 
In a Pelton turbine, a single or multiple cylindrical jets of water are used to drive 
the device. The rotor assembly of a Pelton turbine is shown in Fig. 12.2 (Wikipedia, 
2009a). The bucket assembly of a smaller Pelton wheel is shown in Fig. 12.3, where 
the nozzle that passes the single cylindrical water jet is visible at the bottom. The fact 
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Figure 12.2 Old Pelton wheel from Walchensee Power Plant, Germany. 

that all impulse turbines, including the Pelton one, operate at atmospheric pressure 
means there is no pressure casing required for this type. Pressure vessels or casings 
are normally expensive to purchase and operate since maintenance must be performed 
to assure their leak tightness. As indicated by Harvey et al. (2008) impulse turbines 
are better suited to large elevation heads than reaction types. 

Reaction turbines, which are designed for higher flow rates and lower heads, oper-
ate in the manner of a centrifugal pump run in reverse. Reaction turbines are enclosed 
in a pressure vessel because of the large change in static pressure across the turbine 
blades. The high flow rate and large change in static pressure is the source of power 
in this type. Like the centrifugal pump, reaction turbines fall into two classes. This 
includes radial flow, where the motion of water is primarily in the radial direction 
when acting on the turbine blades. In an axial-flow turbine, the flow passes through 
the unit parallel to the turbine rotating axis. The axial-flow water turbine is similar 
to the gas-turbine jet engine on the wing of a commercial aircraft, except there is no 
combustion of an expanding gas to drive the turbine. 

A cross-flow turbine is similar to a Pelton-type in that it operates immersed in 
atmospheric pressure, but it is not bucket-like. Instead, it resembles a squirrel cage 
[Fig. 12.4, Wikipedia (2009b)]. A planar jet of water is directed onto the blades of 
the rotor to produce the impulse needed to drive the generator. The roundness of 
the rotor requires that the water jet impinges on the rotor blades twice, once when 
entering it and once when leaving. The first impingement is clearly more powerful 
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Figure 12.3 Buckets from Pelton wheel in Nicaragua. A 6-in.-long (15 cm) pencil appears 
for the purpose of scale. The nozzle and "spear" valve appear in the lower part of this figure. 

Figure 12.4 Schematic of a cross-flow turbine. 

than the second, but the latter adds to the performance, increasing it perhaps by -30%. 
As discussed in Harvey et al. (2008) cross-flow turbines are preferred in low-head, 
high-fiow-rate designs over the Pelton type. 

When designing a gravity-driven water network, it would seem intuitive to attempt 
capture whatever energy remains in the flow after it is delivered to the end use. 
However, as noted in Section 12.1, in many instances this does not happen. Costs are 
a major consideration including those for the turbine and generator, as well as that for 
the larger pipe sizes normally needed to transport the larger water flow rates needed 
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for hydroelectric power production. Where the turbine and generator are purchased 
from commercial vendors, the costs are relatively large. For example, as of this 
writing one of the smallest available turbines costs -$1500 without the generator; 
perhaps about a quarter of the cost of the water network itself. For this reason, using 
commercial turbine-generators may not be practical in cases where the focus is on 
providing clean water, not electrical power. There are many references in the literature 
on user-constructed turbines (Harvey et al., 2008; Fraenkel et al., 1991; Anon., 2007; 
Opdenbosch, 2009) and relatively inexpensive options like automobile generators 
and alternators (Smith, 1994) that can lower these costs considerably. Depending 
on the financial resources available for a design, elevation head, water flow rates, 
and other factors, the designer may wish to consider a user-constructed turbine in 
the microhydroelectric power system in conjunction with the gravity-driven water 
network. See Section 12.5 for further discussion on this topic. 

12.3 APPROACH 

Two levels of analysis and design will be considered in this chapter. The first is at the 
system level (the energy equation applied to the turbine as a work engine), and the 
second at the detail level (fluid flow in the nozzle, torque and power to the rotor, etc.) 
The treatment of the latter will not be broad nor deep and will be discussed where 
relevant in the treatment of the much-broader system-level analysis and design, and 
briefly as applied to the power production in a Pelton turbine. The interested reader is 
referred to references, such as Harvey et al. (2008), a source book that has considerable 
breadth and, in specific areas, depth and textbooks on fluid mechanics and machinery 
for depth in the component areas (Smits, 2000; White, 1999; Streeter et al., 1998; 
Munsonetal., 1994). 

Two different approaches can be taken in the design of a microhydroelectric power 
plant. The first is by specifying the volume flow rate of water (referred to as a "flow-
driven" design). Together with the elevation head, penstock diameter, and a few 
other characteristics, we can calculate the power production from the developments 
below. The second is a "demand-driven" design. In this case, the electrical demand is 
specified and, knowing that the demand and supply of electrical power must be equal, 
the design calculations determine the volume flow rate of water needed to supply this 
power. We will discuss both approaches in Section 12.4.1. 

12.4 ANALYSIS 

12.4.1 Hydraulic System Model 

The focus in this section is to develop a mathematical model for the electrical power 
produced by a water-powered turbine-generator. First, we consider the energy equa-
tion, Eqn (2.2) written for the single-pipe network geometry of Fig. 12.5, where the 
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Figure 12.5 Microhydroelectric power plant geometry. 

work term is retained2 to account for the work extracted from the system to be used 
for electrical power production. Equation (2.2) is rewritten here for convenience, 

i[( 
Pi Ü? tPi 

TT2 

+ α ι γ +9Ζι) - ( — + " 2 y ■ gz2)] = am + rhHL 

where the subscript th on the work term w indicates the theoretical rate of work 
done. The theoretical work is distinguished from the actual rate of work, wa, through 
efficiencies for the turbine and generator.3 Efficiencies are parameters that have 
values of one or less (normally < 1) that characterize the overall performance of a 
component at a fine level of detail. The level of detail is so fine that we do not, or 
cannot, produce a mathematical model of it with certainty. The values for efficiency 
are normally determined by laboratory experiments or field tests. An equation for the 
actual work will be developed below. 

If z is measured from the location of the turbine, z2 = 0. We will neglect the 
normally small energy change associated with the velocity head, a2Ü^/2g, and minor 
losses. These could be included by using an equivalent length, Le, instead of the 
physical length, £ (see Section 12.4.2). With Eqn (2.4), and m = pQ from Eqn (2.24), 
Eqn (2.2) can be rewritten as 

mil = pgQ[z\ f^D)±fg]=P9QL{
Zj- f(ü2,D) 

2gD' 
(12.1) 

2There was no work done or extracted when we applied the energy equation to a pipe flow for water-delivery 
networks. 
3 Other inefficiencies exist. See textbox B.12.1. 
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The second term in the square braces is the head loss from the Darcy-Weisbach 
equation, whereas the first term is the hydraulic gradient, S (upper-case S). Thus, 

Az ΖΛ 
S= — = j - (12.2) 

Previously, we have seen S written two different ways. Where multiple-pipe networks 
were considered (chapters 9 and 11 ), the hydraulic gradient was written with primitive 
parameters as 

S = Az+
T

Ak (12.3) 
L· 

where Az = z\ — Z2, Ah = hi — /12, and points 1 and 2 are at the inlet and outlet of a 
pipe segment, respectively. For the current problem, Z2 and Ah are zero (Fig. 12.5). 

In chapters that dealt with single-pipe networks (2, 5, 7, 8, and 9), and with 
Eqn (2.39), the hydraulic gradient has appeared as 

s=Az + Ah = z1{l-h2/z1) =s(l-F) 
L· L· A 

where s is the mean slope (lower-case s), λ is the tortuosity of the penstock pipe, 
and F is the ratio of the static pressure head at the turbine outlet to the elevation of 
the reservoir or stream. Recall that s < 0.5 (mean slope of 27° or smaller) must be 
satisfied for validity of this representation of the hydraulic gradient; this is normally 
not an issue. If using representation Eqn (12.4), s and λ would be specified by the 
designer of the hydroelectric power system. F = 0 for this application. 

With either of these representations, and the continuity equation [Eqn (2.21)], 
Eqn (12.1) becomes, 

8Q2 

'n2gD5' 
wth = pgQL[S-f{Q,D)^p^} (12.5) 

Note that for the energy equation for pipe flow [without a turbine; Eqn (2.45)], the term 
in square braces in Eqn (12.5) is identically zero indicating that all potential energy in 
the network is dissipated in losses (major and minor). In the present case, the term in 
square braces should be a positive nonzero value proportional to the theoretical work 
done by the turbine. 

Our inspection of the energy equation for a turbine, Eqn (12.5), shows that tbth 
depends on Q, L, S, and D. We wish to simplify this to provide insight. Define a 
"volume flow rate scale," Qsc, where Qac is the flow rate that is produced in a pipe 
(with no turbine installed) of prescribed diameter, Dsc, given the hydraulic gradient, 
5, for the microhydroelectric system. Thus, Qsc is from the solution to Eqn (2.45), 

S = f(Qsc,Dsc) 
*2gD5

sc 

(12.6) 

The diameter Dsc is arbitrarily assigned, but a reasonable choice that is in scale with 
the size of hydroelectric plants under consideration in this section is 6 in. The choice 
of Dsc has no effect on the equation for the power generation that we seek. 
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Using Eqn (12.6) to eliminate 8/n2g in Eqn (12.5), the energy equation for the 
theoretical power of a turbine becomes, 

where wth,sc is4 

Wth 

Wth,sc 

_ Q {1 f(Q,D)/D5 Q 2 

Wsc J[QSCT Use)/l^sc ^isc 

wth,sc = pgQscLS 

(12.7) 

(12.8) 

The ratio of the theoretical turbine power, wth = wth{Q, D, S, L), to wth,sc = 
wth,sc{S, L) from Eqn (12.7) is presented in Fig. 12.6 for nominal IPS sch. 40 smooth 
pipe sizes of 3, 4, 5, and 6 in. The value for Dsc is arbitrarily set to 6 in. for this 
figure and S = l.5 Even a cursory inspection of Fig. 12.6 reveals a competition that 
was introduced and discussed in Chapter 10. In the present case, wth competes with 
frictional losses in the pipe. At small values of Q/Qsc, Fig. 12.6 shows that little 
power is produced. This is attributed to the first Q/Qsc term on the right side of 
Eqn (12.7). At large values of Q/Qsc, the turbine power decreases with increasing 
Q because of large frictional losses in the penstock pipe. This trend is caused by 
the effect of the second term in square braces in Eqn (12.7), which is attributable to 
friction. In fact, at the highest flow rates for each curve in Fig. 12.6, all power is 
dissipated in pipe friction (this is Natural flow, see Section 2.6.2). Between these 
extremes, there exists an optimal point in Q, for all D, which represents a perfect 
balance between power production and production of internal energy due to friction. 
Optimal (i.e., maximal) wth occurs at Q°pt for any D. 

In addition to the extremum behavior evident in Fig. 12.6, note that the peak power 
increases with increasing D. This effect exhibits no optimal character. 

A plot of the locus of all optimum points from Fig. 12.6 appears in Fig. 12.7 for a 
range of S typical of microhydroelectric power plants. It is clear that Q°pt increases 
with increases in D and S as more cross-sectional area for water flow is made available 
with the larger pipe sizes and as more energy becomes available as manifested by an 
increase in S. The latter can be explained in one of two ways. More energy becomes 
available due to an increase in mean slope of a fixed pipe length and constant A [see 
Eqn (12.4)], or an increase in elevation head per unit of pipe length [see Eqn (12.3)]. 

Two companion plots for Fig. 12.6 are presented in Figs. 12.8-12.9. We see from 
Fig. 12.8 that the theoretical power scale for 5 — 0.1 ranges from 10 to > 100 kW. 
Figure 12.9 shows that the volume flow rate required to produce this power is -90 L/s. 
From Fig. 12.6, the optimal pipe size for this flow rate is just under 8 in. inside 
diameter (ID). All of the figures under discussion in this section were produced 
assuming smooth pipe. 

4The term ώ ( ^^ α is the theoretical power scale; the power produced by a lossless system. For example, 
for Qsc =100 L/s and LS = Δζ = 100 m of elevation head, wth,sc = 100 kW to within 2%. 
5Here, S is merely a scale factor since it affects only the volume flow rate scale of QBc- The shapes of the 
curves in Fig. 12.6 remain unchanged for all values of S. 
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Figure 12.6 Theoretical power production versus Q for several values of D. 

Figure 12.7 Optimal Q versus D for fixed values of hydraulic gradient, S. 
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Figure 12.8 Theoretical power scale versus S for several values of L. 

Figure 12.9 Volume flow rate scale versus S. 
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The results in Fig. 12.7 can be fit to the following function6: 

Q°pt = 1.511 L / s - S 4 / 7 A 1 9 / 7 (12.9) 

where Du is a unit diameter of 1 in. Equation (12.9) is valid for smooth pipe where 
the flow is turbulent7. 

It is interesting to note that if we maximize wth by taking the Q derivative of 
Eqn (12.5) subject to constant / (Q , D) = / , setting this result equal to zero, and 
solving for Q°pt, obtain 

Wpt 0.116L/S _1 / 2 , D . 5 / 2 

Vf 
(12.10) 

For example, for / = 0.01, 0.116/v7 = 1-16- This coefficient is considerably 
different from 1.511 in Eqn (12.9), but the exponents for S (0.571 versus 0.500) and 
D (2.714 versus 2.500) are in general range of each other. However, the numerical 
results from Eqs (12.9) and (12.10) differ greatly, in many cases 40% or more. This 
underscores the magnitude of importance of the effect of flow dependence on / . 

For a flow-driven design, it is always desirable to calculate D from designer-
prescribed Q rather than the inverse as given by Eqn (12.9). By taking Q = Qopt and 
inverting Eqn (12.9), for smooth pipe, we get 

Dopt = 0.8589 in. · S"4/19( ,7/19 (12.11) 

where Qu is a unit flow rate of 1 L/s. For a given value of S, Dopt is such that 
Qopt matches the prescribed flow rate Q for the problem, thus ensuring an optimal 
operating point for the turbine. The usual procedure of choosing a nominal pipe size 
having a slightly larger inside diameter than Dopt applies here. 

Similar correlations for GI pipe, of roughness 100-times larger than that for smooth 
pipe, are 

D 
Q opt 1.248 L/s ·5υ·5 4 υ( — ) \2.628 

and 

Dopt = 0.9192 in. · S -0.2054 0.3805 

(12.12) 

(12.13) 

6While a curve fit will give correct results, it is not necessary. By substituting the Blasius formula for 
f(Q, D) in Eqn (12.5), taking the first derivative of wth with respect Q, and setting this result equal to 
zero, we can solve for Q = Qopt and write it as Eqn (12.9). The coefficient and exponents in Eqn (12.9) 
are thus determined analytically not through curve fitting. This is why the exponents appear in terms of 
rational numbers, not decimals, in the referenced equation. 
7The exponents in Eqn (12.9) are identical with those of Eqn (9.4) (for flow in a pipe with no turbine) but 
the coefficients are different. D from Eqn (12.9) produces a pipe cross-sectional area about 53% larger 
than that for flow in a pipe with no turbine. The additional flow area reduces frictional loss so that work 
can be performed in the turbine. 
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TheaccuracyofEqs(12.12)and(12.13)is±5%orlessforatleast3in. < D < 16in. 
and 0.003 < S < 0.3. If better estimates of Qopt or Dopt are required, the reader 
is referred to the Mathcad worksheet below where Qopt and Dopt are determined by 
accurate numerical differentiation of the theoretical turbine power. 

It is of interest to investigate the fraction of available power at the source that is 
converted to work in the turbine, η3υ8, at the optimal operating point for the system. 
Taking the ratio of Eqn (12.5) to the power at the source, pgQLS = pgQAz, we get 

^ = 1 - / ( ( 3 . ^ ) ^ ) 5 5 (12-14) 

where Dopt = Dopt(Q, S) is from Eqn (12.11) or (12.13). The power converted in 
the turbine includes the useful power output from it, as well as windage, and losses 
in the nozzle and bearings (see Section 12.4.4). A plot of Eqn (12.14) appears in 
Fig. 12.10 for smooth pipe. The system efficiency curves are relatively flat at -65% 
for a broad range of flow rates and S values. Thus, at the optimal points in Fig. 12.6, 
nearly 2/3 of the available potential energy is theoretically converted into useful work 
by the flow Q [consistent with Daugherty et al. (1985)]. The rest is dissipated in 
friction in the penstock pipe. Including turbine, generator, and other efficiencies will 
reduce the value to less than this. The usual practice of choosing a pipe size larger 
than Dopt will increase the above fraction. For smooth pipe, if D is selected 20% 
larger than Dopt (D = 1.2Dopt), the system efficiency increases to -85% and to -90% 
for D = 1.3Dopi [consistent with Harvey et al. (2008)]. 

For Gì pipe, there is a much larger range of system efficiencies for different values 
of S (Fig. 12.11) compared with smooth pipe. However, for the range of S considered 
in this figure, the average fraction of available power at the source that is converted 
to useful power in the turbine is still -2/3. 

Turbine efficiencies, r\t, range from 65% to >80%. Harvey et al. (2008) recom-
mends the low end of this range for locally made cross-flow turbines, and 75% for 
Pelton types, although Opdenbosch (2009) cites much larger total (turbine and gen-
erator) efficiencies of 85% and higher. In the absence of test data for the particular 
turbine-generator set of interest, turbine efficiencies of 70-75% are conservative, will 
not over-extend the design, and are thus recommended. 

Generator efficiencies, η9, can be larger than r\t. In fact, commercial generators 
are almost always more efficient than turbines. Harvey et al. (2008) notes values near 
85%. However, information available on the world wide web from manufacturers 
and vendors supports values higher than this, perhaps as large as 91% for generator 
powers as low as 25 kW and upward of 95% for larger units (Stamford Power Systems 
Ltd., 2006). 

The final expression for the electrical power output, or actual rate of work, from 
the microhydroelectric turbine-generator is from Eqn (12.5) which, when the above 
efficiencies are included, becomes 

wa = VtVg'uth (12.15) 
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Figure 12.10 Maximum fraction of available power at the source converted in the turbine. 
Smooth pipe. 

Figure 12.11 Maximum fraction of available power at the source converted in the turbine. 
GI pipe. 
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or, 

wa(Q,D,S,L)=VtVgpgQL{S-f(Q,D)-^E] (12.16) 

where the functional dependence of wa is included. 
The above equations are solved in a Mathcad worksheet supplied with this book. 

See textbox B.12.1 for details. 

B.12.1 Microhydroelectric Turbine: Flow-Driven Example 

A community is considering the merits of installing a microhydroelectric power 
plant. The community engineer has determined the need for 65 kW(e) (electrical 
power) based on the current and future population and their needs. These include 
the growth of several small industries, one of which produces clay filters for 
household water purification. The elevation head from a stream located 1050 m 
(the run of the penstock) from the planned location of the turbine is 80 m and 
flow measurements taken there indicate that-230 L/s can be diverted to produce 
power. Determine the plan's feasibility and recommend alternatives if the design 
conditions cannot meet the power demand. 

The Mathcad worksheet microhydro_theoretical_power .xmcd is used to 
evaluate Eqn (12.16) to predict the actual electrical power that can be produced 
for the prescribed design conditions. The calculations are as follows. 

The hydraulic gradient is from Eqn (12.3), 

S = ¥ = Τ ^ = 0-07619 L 1050 m 

We will first consider the use of PVC pipe since it is less expensive and easier to 
install than GI. From Table 3.3, the pressure rating of large-diameter sch. 40 PVC 
pipe is greater than the elevation head of 85 m so sch. 40 PVC pipe is acceptable 
pressure wise. 

The optimal pipe size, subject to the design value of Q = Qopt = 230 L/s in the 
penstock is from Eqn (12.11), 

£>""" = 0.8589 in.-S"4/19 A 7 / 1 9 

= 0.8589 in. · 0.07619"4/19 · 2307/19 = 10.96 in. « 11 in. 
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Flow-Driven Example (Cont'd) 

For sch. 40 IPS pipe, the ID is within 1 % of the nominal size for nominal size 
of 4 in. and larger (Table 3.1). Thus, because 11-in. pipe is unavailable (see 
Chapter 3), we choose nominal 12-in. sch. 40 PVC pipe. The flow speed is 
3.15 m/s, sightly above the maximum recommended of 3 m/s when considering 
abrasion. This value is close enough to 3 m/s, that abrasion should not be an 
issue. 

The energy equation for the actual turbine power output is Eqn (12.16), 

wa = Vt rig P9 Q L[S - /(<?, D) 
K2gD5S 

Let us assume r/t = 0.75 and η9 = 0.85. With f(Q, D) = 0.0126 from the 
Mathcad worksheet (or Fig. 2.4), obtain, 

wa = 0.75 · 0.85 ■ 999.7 kg/m3 · 9.807 m/s2 · 230 x 10"3 m3/s ■ 1050 m 

■ [0.0762-0.0126 * ' (230 x HT* m»/»)» k W 
7Γ2 · 9.807 m/s1 ■ (12/39.372 m)5 

Since 83.3 > 65 kW as required by the community, we conclude the above 
design specifications will meet the electrical power demand. However, there are 
other inefficiencies in the system for which we need to account, mostly on the 
electrical side. Among these are transformer and power transmission losses that 
together will reduce the power output by -15%. 

If D were exactly equal to Dopt of 10.96 in., reducing or increasing Q from the 
prescribed value of 230 L/s will reduce power output from the turbine. Note that 
this is not the same effect as increasing D. As seen in Fig. 12.6, the peak power 
will always increase with increasing D. This effect exhibits no optimal character. 
Also note that r\t may be affected by changes in Q and S. 

The pressure rating for 12-in. sch. 40 PVC pipe of 130 psig (91.4 m of water 
head) is from Table 3.3. This is greater than the elevation head of 85 m, 12-in. 
sch. 40 PVC pipe is acceptable. 

If GI instead of PVC pipe were selected, Dopt — 12.3 in, subject to the design 
value of Q = Q°P* = 230 L/s from Eqn (12.13). With 12-in. nominal pipe, the 
electrical power generation falls to 71.4 kW, due to more friction in the GI pipe 
compared with PVC (see Exercise 55). 

For a demand-driven design, the final expression for the electrical power output 
from the generator is the same as Eqn (12.16) with D replaced by Dopt from either 



ANALYSIS 331 

Eqn (12.11) (for smooth pipe) or Eqn (12.13) (for GI pipe). Thus, 

(12.17) wd{Q, S, L) = IH η9 pg Q L[S - f(Q, D°pt)-^ 
opt\5 J 

where Wd = wa is power demand. Note that diameter dependence has disappeared in 
Eqn (12.17) since D = Dopi depends only on Q and S. Once the designer specifies a 
value for Wd, Eqn (12.17) can be solved for Q to produce this power subject to given 
S and L. A root-finder in Mathcad is needed to solve Eqn (12.17) because Q appears 
nonlinearly. Once Q is obtained, the designer is free to explore the sensitivity of Q 
to a range of actual D that is not optimal. 

B.12.2 Microhydroelectric Turbine: Demand-Driven Example 

Calculate the volume flow rate needed to produce 120 kW(e) for an elevation 
head of 105 m and penstock length of 1750 m. Neglect minor losses for now, and 
assume r\t — 0.80 and η9 = 0.90. Choose sch. 40 PVC pipe. 

The hydraulic gradient is from Eqn (12.3). 

„ Az 105 m 
S= — = —-— = 0.060 

L 1750 m 

The energy equation written for demand-driven design is Eqn (12.17). 

8Q2 , 
wd - mVgPgQL[S-f{Q,Dopt) 

0.80 · 0.90 

f(Q,Dopt) 

π23(£)°ΡΕ)^' 
= 0.80 · 0.90 · 999.7 kg/m3 · 9.807 m/s2 · Q ■ 1750 m · [0.060 

8Q2 

π2 · 9.807 m/s · (£>°Ρ*)5 

where Wd = 120 kW and Dopt is from Eqn (12.11). Using root in Mathcad, 
we solve this equation to get Q = 247.5 L/s and Dopt = 12.4 in. for this value 
of Q. Once these are calculated, the designer has a baseline to explore the choice 
of different Q and D on the performance of the system. If the stream can supply 
247.5 L/s and this is acceptable to the community at large, the design is feasible. 

12.4.2 Minor Loss Considerations 

Minor losses were neglected for convenience in the above developments. This effect 
could be included in the appropriate equations by adding the equivalent lengths of 
all of the minor-loss elements to the actual pipe length, L, in the calculation of the 
hydraulic gradient (only). This reduces the hydraulic gradient, S, and performance 
of the system because less energy is supplied to the turbine. 
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The large scale of the run of the penstock pipe and good planning in the field will 
reduce the need for most serious minor-loss elements like 90° elbows. Table 2.1 
shows the equivalent length for each 90° elbow is 30. Ten elbows in a 12-in. pipe of 
length 1000madds~91 m t o i , reducing S by~9%. This effect is halved if 45° elbows 
are used. Turbine performance is impacted by roughly the same amount as Eqs (12.7) 
and (12.8) show that actual turbine power decreases nearly in direct proportion to S. 
For PVC pipe, long runs of pipe may be able to bend to conform to the contour of the 
land, provided the diameter is not too large. Clearly, this is less likely with GI pipe 
not only because of the stiffer pipe material, but also because large bending stresses 
on threaded joints will reduce the integrity of the pipeline. 

From Table 2.1 note that couplings and gate valves (used for on-off only, not 
throttling) negligibly contribute to the minor loss. 

B.12.3 The Effect of Minor Losses 

In textbox B.12.1, the penstock is known to have 18-45° elbows, 175 couplings, 
and a globe valve for flow control. Calculate the reduction in electrical power 
output from the system if minor losses are included. 

The equivalent length, Le/D, for a 45° elbow is 16 (Table 2.1). Assuming the 
globe valve to be open and for 12-in. pipe, Eqn (2.11) gives K = 4.48. Since 
the friction factor, / , for the penstock is 0.0126, the equivalent Le/D for a globe 
valve is from K = fLe/D or Le/D = 356. The minor loss for each coupling 
is small, but there are many of them. Account for this uncertainty by increasing 
the number of 45° elbows to 20. The total Le/D is 

- y = 20 · 16 + 356 = 676 

For 12-in. pipe, the minor losses add (676 · 12/39.372 m =)206 m to the 
physical length of the penstock in the calculation of the hydraulic gradient only. 
The hydraulic gradient becomes, 

e 8 0 m n n(!Q7 
S = 1050 m + 206 m = ° · ° 6 3 7 

This is 16% less than for the minor-lossless design. The optimal pipe diameter 
is calculated from Eqn (12.11) as Ό°& = 11.37 in., so 12-in. sch. 40 PVC 
pipe is chosen as it was for the minor-lossless design. From the Mathcad work-
sheet microhydro_theoretical_power.xmcd, the electrical power output is 
64.2 kW, -19 kW less than the textbox B.12.1 example. Conclude that this design 
will not meet the electrical power demand with the above minor losses. Minor 
losses must be reduced or other parts of the design changed (such as increasing 
the head or penstock diameter) to increase power output. 
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Figure 12.12 Power versus volume flow rate; off-optimal conditions. 

12.4.3 Sensitivity to Off-Optimal Conditions 

In Section 12.4.1, we saw the optimal character of the theoretical power done by the 
turbine as affected by the volume flow rate. We explore this more fully with a simple 
example. Suppose a small community wishes to install a microhydroelectric power 
plant of the order of 15-20 kW. They have available a water supply of Q = 40 L/s or 
more with a head that will produce a hydraulic gradient of S — 0.10. The elevation 
head is small enough that pressure considerations allow the use of PVC pipe. The 
optimal pipe size for this design is from Eqn (12.11), 

Dopt = 0.8589 in. · 0.10_4/19 · 407 / 1 9 = 5.42 in. (12.18) 

We will choose 6-in. nominal sch. 40 pipe for the penstock that has an ID of D = 
6.065 in; slightly larger than Dopt. One of the members of the Community Engineer's 
Office suggests that a 5-in. (nom.) pipe should be selected, which the community has 
available for purchase, to save resources. In addition, this member also suggests the 
likelihood of increasing power from the plant by increasing water flow rate at some 
time in the future. What should the response to these questions be? 

A plot of the relative power from the turbine [Eqn (12.7)] is shown in Fig. 12.12 
for this example where two power curves appear, one each for the 5 and 6-in. pipes. 
The two design points identified in Fig. 12.12 fall along a line of constant Q = 40 L/s. 
Design Point 1 intersects with the power curve for the 5-in. pipe and gives a relative 
power value of-0.20. The relative power value for Design Point 2, which intersects 
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the 6-in. power curve, is -0.35. Thus, we see that we can achieve a 75% increase 
in power output by choosing a 6-in. penstock instead of 5-in. This should be very 
convincing even for the most skeptical members of the Engineer's Office! 

In addition to this immediate increase in power with the choosing of 6-in. pipe, if 
the flow rate is increased in the future, power production will decrease with an increase 
in flow for the 5-in. candidate, whereas for the 6-in. penstock, it will increase. 

The issue of increasing flow rate is addressed by the remaining vertical lines and 
the off-optimal points in Fig. 12.12. The optimal flow rates for the two pipe candidates 
are Q°^n and Q^fn, from Eqn (12.11), are -31 L/s and 50 L/s, respectively. If the 
current design flow rate of 40 L/s is increased, the power will increase as Design Point 
2 moves to the right toward the peak of the power curve for the 6-in. pipe; up to a 
relative power value of-0.37 at which Q = 50 L/s. Increasing the flow rate greater 
than this will reduce the power. In fact, the power output is the same for the design 
flow rate of 40 L/s (Design Point 1) and 61 L/s (Off-Optimal Point 1), more than a 
50% increase in flow. Further flow rate increases continue to reduce power output as 
an increasing fraction of the available potential energy of the system is dissipated in 
pipe friction. It is very interesting to see that if Q « 77 L/s, the power produced by 
the plant would be the same as operating the system at 40 L/s with the smaller 5-in. 
penstock pipe (Off-Optimal Point 2). 

Of course, if there really is an interest in the larger flow rates of the scale at the 
Off-Optimal Points, the engineer will want to consider a larger pipe size at the outset. 
This would produce a third power curve in Fig. 12.12 that will fall above and to the 
right of that for the 6-in. candidate. 

12.4.4 Component Models 

The turbine efficiency discussed in Section 12.4.1 includes the complex fluid me-
chanics when a water jet at high speed contacts a bucket of a turbine, such as that 
for a Pelton wheel (see Fig. 12.3). The parameters needed to describe the power 
produced by this interaction are shown in Fig. 12.13. Water flow from the penstock 
enters the turbine and is immediately accelerated in a converging nozzle as shown. 
The jet from the nozzle impacts the bucket imparting some momentum to it, and the 
bucket "pushes back" in a sense that accelerates the flow backward in the direction 
from which it came. If it were possible for the water to deflect an angle ß = 180°, the 
flow would lose an amount of momentum equal to pVf to decelerate it to zero speed 
at the surface of the bucket, and another pVf to accelerate it to V\ in the opposite 
direction.8 This is the "impulse" that drives a Pelton turbine. The relative velocity 
between the incoming jet at V\ and the tangential speed of the wheel, wr, gives rise to 
a torque acting at the wheel's center.9 We have (Smits, 2000; White, 1999; Streeter 

8This description is based on an observer fixed at the surface of the bucket. 
9The symbols in this section are used only in their contexts in this section; as such, they do not appear in 
the Nomenclature and, where possibly used in other parts of this book, will have different meanings. 
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Figure 12.13 Parameters to describe torque and power for a Pelton water turbine. 

et al., 1998; Munson et al., 1994), 

Tshaft = pQr{Vx -ωτ){\- cos/3) (12.19) 

where Tshaft is the torque (a rotational force) on the shaft of the Pelton wheel resulting 
from the momentum change of the water jet at a radius of r. The product of the torque 
and rotational speed, ω, is the rate of work done by the water. Obtain 

wshaft = pQu)r(Vi - ωτ){\ - cos/3) (12.20) 

where u>r is the tangential velocity of the wheel at radius r. 
Several comments concerning Eqs (12.19) and (12.20) are in order. First, the 

power to the wheel includes the product 1 - cos β. For β = 180°, this term becomes 
2, which is its maximum value. Because of physical constraints where the incoming 
and outgoing water jets cannot occupy the same space at the same time, the bucket is 
typically designed for β « 165°. This is of little consequence from a performance 
standpoint since 1 — cos(165°) = 1.966 is very close to the maximum of 2. 

Second, Eqn (12.20) shows that power depends on the difference between the 
incoming jet speed and the tangential speed of the wheel. Although torque is a 
maximum when the wheel is not moving [wr = 0 in Eqn (12.19) produces maximum 
torque], the wheel must move for power to be produced as seen by our inspecting 
Eqn ( 12.20). To determine maximum power as affected by the water jet and rotational 
wheel speeds, we take the derivative of wskaft with respect to ωτ, set this equal to 
zero, and solve for ωτ. The result is ωτ — V\/2. Thus, for fixed values of Q and β, 
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the maximum power from the wheel is 

W shaft,max = jPQV\Ì1 ~ C O S ß) (12.21) 

Finally, if the load were removed from the shaft, intuitively the wheel would speed 
up to a point where ωτ = Vi. Our inspection of Eqn (12.20) verifies that no work 
is done under this condition and Eqn (12.19) shows that the torque is zero, as well. 
In this case, the jet of water is passing through the wheel without any loss of its 
momentum. 

If the nozzle were frictionless, the static pressure energy and kinetic energy just 
upstream from the nozzle would convert to the kinetic energy of the jet according to 
Bernoulli's equation [Eqn (2.3)]. In fact, the nozzle is imperfect and energy losses 
from between 2 and 8% are expected because of friction (White, 1999). Bernoulli's 
equation is written for the nozzle flow as 

Vi = Cv^/2gh2a (12.22) 

where Cv is an experimentally determined "velocity coefficient" of value 0.92 < 
Cv < 0.98, and h2a is the sum of the static pressure and kinetic energy heads at the 
inlet to the nozzle (Fig. 12.5).10 

When solving problems in turbomachinery, which is how the present topic is 
known, the equations that describe the performance of the machine are often written in 
terms of dimensionless groups. The groups themselves are nearly always ratios of two 
independent effects in the problem. For example, the Reynolds number (Re), which 
appears often in this book, can be shown to be the ratio of the inertial effects to viscous 
effects in a flow. A flow that has Re » 1 is highly energetic (like turbulent flow), 
and one that has Re <C 1 is sluggish because friction dominates. Two dimensionless 
groups relevant to the present problem are the power coefficient, defined as 

n _ wshaft __ wshaft n-int\ 

pQgh2a Q&p 

and the "peripheral-velocity factor" 
cor 

ξ = -τψ^ (12.24) 

Equation (12.20) becomes with these, 

' (12.25) Cp = 2 i ( C „ - 0 ( 1 - c o s |3) 

where Cv has the meaning of efficiency, in this case a hydrodynamic efficiency for the 
Pelton turbine. The denominator in Eqn ( 12.23) is the power in the flow at the inlet to 
the turbine. It is written in two identical forms in Eqn (12.23), one in terms of the head 

'The kinetic energy is negligible relative to the pressure energy at the turbine inlet. 
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h2a, and the other in terms of the static pressure drop across the turbine, Ap. Recall, 
the pressure at the turbine outlet is atmospheric. From Eqn (12.25), the optimal value 
for ξ is Cv/2 « 0.47. The reader can verify this by taking the derivative of Cp with 
respect to ξ, setting it equal to zero, and solving for ξ. With β = 165° and ξ — 0.47, 
Eqn (12.25) gives Cp = 0.887. Thus, 88.7% of the rate of work done by the water 
becomes shaft work at the turbine outlet. One should not be misled by this apparent 
high value. Other physics needs to be considered when "calculating" the turbine 
efficiency. The hydrodynamics is just one part of this. The other important effects 
include windage (or shearing of air) between the rotating wheel and the casing, and 
friction in the bearings and transmission between the turbine and generator. Windage 
resistance, bearing, and transmission losses are normally determined by lab tests. 

A plot of Eqn (12.25) appears in many references cited in this and the above 
sections. The performance curve of Cp as a function of ξ (where 0 < ξ < 1) is nearly 
parabolic and peaks at Cp = 0.887 located at ξ = 0.47; the parabola is shifted a small 
amount to the left of center of this plot. 

The cross-sectional area for the nozzle can be calculated by combining the conti-
nuity equation and Eqn (12.22). Obtain 

Q Q 
An = , , = . v (12.26) 

Cv sjlg h2a Cv ^J2g η3ν8 ζ\ 

where r\sys is from Fig. 12.6 for smooth pipe or Fig. 12.11 for GI pipe. For smooth 
pipe, for example, 0.65<r/s!/s<0.9, where the larger number corresponds to a pipe 
diameter of 1.3£>opt. 

B.12.4 Example: Nozzle Diameter 

Calculate the nozzle diameter, Dn, and jet speed, V\, for the textbox B.12.1 
example. Assume smooth pipe of diameter D = Dopt for the penstock. 

From Fig. 12.6, r7sys « 0.65. Assuming Cv = 0.95 at its mid-range, Eqn (12.26) 
becomes, 

230 x 10"3 m3/s _ _ , , , , _ . , 
An = ' = = 7.58 x 10"3 m2 = 11.75 in.2 

0 .95Α/2 · 9.807 m/s2 · 0.65 · 80 m 

If the nozzle is round, its diameter is 

Dn = {ΑΑη/π)1'2 = 3.86 in. 

With Cv near its optimal point, the efficiency of the turbine, Cp « 88.7%. 
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Nozzle Diameter (Cont'd) 

The speed of the water jet is 

Q 230 x I P ' 3 m3/s 
F l = Ä T 7.58 x IO-3

 m2 = 3 0 - 3 m / s 

The tangential velocity of the Pelton wheel, ωτ, is optimally half of this value. 

For D = 12 in. > Dopt for textbox B.12.1 example above, Eqn (12.26) gives, 

230 x 10"3 m3/s , 9 , 
An = ' = 7.18 x 10~3 m2 = 11.13 in.2, 

0.95γ/2 · 9.807 m/s2 ■ 57.96 m 

where hia
 = 57.96 m is from Mathcad worksheet microhydro_theoretical_ 

power.xmcd (Fig. 12.5). Thus T]sys — 57.96 m/80 m κ, 75%. The nozzle 
diameter is reduced by only 2.5% compared with D = Dopt. 

12.5 HYBRID HYDROELECTRIC POWER AND WATER NETWORK 

One of the discussions in Section 12.1 centered on how microhydroelectric power and 
the delivery of gravity-driven clean water are potentially a good marriage from the 
standpoint of the need for power to be dissipated in both systems. Difficulties with 
water quality and mismatches in volume flow rates that were discussed in Section 12.1 
can be solved with simple existing technologies and designs. Once these problems 
are solved, at least two alternative designs can be considered. The first could be to 
move the power station to a higher elevation thereby sacrificing some elevation head 
but creating an elevation head for the gravity-water network. Water from the tail (see 
Fig. 12.5) would run into a storage tank located below the plant. The tank could be 
partially sunken into the earth with concrete block, brick, or ferrocement walls and 
rigid top to support the weight of the turbine and generator. Gravity-driven water 
flow from the tank to the community would be distributed in the normal way. No 
additional hardware would be necessary. 

The second alternative is to maintain the power plant location to obtain the largest 
possible elevation head and use an electrically powered pump to move water to an 
elevated storage tank for gravity distribution. This system is most desirable because 
of the ready availability of electricity for the pump, there is no loss of elevation head 
or need to bury the tank which could be costly and, most importantly, pumping would 
take place during night-time hours where there is little or no electrical demand. In this 
case, most of the water is bypassing the turbine. The only addition to this proposed 
system compared with a stand-alone power station or stand-alone gravity-driven water 
network is the pump. This will likely be small, perhaps 0.6 L/s, the flow rate required 
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to fill a 20-m3 tank in a 10-h period. The discharge head is required to reach the tank, 
perhaps 20 m or less. This pump would require < 1/4 horsepower to operate. 

12.6 SUMMARY 

We briefly touched on the companion topic of microhydroelectric power production 
in this chapter. Below are listed some of the key ideas and results from this discourse. 

• Impulse turbines are well matched with high-head and low flow rates typical 
to many microhydroelectric power candidates where relatively small streams 
in mountainous regions are the energy sources. Impulse turbines include the 
Pelton wheel and Cross-flow types. 

• The energy equation for a hydroelectric power plant exhibits optimal volume 
flow rate, Qopt, for fixed penstock pipe diameter and hydraulic gradient, S. For 
Q < Qopt, power reduces dues to lack of flow rate, and for Q > Q°pt, power 
reduces due to increasing pipe friction. 

• By setting the actual flow rate for a flow-driven design to Q°pt, correlations for 
the pipe diameter that corresponds to the optimal power have been obtained for 
smooth and GI pipe. These allow the designer to quickly determine the pipe 
size that maximizes power output for a given Q and S. 

• The same energy equation applies to designs that are driven by demand power. 
In this case, we use numerical methods (a root-finder) to solve for Q, which 
appears nonlinearly in the energy equation. 

• Minor losses in the penstock pipe can play a major role in reducing power 
output. Serious attention should be given to this. Minor losses are included in 
the analysis and design by using the equivalent-length model (see Chapter 2), 
artificially increasing the penstock length, and thereby reducing the hydraulic 
gradient that drives the system. 

• From our investigation of the sensitivity of the performance to off-optimal 
design conditions, it is important that the design point lies on a performance 
curve (power as a function of Q with D as a parameter; see Fig. 12.12) for 
a fixed D that has positive slope. In this way, an increase in Q will increase 
power output. If the design point lies on a performance curve having negative 
slope, an increase in Q will reduce power output. The exception to this is for 
cases where there will be a reduction in Q during the operation of the power 
plant. Reducing Q will increase power output where the design point lies on a 
performance curve of negative slope. 

• The theoretical hydrodynamic efficiency of the nozzle/water jet/bucket system 
for a Pelton wheel is -89%. Additional effects like friction in the bearings 
and transmission and windage losses in the air between the rotating wheel and 
turbine housing, all of which are experimentally determined, will reduce this 
value. 
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CHAPTER 13 

NETWORK DESIGN 

By G. F. Jones and J. Ermilio 
"If Practice and Theory Don't Agree, Investigate the Theory." 
- C. M. Allen, 19th & 20th Century Hydraulic Engineer 

13.1 THE DESIGN PROCESS 

The process of gravity-driven water network design includes both hydraulic and non-
hydraulic parts as discussed in Chapter 1. The process follows that in Jordan Jr. 
(2004); Jeppson (1976); Nayyar (2002); Trifunovic (2006); Swamee and Sharma 
(2008), among others. 

1. From land survey data, elevation and plan-view drawings that identify locations 
and elevations of all elements of the network (see Fig. 1.1), which include pipe 
lengths, mean slopes of each pipe segment where relevant, etc., are produced. 
In this step, uncertainties in locations and elevations based on the instrument 
used in the survey are addressed and will be systematically included in the 
design calculations at a later step. 

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 341 
Copyright © 2010 John Wiley & Sons, Inc. 
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2. From a water-demand survey of the community, and an estimate of the rate of 
population growth, the current and future water demands for on-average and 
peak conditions are calculated. 

3. The water storage requirement is assessed and volume of the water storage tank 
is calculated. 

4. The need for break-pressure tank(s) is assessed. 

5. From steps 1 and 2, the intake (normally a single-pipe network) and distribution 
(normally a multiple-pipe network) pipelines are designed. The intake is from 
the source(s) to a storage tank, and the distribution mains distribute flow from 
the tank to the community. This includes selecting the pipe material, calculating 
actual inside diameters (ID), choosing nominal pipe sizes, and investigating 
flow control; that is, the sensitivity of the performance of the network to the 
partial closing of globe valves installed in the pipe segments and sizing of these 
valves. The latter step is referred to as the "reverse solution" in Chapter 11. 
Alternative designs are normally considered in this step, such as variations in 
the run of pipe and the use of different pipe materials. Determining the ability 
of the pipe and fittings to withstand the hydrostatic pressures in the network is 
also part of this step. 

6. The details of the hydraulic design (including valve types and locations; by-
passes; flow speed limits; the need for and location of cleanouts, air vents, and 
vacuum breakers; and consideration of air pockets and water hammer effects) 
and nonhydraulic design (reservoir construction at the source; structural con-
siderations for the storage and possible break-pressure tanks and pipe supports, 
etc.) are executed. 

7. Operating and maintenance issues are considered. 

8. Costs are estimated, a final design selected, and drawings are prepared for the 
engineering and construction teams. 

Most of these steps are applied to a design considered in the case study of Chap-
ter 15. In this chapter, we will address some of the key elements of this process. 

13.2 OVERVIEW 

There are very many aspects of a sound gravity-driven water network. Correct sizing 
of the pipelines and placement of globe valves to meet the design specifications for 
flow rate are just two of them. The intent of this chapter is to discuss some features of 
the design of a few of the elements of the water network. For others, we will refer to 
appropriate references for further information. One of the better available references 
for the details of the design of most components of gravity-driven water networks at 
the time of this writing is Jordan Jr. (2004). 

We will consider the following topics: 



ACCURATE DIMENSIONAL DATA FOR THE SITE 3 4 3 

• Surveying the site to obtain accurate dimensional data. 

• Calculating design information from site-survey data. 

• Measuring and calculating water supply and uniform and peak demand. 

• The need for and sizing of storage tanks. 

• Features associated with the reservoir and development of the source. 

• The tapstand. 

• Air vents, vacuum breakers, and cleanouts. 

• Issues associated with hydrostatic pressure. 

• Flow speed limits. 

• Dissipating potential energy in valves and fittings. 

• Break-pressure and sedimentation tanks. 

• Issues with oversized pipe. 

• The composite pipeline. 

• Water hammer. 

13.3 ACCURATE DIMENSIONAL DATA FOR THE SITE 

A design is only as good as the data on which it is based. With Global Positioning 
System (GPS) technology, there is a tendency to ascribe high accuracy (and precision) 
to the readings. In reality, GPS data are much more uncertain than those from a 
high-quality optical surveying instrument. This especially applies to elevation data. 
Normally, five or more satellites are required to obtain an even partially reliable 
altitude measurement from a GPS (see Appendix B). This is difficult to achieve if 
there is a tree canopy that covers the source. With a multitude of satellites, the altitude 
reading from a GPS is still subject to ±15 m uncertainty. This means that, for low-
head systems, GPS-based elevation data are practically meaningless. A calibrated 
altimeter may be reliable for small systems that can be surveyed in a short period 
of time. For large systems that take most of a day or more to survey, data from the 
altimeter must be assumed subject to uncertainties, of the same order as from a GPS, 
that arise from changing barometric pressure over this time scale. The solution to 
obtaining reliable length and position data is for a careful and systematic survey of 
the site using an Abney level or a transit. Readers not familiar with the operation 
and accuracy of an Abney level are referred to footnote 1 in Chapter 8 or (Jordan Jr., 
2004) for further details. For inexperienced surveyors, a survey with an Abney level 
and a good measuring tape is best carried by two independent teams and the results 
of one team checked by the other. 
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A transit is a more sophisticated form of an Abney level that, in addition to slope 
or angle, allows for the direct measurement of distance between the instrument and a 
fixed end point. Thus, no measuring tape is required when a transit is used. Details 
of surveying with these instruments is presented in numerous sources (Brinker and 
Wolf, 1977). 

13.4 CALCULATING DESIGN INFORMATION FROM SITE-SURVEY 
DATA 

If the site were surveyed by a GPS, the first step to produce data for a design is to 
convert GPS latitude and longitude to Universal Transverse Mercator (UTM) coor-
dinates. See Appendix B for the definition of UTM, this procedure, and notes on 
uncertainty of the measurements. With survey data in length dimensions, either from 
GPS or Abney level (or transit), we proceed to calculate local path lengths between 
any two arbitrary points along the water-flow path. For example, suppose we have 
recorded 18 survey points, or nodes, using a GPS or an Abney level (or transit). Each 
node has coordinates (xi, yt,Zi), where i is the node number. A plot of these points 
in three-dimensional (3D) space appears in Fig. 13.1. If the distance between the 
nodes is much less than the pipeline total length, we can imagine the pipeline as 
being constructed of 18 straight segments of pipe, each having a length calculated by 
the Pythagorean theorem. Thus, each segment length is from, 

iCi-D-i = [(Xi - Xi-x)2 + (yi - y t - i ) 2 + & - Zi-i)2]1 / 2 (13.1) 

where i = 2 , 3 , . . . , 18. The local length, Li<n, measured from the origin to an 
arbitrary node n is the running sum of the segment lengths to node n. Obtain, 

n 

Le,n — Li-2 + L2-3 + · ■ · + L(n- l ) -n = 2__, ^( i - l ) - i (13-2) 
i=2 

The total length of the pipeline is L^is for this example. With the above notation, it 
is understood that the pipeline length from its origin to node 2 is Li_2, from node 2 
to node 3 is L2-3, and so on, as seen in Fig. 13.1. 

Further discussion on this topic is presented in Section 8.7. 
Elevation changes, needed in the energy equation for the solution of pipe diameters, 

are easily obtained in the same manner using just the z component of the position 
point (or vector). See Exercise 58. 

13.5 ESTIMATING WATER SUPPLY AND DEMAND 

One of the first considerations when designing a water supply network is the avail-
ability of water (the supply) in comparison with the water needs (demand) in the 
community. This consideration falls into four parts: the supply flow rate, the quality 
of this flow, and the uniform and peak water demand flow rates. The uniform de-
mand needs to be considered to determine the adequacy of water flow rate from the 
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Figure 13.1 A 3D plot for pipeline from survey data. Here, L1-2, L14-15, and Lie-17 are 
shown as sample segment lengths. 

source(s), and the peak demand is part of the sizing of the water storage tank. The 
latter will be considered in Section 13.6. 

The rate of water flow from a spring is easily determined by taking several mea-
surements of timed collection of a known volume of water; say, a 2-L soft drink bottle 
for small springs or a barrel of known volume for large ones. Averaging the results 
over several, say 5-10, trials will ensure an accurate reading. 

Water flow rate in a flowing stream may be estimated by measuring the surface 
speed, ü, of the flow using any object like a floating leaf timed over a known distance. 
From the continuity equation, Q is equal to uA [Eqn (2.21)]. The cross-sectional 
area, A, of the stream is estimated by measuring the depth of the stream at various 
locations and taking a suitable average. The product of the average depth and the 
measured width of the stream produces the cross-sectional area, A. Assuming that 
the flow speed is uniform over the entire cross-sectional area, the continuity equation 
is used to estimate Q for the stream. 

Water quality of the source is an important consideration before proceeding with 
plans for network development. In most cases, if a spring is properly protected from 
contaminated runoff and solid matter, it will provide a reliable supply of good quality 
water. There are many types of water sampling and testing kits that are available 
for water-quality testing. These are available from commercial vendors or perhaps 
borrowed from the local District Health Office. 

Once the present population is known for the community for which the water 
network is being built, the present and future water demand may be estimated. The 
future population is based on the formula for simple compounding, 

pF = Pp(i + iY (13.3) 
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Table 13.1 A Starting Point for Estimating Water Demand 

Type of Water Supply Average Consumption Range 
(L/person/day) (L/person/day) 

Public Water Collection Point 
Distance (500-1000 m) 7 5-10 
Distance (250-500 m) 12 10-15 
Distance (<250 m) 25 15-50 

Private Connection 
Single Connection 50 30-80 
Multiple Connections" 120 70-250 

"As reference, eight months of data collected in 2008 from the rural community of Los Morales, 
Nicaragua show a range of 78-115 L/person/day with an average consumption of 90 L/person/day. 
This system was designed for private connections and has multiple connections per household. 

where Pp is the future population, Pp is the present population, i is the growth rate 
per year (%/100), and t is the design lifetime in periods (years, in our case). For 
example, the rate of growth in a community may be 3.5%/year. Assuming a lifetime 
of 20 years, typical for the networks being designed, Eqn (13.3) shows that the future 
population will be approximately twice that at present. 

The daily, uniform water demand for the community is considered next. There 
are a number of techniques that can be used based on the current water consumption. 
However, in most cases, the water consumption will change when a new system is 
constructed. This is usually because the rate of water consumption per person is, to 
a large extent, a function of water availability; increasing accessibility to water will 
correlate with an increase in consumption. This is important because an increase 
in water consumption often results in improvements in health and hygiene. If we 
explore the relationship between water availability and consumption further, we find 
that water demand can be accurately estimated based on the distance that people have 
to travel to collect it. For example, if someone has a direct household connection, 
then they will naturally consume more water than someone who has to. travel a long 
distance. The water demand will also depend on the end-use of the water. If people 
have household gardens, then they might have an additional demand for irrigation. 
If someone has livestock, this will also increase the demand. At the same time, we 
should always keep in mind that there might be another source of water that can be 
used to supplement the demand for these secondary needs. 

The following tables (Tables 13.1-13.3) can be used as a starting point to esti-
mate water demand (Hofkes, 1983). Slightly more liberal estimates are presented by 
Jordan Jr. (2004). 

An initial estimate of domestic per-capita water consumption with very little sec-
ondary demand (for livestock and farming) is between 15-50 L/person/day.1 This 

In a World Health Organization (WHO) report concerning minimum drinking-water intake levels, Grand-
jean (2009) notes "Given the extreme variability in water needs which are not solely based on differences 
in metabolism, but also in environmental conditions and activity, there is not a single level of water intake 
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Table 13.2 Water Demand Estimates for Various Facilities 

Type of Facility 

School 
Hospital 
Restaurant 
Church 
Office 

Range 
(L/person/day) 

15-30 
220-300 

65-90 
25-10 
25-40 

Table 13.3 Water Demand Estimates for Various Livestock 

Type of Livestock 

Cattle 
Horse 
Sheep 
Pigs 
Chickens 

Range 
(L/unit/day) 

25-35 
20-25 
15-95 
10-15 

0.015-0.025 

includes allowances for drinking, cooking, personal washing, and a small amount 
for secondary needs (Jordan Jr., 2004). A recommended conservative estimate is 
100 L/person/day that includes an allowance for some gardening and other small sec-
ondary uses. By using a larger water demand, we will also be able to account for the 
possibility that people will eventually connect a private water pipe to their houses so, 
this estimate will allow for expansion in the future. 

The present demand can then be written as, 

Qd„ 
Pp ■ 100 L/person/day 

60 s/min · 60 min/h · 24 h/day 
= 1.16 x 1 0 " 3 P p L / s (13.4) 

A community of 300 persons, for example, will require a uniform water flow rate of 
-0.35 L/s from the source(s). The future demand (in 20 years), Qd,F, will be twice 
this value based on the above assumptions. 

At this point in the design process, there is the need to verify that the available 
supply from the yield of the sources is greater than the present and future demand. 
This is determined by calculating the instantaneous rate of water supply available 
from the souRces, QR, and comparing it with the instantaneous water demand, Qd-
If QR > Qd for the present, as well as the future, water demand, plans can be made 
to proceed with development of the source(s). If this condition is not met, the current 
and future demands should be considered to see if it makes sense to develop additional 
sources as a measure to meet both. 

that would ensure adequate hydration and optimal health for half of all apparently healthy persons in all 
environmental conditions." However, WHO recommends the availability of a minimum of 20 L/person/day 
from a source within 1 km of the community (Mihelcic et al., 2009). 
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B.13.1 Water Supply and Demand Example 

Three springs have been found to potentially supply clean water to a community 
seeking to develop a water network. The yields from the springs are QR,I of 
0.85 L/s, QRA of 0.30 L/s, and QR,I3 of 0.55 L/s. A community of 520 persons 
is proposing to develop some or all of these sources for their use. The popu-
lation growth rate is estimated at 2.5%/year. Assuming a 20-year lifetime and 
100 L/person/day at present, report to the community leaders which sources you 
would recommend developing. 

The present water demand is estimated from Eqn (13.4), 

520 persons ■ 100 L/person/day 
60 s/min · 60 min/h · 24 h/day 

The future population is estimated from Eqn (13.3), 

PF = 520 persons · (1 + 0.025)20 = 852 persons 

from which the future demand becomes, 

852 persons · 100 L/person/day 
®d>F = fin / ■ fin · lu o/ii, I A = ° - 9 8 6 L / s 

60 s/min · 60 min/h · 24 h/day 

Our comparison of the future demand with the yields from the three sources 
shows that source 1 with either source 2 or source 3 will be adequate, whereas 
just sources 2 and 3 together will not be able to meet the future demand. Sources 2 
and 3 together can meet the present demand, however. Depending on the relative 
locations of the sources, available funding, and local issues with obtaining the 
rights to use each, the community may want to consider source 1 with either 
source 2 or source 3 or reconsider the future demand model to determine its 
appropriateness. If water demand for the future is 0.85 L/s (the sum of QR%I and 
QR,3) o r smaller, the recommendation would be to consider developing source 2 
and source 3 if more desirable than source 1 and either of the remaining two. 
Cost will need to be considered in this recommendation. 

Note that it is not uncommon for there to be a seasonal variation in the available 
water supply at the source between the rainy and the dry seasons. For this reason, 
developing source 1 and one other may account for this difference in the event of 
a reduced water supply during the dry season. 

This example above typifies a semianalytical solution for assessing the develop-
ment of a number of potential sources for a network. Clearly, a full-analytical solution 
could be carried out where the pipes for the gravity mains are sized for the various 
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candidate sources to the tank and the cost of pipe and associated fittings is included 
in the calculation. From among these candidates, the minimum-cost solutions would 
likely be those recommended for development (see Exercise 59). 

13.6 THE RESERVOIR TANK 

When the water demand of the community cannot be met by direct flow from the 
source a reservoir (or storage) tank is generally required. A storage tank can be con-
structed of reinforced concrete, ferrocement (Watt, 1978), or prefabricated ultraviolet 
(UV)-resistant plastic, like polyethylene. The latter are becoming more common and 
can be cost-competitive with concrete tanks, but are typically no larger than -12 m3 

and, for large volumes, may be difficult to transport to the site. 
The tank is sized by first considering typical water demand schedules appropriate 

to the community under consideration. One schedule is presented in Chapter 15, and 
two in Jordan Jr. (2004). The schedule appearing in Fig. 15.3 is thought to apply 
to many communities worldwide. It consists of high hourly demand over a period 
of a few hours in the morning (40% of daily demand), a smaller peak over a 2-h 
period at midday (20%), and high hourly demand over a several-hour period in late 
afternoon/early evening (30%). Other schedules have been proposed (Ermilio, 2005). 
All schedules report in terms of fraction of total demand so that they can be applied 
to any community where the total daily water demand is known. As we will see in 
the example below, the high hourly demand in the morning or evening are normally 
the bases for sizing the storage tank. 

The remaining 10% of the daily demand falls in between the morning and evening 
peaks. Water demand between late-evening and early-morning (e.g., 7 pm-5 am) is 
generally negligible. 

The relationship between storage volume and the rates of water supply and demand 
is determined by the following integral formula, written by considering the definition 
of volume flow rate, 

/ ■ ' 

Vs(t) = Vs(0)+ Q.(t)-Qd(t)dt (13.5) 
io 

where Vs(0) is the initial volume of water in the tank (at the start of the day; the 
end of hour 1 or 1 am) and £ is a dummy variable of integration. The integrand in 
Eqn (13.5) is the net flow rate that enters the tank. A positive value of Vs(t) at the end 
of any hour indicates that the tank contains some water for use at that time, whereas 
a zero or negative value of Vs(t) shows that the tank is empty. During the latter 
periods, there is obviously no water available to meet demand. The volume of the 
tank is determined by a trial-and-error procedure by choosing a series of increasing 
tank volumes (starting from a small value) and calculating from Eqn (13.5) the water 
volume in the tank for each at the end of every hour of the day. In these calculations, 
we assume that the tank is full at t = 0 because of the normal fill-up during the 
evening hours when there is no water demand, but supply continues unabated. An 
acceptable volume, in principle, is that which eliminates all zero or negative values 
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of water volume at the end of each hour. The tank volume calculated by this approach 
will normally be conservative compared with other methods. For practical reasons, 
a volume is normally chosen that keeps the number of hours where there are zero 
or negative volumes to perhaps just one or two. The understanding here is that 
communities will tend to adjust their schedules to accommodate water availability 
once the network is installed and functioning (Jordan Jr., 2004). Uncertainty of the 
design data would also argue for the acceptability of an hour of empty tank. 

As suggested by Mihelcic et al. (2009), to get a sense for the appropriateness of 
the final value for the tank volume, the flow rate per capita able to be delivered to 
the community (in 1 day) in the event of a source shutdown can be calculated. If 
this result provides for less than the WHO recommended minimum availability of 
20 L/person/day, the tank volume should be increased if practical. 

In many areas, the general operation of a community-based water system is not 
completely understood by the local residents. In some cases, household beneficiaries 
will be accustomed to having running water at or near their homes throughout the day 
and night. This habit is a result of previous water collection and delivery techniques 
that simply insert a hose to a running stream and extend it to a private home. This type 
of water collection can be beneficial for private homes in areas where water resources 
are sufficient. However, the habit of leaving the water system open at all times can 
do serious harm to a community-based gravity water system that uses water storage 
to manage peak demands. As a result, it is important to incorporate education about 
system operation and maintenance into any water supply project. 

B.13.2 Example: Sizing of Storage Tank 

Consider the textbox B.13.1 example. The community has reconsidered its 
future water needs and has decided to restrict the per-capita demand rate to 
74 L/person/day (for the maximum of 852 persons) and to develop sources 2 
and 3. Thus, the yield is 0.85 L/s. Based on the demand model of Fig. 15.3, size 
the storage tank for this community. 

The calculations are carried out in the spreadsheet (supplied with this book) that 
solves Eqn (13.5). By trial-and-error, we select a range of tank sizes from 14,000 
to 16,000 L. A plot of tank volume versus hour of the day is shown in Fig. 13.2 
for 14,000,15,000, and 16,000 L. At 6-7 pm the 15,000 L tank is empty whereas 
for 16,000 L it remains filled the entire day. We would recommend a tank volume 
between these two, say, 15,500 L (15.5 m3). The numerical values for the volumes 
versus the hour of day are shown in Table 13.4 for the recommended tank size. 
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Figure 13.2 Water volume in tank versus hour of day. Hour 1 is at 1 am. 

Example: Sizing of Storage Tank (Cont'd) 

Note that the tank would overflow for several hours in the early morning hours. 
Overflow from storage tanks is normal. If there were an integrated approach 
to managing this water supply, the overflow volume could be used for other 
purposes, such as irrigating fields or livestock demand. 

The flow rate per capita able to be delivered to the community (in 1 day) in the 
event of a source shutdown is 15,500 L / 852 persons / day = 18.2 L/person/day. 
This is slightly less than the minimum value recommended by WHO. Consid-
eration should be given to increasing the tank size to -17,000 L to meet the 
WHO-recommended target. 

Planning for the construction of a reinforced-concrete tank is a time-consuming 
task. This is because of the need for the many different constituents of the reinforced 
concrete (cement, gravel, sand, steel reinforcing rod, wire mesh, and tie wires) along 
with forming timber to hold the concrete in place while it hardens. Once the volume 
of the tank walls is calculated using elementary volume formulas from geometry,2 

2 A quick estimate of the volume of concrete needed for a tank can be had by adding up the product of 
the wall (and floor) areas from lengths measured midway through the wall thicknesses and the appropriate 
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Table 13.4 Water Volume in Tank versus Hour of Day for a Tank Volume of 15,500 L. 

lour 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Qs 
(L/h) 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 
3060 

Demand 
Percentage 

0 
0 
0 
0 
5 

20 
10 
5 
1 
1 
5 
10 
5 

2.5 
2.5 
5 
10 
10 
5 
2 
1 
0 
0 
0 

Qd 
(L/h) 

0 
0 
0 
0 

3,150 
12,600 
6,300 
3,150 
630 
630 

3,150 
6,300 
3,150 
1,575 
1,575 
3,150 
6,300 
6,300 
3,150 
1,260 
630 

0 
0 
0 

Water 
Volume (L) 

15,500 
15,500 
15,500 
15,500 
15,410 
5,870 
2,630 
2,540 
4,970 
7,400 
7,310 
4,070 
3,980 
5,465 
6,950 
6,860 
3,620 
3,80 
2,90 
2,090 
4,520 
7,580 
10,640 
13,700 

State of 
Tank 

Overflow 
Overflow 
Overflow 
Overflow 

Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 

the amounts of constituents can be calculated for a prescribed strength of concrete. 
See, for example, the spreadsheet of Ermilio (2005). 

13.7 THETAPSTAND 

Communal water collection points are referred to as tapstands and are designed to 
deliver water to a central location in an area to provide equal access to the collection 
facility. A picture of a completed tapstand is presented in Fig. 1.12. This topic is 
discussed in some detail in Section 15.3.3.4. The reader is referred to this section for 
tapstand features and design recommendations. 

13.8 ESTIMATING PEAK WATER FLOW RATES 

One could imagine the demand of the household daily consumption (of, say Qd = 
100 L/person/day) for a community as being spread out uniformly over the day. 
However, the demand model of Fig. 15.3 shows that it is not. In fact, in this model, 40% 
of water flow from the storage tank to the community is delivered in an approximate 

wall thicknesses. A wall thickness of about 6 in. is necessary for most reservoir tanks in the 8-12 m3-size 
range. 
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3-h period in the morning peak. If there were uniform (nonpeak) demand during this 
period, one would expect 3 h/24 h = 1/8 = 12.5% of the demand to occur during these 
hours. Thus, we need to increase the volume flow rate delivered to the distribution 
main from 12.5 to 40% by multiplying the uniform, or on-average, volume flow rate 
by a factor of 40/12.5 = 3.2 to obtain the peak flow rate.3 The value 3.2 is called a 
"peak factor" and given the symbol PF. The peak volume flow rate determined in 
this manner is referred to as the "peak (or design) volume flow rate". The expression 
relating the peak flow rate to the uniform flow rate for any segment i-j in the network 
is then, 

Qi-j,P,P = PF ■ Qi-j,P (13.6) 

where the p subscript on Qi-jiP means the peak or design flow rate, and P refers to 
the present time. 

The peak flow rates in the future are determined in the same way except that Qi-j 
in Eqn (13.6) are the future flow rates, based on the future population from Eqn (13.3). 

It is worth noting that the peak factor of 3.2 calculated above applies to the demand 
model of Fig. 15.3. For other demand models, the largest of the peak factors is used 
to calculate the design flow rates for the network. 

B.13.3 Example: Peak Water Flow Rates 

Consider the multiple-branch network of Fig. 11.16. Using a peak factor of 
PF = 3.2, and assuming the flow rates shown in this figure are on-average 
during the day, calculate the design flow rates for each segment of the network. If 
the flow rates shown in Fig. 11.16 are based on the present population, calculate 
the design flow rates that would accommodate the future population. Assume an 
annual growth rate, i, of 3% and a 20-year network lifetime. 

For pipe segment 1-2, for example, from Eqn ( 13.6) the design flow rate becomes, 

Qi-2,p,P = PF ■ Qi-2 = 3.2 · 1.1 L/s = 3.52 L/s 

For an annual growth rate, i, of 3% and a 20-year network lifetime, the result 
from Eqn (13.3) shows the design flow rates need to increase a factor of 1.806 to 
accommodate the future population. Thus, for pipe segment 1-2, 

Qi-2,F,p = (1 + if ■ Qi-2,p,p = 1-806 · 3.52 L/s = 6.36 L/s 

3Note that the morning peak produces a peak factor larger than the mid-day and late-afternoon-evening 
peaks. We will select pipe diameters based on the largest of the three peak factors. 
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Table 13.5 Uniform and Peak Water Flow Rates for the Multiple-Branch Network of 
Fig. 11.16 

Pipe Segment, i — j Qi-j,p (L/s) Qi~j,p,p (L/s) QÌ-J,F,P (L/S) 
1̂ 2 ΓΤΟ 3Ì52 6\36 
2-3 0.78 2.50 4.52 
3-4 0.51 1.63 2.94 
4-5 0.25 0.80 1.44 
2-6 0.32 1.02 1.84 
3-7 0.27 0.86 1.55 
4-8 0.26 0.83 1.50 

Peak Water Flow Rates (Cont'd) 

The flow-rate results for this network are presented in Table 13.5. Recall that 
the subscripts on the flow rate are i-j, the pipe segment indices; P, present; F, 
future; and p, peak. 

13.9 SOURCE DEVELOPMENT 

The primary considerations for a water supply system are source selection and source 
protection. Source selection considers the quantity of water available and the quality 
of the supply. Groundwater is water that can be accessed through the proper design 
and development of a borehole or well that taps into an underground water bearing 
stratum called an aquifer. Groundwater is generally of good-to-excellent quality. 
Surface water is a combination of groundwater that interacts with the surface of 
the terrain and runoff that collects within the watershed and becomes channelized 
during precipitation. Spring water is groundwater that comes into contact with the 
ground's surface due to subsurface geological conditions. Springs typically occur in 
mountainous areas because of steep elevation changes that cause infiltrated rainfall 
to emerge from fractured rock. 

Source protection includes measures for preventing contamination from entering 
the supply. The primary consideration with groundwater is protecting against con-
tamination that results from leaking septic tanks and pit latrines that are within 20 m 
from any extraction points. Surface water generally has poor-to-moderate quality. 
It should be assumed that any water supply that uses surface water, such as a small 
stream or river, requires water treatment using physical, biological, and chemical 
processes (Ermilio, 2005). 

The primary concern with protecting surface water intakes is preventing agricul-
tural runoff from entering the system. This is because agriculture-based pollutants, 
such as pesticides, are difficult to measure and expensive to remediate. Despite having 
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Figure 13.3 Source design. 

generally lower yields than ground or surface water, springs are often the preferred 
water resource for community-based water supply projects. This is because a prop-
erly protected spring can typically provide a sustainable supply of high-quality water 
for a community. Springs are easier to contain than ground or surface water and are 
also easier to protect against contamination. 

The components of a properly protected spring intake-reservoir are (see Fig. 13.3): 

• A concrete retaining wall, or a spring box (Fig. 13.4) to capture the supply, 

• A stone filter for screening of large debris, 

• A concrete cap, 

• A drainage canal to prevent surface runoff from entering the supply. 

A removable cover should be included in the cap to allow for inspection of the water 
in the reservoir and to facilitate periodic cleanout of the reservoir if needed. See 
Fig. 13.4 and those from Fig. 1.2. 

Source development is discussed in detail in other works on international devel-
opment [cf. Jordan Jr. (2004)]. 

The outlet pipe penetrates the retention wall — the downstream part of the reservoir 
(if there is water storage at the source) or spring box, and forms the beginning of the 
"intake" part of water network. There are several things associated with the outlet 
that are important. First, a gate valve should be installed just downstream of the 
retention wall in the outlet pipe.4 The gate valve is necessary to isolate the reservoir 
or spring-box when maintenance on the network is performed. Second, the intake 
end of the outlet pipe, submerged in water held by the reservoir or spring box, should 

4Since no throttling will be done at the source there is no need for a globe valve. The latter are more 
expensive than gate valves and a full-open gate valve has less pressure drop (that is, a smaller K value) 
than a full-open globe valve. 
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Figure 13.4 A spring box under construction in central Nicaragua. A cast-in-place concrete 
cap was installed after this photo was taken (see Fig. 1.2). 



SOURCE DEVELOPMENT 3 5 7 

have a filter, perhaps constructed of a fine-mesh screen, installed. This is important 
to eliminate sand and other particles, normally present in the flow, from entering the 
flow. When designing the screen, care should be taken to maintain a flow area as large 
as possible for water to enter the pipe. This will ensure a small loss coefficient that, 
if large, could result in substantial negative gage pressure immediately downstream 
of the source. This was discussed in Chapter 7. 

Third, a 2 or 3-in. cleanout pipe is installed near the bottom of the reservoir or 
spring box to allow for periodic clean-out of debris that settles during operation. The 
clean-out also allows draining if a large-scale cleaning of the source is needed. Gate 
valves should also be installed at local low points along the entire pipe flow path to 
facilitate the clean out of sand and other debris that tends to accumulate over time at 
these parts. The size of these valves is small, generally of the order of |-in. 

To ensure against undesirable vacuum conditions in the pipe coming from the 
source, an air vent or "vacuum breaker" should be installed at the source. This pipe, 
say of 1/2-in. GI, branches off of the outlet pipe just downstream from the gate 
valve (noted above), rises above the level of the reservoir surface, and is open to the 
atmosphere. Its purpose is to allow air into the system should negative pressures tend 
to occur in the outlet pipe. This would normally occur when the network is shut down 
for maintenance. This construction thus serves to "break the vacuum" in the network 
should it begin to form. More details on this construct are in Jordan Jr. (2004). 

The presence of air in the network presents its own set of concerns. If the contour 
of the piping system has high and low points, the air trapped between a high and 
low point in the pipeline forms a cylinder-like compression chamber where there 
is no water. Because the air is trapped in a downward-directed leg, the density of 
water contributes nothing to the elevation pressure head at the low point (air density 
is effectively zero compared with that of water). The net effect is a reduction in the 
elevation head available to drive the water-flow network. In addition to this dominant 
effect, as water on either side of a high point attempts to move the cylinders of 
trapped air through the system, it compresses the air, doing work in the process, and 
dissipating energy from the flow. Some of this energy is recovered with expansion of 
the air upon reduction in static pressure. For both of these reasons, trapped air in the 
network acts as an additional minor loss. Should this loss become large, these "air 
blocks" could severely restrict the performance of the system. 

The addition of manually operated or automatic air vent valves located at the local 
high points in the system, relative to nearby local low points, can always be used to 
remediate this problem, but they represent a maintenance issue. A brief discussion 
of air blocks is in Jordan Jr. (2004) and a more thorough treatment is given by Corcos 
(2004). The problem is approached from a fundamentals standpoint and presented 
briefly in Chapter 14. 

Finally, gate valves should be installed at the lowest end of all runs of pipe that 
form valleys. These will allow for periodic cleaning of solid debris from the pipe that 
accumulates over time. 
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13.10 HYDROSTATIC PRESSURE ISSUES 

Because of the energy dissipation associated with a fluid in motion in a pipe, the 
static pressure in a moving fluid is always less than when fluid motion ceases and the 
pressure becomes hydrostatic. Thus, the ultimate stress associated with pressure is 
exerted on the piping when the water in the network is static. Care must be taken to 
consider the hydrostatic pressure when designing pipe for the network. The pressure 
rating for Class III high-density polyethylene (HDPE; refer to Chapter 3 and Jordan Jr. 
(2004)) is equivalent to -60 m of water head, whereas for the thicker wall, and more 
expensive, Class IV HDPE pipe, it is 100 m of water head. For poly vinyl chloride 
(PVC) pipe, the pressure rating for a wide range of appropriate pipe sizes, including 
SDR 26, is 160 psig, or~l 12 m of head (Table 3.4). Break-pressure tanks (Jordan Jr., 
2004), discussed briefly below, allow the static pressure to return to atmospheric and 
should be installed in any network where the change in elevation even approaches 
these levels. The pressure rating for heavy-wall galvanized steel (GI) pipe is high 
enough (1500 m of head) such that rupture from pressure is not normally a concern. 
However, a corroded or poorly assembled fitting will normally be the point of potential 
failure for GI pipe. 

13.11 THE BREAK-PRESSURE TANK 

A break-pressure tank (see Fig. 1.7) is used in a gravity-driven water network to reduce 
the static pressure in the pipe flow to atmospheric pressure. Break pressure tanks are 
used in high-head gravity-driven water networks, where the build-up of static pressure 
at lower elevations would require thick-wall plastic or GI pipe; both expensive alter-
natives. In all cases, the reliability of pipe and fittings in the water network suffers as 
the static pressure encroaches on the values discussed in Section 13.10. 

A break-pressure tank is needed in the following two instances: 

• For the segments in the network that are feeding water to a tapstand, a break-
pressure tank is needed if the static pressure at the tapstand will be greater than 
-20-30 m of water head. Larger values may cause the water tap valve (one like 
a globe valve, except it has a rubber washer as the seat material; see Fig. 1.11) 
to leak or wear prematurely. Also, static pressures that are too large at the water 
tap valve will create difficulty in drawing water without severe splashing. See 
more discussion in this topic in Section 15.3.3.4. 

• For the segments in the network that are not feeding water to a tapstand, a 
break-pressure tank is needed if the static pressure in the pipeline will exceed 
those values presented in Section 13.10 or the pressure limits as specified by the 
pipe or fitting manufacturers. The rule-of-thumb for this case is that one break-
pressure tank is needed for every 100 m of elevation change in the network. 

Be aware that a water storage tank acts in the same manner as a break-pressure tank 
to reduce the static pressure to atmospheric level. This should be considered in the 
decision to install and where to locate a break-pressure tank. 
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Unlike water storage tanks, the capacity of a break-pressure tank is not a major 
design consideration since there should be no accumulation within the tank; inflow 
and outflow rates should match. In practice, this is done by using a float valve (one 
that turns off if the water level in the tank reaches a preset level; like a ball-float 
valve used in western toilets) Several good conceptual drawings of a break-pressure 
tank exist and will not be reproduced here [see Mihelcic et al. (2009) and Jordan Jr. 
(2004)]. 

13.12 THE SEDIMENTATION TANK 

Sedimentation is a physical process used to pretreat water that has high levels of 
suspended particles, such as stone, sand, silt, and other insoluble materials. Sedi-
mentation will occur in these suspensions when the flow speed of water is reduced 
sufficiently in a "retention chamber" or water tank and turbulence in the flow is re-
duced. This process allows for the particles of density greater than that of water to 
settle out of suspension. A conceptual drawing with dimensions approximately to 
scale for a horizontal-flow sedimentation tank is shown in Fig. 13.5. 

The "settling velocity" of a particle, which is independent of the flow speed in 
the sedimentation tank, can be determined experimentally and should be verified 
prior to the tank design and construction. Analysis may be used to obtain a first 
approximation of the settling velocity. The theory is based on Stokes flow of a small 
spherical particle.5 Settling velocities for a number of different materials appear in 
Jordan Jr. (2004). For typical materials found in water supplies in rural communities, 
these range from 0.023 m/h for silty-clay to 9.36 m/h for silt. The efficiency of the 
settling process is reduced significantly if turbulence is present in the flow and is not 
considered in the design.6 

Figure 13.6 shows results of an analysis with tank specifications for typical sed-
imentation facilities used in community water supply projects. The assumed tank 
length-to-width ratio of three generally produces a one-dimensional (ID) flow. We 
see from this figure that the tank width is largely dependent on the type of material 
being settled. In systems where silty-clay material is present, the sedimentation tank 
can be fitted with additional measures to reduce the tank dimensions by including 
level spreaders within the tank. These are flat plates installed horizontally in the tank 
each of which acts as a pseudo-tank bottom to catch particles as they settle. This topic 
is covered in more detail in Anon. (1981). Simple techniques to ensure a uniform 
velocity across the tank should be included in the design so that water flow is evenly 
divided over the width and depth of the tank (Anon., 1981). 

5Stokes flow of a solid particle in a fluid occurs where the flow speed and particle size are both small. This 
gives rise to a Reynolds number (Re, based on equivalent particle diameter) <C 1. 
6One of the characteristics of turbulence is localized intense mixing. Mixing will prevent the dense solid 
matter from settling in the sedimentation tank. 
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Figure 13.5 Elevation view (top) and plan view (bottom) for a horizontal-flow sedimentation 
tank. 

Figure 13.6 Sedimentation tank performance. 

13.13 FLOW SPEED LIMITS 

Erosion of plastic pipe caused by suspended particles in the flow is known to occur 
for high flow speeds. The problem worsens as flow speeds increase, based on ree-
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ommendations in the literature (Jordan Jr., 2004), a designer should limit the extent 
of pipe exposed to speeds exceeding ~3 m/s. The erosion is especially problematic 
just downstream from sharp bends, like 90° elbows and the branches of tees. The 
speed of 3 m/s is also the recommended peak speed for a pipe flow to keep flow noise 
to acceptable levels for cases where pipe is to be run in or around living spaces. At 
the other end of the spectrum, should the flow speed fall to much less than -0.7 m/s, 
there is likelihood of sedimentation from small particles, such as sand and small bits 
of organic matter, normally entrained in the flow. Pipe diameters that result in flow 
speeds 3> 3 m/s and -C 0.7 m/s should be avoided. For more discussion related to 
this topic, see Section 13.15. 

13.14 DISSIPATION OF POTENTIAL ENERGY 

There are a limited number of discrete pipe diameters from which to choose when 
designing a pipe-flow network. Thus, it is seldom that we are able to design a system 
such that the elevation head (the potential energy) is exactly offset by energy dissi-
pation from pipe friction between the pipe inlet and outlet. The imbalance between 
the potential energy and pipe friction requires the use of either a fixed or variable 
energy-loss device (Section 7.5) in the pipeline. Jordan Jr. (2004) refers to the above 
imbalance as "excess energy" and the act of dissipating it as "burn-off". In the fields 
of thermodynamics or fluid mechanics, the process of dissipating energy (with no 
heat transfer from the pipe) is referred to as "throttling". 

A variable-loss device is normally a globe valve, which has been noted often in 
this text, and discussions about it appear in Sections 1.3.4 and 7.5. The globe valve 
works by forcing the flow to pass through a small cross section where friction between 
the flow and the valve body can be very large. The cross-sectional area for flow is 
adjustable based on how it is set by turning the valve handle. A cross-sectional view 
of a globe valve is presented in Section 1.3.4. A globe valve is designed to perform in 
a partially open state. Another type of valve, such as a gate valve, should not be used 
in place of a globe valve for throttling because it is not constructed to throttle the flow 
and will likely be noisy when operating and fail prematurely. It is often difficult and 
time consuming to replace a failed valve in a pipe-flow network.7 Throttling with a 
ball valve is not recommended because of the difficulty of controlling the flow near the 
closure point for this type of valve. As discussed in several places above, including 
Chapter 11, globe valves are used at various locations in every pipe gravity-driven 
water flow network to allow the designer and operators flexibility in the flow and 
pressure conditions throughout. The presence of a globe valve in the pipe has the 
effect of reducing the pipe diameter from its actual ID. In this sense, the globe valve 

7Special considerations are needed in networks where galvanized iron (or galvanized steel; GI) pipe is 
used. Because of the possible need to replace a throttling valve upstream of a tank or tapstand, for example, 
unions (Section 1.3.2) are recommended to be installed upstream and downstream of the valve to facilitate 
the replacement. Otherwise, the pipe must be cut, rethreaded, and rejoined which is inconvenient and 
costly. 
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allows the designer to more-closely match the diameter corresponding to the chosen 
nominal pipe size with the required theoretical inside diameter. 

What is not widely understood about throttling valves is that they have pressure-
drop limitations. Throttling in a globe valve reduces the pressure across its flow 
restriction, causing a pressure drop, Δρ, between the upstream and far-downstream 
(say, just after the body of the valve) locations, as discussed in the above paragraph. 
This occurs in two parts. The first part occurs between the inlet and that immediately 
downstream from the seat area of the valve (see Fig. 1.11) where the pressure falls to 
more than Ap between the inlet and this location.8 In the second part, there is a "static 
pressure recovery" effect just downstream from the first, where there is a slight static 
pressure increase. For liquid flows, a pressure-drop limitation arises if the absolute 
static pressure resulting from the first part of the pressure drop attempts to fall below 
the local vapor pressure of the liquid.9 If the local static pressure becomes equal to 
the vapor pressure of the liquid, the flow will locally vaporize and bubbles will form. 
Under this condition, the flow is said to be "choked," a consequence of which is that 
no further pressure drop can be produced by further closing of the valve (the pressure 
drop across the valve is controlled by the vapor pressure just downstream from the 
valve seat). A further consequence occurs when the bubbles collapse as they move 
slightly downstream and are exposed to the higher pressures in the second part of the 
above process. If the collapse occurs near t,he valve seat or pipe wall, the seat or wall 
will erode as if being hit with small projectiles of dense fluid. Since failure over time 
will likely occur under this condition, cavitation should be avoided. 

If cavitation is detected (cavitation sounds like small rocks moving in the flow), 
the suspect valve should be replaced with one or more globe valves in series or by 
a fixed energy-loss device (see below). The former may be adjusted so that just a 
fraction of the overall required pressure drop occurs across each of the valves thus 
eliminating cavitation. More on this topic is found in the control valve literature. See, 
for example, the design handbook from Fisher Controls (Anon., 2005). 

A fixed energy-loss device is a restriction placed in the flow. One type of restriction, 
given by Jordan Jr. (2004) (frictional diffuser), consists of a PVC cap inserted into 
a 32-mm PVC pipe where a small hole is drilled into the cap. The flow restriction 
caused by the hole produces a large amount of energy dissipation that reduces the 
static pressure from the inlet to the outlet of the diffuser. 

Care should be taken when planning to use this diffuser, since the small hole 
may very easily become completely blocked with small particles and organic matter 
that are normally present in the flow. This characteristic of the diffuser necessitates 
that it be designed for easy removal (say, by the use of two unions, one immediately 
upstream and the other immediately downstream) for periodic cleaning. ' ° In addition, 

8 In fluid mechanics, this region is referred to as the "vena contracta," the point of minimum cross-sectional 
area for flow in the valve. In the vena contracta the highest local flow speed and approximately the lowest 
local static pressure as predicted by Eqn (2.3) result. 
'This depends on temperature. At 10° C the vapor pressure of water is -0.178 psia or -1.2% of an atm. 
10Note that a bypass pipe, with the appropriate valves and unions, need to be included in this arrangement 
[see Jordan Jr. (2004)]. 
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the pressure drop across the diffuser is very sensitive to the diameter of the hole in 
the cap, an effect that changes over time as the hole will become partially clogged. 
This uncertainty requires that the diffuser be calibrated before placed into service in 
the field. Only a simple liquid manometer and a pump are required to carry out an 
accurate calibration. Partial clogging over time argues for a globe valve to always be 
installed in series with the frictional diffuser to enable a throttling adjustment. 

As a final comment on energy dissipation, we note that dissipation can be useful in 
contrast with the understanding of it from the above paragraphs in this section where 
energy dissipation is viewed as a bothersome task. For example, a water turbine 
coupled to a generator may be installed in place of a globe valve. In the turbine-
generator, mechanical power that would have been dissipated as waste heat can now 
be put to use to benefit the community. This topic was discussed in Chapter 12. 

13.15 DESIGNING FOR PEAK DEMAND: PIPE OVERSIZING 

In designs where the peak factor, PF > 1, the pipe diameters in the distribution and 
gravity mains downstream from the storage tank will be oversized for the nonpeak 
periods. For example, for PF of 3.2 in the example of Section 13.8, the increase in 
flow rate to the peak values increases the pipe diameters by 53% [D ~ Q7^19, see 
Eqn (9.4)]. This translates to a 235% increase in the cross-sectional area of each of 
the pipes. If we make the conservative assumption of constant friction factor for the 
sake of simplicity, the energy equation [Eqn (2.44)] shows that, in each of these pipes, 
the major loss (pipe friction) falls to -12% of its value when sized for the nonpeak 
periods (the major loss is proportional to D5 if / is assumed constant). In this way, 
in a gravity-driven water network, much of the pipe in the network is oversized for 
operation during most of the day to accommodate the needs of the peak periods. 

Another consideration is that small sources, such as springs, may not remain 
constant over time. Variations in rain amounts and soil percolation rates, and changes 
in the topology and extent of ground cover in the region, both natural and man-made, 
around the source can cause variations in water production rates at the source. This 
may also contribute to the reduction in water flow rates and oversized pipe. 

This topic is included to highlight it, and to shed light on the importance of trying 
to ascertain peak and future water demands as accurately as possible. As discussed 
in Section 13.14, oversized pipe will normally require that a greater fraction of the 
potential energy of the network be dissipated in minor-loss elements like globe vales. 
This is unavoidable. For the case of PF = 3.2, the increase in minor-loss-element 
dissipation is equal to about 88% of the major-loss pressure drop that would have 
occurred if the pipe were sized for non-peak periods. Overestimating peak and future 
water demands will unnecessarily increase the cost of the network (because of the 
higher cost of larger pipe) and place a greater load on the throttling devices, or require 
more of them, throughout. Controllability of the flows in the network will become 
more challenging and premature wear of the throttling devices is possible under these 
conditions. 
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State 1 

State 1 

Pipe Length L 
and Theoretical 
Inside Diameter D 

State 2 

State 2 

Figure 13.7 A pipe (bottom) and its composite form (top) that produces approximately the 
same head loss. 

13.16 THE COMPOSITE PIPELINE 

When selecting a nominal pipe size corresponding to a calculated theoretical pipe 
diameter, we saw in Section 3.5 that the choice is made for the nominal size that 
produces an inside diameter slightly larger than the theoretical value. If we are 
restricted to just a single pipe of a single nominal size, this method may result in 
excessive energy dissipation in a globe valve and other minor loss elements if the 
theoretical diameter is much less than the inside diameter for the chosen pipe size. 
As discussed in Section 13.14 this may not be desirable. A remedy to this problem is 
the composite pipeline. When used in place of a single pipe, a composite pipeline will 
dissipate energy as required by the design in major loss, thus relieving the minor-loss 
elements of this task. 

A composite pipeline (Fig. 13.7) consists of two series-connected pipes of different 
diameters, Da and Db, and lengths, La and Lb, that produce the same head loss as that 
for a uniform pipe of theoretical diameter D and length L = La + Lb. The fluid flow 
rate in each pipe is identical. Relative to the uniform-diameter pipe, this is possible if 
Da> D (resulting in reduced head loss over length La) and Db < D (resulting in an 
increase in head loss over length Lb). Thus, it is clear that Db < D < Da. The order 
of pipes of Da and Db as shown in Fig. 13.7 may be interchanged with no overall 
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effect on the performance of this pipeline." Normally the choice is made to install 
the larger pipe size upstream of the smaller one to maintain a high a static pressure 
over the run of pipe a in case a branch may be needed from this pipe in the future. 

For sufficiently long pipelines, the minor losses for the reducer and other possible 
fittings are small relative to the major loss and may be neglected. If an exceptional 
case is encountered, the following simple development may be modified to include 
minor losses as needed. The requirement that the head loss in the single and composite 
pipes be identical gives 

hL = hL,a + hLth (13.7) 

The Darcy-Weisbach equation (Eqn (2.10)) is introduced to obtain 

/ ( ü , D ) ^ = / ( ü 0 ) D a ) ^ + / ( ü 6 ) i ? 6 ) ^ (13.8) 

Combining the continuity equation [Eqn (2.21)] with this, and with L = La + Lb, 
we get 

f(Q,D)— = f(Q,Da)^+f(Q,Db)-^ (13.9) 

Rearrange this to obtain 

La D-"f(Q,D)-Db-
af(Q,Db) 

L Dä6f(Q,Da)-D;sf(Q,Dby 
Db<D <Da (13.10) 

Once the theoretical pipe diameter, D, is determined from the solution of the 
energy equation, and the actual inside diameters for the two nominal pipe sizes, Da 

and Db, that bound D are identified, Eqn (13.10) can then be solved for the length 
La. The friction factor is from Eqs (2.16) and (2.17). For smooth pipe over the 
range of Re where the Blasius formula for friction factor applies [see Eqn (2.19) and 
Section 9.3], a closed-form equation may be easily developed from Eqn (13.10). 

La _ D - ^ - D; 19/4 

L r i"1 9 / 4 _ n" 1 9 / 4 
Da™'* - D : 

Db<D<Da (13.11) 

1 ' A composite pipeline generally falls under the category of the serial network of Section 11.5.1. The 
difference between this and the treatment in the current section is that the static pressure at the junction of 
the two pipes in the upper part of Fig. 13.7 is assumed to be acceptable for the composite pipeline. That 
is, there is no attempt to calculate this pressure in the analysis associated with the composite pipeline. 
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B.13.4 Example: Composite Pipeline 

Determine the lengths La and Lb (see Fig. 13.7) for a composite pipeline of 
1078-m-long, sch. 40 PVC pipe, where the theoretical value for D is calculated as 
6.830 in. Assume, and then verify, that the flow is turbulent such that Eqn (13.11) 
applies. The flow rate is 3.4 L/s. 

From Table 3.1, two actual inside diameters that bound D are 6.065 in. (6-in. 
nom.) and 7.981 in. (8-in. nom.). Equation (13.11) becomes 

La _ 6.830~19/4 - 6.065-19/4 

T ~ 7.981-19/4 - 6.065-19/4 ~~ ' 

Thus, La = 0.591 · 1078 m = 638 m, and Lb = 440 m. A composite pipeline 
of these lengths of 6 and 8-in. (nom.) pipe will produce approximately the same 
head loss as one of D = 6.830 in. for the total length, L. 

Re based on pipe b (the smaller size) is 

Reb = J £ - = 4 . 3 . 4 x l 0 - 3 m 3 / s = 
■KvDb π · 1.307 x 10"6 m2/s · (6.065/39.372) m 

a turbulent flow. For the larger pipe size, Rea = 16,340. Thus, Eqn (13.11) is 
valid for this problem. 

A couple of notes of caution concerning the composite pipeline are in order. First, 
recall from the discussion in Section 3.5 that one of the reasons for choosing a pipe 
diameter larger than theoretical is that this approach adds flexibility to the design. In 
keeping with this idea, if a composite pipeline is to be used, it is recommended to 
reduce the length of the smaller-diameter pipe as calculated by Eqn ( 13.10) (or 13.11 ) 
by perhaps a factor of 0.8-0.9. By doing this, there will be excess static pressure not 
dissipated by major loss that can be used if needed for unanticipated needs. 

Second, a composite pipeline and globe valve both serve to reduce static pressure 
by energy dissipation. The fundamental difference between them is that a globe 
valve is adjustable during network operation whereas the composite pipeline is not. 
As discussed in Section 11.6.5, globe valves give the designer flexibility in balancing 
flows in multiple branch and loop networks and, when closed, allow the removal of 
pipe and components for maintenance and repair. The recommendation is do not 
replace a globe valve by a composite pipeline if this leg of the network requires static 
pressure control or anticipated frequent maintenance. 
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13.17 WATER HAMMER 

When a liquid flows in a network of pipes, there is a considerable kinetic energy due to 
its density and flow speed. If a valve in the pipe is closed rapidly, the liquid attempts 
to come to a complete stop over a short period of time. If the valve is closed rapidly 
enough, this time is so small that there is little opportunity for the closing valve to 
dissipate all of the kinetic energy in friction. The excess energy that is not dissipated 
produces an internal wave in the liquid that moves back-and-forth in the pipeline, 
dissipating energy in the process. This effect is referred to as water hammer. Thus, 
water hammer produces a pressure wave, with an amplitude perhaps much higher 
that the hydrostatic pressure, that travels at a high speed through the liquid. Water 
hammer causes noise, can result in sudden movement of the pipe, or burst a pipe 
if the pressure rise exceeds the safe operating pressure of the pipe or fittings. The 
perturbations could also be severe enough to break joints between pipe and fittings, 
or loosen pipe anchors, and so it is worth our consideration. 

The following simple analysis can be used to approximate the pressure rise result-
ing from the instantaneous closing of a valve in a pipeline. Because of the assumptions 
on which it is based, this analysis will predict the worst-case effect from water ham-
mer. Nonetheless, the results are valuable in that they highlight the need for the 
designer to take steps to mitigate potential water-hammer problems in the completed 
network. 

The increase in pressure, Δρ, associated with a sudden reduction in flow speed, 
—Δω, in a pipe flow is from the Joukowski equation12 developed by considering mass 
conservation at the location of a shock wave in the liquid, 

Ap = — pawAu (13.12) 

where p is the density of, and aw is wave speed in, the liquid. The wave speed in 
water at standard conditions (10°C) is -1483 m/s if the pipe wall behaves as rigid. If 
the pipe wall is elastic, which is a good assumption for plastic pipe, the expression 
for the wave speed is much less than this value and is from, 

B/P (13.13) 
y 1 + 2 ■ (B/E)/(Dout/Din - 1) 

In Eqn (13.13), B and E are the bulk modulus of water (a thermodynamic property 
that is-2.110 GPa at 10°C, where 1 GPa = 109 Pa), and elastic modulus of the pipe 
wall, respectively. For PVC, E ~ 2.90 GPa, and for steel (or Gì), E ~ 200 GPa. 
The terms Dout and Din are the outer and inner diameters of the pipe, respectively. 

Equations (13.12) and (13.13) can be used to conservatively estimate the magnitude 
of the pressure wave that arises in a pipe after the sudden closing of a valve. 

12The details of this development ar beyond the scope of the present work, but are found in several textbooks 
on fluid mechanics (Streeter et al., 1998; Potter and Wiggert, 2002). 
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B.13.5 Example: Pressure Rise in Water Hammer 

Consider Q = 2.25 L/s of water flow at 10°C in a 2-in. nominal sch. 40 PVC 
pipe. A gate valve in the pipeline is suddenly closed. Calculate the amplitude of 
the pressure wave resulting from this closure. How would your results change if 
the pipe material were steel or GI? 

For this size pipe, Table 3.1 gives Dout = 2.375 in. and Din — 2.067 in. For 
water at 10°C at which the density is p = 999.7 kg/m3, Eqn (13.13) becomes 

/(2.110 ■ 109 N/m 2 ) /999 .7 k g / m 3 ■ (1 ■ kg m / s 2 ) / N 
üw ~ y 1 + 2 · (2.11 · 109/2.90 · 109)/(2.375/2.067 - 1) 

= 442.8 m / s 

The flow speed in the pipe before the valve is closed, u, is from the continuity 
equation, Eqn (2.21), 

Q 2.25 L/s ■ 0.001 m 3 / l t , 
u = -7 = TT—, ττΓ- = 1.04 m / s 

A π / 4 - (2.067 in.)2 ' 

The change in flow speed is thus, 

Au = 0 - ü - - 1 . 04 m / s 

The magnitude of the pressure wave resulting from the sudden valve closure is 
from Eqn (13.12), 

Δ ρ = -999 .7 k g / m 3 ■ 452.1 m / s · - 1 . 0 4 m / s = 460 kPa 

or -47 m of water head at the location of the valve. A quick calculation will show 
that the pressure rise would more than double to -1413 kPa if the pipe material 
were GI, or ~ 144 m of head. We see that PVC pipe has a damping effect on water 
hammer compared with GI. As the pressure wave travels over distances away 
from the valve, the magnitude of this wave will be damped by viscous forces 
between water and pipe wall. This damping may take perhaps several seconds 
to tens of seconds. The calculations here provide a worst-case estimate of the 
pressure rise. 

Our inspection of the above example shows that very large pressure rises are 
possible, especially if steel (galvanized iron) pipe is used. This points to the need 
to consider water hammer in the design stage to take appropriate steps to reduce it. 
Among these are 
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• Design the distribution network to reduce excessive flow speeds (see Sec-
tion 13.13), 

• Ensure that operators of the water network are made aware of the water hammer 
problem and are instructed to close all valves slowly, especially those where 
the flow speeds are high, 

• For pipelines where water hammer is known or suspected to be a serious prob-
lem, accumulators or expansion tanks may be installed at locations where large 
pressure rises may occur to absorb and dissipate the energy of the pressure 
wave. These units, which have an air pocket separated from the water by a 
flexible rubber bladder, may be purchased from many commercial vendors. 
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CHAPTER 14 

AIR POCKETS IN THE NETWORK 

"Let all you who Thirst, Come to the Water!" 
-Isaiah 55:1 

14.1 THE PROBLEM 

If the contour of the piping network has high and low points, the air trapped in the 
high points forms cylinder-like compression chambers. This is an idealization, but 
is useful for visualization of the relatively complicated process of liquid flow in a 
partially filled pipe with air. As the denser water on either side of the air attempts 
to move the cylinders of trapped air through the system, it compresses the air, doing 
work in the process, and dissipating energy from the flow. Nearly all of this energy is 
recovered with expansion of the air upon reduction in static pressure so that the work 
to compress the air can normally be neglected. 

More importantly, the fact that air of essentially negligible density occupies a 
fraction of the pipe length reduces the elevation head available to drive flow through 
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the system. For this reason, trapped air in the system, referred to as an "air block,"1 

acts as a reduction in the driving head or, as an alternate interpretation, an additional 
minor loss. Should this minor loss be large, the presence of air could severely restrict 
the performance of the system. The addition of manually operated or automatic air 
vent valves located at the highest points in the network, relative to nearby local low 
points, can always be used to remediate this problem, but they are a maintenance 
issue. A brief discussion of air pockets is in Jordan Jr. (2004) and a more thorough 
treatment is given by Corcos (2004). 

Here, we explore this problem from a fundamentals viewpoint and suggest a 
methodology different from that in the previous references to access the impact of air 
pockets on the performance of a gravity-driven water system. 

14.2 THE PHYSICS OF AIR/LIQUID PIPE FLOWS: FLOW IN A 
STRAIGHT PIPE 

Consider the flow of water in a straight inclined pipe initially filled with air, as shown 
in Fig. 14.1. As the denser water flows to the bottom of the pipe, some of the air 
is pushed out by the direct movement of water or entrained in the water and carried 
out, and some of the lighter air is displaced to the top. In steady state (Fig. 14.1), we 
see that the effect of the initial air-filled pipe is to reduce the elevation head of the 
system, from z\ to z[. In an extreme case, the elevation head driving the flow in the 
system can be reduced to a small fraction of z\. Flow rates will consequently suffer 
and conditions of the design may not be met. 

The volume of air in the pipe at any time depends on the volume pushed out and 
entrained by the water flow, and the pressure of the water on the air. To explore this 
further, imagine a pipe of volume VPipe initially filled with air at atmospheric pressure, 
Patm- For the moment, assume that no air is removed when water is introduced into 
the pipe. In steady state, the static pressure at the top of the pipe is known to be 
Pi. Recall that air is compressible and, if we assume that the temperature of the air 
remains constant as the water flows in the pipe,2 the ideal gas law may be written 
between the initial state and that of Fig. 14.1 as 

PatmVpipe = PlV (14.1) 

or 
V _ Patm 

Vpipe Pi 

(14.2) 

where p is absolute static pressure in all of the equations in this chapter. The symbol 
V refers to the volume of compressed air depicted in Fig. 14.1. If the pipe is constant 
diameter, volume terms in Eqn (14.2) may be written as proportional to length and 

1 This term is unfortunate in that for most cases air does not actually block the flow, but reduces it from the 
Natural-flow value. The term "air pocket" may be more representative of the phenomenon. 
2This is reasonable since the ground in which the pipe is buried is approximately at constant temperature. 
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Figure 14.1 Water flow in a straight inclined pipe partially filled with air. Gravity acts 
downward. Drawings in this chapter are courtesy of Erin Vogel, Villanova University. 

Eqn (14.2) becomes 

Z[ = Patrn ( R 3 ) 

z\ V\ 

where z[ jz\ is the fraction of the length of the pipe containing only air. Since it is 
reasonable to assume that some air will always be pushed out of the system by flowing 
water, either directly or through entrainment, the results of Eqn (14.3) represent a 
worst-case or "upper-bound" estimate of the effect of trapped air in gravity-driven 
flow of water in a straight, inclined pipe. For this case, for example, if we know that 
Pi is twice atmospheric pressure, the air will occupy half of the length of the pipe. 
The actual elevation head driving the flow, z[, will be zi/2. Clearly, this is not a 
desirable situation since the design flow rate may not be satisfied with the reduced 
value for the elevation head. 

Of course, no system is designed as just a straight pipe without incorporating in 
the design some way to remove air from the system. In the case of Fig. 14.1, the 
designer needs to include an air vent at the top of the system and the air will, over 
a reasonably short period of time from start-up, be pushed from the high part of the 
pipe by pressure. Note that the static pressure just downstream from z\ is slightly 
larger than atmospheric due to the positive elevation head at this location. 

The problem of a straight pipe is considered here to illustrate how air in a pipe 
reduces the elevation head. It is very idealistic. The more realistic problem, which 
we consider in Section 14.3, is one where there are local high points where air can 
become trapped. 
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Figure 14.2 Water flow in a wavy inclined pipe partially filled with air. Before formation of 
air pocket. 

14.3 FLOW IN A PIPE WITH LOCAL HIGH POINTS 

Consider an initially air-filled pipe of uniform diameter with local high points. The 
situation of filling the pipe with water is depicted in Fig. 14.2. As water flows into 
the pipe, the first valley becomes filled. Water trickling over the first peak fills the 
second valley and, by doing so, traps a mass of air between the first peak and the 
second valley. This trapped air becomes the first "air pocket" and appears as shown 
in Fig. 14.3.3 The static pressure in the pipe at the location of the first peak is greater 
than atmospheric because of the elevation head difference between the inlet and the 
first peak. Thus, the air in the first air pocket is compressed, reducing its volume to 
less than the volume of the leg of pipe connecting the first peak with the second valley 
(refer to Fig. 14.3). 

As the pipe continues to fill, each leg of pipe that has a positive slope fills up 
to its peak along with the valley that immediately follows it. Air is trapped and 
compressed between this peak and valley to form another air pocket. Thus, each 
peak/valley combination forms one air pocket that contains compressed air at the 
pressure of the water at the peak. Recall that the density of air is small compared with 
water by a factor of-1000. As we saw in Section 14.2, negligible-density air in the 
pipe displaces large-density water and reduces the elevation head that drives the flow. 
The water flow rate, obtained from the solution of the energy equation, that includes 

3Note that there is no air formation above the first valley since air can normally escape upward and be 
released through the surface of the reservoir. 



FLOW IN A PIPE WITH LOCAL HIGH POINTS 3 7 5 

Figure 14.3 Water flow in a wavy inclined pipe partially filled with air. After formation of 
air pocket. 

this "reduced elevation head," may not be able to satisfy the design requirements for 
the system. This is the fundamental problem associated with air pockets. 

We see that to assess the impact of air pockets on the performance of a gravity-
driven water network, there is a need to solve the energy equation for flow rate by 
using the reduced elevation head. Also needing our attention is the major loss term 
since the wetted surface area of the pipe, where the major loss occurs, is less than that 
for a totally water-filled pipe. Thus, the major loss in a partially air-filled pipe is less 
than its totally water-filled counterpart. 

There are several things to keep in mind while assessing the effect of air pockets on 
network performance. First, as noted above, the results of our analysis are worst-case 
because to keep the problem tractable, we must assume that all air that was initially 
in the pipe remains during the filling process. Air that is directly removed by the 
flowing water or entrained in the water and carried away, reduces the negative impact 
of air pockets on the water flow rate. 

Second, the situation depicted in Fig. 14.3 is idealized. For there to be flow in 
the system, water must trickle from each peak to the following valley. Therefore, the 
pipe is not full and the energy equation needs to be modified to account for this. For 
reasons of simplicity and because this effect is not large, we will neglect this in the 
analysis that follows. 

Third, vent valves installed at the high point in the system, especially those closest 
to the source of water, may be used to reduce or eliminate any penalty in flow rate 
arising from air pockets. However, it must be kept in mind that these valves, if manual, 
must be operated in a reliable way by personnel in the local community. Whether they 
are manual or automatic, regular check-ups and maintenance must be performed on 
them to ensure they remain in good working condition. If not regularly attended, the 
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air valves will not function as designed and the system may accumulate air over time. 
Thus, the models developed in this chapter are worthwhile since they can predict the 
worst-case performance of the network if it is left unattended. 

Finally, the presence of air in the system is not just the result of filling an initially 
air-filled pipe with water. Air can get into the system in many ways including air 
released from the water itself (even cold water contains dissolved air), and through 
vacuum breakers installed at the source (see Section 13.9). Thus, removal of air from 
gravity-driven water networks is an on-going responsibility of a community to ensure 
proper performance of the network. 

14.4 THE EFFECT OF AIR POCKETS ON FLOW RATE 

The fundamental problem associated with air pockets is the presence of air in the 
system that reduces the driving force for flow. There are two ways of analyzing this 
problem. The first, referred to as the "simple approach", neglects the compressibility 
of air. In doing so, a single, relatively simple, single linear algebraic equation for 
Q is obtained, which we can use to calculate the effect of air pockets on Q. The 
second includes the effect of air compressibility but at the expense of the need to 
solve a system of nonlinear algebraic equations for the pressure distribution in the 
network and Q. The computational effort for the latter is considerably greater than 
for the former. In both cases, the value for Q is conservative, meaning that it is an 
underestimate of the true value for Q. 

Because of the simplicity of the simple approach, it is tempting to first assess the 
problem of air pockets using this one. Based on the outcome of this calculation, the 
designer can then judge the need to carry out a more-complete and more-realistic 
assessment by including the compressibility of air. 

Perhaps a more compelling reason for using the simple approach is that it forms 
the fundamental basis for understanding the more-complete problem where air com-
pressibility is included. In other words, the more-complicated, more-exact problem 
is more easily understood by first learning the simpler one. 

14.4.1 A Simple Approach 

The simplest approach to determine the effect of air pockets on the flow is to neglect 
compressibility of the air. This approach overestimates the length of pipe occupied by 
the air and produces a lower-than-actual estimate of the elevation head that drives flow 
in the system. In this sense, the present approach is "worst-case" (or conservative) 
but, since the compressibility effect of the air is neglected, relatively simple formulas 
may be obtained for the reduced elevation head and wetted (with water) pipe length. 

Consider the geometry shown in Fig. 14.4, which consists of an inclined pipe of 
constant diameter, D, having numerous local peaks and valleys. The air pockets have 
already formed in the manner as discussed above and appear in Fig. 14.4 as pipe 
segments b, d, and / . Water resides in each of the valleys and fills up to the peaks that 
immediately follow. These are shown as pipe segments a, c, e, and g. The pressures 
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Figure 14.4 Water flow in a wavy inclined pipe partially filled with air after formation of 
many air pockets. Water appears dark and air appears lighter. 

are designated as 1 at the start of each pipe segment (in the x direction) and 2 at the 
end of the segment. For example, for segment a, the static pressure at the inlet of this 
segment is pa\ and its outlet, pa2- Because of the negligible density of the air and 
the fact that no air is flowing, the static pressures at the top and bottom of each leg 
of air are equal. Thus, for example, p02 = pbi = Pb2 = Pci< a nd so on, as shown in 
Fig. 14.4. 

Because we have neglected the compressibility of air, the length of each pipe 
segment is completely determined by the geometry of the pipe. Using the usual 
symbol for length, L, we can write, for example, the length of pipe segment a as La. 
Also, for pipe segment c, Lc is the length of pipe between the valley at the start of 
segment c to the peak at the end of this segment. 

We begin the analysis by writing the energy equation, Eqn (11.4), for each pipe 
segment containing water. We have 

Üa2 

CL,a-rl·, Segmenta 

CL,C-^~, Segmente 

ΰ 2 

CL,e^: Segmente (14.4) 

ü 2 

CL,g-^-, Segment g 

where, as above, the terms Az refer to the elevation change from the top to the bottom 
of a pipe segment measured in the coordinate system of Fig. 14.4. For example, as 
shown in Fig. 14.4, Aza appears as a positive value, whereas Azc, Aze, and Azg are 
negative valued. If we assume uniform pipe diameter, JD, for the moment, we can 

,Va2 Ua gAza - ( +aa^z 
p i 

g&zc 
Pel Pc2 

Λ . Pel Pe2 

gAze H = 
P P 

g!Azg 
Pgl Pg2 

P P 
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Aza + Azc + Aze + Azg-hdei = (CLia + CL,e + CL,e + CL,g + a) J (14.6) 

write ü as 4Q/nD2 [using Eqn (2.21)] in Eqn (14.4). Obtain 

pgAza-pa2 = -(CLta + a)(—-r)2, Segmenta 
I TTJJ 

pgAzc+pcl-pc2 = ^CLtC(--^)2, Segmente 

pgAze + pei - pe2 = -CL,e{—jy2~)2, Segmente (14.5) 

pgAzg+pgl-pg2 = -jCL,g{—^Y, Segment g 

We also note that certain static pressures in Eqn (14.5) are equal; pci = pa2,Pei = Pc2, 
and pg\ = pe2. By adding the equations in Eqn (14.5) and canceling the appropriate 
pressures, pcl — pa2, and so on, we obtain 

'n2gD4 

where hg2 — hdei is the prescribed delivery static pressure head, say, at a tapstand, 
and Aza, Azc, etc. are from the geometry of the network as shown in Fig. 14.4. 

Equation (14.6) is to be solved for the flow rate Q, where D has been already 
determined from the methods developed in Chapter 11. Note that the elevation head, 
referred to as the reduced elevation head above, Aza + Azc + Aze + Azg, is not as 
large as that for a water-filled pipe. In contrast to a wavy pipe that is entirely filled 
with water, if there are air pockets, as shown in Fig. 14.4, the constant air pressure on 
the left side of each valley does not add to the overall elevation head. 

When solving Eqn (14.6), recall from Chapter 11 that Ci is the loss coefficient 
that includes the major and minor loss terms [see Eqn (11.5)]. CL for each segment 
depends on Q and D for the pipe (through Re), the segment lengths L, and the values 
of the minor loss coefficients, K and Le/D, if they are to be considered. 

Equation (14.6) may be generalized for any number of local valleys, TV, written in 
a compact form, 

r ' "' ' n2gD4 J2 Δζ,· - hdel = (a + Σ CL,j)^z^Â (14-7) 
3 = 1 i = l 

and solved for Q to assess the effect of air pockets on flow, subject to the assumption 
of incompressible air. Note that in Eqn (14.7) the summations are assumed to be 
taken only over the segments of the pipe that contain water. 

If the pipe diameter changes along the flowpath such that ΌαφΌ0φΌ&φΌ9, 
Eqn (14.7) becomes 

Î>,-^ = £ + ^E%* (14.8) 
3 = 1 l ^ 3 = 1 ^ 

It is obvious from our inspection of Eqs (14.7) or (14.8) that Χ).·=1 AZJ — h^ei > 0 
for any flow to occur. From this result, it is easy to see that flow in the system will be 
choked if air pockets are such that Σ7=ι ^zj < h-dei-
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14.4.2 Consideration of Compressibility of Air 

The fundamental picture of the formation of air pockets is unchanged once the air 
is considered to be compressible. Complexity is added to the problem because the 
lengths of the water-filled segments of pipe and the elevation heads for each of these 
segments are no longer determined solely by pipe geometry. This is because when the 
air compresses under the effect of pressure, the length of each air segment shrinks, and 
correspondingly, the lengths of the water-filled segments increase. This can be easily 
visualized using Fig. 14.4. One outcome is that any negative-valued elevation heads 
that appear in Eqn (14.7) become less negative valued. This will serve to increase 
the volume flow rate, Q, relative to that determined from the solution of Eqs (14.7) 
or (14.8). An additional outcome is that there is slightly more major loss since more 
of the total length of pipe is wetted by the water. However, this effect is not large 
enough to offset the reduction of the negative-valued elevation heads. 

It is not possible to write a single equation for Q once the compressibility of air 
is considered. The reason for this is that the terms Az and L (embedded in Ci) in 
Eqn (14.5) are influenced by the static pressures at each peak through the ideal gas 
law. Thus, a system of equations needs to be solved simultaneously that includes 
Eqn (14.5), which was written for the water-bearing pipe segments, and the ideal gas 
law written for each pipe segment that contains air. 

We now outline the solution procedure. The energy equation for flow in segment 
a is unchanged as it appears in Eqn (14.5) since the start and end of segment a is 
defined only by pipe geometry. Next, we calculate the length of the column of air in 
pipe segment b. For this segment, Eqn (14.3) may be written as 

^b _ Patm (14 9) 
Lb Pa2 

where L'b/Lb is the fraction of the length of pipe segment b that contains air as mea-
sured from the first peak in Fig. 14.4. In Section 14.4.1, we ignored compressibility, 
so L'bjLb = 1. Once compressibility is considered, we see that L'b/Lb < 1. Pressure 
Pa2 is the source of compression of the air, which is initially at atmospheric pressure, 
Patm, just before filling begins. From an elevation drawing of the pipe and known 
L'b/Lb from Eqn (14.9), the designer can then determine the values for Azc and Lc 

(to be used in the major loss calculation for Cx,c)· That is, 

Azc = ΑζΛ) = Αζ€{
Ρ-^) 

L'b Pa2 

Lc = LA=LC{P-^) (14.10) 
Lib Pal 

where Azc and Lc are functions of L'b/Lb or, alternately, patm/Pa2 as seen in 
Eqn (14.10). 

The procedure continues by considering the effect of pressures pc2 on Aze and 
Le, and pe2 on Azg and Lg, respectively. The following two equations, similar to 
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Eqn (14.10), result 

and 

Aze = Δ ζ 6 Α = ΔΜ — ) 
Ld Pc2 

Le = L e Ä = L e ( ^ ) (14.11) 
La Pc2 

Azg = ΑζΛ) = Αζ9(ψ^) 
Li S Pe2 

Lg = Lgfe) = Lg(
P-^) (14.12) 

Lif Pe2 

Introducing Eqs (14.10)-(14.12) into Eqn (14.5), we obtain 
4Q 
TD2 

pgAza-pa2 = 7i(CL,a + a)(—-z)2, Segmenta 

A /Patm \ 
pgAzc{ ) + Pa2~Pc2 

Pa2 

A /Patm-, 

pgAze{ ) 
Pc2 

A (Patm\ 

pgAzg{ ) 

= 

+ 

= 

+ 

Pr fj (Patm^, 4Q , 2 

Pc2 - Pe2 

Pr ir (P°-t™\\( 4<5 \2 

Pe2 - Pdel 

Segment c 

Segment e 

(14.13) 

Pe2 

= P^L,g{Lg{
P-f^)){%)\ Segment^ 

where static pressure ya\ (=14.7 psi) has been added to the first of these equations 
since all pressures are in absolute. 

The equations of Eqn (14.13) are a system of four nonlinear algebraic equations in 
four unknowns, Q, pa2, pC2, and pe2. The static pressure pdei ~ Pg2 = pghdei is the 
static pressure at the delivery location as prescribed by the designer. The functions 
Azc, Aze, and Azg, and Lc, Le, and Lg come from the geometry of the pipe also 
specified by the designer. Equation (14.13) can are solved in Mathcad using the 
Given.. .Find construct for solving system of nonlinear algebraic equations that we 
employed frequently in the study of multiple-pipe networks. 

Clearly, the time and effort needed to solve the system of equations that arises 
when one considers air compressibility [Eqn ( 14.13)] is considerably larger than when 
compressibility is neglected [Eqn (14.7)]. The designer can weigh the benefits against 
this investment in time and effort when deciding the course of action. However, we 
have found for the cases studied in this text that the flow-rate result based on the 
neglect of air compressibility is overly conservative in many of these. 
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14.5 AN EXAMPLE 

Consider the elevation view of a simple gravity water distribution pipe, of nominal 
1 ì in. PVC, as shown in Fig. 14.5. The coordinates, Or, z), at the source, intersections 

Figure 14.5 Elevation view of a simple gravity water distribution pipe with peaks and valleys. 
The source is at the entrance to segment a, and the delivery location is at the outlet of segment 
/ . Note the large difference between the horizontal and vertical scales. 

of the pipe segments, and delivery location are: (0,100), (350,50), (600,60), (750,25), 
(1000,45), (1150,5), (1300,10), and (1500,0) m. We wish to assess the effect of the 
air pockets on the volume flow rate of water in the system. Based on the material 
presented in Section 14.3, our inspection of Fig. 14.5 indicates that two air pockets 
will form, one in segment b and one in d. Our approach will be to use Eqn (14.7), 
the simple approach where air compressibility is neglected, and Eqn (14.13) where 
compressibility is included. We will compare the results of the two, and with the case 
of no air pockets. 

To simplify the calculation, all minor losses will be neglected. This is justified if 
the sharp turns in the pipes as seen in Fig. 14.5 are instead well rounded, reducing the 
minor loss in the network. The static (gage) pressure head at delivery is assumed to 
be 10 m of water (about one atmosphere of pressure). As always, the static pressure 
at the source is atmospheric. Recall that for the equations from Section 14.4.2, where 
the problem depends on pressure through the ideal gas law, all pressures must be in 
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absolute units. Thus, we add 14.7 psi (10.34 m of water) to each gage pressure to get 
absolute pressure. Obtain, p a l = 14.7 psi and hdei = 19.34 m. 

First, we find the flow rate if there are no air pockets. The mean slope between the 
source and delivery points is calculated from Fig. 14.5 as s = 0.0467. We will use 
the design figures from Section 5.4, where the source pressure is zero gage pressure. 
We calculate the dimensionless delivery static pressure, F, to be F = hdei/ζχ = 
10 m/100 m = 0.1. From Fig. 14.5, the total length of pipe in the system is determined 
to be L = 1514 m, and the length of pipe if it were straight between the source and 
delivery is 1503 m. Thus, λ = 1511 m / 1502 m = 1.0072. Following the procedure of 
Section 5.4, we first use Fig. 5.5, for F = 0.1 and λ = 1, to get Q — 1.9 L/s (result 
reported to only two significant digits; refer to textbox B.14.1). Since the value for 
λ of 1.0072 is very close to 1, it is not necessary to use Fig. 5.9, for F = 0.1 and 
λ = 1.5, and then interpolate between these two. Therefore, flow rate is Q = 1.9 L/s. 
It is interesting to note that both Eqs (9.2) and (9.3), which assume turbulent flow in 
smooth pipe, predict Q — 1.93 L/s; this is perhaps an easier alternative to the use of 
the design graphs and almost as accurate. 

B.14.1 The Significance of Significant Digits 

It is noteworthy for the above calculation that we did not write Q as 1.90 L/s 
because the visual nature of the solution for Q from the graphs produces un-
certainty beyond two significant digits. By writing Q — 1.90 L/s, we say that 
we are certain of the answer to three significant digits, 1, 9, and 0. If the sheet 
were used to calculate Q, we may be able to write the solution to at least three 
digits of accuracy because of the certainty we have in the formulas used in the 
calculations and in the input data. This is because the friction factor correlation 
used in Mathcad worksheet is accurate to at least three significant figures. Please 
be aware that the certainty of the input data, such as elevations, slopes, and so 
on, will normally determine the overall certainty of the design. By allowing the 
value of each parameter to vary according to its certainty, it is straightforward to 
determine the effect of the uncertainty of each parameter on the design. 

Next, we neglect air compressibility and use Eqn (14.7) to calculate Q. For this, we 
employ the Mathcad worksheet pipe s iz ing for a i r block example.xmcd 
since the friction factor as a function of Q is needed to solve Eqn (14.7). Alter-
nately, Eqs (9.2) and (9.3) may be used since minor losses are neglected. Pipe 
segments b and d contain air over the entire segment lengths. The remainder of the 
pipe segments flow water. The reduced elevation head, Aza + Azc + Aze + Azf, is 
(40 — 20 - 5 +10) m = 25 m, and the length of pipe flowing water, La + Lc + Le + Lf, 
is (603.75 + 250.80 + 150.08 + 200.25) m = 1204.9 m. The corresponding values 
for s and λ are 25 m/1500 m = 0.0167 and 1204.9 m/1503 m = 0.802, respectively. 
Through the Mathcad worksheet, we calculate Q = 0.066 L/s, a reduction of-96% 
compared with no air pockets. Thus, it is very clear that the effect of air pockets in the 
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worst case of neglecting air compressibility, is to significantly reduce the flow rate in 
the system. Q = 0.066 L/s is the lowest flow rate one would expect for this system, 
which may occur on start-up where there is much trapped air in the network. It could 
occur during steady state operation of the system, as well, if there is a continual inflow 
of air, say though a vacuum breaker, at the source. 

If air compressibility is included, we use Eqn (14.13) together with the same 
Mathcad worksheet as above to calculate the flow rate. Consider Fig. 14.6 which is 
Fig. 14.5 with notation added for elevations and pressures. The ideal gas law [e.g., 

Figure 14.6 Same as Fig. 14.5 with notation added for elevations and pressures. 

see Eqn 14.11] for pipe segment b is written as 
Ari 

(14.14) 
L'b _ Patm _ Δ ^ 
Lb Pa2 Azb 

where Azb = Zbi — ζ&2 and Az'b — Zb\ - z'b. The elevation z'b is the location of 
the water surface in pipe segment b measured in the vertical direction from the top 
of the segment at zb\. In Eqn (14.14), L'b is the location of the water surface in pipe 
segment 6 measured along the length of the pipe from the top of the segment at zb\ 
(see Fig. 14.6). Lb is the length of pipe segment b. 

Likewise for pipe segment d, we obtain 

Ld_ = Patrn = Az^ 

Ld pc2 Azd 
(14.15) 

The elevation change between the free surfaces of the leg of water in pipe segment 
c may then be written as 

Azc = zb2 - zc2 + Azb - Az'b (14.16) 
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Substituting for Az'h from Eqn (14.14), Eqn (14.16) becomes 

Azc = zb2 - zc2 + (zbi - zb2)(l — ) (14.17) 
Pa2 

The first two terms on the right side of Eqn (14.17) represent the elevation change 
between the bottom and top of pipe segment c. This is the elevation change that 
would arise if the air were incompressible and it is negative valued as seen by our 
inspection of Fig. 14.6. The third term on the right side of Eqn (14.17) is the head 
of water that resides at the bottom of pipe segments b and c and partially fills pipe 
segment b. This is a positive-valued elevation head that offsets some of the negative-
valued head of the first two terms. The third term on the right side of Eqn (14.17) 
appears only if air is treated as compressible, and in fact, we see that the head of 
water, {zb\ — 2^2)(1 — Patm/Pa2), depends on the air static pressure that sits above 
it,Pa2· 

An equation similar to Eqn (14.17) may be written for the elevation change between 
the free surfaces of the leg of water in pipe segment e, 

Aze = zd2 - ze2 + (zdl - zd2){\ - ^ ) (14.18) 
Pc2 

Finally, because of similar triangles, the above equations for elevations may also 
be written for the water-filled pipe lengths, L. To write these, we let L* be the sum of 
the length of the water-filled pipe segment plus the length of a partially water-filled 
pipe segment that adjoins it. Obtain 

Lc = Lc + Lf, — Lb, 

= Lc + L b ( l - ^ ) (14.19) 
Pa2 

for water-filled pipe segment c and, 

L*e = Le + Ld(l - ^ ) (14.20) 
Pc2 

for water-filled pipe segment e. In each of these equations the second term on the 
right sides accounts for the length of water-filled pipe for segments b and d that join 
segments c and e at their respective valleys (see Fig. 14.6). 

It is interesting to note that as the static pressures pa2 or pc2 become infinite, 
air is compressed to a infinitesimally small volume. Both Eqs (14.19) and (14.20) 
show that, in this limiting case, the lengths of pipe are completely filled with water, 
L* = Lc + Lb and L*e = Le + Ld for segments c and e, respectively. 

Equations ( 14.17)-( 14.20) represent the functions Azc ( ̂ ^ ), Aze (Eslm- ), Lc (2iilm- ), 
and Le(2a t2L), respectively, in Eqn (14.13). 

The next step is to substitute numbers for all of the terms in Eqs ( 14.17)-( 14.20) and 
carry out the solution. This is done in Mathcad. Equations (14.17)-(14.20) become 
for this example 

Azc(pa2) = [25 - 45 + (60 - 25)(1 - Ü L ^ ) ] , m (14.21) 
Pa2 
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and 

Aze(pc2) = [5 - 10 + (45 - 5)(1 - 1 4 J p S i a ) ] , m (14.22) 
Pc2 

L*c(Pa2) = [250.80 + 154.03(1 - 1 4 " 7 p S 1 E ) ] , m (14.23) 
Pa2 

L*e(Pc2) = [150.08 + 155.24(1 - Ü L B ^ ) ] , m ( i 4 . 2 4 ) 
Pc2 

Equations (14.13) for this example are written as 

pgAza -Pa2 + Pal = 7;(cL,a + a)(——z)2, Segmenta 
2 πυζ 

pgAzc(pa2) + Pa2~Pc2 

]cL,c{L*c{pa2)){^)\ Segmente 

pgAze{pc2) + pc2-pe2 (14.25) 

= x C L , e ( L e ( p C 2 ) ) ( - 7 ^ ) 2 , Segmente 

pgAzf + pe2 - pdei 

2CL^^D2^ ' S e S m e n t 3 

where pa\ (=14.7 psi) has been added to the first of these equations since all static 
pressures are in absolute. 

Equation (14.25) is solved in the Mathcad worksheet p i p e s i z i n g f o r a i r 
b l o c k example . xmed for pa2, pc2, pe2, and Q. After converting all static pressures 
to gage values, we obtain pa2 = 24.5 psig, pc2 = 8.4 psig, pe2 = 10.9 psig, and 
Q — 1.49 L/s (-21% less than with no air pockets). The heads Azc(pa2) and Aze(pc2) 
are 1.86 and 20.0 m, respectively, both positive values (compare these with —20 and 
—5 m for the case where we assume incompressible air from above). Thus, although 
a conservative estimate of the effect of air pockets on flow in the network is obtained 
by assuming compressible air, this result is much more realistic when compared with 
the case where we neglected air compressibility. In this case, the reduction of flow 
rate by 96% compared with no air, is not realistic. However, there is considerably 
more time and effort invested in obtaining the solution for the case of compressible 
air. 

This example illustrates the methodology for estimating the effect of air-pockets on 
the flow rate in the network. Obviously, to reduce the negative impacts of air pockets, 
the designer is encouraged at the outset to reduce the number of localized peaks and 
their magnitudes in the design to whatever extent possible. The major slopes in the 
network for this example (Fig. 14.5) appear in pipe segments at the very beginning 
and near the end that gives rise to large static pressures pa2 and pe2. However, in 
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general, in a well-designed gravity-driven water system, static pressure is smallest at 
the top and largest near the delivery location. Recall Eqn (14.14), where we see that 
the amount of air in the pocket is inversely proportional to the air pressure. With static 
pressure generally the lowest at the top localized peak of the system, the amount of 
trapped air should be the largest at that location. Thus, air vents, when used, should 
first be located at the highest local peak to assist in the removal of air. 

14.6 SUMMARY 

Based on the discussion and developments in this chapter, we can summarize the 
above as follows: 

• Air pockets in a gravity-driven water network are realistic, and their formation 
must be anticipated in any system where there are local peaks and valleys, 

• The impact of an air pocket is always to reduce the water flow rate relative to 
the Natural flow rate, that which would occur in the absence of any air pockets, 

• A vacuum breaker installed at any location in the network may continuously 
introduce air into the system. While desirable from the perspective of reducing 
the local static pressure at key points in the network to prevent possible pipe-
wall collapse, a vacuum breaker is undesirable in the sense that it introduces 
air that assists in the formation of air pockets. 

• By neglecting the compressibility of air, it is relatively easy to estimate the 
flow rate that occurs in the presence of air pockets. However, this produces a 
conservative result, and for the limited number of cases tested for this writing, 
may not be of much practical value. The more-realistic approach is to model air 
as compressible. However, the calculations are significantly more complicated 
and time consuming. 

• The problem of air pockets, and their negative impact on the flow, can be greatly 
reduced by installing air vent valves at local peaks. Manually operated vent 
valves must be opened on a regular schedule if they are to be effective. Even 
if automatic valves are used, air vent valves are maintenance items and need 
routine inspection to ensure proper operation. 
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CHAPTER 15 

CASE STUDY 

By J. Ermilio and G. F. Jones 
"One is trusted because one trusts, and one can trust because one knows one is 

trusted." 
— Brother John of Taizé on trust between a teacher and student 

15.1 ENGINEERING DESIGN: SCIENCE AND ART 

Engineering design, as discussed in Chapter 1, is composed of differing weights of 
engineering science and art. The science part consists of most of the hydraulic design 
that is the core topic of this book, along with other quantitative-based design perhaps 
associated with pipe supports, structural integrity of tanks, and so on. The art of 
water distribution network design consists of "rules-of-thumb" or guidelines, passed 
along by engineers and other experienced workers, that normally lack a fundamental 
theoretical basis.1 An example of this would be the recommended range of flow 

1 In other applications, the art of design may also address the conceptual or graphical aspects of a process 
or product that have no little or no quantitative bases. 
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speeds in a pipe from the standpoint of pipe-wall erosion at high flow speeds and 
sedimentation of particulates in the flow at low speeds. It is unlikely that extensive 
systematic studies have been performed for erosion rates of different types of pipe 
materials with flows of different fluids at different speeds and different particle load-
ings to determine a theoretical value of speed below which erosion may be neglected. 
Likewise, the theoretical minimum flow speeds for various particulate-loaded fluids 
where precipitation begins are not commonly modeled. As noted in Chapter 13, flow 
speeds between -0.7 and -3 m/s are known from experience to be such that neither 
sedimentation nor erosion should be a problem in most cases. 

Both the science and art of design will be considered in the case below. 
The case presented in this chapter pertains to an actual system with actual dimen-

sional and flow rate data, and application and discussion of real-world constraints. 
Thus, the case amplifies and, in certain instances, goes beyond the analysis and design 
content already treated in this text. In addition, it gives the reader an opportunity to 
work with the appropriate Mathcad worksheets to carry out the design calculations. 
Engineering tradeoffs and sensitivity (or parametric) studies, like those discussed in 
Chapter 11, will be demonstrated and discussed where appropriate. 

15.2 DESIGN PROCESS REVISITED 

The design procedure for this case study follows that in Chapter 13 and in Jordan Jr. 
(2004); Jeppson (1976); Nayyar (2002); Trifunovic (2006); Swamee and Sharma 
(2008) among others. It includes the following: 

• From survey data, elevation and plan-view drawings are produced that identify 
locations and elevations of all elements, pipe lengths, mean slopes, and so on. 

• From a water-demand survey of the community, and an estimate of the rate of 
population growth, the current and future water demands, peak and on-average, 
are calculated. 

• The water storage requirement is assessed and the volume of the water storage 
tank is calculated. 

• Knowing water flow rates, the intake (normally a single-pipe network) and 
distribution (normally a multiple-pipe network) pipelines are designed. This 
includes selecting the pipe material, calculating actual inside diameters (ID), 
choosing nominal pipe sizes, and investigating flow control; (i.e., the sensitivity 
of the performance of the network to the partial closing of globe valves installed 
in the pipe segments). 

• The details of the hydraulic design (including valve types and locations; by-
passes; flow speed limits; the need for and location of clean-outs, air vents, and 
vacuum breakers; and consideration of air pockets and water hammer effects) 
and nonhydraulic design (reservoir construction at the source; structural con-
siderations for the storage and possible break-pressure tanks and pipe supports, 
etc.) are executed. 
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• Costs are estimated, and final drawings are prepared for the engineering and 
construction teams. 

15.3 THE CASE 

15.3.1 Background 

You are an engineer working for an engineering company that specializes in the de-
sign and construction of large-scale water supply and distribution systems. Having 
had many years of engineering experience, you decide to volunteer with a service 
organization to provide technical assistance on water supply projects in remote com-
munities in the Philippines. As a part of this service, you have committed to giving 
assistance to field volunteers who are working on water supply projects. You were 
at an orientation seminar last month and you met a number of young engineers who 
are working on projects throughout the country. One particular volunteer mentioned 
a project she was working on and asked if she could fax you some details to get your 
input. 

A couple of weeks later, you are in your office and you receive a fax from the field 
volunteer who you met at the seminar. She is currently in the Philippines living and 
working in Mountain Village, and she is asking for your engineering assistance. 

15.3.2 The Request 

The fax you received reads as follows: 

To: You 
From: Ms. Volunteer, Mountain Village, Philippines 

Dear Sir, 
It was very nice meeting you at the technical seminar the other week. I have 
been in Mountain Village working for the past 6 months and, would like to ask 
your advice on a few things. After arriving here, I put together a map of the 
community using my hand-held Global Positioning System (GPS) (Figs. 15.1 
and 15.2) and, as a result, I have basically been appointed to serve as the town 
engineer. Recently, there has been an outbreak of diarrhea in this area, and the 
District Health Official is planning to visit (with some representatives from the 
President's cabinet) in the next couple of weeks to investigate. The President's 
wife has family in this area and because this is an election year, she wants to 
help solve this problem so that her husband looks good at the national level. As a 
result, if I can put together a comprehensive plan for this visit, I could get funding 
to build a water system in this area and help alleviate the current health crisis. 
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To give you a background of this area; Mountain Village is composed of six 
small neighborhoods with a total of 159 households and an estimated population 
of 795 people. I looked up statistics from the national census and it looks as if 
there is an estimated 2% growth rate in rural areas of the Philippines. The area 
is relatively poor and people here earn an estimated $4,000 annually per capita, 
primarily from raising livestock, such as cattle and growing rice. The area is 
very mountainous and there is an estimated 47 in. of rainfall annually, with a 
dry season that lasts about ~3 months. Included in the fax is a map I created 
using a GPS. This map shows some key features in the community including the 
village centers, estimated number of households, and approximate elevations. In 
regards to water resources, there are a number of natural springs that are being 
considered for development and a couple of small streams that flow through the 
area. These streams currently serve as the primary source for most houses who 
typically divert a portion of the water upstream into a hose and deliver water to 
their homes by gravity. Whereas, this technique has been successful in the past, 
the current health problems and issues with population growth have caused the 
community to consider creating a public utility. Several of the key data I have 
collected appear in Tables 15.1-15.3. Thank you for your suggestion regarding 
collecting and tabulating these data. 

In regards to materials, there is a supplier within a few hours who can deliver 
to this area. I am not sure about different piping materials but, there are local 
contractors here who can construct concrete water tanks. I looked into the cost for 
various materials and, it appears the storage tank that they plan to build (roughly 
8 m3) is going to cost ~$2,000 dollars for the materials. This would require an 
estimated 60 bags of cement. Also there is PVC drain pipe that costs roughly 
$1.00/m for 1-in. diameter pipe. So, if we were to construct a system with 1000 
meters of piping, then we would probably need a total of $3000 for the project. 
Does this sound like a reasonable approach? 

As per your suggestion at the seminar, I collected some general information about 
the sources of water and I sketched a site map of the area with some rough distances 
and elevations. Finally, included in this fax is a preliminary layout of a piping 
system that basically follows the path of a local road and some footpaths. Thank 
you so much for your help. If you can reply with some general recommendations 
about these options, this would be very useful for me. 

Sincerely, 

Ms. Volunteer 
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Table 15.1 Water Resources 

Identification 
Symbol (id) 

Description Safe Yield (Q, L/s) Elevation (m) Straight-Line Distance 
to Proposed 

Tank Location (m) 
SI 
S2 
S3 
T1(A) 

"Not available = 

Spring 
Spring 
Spring 

Storage Tank 
V = 8,000 L 

(Proposed) 

= NA. 

0.8 
1.2 
1.3 

NA" 

310 
350 
320 

290.4 

200 
944 
1300 
NAa 

Table 15.2 Water Collection Points 

ID Village Name Households (HH) Average Elevation (m) 
275.8 
273.7 
276.5 
271.7 
275.5 
272.9 

1 
2 
3 
4 
5 
6 

Pasa Buena 
El Barrio 

Buena Vista 
Rio Blanco 

Piedra 
Barrial 

25 
23 
27 
31 
25 
28 

Table 15.3 Proposed Water Network Details 

Node Distance (m) Elevation (m) Comment" 
1 0 
2 76 
3 113 
4 19 
5 54 
6 135 
7 80 
8 99 
9 75 
10 95 
11 75 

"See Fig. 15.2. 
^Households = HH. 

290.4 
276.4 
275.4 
274.8 
275.1 
272.9 
275.8 
276.5 
273.7 
271.7 
275.5 

Storage Tank location, Tl 
Dist. from 1 to 2 
Dist. from 2 to 3 
Dist. from 3 to 4 
Dist. from 4 to 5 

Dist. from 5 to 6, Barrial community, id-6, 28 HH* 
Dist. from 2 to 7, Pasa Buena community, id-1, 25 HH 
Dist. from 3 to 8, Buena Vista community, id-3, 27 HH 

Dist. from 4 to 9, El Barrio community, id-2, 23 HH 
Dist. from 9 to 10, Rio Blanco community, id-4, 31 HH 

Dist. from 5 to 11, Piedra community, id-5, 25 HH 
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15.3.3 Your Response 

Dear Ms. Volunteer, 
It was nice to meet you at the orientation seminar the other week. It sounds like 

you have a very good opportunity to make a difference in the lives of the people who 
live in Mountain Village. I admire the commitment you have made to this project 
and, I am willing to help in any way that I can. 

In regard to your inquiry, please keep in mind that in the analysis and design of 
all water-supply problems you need to satisfy the following conservation laws from 
engineering science: 

• Conservation of mass (continuity). 

• Conservation of energy (first law of thermodynamics). 

In addition to these, you will also be interested in minimizing the cost of your network. 
I will emphasize and elaborate on these in the appropriate parts of my response 

below. In particular, cost mnimization will allow the unique determination of the 
static pressures throughout the entire pipe network that you design. First, however, 
you need to complete the planning part of the project. You have begun this with your 
GPS-survey of the area, and recording of elevations and longitude-latitude coordinates 
which, I assume, you converted to x-y (or Easting-Northing) coordinates for your 
maps (see Appendix B in Jones (2010) for this material). The tables on water flow 
rates from the available sources, the number of households, and the tapstand node 
locations, distance, and elevations are a good first step in the hydraulic design of the 
network. 

In order to size the storage tank, and to determine the adequacy of the sources, you 
will need to consider water supply and demand. Let us cover this first. 

15.3.3.1 Water Supply and Demand One of the first considerations when 
designing a water supply network is the availability of water (supply) in comparison 
with the water needs (demand) in the community. Based on the information you have 
provided, it appears that your community is very fortunate to have three springs that 
collectively have a good yield and (it appears) enough elevation potential to serve the 
project area. Another variable to consider is the water quality of these sources. In 
most cases, if a spring is properly protected, it will provide a reliable supply of good 
quality water. There are many types of water sampling and testing kits that might 
help you determine which source is the best. Consult with the District Health Office 
before they arrive and inquire about borrowing water testing equipment. Keep this in 
mind when determining which source to develop. 

It appears that all three springs are capable of supplying the water demands. If 
you consider the 2% growth rate, you can estimate the future population in this area. 
In order to do this, you have to first choose a design life for the infrastructure, often 
20-30 years for this type of system. Choosing a 20-year design life, we can calculate 
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the future population in this area using2 

F = P(l + i)t 

where F is the future population, P is the present population, i is the growth rate 
(%/100) per period (a year), and t is the number of periods (years) in the design 
lifetime. From this equation, we estimate that the future population in 20 years will 
be F = 1181 persons. 

Next, you have to determine the daily water demand for this community. There 
are a number of techniques that can be used based on the current water consumption. 
However, in most cases, the water consumption will change when a new system is 
constructed. This is usually because the rate of water consumption per person is, to 
a large extent, a function of water availability; increasing accessibility to water will 
correlate with an increase in consumption. This is important because an increase 
in water consumption often results in improvements in health and hygiene. If we 
explore the relationship between water availability and consumption further, we would 
discover that water demand can be accurately estimated based on the distance that 
people have to travel to collect it. For example, if someone has a direct household 
connection, then they will naturally consume more water than someone who has to 
travel a long distance. The water demand will also depend on the end-use of the 
water. If people have household gardens, then they might have an additional demand 
for irrigation. If someone has livestock, this will also increase the demand. At the 
same time, we should always keep in mind that there might be another source of water 
that can be used to supplement the demand for these secondary needs. 

The following tables (Tables 15.4-15.6) can be used as a starting point to estimate 
water demand (Hofkes, 1983). 

Based on the drawing you provided, it appears that you are planning to construct 
a system that uses communal water collection points, commonly called tapstands, 
to which the walking distance from each house is < 250 m. This usually means 
that there would be very little secondary demand for water, so the average domestic 
consumption could be estimated between 15 and 50 L/person/day. For the sake of 
this design problem, let us assume that the current water demand is conservatively 
estimated as 100 L/person/day, which includes an allowance for some light gardening. 
By using a larger water demand, we will also be able to account for the possibility that 
people will eventually connect a private water line to their houses so, this estimate will 
allow for expansion in the future. This becomes more important later when we start 
sizing the water distribution system, which is the piping network from the storage 
tank to the various neighborhoods in the community. 

The next step is to verify that the available supply from the yield of the springs 
is greater than the present and future demand. This is determined by calculating the 

2 Some of the equations in this chapter appear elsewhere in this book. The symbols in this case study are 
as would be used by you, the professional, responding to the aid-worker's request for help with the design. 
The symbols may or may not coincide with those appearing elsewhere for the same quantities. This is 
intended for the purpose of exposing the readers to a variety of symbols and terminology for the same or 
similar things that may be used in the hydraulics community. 
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Table 15.4 A Starting Point for Estimating Water Demand 

Type of Water Supply Average Consumption Range 
(L/person/day) (L/person/day) 

Public Water Collection Point 
Distance (500-1000 m) 
Distance (250-500 m) 
Distance (<250 m) 
Private Connection 
Single Connection 
Multiple Connections" 

7 
12 
25 

50 
120 

5-
10 
15-

-10 
-15 
-50 

30-80 
70-250 

"As reference, eight months of data collected in 2008 from the rural community of Los Morales, 
Nicaragua show a range of 78-115 L/person/day with an average consumption of 90 L/person/day. 
This system was designed for private connections and has multiple connections per household. 

Table 15.5 Water Demand Estimates for Various Facilities 

Type of Facility 

School 
Hospital 
Restaurant 
Church 
Office 

Range 
(L/person/day) 

15-30 
220-300 

65-90 
25^0 
25-40 

Table 15.6 Water Demand Estimates for Various Livestock 

Type of Livestock 

Cattle 
Horse 
Sheep 
Pigs 
Chickens 

Range 
(L/unit/day) 

25-35 
20-25 
15-95 
10-15 

0.015-0.025 

instantaneous rate of water supply available, Qs, and comparing it with the instanta-
neous rate of water demand, Qd- Thus, if 

Qs > Qd 

is satisfied, you can proceed with the proposal to develop the source. Otherwise, you 
should consider the current demand to see if it makes sense to develop the source as 
measured to meet it. 

In your project proposal, there are two sources available. Let us call these QSji 
and Qs,2, where 

Qs,i = 0.8 L/s ■ 60 s/min · 60 min/h · 24 h/day = 69,120 L/day 
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Furthermore, the future demand in 20 years is 

Qd,20 = lj 181 persons · 100 L/person/day — 118,100 L/day 

The present demand is 
Qd,o = 79,500 L/day 

Therefore, the available supply at Spring 1 is not sufficient to meet the future or 
present demand for the community. This means that you should consider Spring 2 
and determine the available supply of this source. Obtain 

QSj2 = 1.2 L/s ■ 60 s/min · 60 min/h · 24 h/day = 103, 680 L/day 

Whereas the available supply at Spring 2 is sufficient to meet the present demand in the 
community, it is not sufficient to meet the future demand. A combination of Springs 1 
and 2, however, would be sufficient to meet the water demand of Mountain Village 
well beyond the 20-year population growth and should therefore be considered in the 
initial proposal. Ultimately, the final decision will depend on the available funding. 
Spring 2 will suffice for the present demand but, if funding is available, both sources 
should be developed. Additionally, it is not uncommon for there to be a seasonal 
variation in the available water supply at the source between the rainy and the dry 
seasons. For this reason, developing both sources may account for this difference in 
the event of a reduced water supply during the dry season. 

The conclusions from the discussion in this section are, 

Qs,i < Qdfi and QSii < Qd,20, Unacceptable 

Qs,2 > Qdfi, Acceptable 

and 

Qs,i +Qs,2 > Qd,20, Acceptable; recommended if funding available. 

15.3.3.2 Water Storage Requirement The next element in the design that we 
will consider is the required volume of water storage. The reason for water storage is 
to ensure enough water supply for the times of peak water demand in the community. 
Whereas, the water supply (on average) for this system is 

Q,,l + Qs,2 = 2 L/S 

the instantaneous demand will vary throughout the day. At times, the demand will 
likely be > 2 L/s, and other times it will be less. In fact, during the late evening hours, 
the demand will most likely tend toward zero when most of the community is asleep. 
Intuitively, during morning hours when people first wake up, water consumption will 
increase. This is called the "morning-peak demand". Furthermore, it follows that 
there is an expected afternoon peak during the lunch-time hours and an evening-peak 
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during the dinner hours, mostly related to food preparation and bathing. The peak 
demand will also be an important variable when designing the water distribution 
system which will use a peak factor to determine the design flow rate. The design 
flow rate along with mean slopes and tortuosities of all pipe, and static pressure 
distributions at all pipe junctions are the primary variables affecting the pipe diameters 
in the network. 

A rough estimate for the water storage could be determined by allowing for 30-
50% of the total daily demand to be available in storage. This estimate would not 
account for the continuous supply and could grossly overestimate water storage where 
the supply is large enough to meet the peak demand. For example, if the peak demand 
at any time of the day is less than the available supply, it would be feasible to build 
the network without water storage. Thus, 

If Qs > Qd,p —> Storage Not Required 

where the subscripts s and d, p mean supply and peak demand, respectively. 
For your project proposal, use Figs. 15.3-15.4 to determine the water storage 

requirement. Figure 15.3 shows a typical demand schedule for understanding the 
peak water demand. From this figure we see that there are usually a morning peak 
of 40%, an afternoon peak of 20%, and an evening peak of 30%, where each is a 
percentage of the total daily demand. The additional 10% of the daily demand occurs 
during the time periods separating these periods. In many cases, the morning peak-
demand determines the water-storage volume because it is the largest of the three. 

The relationship between storage volume and the rates of water supply and demand 
is determined by the following integral formula, 

Vs(t) = Vs(0) + / Qs{i) - Qd{t) dt (15.1) 
Jo 

where Vs(0) is the initial volume of water in the tank (at the start of the day; the end of 
hour 1 or 1 am) and iì is adummy variable of integration. The integrand in Eqn (15.1) 
is the net flow rate that enters the tank. A positive value of Vs(t) at the end of any 
hour indicates that the tank contains some water for use at that time, whereas a zero or 
negative value of Vs(t) shows that the tank is empty. During the latter periods, there 
is obviously no water available to meet demand. The volume of the tank is determined 
by a trial-and-error procedure of choosing a series of increasing tank volumes and 
calculating the water volume in the tank for each at the end of every hour of the day.4 

In these calculations, we will assume that the tank is full at t = 0 because of the normal 

3This schedule is based on three meals a day and bathing during random hours and may need to be adjusted 
depending on local customs. For example, Jordan Jr. (2004) notes a two-meal schedule in Nepal with ritual 
bathing before each, which will produce a different demand schedule. In any case, water demand between 
6 or 7 pm and 5 or 6 am is generally negligible. 
4 A spreadsheet, like Excel, is the best way to carry out the calculations described here. 
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Figure 15.3 Typical water demand schedule for the case of three meals per day. 

Figure 15.4 Water volume in tank versus hour of the day. Hour 1 is at 1 am. 
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fill-up during the evening hours.5 An acceptable volume, in principal, is that which 
eliminates all zero or negative values of water volume at the end of each hour. For 
practical reasons, a volume is normally chosen that keeps the number of hours where 
there are zero or negative volumes to just one or two. The understanding here is that 
communities will tend to adjust their schedules to accommodate water availability 
once the network is installed and functioning (Jordan Jr., 2004). Uncertainty of the 
design data would also argue for the acceptability of an hour of empty tank. 

From this analysis and Fig. 15.4 (the data appear in Table 15.7) we see that a 
20,000-L tank (20 m3) experiences a water deficit of -1000 L for only one hour (at 
7 am). Further calculation will show that the deficit at this hour reduces to -30 L for a 
tank volume of 21,000 L. Based on the understanding of Jordan Jr. (2004) as above, I 
would recommend a 21-m3 tank (if the budget is available) or one of 20 m3 for your 
design, though I suspect the cost difference will be small. 

Another useful piece of information is the time required to fill the water storage 
tank. This result will indicate if the tank is over- or under-sized. In this example, if 
you were to construct a 20,000-L tank and the supply to the tank is Qs = 2 L/s on 
average, the time to fill the tank is 

ts = ^ (15.2) 

Equation (15.2) shows that the tank will fill in ts = 10,000 s, or-2.8 h. This means 
that during the evening hours when the community is not using water, typically about 
a 10-h period (see the evening hours in Fig. 15.3 or 15.4), the tank would overflow 
for > 7 hours in the evening (see Table 15.7 for this evidence). Overflow of water is 
normal for nearly all networks. If there was an integrated approach to managing this 
water supply, which I recommend, this water could be used for other purposes such 
as irrigating fields or livestock demand. 

Because the peak elevation head of your proposed design is just 14 m, there is 
clearly no need for a break-pressure tank in this design. 

15.3.3.3 Piping Design The largest part of engineering design in a water supply 
project is the proper sizing of the water distribution network. This problem requires 
maintaining a minimum static pressure in the network during peak hours of water 
demand in order to ensure its integrity (low pressures, in the presence of even a small 
leak in a pipe connection will allow contaminated ground water to seep into the pipe 
flows). At the same time, financial constraints play a key role in the design of these 
systems because local governments usually have a limited budget for infrastructure 
projects. As a result, finding a balance between the system cost and the system design 
is very important for the engineer on a project like this. 

In the past, pipe-flow hydraulics problems were solved using a series of compli-
cated charts, tables, nomographs, or computer programs. Data from these sources 

5The designer should verify that this assumption is correct for her/his design. For example, if the source-
flow is diverted for night-time use elsewhere, the tank may be less than full at t = 0. In this case, Vs (0) 
is calculated for the particular design. 
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Table 15.7 Water Volume in Tank Versus Hour of Day for 20,000-L Tank 

lour 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Qs 
(L/h) 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 
7200 

Demand 
Percentage 

0 
0 
0 
0 
5 
20 
10 
5 
1 
1 
5 
10 
5 

2.5 
2.5 
5 
10 
10 
5 
2 
1 
0 
0 
0 

Qd 
(L/h) 

0 
0 
0 
0 

5,905 
23,620 
11,810 
5,905 
1,181 
1,181 
5,905 
11,810 
5,905 

2,952.5 
2,952.5 
5,905 
11,810 
11,810 
5,905 
2,362 
1,181 

0 
0 
0 

Water 
Volume (L) 

20,000 
20,000 
20,000 
20,000 
20,000 
3,580 

-1 ,030 
1,295 
7,314 
13,333 
14,628 
10,018 
11,313 
15,561 
19,808 
20,000 
15,390 
10,780 
12,075 
16,913 
20,000 
20,000 
20,000 
20,000 

State of 
Tank 

Overflow 
Overflow 
Overflow 
Overflow 
Overflow 

Filling 
Empty 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 

Overflow 
Filling 
Filling 
Filling 
Filling 

Overflow 
Overflow 
Overflow 
Overflow 

always required verification before using and were sometimes in question because of 
the lack of appropriateness of the equations on which they were based. 

The computer programs are typically "opaque" in that the user is not made aware, 
or chooses not to be aware, of the program's basis. This means that an executable file 
is run on a computer, which is the result of a compilation of a source program written 
in perhaps Fortran or C++. 

Optimizing the network for minimum cost is, even today, not regularly done no 
matter what design tool is used. 

Fortunately, there are "transparent" computer programs used today that employ 
the correct friction factor for pipe flow, address pipe cost appropriately, and simplify 
the procedure for solving complex pipe-flow hydraulics problems. Though these pro-
grams are very convenient, fundamental knowledge of fluid flow in pipe networks is 
very important to correctly program, and understand and interpret the design results. 
One of the better books that bracket all of the above is Gravity-Driven Water Flow in 
Networks: Theory and Design (Jones, 2010). This book is the only reference that I 
know ofthat places all developments, equations, and design formulas on a sound fun-
damentals footing, includes simple charts for the design of single-pipe networks (for 
the intake part of the network covered below), and supplies computational (Mathcad) 
Worksheets for the solution of the more-complex distribution part of the network, all 
of which include the constraint of minimum network cost. The Worksheets contain 
the solution procedure in an easy-to-read, step-by-step manner, and appears as if it 
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Figure 15.5 Intake line diagram. 

were written on paper. I have included the Worksheet for your information with this 
mailing. 

Based on the charts developed by Jones (2010), we solve this problem by first 
starting at the source and designing the intake system to provide water to the storage 
tank. Using the appropriate Mathcad worksheet provided by Jones (2010), we will 
then solve the problem of delivering water to key locations in the community taking 
into consideration peak demands in the distribution system. 

Intake System The connection between a source and the tank is by a pipe having a 
single diameter. If there are no local high points in this pipeline (from your drawings, 
none appear), this is known as a single-pipe network (or subnetwork, since it is a part 
of a larger one, but we seldom refer to it this way; a pipe that distributes water to 
an end point by gravity and has no branches along its length is known as a gravity 
main) and there is a particularly simple tool available to design these as I will discuss 
below6. First, we need to know the flow rate from each source (QIA,2 and QIB,2), 

the mean (or average) slope of each pipe (SIA,2 ar,d SIB,2), and the actual pipe length 
between each source and the tank. I have revised the map that you provided to identify 
the values for these parameters (Fig. 15.5). 

From the data you have already provided, I know that QIA,2 = 0.8 L/s and 
QIB,2 = 1-2 L/s. The slopes are calculated from data in Table 15.1 and Fig. 15.5. 

310 m - 2 9 0 m ηΛη 

SIA 2 = = 0.10 
200 m 

6 I will neglect minor losses that come from fittings, such as elbows, because these are nearly always small. 
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Figure 15.6 Design graph for intake system for sch. 40 PVC pipe and λ = 1.0. F = 
hd/zi = 0. 

where I rounded down 290.4 m to 290 m because 0.4 m is unrealistically precise given 
that it is from a GPS device. For the second pipe, I calculate a slope of S\B,2 — 0.064 
using the same method. 

Now, let us begin to calculate the pipe sizes needed for the intake system. The 
three parameters that are needed are volume flow rate, mean slope, and a term called 
the tortuosity, λ, of the pipe. The tortuosity is the ratio of the actual length of pipe to 
that if it were run directly (along a straight line) between the source and tank. There 
are insufficient data for me to calculate this from what you have supplied. However, 
typical values for many networks where there is a normal amount of circuitousness in 
the pipelines between the source and storage tank is λ~ 1.25. I will assume λ = 1.25 
for each pipe. 

The appropriate design charts for the case of λ = 1.0 and 1.5 are presented in 
Figs. 15.6 and 15.7, respectively, for PCV sch. 40 pipe. I will interpolate between 
these to get results for λ = 1.25 since there is no single chart for this value of λ. 
Also, note that these figures assume that the tank is at atmospheric pressure (since, of 
course, it is open to the atmosphere). If we were trying to design a pipeline from the 
tank to a tapstand where we desire a nonzero static pressure head, we would specify 
a value for the ratio F = hd/z\. Here, hd is the static pressure head at the delivery 
location and z\ is the elevation head of the source, and we would use the design chart 
appropriate to a value nearest this value of F. Of course, in our case F = 0 since the 
static pressure head at the top surface of the water in the tank is zero. 

For Q\A,2 = 0.8 L/s and S\A,2 = 0.1, obtain 1-in. sch. 40 PVC pipe for D\A,2 
from both Figs. 15.6 and 15.7. In the same manner, for Q\A,2 = 1-2 L/s and S\A,2 — 
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Figure 15.7 Design graph for intake system for sch. 40 PVC pipe and λ = 1.5. F = 
hd/zi = 0. 

0.064, obtain a l |-in. sch. 40 PVC pipe for DIB,2 from both figures. Because the 
same pipe diameter is obtained from charts for λ = 1.0 and 1.5, we see the lack of 
sensitivity of pipe size to tortuosity in the range of 1.0 < λ < 1.5 for this design. 

If PVC pipe is not available, or you are required to use galvanized (GI) pipe 
because of local restrictions, you should refer to Fig. 5.13 of Jones (2010) for the 
chart appropriate to GI pipe. In this case, the Jones Charts yield a pipe diameter of 
1 ^-in. sch. 40 GI pipe for .DIA,2 and 2-in. sch. 40 GI pipe for D\B,2- The differences 
between the results for PVC and GI pipe are attributed to the difference in the pipe 
relative roughness for these materials. The PVC pipe is smoother and thus exhibits 
less frictional loss. 

Note the following: In your initial letter, you mentioned a supplier who can provide 
PVC drain pipe. This is not recommended for water distribution networks that are 
pressurized. Take time to visit the supplier to determine if there is pipe available 
appropriate for pressurized water. Different suppliers will provide pipe material 
specifications as either sch. 20 (thin-wall), sch. 40 (standard-wall), or sch. 80 (heavy-
wall). A sch. 20 pipe is drain pipe and is not suitable for pressurized networks. You 
should use sch. 40 pipe wall thickness. A sch. 80 pipe wall is too heavy duty and is 
normally for industrial applications. Some suppliers may also reference pipe using 
SDR (Standard Diameter Ratio). This is the ratio of the pipe outside diameter to the 
wall thickness. Normally, SDR 26 or SDR 13.6 pipe would be appropriate for your 
network. Keep in mind that pressure pipe can be significantly more expensive than 
drain pipe. It is not uncommon for unscrupulous contractors to try to save money 
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on a contract by using a lesser-quality pipe than specified. For this reason, close 
supervision during installation is needed to ensure the use of proper materials. 

Before moving on to design of the distribution part of the network, I offer a few 
comments on how what we have just done relates to the fundamentals of fluid flow. 
You may be curious about this. First, mass is conserved for the flow in both of the 
pipes since the volume flow rate that enters a pipe is the same that leaves it. Second, 
the design charts used above are developed from the solution of the energy equation 
(really, mechanical energy equation) for pipe flow. From your education, you may 
recall this as the first law of thermodynamics, 

• r/Pl "l \ iV2 U% ,. 
TOK l"ei + Q l y +9Z1) - (— + e 2 + α 2 γ +gz2)\ =w-q 

where m is the mass flow rate, e is the internal energy per unit mass, g is the accel-
eration of gravity, and q and w are the rates of heat transfer to and work done by the 
system, respectively. States 1 and 2 are at any two arbitrary locations along the pipe 
flow path, where the normal convention is that state 1 is upstream and state 2 is down-
stream. The terms in each parentheses on the left side of this equation account for 
pressure energy, kinetic energy, and potential energy, all per unit mass of fluid. The 
term a is the ratio of the kinetic energy in the flow to the kinetic energy based on the 
mean flow speed, ü. It accounts for the non-uniform velocity distribution through the 
cross section of the flow and is connected with the acceleration of the flow between 
two different flow speeds in the pipe. For example, if the velocity distribution were 
uniform through the cross section of the pipe, a would equal 1. Of course there is no 
rate of work done on or by the water flow in a pipe , so w = 0. 

Upon simplifying this equation with zero static pressure at the source and tank, 
and negligible change in kinetic energy due to flow acceleration from the source to 
the pipe, we get 

8(1-F) 8Q2 f(Q,D) _ 
X -K2g D5 

Here, f(Q, D) is the Darcy friction factor (the one you would normally read from 
the Moody diagram), Q is the volume flow rate, and s, F, and λ are as defined a few 
paragraphs above. Thus, when using the design charts Figs. 15.6 and 15.7, you are 
really using the energy equation to solve for the pipe diameter, D, for your problem. 

Distribution System Using the table you provided in your fax, I have revised the 
spot map that you also provided (Fig. 15.2) to identify all of the key locations in the 
network (see Fig. 15.8; the trunk pipeline in the network in this figure is sometimes 
referred to as a "distribution main"). The label attached to each of the key locations 
is commonly called a node. I also included some important information about the 
expected number of households at each connection, as well as information about the 
expected peak flow rates through each section of pipe. We will then look at each 
section in the system and size the piping so that it will deliver a minimum pressure 
of 10 psig (~7 m of water head) at the required peak flow rate. 

Before explaining the water system design specifications, we should first discuss 
how the peak volume flow rate was determined. Using the same method as above, 
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Table 15.8 Summary of Results for Peak Design Flow Rates 

Household Size 5 persons/house 
Growth Rate 2% 
Design Life 20 years 
Daily Demand 100 L/person/day 
Peak Factor 3.2 

we first determine the expected future population at each service location by using a 
2% growth rate for a 20-year lifetime. Note that we use an average household (HH) 
size of 5 persons/household based on the information you provided. Thus, 

F = P(l + if 

where, for node 7 for example, P = 25 houses · 5 persons/house = 125 persons, 
and F = 186 persons is the population at node 7, where t is 20 years in the future. 

The next step is to determine the total daily demand at the node based on an average 
household daily consumption of Qd = 100 L/person/day. For the pipe connected by 
nodes 3 and 7 (designated by subscript 3-7) for example, this is the amount of water 
that would have to pass through this pipe over a 24 hour period. Thus, 

Q3-7 = Î3-7 · Qd = 18,600 1/day = 0.215 L/s 

Finally, we need to account for the peak demand on the system which, based on 
the demand model from Fig. 15.3, is 40% of the total daily demand in a 3-h period 
during the morning peak. This is the highest of the three peaks seen in Fig. 15.3 
so this 3-h period is the basis for the calculation of the peak demand. If there were 
uniform (nonpeak) demand during this period, one would expect 3 h/24 h = 1/8 = 
12.5% of the demand. Thus, we need to increase the volume flow rate from 12.5 
to 40% by multiplying the nonpeak volume flow rate by a factor of 40/12.5 = 3.2 
to obtain the peak flow rate. The value 3.2 is called a "peak factor". The peak 
volume flow rate determined in this manner is referred to as the "peak (or design) 
volume flow rate". For example, for pipe segement 3-7 in Fig. 15.8, we obtain 
Q3_7iP = 3.2 · 0.215 L/s = 0.688 L/s « 0.69 L/s. The subscript p on the flow rate 
refers to peak. 

The results of this discussion on peak volume flow rate are summarized in Ta-
ble 15.8. 

Using the same procedure from the above paragraphs, we calculate the design 
volume flow rate for each external node (or community tapstand) and for each segment 
of the distribution main (at internal nodes) shown in Fig. 15.8. Using the law of mass 
conservation (also known as the continuity equation) we can determine the design 
volume flow rate for each segment of pipe in the network. 

The continuity equation is written as 
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Table 15.9 Volume Flow Rates for Distribution Network 
Pipe 
Segment 
2-3 
3-4 
4-5 
5-6 
3-7 
4-8 
5-9 
9-10 
6-11 
6-12 

HH Connected 

159 
134 
107 
53 
25 
27 
54 
31 
28 
25 

Present Pop. 
(Persons) 

795 
670 
535 
265 
125 
135 
270 
155 
140 
125 

Future Pop. 
(Persons) 

1,182 
996 
795 
394 
186 
201 
402 
231 
209 
186 

Demand 
(L/day) 
118,200 
99,600 
79,500 
39,400 
18,600 
20,100 
40,200 
23,100 
20,900 
18,600 

Peak Volume F 
Rate (L/s) 

4.37 
3.69 
2.94 
1.46 
0.69 
0.74 
1.49 
0.85 
0.77 
0.69 

where the summations are taken over all of the inflows to a node (Qin) and over all 
outflows from a node (Qout)- F°r example, apply the continuity equation for node 6 
in Fig. 15.8 to get 

ζ?5-6,ρ = ζ?6-11,ρ + Qe-12,p 

Knowing the design volume flow rates for the tapstands at nodes 11 and 12, we obtain 

Q5_6,p = 0.77 L/s + 0.69 L/s = 1.46 L/s 

The same procedure is followed for node 5 from which the value for Q4-5,P is 
determined, and so on. 

The volume flow rate results for the distribution network are summarized in Ta-
ble 15.9 and shown schematically in Fig. 15.9. 

The Mathcad Worksheet: We are now ready to use a Mathcad worksheet to calcu-
late the pipe diameters in the distribution system. The network of connected pipes in 
this system forms what is referred to as a "multiple-pipe network." To determine the 
diameters for each pipe segment, we need to solve an energy equation for each, where 
the volume flow rates are given in Table 15.9, and the pipe lengths and elevations of 
each node are from Table 15.3 which refers to your Fig. 15.2. 

The Worksheet appears in Figs. 15.10-15.13 and I have attached a copy of the file 
to this mailing. The Worksheet is divided into three sections. These are preliminaries, 
and the forward and reverse solutions. The forward solution calculates the theoretical 
diameters that satisfy the energy equation for prescribed flow rates (Q), pipe lengths 
(L), and elevation changes (Az) for each pipe segment in the network. Once obtained, 
a nominal pipe size having the next largest ID is normally chosen for each pipe [see 
Chapter 3 in Jones (2010) for pipe dimensions]. The reverse solution uses the actual 
ID of the selected pipe sizes to calculate the actual volume flow rates and static 
pressure heads at each junction in the network. The static pressure heads at each 
pipe junction in the forward solution are arbitrary if we consider just the continuity 
and energy equations. Cash conservation (i.e., minimization of pipe cost) is used 
as a constraint to determine unique values of junction static pressure heads, (i.e., 
those that minimize cost). This is done in the MathcadWorksheet using the construct 
Given.. .Minimize. 
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The preliminary calculations in the Worksheet includes the following steps: 

• Definition of water properties of density, p, and viscosity, v. 

• A convergence tolerance, TOL, used in Mathcad to determine when a root-
finding algorithm, has found the root to sufficient accuracy. 

• Definition of Reynolds number (Re) as a function of Q and D, and a as a 
function of Reynolds number. 

• Setting the absolute roughness of the pipe wall. 

• The friction factor function as defined by Eqs (2.16) and (2.17) in Jones (2010). 

• The correspondence between nominal pipe size and D for the pipe material 
and type (schedule or SDR as necessary) of pipe under consideration (I will 
consider sch. 40, PVC pipe in this case). 

• Cost data for the pipe as a function of nominal pipe size. You will need to adjust 
these values to pipe costs in your community. I assume values from central 
Nicaragua from several years ago. 

The forward solution includes the following: 

• Initial guesses for the values of D. 

• Values for the input parameters for each pipe segment in the network, including 
pipe lengths L, volume flow rates Q, appropriate minor loss coefficients, K 
and (|j)e> and elevations, z. I assumed a globe valve in each pipe segment and 
included K = 10 for each. This value corresponds to an open globe valve; 
see Chapter 2 in Jones (2010). I ignored all other possible minor losses for 
this analysis. Once nominal pipe sizes are selected after the forward solution 
is obtained, this valve can be adjusted to achieve the correct design flow rates 
in the distribution system. 

• Definition of the energy equation for each pipe segment of the network. Each 
is given a symbol r and the needed functional dependence. 

• Formula for the total pipe material cost, T c o s t l and Tcosti2. They are added to 
get the total pipe cost, Tc. 

• The solution of the energy equations using either the Given.. .Find construct 
or Given.. .Minimize construct. The latter is discussed in Chapter 10 and 
further in Section 11.4.4 in Jones (2010). 

• Plots of the results or secondary calculations, such as checking to ensure that 
all equations are satisfied to the desired tolerance. 

The reverse solution includes the following: 
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Table 15.10 Pipe Sizes for Distribution Network 

Pipe Length Elevation Theor. D Actual D (Nom.") Actual Q Actual K 
Segment (m) Change (m) (in.) (in.) (L/s) 

3.068 (3) 
3.068 (3) 
3.068 (3) 
2.067 (2) 
1.610 (1±) 
1.610 ( l | ) 
1.610 ( l | ) 
1.610(l|) 
1.610(l|) 
1.610(l|) 

2-3 
3-4 
4-5 
5-6 
3-7 
4-8 
5-9 
9-10 
6-11 
6-12 

76 
113 
19 
54 
80 
99 
75 
95 
135 
75 

14 
1 
0 
0 
0 

- 2 
1 
2 
2 

- 1 

2.88 
2.65 
2.58 
2.00 
1.10 
1.49 
1.64 
1.38 
1.33 
1.49 

TBD" 
TBD 
TBD 
TBD 
TBD 
TBD 
TBD 
TBD 
TBD 
TBD 

TBD 
TBD 
TBD 
TBD 
TBD 
TBD 
TBD 
TBD 
TBD 
TBD 

"Pipe is sch. 40 PVC. 
'Entries labeled TBD need to be completed. 

• Initial guesses for the values of Q (from earlier in the worksheet) and static 
pressure heads at the junctions of the distribution network. 

• Values for the input parameters for each leg in the network as in the forward 
solution; normally only K will be included here. 

• The solution of the energy equations using either the Given.. .Find construct 
or Given.. .Minimize construct, as above. 

• Secondary calculations as above. 

I refer you to Chapter 11 in Jones (2010), Section 11.6.1 for further details. 
The theoretical and actual diameters for sch. 40 PVC pipe from the forward so-

lution are presented in Table 15.10. The values range from 3-in. nominal for the 
segments having the largest flow rates to 1 ^-in. nominal for the branches. For nearly 
all segments, I have chosen a nominal pipe size having ID slightly larger than the 
theoretical value for D. This allows me to adjust the minor loss value (K) for the 
globe valve in each pipe segment (in terms of the simulation in Mathcad this means 
increasing or reducing the value for K) to obtain volume flow rates that match design 
requirements. 

Note that I have not completed this design. The reverse solution has been pro-
grammed correctly in the Worksheet, but the correct values for K for the pipe segments 
have not yet been selected and thus remain for you to complete. You will want to 
adjust the values of K to obtain the design flow rates. In this way, you will be assured 
that the network will perform as you specified. Since increasing K for a given globe 
valve corresponds to its closing, this result will also give you a feel for the sensitivity 
of the flow balance in the network to the throttling required in each segment. In any 
case, we understand that we are able to obtain the design flow rate in each pipe in the 
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Figure 15.10 Page 1 of Mathcad worksheet for solution of distribution network. Worksheet 
BranchNetwork_Philippines_withcost_verl. xmcd. 
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Table 15.11 Static Pressure Heads at the Junctions for Distribution Network 

Node Static Pressure Head (m) Static Pressure Head (m) 
Based on Theor. D Based on Actual D 

(Optimal) 
3 12.26 
4 10.79 
5 10.16 
6 9.23 
9 8.04 

"Entries labeled TBD need to be completed. 

system because we chose a pipe size larger than theoretical for all segments (with 
one exception, but the theoretical and actual ID were nearly identical in this case). 
Be aware that a globe valve, whose job is to throttle the flow (in other words, reduce 
the static pressure), effectively reduces the pipe diameter in which it is installed. 

As I mentioned above, if you plan to use GI pipe instead of PVC, you will need to 
rerun the Mathcad Worksheet with a roughness value (e) 100 times larger than that 
for PVC pipe. Generally, you should expect slightly larger pipe sizes with GI pipe 
because of the rougher wall. 

The static pressure heads at the junction of multiple pipes in this system are shown 
in Fig. 15.11. All values are acceptable because each is > 7 m as required by this 
design. Once you solve the reverse problem, you will want to inspect these values 
again to ensure their acceptability. 

After adjusting the pipe diameters to correspond to nominal sizes, the total cost 
of $2263 (central Nicaragua pipe-cost data,) is greater than the pipe cost of $1910 
based on the theoretical pipe diameters, as expected. The latter was obtained by 
determining the static pressure heads at the junctions that minimize pipe sizes and, 
thus, cost. A few plots of cost versus the static pressure heads can be made in the 
Mathcad Worksheet to determine the sensitivity of pipe size and cost to the pressure 
heads. We refer to this exercise as a "sensitivity" or "parametric" study. 

Unfortunately, it appears that your original assumption of $1000 for pipe will 
need to be adjusted by more than a factor of two. Perhaps the municipality or state 
government will consider making up the difference at your request. 

One way to reduce the cost of the material for your network is to use a composite 
pipeline in place of a uniform-diameter pipe in one or more network segments. For 
example, in your design, the diameter of segment 3-4 is 2.65 in. We chose a 3-in. 
(nom.) PVC pipe having an ID of 3.068 in. for it (see Table 15.10). The choice of a 
pipe size larger than required has two effects: it costs more, and it does not dissipate 
as much potential energy as it should. A composite pipeline is one of two diameters 
in series that exhibits the same pressure drop as its uniform-diameter counterpart. 
One pipe has a diameter {Da) larger than the theoretical one (of diameter D), and the 
other has a diameter {Db) smaller than D. The formula, valid for PVC pipe, for the 

TBD" 
TBD 
TBD 
TBD 
TBD 
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Figure 15.14 The elements of a gravity-driven water network. 

ratio of the length of pipe a to the overall pipeline length, L, is 

La _ D-l9'A - D " 1 9 / 4 

T - „-19/4 n-19/4> Db<D< Da. 

Once this equation is used to calculate La/L, the lengths of pipes a and b are easily 
determined (note that L — La + Lb). These results assure us that the frictional head 
loss for the pipeline of theoretical diameter D will match that of the composite pipeline 
of Da and Db. For your design, the theoretical D of 2.65 in. is bounded by nominal 
2-in. (Db = 2.067 in.) and nominal 3-in. (Da = 3.068 in.) pipe. With these, I 
calculate La/L = 0.818 and for L = 113 m, La = 92 m. This gives Lb — 21 m, 
slightly reducing the cost of the network since less nominal 3-in. pipe is used. To 
add flexibility to the design, I recommend reducing the length of the smaller-diameter 
pipe as calculated by the above formula by perhaps a factor of 0.8-0.9. By doing this, 
there will be "excess" static pressure not dissipated by major loss that can be used for 
unanticipated needs. 

15.3.3.4 Miscellaneous Hydraulic Elements There are other hydraulic ele-
ments in the network you are designing that need to be considered. Among these are 
tapstands and miscellaneous things like valves, air vents, and vacuum breakers (see 
Fig. 15.14). 

Water Collection: There are typically three types of collection points in a gravity-
driven water network. The water collection point can entail a communal water facility, 
a single household connection, or multiple household connections. It is important to 
understand that the amount of water consumed and the design flow rate increases sig-
nificantly as the number of connections to system increases. A system that is designed 
to supply communal water collection will be under-designed if private households 
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begin connecting into the system after is has been installed. For this reason, it is often 
advisable to design the distribution mains to be able to provide for private connections 
regardless of the type of water collection. This often entails anticipating a future de-
mand on the system and oversizing the water distribution mains to be able to account 
for a larger design flow rate. Since we estimated a demand of 100 L/person/day, we 
have essentially oversized the mains to accommodate private household connections. 

A Tapstand - Communal Collection Point: Communal water collection points are 
often referred to as tapstands and are designed to deliver water to a central location 
in an area to provide equal access to the collection facility. The number of taps can 
be increased at a single collection point to provide more households with water and 
reduce the waiting time for collection. An important consideration in the design 
of a communal water collection system is the tapstand location. This can often be 
a sensitive issue in a community as every household will want a tapstand located 
close to home for convenience. For this reason, the final design and location of a 
communal tapstand should include input from the local community. One of the roles 
of the engineer or project manager in a communal water distribution system is to 
facilitate the decision-making process for determining the site location of community 
tapstands. Incorporating community participation in this phase of the project will also 
ensure that any cultural considerations are taken into account and that the final design 
is appropriate to the needs of the community. In most situations, a water collection 
point is more than a physical structure because it also serves as a meeting point where 
people make decisions about the community and spend a significant amount of time.7 

For this reason, another design consideration in addition to maintaining good drainage 
is having a clean, hygienic, and attractive place for people to socialize. 

The project engineer is often involved in establishing minimum standards when 
facilitating the final design of a water collection facility. From a technical perspective, 
the number of tapstands in an area will depend on two variables, the number of users 
and the distance to the collection point. Additionally, the final design of a tapstand 
should take into consideration the site drainage as well as the structural integrity of the 
design and the pressure limits of the valves, meters and fittings. Tapstand designs are 
presented in Jordan Jr. (2004), Mihelcic et al. (2009), Anon. (1979), Anon. (1990), 
and Jones (2010). The final water collection points should be determined so as to 
provide for a convenient location for as many households as possible. The minimum 
standard for most water supply projects is (Anon., 2004), 

• A maximum distance of 500 m to the nearest water collection point, 

• A minimum of one tapstand for 250 people. 

Whereas, this standard is commonly used for water projects aimed at maintaining a 
minimum standard, it is often more appropriate to determine the site locations based 
on geography, site topography, and the community's needs. Another approach would 
simply estimate the time required to collect water and define the area using a minimum 
recommended round-trip collection time. 

7In sociological terms, this is like "the" local street corner or "watering hole" in an urban community. 
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A poorly designed tapstand can often limit access to water by not taking into 
account the site drainage and conveyance of waste water at the facility. This is pri-
marily a concern because standing water can create breading areas for mosquitoes 
that is a vector transmission route for many environmental diseases in tropical cli-
mates. Additionally, poor drainage can often cause already vulnerable populations 
within a community to become more isolated. An example of this is handicapped or 
elderly people who already have difficulties accessing water. A properly designed 
tapstand will take site drainage into consideration by locating the facility in an area 
where standing water will not collect around the tap and where runoff will not impede 
access. A typical installation will include some type of conveyance for waste water 
such as a concrete channel or a drainage pipe that discharges the water to a natural 
swale or a stone-filled soak pit. In some cases, the community may decide to use the 
waste water for irrigation purposes. 

The primary concern when designing the structural supports for a tapstand is 
protecting the valves and fittings. In most cases, some type of stone or brick masonry 
is used to support the stand-pipe; the water pipe that rises vertically to provide an 
easier means of collecting water. Some designs use a steel reinforced concrete column 
for this purpose, especially in areas where children have access to the tapstand. This 
additional protection is necessary to prevent damage that may result if children were 
to play around the water collection point. 

An additional structural consideration is the protection of water meters or valves the 
tapstand connects into the branch pipe. Where water meters and valves are installed, 
a concrete or stone metering box with an access cover is often used to protect against 
corrosion and tampering. If a gate-valve is installed, it is feasible to protect the valve 
by simply using a 4-in. PVC pipe that is slotted at the bottom to fit around the valve 
and has an access cap at the surface. 

Pressure limits for public tapstands are important and need to be considered. If 
the pressure is too high, the faucet valve may leak or prematurely wear when it is 
opened slightly. If the pressure is too low, the water flow rate will be too small. Most 
manufacturers of faucet valves rate the pressure limit in the range of 50-70 psig which 
translates to 35-50 m of water head [these generally agree with Jordan Jr. (2004)]. 
Under these conditions, the outlet velocity for a typical faucet with a design flow rate 
of 0.2 L/s is highly turbulent, and would create an intense jet and splashing during 
water collection that is not desirable. For this reason, the recommended pressure 
limits at a water collection point often range from between 10-30 psig or, 7-20 m 
of water head. In some circumstances, controlling the tapping pressure at the water 
connection is not feasible due to terrain and material limitations. In these instances, 
a pressure diffuser device [a fixed minor-loss element; see Chapter 7 in Jones (2010)] 
can be installed at the location where the delivery pipe connects to the water main. 
These devices should be designed specifically for the site conditions and can include 
a series-connected globe valve, or an orifice-type of flow restrictor (Jordan Jr., 2004). 

Private Connections - Single and Multiple: It is very challenging for an exter-
nal organization to control the number of connections to a community-based water 
system. The management of private connections to a gravity-flow water distribution 
system requires an intimate understanding of the day-to-day operations of the water 
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Figure 15.15 cross-sectional view of large globe valve. 

supply network, as well as the specific needs of the community. For this reason, the 
role the project engineer is primarily to build the capacity of the local water associ-
ation and provide them with the skills and knowledge to make good decisions about 
the water system. To meet these needs, it is recommended that the project engineer 
incorporates training and capacity-building workshops into the project implementa-
tion so that local technicians and managers can make informed decisions about the 
system's operations. 

Valves, Air Vents, and Vacuum Breakers: Both gate and globe valves appear in 
Fig.15.14. A gate valve belongs to a class that may be thought of as "block" valves. 
The purpose of these is to either allow the full flow to pass or be totally turned off. 
No pressure reducing (throttling) should be performed with a gate valve because they 
are not designed for this purpose and will prematurely fail if operated in this way. 
The gate in this valve is moved up or down by rotating the handle. When the gate is 
down, the flow is blocked, and when up, is fully open and out of the way of the flow. 

Although a globe valve can be used as an "on-off" valve, its primary function is 
to throttle or reduce the static pressure in the flow. The flow passageway between the 
metallic disk and valve seat as seen in Fig. 15.15 is adjustable. When the passageway 
is adjusted to be small, a large pressure drop occurs in the flow between the valve 
inlet and outlet. Because of the importance of energy management in gravity-driven 
water networks [see Section 1.5.1 in Jones (2010)], the globe valve is used in many 
locations especially where appropriate for control and flow balancing, in addition to 
intentional energy dissipation. 

There is a need for air vents at local high points to vent trapped air in any water 
distribution network. This is discussed more fully in Chapter 14 in Jones (2010), 
where models for the potentially penalizing effect of trapped air in the network are 
also developed. A bucket-type air vent opens to vent air when there is an air-water 
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level in the body of the air vent. This level indicates the presence of air in the network. 
Alternately, a gate valve on the branch of a tee fitting installed at the local high point 
can be used to manually vent trapped air. Finally, a long vertical pipe attached to the 
local high point may be used to vent air automatically. In this case, the top end of 
the pipe is open to the atmosphere and its elevation must be approximately above the 
surface level of the reservoir or nearest tank upstream from it. 

A vacuum breaker prevents the formation of negative gage pressure in a flowing 
pipe. Negative pressures in the flow are undesirable for many reasons which, I am 
sure you can imagine. A vacuum breaker can be a purchased unit that is installed 
in-line in the pipe. In this case, a spring in the body of the vacuum breaker allows air 
from the outside to enter the flow should the pressure fall below a pre-set value. In 
its simplest form, a vacuum breaker can be a vertical piece of pipe with an open end 
at the top. This would automatically bring air into the network when the pressure of 
the flow falls below atmospheric. 

Finally, you will need to include gate valves at the lowest end of all runs of pipe 
that form valleys. These will allow for periodic cleaning of solid debris from the pipe 
that accumulates over time. 

Non-hydraulic Design: Regarding the important topic of tank and reservoir con-
struction, much is available in the literature, which I assume you have access to, so I 
will say just a few words. Water storage tanks are used for storing water during the 
nonpeak periods for use during the peak periods of consumption as discussed above. 
The design and construction of a water tank is a specialized field of engineering and 
needs to consider geotechnical issues with the tank's foundation and material selec-
tion for construction. In most cases, local expertise and resources can be utilized for 
addressing these concerns. It is recommended to consult with a local engineer once 
the final location of the storage tank facility has been selected. The local engineer 
should make the final decision if the site selected is feasible from a geotechnical 
point-of-view. A cross-sectional view of a typical water tank is shown in Fig. 15.16. 

Local materials should be used for the construction of a water storage tank. In 
some countries, elevated steel water tanks are designed for municipal water systems. 
Elevated tanks can be complicated to construct and require very specialized skills 
in welding and project management. Given the mountainous nature of your project 
area, it is probably not necessary to plan for an elevated water tank. 

Some areas of the world have successfully constructed water storage tanks using 
ferrocement technology rather than concrete. Ferrocement water tanks consist of a 
cement-rich mortar with a water-proofing agent that is plastered onto a steel-mesh 
frame. This saves significantly in material cost as the amount of cement required is 
much less than that for poured concrete tanks. It may even be feasible to construct 
a buried or semisubmerged water tank, if the tank location is sited properly. Buried 
tanks can be constructed with concrete block, brick, or ferrocement also have sig-
nificant costsavings because of a reduction in wall thickness and steel reinforcement 
requirements. 

Steel reinforced concrete water tanks are the most common type in developing 
countries because the masonry and carpentry skills for construction are often locally 
available. These water tanks are constructed using wood forms with steel-bar rein-
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Figure 15.16 cross-sectional view of water storage tank. 

forcement. After the forms and the steel have been assembled, a concrete mixture of 
Portland cement, sand, gravel and water is poured into the frame. The forms are then 
removed after a 3-7-day curing period. In any water tank design and construction, 
care should be taken to ensure that the water does not become contaminated as it 
sits in the tank. For this reason, a concrete cover or a wooden roof is constructed 
to prevent air-born contaminants from entering the tank. If a concrete cover is used, 
steel reinforcement is needed along with an access hole for maintenance. If a wooden 
roof is constructed, then some type of mess screen is needed to prevent animals from 
getting inside. Finally, care should also be taken to install the piping accessories 
prior to any concrete work. This entails determining the exact location, diameter and 
material for the inlet, outlet, overflow and the clean-out pipes for the water tank. See 
Fig. 15.17 for a picture of a protected valve box and Fig. 15.18 for a typical view of 
water inlet flow to a tank and overflow arrangement. 

For further details, please see Jordan Jr. (2004), Mihelcic et al. (2009), or other 
references from reputable development guides. 

I hope my response has been helpful to you. Please contact me if you have any 
questions. 

Sincerely, 

You 
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Figure 15.17 Protected valve box. 

Figure 15.18 Tank inlet and overflow. 
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CHAPTER 16 

EXERCISES 

"Practice makes perfect." 
- Proverbs 

16.1 COMMENTS 

The exercises below are specific to the chapter as noted. Their order of appearance 
generally matches that in the chapters. Unless directed otherwise, assume all pipe 
to be sch. 40, IPS series, PVC pipe. Assume the water temperature is 10°C. The 
solutions appear beginning midway through the chapter. 

The index does not include entries in this chapter. 

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 
Copyright © 2010 John Wiley & Sons, Inc. 
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16.2 THE PROBLEMS 

Chapter 2 

1. The turbulent velocity distribution, which appears as the middle curve in Fig. 2.2, 
may be approximated based on the "1/7-power law" 

^ = Φ 1 / 7 (16.1) 

where umax is the maximum velocity of the flow at the pipe centerline, r is the 
local radial location, and R is the outer radius of the pipe. Calculate u/umax 

for r/R of 0.05,0.1,0.2,0.4,0.6,0.8,0.9, and 1.0 based on the 1/7-power law 
and qualitatively compare with the velocity distribution in this figure. 

2. From the general energy equation, Eqn (2.7), develop Eqn (2.25). Simplify it 
to obtain Eqn (2.40) for minor-lossless flow. 

3. Using Eqs (2.2), (2.6), and (2.9), calculate the temperature increase from inlet 
to outlet for water flow in a 100-m long, straight, 2-in. nom. PVC pipe at a 
flow rate of 1.2 L/s. Neglect minor losses and assume there is no heat transfer 
from the pipe to the surroundings. Comment on the significance of the results. 

4. Make a list of the restrictions applied to the Bernoulli and energy equation and 
compare them. Interpret these restrictions in your own words. 

5. The following flow speed and head loss data were collected in a lab test for 
steady flow of water in a straight, horizontal brass tube of inside diameter 1/4 in. 

hL 13.7 9.39 7.73 7.44 6.34 5.77 4.92 3.72 2.28 1.17 
ll Z5 2Λ L83 L72 L61 K5 \Λ Î7Î4 09 06~ 

hL is in inches of Hg, and u is in m/s. Use this data to validate the Darcy-
Weisbach equation [Eqn (2.10)]. Calculate and plot the friction factor against 
Re from the data and Eqn (2.10). How do the results from Eqn (2.10) qualita-
tively agree with these data? 

6. Beginning with the energy equation for a single-pipe network where the pipe 
is straight, Eqn (2.33), develop the same for a minor-lossless flow in a pipe of 
arbitrary length and reasonably small slope, Eqn (2.45). 

7. Consider a smooth, single-pipe network of mean slope s — 5.5%, tortuosity 
λ = 1.18, and peak elevation z\ = 20 m, with single globe valve installed at its 
lowest point. On the other side of the valve is atmospheric pressure. For a pipe 
with ID of 2.067 in., plot the volume flow rate as a function of the minor loss 
coefficient, K (K is proportional to the closure fraction of the valve). Vary K 
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from 10 (full open) to 500,000 (nearly closed). Ignore other minor losses and 
a in the network. 

8. Calculate the volume flow rate in a galvanized iron pipe of ID 3.36 in. and 
L = 3.4 km long. The pipeline is under 3-atm of pressure at the inlet and 
the outlet discharges to atmospheric pressure. The elevation change, z\ — z?, 
is —10 m. There is a partially closed globe valve at the discharge for which 
K = 350. Neglect other possible minor losses. 

9. Verify that 1 ° of longitude at the equator is ~ 111,300 m. Refer to Appendix B 
and use the Excel spreadsheet from Dutch (2009). What is the distance equiv-
alence of 1° of longitude at 40° latitude? 

10. Consider the GPS data (obtained by averaging over 10 readings each for latitude 
and longitude) in DMS format as shown in Table 16.1. Referring to the material 
in Appendix B, calculate the latitude and longitude of the source in decimal 
format and the mean slope between the source and delivery locations. The 
elevation change between the source and delivery locations, Az, is 46.5 m 
obtained by averaging 10 GPS elevation readings. 

Table 16.1 Data for Exercise 10 

Name Latitude Longitude 
Source 19° 13' 47" -75° 18' 50" 
Delivery 19° 15' 22" -75° 19' 20" 

Chapter 3 

11. Look up and report the inside diameter and pressure rating for the pipe in the 
following table. Report pressure rating in values as supplied in Chapter 3 and 
in head of water (m). See Chapter 3 for the definition of the pipe materials 
PVC, PE, and ABS. 

Nominal Size Wall Thickness Reference Material 
Hn̂  sch. 80 PVC 

3ì in. sch. 40 ABS 
2 in. sch. 40 PVC 
1 \ in. sch. 80 PE 
\m. SDR 11 PE 

75 mm SDR 13.6 PVC 
25 mm SDR 21 PE 
4 in. SDR 26 PVC 
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Chapter 4 

12. An oil refinery requires a flow rate of water (10°C) at 0.3500 m3/min. The 
length of supply pipe is 1345 ft between the main and delivery location and 
34 m below the plant. It is known that the run will require 10-90° elbows and 
flow through the branch of a tee. Determine the minimum nominal galvanized 
steel pipe size required if the supply and delivery static pressures are known 
to be 1850 and 475 kPa, respectively. How is this calculation performed if 
Method 2 (see Section 4.2) is to be used to solve for D? What impact will the 
neglect of minor loss have on the calculation of D? 

13. Use the Darcy-Weisbach equation, Eqn (2.9), and the friction factor from either 
the Colebrook equation [Eqn (2.12)] or the Churchill correlation [Eqn (2.16)] 
to calculate the head loss (in meters) per 100 m of straight pipe for volume flow 
rates between 0.1 and 5.0 L/s and for the standard PVC pipe dimensions con-
tained in the appendices in Jordan (2004, reference Table V). For the absolute 
wall roughness, assume smooth pipe. The value for the absolute roughness 
for smooth pipe is presented in Chapter 2. Compare your results with those of 
Jordan Jr. (2004) presented in Reference Table XI. Comment on the extent of 
agreement between the two. Base Re on the kinematic viscosity of water at 
10°C. 

Plot head loss (in m) per 100 m of straight pipe versus the volume flow rate 
and in the plot, ignore results for flow speeds less than 0.7 m/s and greater than 
3 m/s. 

14. InExercise 13, the kinematic viscosity was based on 10°C. Rework this problem 
with the kinematic viscosity based on water at 27° C and compare it with the 
results of Exercise 13. What is the range of variation between these two sets 
of results, expressed as a percentage difference? Comment on the importance 
of this effect in your designs. 

Chapter 5 

15. By making the appropriate assumptions for gravity-driven flow in a vertical 
pipe, show that the energy equation, Eqn (2.40), reduces to Eqn (5.2). Using 
Mathcad, solve Eqn (5.2) and reproduce the results that appear in Fig. 5.2. 

16. In the community of Arena Bianca in central Nicaragua, there is nearly a uni-
form slope between the source and the tank and between the tank and the 
tapstand in the village. Because of this we can assume the pipe to be straight 
[i.e., it will have no bends from elbows (λ = 1)]. A flow rate measurement at 
the source has determined Q = 0.23 L/s and an Abney level is used to find the 
slope of the system of s = 0.015. An altimeter and a GPS give the elevation 
difference between the source and the tank {z\ ) of 452 m. Neglect minor losses. 
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(a) Calculate the PVC nominal pipe size between the source and the tank needed 
to satisfy the given geometry and flow conditions. What is the actual maximum 
volume flow rate of water with this pipe size? What is Re and is the flow laminar 
or turbulent? Check your result for D using the approximate formula, Eqn (9.2). 

(b) If there is a water demand of Q = 0.38 L/s during the peak consumption 
periods of the day, calculate the smallest possible PVC pipe size (in inches) 
between the tank and the tapstand if the elevation difference between the two is 
57 m and the distance measured along the ground between the two is 2840 m. 

(c) If there is uncertainty of ±10% in the slopes between the source and the 
tank, and between the tank and the tapstand, how are the pipe sizes affected? 

(d) If there is uncertainty of ±20% in the elevation measurement, how is the 
pipe size affected? Assume the slopes remain as specified above. 

17. A low-head, high-flow gravity water system is proposed for the town of El 
Guayabo in central Nicaragua. The contour of the ground is not uniform and 
the flow path between the source and the tank is very circuitous. The pathlength 
between the source and the tank is 95 m and a survey of the land between the 
two with an Abney level gives a mean slope of s = 0.08. There are 23 bends in 
the system and we will approximate each as a 45° elbow. In addition, because 
of the locations of several buildings there are many 90° elbows causing an 
Le/D value of 502. A filter at the source is known to have a K value of-22. 
A flow rate measurement at the source has determined Q = 0.55 L/s. From 
the Abney level, the elevation difference between the source and the tank (z\) 
is found to be 6 m. 

Analyze this system and recommend a nominal PVC pipe size from the source 
to the tank. Reassess the design if there is uncertainty of ±20% in the elevation 
measurement. How does the design change to accommodate an annual increase 
in the water demand of 2% over a 10-year time period? What is the effect of the 
minor losses? The elbows? The source filter? What is Re? Use the appropriate 
Mathcad worksheet or, for a first-cut estimate without minor losses, the design 
figures from above. Check your result for D using the approximate formula 
that appears in footnote 8 of Chapter 9. 

Chapter 6 

18. Using a few steps of algebra, show that Eqn (6.6), when written at x = i, 
reduces to Eqn (2.34) for a straight pipe of constant cross section and slope, sç. 

19. Inspect Fig. 6.4 and explain the reasons for the variation in Dn in your own 
words. Focus on the inflection point in the 6000-7000-m range. Carry out 
this exercise by examining the terms in the energy equation, Eqn (6.7), without 
rereading Section 6.3. 
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20. Consider the following example of a three dimensional network. A single-
pipe, gravity-driven water network in a hilly region is being planned and it is 
determined that the final run of the pipe is in the form of an inclined helix as 
shown in Fig 16.1. The parametric equations that describe this geometry are 

x{t) = {400 - 40πί} m 
y(t) = {200 + 20 COS(2TTÎ) - 10ί} m 

z(t) = {0.3[200 + 20 sin(27ri) - 10i]} m 

where t is a parameter whose range is 0 < t < 3. If the pipe is nominal 11, 
sch. 40 PVC and the flow rate is 2.0 L/s, calculate the static pressure distribution 
from Eqn (6.12) and plot it as a function of coordinate x. As the designer, are 
you satisfied with this distribution? Ignore minor loss, but include a at the 
source. 

Figure 16.1 Network of Exercise 20. The vertical axis appears in a magnified scale. 

Chapter 7 

21. Follow the example of Section 7.2 and write a small worksheet to solve for the 
pressure distribution in a single straight pipe of uniform slope and pipe diameter 
with a series of three minor-loss elements uniformly spaced along the pipe (at 
L/4, I//2, and 3L/4). To investigate the effect of the minor loss K-values, 
imagine each loss element is a globe valve. Plot the dimensionless pressure 
distribution, p(z)/pgzi, for s = 5%, L = 1000 m, and Q = 4.3 L/s for 
K = 10,400, and 700 for each of the three valves. The pipe is 4-in. nominal, 
sch. 80 GI. The source is at atmospheric pressure. 
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Chapter 8 

22. Consider a variation of the data set obtained from a site survey for a network 
in San Benito, Nicaragua, where the measured flow rate of water is 0.61 L/s. 
The survey data are presented in Table 16.2. (a) Use Mathcad to design the 
pipe to produce an acceptable positive static pressure at the station where the 
pipe is at its highest local peak. Multiple pipe diameters are permitted, (b) If 
the pipe sizes remain fixed at the values determined in part (a), determine the 
increase in the value for the flow rate if a static pressure at highest local peak 
is allowed to be atmospheric pressure. 

Table 16.2 A Variation of the Survey Data for the San Benito Site 

Station x (m) y(x) (m) z(x) (m) Le(x) (m) 
0 
5 
8 

C3 
C4 
C5 
C6 
C7 
C8 
C9 

Cll 
C12 
C13 
C15 
C17 
C19 
C21 
C23 
C24 
C28 

0.0 
-32.2 
-70.9 

-232.6 
-266.8 
-298.2 
-317.6 
-350.6 
-389.4 
-398.3 
-359.6 
-360.0 
-392.2 
-355.4 
-382.4 
-347.7 
-280.2 
-355.7 
-279.8 
-357.8 

0.0 
-47.1 
16.1 
84.2 
106.8 
162.7 
203.2 
232.6 
247.3 
269.5 
388.1 
442.0 
553.3 
668.6 
810.5 
917.4 
1121 
1307 
1421 
1636 

24.7 
13.2 
10.3 
13.3 
17.1 
11.9 
8.2 
12.0 
11.3 
10.1 
11.4 
7.3 
8.5 
7.3 
12.7 
19.5 
22.3 
4.0 
2.7 
0.0 

0.0 
58.2 
132.3 
307.8 
349.0 
413.3 
458.4 
502.7 
544.3 
568.2 
693.0 
747.1 
862.9 
983.9 
1128 
1241 
1455 
1657 
1795 
2023 

.2 — 

23. Demonstrate that the acceleration term, L9^^, in Eqn (8.11) is negligible 
relative to the remaining two terms in this equation by making t in Eqn (8.11) 
dimensionless with respect to Atsc = π0'2„ ■ Show that Eqn (8.11) reduces 
to Eqn (8.14) once L^ffi is neglected. 

24. A large tank of 55,000-L capacity and Azt = 4 . 5 m high is to be drained. The 
tank is connected to a 2-in. nominal sch. 40 GI pipe, 187 m long, open to the 
atmosphere at its end. There are four 90° elbows and an open globe and gate 
valve in this pipeline. The elevation change from the bottom of the tank to the 
end of the pipe is Azp = 12.5 m. Calculate the steady state flow speeds for 
this process where the flow is driven by 

• Azt + Azp 

• Azp 
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to get ïï2,ooi and ü2,oo2> respectively (see Fig. 8.15). Calculate the time that it 
takes the flow to accelerate from zero speed to 99% of u2,ooi and the time that 
it will take to drain the tank. Check your result by using the average flow rate 
over the drain time. 

25. One favorite problem on the topic of inviscid flow in fluid mechanics is the 
frictionless syphon. To obtain a model for this, ignore the friction term in 
Eqn (8.17). The resulting equation can be solved for Q as a function of D. 
Compare the volume flow rates for D values of 1, 1.5, 2, 2.5, and 3 in. with 
those from Fig. 8.18 that includes the effect of friction. Comment on the 
reasonableness of the outcome. 

26. Using the geometry of Fig. 8.17, determine the maximum height (i.e., the value 
for r) for a syphon of nominal 1-in. PVC pipe. HINT: The minimum static 
pressure corresponds to the saturation pressure for water at 10°C. Refer to 
footnote 13 in Chapter 8 for the value of this pressure. 

Chapter 9 

27. One of the formulas in the literature pertaining to gravity driven water flow in 
pipes is given in an earlier edition of the Piping Handbook (Nayyar, 1992) and 
in the Plastic Piping Handbook (Willoughby et al., 2002) as 

Q = 27.5-D2667s0·5 (16.2) 

where it is understood that D is in inches and Q is the Natural flow rate in gallons 
per minute'. Another one is from a technical publication of the American Water 
Works Association (American Water Works Association, 2006). 

Q = 42.2D2-63s054 (16.3) 

Assuming that F = 0 (for Natural flow, see Section 2.6.1) and λ = 1, and 
starting from Eqn (9.7), develop an equation in the form of Eqs (16.2) and 
(16.3). Comment on the differences between the expression that you develop 
and Eqs (16.2) and (16.3) and highlight the assumptions made to develop such 
formulas. 

28. The Copper Tube Handbook (Copper Development Association, 2006) reports 
pressure drop results for smooth copper tube of various sizes. The Hazen-
Williams formula on which their results are based is given as 

Δ ρ ^ 4.52 Q1·85 

L c 1 8 5 D 4 · 8 7 ( ' 

'The coefficient in Eqn (16.2) is 30.5 in Willoughby et al. (2002). 
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where Δρ/L is the pressure drop in psi per foot of tube length, Q is the flow 
rate in gallons per minute, D is the ID of the tube (inches), and C is a constant 
whose numerical value is 150. 
By comparing Eqn (16.4) with the Darcy-Weisbach equation, Eqn (2.9), deter-
mine the assumptions upon which Eqn (16.4) is based. What are the units of 
the constant Ci Plot the ratio of Δρ/L from Eqn (16.4) to that from the Darcy-
Weisbach equation for tube diameters of |-in. nominal (D of 0.662 in.), 1-in. 
nominal (D of 1.049 in.), and 2-in. nominal (D of 2.067 in.), for Q ranging 
from 0.1 L/s to 7 L/s. Comment on your observations. 

29. Develop Eqn (9.2). Simplify it to obtain Eqn (9.3). Note that this is similar to 
Exercise 27 except λ and F are retained as parameters in the energy equation. 

30. Compare the results of Eqs (9.4) and (9.5) for smooth pipe. Take the ratio of 
the two and plot as a function of Q with h^jL as a parameter to validate the 
statement that there is agreement to within ±2% over 0.1 L/s < Q < 3 L/s 
and 0.001 < HL/L < 1. Also, show that this range of conditions generally 
produces 4,000 < Re < 325,000. To do this, plot Re as a function of Q with 
hiJL as a parameter. 

31. Compare the results of the correlation of Eqn (9.6) for GI pipe with the nu-
merical solution from the Mathcad worksheet SinglePipeNetworkDesign 
.Appendix.xmcd for minor-lossless flow. Carry out this comparison for Q = 
0.012,0.1,1.0,3.0, and 5 L/s, and hL/L = 0.001,0.01,0.1, and 1.0. Present 
your results in tabular form. 

32. It was demonstrated in Chapter 9 that the solution for the energy equation for 
flow in a single pipe can be written such that only two dimensionless groups ap-
pear, one for the dimensionless volume flow rate and the other for the modified 
slope [see Eqn (9.7)]. Beginning with the form of the energy equation for flow 
in a pipe of arbitrary length, Eqn (2.40), recast this in the form of Eqn (9.7) by 
rearranging it after writing it in terms of Q instead of u. In particular, identify 
the hydraulic gradient (or modified slope) term and the one that you would label 
as the dimensionless volume flow rate. Comment on the differences between 
the dimensionless groups from this exercise and those from Eqn (9.7). 

Chapter 10 

33. Give thought to, and list, several instances where optimization of a gravity-
driven water network is possible other than those noted in Chapter 10. 

34. A more realistic cost model for the heat exchanger considered in textbox B. 10.3 
is to include the cost for a variable tube surface area explicitly. In Eqn (10.13), 
this was accounted for as a lumped cost. Inside the heat exchanger are many 
tubes of small diameter, perhaps a centimeter, that flow the hot fluid. The cooler 
fluid passes over these tubes and this is where the heat transfer takes place. 
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With tube cost explicitly included, the improved cost model would be 

DLr>15 

F(L,d,n) = $400/m2 + $370.70/m3-5L<i2·5 + $280.60/m2Ld 

where F is in dollars, d and L are the overall diameter and length of the 
exchanger (in meters), and n is the number of tubes. Here, D is the tube 
diameter, which is 1 cm. The overall volume of the exchanger is fixed at V -
15 m3 and the required surface area is 350 m2. The surface area of the tubes is 
from As = WKDL. 

Use 

• The method of Lagrange multipliers 
• The Given.. .Minimize block in Mathcad 

to solve this problem to obtain the optimal values for L, d, n, and total cost. 

35. Three pipes are connected in series, as shown in Fig. 16.2. Each pipe is 100 m 
long and have diameters Da, Db, and Dc, respectively. The flow rate in each 
is Q = 6.1 L/s and the static pressure head at the outlet of pipe c is h dei = 
10 m. The elevation changes for each pipe are Aza = Az, Azb = Az/2, and 
Azc = Az/3, where Az = 50 m. Determine the optimal pipe diameters for 
the network and the minimum total pipe cost. Are the static pressure heads at 
the junctions a-b and b-c acceptable from your engineering judgement? Recall 
that at all junctions the pressure has a single value; this means that the pressure 
at the end of one pipe is equal to that at the beginning of the one to which it 
is connected. Use pipe cost data for IPS series sch. 40 PVC pipe in central 
Nicaragua from the Mathcad worksheet and neglect minor loss throughout. 

Chapter 11 

36. Refer to Fig. 11.1 and the data from Table 11.1. Slightly modify the Mathcad 
worksheet BranchingPipeExample.xmcd to investigate the effect of Lb = Lc 

over the range of 40-400 m, and Qa over the range of 1-3 L/s. Assume all 
data from Table 11.1 apply, except the flow from pipe a is evenly split between 
pipes b and c for both investigations. Comment on the range of pipe sizes that 
you observe. 

37. Obtain the analytical result for the optimal static pressure head, h°pt, using 
Eqs (11.16) for the three-pipe branch network in Fig. 11.1. Assume La = 
Lb = Lc, Db = Dc, Qb — Qc = Qa/2, and that cost is linear with pipe 
diameter. 

38. Obtain the analytical result for the optimal static pressure head, h°pt, using 
Eqn (11.39) for the three-pipe branch network in Fig. 11.1 and data from Ta-
ble 11.1. Use Eqn (11.17) with cost data for IPS-series sch. 40 PVC pipe in 
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Figure 16.2 Optimization of series-connected pipe. 

central Nicaragua. Compare your result with Fig. 11.6 for validation of your 
result. Note that the results of Fig. 11.6 include minor loss that is not included 
in the development of Eqn (11.39). 

39. Develop Eqn (11.20) from the general energy equation, Eqn (2.25), and using 
the assumptions appropriate to the series-connected pipe, simplify Eqn (11.20) 
to get Eqn (11.21). 

40. An interesting follow-on problem related to textbox B.l 1.3 is the response to 
increases in local peak elevation of the optimal pipe sizes (that minimize total 
pipe cost) located before the local peak. To do this, gradually increase the 
elevation of Junction c-d from 67 to 84 m. Modify the Mathcad worksheet 
SeriesPipeExample_equalQ_3pipe_ withcost .xmcd to include the data 
in Table 11.5 and the variable elevation of this junction. Report your results in 
a table. Use the cost data on the Mathcad worksheets. 

41. The generalized form of the energy equation for a serial pipeline is from 
Eqs (11.22). In the section following the serial pipeline, we adopted a dif-
ferent method for labeling that included node numbers, not letters (recall that 
letters were carried over from the early developments of the energy equation for 
pipe flow from Chapter 2). With this in mind, recast Eqs ( 11.22) in nodal form, 
where the nodes at the junctions for a serial pipeline would be 2, 3, . . . n — 1, 
where n is the total number of nodes (including the first one at the source and 
final one at the delivery location). 
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[ht] 

Table 16.3 The Design Parameters for Four-pipe Distribution Network for El 
Guayabo 

Pipe 

a 
b 
c 
d 
e 

L(m) 

287 
51 
37 
12 
48 

Q (L/s) 

0.81 
0.33 
0.15 
0.23 
0.10 

K 

100 
12 
12 
12 
12 

Le/D 

60 
360 
124 
56 
320 

Az (m) 

12 
4 
-1 
-3 
6 

42. For the El Guayabo network of Exercise 17, the data in Table 16.3 apply to 
the distribution pipes from the tank, through pipe a, to four tapstands, pipes 
6 through e (see Fig. 11.1 for a two-tapstand design). A survey of the site 
provided the slope, pipe length, minor-loss coefficients, and Az data for each 
pipe, and the number of people provides the water demand for each tapstand. 
Note that the flow rates in pipes b through e sum to the flow rate in pipe a, thus 
satisfying continuity. 

Calculate the nominal PVC pipe size for pipes a through e for this design. Use 
the appropriate Mathcad worksheet. 

43. For the Kiangan community in the Philippines, one distribution main for a 
gravity-driven water network consists of the four pipe segments (Fig. 16.3). 
Each of the segments has a different flow rate because of attached branches. 
The relevant data is shown in Table 16.4. Segment 45 ends in a tapstand where 
a static pressure of 7 m of head is required. 

Figure 16.3 Part of a network for the Kiangan community in the Philippines. 
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Table 16.4 Design Parameters for One Leg of the Kiangan-community Network 

Pipe Segment 

12 
23 
34 
45 

Q (L/s) 

1.23 
1.04 
0.83 
0.42 

L(m) 

76 
113 
19 
75 

K 

30 
0 
0 
0 

Le/D 

60 
90 
90 
90 

Az(m) 

18 
10 
8 
6 

Calculate the theoretical and nominal PVC pipe sizes for pipe segments for this 
design. Verify that the design flow rates can be achieved with junction static 
pressures of 7 m. Use the appropriate Mathcad worksheet. What is the total 
pipe cost? 

Use the appropriate Mathcad worksheet to calculate the nominal PVC pipe size 
for pipe segments in the Kiangan community design (Fig. 16.3) by minimizing 
total pipe cost. Use Eqn (11.17) with cost data for IPS-series sch. 40 PVC 
pipe in central Nicaragua. Verify your numerical solutions using the analytical 
result from Eqn (11.54). How do your results, both theoretical and nominal 
diameters, compare with those of Exercise 43? 

The lengths of all branches in Fig. 16.3 is 50 m and, for each branch, there is 
no elevation change between the branch and delivery at the end of the branch. 
Using the appropriate Mathcad worksheet, calculate the theoretical and nom-
inal pipe diameters for the network by minimizing total pipe cost. Use cost 
data for IPS series sch. 40 PVC pipe in central Nicaragua from the Mathcad 
worksheet. Require the minimum static pressure head at all junctions to be 
10 m. There is a minor loss in each branch of K = 10 (an open globe valve). 

In Fig. 16.3, the flow to the branch at node 2 is turned off. Assuming nominal 
pipe sizes for the network of £>i2 = -D23 = l\ in., D34 = 1 in., /J45 = | in., 
and L>26 = -D37 = Di& = \ in. (from the results of solution 45), predict the 
flow rates in the branches that remain open. Assume that the K values in the 
branches from Exercise 45 also apply; globe valve positions remain. Use the 
appropriate Mathcad worksheet. 

It has been suggested that an optimal set of pipe diameters exist for the following 
problem. There is a large change in surface contour for the gravity-driven water 
network shown in Figs. 16.4 and 16.5. The frontal (Fig. 16.4) and side views 
(Fig. 16.5) of the proposed pipe layout are presented. Following the thinking 
in Sectionl 1.5.1, the common-sense approach might be to reduce the size of 
the pipe in the segment where there is the steepest descent relative to that just 
downstream of the source. The length of pipe segment 12 is defined by angle 
7 and the radius of curvature of R = 50 m as shown. Segment 12 and 23 
lengths sum to nR/2. The lengths and elevation changes for other segments 
are: L34 = 230, L35 = 320, Az34 = 43, and Δζ3 5 = 39 m. The flow rate 
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from the single source is 3.2 L/s and in segment 34, 1.2 L/s based on source 
measurements and a demand model. If minor losses are ignored, is there an 
optimal solution for this design? Comment on your findings. Use cost data for 
IPS series sch. 40 PVC pipe in central Nicaragua from the Mathcad worksheet. 

Figure 16.4 Front view of geometry for Exercise 47. 

Figure 16.5 Side view of geometry for exercise 47. 

48. Consider the loop of Fig. 11.29. The flow rate in segment 12 is Q\2 = 4.6 L/s, 
and we know this flow is to be distributed in the following manner: Qz§ = 
0.5Qi2, (?47 = 0.3Qi2, and Q58 = 0.2<3i2. In addition, L23 = £34 = LAb = 
L52 = £36 = £47 = £58 = 70 m and all branch and delivery points are at 
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Table 16.5 Parameter Values for Optimization of a Multiple-Branch Network 

Pipe Subscript, ij L^ (m) Qij (L/s) AZÎJ (m) 
12 
23 
34 
45 
56 
67 
78 
89 
9-10 
10-11 
11-12 
12-13 
13-14 
14-15 
15-16 

135 
55 
48 
30 
85 
151 
110 
35 
48 
39 
118 
128 
139 
118 
298 

4.10 
3.90 
3.75 
3.35 
3.00 
2.60 
2.35 
2.10 
1.85 
1.45 
1.20 
1.05 
0.75 
0.55 
0.25 

22 
8 
7 
12 
4 
6 
7 
3 
4 
6 
8 
7 
5 
7 
3 

the same elevation. If the static pressure head at node 2 is 21 m, calculate the 
theoretical pipe sizes for the network that minimize total pipe cost. Assume 
an open globe valve (K = 10) is installed in each branch. Are the static 
pressure heads at each junction acceptable? Use Eqn (11.17) with cost data for 
IPS-series sch. 40 PVC pipe in central Nicaragua. 

49. Data for the distribution main of a gravity-driven, multiple-branch network is 
given in Table 16.5. Modify the Mathcad worksheet BranchPipeExample 
-4pipe_withcost-vectorized-ver3.xmcd by including the data from this 
table and calculate the theoretical pipe diameters that minimize the cost of the 
distribution main part of this network. Report the pipe diameters and the vector 
of static pressure heads at the junctions. Assume h del = 10 m at node 16 and 
that the pressure at node 1 is atmospheric. 

50. Gravity-driven water networks that are supplied by more than one source are 
generally more reliable than with just a single source because of possible flow-
rate depletion from either. Consider the dual-source network in Fig. 16.6 where 
the distance between the two sources is 2L\. The measured flow rate from one 
source is Qi3 = 2.1 L/s and from the other is Q23 = 1-3 L/s. The object of the 
design is to supply water at Q34 = 3.4 L/s to the reservoir tank. There are two 
limiting cases for the piping of this network. The first is two pipes can be run, 
one from each source, over a distance L3 directly to the tank. The second is that 
the two sources can be piped directly together along a straight line connecting 
the two. A tee fitting installed midway along this line will allow water to flow 
to the tank from both sources. For convenience, let the angle between the actual 
run of pipe segments 13 and 23 and the line connecting the two sources be 7 
(see Fig. 16.6). Using optimization methods from this chapter and Chapter 10, 
determine the optimal lengths and diameters for all pipes and the minimum pipe 
cost. Is the static pressure at the junction of the three pipes acceptable from 
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an engineering design standpoint? Use pipe cost data for IPS series sch. 40 
PVC pipe in central Nicaragua from the Mathcad worksheet. The sources and 
the tank are at atmospheric pressure. Take L\ = 50 m, L3 = 1600 m, and 
z\ = z-z = 64 m above the tank. Ignore minor loss from all possible fittings in 
the network. The slope is uniform at 4% between the sources and tank and, as 
a first approximation, assume all pipes are straight. 

Figure 16.6 A network with dual sources. 

51. Reconsider the branching network of Fig. 16.3. Instead of solving this problem 
as a gravity-driven flow, assume the flow to be pumped from node 5 upward 
toward node 1. The discharge pressure of the pump is 35 psig. Segment 12 
ends in a tapstand where a static pressure of 7 m of head is required. Calculate 
the theoretical pipe diameters for this forced-flow network two ways. First, for 
fixed value of hj of 7 m at each junction. Second, by minimizing the cost of the 
distribution main using Eqn (11.17) with cost data for IPS-series sch. 40 PVC 
pipe in central Nicaragua. Comment on the integrity of the network based on 
the values of the optimal static pressure heads at the three junctions. Neglect 
minor losses. 

Chapter 12 

52. Develop Eqs (12.6) and (12.7) from Eqs (2.45) and (12.5) to obtain the final 
form of the energy equation for a microhydroelectric turbine. Show that the 
hydraulic gradient can be extracted from the right side of Eqn (12.7) and thus 
becomes a scale factor. 
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Table 16.6 Survey Data for Exercise 58 

Node, i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

Xi (m) 

0.0 
-37.2 
-77.4 
-241.0 
-277.8 
-312.5 
-336.2 
-374.7 
-420.8 
-439.1 
-412.6 
-428.9 
-481.8 
-471.9 
-533.9 
-544.5 
-536.1 
-688.4 

yi(m) 

0.0 
-52.1 
9.6 
75.7 
95.8 
148.4 
184.7 
208.4 
216.0 
228.7 
335.1 
373.1 
463.7 
552.1 
659.1 
720.5 
864.9 
974.3 

Zi (m) 

49.3 
22.2 
19.9 
29.6 
33.6 
25.2 
17.5 
22.5 
21.7 
20.0 
22.3 
13.5 
16.7 
15.0 
24.7 
43.0 
38.9 
5.2 

53. Maximize wth by taking the Q derivative of Eqn (12.5) subject to constant 
f(Q, D) = f. By setting this result equal to zero and solving for Qopt, obtain 
Eqn (12.10). 

54. By substituting the Blasius formula for f(Q, D) in Eqn (12.7), taking the first 
derivative of wth with respect Q, and setting this result equal to zero, solve for 
Q = Qopt to obtain Eqn (12.9). 

55. Consider textbox B.12.1 example. Calculate the optimal penstock pipe size 
and electrical power generated if GI pipe were used. 

56. Using Eqn (12.17), calculate the water flow rates required to produce electrical 
power ranging from lOto 100 kW for three cases of S = 0.01,0.05,0.1. As-
sume L = 1000 m, T]g = 0.85, r/t = 0.80. Plot your results on a log-log plot 
of Q versus power demand. 

57. A Pelton turbine is under consideration for the conditions of Exercise 55. Cal-
culate the nozzle diameter, Dn, jet speed, Vi, and system efficiency, η3υ8, for 
this problem based on the actual penstock-pipe diameter. 

Chapter 13 

58. Consider the data of Table 16.6 that applies to Fig. 13.1. Using in formation 
in Chapter 13, calculate the running sum of the lengths of each of the 17 pipe 
segments starting with segment 1-2 and ending with segment 17-18. What 
is the total length of the pipeline? What is the elevation change between the 
source at node 1 and the next-highest location in the network? 
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59. Several springs have been identified that may contribute to a gravity-driven 
water network for a community. The yields from the springs are QR^ of 
0.95 L/s, QRt2 of 0.40 L/s, QR,3 of 1.46 L/s, and QRA of 0.55 L/s. A large 
community of 1050 persons is proposing to develop some or all of these sources 
fortheiruse. The population growth rate is estimated at 1.5%/year. Thedistance 
to the identified storage tank location for each is Lfl,! = 32 m, LRt2 = 8 m, 
LR3 = 53 m, and LRA = 21 m. The elevations between the sources and the 
identified tank location for each is AzRii = 2 m, AzR^ = 3 m, AZR$ = 6 m, 
andAzftj4 = lm. Assuming a 20-year lifetime and 80 L/person/day at present, 
recommend to the community leaders which sources you would recommend 
developing and explain your reasoning. Perform a complete analytical solution 
by calculating the pipe sizes and costs for water delivery to the tank for each 
source. Assume the pipe to be IPS sch. 40 PVC. 

60. From Exercise 59, developing sources 2 and 3 (producing a yield of 1.86 L/s) 
was determined as the most cost effective option. Based on per-capita demand 
rate of 80 L/person/day, 1819 persons, and the demand model of Fig. 15.3, size 
the storage tank for this community and justify your recommendation. 

61. Consider the 16-node branching network in Fig. 11.41 that refers to data from 
Table 11.19. Using a peak factor of PF = 3.2, appropriate to 40% of the daily 
demand in a 3-h period, and assuming the flow rates shown in Table 11.19 are 
on-average during the day, calculate the design flow rates for each segment of 
the network. If the flow rates shown in Fig. 11.16 are based on the present 
population, calculate the design flow rates that would accommodate the future 
population. Assume an annual growth rate, i, of 1 % and a 25-year network 
lifetime. 

62. Given that the head loss in a uniform-diameter pipe is equal to that in a com-
posite pipe composed of two pipes in series as in Fig. 13.7, use the continuity, 
Darcy-Weisbach, and Blasius equations to develop Eqn (13.10). 

63. Determine the lengths La and Lb (see Fig. 13.7) for a pipeline of 378-meter-
long, sch. 40 GI pipe, carrying 2.56 L/s where the theoretical value for D is 
calculated as 1.870 in. Re-calculate La and Lb if the pipe is changed to sch. 40 
PVC. 

64. Consider Q = 48 L/s of water flow at 10°C in a 6-in. nominal IPS sch. 40 
PVC pipe that is supplying water to a 85-kW microhydroelectric turbine. An 
improperly designed control valve just upstream of the turbine closes suddenly 
when a loss of electrical load is detected by the turbine control circuitry. Cal-
culate the amplitude of the pressure wave resulting from this closure. How 
would your results change if the pipe material were steel or GI? 
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Chapter 14 

65. Consider a gravity-driven water system of 1 -in. sch. 40 IPS PVC pipe as shown 
in Fig. 16.7. The coordinates, (x, z), at the source, intersections of the pipe 
segments, and delivery location are (0,200), (350,100), (600,120), (750,50), 
(1000,70), and (1300,30), all in meters (note that the lowest elevation is not 
zero). Assess the effect of the air pockets on the volume flow rate of water in 
the system by calculating the flow rate first assuming no compressibility for 
air, and then including the effect of air compressibility. Compare each with the 
flow rate if there were no air pockets. Neglect minor losses and assume hdei = 
10 m. 

Figure 16.7 Geometry for Exercise 65. 
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16.3 THE SOLUTIONS 

Chapter 2 Solutions 

1. To be done by the student. 

2. To be done by the student. 

3. For a 2-in. PVC pipe and Q = 1.2 L/s, obtain ΰ = 0.445 m/s. Re=2.24x IO4, 
clearly a turbulent flow. The friction factor, f(u,D), for this flow is from 
Eqs (2.16M2.17) and is 0.0256. Combine Eqs (2.2), (2.6), and (2.9) and 
assume an adiabatic pipe to get 

e2 - ei = JiL = f(ü, D)^Y= cv(T2 - Ti) (16.5) 

Look up the value for c„ of water in any book on thermodynamics, heat transfer, 
or fluid mechanics to get cv = 4190 J/kg-K. Upon substituting the numbers and 
units into Eqn (16.5), getT2-Ti — 0.00178°C. This is almost an immeasurably 
small temperature rise. We see that the dissipation of potential energy that 
produces a Natural flow rate of 1.2 L/s causes a temperature increase that is 
negligible. This general outcome is caused by the relatively large value of cv 

for water. 

4. See the table below. 

Bernoulli Equation Energy Equation 

Incompressible flow 
Steady flow 

Applies along streamline 
Inviscid flow 

Applies strictly to laminar flow 
(Approximate for turbulent flow since) 

it is difficult to follow a streamline) 

Incompressible flow 
Steady flow 

Applies at any cross section of the flow 
Inviscid or viscous flow 

Valid for laminar and turbulent flow 
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5. The friction factor from the Darcy-Weisbach equation is written as 

/ = - Ì 7 Z Ì L (16.6) 
J u2/2gD 

where L = 3 m, D = 0.25 in., and ÌIL/L and ü are from the test data. Since 
liL are supplied in units of inches of mercury, we need to first convert this to 
meters of water using, 

hL (m of water) = hL (inches of Hg) - ^ , (16.7) 
p 39.372 in. 

where the density of mercury is png = 13579 kg/m3. AplotofEqs (16.6) and 
(2.9) versus Reynolds number appears in Fig. 16.8. The agreement is good, to 
within ~±7%, for this particular data set. The range of Re corresponds to the 
turbulent regime. 

Figure 16.8 Friction factor laboratory test data compared with that from Darcy-Weisbach 
equation. 

6. To be done by the student. 

7. Solve the energy equation, Eqn (2.40), by first substituting the continuity equa-
tion (Eqn 2.21) to eliminate ΰ in favor of Q. With only a single K-type minor 
loss, no a, and F — 0, we obtain 

1 - [\Vl + e - 2 / (Q,D) + - A l - ^ T S s = 0, (16.8) 
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which we solve for Q as a function of K using the root function in Mathcad. 
D and z\ are fixed as specified. The friction factor, f(Q, D), depends on Q 
and D through Re and relative roughness of the smooth pipe. Re is 

Re = - ^ r (16.9) 
πνϋ 

The solution appears in Fig. 16.9. Even with K = 100,000 the valve is still 
able to pass a few tenths of a L/s. 

Figure 16.9 Volume flow rate versus closure fraction of globe valve for single-pipe network. 
K is minor loss coefficient. 

8. The relevant energy equation is Eqn (2.46), where for this problem, it becomes 

Zi_P2^P±_[f{QD)L + D{a + K)]JXy=0 ( 1 6 1 0 ) 
pg iT2gD5 

once it is written in terms of Q instead of ü with the help of the continuity 
equation. The second term is 

P2-P1 _ 0 - 3 atm. ■ 1.01 x 105 Pa/atm. _ 

pg ~ 1000 kg/m3 · 9.807 m/s2 - ~ · m 

Equation (16.10) becomes 

8Q2[f(Q, D) ■ 3500 m + 0.0853 m · (1.05 + 350)] 21.0 m 9.807 m/s2 ■ π2 · (0.0853 m)5 
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Table 16.7 Solution to Exercise 11 

Nominal Wall Material Inside Press. Rating Press. Rating 
Size Reference Diameter (As Spec'd) [Head (m)] 
1 in. 

3^ in. 
2 in. 
If in. 
fin. 

75 mm 
25 mm 
4 in. 

sch. 80 
sch. 40 
sch. 40 
sch. 80 
SDR 11 

SDR 13.6 
SDR 21 
SDR 26 

PVC 
ABS 
PVC 
PE 
PE 

PVC 
PE80 
PVC 

0.957 in. 
Not Given 
2.067 in. 

1.5 in. 
0.680 in. 
63.8 mm 
22 mm 

4.134 in. 

630 psig 
190psig 
280 psig 
160 psig 
160 psig 
PN16 
PN6.3 
160 psig 

442.9 
133.6 
196.9 
133.6 
112.5 
160 
63 

112.5 

This equation is solved in Mathcad using the root function or Given.. .Find 
block to get Q = 3.04 L/s. The absolute roughness for galvanized iron pipe is 
0.152 mm. Clearly, the term a is negligible compared with K for this problem. 

9. Use the Excel spreadsheet (supplied with this book) as discussed in Appendix B 
to get 111,383.0 m between arbitrarily chosen longitudes of —89 and -90°, 
111,314.8 m for longitudes of - 1 and - 2 ° , and 111,280.7 m for longitudes 
of -44 and -45°. This is contrasted with the distance between longitudes of 
-89 and -90° at 40° north latitude of-85,408 m. 

10. From Eqn (B.l), get 19.22972 and -75.31389° for latitude and longitude, 
respectively, at the source. Both are recorded and reported to five decimal 
places. 
Use the Excel spreadsheet as discussed in Appendix B to solve the second part 
of this exercise. Obtain £ = 2920 m and s = Az/£ = 1.59%. 

Chapter 3 Solutions 

11. The results are reported in Table 16.7. The relevant conversions for pressure 
arel atm. = 1.013xl05 Pa = 14.696 psi = 10.33 m. The dimensions for ABS 
pipe are not supplied in this chapter. No steel (or GI) pipe cases were examined 
here. The pressure ratings for this pipe are very large and may be found from 
numerous sources in web and paper format. 

Chapter 4 Solutions 

12. Following the developments in Section 4.2, Eqn (4.1) becomes 

8Q2 
Pi P2 £i _ hh_ 

pgL L L 
f(Q,D)(l (16.11) 

where z\ 
With L --

n2gD5 

—34 m (see Fig. 2.11) and the term for minor loss has been included. 
1345 ft, Q = 0.3500 m3/min( ρλ = 1850 kPa, p2 = 475 kPa, 
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LJD = 30 for a 90° elbow, and Le/D = 60 for a flow-though-branch tee 
(Table 2.1), Eqn (16.11) is written as 

0.2591 = -y- =266.0(1 + 3 6 0 ^ / n5 (16.12) 

where the unit of D is inches and the summation of all Le/D is 360. The 
formula for Re becomes 

2.237 x 105 , ^ 1 / 1 N 
R e = (16.13) 

where D is in inches. 

Using Method 3 as in Section 4.2, we obtain D = 1.956 in. from the Mathcad 
worksheet. From Table 3.1, we choose a nominal 2-in. Gì pipe. A calculation 
of the minor loss (360 ̂  in Eqn (16.12)) shows that it is about 4.4% of the major 
loss [the 1 in Eqn (16.12)]. This is not a significant impact on the solution for 
D. 

Method 2, which uses the head loss curve from Fig. 4.1 gives the same result 
for Q of 0.3500 m3/min (or 5.8 L/s) and hL/L of 0.26. Please be aware that all 
head loss curves from, for example, Figs. 4.1 and 4.2 are only for straight pipe 
(i.e., the effect of minor loss needs to be included by iteration). Specifically, 
this is done by calculating D by first neglecting the minor loss (the term 360 £ 
in Eqn (16.12)). The value for IIL/L is then modified by the most recent value 
for D as in Eqn (16.12), and the head loss curve used to recalculate D. This 
procedure is followed until D no longer changes with further iterations. 

The head losses from Jordan Jr. (2004) are -20-30% lower than those from 
the Darcy-Weisbach equation [see Figs. 16.10 and 16.11]. Since there is little 
systematic variation, it is difficult to determine the sources of this disagreement. 
However, these findings are consistent with the results of Exercise 28 where 
the pressure drop from a Hazen-Williams-type equation from the Copper Tube 
Handbook Copper Development Association (2006) predicts low by, at most, 
35%. Thus, it appears that Jordan Jr. (2004) uses a similar formula to develop 
his results appearing in Reference Table XI. 

The ratio of the head loss at 27 to 10°C for Class IV HDP pipe is shown in 
Fig. 16.12. There is -10% difference between the two, the head loss for 27° C 
is smaller. This is not a dominant effect for most designs. The kinematic 
viscosity at 27°C is 8.576 x 10"7 m2/s, and at 10°C, 13.07 x IO"7 m2/s, a 
52% difference. 

Chapter 5 Solutions 

To be done by the student. 
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Figure 16.10 Head loss factors for Class HI HDP pipe. 

16. (a) Solution from Mathcad worksheet or Fig. 5.4: 1 in., 0.30 L/s which is 
30% more than the design value. Re for this flow is -14,000, which is 
turbulent. Equation (9.2) gives 

D = 0.741[A(1 + g7V(4>» ί 1 _ F J g4 

= 0.741K1 + 0.015-2)1/2]4/19· 
13.07 x IO"7 m2/s ■ (0.23 x 10~3 m3/s)7

 1 / 1 9 
1 (9.807 m/s2)4 J 

= 0.0248 m = 0.978 in. 

which corresponds to a nominal 1-in. PVC pipe. Note that the simpler 
equation, Eqn (9.3), gives the same result as Eqn (9.2) because the mean 
slope s C l . 

(b) Solution fromKathcad worksheet or Fig. 5.4: The smallest possible pipe 
size that satisfies the above conditions occurs at a dimensionless delivery 
static pressure F = 0. With this value for F, and the calculated slope 
s = 0.0201, the nominal pipe size is \\ in.. The maximum volume flow 
rate that this pipe size can pass is 1.13 L/s, which is much larger than the 
current demand of 0.38 L/s. The recommended pipe size of 1 \ in. will 
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Figure 16.11 Head loss factors for Class IV HDP pipe. 

allow plenty of increase in future demand. Re for this flow is -20,000, 
which is turbulent. 

(c) Solution from Mathcad worksheet or Fig. 5.4: The recommended pipe 
sizes remain unchanged. 

(d) Solution from Mathcad worksheet or Fig. 5.4: Since minor losses are 
neglected and elevation changes enter into the problem only through the 
minor losses, the elevation difference between the source and the tank 
do not affect the recommended pipe size connecting the two. However, 
between the tank and the tapstand, the elevation is used to determine 
the slope. If the uncertainty is —20%, the calculated slope is 0.0161 
and the nominal pipe size remains l | in.. If the uncertainty is +20%, 
the calculated slope is 0.0241 and the nominal pipe size reduces to 1 in. 
However, the maximum flow that this pipe can pass is only -0.39 L/s, 
which allows for very little increase in flow rate in future years. Therefore, 
it is best to recommend a nominal 1 \-in. pipe for this case. 

17. Solution from Mathcad worksheet: From Table 2.1 for a 45° elbow, Le/D = 
16. The sum of Le/D for all minor losses is 502 + 23 16=870. At an open tank, 
F = 0. From the mean slope and elevation, i = 75 m and λ — 95 m/75 m = 
1.267. With both minor losses, the Mathcad worksheet gives nominal l | in. 
PVC pipe to satisfy these conditions. If we suppress the minor losses due to 
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Figure 16.12 Ratio of head loss factors for Class IV HDP pipe for water at 27 and 10°C. 
Results for flow speeds < 0.7 m/s and > 3 m/s are not plotted. 

the elbows, the pipe size is reduced to nominal 1-in. There is no effect on 
the nominal pipe size from the minor loss due to the filter at the source if the 
elbow loss is neglected. If the elbow loss is included, neglecting the K value 
for the source filter also reduces the pipe size to 1 in. Therefore, minor losses 
are important for this design.2 With the 1 \ in. pipe, the maximum flow rate of 
water is 1.52 L/s, 2.76 times the present flow rate. The factor that we apply to the 
present flow rate to obtain that in 10 years is 1.0210 = 1.219 or 1.2190.55 L/s 
= 0.67 L/s. This is much less than a l |-in. pipe will flow based on current 
conditions. Therefore, for this low-head, high-flow system, a 11 in. nominal 
PVC pipe is recommended for the present conditions and those projected for 
the future. Re is -30,000 corresponding to a turbulent flow. 

Note that the value for the right side of Eqn (7.3) is -706. Since the sum of the minor losses from all 
the elbows is greater than this value, we see that Eqn (7.3) is a valid indicator of the importance of minor 
losses. 
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For this problem, the approximate formula for D from the footnote in Sec-
tion 9.3 gives, 

D = 0A55{XQ2/g)1/5{l + s-2)1/10 

= 0.0249 m = 0.980 in. 

which corresponds to a nominal 1-in. PVC pipe, smaller than the l | in. pipe 
predicted from the Mathcad worksheet because Eqn (9.2) neglects minor losses. 
As for the uncertainty in elevation data, ±20% translates to ± 1.2 m of elevation 
uncertainty and slope uncertainty of ±0.016. For the larger slope and elevation, 
a nominal 1-in. pipe will accommodate the current flow rate of 0.55 L/s but 
with little room for future flow-rate expansion (the maximum flow rate with 
1-in. pipe is 0.59 L/s). Recommend the next largest pipe size. For the smaller 
slope and elevation, a nominal 1 \ in. pipe is required for the current flow rate 
and that of the future (the maximum flow rate with l | in. pipe is 1.35 L/s). 
Thus, considering the uncertainty in slope, we should choose a nominal 1 \ in. 
PVC pipe. 

Chapter 6 Solutions 

18. To be done by the student. 

19. As explained in Section 6.3. 

20. The solution is carried out by breaking up the pipeline into a large number of 
increments (100 is used here) and solving Eqn (6.12) for the pressure distribu-
tion in each. This is referred to asfinite differences. This approach follows that 
of Eqn (6.9) where, instead of dL, dx, and so on, we would write AL and Ax 
(see further description of this in Chapter 8). Accordingly, 100 increments in 
t are used between 0 and 3. The pathlength distribution is calculated from, 

U = [{xi - Zi-i)2 + (yi - Vi-i)2 + (Zi - z ,_i)2]1 / 2 + Li_i 

where 2 < i < 100 and L\ = 0. A plot of the pathlength distribution is shown 
in Fig. 16.13. The dimensionless static pressure distribution is obtained in the 
same manner by writing Eqn (6.12) as 

Pi , Zi 8Q2 M 
pgzi zi n2gz1D

4i D' 

where pi — 0, and solving for p, for 2 < i < 100. a2 = 1-05 and all other ai 
are zero. The solution appears in Fig. 16.14. The value of the f(Q, D) for the 
prescribed flow rate and D is 0.0214 and is constant. The negative pressures 
downstream of the source for the first 50 m due to the elevation increase in this 
region and a are a concern. A change in the contour of the pipe in this region 
is recommended. 



THE SOLUTIONS 4 5 3 

Figure 16.13 Pathlength distribution for Exercise 20. 

Figure 16.14 Dimensionless static pressure distribution for Exercise 20. 

Chapter 7 Solutions 

21. The solution comes from Eqn (7.2) that we write as 

pgzi z\ n2gziD4 ^ su 
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The elevation z* = 1 — z\ is measured from the source. To solve Eqn (7.2), we 
will use finite differences and break the pipe into 100 units. With this method, 
the integral in Eqn (7.2) becomes a summation, z* is the independent variable, 

z* ? - 1 

zi 1 0 0 - 1 

and Ki is the vector of 100 minor loss values that are all zero except for 
i — 25,50, and 75, where they take on the values of 10,400, or 700, respectively 
for the three different cases. The plot of the solution appears in Fig. 16.15. 
Note the weak effect for K of 10 and some negative static pressures (below 
atmospheric) for K of 700 immediately following the location of the minor 
loss element. 

Figure 16.15 Dimensionless pressure versus elevation for Exercise 21. 

Chapter 8 Solutions 

The Mathcad worksheet used to solve this problem is a slight variation of 
that shown in Fig. 8.13. The changes from this worksheet are Q — 0.61 L/s, 
z = 22.31 m, and Lg, = 1455 m. A plot of the pressure head at station C21, 
which is the highest local peak for the data set given, shows the need for a 3-in. 
nominal PVC pipe (see Fig. 16.16). That is, the pressure head for a 2^-in. pipe 
(if it is even available) between the source and this station is only marginally 
positive. Any pipe size > 3 in. increases the static pressure at station C21 
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very little above the value corresponding to 3-in. pipe. Assuming a static 
pressure at station C21 of zero, the pipe size required between this station 
and the delivery location is 0.898 in. for which we choose a 1-in. nominal 
PVC pipe. This solution is from the procedure at the bottom of the Mathcad 
worksheet appearing in Fig. 8.13, except that z\ = 22.31 m, z — 0 m and 
Lf = 2023 m - 1455 m = 568 m. 

Figure 16.16 Pressure head versus pipe size for highest local peak for Exercise 22. Circles 
correspond to 1^, 2, 2\, 3, 3^, and 4-in. nominal sch. 40 PVC pipe. 

For a nominal 3-in. PVC pipe and p{x)/pgz\ — 0, solve Eqn (6.12) in Mathcad 
for Q to obtain Q = 1.44 L/s, more than a factor of 2 greater than the design 
flow rate. There appears to be adequate room for an increase in volume flow 
rate before the static pressure at the local high peak becomes negative in value. 

23. Let r = t/Atsc. With t — τ Atsc, the time derivatives in Eqn (8.11) become 

d2ü2 1 d2Ü2 
~dF = A~^c~a^ 

and 
d 1 d 
dt Atsc dr 

Substitute these into Eqn (8.11) and cancel Atsc which appears in all three 
terms. The result is 

L d2üo qAzt(O) d .,,, _ L „ , ^ , ΰ , , 
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Since «2 is of the order of 1 m/s, the derivatives in this equation are of the 
order of 1. Now, substitute values for the terms that comprise Atsc to show 
that -Λ— is of the order of 0.001 m/s. Substitute values for the terms in 9_Zt^°> 

A t s c «2,ool 
to see that this group is of the order of 10 m/s. Thus, the acceleration term is 
negligible relative to the remaining terms in the equation. The friction term in 
Eqn (8.11) will always be important because it is fundamental to the problem. 
Taking the derivatives and simplifying to get Eqn (8.14) are left as an exercise 
for the student. 

The hydraulic gradient is (Azt + Azp)/L = 0.0909. Neglecting minor losses 
for the moment, use the Mathcad worksheet HydraulicGradient .xmcd to 
calculate ü2i0oi = 1-342 m/s for the pipe ID of D = 2.067 in. (see Table 3.1). 
The friction factor is /(Ü2,ooi, -D) = 0.0520. From Eqn (8.7), we obtain 

1.342 m/s 
t99% = 2.646 rr1 = 3.98 s 

9.807 m/s2 · 0.0909 

The length equivalent of an open globe valve (K = 10; see Eqn (2.11)) and 
4-90° elbows is -504 · D « 16.4 m. The minor loss for the gate valve is 
negligible (Table 2.1). This reduces the hydraulic gradient by only -8%. If 
minor losses were included, the value for ig9% will be nearly that as above. 

Using the Mathcad worksheet Tank_Draining. xmcd, calculate U2,oo2 = 
1.148 m/s for the conditions given. The friction factor is f(U2,cc2,D) = 
0.0522. Equations (8.11) and (8.12) are solved numerically to obtain a drain 
time of-6.0 h. The minor losses were included in this solution. 

The ratio of the tank volume to the mean volume flow rate obtained by averaging 
the flow speeds Ü2,ooi andU2i0O2 gives a drain time of 5.7 h, within 18 minutes 
of the exact solution. 

The volume flow rates for D values of 1, 1.5, 2, 2.5, and 3 in. are 10.0, 22.6, 
40.1, 62.7, and 90.3 L/s, respectively. These are a factor of 2-5 times larger 
than from Fig. 8.18. This is to be expected since friction is clearly not negligible 
for the large size of the syphon considered here. Note from Eqn (8.17) that 
friction is independent of z\ and the nonfriction term is proportional to \jz\. 
For all else constant, the nonfriction effect is smaller than the friction effect by 
a factor of 20. 

To solve this problem, we write the energy equation in three different forms and 
solve them simultaneously. The first is the energy equation written at z = Z2 or 
x — x2, where the static pressure is atmospheric. This equation is Eqn (8.17) 
and it is solved for the volume flow rate, Q. The second equation identifies the 
location of the point of minimum pressure on the p versus x curve, xmin (see 
Fig. 8.20). Recognizing that this point is an extremum, by taking the derivative, 
d/dx, of Eqn (6.12) and setting it equal to zero, we solve this equation to obtain 
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Thus, 
d .z(x) 8Q2 f(Q,D)LAx), 

Τΐ—+ 2 ns = 0 ( 1 6 - 1 4 ) 

ax z\ πzgz\ D° 
The final equation is the energy equation written for the local static pressure, 
Eqn (6.12), where the pressure is set equal to the saturation pressure (at the 
specified temperature) at the location of minimum static pressure, xmin- Ob-
tain, 

-14.7psia + p m i n z{x) 8Q2 a f(Q,D)Le(x) ,,,.„ 
pgzi Zi K2gzi D4 D5 

where x = xmin- For this problem, pmin = 0.178 psia which, for the left-side 
term gives (-14.696 + 0.178) psieJ(pg-20 m) = -0.511. Equation (16.15) is 
solved for the height of the syphon. To do this, we first need to write z(x) and 
L((x) in terms of the geometry of the problem. Referring to Fig. 8.17, we can 
write 

^ = l + V l - ( ^ - l ) 2 (16.16) 
z\ 7 V zi 

and 
LAx) = — arccosil - — ) (16.17) 

7 zi 
where 7 = z\ jr, and r is the height of the syphon. 
Equations (8.17) and (16.14)—(16.17) are solved simultaneously in Mathcad 
to obtain r = 4.63 m (Figs. 16.17 and 16.18). Note that the volume flow rate 
Q = 2.16 L/s from the Mathcad worksheet is nearly identical to that from 
Fig. 5.3 for terminal flow in vertical pipe. The slope for the current problem is 
2.16, a very large value indeed. 

Chapter 9 Solutions 

27. After substituting the friction factor from the Blasius formula and simplifying, 
obtain 

Q = 42.7£>2-714s0-571 (16.18) 

It is clear that a different form for the friction factor as a function of Re was used 
to obtain the expressions in the two cited references since the exponents and 
the coefficient differ among the formulas. The value of the coefficient, 42.7 in 
Eqn ( 16.18), is affected by the kinematic viscosity of water that must be assumed 
in formulas of these types. This exercise illustrates the attempts at developing 
simple formulas for flow rate using Hazen-Williams-type approximations to 
the friction factor. With the ease at which we can solve for accurate flow 
rate and pipe diameter using fundamental equations of fluid mechanics and 
common software like Mathcad, there is little need for these approximations. 
When using a computational package the uncertainties in values for the design 
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Figure 16.17 Mathcad worksheet for syphon exercise. See continuation of this worksheet 
in Fig. 16.18. 
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Figure 16.18 Mathcad worksheet for syphon exercise. Continued from worksheet in 
Fig. 16.17. 

parameters can be assessed and included in the design in a much more informed 
manner. 

28. When we write Ap/L from the Darcy-Weisbach equation, Eqn (2.9), and for 
Eqn (16.4) and compare them, we can see that in this Hazen-Williams formula, 
/ is assumed to be approximately proportional to R e - 0 1 5 (i.e., / « R e - 0 1 5 ) . 
This approximation is a variation of the Blasius formula, Eqn (2.19) that is 
valid for only turbulent flow in smooth pipes where Re < 105. As discussed 
in Chapter 9, the Hazen-Williams formula applies to only turbulent flow and 
include other restrictions to which the designer's attention is needed. 
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The units of C are determined by substituting only the units for each dimen-
sional term into Eqn (16.4). Obtain 

£,0.13 

W = p C 1 , 5 Q o , 5 (16.19) 

where [1] is a dimensionless number. The units for C are indeed very messy. 
A plot of the ratio of Ap/L from Eqn (16.4) to that from the Darcy-Weisbach 
equation is given in Fig. 16.19. The nonmonotonic behavior for the 2-in. pipe 
size reflects laminar flow for the smallest flow rates followed by transition and 
turbulent flow with increasing flow rate. The extent of disagreement between 
Eqn (16.4) and the Darcy-Weisbach-based pressure drop per length for the 
laminar flow and transition regimes is clear. The remaining two pipe sizes 
give evidence of only turbulent flow. Equation (16.4) under-predicts the actual 
pressure drop by 30-35% at the low flow-rate end and is relatively accurate 
for flow rates approaching 7 L/s for all pipe sizes. The general disagreement 
with the results of the Darcy-Weisbach equation, which we recall is based on 
fundamental fluid dynamics, should convince one to ignore the approximate 
Hazen-Williams formula for pipe flow calculations. 

Figure 16.19 Ratio of Ap/L from Eqn (16.4) to that from the Darcy-Weisbach equation 
for three pipe diameters. 

29. To be done by the student. 
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30. The solutions are plotted in Fig. 16.20. The statements in Chapter 9 regarding 
this comparison are validated. 

Figure 16.20 Solution for Exercise 30. The left-most plot is the ratio of D from Eqs (9.4) 
and (9.5). The other plot is Re over the requested range of Q and h^jL. 

31. The results of the correlation, Eqn (9.6), and the Mathcad worksheet Single 
PipeNetworkDesignJVppendix.xmcd are shown in Table 16.8. For minor-
lossless flow in GI pipe, differences between D with the two approaches is 
< 12%. For smooth pipe like PVC and PE, the agreement is 6% or better. 

Table 16.8 Ratio of D from SinglePipe NetworkDesignJVppendix.xmcd to 
Eqn (9.6) 

hL/L-> 0.001 0.01 0.1 1.0 
I Q(L/s) 

0.012 
0.1 
1 
3 
5 

0.997 
1.026 
1.006 
0.994 
0.990 

0.965 
1.033 
0.992 
0.984 
0.982 

0.884 
1.012 
0.983 
0.977 
0.976 

0.987 
1.001 
0.978 
0.973 
0.972 

32. Substituting the continuity equation, Eqn (2.21), into Eqn (2.40), obtain 
12 

1 - F - f(ü, D)\Vl + s-2 J ^ = 0 (16.20) 

Rearrange this equation to get 

[f(Q,D)}1/2Q 1 1 1 1 Γ i-F 1/2 
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The dimensionless volume flow rate is the term on the left side of this equation, 
and the modified slope is the group on the right. Note that for small s the 
modified slope becomes s(l — F)/X the same as in Eqn (9.7). The exponent 
1/2 and the coefficient, 1.111, in Eqn (16.21) are both different from those 
in Eqn (9.7). Also, there is no explicit effect from the kinematic viscosity of 
the fluid, v, since Re (where this appears) is embedded in the friction factor, 
f(Q,D). 

Chapter 10 Solutions 

33. To be done by the student. 

34. The solution appears in the Mathcad worksheet shown in Figs. 16.21-16.23. 
The solution using the Given.. .Minimize block follows exactly as in the 
example in Chapter 10 except that there are three unknowns for the present 
problem (L, D, and n) instead of two. 
For the Lagrange multiplier method, the cost function is 

DLn15 

F{L,d,n) = $ 4 0 0 / m 2 — — - + $370.70/m3-5Ld2·5 

+ $280.60/m2Ld + X^V - ^d2L) + X2(AS - rnrDL) 

The last two terms are the constraints of fixed exchanger volume and tube sur-
face area, λι and X2 are two Lagrange multipliers. The derivatives dF/dL, 
dF/dd, dF/dn, dF/dXi, and dF/dX2 are taken and set equal to zero, and 
appear in their own lines in Figs. 16.21 and 16.22. Mathcad has symbolic 
mathematics capability and will take a derivative and report the result sym-
bolically. The five equations are nonlinear and cannot be solved by simple 
matrix inversion. Instead, they are solved simultaneously in a Given.. .Find 
block for L°p\D°pt,nopt and λι and λ2. The latter two variables are of no 
interest to us. The units for each dependent variable are used to make each one 
dimensionless in the Find statement since the results are reported in a single 
column vector. They are converted to dimensional form after the solution is 
obtained. The solution reported in Mathcad for both methods is d = 1.61 m, 
L = 7'.41 m, n = 1504, and the total cost is $13,459. 

35. The solution appears in Figs. 16.24 and 16.25. The optimal pipe diameters 
are D°pt = 1.80 in., Dopt = 1.79 in., and D°pt = 1.79 in., respectively; 
essentially equal diameters. The optimal static pressure heads at the junctions 
a-b and b-c of 22.6 m and 20.5 m, respectively, are acceptable. The minimum 
total pipe cost is $602. Evidence that the minimal cost exists at the reported 
values of h°^ and h°^ comes from our inspection of the two plots at the bottom 
of Fig. 16.25 that show total cost versus hj for the two junctions. These figures 
reveal that the total cost is not very sensitive to off-optimal values of hab and 
hbc-
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Figure 16.21 Page 1 of Mathcad worksheet for heat exchanger optimization. 
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Figure 16.22 Page 2 of Mathcad worksheet for heat exchanger optimization. 
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Figure 16.23 Page 3 of Mathcad worksheet for heat exchanger optimization. 



4 6 6 EXERCISES 

Figure 16.24 Page 1 of solution for Exercise 35. 
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Figure 16.25 Page 2 of solution for Exercise 35. 
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Chapter 11 Solutions 

36. The solutions are shown in Fig. 16.26. As we saw from the developments in 
Chapter 9 for turbulent, minor-lossless flow in a smooth pipe, D « L4/19 « 
Q7/19 Tn e r e s ui(S m pig 16.26 are in close agreement with these relationships. 

Figure 16.26 Solution for Exercise 36. Da, Db, and Dc appear in order on the vertical axis 
on both plots. 

37. Into Eqs (11.16) substitute the assumptions: La = Lb = Lc, Di, = Dc, 
Qb = Qc = Qa/2- Write the expression for total pipe cost assuming that cost 
for each pipe is linear with pipe diameter. After simplifying, take the derivative 
of total pipe cost with respect to hj, set it equal to zero, and solve for hj — h°pt. 
Obtain the analytical result: h°pt = (212?23Αζα - Azb + hdel)/{\ + 212/23). 
Under these assumptions, we see that h°pt is a linear combination of Aza, Azb, 
and hdet. 

38. Add Eqn (11.39) to the Mathcad worksheet BranchingPipeExample.xmcd 
and solve for the single static pressure at the junction. 

1 9 / Δ ζ α - hi v_(i+4j , / i9) 
o = Qlb/ 

7b/WtAzb + hi - hdei ^_(ι+4ί)/ΐ9) 
b \ T I 

Lb 

Q7b/W,&Zc + h2~ hdel,-(i+4b/l9) 

Lr_ 
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Table 16.9 D (in.) from Mathcad worksheet SeriesPipe Example_equalQ_3pipe 
_withcost.xmcd 

zd (m) -> 67 72 78 84 
|Pipe 

a 
b 
c 
d 
e 

2.71 
2.33 
2.33 
1.68 
1.53 

2.80 
2.54 
2.40 
1.68 
1.53 

3.00 
2.71 
2.71 
1.58 
1.53 

3.36 
4.30 
2.80 
1.54 
1.53 

where b = 1.4. Solve this equation for hj using the Root function or in a 
Given.. .Find block to obtain h°p — 16.8 m. This agrees with Fig. 11.6. 

39. To be done by the student. 

40. The results are presented in Table 16.9. The static pressure head at Junction 
b-c for za = 84 m is 73.5 m or 7.1 atm (105 psig). The growth in pipe sizes 
with increasing Zd is expected as friction must play a more-diminishing role as 
the elevation of the local peak approaches z\. Note that segments d and e are 
affected little by the elevation change in this problem. 

41. The energy equation for a serial pipeline in nodal format is, 

'-'ij , J-i 
AZij + Ahl0 = {KZJ + aij + f(QijtAiMyf- + (-R)ij]}-2ZnÄ <16·22) 

Uij L·! π gui; 

for ij = 12,23,34,.. . , (n — l)n, where n is the total number of nodes in 
the pipe. It is understood that Δ/ι^ = hi — hj for two consecutive nodes 
i and j , and h are the static pressure heads at the junctions. Also, fti = 0 
and hn = hdei as always. The term a^ is nonzero only for the first segment, 
ij = 12. Equation (16.22) is less cumbersome to use than Eqn (11.22) and is 
the form recommended for solutions to serial pipeline problems. 



4 7 0 EXERCISES 

42. Solution from Mathcad worksheet: Following the above developments, the 
energy equation for each of the pipes is written as 

p2 = pg&za + -{-CL,a + a)(—^)2, Pipe a 
2 TTLM 

p2 = -pgAzb + ^(CL,b + a)(^)\ Pipe b 

Vi = -pgAzc + ^(CL,c + a)(^)2, Pipe c 

p2 = -pgAzd + -(CL,d + a)(—j4)2, Piped 

p2 = -/9ά-Δζ6 + - ( C L , e + a ) ( — - | ) 2 , Pipe e 

where Cx is defined in Eqn (11.4). These equations are solved simultaneously 
to obtain the solution for each D as a function of the arbitrary static pressure, p2, 
at the end of pipe a. The results are shown in Fig. 16.27. From our inspection 
of this figure pipe a requires a 1^-in. nominal PVC pipe size (actual diameter 
of 1.61 in.), and pipes b through e require a nominal |-in. size (actual diameter 
of 0.824 in.) or nominal ^-in. size (actual diameter of 0.662 in.). As static 
pressure p2 increases, the driving force for flow in pipe a is lessened so that 
the pipe diameter, Da, must increase, which is clearly seen in Fig. 16.27. For 
the remaining four pipes, as static pressure p2 increases, the driving force for 
flow increases and thus the pipe diameters decrease to satisfy the constrained 
water flow rates. This is also clear from our inspection of Fig. 16.27. Among 
the latter four pipes, pipe d demonstrates the greatest sensitivity to changes in 
p2 because of the relatively large flow rate and the negative 3-m head that static 
pressure p2 must overcome. 

43. From the Mathcad worksheet, the elevation heads are large enough to satisfy 
the constraint of a 7-m head at the tapstand while satisfying the remainder 
of conditions for this design, which are shown in Table 16.10. The theoretical 
pipe diameters were obtained by assuming junction static pressures of 7 m. The 
final junction static pressures are p\2 = 19.3 psig (13.6 m), p2 3 — 28.0 psig 
(19.7 m), and p3 4 = 12.4 psig (8.7 m). Pipe cost, which is $341, was not 
optimized for this problem. The values for K represent partially closed globe 
valves in these pipe segments. 

44. The results are shown in Table 16.11. The cost for the optimized network, 
based on theoretical D, is $334, not very different from the solution of ex-
ercise 43. The choice for the nominal size of 1-in. for segment 34, instead 
of | for problem 43, adds cost to the final design of the network but addi-
tional flexibility for future expansion. The solution from Eqn (11.54) gives 
D°f = [1.13 1.08 1.01 0.832] in. The disagreement between the results 
from Eqn ( 11.54) and the Mathcad solution is because the optimal result shows 
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Figure 16.27 Solution for Exercise 42. Pipe a requires a l|-in. nominal PVC pipe size 
(actual diameter of 1.61 in.), and pipes b through e require a nominal | -in. size (actual diameter 
of 0.824 in.) or nominal |-in. size (actual diameter of 0.662 in.). 

Table 16.10 Solution for the Theoretical and Nominal Pipe Diameters, and Actual 
Volume Flow Rates and K for Leg of the Kiangan-Community Network 

Pipe Subscript 

12 
23 
34 
45 

Theor. D (in.) 

1.24 
1.18 

0.792 
0.762 

Nom. D (in.) 

I 
4 

Q (L/s) 

1.24 
1.05 
0.84 
0.43 

K 

50 
50 
40 
0 

that /igP = 7 m. That is, the optimal solution from Mathcad used the lower-
bound static pressure head. There is no such constraint in the analytical solution 
of Eqn (11.54). The solution we should use is the one from Mathcad. 

45. The results are presented in Table 16.12. The flow rates in segments 12, 45, 
and all branches are maintained as specified in Table 16.4 by adjusting globe 
valves in the branches as shown. 

46. In BranchPipeExample_4pipe_withcost-ver2. xmcd, we solve only the re-
verse problem with the flow rate for the turned-off segment set equal to zero and 
the energy equation for this segment disabled in the Given.. .Find block as dis-
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Table 16.11 Values for Design Parameters for a Leg of the Kiangan-Community 
Network 

Pipe Segment 

12 
23 
34 
45 

Q (L/s) 

1.23 
1.04 
0.83 
0.42 

L(m) 

76 
113 
19 
75 

K 

30 
0 
0 
0 

Le/D 

60 
90 
90 
90 

Az(m) 

18 
10 
8 
6 

12 
23 
34 
45 
26 
37 
48 

1.45 
1.19 
1.05 
0.685 
0.616 
0.629 
0.700 

1.25 
1.05 
0.834 
0.418 
0.200 
0.218 
0.416 

30 
0 
0 
260 
85 
215 
40 

Table 16.12 Solution for the Theoretical and Nominal Pipe Diameters, and Actual 
Volume Flow Rates and K for Leg of the Kiangan-Community Network 

Pipe Subscript Theor. D (in.) Norn. D (in.) Q (L/s) K 

ii 
3 

! 
! 
! 

cussed in Section 11.6.3. The flow rates in the branches are Q37 = 0.224 L/s, 
Q48 = 0.424 L/s, and Q45 = 0.424 L/s; all slightly larger than required from 
Table 16.4 for this design. 

47. The pathlengths and elevations for segments 12 and 23 are from geometry, 

£12(7) = Rl 

£23(7) = R{\-i) 

Δζι2(7) = i? [ l -cos( 7 ) ] 
Δζ23(7) = -Rcos(7). 

The energy equations for each of the four pipe segments are written. In each, D 
in its respective segment is unknown. In segments 12 and 23, /12 is unknown, 
and in segments 23, 34, and 35, h 3 is unknown. Here, 7 is the independent 
parameter and appears in the energy equations for segments 12 and 23. The 
solution is carried out consistent with past worksheets where optimal solu-
tions were sought. The energy equations are first solved simultaneously in a 
Given.. .Find block for their respective pipe diameters as a function of Y12, 
/13, and 7. The cost is then minimized using a Given.. .Minimize block and, 
by doing so, the value of hi and hz are determined as a function of angle 7. A 
plot of total cost versus 7 will then reveal the optimal value for 7 (i.e., the 7 
value that produces the lowest cost). 
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The solution appears in Figs. 16.28-16.31. The Mathcad worksheet displayed 
in Fig. 11.3 should be consulted for the preliminary calculations for the current 
worksheet. Our inspection of the results for this problem show that no optimal 
solution exists. The cost is essentially constant over all 7. This result is 
consistent with Section 11.5.1, where we saw that the minimum cost solution 
for a serial network is one where the pipe diameters are equal. 

48. The solution is presented in Table 16.13. The final static pressure heads at 
the three junctions is h°pt = [21.0 16.1 11.3 15.6] m for nodes 2, 3, 4, 
and 5. All are acceptable. Based on the correlation of pipe data from central 
Nicaragua, the optimal total pipe cost is $776. Nominal pipe sizes are selected 
next, followed by the reverse solution where actual flow rates and static pressure 
heads at the junctions are determined. 

Table 16.13 Solution for the Theoretical Pipe Diameters and Flow Rates for Loop 
Network 

Pipe Subscript Theor. D (in.) Theor. Q (L/s) 
12 TÖ7 Ï6Ô 
23 1.93 3.55 
34 1.32 1.25 
45 0.592 -0.13 
52 1.2 -1.05 
36 1.52 2.30 
47 1.47 1.38 
58 1.08 0.920 

49. Vectors of optimal pipe diameters for the distribution main and optimal static 
pressure heads at the junctions are: Z>°f = [1.91 1.88 1.86 1.80 1.74 1.67 
1.62 1.57 1.52 1.41 1.34 1.29 1.17 1.07 0.861] in. and h°pt = [0 8.66 
11.3 13.8 23.0 19.6 13.2 11.6 11.9 12.5 16.0 16.9 16.6 14.7 16.5 9.99]mat 
the 16 nodes. All components of h are acceptable from an integrity standpoint. 

50. The solution appears in the Mathcad worksheet in Figs. 16.32 and 16.33. In the 
energy equations, all pipe lengths (^13,^23,^34) and elevations (Δζΐ3,Δζ23:Δ 
depend on the angle 7 through simple geometry (see Fig. 16.6). They are writ-
ten as 

£13(7) = r r 
cos(7J 

£23(7) = ΓΤ 
cos(7j 

£34(7) = L3- L1t&n('j) 

Δζ13(η/) = sLitan(7) 
ΔΖ23(Ί) = sLi tan(7) 
Δζ34(7) = z i - sLi tan(7) 
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The energy equations for the three pipes in the network are written where, in 
each, D and the static pressure head at the junction (hj) are unknown, and 
7 is the independent parameter. The solution is carried out consistent with 
past worksheets where optimal solutions were sought. The energy equations 
are first solved simultaneously in a Given.. .Find block for their respective 
pipe diameters as a function of hj and 7. The cost is then minimized using a 
Given.. .Minimize block and, by doing so, the value of hj is determined as a 
function of angle 7. A plot of total cost versus 7 will then reveal the optimal 
(i.e., the 7 value that produces the lowest cost). 

From the Mathcad worksheet, the optimal angle is 7°pi = 77° and the minimal 
cost is $4386. The theoretical pipe diameters are: D\3 = 1.91 in., D23 = 
1.62 in., and D34 = 2.10 in. The pipe lengths are: L13 = 222 m, L23 = 222 m, 
and L34 = 1383 m. These figures can be determined by using the graphical 
t r ace option in Mathcad or by requesting D and L values at 7 — ηορί. 

At the optimal value of 7, the static pressure head is -5.82 m. This is a 
marginally acceptable value based on our previous work. Note that there is 
a generally broad minimum as seen in the leftmost figure at the bottom of the 
solution in Fig. 16.33. For example, for 7 — 44° the total cost is -$4450, 
very close to the optimal cost. For values of 7 > 7o p i , however, the total cost 
increases dramatically. 

Finally, we note for optimal conditions, there is no possibility of water flow 
from one source to another. This may have occurred for small optimal values 
of 7 but not for the optimal solution for this problem. 

51. The energy equations for the distribution main from node 5 to node 1 are written 
as 

0 = Δ254 + h 

0 = ΔΖ43 + h\ 

0 = Δζ32 + hi 

0 = Δ221 + h2 

where /15 = 35 psig = 24.61 m and hi = 7 m and it is understood that 
Δ221 = — Δζ1 2 and L21 = £12, and so on. That is, the pump is raising water 
above the location of node 5. An appropriate Mathcad worksheet is modified 
to solve this problem. 

For hj = 7 m throughout, the pipe cost is $290.50 and the diameters are 
D = [D54 D43 £>32 -D21] = [1.02 1.17 0.777 0.642] in. When the pipe cost 
is minimized it becomes $266.96 for which the optimized diameter results are 

, / , L54 8Q54 
- h i - 1/547^—j 2 r>4 

D54 ^gD^4 

KJ**D43'n*gDi3 

- h 2 ~ {J32JZ—) 2 n 4 
D32 -KzgDl2 

, (f
 L21 ■> 8Q2I 

— t i l - {J21-p~) 2 „4 
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Dopt = [1.01 0.963 0.902 0.742] in. The optimized static pressure heads at 
the three internal nodes are hopt = [h°pt h°pt h°pt] = [7.34 22.8 18.8] m. 
All are acceptable from an integrity standpoint. 

Chapter 12 Solutions 

52. To be done by the student. 

53. To be done by the student. 

54. To be done by the student. 

55. The Mathcad worksheet microhydro_theoretical_power. xmcd is used to 
solve this exercise. The calculations in this worksheet follow. 
The hydraulic gradient S ~ 0.076 from this example. The optimal pipe size, 
subject to the design value of Q = Qopt = 230 L/s in the penstock is from 
Eqn (12.13), 

D°pt = 0.9192 m. · S"02054 A 0 3 8 0 5 

= 0.9192 in. · 0.076"°-20542300·3805 = 12.3 in. 

For sch. 40 IPS pipe, the inside diameter is within 1 % of the nominal size for 
nominal size of 4 in. and larger (Table 3.1). Thus, we choose nominal 14-in. 
sch. 40 GI pipe. The flow speed is 2.3 m/s, below the maximum recommended 
of 3 m/s when considering abrasion. 
The energy equation for the actual turbine power output is Eqn (12.16), 

wa = fy η9 pg Q L[S - f(Q,D) 1 

n2gD5i 

Assume 7/e = 0.75 and η9 = 0.85. With f(Q, D) = 0.01702 from the 
Mathcad worksheet (or Fig. 2.4), obtain, 

wa = 0.75 · 0.85 · 999.7 kg/m3 · 9.807 m/s2 · 1050 m · [0.076 
8 ■ (230 x IO"3 m3/s)2 

' π2 ■ 9.807 m/s2 · (14/39.372 m)5 
- 0.01702 M 2 3 0 x l ( r 3 m 3 / s ) 2 ^ 

Since 95.5 kW > 65 kW as required by the community, we conclude the above 
design specifications will meet the electrical power demand. The designer 
needs to consider other inefficiencies in the system (transformer and power 
transmission losses), which will reduce this value by -15%. 
The value for Qopt is 324.7 L/s because of the need to select 14-in. GI pipe 
(13 in. pipe is normally not commercially available). This is much larger than 
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the design flow rate of Q = 230 L/s, and is the reason why the electrical power 
production is much higher than for textbox B.12.1 example. More power will 
be produced with GI pipe, but at a much greater pipe cost because the large 
pipe size is more than needed for optimal turbine performance. 

56. Equation (12.17) is solved in Mathcad using the root-finder root. The solution 
appears in Fig. 16.34. The flow rates range from 23 L/s to > 2200 L/s. 

57. In Exercise 55, the sch. 40 GI pipe size is D = 14 in. From the Mathcad work-
sheet microhydro_theoretical_ power, xmcd, the static pressure head just 
before the turbine is h2a = 66.26 m (Fig. 12.5). Assuming Cv = 0.95 at its 
mid-range, Eqn (12.26) becomes 

2 3 0 x l 0 - 3 m ; 7 s „ „., , „_, 2 ^ „ . , 
A n = / = 6.71 x 10 3 m2 = 10.4 m. 

0.95^2 · 9.807 m/s2 · 66.26 m 

The nozzle diameter is from 

Dn = (4An/n)1^=3.64m. 

With Cv near its optimal point, the efficiency of the turbine, Cp « 88.7% 
The speed of the water jet is 

Q 230 x 1Q-3 m3/s 
Vi = -— = 5—7Γ — 34.3 m / s 

An 6.71 x 10"3 m2 ' 

The tangential velocity of the Pelton wheel, ωτ, is optimally half of this value. 
The system efficiency is r\svs = 66.26 m/80 m = 82.8%, considerably larger 
than that based on D = Dopt. 

Chapter 13 

58. The solution is carried out using Eqs (13.1) and (13.2). The results for the 
running sum of the local lengths are presented in Table 16.14. The total length 
of pipeline is I^ig = 1454.3 m. From our inspection of the given data set, the 
point in the network that is closest to the elevation of the source (at node 1) is 
node 17, where Az = 49.3 - 38.9 m = 10.4 m. 

59. The present water demand is estimated from Eqn (13.4) 

1350 persons · 80 L/person/day 
Qd'P = 60s/min-60min/h-24h/day = / S 

The future population is estimated from Eqn (13.3) 

PF = 1350 persons · (1 + 0.015)20 = 1819 persons 
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Table 16.14 Running Sum of Local Lengths for Exercise 58 

Node, i Xi (m) j / , (m) Zi (m) Leti (m) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

0 
-37.2 
-77.4 
-241 

-277.8 
-312.5 
-336.2 
-374.7 
-420.8 
-439.1 
-412.6 
-428.9 
-481.8 
-471.9 
-533.9 
-544.5 
-536.1 
-688.4 

0 
-52.1 

9.6 
75.7 
95.8 
148.4 
184.7 
208.4 
216 

228.7 
335.1 
373.1 
463.7 
552.1 
659.1 
720.5 
864.9 
974.3 

49.3 
22.2 
19.9 
29.6 
33.6 
25.2 
17.5 
22.5 
21.7 
20 

22.3 
13.5 
16.7 
15 

24.7 
43 

38.9 
5.2 

0 
69.5 
143.2 
319.9 
362.0 
425.6 
469.6 
515.1 
561.8 
584.2 
693.9 
736.1 
841.1 
930.1 
1054.1 
1119.1 
1263.8 
1454.3 

Table 16.15 Flow Rate Data for Exercise 59 
Present 
Demand 

(L/s) 
1.25 

Future 
Demand 

(L/s) 
1.68 

Source 1 
Yield 
(L/s) 
0.95 

Source 2 
Yield 
(L/s) 
0.40 

Source 3 
Yield 
(L/s) 
1.46 

Source 4 
Yield 
(L/s) 
0.55 

from which the future demand becomes 

„ 1819 persons · 80 L/person/day , „„ x , 
Qd>F = « n / ■ M—■ u ΟΛ v, IA = L 6 8 L / S 

60 s/min · 60 mm/n · 24 h/day 

A comparison of the future demand with the yields from the sources is shown in 
Table 16.15 for convenience. Our inspection of the data in Table 16.15 shows 
the following combination of sources will meet the present and future demand: 

(a) Source 3 and any one of the remaining sources. 
(b) Sources 1, 2, and 4 together. 

To produce a recommendation based on a full-analytical approach, proceed to 
calculate the pipe sizes needs to deliver water from each source to the storage 
tank. Design Fig. 5.4 is used (F = 0; Natural flow, and λ = 1) to calculate 
the nominal pipe sizes for each of the candidates. The results are shown in 
Table 16.16. Also shown in this table are the total pipe costs for developing 
each source, where the pipe cost per length is from any one of the appropriate 
Mathcad worksheets. Our inspection of the results of Table 16.16 shows that 
option a from the above list of options costs between $97.02 (Sources 3 and 2) 
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Table 16.16 Cost Data for the Four Sources in Exercise 59 
Source 

1 
2 
3 
4 

Mean Slope 
(,δζ/L) 

0.0625 
0.375 
0.113 
0.0476 

Yield 
(L/s) 

0.95 
0.40 
1.46 
0.95 

D (nom.) 
(in.) 

2 
1. 

h 
2 

Cost Per 
Length 
(S/m) 
2.40 
0.60 
1.74 
2.40 

Length 
(m) 

32 
8 

53 
21 

Total Pipe 
Cost (US$) 

76.80 
4.80 
92.22 
50.40 

and $169.02 (Sources 3 and 1). The total pipe cost for option b is $132. There-
fore, the most economical choice is to develop sources 2 and 3 that produces 
a yield of 1.86 L/s. This recommendation assumes that binding commitments 
from the land owner(s) of the source(s) have been obtained for all of them, and 
that the owners have agreed to not disturb the native growth around each of 
the sources. Disturbing this growth, such as cutting of trees surrounding the 
sources could affect the yields from the springs in the future. 

60. We use the spreadsheet Storage Volume Calculation-Textbox_Example 
. xlsx, supplied with this book, to calculate the volume of water in the tank at 
the end of each hour of the day. Trial-and-error dictate that we consider tank 
volumes in the range of 38,000-42,000 L; volumes below this range are empty 
> 2 h each day. Volumes greater than this are filled the entire day and have too 
many hours of overflow. Table 16.17 shows the results for a tank volume of 
40,000 L (40 m3). The recommended tank volume is between 40 and 41 m3. 
For the latter value, the tank never empties. 

61. For pipe segment 12, for example, from Eqn ( 13.6) the design flow rate becomes 

Qi2,p,p = PF ■ Qi2 = 3.2 ■ 3.5 L/s = 11.2 L/s. 

For an annual growth rate, i, of 1% and a 25-year network lifetime, the result 
from Eqn (13.3) shows the design flow rates need to increase a factor of 1.282 
to accommodate the future population. Thus, for pipe segment 12, 

Qi2,F,p = (1 + if ■ Qi2,p,p = 1-282 · 11.2 L/s = 14.4 L/s 

The flow-rate results for all segments of this network were calculated in the 
same manner and presented in Table 16.18. 

62. To be done by the student. 

63. For GI pipe, solve Eqn (13.10) in Mathcad using the friction factor from 
Eqs (2.16) and (2.17) to get La and Lb equal to 280.8 m, and 97.2 m, re-
spectively. For PVC pipe either the Mathcad worksheet or Eqn (13.10) will 
give La and L/, equal to 277.3 m, and 100.7 m, respectively. The differences 
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Table 16.17 Water Volume in Tank versus Hour of Day for Tank volume of 40,000 L 

Hour 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Qs 
0/h) 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 
6696 

Demand 
Percentage 

0 
0 
0 
0 
5 
20 
10 
5 
1 
1 
5 
10 
5 

2.5 
2.5 
5 
10 
10 
5 
2 
1 
0 
0 
0 

Qd 
(1/h) 

0 
0 
0 
0 

7,276 
29,104 
14,552 
7,276 

1,455.2 
1,455.2 
7,276 
14,552 
7,276 
3,638 
3,638 
7,276 
14,552 
14,552 
7,276 

2,910.4 
1,455.2 

0 
0 
0 

Water 
Volume (1) 

40,000 
40,000 
40,000 
40,000 
39,420 
17,012 
9,156 
8,576 
13,817 
19,058 
18,478 
10,622 
10,042 
13,100 
16,158 
15,578 
7,722 
-134 
-580 
3,786 
9,026 
15,722 
22,418 
29,114 

State of 
Tank 

Overflow 
Overflow 
Overflow 
Overflow 

Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Filling 
Empty 
Empty 
Filling 
Filling 
Filling 
Filling 
Filling 

Table 16.18 Present and Future Design Volume 

Pipe Subscript, 
12 
23 
34 
45 
56 
67 
78 
89 

2-10 
3-11 
4-12 
5-13 
6-14 
7-15 
8-16 

ϋ UJi; ί,ρ,ρ (L/s) 

11.2 
9.6 
8.8 
7.2 
6.4 
4.8 
4.0 
3.2 
1.6 
0.8 
1.6 
0.8 
1.6 
0.8 
0.8 

Flow Rates fo: 

Qij,F,p (L/S) 

14.4 
12.3 
11.3 
9.2 
8.2 
6.2 
5.1 
4.1 
2.1 
1.0 
2.1 
1.0 
2.1 
1.0 
1.0 
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between the results for PVC and GI hint that Eqn ( 13.11 ) is probably adequate 
as a first-order estimate for both GI and PVC pipe, especially when one applies 
the factor of 0.8-0.9 to allow for possible increase in water flow rate in the 
future. The Reynolds numbers for pipes of diameters Da and Db are 47,500 
and 60,980, respectively; both are turbulent. 

64. For the given pipe size, Table 3.1 reports Dout = 6.625 in. mdDin = 6.065 in. 
For water at 10°C at which the density is p - 999.7 kg/m3, Eqn (13.13) 
becomes 

/(2.110 x 109 N/rn )/999.7 kg/m3 ■ (1 ■ kg m/s2)/N 
aw ~ y 1 + 2 · (2.11 · 109/2.90 x 109)/(6.625/6.065 - 1) 

= 354.9 m/s 

where the bulk modulus for water, B = 2.110xl09 N/m2, and elastic modulus 
for PVC, E = 2.90 x 109 N/m2, are as given in Section 13.17. 
The flow speed in the pipe before the valve is closed, ü, is from the continuity 
equation, Eqn (2.21), 

_ Q 48 L/s · 0.001 m3/L 0 e o . 
U— — — ; ; ττς— = 2.58 m / s 

A 71-/4 · (6 .065 i n . ) 2 ' 

The change in flow speed is thus, 

ΔΜ = 0 - Μ = -2.58 m/s. 

The magnitude of the pressure wave resulting from the sudden valve closure is 
from Eqn (13.12) 

Δρ = -999.7 kg/m3 · 354.9 m/s · -2.58 m/s = 470 kPa 

or -93 m of water head at the location of the valve. 
If the pipe material were GI, the above becomes aw = 1311 m/s and Δρ = 
3374 kPa. This is equivalent to -344 m of water head. Although these results 
are worst case, water hammer in the presence of steel (or galvanized iron) pipe 
could fail the water delivery pipe. This is especially worrisome if both PVC 
and GI are used in the same network. In this case, a pressure wave of large 
magnitude is produced in the steel pipe which, when encountering the PVC 
pipe, would very likely rupture. 

Chapter 14 Solutions 

65. Solution from Mathcad worksheet: Based on the material presented in Sec-
tion 14.3, our inspection of Fig. 16.7 indicates that one air block will form in 
segment b. Our approach will be to use Eqn (14.7), the simple approach where 
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air compressibility is neglected, and Eqn (14.13) where compressibility is in-
cluded. When we include air compressibility, recall that pa\ = 14.7 psi since 
all static pressures must be in absolute and hdei = 20.3 m (abs). Otherwise, we 
can use gage pressures of pa\ - 0 psi and hdei = 10 m. 
First, we find the flow rate if there are no air blocks. From the geometry of 
Fig. 16.7 calculate s = 0.131. With F = 10 m/170 m = 0.0588, and λ = 
1333.8 m/1311.1 m = 1.11, the Mathcad worksheet gives Q = 0.904 L/s. By 
comparison, both Eqs (9.2) and (9.3), which assume a constant friction factor 
of 0.03, predict only 0.3% higher, in nearly perfect agreement with the exact 
solution. 
Now, neglect air compressibility and use Eqn (14.7) to calculate Q. With 
compressibility neglected, pipe segment b contains air over the entire segment 
length. The remainder of the pipe segments flow water. The reduced elevation 
head, Aza+Azc+Azd, is (100-20-20+40) m = 100 m, and the length of pipe 
flowing water, La + Lc + Ld, is (614.81 + 250.80 + 302.65) m = 1168.3 m. The 
corresponding values for s, F, and λ are 100 m/1300 m = 0.0769, 10 m/100 m 
= 0.100, and 1168.3 m/1311.3 m = 0.891, respectively. Through the Mathcad 
worksheet, we calculate Q = 0.0925 L/s, a reduction of -90% compared with 
the case where there are no air pockets. 

With air compressibility included, we use Eqn (14.13) together with the Mathcad 
worksheet to calculate the flow rate. Please refer to the notation appearing in 
Fig. 14.6 above to write the equations for Azc(pa2) and L*(pa2). Obtain 

Azc{pa2) = [50 - 70 + (120 - 50)(1 - 1 4 J p s i a ) ] ; m (16.23) 
Pa2 

L*c(Pa2) = [250.80+165.50(1 - 1 4 J p s i a ) ] i m (16.24) 
Pa2 

Finally, Eqs (14.13) for this exercise are written as 

f(cL,a + «)(JL pgAza - p a 2 + Pai = ^(CL,a + a)(^-)2, Segmenta 

pgAzc{pa2) + Pa2~Pc2 

^ C L , C ( L : ( P O 2 ) ) ( ^ ) 2 , Segmente 

(16.25) 

pgAhdei + pc2 - Pdel 

= Ö C L , < / ( — F ^ ) 2 , Segment d 

where pa\ (=14.7 psi) has been added to the first of these equations since all 
static pressures are in absolute. 
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The equations of Eqn (16.25) are solved in the Mathcad worksheet for pa2, 
pC2, and Q. After converting all static pressures to gage values, we obtain 
pa2 = 22.5 psig, pc2 = 2.198 psig, and Q = 0.837 L/s (-7.4% less than 
with no air pockets). The head Azc{pa2) is 22.3 m, a positive value. This is 
contrasted with -20 m for the case where we assume incompressible air from 
above. The neglect of air compressibility produces an overly conservative result 
as discussed in Chapter 14. 
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Figure 16.32 Page 1 of solution for Exercise 50. 
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Figure 16.33 Page 2 of solution for Exercise 50. 
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Figure 16.34 Solution for Exercise 56. 
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Appendix A 

List of Mathcad Worksheets 

The Mathcad worksheets (and other programs) supplied with this book and the sec-
tions in which they appear are as follows: 

• Chapter 2: 

- f r i c t i o n fac tor .xmcd (Section 2.2.2) 

- HydraulicGradient. xmcd (textbox B.2.6) 

• Chapter 4: 

- s ing le pipe example-method 3.xmcd (Section 4.5.3) 

• Chapter 8: 

- SinglePipeNetworkDesign_Appendix.xmcd (Sections 8.2- 8.5) 
- SinglePipeNetworkDesign_Metric_Appendix.xmcd (Sections 8.2-

8.5) 

* 
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- example problem on peaks.xmcd (Section 8.6) 
- site_survey_data.xmcd (Section 8.7) 
- Tank-Draining.xmcd (Section 8.8) 

• Chapter 10: 

- Optimization_TankHeightvsPipeSize. xmcd (Section 10.6) 

• Chapter 11 : 

- BranchingPipeExample.xmcd (Section 11.4) 
- NumberPipesSeries_Example.xmcd (Section 11.5.1) 
- SeriesPipeExample-equalQ.3pipe_witb.cost. xmcd (Section 11.5.1) 
- BranchPipeExample_4pipe_withcost_ver2.xmcd (Section 11.6.1) 
- BranchPipeExample_4pipe_withcost_ver3.xmcd (Section 11.6.6) 
- LoopExample_withcost_ver3. xmcd (Section 11.7) 
- LoopExample_withcost_ver8. xmcd (Section 11.7) 
- BranchPipeExample_4pipe_withcost_vectorized_ver3. xmcd (Sec-

tion 11.8.3) 

• Chapter 12: 

- microhydro_theoretical_power .xmcd (Section 12.2) 

• Chapter 13: 

- Storage Volume Calculation-Textbox_Example.xlsx(AMicrosoft 
Excel spreadsheet; Section 13.6) 

• Chapter 14 

- pipe s iz ing for a i r block example, xmcd (Section 14.5) 

• Chapter 15: 

- BranchNetwork-Philippines_withcost_verl. xmcd (Section 15.3.3.3) 

The worksheets have been successfully run on Mathcad versions 11,13, and 14 (the 
current version at the time of this writing). There have been a few syntax changes and 
additions during the time of the release of these versions. One is for the root function. 
The earliest versions require an initial guess outside of the root function whereas, in 
the later versions, a range of values over which the root function looks for a solution 
is required within the root function itself. It appears that versions 11-14 allow 
the latter syntax. In the later versions, there also appear to be improvements to the 
Minimize function. The earliest versions take considerably longer to run worksheets 
that use Minimize compared with version 14; in some cases one or two orders-of-
magnitude more time on the same computer. In addition, version 14 contains a time 
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function that can be used to calculate the execution time for a calculation. Earlier 
versions will not recognize this function. 

Note that some worksheets have different extensions with the same name. These 
are written to run in two different versions of Mathcad. The extension mcd is for 
Mathcad version 11. The the extension xmcd is for Mathcad version 14 or later. 
Mathcad versions 11 and later can successfully read files with the extension mcd, but 
only Mathcad version 14 (or later) will read files with the extension xmcd. 

Also, note that several worksheets appear in metric form where the worksheet name 
includes the word Metric. An example is SinglePipeNetworkDesign-Appen-
dix and SinglePipeNetworkDesignJ1etric_Appendix in the above list. 



This page intentionally left blank



Appendix B 

Calculating Pipe Length and Mean Slope 

from GPS Data 

B.1 THE BASICS: NORTHING AND EASTING 

Dimensions of the potential site for a water network can be measured with land-
based surveying equipment, such as a transit or an Abney level and measuring tape. 
Alternately, more sophisticated electronic equipment may be used, such as a global 
positioning system or GPS. A GPS uses signals transmitted between itself and satel-
lites to accurately determine the position of the device. The position is given in 
terms of three coordinates, latitude, longitude, and elevation from sea level. In prin-
ciple, these are sufficient to allow us to determine everything we need for the survey. 
However, latitude and longitude are not immediately useful because they are angles 
measured from the equatorial plane for latitude (between 0 and 90° ; positive for the 
northern hemisphere, negative for the southern) and the prime meridian for longitude 

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 
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Figure B.l Easting-Northing coordinates for two points on the earth's surface. 

(between 1 and 180°, positive for the eastern hemisphere, negative for the western) 
and we require distances. A conversion is needed. 

Universal Transverse Mercator (UTM1) coordinates are Cartesian coordinates 
that have been converted from latitude and longitude angles. The two coordinates 
are referred to as Easting and Northing, where Easting is the distance coordinate in 
the east-west direction (larger numbers are east of smaller numbers) and Northing is 
that in the north-south direction (larger numbers are north of smaller numbers). In 
engineering, we normally refer to Easting and Northing as the x and y coordinates, 
respectively; see Figs. B.l and B.2 for a comparison between the two. 

The conversion is accomplished by applying formulas from geometry relating an-
gular measurements and distances at the earth's surface. For example, 1 ° of longitude 
at the equator (0° latitude) is 111.3 km to better than 0.1% depending on longitude. 
This distance gets smaller with increases in either north or south latitude. Fortunately, 
we do not have to program these formulas ourselves since others were kind enough 
to do this for us. 

A Microsoft Excel spreadsheet written by Dutch (2009) is available for the conver-
sions. The inputs include the model for the shape of the earth, latitude and longitude 
values entered in either decimal or degree-minutes-seconds (DMS) format, and spec-
ifications of north or south for latitude and east or west for longitude. For the DMS 
format there are 60 minutes in a degree and 60 seconds in a minute. The conversion 
between the DMS and decimal format is thus, 

Θ = 0+Μ + Λ_ (B.D 
60 3600 v ' 

'The Transverse Mercator Projection that is used on many world maps is a cylindrical projection. In this 
projection, the earth is contained within an imaginary cylinder that contacts the globe along its equator. 
The earth is then projected on the cylinder to produce the Mercator Projection. To visualize this, imagine a 
flashlight positioned on the north-south axis (and normal to it) running through the globe, pointing outward 
toward the cylinder. Note that landmasses at the larger north and south latitudes will be compressed in the 
north-south direction relative to those at the equator once project onto the cylinder. This is a characteristic 
of the Mercator Projection. 
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Figure B.2 Easting-Northing coordinates of Fig. B. 1 written in conventional x-y form. 

where Θ is the latitude or longitude angle in decimal format. For example, a latitude 
of 19°, 45', 33" converts to 19.759167°. Note the designations of a single prime for 
minutes and a double prime for seconds in the DMS format. 

The model for the earth's shape essentially means the assumed diameters of the 
earth at the equator and poles; it is generally understood that the earth is larger at 
the equator than at the poles. Different models, referred to as "datums", use very 
slightly different diameters. The most recent datums are NAD83/WGS84 (World 
Geodetic System 1984) and GRS80 (the foundation for the North American Datum 
of 1983 or NAD83) which agree with each other to within 1 part in 10,000. Use the 
NAD83/WGS84 datum unless information is available to dictate otherwise. 

A word about accuracy of the results from these calculations is in order. Since there 
are at most 111 ,300 m in 1 ° of longitude, 1 m of resolution in the Easting coordinate 
will require certainty in longitude to five decimal places. The same accuracy in 
latitude is required for the Northing coordinate. Longitude or latitude data to only 
four decimal places will produce, at best, certainty to ±10 m. The accuracy of 
readings from a standard GPS receiver is also unlikely to be greater than ±10 m.2. 
Thus, the understanding is that calculations involving dimensions from GPS data will 
be accurate only to this order of magnitude. To obtain the most meaningful results 
at any accuracy level, multiple latitude and longitude readings, say 10 or more, are 
recommended before converting the average of these readings to UTM coordinates. 

More accurate horizontal and elevation measurements, at the cost of additional time 
and perhaps expense, are obtained by surveying the site with a transit as described in 
Chapter 13. 

2One popular brand of GPS in the United States, Garmin, states that its GPS receivers are accurate to 
within 15 m on average (Anon., 2009) This is probably a worst-case estimate. 
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B.2 AN EXAMPLE 

Consider the calculation of Northing and Easting coordinates for two locations listed 
in Table B. 1.3 Download the Excel spreadsheet (Dutch, 2009) and launch Excel to run 
the sheet. Input the data in DMS format and obtain the results as shown in Table B.2. 

Table B.l Data for a Northing-Easting Example 

Name Latitude Longitude 
Treasure Island 43° 33' 0" -71° 17' 0" 
Diamond Island 43° 34' 25" -71° 19' 20" 

Location 
Treasure Island 
Diamond Island 

Table B.2 Northing-Easting Results 

Northing Coordinate (m) 

Ni 
N2 

= 4,824,427.26 
= 4,827,136.64 

Easting Coordinate (m) 
£ i = 315, 
E2 = 312, 

555.29 
487.09 

The Pythagorean theorem is used to calculate the distance between the two loca-
tions. Obtain 

I = [(iVx - iV2)2 + (E1 - E2)
2}1'2 (B.2) 

The distance between the two locations is calculated as I = 4093.24 m. If this is the 
final result to be reported, it would be rounded to the nearest 10 m. We get ί = 4090 m 
= 4.09 km. 

To calculate the mean slope between these two locations, assuming a source at 
Treasure Island Az = 10 m higher than the delivery location on Diamond Island, 
from the definition of slope, we use 

.-£ 
from which we get s = 0.244%. 

From the Pythagorean theorem we can also calculate the pipe length if run directly 
from source to delivery or tank location. Thus, 

L = {i2 + Az2)1/2 = [(iVj - N2)
2 + (E1 - E2f + Az2}1'2 (B.4) 

We get L = 4093.25 m. Because of the relatively small value of Az, L and I are 
essentially identical. 

3The locations are on Lake Winnipesaukee, New Hampshire. This is the location of the author while 
completing this appendix. 
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Appendix C 

Mathcad Tutorial 

The following tutorial was extracted from Mathcad ver. 11. (with permission). 
The areas covered include fundamental math operations (Figs. C.1-C.16), plotting 
(Figs. C.17-C.18), the root function (Figs. C.19-C.20), and Given . . . Find con-
struction (Fig. C.21). There is also a brief write-up on the Minimize function. If 
using a later version, or for information on other topics, please refer to the version's 
tutorial. Small changes in syntax (sometimes) and new features (usually) appear in 
later versions. 

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 
Copyright © 2010 John Wiley & Sons, Inc. 
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Basic Math 
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Entering Math Calculations 

Math in a Mathcad worksheet appears in familiar math notation — 
multiplication as a raised dot, division with a fraction bar, exponents in a 
raised position, and built-up fractions just as you would see in a book. 
Entering math expressions is very straightforward. Here are some quick 
exercises to learn a few keystrokes and toolbar buttons. You will also learn 
how to get a numeric result and to modify its format. 

Definitions 

numeric expressions— expressions involving numbers and operators 

symbolic expressions— expressions involving numbers, unknowns 
(variables), and operators 

Calculator toolbar— toolbar containing buttons commonly found on a 
calculator and other math operator buttons 

result— evaluation of numeric expression 

result formal type of result, including: decimal, fractional, scientific, etc. 

Practice 

Entering a 

Type this: 

2+1/2 

Type this: 

iNum 

(Λ-ΚΛ 

eric Expression 

Get this: 

2 + i 
2 

Get this: 

( 9 + 3 ) 

Tip: Don't press the 
Spacebar between parts 
of the expression. 
Mathcad enters the 
correct spacing as you 
type. 

( 2 x 4 - 5 ) 

Figure C.l Mathcad tutorial - basic math; page 1. 
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The Calculator toolbar is used primarily for work within the 
Worksheet window. It may already be on your desktop, but hidden 
under the Resources window. Click in the Worksheet window and 
move theCalculatortoolbar over to the far left. Then bring your 
Resources window back up, which will make it the "active" window. 

If theCalculatortoolbar is not open, in the Worksheet window, 
follow these steps: 

Figure C.2 Mathcad tutorial - basic math; page 2. 
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Figure C.3 Mathcad tutorial - basic math; page 3. 



506 APPENDIX C 

Figure C.4 Mathcad tutorial - basic math; page 4. 
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Click to position the red crosshair to the right and type the following 
examples. Pay particular attention to what happens when you press the 
spacebar. The spacebar moves you out of the denominator of a fraction. 

1/2 [Spacebar] +2 + 2 

When you are in an exponent and you want to continue entering more of the 
expression, you use the Spacebar to move down from the exponent. 

χΛ2 [Spacebar] +2x+l ■ + 2x + 1 

3/4 [Spacebar] +8/9 
3 8 
— + — 
4 9 

3 2 
2χΛ3 [Spacebar] -3χΛ2 [Spacebar] + x - l 2x - 3x + x - 1 

\ a - l [Spacebar] [Spacebar] + a 

Tip: You might need to 
press [Spacebar] two 

^ a - 1 + a or more times to get to 
the right position in the 
expression before you 
can continue typing. 

\3/4 [Spacebar] +1/2 
[Spacebar][Spacebar][Spacebar] /6 

3 1 
- + — 
4 2 

x+6[Spacebar]*(x"3[Spacebar]-l) (x + 6)(x3 - 0 

The exponent operator in Mathcad is calledsäcky operator because your 
keystrokes will stick to the exponent position until you specifically move 
back to the baseline by pressing [Spacebar]. Other sticky operators include 
square roots, subscripts, and division. 

Figure C.5 Mathcad tutorial - basic math; page 5. 



508 APPENDIX C 

Figure C.6 Mathcad tutorial - basic math; page 6. 
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The exercises in this tutorial require you to work within the 
Worksheet window. To copy the contents of this lesson into the Worksheet 
window, choose Select All from the Edit menu. Then, either drag and 

or copy and pasteall the regions into your Worksheet window. 

Using the Spacebar, Backspace, Delete, Insert, and arrow keys to change 
math expressions: 

Figure C.7 Mathcad tutorial - basic math; page 7. 
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Figure C.8 Mathcad tutorial - basic math; page 8. 
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Often you will want to define a value as a variable you can use in 
subsequent calculations. In this worksheet, you will practice defining and 
viewing s ingle-value and range variables. 

x:2 x := 2 

dist:25m dist := 25m 

Tip: If you don't know the 
abbreviation for a unit you are trying 
to use, selecflJnit from thelnsert 
menu and browse for the units you 
want. 

mi 
v.l:20ni/hr vi := 20 — 

hr 

This definition uses a literal 
subscript, a common notation in 
science. You get a literal subscript 
by pressing the period (.) key after 
the variable name. 

Notice that when you type the colon [:] key or press the assignment 
operator key 

on theCalculatortooIbar, Mathcad dispkys=. The assignment operator 
(colon equals) in Mathcad is used for definitions. 

Figure C.9 Mathcad tutorial - basic math; page 9. 
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Before starting these exercises, display the Matrix 
toolbar on your desktop byelecting Toolbars 
=> Matrix from the View menu. 

Remember that to use a toolbar in conjunction with the Resources window, 
you must move it over to the far left in your Worksheet window. Then bring 
your Resources window back up, which will make it the "active" window. 

With your Matrix toolbar in view next to the Resources window and your 
Resources window active: 

This definition will 
give you a range of 

g: l [Tab] 10 g := 1.. 10 n u r n b e r s between 1 and 
10 at whole number 
increments. 

n3.5;12.5 n:= 3.5.. 12.5 

This definition will give you a 
range of numbers between 3.5 and 
12.5 at whole number increments. 

Notice that when you type the semicolon character, it displays on the 
screen as two dots (.. i) surrounded by placeholders. This isMathcad's 
range variable operator. 

n3.5A0;l2.5 n := 3.5,4.0.. 12.5 

This definition will give you a range 
of numbers between 3.5 and 12.5 in 
increments of 0.5. 

1 1 7 
h:l/4 [Spacebar] ,1/2 [Spacebar] ;7/4 h : = - , - . . -

4 2 4 
This definition will give you a range 

1 7 1 
of numbers between- and — in increments of—. 

4 4 4 

Figure C.10 Mathcad tutorial - basic math; page 10. 
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Figure C i l Mathcad tutorial - basic math; page 11. 
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Figure C.12 Mathcad tutorial - basic math; page 12. 
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Here you will practice defining functions, calculations that can be used 
over and over again in your worksheet without being entered repeatedly. 

Below is a function to define as the input and 2x + 1 as the output. Notice 
that you use the assignment operator to define functions, just as you use 
the assignment operator to define variables in Mathcad. 

fi» := 2x + 1 

The functbn is written in function notation, which is a compact way of 
saying that f is a rule that takes inputs represented by x and produces an 

output given by 2x + 1. Read "f(x)" as"f of x." It says,"What folbws is the 
algebraic definitbn of what happens when the rule f is applied to the input 
x." 

If you want to "call" or evaluate that function for a particular value, you 
enter this: 

f(2) = 5 

This call performed the calculatbn, 2(2) + 1, automatically by substituting 2 
for x in the functbn f. 

Defining and evaluating a function 

g(x):15-xA2 g(x) := 15 - x 

9(2)= g ( 2 ) = l l 

9(3)= g(3) = 6 

s - 1 
d(s):s-l [Spacebar] /s+1 d(s) := 

s + 1 

The algebraic expression on the right-hand side of your 
function definition must use the variable noted in parentheses 
on the left-hand side. 

Figure C.13 Mathcad tutorial - basic math; page 13. 
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d(101)= d(101) = 0.98 

L(9):iog(g) 

and 

η:10Λ30 

L(g) := log(g) 

n := 10 

L(n)= L(n) = 30 

Evaluating a Function with a Range Variable 

χΛ;10 χ : = 0 . . 1 0 

Tip: Recall that a range variable is a variable that takes on a range of 
values from one endpoint to another at a specified increment. 

f(x)= f(x) The best method for 
performing the same 
calculation on a range of 
values is to use a range 
variable in conjunction 
with a function. 

l ip: In this example, the function, f, was defined at the top of the 
worksheet. As long as a definition is above or to the left of where it 
is being used, it does not need to be close to calculations using it. 

function(y):yÄ2 

Y3,3.5;5 

functio^y) := y 

Y : = 3 , 3 . 5 . . 5 

functkm(Y) = functio^Y) = 

20.25 

You can call a 
function with any 
variable defined in the 
worksheet. 

Figure C.14 M a t h c a d tutorial - bas ic ma th ; page 14. 
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Figure C.15 Mathcad tutorial - basic math; page 15. 
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Figure C.16 Mathcad tutorial - basic math; page 16. 
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Plotting Graphs 
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Plotting a Single Data Variable from One Data Table or Vector 

1. Anywhere below or to the right of your data variable definition, define a 
range variable to index the data variable. For example, if your data 
variable isdata. type 'i : 0 ; length ( data) ". 

2. Click below these definitions amhooseGraph => X-Y Plotfrom the 
Insertmenu or type tShif t ] 2 " to insert a 2D Graph. 

3. In the x-axis placeholder, enter the name of the range variable (i). 
4. In the y-axis placeholdeitype 'data [ i " to enter the name of the 

variable that contains your data subscripted with the range variable. 
Then,press [Enter]. 

Note: Arrays and tables have a starting index of 0 (zero) by default. 

EXAMPLE 

Here is a small set of data entered in a single column Data Table. The data 
represent the completion times for various speed trials of a car: 

times := 

0 

1 

2 

3 

4 

5 

6 

7 

0 

13.4 

14.5 

13.9 

14.1 

15.2 

15.1 

15 

14.8 

i:= 0..1engtr(times) 

The graph has been formatted to show the data as points and the axis limits 
have been adjusted. 

20 T 

1 5 " 

timesj 1 0 " 
ooo 

5" 

o o 
o o o 

Figure C.17 Mathcad tutorial - plotting; page 1. 
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Click anywhere below or to the right of your data tahfed choose 
Graph => X-Y Plotfrom thdnsertmenu or type tShif t ] 2 " to 
insert a 2D Graph. 
In the x-axis placeholder, enter the name of the variable containing your 
independent data (usually time) 
In the y-axis placeholder, enter the name of the variable containing your 
dependent data (usually what you measured) and press [Enter]. 

Here are two vectors containing time and population data and a plot of time 
versus population, below. 

time:= 

( 0 \ 

5 

10 

15 

20 

25 

30 

V 3 5 / 

populations 

( 0 >* 

6 

11 

25 

50 

90 

153 

v230 

250T 

200--

ISO-
population 

0 
100-

50-

o 
-I— 10 

—\— 
20 

time 

30 40 

ure C.18 Mathcad tutorial - plotting; page 2. 
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Using the Root Function; Solving a Single Nonlinear 
Algebraic Equation 
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Often the equation you want to solve has a numerical solution but not an 
exact algebraic solution. This when you need the root function. To solve 
an equation using the root function: 

In your worksheet window, define a guess value for the unknown 
variable. 

Type the root function where the first argument is an expression equal 
to zero and the second argument is the unknown variable. 

x+ 1 x + 1 
Solve the equation sinfx) = . 

10 
It is a good idea to first plot the two functions to see approximately the 
number of times they intersect: 

From the plot it looks like there are seven places where the two 
expressions are equal — the seven places where the blue line crosses the 
red sine curve. Use root to find these intersections. 

The root function looks for places where an expression is equal to zero. So, 
first rearrange the equation into the form "something = 0." 

w x X + l
 n 

sm(x) = 0 
10 

Figure C.19 Mathcad tutorial - root function; page 1. 
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The root function will find only a single solution; since there are actually 
seven solutions, you have to tell Mathcad which one you're after. Do this 
by defining a guess value for the solution. In fact even if there's only one 
solution, root requires a guess value to get it started. First try to find the 
largest solution. From the graph it looks like it's around x =9, so use this 
guess: 

x :=9 

root! sin(x) ,x = 8.245 

Use a different guess value for x to try to find the smallest solution. 

x : = - 9 

rooti sin(x) ^— ,χ = -8.567 
10 

Figure C.20 Mathcad tutorial - root function; page 2. 
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Using the Given .. . Find Construction; Solving 
Multiple Nonlinear Algebraic Equations 
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A Solve Block can be used to solve any solvable system of equations with 
any number of equations and unknowns. Here are the steps for settmg up a 
Solve Block: 

In your worksheet window, define guess values for the unknown 
variables using a definition equal sign. To do so, type (colon) or click 
the Definition button on the Calculatortoolbar. 

Below that, ype the word given (as in "given these equations") as a 
math region. 

Below that, oter the equations using [Ctrl ] = 

Below that, type " Find (x ,y , 2 , e t c . ) =". In the Find statement, 
enter all the variables that are unknown in the system. 

Solve the following system of three equations and three 3-x + 4-y - 4z = 2 
unknowns: 

-7-X+ y + z = 5 

6x + 3y - z = 0 

x := 1 y := -1 z := 1 Guess values 

Given 

3-X+ 4 y - 4 z = 2 

-7-X+ y + z = 5 

6x + 3y - z = 0 

' -0 .522^ 

Find(x,y,z) = 1.12 

^ 0.228 j 

The word given as a math region 

The equations 

Find statement 

Figure C.21 Mathcad tutorial - given ... find construction for solving simultaneous 
algebraic equations. 
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The Minimize Function 
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Minimized, vari, var2,...) 
Maximized, vari, var2,...) 

Returns the values of vari, var2... that satisfy the constraints in a Solve Block, and make the function f (vari, var2,...) 
take on its smallest or largest value, respectively. Minimize and Maximize differ from Find and Minerr in that they 
refer to functions defined outside of the Solve Block, rather than defined in the body of the Block. Functions are 
used as objective functions, rather than as constraints, as they are with Find and Minerr. If you are solving for n 
variables, the solve block must have n equations.The functions choose an appropriate method from a group of 
available methods, depending on whether the problem is linear or nonlinear, and other attributes. 

Arguments: 
vari, var2,... are scalar or array variables found in the system of equations. Guess values for each variable must be 
defined above the Given keyword, or within the body of the Solve Block. If solutions are expected to be complex, 
complex guess values must be used, f isa function defined above the solve block. The function is supplied 
without its arguments to Maximize and Minimize. 

Notes: 
The universal notes on constructing Solve Blocks apply. Within the body of the block: 
Equations: Equations to be solved must be defined using Boolean equals. Values in the equations and guess 
values may be defined within the body of the block using :=. 

Constraints: Inequality constraints, using Boolean operators, are allowed. 

Output may be assigned to a single variable, a vector of explicit variable names, or a function of argument names 
in the objective function.The resulting parameterized solve block can be used either to supply guess values for 
the solved variables in the objective function, or to supply parameters in the objective function or the constraints 
after the block. Even if the parameters don't appear in the objective function, they must be named as an argument 
to the function. If the solved variables have different units, they may only be assigned to an explicit vector of names, 
to avoid mixed units in matrices. 

When there is one unknown scalar variable, the solution is a scalar. Otherwise the solution is a vector whose first 
element is vari, second element is var2, and so on. You cannot solve for a single element of a vector used in the block. 
All vector values are adjusted simultaneously to minimize the error. 

The Levenberg-Marquardt method is not available for Maximize and Minimize. 

TOL and CTOL can affect the solution to nonlinear systems. Setting these values too small may cause the solver to 
not converge. If adjusting these parameters does not help, try different guess values, or add an inequality constraint. 
If there are no constraints, the keyword Given is not necessary,and Maximize and Minimize may be used without a 
Solve Block, like a multivariable version of root.They still require guess variables. 

Figure C.22 Mathcad tutorial - minimize. 
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Abney level, 63, 160, 172, 196, 343, 344, 
428, 429 

acceleration of gravity, 30, 155, 197, 405 
Africa, 1 
Agua Para la Vida, xiii 
air blocks, see air pockets 
air pockets, xv, 14, 22, 59, 342, 357, see 

Chapter 14, 388 
air vent, 5, 14, 221, 342, 343, 357, 372, 373, 

386, 388, 417, 420 
algebraic equation 

linear, 209, 376 
nonlinear, xv, xvi, 62, 63, 95-98, 103, 

108, 209, 220, 225, 229, 235, 
246, 298, 300, 308-310, 376, 
380, 522 

analytical solutions, 97 
roots, 97 
systems, 98, 103 

alternator, see generator 
altimeter, 53, 160, 161, 343 
altitude, 343 
analysis, xiv, xvi, 4, 18, 20-24, 28, 31, 41, 

48, 57, 59, 62, 66-71, 107, 115, 
146, 156, 165, 176, 188, 192, 
195, 216, 217, 219-221, 224, 

239, 243, 244, 246, 279, 288, 
297-299, 310, 311, 320, 339, 
359, 367, 375, 377, 388, 394, 
400, 410 

aqueduct, 1, 2 
aquifer, 5 
assessment, 4 

Bernoulli equation, 32, 36, 147, 177, 336 
modified, 32 

Blasius formula, 45, 46, 190, 196 
bucket, 14, 184, 317, 319, 334, 335, 339, 

420 
Buckingham Pi theorem, 115 
bulk modulus, 367 

calculus 
chain rule, 275 
derivative, xv 
integral, xv 
ordinary differential equation, xv 
partial differential equation, 44 
total differential, 275 

case study, 18, see Chapter 15 
cash conservation, 18 
cavitation, 362 

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 
Copyright © 2010 John Wiley & Sons, Inc. 

529 



530 INDEX 

Central America, 1 
CFD, see Computational Fluid Dynamics 

(CFD) 
characterization, 40, 48 
charge conservation, 17, 68, 205 
chemical processing plants, 69 
Churchill correlation, 41, 42, 45, 52, 62, 63, 

96, 99, 103, 108, 141, 161, 213, 
229, 410 

cleanout, 17, 342, 343, 357, 388 
Colebrook equation, 41, 189 
competition, 152, 155, 202, 204, 211, 213, 

217, 240, 244, 271, 299, 323 
Computational Fluid Dynamics (CFD), 44 
computer program, xvi, 3, 21, 24, 98, 102, 

187, 189, 298, 306, 309, 311, 
400 

C++, xvi, 24, 401 
EES, 189, 197 
Fortran, xvi, 24, 297, 298, 401 
algorithm, xiv, 23 
opaque, xvi, 401 
transparent, xvi, 401 

concrete, 3 
cap, 6, 355 

conjugate gradient, 298 
continuity equation, see mass conservation 
coordinate, 29, 53, 68, 138, 141, 145, 146, 

168, 172, 183, 184, 344, 377, 
381, 394, 430, 443, 495-498 

cost, 3, 390, 400, 421 
minimization, xiv, 22-24, 201, 238, 

273, 286, 394 
network, 20, 21 
optimization, 241 

Crete, 1 
culvert, 2 

dam, 6 
Darcy-Weisbach equation, 23, 35, 55, 99, 

139, 178, 188, 189, 197 
Degree-Minutes-Second format, see DMS 
delivery, 19, 21, 28, 53-60, 64, 107-109, 

113-115, 135, 148, 163, 169, 
174, 196, 219, 224-226, 230, 
244, 246, 249, 250, 254, 256, 
276, 278, 299, 321, 338, 350, 
403, 498 

design, xiv, xvi, 4, 20-24, 48, 57, 59, 62, 67, 
68, 70, 71, 107, 165, 176, 188, 
195, 217, 219, 221, 310, 320, 
339, 388, 394 

chart, xiv, 20, 23, 24, 58, 71, see 
Chapter 5, 159, 169, 187, 220, 
238, 400, 403, 404 

conceptual, 17 
engineering, 17 

hydraulic, 17, 18, 21, 221, 310, 
342, 387, 388, 394 

nonhydraulic, 17, 18, 342, 388, 421 
formula, 18, 20, 23, 24, 71, 155, 187 
graphical, 17 
guideline, see design rules-of-fhumb 
network, 22 
nomograph, 187, 400 
process, 201 
rules-of-thumb, 2, 358, 387 
table, 400 
tools, 69, 187 

design volume flow rate, see peak volume 
flow rate 

dimensional data, 64, 75, 85, 256, 343 
dimensionally 

homogeneous, 188-190 
nonhomogeneous, 188 

dimensionless, 35, 40, 61, 95, 169, 189, 190, 
194, 211 

elevation, 148, 149, 152 
factor, 222 
form, 115, 220, 226, 237, 238, 243 
group, 35, 41, 56, 57, 60, 111, 113, 

238, 336 
length, 60, 64 
parameter, 226 
static pressure, 54, 59, 108, 148, 149, 

152, 169, 183, 184, 382 
variable, 237 
volume flow rate, 194, 197 

discharge coefficient, 177 
district health office, 345, 389 
DMS, 496-498 
draining time, 177 
drawings 

elevation-view, 341 
plan-view, 341 

dropshaft, 2 
dummy variable of integration, 145 

Easting, 496, 498 
economics, 17 
efficiency, 359 
EL, see Energy Line (EL) 
elastic modulus, 367 
elevation, 27-29, 48, 53, 64, 67, 138, 139, 

141, 143, 146-148, 152, 153, 
155, 163, 167-169, 172, 
182-184, 316, 322, 323, 338, 
341, 343, 358, 495, 497 
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change, xiv, 21, 94, 105, 139, 174, 
177-179, 195, 204, 213, 225, 
230, 254, 271, 279, 280, 283, 
299, 344, 354, 358, 377, 383, 
384, 408 

head, 212 
energy 

balance 
local, 151 
overall, 152 

conservation, 2, 17, 28, 48, 59, 68, 69, 
71, 103, 205 

mechanical, 23 
dissipation, 13, 19, 85, 137, 169, 316, 

358, 361, 420 
equation, xv, xvi, 18-20, 23, 28-33, 

35, 46-49, 54, 55, 57-59, 61-63, 
66, 67, 69-71, 85, 91, 93-95, 
97, 102, 103, 105, 108, 109, 
111, 115, 126, 131, 138, 140, 
143, 146, 147, 149, 152, 155, 
157, 159, 163, 177, 178, 182, 
183, 190-192, 194-196, 198, 
212, 213, 219-224, 226-231, 
235-238, 240, 243-245, 249, 
255-258, 262, 271, 273, 275, 
277, 280, 281, 283, 286, 287, 
295, 298, 299, 301, 302, 308, 
311, 320-323, 330, 331, 339, 
344, 363, 374, 375, 377, 379, 
405, 408, 410, 411 

compartmentalization, xvi, 102 
differential form, 138 

internal, 30, 32, 405 
kinetic, 30, 32-34, 59, 147, 222, 315, 

336, 367, 405 
correction factor, 30, 31, 57, 140, 

141, 152, 163, 178, 212, 213, 
222, 223, 229, 232, 243, 256, 
286, 309, 405, 410 

loss, 28, 32, 33, 57-59, 153, 223 
major, 19, 23, 34, 55, 59, 68, 147, 

152, 363 
minor, xv, 19, 23, 24, 34-37, 48, 

57, 59, 68, 151, 161, 165, 372 
management, 13 
mechanical, 33, 59, 102 
potential, 19, 30, 32-34, 48, 55, 

57-59, 85, 147, 148, 225, 249, 
297, 315, 343, 361 

pressure, 30, 32-34, 55, 59, 148, 315, 
336 

spring, 34, 47 
Energy Line (EL), 146-148 

engineenng 
art, 387, 388 
science, 387, 388 
the discipline of, xiv 
the practice of, xiv 
wisdom, 4 

engineering tradeoff, 85, 145, 165, 271, 388 
environmental impact, 17 
Excel, xvi, 94, 103, 309, 398, 492, 496, 498 
exact differential, 139 
exercise, 18, 70, 71, 99, 101, 102, 111, 140, 

159, 167, 183, 184, 189, 190, 
192, 204, 210, 250, 277, 278, 
308, 310, 330, 344, 349 

exergy analyses, 216 

filter, 6, 10 
bed, 12 
screen, 6, 7 

first law of thermodynamics, 30, 394, 405 
fitting, 3, 5, 18, 21, 28, 36, 37, 60 

coupling, 36, 37 
elbow, 5 

22.5°, 8, 36, 37 
45°, 8, 36, 37, 94, 95, 110, 141, 

332 
90°, 8, 14, 36, 37, 68, 77, 161, 

164, 165, 178, 179, 332, 361 
expander, 8, 36, 37 
nut union, see union 
reducer, 8, 36, 37 
tee, 5, 8, 36, 37 
union, 8, 36, 37 

fixed energy-loss device, 362 
flow 

balancing, 13, 420 
blower-driven, see forced flow 
compressible, 197 
control, 19, 37, 105, 108, 156, 159, 

192, 198, 332, 342, 388, 420 
forced, 69, 103, 108, 126, 131-133, 

135 
frictionless, see inviscid flow 
hydrodynamically developed, 28, 29, 

44 
incompressible, 59 
inertia-dominated, 143 
inviscid, 32, 36, 147 
laminar, 23, 29, 31, 36, 39^*1, 43, 44, 

46,48, 51-53, 59, 62, 103, 114, 
116, 120, 124, 125, 127, 141, 
179, 180, 189, 191, 192, 223 

minor-lossless, 58, 61, 62, 71, 108, 
137, 159, 198, 221, 275, 277 
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Natural, 23, 57-59, 61, 137, 148, 219 
open-channel, 28 
pump-driven, see forced flow 
rate, 3-6, 8, 10, 20, 22, 27, 29, 49, 57, 

58, 63 
mass, 30, 49 
volume, see Chapters 1-16 

shear stress, 28 
speed, 10, 29-31, 33, 36, 39, 44, 47, 

48, 53, 56, 57, 59, 61-63, 69, 
70, 94, 95, 108, 113, 139, 140, 
147, 152, 178-180, 187, 190, 
212, 223, 225, 228, 245, 308, 
345, 360, 367, 405 

distribution, 30, 44 
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dimensions, 8, 18, see Chapter 3 

DN, 81 
soft metric conversion, 85 
standards, 85 

flow, xv, 21, 23, 27 
classes of problems, 18, 93, 105 
minor-lossless, 108 

friction, 19, 137, 183 
galvanized iron, see GI 
GI, 8, 10, 41, 63, see Chapter 3, 98, 

99, 101, 102, 113-115, 126, 131, 
135, 180, 192, 277, 326-328, 
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372, 373, 379, 381, 403 

barometric, 343 
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static pressure head, see pressure head 
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design, 422 
expansion, 369 
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195, 220, 224-226, 343, 352, 
358, 361, 378, 394, 395, 403, 
407, 408, 417^119 

temperature, 32 
textbox, xv, 24, 71 
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CUSTOMER NOTE: IF THIS BOOK IS ACCOMPANIED BY SOFTWARE, PLEASE 
READ THE FOLLOWING BEFORE OPENING THE PACKAGE. 

This software contains files to help you utilize the models described in the 
accompanying book. By opening the package, you are agreeing to be bound by 
the following agreement: 

This software product is protected by copyright and all rights are reserved 
by the author, John Wiley & Sons, Inc., or their licensors. You are licensed to 
use this software on a single computer. Copying the software to another medium 
or format for use on a single computer does not violate the U.S. Copyright 
Law. Copying the software for any other purpose is a violation of the U.S. 
Copyright Law. 

This software product is sold as is without warranty of any kind, either express 
or implied, including but not limited to the implied warranty of merchantability 
and fitness for a particular purpose. Neither Wiley nor its dealers or distributors 
assumes any liability for any alleged or actual damages arising from the use of 
or the inability to use this software. (Some states do not allow the exclusion of 
implied warranties, so the exclusion may not apply to you.) 
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