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Preface

Several of the key elements of the mission statement for the Nicaraguan-aid organi-
zation, Agua Para la Vida (www.aplv.org), follow:

e Help small, rural communities of Nicaragua develop and maintain access to
safe drinking water.

o Provide training and education to local people in all aspects of designing, build-
ing, and maintaining drinking water systems so that they can achieve autonomy
in rural drinking water development.

¢ Develop design tools and teaching methods for use by other groups involved
in village water system construction.

Even with the considerable aid of the many organizations like Agua Para la Vida and
Youth Action For Rural Development (YARD) in Kenya (www.wsp.org), much of
the population of these countries and others like them lack access to clean water. In
Nicaragua it is most ironic that this deficit occurs in mountainous regions where the
wet-season lasts 8 months of the year or more and rain water is plentiful! The need
for the careful design of gravity-driven clean water networks in these, and many other
similar parts of the world community is well established. This book is a small attempt
to help in this worthy endeavor by presenting information to support technologists,
engineers and engineering students, and practitioners who carry out these designs.

xiii
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When the topic of analysis and design for water flow in pipes is raised, the saying
“...there is nothing new under the sun” likely comes to mind. Certainly, many refer-
ences on this are readily available. I began to teach this subject as a part of service
learning projects at Villanova University in early 2004. The focus of the projects was
to provide clean water for the people of central Nicaragua who had no easy access to
this and often drank nearby, but contaminated water with dire consequences. With the
guidance of faculty, the mostly mechanical engineering students assessed, analyzed,
and designed the networks, and in some cases followed up by helping to install the
network they or others had designed. 1 found teaching the analysis of gravity-driven
water networks to the students to be a challenge. Most had already taken a course
in fluid mechanics and had learned some things about pipe flow. However, gravity-
driven flow in a closed pipe is very different than the flow problems to which they had
been exposed. In my lectures that stressed fundamentals related to the importance
of mean slope in a single-pipe network, local static pressure distributions near low
and high points, and cost-minimization to determine unique solutions to the energy
equation, it was as if I were teaching an entirely new subject. After some reflection,
I would recall from my own teaching of fluid mechanics that the elevation change in
nearly all problems was neglected (certainly for gases) or assumed negligible com-
pared with a specified pressure difference between the pipe ends. The important
elements of gravity-driven pipe flow are, in fact, never taught! I recognized a clear
need for a good learning and teaching tool on this topic.

The literature was of little help. The treatment of gravity-driven flow in the existing
text, trade, and hand books, if presented at all, is technology based so there were few,
if any, fundamentals to which the students could relate and use as a sound basis for un-
derstanding and insight. In short, in the literature where gravity-driven flow appeared
there was little educational value, and in sources like textbooks where the educational
value is high, there was little or no treatment of gravity-driven flow networks. Simple
and fundamentally sound design tools and algorithms using modern-day software
were also missing.

Thus, this book is written in an attempt to place the analysis and design of gravity-
driven water networks on a sound fundamentals footing and to provide easy-to-use
algorithms and charts for analysis and design computations. In this way, I have
attempted to bridge the gap between fundamental fluid mechanics and the applied
and useful technology-based material in the various existing references on gravity-
driven water networks. In particular, the topics have been chosen to add clarity, a
sound technical basis, and support to many of those contained in the currently popular
handbook by Thomas Jordan, Jr. (2004), which is cited in many places in this text.
A benefit of the fundamentals approach is the production of original design graphs,
formulas, and computational algorithms for the correct, sustainable designs of single-
and multiple-pipe gravity-driven water networks.

Both theory and design are covered in this work, along with the analysis that must
join the two. It is a considerable challenge to span this range effectively. For the
theory I have, of course, relied on past work from classical fluid mechanics in which
the focus may be thought of as the discipline of engineering. The design and practical
content, that is, the practice of engineering, comes from reflection on past written



PREFACE XV

works and our team’s experience in the field with actual gravity-driven water networks
and with industry applications.

In addition to practitioners, this book is written for engineers, technologists, and
scientists and for students preparing for these fields. To help the readers relate to the
technical material, the presentation style has been chosen to be consistent with what
students normally encounter in an undergraduate college-level course in the United
States. In some cases, an advanced-level high school physics course that covers the
energy equation for a moving fluid and the topic of flow in a pipe may suffice as
adequate background to understand much of the material presented in this text.

Most of this book can be covered in about half of a 14-week term. This is the time
that could perhaps be allotted for a college or high school level design course. The
main Chapters 1-13, and 15 should be coverable in ~7 weeks, along with most of the
relevant problems in Chapter 16. Chapters 10 and 14, on optimization and air blocks,
may be added at the discretion of the instructor.

Double-outlined textboxes, like this one, will be employed to provide periodic
breaks for the reader where there is an extended amount of technical material
and will include examples, clarifying and reinforcing comments, supplemental
information, and questions for exploration.

@damental equations and final forms of the most useful ones will be boxed.

This should not be confused with the double-outlined textboxes.

In addition to textboxes, annotations in the form of footnotes appear very frequently
throughout the text. This is a personal preference of the author!.

Other than the chapter on optimization and local static pressure, the mathematics
required to understand the material in this book is algebra including the solution
of single and simultaneous nonlinear algebraic equations using numerical methods.
Many chapters require this. For readers who have forgotten or are not familiar with
nonlinear algebraic equations, a section in Chapter 4 is included to refresh memories
or introduce the basics of this topic. References to integrals and to ordinary differential
equations are made in several chapters including those on local static pressure and
minor losses, so it is worthwhile for the reader to recall some of the basics surrounding
the calculus when covering this material. Some understanding of the calculus is
needed for optimization, which always requires the derivative to determine so-called
“stationary” points for a function. Of course, it is assumed that the reader has, at
least, a familiarity with fluid mechanics.

Most pipe-flow problems of the types considered in this book require numerical
solutions carried out on a computer. The traditional way of solving the systems
of nonlinear algebraic equations that arise in pipe flows is iteration and linearized
scaling (often referred to as “Regula Falsi” in texts on numerical methods), covered
in Chapter 11, which for simple problems, could be executed by hand. A similar

't is hoped that the readers will find the history, clarifications, and extensions presented by these aids
useful without distracting from the principal thrust of the material.
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method that “compartmentalizes” the terms from the energy equation and then uses
trial-and-error to determine pipe diameter is the normal method of solution where
just a single pipe is involved (Chapter 4). However, computer programs to quickly
and efficiently solve the equations of pipe flow are well developed and have been for
very many years. These fall into two classes. Nearly all are “opaque” in that the user
is not made aware, or chooses not to be aware, of the program’s basis. This means
that an executable file is run on a computer, which is the result of a compilation of a
source program written in perhaps Fortran or C++ (see comments below).

The other class is composed of “transparent” computer programs that present
the solution in an easy-to-read manner, and appear as if written on paper. The so-
lution for a given design is obtained by modifying an already-developed program
for a closely related one. The commercial package Mathcad? is chosen for use in
this book. In particular, the root and Given...Find constructs in Mathcad are
very valuable for the solution of nonlinear algebraic equations. There are frequent
references to these. Mathcad is also the only commercial package that explicitly
includes units in equations. The conversion from one unit to another, say inches
to mm, as required by the problem is accomplished automatically and is transpar-
ent. For various reasons, the use of units and the associated need to include them
when solving engineering problems are a challenge for students today. Mathcad
worksheets that solve the equations for many types of gravity-driven water networks
are supplied with this text (downloaded from http://www.wiley.com/WileyCDA/
WileyTitle/productCd-0470289406, descCd-DOWNLOAD.html). If familiariza-
tion with Mathcad is needed, a brief tutorial is presented in Appendix C.

As is the case with all technological tools, the lifetime of Mathcad may be finite.
That is, at some time in the future it may be replaced with a “new and improved”
version or it may even disappear. This is not a concern because the fundamental
equations for analysis and design appearing in this text remain unchanged and can be
solved with any programming language or tool, such as C++, Matlab®, Microsoft’s
Excel, or a new and improved Mathcad. Even a programmable hand-held calculator
is sufficient for some problems. More-senior engineers may recall a similar discus-
sion in the 1970s concerning Fortran, then the dominant programming language in
engineering, as to what the computational tool of the future will be. The answer that
was often given was that no one knew for certain, but it would probably be called
Fortran. Presently, after numerous revisions over the years, Fortran continues to
be used by scientists and engineers worldwide.

G. F. JONES

Villanova, Pennsylvania
September, 2006

2Mathcad, Parametric Technology Corporation, 140 Kendrick Street, Needham, Massachusetts
3Matlab, The MathWorks, Inc. 3 Apple Hill Drive, Natick, Massachusetts 01760, USA.
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CHAPTER 1

INTRODUCTION

“Give a Man a Fish, and Feed Him for a Day. Teach Him to Fish, and Feed Him for
Life.”
— Traditional

1.1 WATER DISTRIBUTION NETWORKS AND THEIR DESIGN

It is generally recognized that water distribution networks date to thousands of years
BC. Those in Greece, Syria, Jordan, Turkey (Mays, 2000), Palestine, Persia (Salzman,
2006), and Crete (Trifunovic, 2006), as well as Rome (Chanson, 2002; Salzman,
2006; Trifunovic, 2006), Machu Picchu (Wright et al., 1997) and, later, New York
City (Koeppel, 2000) have been extensively documented in print and the visual media.
The networks consisted of “aqueducts,” open channels and lead and wooden pipes,
that used gravity to move water over large distances with reasonable losses. Despite
these very early successful efforts at the design and construction of water distribution
networks, it is estimated that today nearly 1 billion people live without access to clean
drinking water throughout the world (Trifunovic, 2006); more than 15% of the total
population. In particular, the probability of access to clean water in rural populations
in South and Central America and Africa ranges from a scant 40-60%.

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 1
Copyright © 2010 John Wiley & Sons, Inc.



2 INTRODUCTION

The design of water networks has undoubtedly had a much shorter history, at least
in terms of what we now know as engineering design. Consider evidence of the
different elements used in the aqueducts in Rome in the first century, AD (Chanson,
2002). Culverts,! flow regulation with overflow and underflow gates,? and dropshafts
to dissipate energy in steep regions using vortical motion appeared frequently. The
relatively high levels of technical and construction expertise for this time period are
remarkable. However, design was carried out by rules-of-thumb, based on simple
observations and experiences, passed down through generations and across vast re-
gions by word of mouth or perhaps script, not through the understanding of mass,
momentum, and energy conservation that we use today. Certainly, there were no fast
computational tools in ancient times to carry out the sophisticated calculations for the
design and performance of these networks.3

In contrast to the likely design of the Roman aqueducts, imagine the following
exchange that may occur on a day this week in the District Engineer’s Office in a
remote town in a developing country.

Community Member: Good morning Sr. Engineer. Last year, our community
of San Pedro identified clean water as a priority development concern. In addition
to this, we understand that your office has also been promoting small hydroelectric
facilities for rural areas such as ours. There are currently 23 families living in the
main section of San Pedro, which also has a school, a church, and a community center.
There are an additional 80 families who live in more isolated areas of San Pedro and
we believe that these families will start to build their homes closer to the village center
once we have completed a water supply system and have reliable access to electricity.

District Engineer: Well, the local government is very interested in assisting areas,
such as San Pedro, and we hope to be able to work with your community in the near
future. Perhaps you can help us by providing some more information. For example;
how many sources of water are there in San Pedro? Where will you get the water?

Community Member: There are several sources for water that we have already
been using, but the water sometimes is dirty, especially during the rainy season. Also,
every household does not have equal access to this water, so only a few families are
benefiting from these sources. Most of these sources are from natural springs and are
usually very clean because they are in a forested area in the mountains. There are
some people who use this forested area for collecting wood for cooking or building
houses but, we believe that the land owners will offer these sites for our needs if we
have funding from the municipal government.

District Engineer: Okay, this is very useful information. Before we can even
consider developing a water system, we will have to have an agreement with the local
land owner and designate a protected area above the source so that no one can enter or

'A culvert is a passageway for flow constructed under a larger structure, such as a roadway or bridge.

2A gate, or sluicegate, is a plate of material that is used to partially or fully block flow, usually in an open
channel. An overflow type allows the flow pass over the upper edge of the sluice; an underflow forces the
flow below its lower edge.

3The abacus dates from about the 5th century BC and would have been used where appropriate by the
Romans at later times. It was primarily a tool for the merchant rather than the hydraulic engineer.
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disturb the watershed that is supplying these springs. This will ensure that the sources
will continue to produce clean water. We will also have to design a protected spring
intake so that runoff does not contaminate the source. Finally, if other conditions look
favorable, I will have my assistant and one of our student interns visit your community
to survey the site. Bear with me as I make a few quick calculations. Taking out his
calculator, the engineer enters numbers, speaking the entries as he pushes buttons.
“23 families x 6 persons per family x 100 liters per day per person x 1.1 raised to the
tenth power is about 35,800 liters of water per day.” Punching a few more numbers
into his calculator the engineer notes, “any single water source that produces more
than 0.42 liters per second will be able to satisfy your water needs.”

Community Member: Is there any funding that we can use to build the system?
How much do you estimate the water network will cost?

District Engineer: Assuming the community provides the labor for installation,
there are several costs including the pipe, fittings, and valves, concrete, and rein-
forcement for a storage tank and the reservoir at the source, and we will need to
build several tapstands* to distribute water at several locations including the school.
Once my team surveys the site and determines the flow rate from an acceptable water
source, I will have enough data to locate and size the reservoir and storage tank. 1
will also know where the pipes need to be run from the source to the tank, and from
the tank to the delivery locations and tapstands. Once I have this information, I will
calculate the volume of cement and amount of reinforcing steel mesh. I can then
calculate the cost for these materials . . . .

Community Member: ... (Impatiently interrupting) but, the distances to the
water sources I have in mind are great, more than two kilometers each. And, the
houses are spread over large distances. Surely, this much pipe will be very expensive.
Do we need to have any counterpart funding from the community?

District Engineer: Well, first we will need to calculate the sizes of all pipes. 1
have a computer program that solves dozens of equations and models the flow of water
in the network before it is actually built. This way, I can investigate many different
designs and how they will perform before we actually build them. This saves money
because if we do not design the system properly, your community will not have a
reliable distribution of clean water even after we finish construction. [ will pick from
among the many designs the one that works the best from an engineering viewpoint
and that has a reasonable cost.

Community Member: Interesting. .. (being curious, the community member con-
tinues), how can you trust that your equations will really work? We have tried many
times to improve the water supply system in our community and have never really
succeeded in making a difference because the water flow is always small and does
not have good pressure.

Taking the opportunity to teach the community member about engineering, the
District Engineer explains:

4See Section 1.3.5.
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District Engineer: In engineering school we study fluid systems and hydraulics
for an entire year and we learn about the equations and their history. We even verify
the results from these equations in carefully designed experiments in a laboratory; we
learn to have confidence in them. These equations are over 150 years old and have
been used to design water systems all over the world. We almost always see that the
designs work according to what the computer model predicts. Once the computer
model is “validated” in this manner, we can trust that the equations will accurately
predict how the system will work and we can make designs based on these results.

The reason why I am explaining this to you is because, after the water system
is built, we will ask you to monitor the water flow rate from the source and the
demand in your community. This is done for two reasons. First, if the network is not
performing as we designed, there may be a need for correction to our design equations
and methods, or construction techniques. This, we would certainly want to do for
future designs. Second, we can perhaps correct your network so that it will perform
as designed.

Community Member: Wow! This sounds like magic to me but, (being tentative)
I am sure that it will work. Thank you for considering this request.

District Engineer: You are welcome Sr. Member. Engineers call this “analysis
and design” and it is something that engineers are trained to do. I am very comfortable
with this.

I will ask my assistant and his team to meet you later this week to begin to collect
these data for your network. Now, regarding your request for hydroelectric power,
we will need to discuss this after we determine the cost of the water network. You
may wish to reconsider your request once you see this figure.

Community Member: Thank you again, Sr. Engineer, I look forward to working
with you on this project.

We see from this exchange that the engineering design of gravity-water networks
is really analysis and design, based first and foremost, on the mathematical solution
of the equations for fluid flow in networks; equations that have been validated in the
laboratory and field for more than a century. Essentially, we are confident of the
ability of these equations to predict the future (that is, how networks will perform
based on the solutions to these equations). There is a strong focus on analysis in this
book. We will also see the importance of network cost. Cost is of interest not only
because of its fundamental importance, but also since it is used to supply a needed
constraint on the flow problem. The design is based loosely on fundamentals but, in
addition, has a large contribution from engineering wisdom accumulated over many
years of successful practice. We also see from the above dialog that measurements
taken in the field before and after the analysis and design (collecting measurements
before is sometimes referred to as “assessment”) are crucial to assure a high-quality
design that meets all requirements and provides feedback to the analysis and design
process for continuous improvement where needed.
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B.1.1 The Different Types of Water Sources

There are three different types of water sources that we commonly encounter.
The first is surface water like a flowing stream or river, or a nonflowing pond.
Second, a groundwater source is a quantity of subsurface water similar to a river
or pond, except that it resides below the surface and is recharged by rain and
run-off from rain. These subsurface reservoirs are known as aquifers. A spring
is where groundwater rises to the surface of the ground due to an impermeable
layer near the surface. Springs are typically located in mountainous areas and
form because of the large rate of change of elevation of the terrain.

1.2 FEASIBILITY FOR GRAVITY-DRIVEN WATER NETWORKS

Communities that are candidates for a successful gravity-driven water network will
have the following physical and social characteristics (Mihelcic et al., 2009):

o Asource(s) of clean water, free from pathogens and large amounts of suspended
solids, within relatively short distance from the community, elevated above the
highest point of water delivery to the community, and with a flow rate sufficient
to meet the present and future demands of the community,

o If the source(s) is a spring, it should be properly protected by its native vegeta-
tion (to preserve ground-water movement) and, for all types of sources, from
possible surface contamination, such as pasture runoff,

e Level surface areas located between the source(s) and the highest point of
water delivery to the community on which to site a storage tank and, if needed,
a break-pressure tank,

e Binding commitments from the land owner(s) of the source(s), and that where
the tank(s) will be located and pipelines run,

e Commitment from members of the community to provide labor for construc-
tion, maintenance, and continued successful operation of the network.

1.3 THE ELEMENTS

The elements of a gravity-driven water network are shown in the schematic of Fig. 1.1.
As discussed in further detail below, the network is composed of a reservoir at the
source, pipe, valves and fittings (fittings, such as elbows and tees, which are not shown
in this figure), storage and perhaps break-pressure tanks, and points where the water
is available for distribution to the communities, referred to as tapstands. Elements,
such as vacuum breakers and air vents, may be necessary in the network under certain
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Figure 1.1 The elements of a gravity-driven water network.

conditions that are described below. The pipe segments that transport water between
two points without a change in the flow rate between them are sometimes referred
to as “gravity mains.” Those that deliver water to branches are called “distribution
mains.” Valve types, such as globe and gate, will always be used to isolate parts of
the network for maintenance and repair, and for flow control.

1.3.1 Reservoir at the Source

Reservoirs and several of their features are shown in Fig. 1.2. For example, a spring or
freshwater stream may be dammed using reinforced concrete, as in Fig. 1.2. Besides
providing for the water outlet through a gate-valved (see Section 1.3.4) pipe, a clean-
out drain of at least 4-in. diameter, and an overflow pipe need to be provided for in
the dam. A filter screen is normally installed at the point of water intake inside of
the reservoir. A clean-out pipe accommodates periodic cleaning of the reservoir, if
needed. The overflow pipe allows the water to drain away from the tank in a sanitary
manner. A concrete cap, also shown in this figure, ensures cleanliness of the reservoir
over time and reduces the frequency of screen cleaning. A door in the cap provides
access to the filter.

1.3.2 Pipe and Fittings

Pressure pipe is used to transport water in these networks. As discussed in detail in
Chapter 3, plastic pipe [polyvinyl chloride (PVC), high-density polyethylene (HDPE),
acrylonitrile-butadiene—styrene (ABS)] is normally chosen because of economy, per-
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Figure 1.2 Photos of reservoirs. All are constructed of poured concrete. Clockwise from
upper left: a covered reservoir separated from uncovered section by a screen filter (PVC pipe
in foreground awaits installation), a totally covered reservoir with a concrete valve box in front,
a totally covered reservoir with cover partially removed for access to clean filter inside, a dam
to hold back water before construction of the reservoir (the vertical PVC pipe downstream
from the dam is a vacuum breaker; see the discussion in Section 1.3.6), inside view of a totally
covered reservoir.
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Figure 1.3 A nut union of PVC. Photo courtesy of Nicki Jones.

formance, and availability. In cases where large pressures are expected, galvanized
steel (galvanized iron or GI) pipe is used, however this is heavy and more expensive
than plastic so its use is chosen carefully. Rigid-wall pipe is manufactured in various
lengths up to about 6 m. Flexible-wall pipe is supplied in long rolls.

The scale of the networks addressed in this work is such that pipe diameters of the
order of 6 in. are about the largest encountered.” Dimensional and pressure data for
pipe up to nominal 12-in.-size are presented in Chapter 3.

Typical fittings that join segments of pipe are elbows (90°, 45°, and 22.5°), which
turn the flow at the angle specified, tees for flow branching, reducers (or expanders)
for decreasing (or increasing) the pipe diameter, and couplings. Unions (or “nut”
unions, Fig. 1.3) are sometimes used in situations where there is a need to separate
assemblies of pipe for maintenance or repair. Unions allow pipe segments to be
removed without cutting and reassembly.

A photo of workers preparing to glue a PVC pipe joint with a coupling is shown
in Fig. 1.4. The transition between PVC (at the top) and galvanized iron pipe (at the
bottom) is visible in Fig. 1.5. A 22.5° elbow joins the two.

1.3.3 Tanks

In all water-supply networks, there is nearly always a mismatch between water demand
and supply flow rates. Storage tanks, such as shown in Fig. 1.6, accumulate water from
the source over time for use as required by the time-dependent demand. The topic
of sizing a storage tank is addressed in Chapter 13. Where it is available, large tanks
(say, > 30 m?) are almost always constructed on site of cement block or reinforced
concrete. Plastic tanks are becoming more common and can be cost-competitive with
concrete tanks, but for large volumes may be difficult to transport to the site. The
reinforced concrete tank in Fig. 1.6 is typical of those built in central Nicaragua and
in the Pacific rim. A close inspection of this photo will reveal an access ladder built
into the side of the tank on its left and a water overflow pipe on the right. As with

3The exception to this is for microhydroelectric power systems (Chapter 12) where pipe sizes can be 12 in.
and larger.
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Figure 1.5 A 22.5° elbow joining PVC (top) and galvanized iron pipe (bottom).
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Figure 1.6 A concrete storage tank. The capacity is ~14 m?.

those installed in dams, the overflow pipe allows the water to drain away from the
tank in a sanitary manner.

A break-pressure tank, such as that shown in Fig. 1.7, is not used for water storage
but to reduce the static pressure in the flow to atmospheric pressure. Break pressure
tanks are used in high-head gravity-driven water networks where the build-up of
static pressure at lower elevations would require thick-wall plastic or GI pipe; both are
expensive alternatives. The capacity of these tanks is not a major design consideration
since there should be no accumulation within the tank; inflow and outflow rates should
match.

The design of a beak-pressure tank is discussed briefly in Chapter 13.

If there are considerable suspended solids in the water, a sedimentation tank will
be needed. This type is different than the previous two in that its role is to filter
and to reduce the flow speed of water while passing through the tank. The filtration
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Figure 1.7 A break-pressure tank.
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Figure 1.8  Outer view of bronze-body %—in. gate valve. Valve height is ~3 in. Valve photos
courtesy of Nicki Jones.

directly removes some of the larger suspended solids, while the long residence time
in the tank allows most of the remaining solids to settle under the effect of gravity.
From this description, a sedimentation tank will look very different than a storage
tank. Contrasted with the storage tanks in Fig. 1.6, a sedimentation tank has a filter
bed, provides a long flow path for water between its inlet and outlet, and has a large
cross-sectional flow area to slow down the flow.

-1.3.4 Valves

Both gate and globe valves are heavily used in gravity-driven water networks. A gate
valve belongs to a class that may be generally thought of as “block” valves. The
purpose of these is to either allow the full flow to pass or be totally turned off. No
throttling or pressure reducing should be performed with a gate valve because they
are not designed for this purpose and will prematurely fail if operated in this way®.
The gate in this valve is moved up or down by rotating the handle. When the gate is
down, the flow is blocked, and when up fully open. The slot in which the gate travels
creates a characteristic rectangular shape for the mid-section of the body of the gate
valve as seen from the outside (see Fig. 1.8).”

Another type of block valve is a ball valve. A ball valve of PVC construction is
shown in Fig. 1.9. In this valve, a spherical ball with a hole drilled through its middle
is rotated to either allow the flow to pass (the hole aligned with the valve inlet and
outlet) or be blocked (no part of the hole is aligned with the valve inlet and outlet).
Because of difficulties with fine flow control, throttling is not recommended for a ball
valve.

5The “gate” in a gate valve is just that, a metal plate the slides up or down in a slot to open or close the
valve. There is considerable play in this slot, such that the gate can move back and forth with the passing
flow. When partially closed, it will do so and prematurely wear. The first piece of knowledge I learned as
a project engineer at an oil refinery in the early 1970s was never to use a gate valve to attempt to throttle
the flow in a pipe.

"The photographs in this chapter are intended to simply familiarize the reader. Where possible, actual
hardware, such as small gate and giobe valves, and a union should be inspected to get a better sense for
the components actually used in water networks.
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Figure 1.9 Outer view of -in. plastic ball valve. Valve height is ~2.5 in.

Figure 1.10 Outer view of bronze-body %—in. globe valve. Valve height is~3 in.

Although a globe valve (Figs. 1.10 and 1.11 (Wikipedia, 2009)) can be used as
an “on—off” valve, its primary function is to throttle or reduce the static pressure in
the flow. The flow passageway between the metallic disk and valve seat, as seen in
Fig. 1.11, is adjustable. When the passageway is adjusted to be small, a large pressure
drop occurs in the flow between the valve inlet and outlet. Because of the importance
of energy management in gravity-driven water networks (see Section 1.5.1), the globe
valve is used in many locations, especially where appropriate for control and flow
balancing, in addition to intentional energy dissipation.

1.3.5 The Tapstand

A tapstand (Fig. 1.12) is often the final delivery location for water. The tapstand
consists of a suitably supported delivery pipe normally of PVC and ~%—in. nominal
size, a water tap valve® or a ball valve, and a base of concrete that maintains cleanliness
of the tapstand area and allows unused water to drain away from the site.

Tapstands, as well as other elements discussed in this introduction, are covered
more completely in the design sections of this text (chapters 13 and 15).

8This vaive is recommended to be bronze and will have a flow pattern that resembles that for a globe valve.
The seat that is opposite the disk (see Fig. 1.11) is normally made of a rubber-type material for a water tap
valve.
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Figure 1.11 cross-sectional view of large globe valve.

1.3.6 Miscellaneous Elements

There is a need for air vents at local high points to vent trapped air in any water
distribution network. This is discussed more fully in Chapter 14, where models for
the potentially penalizing effect of trapped air in the network are also developed. A
bucket-type air vent, shown in Fig. 1.13, automatically opens to vent air when there
is an air—water interface in the body of the unit. This level indicates the presence of
air in the network. Alternately, a gate valve on the branch of a tee fitting installed at
the local high point can be used to manually vent trapped air. A long vertical pipe
attached to the local high point may also be used to vent air automatically. In this
case, the top end of the pipe is open to the atmosphere and its elevation must be
approximately above the surface level of the reservoir or nearest tank upstream from
1t

A vacuum breaker prevents the formation of negative gage pressure in a flowing
pipe. Negative pressures in the flow are undesirable for several reasons that will be
described in detail later in this book. A vacuum breaker can be a purchased unit that
is installed in-line in the pipe. In this case, a spring in the body of the vacuum breaker
allows air from the outside to enter the flow should the pressure fall below a preset
value. In a more-simple form, a vacuum breaker can be a vertical piece of pipe with
an open end at the top. This would automatically bring air into the network when the
pressure of the flow falls below atmospheric.

Pipe anchors (Fig. 1.14) are used to support pipe where there may be large forces
due to water flow, such as where the flow turns in a 90° elbow. Buried concrete and
steel rods are normally used for this purpose.



Figure 1.12 A completed tapstand.
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Figure 1.13  An air vent.

Figure 1.14 A pipe anchor.
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1.4 ENGINEERING DESIGN

Engineering design is distinguished from graphical or conceptual design by its quan-
titative nature. The latter two types of design use drawings or sketches to convey
information about the object intended to be produced. For example, an artist would
produce a conceptual design for the shape and perhaps features of a new car. In engi-
neering design, not only are the conceptual elements addressed, all of the equations for
the appropriate physical laws of nature are included and solved to produce results that
successfully demonstrate feasibility of the design. The equations referred to here are
normally the conservation laws of mass, energy, momentum, and electrical charge,
where appropriate, the particular laws that relate fundamental properties to measur-
able or observed quantities,” and perhaps others including economics, environmental
impact, and safety. Clearly, engineering design is broader and more comprehensive
and challenging than conceptual or graphical design alone.

1.4.1 Hydraulic and Nonhydraulic Design

Hydraulic design forms the largest piece of the overall design for gravity-driven
water networks. Hydraulic design is engineering design that consists of mathematical
models and calculations, drawings, and reports that characterize all of the hydraulic
components of the network, including the reservoir, pipe, fittings and valves, tanks,
and associated components that are discussed in detail in Section 1.3. Only the fluid-
flow aspects of these components are included in the hydraulic design. Nonhydraulic
design consists of the engineering design of all of the remaining components and
elements of components.

For example, the hydraulic design of the pipe network will determine the pipe ma-
terials and diameters, wall thicknesses, lengths, and the internal pressure distribution
under various operating and nonoperating conditions. The support of the pipe, say
across a stream or river, the structural means to connect the pipe to a reservoir or
tank, and the location of possible clean-out connections are part of the nonhydraulic
design phase of the project. Another example is the storage tank. The volume of the
tank will be calculated from the results of a water demand model for the community
in need and the volume flow rate of water that can be supplied to the tank from the
source or sources. In addition to locating the tank in the network, these are parts of
the hydraulic design. The nonhydraulic design of the tank addressed its structural
attributes, including the wall thickness and reinforcement if needed, and perhaps even
methods to build the tank, as well as a cover for water cleanliness. The location and
size of an overflow pipe and possible clean-out connections, even though related to
water flow, may also likely fall under the nonhydraulic design umbrella.

9Examples of this are laws that relate heat to temperature, stress to strain in a solid, shear stress to velocity
gradients in a fluid, and flow of electrical current to charge potential. As we will see in Chapter 2, there
are also quantities, like Reynolds number (Re) , that are not laws, but simply definitions to support an
analytical framework.
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In this text, hydraulic design will include conservation of mass (referred to as
the continuity equation) and mechanical energy (referred to as the energy equation).
For multiple-pipe networks there is the need for an additional equation to produce
unique solutions where pipe diameters are sought. In this case, engineering economy
comes into play and we will consider minimizing network cost where appropriate. In
equation form this is dCt = 0, where Cr is the total cost of the network. Loosely,
this simple expression may be though of as an equation of “cash conservation” in
addition to mass and energy conservation.

Hydraulic analysis and design forms the bulk of this book. This includes Chap-
ters 2—12, most of which are based on analysis. Chapter 3 considers pipe materials,
dimensions, and pressure ratings. Chapter 4, which discusses the classes of pipe-flow
problems, is included as a supplement. Readers who are already familiar with solving
these problems may need to spend little time on this chapter. Design results for a
single-pipe network, described below, appear in Chapter 5. The important role played
by local pressure in the pipe is emphasized in Chapter 6, and energy losses from pipe
fittings and valves in Chapter 7. The treatment of single-pipe networks culminates
with Chapter 8 in which several examples of these are presented and solutions for
them obtained. Simplified design formulas are useful to obtain quick, approximate
design results for single-pipe networks and as a supporting role in the understanding
of multiple-pipe networks. These are explored in Chapter 9. Optimization, where the
network cost is minimized, will be highlighted (Chapter 10) because of its usefulness
in allowing us to calculate unique pipe sizes for our designs. The basics covered in
this chapter are applied in Chapter 11 to multiple-pipe networks, which forms the
technical core and largest fraction of this book. This topic covers all of the types of
multiple-pipe designs encountered in gravity-driven water networks including serial
networks, multiple branches, loops, and large-scale, complex networks.

The complimentary topic of microhydroelectric power is briefly presented in Chap-
ter 12. Design, including hydraulic and nonhydraulic design, is the focus in Chap-
ters 13—15, which includes the design process and some hydraulic-design issues, as
well as those concerned with air pockets in the network. The treatment of gravity-
driven water networks is completed with Chapter 15 where a case study is thoroughly
presented.

Exercises, with solutions, appear in Chapter 16.

1.5 GRAVITY-DRIVEN WATER NETWORK DISTINGUISHING
CHARACTERISTICS

1.5.1 Energy Management

In water networks, where the flow is driven by a pump, the designer normally has
some degree of control over how much and where the energy is put into the network.
This is done by either adding a pump or increasing or decreasing the pump size or
power to meet the design specifications. Analysts and designers of gravity-driven
water networks are not afforded the same luxury. In these networks, for all points
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beyond the atmospheric-pressure source of water, the energy that drives the flow
comes from only static pressure in the water when converted from potential energy.
This statement will become clearer after we have digested material related to the
energy equation in Section 2.2. The concept that underlays this statement will be
explored in more detail and in various contexts at several locations in this book.
Thus, the overarching problem, and our challenge as analysts and designers, is to
effectively manage the conversion of pressure energy because no energy from an
outside source can be supplied. Energy management and cost of the network are also
related. Pipe sizes that are too small cost less than large ones, but dissipate too much
of the pressure energy in friction that gives the designer little flexibility at distances far
from the source. More freedom in a design would come about if pipe sizes are larger
than needed, but this increases the cost of the network and could present flow control
problems including possible premature failure of throttling valves. Static pressure
in the flow network is our friend because it allows us flexibility in our designs and
potential for expansion of the network in the future should the need arise.

The dissipation, or removal, of pressure energy from the network is the same for
both pumped and gravity-driven types. Dissipation must come from friction in the
pipe either at discrete locations (“minor” losses; see Section 2.2.1) or distributed over
the pipe length (referred to as a “major” loss; see Section 2.2.2). As will be discussed
frequently, one of the more useful minor-loss devices is the throttling, or globe, valve.

Of course, it is clear that once the source and delivery locations are fixed for
a gravity-driven water network, the contour of the ground in which the network is
installed plays no role in the network overall performance. For example, changing
the run of a pipeline to pass through regions of locally large slope has no effect on the
overall potential available to drive the flow. A locally large slope simply means that in
other parts of the network the slope must be locally small or even of the opposite sign.
There may, however, be adverse effects on the performance of the network should the
local elevations be too large or too small, as discussed in the next paragraph.

While recognizing that the energy from static pressure is our friend, we also need
to be aware that we may have an enemy in the same pressure. Should the pressure
rise above that which can be withstood by the pipe or fittings that join pipe, the
pipe or joint will rupture with obvious dire consequences. At the other extreme,
low-pressure conditions are also a concern. If the static pressure in a pipe falls
below that outside the pipe, possible contamination of the clean water flow with dirty
surroundings outside of the pipe will occur if there is any leakage path in the pipe wall.
Vacuum conditions,'” which can easily occur in an improperly design gravity-driven
water network, are worse yet. Not only is the contamination potential present but,
as discussed in Chapter 8, the collapse of pipe walls could occur under an extreme
vacuum.

10pressures below atmospheric.
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1.5.2 Single- and Multiple-Pipe Networks

It is convenient to categorize gravity-driven water networks or parts of them as single-
or multiple-pipe types. In networks or parts of networks that consist of branches or
loops of multiple numbers of pipes, it is clear to the analyst/designer that the design
methodologies associated with multiple-pipe networks (presented in Chapter 11) will
apply. The distribution main appearing in Fig. 1.1 is an example of a segment of
a gravity-driven network that is a multiple-pipe type because of the branches. The
definition of a single-pipe network, which may be part of a larger network, is one
where a pipe of a single diameter is used, the pressures at each end of the pipe are
known or prescribed, and the flow rate of water remains unchanged between the
pipe inlet and outlet (that is, there are no branches). See, for example, the gravity
mains in Fig. 1.1.!! The most elementary case for a single-pipe network is flow in
a pipe of a single diameter that is run directly from an atmospheric-pressure source
to a delivery location like a reservoir or break-pressure tank. The flow for this case
remains at atmospheric pressure at each and every point'? along the flow path. This
simple result makes for a simple design procedure to determine, for example, the
pipe diameter required to pass a prescribed water flow rate. We can take advantage
of this simplicity once we recognize the single-pipe character of the network. The
easy-to-use design charts in Chapter 5 and the elementary algebraic formulas for pipe
diameter in Chapter 9 are evidence of this simplicity.

If we now imagine the pipe to have locally very high and/or very low points along
the flow path, the problem takes on a different character. Along with the local high
and low points comes the need for us to investigate the flow at, and near, these extreme
points to determine static pressures. This is done for two reasons. First, we want
to be certain that the pressures are not too large or small such that the undesirable
consequences noted in the above section will occur. Second, the designer will want to
consider possible pipe diameter changes at the extreme points and to investigate the
effects of these changes on the network performance and cost. If the diameters change
in an otherwise single-pipe network the pipe is called a “serial” network, which is a
multiple-pipe type.

Thus, we see that a single-pipe network must satisfy not only the condition of being
just one pipe of a single diameter with no branches and known pressures at each end,
but it must also be absent of large local high or low points that would necessitate a
local investigation of the flow and static pressures. If large local high or low points
are present in a single pipe, the network is then treated as if it were a multiple-pipe
type and the analysis and design methodologies of Section 11.5.1 would apply.

Once we consider the energy equation for pipe flow in Chapter 2, the meaning of
“locally very high and/or very low points” in the above paragraphs will be quantified
to some extent.

The gravity main leading from the source to the reservoir (or storage) tank is sometimes referred to as
the “intake pipe.”
12This statement will be interpreted in light of the energy equation for pipe flow in the Chapter2.
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1.6 THE FUNDAMENTAL PROBLEM

We begin this book by considering the basic problem of steady liquid flow in a single
full pipe due to an elevation change between its inlet and outlet. The ideas for
flow in a single pipe are extended to multiple pipes in Chapter 11; a more general
and challenging problem. The intended application is the analysis and design of
a clean-water distribution network that is fed by a reservoir (the “source,” see the
textbox B.1.1) and delivered, possibly through a storage and/or break-pressure tanks,
to a “delivery” location for distribution to multiple houses in a community. Other
applications come to mind, including water flow from an elevated reservoir to a turbine
for producing mechanical or electrical power to end users. We touch briefly on this
topic in Chapter 12.

Although the scale of the networks targeted by this text is that for small commu-
nities in developing countries, the fundamental principles and analysis and design
methodologies are exactly those for much larger networks, including large urban
areas and towns. As will be discussed in Chapter 11, the technology (that is, the
computer programs) is the primary change when traversing from the small to large
scale.

The fundamental problem of hydraulic design for a gravity-driven water distri-
bution network of the type considered in this book is normally as stated in textbox
B.1.2.

B.1.2 Fundamental Problem of Hydraulic Design for a Gravity-Driven
Water Network

For a required volume flow rate of water to be delivered to an end use, and known
dimensions of the site (positions and elevations of source, storage tank, and tap-
stands, total length of pipe, contour of the land, etc.), calculate the pipe diameters
and wall thicknesses for the network that satisfy these conditions, produce an
acceptable static pressure distribution throughout the network, and if needed or
desired, minimize network cost.

Included in the overall design will be sizing and locating storage and break-pressure
(if required) tanks, the locations and types of valves and fittings, and the consideration
of issues like the elimination of undesirable low-pressure conditions along the flow
path that may lead to infiltration of contaminated water into the pipe flow.

The statement on the fundamental problem in textbox B.1.2 is an example of a
“demand-driven” design for a fluid-flow network. This is one where the fluid flow rates
are specified and the pipe diameters calculated such that they provide these flows. Al-
ternatively, one could specify the pipe diameters in the network and calculate the flow
rates at all relevant points with the intent of finding one or more combinations of pipe
diameters that meet the desired delivered flow rates. This “supply-driven” approach
requires tedious and time-consuming trial-and-error calculations where guesses are
made for the pipe size for each segment of the network. Analyses for designs carried
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out in this way are especially taxing for large multiple-pipe networks where there may
be hundreds or more possible pipe-size combinations. For example, a relatively small
multiple-pipe network consisting of 10 pipe segments where one might guess the pos-
sibility of any one of three pipe diameters for each segment requires considering more
than 59,000 total possible diameter combinations.

1.7 A BRIEF BACKGROUND

Among the references for the design of gravity-driven water networks,'® none present
a strong foundation for fluid flow that can be connected with design-related material.
For example, see Jordan Jr. (2004); Corcos (2004). A recently published and very
thorough text on water-network design by (Trifunovic, 2006) contains < 4 pages on
gravity-driven flow networks. The work of Swamee and Sharma (2000) addresses de-
sign based on cost minimization (discussed in Chapter 11) and presents a criterion for
choosing between gravity-driven and pumped networks. One of the better references
to date is the recent one by Swamee and Sharma (2008) that has broad coverage and
is generally well written, but lacks a consistent and strong connection with pipe-flow
fundamentals that are crucial for pedagogical soundness when teaching inexperienced
students. Most of the qualitative and sparse quantitative data for gravity-driven wa-
ter networks are published by various Non-Governmental Organizations (WaterAid,
2008), and the NeatWork code (Agua Para La Vida, 2002-2008), usually available on
the internet, and government agencies (U.S. Peace Corps., 2008; National Park Ser-
vice, 2008). There are also several sources from master’s thesis work at various
universities (Niskanen, 2003). Surprisingly, even the latest (7th) edition of the Piping
Handbook (Nayyar, 2002) contains no obvious reference to gravity-driven fluid flow
in pipes, nor does the Plastic Piping Handbook (Willoughby et al., 2002).

Because the aforementioned references focus heavily on design, the present work
is not intended to be a comprehensive treatment of the design subject matter. It is,
however, an attempt to bridge the gap between the classical fluid mechanics that may
have been learned in an undergraduate engineering or perhaps physics curriculum,
with which the reader may already be familiar, and the applied, technology-oriented
coverage of this topic in a book, such as Jordan Ir. (2004), and a tool such as the
NeatWork code from Agua Para La Vida (Agua Para La Vida, 2002-2008). Al-
though the book of (Jordan Jr., 2004) contains a wealth of information on many of the
important aspects of a gravity-water system, all of the technical topics like flow in sin-
gle and parallel pipes, and air blocks are explained in ways that target a nonengineer,
and in some cases a nontechnical, audience. This, apparently, is author intended.
For engineers or engineering students, the solutions to many of these problems may
greatly benefit from a sound, more-fundamental approach that their education and

13The scale of the water flow rates for the networks addressed here is of the order of liters per second.
Gravity-driven water networks for major population centers that require tens of liters per second and larger,
for example, can be designed with the methods presented in this book, but will require larger-size pipe and
associated hardware than is discussed here. As noted in Chapter 11, the scale of the computational tool
used to carry out the analysis and design will need to be larger as well.
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training can provide. Indeed, after completing this book, the reader may consider it
an engineering analysis and design companion to the handbook of Jordan Jr. (2004).

Another purpose for this book is to provide original design graphs, formulas, and
computational algorithms for the fundamental problem of determining pipe sizes fora
single- and multiple-pipe gravity-driven water systems that produce acceptable static
pressure distributions, and to provide information concerning other critical technical
and design topics pertinent to a gravity-driven water distribution network. Among
these is included optimization of the network to achieve minimum cost.

1.8 APPROACH

In this text, we will focus on two levels of analysis and design. The first level will
key on the performance of a water flow network based on overall characteristics,
(that is, the mean slope, and inlet and outlet states). The second level addresses the
distribution of properties, say static pressure, in the flow. The former is valuable in
predicting the pipe size needed for a required volume flow rate and a given set of
design conditions, and the latter is critical to assure the integrity of a design at each
and every point along the flow path in a network having local peaks and valleys. The
concept of “Natural flow” in a pipe (explored in Chapter 2) and a new concept of the
“Natural diameter” for a pipe (in Chapter 6) are outgrowths of these two levels of
analysis and design.

Following the review of the fundamentals of fluid flow in a pipe (in Chapter 2),
including the all-important mass conservation and energy equations, we will first
focus on several cases of interest and, in Chapters 5 and 9, provide a series of design
formulas and graphs to calculate the diameter, D, for a single-pipe network to satisfy
a prescribed water flow rate, (). A design worksheet in Mathcad, a copy of which
appears in the text and supplied herewith, extends this analysis by including the effects
of minor losses and eventually flow in the more-complex multiple-pipe networks that
are most common for this application. Note that all of the theory and results presented
in this book can be applied to the flow of any common fluid having constant density and
viscosity, but all design graphs and numerical calculations will be for water, which
is obviously the principal focus in this work. Of course, although the term “fluid”
is being used here, only dense fluids (that is, liquids) can flow in a gravity-driven
network.

1.9 KEY FEATURES OF THIS BOOK

The following lists several of the principal features of this text. As a group, these
will provide an effective, distinctive, and innovative framework for the analysis and
design of gravity-driven water networks.

1. The fundamental theory of flow in pipes, including mass and mechanical energy
conservation, the Darcy—-Weisbach equation, Darcy friction factor, laminar and
turbulent flow, and major and minor losses is thoroughly covered in its own
chapter.
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2. Every topic begins with, or references, fundamentals of pipe flow and other rel-
evant theory. This enables readers with technical backgrounds to quickly relate
to new ideas, methodologies, and solutions. Also, because all developments
have a solid, well-defined background, the assumptions on which the topics are
based will be clear as will the range of problems appropriate to the topics.

3. Single- and multiple-pipe networks are precisely defined. These classifications
provide the analyst and designer with the ability to use simple analysis and
design methodologies where appropriate. The generally weak role played by
minor losses is discussed and quantified, the outcome that allows the neglect
of minor loss as a first approximation to a design. Thus, simple design charts
and formulas are presented for the case of minor-lossless flow in single-pipe
networks, not computer programs with their inherent complexity.

4, Where computer programs are necessary for solutions to multiple-pipe and
some single-pipe network problems, the Mathcad worksheets supplied with the
text (see the list of these in Appendix A) are described in full detail including
input and output information, solution methodologies, and if needed hints on
how to run the programs effectively. Many textboxed examples in this book
that address the worksheets take the reader through a step-by-step process of
the changes to an existing worksheet, perhaps already understood by the reader,
to solve a related, but different, problem. The intent is to supply worksheets
that perform all of the fundamental calculations covered in this book. Clearly,
not all problems, nor variations of them, can or should be included. In addition,
there may be user-preference mismatches, like the preferred use of metric pipe
data in the worksheets on multiple-pipe networks (which are supplied with pipe
data in in.). One of the reasons for choosing Mathcad is that adjustments of
preferences and modifications to solve different problems are easily made in
Mathcad’s transparent graphical interface.'* To assist in this, a brief Mathcad
tutorial is included in Appendix C.

5. The inclusion and relevance of cost minimization to produce a unique solu-
tion to the problem of determining pipe sizes in multiple-pipe networks subject
to designer-prescribed volume flow rates is explained in detail. The underly-
ing theory behind this is developed and equations derived and then applied to
several example problems and exercises. The Given...Minimize constructis
liberally used for cost minimization, which is fully explained and demonstrated
in the Mathcad worksheets supplied with this text and in the Mathcad tutorial
in Appendix C.

Y4The graphical interface referred to makes Mathcad simpler to use compared with line-by-line-type
programming languages such as C++ and Fortran, as well as Matlab. For example, an equation written
in Mathcad appears as it would on paper. There is no need for the user to “translate” the equation and,
in fact, the logical flow of the entire solution, all of which would be necessary if using line-by-line-type
programming languages.
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6. Where appropriate in many places throughout the text where nontraditional
approaches are used to analyze problems, new methods are compared with the
traditional ones to emphasize the benefits of the new methodologies and place
them in proper perspective.

7. More than 100 exercise and example problems and their solutions appear in the
final chapter or elsewhere throughout this book.
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CHAPTER 2

THE FUNDAMENTAL PRINCIPLES

“If you don’t know where you’re going, you will probably end up somewhere else.”
— The Peter Principle, 1969

2.1 THE PROBLEM UNDER CONSIDERATION

Generally, there are four properties of interest to engineers and designers when solving
aproblem of fluid flow in a pipe. The first is the elevation since, for the present context,
this property provides the driving force for the flow. The second is the velocity. As
we will see below, velocity is proportional to the fluid flow rate, the value of which is
often one of the specified conditions in a design. The third property is static pressure, !
defined in more detail below. We all have a sense of pressure from our experiences,
say, from a deep dive into a swimming pool where we sense water pressure on our
ears. Lastly, because of the fluid property of viscosity, a moving fluid experiences

IStatic pressure is often simply referred to as pressure in some texts on fluid flow in pipes. For clarity
purposes, the choice is made in this text to distinguish between static pressure in a moving fluid and
hydrostatic pressure in a standing column of fluid.
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shear where it meets the walls of pipe, valves, and fittings that gives rise to frictional
energy losses.

Itis very interesting that the modifier “gravity-driven” that appears in this book title
produces quite a different problem than engineers normally encounter when solving
pipe-flow problems where the difference in pressure between the pipe inlet and outlet
is often specified as the driving force. Instead, when the weight of the water (referred
to as its body force) drives the flow, the pressure takes on a different role in the
problem. Where both ends of a single pipe are open to the atmosphere, pressure does
not appear at all in the design formulas. In other cases, the pressure at the delivery
point of the water may be prescribed by the designer so that this value appears as a
constant in the design. In still other cases, for example, in multiple-pipe networks,
the pressure can be prescribed or it may be a dependent variable whose value must
be within a range of acceptability as defined by the designer. All of these instances
will be explored fully in the chapters that follow.

In this chapter, first we consider the problem of developed fluid flow in a single
round pipe due to an elevation change between the pipe inlet and outlet. The flow is
assumed to be steady, the pipe flows full, and we ignore the presence of dissolved gases
and any suspended foreign matter in the fluid, both in its physical properties and in the
equations for flow. The reader will note that this problem differs from the transient
flow of a fluid and that in a partially filled pipe. These types of flows, which may
include that resulting from the flushing of a toilet or the short-term running of water
from a wash basin or sink in a house, are characterized by constant (atmospheric)
pressure and are very different than those treated in this text. Another category,
called “open-channel” flow, also differs in that not only is the pressure constant at
the atmospheric value, but the pipe itself does not bound the fluid on all sides. Open-
channel flows are covered in nearly every undergraduate fluid mechanics textbook,
many of which are referenced herein (White, 1999; Fox and McDonald, 1992; Gerhart
et al., 1992; Munson et al., 1994; Potter and Wiggert, 2002).

2.2 THE ENERGY EQUATION FOR STEADY PIPE FLOW: FLUID
DYNAMICS

The movement of fluids in pipes is well understood and is described in various levels
of detail in many texts and handbooks. For our purposes, the analysis of the problem
of pipe flow comes down to solving the equations for mass and energy conservation
for the fluid between any two locations along the water-flow path. For a single-pipe
network that was discussed in Chapter 1, the two locations referred to above are the
beginning and end of the pipe that connect the source and delivery locations. For
a multiple-pipe network, the upstream and/or downstream locations are normally at
naturally occurring branch points, such as a tee fitting. In still other cases, where
there is an interest in the local distribution of fluid properties in the pipe flow, the two
locations are separated by a differential distance measured along the flow path. This
approach, for example, is used in Chapter 6.
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First, we define some of the variables needed for this work. Throughout this book,
the pipe inside diameter is D, the cross-sectional average flow speed? in the pipe is
u, and the water has constant density p. The static pressure at any location in the pipe
is p, and the elevation measured from an arbitrary location in the pipe is the vertical
coordinate z.

Static pressure is the pressure that would be measured in a flowing, incompressible
fluid where there is no direct effect from the fiow speed. In a conceptual sense, the
static pressure would be measured by a pressure gage that flows along with the fluid.
In a practical sense, it would be measured by a small tap or hole installed in the pipe
wall so that the opening of the tap is parallel to the motion of the fluid and thus sees no
direct impact from the fiuid velocity. A pressure gage would be connected by a small
hose or pipe to this hole. By understanding the conceptual idea of how to measure
static pressure, we can begin to appreciate the true meaning of the modifier “static,”
namely, static pressure is really a dynamic quantity. It is static only in the sense that
the value of p has no direct effect from the local velocity of the moving fluid and the
measurement of p does not affect the local velocity.

We begin with the energy equation for steady, hydrodynamically developed flow
of an incompressible fluid, like water, in a long, round pipe. In a hydrodynamically
developed flow that exists in all long pipelines, the shape of the velocity distribution®
is the same at all locations along the flow path. Another consequence of hydrody-
namically developed flow for a horizontal pipe of constant diameter is that the static
pressure gradient is constant in the direction of fluid flow. Thus, the static pressure
decreases linearly along the flow path. For an incompressible fluid, the flow is inde-
pendent of the size of the static pressure; it depends only on the gradient of this. The
above comments apply to laminar, as well as turbulent flow.* The energy equation
for pipe flow is covered in a variety of formal courses including thermodynamics,
fluid mechanics, and physics. The highlights of this coverage will be presented in
this chapter.>

Velocity is a vector. Flow speed is the component of the velocity vector in the direction of fluid flow.
If there is no need to calculate reaction forces and thus no use for a vector, the term flow speed is more
appropriate to use for %.

3This is the distribution of the local flow speed of the fluid as a function of the local radial position through
the pipe cross section.

“4The character of laminar and turbulent flows is discussed in detail below with the presentation of the
friction factor. As a preview, a laminar flow is orderly with no mixing of the fluid in the directions normal
to the principal movement of the flow. In turbulent flow, cross-mixing dominates over nearly all of the flow
cross section. Turbulent flow is most common in pipes of diameters typical of most gravity-driven water
networks. Laminar flow can occur in small gravity-driven water networks where the water flow rates are
small.

SA word of caution is appropriate here. As noted above, the literature on water distribution networks
abounds. Some of these works, even those of reputable governing bodies (American Water Works As-
sociation, 2006), may use different definitions and sometimes inappropriate formulas for gravity-driven
water networks of the scale considered in this book. For example, at least one book has been uncovered
that defines static pressure in the hydrostatic sense, meaning no motion of the fluid. This is unfortunate
because of confusion caused by an alternate definition of an important concept at such a fundamental level.
The reader should be aware that such writings exist, and that the basics presented in this book are classical
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Z . State 1

State 2

Figure2.1 Geometry and nomenclature for flow in a single pipe. Gravity acts in the negative-
z direction.

Referring to Fig. 2.1, the energy equation for an open system, that is, a system with
mass flow through its boundaries, consisting of a pipe of variable diameter having a
single inlet and outlet is® (see any text on thermodynamics or fluid mechanics)

—2 =2
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where i is the mass flow rate, e is the internal energy per unit mass, g is the ac-
celeration of gravity, and ¢ and « are the rates of heat transfer to and work done by
the system, respectively. States 1 and 2 are at any two arbitrary locations along the
pipe-flow path where the normal convention is that state 1 is upstream and state 2 is
downstream. The terms in each parentheses on the left side of Eqn (2.1) account for
pressure energy,’ Kinetic energy, and potential energy, all per unit mass of fluid. The
term « is the ratio of the kinetic energy in the flow to the kinetic energy based on the
mean flow speed, @. It accounts for the non-uniform velocity distribution through the
cross section of the flow and is connected with the acceleration of the flow between
two different flow speeds in the pipe. For example, if the velocity distribution were
uniform through the cross section of the pipe, a would equal 1. For fully developed
turbulent flow, normal for most gravity-driven water flows, a = 1.05, which reflects
a nearly uniform velocity distribution. A sketch depicting the velocity distributions

in that the concepts, definitions, and terms are consistent within the narrow framework of gravity-driven
water flows and over the broader framework of the body of fluid mechanics.

6Equation (2.1) is alternately referred to as the first law of thermodynamics.

T1n the fundamentals treatment of fluid mechanics, (p1 — p2)/p is often referred to as “flow work™ that is
the work required to move the fluid between states 1 and 2. However, p/p is the pressure energy per unit
mass of fluid associated with a given state.
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Uniform Flow

Pipe Wall o=1

Turbulent Flow

.. EE—
Direction of Flow o=1.05

Laminar Flow
a=2

Figure2.2 Velocity distributions for flow in a round pipe and accompanying values of . The
velocity where the fluid meets the pipe wall is zero. The main focus is on laminar and turbulent
flow. Uniform flow, which would occur if the flow were inviscid, is shown for comparison
purposes only.

for laminar and turbulent flows and the accompanying values of « for each is shown
in Fig. 2.2.

For readers already familiar with the above developments, Eqn (2.1) is sometimes
referred to as the “steady-flow energy equation” (White, 1999).

The field of thermodynamics provides us with the definition of work. Work is a
quantity that passes through the boundary of the system and has the effect of raising or
lowering a weight. Clearly, since there is no turbine installed in the pipe, the rotation
from which could be used to lift or lower a weight (this case will be considered in
Chapter 12), there is no work for incompressible flow in a pipe. Upon rearranging
Eqn (2.1), we obtain
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This is the energy equation for pipe flow (the flow must be steady, but we will not
include this modifier in the interest of brevity) and this equation and its solutions will
be the principal focus of the analysis content of this book. Readers who may not be
familiar with the energy equation and the terms that comprise it will find the example
in textbox B.2.1 useful.
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Equation (2.2) is sometimes referred to as a “modified Bernoulli equation” because
it resembles the Bernoulli equation.? Jordan Jr. (2004) refers to it as the “Bernoulli
equation for a real system”. In contrast to the Bernoulli equation,

2 2
(%+u—21+921)—(p—;+%+gz2):0 (2.3)
which is only valid for steady, inviscid (that is, frictionless) flow of an incompressible
fluid along a streamline (see the discussion in textbox B.2.3), included in the energy
equation for pipe flow is a positive-valued term that accounts for energy loss due
to friction, H;, which is referred to as “head® loss.” Head can be expressed as a
height, a dimensional length given the symbol &, or as the product of height and the
acceleration of gravity, g, given the symbol H. Then,

H=gh (2.4)

By comparing Egs (2.2) and (2.4), we obtain an equivalence between static pressure
and head as

j— 2.5)
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where h is referred to as “static pressure head.” This is a term we will use frequently,
especially where we deal with multiple-pipe networks. If subscript L appears with h
or H, as indicated above, it would be referred to as “head loss.”

We see that the energy equation for pipe flow equates the change in total mechanical
energy (the sum of pressure, kinetic, and potential energy) between the pipe inlet and
outlet to the energy “loss” in the pipe due to friction. Any gravity-driven water
network will flow provided the change in total mechanical energy between the pipe
inlet and outlet is positive valued. Our inspection of Eqn (2.2) shows that this energy
loss is really a transformation from mechanical energy to internal energy and heat
transfer from the pipe wall. If heat transfer, ¢ is nonzero and negative valued (heat
transfer from the pipe to the surroundings). If internal energy, the temperature of the
water increases slightly as it flows along its path. To see this, we focus on the internal
energy equation of state for a liquid, which is

€y — €1 = Cv(T2 - T]_) (26)

where ¢, is the specific heat at constant volume. Thus, the change in internal energy
from frictional effects from the flow inlet to outlet causes a temperature increase

8The Bernoulli equation has a very interesting history. Its origin as it appears in Eqn (2.3) is traced loosely
to Daniel Bernoulli (in his book of 1738, Hydrodynamica) but apparently his father Johann (1667-1748)
in his book Hydraulica first recognized the static pressure as a dynamic quantity. Leonhard Euler (1707-
1783) was the first to characterize pressure as a pointwise quantity. He developed a differential form of
an equation that relates the forces acting on a moving inviscid fluid and integrated it to obtain what we
now call the Bernoulli equation. As discussed by Anderson (1990), because of these contributions, the
Bernoulli equation could legitimately be called the Bernoulli-Euler equation.

9The word head comes from early developments in hydraulics in the 19th century and described an elevation
of water above an arbitrary location. Though it is not certain, head probably referred to the elevation at
eye level or the level of the human head.
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between these two points. It turns out that for most cases this change is so slight
it is ignorable (see Exercise 3). From this outcome, we conclude that all thermal
contributions to the energy equation are negligible and, for design purposes, the fluid
behaves as if it is isothermal. An exception to this will be made in Chapter 10, where
we may consider temperature changes in the fluid when optimizing the design.

B.2.1 Example: The Energy Equation Applied to Human Movement

You and your partner are planning a hike through the hilly woods in a Pennsylvania
state park. Though you are both not fluids, interpret as well as possible the three
terms in the energy equation, pressure, kinetic, and potential energy, in light of
your characteristics while on this trek. Assume that your speed is uniform once
you begin the walk and that potential energy is relative to that at the lowest point
on the hike.

The interpretation: The three terms of interest on the right side of Eqn (2.2) are,
in order, the change between any two states for pressure, kinetic, and potential
energy; all written per unit of mass. Once you are moving at uniform walking
speed T, the kinetic energy of the system (you and your partner) remains constant.
If you would write Eqn (2.2) between any two states along your walking path,
the kinetic energy change is zero and thus does not contribute to the mechanical
energy of your system. However, if the starting state is you at rest, the kinetic
energy at this state is zero and %2 /2 at any other state. The kinetic energy would
contribute in this case.

By contrast, the change in potential energy per unit mass, g(z; — z2), will not be
zero because you are told that the route is hilly. For example, an upward climb
will require an energy input to the system (supplied by the chemicals in your
body) that power the muscles needed to make the climb. One could imagine this
coming from a chemical form of the pressure energy, or a new energy “source”
term that could be included in Eqn (2.2). The character of the pressure energy
will be explored more fully below. A downward descent results in the reduction
of potential energy of the system. This change in potential energy per mass,
g{z1 — z2), where z; > 2o, must be balanced by a dissipation of energy that
occurs in the loss term, H, [see Eqn (2.2)]. This is why the muscles in our legs
ache or “burn” during a long downhill hike or run as they must work internally
to dissipate the potential energy change. Of course, in both our bodies and in
fluids there is always an energy loss due to friction (shear in fluids and muscular
contractions in us) whenever there is motion in either.

Pressure is unique to a fluid, which you are not, so it is a challenge to apply the
concept of pressure energy to the movement of your body. Nonetheless, we can
get a good sense for static pressure and pressure energy if we use our imagination.
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Example: The Energy Equation (Cont’d)

One property of the process that results in the change of pressure in a flow is
that of reversibility. This means that pressure energy may increase or decrease
in response to a change in another form of energy and the conversion between
the two forms of energy is reversible. Another way of saying this is that the
energy transformation process is 100% efficient or “loss-free.” A good example
of this is within a static fluid (see Section 2.3), where we see a balance between
pressure energy and potential energy; a decrease in one causes an increase in the
other. The pressure felt on your eardrums upon a deep dive into a swimming pool
provides evidence of this.

How can this translate to our hike? Imagine that you have a spring attached to
you in such a way that it can reversibly (that is, without friction) wind up using
the potential energy as we descend a hill. Thus, potential energy on the descent
is stored in the form of energy in the spring in what is really another form of
potential energy. The sense that our bodies would get during this downward trek
is equivalent to a walk on level ground. In the ascent that may follow, we allow
the spring to reversibly unwind, adding energy to the system to aid in the climb.
Again, because of the energy added to the system from the unwinding spring,
this upward walk would feel as though it is on level ground.

The simple analog in the above paragraph implies that in a conceptual sense,
pressure energy is like stored spring energy in a fluid; indeed, modeling the
“spring of air” is a topic several hundred years old (Brockman, 2009; Boyle, 1660).
Anyone who has cracked open a valve on a pressurized water pipe, or worse yet,
mistakenly drilled through the side of a pressurized pipe, can bear witness to
this fact. It is worthwhile remembering this concept for several reasons. One of
these is that it will become clear after digesting Chapter 6 that pressure energy
is the sole energy source for the motion of fluid from the lower to higher parts
of a gravity-driven water network. While the spring (potential) energy analog is
valuable from a conceptual standpoint, from fundamental ideas, pressure energy
isreally a form of internal energy or flow work that will be described in Section 2.3.

There are two classifications for the energy loss in the pipe. The first is the
energy loss due to shear stress between the moving fluid and the stationary pipe wall
(major loss). The second is the energy loss due to the same process in pipe fittings
and valves installed in the flow path and is referred to as a “minor loss!% Various
investigators have determined through laboratory experiments that the head loss, Hy,,
is proportional to the kinetic energy per unit mass of the flow. With this, the energy

10The terms major and minor are standard in fluid dynamics. Of course, the loss in a very short length of
pipe may be of the same order of magnitude as that in a number of fittings. The terminology of major and
minor is based on assumed large pipe lengths.
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equation for flow in a pipe of diameter D and length L becomes

=2 —2
(%+a1% +gzl)—(p—;+a2u—22+gz2):HL 2.7
where Hy, is from
M N —92
L L u
_ = e i 2.8
Hy [f(D+i§:1Di)+l§_lKl]2 (2.8)

The term on the right side of Eqn (2.7) is the energy change due to friction, H,.
It is an extended form of the classical, empirical-based, Darcy—Weisbach equation
(White, 1999),

La?
H,=f——
L=f53
where terms for the minor loss (see Section 2.2.1) have been included. Combining
Eqn (2.4) with Eqn (2.9) produces an alternate form for the Darcy—Weisbach equation.
Obtain,

2.9)

hr, 7%
e i 2.10
2 fng (2.10)

where h, /L is the dimensionless group head loss per unit length of pipe that appears
frequently in the pipe-flow literature. The Darcy—Weisbach equation has, through
observation, been validated extensively for major and minor energy losses in pipe
flow.

The first term on the right side of Eqn (2.7) is the major loss and the second and
third terms account for the minor loss. The parameter f in the major loss will be
discussed in detail in Section 2.2.2 and the minor losses in Section 2.2.1.

2.2.1 The Minor Loss

The minor loss can be characterized by a dimensionless loss coefficient X which,
when summed over all minor-loss elements (/V), accounts for the total minor loss
along the pipe-flow path [see Eqn (2.7)]. For example, the minor loss coefficient
for flow entering a pipe protruding through and beyond the wall of a reservoir (this
condition is termed a “re-entrant”) ranges from 0.8 to 1.0 depending on wall thickness,
pipe diameter, and length of the protrusion (Streeter et al., 1998).

There is an alternate, less-common, way of expressing minor losses. In Eqn (2.7),
L. is called the “equivalent length” and the procedure for accounting for the minor
losses is called the “equivalent-length” method. In the equivalent-length method, we
calculate the energy loss for a pipe fitting or similar minor-loss element as if it occurs in
a number of pipe-diameters of straight-pipe length that is referred to as the equivalent
length. This method is commonly used for certain types of fittings. For example,
the minor loss for an elbow is sometimes accounted for using the equivalent-length
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method. For a standard 90° elbow, the reported equivalent length!! is L./D = 30
(Fox and McDonald, 1992). In Eqn (2.7), the total minor loss for those elements
using the equivalent length method is from the sum of M total elements. Please note
that only the loss-coefficient approach or the equivalent length method is used, never

use both methods for the same minor loss elements or else the effect of the minor

losses will be erroneously doubled. Also, note that the energy equation for pipe fiow
developed here [Eqn (2.7)] applies to a length of pipe of a fixed diameter. Therefore,
the summations in the minor loss terms in these equations must likewise be taken
over a pipe of a single diameter.

B.2.2 Why The Bernoulli Equation Does Not Apply to Pipe Flows

The Bernoulli equation is simple and thus very appealing to use, including pipe
flow and other cases where it should not be, so we need to give serious consid-
eration to the problem at hand before possibly applying it. The assumptions on
which it is based are sometimes not well understood or ignored by its potential
users. Fundamentally, Eqn (2.3) applies only if the flow is steady, incompressible,
inviscid, and states 1 and 2 lie on a single streamline. In steady flow, a streamline
is the locus of points traversed by a small “particle” of fluid as it travels in the
flow. Steady says that the flow cannot depend on time (that is, the flow cannot be
accelerating or decelerating with time.) Incompressible means that the density
can be approximated as constant in value. Flows of liquids are normally incom-
pressible, as well as gases, if the flow speed is sufficiently small. Inviscid implies
that there is no effect of shear acting on the flow along the streamline on which
Eqn (2.3) is written. For nearly all real flows, the viscosity of the fluid will never
be zero, so inviscid does not mean the absence of viscosity. Rather, inviscid is
a statement of the lack of a velocity gradient in the direction normal to the fluid
flow (perhaps, recall Newton’s law of viscosity from fluid mechanics). Even
with the restrictions, there are many examples of where the Bernoulli equation
accurately applies. Namely, in the free-stream of external flows over wings and
other streamlined surfaces, and in laminar, internal flow in a pipe or other internal
flow along only the centerline. It can be approximately applied in some turbulent
flows, although with less certainty of the results since many of these are highly
viscous, and there is little hope of following a streamline.

To be fair, many authors of undergraduate texts on fluid mechanics are at least
partly to blame for some misunderstanding concerning the Bernoulli equation.
For example, illustrative problems like internal flow in a tube that are clearly
viscous but, without explanation, the students are instructed to treat as inviscid
are a possible source of confusion.

"'The equivalent length under discussion here is a number for a particular fitting. This number is the value
of the ratio L./ D.
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Minor loss coefficients and/or equivalent lengths for the most common fittings and
valves are presented in Table 2.1. Included are the elbow, tee, union, coupling; gate,
globe and ball valve; expander and contractor; and loss coefficients for entry and exit
losses. More comprehensive lists and charts and, for readers unfamiliar with them,
descriptions of these fittings and valves can be found in nearly all undergraduate fluid
mechanics textbooks. Munson et al. (1994), for example, has numerous sketches
of valves and fittings among their minor-loss charts. The globe valve, which is
commonly used to dissipate the potential energy in a gravity-driven water network, is
discussed in many locations in the this text. A few comments on the data in Table 2.1
are in order. Much of these data are extracted from industry publications, such as
The Crane Company (1970) and data from the Hydraulic Institute (Hydraulic Institute,
1990). As pointed out by White (1999) these data are relatively old and many are
questionable. After comparing a few published results with data obtained from tests
of more-recently manufactured fittings, one concludes that most data from the above
sources are likely very conservative. For example, the value of K for a standard 90°
elbow in Table 2.1 calculated from the recent correlation appearing in White (1999)
is~0.31 for Re of 5 x 10°. This is clearly much less than the other two reported values
of 0.9 and 1.5. Also, note the variability of the reported values for the same fitting
or valve in Table 2.1. This is not surprising since the loss coefficients will reflect
variations in specific manufacturing methods and dimensional details of the fitting
or valve. This is expected because standards at this level of manufacturing detail
generally do not exist. Fortunately, the sensitivity of our designs to these variabilities
is expected to be weak because the minor loss is not large for most gravity-driven water
networks, except where needed for flow control. The latter concerns the intentional
dissipation of energy in a partially closed globe or faucet valve, an important function
that is to produce a minor loss.

An exception to the conservative estimates for K values in Table 2.1 is that for a
fully-open globe valve. Gray (1999) suggests that the effect of diameter dependence
on K may be written as

0.0135 mm

K = 85log ¢ ( 5

) globe or faucet valve (2.11)

which, for the pipe sizes of interest in this work, gives K in the range of 6-10, or
about twice that from Table 2.1. It would appear that a conservative estimate of K
for a fully-open globe or faucet valve ranges from 8-10. Swamee and Sharma (2008)
report a value of 10. Of course, K values increase unbounded with continued closing
of the valve. As demonstrated in Exercise 7, K values can approach 500,000 before
nearly fully restricting the flow in this valve.
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Table 2.1 Coefficients and Equivalent Lengths for Calculation of Minor Loss

Fitting Equivalent Length K
Type (Le/D)
Standard 90° Elbow? 30? 1.49Re™ ' £+ 10%¢, 0.9, 1.5°
Standard 45° Elbow® 16° ~ 0.37¢,0.4°
Standard Tee - Flow Through Run® 20° 0.9¢,0.9¢
Standard Tee - Flow Through Branch® 60° ~ 1.75¢,2.0¢
Union Negligible®
Coupling Negligible
Gate Valve (Fully Open) Negligible®
Globe or Faucet Valve (Fully Open) 340° 4°, 10%
Globe or Faucet Valve (75% Open) 4¢
Globe or Faucet Valve (50% Open) 6°
Globe or Faucet Valve (25% Open)® 20¢
Ball Valve (Fully Open) 3b 0.05¢
Ball Valve (2/3 Open) 5.5¢
Ball Valve (1/3 Open) 210°¢

Sudden Expansion into Large Area (“Exit” Loss)
Sudden Contraction (“Entrance” Loss)

1 (based on theory)
0.78:re-entrant®, 0.8 ~ 1.0:re-entrant®
0.5:square-edge®

Gradual In-line Reducer
Gradual In-line Expander

0.05 ~ 0.43%, estimate as 0.4
0.4 ~ 1.2° estimate as 1.0

4“Standard” means that this type of fitting is most commonly used. For example, long radius and short radius elbows used for special purposes in industry are not standard.

Re is Reynolds number.

bFox and McDonald (1992)

“White (1999)

4Streeter et al. (1998)

¢Munson et al. (1994)

fThe approximation symbol (=2) refers (o an average over several pipe sizes.

8Globe or faucet valves less than 25% open will have minor loss K values in the range of 100 or more (theoretical K value for such valves approaching the fully closed

position tends toward infinity).
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2.2.2 The Friction Factor

The term f in Eqs (2.8)~(2.10) is the Darcy friction factor'? that accounts for energy
loss due to friction for flow in a straight, horizontal pipe. We write it as f(u, D) to
keep in mind that the friction factor depends on the mean flow speed in the pipe and
the pipe diameter through the Reynolds number, Re, defined below. For laminar flow,
an exact formula for f(@, D) may be developed from the solution of the momen-
tum equations (referred to as the Navier—Stokes equations) and the equation for mass
conservation for fluid flow and is explored in textbox B.2.3. Recourse to data from
experiments is needed to write f (@, D) for turbulent flow, wherein the friction factor
is also known to depend on the relative roughness of the pipe wall, e/ D, discussed
further below. In design, € is always a prescribed value (that is, a parameter) from lab-
oratory measurements and we normally do not include this parameter in the argument
list along with @ and D. For smooth pipe, typical values for f(%, D) range from~0.05
to~0.01 for turbulent flow from the near-transition regime to highly turbulent, respec-
tively. That is, an order-of-magnitude estimate is f =~ 0.03 £ 0.02 = 0.03(1 & 0.67)
for turbulent flow.

The value of f(%, D) is determined from different formulas for laminar and tur-
bulent flow. These are (White, 1999)

64/Re, laminar, Re < 2300

f(@w,D)= - 2.51 ¢/Dyy -2 (2.12)
( {—2log,o[ o) T 57 ]}7% turbulent

where Re is the Reynolds number

Re = D (2.13)
14

that clearly depends on @ and D, but is never written as Re(u, D), and v is the
kinematic viscosity of water at its ambient temperature. The value for v can be
found in most textbooks on fluid mechanics or heat transfer. The kinematic viscosity
for water at, or near, atmospheric pressure as a function of temperature can also be
estimated to accuracies within < 1% over the temperature range 1 ~ 99°C from the

12The Darcy friction factor can be obtained from Moody’s publication (Moody, 1944) of the now-famous
friction factor chart. This chart appears in many sources including textbooks on fluid mechanics and in
Fig. 2.4. An interesting and very readable history of the friction factor for pipe flow and the Darcy—
Weisbach equation is available (Brown et al., 2000). To produce his diagram for friction factor, Moody,
in a relatively simple manner, restructured the existing friction-factor diagram of Rouse (1943) “in a more
conventional form”. According to Ettema (2006), in addition to f and Re, plotted on secondary axes,
Rouse included on the primary axes two different quantities. One of these was f =1/2_ and the other
Ref1/2. This was done to identify the turbulent-smooth curve f~1/2 = —0.8 + 2 log(Ref1/2) from
the then-recent work of Colebrook and White (1937) and Colebrook (1938, 1939). Since very few, if any,
of us use the “Rouse” diagram today, this is one among several instances in engineering of an individual
whose archival contributions came from very basic observations and actions. From Rouse and Ince (1963)
and the inclusion of an exclamation point in Rouse (1975), Rouse thought Moody received undue credit
for the work of himself and his colleagues. Further brief discussion on the history of f for turbulent flow
is presented in Chapter 9.
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formula (Streeter et al., 1998),

~6.,.2
L _ 1572 x 10~%m? /s .14
(T/Tres + 4.25)15

where T'/T,. ¢ is dimensionless and T,..; = 283.16 K (K= 273.16 + °C). A plot of
the kinematic viscosity of water and Eqn (2.14) is presented in Fig. 2.3. For reference
and convenience, the kinematic viscosity of water at 10°Cis v = 1.307 x 1075 m?%/s.

1.8 T T T T T T T T T

O Data
Correlation

Kinematic Viscosity, v (mz/s)

02 " 1 L It 1 L L L 1
0 10 20 30 40 50 80 70 80 90 100

Temperature C)

Figure 2.3  Kinematic viscosity of water. Data are from Streeter et al. (1998) and correlation
is from Eqn (2.14).

From fundamental fluid mechanics, we know that Re “characterizes”!? the flow
regime. In particular, flow is very likely to be laminar for Re < 2300 (and will be
laminar for Re slightly less than 2300) and turbulent flow occurs for Re >3000-
4000. In a laminar flow, there is no mixing of the fluid in the directions normal to the
principal movement of the flow. This is contrasted with turbulent flow where mixing in
all directions dominates over most of the flow cross section'®. The transition regime,

13 Another word for characterize is “describe” or “distinguish,” like the term “mile-high city” is used
in United States-based jargon to describe the elevation of Denver, Colorado. While true that Denver is
approximately 1 mile above sea level, there are probably relatively few locations that are exactly 5280 feet
above sea level within the limits of the city.

14We do not yet have a complete understanding of turbulence due, in part, to the complexity of turbulent
flows and the multiplicity of length and time scales that it possesses. Sir Horace Lamb, the notable
British hydrodynamicist and applied mathematician is reported to have said “I am an old man now, and
when I die and go to Heaven there are two matters on which I hope for enlightenment. One is quantum
electrodynamics and the other is the turbulent motion of fluids. And about the former I am rather more
optimistic” (Anderson et al., 1984).
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which lies between the laminar and turbulent limits, is a region of some uncertainty for
the friction factor, even though the recommended Eqs (2.16) and (2.17) for f(w, D),
presented below, model this regime. In general, it is best to stay clear of the transition
regime when designing a water network. In the results presented below, we will see
that for small values of z; and volume flow rate ¢}, the flow in the pipe may indeed
be laminar or transitional though turbulent flow is most common.

The formula for f(u, D) from Eqn (2.12) for laminar flow is from the solution of
the Navier—Stokes equations for incompressible, constant—viscosity flow (see textbox
B.2.3). The formula for f(u, D) from Eqn (2.12) for turbulent flow is referred to as
the Colebrook equation (Colebrook and White, 1937; Colebrook, 1938, 1939) and
is the industry-accepted design formula for the friction factor for turbulent flow in
pipes. Note that it is implicit in f(%, D) and requires iteration or a numerical root-
finder to solve. An explicit approximation that produces results to within £3% of the
Colebrook equation is

_ 64/Re laminar, Re < 2300
f(@ D)= { {—1.8log;o[$2 + (%)1_11”_2 turbulent 2.15)

which is from Haaland (White, 1999), and is easier to implement. A similar expression
is from Swamee and Jain (1976) although many explicit and implicit forms for f (@, D)
have been proposed (see Romeo et al. (2002) for a brief review up to 2001).

As noted, the term € in Eqgs (2.12) and (2.15) is the absolute roughness of the
pipe inside wall that is relevant for only turbulent flow. The roughness is an average
height, in a root-mean-square sense, of the roughness elements on the wall surface.
For plastic pipe (Polyvinyl Chloride, etc., see Chapter 3), e ~ 5 x 1078 ft +60%
(White, 1999) or & 1.5 x 1073 mm £60%; generally considered to be smooth'®. For
galvanized steel or iron pipe, € is ~100 times larger than this value. It is well known
that e itself does not affect f(, D), but rather the ratio €/ D, which is referred to as
the relative roughness of the pipe. This is not surprising since, as demonstrated by
dimensional analysis, often a part of a course in fluid mechanics, only dimensionless
groups ultimately appear in homogeneous mathematical formulas. Both € and D have
dimensions of length,

In this book, use is made of f(@, D) from a correlation of friction factor data
[for a representative set of friction factor data, see Schlichting (1979)], which spans
the laminar, transition, and turbulent regimes from Churchill (1977)'® and Churchill
et al. (2002). Thus, no conditional statement (e.g., an if statement) in a computer
algorithm, is needed to evaluate f (%, D) as would be needed for Eqs (2.12) and (2.15).

15The term smooth means that the scale of pipe-wall roughness is much less than the thickness of the
viscous sublayer in a turbulent flow. The sublayer is a thin layer of moving fluid immediately next to the
pipe wall that has a laminar character.

16From Churchill (2006), the correlation of Eqgs (2.16) and (2.17) has appeared in the literature in the past
with several typographical errors. The expression presented here is error free.
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The friction factor correlation is written as

o 4 18765 g
0=73 {(Re\/F/T;) +[(Re f*/8)
+(3.29 — 227 +( 0 )?
T ReV/F /8 Rey/f/8 (2.16)
1 Re f*/8 16 _% ﬁ
0236 " T osgRev s | )

where
f@, D) =4f" (2.17)

Swamee (1993) presents a slightly simpler variation of this formula that spans all
regimes.

Thoughit is surprising to most, research continues on the understanding and models
for turbulent flow in pipes and over surfaces (Marusic et al., 2010). The recent data
for flow in rough and smooth pipes for 57 x 103 < Re < 21 x 10 reported by
Allen et al. (2007) and others (McKeon et al., 2004, 2005; Shockling et al., 2006;
Langelandsvik et al., 2008) have not yet been incorporated into Eqgs (2.16) and (2.17).

The rather cumbersome-looking equation, Eqn (2.16), is just an implicit formula
for f (@, D) as afunction of Re and relative roughness of the pipe. Just like Eqn (2.12),
its solution requires iteration or a numerical root-finder. A plot of Eqn (2.16) for a
broad range of Re appears in Fig. 2.4 which is commonly referred to as the Moody
chart or Moody diagram (see footnote 12). Shown in Fig. 2.5 is the friction factor
for PVC and galvanized iron pipe, two materials normally used in gravity-driven
water networks, over a Re range normally encountered in them. Also in Fig. 2.5 is
the friction factor for the “smooth” limit (¢/D — 0). The implicit formula for the
friction factor for this limiting case is from the work of Colebrook (1938, 1939) and
Colebrook and White (1937),

f@ D)"YV = —0.8 + 2log[Ref (u, D)'/?] (2.18)

Note from our inspection of Fig. 2.5 that the friction factor for PVC and smooth pipe
are practically indistinguishable. This outcome will be very useful when we explore
the development of simplified design formulas in Chapter 9.
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PVC
Galvanized Iron
Smoath Limit

Friction Factor

10 10’ 1wt 10 10*
Reynolds Number

Figure 2.5 Friction factor for PVC and galvanized iron pipe, and the “smooth” limit (¢/D —
0) from Eqn (2.16). Laminar flow occurs for Re < 2300 and turbulent flow for Re > 3000.

Transition flow is sandwiched between the two. Assumed is D =2.067 in. to provide a value

for e/ D. The friction factor for PVC and smooth pipe are practically indistinguishable.

B.2.3 The Navier-Stokes Equations

The Navier—Stokes equations are the momentum equations, Newton’s second law
of motion, for a Newtonian fluid. Together with the equation of mass conser-
vation, the solution of the Navier-Stokes equations gives the velocity and static
pressure distributions for any flow of a Newtonian fluid, like water and many
other fluids encountered every day. Thus, the Navier—Stokes equations are the
universal equations for fluid flow, including turbulent flow. Because they are a set
of second-order, nonlinear, partial differential equations, they are very difficult
to solve for most practical problems. Numerical methods (referred to as Com-
putational Fluid Dynamics, or CFD) must normally be used. For pipe flow there
is one very common case where the length of the pipe is very large compared
with the diameter. Here, the velocity distribution in a laminar, incompressible,
constant-viscosity pipe flow is termed “fully developed,” and a closed-form solu-
tion for the velocity can be obtained from the Navier—Stokes equations. From this,
an expression for the friction factor, f(u, D) = 64/Re, can then be developed
that appears in Eqgs (2.12) and (2.15). An approximate solution for the friction
factor may be obtained in the same manner for turbulent flow, but modifications
guided by experimental data are needed for accuracy. Please see the chapter on
Differential Analysis of Fluid Flow in any fluid mechanics textbook for more
details.
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The solution for f(w, D) using Mathcad, which includes the use of the root
function to solve Eqs (2.16) and (2.17), is illustrated in Fig. 2.6. Fortunately, this
solution is included in all of the Mathcad worksheets presented in this text so there
is no need for the designer to type Eqs (2.16) and (2.17) into Mathcad.

Calculation of Friction Factor

2 ;o kg o L
Water properties at 10C =50 F v = 130710 -2 RLm 00 3 k= 1110
sec m

Eo= 50010 S.q absolute roughness, ft (for galvanized steel)

friction factor that spans laminar, transition, and turbulent regimes

r _i- 12
- 2
- 16
14 ) 2 1
f 4 7 Q
funcif,R, ebyD) i= ~ - [ " ['3?65] T i 3 r]
R = R L R R -
Uvs) |UVs) CRRE JLT
R [—
8
1+030m —ebyD2
g ! L bl & =
fric_fadRe,ebyD) := root{functf1, Re,ebyD), 1, 0.000L0.2)-4 Sol'n for friction factor
A : - 4 i
: £ The value of friction factor for Re = 10,000
= 2.067 fric_fa¢ 10000,— = (0.0360 : s
D= 2067 o5 a{ % D, and 2-inch, IPS schedule 40 galv. steel pipe

Figure 2.6 Mathcad solution for f(u, D) for 2.067-in. inside-diameter galvanized iron (or
steel) pipe and Re of 10,000. f(w@, D) is from the function fric_fac evaluated by the root
solver. The term ebyD is relative roughness ¢/D. The final two arguments in the function
root(funct(fi,Re,ebyD),f1,0.0001,£1) of 0.0001 and 0.2 are the assumed lower
and upper bounds, respectively, for the value of the friction factor, frict fac(Re,ebyD).
Compare the result from this example with that from Fig. 2.5. Mathcad worksheet friction
factor.xmcd.

An approximation to the friction factor is the Blasius formula [from Blasius in
1913 appearing in Munson et al. (1994)],

f(@, D) = 0.316 Re /4 (2.19)

normally reported as being valid for turbulent flow, where 10* < Re < 10° and for
smooth pipe. Asnoted in the above paragraph, the smooth-pipe approximation applies
to PVC and other plastic pipe but less accurately to steel or cast iron, the galvanized
form of which is sometimes referred to as galvanized iron or GI. On the Moody chart,
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Figure 2.7 Friction factor in turbulent regime for smooth pipe and the Blasius approximation
to it.

the limiting-case of smooth pipe appears as the lowest (that is, smallest ¢/ D) curve
in the turbulent regime. A form of the energy equation where this approximation is
evoked for f(w, D) is developed in Chapter 9 [Eqs (9.2)-(9.10)]. A plot of the friction
factor for smooth pipe and the Blasius approximation to it appears in Fig. 2.7 and the
extent of agreement between the two appears in Fig. 2.8. The relative error between
the two at Re of ~4000 is 12% and about twice this value at Re of 1 x 106. For Re
between 4,000 and 325,000, the relative error is 12% or less; except for a small band
near the middle of this range the Blasius approximation underestimates the friction
factor over this span of Re.

B.2.4 A Brief Assignment

Take a few minutes to compare the plot appearing in Figs. 2.4 or 2.5 with a
few points calculated from Eqn (2.16) using the Mathcad worksheet friction
factor.xmcd. Convince yourself that Eqn (2.16) is indeed an accurate represen-
tation of the friction factor. In particular, focus on how the friction factor changes
from the laminar regime, through transition, and into the turbulent regime. Can
you attribute a cause to the trends that you observe? How does the friction factor
behave as a function of Re for pipe that is very rough, say, in the upper-right
corner of Fig. 2.4? What do you think causes this? Why does the friction factor
for smooth pipe show the greatest dependence on Re?
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Figure 2.8 Percentage difference between the friction factor for smooth pipe and the Blasius
approximation to it.

2.3 A STATIC FLUID

A condition that is sometimes of interest in a fluid-flow network is that where the
fluid motion ceases. In this case, the fluid is referred to as “static”. A subfield of fluid
mechanics called fluid statics was developed to study fluids under this condition where
applications include manometer theory and forces that are exerted on flat and curved
surfaces (e.g., some dams and submarine hulls). Since there is no motion in a static
fluid, all terms in the energy equation [Eqn (2.7)] that relate to fluid motion including
head loss and velocity are zero. The energy equation for a static fluid becomes'’

3

D1 — P2

. -+ g(Z1 - 22) =0 (2.20)

This equation shows that in the absence of fluid motion, there is simply a balance
between the pressure and potential energy; an increase in one results in the decrease
in the other. If the fluid motion is zero, the pressure is referred to as “hydrostatic”
pressure to distinguish the stationary state of the fluid from that in motion. However,
the concept of pressure as stored energy in a fluid spring (as discussed in textbox
B.2.1) still loosely applies. One of the reasons why the static state of a gravity-driven
water network is of interest to analysts and designers is that the maximum pressures

17For readers knowledgeable about fluid statics, Eqn (2.20) is easily rewritten in the more-familiar form
of the energy equation for a static fluid, dp/dz + pg = 0, by assuming the difference z; — z2 to be
differential in size. This equation is immediately obtained once we recognize z; — z2 = dz and thus
p1 — p2 = dp.
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in the network are most severe under this condition. This is because the frictional
head loss, the right side of the energy equation [Eqn (2.7)], always serves to reduce
static pressure along the fluid flow path. If the flow ceases, the pressures, which are
then termed hydrostatic, become larger than when fluid is in motion.

2.4 LENGTH SCALES FOR GRAVITY-DRIVEN WATER NETWORKS

Itis interesting to note that the ratio L /21 in the energy equation [Eqn (2.25)] contains,
as a single term, two of the three lengths associated with a gravity-driven water system.
These are the elevation of the source, z;, and the length of the pipe, L. To further
explore this term, and to set the stage for the solutions of the energy equation for
the pipe diameter needed to supply a prescribed volume flow rate of water, we will
consider two cases below. The first is an ideal case (Section 2.6.1), where the pipe
is straight (that is, no bends or curves in the pipe) between the source and delivery
location, and the second is for a case where the pipe may have curves and bends and,
thus, is of arbitrary length. The latter case appears in Section 2.6.5.

The third length in the problem is D. D contributes to the characterization the
regime of flow in the pipe through the Re. Actually, the ratio of D to v/ characterizes
the regime of the flow. As noted above, for values of Re less than about 2300, the flow
is orderly, has no mixing in the direction normal to fluid flow, and is termed laminar.
For values of this ratio much greater than 2300, the length scale D is large enough
such that disturbances normally present in the flow become amplified. After some
distance downstream from the disturbance, the flow becomes chaotic and possesses
large rates of mixing in the direction normal to fluid flow in what we know as turbulent.

Through the ratio with z;, D also characterizes the strength of the minor loss in
the problem, as we will see from the discussion in Section 2.6.2. It is appropriate
to note how all three lengths characterize the problem. First, recalling that 2, =
0 by definition, it is clear that z; establishes the potential energy that drives the
flow. Second, it is also clear that the pipe length, L, contributes to characterizing
the frictional head loss; larger pipe lengths have larger frictional head loss than do
shorter lengths. However, the dependence of L on the details of where the pipe is
run unnecessarily complicates this characterization. Instead, the appropriate length
scale that characterizes the pipe length is indeed the straight-pipe length which, as
is explored in Section 2.6.1, is completely defined by z; and the location of the
delivery point of the water relative to the source. The use of the straight-pipe length,
in combination with 2, produces a very simple dependence of the problem on the

“mean,” or average, slope of the pipe and eliminates the dependence on both of these
lengths.

2.5 MASS CONSERVATION

Conservation of energy is the first of two fundamental equations that are our focus
in the analysis and design of water-flow networks. The second is mass conservation
which states that mass can neither be created nor destroyed during any process of
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interest in this text. For the one-dimensional (1D), steady flow in a round pipe that
occurs in the networks considered, mass conservation is written as (refer to Fig. 2.1),

Q=TuA=urD*/4 (2.2

where Q is the volume flow rate'® and A is the cross-sectional flow area. Equa-
tion (2.21) is often referred to as the “continuity equation” for it must be satisfied for
the flow to be continuous. Application of Eqn (2.21) to quasi-1D flow between two
pipes of the same or different diameters clearly leads to,

QT=Q" (2.22)
where the + and — superscripts refer to just downstream and upstream of the pipe

junction, respectively. For the more general case of flow through a junction of multiple
pipes, we have

D Qi =) Qou=0 2.23)

where (J;,, and (J,,,; are inflows and outflows from a junction, respectively. Unless
otherwise stated, all values for () are positive values.

Where it may be needed, the mass flow rate, 7, is related to the volume flow rate
through the density of the fluid. Thus,

m=pQ (2.24)

B.2.5 A Problem for Exploration

A waterfall (Fig. 2.9) is an example where water flows at constant atmospheric
pressure from high—to—low elevations. Suppose a particular site has a clean water
source that feeds an existing waterfall. The flow rate in the waterfall is large
enough to supply a community downstream. You are to consider the alternative
of piping water from the source for delivery to the community. Discuss the energy
changes in the waterfall and pipe flow for these two cases and identify each with
the relevant terms in the energy equation. How does the continuity equation
enter the problem? Suggestions to focus your discussion include the nature of
the energy loss in the waterfall versus that for the pipe flow, water cleanliness in
both cases, and the possibility of delivering electrical power to the community in
addition to water.

18Normally reported in liters per second, L/s, or m3/s. There are 1000 L in 1 m3. A liter is about 0.264
gallons, or slightly more than a quart.



50 THE FUNDAMENTAL PRINCIPLES

Figure 2.9  The waterfall at Taughannock Falls, New York. Photo courtesy of Nicki Jones.

Exploration (Cont’d)

A start of the exploration. We first consider piping the flow. The static pressure
and vertical velocity of the flow are both zero at the top of the falls. Application
of the energy equation [Eqn (2.7)] between this location and any lower point
in the pipe flow shows that the reduction in potential energy is balanced by the
increase in static pressure less the energy loss from accumulated friction. The
kinetic energy change of %2 /2, where 7 is the flow speed in the pipe, is generally
negligible. For instance, if 7 = 3 m/s, the change in kinetic energy is 4.5 m?/s2,
whereas the change in potential energy is more than 100 times this for the falls
of Fig. 2.9 (65 m high). Application of the continuity equation between the top
of the pipe and any location downstream shows that @ is constant throughout the
flow.

Next, consider the waterfall where the static pressure is atmospheric everywhere
despite the reduction in potential energy from the fall. The local kinetic energy
for the waterfall can be estimated by considering that the flow accelerates during
its downward movement under the influence of gravity. Since the volume flow
rate, (J, is constant, the continuity equation [Eqn (2.21)] requires a reduction
in cross-sectional flow area as the water proceeds downward. This is seen by
noting that the waterfall appears wispier at the lower elevations compared with
the middle. If we apply Eqn (2.7) to the flow between the top of the falls and the
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Exploration (Cont’d)

point just before it reaches the pool of water below, there is a near-perfect balance
in energy between potential and kinetic as the loss in potential energy fuels the
increase in kinetic energy during the fall; any difference is attributable to energy
supplied to evaporate water, an effect that tends to cool the water along its flow
path. However, because the velocity in the vertical direction is zero at both the
origin of the waterfall and in the pool, there is a zero net change in kinetic energy
between these two points. By applying the energy equation between these points
we see that, overall, the energy loss (H ) balances the potential energy, g(z; — 22),
where z; — 29 is the elevation change of the waterfall. The energy loss in this case
comes from mixing and splashing in the pool and, more importantly, evaporation
at the pool surface. The mist rising from the pool surface and wetted walls of the
canyon in Fig. 2.9 are evidence of this dissipation. This case is an example where
the energy loss is not a true “head loss” (that is, a reduction in static pressure) but
turbulent mixing and a partial evaporation of the flow. The thermal energy change
in the flow must be considered to complete the understanding of this problem.

We see from this brief analysis that piping the flow is desirable if static pressure
is needed to transport the flow to a community beyond the reach of the stream.
It also allows for the installation of a microhydroelectric power plant if desired
(see Chapter 12). Piping also facilitates greater control over maintaining water
cleanliness in the supply.

B.2.6 The Friction Factor and Head Loss

As an illustration of the calculation of f(%, D) and the head loss due to pipe
friction, consider the following simple problem. Calculate the friction factor and
the head loss per 100 m of nominal 1-in. PVC pipe (D=1.049 in.) for a flow rate,
Q, of 0.45 L/s. Is the flow laminar or turbulent?

With the flow rate specified, the Re can be written from the continuity equation
(see Eqn (2.21)) as
_4Q

~ avD
For water at 10°C, refer to Fig. 2.3 or Eqn (2.14) to find v = 1.307 x 10~% m?/s.

Re




52 THE FUNDAMENTAL PRINCIPLES

State 1: ““Source” (Reservoir or Tank)

Pipe of Diameter D

Figure2.10 Single-pipe geometry with source at atmospheric pressure. The source is located

at (z1, z1) and the delivery location is at (z2, 22), where 1 = 2o = 0.

The Friction Factor and Head Loss (Cont’d)
Then

4-0.45 x 1073 m3 /s

R =
¢ %1307 x 10-6 m?/s - (1.049/39.372) m

= 16, 450

clearly a turbulent flow. For 1.049-in. inside diameter PVC pipe with ¢ = 5 x
10~6ft,e¢/D = 5.720 x 1075 and Eqs (2.16) and (2.17) gives f(u, D) = 0.0278.
This result can be calculated using the Mathcad worksheet as seen in Fig. 2.6.
Please take this opportunity to compare this result with what you would obtain
graphically from the Moody chart in Figs. 2.4 or 2.5. The values for f should
be identical from both sources. The head loss per unit length of pipe is from
Eqn (2.10),

hL _ . E2 B _ Q2

T = f(u’D)—ZgD = 8f(u7D)W
hr, (0.45 x 1073 m?/s)?
— =8-0.0278 - = 0.0346 = 3.46
L 9.807 m/s? - 72 - ((1.049/39.372) m)> %

Thus, head loss of 3.46 m/100 m of straight, horizontal 1-in. nominal PVC pipe
occurs due to friction. Head loss per length of pipe is referred to as the “hydraulic
gradient” in the hydraulics community. Normally given the symbol S, if using S
do not confuse it with the lower-case s used in this book for mean slope.
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2.6 SPECIAL CASE OF RESERVOIR AT STATE 1

In this section we begin our discussion of a single-pipe network by first referring
to Fig. 2.10, which is Fig. 2.1 applied to the case of flow from a large reservoir or
reservoir tank (the “source”) at atmospheric pressure to a pipe of uniform diameter, D.
State 1 is labeled the source and state 2 is the delivery point. All remaining material
in this section is based on this geometry and the assumptions that follow. We will
assume that the static pressure is to be measured from the local atmospheric value, so
that at the reservoir surface (state 1) p1 = 0 by definition. Also at the surface of the
reservoir 7; may be approximated as zero because the reservoir is assumed to contain
a very large volume. The large volume translates into a large cross-sectional area for
water flow. The continuity equation, Eqn (2.21), predicts a vanishingly small value
for @ in the limit of infinitely large cross-sectional flow area. In addition, since we
define the coordinate 2 to be measured from the lowest point in the pipe, 2o = 0 (see
footnote 19 for the definition of the mean and local slope of the pipe.). With these
developments, Eqn (2.7) simplifies to,

M
P jmo L Dy e Vet YKy @29

pgz1 21 ;1 et D

1—

As noted, for turbulent flow, ora & 1.05 and for laminar flow, ay, = 2. A schematic
diagram of Fig. 2.10 is presented in Fig. 2.11, where the pipe is shown as a single
line and other details that will be needed below appear. The use of a single line to
represent a pipe is consistent throughout the remainder of this book, except where it
is necessary to show liquid levels in, or size of, a pipe, such as in Chapter 14.

2.6.1 The Straight-Pipe Limit

We now consider the first of the two cases referred to in Section 2.4. As illustrated in
Fig. 2.11, if the pipe is straight, the pipe length L is related through the Pythagorean
theorem to the elevation, z;, and the horizontal run of the pipe, 4, which is equal
to 3 — T, the distance between the inlet and outlet of the pipe measured in the
horizontal plane. Thus,

L=/22+02 =21+ (/21)2 = 21V/1 + 572, (2.26)

where s (lower case) is the mean slope'® of the pipe (rise/run) or s = 2; /4. z; and ¢
may be determined by an instrument such as a GPS, an altimeter (for z;), perhaps a

19The following convention is used throughout this book. The mean slope s is the ratio of the elevation
of the source above the delivery location measured in the downward direction to the run (i.e., the distance
between the source and the delivery location measured in the horizontal plane). Thus, s is positive valued
for water flow downward. In later chapters, the local slope, given the symbol s;, will be needed that
depends on local position along the flow path. This too is taken to be a positive number if the orientation
of the pipe assists the flow of water downward. The upward direction of the coordinate 2 in Fig. 2.11 and
similar figures is conventional. The issue of whether the slope is positive or negative valued is mitigated
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Z . State 1: Source

Local Length Measured

/ Along Flow Path, Le(x)
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State 2: Delivery 2
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Figure 2.11  Schematic diagram for a single-pipe geometry of Fig. 2.10. The mean slope
is average rise/run of pipe, where run is the distance measured between the pipe ends in the
horizontal plane and the rise is the height of the source above the delivery location. See footnote
19.

tape measurement of the site (for £), or from commercial satellite data (e.g., Google
Maps®, maps.google.com). See Appendix B for a sample calculation of s.
With Eqn (2.26), Eqn (2.25) becomes,

P D& L D ol 72
1- =2 —[f@D)(V1+s24+ =Y =)+ Z(e+) Ki)=—=0
s [f(@, D)( - ;:1 D i) S, (e ;:1 )]QQD
(2.27)

Equation (2.27) is the energy equation for gravity-driven flow in a single pipe of
uniform D. We see from Eqn (2.27) that the mean slope of the pipe, ¢, and the
dimensionless static pressure at the delivery location, p,/pgz;, are the controlling
parameters in the design. All other terms in Eqn (2.27) are related to the minor losses
that, as discussed below, generally play a weak role in the design except where needed
for flow balancing. In later chapters, the static pressure at the delivery location will
be written as the static pressure head at the delivery location, or

hgy = 22 (2.28)
Py

by the fact that s relates to the overall or local path length for flow along the pipe that, by definition, is
always positive. Mathematically, s almost always appears as s2 in all of the relevant equations so that the
sign of s is immaterial. In cases where the slope is written as simply s, normally by taking the square root
of 1/(1 + 1/s72), where s < 1, the absolute value sign that formally appears after the square root is
taken will be suppressed for the sake of convenience.
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from which pg/pgz1 = hagei/z1. The term hg,; will appear frequently throughout
this book. To emphasize and reinforce the fundamentals in this chapter and the few
that follow, we will treat the pressure at delivery as a pressure for now.

It is intuitive to expect the mean slope to be important in the problem that we are
considering. For any system that is gravity driven, whether solid (say, a pendulum)
or, as in the present case of a fluid, the inclination of the system in the direction of
the gravity vector affects the net driving force. For example, if a pipe containing
water is oriented horizontally (perpendicular with respect to the gravity vector), we
expect no gravity-driven flow to occur. At the other extreme, with the pipe oriented
in the direction of the gravity vector, we would expect the largest possible fluid flow,
since there can be no larger value for the inclination. The latter case is referred to as
“terminal” and will be explored in further detail in Section 5.3.

Before the final form of the energy equation for flow in a straight pipe is presented,
a discussion of two facets of this problem is needed. These are the importance of the
minor loss term and the significance of the term ps2/pgz in the energy equation.

B.2.7 Appearances can be Deceiving; Eqn (2.27) is Really the Energy
Equation!

Though its appearance is probably unfamiliar, it is easy to demonstrate that
Eqn (2.27) is the energy equation. Ignoring for the moment all minor losses
(terms that contain D/ z;), and multiplying Eqn (2.27) by gz1, we obtain

2

gz1 —%—f(ﬂ,D)zl \/1+s*2u—

2D =0 (2.29)

—

Apsr/p

where Apy, is the positive-valued pressure drop due to major-loss friction. In
Eqn (2.29), we see the balance between the potential energy at the source (state
1), pressure energy at the delivery point (state 2), and frictional energy due to the
major loss, all per unit of mass flow. Recalling that s = 21 /¢ and L% = 27 + ¢2,
the major-loss term in Eqn (2.29) may be rewritten using the following steps,

2

Apfr _ U
Hy=—"— = D 14+ 52—
L ; f@ D)z V1+s 5D
¢ u?
= w, D 1 —)2 —
F@ D)1 (7 o

=2 —2
N B I Ly
f@.D) 2 \/3 + 55 = (@.D) 5

which is the Darcy—Weisbach equation, Eqn (2.9). _]
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Figure 2.12  Graphical illustration of s = tan(d) = 21/¢ = z;/L in the limit of small
slope, s.

Appearances (Cont’d)

For a straight pipe, it is worthwhile to rewrite Eqn (2.26) for emphasis,

L=/22+¢2

2 =T = sl )2 (2:30)
1

For the normal case of s < 1, expanding the square-root termin a binomial series,
which states (1 + ¢)™ = 1 + ne to dominant order where ¢ is a dimensionless
number, € < 1, and 7 is an exponent, gives

or

z£ =V14+s2=s] '+ % ~|s|7! for s <1 (2.31)
1

For convenience, we will suppress writing the absolute value of s in this book.
For example, if s = 0.10 or 10%, L /21 = v/1 4+ 52 = 10.05 or 10.05 m of pipe
length for every 1 m of rise. From Eqn (2.31), the approximation L/z; = s~} =
10 differs from the exact answer by just 0.5%. We see that the approximation
of Eqn (2.31) to Eqn (2.30) is clearly acceptable for small values of the mean
slope. From our inspection of Fig. 5.30, which we will focus on in Chapter 5, the
practical meaning of s < 1 is s < 0.5 (an angle between a line drawn from the
source to delivery location and level ground of < 27°). This condition is satisfied
by most gravity-driven water networks.

A graphical illustration of this approximation appears in Fig. 2.12, where it is
clear that s = tan(d) = z1/¢ — z1/L in the limit as s — 0.

2.6.2 Justification for Neglect of Minor Losses

For all gravity-driven water networks, the ratio D/z; <« 1. For example, if a pipe
of diameter of 1% in. has an elevation head of 100 m, D/2; = 4.09 x 104, clearly
a very small number. Thus, the minor losses and a4 in Eqn (2.27) can be neglected
as a first approximation. We will assess the effect of these terms on the flow speed
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in Chapter 7, but because the minor losses are generally not large (except where
needed for flow balancing; more on this in Chapter 11), in future treatments we will
sometimes neglect the effect of the minor loss and a5 terms in the energy equation,
even though there may be minor-loss elements installed in the network.

2.6.3 The Meaning of p»/pgz;: “Natural Flow” in a Pipe

The term pa/pgz; in Eqn (2.27) is the ratio of the static pressure at the delivery
location (i.e., at the low end of the pipe to the hydrostatic pressure caused by the
reservoir). Alternately, it is the ratio of the static head at the delivery location, p»/pg,
to the elevation head, z;. Before discussing the concept of Natural flow, which is the
main thrust of this section, several observations are worth noting. First, this ratio is
dimensionless, which means that the numerical values for it are independent of the
system of units used in the analysis and design of the network. At this point it is also
worthwhile to recall that the hydrostatic pressure, pgz, is that caused by a stationary
head of fluid, z;. This should not be confused with the static pressure, which is the
pressure measured in a fluid when it is in motion; as discussed in Section 2.2, static
pressure is a dynamic quantity. Finally, the term pa/pgz; is a design parameter that
we, as designers, are either free to adjust to our needs or the value of it is constrained
by other parts of the design. For the case of a single pipe with only a single delivery
location, p/pgz; is a parameter whose value we prescribe. In contrast with multiple-
pipe networks, considered in Chapter 11, the value of p2/pgz; may depend on other
parts of the design including the flow in every other pipe segment in the network.

Referring to Fig. 2.11, we will consider two bounding values for po. For the
first one, imagine that the valve at the delivery point in Fig. 2.11 is fully opened
and presents no restriction to the water flow that leaves the end of the pipe at this
location. When water leaves the delivery point it is surrounded by an environment at
atmospheric pressure. The result is that the pressure within each point in the water
flow at state 2 is at atmospheric pressure. Thus, py or pa/pgz; has a lower-bound
value of 0; the case for which water flows from the end of the pipe due only to its
kinetic energy and has no assistance from static pressure at this point. This condition
is the “Natural flow” of the system [Jordan Jr. (2004) and others]; the flow rate that
will be moved by gravity for a given pipe and system geometry (including elevations,
diameters, and lengths). In other words, the flow speed for Natural flow in a pipe is
that which exactly balances the frictional energy loss with the potential energy at the
source, pgz1. The concept of Natural flow in a pipe, though introduced in the present
context of flow in a straight pipe, applies to any pipe, straight or otherwise.

At the other extreme, imagine that the valve at the delivery point in Fig. 2.11 is
fully closed so that there is no flow. Recalling the developments from Section 2.3,
for this bounding case p,/pgz; = 1 and the static pressure at the delivery point is
termed hydrostatic. The pressures within the network achieve their largest possible
values for the hydrostatic case. Because of this, the designer will always check to
ensure that the pipe and fittings in the network can withstand the pressures that will
exist in this limiting case. Also note that the pipe diameters have no effect on the
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pressures in the network since pressure comes from from only the local elevation in
the pipe (see Section 2.3).
To summarize the above discussion, we can write

(Natural flow) 0< 22 <1  (Hydrostatic limit) 2.32)

pgz1

It is worthwhile noting that for Natural flow, where the static pressure at delivery is
zero, no pressure term will appear in the energy equation. This is because both the
reservoir and the delivery locations are at atmospheric pressure. In addition, the case
for Natural flow will provide a lower bound on the pipe diameter(s) in the network.
This is because without any other flow restrictions, the pipe itself must dissipate the
total potential energy of the source. The smallest of acceptable pipe sizes are needed
to accomplish this. Another consequence of Natural flow is that minor-lossless flow
in a straight, constant-diameter pipe between the source and delivery location will
be at atmospheric pressure at all points along the flow path. The explanation for this
comes from the following. The static pressures at the source and delivery locations
are atmospheric and at each and every location along the pipe-flow path there is an
exact balance between the potential energy and the energy dissipated by friction both
per unit length of pipe. Thus, there is no “excess” energy at any point in the flow
available to raise the static pressure of the flow above atmospheric conditions.

It isrecommended that the reader keep the simple limiting-case values for p2/pgz;
from Eqn (2.32) in mind as an aid in understanding and interpreting the material in
several of the following chapters and, certainly, in the execution of a design.

The normal case for p, would be between the extremes of p,/pgz; = 0 and
p2/pgz1 = 1, where there is a need to control the flow rate of water from the end
of the pipe at the delivery location or to distribute water from the delivery point to
houses in a village far from this point. This requires 0 < pa/pgz; < 1 so that flow is
possible. To accommodate a realistic range of possible static pressures at the delivery
location for use in the design charts presented in Chapter 5, we will give the designer-

specified term pa/pgz; the symbol F, that is, | F' = pa/pgz; . | For the design charts

presented in this chapter, we will allow F' to take on the specific fixed values of 0,
0.1, 0.25, and 0.50; a reasonable range of interest for gravity-driven water networks.

2.6.4 Final Form of Energy Equation for Flow in a Straight Pipe

With the substitution for F' in Eqn (2.27), the final form of the energy equation for
the case of a straight pipe of diameter D becomes

DXL D N 72
1-F—[f@D)(V1+s2+ =3 22 )4+ = S K)o =0 (.
Lz, D) s +21 i=1 D i)+zl(a2+i:1 Kl)]QgD 0 (233)

where, if we neglect the minor loss (the terms involving D/21) as discussed in Sec-
tion 2.6.2, we obtain
72

1-F— f(3, D)\/1+s*2§Z—D =0 (2.34)
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where the approximation of v/1+s=2 = |s|™! from textbox B.2.7 is valid for
|s| < 1. For convenience, we will suppress the absolute value sign in the foregoing
expressions throughout this book (see footnote 19).

From our inspection of Eqs (2.33) or (2.34), we see that % is indeed a maximum
for F' = 0 (i.e., Natural flow). Also, the only solution possible from either of these
equations is 7 = 0 for F' = 1, the hydrostatic case. Both of these observations
provide support and validation for the discussion in Section 2.6.3.

Of course, few gravity-driven water networks have only a single pipe and even
fewer have a single straight pipe. In Section 2.6.5, we will turn our attention to
the extension of Eqs (2.33) and (2.34) applied to single-pipe networks that have
an arbitrary length. The topic of multiple-pipe networks is covered in Chapter 11
which, along with the treatment of air pockets in the network and optimization, is the
culmination of the analytical content of this book.

B.2.8 An Interim Recap

Thus far in this chapter we have applied the principle of conservation of en-
ergy, one of the fundamental conservation laws in engineering and science, to
the steady flow of an incompressible, constant-viscosity fluid in a pipe. The
outcome is a balance between the change in total mechanical energy (consisting
of pressure, kinetic, and potential energy) and energy loss between known inlet
and outlet states. From many past observations in the laboratory and in practice,
the energy loss is known to be proportional to the kinetic energy per unit mass,
%2 /2, through a friction factor to account for the loss in a run of straight pipe
(the “major loss”) and empirical minor loss coefficients accounting for the loss
in fittings and valves (the “minor loss”). For laminar flow, the friction factor
is from the solution of the Navier—Stokes equations and for turbulent flow from
a correlation of data collected in experiments. With the generally small minor
losses neglected for gravity-driven water flow in a straight pipe we see that the
mean flow speed, or volume flow rate, of water depends on just D, the slope of
the pipe, and the dimensionless static pressure at the delivery location, F'. Here FF
is bounded from above by 1, where there is no flow in the pipe (hydrostatic limit)
and below by zero, where there is maximum flow in the pipe (Natural flow limit)
for the given conditions. Since pressures are maxima for the hydrostatic limit,
the required wall thicknesses of the pipe in the network are determined based
on this case. In addition to conserving energy, we saw that mass also needs to
be conserved. The equation for mass conservation, referred to as the continuity
equation [Eqn (2.21)], is simple in form for 1D pipe flows that are of interest in
the present context.

The reader should keep in mind that the energy equation that is the basis for all
of the analysis and design in this book is the same one that the reader may have
encountered in courses in thermodynamics, fluid mechanics, heat transfer, and
other subjects. The only differences that you might observe are the appearance
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Recap (Cont’d)

or disappearance of terms that model processes that may not be relevant to the
topic being considered. An example of this is the “disappearance” of the work
term for the case of pipe flow where there clearly is none of this.

2.6.5 A Circuitously Run Pipe of Arbitrary Length

In this case, the pipe length, L, is not unique to the elevation of the reservoir and the
run, but is arbitrary. The length may consist of straight pipe and fittings including
elbows, and so on, or it may be bent in a curved manner to conform to the contour of
the earth in which it is buried. For the case of a pipe of arbitrary length, L is written

as

L>y/24+2=xnV1+s52 (2.35)
or

L=A/22+£2=Xs\/1+s2 (2.36)
where ) is a dimensionless number normally greater than one?®, defined as

L L
Vai+ 02 avl4s7?

(2.37)

Thus,

L 21 1
— =AV1+s2%2 or — = —r-—r 2.38
21 L AV1+52 ( )

A is the ratio of the actual length of the pipe to the pipe length if it were straight
between the source and delivery points (see Fig. 2.11). In the field of hydrogeology
(or hydrology) where engineers and scientists explore the movement of groundwater
in the earth, A is referred to as the tortuosity (Domenico and Schwartz, 1998), one of
terms we will use in this text. Here A also appears as a characterizing parameter in
the treatment of fluid flow and heat transfer in porous media (Nield and Bejan, 1992).
A porous medium is a permeable solid generally having nonregular shaped passages
through which a fluid can flow. In terms of the length scales discussed in Section 2.4,
A may be thought of as a “dimensionless length” of the pipe in a flow network. For a
pipe of arbitrary length, it is worthwhile to note from Eqn (2.38) and the normal case
of s < 1, we can write

S 21

~ 2.39
a7 (2.39)

Please see textbox B.2.7 for the development of Eqn (2.39) for A = 1.

20See textbox B.2.10 and the discussion in Section 5.4 on the effective size-limitations of the parameter .
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Substitution of Eqn (2.36) into Eqn (2.25) produces the final form of the energy
equation for the case of flow in a pipe of diameter D and arbitrary length,

DAL
— F —{f(u -2 4 = Ze
1= F = [ D)OWT+572 + — Z; 5 i)
= (2.40)
D il u?
= Ki) 5= =0,
+ 21 (o2 + ; ) 29D
where, if we neglect the minor loss (the terms involving D/z;), we obtain
- Dyav1 241
1-F - f( Pty = 241)
or )
1—-F u
— — f(u,D)m—= =0 (2.42)
AV1+4 572 A )29D

The approximation of v/1 4+ s~2 ~ s~ ! from textbox B.2.7 is valid for s < 1, the
practical meaning of which is s < (0.5 (an angle between the source and level ground
of < 27°), a condition satisfied by most gravity-driven water networks. Substituting
this into Eqn (2.42), we obtain a simpler form of Eqn (2.42),

72
f(l—Aﬂ ~f@D) 55 =0 foraZ0s (2.43)

We recognize the second term in each of Eqs (2.42) and (2.43) as the dimensionless
frictional head loss per length of pipe, k. /L, in the network [see Eqn (2.10)]. This is
referred to as the “hydraulic gradient” in the hydraulics community and often given
the symbol S (not to be confused with the lower-case s used for mean slope). Thus,
the first terms in Eqs (2.42) and (2.43), (1~ F)/(AV1 + s72) or s(1 — F)/ ) are, by
equivalence, the dimensionless frictional head loss per length of pipe and both can be
given the symbol S. For Natural flow, where F' = 0, the hydraulic gradient becomes
. An example of the calculation of the hydraulic gradient is presented in
textbox B.2.6.

For the demand-driven designs that are the focus in this book, it is always of interest
to solve any one of Eqs (2.40)—(2.43) for D in terms of () instead of u. One equation
is easily obtained from the other by using the continuity equation, Eqn (2.21), to
eliminate % in favor of ). The resulting form of energy equation from Eqn (2.42) for
example, is one the more useful forms for minor-lossless flow (see next paragraph)
in a single-pipe network,

1-F 8Q2 f(QD)

— 2 g 2.44
AV1+s-2 wlg DS ( )
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For the case of small s, this is written as

s(1-F) 8Q? f(@,D)

S g pr " (2.45)

Equation (2.40) is the energy equation for steady, gravity-driven, incompressible,
developed flow in a full round pipe of diameter D, tortuosity A, and where the source is
a reservoir at atmospheric pressure. The existence of laminar, transition, or turbulent
flow in the pipe is accommodated by the friction factor, f(, D), through Eqs (2.16)
and (2.17). The variants of the energy equation for pipe flow are Eqs (2.42)-(2.45)
where minor losses are neglected (i.e., they apply to “minor-lossless” flow). Equa-
tions (2.40)—(2.45) are nonlinear algebraic equations in D and %@ or ) [recall that the
friction factor depends on @ (or ) and D]. The solutions for any of these equa-
tions requires a numerical root-finder or, as is the tradition, iteration. Both of these
methods are explored in Chapter 4. Several chapters in this book will be devoted to
the solutions of Eqn (2.40) and its variants including Chapter 5, where design charts
for minor-lossless flow in a single-pipe network from the solution of Eqn (2.44) are
presented, Chapter 9 where an approximation to the friction factor is considered, and
Chapter 11 where Eqn (2.40) is extended to include flows in multiple-pipe networks
as defined in Chapter 1. In the case of multiple-pipe networks, where the static pres-
sure at the inlet to a pipe segment may not be zero, there will be the need to modify
Eqn (2.40) slightly to account for the addition of this pressure. See Section 2.9 for
this adjustment.

It is enlightening to inspect the roles played by the terms s, A, and 1 — F in
the analysis and design of a single-pipe network where the source is a reservoir at
atmospheric pressure. Our inspection of Eqn (2.45) shows that s and 1 — F enter
the problem as multiplicative factors. That is, a change in s has the same effect on
D and () as the same change in 1 — F'. The term A enters the problem as an inverse
multiplicative factor. For example, this means that an increase in A of, say, 10% is
equivalent to decreasing s by ~10%. It is convenient to think about the roles of s, ),
and 1 — F'in this manner as you move forward with the tools for further analysis and
design. In fact, at this point the astute reader will question why the role of a single
parameter, s(1 — F')/\, which is the hydraulic gradient, is not being discussed. This
is a legitimate question, but because the parameters s, A, and 1 — F are prescribed
independently and have very different meanings, a deliberate choice is made to treat
each one separately for now, including this chapter, and in Chapter 5, where design
charts are presented for diameter as a function of the delivered volume flow rate of
water for independently fixed values of s, A, and F'. In Chapter 9, it will be convenient,
however, to treat the group s(1 — F')/ as a single parameter.
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=

Consider a single-pipe network that is required to pass 4.8 L/s of water flow from
the source at atmospheric pressure to an open reservoir tank. The mean slope,
s, is 6.3% as determined by a few simple measurements made with an Abney
level (see Section 8.2), and the tortuosity, A, is estimated as 1.35. Calculate the
theoretical pipe diameter required to meet these design conditions. Neglect all
minor loss and assume the pipe to be galvanized iron (GI). To investigate the
possibility of using plastic pipe, calculate the diameter if the pipe were PVC.

B.2.9 Example: A Circuitously Run, Single-Pipe Network

The slope is small enough (s < 0.5) that the energy equation of Eqn (2.45) applies
to this problem. F' = 0 because the reservoir is at atmospheric pressure. Upon
substitution of numbers and units into Eqn (2.45), we get

0.063  8(4.8 x 1073 m®/s)* f(Q, D)
1.35 w2 -9.807 m/s? D5

=0

or
f(Q,D) 2591 x 10~*

D> in.?
The friction factor from Eqs (2.16) and (2.17) depends on Re, which is written
as it was in textbox B.2.6. Obtain

4Q  1.841 x 10°
mvD D

Re =

where D is in inches. For GI pipe € ~ 1.5 x 10~! mm. Using the Mathcad
worksheet friction factor.xmcd for the friction factor, we obtain the solution
D = 2.52 in. For these conditions, the flow speed in the pipe is 1.50 m/s, the
friction factor is 0.0260, and Re is 73,200, which corresponds to turbulent flow.

For PVC pipe € ~ 1.5 x 1073 mm and the results become D = 2.48 in. The
diameters for GI and PVC pipe are nearly identical. The larger roughness of
the GI pipe, by a factor of 100 compared with PVC, plays a minor role in this
problem. For larger flow rate and slope, differences will be greater.
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B.2.10 The Scales of )\, s, and I

As it turns out, and as discussed in more detail in Chapter 5, the dimensionless
length of the pipe, A, does not have a strong influence on the outcomes of most
designs for two reasons. First, the common-sense practice is to connect the
source, tank, and tapstands at the delivery locations by as short a pipe length as
possible to minimize pipe cost. Thus, L will approach the value it would have if
run along a straight path between the source and delivery locations. Second, the
mean slope of a typical design is small. Thus, the run of a water-delivery pipe
is very much larger than the elevation of the source so that peaks and valleys in
the pipeline and also a normal amount of circuitousness in the horizontal plane
does not add much overall length to the pipe. For both of these reasons, values
for A larger than one plus a small fraction are unusual for most actual designs. To
support this observation, consider Table 2.2, where we present dimensional data
for several gravity-driven networks in central Nicaragua and other countries that
were assessed and designed by students and faculty at Villanova University. From
our inspection of these data, we see that values for A for real networks are clearly
of the order of 1. In fact, an estimate of A ~ 1.2 &+ 0.15 is representative of this
data set. Based on the dependencies established in Chapter 9 for a restricted range
of Re and smooth pipe wall, the effect of A on D may be written as D ~ A\0-211,
or D ~ (1.2 4 0.15)%-2!1, Thus, the variation in ) for the range of real networks
appearing in Table 2.2 has only a +2.5% effect on pipe diameter, D. Obviously,
the scales of s and F' are expected to vary greatly among the networks. Table 2.2
shows a sampling of these for s. In the case of F, for a shallow network with
small s, F" of 0.5 may be required to provide the static pressure needed for water
distribution beyond the point where the distribution main meets the branches.
For a larger network where the mean slope is greater, F' of 0.1 may be more than
adequate.

2.7 SINGLE- AND MULTIPLE-PIPE NETWORKS REVISITED

Single- and multiple-pipe networks were introduced in Chapter 1. A single-pipe
network, or gravity main, must satisfy not only the condition of being just one pipe
of a single diameter with no branches and known pressures at each end, but it must
also meet one additional condition as described in this section. The existence of local
peaks or valleys in a pipe will require that we investigate the network at a greater level
of detail than for cases where these do not appear. A local peak or valley is defined by
the vertical distance between the actual local elevation of the pipe and the elevation
at this point if the pipe were run straight between the source and delivery locations
(Fig. 2.13). For convenience, we refer to this distance as Az, and take as positive
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Figure 2.13 Geometry to support definition of local peak and valley.

for both a peak and valley. If Az, is nonexistent or small,?! and the peak occurs far
enough downstream of the source, we are generally not concerned with the local static
pressure distribution in the network. The term local refers to each position along the
water flow path. Alternately, for networks where local peaks or valleys are not small,
there will be a need to prescribe or bound the static pressures at each peak and valley
to ensure the proper performance of the network. A possible outcome of prescribing
or bounding static pressures at these locations might be a change in the pipe diameter.
For these cases, the need to address the local static pressures at, or near, each peak
or valley, along with the possible consequence of a change in the pipe diameter, will
classify the design as a multiple-pipe network. Analysis of networks where there is
a single flow path in a pipe of varying diameter is covered in Section 11.5.1.

In summary, a single-pipe network where there are local peaks or valleys with large
changes in elevation, or with a local peak near the source, should be analyzed as if it
is a multiple-pipe type. The procedures described in Chapter 11 apply. Otherwise,
the network may be analyzed as single-pipe using the energy equation for pipe flow,
Eqn (2.40) and its variants, and the graphical solutions of these equations that are
presented in Chapters 5, 8, and 9.

Aside from the practical need for the treatment of a single-pipe network, note
that there is another benefit of discussing them in detail. It is easier to understand
and appreciate the energy equation and its application in the simpler context of a
single-pipe network than for one that has multiple branches that add to complexity

2I'The meaning of small is arbitrary. Az of less than about 20% of Az, as seen in Fig. 2.13 may be
considered small for a peak. The size of Az, for a local valley has a smaller effect than that for a local
peak provided the valley is not lower than the delivery location.
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and where the same fundamental principles apply. Therefore, for both practical and
pedagogical reasons we will spend time on this type of network and its solutions.

B.2.11 Understanding of Concepts and Use of Precise Terminology in
Engineering

There have been numerous terms defined and described in precise ways in this
chapter. Precision is crucial for success in engineering and science. In the
present context, precision refers to the understanding, appreciation, and accurate
use of the terminology and technical concepts. Terms that appear above like
steady state, incompressible, and constant viscosity have precise, well-defined
meanings that collectively fully characterize the nature of the flow that we are
analyzing. This precision also serves to improve our own level of understanding.
Analysis and design are always performed in a team environment. This demands
precise and accurate communication among team members. Loose, or imprecise,
terminology and hazy, or inaccurate, concepts are not desirable for effective
communication. If a designer says to her teams members, *“. .. our design will
provide for the steady water flow of 0.25 L/s in a straight, round pipe, assuming
to flow full, with a mean slope of 3% and a static pressure at the delivery location
equivalent to a 3 m head,” others in the team will know precisely about the
conditions at hand and can proceed with the next steps to execute a successful
design. This may be considered “over-stating” the problem from certain cultural
points of view, but the idea behind it is clear and the intent is sound.

An illustration of the above comes from the popular Web site Wikipedia (http:
//en.wikipedia.org), used by many including students, concerning the defi-
nition of the power term Btu per hour. “When used as a unit of power, BTU per
hour (BTU/h) is the correct unit, though this is often abbreviated to just ‘BTU’.”
When confronted with a mislabeled unit such as this, the designer needs to de-
cide either to let the context guide the correct units or, alternately, question the
author. Both the uncertainty or extra time required are undesirable outcomes of
this imprecision.

The engineer, as an individual in the design team, cannot expect a design to suc-
ceed if they, themselves, do not have a thorough understanding of the terminology
and technical concepts associated with the design work. This is one reason why
much attention has been paid to precise wording in the above writings. See, for
example, the discussion in textbox B.2.2, and the common error of referring to
the energy equation for pipe flow as the Bernoulli equation. However, we must
be aware that most engineers, as well as some engineering professors, often fall
short in the use of precise and accurate words, terminology, and concepts. As
with most skills, improvements in these areas are realized with practice, matu-
rity, and broadened experiences, and given sufficient time and thought about a
technical problem.
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2.8 THE ROLE OF THE MOMENTUM EQUATION

It is well understood that the analysis and design of components and systems requires
the fundamental laws of engineering science be satisfied. These are conservation
of mass, momentum, energy, and electrical charge. It is clear that mass and energy
conservation have been thoroughly addressed through Eqs (2.7) and (2.21) and that
conservation of electrical charge is irrelevant in the present context.

At this point, the curious student may wonder where momentum conservation,
or Newton’s second law of motion, F = md, fits into the picture. The momentum
equation for developed (that is, nonaccelerating) flow in a straight pipe reduces to
a force balance on a flowing fluid and accounts for pressure and shear forces, and
ultimately the reaction force, or the force that is required to be applied on the pipe to
keep it from moving. If we focus on the fluid flow, Newton’s second law enables us
to calculate the force arising from pressure and shear on the pipe wall, both of which
result from the major and minor losses discussed above (Gerhart et al., 1992). In
turn, if we focus on the interaction between the fluid and pipe wall, the pressure and
shear force may then be used to calculate the reaction forces in the pipe wall.?? The
reaction forces in the pipe wall may be internal, if the pipe wall itself resists them,
or external if the pipe wall needs support from an outside force. Internal reaction
forces are normally balanced by the strength of the pipe itself and joints between the
pipe and fittings. External reaction forces always require an outside “restraining”
force. A good example of this is water flow from a hose when the nozzle at the end
of the hose is opened. If the hose is released (or unrestrained), it undulates wildly
as the momentum from the discharging water flow seeks a balance by a restraining
force. Since this force can come only from the inherent stiffness of the hose, which is
flexible, the undulations are the result of the movement of the variable stiffness hose.

Thus, we see that the momentum equation is especially valuable when used to
calculate forces required to hold the pipe in place when, in particular, the pipe is not
straight. For example, the design of an anchor to tie down the pipe in the region of
a 90° elbow needs to begin with the solution of the momentum equation considering
the momentum changes in two directions, one leading into the elbow where there is a
loss of momentum in one coordinate direction, and the other away from it where there
is a gain of momentum in a coordinate direction orthogonal to the first. These types
of problems are covered in all textbooks on fluid mechanics in the chapters on the
control-volume or open-system formulations of Newton’s second law for a flowing
fluid.

Another application for the momentum equation relevant to water networks is
water hammer. Water hammer is a condition that occurs when the momentum from
a flowing liquid is suddenly stopped, such as by the sudden closing of a valve. Itis a

22The details of this are as follows. The reaction force may be obtained by first solving the problem where
the focus is only on the fluid. This means that the control volume surrounds only the fluid. To satisfy
equilibrium, we recognize that at the fluid-pipe wall interface, the shear and pressure force acting on the
fluid must be balanced by that supplied by the pipe wall. A control volume that focuses on the pipe and
the attachment to its surroundings enables the calculation of the reaction force for the pipe.
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rapid-transient process and the resulting “shock,” similar to that of a sonic-boom or
shock wave in the air when disturbed by an explosion or a vehicle moving at a speed
from below to above the local speed of sound, produces a pressure wave that travels
at high speeds through the fluid, causes noise, and normally results in movement of
the pipe. The perturbation could be severe enough to break joints between pipe and
fittings, or loosen pipe anchors. This topic is treated in Section 13.17.

Although not of primary interest in the present work, calculations of forces from
momentum changes and shear in pipe flows are very important in pipe systems where
the successful anchoring of pipe and stresses in the pipe wall and fittings are always
critical, such as in power and chemical processing plants, and oil refineries.

2.9 FORCED FLOWS

For comparison purposes, and to broaden the range?* of use for the analysis and design
tools developed in this book, it is of interest to consider the energy equation for pipe
flow where the flow is driven by a static pressure at the source, p;, where p; > 0.
This type of flow is referred to as “forced” and is contrasted with a gravity-driven
flow for which p; = 0. Forced flow, where the flow is driven by a pump (for a liquid)
is the primary type of pipe flow considered in an most courses on fluid mechanics.
Retaining p; in the energy equation, Eqn (2.40) becomes,

M
SRIP gDy s+ 2y L

pPgz1 zZ1 z1 im1 B i
- (2.46)
+ D( + XN: K;)] u 0
“la N— =
o i=1 29D
If minor losses are negligible, we get
— L 5
R AN ) YA (2.47)
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pgz1 21 29D

where the L/2) appears instead of A /s [Eqn (2.39)] because it is more convenient to
write the pipe length directly in terms of L for the present situation.

If we compare Eqs (2.40) and (2.41) with Egs (2.46) and (2.47), respectively, we
see that their forms are identical provided F' takes on the meaning (p2 — p1)/pg21
instead of simply p2/pgz1. Thus, we define a modified term, F,,,,q, where

P2~

Frog = —— (2.48)
P9z

23Parts of some networks that are candidates for gravity-driven flow may also be candidates for pump-
driven flow. Thus, the fit of the treatment of forced-flow in this text along with gravity-flow is a natural
one.
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Substituting Eqn (2.48) into Eqn (2.47) the energy equation for the case of minor-
lossless forced pipe flow is

Zl(l - Fmod) — ﬂ2
_ D)— =0 2.49
- £@,D) 5.5 (249
By comparing Eqs (2.49) with Egs (2.42) or (2.43), we see that any analysis and
design result in this book where F' s, and A appear in the context of a gravity-driven
flow may be applied to a forced-flow problem by simply replacing

e F with F,,.q4

e A1+ 5 2or /s (fors < 1) with the ratio L/ z;.

It is worth noting that in contrast to gravity-driven flow where F' is always a positive
value, in most cases where the flow is pump or blower-driven?* p; > p, such that
F04 18 negative valued. In fact, in many industrial pipe flows, especially where the
fluid is a gas, Fioqg is so large in an absolute-value sense that the contribution from
gravity [the 1 in Eqn (2.49)] becomes numerically negligible.

The solution of Eqn (2.49) for D, where through the continuity equation 7 is
eliminated in favor of a prescribed volume flow rate ¢}, is included in several chapters
including Chapters 4 and 5.

As a closing comment to this section, a small amount of reasoning can be applied
to convince oneself of the validity of the form of the energy equation for a pipe flow
like Eqn (2.49). It is most easy to explain for the case of Natural flow, where the
pressure at the delivery location is atmospheric, or zero gage pressure. For this case,
F..0q4 = 0 and Eqn (2.49) is written as

=2
Z1 . U

= D) —— = 2.

7 f(a@, )QQD 0 (2.50)
As noted in Section 2.6.5, the second term in this equation is the head loss per length
of pipe, hz /L. Substituting this into Eqn (2.50), we get the simple result

21 = hLa

which is simply the obvious statement that the head loss must be equivalent to the
elevation for a Natural flow. Voila/

Once the fundamentals of any subject are understood, small exercises like the one
Jjust performed here are great for reinforcing our understanding of the material, and to
convince ourselves that “we are on the right track.” They can also serve the uncertain
student by being a point of illumination; much like the proverbial light bulb that
suddenly glows over the student’s head.

%4The fluids of interest in this text are liquids, but the energy equation for pipe flow applies to any fluid
including gases where, for forced flow, a blower or fan is used.
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2.10 SUMMARY

There is a wealth of information in this chapter, so it is worthwhile for the reader to
take some time to digest it, reflect, and pursue some of the exercises in Chapter 16.
Moving forward from textbox B.2.8, we have discovered that the analysis and design
of a gravity-driven (or forced fiow, for that matter, as we saw in Section 2.9) network
consists of requiring that energy and mass be conserved. Practically, this means that
we must be sure that the energy and continuity [Eqn (2.21)] equations are satisfied.
The above treatment for a straight pipe reduced the energy equation to a relatively
simple form (Eqn (2.33)], especially for minor-lossless flow [Eqn (2.34)]. For the
more common case, where the pipe is of arbitrary length, we saw that the energy
equation remained nearly unchanged from these forms; the only difference being the
inclusion of the tortuosity, A, for which data show is of the order of 1.2 for small
gravity-driven water networks. The most-useful form of the energy equation for our
purposes will be Eqn (2.42) or its minor-lossless variant, Eqn (2.45). Considerable
attention will be given to the application of these forms of the energy equation in the
few chapters that follow.

As discussed in Chapter 1, the classification of single-pipe and multiple-pipe net-
works allows us to establish a framework that leads to insight and understanding
about how gravity-driven water networks perform, in addition to the development of
easy-to-use design formulas and charts for the simpler single-pipe networks. Thus,
it is important to recognize the characteristics that distinguish the two. In short, a
single-pipe network acts as if it is multiple-pipe if it possesses significant local low
and high points, and if there is a need to examine the properties of the flow at these
points. This was addressed in more detail in Section 2.7.
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CHAPTER 3

PIPE MATERIALS AND DIMENSIONS

“... Give us the tools and we will finish the job.”
— W. Churchill, 1941

3.1 INTRODUCTION

In this chapter, we present pipe sizes, dimensions, and pressure ratings for several
different kinds of materials and for the dimensioning systems normally used in gravity-
driven water networks (iron pipe size, standard diameter ratio, and metric). There is
a considerable body of data in this chapter that has been culled and distilled from the
many sources referenced herein. Only a few text and handbook sources were found
worthwhile in this regard. As seen below, most data come from the technical literature
of trade groups like the Plastic Pipe and Fitting Association, and piping manufacturers
and marketers. The wide range of materials including metals and plastics, together
with vastly different standards that govern pipe sizes and dimensions in different
parts of the world, contribute to the lack of ability for the designer to find these
data in even a few sources; the search is often challenging and time consuming. For
example, the Plastic Piping Handbook (Willoughby et al., 2002) surprisingly presents
no dimensional data whatever for plastic pipe. The latest (7th) edition of the Piping
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Handbook (Nayyar, 2002) contains dimensional data for some pipe (both steel and
plastic from the IPS and SDR systems) though not a complete set. Even worse is the
near-total absence of data for metric pipe in the available US-based literature.

It is the hope that engineers, engineering students, technologists, and designers
will find the pipe data in this chapter useful as a stand-alone final source for at least
polyvinyl chloride (PVC), chlorinated polyvinyl chloride (CPVC), and polyethylene
(PE), or as a productive first step toward this end.

3.2 PIPE MATERIALS

The industry manufactures pressure pipe from many different types of materials. As
the name indicates, pressure pipe is designed to transport fluids under pressure. There
are also types of pipe used for liquid service, including water, that are not suitable for
internal pressure. Plastic drainage or sewer pipe, where the pressure at any point in the
pipe is nearly atmospheric, are examples of this. From everyday observations, most
of us are aware that common materials for pressure pipe are steel (pipes supplying
natural gas to a heater in many houses in the United States), copper (hot and cold water
supply pipes in many houses in the United States), cast iron (sewer pipe in older houses
in the United States), and aluminum. The latter two are generally not of interest for
gravity-driven water systems because of their cost, weight, and lack of availability
in developing regions, among other reasons. In addition to these there are several
varieties of plastic pipe including PE (produced in a range of densities); the high-
density polyethylene given the abbreviation HDPE, PVC, sometimes abbreviated as
PVC-U or uPVC, where U or u stands for unplasticized!), CPVC, and acrylonitrile—
butadiene-styrene (ABS). Plastic pipe was introduced in the United States around
1940, it is comparably inexpensive, lightweight, rugged and strong, UV-resistant or
easily treated to be so, will not corrode like ferrous metals, is immune to attack from
most organics and other chemicals in soil, resistant to abrasives at normal flow speeds,
and available in many countries around the world. For these reasons, it is normally
the candidate of choice for pipe in many applications including many gravity-driven
water networks.

Plastic pipe is produced from polymers that belong to a class called thermoplas-
tics. Thermoplastics soften with increased temperature and harden upon cooling. A
thermosetting plastic is a different class that does not have this characteristic. Ther-
moplastics are ideal for the formation (at elevated temperatures) of extruded tube and
other shapes like fittings including elbows, tees, reducers, nut unions, and so on, and
valve bodies.

Among all thermoplastic materials, PVC has the largest strength and the least cost
per unit volume making it the most commonly used type of plastic pressure pipe.
Polyvinyl chloride pipe is rigid and strong. It is sold in lengths ranging from =210 ft
to >6 m (=20 ft). The preferable method of joining is by solvent cementing, where

!Plasticizers may be added to PVC to soften it for use in plastic covers, luggage, and so on. The type of
PVC used in the manufacture of pressure pipe is unplasticized making it rigid and stiff.
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the inside of the fitting and outside of the pipe are coated with a volatile solvent
and quickly joined together. Over a few minutes time, the solvent melts the PVC
material in the region of the joint and effectively welds the two pieces together. Heat
fusion, where the pipe and fitting are simultaneously heated to their melting point, is
not generally used since the melt viscosity of PVC is too large for the two pieces to
blend and form a joint with integrity (Nayyar, 2002). Threaded PVC is not common
because of the increased installation time and additional equipment and labor to carry
this out. If the pipe is to be joined by threading, sch. 80 pipe should be used because
the penetration depth of the threads would weaken the joints of a thinner pipe wall.

The impact strength of PVC is very low. As such, the pipe should be buried
underground where possible in a stabilized or backfilled trench with a depth of ~ 1 m.
The use of sharp rock or stone near the pipe should be avoided in favor of fine gravel
or sand. Depths >6 m should be avoided to reduce the possibility of too large an
earth loading. Burying also protects the pipe from the UV part of solar radiation that,
over time, can make the pipe brittle. Most types of PVC pipe have additives to resist
UV which will often be indicated on the pipe outside diameter (OD) (Plastic Pipe &
Fittings Association , PPFA). For exposed pipe that is not treated with these additives,
painting the outside of it with a light-colored latex or water-based acrylic paint will
protect the pipe. Exposure of the pipe to UV during installation is normally not a
problem.

Both PVC and PE pipe have smooth inside surfaces. The absolute roughness, as
noted in Chapter 2, is &~ 5 X 106 ft £60% (White, 1999) and is about 100 times
less rough than steel or galvanized iron. Thus, PVC pipe has very good abrasion
resistance from particulates that may find their way into the water flow.

Expansion of PVC and PE pipe need not be accommodated (say, with expansion
joints) in situations where the pipe is buried because the temperature of the water
and its surroundings are approximately equal. Long runs of straight pipe of large
diameter, say 4 in. or more, should have expansion accounted for if the pipe is run
above ground. Often, several 90° elbows are adequate for this purpose.

The PE pipe is available in a range of densities. Low-density PE is relatively
flexible and, for the smaller diameters, is often found in spooled form. Medium-
density PE pipe is less flexible, and high-density PE pipe is the most rigid. Coiled PE
pipe has the advantage of much longer native lengths than PVC, say in the hundreds
of feet. This feature requires fewer joints in the system and a subsequent saving on
labor and installation time. The reliability of the system also increases relative to that
of PVC because of the fewer number of joints.

The joining process for PE pipe is not as simple as that for PVC. The PE pipe
cannot be joined by solvent cementing. For small pipe sizes, PE pipe may be joined
by insert fittings or compression fittings. Insert fittings fit tightly inside the pipe
and compression fittings fit over the outside of the pipe. For large PE pipe sizes, a
butt-fusion process is required where a tool heats the two pieces to be joined to their
melting temperature to establish a weld. This machine requires electrical power and
movement into remote locations. Thus, large-size PE pipe would not be suitable for
use in cases where electrical power is not available.
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3.3 THE DIFFERENT CONTEXTS FOR PIPE DIAMETER

There are two contexts in which we deal with pipe diameter. The first is a calcula-
tion from an equation that produces the inside diameter, D, for a pipe. This is the
theoretical value for the pipe inside diameter needed to satisfy a prescribed set of
conditions for a design. In this context, D will almost always be an irrational number
that we write to two-to-four significant digits of accuracy. It is not, however, the pipe
diameter that will be installed for a given design. This is the second context. The
manufacturers of pipe of all kinds, including plastic, steel, copper, and so on, produce
pipe in “nominal” sizes, such as % in., 1 in., and so forth. The nominal diameter is
not the inside or outside diameter, but a label that loosely characterizes the size of the
pipe. Because the nominal pipe size is a label and not an actual number for the inside
diameter, in this book we will generally write the nominal pipe sizes as, say, 1% in.
instead of the decimal representation, 1.5 in.

The worldwide standard of specifying pipe by its nominal size, rather than an actual
dimension, and the fact that a pipe has at least two dimensions (wall thickness, inside
diameter, or outside diameter) that may, in principle, be independently specified,
necessitate a mapping of sorts between nominal size and actual pipe dimensions.
These will be explored for different pipe materials in the sections that follow.

3.4 SYSTEMS FOR SPECIFYING PIPE DIMENSIONS

In this section, we will discuss the most common systems that define the dimensions
of pipe normally used for gravity-driven water networks. There are two categories
within this framework. The first are the English-based systems including the Iron Pipe
Size (IPS) and the Copper Tube Size (CTS). The pipe in these systems appears in the
United States as well as in many other developed and developing countries outside
the United States. The second is the metric-based system. Metric pipe enjoys mostly
international use and is not widely available or installed in the United States. The
Standard Diameter Ratio (SDR) series, described below, spans both the English- and
metric-based classifications and is perhaps the widest used system for the specification
of pipe dimensions.

3.4.1 English-Based Pipe Sizes

The most commonly used system for pipe dimensions in this category is IPS. Cast
iron, ductile iron, steel (plain or galvanized inside and outside the pipe to help prevent
corrosion), and nearly all plastic pipe is manufactured to meet the dimensional spec-
ifications, including diameters and wall thicknesses, of the IPS system. Copper tube,
which is not generally used for the present application because of its cost and subse-
quent lack of good availability, follows the CTS system, which is different than IPS.
In the CTS system, the outside diameter of the tube is %-in. larger than the nominal
tube size. For a fixed pipe size, the inside diameter decreases in value with increased
pressure rating and thus increased wall thickness. There are three wall thicknesses
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available when choosing a copper tube: type “K” tube pertains to thick wall, type
“L” tube standard wall thickness, and type “M” tube thin wall. Domestic hot water
systems of copper tube typically use a wall thickness corresponding to type L.

For a given pipe diameter, the wall thickness determines the maximum allowable
working pressure. If the wall thickness for an IPS pipe is of a standard value, we
refer to this pipe as “schedule 40” or a sch. 40 wall thickness. For higher-pressure
resistance pipe, the terminology for an IPS pipe is “schedule 80” or a sch. 80 wall
thickness. Pipe dimensions for the IPS series of pipe sizes are designed so that the
outside diameter is independent of the wall thickness. Thus, sch. 40 and 80 pipes
of the same nominal pipe size have the same outside diameter so that they can both
use the same fittings (like elbows and tees), which require that the pipe be fit into
them; for this reason the IPS system is sometimes referred to as an “outside diameter
controlled” system. Pipe walls thicker than sch. 80 (schedules 120, 160, etc.) are
manufactured, but these are generally not needed or used for gravity-driven water
systems.

The correspondence between nominal pipe sizes and actual dimensions for sched-
ule, 40 and 80 IPS pipe is given in Tables 3.1 and 3.2 (Fox and McDonald, 1992;
Gagliardi and Liberatore, 2002) for the range of pipe sizes normally used in gravity-
driven water systems. Note that there are relatively few nominal sizes from among
which to choose; a result of manufacturing companies producing just a few nominal
sizes of a pipe of a particular material, and local suppliers of the pipe who choose to
stock only a few nominal sizes. This is one small example of the interplay between
economics and engineering in real-world terms.

The dimensions of plastic pipe can alternately be characterized by another outside-
diameter-controlled series referred to as the “Standard Diameter Ratio” (SDR) sys-
tem” or series. The objective of this system is to maintain equal pressure ratings
for all pipe diameters of a fixed type of pipe material. In the SDR system, this is
accomplished by increasing the wall thickness in direct proportion to the OD of the
pipe’. Thus, SDR is defined as the ratio of the outside diameter to the minimum wall
thickness. Rated pressures are larger for pipes that have smaller SDR values (that is,
larger wall thicknesses for a given pipe OD) and vice versa. With the SDR series,
there may be many more wall thickness (that is, pressure rating) choices available
compared with IPS pipe. For example, a particular type of 2-in. nominal plastic
pipe that has an outside diameter of 2.375 in. (consistent with the OD of sch. 40 and
sch. 80 IPS pipe) is manufactured with SDR values of 7.3, 9.0, 11.0, 13.5, and 17.0%.
Recall from the discussion above that only two commonly used wall thickness for
the IPS system, schedules 40 and 80. Since the SDR system is OD controlled, any

2This is sometimes referred to as the SDR-PR system or series where PR refers to pressure rating. Also,
there exists a less-popular, inside-diameter-controlled series called SIDR. Information on this series, which
is not covered in this book, can be found mostly in the trade literature.

3The formula for the circumferential or “hoop” stress in a pipe (referred to as a “thin-wall” pipe because
the wall thickness is much smaller than the pipe radius) shows that for a given material the ability of the
pipe to resist internal pressure is proportional to the ratio of wall thickness and pipe diameter.

4Note that each number differs from the previous one by ~25%. This has the effect of producing pressure
ratings in approximately the same steps; 25% smaller than that for the previous SDR value.
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Table 3.1 Correspondence Between Nominal Pipe Sizes and Actual Dimensions
for sch. 40 IPS Pipe

Nominal  OQutside  Max. Inside Min. Wall Equivalent

Size Diameter Diameter Thickness SDR
(in.) (in.) (in.) (in.)
% 0.840 0.622 0.109 7.71
= 1.050 0.824 0.113 9.29
T 1.315 1.049 0.133 9.88
1% 1.900 1.610 0.145 13.1
2 2.375 2.067 0.154 15.4
2% 2.875 2.469 0.203 14.2
3 3.500 3.068 0.216 16.2
3% 4.000 3.548 0.226 17.7
4 4.500 4.026 0.237 19.0
5 5.563 5.047 0.258 21.6
6 6.625 6.065 0.280 23.7
8 8.625 7.981 0.322 26.8
10 10.75 10.02 0.365 29.5
12 12.75 12.00 0.375 34.0

“Note the local increase in SDR for 2-in. pipe indicating a reduction in the relative wall thickness for
this size compared with the neighboring sizes.

bThe inside diameter is within 1% of the nominal size for nominal size of 4 in. and larger.

Table 3.2  Correspondence Between Nominal Pipe Sizes and Actual Dimensions
for sch. 80 IPS pipe

Nominal =~ Outside =~ Max. Inside  Min. Wall  Equivalent

Size Diameter Diameter Thickness SDR
(in.) (in.) (in.) (in.)
é 0.840 0.546 0.147 5.71
2 1.050 0.742 0.154 6.82
t 1.315 0.957 0.179 735
11 1.900 1.500 0.200 9.50
2 2.375 1.939 0.218 10.9
21 2.875 2.323 0.276 10.4
3 3.500 2.900 0.300 11.7
31 4.000 3.364 0.318 12.6
4,500 3.826 0.337 13.4
5 5.563 4.813 0.375 14.8
6 6.625 5.761 0.432 15.3
8 8.625 7.625 0.500 17.3
10 10.75 9.594 0.593 18.1
12 12.75 11.376 0.687 18.6
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given nominal pipe size will be able to use the same fittings whether it is SDR or IPS
based; only the wall thickness, and thus pressure rating, will differ depending on the
schedule (if IPS based) or SDR (if SDR based).

We present pressure ratings for PVC (and CPVC), PE, and ABS IPS series pipe
in Tables 3.3 and 3.4 for the most commonly available SDR-series PVC pipe. Our
inspection of the latter table reveals that SDR 26 is probably the most recommended
wall thickness, with a pressure rating of 160 psig, for SDR-series, PVC pipe. From
Table 3.3 for IPS pipe, sch. 40 should be used in most cases for all plastic pipe. In
networks of PVC pipe where the pipe is joined by threading instead of the normal
solvent cementing, sch. 80 is recommended to improve reliability in the joint regions
by having a thicker-wall pipe. For PE pipe, the pressure ratings are considerably
smaller than PVC for the same schedule and pipe size. This may necessitate using
sch. 80 PE pipe for the larger pipe sizes in certain instances where pressure ratings
>90 psig are needed. Dimensions and pressure ratings for a broad range of SDR-
series, PVC pipe appear in Table 3.5.

Note that the local reduction in pressure ratings for the 2-in. nominal IPS pipe
size, as seen in Table 3.3 for ABS, PVC (and CPVC), and PE materials, is the result
of the dimensions for this pipe size. This is explained by noting that the equivalent
SDR (see Tables 3.1 and 3.2 for these) for 2-in. pipe is locally high compared with the
neighboring pipe sizes indicating a relatively thinner wall thickness for 2-in. nominal
IPS pipe. For conversion purposes, note that 100 psig is equivalent to 70.31 m of
water head.

Dimensions and pressure ratings for a range of SDR-series, English-based PE pipe
is presented in Table 3.6 where, as with the recommended pressure rating for PVC
from above, SDR 11 is the recommended wall thickness for PE pipe with a pressure
rating of 160 psig.

3.4.2 Metric Pipe Sizes

Though not used very often, if at all, in the United States, metric-dimensioned PVC
and PE pressure pipe is used throughout the rest of the world. In central America, as
well as many other locations, both English- and metric-based pipe enjoy wide use.
Manufacturing facilities in Asia, Europe, England, Australia, and New Zealand pro-
duce metric pipe to various standards. Unfortunately, the differences in the standards
can create considerable uncertainty in availability and the correspondence between
actual dimensions and nominal metric sizes. Dimensional and pressure-ratings data
for metric-based, SDR series PVC pipe are presented in Tables 3.7 and 3.8 and in
Tables 3.9 and 3.10 for metric-based, SDR-series PE pipe. For metric pipe, the pres-
sure rating is defined through a “PN” (pressure nominel) value. In Table 3.11, the
mapping between the PN value and pressure in various units is displayed.

One thing to note by inspecting Tables 3.7-3.10 is that the OD and nominal pipe
size (sometimes referred to as the “DN” or diametre nominel) are equal for the metric-
based plastic pipe manufactured to the standards on which these tables are based. As
briefly noted above, there are several different standards, normally associated with
distinct geographic regions of the world, that when followed produces pipe with
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Table 3.3  Pressure Rating (in psig) at 73.4°F for Selected Types of IPS series,
English-Based Plastic Pipe

Nominal
Size (in.) .
L 480 680 600 850 240 340
3 390 550 480 690 195 275
t 360 500 450 630 180 250
1l 260 380 330 470 130 190
2 220 320 280 400 110 160
21 240 340 300 420 120 170
3 210 300 260 370 105 150
31 190 280 240 350 95 140
180 260 220 320 90 130
5 160 230 190 290 80 115
6 140 220 180 280 70 110
8 120 200 160 250 60 100
10 110 190 140 230 55 95
12 110 180 130 230 55 90

9From Plastic Pipe & Fittings Association (PPFA) and Harvel Plastics, Inc. (2005-2006).

Table 3.4 Dimensions and Pressure Ratings for Common SDR-Series,
English-Based PVC Pipe

Nominal  Outside Inside Min. Wall SDR  Pressure

Size Diameter  Diameter  Thickness Rating?
(in.) (in.) (in.) (in.) (psig
é 0.840 0.696 0.062 13.5 315
2 1.050 0.910 0.060 21.0 200
i 1315 1.175 0060 260 160
11 1.900 1.734 0.064 26.0 160
2 2.375 2.173 0.073 26.0 160
21 2.875 2.635 0.091 26.0 160
3.500 3.210 0.110 26.0 160
31 4.000 3.672 0.135 26.0 160
4.500 4.134 0.173 26.0 160
5 5.563 5.108 0214 26.0 160
6 6.625 6.084 0.255 26.0 160
8 8.625 7.921 0.332 26.0 160
10 10.75 9.874 0.413 26.0 160
12 12.75 11.711 0.490 26.0 160

“Temperature is based on 73.4°F. Note that the pressure rating corresponds only to the SDR value,
which is the objective of this series, and that the OD corresponds to the IPS series for the given nominal
size (see Tables 3.1 or 3.2). The ratio of OD to the min. wall thickness is not exactly equal to SDR
because of dimensional tolerances. The same reason applies to any inequality between OD-2-Wall
Thickness and ID (Gagliardi and Liberatore, 2002; Harvel Plastics, Inc., 2005-2006).
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Table 3.6 Dimensions and Pressure Ratings for SDR Series, English-Based PE Pipe”

Nom. SDR 7.3 SDR 9 SDR 11 SDR 13.5 SDR 17
Size 254 psig 200 psig 160 psig 128 psig 100 psig
(in) [ID | Wall [ ID | Wal | ID | Wall ID [ Wall [ ID | Wall
W 0.600 | 0.115 | 0.650 | 0.093 | 0.680 | 0.076
g 0.750 | 0.144 | 0.816 | 0.117 | 0.850 | 0.095
{ 0.940 | 0.180 | 1.023 | 0.146 | 1.070 | 0.120
13 1.349 | 0.260 | 1.453 | 0.211 | 1.533 | 0.173 | 1.601 | 0.141
2 1.686 | 0.325 | 1.815 | 0.264 | 1917 | 0.216 | 2.002 | 0.176 | 2.078 | 0.140
3 2485 | 0479 | 2,675 | 0389 | 2.826 | 0318 | 2915 | 0.259 | 3.063 | 0.206
4 3.194 | 0.616 | 3.440 | 0.500 | 3.633 | 0409 | 3.794 | 0.333 | 3.938 | 0.265
5 3948 | 0.762 | 4253 | 0.618 | 4.490 | 0506 | 3.469 | 0412 | 4.870 | 0.327
53 3815 { 0.736 | 4.109 | 0.597 | 4.338 | 0.489 [ 4.531 | 0.398 | 4.705 | 0.316
6 4700 | 0.908 | 5.065 | 0.736 | 5.349 | 0.602 | 5584 | 0491 | 5798 | 0.390
8 6.261 | 1.182 | 6.709 | 0.958 | 7.057 | 0.784 | 7.347 | 0.639 | 7.611 | 0.507
10 7.804 | 1.473 | 8362 | 1.194 | 8.796 | 0977 | 9.158 | 0.796 | 9.486 | 0.632
12 9.256 | 1.747 | 9916 | 1.417 | 10432 | 1.159 | 10.862 | 0.944 | 11.25 | 0.750
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2Temperature is based on 73.4°F. ID is inside diameter (in.) and Wall is minimum wall thickness (in.). The OD corresponds to the IPS series for the given nominal size (see
Tables 3.1 or 3.2). The ratio of OD to the min. wall thickness is not exactly equal to SDR because of dimensional tolerances. The same reason applies to any inequality
between OD-2-Wall Thickness and ID. From American Water Works Association (2006); The Plastic Pipe & Fittings Association (2002); PolyPipe, Inc. (2005).
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considerably different specifications for the same nominal sizes. For example, the
Islex dimensional data (Islex, 2005) for PVC pipe differs greatly from that in the above
referenced tables. The Australian/New Zealand standard is AS/NZS 1477:1999 for
PVC pipe, whereas the PVC pipe data in Tables 3.7 and 3.8 are based on standard
1S04422-2 (International Organization for Standardization, 1996). Dimensional data
for PVC pipe from British and Chinese manufacturers appear to follow the latter
standard. There is evidently little or no difference between the PE pipe manufactured
in Australia and New Zealand and that made elsewhere in the world, however.

The main message for the designer to be derived from this discussion is the need
to obtain reliable information on local pipe materials and dimensions certainly before
finalizing a design, but perhaps even before beginning it. Engineering tradeoffs on the
pipe sizes for a system and their availability from near (say, local hardware stores) and
remote sources (like plumbing supply houses in larger but more-distant cities) will
need to be considered. For example, larger and more costly pipe from a local supplier
may be more economical than smaller sizes once the transportation and delivery costs
are factored into the design.

As a final note on this topic, the United States and other countries sometimes
report metric-based sizes for IPS series pipe. Table 3.12 shows this conversion that
is sometimes referred to as a “soft metric conversion”. Note that the pipe having
these metric dimensions is not metric pipe but IPS series pipe with its English units
converted to the metric system.

3.5 CHOOSING AN APPROPRIATE NOMINAL PIPE SIZE

When the designer calculates the theoretical value for the inside diameter, D, from
the energy equation he/she must choose an appropriate corresponding nominal pipe
size’>. Normally, the choice is made for the nominal size that produces an inside
diameter slightly larger than the theoretical value.® The logic here is that a pipe of
diameter slightly greater than that required by theory will, for a fixed pressure drop,
accommodate more flow than that required for the design. For the end user, having
more flow is usually better than less, at least in the situations where it can indeed
be supplied; the larger-than-theoretical pipe size can be viewed as a safety factor
of sorts. Alternately, for a fixed water flow rate, a larger pipe diameter will produce
larger static pressures along the flow path (for a fixed flow rate the flow in a larger pipe
diameter will have less friction since the flow speed is reduced). Higher pressures
give the designer more flexibility since the flow will have more energy. This point is
subtle. Pressure energy can always be dissipated in a pipe flow by using an energy
dissipation device like a throttling valve but, once potential energy is converted into

SNote that the designations ID, OD, and Wall are labels for dimensions of pipe. D and ID have the same
reference but D is a mathematical symbol whereas ID is a label.

One exception to this is when the theoretical size is just slightly larger than that for a nominal size. In
this case the choice is made for the nominal size that produces an inside diameter slightly smaller than the
theoretical value. Also note that the need for an increase in water flow rate due to population growth in
the future is systematically accounted for in the design. This topic is treated in Chapter 13.
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Table 3.7 Dimensions and Pressure Ratings for SDR Series, Metric-Based PVC Pipe”

Nom. SDR 9 SDR 13.6 SDR 17 SDR 21
Size PN 25 PN 16 PN 12.5 PN 10
and Min. Wall 1D Min. Wall D Min. Wall ID Min. Wall ID
OD Thickness Thickness Thickness Thickness
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
16 1.8 12.4 1.5[1.2] 13.0 [13.6]
20 2.3 15.4 1.5 (2.0)[1.5 17.0 (16.0) [17.0
25 2.8 19.4 1.9 (2.0){1.9 21.2(21.0) [21.2 1.5 22.0
32 3.6 248 |1 2424)[24 27.2(27.2)[27.2 1.9 (2.0) 28.2 (28.0) 1.6 28.8
40 4.5 31.0 | 3.03.0)[3.0 34.0 (34.0) [34.0 2.4(2.4) 35.2(35.2) 1.9 (2.0) 36.2 (36.0)
50 5.6 38.8 | 3.7(3.7)[3.7 42.6 (42.6) [42.6 3.0(3.0) 44.0 (44.0) 2.4(2.4) 45.2 (45.2)
63 7.1 48.8 | 4.7(4.7)[4.7 53.6 (53.6) [53.6 3.8 (3.8) 55.4 (55.4) 3.03.0) 57.0 (57.0)
75 8.4 58.2 | 5.6(5.6)[5.6] | 63.8(63.8)[63.8 4.5 (4.5) 66.0 (66.0) 3.6 (3.6) 67.8 (67.8)
90 10.1 69.8 | 6.7(6.7)[6.7 76.6 (76.6) [76.6 5.4(5.4) 79.2 (79.2) 43 (4.3) 81.4(81.4)
110 8.1(7.2) [8.1 93.8(95.6) [93.8 6.6 (5.7) 96.8 (98.6) 5.3(4.8) 99.4 (100.4)
125 9.2 106.6 7.4 (7.4) 110.2 (110.2) 6.0 (6.0) 113.0 (113.0)
140 10.3 119.4 8.3(8.3) 123.8 (123.8) 6.7 (6.7) 126.6 (126.6)
160 11.8 1364 9.5(9.5) 141.0 (141.0) 7.7 (1.7) 144.6 (144.6)
180 13.3 153.4 10.7 158.6 8.6 162.8
200 14.7 170.6 11.9 176.2 9.6 180.8
225 16.6 191.8 13.4 198.2 10.8 203.4
250 18.4 213.2 14.8 220.4 11.9 226.2
280 20.6 238.8 16.6 246.8 13.4 2532
315 232 233.6 18.7 242.6 15.0 250.0

2Temperature is based on 20°C. ID is inside diameter. OD is outside diameter. The mapping between PN and pressure is given in Table 3.11. See continuation of this
table in Table 3.8. From 1S04422-2, International Organization for Standardization (1996). Parenthetical values from Fujian Zhenyun Plastic Industry Co., Ltd.. Square
bracketed quantities from 1SO15493, International Organization for Standardization (2003).
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Table 3.9 Dimensions and Pressure Ratings for SDR Series, Metric-Based PE Pipe®

| SDR 9 | SDR 11 | SDR 13.6 | SDR 17
PE 80 PN 16 PN 12,5 PN 10 PN 8
PE 100 PN 20 PN 16 PN 12.5 PN 10
Nom. | Min. Wall ID Min. Wall ID Min. Wall ID Min. Wall ID
Size Thickness Thickness Thickness Thickness
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
16 1.8 12 1.6 13 1.6 13 1.6 13
20 2.2 16 (15.4) 1.6 17 1.6 17 1.6 17
25 2.8 19 2.3 20 1.9 21 1.6 22
32 3.6 26 (24.6) 2.9 26 2.4 27 (27.4) 1.9 28
40 4.4 31 3.6 33 29 34 24 35
50 5.6 39 (38.8) 4.5 41 3.7 43 (42.8) 2.9 44
63 7.0 49 (48.8) 5.7 52 4.6 54 (54) 3.7 56
75 8.3 58 6.8 61 5.5 64 4.4 66
90 10.0 70 (69.8) 8.2 74 6.6 77 (77.2) 5.3 79
110 12.2 86 10 90 8.1 94 6.5 97
125 13.9 96 11.4 102 9.2 107 7.4 110
140 15.6 109 12.7 115 10.3 119 8.2 124
160 17.8 124 14.5 131 11.8 138 9.4 141
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9Temperature is based on 20°C. ID is inside diameter. The minimum value for the outside diameter is equal to the nominal size. The mapping between PN and pressure
is given in Table 3.11. The PE number corresponds to the strength of the polyethylene used in the pipe; PE 100 is stronger than PE 80. Parenthetical numbers correspond
to the dimensions from Jordan Jr. (2004) for Class III (normal-wall; SDR 9) and Class IV (thick-wall; SDR 13.6) HDPE pipe. See continuation of this table in Table 3.10.
From Islex (2005); The Engineering Toolbox (2010). The dimensions generally agree with those reported by Durapipe (2005).
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Table 3.11 Mapping Between PN and Pressure for Metric-Based Pipe

PN Head of kPa Headof psig bar” Class

water (m) water (ft)
32 32 320 105 47 32
4 40 400 131 58 4
6.3 63 630 207 92 6.3 ~B (6 bar)
8 80 800 262 117 8 ~C (9 bar)
10 100 1000 328 147 10 ~C (9 bar)
12.5 125 1250 410 183 12,5 -D (12 bar)
16 160 1600 524 235 16
20 200 2000 655 294 20

9Q0ne bar is 100 kPa which is approximately 1 atm (101.325 kPa or 14.7 psia). From Islex (2005);
Plastics Industry Pipe Association of Australia, Ltd. (2010).

Table 3.12  The Metric Equivalent of IPS series sch. 40 and 80 Nominal Pipe
Sizes

Nominal Outside  Sch. Min. Wall Inside
Size® Diameter Thickness Diameter

(IPS -in.) | (Metric - mm) (mm) (mm) (mm)

% 15 21.336 40 2.769 15.798

80 3734 13.868

% 20 26.670 40 2.870 20.930

80 3912 18.846

1 25 33.401 40 3.378 26.645

80 4,547 24307

1% 40 48.260 40 3.683 40.894

80 5.080 38.100

2 50 60.325 40 3912 52.501

80 5.537 49.251

2% 65 73.025 40 5.156 62.713

80 7.010 59.005

3 80 88.900 40 5.486 77.928

80 7.620 73.660

33 90 101.60 40 3.048 95.504

80 5.740 90.120

4 100 114.30 40 6.020 102.26

80 8.560 97.180

6 150 168.28 40 7.112 167.77

80 10.97 146.33

“See Tables 3.1 and 3.2 for the equivalences in English units. Note that the actual inside diameters
and wall thicknesses of metric dimensioned pipe can vary especially in developing regions where
dimensional standards for pipe may be different than other regions or not followed. From The Engi-
neering Toolbox (2010).
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pressure energy in a gravity-driven water network, energy from the outside is never
added to the flow. A companion consideration is that the local slope of the pipe is
determined by the contour of the ground; it cannot be simply adjusted as needed by
the designer to add potential energy. This scenario is in contrast to a pumped-water
network where a larger or additional pump may perhaps be added where needed to
meet the design specifications.

In summary, the choice of a larger pipe diameter than required by the solution of
the energy equation adds flexibility to the values of the flow parameters including flow
rate and static pressure at the delivery location by use of a throttling valve. Throttling
valves are discussed in greater detail in Sections 4.7, 11.6.5, and 13.14.

In addition to footnote 6, there may be cases encountered where it is desirable to
choose a nominal pipe size corresponding to a slightly smaller diameter. Examples of
this are in designs where costs need to be tightly controlled, since larger pipe sizes are
more costly, or where the choice of the larger pipe produces a fiow speed well below
that recommended to prevent the internal build-up of debris. A composite pipe, two
series-connected pipes of different diameters as discussed in Section 13.16, may be
used in place of a single pipe to more-precisely match the design constraints for a
pipe network.

Some details on these topics and the broader problem of designing a pipe having
too large a diameter for a prescribed flow rate are considered in Chapter 13.
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CHAPTER 4

CLASSES OF PIPE FLOW PROBLEMS
AND SOLUTIONS

“When you drink the water, remember the spring.”
— Chinese Proverb

4.1 THE CLASSES

To place the present developments in perspective, it is worthwhile to compare the
problem of gravity-driven flow in a pipe with the other pipe-flow problems normally
encountered in the fields of fluid mechanics or hydraulics. The energy equation,
Eqn (2.7), is obviously the same for all pipe-flow problems but, traditionally, the
manner of how the solutions have been executed depended on the type of problem, or
class, being solved. Four classes of problems for flow in a single pipe are considered.

1. L,Q, and D are known, py — p; is unknown.
2. ps —p1,Q, and D are known, L is unknown.
3. po —p1, L, and D are known, () is unknown.

4. py — p1, L, and () are known, D is unknown.

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 93
Copyright (©) 2010 John Wiley & Sons, Inc.
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The first two classes are particularly simple because with both ) and D known, the
flow speed, @, is easily calculated from the continuity equation (that is, the equation
of mass conservation), Eqn (2.21). From this, the Reynolds number (Re) and friction
factor (f(u, D)) are calculated and the remaining unknown, either L or p; — py, is
easily found from application of the energy equation, Eqn (2.7).

The last two classes are slightly more challenging since, with ) or D unknown,
Re is not known so that f(@, D) is also not known. That is, the unknown of either
Q or D appears in a nonlinear way in the energy equation. Either a pencil-and-paper
iterative method is needed or a root-finder in a program like Mathcad or Excel may
be used to solve Eqn (2.7) for @. An example of this is presented in Section 4.2.
The present work is a special case of class 4, where the inlet static pressure, p;, is
zero and the effect of gravity on the flow is critically important. Thus, the reader
may have already solved a problem similar to that being considered in this work in a
course like fluid mechanics. However, examples in a typical fluid mechanics course
focus mostly on systems where the flow is driven by a pump (that is, p; 7# 0) and
particular attention is paid to the calculation of the major and minor losses.! In fact,
the elevation change in many problems is most often neglected, certainly when the
fluid is a gas. Of course, this effect is the only driving force for flow in the present
case.

4.2 AN ILLUSTRATIVE PIPE FLOW PROBLEM OF CLASS 4

Consider the following example of a pipe flow problem of class 4. The object of this
exercise is to compare and contrast the different approaches to the solution of a pipe-
flow problem where D is unknown. With the value for D, and thus Re and f(w, D),
unknown as discussed above, the approaches used below may also be employed to
solve flow problems of Class 3, where () is unknown.

4.3 THE PROBLEM STATEMENT

A processing plant requires a flow rate of 1.100 m/min (18.33 L/s) from a water
main located 275 ft from the plant and 10 m below the plant delivery location. It is
known that the run of the pipe is relatively straight so that only a few 45° elbows will
be required. Determine the minimum sch. 40, galvanized-iron (GI) pipe size required
if the supply (that is, the source) and delivery static pressures are known to be 950
and 120 kPa, respectively. Assume the water temperature to be 10°C.

T'As noted at numerous places in this text, except where needed for flow balancing, minor losses are not
very important for many gravity-driven water distribution systems.
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4.4 SETTING UP THE PROBLEM

We begin by writing the energy equation, Eqn (2.7), and simplify it by noting that
29 = 0 as above. Also, because the pipe is uniform diameter, @; = %, is obtained
from the continuity equation [Eqn (2.21)]. We may also assume that the total minor
loss will be small compared with the major loss since the pipe is relatively long and
there will be but a few elbows. For instance, a 45° elbow has an equivalent length
of 16 (Table 2.1). Three elbows would then increase the pipe length by about 50 ft,
about a 20% increase in the true length. We can often accommodate this by choosing
the nominal pipe size having the next largest value for D, once it is calculated; the
normal procedure as discussed in Section 3.5. In all cases, we can check for the
accuracy of neglecting the minor loss after the solution for D is obtained.
Using Eqn (2.4), Eqn (2.7) becomes

pr—p2 21 hp _ u?
a_ L Dy——_
oL T T/ (@ D)3.b

4.1

Also note that this equation appears in a slightly different form as Eqn (2.49) [ F,04
includes the pressure difference in Eqn (2.49)].

The flow rate is prescribed for this problem, not @. Thus, it is convenient to write
% in terms of Q using Eqn (2.21),

_4Q
whereupon Eqn (4.1) becomes
— h 8Q)? D
pop b 89° f(Q,D) @3)

pgL L L w2 Db

where z; = —10 m (see Fig. 2.11).

The left side of Eqn (4.3) contains only constants and for the far right side, constants
and the dependent variable, D. Because D appears in a nonlinear way through both
D5 and f(Q, D), Eqn (4.3) is a nonlinear algebraic equation and will be solved by a
numerical method. Inserting the values for all parameters along with their units into
Eqn (4.3), we get

h‘L 3 f(Qa D)
0.8904 = — = 2,628 x 10° 5 (4.4)

where the unit of D is inches. It is interesting to note that the potential energy term
in Eqn (4.3), z1 /L, is 0.0364 in absolute value or only ~4.1% of the total energy of
0.8904 dimensionless units. This is clearly a problem that is dominantly pressure
driven, very different than those that are gravity driven.

To solve this equation, Re will be needed to calculate the friction factor. Written
in terms of @ (as in textbox B.2.6), this becomes

_ 6.463 x 10°

Re D

4.5)
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Equations (4.4), (4.5), and that for friction factor, Eqs (2.16) and (2.17), are a
system of three nonlinear algebraic equations in three unknowns, D, Re, and f(Q, D).
Three methods for the solution of this problem will be considered below.

4.4.1 The Nonlinear Algebraic Equation’

In informal terms, a nonlinear algebraic equation is one where the unknown variable,
while appearing in just a single location, is not able to be positioned alone on one side
of the equal sign in the equation. The more-formal definition is that it is an equation
where the unknown appears in a nonlinear way. Examples of a nonlinear algebraic
equations are

= z*4+2-10=0

9(z)

glz) = sin(z)+5=0

g(z) = cosh(2z)+2z+3=0 (4.6)
g(z) = In(z)+2ze®* =0

glz) = z+ ; +5Vz =0

where g(x) denotes a function of the unknown variable, z (the symbols in this section,
g, T, a, b, and ¢, as well as superscripts new and old below, are used only in their
contexts in this section; as such, they do not appear in the Nomenclature and where
possibly used in other parts of this book will have different meanings). For each of
these examples, we are unable to isolate the unknown variable z, alone, on one side
of the equal sign in the respective equation and not have it appear elsewhere in the
equation. That is, the terms z*, sin(z), cosh(2z), In(z), €%%, 2/z, and /T are all
nonlinear functions of z. In the same way, Eqn (4.4), rewritten here in a slightly
different form,

r(Q,D) = D —4.943f(Q,D)/* =0

is also a nonlinear algebraic equation because, in the function r(Q, D), the unknown D
appears in a nonlinear way through term f((Q, D)!/®. We have seen by our inspection
of Egs (2.16) and (2.17) or Fig. 2.6 that f(Q, D) is also a nonlinear function of D
through Re which appears in a nonlinear way in the f((, D) function.

Some nonlinear algebraic equations can be solved by analytical methods; that
is, we can obtain an exact solution in terms of elementary functions. A quadratic
equation is an example of this,

az? +br+c=0 4.7

where a, b, and c are real numbers. From algebra, we will recall that Eqn (4.7) has
the solution

_ 7
. b+ \/Zb 4ac @.8)
a

3This section may be skipped if appropriate without loss of continuity.
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We refer to the values for x that satisfy the algebraic equation as the “roots” of that
equation. In a graphical sense, a real root (one that is not imaginary) of a single
nonlinear algebraic equation is the value of x that results in g(z) = 0, or the value of
x where the function g(x) crosses the x axis.

In general, the roots of nonlinear algebraic equations may be real, imaginary, or
a combination of the two. The latter is referred to as a “complex” number. For
example, in the illustrative case presented below the function possesses two real
and two imaginary roots. Since the volume flow rate and pipe diameter, normally
determined from the solution of the energy equation for pipe flow, are real quantities
we are concerned only with real roots from the solution of this equation. In addition,
since the pipe diameter is always positive-valued, the requirement D) > 0 must always
be satisfied.

Except for quadratic and cubic polynomials that are known to have solutions written
as a function, such as Eqn (4.8) was for a quadratic polynomial (we refer to these as
“analytical” solutions), no general solution of nonlinear algebraic equations exists.
Thus, the lack of analytical solutions requires that nearly all nonlinear algebraic
equations be solved by numerical methods. Normally, these solutions are carried out
on a computer although, in principle, iteration using paper and pencil may be used.

As an example of a solution carried out on paper, consider the first of Eqs (4.6).
Begin the solution by rewriting this equation in the following form,

= (10— z)'/4 (4.9)

We will solve this equation by iteration, a method referred to Gauss—Seidel iteration
(Gerald and Wheatley, 1999). The procedure is simple. We guess a value for x and
substitute this value into the right side of Eqn (4.9). Upon evaluation of the right
side, which is equal to z, we are presented with an updated estimate of x. Again,
upon substituting into the right side and evaluating, we obtain another, hopefully
more accurate, estimate for the value of x. This procedure continues until, with
further iterations, the value of x no longer changes to our desired level of accuracy.
The solution is then said to have “converged.” The results of this procedure are best
presented in a table (Table 4.1), where the iteration number and the values for x at
that iteration number are written. From our inspection of Table 4.1, we see that one
root of Eqn (4.9) is x = 1.697. Other roots may exist, but what we have found is
the root closest to the guessed value for = of 1. A plot of the function of Eqn (4.9)
may perhaps reveal other real roots and we can find their values by following the
procedure of Table 4.1 after making a guess for z near this root.*

Clearly, one could implement this iterative solution on a computer, and provided
with a meaningful initial guess, obtain a single root of a nonlinear algebraic equation,
such as that from the energy equation for pipe flow, Eqn (4.4). However, Gauss—
Seidel iteration is not very efficient and the success at converging to a solution in the

“For this example, there are two real roots, 1.697 and -1.856, and two complex conjugate roots, 0.0791 £
1.7801, referred to as a “complex conjugate” pair. If, for example, x were the pipe diameter, the value for
the diameter would be 1.697 units. That is, since the diameter is a quantity that is both positive and real
(not imaginary), the only physically allowable root is 1.697.



98 CLASSES OF PIPE FLOW PROBLEMS AND SOLUTIONS

Table 4.1 Solution of a Nonlinear Algebraic Equation by Gauss—Seidel Iteration

Iteration®  z°d e
1 1 1.732
2 1.732  1.696
3 1.696 1.698
4 1.698 1.697

“The value for the initial guess is 1. The designation “new” means the updated value of z after the
“old” value of z is substituted into the right side of Eqn (4.9).

region of the initial guess depends on the way in which the nonlinear equation [say,
Eqn (4.9)] is written. In other words, convergence to a solution is not guaranteed with
the Gauss—Seidel method. Fortunately, more robust numerical methods, such as the
Newton—Raphson method (Gerald and Wheatley, 1999), have been developed and
are very widely used by engineers and scientists in everyday practice. In particular,
in Mathcad the function root is used to find a single root of a nonlinear algebraic
equation is known to be quite robust.

In Chapter 11, we will need to solve not just a single nonlinear algebraic equation,
but many such algebraic equations simultaneously. These are referred to as systems
of nonlinear algebraic equations. The idea behind the numerical solution for these
systems is similar to that from the discussion above. Numerical methods of solution,
such as Newton—Raphson, are very good at solving systems of nonlinear algebraic
equations. In Mathcad, the Given...Find construct is used for this purpose so
there is no need to write a computer program when carrying out the solution. The
designer needs to be aware that the root function and Given...Find construct in
Mathcad are numerical-based, like the example explored in this section. Thus, a good
initial guess® for each of the unknowns in the single or system of nonlinear algebraic
equations needs to be provided as a start for the solution.

4.5 DIFFERENT APPROACHES TO THE SOLUTION

451 Method 1: Trial and Error

The first method, presented in most textbooks on fluid mechanics, is trial and error.
The values for D corresponding to a series of guessed values of nominal sizes for GI
pipe are substituted into the above system of equations. The value of D that satisfies
the equality required by Eqn (4.4) is the solution. The results from this procedure

5The meaning of good is that guesses should not be too far from the eventual solution. For a single equation,
it is easy to find the approximate solution (i.e., the guess) by plotting the equation for the variable whose
value you wish to obtain, thus finding its approximate root. For a system of nonlinear algebraic equations
coming up with a good set of values for the initial guesses may be more challenging. Often, good guesses
for the system are had by using the solutions for a similar case that has already been solved. Other than
this, trial and error is usually needed, along with a sense for approximately what the solutions will be.
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are presented in Table 4.2, where we see that Eqn (4.4) is satisfied for a nominal pipe
size between 2 and 3 in., that is, right-side values for Eqn (4.4) of 1.779 and 0.2277
bound the left-side value of 0.8904. As discussed in Section 3.5, we choose a nominal
3-in. pipe, the larger of the two®. An inspection of Fig. 5.31 will reveal that, under
the prescribed conditions, a 3-in. nominal GI pipe will pass ~40 L/s of water flow,
much larger than required for this design. The problem with this “oversized” pipe is
discussed in Section 4.7.

4.5.2 Method 2: Use of Head-Loss Data

In this method, which has found the broadest usage when the graphical hydraulic-
gradient-line method is employed for the design of gravity-driven water networks
(Section 6.6.2), we focus on the middle term in Eqn (4.4), the hydraulic gradient,
which is sometimes referred to as the “head loss per unit length of pipe” or “head-loss
factor.” This was the subject of a calculation in textbox B.2.6. Tables and plots of
hydraulic gradient, k1, /L, for different types of pipe and a range of wall thicknesses
are published in the literature including tables in handbooks (Jordan Jr., 2004) and
technical trade publications, such as The Plastic Pipe & Fittings Association (2002)
both for PE pipe. Two such plots, one for sch. 40 GI pipe and the other for sch. 80,
were generated and appear in Figs. 4.1 and 4.2.” These were produced by the two
right-most terms in Eqn (4.3),

hi _ 8Q? /(Q,D)

L m2g DS

where f(Q, D) is the friction factor from Egs (2.16) and (2.17). From our inspection
of Fig. 4.1, we find that nominal 3-in.pipe is required for @ of 18.3 L/s and hr/L
of ~0.9. Obviously, this is a relatively quick and simple method compared with the
trial-and-error approach of Method 1. However, this method can be used only if the
designer has the head loss table or curves for the particular pipe of interest.® That is,
the head-loss data are specific to pipe material (because of roughness) and schedule
or SDR because the inside diameter (ID) changes with wall thickness for all outside
diameter (OD)-controlled pipe. Since it is not always practical or possible to obtain

®Note that if 21 -in. nominal pipe (which has D of 2.469 in.) is available, this would be the best choice.
Though they exist, local suppliers of plastic pipe may not stock the larger pipe sizes, say >2 in., in half-inch
increments.

"Note there is very little quantitative difference in these two graphs, especially for the larger pipe sizes.
The differences between the inside diameters for sch. 40 and sch. 80 pipe are not large. For this detail, see
Section 3.4.1.

8Many such tables have been found to have values for the head-loss that differ by as much as 35% from
those calculated from the friction factor recommended for use in this book. Before relying on the accuracy
of data from these tables, the designer should verify scveral of these tabular entries over the range where
they will be used. This can be easily done with the Mathcad worksheet HydraulicGradient .xmcd.
Please see Exercise 13. One source reporting reliablc hcad-loss data from the Darcy—Weisbach equation is
Appendix 4 of Trifunovic (2006), for specified wall roughness ¢, and D in integer metric sizes (not actual
ID for nominal pipe sizes).
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Table 4.2 Trial and Error Method of Solution where D is Unknown®

Nominal Inside Reynolds Friction  Right Side Comment
Size Diameter, Number, Factor, of
(in.) D (in.) Re f(Q,D) Eqn4.4)
1 1.049 6.703 x 10°  0.03028 62.64 Excessive friction
Hw 1.610 4.367 x 10°  0.02709 6.582 Excessive friction
2 2.067 3.402 x 10°  0.02554 1.779 Excessive friction
3 3.068 2202 x 10°  0.02356 0.2277 Insufficient friction

4The left side of Eqn (4.4) is 0.8904. The value for D that satisfies Eqn (4.4) is between 2.067 in. (2-in nominal) and 3.068 in. (3-in nominal). We choose the larger of
the two.
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these sources of head-loss data, Method 2 will not always be the choice of the designer.
In the next method, we will use a commercial software package to solve the problem;
the preferential method is used in this book.

An additional difficulty with Method 2 is including minor losses. Because of
the limitless combinations of fittings and valves that could be installed in a pipe
network, head-loss data are only for a straight pipe and, thus, do not include minor
loss. Iteration must be used to include minor losses as illustrated in Exercise 12;
specifically, by /L for straight pipe is multiplied by (1 + % Zf‘il % ;)> Where %ﬁ |Z.
is the equivalent length of the minor loss contributors, to obtain hp, / L for the network
that includes minor loss. At most, about one or two iterations will be required to
accurately determine D using Method 2 because, as discussed above, minor losses
are not large for gravity-driven water networks. However, for networks where the
minor loss is > 10 ~ 20% of the major loss, several iterations may be required.

Head Loss from Darcy-Weisbach Equation: Schedule 40 GI

Head Loss per Unit Length (%)

Q (liter/s)

Figure 4.1 Head-loss factors, hr /L, for sch. 40 galvanized iron (that is, galvanized steel)
pipe. Horizontal line at hy /L = 1 corresponds to Natural flow in a vertical pipe (please see
Fig. 5.3). Gravity-driven water flow in the pipe corresponds to the region below this line.
Pump-driven water flow, where p; > 0, can occur above this line.
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Head Loss from Darcy-Weisbach Equation: Schedule 80 G|
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Figure 4.2 Head-loss factors, hy, /L, for sch. 80 galvanized iron (that is, galvanized steel)
pipe. Horizontal line at hr,/L = 1 corresponds to Natural flow in a vertical pipe. Gravity-
driven water flow in the pipe corresponds to the region below this line. Pump-driven water
flow, where p1 > 0, can occur above this line.

B.4.1 Care When Using Head-Loss Charts

Care should be taken when using head-loss data from the available charts and
tables. There are several assumptions concerning the friction-factor model (for
example, Darcy—Weisbach or Hazen-Williams, please see Chapter 9), actual
pipe inside diameters versus nominal pipe sizes versus inside diameter values not
connected with actual dimensions or nominal sizes, the pipe roughness, and the
kinematic viscosity of the water (that is, the temperature upon which this property
is based) that vary among the sources. The kinematic viscosity of water should
be based on 10°C. See Exercises 13, 14, and 28.

4.5.3 Method 3: Use of a Computer Program

In the previous two methods two independent calculations are made based on terms in
the energy equation. The first is the net mechanical energy, the left side of Eqn (4.3).
This part may be thought of as the net mechanical energy “compartment”. The fric-
tional losses in the pipe are calculated next from the right side of Eqn (4.3), the result
from which may be thought of as the frictional energy or dissipation “compartment”.
The results of these two independent calculations are compared through the energy
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equation [Eqn (4.4)] and a choice made for the pipe diameter that best matches the
values from the two compartments. This is how the pipe flow problems of class 4
have traditionally been solved.

A different approach is taken in Method 3. The flow in the pipe in this example
must satisfy energy conservation. Thus, by writing the energy equation for pipe flow,
Eqn (4.4), between the inlet and outlet states, we can solve (using a root solver in
the package Mathcad) this equation for the unknown pipe diameter. The solution for
Re and friction factor are also solved along with the energy equation in a procedure
referred to as the “simultaneous” solution of the subject three algebraic equations.
This is the approach used throughout this book. The main benefit of the use of a
software package to solve pipe-flow problems of the current type is that it eliminates
compartmentalization of the solution by simultaneously solving the three nonlinear
algebraic equations that determine the solution for D; energy, and the equations for
friction factor and Re. Thus, the numerical value for ) is determined directly from
the solution after which the designer can easily choose the nominal pipe size having
an ID equal to or slightly larger than this value. A copy of the Mathcad worksheet
that shows this calculation is presented in Fig. 4.3 where use is made of the root
function.® The result (D of 2.360 in., the nominal pipe size having the next largest
value for D is 3 in.) is, of course, identical to that from the first two methods.

The clear advantages of Method 3 are that, given the Mathcad worksheet and, of
course, a working copy of Mathcad on a computer, this approach is just as quick as
Method 2 and, most importantly, it requires no source of head-loss data. Thatis, these
data are produced by the friction factor function already in the worksheet. Method
3, which automatically accommodates any minor losses, is clearly much quicker and
less tedious and prone to error than the approach of Method 1. Should the designer
not have Mathcad, other programs, such as Excel or a hand-held calculator, may be
programmed with the same equations that appear in the Mathcad worksheet. This
has been done by the author and other practitioners in piping system design. An
additional benefit of Method 3 compared with Method 2 is that uncertainty in the
accuracy of head-loss data is eliminated. The friction factor that is used [Egs (2.16)
and (2.17)] is accurate and includes not only the turbulent flow regime over the range
of Re encountered in gravity-driven and forced-flow water networks, but the laminar
and transition regions should they arise.

4.6 A NOTE OF CAUTION

After completing this chapter, it may be tempting for readers with a background in pipe
flow calculations to be cavalier about the material that remains ahead, including local
pressure distribution and analysis and design of multiple-pipe networks. If among this
group, do not let this premature sense of understanding interfere the learning process.
Unless you have had considerable experience analyzing and designing gravity-flow

9The root function in Mathcad is equivalent to the Given. . .Find construct except that it solves for the
root of a single nonlinear algebraic equation instead of multiple ones.
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Method 3
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Figure 4.3 Mathcad worksheet solution for solving a pipe-flow problem where D is
unknown. The function fric_fac is the friction factor evaluated by the root solver.
The final two arguments in the function root (funct(f1i,Re,ebyD,£1),0.0001,f1) of
0.0001 and f1 are the assumed lower and upper bounds for the value of the friction factor,
frict_fac(Re,ebyD). Here, D is determined using the same root solver where the lower
bound is assumed to be 0.0001 in. and the upper bound 8 in. Re(D) = 4Q/(wvD) is Re
written as function of D. Mathcad worksheet single pipe example-method 3.xmcd.
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networks, the content awaiting you is not trivial nor obvious. To entice participation
in service projects that use the theory and applications in this book, I have heard
one student say to another that the material is “easy.” Indeed, in the overall scale
of college-level learning in engineering, for example, all evidence points to the fact
that the material is not. In particular, the solution of systems of nonlinear algebraic
equations (using Mathcad or any other technology) is never simple. Minimization
of network cost to provide static pressure heads at junctions of multiple pipes (a
uniqueness problem), the modeling of flow in a loop network where flow rates and
pipe sizes are unknown, and the effect of trapped air in network pipelines, among
many others, are not simple topics.

Whether you are an experienced engineer/designer or a novice engineering or
technology student, you are encouraged to move forward with an open mind while
exploring the remainder of this book.

4.7 SUMMARY

To summarize the solution of a pipe-flow problem of class 4, where either D or )
is the unknown, three basic methods are described to carry out the solution. Trial
and error is a “brute force” method that will normally work, but is tedious and time
consuming, especially, as we will see in Chapter 11, for multipipe flow networks.
Method 2 requires that the designer have access to the head-loss curves or tables for
the specific pipe material and wall thickness under consideration, and to include minor
losses using potentially tedious iteration. Since this is not always practical, Method
3, which uses the computer package Mathcad and the friction factor presented in
Chapter 2 instead of head-loss charts, is the method of preference.

A closing comment is needed concerning the lack of ability to choose a nominal
pipe size that has the exact value for D calculated from the energy equation. The ID of
a sch. 40 nominal 3-in. pipe is 3.068 in. whereas the pipe diameter required to satisfy
the conditions stated in the above example problem is 2.360 in. One or more of the
parameters must therefore be adjusted in value to accommodate this change. Often,
industry restricts adjustability of the prescribed flow rate and static pressures p; and
D2 because they are constrained by other parts of the flow network. This also applies
to gravity-driven water networks. A quick calculation with the Mathcad worksheet
shown in Fig. 4.3, where we fix D at 3.068 in. and allow p5 to vary, shows that a 3-in.
nominal pipe will supply the required flow rate (subject to the given inlet pressure and
elevation change) for ps equal to 665 kPa. Thus, a throttling valve is needed at the
point of delivery of the water to reduce the static pressure from 665 kPa to the required
120 kPa. As discussed in Section 13.14, this type of adjustable valve, a globe valve, is
used at various locations in nearly every pipe network to allow flexibility in the flow
and pressure conditions (i.e., for flow control). From this, we see that a globe valve
in the pipe has the effect of a reducing the pipe diameter from one corresponding
to a nominal size. The globe valve allows the designer to more-closely match the
diameter corresponding to the chosen nominal pipe size with the required theoretical
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inside diameter. The reader may find it convenient to remember that a globe valve is,
in effect, a device that can reduce the diameter of the pipe in which it is installed.
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CHAPTER 5

MINOR-LOSSLESS FLOW IN A
SINGLE-PIPE NETWORK

“Do Something for Somebody Everyday for which you do not get Paid.”
~ A, Schweitzer

5.1 INTRODUCTION

This chapter presents results pertaining to the analysis and design of a single-pipe
network. This refers to a pipe of uniform diameter, and possible fittings and valves,
that connect a source of water to a delivery location. If, for any reason, the pipe has
multiple diameters, then the network is of the multiple-pipe type. The theory and part
of the design for multiple-pipe networks is presented in Chapter 11. Applications for
the material in this chapter include any water source, such as groundwater or a spring
(see Chapter 1 for these definitions), that is open to atmospheric pressure, or a storage
or break-pressure tank under the same condition. The static pressure at the delivery
location can be atmospheric (that is, zero-gage pressure) or any positive value such
that pa/pgz1 < 1, as discussed in Chapter 2. The positive static pressure at the
delivery location is physically produced by a minor-loss element, such as a faucet or
globe valve. Only in this sense is minor loss considered in this chapter; that is, no
minor losses are considered at any other location along the pipe-flow path.

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 107
Copyright (©) 2010 John Wiley & Sons, Inc.
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As indicated in Chapter 2, although the minor loss elements may certainly be
present in the network, their effects on the selection of pipe sizes is normally small
except where intentionally included for flow control. The reader is referred to Chap-
ter 8 for the appropriate Mathcad worksheet where minor losses are to be considered.
Because single-pipe networks are so common, the design charts presented in this
chapter are expected to be useful, especially in the field, for rapid estimation of pipe
sizes for these simple networks.

Also included in this chapter are design charts for the more-general case of forced
flow in a single-pipe, uniform-diameter, minor-lossless flow network. In this case,
the pressure at the source can take on any nonzero value. These formulas and design
charts are useful as acomplement to the present work on gravity-driven water networks
in cases where a pump is used to deliver the flow.

From our inspection of the general form of the energy equation for gravity-driven
pipe flow, Eqgs (2.33) and (2.40), we see that Eqn (2.33) is a special case of the more-
general Eqn (2.40) with tortuosity A setequal to 1. Thus, Eqn (2.40) and its restrictive
cases, Eqs (2.41) and (2.43), are the energy equations of interest. In any of these,
mean slope s, tortuosity A, and the dimensionless static pressure at delivery, F', can
be given any values specified by the designer. The neglect of minor losses means
ignoring all terms in Eqn (2.40) that include D/z;. This gives Eqs (2.41) or (2.42).
After being written in terms of () instead of % as in Section 5.2, the solution of
Eqn (2.42), a nonlinear algebraic equation, is carried out in Mathcad using the root
function.! The friction factor is from Eqn (2.16).

5.2 SOLUTION AND BASIC RESULTS

The focus of this chapter is on the solution of the energy equation for minor-lossless
pipe flow, Eqn (2.44), rewritten here for convenience

1-F  8Q° f(Q,D)
AM1+s2 72g D3

A comment on the dependencies appearing in Eqn (2.44) is in order. Equation (2.44)
includes Q, D, F, s, f(Q, D), and ), along with constants. From among this list,
f(Q, D) will always be a function of the solution though Eqn (2.16). That is, the
value for f(Q, D) will never be prescribed by the designer. Each of the terms F', s, and
A are almost always treated as either a parameter or an independent variable;? in many
of the design graphs appearing in this book for a single-pipe network, s is normally
the independent variable. () and D are either the dependent variable or a parameter.
For example, in the next paragraph, we will plot Q = Q(s), where D, F’, and ) are
parameters. In the design plots that form the bulk of this chapter, D = D(s,Q),

=0

'The root function in Mathcad is equivalent to the Given. . Find construct except that it solves for the
root of a single nonlinear algebraic equation instead of multiple ones.

2An independent variable is one that is varied according to our wishes to investigate the response of a
dependent variable. A parameter is typically a variable held constant during this investigation.
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which produces a contour plot, where there are two independent variables, s and (),
and F' and )\ are parameters. Throughout all of this discussion and for all cases, the
solution for the problem of pipe design is from the same energy equation, the only
thing that changes is for what variable we are solving.

B.5.1 Example: The Solution of Eqn (2.44)

The solution of Eqn (2.44) will ultimately be carried out using a root-finder
in Mathcad. However, here we will use Gauss—Seidel Iteration, discussed in
Chapter 4, to illustrate the solution. For this example, Q = 1.43 L/s, s = 3.3%,
A = 1.32,and F' = 0.20 and the pipe is SDR-26 metric polyvinyl chloride (PVC,
where € = 1.52 x 10™3 mm). Following the procedure of Chapter 4, Eqn (2.44)

is rewritten as
8Q2 /\\/1+S 2 QD)]l/S
29 1-F

Note that the friction factor f(Q, D) depends on the Reynolds number (Re) and
relative roughness as discussed previously. Thus,

f(QvD) :f(Re’E/D)

where, as we saw in Section 2.5, Re is

D=[—

Re = 4Q/mvD

After substituting the values for , s, A, €, and F' and rewriting the above expres-
sion for D to accommodate the Gauss—Seidel algorithm, we get

8-(1.43 x 1073 m?/s)? - 1.32
72 -9.807 m/s? - 0.033- 0.8

DY — [ . f(ReOld,C/DOld)]l/s
or
D™¥ = 96.70 mm - f(Re”?, e/ DO!4)1/5 (5.1

where
old RG(Q Dold)

We begin by supplying a guess for D = D°'? of 25 mm. Substituting this into the
right side of Eqn (5.1) gives D™** = 44.53 mm. This procedure is repeated until,
after just three iterations, we obtain a converged solution for D = 45.72 mm
(Table 5.1). From Table 3.8, a nominal 50-mm size [inside diameter (ID) of
46.0 mm] is chosen based on this value of D.

The fundamental results from the solution of Eqn (2.44) are now explored. We
present a graph of () versus s for two pipe diameters and two values for A and
F = 0.5 (see Fig. 5.1). We see that the water flow rate increases with slope and
with pipe diameter. This can be explained from an intuitive argument. Imagine a
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Table 5.1  Solution of Eqn (2.44) by Gauss—Seidel Iteration

Iteration  D°9 (mm) D% (mm)

1 25 4453
2 44.53 45.61
3 45.61 45.72

4The term D™ is the updated value of D after the “old” value of D (1D°!4) is substituted into the
right side of Eqn (5.1).

single, straight, open-ended pipe of length L held in your hands where the pipe has
a constant source of water at the top opening. If the slope of the pipe is zero, (i.e.,
horizontal), there is no effect from gravity pulling the water downward because of
the zero slope and the flow rate is zero. Note how all of the curves in Fig. 5.1 tend
to zero flow rate as the slope approaches zero. As the slope of the pipe increases, the
flow rate increases because of the increase in z;; recall Eqn (2.39) where s ~ z;/L
for small slope. For example, for a pipe with a slope of one, a pipe inclination of 45°,
the flow rate increases to the largest value seen in Fig. 5.1. It is easy to explain how
energy is conserved as s increases. An increase in flow rate in a pipe of fixed diameter
caused by an increase in s means an increase in flow speed. The greater flow speed,
in turn, means greater energy dissipation over the pipe length and this comes from
the increase in potential energy caused by increasing z; and s.

Water flow rate also increases with pipe diameter, as seen in Fig. 5.1. For a given
length of pipe, the frictional energy loss (which comes from shear between the pipe
wall and water) is proportional to the circumference of the pipe (7w D) and for a given
flow speed, the flow rate is dependent on the pipe cross-sectional area (w.D?/4). The
ratio of the area to the circumference is proportional to D so that, as D increases,
more water can pass through the cross section of the pipe per unit of shear stress at
the pipe wall. We also see in Fig. 5.1 that, as expected, the water flow rate decreases
as the pipe gets longer because of the additional friction. This is the effect of A.

5.3 RESULTS FOR LIMITING CASE OF A VERTICAL PIPE: FROUDE
NUMBER

As the slope of the pipe approaches infinity (that is, a vertical pipe), the pipe length
becomes equal to the elevation at the top of the pipe and the flow rate reaches a
maximum value. This is seen in Fig. 5.2, which is identical to Fig. 5.1 except that
the slope axis now ranges from 0.2 to 10. The maximum flow rate in this case can be
compared with the classical “terminal velocity” of a body falling in a fluid under its
own weight. In this situation, the speed of the fall is such that the drag acting on the
body is exactly balanced by the body’s weight. The acceleration is zero and the speed
that the body achieves under this condition is referred to as “terminal.” Thus, with a
large slope (10 is large enough to be considered infinite), water is simply free-falling
vertically in the pipe and will reach a speed where the weight of the water is exactly



UMITING CASE OF A VERTICAL PIPE 111

Pressure at Delivery = F = 0.5. Mo Minor Loss.

~—D=05inA=1

= D=15inA=1
D=05in k=15
OD=15in, k=15

Q (liters/s)
w

o 0.1 0.2 0.3 0.4 0.6 07 0.8 0.9 1

0.5
Slope, s

Figure 5.1 Volume flow rate of water versus mean slope of pipe for two different diameters
of PVC IPS pipe and two values for pipe length. A = 1 corresponds to the straight pipe case.
Here, A = 1.5 is for a pipe length 50% greater than the straight pipe case. Dimensionless static
pressure at delivery corresponds to F' = p2/pgzi = 0.5. No minor loss.

balanced by the friction force at the pipe wall. Under these conditions the energy
equation to be solved for the terminal velocity of the water is from Eqn (2.40) with
s — oo. With minor losses neglected, A = 1, and the delivery pressure of zero for
Natural flow [Eqn (2.43)], we get

—% = (5.2)

~ The solution of Eqn (5.2), with %y, converted to volume flow rate, (), appears
in Fig. 5.3 for a broad range of pipe diameter (see related Exercise 15).

While this limiting case is of interest from a theoretical perspective and as an upper
bound on the volume flow rate of water in a gravity-driven flow, it has little relevance
in an actual design since few, if any, reservoirs are located vertically or near vertically
above the delivery spot.

It is worth mentioning at this point that since 1 and f (%, D) in Eqn (5.2) (dropping
subscript o) are clearly dimensionless numbers, then the group %?/2gD must be a
dimensionless group. In fluid dynamics, %2 /2¢D is related to the Froude number, Fr,
defined as

u

Fr = (5.3)

2
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Pressure at Delivery = F = 0.5. No Minor Loss.

D=05inA=1
= D=15in k=1

D=05inA=15

D=15in k=15

Q (liters/s)
-y

w

o 1 2 3 4 B 7 8 9 10

5
Slope, s

Figure 5.2 Same as Fig. 5.1 except slope axis ranges from 0.2 to 10. Terminal values for @
are seen in this figure as slope— oo.

=]

a_(iters’s)

0.5 1 1.5 2 25 a a5 4
D (in}

Figure 5.3  Limiting case for the terminal volume flow rate of water in a vertical pipe. The
circles correspond to PVC IPS nominal pipe sizes of 3, 2,1, 13,2, and 3 in.
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which may be interpreted as proportional to the ratio of the inertia force to the body,
or gravity, force on the flow.
Thus, we see that Eqn (5.2) can be rewritten as

f(@, D)Fy? =2 (5.4)

where Fr depends on the flow speed %, as in Eqn (5.3).

If the reader has covered Dimensional Analysis, normally part of a fluid mechanics
course, Fr may be readily recalled. Fr always arises in fluid dynamics when there
is gravity or a similar force field, such centrifugal force in the problem. Since the
friction factor is of the order of 0.02, Fr is seen through Eqn (5.4) to be of the order of
10, a result that reflects the small length scale (that is, the pipe diameter) for gravity-
driven flow in a pipe. As the length scale increases, say, for example, for large waves
acting on the bow of a ship, the value of Fr decreases indicating a greater effect from
the gravitational influences in the problem. No further discussion of Fr is necessary
here. It is more convenient to deal with the group @?/2gD rather than Fr since in the
present work we will be solving for @, or ) derived from %, directly.

5.4 DESIGN GRAPHS FOR A SINGLE PIPE FOR MINOR-LOSSLESS
FLOW

The design graphs for a single-pipe network for minor-lossless gravity-driven flow are
presented in Figs. 5.4-5.11 below for English-based, sch. 40 PVC pipe (Section 5.4.2),
Figs. 5.13-5.20 for sch. 40 galvanized-steel pipe, often referred to as galvanized iron
(GI) pipe (Section 5.4.3), and in Figs. 5.22-5.29 for metric-based, SDR 21 PVC pipe
(Section 5.4.5). The plots are of (Q as a function of the mean slope, s, for a range
of nominal pipe diameters (the actual inside diameters differ from the nominal size
as discussed in Chapter 3 and were used as D in the calculations)? and for different
values for " and A as parameters. The F' values are 0 (atmospheric pressure at the
delivery location or Natural flow), 0.1, 0.25, and 0.5, and the X values are 1 (straight
pipe) and 1.5 (50% longer than straight pipe). This relatively large value for X is
chosen as a realistic upper bound of its affect on (Q and D. The plots noted above are
similar to that of Fig. 5.1 except that the design plots are presented with log-log axes
and grid lines to be able to better read the numbers for s and @ over a large range of
values.

Generally, all figures show that the volume flow rate increases in proportion to
nearly the square root of s for a given D. Increasing D also increases ), as discussed
above, with the largest changes from size to size in the smallest diameter range.
Increasing the pipe length by 50% over the straight-pipe case of A = 1 (Figs. 5.4
5.7) decreases @) by ~25% (see Figs. 5.8-5.11 for A\ = 1.5), which is not a very

3The pressure ratings for the sch. 40 pipe range from 600 to 180 psig for the smallest to the largest pipe
size appearing in these figures (see Table 3.3). The pressure rating for metric-based, SDR 21 PVC pipe is
PN 10 or 147 psig (please see Table 3.7). These results from these charts are expected to approximately
apply to the lower pressure rated, SDR 26 PVC pipe because the ID values for SDR 21 and SDR 26 are
nearly identical.



114 MINOR-LOSSLESS FLOW IN A SINGLE-PIPE NETWORK

large impact on the design. As discussed in textbox B.2.10, the tortuosity A is not
a strong influence for two reasons. First, the common-sense practice is to connect
the source, tank, and tapstands by as short a pipe length as possible to minimize pipe
cost. Second, the mean slope of a typical design is very small. Thus, the run of a
water-delivery pipe is very much larger than the elevation of the source so that peaks
and valleys in the pipeline and a normal degree of circuitousness in the horizontal
plane does not add much overall length to the pipe. For both of these reasons values
for A larger than one plus a very small fraction are unusual for most actual designs.

In Fig. 5.13, for galvanized straight steel pipe and delivery static pressure of zero,
we see that the water flow rate is considerably smaller than that for the smoother PVC
pipe (cf. Fig. 5.4) of the same diameter. A quick consult with the Moody chart from
Fig. 2.5 or any fluid mechanics textbook shows that, for Re approximately < 105,
the difference between the friction factors for relative roughness of 1 x 107¢ and
100 x 107° is as much as a factor of two. The difference becomes larger with larger
Re, but these are not common for gravity-driven water flows. It is also noteworthy
in Fig. 5.12 that laminar flow is obvious for the smallest values of s and the smallest
pipe sizes. Note the marked difference in slopes of the curves for this range compared
with the rest of the figure that are in the turbulent regime.

A Mathcad worksheet has been produced that solves for the nominal pipe diameter
for prescribed values of @, s, A, and F and includes the effects of minor losses. This
code, a copy of which appears in Fig. 8.1, is supplied with this book. Compared with
the above design graphs, the program has the advantages of including the minor losses
where they may be needed. The Mathcad worksheets for multiple-pipe networks
where the inlet and outlet static pressures may not be zero for one or more of the
pipes are also supplied with this text. Copies of these appear throughout the text.

The design charts are presented below as a tool that can be used in the field for
rapid estimation of pipe sizes. For more-thorough design calculations, the Mathcad
worksheet is a more-appropriate tool, but may not be convenient in the field.

5.4.1 Use of the Design Graphs

First, we address the choice of the appropriate figure to use. It is assumed that values
for () and s are known from assessment of the potential site. In many cases, the
designer will not know accurate values for F' and A for the proposed network at an early
point in the design process. Even if they were known, the graphs corresponding to
these exact values are not likely to appear in Figs. 5.4-5.29. The suggested procedure
for using these figures in this situation is as follows. This discussion will use English-
based, sch. 40 PVC pipe as an example (Figs. 5.4-5.11). If the designer is interested
in GI pipe, Figs. 5.13-5.20 should be used, and for metric sizes, Figs. 5.22-5.29.

o UseFig. 5.4 to estimate the pipe diameter based on the known volume flow rate
and mean slope between the source and delivery. This is for assumed values
of ' = (0 (Natural flow) and A = 1 which, as discussed in Section 2.32, will
produce a lower-bound estimate of the pipe size. The pipe size will always be
the smallest possible for the given site geometry because friction is the only
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effect balancing the potential energy for Natural flow. That is, a small pipe size
is required to produce the large flow speeds needed to generate the necessary
friction.

o Repeat this step using Fig. 5.8, which is for F = 0 and A = 1.5. If there is
a difference in pipe sizes between these two steps, either choose the largest
pipe size between the two or a more-detailed analysis needs to be carried out
to calculate the diameter. This step addresses the effect of pipe length on the
pipe diameter. Note, however, that D determined from this step is likely to
be “worst case” or larger than required by the design because values for A are
normally < 1.5 for most networks.

e To determine the sensitivity of D to static pressure at the delivery location,
repeat the first step using Fig. 5.5, for ' = 0.1 and A = 1, then Fig. 5.6, for
F =0.25and A = 1, and so on. If necessary, repeat with Fig. 5.9, for F = 0.1
and A = 1.5, then Fig. 5.10, for F' = 0.25 and A = 1.5, etc. For most systems,
where the elevation head of the source is >20 m, a pipe having F' > 0.5 is not
likely. An inspection of the results by sequential use of the above figures will
give the designer a sense for the appropriate pipe diameter to use.

Recall that in all of the figures presented in this section, minor losses have been
neglected. We will consider the impact of minor losses on the design in Chapter 7.
For all design graphs, water temperature is assumed to be 10°C.

In Section 5.5 and in Chapter 9, we demonstrate that all of the design graphs for a
given pipe material and wall thickness or schedule can be condensed to a single plot.
Essentially, this is done by simply rearranging the solution for the dimensionless form
of the energy equation, say in terms of () or D. See Eqn (9.7) or Fig. 9.4. Note that
the two dimensionless groups that appear in these plots are what would be obtained
if dimensional analysis, say the use of the Buckingham Pi theorem, is performed on
the problem of gravity-driven flow in a single pipe. See the topic of Dimensional
Analysis in most fluid mechanics textbooks for information on the Buckingham Pi
theorem.

5.4.2 Design Graphs for IPS, Sch. 40 PVC Pipe

The design graphs for English-based (IPS), sch. 40 PVC pipe are presented in this
section in Figs. 5.4-5.11. A plot of Re for this type of pipe appears in Fig. 5.12.

5.4.3 Design Graphs for IPS, Sch. 40 Gl Pipe

The design graphs for English-based (IPS), sch. 40 GI pipe are presented in this
section in Figs. 5.13-5.20. A plot of Re for this pipe appears in Fig. 5.21.
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F =0, A =1, No Minor Losses

Q (liters/s)

Mean Slope, s

Figure 5.4  Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40
PVC pipe diameters. Delivery pressure corresponds to F' = p2/pgz; = 0 (Natural flow) and
A = 1 (straight pipe case). Laminar flow is evident for the smallest pipe sizes and the lowest
values for the slope. This is followed by the transition regime, and then fully turbulent flow.
These characteristics appear in the remaining design plots in this chapter.

F=0.1, A =1, No Minor Losses

————————————————

NP

Q (liters/s)
3

Mean Slope, s

Figure 5.5 Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal
PVC pipe diameters. Delivery pressure corresponds to F' = p2/pgz; = 0.1and A = 1.
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F =0.25, & = 1, No Minor Losses

Q (liters/s)

Mean Slope, 5

Figure 5.6  Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal
PVC pipe diameters. Delivery pressure corresponds to F' = ps/pgz1 = 0.25 and A = 1.

F=10.50, % = 1, No Minor Losses

Q (liters/s)

Mean Slope, s

Figure 5.7 Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal
PVC pipe diameters. Delivery pressure corresponds to F' = p2/pgz1 = 0.5and A = 1.
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F =0, & =1.5, No Minor Losses
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Q (liters/s)

L
2 10° 10°

Mean Slope, s

Figure 5.8  Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal
PVC pipe diameters. Delivery pressure corresponds to F' = pa/pgz; = 0 (Natural flow) and
A = 1.5 (50% longer than straight-pipe case).

F=0.1, k = 1.5, No Minor Losses

Q (liters/s)

10 10
Mean Slope, s

Figure 5.9  Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal
PVC pipe diameters. Delivery pressure corresponds to F' = pa/pgz1 = 0.1and X = 1.5,
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F=0.25, A= 1.5, No Minor Losses

Q (liters/s)

10°
Mean Slope, s

Figure 5.10  Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal
PVC pipe diameters. Delivery pressure corresponds to F' = p2/pgz; = 0.25 and A = 1.5.

F =0.50, & = 1.5, No Minor Losses

Q (liters/s)

2in
14/21in

10° : : == 3l in
- - = 12in

Mean Slope, s

Figure 5.11 Volume flow rate of water versus mean slope of pipe for nine sch. 40 nominal
PVC pipe diameters. Delivery pressure corresponds to F' = pa/pgz1 = 0.5 and A\ = 1.5.
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F =0, L =1, No Minor Losses

Reynolds Number

Mean Slope, s

Figure5.12 Reynolds number versus mean slope of pipe for nine sch. 40 nominal PVC pipe
diameters. Delivery pressure corresponds to F' = p2/pgz; = 0 (Natural flow) and A = 1
(straight-pipe case). Recall that the flow is laminar for Re < 2300 and that turbulent flow is

assured for Re >3000.

F =0, & = 1, No Minor Losses

— ——

Q (liters/s)

Mean Slope, s

Figure 5.13  Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40
galvanized-steel (GI) pipe diameters. Delivery pressure corresponds to F' = pa/pgz; = 0
(Natural flow) and A = 1 (straight pipe case). Compare with Fig. 5.4 for PVC pipe.
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F=0.1, k=1, No Minor Losses

Q (liters/s)

w

Mean Slope,

Figure 5.14  Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40
galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F' = p,/pgz1 = 0.1
and A = 1.

F = 0.25, &= 1, No Minar Losses

Q (liters/s)

10 10° 10"
Mean Slope, s

Figure 5.15  Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40
galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F' = po/pgz1 = 0.25
and A = 1.
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F=10.50, % =1, No Minor Losses
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Figure 5.16  Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40
galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F' = pa/pgz1 = 0.5

and A = 1.

F =0, & = 1.5, No Minor Losses
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Figure 5.17  Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40
galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F' = p/pgz1 =
(Natural flow) and A = 1.5 (50% longer than straight-pipe case).
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F =01, A= 1.5 No Minor Losses
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Figure 5.18 Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40

galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F' = p2/pgz; = 0.1
and A = 1.5.

F=0.25, = 1.5, No Minor Losses
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Figure 5.19  Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40
galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F' = py/pgz1 = 0.25

and A = 1.5,
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F =0.50, & = 1.5, No Minor Losses
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Figure 5.20  Volume flow rate of water versus mean slope of pipe for nine nominal sch. 40
galvanized steel (GI) pipe diameters. Delivery pressure corresponds to F' = pa/pgz1 = 0.5
and A = 1.5.

F =0, & =1, No Minor Losses
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Mean Slope, s

Figure5.21 Reynolds number versus mean slope of pipe for nine nominal sch. 40 galvanized
steel (GI) pipe diameters. Delivery pressure corresponds to F' = pa/pgz1 = 0 (Natural flow)
and A = 1 (straight-pipe case). Recall that the flow is laminar for Re < 2300 and that turbulent
flow is assured for Re >3000.
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5.4.4 Approximate Formulas for D: A Preview

In Chapter 9, we will explore the use of an approximation for the friction factor for
smooth pipe and a restricted range of Re. One consequence of this approximation is
a simple formula for theoretical pipe diameter D as a function of @), s, and A. The
result [Eqn (9.3)] is previewed here for convenience,

s(1—-F)
A

where g = 9.807 m/s? and, for water at 10°C, v = 1.307 x 107% m?/s. Recall that
based on previous discussions, A may be approximated to leading order as A =~ 1.2.
Equation (5.5), which assumes a restricted range of Re and smooth pipe®, is easily
programmed on a handheld calculator and may be used to make a quick estimate of
D or a verification of D obtained by the design charts in this chapter or Mathcad
worksheets.

Swamee and Sharma (2008) report an extension of this approximate formula to
include laminar flow and, for turbulent flow, the effect of pipe roughness, €, for
nonsmooth pipe. They present,

]—4/19 (V1/7Q)7/19 (5.5)

D~ 0.741] 7

vQ 1625
D = 0.66{{214.75————
{ g(hL/L)]
2
+ 61.25 [ Q ]4.75 + VQ9'4(ghL/L)_5'2}O'O4 (56)

g(h/L)
where the hydraulic gradient, by, /L, is s (1 — F) /A, as discussed in textbox B.2.6.

B.5.2 Example: Use of the Design Charts for Gravity-Driven Flow

Calculate the minimum IPS PVC nominal pipe size for a single-pipe, minor-
lossless flow network having a maximum volume flow rate of () = 0.40 L/s and
a mean slope of s = 6%. Investigate the sensitivity of the pipe size to delivery
pressure and pipe length. Calculate Re for the recommended pipe size. Compare
your result with that from Eqn (5.5).

We begin with Fig. 5.4 to estimate D. This is for assumed values of F' = 0
and A = 1 which will produce a lower-bound estimate of the pipe size. For the
prescribed values of () and s, we obtain a pipe diameter between % and 1 in. We
choose the larger of the two, D = 1 in. From Fig. 5.8, which is for I = 0 and
A = 1.5, find the same result. We move on to examine the effect of delivery
pressure to determine if a larger pipe size will be required with higher pressures
at delivery. Using Fig. 5.9 (for F' = 0.1 and A = 1.5), we find the same result as
above for D. From Fig. 5.11 (for F' = 0.5 and A = 1.5), we find that D of 1 in.
is slightly too small.

4Refer to Section 9.3 for the details.
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Use of the Design Charts for Gravity-Driven Flow (Cont’d)

Thus, we conclude if the delivery pressure is to be at least 50% of the elevation
head, a lé-in. PVC pipe is recommended. For static pressure at the delivery
location less than this value and tortuosity < 1.5, D =1 in. is adequate. Keep in
mind that the flow rate was stated to be a maximum. We must be aware of the
need for increasing @), if appropriate, to accommodate growth of the population
over time. From Fig. 5.12, Re for 1 %-in. PVC pipe is~50,000, clearly a turbulent
flow. For the given conditions, Eqn (5.5) becomes

D =0.930(1 — F)~*/1%in,

For ' = 0,0.1,and 0.25, we obtain D = (0.930,0.951, and 0.988 in., respectively.
From Table 3.1, we see that this simple design formula predicts the need for a
1-in. PVC pipe. This is a slight under-prediction for the largest A compared with
the above charts. Note that Eqn (5.5) is valid for only smooth pipe, such as PVC
and PE. This excludes its use for GI pipe. However, Eqn (5.6) may be used in
this case.

5.4.5 Design Graphs for Metric, SDR 21 PVC Pipe

The design graphs for metric-based, SDR 21 PVC pipe are presented in this section
in Figs. 5.22-5.29.

5.5 COMPREHENSIVE DESIGN PLOTS FOR GRAVITY-DRIVEN OR
FORCED FLOW

Gravity-driven water flows are the principal topic in the book. However, the curious
reader will wonder if the formulas and design charts in this and Chapters 2 and 9 can
be applied when flow in a pipe network is driven by a pump or, for a gas, a blower
(both referred to as “forced” flow). The answer to this question is yes, and was
addressed in Section 2.9, where we saw that upon rearranging the energy equation
for pipe flow, Eqn (2.42) (for gravity-driven flow), and comparing with Eqn (2.49)
(for forced-flow), the term

(1-F)
S=—-= 5.7
AV1 4 52 oD
and
S = 21(1 — Fmod) _ Z1 P2 — D (5.8)

L L pgL

play the exact same roles for flow in a pipe of diameter D. The first of these two
equations applies to a minor-lossless gravity-driven flow, and the second, under the
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Figure5.22 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters.
Delivery pressure corresponds to F' = p2/pgz1 = 0 (Natural flow) and A = 1 (straight pipe
case). Laminar flow is evident for the smallest pipe sizes and the lowest values for the slope.

This is followed by the transition regime, and then fully turbulent flow.
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Figure5.23  Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters.
Delivery pressure corresponds to ' = p2/pgz; = 0.1 and X = 1.
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Figure5.24 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters.
Delivery pressure corresponds to F' = pa/pgz1 = 0.25 and A = 1.
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Figure5.25 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters.
Delivery pressure corresponds to F' = py/pgz1 = 0.5 and A = 1.
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Figure5.26  Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters.
Delivery pressure corresponds to F' = p2/pgz1 = 0 (Natural flow) and A = 1.5 (50% longer

than straight-pipe case).
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Figure5.27 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters.
Delivery pressure corresponds to F' = p2/pgz1 = 0.1 and A = 1.5.
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Figure5.28 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters.
Delivery pressure corresponds to F' = p>/pgz1 = 0.25 and A = 1.5.
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Figure5.29 Volume flow rate of water versus mean slope of pipe for nine PVC pipe diameters.
Delivery pressure corresponds to F' = p2/pgz1 = 0.5 and A = 1.5.
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same conditions for flow driven by a pump or blower> Thus, both Egs (2.41) and
(2.49) may be written as the same comprehensive equation in terms of @),

s SR AN ARy (5.9)

Plots of @ versus S for forced or gravity-driven flow are presented in Figs. 5.30
and 5.31 for nine nominal IPS, sch. 40 PVC and GI pipe sizes, and in Fig. 5.32 for
nine metric, SDR 13.6 PVC pipe sizes, respectively. Our inspection of either reveals
the same trends evident in any one of the design graphs above, as well as the terminal
effect for gravity-driven flow. This occurs for S > 1 as terminal flow speed, and
thus volume flow rate, is encountered. Note that Fig. 5.30 is the same as Fig. 5.4 and
Fig. 5.31 the same as Fig. 5.13 except that the group S, as defined above, appears on
the abscissa, and the upper range on the abscissa is larger to accommodate the larger
values for S that typically occur for forced-flow problems. The reason for comparing
the gravity-driven results with those for forced flow in Figs. 5.30-5.32 is to show
that the physics of the flow problem is identical; only the mechanism that drives the
flow is different. In fact, the designer will use Figs. 5.30-5.32 only for forced-flow
networks, since Figs. 5.4-5.29, as they appear, apply only to gravity-driven water
flow networks.

In Egs (5.5) and (5.6), we have approximate formulas for D for gravity-driven
flow in single-pipe networks based on an approximation for the friction factor.® The
equivalent forms for these for the case of gravity-driven or forced flow is,

1/7
D ~0.741 §~/19 (’/—94/—762)7/19 (5.10)
and
D ~0.66 {(214 7552)6.25 Lel2s (Q_2)4.75 + vQ%4(gS) 52004 (5.11)
=~ 0. g S g :

where ¢ = 9.807 m/s? and, for water at 10°C, v = 1.307 x 1076 m?%/s. As noted
above, these may be easily programmed on a handheld calculator to facilitate making
a quick estimate of D, or a verification of D obtained by the design charts in this
chapter or Mathcad worksheets.

5.6 THE FORGIVING NATURE OF SIZING PIPE

Because of the limited number of pipe sizes from which one has to choose, the process
of selecting a pipe size for a given set of design conditions can be, by its very nature, a
forgiving process. To illustrate this, consider any one of Figs. 5.4-5.11, say Fig. 5.5.

5The fluids of interest in this text are liquids, but as noted in Chapter 2, the energy equation for pipe flow
applies to any fluid including gases.
6Please refer to Chapter 9 for the details and restrictions on the accuracy of these formulas.
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Figure 5.30  Volume flow rate of water versus S = (1 — (p2 — p1)/pgz1)/(L/z1) (for
forced flow) and S = (1 — F)/(Av/1 + s—2) for gravity-driven flow for nine nominal sch. 40
PVC pipe diameters. The curves for gravity-driven flow are for Natural flow and A = 1
and become horizontal at an abscissa value of ~2, indicating terminal flow. For s < 1,
S = (1—-F)/(AV1+ s72) = s for Natural flow and A = 1. Our inspection of this figure
shows the practical meaning of s < 1is s < 0.5.
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Figure 5.31  Volume flow rate of water versus S = (1 — (p2 — p1)/pgz1)/(L/z1) (for
forced flow) and S = (1 — F')/(Ay/1 + s~2) for gravity-driven flow for nine nominal sch. 40
GI pipe diameters. The curves for gravity-driven flow are for Natural flow and A = 1.
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Figure 5.32 Volume flow rate of water versus S = (1 — (p2 — p1)/pgz1)/(L/21) (for
forced flow) and S = (1 — F')/(Av/1 4 s~2) for gravity-driven flow for nine metric, SDR 21
PVC pipe diameters. The curves for gravity-driven flow are for Natural flow and A = 1.
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Figure 5.33 A replot of Fig. 5.5 demonstrating the forgiving nature of sizing pipe.

We have modified this figure to emphasize certain points for discussion as follows
and present it as Fig. 5.33.

Consider the following example. The design slope and flow rate are given as 0.04
and 0.6 L/s, respectively, for a minor-lossless flow where ' = 0.1 and A = 1. The
specified design point can be easily located in the appropriate design plot for these
conditions (Fig. 5.5) and is labeled in Fig. 5.33. Since the design point requires a
tube size slightly >1-in. nominal PVC, we choose a lé-in. pipe to satisfy the flow
requirements. By our inspection of Fig. 5.33, we see that by choosing this pipe size,
we have changed the design point from that specified to an infinite number of actual
design points that lie along a line (the operating line) connecting points a and b as
seen in Fig. 5.33. In particular, the system can pass the required flow of 0.6 L/s for a
slope of ~0.008 (much less than the specified 0.04; see point @), and will pass a much
larger-than-specified flow of nearly 1.2 L/s for the specified slope of 0.04 (point b).
As long as F' = 0.1, A = 1, and the minor losses are negligible, the system will
operate at some point on the operating line. Of course, this assumes that the source
can supply the peak flow rate of water (of ~1.2 L/s) that sits on this line. In general,
this may not be possible and to accommodate the lack of the source’s ability to provide
this flow, the designer needs to plan for a fitting in the pipeline to reduce the static
pressure’ in the pipe under consideration (see Section 13.15 for issues on oversized
pipe). Normally this is installed at the lowest end of the pipe.

7For example, a globe valve. With the pressure drop that it causes, a globe valve essentially acts like a
reduction in the pipe size. In this way, the effective pipe size for this example is somewhere between 1 in.
and lé-in. See Section 13.14 for a discussion on energy dissipation and globe valves.
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We see from this brief discussion that selecting the next largest pipe size above the
theoretical value for D adds a degree of forgiveness to the design process. Of course,
the extent of forgiveness depends on the location of the design point relative to the
operating line for the selected nominal pipe size. If the design point is very close to
this line there will not be much forgiveness. Because of this, small errors in slope, flow
rate, F', and A may not adversely impact the success of the operation of the network.
However, the conscientious designer will never rely solely on this forgiveness when it

comes to planning for an expansion of the network to accommodate additional water

flow rate for more houses, schools, community centers, and churches. This should
be built into the design in the normal, systematic way.

B.5.3 Example: Comprehensive Design Chart for Forced Flow

Investigate the sensitivity of the volume flow rate @) to the range of nominal-GI
pipe sizes from % in. to 1% in. The elevation of the pump is 14 m below the
delivery location, the pipe length is 730 m, the discharge pressure of the pump is

p1 = 281 kPa, and the delivery pressure is atmospheric.

The problem is clearly one of forced flow. Therefore we plan to use Fig. 5.31
which applies to GI pipe. First calculate the value for parameter S from Eqn (5.8),

2 pp—p _ —14m  0-281,000N/m® 1kg m/(s?-N)

L pglL  730m 1000 kg/m® - 9.807 m/s® - 730 m
= —0.0192 + 0.0393 = 0.0201.

S =

Note that the elevation, 21, is —14 m since the discharge of the pump (the source)
is below the delivery location.

The volume flow rates for S = 0.02 from Fig. 5.31 for GI nominal pipe sizes of
% in., 1 in., and 1% in. are 0.15, 0.29, and 0.90 L/s, respectively.
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Students and faculty from Villanova University work with technicians
in Waslala, Nicaragua preparing to construct a reservoir.



CHAPTER 6

“NATURAL DIAMETER” FOR A PIPE:
LOCAL STATIC PRESSURE

“How do you get the water to flow uphill?”
— Anita D. Jones (age 84)

6.1 MOTIVATION

In Section 2.6.1, we saw the concept of Natural flow in a pipe as the constant value of
flow that produces a balance between the potential energy of the source and energy
dissipated by pipe friction. In this brief chapter, we explore a related concept. For
a prescribed volume flow rate in a minor-lossless flow and a given geometry of the
network (elevations and pipe lengths), there exists a theoretical pipe diameter dis-
tribution that produces a desired constant value of static pressure at each and every
location in the pipe. We refer to this theoretical diameter as the “Natural diameter”
or “Natural diameter distribution” for a pipe.! For example, the desired local static

! Although the concept of a Natural diameter distribution of a pipe is valid for all flow networks in principle,
in practice it can be obtained only for those networks where the pipe possesses a downward slope at all
points. This slope is referred to as a “favorable slope” for a gravity-driven water network; one that at each
and every point assists the flow with the addition of potential energy that is in turn dissipated as friction.

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 137
Copyright (©) 2010 John Wiley & Sons, Inc.
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pressure may be a (positive-valued) gage pressure needed to produce flow at a dis-
tance or eliminate possible flow of contaminants from the surroundings into a buried
pipe. Jordan Jr. (2004) has recommended a static head of water (p/pg) of a minimum
of 10 m, or ~1 atm of pressure.

As a prelude to this idea, we will need to develop the energy equation for local flow
conditions along the pipe flow path. If desired, the solution from this equation is the
local static pressure. This is the first instance in the text where attention is being given
to the local static pressure, otherwise referred to as the static pressure distribution,
p(z). In the developments in the previous chapters, our focus was on only the inlet
and outlet states for the flow; no attention was paid to those states in between. The
static pressure varies continuously in a pipe flow and must generally be positive—
valued throughout the network for the reasons described above. In addition, and to
answer the quotation above, it is a positive (i.e., greater than gage in value) static
pressure that forces water to flow, locally, uphill. These needs may be a challenge
from a design standpoint especially in networks where there are local peaks that have
an elevation near that of the source. A sound design approach must consider the local
static pressure distribution to ensure that the performance of the network meets the
design specifications.

For simplicity, in the first few sections below we restrict our interest to a pipe that
runs in just a vertical plane, that is, a two-dimensional (2D) network (see Fig. 2.11).
The local static pressure distribution in a fully three-dimensional (3D) network will
be covered in Section 6.5.

6.2 THE ENERGY EQUATION WRITTEN FOR LOCAL STATIC
PRESSURE

We begin by writing the energy equation for pipe flow, Eqn (2.7), in differential form.
We have

o)+ Ld(a(e) @) + gde = ane) =~y )

where the negative sign in right-side friction term (—dpy, is a differential pressure
drop) accounts for the dissipative nature of friction (i.e., a reduction of static pressure
with distance in the direction of water flow). Note that this negative sign would also
appear as a multiplier of the friction term of Eqn (2.7) if its left side were written in
reverse order, state 2 energy values minus those at state 1. The argument z is included
in the appropriate terms in Eqn (6.1) to remind us that the terms may depend on local
elevation. Ultimately, z, in turn depends on the local horizontal coordinate, , through
the geometry of the pipe network. This gives z = z(z), where x is assumed to be
measured from the location of the source.
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Upon integrating Eqn (6.1) from z(z = 0) to any arbitrary z(x) location, we obtain

p(z) —m 4 l[a(z)ﬂ?(z) — 01T + g(z — 21)
P 2
B Ly(2) B E(z)2
I /O F(@(2). D) 5y 4L (2) 6.2)

where Ly is the length of the flow path to any arbitrary location, and z = z(z). In
Eqn (6.2) the differential form of the Darcy—Weisbach equation, Eqn (2.9), was used,

Ps @’
d(~") = f(@,D)—=dL 6.3
(%) = 1@ D)5, 63)
where dL is a differential pathlength for the flow.

As usual, p; and u; are both zero (at the source). Dividing Eqn (6.2) by gz;, where
z1 is the elevation of the source, and rearranging, Eqn (6.2) becomes

plz) 1.2 a(z)a?(2) 1
pg21 21 292 292

u(z)?

Le(2)
| e pe) G ) 69

In Egs (6.2) and (6.4), the static pressure p, elevation z, and flow speed @ are
states and, as such, the differentials of them are exact differentials.? For an exact
differential da, f12 da = ap — a;. In particular, note that the static pressure at any
location depends only on the local value for %, not an integrated value to that point; an
effect that is referred to as the “static pressure regain”, which you may have discussed
in fluid mechanics. The exact-differential nature of p, z, and % is the reason why these
terms do not appear under an integral sign in Eqs (6.2) and (6.4). Friction, however,
is not a state but a path-dependent quantity. Friction arises from work done by shear
forces on the pipe wall from motion of the fluid; it is well understood work (and
heat transfer, for that matter) are path-dependent quantities; longer path lengths cause
larger total frictional forces on the fluid. In the frictional term in Eqs (6.2) and (6.4),
the length from the origin to any arbitrary location along the flow path affects the
local static pressure, not simply the friction at that location. This is why the frictional
term appears under an integral sign in Eqs (6.2) and (6.4).

The differential flow-path length, dL, may be written in terms of differential ele-
vation change, dz, and differential coordinate, dz, as

dL:\/dx2+dz2:\/l+(j—;)2dx: 1+ s2dz (6.5)

where s, is the local slope of the pipe. For a discussion on the sign of s,, see
footnote 18 in Section 2.6.1.

2The distinction between a “state” variable like energy, static pressure p, elevation z, and flow speed 7 and
“nonstate”, or path-dependent, variables like work due to friction is made in classical thermodynamics.
Please see any thermodynamics textbook for this.
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With Eqn (6.5), Eqn (6.4) becomes

p(z)

27— 1= _

pgz1 21 292

— | " pae), D)L TR 66
A PO B '

2gZ1

where £ is a dummy variable of integration.
As a final step we employ the continuity equation, Eqn (2.21), to write @ in terms
of @ as done above. Equation (6.6) is written as

pe) | a)  8Q°  afa)
pgz 2 w9z, D{(z)*

6.7
* f(Q,D(§) 5
+/0 ”D—(s—)s—\/l‘f‘sz(@ dé}

Equations (6.6) and (6.7) are the energy equations (the first in terms of u and
the second in terms of Q) for gravity-driven, minor-lossless® flow in any straight or
curved pipe, of constant or variable diameter, which govern the local static pressure
distribution in the flow, p(z). The first two terms on the right side of Egs (6.6) and
(6.7) account for a static pressure increase with reduction in elevation and the last
term on the right side represents the major frictional loss and the energy to accelerate
the flow locally. It is a relatively straightforward task to show that Eqn (6.6), when
written at x = £, reduces to Eqn (2.34) for a straight pipe of constant cross section
(where sg and D are both constant)?, and to Eqn (2.41) for any general curved pipe
of constant cross section.’ In both cases, recall that F in Egs (2.34) and (2.41) are
defined as p(z = 0)/pgz; or p(x = £)/pgz1. A variation of Eqn (6.6) will appear in
Chapter 7 to describe the static pressure distribution in a pipe where minor losses are
included.

In the present context, the static pressure, p(z), is taken to be a prescribed constant
and we solve the energy equation for the diameter. For this case, we designate this
theoretical diameter from the solution of Eqn (6.7) as D(z) = D™(z) to show that it
is special (i.e., the Natural diameter distribution that produces the required uniform
static pressure in the pipe).

3Note that the term a, which accounts for the local acceleration of the flow over a small length of the pipe,
has been included; this is not a minor loss.

“Please see Exercise 18.

SNote that for constant D and constant volume flow rate, f is also constant and the integral in Eqn (6.7)
reduces to [ V1 + 50(6)2dE = Jo dLe = Ly(z), where Lg(z) is the pipe length from the source to
any arbitrary z (that is, horizontal) location measured along the flow path. Please take a few minutes to
prove this to yourself.
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6.3 AN ILLUSTRATION: THE “NATURAL DIAMETER”

Once the geometry of the pipe is specified, z(z) and slope s¢(z) are known and with
a prescribed uniform value for p(z)/pg, Eqn (6.7) can be solved for D™(z). The
numerical solution of Eqn (6.7) was carried out (in the package Matlab) for two
cases of straight pipe (A = 1) in a minor-lossless flow having a uniform slope of 1%
(small slope) and 100% (large slope of 45°), respectively, with @ of 1.0 L/s and z;
of 100 m. The value for p(z)/pg was set to O (atmospheric pressure throughout the
pipe)®. The friction factor, f(Q, D) from Egs (2.16) and (2.17), is used in obtaining
this solution. The kinetic energy correction factor, «, is 2 for laminar flow and 1.05
for turbulent flow.

The results for this case are shown in Fig. 6.1, where D™(x) is plotted against the
x coordinate. Our inspection of this figure reveals a considerable variation in pipe
diameter that occurs over the first meter, or so, of z. Over this distance’ the pathlength
for the flow is small enough that friction may be neglected in favor of acceleration in
Eqgn (6.7). With the neglect of the integral term, and for p(x)/pgz of zero, we may
rewrite Eqn (6.7) as

n 8aQ?

Dipplx) = (m)”4 (6.8)
where the subscript app indicates an approximate value for D™(z) and s is the mean
slope. A plot of this function appears in Fig. 6.1, where we note near-perfect agree-
ment between Eqn (6.8) and the numerical solution of Eqn (6.7) for the entrance
region of the pipe. From our inspection of Fig. 6.1, we see that D" (x) approaches a
large value (in theory, approaching infinity) as z — 0, a reflection of the need for the
water to remain quiescent to satisfy the imposed zero static pressure. For x values
larger than ~10 meters, friction dominates the flow and D"(z) becomes constant.
This is a consequence of the constant slope for this example. For a fixed value of
p(x)/pgz1 and constant slope, the only solution admitted by Eqn (6.7) is constant D,
To explain this, first note that for constant slope the incremental decrease in potential
energy per unit change in x is constant over the entire flow path of the pipe. Since
this energy change must be consumed by friction, the frictional energy change per
unit change in  must be constant. This can only occur with a uniform value for D
over the entire flow path.®?

Finally, by our inspecting Fig. 6.1, we see that the value of D from this figure
in the friction-dominated region is in perfect agreement with that from Fig. 5.4, the

®This value is chosen because the required static pressure is arbitrary and a zero value is the simplest case.
The results presented below will be identical in character for any value of p(x)/pg, say p(z)/pg equal to
10 m, except that the designer will not be able to satisfy this condition for at least the first 10 m of pipe
measured vertically from the source.

"The distance referred to in this sentence is established by comparing the friction and inertia terms on
the right side of Eqn (6.7). A balance between them shows that the water will need to travel about 10-30
pipe-diameter lengths before friction becomes of the same order of magnitude as inertia.

8From a mathematical viewpoint, note that Eqn (6.7), when written for constant D and slope, contains
two terms that are linear in z. The firstis 1 — z(x)/z1, and the second is the friction term f(Q, D)/D* -
Ly(z)/D. Thus, the value for D is established by a balance between these two terms.
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Figure 6.1 The Natural diameter distribution, D™ (z), for p(z)/pgz1 = 0 and large and
small constant-slope pipes. The approximate values for D(x) = Dy, (x) are from Eqn (6.8)
for the first few meters of the pipe where friction is negligible and, after this location, from
Fig. 5.4, where friction dominates. The values for D for the two slopes are 1.83 and 0.748 in.,
respectively, in the friction-dominated region.
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Figure 6.2 A realistic contour for a gravity-driven water pipe.

appropriate design curve for the set of conditions in this example. It is worthwhile
checking for this consistency in problems that present us with this opportunity.

Let us consider a more realistic example where the slope of the pipe varies with
(see Fig. 6.2). The results for this example are presented in Figs. 6.3 and 6.4, where
the focus is on D™ (z) for the inertia-dominated region near the pipe entrance, and the
bulk of the pipe flow, respectively. Two points concerning Fig. 6.4 are noteworthy.
First, there is a variation in pipe diameter of about a factor of 3 as the result of
the variation in local slope, s¢(z), and the need for the constancy of the local static
pressure. Second, it is clear that the pipe diameter varies inversely with local slope.
Note that the largest change in D™ (z) occurs where the contour of the pipe has a near-
zero value for a local slope that occurs between x of 6000 and 7000 meters. This
observation is explained as follows. As the local slope decreases, the local driving
force (or potential energy) per unit of pipe length decreases. To satisfy the energy
equation, the energy dissipated by friction must also decrease. This is accomplished
by reducing the flow speed or, since (Q is constant for these examples, increasing the
pipe diameter, D™ (z).

6.4 COMMENTARY

From the above examples, it is clear that the pipe diameter and local static pressure are
intimately connected by the contour of the pipe (along with @) and z; whose effects
were not investigated in the examples presented here). In particular,

e The pipe diameter and local slope are inversely proportional to each other,
where there is a uniform local static pressure in the pipe flow,
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Figure 6.3  Natural diameter distribution, D™ (z), for p(z)/pgz1 = 0, Q = 1.0L/s, s =
0.01, z; = 100 m, and the pipe contour of Fig. 6.2. Only the near-source region is shown.
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Figure 6.4 Natural diameter distribution, D™ (z), for p(z)/pgz1 = 0, Q = 1.0L/s, s =
0.01, z; = 100 m, and the pipe contour of Fig. 6.2. The bulk of the pipe flow is shown. The
pipe contour appears for reference.
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e For the region away from the pipe inlet, where the flow is dominated by fric-
tion not inertia, D is constant and finite for the case of constant nonzero
slope (cf. Fig. 6.1) and approaches infinity as the local slope approaches zero
(cf. Fig. 6.4).

Of course, no one designs a gravity-driven water network with a variable-diameter
pipe as depicted in Figs. 6.1, 6.3, and 6.4; pipes of infinitely variable diameters do
not exist and if they did their cost would likely make them prohibitive to install.
Instead, we use pipes of constant diameter over large flow paths and the designer
needs to choose nominal pipe sizes that produce a static pressure distribution that
is acceptable. This designation means a static pressure large enough to prevent
contaminants from entering the water flow from the outside but not too large such
that the pipe costs will become prohibitive. This is clearly where engineering tradeoffs
need to be considered.

In summary, the combination of the need to provide acceptable pressures and the
lack of ability for the designer to control these pressures by locally varying the pipe
diameter as he/she chooses, necessitates that close attention be paid to the effect of
pipe size distribution in networks that have local peaks and valleys. A good example
for this is presented in Section 8.6.

The ideas from the this section will now be extended to a 3D pipe flow network.

6.5 LOCAL STATIC PRESSURE FOR A THREE DIMENSIONAL
NETWORK

For a 3D flow network, where the flow path can be described as z(z, y), we begin
with Eqn (6.5) and extend this to include a second coordinate in the horizontal plane,
y. The differential of the flow path length becomes

dL = v/dz? + dy? + dz? 6.9)

where dy is the differential length of the pipe in the y direction. If we restrict our
interest to those cases where the pipe diameter, D, is uniform over the flow path,
Eqgn (6.7) is written as

2 Le(z,y(=))
pesle)) syt | 8o, QD) | & 610
P91 21 migzy D D 0
The symbol £ is a dummy variable of integration as before. L;(z,y(z)) is the length
from the source to any arbitrary location along the pipe flow path as a function
of the position of the pipe in the y direction (y(x)) and the assumed independent
variable, z. That is, the coordinates of the pipe at any location are (z, y(z), z(z)).
We see from our inspection of Eqn (6.10) that there is little need to refer to local
slope as we did for the simpler case of a 2D network. In the present 3D case, there
are two slopes that affect the local flow path length along the pipe, dz(z)/dz and
dz/dy = (dz(z)/dx)/(dy(z)/dz). These are cumbersome to use. Instead, the



146 “NATURAL DIAMETER" FOR A PIPE

designer normally solves the energy equation in the coordinate of the pipe itself, the
local pipe length Ly, or “pipeline coordinate.”” Thus, the final form of the energy
equation for minor-lossless pipe flow and constant D for a 3D flow network is

p(Le(z)) _ z(L¢(x)) 802 £(Q,D) [k
£gz1 =1- Py - m2gz, DA o+ D /0 dg) (6.11)

or, after carrying out the integration,

z(x) 8Q* Le()
Pgz1 oz _7T2921D4[a+f(Q’D) D ]

(6.12)

An inspection of Eqn (6.12) for a 3D flow network shows that it is identical to that
for the 2D analysis above for constant D. That is, Eqn (6.7) when written for constant
D and combined with Eqn (6.5) is identical to Eqn (6.12) if the independent variable
z is replaced by L¢(z). Since the quantities of interest are energies (which are scaler,
not vector in character), any 3D flow network described by the coordinates (x, y, z)
may be effectively “flattened” in the y direction so that the component of the network
in this direction is eliminated. This is valid provided that the overall length of the
pipe is unchanged and the elevation, z, as a function of the independent variable z
or Ly(x) is maintained. Thus, we see that the independent variable x takes on a new
meaning in light of this discussion. x can be the horizontal coordinate in the usual
Cartesian coordinate sense, or the coordinate measured along the line of the pipe. We
will refer to the  coordinate in the latter case as a “pipeline coordinate.”

A consequence of the above discussion is that there is no need to distinguish
between 2D and 3D flow networks provided the horizontal coordinate is measured in
the vertical plane of the pipe for which the energy equation is written. The energy
equation, written for local conditions in a minor-lossless pipe flow [Eqn (6.12)], will
be referred to as needed in the chapters that follow.

6.6 GRAPHICAL INTERPRETATIONS: ENERGY LINE AND HYDRAULIC
GRADE LINE

6.6.1 Energy Line

Engineers working in the field of hydraulics, who perform calculations for pipe and
open-channel fluid flows, sometimes rewrite Eqn (2.2) by dividing both sides by g.
With the use of Eqn (2.4), we obtain

plz) | (z)?
— + (122—g

+Z:hT—hL(Z) (613)
Py

9The reader may remember from fluid mechanics that this is the usual way that the Bernoulli equation
is developed; by integrating the inviscid momentum equation along a streamline thereby putting it in a
“streamline coordinate system.”
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where hr is the total head at z = z;, and hy,(2) is the 2-dependent head loss due
to frictional energy losses, both major and minor. In writing Eqn (6.13), we have
taken state 2 to be at any arbitrary location z along the flow path. At z = =z,
W, = p1 = hp = 0 and Eqn (6.13) gives hr = z;. Thus, Eqn (6.13) may be written
as
7 )2
o)
P9 29
Since Eqn (6.14) must be dimensionally homogeneous, each term on the left side is
a height, or “head,” above z = 0. Specifically, p(z)/pg is the “pressure head” due to
the static pressure p(z), ao®(z)? /29 is the “velocity head,” (also referred to as inertia
or acceleration in this text) and z is the “elevation head.” We see from Eqn (6.14) that
the three heads must add up to the total head less that due to energy losses. A plot of
21 —hr(2), oralternately, p(z)/ pg + aaTi(2)? /2g + 2, versus horizontal distance over
which the pipe runs produces on the vertical axis an “Energy Line” or EL (Munson
etal., 1994). For a lossless flow (inviscid, for which the energy equation becomes the
Bernoulli equation), A, = 0 and the EL is a constant height, z;. Otherwise, the EL
has a negative slope for real flows, the value of which depends on the major frictional
loss and the distribution and magnitude of the minor loss coefficients. For example,
a minor loss will result in a sudden (i.e., vertical) reduction in the EL height, whereas
the major loss affects only the slope of the EL over a finite distance. This slope of
the EL is hr /L, which is the hydraulic gradient or head-loss factor, is seen in many
places in this text [e.g., Eqs (2.42) and (2.43)].

+z=12 —hp(2) (6.14)

6.6.2 Hydraulic Grade Line

As pointed out by Jordan Jr. (2004), the maximum recommended flow speed for pipe

flow is~3 m/s. The velocity head calculated from this flow speed is~0.5 m (< 1 psig).

This is normally small compared with the other head terms in the energy equation so

that it is sometimes able to be neglected. This conclusion is consistent with the above

justification for the neglect of minor loss and inertia for cases where D/z; is small.
The “Hydraulic Grade Line” or HGL is defined as (Munson et al., 1994),

M+z%z1—hL(z) (6.15)
rg

or
z1 =~ z+ h(z) + h(2) (6.16)

and thus includes only the pressure and elevation heads; the change in kinetic energy
per unit mass is neglected. However, the kinetic energy due to acceleration from zero
speed to % near the source can be included among the minor losses in hy.

Equation (6.16) states that the potential energy at the source is conserved and is
composed of the sum of the potential (z) and pressure energy [or static pressure head,
h(z)), and the frictional energy loss [hy(z)] at any elevation, z. For a horizontal
pipe, the HGL height is a measure of the static pressure distribution in the pipe and
for any flow of a viscous fluid, will have a negative slope due to frictional loss. The
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difference between the EL and the HGL is a measure of the velocity in the pipe. For
a pipe of uniform diameter, the velocity is constant and the difference between the
EL and HGL lines will be constant (i.e., the slopes of each line will be the same, and
the differences between the two will be small). Minor loss will affect the HGL in the
same manner as they do the EL; a minor loss results in a sudden drop in the HGL due
to a localized loss of static pressure.

An example where the results are presented in terms of the HGL and compared
with a plot of local static pressure distribution is presented in Section 8.6. For further
details on the EL. and HGL, and examples of pipe flow with the EL and HGL illustrated,
please consult any undergraduate fluid mechanics textbook.

6.6.3 The Relevance of the HGL and EL

In engineering, we often need to calculate and plot the distribution of a property in
space. For example, in solid mechanics this may be the stress in, or deformation of,
a material due to a prescribed set of loading conditions, say a beam loaded uniformly
over its span. In a similar manner, in fluid mechanics, we often need to calculate
the pressure or velocity distribution in a flow. For example, a graph of the HGL is
nothing more than a distribution of pressure and potential energy per unit mass in
the flow. That is, the same information would come from a plot of just static pressure
and elevation versus local horizontal distance or local distance measured along the
pipe flow path, Ly(z). Mechanical engineers, by virtue of their training, tend to do
the latter, whereas hydraulic engineers for the same reason tend toward the former.

Since the local static pressure is of key importance when designing networks with
peaks and valleys, a plot of p(x) and z(x) are adequate to highlight and understand
the performance of a gravity-driven water network design; no plot of HGL or EL
is needed. The personal preference of the author is to plot the dimensionless static
pressure, p(z)/pgz1, and dimensionless elevation, z(x)/z;. The reasons are that
both of these are dimensionless quantities (values are independent of the system of
units) have maximum values of 1 in any system of units and zero for their lower limit.
Also, the value of p(z)/pgz; between 1 and 0 at the delivery location is a measure
of the frictional losses in the design; as discussed in Section 2.6.3 the friction losses
increase as p(z2)/pgz1 approaches 0.

An example for flow in three dimensional gravity-driven flow network and the use
of the HGL and EL is presented in Section 8.6.

6.7 SUMMARY

In this chapter, we began our focus on the local states between the source and delivery
for a gravity-driven water network. This is motivated by the need to assure that
acceptable pressure conditions will exist at all points along the flow path, including
possible low points, where pressures will be locally high, and possible high points,
where the pressure will be locally low. As a companion to the Natural fiow defined
in Chapter 2, and to emphasize and quantify the distinct connection between the pipe
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diameter and local static pressure, we defined a concept called the “Natural diameter”
for a pipe. The Natural diameter distribution is that needed to produce a desired static
pressure distribution in the pipe flow. The results from a simple integration along the
flow path of the energy equation for pipe flow showed that for a specified uniform
local static pressure:

o Large pipe sizes are needed in the region of the reservoir due to the acceleration
of the flow from the quiescent source to the flow conditions in the pipe,

o In the regions away from the source, very large pipe sizes are needed where
the local slope approaches zero,

¢ From the examples given in this chapter, we conclude that the pipe diameter
and local slope are inversely proportional to each other to maintain a uniform
static pressure.

Of course, pipe sizes that are infinitely variable do not exist. Therefore, the designer
needs to choose pipe sizes that produce an acceptable pressure distribution in the flow
where this designation means a static pressure large enough to prevent contaminants
from entering the water flow from the outside. This means a pipe size large enough to
maintain a sufficiently large static pressure, but small enough to keep network costs
within budget. The combination of the need to provide acceptable pressures and the
lack of ability for the designer to control these pressures by locally varying the pipe
diameter as (s)he chooses, necessitates that close attention be paid to the effect of
pipe size distribution in networks that have local peaks and valleys.

Because the energy equation is a scaler, not vector, any three dimensional gravity-
driven water network may be modeled as if it is 2D by measuring the x coordinate
along a line that is the projection of the vertical center plane of the pipe onto the
horizontal plane. This is referred to as the “pipeline coordinate”.

The traditional HGL plot for a gravity-driven water network is appropriate for
us to assess network performance. This is most convenient as a tool to quickly
highlight potential problems with a proposed design, such as unacceptably low static
pressure heads at junctions, and so on. The HGL has enjoyed broad use in the
hydraulics community because graphical data are easy to understand and interpret.
However, the energy equation (or systems of energy equations), which the HGL
graphically represents, still need to be solved to determine pipe diameters in designs
where these are unknown. Otherwise, as pointed out in Section 1.6, tedious and
time-consuming trial-and-error methods are required. In addition, as we will see in
Chapter 11, there will be a need for us to work with the energy equations, not their
graphical representations, to uniquely determine the static pressure heads at junctions
in multiple-pipe networks. The HGL approach will fail in this regard. The bottom
line is that just a plot of p(z) and z(z) are adequate to highlight and understand how
the network will function; no plot of HGL is needed. It is most convenient, and
hence strongly recommended, for the designer to plot the dimensionless elevation
and static pressure distribution; both of these quantities have maximum values of 1
in any system of units and 0 for their lower limits.
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CHAPTER 7

THE EFFECTS OF MINOR LOSSES

“Rivers and Streams Forming Springs, These Belong to Every Man.”
— The Talmud

7.1 NATURE OF THE MINOR LOSS

Minor losses, embodied by the terms K and L./D in Eqn (2.40), enter into the
design as an energy loss added to that due to friction in the straight pipe. There is
a subtle difference between the major and minor losses. The major loss is one that
is uniformly distributed along the pipe length. In contrast, the minor losses occur at
discrete locations along the flow path. By acting at discrete locations, minor losses
impose a localized effect on the static pressure in the flow. For example, the minor
loss associated with a partial blockage in a pipe flow will cause a reduction in static
pressure at the blockage location and immediately downstream. Should the pressure
fall to vacuum conditions, contaminated ground water may enter the pipe flow, which
is obviously undesirable.

From a modeling perspective, one must consider a localized model of the pipe flow
to investigate the effect of the minor loss. This is contrasted with a “lumped” type
of model when one considers just an entering and an exiting state, say Eqn (2.40).
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The latter model will yield only “overall” performance, never local conditions at any
arbitrary point along the flow path.

The energy equation for local conditions is Eqn (6.7), which was developed in
Chapter 6. We now rewrite this equation here and include minor losses,

z(z)  8Q? 1 *
o - gt / dK ()

* f(Q,D(§)) 3
+/0 W\/1+3Z(f) d¢}

(7.1

where, for this general form, we have allowed D and the local slope, s, to vary along
the pipe flow path. The form of the energy equation for the case of constant D is
presented in Eqn (7.2).

All terms on the right side of Eqn (7.1) contribute to the dimensionless static
pressure, p(z(z))/pgz1, on the left side. The term 1 — z/2; in Eqn (7.1) is the
increase in dimensionless static pressure as the result of reducing z from z; at the
source to z = ( at the delivery location. This is the hydrostatic pressure contribution
to the static pressure. The integral term that includes f(Q, D(£)) is the change in
the dimensionless static pressure due to major-loss friction. The rest of Eqn (7.1)
represents the pressure change due to the acceleration from zero flow speed at the
source to u in the pipe (embodied by the term « and referred to a acceleration or
inertia in this text) and the minor losses. The integral in Eqn (7.1) that involves K (£)
can be thought of as a running sum of the minor loss coefficient values between the
top of the network (at z = z; or z = ;) and the location at any elevation z(x) along
the pipe. These need to be specified by the system designer. Also note in Eqn (7.1)
that we have chosen to include the effects of the minor loss using the more-common
K coefficients alone (i.e., any equivalent-length-type coefficients, if they exist, have
been converted to K -type).

We see from our inspection of Eqn (7.1) that the value of the local static pressure
results from a competition between the tendency for it to increase with a reduction
in elevation z (the hydrostatic effect) and the loss of static pressure due to major and
minor losses along the flow path (note the negative sign before the major and minor
loss terms in Eqn (7.1)). The major loss causes a uniformly distributed static pressure
loss along the flow path, but the minor loss causes sudden losses in static pressure
at specific locations where the minor loss elements, such as fittings and valves, are
installed.

Equation (7.1) shows that the dimensionless static pressure distribution in the pipe,
p(z(x))/pgz1, depends on the dimensionless elevation of the pipe, 2(z)/21, the local
slope, s, pipe diameter, D, and reservoir elevation, z;, as well as the distribution and
size of the loss coefficients, K.
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7.2 A NUMERICAL EXAMPLE

Because of the near-limitless combinations of types and locations of minor loss ele-
ments there is no simple way to represent the solution of Eqn (7.1) in the form of a
few graphs, as done in Chapter 5, where we neglected minor losses. Instead, we will
consider a few cases of interest and attempt to draw some general conclusions from
these.

We consider a gravity-driven water network consisting of a single straight pipe of
uniform slope and pipe diameter with a re-entrant loss or larger at the inlet (the end
of the pipe protrudes into the reservoir) at z = 2;, where K = K; = Kcnry and
two other minor losses. One is at z = 0.52;, where K = K5 = 50 and the other is at
z = 0, where K = K3 = 100. Normally, there is a filter installed at the pipe inlet to
prevent the entry of dirt and debris that could, over time, plug the system. To model
this effect, we consider 20 and 200 times the re-entry K = K¢, value of 0.78 (see
Table 2.1); the factor 20 corresponds to a small filter blockage, and 200, a larger one.
We consider two nominal polyvinyl chloride (PVC) pipe sizes of 2 in. and -Z— in.,
and assume a slope, s, of 1 and 10%. The case that will produce the lowest static
pressures in the pipe (i.e., worst case) is one where the static pressure at the delivery
location, ps, is zero. We assume this value here to produce the most conservative
results relative to this parameter. We also take z; = 50 m. The results will show not
much sensitivity to z1, but large sensitivity to s and D, as well as the K distribution.

The local static pressure distribution is shown in Figs. 7.1 and 7.2 for the small
and large filter blockage, respectively. Both figures show a sharp reduction in static
pressure immediately after the flow leaves the reservoir at z/z; = 1. As the flow
moves down the pipe toward smaller z the static pressure increases due to the fact that
the pressure gain due to the decrease in potential energy is more than the frictional
energy loss per unit of pipe flow path. At z/z; = 0.5, the static pressure falls suddenly
due to the minor loss at this location. Between z/z; = 0.5 and the bottom of the pipe,
the static pressure rises again and then falls suddenly due to the minor loss at z = 0.
Clearly, the main region of concern in the pipe is immediately downstream from the
reservoir where the pressure may be very low; further downstream the hydrostatic
pressure has contributed to the increase in static pressure. For the small blockage,
there is slight concern for the designer due to ~—3 psig (gage) pressure or 3 psi less
than atmospheric pressure. For the large blockage, the results are clearly catastrophic.
If the values for static pressure appearing in Figs. 7.2 are realized, all PVC pipe would
fail under the extreme vacuum conditions. However, the volume flow rate will surely
decrease in response to the vacuum, lessening the extent of the vacuum seen in this
figure. One way to correct the problem of unacceptably low pressures in the pipe is
to install vacuum breakers (valves that automatically allow air into the system should
the pressure become too small) at the low-pressure locations. This will be discussed
in more detail in Chapter 13.

An additional concern with the formation of negative gage pressures in a pipe
is that small leaks in the pipe wall or fitting joints may cause contaminated ground
water to pass into clean water in the pipe. This problem is particularly egregious
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Figure 7.1 Minor loss effects on static pressure in a single straight pipe. Small blockage at
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Figure 7.2 Minor loss effects on static pressure in a single straight pipe. Large blockage at

entrance to pipe in reservoir. z/z; = 1 is located at the reservoir. z/z1 = 0 is at the delivery
location.
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since such leaks are virtually impossible to find and, if found, very expensive and
time consuming to repair.

From this example, we conclude that minor losses may be an issue especially as
they affect the design of the filter system in the reservoir. We may generalize the
results of this study by noting that static pressure will become more negative with
increases in s, D, and z;. For all other parameters fixed, increasing the delivery static
pressure, ps, reduces the velocity in the pipe and thus, reduces the effect of the minor
loss.

7.3 THE CASE FOR UNIFORM D

For a pipeline of uniform diameter starting at the source, the equation to be solved
for the static pressure distribution is Eqn (6.12) where the minor loss coefficient
distribution K is included,

@+ /O " aK(E) + f@,D)Lg(f)] (7.2)

pe@) | @) Q2

pgz1 21 n2gz D4

Asin Eqn (6.12), L(z) is the distance from the reservoir (at x = z;) measured along
the run of the pipe. This function needs to be specified by the designer.

7.4 IMPORTANCE THRESHOLD FOR MINOR LOSSES

When determining the pipe diameter, it may be of interest to the designer to identify
the threshold value of the sum of the minor loss coefficients below which minor losses
may be neglected. With minor losses justifiably neglected, the design graphs from
above or a simple closed-form design formula [Egs (9.2)—(9.6)] may be confidently
applied to determine D. Consider Eqn (2.40) and focus on the competition between
the major and minor loss terms, Av/1 4+ s~2 and % Ziwl % , respectively. If the
minor loss term is significant with respect to the major loss, say, > 10% of it, then
the minor loss may be considered to affect the calculation of the pipe diameter. If the
ratio of the minor loss term to the major loss term is < 10%, then we may be able
to ignore the minor loss when calculating the diameter.! For this condition, take the
ratio of the minor loss to the major loss to get

M
L,
25|

i=1

5015 (1.3)

IBy integrating Eqn (7.2) over the entire length of pipe in the network, the energy equation relates Q to
L, z1,v, g, and the total minor loss in the network. Based on the dependencies established in Chapter 9
for a restricted range of Reynolds numbers (Re) and smooth pipe wall, we use this equation to calculate
that the 10%-threshold affects D by, at most, 4%.
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where the “run,” /, is the pipe length from inlet to outlet measured in the horizontal
plane.

Equation (7.3) addresses the relative strength of the minor loss if it is in the form
of L./D terms. If the minor loss is in terms of K values, the same procedure as
above gives,

N
- Al

g K; .003— 7.4

2 > 0.003 D (7.4)

That is, the minor losses are important only if Eqs (7.3) or (7.4) are satisfied.”> Oth-
erwise, we may ignore minor losses inasmuch as they affect the determination of the
pipe diameter. Because the ratio A/ D is generally very large, normally of the order
of 1000 or more for most gravity-driven water distribution networks, minor losses
may often be ignored when calculating the pipe diameter.> The exception is where a
partially open globe valve is used for flow control. For a partially closed globe valve,
the value of K may be very large. The conclusion drawn from these developments
was the motivating factor for the neglect of minor loss in the design graphs presented
in Chapter 5. However, particular attention needs to be paid to the minor loss for
systems where the run, £, is small.

Examples of pipe flow that include the effect of minor losses are presented in the
Chapter 8.

7.5 FIXED AND VARIABLE MINOR LOSSES

Before completing this brief chapter, we discuss the distinguishing features of fixed
and variable minor loss elements. A fixed minor loss is one that is geometrically
constant over time. The elbow, tee, coupling, union, and a fully open valve (e.g., gate
valve)* are fixed minor loss elements since, except for a small amount of fouling from
elements in the flowing fluids, their shapes do not change over time. By contrast,
a globe valve, which is a variable minor-loss element, is designed for the user to
partially restrict the flow by opening it a fraction of its full-open position; the changing
geometry is the degree of openness.> The reason for the need to distinguish between
these two classes of minor loss elements is that when a variable minor loss is included
in the design, the loss coefficient that is included in the analysis is always based on

2With little loss of accuracy, D in these equations may be first estimated by neglecting minor losses.
3This observation is made in Jordan Jr. (2004), but with different quantification. He notes “frictional losses
caused by fittings . .. are considered negligible if the distance between the individual fittings is at least
1000 pipe diameters.”

4The design of a gate valve is such that its purpose is to allow all or no flow to pass. Thus, a gate valve is
operated as fully open or fully closed and should never be used to partially restrict the flow. Please see a
further discussion on this topic in Section 13.14.

SNote that a ball valve may also be used to partially restrict flow, but these are used for this purpose less
frequently than a globe valve. For one reason, a ball valve has a much greater nonlinear loss characteristic
than does a globe valve. This means that a very fine adjustment may need to be made near its fully closed
position to achieve the desired flow rate. Slight shifts in this position due to a small disturbance will
adversely affect this setting.
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a minimum or, in the case of a globe or faucet valve, a fully open condition. From
Section 3.5, recall that, when sizing pipe for a network, the designer normally chooses
the nominal pipe size having an inside diameter slightly larger than that calculated
from the solution of the energy equation. The resulting oversized pipe will not perform
as designed because the frictional loss is less than that for the specified water flow
rate. The globe valve enters the design by adding friction loss to the flow while
simultaneously reducing the volume flow rate to meet the design value. In this way,
the variable-minor loss globe value is an integral part of a gravity-driven water
network because of its ability to control the flow and, ultimately, to shut off the flow
completely to facilitate inspection and repair to parts of the network.

Note that the minor-lossless flow approximation, on which the charts in Chapter 5
are based, includes the neglect of all minor losses, including those from any globe
valves in the network. From Table 2.1, we saw that the loss coefficient for a fully
open globe is valve is of the order of 10 and thus not a large contributor to the total
frictional loss.
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CHAPTER 8

EXAMPLES FOR A SINGLE-PIPE
NETWORK

“When the well is dry, we know the worth of water.”
— Poor Richard’s Almanac, 1746

8.1 INTRODUCTION

It is worthwhile to summarize the models for pipe flow that have been developed thus
far. After identifying the energy equation as the fundamental governing equation for
this text (Chapter 2), first we focused on the performance of a single-pipe network
driven only by the end states (i.e., the pressure at the inlet, at atmospheric conditions,
and at the outlet). It was quantitatively demonstrated that minor losses are small in
many gravity-driven networks. Because of this, a single chapter (5) was devoted to
the solution of the energy equation for minor-lossless flow in a single pipe of a fixed
diameter. Several simple design charts were the outgrowth of these solutions. The
energy equation for pipe flow where minor losses are important (say, for flow control
purposes), and its solution, is a hint at the importance of the local flow conditions in
the pipe; this because of the local nature of a minor loss (see Chapter 7). The local
character of the flow also bears on the integrity of a design, as we found that the local
static pressure at each and every point along the flow path needs to be maintained at a
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positive gage pressure, first explored in Chapter 6. Also introduced in this chapter was
the concept of the Natural diameter distribution for a pipe, developed to emphasize
the strong connection between pipe size and static pressure distribution. From these
ideas, we are led to understand the importance of assessing local states in networks,
especially for those where there are local peaks.

Several examples for single-pipe systems are presented in this chapter to con-
solidate the material appearing in the above chapters and to reinforce the concepts
presented therein. One example is for a straight pipe for which we can use the design
graphs from above (minor losses are negligible) or the Mathcad worksheet. The
second example is one where the pipe run is circuitous and has numerous fittings and
valves that contribute to the minor loss. A variation of this example is included for a
pipe delivering water from a reservoir tank to a tapstand, where there is a prescribed
static pressure just upstream from the tapstand. Finally, in the last few examples
we explore the importance of accessing the static pressure distribution in a network
where there is a local peak. The classical problems of the time to drain a tank (the
only time-dependent problem in this book) and flow in a syphon are two of these ex-
amples. We also explore the design of a simple gravity-driven water network where
site is mapped by survey data.

The object of each of the examples presented below is to determine the pipe size
to meet the specified design requirements. Unless otherwise specified, IPS sch. 40
polyvinyl chloride (PVC) pipe is to be used. Where minor loss coefficients are used
they reference Table 2.1 unless otherwise noted.

8.2 A STRAIGHT PIPE

Consider the example for the following system where the contour of the ground
provides a uniform slope from the source to a storage tank. Because of this, we will
consider the pipe between the source and the tank region to be straight (i.e., it will
have no bends from elbows). A flow rate measurement at the source has determined
@ = 0.40L/sand an Abney level' is used to find the slope of the system of s = 0.0080.
Both an altimeter and a GPS give the elevation difference between the source and the
tank (z) of 64 m. Two instruments are used to find elevation since this may be one
of the most uncertain of all of the measurements characterizing the network. Four
or more satellites are required to obtain a reliable altitude measurement from a GPS.
This is difficult to achieve if there is a tree canopy that covers the source. Even with
a multitude of satellites, the altitude reading from a GPS is still subject to a minimum

! An Abney level is an optical device, like a small telescope, which is used to determine the position of an
object in space. By sighting a point at a distance to the position of the Abney level, the angle between this
point and the Abney level can be read directly from a scale on the body of the level. When complemented
with readings from a measuring tape, an approximate topographical survey of land may be produced
by repeated measurements of angles and distances between successive locations along a potential pipe
flow path. This may be compared with the survey obtained from GPS latitude, longitude, and elevation
measurements as discussed below. See Chapter 13 or (Jordan Jr., 2004) for further details.
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of £10 m uncertainty.? The uncertainty dictates that the designer consider the lowest
value of z, rather than the reading. Thus, we take z; = 64 — 10 m = 54 m.

A filter at the inlet of the source is known to give a K value of 200 [extrapolation
from Potter and Wiggert (2002)], there are 2-90° elbows (L./D = 2 - 30) entering
the tank, a full-open globe valve (K = 4, but if a conservative estimate is used, this
should be increased to K = 10) at the inlet to the tank, and a sudden enlargement
from the supply pipe where it enters the tank (K=1).

The surface of the storage tank is at atmospheric pressure (p2 = 0) and, thus,
F = 0 for this example. If we neglect minor losses for the moment, the solution
for the pipe diameter is from Fig. 5.4 for a straight pipe (A = 1) with zero delivery
static pressure. For the prescribed values for () and s, obtain D to be < 1% in.. The
designer would specify a 1% in. pipe to satisfy the prescribed conditions.

Consider the effect of the minor losses. The solution from the Mathcad worksheet
(Fig. 8.1) with the prescribed values for L./D and K as above gives D = 1.381 in..
This corresponds to a lé-in. pipe (D=1.61 in. for a nominal 1% in. pipe). Thus, we
see that the minor losses have no effect on the pipe size for this example. The values
for K and/or L./D would need to increase > 1000-fold to necessitate a 2-in. pipe
size. However, should the elevation head, z;, be reduced to a small value of 4 m, and
the slope maintained as above, £ is reduced by a factor of 13.5 and the solution shows
that a 2-in. pipe size will be required. Thus, we see further evidence that minor losses
are important when sizing pipe for networks where there is a small run.

8.3 FORMAT OF MATHCAD WORKSHEETS FOR SINGLE-PIPE
NETWORKS

Before continuing with examples, the format of the Mathcad worksheets for a single-
pipe network, such as that for Fig. 8.1, is presented. With slight variations, the entries
appearing in the worksheets are as follows:

1. Definition of water properties of density, p, and viscosity, v.

2. A convergence tolerance, TOL, used in Mathcad to determine when a root-
finding algorithm has found the root to sufficient accuracy.

Definition of Reynolds number (Re) as a function of ) and D.
Definition of the absolute roughness of the pipe wall.

The friction factor function as defined by Eqs (2.16) and (2.17).

A U

The correspondence between nominal pipe size and D for the pipe material
and type (schedule or SDR) of pipe under consideration.

2Errors come from several sources including ionospheric effects, shifts in the satellite orbits, errors of
the satellites” clocks, multipath effects, tropospheric effects, and calculation and rounding errors (Anon.,
2009). Recent reports of a GPS and coupled barometric altimeter with auto-calibration may provide
elevation accuracies of better than +10 m. See Appendix B.
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Figure 8.1 Mathcad worksheet SinglePipeNetworkDesign Appendix.xmcd for
example problem of Section 8.2.
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7. Definition of « as a function of Re.

8. Initial guesses for the values of D (diameters ranging from 0.2 to 4 in. are good
guesses for nearly all problems considered in this book).

9. The energy equation with the needed functional dependence.

10. Values for the input parameters including F', A, and ¢, the appropriate minor
loss coefficients, K and L./ D (referred to as L), elevation z, and the mean
slope, s.

11. The solution of the energy equation using the root function.

12. The results that include the theoretical value for D, flow speed based on this
value, Re, and the value for the friction factor.

The worksheets for a single-pipe network appearing in various places in this text
are intended for general cases instead of those specific to the examples in this chapter.
These have results that are slightly more extensive which may include the following:

o Definition of nominal diameter and actual inside diameter based on the nominal
size.

o In addition to the value for friction factor, the recommended nominal pipe size
based on the theoretical value for D, and the value for @ that is based on
nominal pipe size are reported.

o A message called “warning.” If warning says “Pipe size out of range”, dimen-
sional data for the pipe need to be extended to include either smaller or larger
pipe sizes.

Though not visible in the figures of Mathcad worksheets in this book, input param-
eters in the worksheets are colored green, output parameters are red, and comments
are generally yellow. A tutorial in Mathcad is presented in Appendix C.

8.4 A CIRCUITOUSLY RUN PIPE WITH ATMOSPHERIC DELIVERY
PRESSURE

Consider the same example as in Section 8.2, but allow the pipe to follow a contour
different than the straight path from the source to the tank. This would be required
when there is a structure between the source and the tank, such as a mountain or a
house and, in this case, the ratio of the actual pipe length to the one if the pipe were
straight, A, is > 1. In Section 2.6.5, we saw that for a range of actual water-driven
networks, the values for A are not much more than 1 plus a small fraction. However,
in the present example, let us assume an extreme case where there is a hill separating
the source reservoir from the delivery location whose peak elevation is larger than
that of the source. Even with the neglect of friction in the flow, water cannot flow to
an elevation > z;. Thus, the designer must route the pipeline around the hill instead
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of over it. In this case, because of the size of the hill, the pipe length is extreme such
that A = 2.5 and, because of the circuitousness, there are 20-90° elbows in the flow
path (L./D = 20- 30 = 600). Assuming a total K value of 205 as above, we obtain
D = 1.67 in. from the Mathcad worksheet (Fig. 8.2). This corresponds to a 2-in.
pipe (D=2.067 in. for a nominal 2-in. pipe and D=1.61 in. for a nominal 1% in.
pipe). Because the diameter required to satisfy the given conditions is only slightly
larger than 1 % in. and we choose a 2-in. pipe, the volume flow rate that the 2-in. pipe
can pass is ¢ = 0.716 L/s, a value nearly twice that currently produced by the source.
Under most conditions, this pipe size would accommodate plenty of additional flow
rate for the possible planned flow rate increase in the future, assuming the source can
produce it. Calculating water demands in the future is presented in Chapter13.
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Figure 8.2  Mathcad worksheet SinglePipeNetworkDesign Appendix.xmcd for
example problem of Section 8.4.
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8.5 A CIRCUITOUSLY RUN PIPE WITH SPECIFIED NONZERO
DELIVERY PRESSURE: “SENSITIVITY” STUDIES

We reconsider the example of Section 8.4 where, instead of the pipe running from
the source to a reservoir tank, it goes from the tank to a tapstand. At the tapstand
there is required a static pressure equivalent to hge; = 5.4 m of water. The tank
surface is open to the atmosphere so p; = 0. As above, the ratio of the actual pipe
length to the one if the pipe were straight is A. Let us consider the situation where
A = L.5 instead of the value of 2.5 as above. There are 20-90° elbows in the flow
path (L./D = 20 - 30 = 600) and a total K value of 205. With an elevation for the
source of z; = 54 m as above, we obtain F' = pa/pgz1 = hyer/2z1 = 5.4/54 = 0.10.
Ignoring minor losses for the moment, we use Fig. 5.9 to predict a pipe size of nominal
| % in. PVC. From the same figure, the actual volume flow rate of water for this pipe
size is about 0.46 L/s, not too much larger than that specified for this problem. With
minor losses include (the design charts Figs. 5.4-5.13 can no longer be used because
they neglect minor losses) the Mathcad worksheet (Fig. 8.3) produces the need for a
1% in. nominal pipe. Thus, there is no measurable effect from the minor loss for this
example. The maximum flow rate for this condition of 0.454 L/s is even less than
when minor losses were neglected. This provides very little excess if water demand
in the future increases even slightly. If the cost differential between the 1% in. and
2-in. nominal pipes could be absorbed, the careful designer would require a 2-in.
PVC pipe for this problem.

It is interesting to note that if the value for A of 2.5 is used as in the example
of Section 8.4, a 2-in. PVC pipe is necessary and, with a maximum flow rate of
0.673 L/s, there is plenty of additional capacity for expansion in the future. The
maximum flow rate of 0.673 L/s is less than that for the example of Section 8.4 of
0.716 L/s because the static pressure at the delivery location in the current example is
larger than zero (the value from the previous example). The smaller driving force for
flow in the current example, which is proportional to p; —ps, reduces the flow rate. The
reader is encouraged to make this change to verify the above outcome. In fact, with the
Mathcad worksheets in hand, itis very easy to investigate the sensitivity of the designs
to changes in the values for all of the design parameters. In analysis and design, these
small investigations are referred to as “sensitivity studies” (“parametric studies” or
“case studies” are often used as substitute terms) and are universally considered part
of a sound analysis and design procedure. The results from the sensitivity studies will
be very educational in that the designer will get a better “feel” for their designs. This
is also a first step toward making engineering “tradeoffs,” where parameter values are
changed to produce a design that, in a overall sense, satisfies the needs of multiple
constituencies. When making an engineering tradeoff, the designer will need to, in
some sense, relinquish an aspect of the design to produce a gain in a different aspect.
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Figure 8.3  Mathcad worksheet SinglePipeNetworkDesign Appendix.xmcd for
example problem of Section 8.5.

8.6 THE EFFECT OF LOCAL PEAKS INTHE PIPE

The above examples have ignored the possibility of local peaks in the pipe. In
networks where these exist, as discussed in Section 2.7, the local static pressure
should be calculated along the flow path to insure that a minimum positive static
pressure, as specified by the designer, is satisfied at all locations. This was discussed
in some detail in Chapter 6. As noted elsewhere in this text, a positive elevation of
about 10 m, or~1 atm of pressure, is considered adequate although a lower pressure
than this may be quite acceptable. A negative gage pressure (i.e., the pressure relative
to atmospheric pressure) may allow the passage of contaminants from the ground
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Figure 8.4 Contour of pipe to illustrate the effect of peaks on local static pressure. s = 0.01
and z; = 100 m. Note the large difference between the vertical and horizontal scales in this
figure. If both axes were drawn in the horizontal scale, the contour of the pipe would appear
nearly straight between the source and delivery locations.

into the pipe flow and in extreme cases, could result in pipe-wall collapse because
of the negative pressure difference between water in the pipe and the surroundings.
This is obviously undesirable. If there are no local peaks in the pipe, with downward
flow, the static pressure generally increases as the loss of potential energy converts
to pressure energy less that removed by major and minor losses (see Figs. 7.1 and
7.2. If there are local peaks in a uniform-diameter pipe, this situation is reversed.
That is, the local static pressure decreases as the flow proceeds upward toward the
peak, reaching a local minimum at a location slightly downstream from the peak, and
increases in the direction of flow further downstream. This behavior resembles that
for a syphon where vacuum conditions at the network peak can lift a liquid upward
from a much lower point. See Section 8.9 for this example.

To illustrate this problem, consider the example, as shown in Fig. 8.4, for minor-
lossless flow in a pipe having a high peak. The volume flow rate, mean slope, and
elevation of the source are Q) = 0.5 L/s, s = 0.01, and z; = 100 m, respectively.’

After determining the local slope distribution, by taking the derivative [sy(z) =
dz(z)/dz] for this geometry, the local static pressure distribution is calculated using
Eqn (6.7) by assuming three values for D: 1-in., lé-in., and 2-in. nominal sch. 40

3In several example and exercise problems in this book, elevations that appear in them may be greater than
recommended in the design chapters (13 and 15) when pressure limitations of valves are considered. The
large values of elevation are simply illustrative for that problem and not to be interpreted as recommended.
Elevation head limitations on pipe, valves, and fittings must be taken seriously by the designer.
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Figure8.5 Mathcad worksheet example problem on peaks.xmcd for example problem
of Section 8.6. The functions z(x, a, b) (the local height) and sl(y, a, b) (the local slope), as
well as the preliminaries (items 1-7 in Section 8.3), are defined elsewhere in this worksheet
and do not appear.

PVC pipe. The evaluation of this equation is straightforward and was done in Mathcad
(Fig. 8.5). The resulting local static pressure distribution, p(z)/pgz1, is presented in
Fig. 8.6 as a function of local coordinate, z.

In Fig. 8.6, we see that the static pressure distribution for the 1-in. pipe falls
below atmospheric pressure after about z = 1000 m. Obviously, this pipe size is
unacceptable for the specified volume flow rate. On the other hand, the nominal 2-in.
pipe has a local static pressure that is positive throughout its length and greater than
an assumed minimally acceptable static pressure corresponding to p(x)/pgz1 = 0.1
[i.e., p(z)/pg equal to 10 m]. This pipe size is an acceptable candidate. In between
these two pipe sizes, the local static pressure for the lé—in. nominal pipe is positive
everywhere. However, the static pressure becomes very close to zero (atmospheric
pressure) near z = 6000 m. Depending on the economics of the design (the cost of
the 2-in. pipe versus that for the lé—in. one), the designer may choose this marginal
candidate. If the cost differential is not a significant factor, the 2-in. pipe would be
recommended for this problem.
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Figure 8.6 Dimensionless local static pressure distribution, p(z)/pgz1, for geometry of
Fig. 84. @ = 0.5 L/s, s = 0.01, and z; = 100 m.

As a final note on this example, the pipe size as determined from Figs. 5.4 (for
X = 1) for this minor-lossless flow* and F = 0 is lé-in. nominal PVC. That is,
the use of the design charts in Chapter 5, or the associated design formulas, both
of which are based on only the inlet and outlet states do not reveal the local static
pressure approaching atmospheric at some point along the flow path. Equation (6.12)
needs to be evaluated to shed light on this important aspect of a design.

Upon further inspection of Fig. 8.6, we see that the dimensionless static pressure,
p(z)/pgz1, at the pipe outlet at z = 10,000 m is ~0.80 for the 2-in. and ~0.45 for
the lé-in. pipe. Recalling that the largest value for p(z)/pgz; is 1 under hydrostatic
conditions, we see that the dimensionless frictional pressure drop for the two pipes
(neglecting the inertia or acceleration of the flow which, as discussed above, is small
for small D/z;) is 0.20 and 0.55, respectively. The static pressure available at the
outlet of the pipe speaks to the network’s ability to distribute the flow, say, to houses
in the surrounding community, though a distribution pipe network. It also points to
the need for a globe valve at the bottom of the pipe to control the volume flow rate by
dissipating some or all of the energy represented by the static pressure at this location.

The HGL for this example is presented in Figs. 8.7-8.9 for each of the three
pipe diameters under consideration in this problem. Please see Section 6.6.2 for a
discussion of the HGL. Several things are noteworthy from our inspection of these
three figures. First, if the major friction loss is not dominant, the pressure and elevation
heads are complementary; when elevation head falls, the pressure head rises. Second,

4The value for \ for this example is 1.0021, corresponding to a nearly straight pipe between the source
and delivery locations.
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the HGL is nearly a linear function of x as seen in all three figures® This outcome,
which is a result of the small value for mean slope, is not valid for all gravity-driven
networks in general, but is certainly true for this example where s = 100/10, 000 =
0.01. In addition, the uniform diameter of the pipe results in a constant flow speed®
and therefore a constant friction loss per unit of pipe length. The slope of the HGL is
thus a measure of the frictional energy loss in the pipe. Finally, and most importantly,
the proximity of the HGL to the elevation head at any x location is a measure of value
of static pressure above atmospheric pressure at this location. That is, if the elevation
head is equal to the HGL, the pressure head must be zero or the static pressure is
equal to atmospheric pressure [see Eqn (6.12)].
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Figure 8.7 The HGL for geometry of Fig. 8.4 and 2-in. nominal PVC pipe, where Q@ =
0.5L/s, s = 0.01, and z; = 100 m.

In Fig. 8.7, we see that the elevation head approaches the HGL to within ~25 m at
z = 6000 m. The static pressure is much greater than the recommended value of the
product of 10 m and pg, or~1 atm of pressure. This condition produces a satisfactory
design. In Fig. 8.8, the elevation head and HGL are nearly equal at this x location.
That is, the static pressure at this location is only slightly above atmospheric in value;
the design is marginal in this case. Finally, in Fig. 8.9, for 1-in. nominal pipe, the
friction loss per unit length of pipe is so large that the elevation head crosses over the
HGL atz ~ 1700 mresulting in a negative pressure head from this point onward along

3The HGL is, in fact, a linear function of distance traveled along the pipe flow path if the pipe is of constant
diameter. However, if plotting HGL against  instead of against L, () possible changes in the local values
for the slope of the pipe may make the HGL nonlinear with . That is, the HGL will be nonlinear with x if
L,(x) is a nonlinear function of z. For an example of this, see the syphon problem in Section 8.9 below.
SRecall that mass conservation requires that the volume flow rate be constant in the pipe.
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Figure 8.8 The HGL for geometry of Fig. 8.4 and lé-in. nominal PVC pipe, where Q =
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the flow path. The large negative pressures, even below that for a perfect vacuum that
cannot exist, imply that the flow rate of 0.5 L/s is not possible for a 1-in. nominal
pipe and the other conditions of this problem.

The effects of local peaks are treated more-fully in Chapter 14, which covers the
potential problem of air pockets in the pipe.

8.7 A NETWORK DESIGNED FROM SITE SURVEY DATA

The first step in the design of gravity-driven water network is most often an assessment
of the site. This is normally an identification of the proposed coordinate location of
the pipe, z(z,y). These data are obtained by using a transit or an Abney level and a
measuring tape. A brief note on the Abney level is given in Section 8.2.

We consider a data set obtained from a site survey for a network in San Benito,
Nicaragua, where the measured flow rate of water from the source is 0.5 L/s. The
survey data is presented in Table 8.1. A contour plot of z as a function of (z,y)
is shown in Fig. 8.10 and z versus y is the focus of a plot shown in Fig. 8.11. For
information purposes, a plot of the local pathlength distribution from these data is
shown in Fig. 8.12.

Table 8.1 Survey Data for the San Benito Site

Station  z(m)  y(z)(m) z(z)(m) L.(z)(m)

0 0.0 0.0 247 0.0

5 —37.2 -52.1 11.1 65.5

8 —77.4 9.6 9.93 139.0
C3 —241.0 75.7 14.8 315.6
C4 —277.8 95.8 16.8 357.6
Cs5 -312.5 148.4 12.6 420.7
C6 —336.2 184.7 8.8 464.2
C7 —374.7 208.4 11.2 509.6
C8 —420.8 216.0 10.9 556.2
&) —439.1 228.7 10.0 578.6
Cl1 —412.6 335.1 11.2 688.2
Cl12 —428.9 373.1 6.7 729.8
C13 -481.8 463.7 83 834.8
C15 —471.9 552.1 7.5 923.7
C17 —533.9 659.1 12.4 1047
C19 —544.5 720.5 21.5 1110
C21 —-536.1 864.9 19.5 1255
C23 —688.4 974.3 2.6 1443
C24 —712.3 988.9 2.0 1471
C28 —920.1 1073 0.0 1695

A quick inspection of the data in Table 8.1 (or Fig. 8.10 or 8.11) reveals that one of
the challenges in this problem is to design the pipe to produce a positive static pressure
at station C19 where the z = 21.52 m, just 3.12 m less than that at the source. This
problem is made more difficult because the pathlength between the source and this
station, over which pipe friction occurs, is 1110 m.
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Figure 8.11 Elevation plot for the San Benito site.
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Figure 8.12 Local pathlength distribution for the San Benito site.

The Mathcad worksheet used to solve this problem is shown in Fig. 8.13. A
plot of pressure head for station C19 from the solution of Eqn (6.12) as a function
of pipe diameter for z = 21.52 m, z; = 24.65 m, and L, = 1110 m is presented
in Fig. 8.14. This figure also appears in the above-referenced Mathcad worksheet.
From our inspection of this figure, we see that a vacuum occurs at this station if 1 %-in.
PVC pipe is used. For 2-in. pipe and larger, the gage pressure is positive at about
1.3 m of head and larger. Further, for pipe sizes > 3 in., there is little increase in the
static pressure at this station. Therefore, nominal 2%-in. PVC pipe, if available, will
result in an acceptable, but relatively low, static pressure corresponding to ~2 m of
head.

For the remaining length of this network, where the elevation change is 21.52 m
and the pipe length is 1695 m—1110 m = 585 m, we can use the design charts in
Chapter 5 if we approximate the pressure at station C19 as atmospheric. However,
it is not simple to calculate s and A from station C19 to the delivery location using
the data of Table 8.1. Instead of the design charts, we again solve Egn (6.12) for D
required to produce a zero delivery pressure assuming zero pressure at station C19,
z1 = 21.52 m and Ly = 585 m. Obtain D = 1.077 in. or a nominal 1-in. PVC pipe.
Note that we have neglected all minor losses including that for a coupling to join the
nominal 2-in. or 2%-in. PVC pipe to the 1-in. pipe at station C19. This minor loss is
indeed negligible (see Table 2.1).

It is interesting to note that if we ignored the local peak at station C19, and con-
sidered just the mean slope, s of 0.01743, between the source and delivery locations
and overall flow pathlength embodied by A (of 1.199), the design charts in Chapter 5
would give D of 1.310 in., or a nominal 1%-in. pipe. As noted above, this would lead
to a negative gage pressure at station C19. This is yet another example of the need
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Figure 8.14  Pressure head versus pipe size for highest local peak for the San Benito site.
Circles correspond to 11, 2, 23, 3, 33, and 4-in. nominal sch. 40 PVC pipe.

to solve Eqn (6.12), for at least at the local high points in the network, to verify that
positive gage pressures are established throughout.

8.8 DRAINING A TANK: ATRANSIENT PROBLEM?

So far, we have focused only on steady flow problems that are of general interest in
our analysis and design of gravity-driven water networks. However, there are several
relevant cases where transient, or unsteady, flows are of prime interest. One of these
is the time required to drain a tank through a long pipe.

A related, but simpler, problem is to predict the time that it takes to drain a tank
through an opening at its bottom with no attached pipe. The Bernoulli equation,
Eqn (2.3), is easily applied in a quasi-steady manner to solve for the instantaneous
discharge flow speed, Ta(t), at the base of a tank of instantaneous height of liquid,
Az (t). The result is referred to as Torricelli’s formula,

Uz(t) = V2902() (8.1)

Since it is known that the discharge flow speed is not cross-sectionally uniform nor
one dimensional (the converging nature of the flow at the opening causes a radially

8Though most relevant to the topic at hand, this problem came to light while the author was watering
a Christmas tree with a watering can. The process took more time than expected and prompted the
developments in this section to determine why this was so.
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Figure 8.15 Geometry for draining a tank through a long pipe.

inward fluid motion), we apply a discharge coefficient, Cp, and express the volume
flow rate through the use of the continuity equation, Eqn (2.21),

Q(t) = CpApT(t) (8.2)

where Ap is the cross-sectional area at the tank discharge. Empirically determined
values for Cp range from~0.6 to 1.0 depending on the shape of the discharge opening
and flow regime.

The above results were obtained by assuming the flow to be inviscid. This is
accurate because the flow speeds are small where they occur in the presence of a
walled structure (the tank) and, where the flow speeds are large at the discharge, the
surface area for friction is small. Thus, frictional effects are negligible in all regions.
However, when the discharge is through a long pipe, it is clear that the flow cannot
be assumed inviscid. This requires use of the energy equation, not the Bernoulli
equation, to model draining of a tank with a connected pipe.

Consider the geometry in Fig. 8.15. The tank of cross-sectional area A; having an
initial height of water Az, is to drain through a long pipe of length L. The pipe may
have valves and fittings that we can characterize with a combined loss coefficient K,
and the elevation change between the two ends of the pipe is fixed at Az,. Over time,
Az decreases as the tank is drained. The problem is to find the time at which Az, is
zero, which is the time required to drain the tank.

The energy equation is from Eqn (2.2),

u? u2 2av
(%+a1§+gzl)—(pf +ot +ng)=HL+/ i 8.3)
1
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where an integral term has been included.’ f > dV dr is the energy per unit mass
required to accelerate the fluid at speed V between pomts 1 and 2 in Fig. 8.15 at any
instant in time.!® When the flow reaches steady state, dt = 0, and the integral’s
contribution to the energy equation disappears as it should.

The friction term in Eqn (8.3) is from the Darcy—Weisbach equation, Eqn (2.9),

L V2
K
D+ ]2

The flow speed V' varies over distance between the tank and pipe and is %; in the tank
and %5 in the pipe.

In Eqn (8.3) p1 = p2 = 0 since the static pressure at both ends of the pipe is zero
and the elevation change is z; — 23 = Az + Az,. With these substitutions, o; = 1,
and Eqs (8.3) and (8.4) become,

Hy = [f(V,D) 84

—2

w2
(AZt‘I'AZp)_aQ?Q:[f(V D)£+K~—+/ —dm (8.5)

At time zero and earlier, the fluid in the tank and pipe is at rest, V(0) = 0.
For ¢t > 0, two time scales appear for this problem. The first is the time required
to accelerate the flow from zero speed to that corresponding to the elevation head
Az + Azp; over the span of this time scale the elevation in the tank has changed very
little. We will refer to this as the “short” time solution. The energy equation for this
case is Eqn (8.5) that becomes,

72
L% = g(Az + Azy) — [f (U2, D) % +1+ K]%
where 7; = 0 reflects the fact that the elevation change in the tank is negligible over
the short time scale. In addition, the acceleration of the fluid, ‘fi‘t/ = ddﬁt?, is spatially
uniform and takes place only over the pipe-length L.
Equation (8.6) has been solved for constant friction factor and the use of equivalent
length, L., instead of the additive K (Streeter et al., 1998). The result is

(8.6)

U2 001
tooy, = 2.646 ———————— 8.7
99% g(Az + Azp)/L ®7)
where Uz .1 is the flow speed in the pipe subject to the hydraulic gradient (Az; +
Azp,)/ L, and tggy, is the time that it takes to reach 99% of this flow speed; a reasonable
approximation for the short time scale. Thus, %2 o1 is the solution of

Eﬂg,ool
D 2

g(AZt + AZP) bt f(’l_l:gyool, D) =0 (88)

9The symbol V means velocity, not volume, in this section.

10From Newton’s second law of motion, we note that % is force per mass. Integrating this force over
distance = between points 1 and 2 produces the energy per mass resulting from this force.
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B.8.1 Draining a Tank: Short Time Solution

A tank of 30,000 L capacity and 3.5 m high is to be drained. The tank is connected
to a lé—in. nominal sch. 40 PVC pipe, 240 m long, open to the atmosphere at
its end. There are 6-90° elbows and an open globe valve in this pipeline. The
elevation change from the bottom of the tank to the end of the pipe is 4 m.
Calculate the steady state flow speed (subject to the initial height in the tank),
U2, 001, and the time that it takes to reach 99% of this flow speed.

The hydraulic gradient is (Az; + Az,)/L = 0.0313. Neglecting minor losses
for the moment, use the Mathcad worksheet HydraulicGradient . xmcd to cal-
culate %y 1 = 0.900 m/s for the pipe of inside diameter D = 1.61 in. (see
Table 3.1). The friction factor is f(U2 001, D) = 0.0309. From Eqn (8.7), we
obtain

0.900 m/s _7
9.807 m/s® - 0.0313

‘We see that the short time scale is of the order of seconds for tank dimensions of
the scale given in this example.

tgg% = 2646

The assumption of constant f is approximate because f is undefined for zero flow.
Here, f increases immediately as flow becomes nonzero, decreases through the
laminar regime, and increases as flow perhaps passes from laminar to turbulent,
where it decreases thereafter. Thus, the solution from Eqn (8.7) is approximate
but is an excellent indicator of the scale of the short-time solution.

The length equivalent of an open globe valve [K = 10; see Eqn (2.11)] and 6-90°
elbows is ~504 - D = 20.5 m. This reduces the hydraulic gradient by only ~8%.
If minor losses were included, the value for tgg5; Will be nearly that as above.

The solution for longer times (i.e., the actual draining of the tank) is now con-
sidered. The integral in Eqn (8.3) for the long time solution may be written in two
parts,

2dv da,  dus

DY de = Ay T Y2 .
e (8.9)

Since L > Az, the first term on the right side of Eqn (8.9) is neglected in favor of
the second term. In addition to this, 2 < %2 because of the of the large surface area
of the tank relative to the cross-sectional area of the pipe.

We see from this that Eqn (8.6) is also the governing equation for the long time
solution except that Az, is not constant. It depends on time so that Az, = Az ().
This effect may be included by taking the time derivative of Eqn (8.6) and recognizing
that

Uy (8.10)
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where the second term on the right side is from the continuity equation. With
Eqn (8.10), Eqn (8.6) becomes upon taking the time derivative of each term,

d*u ngD? d
2 I, 4

L =
dt? 44, dt

=2
{[f(ﬂ%D)%‘f‘l-l‘K]%}:O (8.11)

Equation (8.11) is the governing equation for the pipe flow speed, %, correspond-
ing to the long time solution for draining a tank. The initial conditions are

duz(0)
dt

12(0) = U2,001, =0 (8.12)

where U3 1 is from the solution of Eqn (8.8).
We may define a time scale for tank draining as the ratio of the initial tank volume
to the volume flow rate at based on the initial flow speed in the pipe, T2 co1,

4AtAZt (O)

Atge = ———
¢ 7rD2_122,001

(8.13)

which is of the order of thousands of seconds or more for realistic tank sizes. This is the
“scale” or order of magnitude of the tank-draining time. By scaling Eqn (8.11) with
this time scale, we see that the acceleration term, Ld%7/dt?, is negligible compared
with the remaining two terms. With this term eliminated, Eqn (8.11) becomes

df(ﬂ%D) + 7I'gD2 _

_ L L
[f (2, D) = % 2D @ 1A, =0 (8.14)

D

The single initial condition is the first of Eqs (8.12). The time to drain a tank is from
the solution of Eqn (8.14).

Because of the time dependence of Az, it is not possible to obtain a closed-form
solution of Eqn (8.14) of the type above for the short time case. Equation (8.14) is
solved numerically in Mathcad (see textbox B.8.2 example). The derivative in the
second term of Eqn (8.14) is evaluated symbolically in Mathcad. The time to drain
the tank is found when the solution of Eqn (8.14) is equal to the flow speed in the
pipe, Uz oop, resulting from the hydraulic gradient Az,/L. The solution for Ty o2
comes from Eqn (8.8) with g(Az; + Az,) replaced by gAz, alone (i.e., Az = 0).

The flow speeds in the drain pipe, To(t), are plotted in Fig. 8.16 for three cases and
for an initial tank volume of 30,000 L, initial Az, of 4.5 m, L = 100 m, D = % in.
nominal GI pipe, and Az, = 0.1, 1.0, and 10 m. Each curve terminates when the tank
is empty. We see that T (t) decreases linearly over time for the largest value of Az,
but nonlinear @, (t) occurs for the two smaller elevation heads. Evidence of transition
and laminar flow is visible beginning at the knee of the curve for Az, = 0.1 m. It
is clear that drain times ranging from more than a day to many days are possible for
large tanks and under the conditions of Fig. 8.16.
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Figure 8.16 Tank-draining results.

B.8.2 Draining a Tank: Long Time Solution

Calculate the time to drain the tank for the example in textbox B.8.1.

Use the Mathcad worksheet Tank Draining.xmcd to calculate Up oo =
0.643 m/s for the data given in textbox B.8.1. The friction factoris f (T2 oo2, D) =
0.03924. Equations (8.11) and (8.12) are solved numerically to obtain a drain
time of ~8.7 h. The few seconds to accelerate the flow from zero speed in the
short time solution are clearly negligible here.

The minor losses were included in this solution.

A quick check on the validity of this result can be made by averaging the flow
speeds Us o1 and Uy 2. The ratio of the tank volume to the mean volume flow
rate obtained by averaging the flow speeds gives a drain time of 8.2 h, within
30 minutes of the exact solution. For cases where there are small D and Az, and
large values of L, the use of the average value of the volume flow rate to estimate
the drain time can under-predict the exact value by 40% or more (see Fig. 8.16).
For these cases there is considerable curvature in the flow speed Ty(¢) versus .

For comparison, Torricelli’s formula [Eqn (8.1)], predicts a drain time of 1.26 h.
This is much less than the actual solution because of the neglect of friction.
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8.9 THE SYPHON

A syphon is a pipe arranged such that it is capable of lifting a liquid from a reservoir
upward against gravity. This happens when the weight of water in a pipe below the
reservoir level is greater than the weight of water in the pipe above the reservoir.

To model the performance of a syphon we consider a pipe of inside diameter D
having a circular arc of radius r. The open end of this pipe is immersed in the water
at the source at elevation z;. At the other end, the pipe is joined by a vertical pipe
of length z1, (i.e., this leg of pipe extends to elevation 22 = 0). The contours of
three different syphons are shown in Fig. 8.17. All syphons have z; =20 m, constant
diameter, assumed minor-lossless flow, and a static pressure of zero (atmospheric
pressure) at the delivery location at 2o = 0. They each have a different value for r.
The larger the value for 7 the further the water will need to be raised above z; and
delivered to the outlet of the syphon.

30
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Figure 8.17 Contours for three syphon geometries.

If welet v = z; /r, the expressions for mean slope, s, tortuosity, A, and the energy
equation are able to be written in simplified forms. For s and A, we have

s= - (8.15)

and

A= (8.16)

iy
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The theoretical values for the volume flow rate, (Q, can be estimated using figures
in Section 5.4 or calculated from the Mathcad worksheet.!! Note that this result could
also be obtained by solving Eqn (6.12) at & = x5, with Ly(z) = Ly(z2) = L, where
L is the total length of the pipe, and with the delivery pressure p(z) = p(z2) = 0 and
z(x) = z(z2) = 0. Thus, Q is determined from the solution of the energy equation
where the static pressure is zero at both ends of the syphon,

8Q?

z1(m +7)
w2g21 D4

~D

0=1-

(a+f(Q, D) ) 8.17)

In this equation, the term z; (1 + 7 /7y) is the total length of the pipe, L.

The values for s and A for the three syphon geometries in Fig. 8.17 having v of
2,4, and 8 are 1 and 1.818, 2 and 1.597, and 4 and 1.351, respectively. A plot of (}
versus D (Fig. 8.18) shows ( ranging from < 1 L/s for nominal %-in. PVC pipe to
nearly 40 L/s for 3%-in. PVC pipe. However, the question that remains unanswered
at this point is what is the local static pressure distribution in the syphon. In particular,
is the static pressure distribution in the pipe even possible?

To answer this question, we need to solve Eqn (6.12) for p(x) using the local path
length distributions for the three syphons appearing in Fig. 8.19. These are obtained
by breaking up the syphon into small pieces having components Az wide and Az
high. Then, a running sum of v/ Az? + Az2 is calculated, which is the pathlength
distribution L,(x). The dimensionless static pressure distribution, p(z)/pgz1, is
presented in Fig. 8.20 for a nominal lé-in. PVC pipe. The static pressure for all
syphons behaves in the same manner. We see a reduction of pressure with distance
in the direction of flow as the liquid climbs upward (potential energy is increasing
at the expense of pressure energy). The pressure continues to fall even as the liquid
begins to move downward. This is the result of pipe friction. At some distance
beyond the highest point of the syphon, the static pressure starts to increase and, once
in the vertical leg of the pipe, increases sharply to atmospheric pressure at the outlet
as required by this problem. Note that the pressure in the entire syphon is negative
relative to the atmospheric pressure conditions that surround it.'?> The question posed
above is answered by considering the smallest static pressure possible of —14.7 psig
at which we have a perfect vacuum.!*® The value of the dimensionless static pressure,
p/pgz1, for this condition is —0.517. From our inspection of Fig. 8.20, the static
pressures at some locations for the syphons having v = 2 and -y = 4 fall below the

HRecall that Q is obtained from the solution of Eqn (2.41) for minor-lossless flow in a pipe that is not
straight. This equation can first be solved for @ and then @ calculated using the continuity equation,
Eqgn (2.21).

121f the surroundings were at a sufficiently large positive gage pressure, the static pressure in the syphon
would still operate below this pressure but the gage pressure in the syphon will be positive everywhere.
This condition is required where there may be syphoning in a gravity-driven water flow.

13This condition is used as a convenient benchmark. Really, the pressure can fall no lower than that which
causes the water to vaporize. When the pressure of a constant-temperature fluid is reduced, a value of the
pressure is eventually reached where the water begins to form vapor. This is referred to as the saturation
pressure for the given temperature, or more simply, the “vapor pressure.” For water at 10°C, the vapor
pressure is ~0.178 psia (absolute), very close to absolute zero pressure (see Exercise 26).
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case of a perfect vacuum. Because no pressure can be less than that of a perfect
vacuum, no flow will occur in the syphon for the cases of v = 2 and v = 4. This is
easily verified in your own kitchen with a length of tubing, a sink filled with water,
and a bucket into which the water can run. With the syphon running (after you have
“primed” it) gradually move the tube upward creating a greater height for the water to
rise. At some point, the flow will reduce to a trickle and eventually stop. The above is
the correct result despite the calculations of volume flow rate based on overall states
of the syphons appearing in Fig. 8.18. The flow rates appearing in this figure will
occur only if the pressure is greater than a perfect vacuum at each and every point in
the flow.

This is yet another example of the need to consider performance of the network
based on both overall and local conditions. Of course, syphoning in gravity-driven
networks does occur in many designs. The acceptability of these cases relies on the
static pressure being large enough so that if syphoning does occur, the reduction in
pressure is not severe enough to cause negative gage pressures in the network. Please
see the nearby footnote for additional comments on this.

To solve the interesting problem of the maximum height of a syphon of diameter
D and elevation z; for a fluid at a prescribed temperature, we first need to determine
the = or z coordinate location where the pressure is a minimum. Then, knowing
that the pressure at this location can be no smaller than the vapor pressure at the
prescribed temperature, the problem can then be solved for the value of y that produces
this pressure. The height of the syphon, r is easily found from r = z;/v. The «
coordinate where pressure is a minimum is found by taking the derivative, d/dz, of
the dimensionless static pressure, p(x)/pgz1, setting it equal to zero, and solving for
the x value (see Exercise 26).
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CHAPTER 9

THE ENERGY EQUATION BASED ON
APPROXIMATE FRICTION FACTOR

“Things should be made as simple as possible, but not any simpler.”
—A. Einstein

9.1 THE PROBLEM

There are many types of design tools employed in engineering practice. For flow in
pipes, these range from commercially available and in-house-written computer codes
to formulas and nomographs for restrictive applications (The Crane Company, 1970;
Copper Development Association, 2006). One such group of formulas is from Hazen—
Williams (Williams and Hazen, 1933), first developed ~1906. In various forms, they
are curve fits of pipe-flow data that relate the head loss to flow speed or volume flow
rate through a “hydraulic resistance.” Hazen and Williams developed their formulas
in the years before Rouse and his colleagues were formalizing the use of design charts
for pipe flow from the data and correlations of Blasius (in 1913), von Karman (1930);
Nikuradse (1950); Colebrook and White (1937); Colebrook (1938, 1939), among
others. These correlations were based on knowledge of fundamentals of fluid flow
in pipes, where the friction factor is known to depend only on the Reynolds number
(Re) and, for turbulent flow, relative roughness. Obviously, there were no widely

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 187
Copyright ©) 2010 John Wiley & Sons, Inc.



188 THE ENERGY EQUATION BASED ON APPROXIMATE FRICTION FACTOR

used high-speed electronic calculators or computers at the time, so comprehensive,
easy-to-use design charts were the order of the day. As pointed out in footnote 12 in
Chapter 2, the Rouse chart (Rouse, 1943, 1975) ultimately spawned the Moody chart
that is familiar to many.

One of the problems with the Hazen—Williams formula is that, until very recently,
its accuracy and range of applicability have not been widely understood and quantified
(Liou, 1998). Consequently, it has probably been used in many instances where it
should not have been. This is unfortunate because the generally broad acceptance of
this formula by designers of fluid flow networks has evolved, especially in the United
States, and extensive data bases on coefficients for the curve fits for a variety of pipe
sizes and inside surface treatments have been produced and compiled. Even today,
there continues an active debate on the suitability of these formulas for analysis
and design driven partially by their past widespread acceptance in the hydraulics
community and the recently understood lack of accuracy for a wide range of pipe
flows!; see Christensen (2000); Locher (2000); Swamee (2000); Travis and Mays
(2007); Bombardelli and Garcia (2003).

One such Hazen—Williams formula reported by Liou (1998) is

Q =0.278C D*1% (%)0-54 ©.1)

where C is a coefficient that depends on the friction factor, D, the flow speed, and the
kinematic viscosity of the fluid which, we recall, depends on the fluid temperature.
In addition, the coefficient 0.278 is a dimensional quantity whose value needs to be
increased by ~55% if working in the English system of units, rather than S.I. Only
the numerical values for C are reported Potter and Wiggert (2002), which for smooth
pipe is ~140. The lack of units for 0.278, C, and D makes Eqn (9.1) dimensionally
nonhomogeneous.® From a fundamentals standpoint, the nonhomogeneous character
of the Hazen—Williams formulas forms the basis of a difficulty that is explored further
in the next paragraph. For this reason, and the accuracy limitations noted above,
the use of these formulas is strongly discouraged in favor of the Darcy—Weisbach
equation. The possible exception to this would be for cases where the pipe-wall

'n particular, Christensen (2000) concludes that the minimum value for D, wherein the Hazen-Williams
formula may be accurately applied is 1.44 m (56.7 in.). The pipe sizes typical of gravity-driven water
networks considered in the present context are considerably smaller than this size. Cristensen concludes
“...that usage of the Hazen—Williams formula should be strongly discouraged.” An additional dimension
to this issue was noted by Rouse (1975), “In the long run, however, it is debatable whether it [the Hazen—
Williams formula] did more good or harm, for it not only concealed the principles behind the resistance
phenomenon but made acceptance of later, more rigorous analyses like those of Blasius a very slow
process.” The reference to “...concealing the principles...” in this quote pertains to the Hazen-Williams
approach of ignoring that simple dimensional analysis shows that the hydraulic gradient depends on just
two quantities, the relative roughness of the pipe wall and Re.

2Ina dimensionally homogeneous equation, like F= md, all terms, Fand md, have the same dimensions.
For a dimensionally nonhomogeneous equation, the dimensions of two or more terms are not the same. In
the case of Eqn (9.1) this comes about because 0.278C' and D are dimensional quantities written without
units. For example, a dimensionally nonhomogeneous form of Newton’s second law of motion would be
F =9.807 m.
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conditions are special, such that the friction factor is unknown and the value for C'is
available.

Our inspection of the nonhomogeneous formula of Eqn (9.1) shows it to be like
a “pencil-and-paper” computer program where numbers alone are input and a nu-
merical answer is the output; the units for both input and output are ignored in the
calculations. The potential problems with this type of model are twofold. First,
one must be certain of the units for input and output, as would be the case with any
computer program. Second, there is considerable variability in the Hazen—-Williams
coefficient that depends on the fluid type and temperature as well as D and flow
speed (Trifunovic, 2006)>. The restriction of the Hazen-Williams formulas to tur-
bulent flow is particularly egregious. Since the calculation of Re is not part of the
design process when Hazen—Williams formulas are used, the user is left to either
calculate this for themselves or, as is often the case, the possibility of laminar flow is
just simply ignored. Note that this flow regime will occur for the lower left side of
Figs. 5.4-5.13 for gravity-driven water networks; perhaps not likely with many large
industrial liquid flows.

The combined effect of the above limitations means that the Hazen—Williams for-
mula may provide only a coarse approximation to the solution for flow in a gravity-
driven pipe-flow problem. Potter and Wiggert (2002) show a plot of the friction
factor, f, from several sources including the Colebrook equation [Eqn (2.12], the
industry-accepted formula for friction factor [or Eqn (2.16)] and the equivalent one
from Hazen—Williams. The lack of agreement between these two is clear with dif-
ferences varying to about +35%.* The results from the Hazen-Williams formula
bear considerable uncertainty when compared with those from the Darcy—Weisbach
equation.

9.2 A RECOMMENDATION

The bottom line of this story is, where possible, adhere to the fundamentals in the work
that you do including pipe-flow calculations. For the equations and formulas you use,
know and understand the assumptions on which they are based®. In general, the use
of nonhomogeneous formulas in engineering should be cautiously approached. This
includes formulas as well as computer programs which, with the exception of at least
Mathcad and EES®, are always nonhomogeneous. Remember that nonhomogeneous
implies that there are one or more simplifications that have been incorporated, such as
the substitution of a fixed number for an algebraic symbol of a quantity that is dimen-
sional. These simplifications are sometimes ignored or not completely understood,
which could easily result in the inappropriate use of the formula.

3Similar variability does not exist in the use of the Darcy—Weisbach equation where the only free parameter
is the absolute wall roughness which is normally well characterized, at least for new pipe. There is no
explicit dependence on D and flow speed other than through the dimensionless Reynolds number.
4Perform Exercise 13 to verify this resuit.

3See textbox B.2.2.

SF-Chart Software, Madison W1, available at info@fchart.com.
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In particular, for the pipe flow calculations that are made in the normal course of
formal or informal (that is, self-taught) learning, where interest is in understanding and
acquiring insight as opposed to mere practice and application, there is no good reason
to use nonhomogeneous formulas like the Hazen—Williams type. However, be aware
that for a number of reasons mostly related to economy, tradition, and consistency
with supporting methodologies, restrictive formulas are used every day in industry,
including the Hazen—Williams variety in the hydraulics and related communities. The
reader will also find Hazen—Williams formulas in use in Corcos (2004); Trifunovic
(2006) and in many other common references that you will perhaps use in further
study of gravity-driven water networks.

9.3 ENERGY EQUATION: FRICTION FACTOR FROM THE BLASIUS
FORMULA

If we wish to use a simple, approximate formula to get a sense for or make a quick
estimate of pipe diameter, the following development should be considered. We
restrict our interest to minor-lossless flow [the assumption of D/z; = 0in Eqn (2.40)],
and further assume that the flow is turbulent (and 4, 000 < Re < 325, 000, the region
where agreement between the approximate and exact friction factors is 12% or better;
see Section 2.2.2) and that the pipe is smooth. The Blasius formula from Eqn (2.19),
f(@, D) = 0.316Re”'/4, applies (Munson et al., 1994). Upon substituting this
formula for f(, D) into Eqn (2.41) we obtain after several steps of algebra’

A(14s72)1/2

1—F o (L% o 92)

D =0.741] 5

which, for the normal condition of s < 1, may be simplified to

7
D =011 A_ F)]4/19(Vgéf yL/19 9.3)

The group vQ”/g* has the dimension of length raised to the power of 19 and all
of the remaining terms on the right-hand sides in Eqs (9.2) and (9.3) are dimension-
less. We can clearly see that this group raised to the one-nineteenth power gives a
dimension of length. For cases that obey the assumptions on which they are based,
the dimensionally homogeneous Eqs (9.2) and (9.3) can be used to predict the pipe
diameter quite accurately.®?

"1t is very easy to develop this formula yourself and you are encouraged to do so. See Exercise 29. Be
aware that you first need to substitute the continuity equation into Eqn (2.41) to eliminate % in favor of Q.
8 A simple, first-order estimate of the accuracy can be made by assuming that the friction factor is 0.03:£0.02
as cited in Section 2.2.2. After a few steps of algebra and for minor-lossless flow, Eqn (2.41) becomes
D = 0.455(1 £ 0.158){\Q?/[(1 — F)gs|}'/5. The accuracy of this formula is thus +15.8%. A more
detailed assessment is shown in Fig. 9.3.
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D , Smooth Pipe, s < 0.5, No Minor Losses
approx
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Figure 9.1 The parameter D from Eqn (9.4). The contour lines from bottom-to-top
correspond to %, 3,1, 13, 2, 21, 3, 31, and 4 in. nominal sch. 40 PVC pipe. Compare

with the design graphs in Chapter 5.

For ease of use in graphical form, Eqn (9.3) can be recast as,

s(1-F 7
p—oma 2 F) 5 )]“‘/19(—94/762)7/19 9.4)

A plotof Eqn (9.4), D as a function of () and the hydraulic gradient, s(1 — F')/ A (one
can visualize this as a modified slope), is presented in Fig. 9.1, where the contour
lines correspond to 3, 2, 1, 1%, 2, 23, 3, 3%, and 4 in. nominal PVC pipe. The
reader may wish to compare this figure with Fig. 5.30. Note that the parameters
s, F, and ) appear as a group in Fig. 9.1, whereas the effect of the parameters
F and ) is presented on individual design graphs in Chapter 5. When making this
comparison, recall the restrictions concerning the results shown in Fig. 9.1. Namely,
minor-lossless, turbulent flow with 4,000 < Re < 325,000, s < 0.5, and smooth
pipe. Because of the restriction to turbulent flow, an inspection of Fig. 9.1 reveals no
laminar or transition regions that appear in the lower-left corners of each of the pipe

design plots in Chapter 5.

That is, increasing A and F{(= pa/pgz1) have the same effect as reducing the mean slope, s. In all of
these cases, the hydraulic gradient would decrease.



192 THE ENERGY EQUATION BASED ON APPROXIMATE FRICTION FACTOR

Swamee and Jain (1976) report an extension of Eqn (9.4) to include the effect of
pipe roughness, €, for nonsmooth pipe,
Q2

D = 0.66 {¢"%° [
D

where the hydraulic gradient is hy /L, as noted in Chapter 2. A comparison between
Eqgs (9.4) and (9.5) for smooth pipe shows agreement to within £2% over 0.1 L/s <

@ <3L/sand 0.001 < hy/L < 1. The inclusion of roughness in the correlation
of Eqn (9.5) necessarily excludes its application to laminar flow. The stated ranges

for @ and hr /L generally produce 4,000 < Re < 325,000. Swamee and Sharma

(2008) present a correlation for D that spans from laminar to turbulent flow

]4.75 + VQ9A4[ghL/L]~5.2}O.O4 (95)

~ vQ 6.25
D =~ 0.66{([214.75——9(hL/L)]
61.25[ Q2

g(hr/L)

For minor-lossless flow in a GI pipe, differences between D evaluated by Eqn (9.6)
and the Mathcad worksheets of Chapter 5 are < 12% (see Exercise 31). For smooth
pipe, the agreement is 5% or better. Recall that the worksheets include minor losses
if important, such as a partially closed throttling valve needed for flow control.

Asan aid, aplot of Re, 4Q)/nv D, versus () and s(1 — F') /A is presented in Fig. 9.2
from which we note that Re < 4,000 are likely for small values of the hydraulic
gradient, s(1— F')/ . In Chapter 2, a comparison of the friction factor and the Blasius
approximation revealed agreement to within 12% for 4,000 < Re < 325, 000. Thus,
we expect the accuracy of the results from Fig. 9.1 and Eqn (9.4) to be questionable in
the left-most region of Fig. 9.2, where Re < 4000, a region that spans a broad range of
practical values for the flow rate and hydraulic gradient.!® We wish to further explore
the extent of agreement between the solutions from the approximate and exact forms
of the energy equation. Figure 9.3 shows the ratio of the pipe diameter from two
independent calculations, one from the solution of the complete energy equation
(Dezact) and one from Eqn (9.4) (Dgppror). This ratio varies from 1 to ~1.05 for
large values of the hydraulic gradient, and ~0.65-0.70 for small slope.!! For the case
of s = 0.001 and @ = 0.1 L/s, for example, Dapproz/ Dexact = 0.9. Obviously,
under-sizing of pipe by using the approximate solution from Eqn (9.4) is not generally
desirable, but because the object of this section is to get a sense for or make a quick
estimate of D from the simpler, approximate form of the energy equation, the results
from Eqn (9.4) may very well be accurate enough depending on the problem at hand
and the demands of the designer. Of course, a final analysis and the complete design
should be carried out using the appropriate Mathcad worksheet where the effects of
minor losses and sensitivity studies may be easily investigated.

+ ]4.75 + VQ9.4[ghL/L]—5.2}O.04 (96)

10Values for the hydraulic gradient of 0.01 and smaller are not unusual.
" For small values of hydraulic gradient the flow is laminar or transitional so one would expect D from
Eqn (9.4) to be approximate.
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Figure 9.2 Reynolds number versus hydraulic gradient, s(1 — F')/), and Q). Region of
inaccuracy is to the left of the line corresponding to Re of 4000.
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Figure 9.3 Dapproc/Dezact versus hydraulic gradient, s(1 — F')/X, and Q.
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As a final comment on Fig. 9.2, note that it reveals that Re> 10° are not to be ex-
pected; the upper limit on Re of 325,000 for the accuracy of the Blasius approximation
is not an issue.

A particularly simple result is obtained if Eqn (9.4) is put into dimensionless form,

Q 1/1/7
g4/ D19/7

=2.25 [@]W 9.7)

where the group on the left side of Eqn (9.7) can be interpreted as the dimensionless
volume flow rate and the one on the right side is the hydraulic gradient. In this form,
we see that the solution of the energy equation for minor-lossless, turbulent flow
(where 4000 < Re < 3.25 x 10°) in smooth pipes gives a power-law relation between
the dimensionless volume flow rate and the hydraulic gradient according to Eqn (9.7).
A plot of this equation appears in Fig. 9.4. Also made clear by our inspection of either
Egs (9.4) or (9.7) is that for any given set of conditions, Q is proportional to D*%/7.
This result is discussed in the paragraph that follows.

Dimensionless Flow Rate, Q v'7/g"" D'97
al.

10° 10° 107 10"
Modified Slope, s (1F)/ X

Figure 9.4 A plot of Eqn (9.7).

As we will see in Chapter 11, it is worthwhile at this point to rewrite Eqs (9.4) and
(9.7) in general form. That is, both of these equations are based on zo = p; = 0. If
we allow nonzero values for these two parameters, we obtain

/7
D = 0.741 (B2 A 10 VT Qyrpg

L g4/7

(9.8)
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and

/7 Az + Ah
o = 22 ©9)

where Az is the elevation change between the two ends of a single-diameter pipe,
and Ah = Ap/pg is the change in static pressure head between these two locations.
Both Eqgs (9.8) and (9.9) will be convenient for use in the analysis and design of
multiple-pipe networks where the values for the static pressures and elevations at the
ends of each pipe are nonzero. The term (Az + Ah)/L = hp/L is the hydraulic
gradient.

Besides the obvious utility of these simple formulas, the origins of which are clear
because they were derived by the readers themselves, we can see that D depends
only on Q7/19 = Q0368 \4/19 — \0-211 (] _ [")=4/19 and, for the normal situation
where s < 1, s74/19, The sensitivity of D to the key parameters that determine it is
thus established. It is interesting to note that the lack of sensitivity of D to s, A, and
I for a prescribed value for () makes the task of sizing a system for D particularly
forgiving, especially when one considers the narrow choice of nominal pipe sizes
from among which to choose (see Section 5.6). The more challenging task is to
determine pipe sizes for a multiple-pipe network as discussed in Chapter 11 because
the static pressures at both ends of a given pipe are nonzero and unknown.

If the designer requires a delivery static pressure of head hg4e, say, at a tapstand,
where pge; = pghger, knowing that F = 1 — pge;/pgz1 = 1 — hger/21, Eqn (9.3)
becomes

${1 —hget/21),_ 7
D:0741[ ( /\d l/ 1)] 4/19[Qg4/7 ]7/19 (9.10)

From the above results, we see that for values of the hydraulic gradient > 0.001,
where D from the approximate form of the energy equation for pipe flow is to
within reasonable agreement with the exact value, the dimensionally homogeneous
Eqgs (9.2)-(9.10), subject to their restrictive assumptions may be considered accept-
able alternatives to the Hazen—Williams formulas discussed above. Also, one of the
key observations from the material presented in this section is the importance of cal-
culating Re for all parts of the network. Combining Eqs (9.4) or (9.10) with the
definition of Re, we obtain

3 _ 3 _
Re=1.718[ L9 E = Fhuno 7991 @7050 = haa/Z)iane (g 4y
Avd Avd

valid for 4000 < Re < 3.25 x 10°.
For reference and convenience, the kinematic viscosity of water at 10°C is v =
1.307 x 1076 m?/s.
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9.4 FORCED FLOWS

As discussed in Section 2.9 if the flow is driven by a pump the energy equation applies
where

1-F
AWI1+s72
or
M for sx1
A
is replaced by

211 = Frod) _ 21 _p2—1
L L pgL
Thus, the appropriate equations and graphs in Section 9.3 will apply to pump-

or blower-driven flows by simply making this replacement. To ensure accuracy, the
restriction of 4000 < Re < 3.25 x 10° still applies.

B.9.1 Example: Blasius Formula Approximation to Friction Factor for
Gravity-Driven Flow

Consider a gravity-driven single-pipe network that is required to flow 1.7 L/s.
The mean slope between the source and delivery locations is 6.3% based on
measurements taken by an Abney level (see Chapter 13 for a discussion of this
instrument). The pipe length is unknown, but is estimated to be between straight
from the source to delivery locations and 25% longer than this length. Using the
results based on the Blasius formula approximation to the friction factor, calculate
the minimum polyethylene (PE) English-based pipe size required for this flow.
The rated pressure for the recommended pipe should be no less than 160 psig.
Assume the delivery pressure is such that F' = hge;/z; = 0.15 and that minor
losses are small. Verify that your answer is accurate.

PE pipe is smooth, so that we can use Eqn (9.10) to calculate the actual diameter.
Then, the appropriate table in Chapter 3 can be inspected to recommend a PE
nominal pipe size. Equation (9.10) becomes with A = 1.25 and v = 13.07 x
1077 m?/s,

0.063 - (1 — 0.15)]_4/19
1.25
[(13.07 x 1077 m?/s)1/7 - 1.7 x 1073 m?/s
(9.807 m/s2)4/7
D = 0.741-1.941-0.0289 m
D = 0.0416 m = 1.638 in.

D = 0.741]

]7/19

For A = 1, this result becomes D = 1.563 in.
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Example: Blasius Formula Approximation (Cont’d)

From Table 3.6 for PE pipe, for a rated pressure of 160 psig and D between 1.64
and 1.56 in., we recommend 2-in. nominal pipe with a standard diameter ratio
(SDR) of 11 (ID of 1.917 in.). If a pipe in the IPS system is chosen, a consult with
Tables 3.2 and 3.3 shows that a sch. 80, 2-in. pipe is needed (ID of 1.939 in.).

From Eqn (9.11), Re for this flow is

1.7 x 1073 m3/s)® - 9.807 m/s% - 0.063 (1 — 0.15
]4/19

Re = 1.718] 1.25 - (13.07 x 107 m2/s)®

Re = 39,805

This is a turbulent flow and Re> 4000. Therefore the equations in this section
are valid and the results are judged to be accurate. Additional confidence in
the solution is obtained by a quick comparison with Fig. 5.9 for IPS polyvinyl
chloride pipe (PVC) for A = 1.5 and F' = 0.1 which gives D between 1% and
2 in. nominal. This finding is in agreement with the above solution.

9.5 SUMMARY

Asanalysts and designers, the use of nonhomogeneous formulas should be approached
with some caution. This includes formulas, as well as computer programs, that are
always nonhomogeneous.'? Nonhomogeneous implies that there are one or more sim-
plifications incorporated, such as the substitution of a fixed number for an algebraic
symbol of a quantity that is dimensional. This may result in the formula’s inappropri-
ate use. For pipe-flow calculations, there is no good reason to use nonhomogeneous
formulas like the Hazen—Williams type because the Darcy—Weisbach equation and the
friction factor are well established and documented, and have virtually no restrictions
on their use."?

In this chapter, a set of formulas to estimate D for prescribed values of s, F, A,
and Q) to within possible acceptable levels of accuracy were produced. The summary
forms of this result appear in Eqs (9.7)—(9.10) and Figs. 9.3-9.4. Two dimensionless
groups appear in these formulas. The first is a combination of s, F', and A is the hy-
draulic gradient or “modified slope” (s(1— F'}/ ). The other group is a dimensionless
volume flow rate made up of the dimensional terms @), g, v, and D. For example, fora

12Mathcad and EES are exceptions to this.

13The Darcy-Weisbach equation and the friction factor apply not only to the steady-state pipe flows of
incompressible fluids considered in this text but, almost without exception, in all cases including transient
and compressible flows (high-speed gas flows), and flows having variable viscosity. The only restrictive
assumptions on the use of the friction factor is that the flow must be a continuum (no rarified gas flows) and
the fluid must be Newtonian. A Newtonian fluid is discussed in Chapter 1. Clearly, these two conditions
place no restrictions at all in the context of water flow in pipes.
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hydraulic gradient > 0.001, D from the approximate form of the energy equation for
pipe flow is to within ~10% of the exact value. The assumptions that must be satisfied
for the successful use of these formulas are minor-lossless, turbulent flow (4000 < Re
< 3.25 x 10°), s < 0.5, and smooth pipe. The recent correlations from Swamee and
Sharma (2008) appear to be adequate substitutions for the Mathcad worksheets from
Chapter 5 for minor-lossless flow in a single-pipe network. However, it is important
we note that the worksheets can include minor losses where they are critical such as
a partially closed globe valve needed for flow control.

Finally, one of the substantive learning outcomes from this chapter is the impor-
tance of calculating Re for all designs. Recall that Re characterizes the flow, so that
the value of Re tells the designer about the nature of the flow occurring in the design.

Consistent with the developments in Section 2.9, the energy equation for pipe flow
based on the approximate friction factor that was solved to produce the simplified set of
formulas to estimate ), could also be applied to cases where there is forced, instead
of gravity-driven, flow. The only difference is the representation of the hydraulic
gradient term as discussed in Section 9.4.

B.9.2 Example: Blasius Formula Approximation to Friction Factor for
Forced Flow

Consider a pressure-driven single-pipe network where water at 10°C is to be
pumped upward a distance of 67 m through a 3-in. nominal sch. 40 PVC pipe.
The discharge pressure is 225 psig, and pressure at the delivery location is 7 m of
head. Calculate the volume flow rate, (), delivered by this single-pipe network if
the length of the pipeline is 1280 m. Neglect minor losses.

PVC pipe is smooth, so that Eqn (9.7) can be used to calculate (). As directed in
Section 9.4, the term
s(1—F)
A
in this equation is replaced by

21(1 = Frroq) _A _ PP
L L pgL

to accommodate forced flow. Rearranging Eqn (9.7) as if solving for Q), we get

Q=225 g'/7 DT (B P2 Pryay
V17 L pgL
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Blasius Formula Approximation for Forced Flow (Cont’d)

With v = 13.07 x 107 m?/s, py = pghge; = 1000 kg/m® - 9.807 m/s* -
7 m = 6.865 x 10* Pa (recognize that 1 kg-m/s? = 1 N and 1 Pa = 1 N/m?),
p; = 225 psig = 1.551 x 10° Pa, z; = —67 m, and D= 3.068 in = 0.0779 m,
Eqn (9.7) becomes

(9.807 m/s%)*/7. (0.0779 m)'%/7

(13.07 x 10~7 m2/s)1/7
—67 m 6.865 x 10% Pa — 1.551 x 108 Pa,

Q = 225

— 4/7
(1280 m 1000 kg/m® - 9.807 m/s” - 1280 rn)
Q = 225-0.02505 m®/s- (0.06577)*/7 = 2.25 - 0.02505 m®/s - 0.2112
Q = 11.92LJs

This result can be checked by using Fig. 5.30. In this problem, S = 0.06577 =
0.066 and for nominal 3-in. PVC pipe, we obtain 7 =~ 12 L/s, in agreement with
the above result. A quick calculation of Re [Eqn (9.11)] will show that this flow
is turbulent. Therefore, the formulas from the above section are valid. It is also
worthwhile to verify that the pressure rating of the PVC pipe is acceptable for the
conditions stated in the problem. From Table 3.3, the rated pressure for sch. 40
3-in. PVC pipe is 260 psig. Thus, the pipe will withstand the 225-psig pump
discharge pressure with a factor of safety of (260 —225)/260 = 0.135 = 13.5%.
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CHAPTER 10

OPTIMIZATION

“You’re an Engineer, Everything You Say is Abnormal.”
— The Boss in the Comic Strip Dilbert, by S. Adams, 2008

10.1 FUNDAMENTALS

Optimization is an important part of any design process. Generally, the goal of a
designer is to produce a design that has the best performance at the lowest possible
total cost. Thus, with an optimized design, the design characteristics (geometry, heat
and fluid flows, temperatures, materials, weight, volume, etc.) are not just acceptable,
but are the best possible subject to constraints that are imposed on the design.

A word like “best” used in the above description implies an optimal (“maximal”
or “minimal”) value if we are able to cast all aspects of the design in quantitative
terms. Not all aspects that affect a design are quantitative. We sometimes refer to
nonquantitative aspects as “intangibles.” Some soft-engineering topics such as those
involved with safety, the law, environment, society, manufacturability, and sustain-
ability among others, are sometimes intangible. In this regard, the relatively new
field of sustainability, or sustainable engineering, has attempted to quantify aspects
of production, manufacturing, design, and retirement of materials and products that

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 201
Copyright ©) 2010 John Wiley & Sons, Inc.
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were formerly difficult to do so. Even though intangibles are not able to be explicitly
modeled, we nonetheless consider them in our selection of the final design. In this
way, experience, engineering judgment, and good sense contribute to the selection of
an optimal design.

In the optimization process, the designer considers not only the mathematical
optimal cases, but also the sensitivity of the total cost to less-than-optimal (“off-
optimal”) designs and the relation of the design to the intangibles. In some cases,
off-optimal designs may be given serious consideration if they produce a better design
once the intangibles are considered.

The existence of an optimum for a design requires that there be a competition
between at least two different effects in the problem, both of which influence a common
element, such as cost. To illustrate this, consider as a simple example the optimization
of a cylindrical water storage tank of fixed volume, V, the cost for which we are told
is proportional to tank surface area, A. Thus, to minimize cost, we wish to minimize
the surface area of the tank. The problem is to solve for the optimal tank radius and
height that produce the smallest, or optimal, tank area, and thus cost.

Let the radius and height of the tank be r and h, respectively. The volume of the
tank is then written as

V = xrh
and the surface area of the tank is
A=2rr%+ 2mrh

where the first term accounts for the surface area of the tank top and bottom, and the
second term the tank side.

We wish to minimize A. To do this, we first write h in terms of V as

he Y (10.1)

mre

and, upon substitution into the expression for A, obtain

2V
A:%ﬁ+7— (10.2)

where only one independent parameter, r, now appears.

Our inspection of Eqn (10.2) reveals that r affects the surface area of the tank in
opposite ways for the tank top and bottom, and the tank sides. The first term on the
right side of Eqn (10.2) indicates that the top and bottom surface area increases in
proportion to 72, The second term on the right side of Eqn (10.2) shows that the
sidewall surface area is proportional to 1/r (recall that this is for a fixed tank volume
where, from Eqn (10.1), his proportional to 1/72). Thus, we can see the competing
effects on A from r; decreasing r produces a smaller value of A based on the first
term in Egn (10.2), but a larger value of A based on the second term in Eqn (10.2).

The question to be answered is what is the value of 7 the produces the smallest valuc
for A.
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Tank Area, A (1)

0.2 04 0.6 0.8 1 1.2 1.4
Radius, r {m)

Figure 10.1 Optimal tank area as a function of tank radius. The radius that minimizes tank
area is obtained by inspection. The value of r at this location is called rop¢. For 1 < ropt, the
area is dominated by the sidewall, for r > r,p; the area is dominated by top and bottom.

One way to provide this answer is to make a plot of A versus r to locate the optimal
point for A, Agpt, in a graphical manner (see Fig. 10.1). While acceptable for this
simple example, this graphical method is time consuming and lacks generality that
will be needed for more complex, realistic problems. We will explore two alternate
methods for optimization in the sections below and obtain the solution for this example
problem.

10.2 THE OPTIMAL FLUID NETWORK

There are at least two contexts in which we discuss optimization of fluid flow networks.
The first refers to optimization of a network of a specific type, say a gravity-driven
water system, where we size the components and carry out the design based on
minimum cost, or another related outcome. The second context refers to the choice
of the most-desirable among several systems of different types, such as a water supply
from a gravity-driven system, an electrical pump system, and a dug-well system. Each
of these systems may first be optimized within its own structure using the first context
and then an appropriate choice made from among these optimized units. Both are
important but, because the first is more fundamental than the second, we will focus on
only the first context in this chapter. That is, once each system in a group is optimized
subject to an over-arching set of constraints, it is a straightforward task to pick the
most appropriate solution from among this group.
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There are several instances that come to mind where there optimal conditions exist
for a gravity-driven water network. By far, the most important from among these is
the optimal static pressure head at a branching junction (where three or more pipes
meet through which water is distributed). As will be discussed in Chapter 11, this
arises from competition between upward and downward changes in pipe diameters
at opposite sides of the branch with increasing head. Cost is proportional to pipe
diameter, so this competition results in the existence of minimal cost, which yields
optimal pipe diameters. Other instances may be considered from the following list.

1.

In a network, where there is a water storage tank and a prescribed water flow
rate, increasing the elevation of the tank to supply a larger elevation head of
water will enable a reduction in the pipe diameter. In this case, there is added
cost to elevate the tank and reduced cost due to the smaller pipe size. The
competition here is evident. This problem is solved in Section 10.6.

In any network having multiple delivery points, increasing the number of de-
livery points, say, from one every 10 houses to one every 2 houses, will result
in the need for smaller delivery pipe sizes, since each pipe will carry a smaller
flow rate. The competition is between the larger number of pipes, on the one
hand, and smaller diameter pipes on the other.

. In systems where there are multiple sources, there is a choice between inde-

pendent piping of small diameter from each source to a common water storage
tank, and a much larger, single pipe that is manifolded near the sources. Note
here that there is an embedded complication of a potential flow from one source
to another, instead of to the tank (see Exercise 50).

. In a single-pipe network with or without local peaks, should the pipe diameter

change, and at what locations, to cause a gradual reduction in excess static
pressure due to the elevation change? In addition to the cost of throttling
valves, certain nontangibles will need to be considered in this problem including
maximum acceptable pressure drop across a valve, vibration and noise in the
network, and possible premature valve wear and leakage (see Exercise 35).

. In a hybrid gravity-driven water and microhydroelectric power network, what

is the optimal fraction of electrical power and what are the pipe sizes that satisfy
this fraction? See Section 12.4.1 for more on this topic.

In a hybrid gravity-driven water and photovoltaic-powered pumped nctwork,
what is the optimal pumped fraction and what are the pipe sizes that satisfy this
fraction?

Other examples can be given based on the reader’s experience and creativity (see
Exercise 33).
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10.3 THE OBJECTIVE FUNCTION

Optimization is performed by first defining an objective function. The objective
function is one that we choose to maximize or minimize' that contains all of the
relevant information about the design. Designating the objective function as F', we
may write?

A

F(&,&,,43,...,%£,) — Minimum or Maximum (10.3)

where &1, &9, £3, . - . , &n, are the independent parameters in our design. For instance,
E may be the total cost of the design that we wish to minimize, the surface area of
a tank that we wish to minimize, or the heat transfeg from the heating system that
we wish to maximize. Since the objective function F' is so often the total cost of a
system, we often refer to the objective function as the “cost” function.

In nearly every real case, optimization is not without restrictions. We refer to the
restrictions placed on the optimization of a design as “constraints.” These arise from
perhaps conservation principles (mass, momentum, energy, and charge conservation)
or physical limitations in the problem, such as pressure, temperature, length, volume,
or weight. Constraints are categorized as equality or inequality types. These are,
respectively,

[i(21, %2, 83,...,8n) =0 (10.4)

and

9;(81,82,83,...,2a) < Cj (10.5)

where C’j is the largest allowable value for the inequality constraint §,. For example,
an equality constraint placed on the above tank example is that the volume is fixed.
There are no inequality constraints for the tank problem.

For the simple case of a design having an objective function, F', that depends on
a single parameter Z, an optimization is carried out by taking the first derivative of
F with respect to Z. The optimal £ (referred to as Z,p:) is obtained by equating this
derivative to zero, and solving for the Z,,; value. Thus

dF
7 = 0 — solve for £ = Top: (10.6)

This method falls into a class of methods referred to as Indirect and is illustrated in
textbox B.10.2.

INote that maximizing a function is equivalent to minimizing the negative of the function and vice versa.
2The appropriate symbols in this and the following sections in this chapter have been given hats to distin-
guish them from those used for different meanings elsewhere in this book.
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B.10.1 Calculus I Refresher

It is worthwhile to recall from calculus that the point where a function is a max-
imum or minimum is an extreme point and has a zero slope (i.e., a zero first
derivative). This is the reason for setting the first derivative to zero to obtain
the location of this extreme point or “extremum.” The reader may also recollect
that if the second derivative of the function at the extremum is negative valued (a
tendency for the value of the function to decrease with an increase in the value of
Z measured from the point of the extremum), then the extremum is a maximum.
Otherwise, the extremum is a minimum.

B.10.2 Tank Example Completed
Consider the numerical solution for the above example of the water storage tank

for which V = 2 m3. In Eqn (10.2), we differentiate A with respect to 7 and set
the derivative equal to zero and solve to determine the optimum. Obtain

Solving for r = 7°P! and then hort gives

1% A 1% 4V
opt _. 1/3 opt _ — 1/3
" (27r) ’ h w(rort)2 ( o )
and from Eqn (10.2),

AoPt 3(271,)1/3‘/2/3

With V = 2 m®, get 7°"* = 0.683 m, h°"* = 1.37 m, and 4°"! = 8.79 m? in
agreement with the results of Fig. 10.1. This area is the smallest possible value
for a cylindrical tank of the given volume and, since we were told that cost is
proportional to A, we have then found the smallest, and thus optimal, tank cost.

To assure that the minimum area has been found, we take the second derivative
of A with respect to 7 to get
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The Tank Example (Cont’d)

which is always positive. Therefore, because the second derivative of 4 with
respect to r is positive, the extremum found above is indeed a minimum. If the
second derivative of A with respect to 7 is negative, the extremum found above
is a maximum.

10.4 A GENERAL OPTIMIZATION METHOD

Several methods have been developed to obtain possible optimal solutions to math-
ematical functions. Among these are Lagrange Multipliers, Gradient Methods (in-
cluding the Conjugate Gradient method), Search Methods, and Linear Programming.
The commercial package Mat1ab has a variety of very powerful built-in functions for
optimization that are contained in the basic package and in the Optimization Tool-
box. This package is recommended for optimization of large, complex problems. The
commercial package Mathcad also contains a small number of functions available
for use in optimization problems one of which is the Given ...Minimize construct,
as discussed below.

The method of Lagrange mulitipliers will be covered here. While the Indirect
method, as described above, can be used for only the simplest of problems (e.g., the
above tank example) where the design problem contains only a single independent
parameter, the method of Lagrange Multipliers is among the most fundamental of
methods for more than one independent parameter where the objective function and
constraints may be nonlinear. The curious reader is encouraged to pursue the above
methods presented in many references (Burmeister, 1998; Bejan et al., 1996; Jaluria,
1998) including several directed specifically at water-distribution networks (Swamee
and Sharma, 2000, 2008).

10.4.1 Lagrange Multipliers
As discussed above, we wish to optimize the objective function
F(&y,#s,...,&,) — Optimum (10.7)

subject to the equality constraints

(81,82, E0)
2(£11£27"'7§jn) =
(10.8)
im(i1;i27"'a§jn) =0

If there are inequality constraints, they may be converted to the equality type by using
one or more “slack” variables. For example, the inequality constraint of Eqn (10.5)
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may be written as an equality constraint by defining 35 as the difference between zero
and C'j. Thus Eqn (10.5) may be written as an equality constraint as

Gy (81, 82,83, ..., &) — Cj + 87 =0 (10.9)

The term §; is the unknown slack variable for the jth inequality constraint. The terms
§; for all of the inequality constraints are determined in the solution procedure as
described below.

In the Lagrangian Multiplier method, we convert the discrete equations appearing
in Eqs (10.7) and (10.8) into a single equation by adding the zeros of Eqn (10.8) to
the objective function of Eqn (10.7). Obtain

A ~

V(#1, &2, s Eny Ay Agy ooy Am) = F(@1,89,...,8n)
+ Mli(Er, 82, .., 80)
+ Aola(dr,22,.. ., 20)
+ o Al (B, By Eg)
(10.10)
where the as-yet unknown terms ;\1 , ;\2, - ,;\m are referred to as Lagrange multi-

pliers.
Following the above procedure, the optimal is obtained when the first derivative
of Y with respect to all of the independent parameters is equal to zero. Thus,

)% oY oY
a:il—o, 8_1132_07 ey E—O
oY oy y
=0, =0, ..., Y g (10.11)
X\ Oy O
or
OF . 8l  « Oy < ol
A Pm
55 T Mag, Thgr, Tt Amgg =0
oF . 8l < Bl ol
R Wikt T Wi Sy
o3, Moz, T Mor, T 53, =0
OF 5 0 5 O 3, 2 g
o5, "Mz, oz, tTAmGE,
(21,82, ... ,&3)=0
lo(21,82, ... ,dn)=0

(10.12)

lm(fi‘l,i‘Za 7:i“n):0
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If F is continuous and differentiable, all derivatives in Eqn (10.12) are obtainable.
Thus, Eqn (10.12) represents a system of n + m algebraic equations that may be
solved for the n values of the independent parameters £ and the m values for the
Lagrange multipliers .

If the system of equations from Eqn (10.12) is linear, matrix inversion may be
used in a straightforward manner to obtain the solutions for the optimal values for
Z1,&2,...,&n and the Lagrange multipliers ;\1, ;\2, .+., Am. Otherwise, when the
system of equations is nonlinear, successive substitution of one equation into another
or a formal numerical method, such as Newton-Raphson (Gerald and Wheatley, 1999)
or the Given...Find construct in Mathcad is used to obtain the solution.

B.10.3 A Nonfluid Example

Consider a shell-and-tube type of heat exchanger that perhaps you have seen in a
large industrial plant. The purpose of this device is to transfer heat between a hot
fluid stream and a cooler one, but this is the extent of involvement with fluids for
this example. The exchanger length, L, and diameter, d, are to be selected such
that the total cost for the exchanger is minimized. The cost function is

F(L,d) = $4450 + $37.70/m>® Ld*® + $28.60/m*Ld (10.13)

where F'isin dollars, and d and L are in meters. The terms in Eqn (10.13) account
for tube cost, shell cost, and floor space cost, respectively. The overall volume
of the exchanger is fixed at V = 15 m3.

The single equality constraint is the fixed volume,

(L,d) = %dzL —V=0

We will use Lagrange multipliers to solve this problem. Equation (10.10) be-
comes,

Y(L,d) = F(L,d) + A(L,d)

where ) is the single Lagrange multiplier. Equation (10.12) becomes for this
example,

)% .
37 = 0+ $37.70/m*3d>® + $28.60/m’d + /\%dz =0 (10.14)
and,
oY 357 J1.5 2 1T
5g =0+ 894.25/m* Ld"® + $2860/m°L + AZLd =0 (10.15)
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A Nonfluid Example (Cont’d)

To solve these two equations simultaneously, eliminate ) between Egs (10.14)
and (10.15) to get

$18.85/m3° Ld*® — $28.60/m*Ld = 0

or d*® = ($28.6/m?)/(818.85/m3%). From this, we obtain d = d°?* = 1.32 m
apd fromA Eqn (10.4.1), L = L°P* = 10.96 m. The optimal total cost is then
fovt = P(LoPt dort) = $5691.

Next, the second derivatives of £ with respect to d and L individually, and the
mixed second partial derivative of F’ with respect to d and L need to be evaluated
to verify that a minimum for F' has been found. This is left as an exercise for the
student.

As a final note, there are many problems for which no optimal solutions exist.
For example, consider a heat-conducting metal fin, like those seen on the engine of
a motorcycle, that transfers heat to a fluid moving next to it. For a motorcycle, the
fluid is air passing across the hot engine. The heat transfer rate at the base of the fin
increases monotonically with the fin length such that there is no optimal fin length in
an unconstrained situation. Constraints on the other dimensions of the fin, flow rate
of fluid, or the weight or volume of fin may produce an optimal fin length. Therefore,
when the above algorithms or optimizing functions in Matlab or Mathcad produce
suspicious, obviously incorrect optimal values, then perhaps no optima exist. In any
event, a thorough inspection of the equations for the system will reveal this behavior
without any numerical computations.

10.5 OPTIMIZATION USING MATHCAD

Let us reconsider textbox B.10.3 example and propose to solve it in Mathcad. We
will use the Given...Minimize block. This is similar to the Given...Find block
that we have already seen, except that it seeks to minimize a function of one or more
variables and returns the (optimal) values of the variables once the minimal value for
the function has been found. With this construct we need to define the function that
we wish to minimizc and provide initial guesses for the unknowns. The constraints,
if any, are placed inside of the Given...Minimize block. For this example, there is
a single constraint of fixed volume, V. Mathcad does the rest.
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Optimization of Heat Exchanger
V= 15m3 dollars = 1 L= Im d= I'm
Fpyge(L,d) = 4450dolars + 373%:12'5.“ 28.6%11-1.
m’ m
LY
Given V—-E—-dz-Lz 0 l(d = MinimizeFp,y,L.d)
i
(LY (1096
.= m
la, |13z Fyai(L.d) = 5691.04bllars

Figure 10.2 Mathcad worksheet for optimization of a heat exchanger.

The worksheet for this solution is shown in Fig. 10.2. The solution is reported in a
column vector® and the values for d and L are identical to that in textbox B.10.3. Note
that solution is compact, units are used, and it appears as it would if on paper. This
construct will be used extensively for larger optimization problems in Chapter 11.

10.6 OPTIMIZING A GRAVITY-DRIVEN WATER NETWORK

10.6.1 The Problem and Cost Optimization

For some locations where there is a supply and demand for a relatively large flow
rate of water, but not much elevation to drive the flow, and where the length of this
single-pipe network is large, it may be cost effective to build an elevated water storage
tank to produce additional elevation head. The schematic of Fig. 10.3 focuses on this
situation. The flow rate is @ and the length of pipe and elevation head between the
base of the tank and the delivery location are L and Az, respectively. The elevation
of the tank measured from its base is Az;.

The competition in this problem is as follows. The cost of the network includes
pipe cost, typically proportional to the pipe diameter D, and the cost of the tank and
structure to support it. The latter cost is composed of two terms. The first is the fixed
cost of the tank (we assume the volume of the tank is fixed based on water demand)
and a cost for the structure that is proportional to its height. With no tank (low
elevation head) the pipe diameter will need to be large to reduce the effect of friction.
In this limit, pipe cost dominates the problem. At the other extreme, where there is the
tank and structure, the resulting higher elevation head will reduce the required pipe
diameter and thus cost, but at the added expense of tank and structure. The question

3The unit of both d and L is identical, so this is not a problem. If the units of two or more dependent
variables are not the same, the Given. . .Minimize block must solve as if the results are dimensionless.
To do this, just divide by the unit of each term in the Minimize statement.
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z
1

Az,

Figure 10.3 Geometry for optimization of low-head network with constructed tank.

posed is “what is the optimal height of the tank, Az;? *, that minimizes total pipe and
tank/structure cost?” After this answer is obtained, we can then calculate the optimal
pipe diameter, D°P*, and optimal network cost, C'7¥ t

For the case where there is an elevated tank, water is supplied to it from the source
by a small pump (not shown in Fig. 10.3), perhaps powered by photovoltaic cells.
The pump is large enough to raise the water from the source to the tank, but not large
enough to supply the water to the communities. It would be too large and costly to
do this. It would also need to run nearly continuously to provide static pressure to
the network, which would perhaps increase operating costs for electrical power.

We begin by recognizing that the pipe diameter is obtained from the solution of
the energy equation, as we have seen in many problems is the past. Equation (2.23)
is combined with Eqn (2.7) to eliminate @ in favor of flow rate (), to get

L+Az L. 8Q?
D +B]}W (10.16)

Azg+ Az + Ah={K +a+ f(Q,D)|
where Ah = hy — hg = (p1 — p3)/pg = 0, since both the tank and delivery location
are at atmospheric pressure. The two minor losses embodied by K and L./D are
included in the energy equation, as well as « to account for flow acceleration from
the quiescent water in the tank to flow speed % in the pipe. The total length of the
pipe is L + Az, and the total elevation head is Azg + Az;. Note that the continuity
equation is identically satisfied for this problem.

The data that apply here are Q = 2.5 L/s, L = 2000 m, Azg = 4 m, K = 20, and
L./D = 60. The flow rate and pipe length are both relatively large, and the elevation
head, Azg, is small.

The total cost for the network is written as

D
Cr = $1.067(D—)1~4(L + Az) + $1200 + $120/m*2 Az} 2 (10.17)

u
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where the first term on right side accounts for pipe cost, the second term for the
tank and base cost of pump and structure, and the third for the height dependence of
structure and pump. The coefficients and exponents are approximate and based on
2007 data from central Nicaragua.

The competition that was described above is made clear by our inspection of
Eqn (10.17). The energy equation gives the solution that D is inversely proportional
to Az;. Knowing that L > Az, in the limit of small Az, Eqn (10.17) shows that
the pipe cost dominates the total cost, and for large Az, the tank and structure costs
dominate.

10.6.2 Mathcad Worksheet

The solution is carried out in Mathcad and the worksheet appears in Fig. 10.4. A
description of this worksheet is supplied here.

o The basics:

Definition of water properties of density, p, and viscosity, v.

A convergence tolerance, TOL, used in Mathcad to determine when a
root-finding algorithm has found the root to sufficient accuracy.

Definition of Reynolds number (Re) as a function of ¢ and D, and « as
a function of Re.

Definition of the absolute roughness of the pipe wall.
The friction factor function as defined by Eqgs (2.16) and (2.17).

Cost data for the pipe as a function of nominal pipe size, and for pump,
tank, and structure.

e The solution:

~ Initial guesses for the values of D (diameters ranging from 0.2 in. to 4 in.
are good guesses for nearly all problems considered in this book).

— Values for the input parameters for each leg in the network, including L,
(2, the appropriate minor loss coefficients, and elevation changes.

— Definition of the energy equation for the network. This is given a symbol
r and the needed functional dependence.

— A formula for the total pipe material cost, T.,;.

- The solution of the energy equation to get D as a function of Az; using
the Given. . .Find construct and definition of the cost function, T, which
depends on just Az;.

— Plots of the results to investigate the existence of an optimum.

- Optimization using the Given. . Minimize construct and the solution for
AzP', D°P', and optimal cost. A constraint on the maximum height of
the tank of Az, < 25 m was used to prevent the structure from being
unrealistically too high (a different, more nonlinear, cost model would
need to be included for very tall structures).
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Figure 10.4 Mathcad worksheet for optimization of low-head network with constructed
tank.
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Figure 10.5  Cost versus tank height for optimization of low-head network with constructed
tank.

10.6.3 Results

A plot of the total network cost as a function of Az, is shown in Fig. 10.5. The optimal
point of Az{ Pt —8.23mis clearly identifiable on this graph. The solution from the
Mathcad worksheet gives DePt = 286 in, and optimal network cost of $12,041.
From data in Chapter 3, we would select a nominal 3-in., sch. 40 IPS PVC pipe for
this design. The inside diameter of this pipe is 3.068 in. Because this is larger than
the theoretical diameter of 2.86 in., we would include in the design a throttling, or
globe, valve to effectively reduce the pipe diameter and satisfy the design flow rate
of 2.5 L/s. Otherwise, the flow rate will exceed that specified in the design. To allow
for the possibility of more flow in the future, the valve opening is simply increased.
This part of the design would be carried in what we refer to as the “reverse solution”,
which will be described in Chapter 11.

Finally, a further inspection of Fig. 10.5 reveals that halving or doubling the optimal
value for Az; will add ~$500 to the total network cost. This result gives the designer
a “feel” for the degree of sensitivity of the design to off-optimal conditions.

10.7 MINIMIZING ENTROPY GENERATION

Minimizing network cost is one way, and given the importance of economy in en-
gineering designs perhaps the most meaningful way, of optimizing the water-flow
network. It is not the only one, however. The thermodynamic property entropy pro-
vides us with an alternate approach for this optimization. Entropy, in some contexts
discussed as a measure of disorder in a system or component, is used in the classical
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second law of thermodynamics to model the behavior of a system or component. In
particular, the entropy increase in a real process* is always positive when the fotal ef-
fects of the process (that is, within the process itself and the influence of the process on
its surroundings) are considered. Thus, we often seek to minimize the rate of entropy
generation, $9¢7, in a process and, by doing so, guarantee the smallest possible ex-
tent of irreversibilities, or inefficiencies, associated with the process (Poulikakos and
Bejan, 1982; Bejan, 1996). Many publications on entropy and the associated topics
of second law, availability, and exergy analyses have appeared in the past couple of
decades. In recent years, the popular concept of sustainability® has been formalized
and frameworks for the life-cycle or sustainable analysis have been proposed and
exercised. Entropy is a potentially very useful tool in sustainability analysis
The rate of entropy generation for adiabatic® flow in a pipe is,

pgQ(Az + Ah)

‘S'vgen —
Ty + g(Az + AR) /26,

(10.18)

where ¢, is the specific heat for water (~4190 J/kg-K). Az + Ah is the head loss due to
friction in the flow. The denominator in Eqn (10.18) is the absolute mean temperature
of the water along the pipe flow path, where T}, is the water temperature at the pipe
inlet.

Equation (10.18) may be used to solve for unknowns in the pipe-flow problem. For
example, if the entropy generation for the tank and support structure, S;:" , for the
above example were known, this information could be combined with Eqn (10.18) to

get an expression for the total entropy change as,

¢, V(Az+ Ah)
Sgen — Sge'n. / Sgen dt — Sgen pg
T tank + o tank + Tin + g(Az + Ah)/QCv

(10.19)

where V' is the volume of water in the pipe. The static pressure head at the base of the
tank, hg, is unknown and can be solved for by taking the derivative of Eqn (10.19)
with respect to Ah, setting this result equal to zero as done in the above examples,
and solving for Ah to get hs.

In Chapterl |, we will have the need to also solve for the unknown static pressure
heads at the junctions of a multiple-pipe network. Taking the derivative of Eqn (10.18)
withrespect to Ah and setting it equal to zero will give us an equation for this unknown.

Obtain )
Tin
0 ¢ TingpQ (10.20)
[2¢,Tin + g(Az + Ah))2
Entropy minimization is included here mostly in the interest of completeness.
Cost minimization will almost certainly be considered more important than issues

of sustainability in developing regions so it is very unlikely that the equations from

4As opposed to one that has been idealized to obtain a limiting- or bounding-case result.

3Sustainability has been defined as that which “meets the needs of the present without compromising the
ability of future generations to meet their own needs” (Anon., 1987).

No heat transfer between the flow and its surroundings.
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this section will be used in a design in this context. However, the readers should be
aware of the existence of a physical law like mass and momentum conservation (i.e.,
the second law of thermodynamics, not economics, that can be used to determine
unknown quantities like static pressure heads at junctions in multiple-pipe networks).

10.8 SUMMARY

Briefly, in this chapter we saw the importance and relevance of optimization in the
analysis and design of gravity-driven water networks. The concept is very basic
and we now recognize that an optimal solution may exist for problems where there
is a competition of effects, as described above. A corollary to this competition is
that we should be able to identify at least two limiting-cases for each optimization
problem. For example, for the last problem these are zero height of the tank, where
all cost is associated with only the pipe, and an infinite height of the tank, where
only the tank/support cost enters the problem. It is useful to look for these limiting
cases when trying to determine if a problem has an optimal solution. The Lagrange
multiplier method is important and powerful for this application and we will use it
again in Chapter 11. We also saw the relative simplicity of obtaining optimal solutions
using the Given. . .Find and Given. . .Minimize constructs in Mathcad. These will
also appear frequently when we consider multiple-pipe networks, where numerical
solutions are nearly always required.
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CHAPTER 11

MULTIPLE-PIPE NETWORKS

“... Learn as if you will Live Forever.”
— M. Gandhi

11.1 INTRODUCTION

Thus far, we have focused on two levels of analysis and design for a single-pipe
network. The first level considered the performance of a network based on overall
characteristics (i.e., the mean slope, site geometry, and inlet and outlet states). This
gave rise to a relatively simple form of the energy equation for pipe flow, Eqn (2.40) or
(2.41), that linked the fluid flow rate, pipe diameter, site geometry, and static pressure
at the delivery location. The second level addressed the distribution of properties,
namely the static pressure distribution, in the flow and produced a different form of the
energy equation, Eqn (6.12). The former equation is very convenient for calculating
the pipe size needed for a required volume flow rate and given site geometry and
delivery pressure. In Chapter 6, we saw that assessing the solution of the latter
equation is crucial to assure the integrity of a design; a requirement to achieve a
minimum static pressure at each and every point along the flow path in a network
having local peaks. The concept of “Natural flow” in a pipe explored in Section 2.6.3

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 219
Copyright © 2010 John Wiley & Sons, Inc.
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and a new companion concept of the “Natural diameter” for a pipe in Chapter 6 were
outgrowths of these two levels of analysis.

As we saw with the examples in Chapter 8, single-pipe networks are important
in a gravity-driven water supply. For instance, a single pipe (a “gravity main”) is
used to supply water from a single source to a storage or break-pressure tank and
another single pipe may be used to deliver water from the tank to a single tapstand in a
community. However, a multiple-pipe network is always needed for water distribution
to more than a tank or a single tapstand. Other needs would be branching fiows from
a “main” or “trunk” pipeline (a “distribution main”) to branches of smaller-diameter
distribution pipes, and networks where there are multiple water sources. Because
the need for branching and single pipes of multiple diameters is so common, this
substantial chapter is devoted to their study.

The developments in the above chapters may be extended to a network having
more than a single pipe by making just a few changes and generalizations. We will
solve energy equation for pipe flow, Eqn (2.44) (or its equivalent where minor losses
are included), in a slightly modified form. The modification is very simple. In a
single-pipe network, the static pressures at the end points of the network are p; = 0
(atmospheric pressure) at the source and a specified static pressure at the delivery
location, pp, which we wrote in dimensionless form, F' = p2/pgz;. Given the
geometry of the site, including mean slope s and tortuosity A, the specification of
F allowed us to solve Eqn (2.44) for D required to pass a specified volume flow
rate of water, (). The analysis was straightforward and the solutions were obtained
either graphically (in Chapter 5) or by using a Mathcad worksheet, which allowed
the inclusion of minor losses (Chapter 8). In the case of a multiple-pipe network,
the static pressures at the locations where the multiple pipes are connected are not
known. We must determine the values for the static pressures at these “junctions”
(or internal “nodes’) from other information or guidelines‘ and, using these values,
evaluate D for each pipe by solving a system of (nonlinear) energy equations for
the flow in multiple pipes in a simultaneous manner. The solution of simultaneous
nonlinear algebraic equations was discussed in Section 4.4.1. It is important to note
that the need to specify the junction pressures to be able to solve for D uniquely is
entirely consistent with the developments in Chapter 6 where, to solve for the Natural
diameter distribution in the network, we first prescribed a static pressure distribution.
The resulting solution for D from the energy equation is, in fact, the definition of the
Natural diameter.

10ther information could be the condition of minimum cost, the requirement of a suitably large static
pressure at the junction to eliminate potential contamination of the clean water, or an acceptably low static
pressure such that pressure limitations for the pipe and fittings are not exceeded.
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11.2 BACKGROUND

11.2.1 Past Approaches to the Problem

The analysis and design of multiple-pipe networks forms the bulk of the few books
and chapters of books written on the topic water distribution (Jeppson, 1976; Nayyar,
2002; Trifunovic, 2006; Swamee and Sharma, 2008). As opposed to the relatively
simple representations of the solutions for single-pipe networks that we saw in Chap-
ter 5, those for multiple-pipes will always require a numerical solution even for
minor-lossless flow. The literature shows two different approaches to the problem.
The first assumes values for all pipe diameters (D) and solves for volume flow rates
(@) and static pressure head values (k) at all junctions. The second assumes known
values of ¢} and solves for D and k;. Both approaches will be thoroughly considered
in the sections that follow. Optimization is often employed such that network total
cost is minimized. Linear programming, where optimization is performed with the
energy equations in linearized form, is sometimes used [see Schrijver (1998)].

11.2.2 Pressure Head Recommendations

For pumped water flow networks, the hydraulic design requires a specification of a
minimal static pressure in the distribution mains. These are ranges of values set by
the communities or their legislators. In mountainous regions like parts of Austria, the
standard for these pressures can be as large as 120 m, while in other locations like
Rio de Janeiro are as small as 25 m (Trifunovic, 2006). A reasonable average range is
~40-60 m. In gravity-driven water networks, for all points beyond the source,? only
static pressure can drive the flow once it has been converted from potential energy.
Thus, static pressures may be considerably larger in these. For example, analysts and
designers of these networks may encounter the need for static pressure heads nearing
100 m to satisfy the requirements of a design. Pipe materials and wall thicknesses,
along with rated pressures for the different pipe candidates, need to be seriously
considered, in addition to sound construction and operation practices. This includes
the method of joining pipe including cementing for plastic pipe and threaded joints
for galvanized iron (see Chapter 3). The need for break-pressure tanks, air vents,
and vacuum-breakers in the network will also enter the design and, as discussed in
Chapter 13, will be crucial for its successful operation.

11.3 OUR APPROACH

Consistent with the developments and terminology in Chapter 2, we will designate the
unknown static pressure, p;, at one end of the pipe (state 1) as FL=p /pg(z1—22) =
h1 /(21 —22) and the one at the other end of the pipe (state 2) as Py = p2/pg(z1—22) =
ha/(z1 — z2). Equation (2.44), the energy equation for minor-lossless flow in a pipe,

2 A reservoir or reservoir tank at atmospheric pressure
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becomes R N
1+ F -F  8Q* f(Q,D)
A1+s2 nw?g DP
where D and, in general, E ; and F‘g are unknowns. It is understood that the heads
h1 and hy in the definitions for F' are the static pressure heads at the pipe ends. The
reader will note that Eqn (11.1) is consistent with Eqn (2.44) for a single-pipe (i.e.,
F\ = 0if the static pressure at state 1 is atmospheric). Also, recall from Fig. 2.11 that
29 = 0 for a single-pipe network. However, in the present situation where we have
any number of pipes of any lengths, 27 is not generally zero as it was for a single-pipe
network. Because of this, the denominator of each F' term is z; — 22, instead of just
21 as it appears in the definition of F'.
In previous chapters, the energy equation for pipe flow was able to be simplified
if s « 1. Obtain

=0 (11.1)

. 2 D .
;(1+F1—F2)—§T%i(—%—):07 for < 0.5 (11.2)

If minor losses in the network are to be considered, we include them by writing
Eqn (11.2) as,

L. 80?2 ,D DY
(1+F1—F2)—%i(—%5—)[1+fz

>| @

(11.3)
where, in the square braces, the major loss is represented by 1 followed by the minor
terms using either the equivalent length (L./D) or loss-coefficient (K) methods.?
From our inspection of Eqn (11.3), the origin of the recommendations in Section 7.4
concerning the threshold level for minor losses to be significant becomes clear. They
are established by comparing the size of the major loss, the 1 in Eqn (11.3), with
those of the minor loss terms.

As an aid to understanding, the reader may wish to consider the term in square
brackets in Eqn (11.3) as a dimensionless factor > 1 (for nonzero minor losses) that
multiplies the major loss term and, in this way, accounts for the effect of minor losses
in the network.

The term « is included in Eqn (11.3) if it is needed. Recall that, to this point, «
is known to account for the kinetic energy change between a quiescent reservoir at
the source or open tank and the developed flow speed in a downstream pipe. At the
junction of two pipes each having a different diameter, for example, the flow speed in
each will not be very different. This means that the kinetic energy change experienced
by the flow passing between the pipes will be negligibly small. In other words, in
this case the effect of & may be neglected and « dropped from Eqn (11.3).

Where there is a junction of three or more pipes, either one of two approaches
may be used. If there are many outlets, one can imagine the mixing of flows from/to

3Remember that only the loss-coefficient (K') approach or the equivalent length method (L /D) is used,
never use both methods for the same minor loss elements or else the effect of the minor losses will be
erroneously doubled.



OUR APPROACH 223

multiple pipes as taking place in a small mixing “box”. In this box, the static pressure
is approximated as uniform throughout; p is the same for all pipes at that location.
The mixing box will also need to be relatively large, compared with a pipe diameter to
accommodate the flow from/to multiple pipes. Therefore, for the first approach, the
designer may approximate the velocity in this mixing box as small compared with the
velocity in a pipe (i.e., the approximation 7 = 0 at a junction may be invoked). This
approximation is conservative because it will add a small “minor loss” of « to the
flow entering each pipe from a junction. Recall that the value of a is ~1 for turbulent
flow and 2 for laminar flow (see Fig. 2.2). Both of these values are small compared
with many of the minor-loss K values appearing in Table 2.1.

The second approach applies if there is a single inlet and two outlets, such as what
occurs with branching flow in a tee fitting. In this case, the minor loss from Table 2.1
would be applied to either the “branch” flow (a turning of the flow of 90°) or the
“run” flow, which is straight through the tee; « in Eqn (11.3) is ignored in favor of the
minor-loss term. This model for energy losses in a branch is most frequently used.

It is worthwhile to emphasize in our discussion of losses associated with branching
flows that the effect of the acceleration term in the energy equation is generally small
compared with the pressure and potential energy terms for flows in gravity-driven
water networks.* Low-flow networks, where the elevation heads are small, are a
possible exception to this guideline.

The general procedure for analyzing a multiple-pipe network is as follows:

1. Apply the energy equation for pipe flow, Eqn (2.7) or (11.3), to each leg of
the network for which there is a pipe of uniform diameter. This means that
the energy equation is written between the inlet and outlet for the uniform-
diameter pipe. The inlet of a pipe of one diameter joined by a reducer or an
expander to the outlet of a pipe of a different diameter forms a “junction” or
“node”. Junctions also occur at all sources and wherever pipes join a tank> or
any branch fitting such as a tee, even though the pipe diameter may not change
across the tank or tee®. Besides these junctions, all appropriate local high and
low points in the network, as defined in Section 2.7, should also be treated as
junctions (we may refer to these as “design points” rather than junctions) even
though the pipe diameter may not change at these locations. Local high and
low points, where the values for the static pressures may be locally too low or
high, are worthy of our inspection.

“As discussed in Section 13.13 the normally recommended peak flow speed in a plastic pipe is ~3 m/s.
From this, a simple calculation of the kinetic energy per unit mass gives ~0.5 m of head. This is what is
meant by the acceleration term in the energy equation is generally small compared with the pressure and
potential energy terms. However, for a low-head gravity-driven water network, small minor losses and o
should be considered. This was emphasized in Section 7.4.

3This is because the pressure at the surface of the source or tank is atmospheric and is thus known. The flow
upstream and downstream of the tank and downstream from the source is affected by this fixed condition.
The inlets and outlets of a tee may have the same or different diameters; if different, the tee is referred to
as a “reducing” or “expanding” tee.



224

MULTIPLE-PIPE NETWORKS

2. At each junction in the network, mass conservation requires that the sum of

the volume flow rates into the junction must be zero. For example, if there are
n pipes at a junction, mass conservation requires > Qi — > Qout = 0 as
discussed in Section 2.5, where the summation is implied over n pipes. For
the simplest case, where there is a connection of two pipes, each of a different
diameter, the volume flow rates in each pipe are clearly equal.

. In pipe networks where closed loops appear, use is made of the fact that the

pressure change around any closed loop must be zero. This arises because the
static pressure at any pointin the network must be single valued. A loop network
will be considered below. Further information on looped networks is presented
in a Section 11.7 and in Gagliardi and Liberatore (2002) and Swamee and
Sharma (2008). The Hardy Cross method, presented in some fluid mechanics
books (Potter and Wiggert, 2002), is used to solve this type of network problem
for arbitrarily specified pressure at pipe junctions.

The following simplifications apply to the energy equation for each leg of the
network as appropriate:

1. For all reservoirs and tanks open to atmospheric pressure, p = 0 and @ = 0, as

discussed in Chapter 2.

2. Inall mixing boxes, as discussed in the preceding paragraph, the static pressure

is uniform and @ = 0.

. As noted and discussed in Section 7.5, for a faucet valve at a tapstand, the pipe

network leading to the tapstand is designed based on flow conditions occurring
for a fully open valve. The same applies to a globe valve at the entrance to a
tank. When the faucet is open, the static pressure of the fluid at the valve outlet
is zero (atmospheric pressure or zero gage pressure). When a globe valve at
the entrance to a tank is open, the static pressure of the fluid at the valve outlet
is equal to the hydrostatic head of the water in the tank. In both cases, the
minor loss for the full-open valve could be included if carrying out a complete
analysis using, say, a Mathcad worksheet. From Table 2.1 and the associated
discussion, we see that the K value for a full-open valve is~8-10, small enough
so that it may be neglected in a preliminary analysis. For an example where the
minor loss is included, see the simple-branch network in Section 11.4. Note in
this discussion that the minor loss K value for the highly dissipative (that is,
nearly closed) globe or faucet valve can be 100 or larger (Table 2.1). Of course,
if the valve is shut, the pipe diameters have no effect on the static pressure in
the system, which depends on just the local elevation.

In this chapter, we will consider the following cases for flow in multiple-pipe
networks:

¢ A simple-branch network; this could be applied to water distribution from a

single pipe to multiple delivery locations, or tapstands, and serves as a simple
introductory case for more complicated multiple-pipe networks. This case is
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the building block for branching flows that occur frequently in all multiple-pipe
networks in large urban areas including those that are pressure driven.

o A number of pipes of different diameters in series, often used in large networks,
where the dissipation of potential energy is tailored to match of contour of the
pipeline,

¢ A multiple-branch network; an extension of the first case. This is probably the
most common type of multiple-pipe network for rural applications.

o A loop network.

As a group, these encompass nearly all the situations encountered in the design of
gravity-driven water distribution networks.” In the case where there is needed a
more-complex model of any number of pipes connected in any manner, typical of
a large urban water-distribution network, please see Jeppson (1976); Streeter et al.
(1998); Gagliardi and Liberatore (2002); Trifunovic (2006), and Swamee and Sharma
(2008). In these, general but more complex than those used in this text, computer
codes are available to solve the nonlinear equations of the flow network. This topic
is considered in Section 11.8.

For uniformity, pipe is assumed to be IPS sch. 40 PVC for all of the numerical
examples presented in this chapter. Application of the methodologies in this chapter
to other pipe of interest is clearly very easily done (see Chapter 3).

11.4 A SIMPLE-BRANCH NETWORK: FLOW FROM A JUNCTIONTO
MULTIPLE TAPSTANDS

Consider the three-pipe network as shown in Fig. 11.1. The pipes are labeled a, b,
and c and they meet at the junction (subscript j) where the pressure is p;. Each pipe
has a mean flow speed u, volume flow rate (), diameter D, and length measured along
the path of the pipe L. The change in elevation between the top and bottom of each
pipe is Az. For example, Az, is the elevation change between the top and bottom
of pipe a, where the bottom of this pipe is located where the static pressure is p;.
The required head at each outlet for pipes b and ¢, hge;, is nonzero as indicated in
Fig. 11.1.

The values appearing in Table 11.1 apply to this problem. Note that the volume
flow rates are prescribed for each pipe, which are based on the measured, or perhaps
measured and projected into the future, demands of the communities to be served.
As specified in Table 11.1, the continuity equation is satisfied. The elevation changes
for pipes a and b are positive, and that for pipe c is negative meaning that the flow is
moving upward against gravity toward the delivery location at the end of this pipe.

"Note that the case of flow from multiple sources or tanks to a single pipe is identical to the first of these
cases. The only difference is that the flow is into the branch from multiple pipes instead of from the branch
through multiple pipes.
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Figure 11.1 A three-pipe branch network. Possible application is flow from a branch to
multiple tapstands located at the delivery locations (ends of pipes b and c). The source is at the
top of pipe a.

Table 11.1  Values for the Design Parameters for the Branch Three-Pipe Network of
Fig. 11.1

Pipe L(m) Qi) K L./D Az(m) hge (m)

a 365 0.5 50 60 33
b 120 02 10 120 5 7
c 210 03 10 90 -1 7

As an introduction to the topic of multiple-pipe networks, we will formulate this
problem two ways. The first will be in terms of “primitive variables” (i.e., p, z, and
L, along with D and Q). The word primitive refers to the solution of a problem
where its fundamental dimensional quantities appear as opposed to the variables
rewritten in dimensionless forms. With the primitive approach we begin by writing the
fundamental energy equation for pipe flow for each pipe, simplify them to eliminate
the energy terms that appear, but are not relevant to the problem at hand, and then
solve them to obtain, for example, the sought-after values for D.

The second approach to the formulation is to use the framework developed earlierin
this book for single-pipe networks where p, z, and L are replaced by the dimensionless
parameters F', s, and A [see Eqn (11.3)]. As we will see, this approach, while very
convenient for a single-pipe network, is less so for one with multiple pipes because
elevations and static pressures at the pipe ends are generally nonzero.

Whether the problem is solved in primitive or dimensionless form, there will
always be the need for three steps to the solution of a multiple-pipe problem, where



A SIMPLE-BRANCH NETWORK 227

D for each segment (or leg) of the network is unknown.® The first step is referred
to as the “forward solution.” In this step, we solve the energy equation for pipe flow
to determine the theoretical values for D needed to satisfy the prescribed volume
flow rates in the network, network overall geometry, and specified or calculated static
pressures at all pipe junctions. Once the values for D are obtained, in step 2, the
designer adjusts these to correspond to actual inside diameters for the nominal pipe
sizes chosen. As discussed in Chapter 3, the nominal pipe size normally chosen is
one where its inside diameter is slightly larger than D.

In step 3, the “reverse solution” is obtained where, given the actual values for D
corresponding to the nominal pipe sizes, the actual volume flow rates of water along
with the actual static pressures at each junction are determined.” The differences
between the actual and specified values for p at each junction and ) may be small,
such that the actual values will satisfy the needs of the design to an acceptable level. If
not, the actual D may be adjusted by choosing different nominal pipe sizes and step 3
repeated. Other adjustments in the design that will bring the calculated flow rates more
in agreement with those required by the design include simulating the presence of
globe valves (and thus including them in the design) by adding the appropriate values
for their minor loss coefficients at specific locations. This, in particular, is employed
in the first type of multiple-pipe network explored in this section. Thus, we see that
engineering design enters this process in all three steps, where the designer needs to
choose static pressure at the junctions in step 1, choose corresponding nominal pipe
sizes in step 2, and decide on adjustments to these after inspecting the results from
step 3.

To summarize, the three-step process is illustrated schematically below.

Known z, L, K, L./ D, Prescribedp;, Qa, @b, Qc, . .. — Theoretical D, Dy, D . ..

“Forward Solution”

Theoretical Do, Dy, D, ... — Actual Dy, Dy, D, . ..

From Pipe Data (see Chapter 3)

Knownz, L, K, Le/D, Actual Do, Dy, D, ... — Actual pj, Qa, Qs, Qc . ..

“Reverse Solution”

Embedded in this process will be the need for the designer to determine the accept-
ability of the static pressures at all pipe junctions. Solutions of the energy equations

8This was done for single-pipe networks above, but the process was never formalized because of the
simplicity of this type of network. In the case of multiple-pipe networks, the first and last steps are more
computationally intensive so that it is worthwhile providing structure to the three-step solution process.
This process has been referred to as a “continuous diameter approach” to distinguish it from one where the
diameters corresponding to only nominal pipe sizes are considered as candidates in the solution (Swamee
and Sharma, 2008).

9For networks where there are branching pipes, such as those illustrated in Fig. 11.1, the actual volume
flow rates of water along with the actual static pressures at each junction are determined in step 3. For a
network of pipes in series, each having a different diameter, only the actual static pressures at each junction
are determined in this step since the volume flow rate is the same for each pipe and is thus known.
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for pipe flow may need to be adjusted to meet this need along with an assessment of
the impact of these adjustments on performance of the network and, perhaps, cost.
We will consider the pipe material cost of the network in this chapter. In contrast with
a single-pipe network, the multiple-pipe network is characterized by the existence of
an optimal design point because the static pressures at pipe junctions, which do not
exist for a single pipe, affect the diameters of different pipes in competing ways. This
will become clearer as we explore the next few sections.

11.4.1 Solution in Terms of Primitive Variables

11.4.1.1 Setting up the Problem and Solving The energy equation is from
Eqn (2.7),
=2

2 u2 Lu
(%-i—al?l—i—gzl)“(%-i-az?z +922) =Croy (11.4)

where C, is the loss coefficient that includes the major and minor loss terms,

CL=f(u 1+—Z

+ T ZK (11.5)

Note that C/, for each pipe depends on @, or flow rate ¢}, and D through the Reynolds
number (Re) ) for each pipe, and the values of the minor loss coefficients, K and
L./D. Our inspection of Eqn (11.5) shows that Cy, is of the order of f which, as
noted in Chapter 2, is of the order of 0.01 for order-of-magnitude purposes.

From Fig. 11.1 and the guidelines discussed in Section 11.1, we recognize that
DPa1 = pghi and the flow speed in the (assumed for this example) mixing box at the
pipe junction is zero. With these, Eqn (11.4) is written for pipes a, b, and ¢ to get

D, L,u*
Az, —h; = (Cr, Zdy2’a Pi
z y (Cy, +aLa)2gDa, ipea
Dy Lyu? )
Azy + hi —~hge = (CL,b + aL—b)2gD!;, Pipe b (11.6)
D, L. .
AZc + hj ~hget = (CL,C +a—L—:)29DC’ Plpec

where h; = p;/pg and haer = paet/ pg.
The continuity equation for each pipe relates ) to % through © = 4Q/7D? [see
Eqn (2.21)]. Substituting this into Eqn (11.6), we obtain

D, 8L,Q% )
Azy —h; = (CL7a+a——) T2gD5’ Pipe a
Dy 8Ly Q2 .
Azb—{—hj—hdel = (CLb+ T ) gD5’ Pipe b (11.7)
D. 8L.Q? .
Az 4+ hj —hge = (CLC+aL ) 2%5’ Pipe ¢
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Equation (11.7) is the energy equation written for flow in pipes a, b, and ¢. By
choosing a value for the head, h;, the three nonlinear algebraic equations of Eqn (11.7)
are solved with the continuity equation,

Qo—Qp—Q:.=0 (11.8)

to obtain diameters D, Dy, and D.. Equation (11.8) is satisfied by the flow-rate data
in Table 11.1. Note that the only unknown in each of the equations in Eqn (11.7) is the
respective pipe diameter, D. Because only adifferent, single unknown appears in each
equation, the system of equations represented by Eqn (11.7) is not simultaneous. This
means that each equation may be independently solved for D,, Dy, and D, which,
as noted above, is the forward solution. It is important to keep in mind that the pipe
diameters are a function of static pressure, p;, or equivalently head k;, and vice versa.

Once acceptable nominal pipe sizes are selected based on D from the solution of
Eqn (11.7), the problem is then re-solved with the known values for D, Dy, and D,
(corresponding to the selected nominal pipe sizes) to get the actual head, k;, and the
actual flow rates, Qq, Qs, and Q..'° This is the reverse solution and we note that for
this a simultaneous solution of Eqn (11.7) is needed because a change in the flow rate
in one pipe affects those in the remaining two through the continuity equation.

The results of the solution, obtained in Mathcad using the Given. . .Find construct,
are presented in Fig. 11.2 for a wide range of values for h;. The Mathcad worksheet
for this example appears in Figs. 11.3-11.5, for the preliminaries, and the forward
and reverse solutions, respectively. Before the results for this problem are explored,
the format of the Mathcad worksheets for multiple-pipe networks is presented and
discussed.

11.4.1.2 Format of the Mathcad Worksheets Most worksheets are divided
into three sections. These are preliminaries, and the forward and reverse solutions.
The preliminary calculations needed for a solution using Mathcad are as follows:

e Definition of water properties of density, p, and viscosity, v.

e A convergence tolerance, TOL, used in Mathcad to determine when a root-
finding algorithm has found the root to sufficient accuracy.

Definition of Re as a function of ( and D, and « as a function of Re.

Definition of the absolute roughness of the pipe wall.

The friction factor function as defined by Eqgs (2.16) and (2.17).

The correspondence between nominal pipe size and D for the pipe material
and type (schedule or SDR as necessary) of pipe under consideration.

10Note that Eqn (11.7) consists of 3 equations and 4 unknowns (h;, Dqa, Dy, and D.) when solving
for diameters as a function of head, h;, when all flow rates are known. However, there are 4 equations
[Eqs (11.7) and (11.8)] and 4 unknowns (h;, Qa, Qp, and Q) when solving for head, h;, and flow rates
when all pipe diameters are known. Thus, this is proof that the problem is uniquely specified in the latter
case and subject to an arbitrary value for k; in the former.
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e Cost data for the pipe as a function of nominal pipe size.
The forward solution using Mathcad includes the following:

o Initial guesses for the values of D (diameters ranging from 0.5 in. to 4 in. are
good guesses for nearly all problems considered in this book).

e Values for the input parameters for each pipe segment in the network, including
L, Q, the appropriate minor loss coefficients, and elevation changes.

o Definition of the energy equation for each pipe segment of the network. Each
is given a symbol r and the needed functional dependence.

o A formula for the total pipe material cost, Tr.,s:.

e The solution of the energy equations using either the Given. . .Find construct
or Given...Minimize construct. The latter was first discussed in Chapter 10
and further in Section 11.4.4.

e Plots of the results or secondary calculations, such as checking to ensure that
all equations are satisfied to the desired tolerance.

The reverse solution using Mathcad includes the following:

o Initial guesses for the values of () (from earlier in the worksheet) and static
pressure heads at the junctions.

¢ Values for the input parameters for each leg in the network as in the forward
solution; normally only K will be included here.

o The solution of the energy equations using either the Given...Find construct
or Given...Minimize construct, as above.

e Secondary calculations as above.

While presented in the context of Figs. 11.3-11.5, the above format is generally
consistent with all Mathcad worksheets for multiple-pipe networks.

11.4.1.3 Discussion of the Solution We now return to the solution of the
problem at hand. From inspection of Fig. 11.2, we see that the diameter for pipe b
is not very sensitive to the head, h;; D} corresponds to % in. nominal. On the other
hand, D, is very sensitive to h; at small values of h;, where the driving force for
the flow in pipe ¢ approaches the elevation head of Az, = —1 m. Recall that the
negative value for Az, means that there is an elevation increase from the junction to
the delivery location for pipe c. Likewise, D, is very sensitive to h; at large values of
h; where h; approaches the hydrostatic head at the junction of 33 m. These bounding
cases will be used to provide a guideline for choosing the junction pressures for this
simple-branch network (see Section 11.4.2).

The total pipe material cost for this three-pipe network is plotted in Fig. 11.6. The
cost data for the assumed IPS sch. 40 PVC pipe appear in the worksheet of Fig. 11.3.
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Based on this calculation, we see that minimal cost for the pipe for this network occurs
at h; =~ 15 m of head (21.3 psig). At this head, the results from Fig. 11.2 provide
the final values for pipe diameters D,, Dy, and D, of 1, %, 1 in. nominal sizes,
respectively!!. With these pipe sizes and the specified design parameters, the reverse
solution from Fig. 11.5 shows that all flow rates will not meet the design specifications.
However, by partially closing globe valves installed in all pipes corresponding to
values K, = 120, K;, = 20, and K. = 80, all design conditions are satisfied with
the static pressure at the junction, h;, of 12.2 m. This value is large enough such
that no vacuum conditions will exist at the junction under any ordinary operating
conditions. The globe valves at the end of pipe segments b and ¢ would be faucet
valves normally planned as part of the design. A globe valve before the junction in
Fig. 11.1 in pipe a, on the other hand, would not normally be planned, but its need
is made clear by recognizing these results. This example shows the important role
played by throttling valves in providing acceptable flow balance in a branch network.
This was first discussed in Chapter 1 and emphasized in Section 11.6.5.

25

Pipe a
Pipe b
= = = Pipa ¢

Diameter, D (in)

0.5

20 25 30
h, {m)

Figure 11.2  Pipe diameters for the case of a branch three-pipe network versus head at the
pipe junction.

We may generalize the equations for the case of any number of pipes, a, b, c, . . . n,
connected in the manner shown in Fig. 11.1. The energy equation for flow in pipe a
remains as it is written as the first of Eqn (11.7). For every other pipe in the network,
the form is identical to the remaining two equations in Eqn (11.7). That is, for the ith

"'Where it is necessary for clarity, we will designate the diameters and other variables and parameters
from an optimized solution with the superscript opt. In most places, this is cumbersome and will not be
used. The optimized nature of these results should be clear from the text that describes them.
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Branching flow 3-pipe problem solved in Forward and Reverse ways

2

. k — —
Water properties  p == 1000-5 v = 130710 -2  sc=1s  TOL= 110 °
m3 L
ORIGIN = 1
0.622 0.60 dollar = 1
0.824 0.82
1.049 1.02
1.610 1.74
IPS sch. 40 PVC pipe cost diam = n cost = dollar
2.067 2.40 m
2469 394
3.068 5.58
|4.026) \775)
4Q —6 ;
Re(Q,D) = = 510 -ft absolute roughness, ft (increase
n-D-v

100 times for galvanized steel)

friction factor that spans the lamnarfturbulent range. ebyD is relative roughness.

3 12
i - 6] 2
24 8 2
flnct(ﬂk,ebyD)::—f— L + 18965 +[3.29- 227 + 30
2 ‘F f f f
R |— R |— -
Uvs) (U Vs)
R l
8
1+0'§(}}R —evaQ
L L )11 ]
fric fac{Re,ebyD) == root(finct(f1,Re,ebyD),f1,0.00010.2).4 friction factor

a(R) = if(R < 21002,1.09

For PVC or galvanized steel pipe:

nomnal 15| D, = 16k nominal 4 in Dg = 4.026in
norrinal 1in D3 := 1.049in nominat 3 in D; = 3.068in
nominal 0.75# | D, := 0.824in norminal 2.5 in Dg = 2.469in
nomnal 050 D, = 0.662in nominal 2 in Ds = 2.067in

Figure 11.3 Mathcad worksheet for a simple three-pipe branch network: preliminaries
include Re definition, pipe material costs, friction factor, o definition, and pipe-size
equivalences. Mathcad worksheet BranchingPipeExample . xmcd.
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A 3-pipe netw ork solved in forward w ay (specify volurre flow rates and solve for pipe damelers vs. range of hj):

D,=1lin Dy=1in D = Lin guesses

hag = 7
voupmoronrs MR Q=0sHE  Km  [ppumam e
nmnon @m0 oi0 gm0 ayesn
W o-o.-o, RSN [ERBRENN R

Define energy equation functions:

r,(hj-,Qa.D,,.K,) = Az, - hy- [Ka + u(Re('Qa! D))+ fric_fa{ Re(iQal ,na)ilfi + LWD_J]. £

D, ) kDa N 2e D;

1 (hj: Qb D Ky} = Az, + b= by _[Kh +e(Re(|Qy| . Dy))+ f"'C-ff*{ﬁe(lc’bl ‘Db)'i1(i + Leb&’D_b}]‘ i

D"AD" nz-g-le
2
. L 5Q
ro(hj: Qe D K) = Az + by — hyy —[Kc + a(Re(] Q| D))+ fnc_fac(Re(lOcl 'D°)'DL1[F + LeWD—c]jl- - c :
\ e J\Pe N gD
Tcoa(Da,Db,Dc):= !interp(diam,m ’Da)'-n + ﬁnterp(diam,cost rDh)]-h + ﬁnl:rp(diam.cos: rDc)'-\:
Solve in Given.. Find block
Given 0= ra(hj'Qa’Da’Ka) 0= rh@‘j'Qh'Dh'Kh) 0= ’c@‘erc»Dc‘Kb)
Dp(hj);: Find(D,, Dy,.D,) hj= 8.1m,83m.32%m
3
D) 25
in 2000
Dpfty 2
in Teos(Dy (b} Dp (i) Pp (1))
) S —
.
10 20 10
05 b

Figure 11.4 Mathcad worksheet for a simple three-pipe branch network for the forward
solution. Note that the minimum pipe material cost for this network occurs at h; =~ 10 m.

See Fig. 11.3 for the preliminary material needed for this calculation. Mathcad worksheet
BranchingPipeExample.xmcd.
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A 3-pipe netw ork solved in reverse way (specify pipe diameters and solve for the volume flow rates):

hj = 10m guess

nput Parameters:
- hcrease to 120 to account for partially open globe valve
- ncrease to 20 to account for partially open globe valve

- Increase to 180 to account for partally open globe vaive

Gven 0= a(hj'Qa’Da’Ka) 0= rb(hj’Qb’Dh’Kb) 0= c(hj’QC’DC’Kh) Q- Qp-Q=0

. E] . 1 N 1
liter liter liter m

Qp(Da,Db,Dc) = Find[
o o s

58 %y

Figure 11.5 Mathcad worksheet for a simple three-pipe branch network for the reverse
solution. Note that K, and K3 were increased in value to account for the partially open globe

valves installed at the end of these pipes (see Fig. 11.3 for the preliminary material needed for
this calculation). Mathcad worksheet BranchingPipeExample . xmcd.
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Pipe Material Cost (USS)
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o
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5 10 15 20 25 30 a5
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Figure 11.6  Pipe material cost of three-pipe branch network versus head at the pipe junction.
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pipe, i = b,¢,d, ..., n in the network we can write the energy equation as
D; 8L;Q?
Azi+hj_hdel:(CL,i+a_L—i)7rggD? (11.9)

The continuity equation is written in the usual way [Eqn (2.23)] as

ZQin_ZQout':O

The solution of the resulting n nonlinear algebraic equations interms of D, Dy, D, ... Dy,
is obtained once a value for static pressures at the pipe junction is prescribed. For the
reverse solution, Q,, @y, Q. . . . @, and the value for static pressure at the pipe junc-
tion are determined once the inside diameters corresponding to the chosen nominal
pipe sizes are established.

11.4.2 Bounds on Junction Pressures

The head at any junction in a network has a maximum in the limit of zero flow. Thus,
the upper bound on the static pressure head at any junction is from hydrostatics and
is

| Bjmac(2) < 21 — 2| (11.10)

where z; is the elevation of the source. Evidence of this limiting case for the above
example is obtained by inspecting Fig. 11.2 as h; approaches the hydrostatic head
of 33 m at the junction. In this limiting case, the pipe diameter plays no role in the
problem because there is no flow. That is, the energy equation reduces to Eqn (2.20),
where D does not appear. However, the pipe must be able to withstand the hydrostatic
pressures that are larger than the static pressures, once motion begins, at all points in
the network.

In multiple-pipe networks, the lower bound on the static pressure head at any
junction is imposed by considerations of water quality and integrity of the network.
Values in the range of 7-10 m of head are often prescribed. The reasons for this
have been noted in several places in this book and will not be visited again here.
Alternately, unique junction pressures, provided they are > 7-10 m, may be obtained
by considering other constraints, such as minimized network cost. In the sections
below that follow this particular strategy, a simple network cost model is considered.



236

MULTIPLE-PIPE NETWORKS

Table 11.2 Values for Design Parameters for Four-Pipe Network

Pipe L(m) Q(/is)y K L./D Az(m) hge (m)

a 135 1.5 50 80 48

b 54 0.7 10 100 21 7
c 38 0.3 10 40 4 7
d 79 0.5 10 90 12 7

B.11.1 Exploration: Extension to a Four-Pipe Branch Network

Consider the network of Fig. 11.1 and extend to four pipes, a, b, ¢, and d, where
the end of pipe a joins the beginning of pipes b, ¢, and d. The data from Table 11.2
apply. Modify the Mathcad worksheet BranchingPipeExample.xmcd to ac-
commodate the four pipe network and determine the static pressure head at the
junction that minimizes the pipe material cost. Report this cost and the optimal
values for the theoretical pipe diameters D,, Dy, D., and Dy.

We begin by making the following additions and changes to the worksheet
BranchingPipeExample.xmcd:

Add the initial guess of Dy = 1 in.
Add the data from Table 11.2. Need an additional row for pipe d data.

Under the energy equation for pipe ¢, add (by copy-and paste to reduce
typing) the energy equation for pipe d [from Eqn 11.9]. In Mathcad syntax
is will appear as

ra(h;, Q4 Dg) = Azg+hj — hae — [Kq + a(Re(|Qql, Da))
. e D
+  fric_fac(Re(|Qal, Da), = )(F= + Lebyp,)]
Dy Ly
8Q3
n2gD3

In the expression for T'cost, add “41linterp(diam, cost,Dy)” and Dy
as an argument in the T'cost function (after the addition it should read
Tcost(D,, Dy, D.,Dg) = ...).

In the Given...Find block, add 0 = r4(h;,Qq,Dg) after 0 =
'I"C(h]‘,QC,DC).

Change Find to include Dy. It will appear as
DP(hJ) = Find(Da, Dy, Dc, Dd)
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Extension to a Four-Pipe Branch Network (Cont’d)

Using the guidance from Section 11.4.2 on the range of h;, we plot results of
the solution for 7 m < h; < 48 m (the lower bound is considered minimally
acceptable and the upper bound is the hydrostatic limit), we find the minimum cost
of ~$1363 occurs at h; ~ 30 m. At this static pressure head, Do, Dy, D, Dy =
1.57,0.959, 0.888,0.530 in., respectively.

11.4.3 Solution in Terms of Dimensionless Variables

In this section, we wish to write Eqn (11.3), which is the energy equation for pipe flow
written in dimensionless form, for each of the three pipes in the network. Referring
to Fig. 11.1, the data from Table 11.1 is used to produce expressions for values for
s/ [recall Eqn (2.38)], Fy, and F}. The details are as follows:

Pipe a:
Sq Az, 33
— = = — =10.0759
Aa L, 435
” Pa1
F, = £ 9 11.11
1 oolrz, ( )
- Pa2
Fp, = ——
: P9z,
Pipe b:
Sp Azb 5

— = — = —=0417
Ab L, 12
- Da2 AZa. - -

F = = F,o = 6.60F, 11.12
b1 pihm - Dl 2 ( )
~ Db2 hel

Fy = = =1.40
’2 pgAz, Az

Pipe c:
Se Az, 1
)\C I 31 0.0476
By, = P2 _Dp _ ag0p (11.13)
cl - ,DgAZc - AZC a2 — . a2 .
P = P2 _ haer _ 700

pglAz. Az



238 MULT!PLE-PIPE NETWORKS

Equation (11.3) is written for pipes a, b and c to get,

Sa . . D,. 8Q? )

)\_(1+Fa1 —Fp) = (Cra +aL_)7r29D5’ Pipe a

s . . Dy . 8Q? .

A_Z(1+Fb1 — ) = (CL’b+aL_:)7r2§255’ Pipeb (11.14)
b

s n 7 Dc 8Q2 .

)\_Z(1+Fc1‘“Fc2) = (CL,C‘FOZTL:)%B?, Pipe ¢

The next step is to substitute the results from Eqs (11.11)—(11.13) into Eqs (11.14)
and solve for D, Dy, and D, using Mathcad. Note that the single free parameter in
the dimensionless form of the energy equations [Eqs (11.14)] is not &; as it was for
the primitive variables form of Eqs (11.7). Instead, it is the dimensionless parameter
Faa.

Once the terms and values from Eqs (11.11)—«(11.13) are included, we note that
Eqn (11.14) becomes identical to Eqn (11.7).12 Thus, the only difference between
the primitive and dimensionless variables approach is the need to calculate the values
of the dimensionless groups that appear in Eqs (11.11)—(11.13). Since the end result
is identical either way, and it is normally not desirable to spend extra time calculating
the values of the dimensionless groups, the use of the dimensionless form of the en-
ergy equation for multiple-pipe networks is discouraged compared with the primitive
variables form. In fact, the reason why the dimensionless groups were used at all for
single-pipe networks is that the simplifications of p; = z; = 0 reduced the energy
equation so that it could be written in terms of just a few parameters, namely, s, A, and
[ and the application is only a single pipe. The easy-to-use design charts of Chap-
ter 5 were the result of this simple representation. Evidence from the example in this
section shows that this outcome is clearly not the same for multiple-pipe networks.

11.4.4 Minimal-Cost Solution

In Section 11.4.1.3, we saw that the static pressure at the junction in a simple three-
pipe branch network was, in fact, uniquely valued if we required the cost of pipe to
be minimized. We wish to further explore this finding to understand why this has
occurred and if it is to be generally expected. Specifically, we will try to answer
the question what is the optimal value for the static pressure at the junction that
produces D values that minimize total pipe cost? To facilitate insight, we assume
turbulent flow in smooth pipe and that minor losses are negligible. The requirement
that Re of > 3000 can be verified after we perform the design calculations. The
results of Section 9.3 correspond to these conditions so that we are able to write an

120bviously, this must be the case because the energy equation is the same whether written in dimensional
or dimensionless form. The reader is encouraged to verify this either by substituting the terms and numbers
as indicated or by simply moving L for each pipe to the left side of Eqn (11.7) and extracting Az /L, which
is the mean slope. After a few steps of algebra, the equivalence of Eqs (11.7) and (11.14) will become
clear.
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Table 11.3  Values for Design Parameters for a Branching Three-Pipe Network of
Fig. 11.1

Pipe L(m) Q(Lisy K Le/D Az(m) hye (m)
a 464 1.5 0 0 77
0
0

b 199 0.75 0 11 7
c 199 0.75 0 11 7

explicit formula for each of the pipe diameters that appear in Fig. 11.1. To illustrate
a minimal-cost solution for a multiple-pipe network problem, values for each of the
design parameters as appearing in Table 11.3 will be assumed. For simplicity, and to
reduce the number of free parameters, the conditions for pipes b and ¢ are assumed
to be identical. The results of this analysis are in no way less general because of this
assumption.

Equation (9.8) is written for each of the three pipes in the geometry of Fig. 11.1
to obtain

Dzg + Aha)—4/19(Qa V1/7)7/19

D, g4/7

0.741 (

Azy + Ahy

1/7
T )*4/19(@51/ / )7/19 (1115)
b

Dy =D, g4/7

0.741 (

where Az and Ah are the change in z and static pressure head at the junction,
respectively, along the pipeline coordinate measured from the top of the pipe.

Our inspection of Fig. 11.1 shows that Ak, = hiqa — hae = 0 — h; = —hy,
Ahy = hyy — hop = hj — hget, and Ah, = hic — hoe. = h]‘ — hge;. With these,
Egn (11.15) becomes

Azg —hi _ V7
Do = ot (SR ety
a
Azy — hge + h

j)—4/19(Qb /7 )7/19 (11.16)

Dy=D. = 0.741( I T

As we first saw in Chapter 10, the cost per unit length for pipe over a nominal
range of pipe diameters normally follows a power-law relationship,

C'=a(=) (11.17)

where D is the inside diameter (ID), a is a coefficient, b is an exponent, and D,, is
a unit diameter taken to be 1 in.'* For the calculations presented in this chapter, we

3Even though Eqn (11.17) is a continuous function that predicts a cost for any pipe diameter, we clearly
understand that it is applied only to the diameters that correspond to nominal pipe sizes.
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will assume 2007 cost data for IPS-series sch. 40 PVC pipe in central Nicaragua.
A correlation of these data gives a = 1.067 $/m and b = 1.40. A quick glance
at Eqn (11.17) will convince the reader that pipe material cost per unit length is
proportional to pipe diameter; large-diameter pipe costs more than small-diameter
pipe per unit length.

With Eqn (11.17) the general expression for the total cost for the pipe material,
Cr, is obtained by summing over all pipe segments 27,

D;;
CT:aZ(DJ)"LU (11.18)

For the present problem this becomes,

Or = al(p2) Lo+ (P Lo+ (0Ll = all 520 L+ 2P L) (1119
A close inspection of Eqn (11.16) in combination with Eqn. (11.19) will reveal
the origin of the existence of an optimal %; for the design of this network. From the
discussion in Section 11.1, recall that we are free to vary h;; the static pressure head
where the three pipes meet. As h; increases, say from a small value like 1 m, the static
pressure difference between the junction and the bottom of pipe & (and c) increases.
Since the volume flow rates in each pipe are fixed, as specified in Table 11.3, an
increase in pressure drop across pipe b (and c) requires a reduction in D, (and D).
This is evident from our inspection of the second of Eqn (11.16), where we see that
Dy and D,. are both proportional to (Az, — hger +h;) /1% (Azg — hger + ) 7410
decreases as h; increases.

How is the diameter of pipe a affected by the increase in »;? Because the top of
pipe a is at atmospheric pressure (~10 m, absolute) an increase in h; will decrease
the pressure drop between the top of pipe a and the junction.'* Thus, compared with
pipes b and c, the opposite effect occurs in pipe a; D, increases with increasing h;.
For insight on how the energy equation supports this explanation, note that the first
of Eqs (11.16) requires that D, ~ (Az, — h;)~*/1% increases as h; increases.

1t is clear from the above brief discussion that for increasing h; there is a compe-
tition between the decrease of D, (and D,) and an increase in D,. Once the effect
of D on pipe cost is included through Eqn (11.19), as h; increases we see that the
cost for pipes b and c decrease, and the cost for pipe a increases. A consequence of
this competition is the existence of an optimum, in this case an optimal value for A,
that produces the smallest possible cost. A plot of the total pipe material cost over a
range of h; is presented in Fig. 11.7, where we see that the total pipe cost is indeed
minimized for k; = k™" & 25 m. Values of k; either smaller or larger than A" will

increase cost; in fact, large deviations from h?p * will result in large cost increases.
Once the optimal value for h; is identified, either by a plot or by a more-formal and

14The varaiable h 4 is not restricted to be less than atmospheric pressure. In fact, the pressure drop for pipe
a could actually be negative valued. The only constraint on h; is that it cannot be > Az, [see the first of
Eqn (11.16), where the calculation of D, would be meaningless for h; > Azg].
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more-general method to be discussed below, the values for all pipe diameters can
be calculated from Eqs (11.16). For this problem we will find D, = 1.28 in. and
Dy = D, = 0.937 in. The appropriate corresponding nominal pipe sizes can be se-
lected from these. A graph showing the sensitivity to the head at the junction appears
in Fig. 11.8, where we note there to be a very large range of possible pipe diameters
depending on the value of h;. A plot such as this, when used with Eqn (11.19), will
instruct the designer on the extent of the cost increase due to an non-optimal choice
of h; for his/her design.
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Figure 11.7  Sensitivity of pipe material cost for a three-pipe network versus head at the pipe
junction.

The smallest value of Re for this three-pipe network is~48,000, thus validating the
assumption of turbulent flow.

A few comments are needed to complete our discussion on this topic. First, the
equations that determine total pipe cost for even the simple-branch network consid-
ered in this section are highly nonlinear. Because it is very difficult, if not impossible,
to generalize the solutions for optimal ; for any pipe network, we will use a method-
ology implemented in Mathcad that attempts to find the minimum pipe material cost
subject to the following two constraints:

e A designer-specified minimum value of static pressure at all junctions in a
network.

e A maximum value of static pressure based on hydrostatics.

In cases where obtaining the minimum cost solution from Mathcad is too time con-
suming, a trial-and-error approach can be used to get approximate results for a min-
imum cost design. This is pursued in Section 11.7. In addition to this, an alternate
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Figure 11.8  Sensitivity of pipe material cost and pipe diameters for a three-pipe network
versus head at the pipe junction.

approach is to use the approximate formula developed in Section 11.6.6, where no
minimization function is needed. Wherever it is practical, plots of pipe diameters as
functions of a range of reasonable junction pressures should be part of the process
in any good design methodology. These will normally provide insight and under-
standing about the network and the sensitivity of pipe sizes, and ultimately costs, to
junction pressures. This exploration is highly recommended. However, it is neither
practical nor efficient to produce plots of pipe sizes versus all of the junction pressures
in a complex network having many branches or loops.

Second, the use of pipe material cost in this section as the function to be minimized
was assumed for convenience, simplicity, and to an extent, relevance. The choice
was made because in many of gravity-driven water networks designed and installed
by service-learning students, the installation labor comes from the local community
and, as such, has no well-defined associated cost. In addition, the material cost
for the network is of prime importance since it normally comes from funds raised by
Nongovernmental organizations or grants, where there is seldom a required repayment
(no mortgage on these funds) but where the funds are always in short supply. For
these reasons material cost as a stand-alone quantity was chosen as the objective
function in this work. Note, however, that the economics of gravity-driven water
networks in other cases is most likely more complex and includes costs associated
with materials, labor, operation and maintenance, depreciation, taxes (if any), and
salvage, among others. The time value of money also needs to be considered, which
includes interest rates, amortization, and estimation of network lifetimes. Several of
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these are fixed costs that are independent of pipe sizes and lengths and others, as we
saw from the example above, are pipe-diameter- and length-dependent. For a more
thorough treatment of network costs, and their minimization [see Burmeister (1998);
Swamee and Sharma (2000) or any good textbook on thermal or hydraulic system
design].

Finally, publications on optimizing branching networks based on a variety of sim-
plifying assumptions exist (Bhave, 1983; Chiplunkar and Khanna, 1983; Varmaet al.,
1997). For example, frictional head loss is written simply as the product of () and
D raised to different powers. Others convert a looped network to the branching type
before solving. While the methodologies in these works have varying degrees of
soundness, the fundamentals approach in the present treatment imposes few, if any,
assumptions that are unrealistic under a broad range of design conditions.

B.11.2 An Interim Recap

Thus far, we have applied the fundamental principles of conservation of energy
and mass to flow in a simple-branch network. Along the way we have learned
a few things about the approach, assumptions, method of solution, and a few
interesting outcomes from the solutions that can be summarized by

e The analysis of multiple-pipe networks follows closely that for a single
pipe; the fundamental difference is that static pressures (or static pressure
heads) at both ends of each pipe segment are generally not zero [for a
single pipe, flow from a reservoir or into a tank was always from/to zero
(atmospheric) pressure]. The continuity equation also needs to be included
in the solution for a network where there is branching. Because of both
of these differences, numerical methods, like those used in Mathcad are
normally needed to solve multiple-pipe network problems.

e Because of the additional complexity of possibly two nonzero static pres-
sures for each pipe segment, the solution of pipe-flow problems using
primitive variables (the fundamental dimensional quantities) is preferred
over the use of the dimensionless form of the governing equations that
enjoyed success for single-pipe networks. Only the primitive form of the
energy equation will be used for the solutions of multiple-pipe networks.

e The usual, realistic assumptions of zero flow speed in a reservoir, the in-
clusion of the kinetic energy correction factor («) only where there is flow
from a reservoir or tank into a pipe, and the inclusion of (at least) minor
loss factors for open globe valves in many segments of the network will be
made in multiple-pipe networks. The strategic placement and use of the
throttling globe valve, as we will see below, is important for flow balancing
and network maintenance.




244 MULTIPLE-PIPE NETWORKS

An Interim Recap (Cont’d)

e There are typically three steps in the analysis and design of a multiple-pipe
network. In the forward solution, the theoretical values for D needed to
satisfy the prescribed volume flow rates, overall geometry, and designer-
specified static pressures at all pipe junctions are obtained. After this step,
the designer adjusts D to correspond to actual inside diameters for the
nominal pipe sizes chosen. The reverse solution is then obtained where,
given the actual values for D corresponding to the nominal pipe sizes, the
actual volume flow rates along with the actual static pressure heads at each
junction are determined.

e For the forward solution, we use the energy and continuity equations to
solve for D. In this solution, the following apply:

— In the absence of any other constraints, like cost, the static pressure
head at each junction is arbitrary but always bounded by hydrostatic
conditions from above and a designer-prescribed constraint from be-
low. The latter is a minimum value of -7 m.

— Once pipe cost is considered, a unique value for the static pressure
heads at all junctions can be found as a result of the competition of
increasing and decreasing pipe sizes on either side of each junction.
The constraint of minimum cost adds additional equations that pro-
vide uniqueness to the forward solution for multiple-pipe networks.

11.5 PIPES OF DIFFERENT DIAMETERS IN SERIES: CONTROLLED
DISSIPATION OF POTENTIAL ENERGY

11.5.1 The Problem

In gravity-driven water distribution systems, the contour of the pipe follows that of the
land, which generally has a non-uniform slope. If a pipe of a single diameter is used,
the rate of dissipation of potential energy due to the major loss is uniform along the
flow path. Recall the discussion of the HGL from Chapter 6. For example, when the
contour changes from a small slope to a larger one, the static pressure in the pipe will
build because the rate of potential energy loss (that is, the conversion from potential
into pressure energy) is greater than that dissipated by the constant-volume flow rate
in the constant-diameter pipe. To remedy this difficulty, designers often require a
diameter change (for this example, a reduction in pipe diameter) to better match the
dissipation due to friction with the rate of change of elevation head. In this way, the
HGL will more closely follow the contour of the land in which the pipe is buried and
there will be less static pressure build-up in the pipe. The excess energy in the flow
at the delivery point, say a tank or tapstand, will not need to be dissipated by a single
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Figure 11.9 A three-pipe serial network.

nearly-closed globe valve. The latter could be noisy and produce unwanted vibrations
in the system, experience premature wear, and is not considered good engineering
practice.

Consider the series-connected three-pipe system as shown in Fig. 11.9.!5 The
pipes are labeled a, b, and ¢, and each has a mean flow speed, %, diameter, D, and
length measured along the path of the pipe, L. As before in this chapter, the change
in elevation between the top and bottom of each pipe is Az. The volume flow rate,
@, is the same for each pipe, thus satisfying the continuity equation.

The energy equation is from Eqn (11.4). As above, we first use the continuity
equation, Eqn (2.21), to rewrite Eqn (11.4) in terms of () instead of %@. The energy
equations for each of the three pipes becomes

Az, + Ah, D, 8Q? .

— - (CL’a+aL_a)7r2ng’ Pipe a

Azp + Ahy 8Q2 .

——— = Crp——s, Pipe b (11.20)
Lb L bﬂ_ngg

Az, + Ah, 8Q? .

—LC— = CL’C}EED_E’ Pipe ¢

15This type of network is sometimes referred to as a serial, or serial-pipe, network.
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where Ah = (p; — p2)/pg for all pipes. Note that only in pipe a is there included an
acceleration from zero flow speed (at the surface of the reservoir) to the flow speed in
the pipe.'® For pipe junctions a—b and b—c, the acceleration of the flow is negligibie.

Referring to Fig. 11.9, the static pressure at all junctions is continuous, so that
Pb1 = Pag and pe1 = pp2. With the static head at the delivery location of hy.; and the
static pressure of zero at the source (hea = hgels Pa1 = 0), we obtain

Azy — hjab D.. 8Q° .
— = (Cra+ a—La )——w2gD2 , Pipea
Azy + hjab — Rjbe 8Q)? .
' be e Pipeb (1121
L. CL,bﬂ_2ng, ipeb  ( )
Azc + hj,bc - hdel _ 8Q2 Pipe c
LC L,C 7_[_2ng’ p

where the term h; o3 is the static pressure head at junction of pipes a and b, and so
on.

11.5.2 Solution and Mathcad Worksheet

Equation (11.21) contains three nonlinear algebraic equations in the unknowns D,
Dy, and D,. To solve, we need to supply the static pressure heads at the two junctions,
hj ap and hj .. To illustrate the solution, consider the data of Table 11.4. The value
for ) is 2.10 L/s. Guided by the discussion in Section 11.4.2 and from the previous
example, we choose 7 m of head for hj ., and h; .. The solution is carried out
in the Mathcad worksheet using the Given...Find construct (see Figs. 11.10 and
11.11). The forward solution for D,, Dy, and D, gives 2.287, 1.623, and 1.352 in.,
respectively. Thus, we choose nominal 2%-in., 2-in, and 1% PVC pipe. The reverse
solution shows a considerable increase in the values for the junction pressure heads
compared with the values that we initially prescribed. Though large, they are within
acceptable pressure limits for IPS series, sch. 40 PVC pipe (Table 3.3).!7 A throttling
valve, normally installed at the bottom of pipe ¢, will reduce the static pressure head
before the tapstand at the outlet.

11.5.3 An Extension: Sensitivity Study Revisited

Suppose we wish to extend our analysis of this problem and perform a sensitivity (or
“parametric’) study on the effect of junction pressure head on D. The results of this
are presented in Figs. 11.12 and 11.13. In Fig. 11.12, the effect of junction pressure
head h; q5 is shown for fixed values of h; . = 7 m and hge; = 10 m. Diameters D,
and D, show little sensitivity to h; .5 because the dominant source of energy for flow

16The numerical value for D, / L, may, in fact, be negligible compared with Cr.a.

17Recall from the discussion in Section 3.5 that pressure energy in a gravity-driven water network is the
only local energy source over which the designer normally has control. Thus, high pressures are desirable
for a design provided they are not unacceptable from the standpoint of the pipe pressure rating.
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Solved in forward way (specify volum e flow rates and solve for pipe diameters vs. junction heads):
D, = l-in Dy = lin D= Lin guesses

Input Param eters:

Define energy equation functions:

ra(hjab,l'.‘la);tiza Jab-[K + u(Re{|Q| D,))+ fric fa{Re{|Q| Da)' ] — + Lepyp j]

Ty (bhjapy Bypc: Dy )= Azp + hgp = hjp — [xb + fric &(Re(lcd Db}—“—+ Lebyp_ b}] L2 :

gDy

8Q"

oo D)= Az + gy = gy~ [Kc + f*-&{“‘(lqi 'DC}D_.;}{F.; + Lebyn_c)]' 3

c

Solve in Given..Find biock
Given 0= b Dy) 0% iyBap e Ds) 0% 1B D) DylBjaphipe):= Find(Dy, Dy, D)
Db tine) = Ds Bab hiec), Dl bjoc) = Dy bjabs ), Dalba Bjpe) = Dy ha i),
hap:=7Tm  hp=Tm Dy (higp hipc) = 2287 Dy (higp hipc) = 1.623in De(hiap hjpc) = 1-352in

h;ub_"' Im,1.Im,. 13m
by = lm2m. 3lm

4 2.5
(a7 m) ()
in 3 n 2
Dyltan?m) D40 ) deest
in in S -
Dc(n]-_b,rm}? D:{?-m.hjbc)l-s -
in | TTT TS e s n e aaa in St
1 1
[} 5 10 15 o 10 il a0 40
biab bibe

Figure 11.10  Mathcad worksheet for a three-pipe series network. Forward solution (see
Fig. 11.3 for the preliminary material needed for this calculation). Mathcad worksheet
NumberPipesSeries_Example.xmcd.
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Table 11.4 The Design Parameter Values for a Serial Network of Three Pipes

Pipe L(m) K L./D Az(m) hge(m)

a 427 50 0 14
b 710 0 0 46
c 187 0 0 6 10

Solved in reverse way (specify pipe diameters and solve for the junction pressure heads):
hjab:=?-rn hjbc:: 7-m guesses

Input Param eters:

Kgi= 50 Kpi=0  K=0

h: +.D_}):=Az —h-b— + a{R ,I)a + fric_fafR ,Da .i i‘”'cbD i
e R SCES AR UESE E e

nz-g-D;

L 2
thaw hjbc,Db):: Az, + Djgy = Do ~ [Kb + fric_faEReUQ' ,Dh}Di}(—b +L }] 8-Q
b

k ka ebyD_b ",

n -g-I}b4
L a2
folBibe: Paer De) = A2¢ + hjpe = hyg |:Kc + fric_faERe('Ql ,Dc),we—l(—c + Lepyp 1 %
L DCJLDC Y E-TA

Given 0= ryfhip.Dy) 0= ty(biap hipe: Dp) 0= teflhipehyerDe) gDy P D)= Findfyp, bipe. hyer)

9.068
hy(Dg, D5, Dy) = | 40.598 |m

\60.018)

Figure 11.11 Mathcad worksheet for a three-pipe series network. Reverse solution (see

Figs. 11.3 and 11.10 for the preliminary material needed for this calculation). Mathcad
worksheet NumberPipesSeries_Example.xmcd.
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in these two pipes is potential energy, not pressure, as we can see from inspection of
Table 11.4. This is contrasted with D,, which demonstrates considerable sensitivity
to h; qp especially as h; 5 approaches the elevation head of 14 m between the source
and the pipe junction. The plot of D, versus h; 45 in this figure is also consistent with
the results seen in Fig. 11.11. That is, the actual diameter associated with nominal
2%-in. pipe, which is greater than the calculated theoretical diameter for 4 o, = 7 m,
produced a pressure head at the a-b junction of > 9 m.

3-Pipe Network. h b= 7m

o . r
3.5¢

| ——Pipe a /

3: | == Pipab /

- = =Pipac

Diameter, D (in)

Figure 11.12  The diameters for a serial three-pipe network. ;. = 7mand hge; = 10 m.

Figure 11.13 shows no sensitivity of D, to h; . simply because h; 5 and () are
both fixed values. However, D, decreases and Dj, increases with increased h; ..
To understand this, recall that Az values, (), and hg,; are all fixed. Increasing hjbe
increases the pressure drop between junction bc and the delivery location. To balance
this increase in pressure drop the friction must increase between these two points. For
fixed () and Az, this is accomplished with reducing D, (the smaller cross—sectional
area for pipe c increases the flow speed, %, and thus friction). The same argument
applies to D; where the pressure drop between junctions ab and be decreases with
an increase in h; .. Here, Dy must increase to balance this decreasing pressure
difference.

For an n-number of series connected pipes of different diameters, D, Dy, D, . .., D,,
where the flow passes from pipe ¢ = a, then pipe i = b, and so on, the energy equations
can be generalized from Eqn (11.21) and written as
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3-Pipe Network. h an = 7m

24"

22|

Diameter, D (in)
1

‘‘‘‘‘

Figure 11.13  The diameters for a three-pipe serial network. hj .5 = 7 m and hge; = 10 m.

Az, — hj ab D, 8Q2 .
SR o (CpetoTt P
I (Cr, +aLa)7r2ng ipea
Az + hy -1y — Ry 8Q? . :
Li = CL@@D—?, Plp6b§1§n—1 (1122)
Azp + Iy (n_1yn — hael 82
: = n 9 E ! Pi
™ Cr, 24 D8 ipen
where the pipes are lettered ¢ = a,b,c,...,n, and it is understood that letter se-

quencingb = a—1l,¢c=b—-1,d=c—-1,...anda =b+1,b =c+1,
¢ =d+1,...apply. With known pressure heads at all junctions and the deliv-
ery location, h; = hj b, Bj bcy Pjcds - - - hj,(n_l)n, hget, the solution of Eqn (11.22)
is carried out to determine D = D,, Dy, D,., ..., D, in the forward solution and,
upon setting the values of actual D based on chosen nominal pipe sizes, we solve for
hj = hj.ab, Pjbes Pjeds - - -5 Py (n—1)n, hder in the reverse solution.

We recognize that the indexing scheme in Eqn (11.22) is cumbersome for large
problems of the type considered here; using letters as numbers, and so on. See
Exercise 41 for a representation of Eqn (11.22) in nodal format that will be used
starting with Section11.6.1. The result is Eqn (16.22), which is recommended over
the form appearing as Eqn (11.22).

In Section 11.4, we saw that optimal pipe diameters existed for a branch network
if we add the constraint of minimum overall pipe cost. The same calculation is
performed for the present case of flow in a series of pipes of different diameters. The
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static pressure head at the junctions is required to be no less than 7 m and h4,; = 10m.
As we see by inspection of Fig. 11.14, the minimum-cost solution is found where
is equal to 7 m for all junctions. Thus, pipe cost <$2872 can be obtained only by
reducing the allowable values for h;.

B.11.3 A High-Head, Single-Pipe Network with Local Peak

Communities that are candidates for gravity-driven water networks located in
very mountainous regions often need to analyze and design networks of the type
in this textbox. Consider the network of Fig. 11.15 and accompanying data in
Table 11.5. The topography of the region requires a sharp fall-off in elevation
from the source at atmospheric pressure to junction b—c, and a 43-meter climb
to a local peak at junction c-d. You are asked to determine the theoretical pipe
diameters for each of the five segments of this network that minimize the total
pipe cost. The following constraints apply: static pressure heads at the junctions
must be 10 m or more and less than hydrostatic. Before beginning the analysis, we
will assure ourselves that the hydrostatic pressure is less than the rated pressure
for the pipe material and wall thickness we are considering. A factor of safety
should be included in this, as will be discussed in Chapter 13. Report all values
for D and h;. For this problem, () = 3.6 L/s and hg,; = 10 m.

Modify the Mathcad worksheet SeriesPipeExample_equalQ_3pipe-
withcost.xmcd to include the data in Table 11.5. Accurate initial guesses can
be supplied by considering hydrostatic conditions and the above constraints. We
use hjqap = 37m, Ajpe = 55 m, hjoq = 10 m, and hj; g = 35 m. The guess
for h; o5 comes from the fact that the head at this location will be slightly less
than hydrostatic (39 m), and head h; ;. must be large enough to drive the flow
upward 43 m in pipe ¢ with a reserve head of 10 m at junction c—d and overcome
friction along the way.

The solution appears in Table 11.6. The high head at junction b-c of ~6 atm
(87.5 psig) is not excessive and, with the resulting diameter for pipe ¢, guarantees
aminimum of 10 m of head at junction c—d [from Section 8.9, the minimum static
pressure occurs slightly downstream from junction c—d because of friction; we
can investigate this by solving for the local pressure distribution from Eqn (6.12)].
The total pipe cost is $3523. A sensitivity study shows that a variation of £8 m
for the heads h; op and h; . about their respective optimal values of 33.9 m and
61.5 m increases the pipe cost to~$4200. This gives the designer an feel for the
sensitivity of the design to off-optimal conditions.

This completes the forward solution. The next step, if we were to continue this
problem, would be to select nominal pipe sizes corresponding to the theoretical
diameters, and then complete the reverse solution to determine flow rates and
static pressure heads for the actual pipe sizes.
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A 3-pipe netw ork solved in forward w ay (specify volume flow rate and solve for pipe diameters vs.
junction heads):

D = quesses

L - - - Layp =0 = 14w
hamiom L= Tiom Q208 0 Ly im0 sy
et Lt Qe no® ka0 Ly 0 s

Tcns{Da, Dy, Dc):= Iinlerl(diam, cost, Da)Ln + h'nterl(diam, cost, Dh)L1j + (linter;(diam. cost, Dc) Lc)

Define energy equation functons: Cost {objective) function
ot Do 00) = 42, - Mg - [K + afe(|0] D))+ fric fim(|04 D) — 1( L, a}] 80,7
e -g Da
t(hyaty Bipes D Q) = A2 + higp, = b = [Kb + trcnof Re(|Qy) ,Dh),—a—l(—Lk + LD, b]]&
\ P J{ RN

8 Q
C(ch » Qc) Azy + b~ hdel—[K + fric fa[lle(lej c), 1( + Lepyp_ c]] ki .

) T 'EDC

Solve in Given...Find block Given
0=yl PaQ) 0= rptab o P Q) 0= reflne D Q)
D5 (byaty hjc) = Find(D. Dy D)
TelPjeb o) = Teos D3 (it hjpc ) D5 M - D5t i)

hjah: Az, - I'm hjbc‘! Az + h}ab- l-m guesses

Problems in terms of unknowns  hjab, hjbc. Mnimze Tc subject to inequality constraints below.
Given

LR Bibe 2 hjab, hjbc =hj

hjab‘ Az, hjhc <Az, + Azy hjab and h.jbc < hydrostatic
(b )= Minimiz (T, g ) (.. i 2.)=Ds(liai )

Figure 11.14 Mathcad worksheet for a three-pipe serial network with minimum cost.
Forward solution (see Fig. 11.3 for the preliminary material needed for this calculation).
Mathcad worksheet SeriesPipeExample_equalQ_3pipe_withcost.xmcd.
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Figure 11.15 A high-head network with local peak.

Table 11.5 Design Parameters for High-Head Network with a Local Peak

Pipe L (m) Az (m) K L./D
a 187 100 —-61=39 50 0
b 310 61 — 24 = 37 0 20
c 280 24—-67=-43 0O 20
d 220 67 — 35 =32 0 20
e 155 35-0=235 0 20

Table 11.6 Results for High-Head Network with a Local Peak

Pipe D (in.) h; (m)
a 271 hja =339
b 2.33 hjpe = 61.5
¢ 233 Rjea=10
d 168  Rja =10
e 1.53 hger = 10

253
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Figure 11.16 A multiple-branch network. Globe valves are installed in all pipe segments
except 1-2. Not to scale.

11.6 MULTIPLE-BRANCH NETWORK

11.6.1 The Problem

The multiple-branch network, as anexample Fig. 11.16, has elements of both the series
and simple-branching networks from the above sections. Specifically, the diameter
of the trunk or main'® normally changes in the direction of flow to account for flow
to (for multiple sources) or from the many branches. Because of its ability to cover
very large areas having large elevation changes, and the possibility of branching-
off of branches in a repeatable manner, it may be the most common of all types of
multiple-pipe networks. We will consider this construct now.

First, as the complexity of the network increases it becomes necessary to use a
different method than above (where letters were used to designate each pipe) for
labeling pipe and other network parts. Each junction, including all starting (source)
and ending (delivery) points are labeled with a node number, as shown in Fig. 11.16.
It is common to start the order of numbering with the source as node 1 and label each
node sequentially along the trunk line. Note that in the present case, the trunk line may
be thought of as arbitrarily composed of four pipe segments; 12, 23, 34, and 45. The
distribution pipes are normally labeled last. Any characteristic for a pipe connected by
any two nodes has a symbol (like D, @), etc.) with the two node numbers appearing as
subscripts (a hyphen is used if double-digit nodes are encountered, and if desired for
single digit nodes). For example, the pipe connecting nodes 2 and 3 in Fig. 11.16 has
an as-yet unknown nominal diameter Ds3, actual length Lo3 = 615 m, and volume
flow rate Q23 = 0.78 L/s, as shown. The elevations for each node are presented in
this figure. For diagrams of large networks where there may be inadequate space

18This part of network is sometimes referred to as a “distribution main” which we will adopt in this book.
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Table 11.7 The Design Parameters for a Multiple-Branch Network

Pipe Subscript, ij  Li; (m)  Qu (L/s) 2z — 25 = Aziy (m)  Kiy;  (Le/D)y

12 435 1.10 257 - 231 =26 50 0
23 615 0.78 231 - 167 = 64 10 20
34 210 0.51 167 ~ 149 = 18 10 20
45 530 0.25 149 — 131 =18 10 20
26 128 0.32 231 ~224 =17 10 60
37 439 0.27 167 — 123 = 44 10 60
48 118 0.26 149 —~ 145 =14 10 60

for all of the labels and numbers that characterize the network, or insufficient detail
given concerning pipe fittings and valves, a table can be produced with the relevant
information (Table 11.7).)? Note that we have included several minor losses for each
leg of the network that correspond to either entry losses (for pipe 12) or losses from
elbows, reducers, and fully opened globe valves, which are shown in Fig. 11.16. Here,
hael (= hs = hg = hy = hg) is fixed at 10 m for this design.

As we have seen in the past, the static pressure heads at each internal node (nodes
2, 3, and 4) are arbitrary and can be determined either by specifying a safe positive
value say, 7 m or greater, or by minimizing the cost of the network. We will perform
both solutions for the present example.

Using the primitive variable approach, as discussed above, we begin by writing
the energy equation for each of the seven pipes in this network. By now, we should be
comfortable with doing this. We recognize that the energy equation is from Eqn (11.4)
and write it in terms of () using the continuity equation [see Eqn (2.21)]. With this,
the energy equation in general form for a multiple-branch network is

8L;Q%

D;;
Azij + Ahij = (CL,ij + iy —L])
i

where the subscript ij is a placeholder to identify a pipe with node numbers at its
beginning, 7, and end, 7, and Ah;; = h; — h; = (p; — p;)/pg . For programming in
Mathcad, we introduce the definition of Cy, from Eqn (11.5) to get

8Q%

— 11.24

Li' Le
Azij + Ahis = {Kyj + aig + f(Qug, Diy) | 5% + (F)isl}
i

In Eqn (11.24), the summation symbols for minor loss terms have been suppressed
for simplicity. Thus, it is understood that K;; = 3 K;; and (%)ij = Z(%)z‘j,
where each summation is performed over all minor loss elements in pipe ¢j.

19The peak elevation head of > 100 m was chosen for this example for illustrative purposes only. Though
even sch. 40 PVC pipe could withstand the hydrostatic pressure for this design, elevations this large would
normally prompt the use of a break-pressure tank thus reducing the peak elevation head.



256 MULTIPLE-PIPE NETWORKS

Following Eqn (11.24), the energy equations for the seven pipes in Fig. 11.16 are

Lz L. 8Q7, .

0 = Azip—hy—{Kpp+ap+ f12[572— + (5)12]};551)—%2’ Pipe 12
0 = Az + Ahgs — {Koz + fzs[ﬁ + (%)23] ;322—1%3?3, Pipe 23
0 = Azzy+ Ahgy — {K34—}—f34{LS4 +(I5) 4]};2—?%, Pipe 34
0 = A24s+h4—hdel—{K45+f45[L > +(%) ]}%g—z; Pipe 45
0 = Azpg+hy— hae — {Kae + f26[ = (%)26] 331%)26, Pipe 26
0 = Azsr+hs — haa — {Ksr +f37[L37 + (%) ]}%, Pipe 37
0 = Azg+hg—hge — {K48+f48[ = +(IZ)) ]}W—S%‘; Pipe 48

(11.25)

where f;; forij = 12,23, ... means f(Q;;, D;;). Aswesaw in the previous sections,
only in pipe 12 is there included an acceleration from zero-flow speed at the surface
of the reservoir to the flow speed in the pipe (i.e., an « term). For the remainder
of the pipe junctions, the acceleration of the flow through a tee is accounted for
with a K-type loss coefficient. As noted in the above paragraph, in Eqgs (11.25) the
terms ho, h3, and hy are unknown. Finally, we note that the continuity equation is
identically satisfied by the specification of the volume flow rates for this problem.
That is, the sum of the volume flow rates at each node is zero.

The solution for this design is performed in the Mathcad worksheet BranchPipe
Example_4pipe_withcost_ver2.xmcd. It appears in Figs. 11.17 and 11.18 for the
forward solution and for the reverse solution, Fig. 11.19. As a reminder, the forward
solution uses the specified volume flow rates and dimensional data (pipe lengths and
elevations) to determine the theoretical inside diameter for each pipe in the network.
After selecting pipes of nominal sizes corresponding to this solution (from Chapter 3),
the actual inside diameters of the pipes are used together with the specification of the
delivery pressures to determine the actual volume flow rates and junction pressures.
Most of the design content in sizing pipe for the network comes in the latter step where
adjustments to pipe sizes and minor loss coefficients (corresponding to the opening
or closing of a globe valve) are made to meet the design specifications.

11.6.2 Mathcad Worksheet

The Mathcad worksheet of Figs. 11.17-11.19 is slightly more involved than those
from above so a brief description of the entries in this worksheet will be given before
the results are discussed.
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To begin the forward solution, initial guesses for pipe diameters are made (all
equal to | in.) and the data from Table 11.7 are entered into the worksheet as
seen at the top of Fig. 11.17.

A function for the total cost of the pipe, Tcost, is defined and the energy
equations from Eqn (11.25) are input, where each is defined as a function r;;,
where i = 12,23, 34,...,48.

The energy equations are then solved in functional form in the Given. . .Find
block at the top of Fig. 11.18 and the solution for the pipe diameters Dj2, Dag,
D3y, Dys, Dog, D37, and Dyg stored in the row vector DS(hQ, hs, h4) Ds
stands for the Diameter solution. For example, diameters D2 and D43 occupy
the first two positions in Ds, which means Dy, = Dsq, Dy3 = Ds,, and so
on. The arguments hq, hs, hy appear for Ds because the diameters are known
to depend on the static pressure heads at nodes 2, 3, and 4.

The total cost of the pipe material, T (ha, k3, h4), is defined next based on the
function T'cost identified in Fig. 11.17.

Preparation for the numerical solution for the minimum pipe cost is done next.
The initial guesses for kg, hg, h4 are made (see Section 11.6.4).

To provide a check on the accuracy of the worksheet thus far, and to get a sense
for the pipe diameters, Ds(hg, hs, hy) is evaluated for ho = hy = hy = 10 m.
The values range from 1.49 to 0.696 in. These results are in scale with the
range of pipe sizes typical for moderate-size, gravity-driven water networks.
An estimate of the total pipe cost at these values of h is ~$2415.

In a Given...Minimize block in the middle of Fig. 11.18, we solve for the
junction heads and pipe diameters that produce a minimum pipe cost. The first
part of this block is the constraints. These are that the static pressure heads at
each junction must be at least equal to a minimum value; in this case hge; of
10 m,

ha > hger, h3 > hger, hg > hge (11.26)

This establishes the lower bound for the junction pressure heads. The upper
bound is that the junction pressure heads must be less than the hydrostatic
pressure at the respective locations. Thus,

hy < Azlg, hz < AZlg + A223, he < Azip + AZ23 + AZ34 (11.27)

Of course, it is assumed that the designer has already checked to ensure that
the hydrostatic pressure is always less than the rupture pressure of the pipe.
The second part of the Given...Minimize block is the Minimize function.
This, together with the constraints, produces the solution for the junction heads
and pipe diameters. The run time on a dual-core laptop PC with a 2.66-MHz
processor for Mathcad ver. 14 is~1 min. Earlier versions of Mathcad will run
slower.
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e The results for total cost, diameters, and junction pressure heads, are shown in
the last two lines in Fig. 11.18.

e InFig. 11.19, actual nominal pipe sizes are first chosen from the results of the
forward solution.

o The reverse solution begins next by copying and pasting in the worksheet the
values for the minor loss (K) coefficients from Fig. 11.17. These will be
adjusted as needed (see Section11.6.3) as part of the design process.

o The total cost based on the selected nominal pipe sizes is calculated.

e The energy equations and continuity equations for flow at each node are solved
ina Given. . .Find block for the actual flow rates for each pipe and actual static
pressure heads at each junction. The values are reported on the last two lines
of this figure.

11.6.3 Solution

The results for this problem are presented in Table 11.8. Nominal 1%—in. sch. 40
PVC pipe is chosen for pipe segment 12 (1.61-in. ID) where the required pipe size is
1.49 in. Globe valves downstream from this segment will compensate for the larger-
than-required ID of the chosen pipe size. A 1-in. nominal pipe is chosen for segment
23, this despite the required diameter of 1.12 in. (the ID for 1-in. nominal pipe is
1.049 in.). The reason for this choice is the cost savings between a nominal 1-in. and
nominal 1%-in. PVC pipe because of the large length of this segment (615 m). While
the cost savings is an obvious benefit, the penalty in using the smaller pipe is that the
flow rate in pipe segment 37 is reduced from its design value by < 10% (worst case).
While this is not large, the slightly reduced (37 may be undesirable. In this case, the
possibility of obtaining li—in. sch. 40 PVC pipe should be investigated, though it is
not always available. The pipe sizes for the rest of the segments follow the usual rule
of selecting the nominal size that produces an inside diameter slightly larger than the
theoretical value.

Our inspection of Table 11.8 shows that the results were obtained by balancing
the flow using partially closed globe valves. The solution with full-open valves gives
results in decent agreement with the design specifications of Table 11.7. Adjustments
to the valves (meaning an adjustment to the K values)® allows the designer to gage
the sensitivity of the design to the flow-rate demand variations in the various segments
of the network. For example, K34 = 100 for the globe valve installed in this segment
functions to slightly reduce D34, increasing the friction in this segment, and forcing
additional flow into segments 26 and 37. If, for instance, K34 = 10 (corresponding
to an open globe valve), Q37 = 0.24 L/s; if K34 = 400 (corresponding to partially
closed globe valve), (37 = 0.27 L/s. The designer is encouraged to perform this
sensitivity study to get a sense for the balance characteristic of the network.

20The equivalent-length minor loss coefficients are unchanged from those specified.
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Solve in Given .. Find block
Given  0=r5(h),D13.Q12.K13) 0=y 03,093, Q03.Kp3) 0= r34(h3.0g. D34, Q34 K3g) 0= rgs(hg Dys Qus.Kys) 0 = ry6(hy. D26, Q. K26)
0= r37(h3.P37,Q37.K37) 0= r45(n4 Dag: Q- Kag)

Ds (b, b3, hy) = Find(D 5, D33, D34, Dgs, Do, D37, Dyg)

Tofhy. b3, hyg)= Teast (Ds (hy. hy. by} Ds (b, hy by o, Ds iy by by J. Ds (bg. by, by Yoo Ds (b, by, g . Ds (b, by by o, Ds (g, b, by )
hy=hgg+ I'm hy=hyg+ Im  hy=hgy+lm QUESSES  Ds(10.m,10-m,10-m) = (149 1.022 0915 0.853 0853 0.698 0876)in  Solewith pressure head
of 10 mat all junctions

Minimize Tc subject to inequality constraints below . To(10-m, 10-m, 10-m) = 2422.57 dollars

Given by 2 hyy hy = hyy hy = hgy h.2, h.3, h4 >= h.del
hy < Az, hy < 8215 + Azpy hy < Az)5 + Azpy + Azgy h.2, h.3, h.d <hydrostatic

N T P 2 T
(hp h3 hy)=Minimize (T, hy,hy,hy) Sl by minimizing pipe material cest (D12 Dyy D34 Dys Dyg D3y Dyg )= Ds(hy hy.hy)

Figure 11.18 Part 2 of Mathcad worksheet for a four-pipe branch network with minimum cost. Forward solution. Continued from Fig. 11.17.
Mathcad worksheet BranchPipeExample_4pipe_withcost_ver2.xmcd.
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Table 11.8 Solution for a Multiple-Branch Network

Subscript, Zj Lij (m) Qija (L/S) Azi]' (m) Kijb D-;]'C (m) Nom. D (m)

12 435 1.09 [1.10] 26 50 1.49 11
23 615 0.77 [0.78} 64 100 1.13 1
34 210 0.52[0.51} 18 100 0.996 1
45 530 0.27 [0.25] 18 100 0.694 3
26 128 0.3210.32] 7 100 0.853 %
37 439 0.25 [0.27] 44 10 0.637 :
48 118 0.25 [0.26] 4 10 0.556 3

9Actual flow rates from the reverse solution. Values in square braces are design-specified flow rates
(all valves open) from Table 11.7.

bRequired to produce flow rates Qij.

“From the forward solution.

An extension of this sensitivity study would be to assess the performance of the
design when parts of the network are turned off. In the reverse solution (only) in the
Mathcad worksheet this is done by:

¢ Inthe Given. . .Find block, setting the flow rate for this segment to zero (using
CTRL =).

e Removing?! the energy equation for the turned-off segment from inside the
Given...Find block,

Examples of this type of sensitivity study are given in Figs. 11.20 and 11.21. In the
first of these, the flow in segment 48 is turned-off. In the second, flows in segments
45 and 48 are turned-off. Note in the latter case, the energy equation for segments 48,
45, and 34 are removed since there is no flow in segment 34 if the flow in segments
45 and 48 stops. The reader will note that, for this type of branching network, flow
rates in the remaining active branches generally increase over their design values once
flows in other parts of the network are turned-off. In all of the above results, the static
pressure heads at nodes 2, 3, and 4 are > 10 m, as required by the solution.

Evidence that the minimum-cost solution has indeed been found for this problem
is presented in Figs. 11.22—11.24, where total pipe cost is plotted as a function of the
static pressure heads at nodes 2, 3, and 4, respectively. The trend in these plots follows
those in Figs. 11.25-11.27, where the pipe-size sensitivity to the static pressure heads
at nodes 2, 3, and 4 is shown.

2INote that the equation need not be physically removed. Mathcad allows for disabling an evaluation.
Right click the mouse while the cursor sits on the equation to get this option. A disabled equation will
have a square black dot at its upper-right-most corner.
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Figure 11.21 Results of a sensitivity study: Two segments turned off.
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Branch Network. h =3366m h, =3962mh_=10m
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Figure 11.22 Sensitivity of pipe material cost to ho for a branch network.

Branch Network, h2 =10m, h‘ =39.62m, hu.-.l =10m
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Figure 11.23 Sensitivity of pipe material cost to h3 for a branch network.
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Branch Network. h,=10m, ha =33.66m h, =10m
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Figure 11.24 Sensitivity of pipe material cost to h4 for a branch network.

Branch Network. ha=33.66 m, h4=39'62 m, hM= 10m
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Figure 11.25  Sensitivity of D to hy for a branch network with minimum cost. Forward
solution.
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Branch Network. h2 =10m, h‘ =3862m h  =10m
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Figure 11.26  Sensitivity of D to hs for a branch network with minimum cost. Forward
solution.

Branch Metwork. h? =10m, ha =33.66 m, hdm =10m
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Figure 11.27  Sensitivity of D to h4 for a branch network with minimum cost. Forward
solution.
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11.6.4 Choosing Initial Guesses for Static Pressure Heads at
Junctions

The numerical solution of the system of equations for multiple-pipe networks requires
initial guesses for D and h;. For convergence of the numerical method, the guessed
values of h; must be realistic for the problem under consideration (so do the initial
guesses for D but, as indicated in earlier sections, values ranging from 0.5 to 4 in. are
reasonable selections for the scale of networks considered in this book). Inappropriate
initial guesses for h; will cause divergence of the numerical method and no solution
will be obtained. In Mathcad the equation where the divergence is encountered will
turn red, thus indicating a problem.

There are two methods for providing initial guesses for h;. The first is simply to
choose them by following a few basic rules from fluid mechanics. These are

1. h; < z1 — 2, the hydrostatic head, where z is the local elevation of the junction
and z; is the maximum elevation of the network. See 4 below for details.

2. h; > 0. As noted in Sectionl1.4.2, h; >7-10 m for network integrity.

3. For a local low point in the network, /; must be greater than that needed
to provide a specified positive head at the highest point downstream when the
elevation head difference between this point and the local low point and friction
are considered. In equation form this is

hj > AZhigh—tow  +

Az between highest point downstream and local low point
Ahfrict +
Frictional head loss between highest point downstream and local low point
hj peak

Static pressure head at higest point downstream

For example, if a local low point is followed by a peak 25 m higher than it,
an initial guess for h; of 25 m or less will cause divergence of the numerical
solution.

4. For a local high point in the network, h; must be less than the elevation head
at the source less the friction between the source and the local high point. In
equation form this is

h; < Z1— 2 —
[N S —

Az between source and local high point

Ah frict
N e
Frictional head loss between between source and local high point

For example, an initial guess for the static pressure head at any junction greater
than the elevation of the source is clearly incorrect.
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5. For cases where the junction is neither a local high or low point, any initial
guess for h; between hydrostatic and 7-10 m is adequate.

In 3 and 4, Ah ¢, must be estimated by the designer. Many of the Mathcad work-
sheets supplied with this book have initial guesses for h; that use this method.n

The second method is a more systematic approach to supplying the initial guesses
for h; by using the energy equation. Rearranging Eqn (11.24), we obtain

L;; L. 8Q2
—Ahz;] = AZ” {K‘LJ + az] + f(Q‘LJ7 ZJ)[DJ' + ( D )z]]} 2 D74 (1128)
z]

Once initial guesses for D are made, the entire right side of Eqn (11.28) is known
and Eqn (11.28) may be applied repeatedly for each node along the distribution main
starting from the source, where h; = 0.

To illustrate this procedure, apply Eqn (11.28) to the multiple-branch network of
Fig. 11.16. Initial guesses for hg, h3, and h4 are needed for the solution of this
problem, along with initial guesses for all D;;. hg, hg, and k4 are calculated from

L
ho—hi=hy = Azp—{Ki2+ap2+ f(Q12,D12)[D—12 +( )12]} — D4
L L 8
hs—hs = Aoy~ Kz + (@ Do)l + () ”WQ@;
L L. 802
ha —hs = Azzy—{Ks+ f(Qe.471)3.4)[1)3;1 + (—5)34]}71-2;25%4

where the value of h, is calculated from the first of these, hs from the second, and
h4 from the third.

Care must be taken to ensure that »; > 0 for all junctions when using this method,;
see 2 above. Negative h; values may appear if the initial guesses of D are too small
for one or more of the pipe segments upstream from the junction under consideration.
Thus, cases where negative values of h; are calculated can be easily corrected by
increasing the size of the initial guesses of D for one or more these pipe segments.

With correct application of either of the above methods, Az;; + Ah;; > 0 for
all segments of the distribution main®?, and the numerical method of solution for the
equations of the network should proceed toward convergence.

11.6.5 Importance of Throttling Valves and Their Placement for Flow
Balancing

One of the key “takeaway” points from Section11.6.3 is the importance of strategically
placed globe valves in most of the segments of a multiple-branch network. This was
first noted in Section 3.5 and included here for re-emphasis. For most networks, an

22This is a necessary condition since the frictional head loss must be positive. See Eqn (11.24).
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open globe valve [having K =~ 10; see Eqn (2.11)] does not measurably penalize
performance. Thus, other than possibly valve cost, there is little or no disadvantage
to their strategic installation. As discussed in Section 3.5, and illustrated with the
example above, globe valves give the designer flexibility inbalancing flows in multiple
branch and (and as we will see below, loop) networks and, when closed, allow the
removal of pipe and components for maintenance and repair.

B.114 Getting Started: Working with Mathcad Worksheet for a
Multiple-Branch Network

The first step in gaining confidence to solve the more challenging multiple-branch
network problems is to just “dive in” to an appropriate Mathcad worksheet. The
easiest way to do this is to make a simple change to an existing worksheet, like
with the serial-network problem above, and examine and scrutinize the results of
the change. This can be repeated for several cases until we begin to feel com-
fortable with the worksheet and get a sense for cause and effect in the networks
we are modeling. With this in mind, consider the network of Fig. 11.16 and ac-
companying data in Table 11.7. In the worksheet BranchPipeExample_4pipe._
withcost_ver2.xmcd, increase all flow rates by 50% and reduce all elevations
by a product of 80% and examine the solutions for the cases listed below. Report
the theoretical pipe diameters and total pipe cost. Comment on the changes. Do
they make sense from an engineering standpoint? How do the pipe sizes and total
cost change with different values for the junction static pressure heads over their
range as recommended in Section 11.4.2? To reduce the execution time, ignore
by deleting or disabling the lines beyond the text line “Minimize T'¢ subject to in-
equality constraints below” and calculate the diameters for fixed values of h, h3,
and h4. Choose ha, hg, and h4 of 7 m (lower limit; Case 1), 10 m (Case 2), 15m
(Case 3), 20 m (Case 4) and, as an upper limit, 90, 80, and 70% of the hydrostatic
pressures at nodes 2, 3, and 4, respectively (Case 5).

Make the requested changes in ();; and Az;; to obtain the values for actual pipe
diameters. Examine the cases where the pressure heads at the junctions are:

e Uniform at 7, 10, 15, and 20 m (Cases 1-4).

e Vary according to 90, 80, and 70% of the hydrostatic pressures at nodes 2,
3,and 4 (0.9- A2,0.8- (Az; + Az),0.7- (A2 + Azg + Azz) (Case 5).

Our inspection of the results presented in Table 11.9 prompts several interesting
observations. First, as s increases, we expect Dj5 to increase as seen in Ta-
ble 11.9 because a larger pipe size is needed to reduce the segment-12 friction
loss to achieve the larger values of /1. The difference between the static pressure
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Working with Mathcad Worksheet for a Multiple-Branch Network (Cont’d)

heads at nodes 2, 3, and 4 is zero for cases 1-4. The pipe sizes for segments
23 and 34 are thus determined solely by the elevation changes Azo3 and Azgy,
respectively [see Eqs (11.25)], so Da3 and D34 do not change for these cases
as observed in Table 11.9. The competition between the increase in D;2 and
decrease in Dy5, Dag, D37, and Dyg produces an optimal result for A of ~10 m
at each internal node. The actual result determined by running the worksheet
for the flow rates and elevations modified as above does indeed give %5 of 10 m.
Another observation is that Dog, D37, and Dyg all reduce in value for cases 1-4
as expected because of the increasingly larger pressures at nodes 2—4. Finally,
we see that the largest total cost is associated with the largest static pressure
heads at nodes 24, case 5. Thus, we see different engineering tradeoff here.
The desirable larger pressures at internal nodes, which can allow flexibility in the
network, say for unanticipated future expansion, come at a price of larger pipe
sizes.

Keep in mind that it is seldom necessary to start a worksheet in Mathcad from
scratch. Always modify an existing worksheet that already successfully performs
calculations similar, or identical, to those you are attempting. For example, you
would modify an existing worksheet for an 18-leg network if you have one that
already runs for a 12-leg network.

]
B.11.5 The Effect of Turning Off Segments of a Multiple-Branch Network

The following exercise is worthwhile to become familiar with the sensitivity of
flow in the remaining active parts of the network when flow is shut off in the other
parts. Consider the network of Fig. 11.16 and accompanying data Table 11.7. In
the worksheet BranchPipeExample 4pipe_withcost_ver2.xmcd, indepen-
dently turn off the flow in the branches of segments 26, 37, 48, and 45 in the reverse
solution. The nominal pipe sizes for the network as shown in Table 11.8 apply
as well as the final values for K. Examine the response of the flow rates through
the remaining segments. Follow the procedure described in Section 11.6.3.

There are two simple changes to the worksheet BranchPipeExample_4pipe
_withcost_ver2.xmcd needed for the solution of any one of these four cases:

¢ Inside the Given.. .Find block, set the flow rate to zero for the segment
you wish to shut-off.

e Disable the energy equation for this segment (inside the Given...Find
block).
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Table 11.9 Results from Textbox B.11.4 — Working with a Mathcad Worksheet for a Multiple-Branch Network

Case hi(m) ho(m) hs(m Dio(@n) Das(in) Daq(in) Dy (in)  Daee (in) Dsr (in.)  Dag (in)  Total Cost ($)

1 7 7 7 1.801 1.245 1.116 1.090 1.227 0.865 1.949 3259
2 10 10 10 1.899 1.245 1.116 1.037 1.040 0.849 1.068 3111
3 15 15 15 2.173 1.245 1.116 0973 0.908 0.825 0.873 3314
4 20 20 20 3.354 1.245 1.116 0.927 0.836 0.805 0.789 4750
5 18.72 57.60 60.48 2719 1.681 1.170 0.754 0.851 0.708 0.585 4207
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The Effect of Turning Off Segments of a Multiple-Branch Network
(Cont’d)

The result reported by Mathcad should show that the flow rate in the segment
that is turned off is indeed zero. Refer to Figs. 11.20-11.21 for the appearance
of the worksheet with these changes.

The results of this analysis are presented in Table 11.10. From our inspection of
this table, we see that when the flow to one segment is shut off, the flow rates to
the remaining active segments of the network increase over their respective values
that existed when all segments were open. Thus, a general conclusion from this
exercise 18 that shutting off segments of a multiple-branch network of the type
seen in Fig. 11.16 will provide more than the design-specified flow rates to those
segments that remain open. Of course, the designer can modify the Mathcad
worksheet to investigate the effects of turning off various combinations of two or
more segments, but it expected that the above conclusion will apply in all cases.

11.6.6 Contribution of Cost Minimization to the Solution

In this section, we look at how imposing cost minimization on the problem of gravity-
driven water flow in networks makes the forward solution unique. Refer to the
example of the four-pipe, three-branch network of Fig. 11.16 for a moment. Note
that there are seven energy equations [Egs (11.25)] and seven unknown pipe diameters.
The volume flow rates are specified and thus mass conservation is identically satisfied.
However, the three static pressure heads, ho, h3, and k4, at the junctions are unknown
and in the absence of any other constraint, have arbitrary values. With no additional
constraint the forward solution, which gives the theoretical pipe diameters, is clearly
non-unique. This issue was the subject of footnote 10. In this note, we also saw that
the reverse solution is unique because the energy and continuity equations are used.

We have claimed above that introducing cost minimization adds the constraint
needed to determine the static pressure heads to make the forward solution unique.
But, exactly how does it perform this task? We will explore the answer to this question
now.

In addition to pipe lengths (the values for which are fixed), the total cost depends
on the diameters for all of the pipes in the network. For the case of Fig. 11.16, we
get,

Cr = Cr(Di2, D23, D34, Das, Das, D37, Dsg) (11.29)

Our inspection of Egs (11.25) shows that D5, Da3, and Dqg, in turn, depend on hg;
Da3, D3y, and D37 depend on kg, and so on. With this, Eqn (11.29) is written in
“functional form” as,

Cr = Cr(D12(hs), Daz(ha, hs), Daa(hs, ha), Das(ha), Dog(h2), Da7(h3), Dsg(ha))
(11.30)
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Table 11.10 Results from Effect of Turning Off Segments of a Multiple-Branch Network®

Case *: ABV Dw ABV \Nm de @5 A—L\mv @wm Ql\mv @m» Ql\mv @»m Ql\mv @wm A—L\mv @mﬂ A—L\mv @»m Ql\mv
Segment 26 Off  19.83 16.95 20.45 0.789 0.789 0.535 0.278 [0.26] 01[0.32) 0.255[0.27]  0.256 [0.25]
Segment 37 Off  16.61 3225 29.03 0.998 0.658 0.658 0.323 [0.26] 0.340[0.32] 0[0.27) 0.335 [0.25]
Segment 48 Off  16.45 30.54 40.78 1.008 0.670 0.378 0.378 [0.26] 0.338[0.32] 0.292[0.27] 0[0.25]
Segment 45 Off 1623  28.14  37.54 1.021 0.686 0.401 01[0.26] 0.335[0.32] 0.286[027] 0.401 [0.25]

2Values in square braces are design-specified flow rates (all valves open) from Table 11.7.
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Using the chain rule from calculus, the total differential of Eqn (11.30) is written as,?>

8CT 8D12 8CT 8D23 60T 8D26

iCp = 9Dz i dh dh
T 5D1a 0hy U2V 3Dy 0hy 2T 3Dgg Oy T2
8Cr ODaos 8Cr ODau 9Cy dDqr
9023 4 dh ah
9Dy 0hs T 3Dy, Ohy “® T D g 8
0Cy D=y 8Cr ODys 0Cr ODas
t 30w oy Mt 3D, ohy ™ D4 oh, T

(1131

Recalling material from Chapter 10, the minimum value of Cy is found once dC7 = 0
(this condition is necessary, but not sufficient; we also need to verify that the second
derivative of Cr is positive thus indicating that Cp is a minimum). Require this
and group terms common to multipliers of dho, dhs, and dh4, respectively, from
Eqn (11.31) to obtain three independent algebraic equations,

8Cr ODyy,  OCr ODys  HC7 ODag

0D15 Ohs O0Dg3 Oho O0Dsg Ohg

0Cr ODy;  OCy ODss  OCp ODsr

0 — 1132
ODys Ohs | 9Ds; Ohs | 9Dsr Oha (11.32)
8Cy D3y Cr ODss  0Cr dDas

9D31 Oha | ODas Ohs | 9Das Oha

The cost Cr is from Eqn (11.17), so the derivatives like 9Cr/8D;2 in Eqn (11.32)
are written in general as
aCT D f jv1
D, =ab D8 Li; (11.33)
for any segment ij, where a, b, and D,, are the constants defined in Section 11.4.4.
The derivatives like D15/0h2 in Eqn (11.32) are obtained by taking the partial
derivative of the pipe diameter with respect to the relevant static pressure head in the
appropriate energy equation. For equations like Eqs (11.25), where D appears in a
nonlinear way in more than one location, this is done using numerical methods. How-
ever, for illustrative purposes, if we restrict our interest to a range of minor-lossless,
turbulent flow in smooth pipe, we can use the energy equations like Eqs (11.16), where
the friction factor has been approximated based on the developments in Chapter 9.
We obtain for segment 12, for example,

Aziz —ha\_93/19 V7 Quz 7/19
2 11.34
Ohy ) ( ) ( )

1977
Lz 94/7L12/

= 0.156(

23 For uniformity and ease, all derivatives on the right side of this equation are written as partial derivatives
though in some cases it is clear that a particular diameter depends on just a single static pressure head, not
two or more. In these cases, it is mathematically correct to write these derivatives as ordinary.
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For segment 23, we get

0Ds3 Azgs + hg — hs —23/19 V7 Q23 7/19
= —0.156( —=2—2—2)72/ (———77) / (11.35)
8}12 L23 g4/7 Lzé/
and for segment 26,
ODg Azgg + hy = haet\ 93710, V" Qo \7/19
= ~0.156( Lo ) (W) (11.36)

Equations 11.33)—(11.36 are combined with the first of Eqs (11.32) to produce a
single algebraic equation that depends on ho and hg, as well as Dy, Dag, and Dag,

0

Azig—h
D, QI (T ) T

Lo
_ Azgz +hy — hy _
- DRI (S 1137
Azog + ho — h
_17/19, D206 + ho — hger _
- Dgel 2(/5 ( Los ) 23/19
Introducing D15, Da3, and Dog from Eqs (11.16), we get,
0 - 7b/19(AZ12 — h2)—(1+4b/19)
- 12 L12
76719, D223 + by — h3 | _(114p/19)
e e 9 11.38
et e (11.38)
B 7b/19(A226 + ha — hgel )= (1+46/19)
26 L26

The same procedure is repeated for the second and third equations in the group
designated as Eqn (11.32) to obtain a total of three algebraic equations for h, hg, hg.
In the forward solution, these three equations are included with the energy equations
and solved to obtain unique solutions for the static pressure heads at the three junctions,
as well as all of the values for D in the distribution main and branches.

The general form of Eqn (11.38), written at any junction, is

Z Q7b/19 Az +Ah”) (1+4b/19)

ij,in L”
: (11.39)
B Z Q7b/19 Az +Ah”) (1+4b/19)
Ly
ij,0ut

where, as usual, h; = 0 (at the source, Ah19 = h; —ho = —hs),and h = hg at the
end of each delivery pipe segment. The convention that we apply to the continuity
equation also applies to Eqn (11.39). This is the meaning of the index ¢7,in and
17, out on the summations.
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A reminder that Eqn (11.39) applies strictly to minor lossless, turbulent flow in
smooth pipes. From our experience, however, we can use it as a first-approximation
for optimal h; for flow in the rougher-wall, GI pipe and, in fact, with all pipe under
all minor lossless flow conditions.

Equation (11.39) is an alternative to the Given.. .Minimize block in Mathcad to
minimize the network cost and determine optimal h;. One difference between the two
is that the block evaluates all of the above derivatives numerically?* and thus includes
Eqgs (11.32) in the solution process, even though it is not evident. This increases
the accuracy compared with Eqn (11.39). However, the Given.. Minimize block,
though alittle simpler to implement in Mathcad, takes considerable longer to execute.

B.11.6 Use of Eqn (11.39): Optimal Static Pressure Heads at Branch
Junctions

To demonstrate the use of Eqn (11.39), we apply it to the simple-branching
network of Fig. 11.1. We make the following assumptions to enable an analytical
solution: Ly, = Ly = L. = L, Qp = Qc = Qo/2, hger = 0, and Az, = Az, =
Az, = Az. Substitute these into Eqn (11.39) and, after some rearranging, we
get hP* = (1-C)/(1+ C)Az, where C = 2(76-19)/(46+19) The optimal head
h3P * depends only on Az for this case because of the simplifying assumptions.
For b = 1.4 as above, obtain C = 0.772 and A3” * = 0.129Az. For example, for
Az = 60m, h?p * = 7.74 m. See Exercises 37 and 38 related to this textbox.

Table 11.11  Comparison Between Given. . .Minimize Block and Eqn (11.39): D

Subscript, ’L] Dij (in.) Dij (in.)
From Given. . .Minimize Block  From Eqn (11.39)
12 1.49 1.45
23 1.13 1.10
34 0.996 0.937
45 0.694 0.732
26 0.853 0.922
37 0.637 0.651
48 0.556 0.603

*Derivatives like D1 /Bhy are produced from the complete form of the energy equation, not the
approximate one that was used in the above example.
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Table 11.12  Comparison Between Given. . Minimize block and Eqn (11.39): Cost
and hj

From Given.. Minimize Block From Eqn (11.39)

cost ($) 2292.53 2298.54
ha (m) 10.0 7.88
h3 (m) 337 27.1
h4 (m) 39.5 28.9

B.11.7 Comparison of Results Using Eqn (11.39) and the
Given...Minimize Block

To gain confidence in the ability of Eqn (11.39) to produce the same re-
sults achieved with the Given...Minimize block in Mathcad, we apply
Eqn (11.39) to the multiple-pipe network of Fig. 11.16. The results using
the Given...Minimize block appear in Table 11.8. The Mathcad work-
sheet BranchPipeExample 4pipe withcost._ver3.xmcd was used that con-
tains Eqn (11.39) written at the three branches of this network instead of the
Given.. .Minimize block. The results compare very favorably as we see by in-
specting Tables 11.11 and 11.12. In particular, the total cost is nearly identical
for the two approaches. The differences in results come from linear interpolation
among the pipe cost data used in the Given. . .Minimize approach instead of the
curve-fit to the same cost data as reflected in Eqn (11.39). The execution time
using Eqn (11.39) is considerably less than for the Given. . Minimize block.

11.7 LOOP NETWORK

11.7.1 Characteristics

Because of the greater cost and complexity, single loop networks?’ like the example
appearing inFig. 11.28 are less common than the multiple-branch type just considered.
However, loop networks have a couple of advantages which are

¢ Greater reliability; a loop network is designed so that flow can approach each
delivery point from more than one direction. With appropriate placement of
valves, repairs to the network may be made without complete service interrup-
tion.

e In some cases, because the flow can approach a delivery point from more than

one direction, the cross-sectional area for flow is effectively greater than for a

ZMultiple loop networks that have common pipe segments also exist, but are unusual for the scale of
gravity-driven water networks considered here.
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Figure 11.28 A loop network having six distribution segments (see Table 11.13 for data).

comparable branch-type network. This allows for possible increase in water
demand and lessens sensitivity of flow rates at a given tap to the demands
elsewhere in the network.

Generally, loop networks are candidates for water supply in communities in which
there is not much elevation change among water taps. The character of the loop re-
quires a zero change in elevation around the loop measured from any point. Therefore,
the assistance of the flow due to a reduction in elevation is always balanced by a loss
in assistance as the flow climbs back to its original elevation. Since static pressure is
the only energy source driving flow upward against gravity, it is not desirable to have
large elevation changes that require large changes in static pressure to accomplish
this.

11.7.2 The Approach

The approach for analysis and design of a loop network follows closely to that for a
multiple-branch type. There are four fundamental differences.

1. The volume flow rates in the various segments of the loop are not known a
priori. This means that we need to solve for the volume flow rate distribution
in the loop using the continuity equation written for each node.

2. Acorollary to the above is that flows will occur in opposite directions at different
locations in a loop network. This requires that we define a sign convention for
positive flows. We will assume flow rates in the clockwise direction around
the loop to be positive in value. Values for flow rates that move in the counter-
clockwise direction around the loop will be negative. The continuity equation
for flow at a branch, Eqn (2.23), remains unchanged.
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Table 11.13 The Design Parameters for a Loop Network

Pipe Subscript, ija Li]’ (m) Qij (L/S) 2i — 25 = Azij (m) Kij (LE/D)ij

12 235 2.89 81 — 25 = 56 50 16
23 415 TBD 25— 27 = -2 0 32
34 210 TBD 27 —-29 = -2 0 32
45 330 TBD 290 -31=-2 0 32
56 539 TBD 31 -28=3 0 32
67 108 TBD 28—-28=0 0 32
78 147 TBD 28 — 32 = -~ 0 32
82 183 TBD 32-25=7 0 32
39 111 0.35 27 -30 = — 10 60
4-10 98 0.46 29 -30 = — 10 60
5-11 118 0.81 31 - 28 = 10 60
6-12 143 0.26 28 - 31 = -3 10 60
7-13 85 0.63 28 -32=-4 10 60
8-14 101 0.38 32 -34 = -2 10 60

“Refer to Fig. 11.28. hge; = 10 m for this design.

3. In the past, as we saw with single-pipe and branching multiple-pipe networks,
the direction of the flow was always known. In the absence of any elevation
change, head losses from friction always had the effect of reducing static pres-
sure in a known direction. However, in the case of a loop network, the flow can
move in either direction in a pipe segment. This means that the friction term in
the energy equation needs to be directionally sensitive. To account for this, we
will make a small addition to the friction term for the energy equation written
for any segment on the loop.

4. Along any flow path, the pressure at any fixed location is clearly single valued.
If we apply this to a loop network, the change in elevation and static pressure
head around a closed loop must be identically zero. A quick inspection of
the energy equation applied around a closed loop will reveal this. By further
considering the energy equation, this also means that the change in pressure
due to friction from node-to-node around a closed loop must sum to zero. This
is referred to as the “loop equation”, which is an auxiliary equation unique to
a loop network. We will explore this more thoroughly in Section 11.7.3.

11.7.2.1 An Introductory Problem It is worthwhile to first consider a simpler
variation of the loop network of Fig. 11.28 (see Fig. 11.29). The reason for this is
that with several simplifying assumptions we are able to develop simple analytical
solutions for the pipe diameters and total pipe cost. By our inspecting and understand-
ing these solutions, issues concerned with determining static pressure heads at the
junctions and the associated cost optimization the loop network will be highlighted.
Later on, we may better be able to deal with these in more complex loops.

The loop of Fig. 11.29 consists of four, equal-elevation, loop segments of smooth
pipe each having equal lengths (Lo3 = L34 = Lys = Lsa = L12/2 = 50 m). Valves
on each of the equal-elevation branches are adjusted such that the flow rate in each
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Figure 11.29 Geometry for a simple loop network.

branch is equal to (J12/3, where we assume Q12 = 3.10 L/s for this design. The flow
rate distribution in the network is from the continuity equation. Thus,

Q23=Q—212—, Q34=96—12—, Q36 = ——» Q47:T (11.40)
Because of symmetry, we need only solve for the flow in branches 36 and 47 (the
flow in branch 58 is identical with that in branch 36). To simplify the solution, we
will neglect the major friction loss in favor of a minor loss having a large value of
K = 200 in each branch and segment of the loop. We will assume K = 50 for
segment 12.
The energy equations, Eqn (11.24), for each segment of the loop and branch are
written as

0 = A212“h2—K12%§2%—i42‘

0 = h2—h3—K23ﬂ_2—29Q%§—3

0 = hg,—M—KM% (11.41)
0 = h3—hge — Kgﬁ%?g_%g_g;

0 = h4—hge — K477r—28§221)—217

where hge; is assumed to be 7 m. To allow us to represent the solution as a function
of just a single parameter, we will let hy — hg = h3z — hy = Ah. With this, the
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formulas for ho and the pipe diameters become,

he = Az — K127r—28;2—11272/1;—2
Doz = [Ky%]l”
Dsyy = [K349W—22Qj—2-ﬁ]1/4 (11.42)
D3 = [Ks 92 g (hgg?%dez . Ah)]1/4
Der = | 8Q%, 1/

K
Y7972 g (hg — hger — 2AR)

By assuming a value of Dyo = 2 in., we solve for the first of Eqn (11.42) to get
a fixed value of hy(= 32.04 m), and then solve the remaining four equations for
Dy3, D3y, D3g, and Dyy, respectively, as a function of Ah. The results of these
calculations are shown in Figs. 11.30-11.32. The relationships between h3, hy4, and
Ah are

hs = hg — Ah, hy = ho — 2Ah (11.43)

Finally, we note that the loop equation does not appear here, because it is identically
satisfied because of the symmetry of this problem.
Our inspection of Eqs (11.42) shows the following:

e Dy3 and D34 are proportional to Ah~1/%; both decrease as Ah increases.

e D3 and Dy; are proportional to (hy — hge; — Ah)~V% and (hy — hge —
2Ah)'1/ 4 respectively. This means that both D3¢ and Dy increase as Ah
increases.

Both of these observations are evident from Fig. 11.30, although the increase of Dsg
over the range of Ah that is plotted is not very striking. As noted several times
before in this text, the competing effects of the decrease of D23 and D34 and increase
Dsg and D47 with increase in Ah leads to the existence of an optimal value for the
diameters as a function of Ah, once cost is considered. The pipe cost for the loop is
from Eqn (11.18), rewritten here for convenience,

D;
CT = Qa Z( DJ )bLZJ

where a, b, and D,, are the constants defined in Section 11.4.4 and the summation in
Eqn (11.18) is taken over four pipe segments, 23, 34, 36, and 47.

A plot of the total pipe cost as a function of Ak is shownin Fig. 11.31. Theexistence
of aminimum costat Ahof~7.9m (h5”* = 24.2mand h{"* = 16.3 m; see Fig. 11.32)
is clear. Note that there are very large cost increases due to increased pipe sizes at
small Ah and hy — hye; — 2Ah approaching zero (Ah — (ho — hge)/2 = 12.5 m).
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From the above value for optimal Ah , the optimal theoretical pipe diameters for D3,
D34, Dsg and Dy7 are 1.87, 1.08, 1.25, and 1.46 in., respectively.

The important observations from our inspection of this introductory problem are
the following:

o Generally, there exist optimal static pressure heads at the junctions of a loop
network, just as there was for simple- and multiple-branch networks. These
are h; values that, as an ensemble, minimize the cost of the network.

e A close inspection of a loop network of length L reveals that it acts like two
parallel flow paths, connected at both ends, each over approximate length L /2.
This is because of clockwise flows in one leg of the loop over a distance of ~L /2,
and counterclockwise flow in the opposite leg. Thus, compared with a multiple-
branch network of an equal overall length, the loop network is effectively
shortened by about half. Accordingly, because of this and the lack of elevation
changes along the flow path, the range of variation of the static pressure heads at
the junctions may be expected to be smaller for a loop than for an equal-length
multiple-branch network.

e A consequence of the previous bullet is that as the number of nodes in the loop
increases, it becomes increasingly challenging to find solutions for optimal
junction-h values. Because of this, care needs to be taken in the numerical
solution of loop problems to achieve a solution with reasonable execution times.
We will elaborate on this below. In cases where the number of nodes in the
loop is fewer than ~20, a trial-and-error approach with just the reverse solution
is probably the quickest and most reliable way to determine near-optimal static
pressure heads at the branches of loop network and near-optimal cost. The
forward solution is skipped. This is very tedious, however. Trial-and-error
is employed below in the solution of the loop of Fig. 11.28 along with the
Mathcad solution using the usual Given...Minimize structure. Recall that
the reverse solution uses actual inside diameters from chosen nominal pipe sizes
to calculate actual flow rates and actual static pressure heads at all junctions.

11.7.3 Formulation

We return to the problem of Fig. 11.28 and begin by writing the governing equations.
The energy equation for each segment of the loop network is written as done for
Eqn (11.25). The segment label is the subscript on the function r;; for each. Obtain

Lo L. 8Q?
ro = Az12~h2—{K12+a12+f12[D12+(3)12]}%?—2:
L. 8Q23]Q23|
= — —{K. _— =
T23 Azaz + hy — h3 { 23+f23[ +(D)3]} w2 D3, . 0
L. .8
T34 = A2’34-1-h3'—h4—{K34‘*‘f34[ ""( Qoaldaa| =0

D) 4]} 7T2!JD§4
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Figure 11.32 Static pressure heads, hq, h3, and hy, versus Ah for loop network.
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Azs11 + hs — haer — {Ks11 + fsll[L511 (%)511] gf—ggg
Azg12 + he — hget — {Ke12 + fsu[L612 (15)612] 3551:12 =
Azpig + hy — hget — {K713 + f713[é7112 + (%)713]} 8557313
Azgia + hg — hger — {Kg1a + 10814[28811:11 ( °)s814] SQEE;
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where f;; forij = 12,23,... means f(Q;;, D;;). As we saw for the multiple-branch
network, only in pipe 12 is there included an acceleration from zero flow speed at
the surface of the reservoir to the flow speed in the pipe (i.e., an ¢ term). For the
remainder of the pipe junctions, the acceleration of the flow through a tee is accounted
for with a K-type loss coefficient. h4e; is taken to be 7 m for this design. Also as
above, in Eqn (11.44) the static pressure heads at all branches, h; are unknown. These
are constrained through pipe material cost minimization as we have seen in the past.

The term Q;;|Q;;| in Eqn (11.44) behaves like Q?j and accounts for the possible
change in direction of the friction head loss for energy equations written for segments
on the loop. Q;;|Qi;| > 0 for Q;; > 0 and Q;;]|Q;;] < 0 for Q;; < 0.

As discussed above, the loop equation states that the sum of the head loss (this can
be positive or negative valued depending on the direction of flow) between consecutive
nodes around the loop must be zero. Note that the sum of difference in static pressure
heads and elevation heads between consecutive nodes around the loop must also sum
to zero. This is identically satisfied by summing, around the loop, the elevation head
and static pressure-head terms, respectively, in Eqn (11.44). The loop equation is

0 = {Ka+ f23[é—222 + (%)23]}4\

+ {K34+f34[%+(&) ]}%g&d

» D /3
{’ﬂ _) ]}Q45|Q45l
Dys  D'®Y T DL

Lss | Le, . @s6Ws6

+  {Kus + fas]

Wt Sl D)l g,

+ {K67+f67[§—z+(%)67]}%
67

+ {K78 + f78[-é% + (%)78]}%—'
78

+ {Ks2 + fsol (11.45)

Dz + (3)82]} D,

From Eqn (2.23), the continuity equations for each branch starting from node 2
and moving clockwise are written as

Qg2 — Q23 + Q12

(23 — Q31 — Q39
Q34 — Qa5 — Quio
Qa5 — Qs6 — Qs11
Qs6 — Qo7 — Qe12 =
Qer — Q73 — Q13
Qrs — Qg2 — Q14 =

I

It

(11.46)
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In the forward solution only, one continuity equation is replaced by the loop equa-
tion. In fact, by substituting the continuity equations, Eqs (11.46), successively into
Eqn (11.45), we can show that the loop equation depends only on the known values
of ()12 and the branch flow rates, and just a single unknown, for example, (Qg2. In
this case, the loop equation replaces the final continuity equation in Eqs (11.46).

11.7.4 Mathcad Worksheets

A Mathcad worksheet, LoopExample_withcost_ver3.xmcd, was written to solve
this problem in the usual way. First, the forward solution is carried out where the
theoretical pipe diameters and optimal static pressure heads at the junctions are found
using the Given. . Minimize structure. Then, the reverse solution is performed after
choosing appropriate nominal pipe sizes. This worksheet is too large for presentation
here, but the following list highlights the principal features of the solution procedure.

o We chose to solve this problem by assuming a fixed value for Dis = 2 in.
(nom.). Together with the prescribed value of ()15 this produces hy = 42.89 m,
which remains fixed, along with D19, for the forward calculation.

o The choice of initial guesses for the unknowns in Mathcad is crucial to obtain
a solution with reasonable execution times. This is done by the following
sequence:

— Based on the prescribed branch flow rates and segment lengths, provide
reasonable guesses for the unknown pipe diameters.

— Initial guesses for the flow rate distribution in the loop are made by as-
suming that nearly half the flow goes clockwise starting at node 2. This is
referred to as the “flow split” in LoopExample_withcost_ver3.xmcd.

— After defining the energy equations for each segment in the usual way,
initial guesses for h at each junction are obtained by solving each energy
equation around the loop for h;. For example, h3 comes from the solution
(in Mathcad syntax) hg := root(r23(ha, ha, Da3, Qa23, K23), h3), and so
on.

- Finally, the loop equation, Eqn (11.45), is used to improve the values for
the flow rate distribution in the loop.

e The energy and continuity equations, and the loop equation are solved as
a function of the unknown h; values at the six junctions (nodes 3-8) in a
Given...Find block in the usual way.

o Optimal values for h; at the junctions are obtained fromthe Given. . .Minimize
block wherein the inequality constraints of h; > hge and hy < 21 — z; (h;
must be less than the hydrostatic head) at each junction node, j.

261t is included with this book, however.
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e An optimal (minimum cost) solution is obtained in ~18 min on a dual-core
laptop PC with a 2.66-MHz processor for Mathcad ver. 14.

For comparison purposes, a trial-and-error method was also used to solve just the
problem (just the reverse solution) where actual inside diameters from a series of
nominal pipe sizes were selected. The worksheet for this calculation, LoopExample
_withcost_ver8.xmcd, appears in Figs. 11.33-11.36. The procedure in this work-
sheet follows the reverse solutions seen in previous sheets. The input for the calcula-
tions is nominal pipe sizes for all segments of the loop and branches. The execution
time on a dual-core laptop PC with a 2.66 MHz processor for Mathcad ver. 14 was
< 30 s/case.

11.7.5 Results

The results for this analysis and design are presented in Tables 11.14-11.16. The re-
sults of the Mathcad worksheet, LoopExample_withcost_ver3. xmcd are presented
in Table 11.14. The forward solution converges where the minimal cost is ~$4077.
The nominal pipe sizes are assigned as shown in column 7 of Table 11.14 based on the
usual guideline for selecting these and the theoretical values for D;; from column 5.
We see that the design flow rates can be achieved with slight adjustments to globe
valves located in segment 12 and in the branches. The total pipe cost based on actual
pipe sizes selected is ~$4500.

For the trial-and-error solution, candidate values for D range from 2-in. (nom.)
for segments 12, 23, and 82 to % in, (nom.) for some of the distribution segments. To
save time, values for the minor loss coefficients used in this analysis are as specified
in Table 11.13 with the exception of K72, which is adjusted to match the required
flow rate of 2.89 L/s in segment 12. We see in Table 11.15 that the total pipe cost falls
as the average pipe size of the network decreases. The minimum cost satisfying all
of the branch flow requirements and static pressure head constraints (h; > 10 m and
h; less than hydrostatic) is ~$4791 (case 5). The volume flow rates for all distribution
pipes appear in Table 11.16. For all cases some of the branch flow rates are below
specification and must be adjusted upward. This is done by partially closing the
globe valves (meaning increasing their K values) in the branch segments that have
flow rates higher than specified.

Although it is straightforward and will normally return a converged solution, the
designer should be aware that the trial-and-error method is very tedious and subject
to errors because of this. Though execution times are considerable, the Mathcad
worksheet is generally preferred. Of course, as the number of nodes increases, the
trial-and-error method becomes prohibitively cumbersome and should be used only
for cursory investigation purposes or to verify a calculation performed using another
method.
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Jiter liter liter liter liter by =S;sm hg = S gm hg = Sppm

=8 — = S§4— = S§p— =8 ¢— =8 y—
Quz2 =S~ Qus = S~ Qg =S Qa10 = S10_- Q713 = Si3__
. . . . . hy= 8§, 4m hg == S;gm
liter liter liter liter liter 3 18 6 19
wmSLL GeTSTD GemSIC QumSitl QgusSiels
hy=S8;7m ho = Sgm
liter liter liter liter
=G — = Sg——  Qaoi= Sg——o Qp1y = Sjy—0
Q34=5 - Q67:= S 39 S 612 = 12—

T = Teastl (D1, D3, D34, Dgs) + Teas2 (Dsg, D7, D7g. Pgy) + Toostd (D39, Dyyo. D5y )+ Teostd Dy, D713 Dgyq) total ppe cost

Figure 11.36  Part 4 of Mathcad worksheet for loop network. Mathcad worksheet LoopExample_withcost_ver8.xmcd.
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Table 11.15 Cost Results from Trial-and-Error Solution for Loop Network®

Case D1z Das Dsgs Dus Dse Der Drs Dsx Dsg Dao Dsii Deiz Drs  Dsia Total Pipe Cost ($)
1 2 2 1 W 1 W 1 m 1 m 1 m 2 1 1 1 1 1 1 4989
2 2 2 J 1 F 1 : 1 3 1 : 2 1 1 1 m 1 m 4940
3 2 2 J _m J J J 2 w w 1 1 1 i 4899
4 2 2 12 11 11 11 11 2 1 3 1 L 1 2 4794
b ¢ £ 1 4 t 3 1 3 1
5 2 2 1 : 1 : 1 2 1 : 1 : 2 3 3 1 : i : 4791
6 2 2 13 13 17 1% 13 2 2 3 1 3 2 3 4819

4D;; is nominal in inches.
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Table 11.16  Branch Flow (Q in L/s) Results from Solution for Loop Network

Case Q39 Qo (@s11 Qe12 Q713 Qsia

0.588 0489 0518 0360 0459 0.487
0648 0.554 0576 0235 0573 0.317
0429 0392 0.69 0287 0.698 0.385
0268 0443 0772 0183 0.802 0.436
0317 0534 0926 0239 0.567 0310
0516 0487 0.859 0.220 0522 0.284

AW —

“]talicized entries are below specified values for this design.

B.11.8 Reinforcement of Concepts for Loop Network

We can gain confidence to solve the loop-network problem as we did for multiple-
branch networks by diving in to the appropriate Mathcad worksheet. Modify the
existing worksheet LoopExample_withcost_ver3.xmcd to solve the following
problem. The neglect of the major friction loss in the Introductory Problem above
(Section 11.7.2.1) is the most restrictive of all the assumptions made. Resolve this
problem by adding pipe friction to produce an improved, more realistic solution.
The energy equations will now be nonlinear and nonseparable so that we will
be unable to write explicit formulas for the pipe diameters in the manner of
Eqs (11.42). Mathcad will be used instead. Keep all of the other conditions in
the problem statement the same, except for the K values. For this exercise, set
K for each segment in the loop and branches to 10 (an open globe valve). To
simplify, assume ho = 32.04 m (for D12 = 2 in.) so that the calculations in the
Mathcad worksheet will not include segment 12.

Modify the worksheet LoopExample_withcost_ver3.xmcd to include the pa-
rameter values, energy equations, and solutions in the Given...Find and
Given.. Minimize blocks for only pipe segments 23, 34, 36, and 47. The total
pipe cost also depends on these diameters only. The resulting Mathcad worksheet
appears in Fig. 11.37. The optimal value of Ah is 7.94 m, and the theoretical
pipe diameters Doz, D34, D3g and Dy7 are 1.27, 0.827, 0.917, and 1.05 in,,
respectively. All of these values are smaller than when major pipe friction was
neglected. It is reasonable to expect the pipe diameters to decrease when major
friction loss is included; the additional friction loss (above that for the minor loss
already included) is due to a reduction in pipe diameters.

As an alternate solution, if we let b3 and h4 vary independently rather than letting
hg — hs = hs — hy, the solution will depend on k3 and h4 and not simply Ah.
In this case, we obtain the optimal values for hs and h4 of 22.7 and 16.2 m,
respectively, and the theoretical pipe diameters Ds3, D3y, D3g and D7 are 1.23,
0.863, 0.934, and 1.05 in., respectively. The Given...Minimize block takes
< 30 s to converge. The interested reader is encouraged to modify the worksheet
of Fig. 11.37 to verify these results.
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A koop network solved in forward way (specify volume flow rates and solve for pipe diameters vs. junction heads |:

Azypg=2) — 2y A= 3Bm Arqy=ig -2y Azgg=lm Argg=ageozy Argy=0m
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Solve in Gven.. Find black Energy conservation:

Given 0=ry3(3h.Dy3.Qp3:Kp3) 0= r34(h.D34034.K34) 0= 13681 D35.Q36.Ks6) 0= rgy{AhDy7.047.Kyy)

$(ah) := Find(Dy3, D34, D34.Dy7)  'SOlution

Check sdution for guessed values of h: Ah:=2m s(ah)T ={1.716 1.114 0.86 087T)in

T,(ah) = Teosi(D, 5, S(an);, S(ah)y, s(an)y, s(ah)y) ‘fotal cost of pipe T (ah) = 466 0Sdollars

Mnimize Te subject to inequality constraints below .
Given hy - Ah<z) -2y hy-2ah<z) -z, h at each junction < hydrostatic

hy = 4h 2 hyy hy = 24h 2 hgy h at each junction >= h del

o) TS| R(E)SeaTe (s@) = 027 0827 0017 100

Figure 11.37 Mathcad worksheet for solution of example in textbox B.11.8.
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B.11.9 A Reminder

It is worthwhile to periodically recall one of the important points discussed
in Chapter 1. In gravity-driven water networks, for all points beyond the
atmospheric-pressure source, energy that drives the flow comes from only static
pressure when converted from potential energy. The challenge as analysts and
designers is to manage this energy. Pipe sizes that are too small cost less than
large ones but dissipate too much energy in friction. Pipes that are too large
may unnecessarily increase the cost of the network and possibly present control
problems. Thus, energy from static pressure in the network is our friend because
it allows us flexibility in our designs and potential for future expansion of the
network.

11.8 LARGE, COMPLEX NETWORKS

11.8.1 Comments

Water distribution networks having hundreds of nodes or more, joined in branch and

loop patterns, with pipe lengths extending over many kilometers are typical of large
towns and urban areas. The analysis and design of these large-scale networks is
the subject of a number of books (Jeppson, 1976; Nayyar, 2002; Trifunovic, 2006;

Swamee and Sharma, 2008) and many journal and conference publications covering

the network subfeatures. Although this application is not the target of the present book
of small-scale networks and emphasis on fundamentals, it is worthwhile spending
some time discussing the approaches and methodologies for the analysis and design
of these large systems, along with a few pertinent results.

Among the differences between the approaches explored so far in this book and
those used for the solution to large, complex networks are the following:

o Large computer codes, written in classical programming languages like Fortran
to solve large systems of nonlinear simultaneous equations, are nearly always
used.

o Indexing of the elements of the problem is done so that the computer pro-
grams can take advantage of execution speed increases resulting from the use
of vectorization.

o As the scale of the network increases, it is appropriate to make simplifying
assumptions that are at least slightly more applicable in the large scale but less
so with smaller-scale networks. Lumped-equivalent and distributed-equivalent
models for branching flows from a distribution main (Swamee and Sharma,
2008) and equivalent diameters and lengths (Trifunovic, 2006) that, in some
cases, come from treating the friction factor as constant are examples of this.
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Two examples of large computer codes are those presented in Swamee and Sharma
(2008), written in Fortran, and the EPANET 2 code (Rossman, 2000) of the United
States Environmental Protection Agency. In general, numerical methods like Newton—
Raphson (Gerald and Wheatley, 1999), Hardy Cross (Potter and Wiggert, 2002),
Levenberg—-Marquardt (Levenberg, 1944; Marquardt, 1963), and Conjugate Gradient
(Hestenes and Stiefel, 1952) are used to solve the systems of nonlinear algebraic equa-
tions that arise in water-flow networks. Iteration, starting with initial guesses of the
solutions and repeating of the calculation until suitable convergence of the solution
is found, is common among all of these methods.

From our experience thus far with the analysis of water distribution networks, we
see there are many examples of the same calculations repeated for different parts of
the network. For example, for a given problem we solve the same energy equation
many times over for different segments of the network to obtain the diameter of
each segment. With vectorization, if it can be used in our computer program or
platform, this calculation is done as if it were for just a single segment. The result is
a considerable savings in execution time.

Vectorization is implemented by first defining a vector of diameter values D=
[D1D3Dj3 ... Dy, flow rates Q = [@1Q2Q3 ... Q) lengths L= [L1LoLg... Ly,
and changes in elevation heads Az = [Az; AzpAzg ... Az, and so on. Instead of
writing the energy equation for a particular segment ¢, in which there would appear
D;j, Qij, Lij, and Az, etc., we write it for the entire vector of D, Q L, and A%
values. The energy equation, Eqn (11.24), in vectorized form becomes

-2
D D r2g DA

I .-
Az+Ah={K+ad+ f(Q, D)= + (—=

(11.47)

Normally, a vectorized calculation on a computer takes much less time, and can be
programmed in a much more compact form, than one that is not vectorized (that is,
performed on each of the scaler quantities that are components of the vector). For
these reasons, vectorization of calculations is highly recommended where possible.

Major losses dominate as the size of a network increases. With the exception of
those for throttling valves, minor losses at branches?” and other parts of the network
are ignored for large water-flow networks. In most cases, this is justified because of
the weak effect that the minor loss has on the solution. In other cases, the neglect of
things like minor loss and changes in acceleration are made out of the need to simplify
an equation to obtain a tractable problem. In this case, validation of the solution, or
solutions to a class of problem, is needed to give confidence in the accuracy of the
result.

One simplificationrelated to the latter case is the occasional treatment of the friction
factor as a constant in the governing equations of some developments (Swamee and

27 As has been discussed previously, when flow to a branch is directed either with or against another flow,
there is a local change in static pressure that adds to or subtracts from the energy at that location (Jones
and Galliera, 1998; Jones and Lior, 1994). For a combining flow where the branch and main run of pipe
are perpendicular, this is a very weak effect. If a dividing flow, there is a stronger effect. Minor loss
coefficients appearing in Table 2.1 account for these losses.
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Sharma, 2008; Mihelcic et al., 2009). The friction factor is clearly not constant but
can vary considerably, as discussed in Chapter 2. By making this simplification, the
analyst is freed from the task of having to consider the dependence of pipe diameter,
and perhaps flow rate, in the function for friction factor. The benefit of this assumption
is simplification of the analytical result but a price is paid because of the need to include
in the solution an iterative procedure to account for the above dependencies.

11.8.2 Optimization for Large Multiple-Branch Networks: Use of
Vectorization

For large multiple-branch networks, where we expect only turbulent flow, Swamee
and Sharma (2008) report closed-form expressions for minimal network cost for both
gravity-driven and pumped flows. The analysis begins with the energy equation
written for the entire distribution main (composed of segments 12, 23, 34, and 45),
as seen in Fig. 11.16. We will neglect minor losses since they are normally small
relative to friction in this long pipeline. With this assumption, the energy equation
{Eqn (11.24)] becomes

- " 8f(Qij, Dij) Li;Q3;
[=0=Az, — hge — i (11.48)
z‘jglz ﬂng?j

where Az, = 21 — z, and n is the index for the final segment of the main. That
is, Az, is the total elevation change between the source and the delivery location
at the bottom of the distribution main. Following the developments for Lagrange
multipliers in Chapter 10, [isan equality constraint that is equal to zero.

The total network cost (pipe cost in the present work) is from Eqn (11.17) and is
written for this problem as

Cr=a Y (F2)°Ly (11.49)

where a, b, and D,, are the constants defined in Section 11.4.4.
We wish to minimize Cr subject to the constraint of Eqn (11.48). We will use
Lagrange multipliers. Obtain for the overall cost function, Cr o,

Cro=a »_ (

ij=12 u

%’f YLi; + M (11.50)

or

"D, A " 8f(Qiy, Dig)Li Q%
Cro=a Z (——])bLi]‘ + A(Azp — hget — Z ;2955 7 Wiy
ij=12 ij

) (11.51)

Immediately clear from our inspection of the cost function of Eqn (11.51) is the

competition between the first term on the right side where cost increases with ij b >
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0) and that due to friction where cost is approximately proportional to Y j=12 1 / Du’
the opposite effect on cost. Following the procedure for Lagrange multipliers, we
take the partial derivative of Cr , with respect to D);;, set it equal to zero, and solve
for the optimal diameter, DOp *. Obtain

40Af(Quy, D) D,
w2 gab
opt
Dijp afz]
5f(Qij’ D;)]pt) aD” Dij:DiO}”

opt
Dij - [

(1+ )7 (11.52)

The term O f;; /0D;; is obtained from taking the derivative of the Colebrook equation,
Eqn (2.12),

Of;  2.650[e;;/3.7D% — 4.156(0°/Q%,Diy)*]
oDi; 514 tn(d5)

(11.53)

where 61’]‘ = Eij/3.7Dij + 4618(1/ Dij/Qij)O'g
The unknown Lagrange multiplier, A, in Eqn (11.52) is eliminated by the following
procedure:

1. Write Eqn (11.52) for the first pipe segment (55 = 12) and divide this by

Eqn (11.52), which is for D{T". *. This ratio is D{*/ D} *. independent of .

2. Substitute this expression into Eqn (11.48) to eliminate D;; in favor of Di,.
Keep f written as f(Q;;, DO”t).

3. Equate this result, which is an expression for D2, to the formula for Dy, from

step 1. The result of this step is a final equation for D} ’

8 "L Ly (£ Q3)7
D = (By; fi e —I T Tl 15| (1154
( JfJQ ) [ﬂ_gg(Azn_hdel)l “ (IB‘LJ)ﬁg ] )
where 3;; is from
Dopt 6f
By =1+ 5L (11.55)
J 5f” 3D1J zj:DiO]pt

and it is understood that f;; = f(Qi;, D{T*) (or fi; = f(Qij, Dij) in 0fi;/0D;;).

Equation (11.54) is a single nonlinear algebraic equation for the optimal diameters
for the distribution main of a multiple-branch network. This equation is nonlinear
because of f;; and (;; on the right side, both of which depend on D;} *. The term
B:; does not appear in the development of Swamee and Sharma (2008) since they
assumed constant f;;. The diameter-dependence of f;; in their solution was included
in the problem through iteration.
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Once Dl‘.’f * are obtained, and with Az;; and Q;; known for all indices i, the energy
equations for the distribution main segments are easily used to determine the static
pressure heads at the junctions, % ;, at the branches. The diameters for the branching
distribution pipes are also determined by their respective energy equations with Az,
Q5. and h; as known quantities. The selection of nominal pipe sizes follows this,
together with the reverse solution as usual.

11.8.3 Example Problem: Use of Vectorization

Consider the example below based on Fig. 11.16, which is a variation of the example in
Section 11.6.1. The relevant design data are presented in Table 11.17. The focus is op-
timization of the pipe sizes for the distribution main, D14, D23, D34, and D5. We will
solve this problem in two different ways: using the analytical result of Eqn (11.54) and
using the Given. . Minimize block both of which will be in Mathcad. The Mathcad
worksheet for the approach using Given. . .Minimize is as discussed in Section 11.6.1
and will not be shown because of its length. The worksheet that implements the so-
lution of Eqn (11.54) (BranchPipeExample 4pipe_withcost_vectorized ver3
.xmcd) appears in Figs. 11.38-11.40.

Vectorization is used in the latter worksheet to demonstrate its benefits of speed
and compactness. The first task is to convert all input parameters from the nor-
mal designation, D;;, ¢;;, and so on, to vector notation (see Fig. 11.39). Thus,
Dy = Di9,Dy = Doy, D3 = Ds4 ... The next several lines in Fig. 11.39 are
devoted to producing good initial guesses including those for Dy, (the vector of di-
ameters for the distribution main), f, and ﬁ The solution for l_jm is obtained in
the Given...Minimize block at the bottom of Fig. 11.39. Only three simultaneous
equations sit inside this block: f, 3, D,y. Note that all are vectorized in the manner
as required by Mathcad. It turns out that Eqn (11.54) is somewhat challenging to
solve with the default value of convergence tolerance (CTOL) of 0.001. Instead, CTOL
is set to 0.1, and a procedure to improve the initial guesses was used. This is done
using the WRITEPRN and READPRN statements in Fig. 11.39. WRITEPRN is first used
to write the initial guess for D, toafile,D_file .prn. The WRITEPRN statement just
after the Find statement writes the most recent values of D, to this file. By keep-
ing the cursor on the READPRN, positioned just before the Given...Find block, and
pressing the F9 key to execute the program, successively improved solutions for D,,,
will be calculated®®. This happens because READPRN reads the most recent solutions
for ﬁm, the Given...Find block improves them, and WRITEPRN writes l_jm so that
it may be read again by READPRN. After ~3—4 cycles of this, the values for Dy, no

28In Mathcad there are two types of subscripts. The first is a literal one like L that modifies the definition
of hin hp to produce the symbol for head loss. The second one designates the component of a vector.
In the expression Dy = Dqp, the subscript 1 is the component of the D vector and the subscript 12 is a
literal label, not really a number. The literal subscript in Mathcad is produced by a period after a symbol.
A placeholder for the vector component is produced using CTRL-[. Care should be taken to not confuse
these or else considerable head-scratching will be needed to debug your worksheets.

P putomatic Calculation must be turned off in the Tools ... Calculate menu before performing
this step.
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Table 11.17  Design Parameters for a Multiple-Branch Network with Vectorization
(see Fig. 11.16)

Pipe Subscript, 75 Lij (m) Qij Lis) 2z — zZj = Azij (m) Kij (Le/D)ij

12 435 220 236 — 195 =41 0 0
23 615 1.56 195 - 177 =18 0 0
34 410 1.02 177 — 159 =18 0 0
45 530 0.50 159 — 151 =8 0 0
26 128 0.64 195 ~ 185 = 10 10 60
37 439 0.54 177 - 176 =1 10 60
48 118 0.52 159 - 151 =8 10 60

Table 11.18 Results for Multiple-Branch Network with Vectorization (Solution by
Eqn (11.54) and Given. . Minimize block in Mathcad)

Pipe Subscript, 15 DSt (in.) D} ‘ (in.)
From éqn (11.54) From Given.. Minimize
12 1.758 1.761
23 1.593 1.594
34 1.411 1.411
45 1.153 1.152

longer change and convergence is achieved. The solution for static pressure heads at
junctions of all branches is obtained next (Fig. 11.40) by solving the energy equation
for the distribution main in vectorized form. From this result, we define the vector
of Ah values at the three junctions having components hy — hge, hs — hge, and
h4 — hyer, and solve the energy equations for the branches. The solution is the vector
of branch diameters, ﬁb. The execution time for the entire worksheet is few seconds.

Results are presented in Table 11.18. The diameters calculated by both methods
are in near-perfect agreement. Because of the much greater execution speed using
Eqn (11.54) compared with the Given.. Minimize block, the former method is gen-
erally recommended. However, the designer needs to be aware that with Eqn (11.54),
the optimization is performed only for the distribution main, not the entire network.
With the Given. . Minimize block-approach, the diameters determined are based on
optimization of the entire network. For cases where the distribution main, because if
its larger diameter and/or length, is much more costly than the distribution branches,
there will be little difference between the results of the two approaches.

If the flow rates in each pipe segment in the distribution main are equal, the problem
becomes that studied in Section 11.5.1, where we considered the characteristics of
single, variable-diameter pipe. With constant ();;, our inspection of Eqn (11.54)
shows that it produces the same D;; for all i5. In fact, if Q;; = 2 L/s for all pipe
segments for the example considered in this section, Eqn (11.54) yields D;; = 1.79in.
for all ij. Thus, we conclude from this brief inspection that the minimal cost design
for the problem of series-connected pipes of possibly different diameters is, in fact,
a network of uniform diameter pipe. Of course, the designer may wish to vary the
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Branching flow 4-pipe problem: optimized trunk line by analytical method
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Figure 11.38 Page 1 of Mathcad worksheet for solution of vectorized

optimization of a multiple-branch network.
_withcost_vectorized_ver3.xmcd.

Worksheet BranchPipeExample_4pipe
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Solution for static pressure heads at junctions of all branches:
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Figure 11.40 Page 3 of Mathcad worksheet for solution of vectorized

optimization of a multiple-branch network. = Worksheet BranchPipeExample_4pipe
_withcost_vectorized_ver3.xmcd.
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pipe diameters to satisfy considerations other than cost (like too large a peak static
pressure) for a series-connected single-pipe network. A slightly different problem
is where we require a minimum static pressure head at each junction. Under some
conditions, and subject to this constraint, we note that a minimum cost solution does
indeed exist as illustrated in Section 11.5.3. This solution produces different D;; than
those from Eqn (11.54). No constraint on static pressure heads at the junctions was
made in the development of Eqn (11.54).

Unfortunately, there is no optimization formula, like Eqn (11.54), for a loop net-
work. Either the Given.. .Minimize block inMathcad can be used, as in the problem
of Section 11.7, or a “loop-cutting” approach as discussed in Swamee and Sharma
(2008) and Trifunovic (2006). The latter method is like that used in Section 11.7.2.1,
where we cut the loop into two parts and treat each part as the distribution main (a
“quasimain’) of a branching network. Equation (11.54) can the be used. Iteration, as
well as the choice of the larger of the two pipe diameters for the same pipe segments
that are common to more than one quasimain, are used. Generally, this solution is
carried out using large computer programs as discussed above.

In Section 11.6.6, we obtained an equation [Eqn (11.39)] that can be solved to find
optimal values for static pressure heads at the junctions of a multiple-branch network.
The principal difference between Eqn (11.39) and Eqn (11.54) is that solutions from
Eqn (11.39 reflect optimization of the entire branch network, including branches,
whereas Eqn (11.54) is based on only an optimal distribution main.

B.11.10 Optimization of 16-Node Multiple-Branch Network: Use of
Mathcad with Vectorization

Consider the 16-node branching network in Fig. 11.41. Modify the Mathcad
worksheet BranchPipeExample 4pipe withcost_vectorized ver3.xmcd
by including the data from Table 11.19. Calculate the theoretical pipe diame-
ters that minimize the cost of the distribution main part of this network. Report
all pipe diameters and the vector of static pressure heads at the junctions. Cal-
culate the cost of the distribution main and compare with the total pipe cost.
How confident are you that your diameter results optimize the overall network?
hge; = 8 m for this problem.

Follow the worksheet and the discussion in Section 11.8.3 to make the modifica-
tions to the worksheet. Make CTOL as large as 0.1 if needed and reduce in size to
0.001 as D, converges. The results for optimal pipe diameters, (Dot =) D
and Dy, appear in Table 11.20. Nominal sizes are selected next based on the theo-
retical diameters in this table. The static pressure head vector for the junctions in
the distribution main is h°Pt = [0 19.2 20.2 23.8 23.3 19.0 11.9 9.98 8.00] m.
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z Sourgre

Figure 11.41 Geometry for optimization of a 16-node multiple-branch network. Refer to
Table 11.19 for values of design parameters.

Table 11.19  Parameter Values for Optimization of a Multiple-Branch Network (See
Fig. 11.41)

Pipe SlleCI'ipt, Z] Lij (m) Q,‘j (L/S) Zi — %) = Azij (m) Ki]‘ (LS/D)ij
12 135 3.50 223 — 195 = 28 0 0
23 115 3.00 195 - 187 =8 0 0
34 110 2.75 187 — 177 =10 0 0
45 230 2.25 177 — 165 = 12 0 0
56 335 2.00 165 — 152 =13 0 0
67 415 1.50 152 — 140 = 12 0 0
78 210 1.25 140 - 133 =7 0 0
89 230 1.00 133 - 126 =7 0 0

2-10 128 0.50 195 —- 180 = 15 10 60
3-11 139 0.25 187 - 173 =14 10 60
4-12 118 0.50 177 — 165 =12 10 60
5-13 128 0.25 165 — 158 =7 10 60
6-14 439 0.50 152 — 141 =11 10 60
7-15 118 0.25 140 — 133 =7 10 60
8-16 698 0.25 143 — 120 = 23 10 60

Optimization of 16-Node Multiple-Branch Network (Cont’d)

Note that all of the components of this vector at interior branch nodes (the ones
calculated in this problem) are > hy.;. The cost for the distribution main is $3774,
~72% of the total pipe cost. With just 28% of the pipe cost not included in the
optimization calculations, we are confident that the network is nearly optimized
in an overall sense.
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Table 11.20 Results for Optimization of a Multiple-Branch Network

Pipe Subscriptij  D{f* (in.) | i D' (n) | i D' (n) | i DJP* (in)

12 1.96 56 1.67 2-10 0.760 6-14 1.013
23 1.88 67 1.54 3-11 0.597 7-15 0.696
34 1.83 78 1.46 4-12 0.739 8-16 0.842
45 1.73 89 1.37 5-13 0.608

11.9 MULTIPLE-PIPE NETWORKS WITH FORCED FLOW

It has been noted before in several places that the equations and methods of solution,
as well as the Mathcad worksheets, may be used for forced (i.e., pumped) flows in
addition to those that are gravity driven. In all cases, the only change that is needed is
in the energy equation for the first pipe segment. Instead of the atmospheric-pressure
source, where h; = 0, the actual nonzero value of h; = py/pgz; is entered. This is
a very simple change so no example is needed to illustrate it. However, the reader is
urged to modify any one of the Mathcad worksheets from this chapter in the above
manner to obtain results with forced flow at the source for comparison with that which
is solely gravity driven (see Exercise 51).

11.10 PERSPECTIVE: CONVENTIONAL APPROACH TO SOLVING
MULTIPLE-PIPE NETWORK PROBLEMS?!

To place the work from this chapter in perspective, we consider the conventional
formulation and solution of flow problems for multiple-path networks that might be
found in a fluid mechanics textbook. Obviously, the energy equation [Eqn (11.4)]
solved in the present work is also solved in the conventional approach. The major
difference between the two is the manner of the solution. It has been noted above
that if we are solving the energy equation for the flow rate, Q, or the flow speed,
4, the equation or system of equations is nonlinear because () or & appears in the
energy equation in a nonlinear way, (i.e., with an exponent of 2). The dependence
of the friction factor on Q) or % also contributes to the nonlinear nature of the energy
equation.

As we discussed in Chapter 4, nonlinear problems can generally be solved using
the method of iteration, referred to as Gauss-Seidel iteration (Gerald and Wheatley,
1999). In this method, the equations are written so that one dependent variable appears
alone on the left side of the equal sign for each equation, a different dependent variable
for each equation. All other variables and parameters in each equation are moved
to the right side of the equal sign. In cases where the dependent variable appears
more than once in a separable way in any equation, the most dominant of these is

31This section may be skipped if appropriate without loss of continuity.
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the one moved to the left side of the equal sign. Next, the values for the dependent
variables (that is, the solution) are guessed so that the expressions on the right side of
the equal sign for all equations may be numerically evaluated. This provides updated
estimates of the values for the dependent variables which, in turn, become improved
(in the sense that the values might be getting closer to the solution of the problem)
guesses. These are then substituted into the right sides of all equations again and the
calculation repeated. This “iterative” procedure continues until the value for each
dependent variable changes very little, usually to within a relative “tolerance” of 1%,
or less, of the value from the previous cycle of the procedure. The Hardy Cross or
Newton-Raphson methods are alternates to this, but still require iteration to solve.

Iteration is the conventional method of solution for multiple-path pipe flow prob-
lems and is often supplemented with a linearization technique called “Regula Falsi”
(Chapra and Canale, 2002). Almost every fluid mechanics textbook gives an exam-
ple of a two- or three-pipe parallel flow problem that iliustrates this method (Fox and
McDonald, 1992). A variation of this method is used by (Jordan Jr., 2004) to solve for
flow in multiple-pipe problems. Normally, the flow rate or flow speed in each branch
of the pipe is guessed, the friction factor calculated, and the energy and continuity
equations applied to obtained improved estimates of the flow rate or speed in each
branch. The procedure continues until flow rate or flow speed in each branch from
two consecutive iterations agree to within the tolerance specified by the designer. Pa-
per and pencil are the normal means of executing such iterative methods of solution,
though a computer program written in Excel or Mathcad could easily be used.

In the present work, the iterative procedure described here is replaced by the
Given...Find construct in Mathcad, which is a quick and efficient way for solving
individual or systems of nonlinear algebraic equations, including the ones that arise
in multiple-path fluid flow problems.

To illustrate this procedure, consider the example problem in Section 11.4 for
parallel flow in a three-pipe network. Recall that we wish to solve for the pipe
diameters D,, Dy, and D, in this problem for prescribed values of @, and Qp (Q.
is determined from these two and the continuity equation) and for arbitrary values
of po. Equation (11.7), solved in Mathcad above, is now rewritten for solution by
iteration as described in the above paragraphs. Obtain’?

%&)1/2 plo— CL,a(Da))]1/4

D, = ,  Pipea
= 2(p2 — pgAza) P
4Qs 1/2 p(Crp(Dp) — &) 1/4 .
= T T A Pipe b 11.56
Dy = ( - ) (s + poiz) 1%, ipe ( )
D, = (Mo BELADI = Dpss - pipe

™ 2(p2 + pglzc)
32Note that for diameters to be real and physical in Eqs (11.56), the base of each exponential term must
be positive. Since it was noted above that C, is greater than the order of one and « is of the order of one,
the equations for pipes b and c present no problem in this regard. For pipe a, this condition requires that
p2 — pglzq < 0 orthat pgAz, > po for areal solution for Dy, to exist. This provides an upper bound
for the value of pa.
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where the loss coefficients, Cp (D,), Cr5(Ds), and Cp (D.) are written with
their appropriate arguments to remind us that the C, depend on the respective pipe
diameters, which are the dependent variables in the problem [see Eqn (11.5)]. With
guessed values of D,, Dy, and D,, and a prescribed arbitrary value for p,, all of
the terms on the right side of Eqn (11.56) are calculable. This provides updated
values for D,, Dy, and D. which are then used as improved guesses. The iterative
procedure continues in this manner until D,, Dy, and D. no longer change with
further iterations. The solution is then said to be “converged” and the problem is
solved.

Of course, the static pressure at the junction, p, is unknown in the above procedure.
In nearly all instances, designers choose values for these static pressures based on
lower-bound values that were discussed in Section 11.4.2. Practitioners sometimes
refer to these as “tapping pressures.” For one reason or another, network optimization
using cost minimization as described in this chapter is seldom done for the scale of
gravity-driven water networks considered in this book. Cost minimization is clearly
desirable in and of itself, and the static pressure heads at all junctions in a multiple-pipe
network could be uniquely determined once cost minimization is performed.

11.11 CLOSURE

At this point, we can all imagine a big sigh of relief after diligently working though
some 90 pages of hydraulic analysis and design of multiple-pipe, gravity-driven water
networks. Depending on your understanding of the material and comfort with it, this
is quite an accomplishment. With a little practice, you should shortly begin to feel
confident about your abilities to carry out successful hydraulic designs for realistic
networks. If needed, review this chapter frequently, especially the examples, to
increase your understanding and comfort level. We are now finished with most of
the technical core of the book, so our hydraulic analysis and design toolbox is nearly
complete. Now is the time to work a few exercise problems in Chapter 16 to cement
and compliment your knowledge base.
Here are the takeaway concepts for this chapter beginning from textbox B.11.2.

o Although the focus of nearly all hydraulic analysis and design is on satisfying
the energy and continuity equations, the addition of the economic equation (i.e.,
total cost of the network) is critical to make the forward solution unique. This
means that minimizing the total network cost provides an additional equation
or set of equations that, when solved, gives the solutions for optimal static
pressure heads at all junctions of a multiple-pipe network. The reverse solution
is always unique since values for () and h at the junctions are the unknowns
(see footnote 10).

e With its Given...Find and Given. . .Minimize blocks and the ability to eas-
ily include the appropriate inequality constraints on static pressure heads at the
Jjunctions, Mathcad is a suitable platform for solving the nonlinear simulta-
neous equations that arise in small- and moderate-scale gravity-driven water
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networks. For large, complex networks having hundreds of nodes or more, and
without vectorization, the large execution times will make the use of Mathcad
prohibitive, however. Two alternatives are available in these cases:

1. Equation (11.54), which was developed based on the minimal cost of the
distribution main of a multiple-branch network. Recall that the solutions
from this equation do not reflect a minimal cost for the entire network,
just the distribution main.

2. Large, commercially available computer programs that are described in
Swamee and Sharma (2008) and Trifunovic (2006), including that from
Rossman (2000).

o Strategically placed throttling (or globe) valves in many of the segments, in-
cluding the branch segments, of multiple-branch and loop networks are crucial
to give the designer flexibility in balancing flows and, when closed, allow the
removal of pipe and components for maintenance and repair. For most net-
works, an open globe valve [of K = 10 or slightly less; see Eqn (2.11)] does
not measurably penalize performance so there is little or no disadvantage to
their strategic installation.

o Thoughhaving greaterreliability, loop networks are less common than multiple-
branch type because of their greater cost and complexity. The analysis and
design of loop networks is also more complex because of the need to solve
the continuity equation for each junction and loop equation, in addition to
the usual energy equation for each segment. The loop equation is an auxil-
iary equation unique to a loop network and comes from the requirement that
the change in pressure due to friction from node-to-node around a closed loop
must sum to zero. Because of large execution times in Mathcad using the usual
Given...Find and Given.. .Minimize blocks, for small- and moderate-scale
loop networks we recommend a simple trial-and-error approach to solve for
the optimal static pressure heads at the junctions.

o It is worthwhile to keep in mind that it is almost never necessary to start a
worksheet in Mathcad from scratch. Always modify an existing worksheet
that already successfully performs calculations similar, or identical, to those
you are attempting.

o The experienced Mathcad user will probably quickly tire of entering redun-
dant equations in a worksheet for each leg of large networks. Vectoriza-
tion, as explored in Section 11.8, can be used with the Given...Find and
Given.. .Minimize blocks to greatly reduce the time to set up a worksheet for
a given problem. For details on how to do this, see the vector structure in work-
sheet BranchPipeExample_4pipe_withcost_vectorized_ ver3.xmcd.

As noted above, all of the material in this chapter, and most in the others, is unique
to gravity-driven water flow only because we have an atmospheric reservoir at the
source in all of our problems. That is, all of the formulas, equations, assumptions,
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methods of solution, interpretations of results, and other characteristics the problems
that we have covered may be applied to forced-flow (that is, pump-driven) simply by
setting h; to the nonzero value appropriate to the forced-flow problem.

The next step is to move forward into the design and engineering phase. We will
do this after covering a brief chapter on the interesting topic of microhydroelectric
power production, which is a close companion to gravity-driven water supply.
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CHAPTER 12

MICROHYDROELECTRIC POWER
GENERATION

“It’s Simple, but not Easy.”
—John C. Bogle, Founder of The Vanguard Group, Inc., 2009

12.1 BACKGROUND

Microhydroelectric power generation has been used in developing regions for many
years. Installed in remote areas, and not connected to a larger electrical power grid,
these are classified as micro because they range from ~10-200 kW (Anon., 2007).
This is contrasted with large power plants of the order of megawatts (thousands of
kW) that are connected to a central electrical power grid for distribution over large
areas. Many microhydroelectric power plants in the Philippines and the Pacific Rim,
Central Asia, Africa, and Central America have been build in the recent past.
Hydroelectric power generation works by converting the potential energy of a mass
of water to electrical energy. Actually, there are three steps to this process. First, the
potential energy in the water is converted to kinetic and pressure energy (if the flow is
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in a closed pipe) by reducing its elevation.! The conduit that carries water in this step
is called a penstock. Next, this energy is converted to mechanical energy in a turbine.
Finally, the mechanical energy is used to rotate the shaft of an electrical generator to
produce electricity. In some applications, hydropower is used to drive a mechanical
process, such as grinding of grain, in which case the final step is obviously not used.

It can be argued that a gravity-driven water network and hydroelectric power
are highly complementary. The former requires dissipation of energy in pipes and
valves and the latter is a dissipator of this energy where the result is useful electric
power; that is, energy from the source in a gravity-driven water network could be
dissipated in a productive manner. It appears, however, that the two are seldom
coupled. There are several likely reasons for this. Among them is that water flow
rates required for electrical power are generally very much larger than what might
be supplied by a spring delivering an acceptable flow of fresh water to a community.
A subset of this is that a water storage tank is not used in a microhydroelectric plant
(see Section 12.2), but is almost always needed for a clean-water network. Another
reason that microhydroelectric and water-supply networks are seldom coupled could
include water quality requirements that are significantly higher for a potable water
system. There also may be the lack of simultaneous need for both water and power in
a given community, or there is a strong community focus on either one or the other,
not both.

From a community standpoint, electrification creates opportunities for growth of
new businesses and population, increasing the quality of life for many. The author
has witnessed this in travels to Nicaragua. In one case, a milk-processing plant was
built in rural Waslala that collected milk from farms in the surrounding communities.
The facility had installed several electric-powered chillers to cool the milk to several
degrees above freezing for transport to a pasteurization plant in Matagalpa, ~4 h away
by a tortuous road. The initially cool temperatures allowed the milk to arrive at its
destination unspoiled. The benefit of electrification was not only to the many end-
users of the product, but also the plant owners and their families and the many who
supplied the milk to the plant at a greatly reduced cost compared to that if they were
to transport raw milk to Matagalpa themselves.

12.2 THE SYSTEM

As shown in the schematic of Fig. 12.1, the microhydroelectric power generation
system consists of a device for diverting flow from a river, a settling basin, pipe (the
penstock) that conducts water from the source to a turbine, and turbine discharge.
The turbine is normally connected through a transmission (consisting of a belt or gear
drive) to an electrical generator. From this point, the electric power passes through
an electrical or electronic circuit that attempts to match the power output from the

10f course, the relatively high elevation of water at the source is achieved by solar evaporation of the earth’s
surface water and the deposit of it at high elevations through precipitation. We see that hydroelectric power
is simply another form of solar power.
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(Turbine & Generator)

Figure 12.1 Run-of-river  hydroelectric ~ schematic. Available  from
http://practicalaction.org/energy/micro _hydro (with permission).

turbine (and proportionally, the power input to the turbine from the water flow) to the
electrical demand (or load). If required for power transmission over large distances,
a transformer is used to increase the voltage, otherwise the voltage output from the
generator is distributed to the community through overhead transmission lines.

The flow diversion device is a characteristic of a so-called “run-of-river” system,
where water flow through the turbine comes directly from the river. This means there
is no dam or storage tank and, consequently, reduced costs. The run-of-river system
is contrasted with a gravity-driven water network where there is almost always the
need for a storage tank because of the mismatch in water supply and demand.

The turbine is classified as an “impulse” or “reaction” type. In an impulse turbine,
a cylindrical or planar jet of water impacts a “bucket” or “blade” attached to the wheel
that rotates a shaft that is connected to the generator. Atmospheric pressure surrounds
this entire process so that the electrical power comes from the change of momentum,
or impulse, of the water when striking the wheel. The most common forms of an
impulse turbine are the Pelton (Lester A. Pelton, 1829-1908) and Cross-flow types.
In a Pelton turbine, a single or multiple cylindrical jets of water are used to drive
the device. The rotor assembly of a Pelton turbine is shown in Fig. 12.2 (Wikipedia,
2009a). The bucket assembly of a smaller Pelton wheel is shown in Fig. 12.3, where
the nozzle that passes the single cylindrical water jet is visible at the bottom. The fact
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Figure 12.2 Old Pelton wheel from Walchensee Power Plant, Germany.

that all impulse turbines, including the Pelton one, operate at atmospheric pressure
means there is no pressure casing required for this type. Pressure vessels or casings
are normally expensive to purchase and operate since maintenance must be performed
to assure their leak tightness. As indicated by Harvey et al. (2008) impulse turbines
are better suited to large elevation heads than reaction types.

Reaction turbines, which are designed for higher flow rates and lower heads, oper-
ate in the manner of a centrifugal pump run in reverse. Reaction turbines are enclosed
in a pressure vessel because of the large change in static pressure across the turbine
blades. The high flow rate and large change in static pressure is the source of power
in this type. Like the centrifugal pump, reaction turbines fall into two classes. This
includes radial flow, where the motion of water is primarily in the radial direction
when acting on the turbine blades. In an axial-flow turbine, the flow passes through
the unit parallel to the turbine rotating axis. The axial-flow water turbine is similar
to the gas-turbine jet engine on the wing of a commercial aircraft, except there is no
combustion of an expanding gas to drive the turbine.

A cross-flow turbine is similar to a Pelton-type in that it operates immersed in
atmospheric pressure, but it is not bucket-like. Instead, it resembles a squirrel cage
[Fig. 12.4, Wikipedia (2009b)]. A planar jet of water is directed onto the blades of
the rotor to produce the impulse needed to drive the generator. The roundness of
the rotor requires that the water jet impinges on the rotor blades twice, once when
entering it and once when leaving. The first impingement is clearly more powerful
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Figure 12.3  Buckets from Pelton wheel in Nicaragua. A 6-in.-long (15 cm) pencil appears
for the purpose of scale. The nozzle and “spear” valve appear in the lower part of this figure.

distributor

runner

blades

water flow

Figure 12.4 Schematic of a cross-flow turbine.

than the second, but the latter adds to the performance, increasing it perhaps by ~30%.
As discussed in Harvey et al. (2008) cross-flow turbines are preferred in low-head,
high-flow-rate designs over the Pelton type.

When designing a gravity-driven water network, it would seem intuitive to attempt
capture whatever energy remains in the flow after it is delivered to the end use.
However, as noted in Section 12.1, in many instances this does not happen. Costs are
a major consideration including those for the turbine and generator, as well as that for
the larger pipe sizes normally needed to transport the larger water flow rates needed
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for hydroelectric power production. Where the turbine and generator are purchased
from commercial vendors, the costs are relatively large. For example, as of this
writing one of the smallest available turbines costs ~$1500 without the generator;
perhaps about a quarter of the cost of the water network itself. For this reason, using
commercial turbine-generators may not be practical in cases where the focus is on
providing clean water, not electrical power. There are many references in the literature
on user-constructed turbines (Harvey et al., 2008; Fraenkel et al., 1991; Anon., 2007,
Opdenbosch, 2009) and relatively inexpensive options like automobile generators
and alternators (Smith, 1994) that can lower these costs considerably. Depending
on the financial resources available for a design, elevation head, water flow rates,
and other factors, the designer may wish to consider a user-constructed turbine in
the microhydroelectric power system in conjunction with the gravity-driven water
network. See Section 12.5 for further discussion on this topic.

12.3 APPROACH

Two levels of analysis and design will be considered in this chapter. The first is at the
system level (the energy equation applied to the turbine as a work engine), and the
second at the detail level (fluid flow in the nozzle, torque and power to the rotor, etc.)
The treatment of the latter will not be broad nor deep and will be discussed where
relevant in the treatment of the much-broader system-level analysis and design, and
briefly as applied to the power production in a Pelton turbine. The interested reader is
referred to references, such as Harvey et al. (2008), a source book that has considerable
breadth and, in specific areas, depth and textbooks on fluid mechanics and machinery
for depth in the component areas (Smits, 2000; White, 1999; Streeter et al., 1998;
Munson et al., 1994).

Two different approaches can be taken in the design of a microhydroelectric power
plant. The first is by specifying the volume flow rate of water (referred to as a “flow-
driven” design). Together with the elevation head, penstock diameter, and a few
other characteristics, we can calculate the power production from the developments
below. The second is a “demand-driven” design. In this case, the electrical demand is
specified and, knowing that the demand and supply of electrical power must be equal,
the design calculations determine the volume flow rate of water needed to supply this
power. We will discuss both approaches in Section 12.4.1.

12.4 ANALYSIS

12.4.1 Hydraulic System Model

The focus in this section is to develop a mathematical model for the electrical power
produced by a water-powered turbine-generator. First, we consider the energy equa-
tion, Eqn (2.2) written for the single-pipe network geometry of Fig. 12.5, where the
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Figure 12.5 Microhydroelectric power plant geometry.

work term is retained? to account for the work extracted from the system to be used
for electrical power production. Equation (2.2) is rewritten here for convenience,

L p2 | W L

(= +a1— 4+ g21) — (= + a2—= + gz2)| = Wy + mHL

p 2 p 2

where the subscript th on the work term w indicates the theoretical rate of work
done. The theoretical work is distinguished from the actual rate of work, w,, through
efficiencies for the turbine and generator.’ Efficiencies are parameters that have
values of one or less (normally < 1) that characterize the overall performance of a
component at a fine level of detail. The level of detail is so fine that we do not, or
cannot, produce a mathematical model of it with certainty. The values for efficiency
are normally determined by laboratory experiments or field tests. An equation for the
actual work will be developed below.

If 2 is measured from the location of the turbine, zo = 0. We will neglect the
normally small energy change associated with the velocity head, a2%3/2g, and minor
losses. These could be included by using an equivalent length, L., instead of the
physical length, L (see Section 12.4.2). WithEqn (2.4), and 7h = pQ from Eqn (2.24),
Eqn (2.2) can be rewritten as

L =2 =2
thn = pgQlar — Sz, D) 1 2] = p9QLIT — £z, D)y 5] (12D

2There was no work done or extracted when we applied the energy equation to a pipe flow for water-delivery
networks.
3Other inefficiencies exist. See textbox B.12.1.
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The second term in the square braces is the head loss from the Darcy—Weisbach
equation, whereas the first term is the hydraulic gradient, S (upper-case S). Thus,

B Az oz
L L
Previously, we have seen S written two different ways. Where multiple-pipe networks

were considered (chapters 9 and 11), the hydraulic gradient was written with primitive
parameters as

S (12.2)

S = # (12.3)

where Az = 21 — 29, Ah = hy — hg, and points 1 and 2 are at the inlet and outlet of a
pipe segment, respectively. For the current problem, z; and Ah are zero (Fig. 12.5).

In chapters that dealt with single-pipe networks (2, 5, 7, 8, and 9), and with
Eqn (2.39), the hydraulic gradient has appeared as

Az + Ah Zl(l—hg/zl) S(l—F)
= 17 = I = iy (12.4)
where s is the mean slope (lower-case s), A is the tortuosity of the penstock pipe,
and F is the ratio of the static pressure head at the turbine outlet to the elevation of
the reservoir or stream. Recall that s < 0.5 (mean slope of 27° or smaller) must be
satisfied for validity of this representation of the hydraulic gradient; this is normally
not an issue. If using representation Eqn (12.4), s and A would be specified by the
designer of the hydroelectric power system. ' = 0 for this application.

With either of these representations, and the continuity equation [Eqn (2.21)],
Eqn (12.1) becomes,

S

2
i = pQLIS - £(Q, D)5 2] (125)
Note that for the energy equation for pipe flow [without a turbine; Eqn (2.45)], the term
in square braces in Eqn (12.5) is identically zero indicating that all potential energy in
the network is dissipated in losses (major and minor). In the present case, the term in
square braces should be a positive nonzero value proportional to the theoretical work
done by the turbine.

Our inspection of the energy equation for a turbine, Eqn (12.5), shows that .
depends on @, L, S, and D. We wish to simplify this to provide insight. Define a
“volume flow rate scale,” ()4, where (), is the flow rate that is produced in a pipe
(with no turbine installed) of prescribed diameter, D, given the hydraulic gradient,
S, for the microhydroelectric system. Thus, (). is from the solution to Eqn (2.45),

8%

S = 307Dsc
F(@ue Do) B

(12.6)

The diameter Dy, is arbitrarily assigned, but a reasonable choice that is in scale with
the size of hydroelectric plants under consideration in this section is 6 in. The choice
of D;. has no effect on the equation for the power generation that we seek.
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Using Eqn (12.6) to eliminate 8/72¢ in Eqn (12.5), the energy equation for the
theoretical power of a turbine becomes,

Wip Q f(@,D)D> Q@ .,
—_— ]l - 12.7
wth,sc Qsc [ f(Qsc’ Dsc)/Dgc (Qsc) ] ( )
where Wi sc is*
‘ wih,sc = ngscLSI (12.8)

The ratio of the theoretical turbine power, wy, = W (Q, D, S, L), to tin sc =
Weh,se(S, L) from Eqn (12.7) is presented in Fig. 12.6 for nominal IPS sch. 40 smooth
pipe sizes of 3, 4, 5, and 6 in. The value for Dy, is arbitrarily set to 6 in. for this
figure and S = 1.5 Even a cursory inspection of Fig. 12.6 reveals a competition that
was introduced and discussed in Chapter 10. In the present case, 1, competes with
frictional losses in the pipe. At small values of Q)/Q)s., Fig. 12.6 shows that little
power is produced. This is attributed to the first QQ/Qs. term on the right side of
Eqn (12.7). At large values of Q}/Q)s., the turbine power decreases with increasing
@ because of large frictional losses in the penstock pipe. This trend is caused by
the effect of the second term in square braces in Eqn (12.7), which is attributable to
friction. In fact, at the highest flow rates for each curve in Fig. 12.6, all power is
dissipated in pipe friction (this is Natural flow, see Section 2.6.2). Between these
extremes, there exists an optimal point in @, for all D, which represents a perfect
balance between power production and production of internal energy due to friction.
Optimal (i.e., maximal) Wy, occurs at Q°P* for any D.

In addition to the extremum behavior evident in Fig. 12.6, note that the peak power
increases with increasing D. This effect exhibits no optimal character.

A plot of the locus of all optimum points from Fig. 12.6 appears in Fig. 12.7 for a
range of S typical of microhydroelectric power plants. It is clear that Q°P! increases
with increasesin D and S as more cross-sectional area for water flow is made available
with the larger pipe sizes and as more energy becomes available as manifested by an
increase in S. The latter can be explained in one of two ways. More energy becomes
available due to an increase in mean slope of a fixed pipe length and constant A [see
Eqn (12.4)], or an increase in elevation head per unit of pipe length {see Eqn (12.3)].

Two companion plots for Fig. 12.6 are presented in Figs. 12.8-12.9. We see from
Fig. 12.8 that the theoretical power scale for S = 0.1 ranges from 10 to > 100 kW.
Figure 12.9 shows that the volume flow rate required to produce this power is~90 L/s.
From Fig. 12.6, the optimal pipe size for this flow rate is just under 8 in. inside
diameter (ID). All of the figures under discussion in this section were produced
assuming smooth pipe.

“The term t;p, s i the theoretical power scale; the power produced by a lossless system. For example,
for Qsc =100L/s and LS = Az = 100 m of elevation head, 15, s = 100 kW to within 2%.

SHere, S is merely a scale factor since it affects only the volume flow rate scale of Qs¢. The shapes of the
curves in Fig. 12.6 remain unchanged for all values of S.
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The results in Fig. 12.7 can be fit to the following function®:

Q°P* = 1.511 L/s - 5‘1/7([)2)19/7 (12.9)
where D, is a unit diameter of 1 in. Equation (12.9) is valid for smooth pipe where
the flow is turbulent’.

It is interesting to note that if we maximize ., by taking the () derivative of
Egn (12.5) subject to constant f(Q, D) = f, setting this result equal to zero, and
solving for Q°P¢, obtain

0.116L/s 1/, D 150
Do g2 2
4i ‘5.

Dy

For example, for f = 0.01, 0.116/,/f = 1.16. This coefficient is considerably
different from 1.511 in Egn (12.9), but the exponents for S (0.571 versus 0.500) and
D (2.714 versus 2.500) are in general range of each other. However, the numerical
results from Egs (12.9) and (12.10) differ greatly, in many cases 40% or more. This
underscores the magnitude of importance of the effect of flow dependence on f.

For a flow-driven design, it is always desirable to calculate D from designer-
prescribed @ rather than the inverse as given by Eqn (12.9). By taking Q@ = Q°P* and
inverting Eqn (12.9), for smooth pipe, we get

QoPt = (12.10)

D°P! = 0.8589 in. - 5_4/19(Q_)7/19 (12.11)

Qu

where 0, is a unit flow rate of 1 L/s. For a given value of S, D°P" is such that
Q°P* matches the prescribed flow rate (Q for the problem, thus ensuring an optimal
operating point for the turbine. The usual procedure of choosing a nominal pipe size
having a slightly larger inside diameter than D°P* applies here.
Similar correlations for GI pipe, of roughness 100-times larger than that for smooth
pipe, are
D

QP =1.248 L/s - S°~54°(b—)2~628 (12.12)
and
D°Pt = 0.9192 in. - 5—0'205“(3)0'3805 (12.13)

5While a curve fit will give correct results, it is not necessary. By substituting the Blasius formula for
F(Q, D) in Eqn (12.5), taking the first derivative of 1), with respect @), and setting this result equal to
zero, we can solve for Q@ = Q°P* and write it as Eqn (12.9). The coefficient and exponents in Eqn (12.9)
are thus determined analytically not through curve fitting. This is why the exponents appear in terms of
rational numbers, not decimals, in the referenced equation.

7The exponents in Eqn (12.9) are identical with those of Eqn (9.4) (for flow in a pipe with no turbine) but
the coefficients are different. D from Eqn (12.9) produces a pipe cross-sectional area about 53% larger
than that for flow in a pipe with no turbine. The additional flow area reduces frictional loss so that work
can be performed in the turbine.
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The accuracy of Eqs (12.12) and (12.13) is 5% or less forat least 3in. < D < 16in.
and 0.003 < S < 0.3. If better estimates of Q°P* or D°P! are required, the reader
is referred to the Mathcad worksheet below where Q°P* and D°P* are determined by
accurate numerical differentiation of the theoretical turbine power.

It is of interest to investigate the fraction of available power at the source that is
converted to work in the turbine, 7,y,, at the optimal operating point for the system.
Taking the ratio of Eqn (12.5) to the power at the source, pgQLS = pgQAz, we get

8Q?

Toys = 1 — f(Q,Dom)W (12.14)

where DPt = D°P*(Q, S) is from Eqn (12.11) or (12.13). The power converted in
the turbine includes the useful power output from it, as well as windage, and losses
in the nozzle and bearings (see Section 12.4.4). A plot of Eqn (12.14) appears in
Fig. 12.10 for smooth pipe. The system efficiency curves are relatively flat at ~65%
for a broad range of flow rates and .S values. Thus, at the optimal points in Fig. 12.6,
nearly 2/3 of the available potential energy is theoretically converted into useful work
by the flow @ [consistent with Daugherty et al. (1985)]. The rest is dissipated in
friction in the penstock pipe. Including turbine, generator, and other efficiencies will
reduce the value to less than this. The usual practice of choosing a pipe size larger
than D°P* will increase the above fraction. For smooth pipe, if D is selected 20%
larger than D°Pt (D = 1.2D°PY), the system efficiency increases to~85% and to~90%
for D = 1.3D°P? [consistent with Harvey et al. (2008)].

For GI pipe, there is a much larger range of system efficiencies for different values
of § (Fig. 12.11) compared with smooth pipe. However, for the range of .S considered
in this figure, the average fraction of available power at the source that is converted
to useful power in the turbine is still ~2/3.

Turbine efficiencies, 7;, range from 65% to >80%. Harvey et al. (2008) recom-
mends the low end of this range for locally made cross-flow turbines, and 75% for
Pelton types, although Opdenbosch (2009) cites much larger total (turbine and gen-
erator) efficiencies of 85% and higher. In the absence of test data for the particular
turbine-generator set of interest, turbine efficiencies of 70-75% are conservative, will
not over-extend the design, and are thus recommended.

Generator efficiencies, 74, can be larger than 7. In fact, commercial generators
are almost always more efficient than turbines. Harvey et al. (2008) notes values near
85%. However, informatijon available on the world wide web from manufacturers
and vendors supports values higher than this, perhaps as large as 91% for generator
powers as low as 25 kW and upward of 95% for larger units (Stamford Power Systems
Ltd., 2006).

The final expression for the electrical power output, or actual rate of work, from
the microhydroelectric turbine-generator is from Eqn (12.5) which, when the above
efficiencies are included, becomes

We = Ty Ng Wik (12.15)
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or,

2
wa(QvD’SvL):ntngngL[S_f(QvD)W_SZQ'I)'g] (12.16)

where the functional dependence of 1), is included.
The above equations are solved in a Mathcad worksheet supplied with this book.
See textbox B.12.1 for details.

B.12.1 Microhydroelectric Turbine: Flow-Driven Example

A community is considering the merits of installing a microhydroelectric power
plant. The community engineer has determined the need for 65 kW(e) (electrical
power) based on the current and future population and their needs. These include
the growth of several small industries, one of which produces clay filters for
household water purification. The elevation head from a stream located 1050 m
(the run of the penstock) from the planned location of the turbine is 80 m and
flow measurements taken there indicate that ~230 L/s can be diverted to produce
power. Determine the plan’s feasibility and recommend alternatives if the design
conditions cannot meet the power demand.

The Mathcad worksheet microhydro_theoretical_power.xmcd is used to
evaluate Eqn (12.16) to predict the actual electrical power that can be produced
for the prescribed design conditions. The calculations are as follows.

The hydraulic gradient is from Eqn (12.3),

Az 80 m
= — = = 0.07619
L 1050 m

We will first consider the use of PVC pipe since it is less expensive and easier to
install than GI. From Table 3.3, the pressure rating of large-diameter sch. 40 PVC
pipe is greater than the elevation head of 85 m so sch. 40 PVC pipe is acceptable
pressure wise.

The optimal pipe size, subject to the design value of @ = Q°P* = 230 L/s in the
penstock is from Eqn (12.11),

D°Pt = (.8589in. - 5—4/19(5)7/19

u

0.8589 in. - 0.076197%/19. 2307/19 = 10.96 in. ~ 11 in.

I
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Flow-Driven Example (Cont’d)

For sch. 40 IPS pipe, the ID is within 1% of the nominal size for nominal size
of 4 in. and larger (Table 3.1). Thus, because 11-in. pipe is unavailable (see
Chapter 3), we choose nominal 12-in. sch. 40 PVC pipe. The flow speed is
3.15 m/s, sightly above the maximum recommended of 3 m/s when considering
abrasion. This value is close enough to 3 m/s, that abrasion should not be an
issue.

The energy equation for the actual turbine power output is Eqn (12.16),

. 8Q?
We = Mg g Q L[S — f(Q7D)W]

Let us assume 7, = 0.75 and 3 = 0.85. With f(Q, D) = 0.0126 from the
Mathcad worksheet (or Fig. 2.4), obtain,

Wy = 0.75-0.85-999.7 kg/m® - 9.807 m/s” - 230 x 107> m®/s - 1050 m
8- (230 x 1072 m3/s)?

[0.0762 — 0.0126 5
w2 -9.807 m/s” - (12/39.372 m)

-] = 83.3kW

Since 83.3 > 65 kW as required by the community, we conclude the above
design specifications will meet the electrical power demand. However, there are
other inefficiencies in the system for which we need to account, mostly on the
electrical side. Among these are transformer and power transmission losses that
together will reduce the power output by ~15%.

If D were exactly equal to D°P! of 10.96 in., reducing or increasing ) from the
prescribed value of 230 L/s will reduce power output from the turbine. Note that
this is not the same effect as increasing D. As seen in Fig. 12.6, the peak power
will always increase with increasing D. This effect exhibits no optimal character.
Also note that 77; may be affected by changes in @ and S.

The pressure rating for 12-in. sch. 40 PVC pipe of 130 psig (91.4 m of water
head) is from Table 3.3. This is greater than the elevation head of 85 m, 12-in.
sch. 40 PVC pipe is acceptable.

If GI instead of PVC pipe were selected, D°P* = 12.3 in, subject to the design
value of @ = Q°P* = 230 L/s from Egn (12.13). With 12-in. nominal pipe, the
electrical power generation falls to 71.4 kW, due to more friction in the GI pipe
compared with PVC (see Exercise 55).

For a demand-driven design, the final expression for the electrical power output
from the generator is the same as Eqn (12.16) with D replaced by D°P? from either
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Eqn (12.11) (for smooth pipe) or Eqn (12.13) (for GI pipe). Thus,

8Q*
2g(D

wd(Q7 S7L) =T 77g ngL[S - f(Q7 DOPt)

where wq = W, is power demand. Note that diameter dependence has disappeared in
Eqn (12.17) since D = D°P! depends only on @ and S. Once the designer specifies a
value for w4, Eqn (12.17) can be solved for () to produce this power subject to given
S and L. A root-finder in Mathcad is needed to solve Eqn (12.17) because () appears
nonlinearly. Once () is obtained, the designer is free to explore the sensitivity of @
to arange of actual D that is not optimal.

(12.17)

B.12.2 Microhydroelectric Turbine: Demand-Driven Example

Calculate the volume flow rate needed to produce 120 kW(e) for an elevation
head of 105 m and penstock length of 1750 m. Neglect minor losses for now, and
assume 7; = 0.80 and 1, = 0.90. Choose sch. 40 PVC pipe.

The hydraulic gradient is from Eqn (12.3).

Az 105m
= = Trsom 2060

The energy equation written for demand-driven design is Eqn (12.17).

opt 8Q2
™ Mg pg QLIS — f(Q,D )W],

0.80 - 0.90 - 999.7 kg/m® - 9.807 m/s - Q - 1750 m - [0.060

— opt 8Q2
f(QaD P )7[_2 . 9807 m/52 . (DOPt)S]

Uy

Il

where 1y = 120 kW and D°P is from Eqn (12.11). Using root in Mathcad,
we solve this equation to get Q = 247.5 L/s and D°P* = 12.4 in. for this value
of (). Once these are calculated, the designer has a baseline to explore the choice
of different () and D on the performance of the system. If the stream can supply
247.5 L/s and this is acceptable to the community at large, the design is feasible.

12.4.2 Minor Loss Considerations

Minor losses were neglected for convenience in the above developments. This effect
could be included in the appropriate equations by adding the equivalent lengths of
all of the minor-loss elements to the actual pipe length, L, in the calculation of the

hydraulic gradient (only). This reduces the hydraulic gradient, .S, and performance
of the system because less energy is supplied to the turbine.
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The large scale of the run of the penstock pipe and good planning in the field will
reduce the need for most serious minor-loss elements like 90° elbows. Table 2.1
shows the equivalent length for each 90° elbow is 30. Ten elbows in a 12-in. pipe of
length 1000 m adds~91 mto L, reducing S by ~9%. This effect is halved if 45° elbows
are used. Turbine performance is impacted by roughly the same amount as Eqs (12.7)
and (12.8) show that actual turbine power decreases nearly in direct proportion to .S.
For PVC pipe, long runs of pipe may be able to bend to conform to the contour of the
land, provided the diameter is not too large. Clearly, this is less likely with GI pipe
not only because of the stiffer pipe material, but also because large bending stresses
on threaded joints will reduce the integrity of the pipeline.

From Table 2.1 note that couplings and gate valves (used for on—off only, not
throttling) negligibly contribute to the minor loss.

B.12.3 The Effect of Minor Losses

In textbox B.12.1, the penstock is known to have 18-45° elbows, 175 couplings,
and a globe valve for flow control. Calculate the reduction in electrical power
output from the system if minor losses are included.

The equivalent length, L./ D, for a 45° elbow is 16 (Table 2.1). Assuming the
globe valve to be open and for 12-in. pipe, Eqn (2.11) gives K = 4.48. Since
the friction factor, f, for the penstock is 0.0126, the equivalent L. /D for a globe
valve is from K = fL./D or L./D = 356. The minor loss for each coupling
is small, but there are many of them. Account for this uncertainty by increasing
the number of 45° elbows to 20. The total L./D is

Le

— =20-16+356=6

D + 76
For 12-in. pipe, the minor losses add (676 - 12/39.372 m =)206 m to the
physical length of the penstock in the calculation of the hydraulic gradient only.
The hydraulic gradient becomes,

80 m

S = 1050m 7 206 m

= 0.0637

This is 16% less than for the minor-lossless design. The optimal pipe diameter
is calculated from Eqn (12.11) as D°P* = 11.37 in., so 12-in. sch. 40 PVC
pipe is chosen as it was for the minor-lossless design. From the Mathcad work-
sheet microhydro_theoretical power.xmcd, the electrical power output is
64.2 kW,~19 kW less than the textbox B.12.1 example. Conclude that this design
will not meet the electrical power demand with the above minor losses. Minor
losses must be reduced or other parts of the design changed (such as increasing
the head or penstock diameter) to increase power output.




ANALYSIS

333

Design Point 2 PRE AR [ —— 5—inch Nominal IPS
0.35 . T = = B-inch Nominal IPS | |
P | A |

’ | by
0.3 |
z'l i s . Off-Optimal
4 | ) Point 1
v Off-Optimal
E’ Design Point 1 ' Point 2
lgﬂ ;[;
= \
L
1}
i
'
]
A
i
Q o |
i Gin |
0 10 20 30 40 50 60 70 80 0
Q({1/s)
Figure 12.12 Power versus volume flow rate; off-optimal conditions.
12.4.3 Sensitivity to Off-Optimal Conditions

In Section 12.4.1, we saw the optimal character of the theoretical power done by the
turbine as affected by the volume flow rate. We explore this more fully with a simple
example. Suppose a small community wishes to install a microhydroelectric power
plant of the order of 15-20 kW. They have available a water supply of @ = 40 L/s or
more with a head that will produce a hydraulic gradient of S = 0.10. The elevation
head is small enough that pressure considerations allow the use of PVC pipe. The
optimal pipe size for this design is from Eqn (12.11),

Dt = 0.8589 in. - 0.107%/19 . 407/1° = 5.42 in. (12.18)

We will choose 6-in. nominal sch. 40 pipe for the penstock that has an ID of D =
6.065 in; slightly larger than D°P?. One of the members of the Community Engineer’s
Office suggests that a 5-in. (nom.) pipe should be selected, which the community has
available for purchase, to save resources. In addition, this member also suggests the
likelihood of increasing power from the plant by increasing water flow rate at some
time in the future. What should the response to these questions be?

A plot of the relative power from the turbine [Eqn (12.7)] is shown in Fig. 12.12
for this example where two power curves appear, one each for the 5 and 6-in. pipes.
The two design points identified in Fig. 12.12 fall along a line of constant ) = 40 L/s.
Design Point 1 intersects with the power curve for the 5-in. pipe and gives a relative
power value of ~0.20. The relative power value for Design Point 2, which intersects
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the 6-in. power curve, is ~0.35. Thus, we see that we can achieve a 75% increase
in power output by choosing a 6-in. penstock instead of 5-in. This should be very
convincing even for the most skeptical members of the Engineer’s Office!

In addition to this immediate increase in power with the choosing of 6-in. pipe, if
the flow rate is increased in the future, power production will decrease with an increase
in flow for the 5-in. candidate, whereas for the 6-in. penstock, it will increase.

The issue of increasing flow rate is addressed by the remaining vertical lines and
the off-optimal points in Fig. 12.12. The optimal flow rates for the two pipe candidates
are Q2" and QZF’, from Eqn (12.11), are ~31 L/s and 50 L/s, respectively. If the
current design flow rate of 40 L/s is increased, the power will increase as Design Point
2 moves to the right toward the peak of the power curve for the 6-in. pipe; up to a
relative power value of ~0.37 at which ) = 50 L/s. Increasing the flow rate greater
than this will reduce the power. In fact, the power output is the same for the design
flow rate of 40 L/s (Design Point 1) and 61 L/s (Off-Optimal Point 1), more than a
50% increase in flow. Further flow rate increases continue to reduce power output as
an increasing fraction of the available potential energy of the system is dissipated in
pipe friction. It is very interesting to see that if () ~ 77 L/s, the power produced by
the plant would be the same as operating the system at 40 L/s with the smaller 5-in.
penstock pipe (Off-Optimal Point 2).

Of course, if there really is an interest in the larger flow rates of the scale at the
Off-Optimal Points, the engineer will want to consider a larger pipe size at the outset.
This would produce a third power curve in Fig. 12.12 that will fall above and to the
right of that for the 6-in. candidate.

12.4.4 Component Models

The turbine efficiency discussed in Section 12.4.1 includes the complex fluid me-
chanics when a water jet at high speed contacts a bucket of a turbine, such as that
for a Pelton wheel (see Fig. 12.3). The parameters needed to describe the power
produced by this interaction are shown in Fig. 12.13. Water flow from the penstock
enters the turbine and is immediately accelerated in a converging nozzle as shown.
The jet from the nozzle impacts the bucket imparting some momentum to it, and the
bucket “pushes back” in a sense that accelerates the flow backward in the direction
from which it came. If it were possible for the water to deflect an angle 3 = 180°, the
flow would lose an amount of momentum equal to pV;? to decelerate it to zero speed
at the surface of the bucket, and another pV to accelerate it to V; in the opposite
direction.® This is the “impulse” that drives a Pelton turbine. The relative velocity
between the incoming jet at V7 and the tangential speed of the wheel, wr, gives rise to
a torque acting at the wheel’s center.” We have (Smits, 2000; White, 1999; Streeter

8This description is based on an observer fixed at the surface of the bucket.
9The symbols in this section are used only in their contexts in this section; as such, they do not appear in
the Nomenclature and, where possibly used in other parts of this book, will have different meanings.
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Water Jet

Figure 12.13  Parameters to describe torque and power for a Pelton water turbine.

et al., 1998; Munson et al., 1994),

Tshast = pQr(Vi —wr)(1 — cos ) (12.19)

where Tspq ¢ is the torque {a rotational force) on the shaft of the Pelton wheel resulting
from the momentum change of the water jet at a radius of 7. The product of the torque
and rotational speed, w, is the rate of work done by the water. Obtain

Wehaft = pQWr(Vi —wr)(l — cos 3) (12.20)

where wr is the tangential velocity of the wheel at radius 7.

Several comments concerning Egs (12.19) and (12.20) are in order. First, the
power to the wheel includes the product 1 — cos 3. For 8 = 180°, this term becomes
2, which is its maximum value. Because of physical constraints where the incoming
and outgoing water jets cannot occupy the same space at the same time, the bucket is
typically designed for 3 =~ 165°. This is of little consequence from a performance
standpoint since 1 — cos(165°) = 1.966 is very close to the maximum of 2.

Second, Eqn (12.20) shows that power depends on the difference between the
incoming jet speed and the tangential speed of the wheel. Although torque is a
maximum when the wheel is not moving [wr = 0in Eqn (12.19) produces maximum
torque], the wheel must move for power to be produced as seen by our inspecting
Eqn (12.20). To determine maximum power as affected by the water jet and rotational
wheel speeds, we take the derivative of wWsna ¢ With respect to wr, set this equal to
zero, and solve for wr. The result is wr = V3 /2. Thus, for fixed values of @ and 3,
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the maximum power from the wheel is

) 1
Wsha ft,maz = ZpQVE(l — cos f3) (12.21)

Finally, if the load were removed from the shaft, intuitively the wheel would speed
up to a point where wrr = V;. Our inspection of Eqn (12.20) verifies that no work
is done under this condition and Eqn (12.19) shows that the torque is zero, as well.
In this case, the jet of water is passing through the wheel without any loss of its
momentum.

If the nozzle were frictionless, the static pressure energy and kinetic energy just
upstream from the nozzle would convert to the kinetic energy of the jet according to
Bernoulli’s equation [Eqn (2.3)]. In fact, the nozzle is imperfect and energy losses
from between 2 and 8% are expected because of friction (White, 1999). Bernoulli’s
equation is written for the nozzle flow as

Vi = Cyr/2gh2a (12.22)

where (', is an experimentally determined “velocity coefficient” of value 0.92 <
C, < 0.98, and ho, is the sum of the static pressure and kinetic energy heads at the
inlet to the nozzle (Fig. 12.5).1°

When solving problems in turbomachinery, which is how the present topic is
known, the equations that describe the performance of the machine are often written in
terms of dimensionless groups. The groups themselves are nearly always ratios of two
independent effects in the problem. For example, the Reynolds number (Re), which
appears often in this book, can be shown to be the ratio of the inertial effects to viscous
effects in a flow. A flow that has Re >> 1 is highly energetic (like turbulent flow),
and one that has Re < 1 is sluggish because friction dominates. Two dimensionless
groups relevant to the present problem are the power coefficient, defined as

_ wshaft . u.)shaft

= = (12.23)
" pQghae QAP
and the “peripheral-velocity factor”
wr
£= (12.24)
A% 29h2a
Equation (12.20) becomes with these,
\CP = 2¢(C, — €)(1 - cos B)J (12.25)

where C), has the meaning of efficiency, in this case a hydrodynamic efficiency for the
Pelton turbine. The denominator in Eqn (12.23) is the power in the flow at the inlet to
the turbine. Itis written in two identical forms in Eqn (12.23), one in terms of the head

0The kinetic energy is negligible relative to the pressure energy at the turbine inlet.
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hgq, and the other in terms of the static pressure drop across the turbine, Ap. Recall,
the pressure at the turbine outlet is atmospheric. From Eqn (12.25), the optimal value
for £ is C,, /2 ~ 0.47. The reader can verify this by taking the derivative of C,, with
respect to &, setting it equal to zero, and solving for £. With 3 = 165° and £ = (.47,
Eqn (12.25) gives Cp, = 0.887. Thus, 88.7% of the rate of work done by the water
becomes shaft work at the turbine outlet. One should not be misled by this apparent
high value. Other physics needs to be considered when “calculating” the turbine
efficiency. The hydrodynamics is just one part of this. The other important effects
include windage (or shearing of air) between the rotating wheel and the casing, and
friction in the bearings and transmission between the turbine and generator. Windage
resistance, bearing, and transmission losses are normally determined by lab tests.

A plot of Eqn (12.25) appears in many references cited in this and the above
sections. The performance curve of C}, as a function of £ (where 0 < & < 1) is nearly
parabolic and peaks at C}, = 0.887 located at £ = 0.47; the parabola is shifted a small
amount to the left of center of this plot.

The cross-sectional area for the nozzle can be calculated by combining the conti-
nuity equation and Eqn (12.22). Obtain

Q Q

A, = =
Cov2ghaa  Cyur/20Msys 21

(12.26)

where 75y is from Fig. 12.6 for smooth pipe or Fig. 12.11 for GI pipe. For smooth
pipe, for example, 0.65<7,,,<0.9, where the larger number corresponds to a pipe
diameter of 1.3D°F?,

B.12.4 Example: Nozzle Diameter

Calculate the nozzle diameter, D,,, and jet speed, V;, for the textbox B.12.1
example. Assume smooth pipe of diameter D = D°P* for the penstock.

From Fig. 12.6, 775y =~ 0.65. Assuming C, = 0.95 at its mid-range, Eqn (12.26)
becomes,

230 x 1073 m3/s

A, = =758 x 1073 m? = 11.75 in.2

0.951/2 - 9.807 m/s” - 0.65 - 80 m

If the nozzle is round, its diameter is

D, = (44, /7)'/? = 3.86 in.

With C, near its optimal point, the efficiency of the turbine, C,, ~ 88.7%.
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Nozzle Diameter (Cont’d)
The speed of the water jet is

Q 230x103m?/s

Vi= A, 758x10-3 m?

=30.3 m/s

The tangential velocity of the Pelton wheel, wr, is optimally half of this value.

For D = 12 in. > D°P* for textbox B.12.1 example above, Eqn (12.26) gives,

230 x 1073 m3/s

Ap, =

= =718 %10 m? = 11.13 in.%,
0.95\/2 +9.807 m/s” - 57.96 m

where ho, = 57.96 m is from Mathcad worksheet microhydro_theoretical_
power.xmcd (Fig. 12.5). Thus 7.y, = 57.96 m/80 m ~ 75%. The nozzle
diameter is reduced by only 2.5% compared with D = D!,

12.5 HYBRID HYDROELECTRIC POWER AND WATER NETWORK

One of the discussions in Section 12.1 centered on how microhydroelectric power and
the delivery of gravity-driven clean water are potentially a good marriage from the
standpoint of the need for power to be dissipated in both systems. Difficulties with
water quality and mismatches in volume flow rates that were discussed in Section 12.1
can be solved with simple existing technologies and designs. Once these problems
are solved, at least two alternative designs can be considered. The first could be to
move the power station to a higher elevation thereby sacrificing some elevation head
but creating an elevation head for the gravity-water network. Water from the tail (see
Fig. 12.5) would run into a storage tank located below the plant. The tank could be
partially sunken into the earth with concrete block, brick, or ferrocement walls and
rigid top to support the weight of the turbine and generator. Gravity-driven water
flow from the tank to the community would be distributed in the normal way. No
additional hardware would be necessary.

The second alternative is to maintain the power plant location to obtain the largest
possible elevation head and use an electrically powered pump to move water to an
elevated storage tank for gravity distribution. This system is most desirable because
of the ready availability of electricity for the pump, there is no loss of elevation head
or need to bury the tank which could be costly and, most importantly, pumping would
take place during night-time hours where there is little or no electrical demand. In this
case, most of the water is bypassing the turbine. The only addition to this proposed
system compared with a stand-alone power station or stand-alone gravity-driven water
network is the pump. This will likely be small, perhaps 0.6 L/s, the flow rate required
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to fill a 20-m?® tank in a 10-h period. The discharge head is required to reach the tank,
perhaps 20 m or less. This pump would require < 1/4 horsepower to operate.

12.6

SUMMARY

We briefly touched on the companion topic of microhydroelectric power production
in this chapter. Below are listed some of the key ideas and results from this discourse.

Impulse turbines are well matched with high-head and low flow rates typical
to many microhydroelectric power candidates where relatively small streams
in mountainous regions are the energy sources. Impulse turbines include the
Pelton wheel and Cross-flow types.

The energy equation for a hydroelectric power plant exhibits optimal volume
flow rate, Q°P*, for fixed penstock pipe diameter and hydraulic gradient, S. For
Q < Q°Pt, power reduces dues to lack of flow rate, and for Q > Q°P!, power
reduces due to increasing pipe friction.

By setting the actual flow rate for a flow-driven design to Q°P?, correlations for
the pipe diameter that corresponds to the optimal power have been obtained for
smooth and GI pipe. These allow the designer to quickly determine the pipe
size that maximizes power output for a given () and S.

The same energy equation applies to designs that are driven by demand power.
In this case, we use numerical methods (a root-finder) to solve for (), which
appears nonlinearly in the energy equation.

Minor losses in the penstock pipe can play a major role in reducing power
output. Serious attention should be given to this. Minor losses are included in
the analysis and design by using the equivalent-length model (see Chapter 2),
artificially increasing the penstock length, and thereby reducing the hydraulic
gradient that drives the system.

From our investigation of the sensitivity of the performance to off-optimal
design conditions, it is important that the design point lies on a performance
curve (power as a function of ) with D as a parameter; see Fig. 12.12) for
a fixed D that has positive slope. In this way, an increase in () will increase
power output. If the design point lies on a performance curve having negative
slope, an increase in ( will reduce power output. The exception to this is for
cases where there will be a reduction in ¢} during the operation of the power
plant. Reducing @ will increase power output where the design point lies on a
performance curve of negative slope.

The theoretical hydrodynamic efficiency of the nozzle/water jet/bucket system
for a Pelton wheel is ~89%. Additional effects like friction in the bearings
and transmission and windage losses in the air between the rotating wheel and
turbine housing, all of which are experimentally determined, will reduce this
value.



340 MICROHYDROELECTRIC POWER GENERATION

References

Anon. Micro-hydro Power. Technical report, Practical Action, The Schumacher Cen-
tre for Technology & Development, Bourton Hall, Bourton-on-Dunsmore, Rugby,
Warwickshire, UK, 2007.

R. L. Daugherty, J. B. Franzini, and E. J. Fennemore. Fluid Mechanics with Engi-
neering Applications. McGraw-Hill, New York, NY, 8th edition, 1985.

P. Fraenkel, O. Paish, V. Bokalders, A. Harvey, and A. Brown. Micro-hydro power:
A guide for development workers. Technical report, ITDG Publishing, London,
UK, 1991.

A. Harvey, A. Brown, P. Hettiarachi, and A. Inversin. Micro-hydro Design Manual.
Technical report, ITDG Publications, London, UK, 2008.

B. R. Munson, D. E. Young, and T. H. Okiishi. Fundamentals of Fluid Mechanics.
John Wiley & Sons, Inc., New York, NY, 2nd edition, 1994,

G. Opdenbosch. OGI, LLC. Personal Communication, 2009.

M. Smith. Motors as Generators for Micro-Hydro Power. Technical report, ITDG
Publications, London, UK, 1994.

A.J. Smits. A Physical Introduction to Fluid Mechanics. John Wiley & Sons, Inc.,
New York, NY, 2000.

Stamford Power Systems Ltd. Technical data sheet BCM184). http://www.
stamfordgeneratorsuk.com, 2006.

V. L. Streeter, E. B. Wylie, and K. W. Bedford. Filuid Mechanics. McGraw-Hill, New
York, NY, 1998.

F. M. White. Fluid Mechanics. McGraw-Hill, New York, NY, 4th edition, 1999.

Wikipedia. Pelton wheel — wikipedia, the free encyclopedia, 2009a. URL
\url{http://en.wikipedia.org/w/index.php?title=Pelton\_wheel\
£01did=297560369}. [Online; accessed 24-August-2009].

Wikipedia. Cross-flow turbine — wikipedia, the free encyclopedia, 2009b. URL
\url{http://en.wikipedia.org/w/index.php?title=Cross-flow\
_turbine\&o0ldid=330157532}. [Online; accessed 14-December-2009].



CHAPTER 13

NETWORK DESIGN

By G. F. Jones and J. Ermilio

“If Practice and Theory Don’t Agree, Investigate the Theory.”
— C. M. Allen, 19th & 20th Century Hydraulic Engineer

13.1 THE DESIGN PROCESS

The process of gravity-driven water network design includes both hydraulic and non-
hydraulic parts as discussed in Chapter 1. The process follows that in Jordan Jr.
{2004); Jeppson (1976); Nayyar (2002); Trifunovic (2006); Swamee and Sharma
(2008), among others.

1. From land survey data, elevation and plan-view drawings thatidentify locations
and elevations of all elements of the network (see Fig. 1.1), which include pipe
lengths, mean slopes of each pipe segment where relevant, etc., are produced.
In this step, uncertainties in locations and elevations based on the instrument
used in the survey are addressed and will be systematically included in the
design calculations at a later step.

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 341
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. From a water-demand survey of the community, and an estimate of the rate of

population growth, the current and future water demands for on-average and
peak conditions are calculated.

The water storage requirement is assessed and volume of the water storage tank
is calculated. '

The need for break-pressure tank(s) is assessed.

. From steps 1 and 2, the intake (normally a single-pipe network) and distribution

(normally a multiple-pipe network) pipelines are designed. The intake is from
the source(s) to a storage tank, and the distribution mains distribute flow from
the tank to the community. This includes selecting the pipe material, calculating
actual inside diameters (ID), choosing nominal pipe sizes, and investigating
flow control; that is, the sensitivity of the performance of the network to the
partial closing of globe valves installed in the pipe segments and sizing of these
valves. The latter step is referred to as the “reverse solution” in Chapter 11.
Alternative designs are normally considered in this step, such as variations in
the run of pipe and the use of different pipe materials. Determining the ability
of the pipe and fittings to withstand the hydrostatic pressures in the network is
also part of this step.

The details of the hydraulic design (including valve types and locations; by-
passes; flow speed limits; the need for and location of cleanouts, air vents, and
vacuum breakers; and consideration of air pockets and water hammer effects)
and nonhydraulic design (reservoir construction at the source; structural con-
siderations for the storage and possible break-pressure tanks and pipe supports,
etc.) are executed.

. Operating and maintenance issues are considered.

. Costs are estimated, a final design selected, and drawings are prepared for the

engineering and construction teams.

Most of these steps are applied to a design considered in the case study of Chap-
ter 15. In this chapter, we will address some of the key elements of this process.

13.2 OVERVIEW

There are very many aspects of a sound gravity-driven water network. Correct sizing
of the pipelines and placement of globe valves to meet the design specifications for
flow rate are just two of them. The intent of this chapter is to discuss some features of
the design of a few of the elements of the water network. For others, we will refer to
appropriate references for further information. One of the better available references
for the details of the design of most components of gravity-driven water networks at
the time of this writing is Jordan Jr. (2004).
We will consider the following topics:
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e Surveying the site to obtain accurate dimensional data.

o Calculating design information from site-survey data.

¢ Measuring and calculating water supply and uniform and peak demand.
¢ The need for and sizing of storage tanks.

e Features associated with the reservoir and development of the source.
o The tapstand.

e Air vents, vacuum breakers, and cleanouts.

¢ Issues associated with hydrostatic pressure.

o Flow speed limits.

o Dissipating potential energy in valves and fittings.

¢ Break-pressure and sedimentation tanks.

o [ssues with oversized pipe.

e The composite pipeline.

o Water hammer.

13.3 ACCURATE DIMENSIONAL DATA FOR THE SITE

A design is only as good as the data on which it is based. With Global Positioning
System (GPS) technology, there is a tendency to ascribe high accuracy (and precision)
to the readings. In reality, GPS data are much more uncertain than those from a
high-quality optical surveying instrument. This especially applies to elevation data.
Normally, five or more satellites are required to obtain an even partially reliable
altitude measurement from a GPS (see Appendix B). This is difficult to achieve if
there is a tree canopy that covers the source. With a multitude of satellites, the altitude
reading from a GPS is still subject to 15 m uncertainty. This means that, for low-
head systems, GPS-based elevation data are practically meaningless. A calibrated
altimeter may be reliable for small systems that can be surveyed in a short period
of time. For large systems that take most of a day or more to survey, data from the
altimeter must be assumed subject to uncertainties, of the same order as from a GPS,
that arise from changing barometric pressure over this time scale. The solution to
obtaining reliable length and position data is for a careful and systematic survey of
the site using an Abney level or a transit. Readers not familiar with the operation
and accuracy of an Abney level are referred to footnote 1 in Chapter 8 or (Jordan Jr.,
2004) for further details. For inexperienced surveyors, a survey with an Abney level
and a good measuring tape is best carried by two independent teams and the results
of one team checked by the other.
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A transit is a more sophisticated form of an Abney level that, in addition to slope
or angle, allows for the direct measurement of distance between the instrument and a
fixed end point. Thus, no measuring tape is required when a transit is used. Details
of surveying with these instruments is presented in numerous sources (Brinker and
Wolf, 1977).

13.4 CALCULATING DESIGN INFORMATION FROM SITE-SURVEY
DATA

If the site were surveyed by a GPS, the first step to produce data for a design is to
convert GPS latitude and longitude to Universal Transverse Mercator (UTM) coor-
dinates. See Appendix B for the definition of UTM, this procedure, and notes on
uncertainty of the measurements. With survey data in length dimensions, either from
GPS or Abney level (or transit), we proceed to calculate local path lengths between
any two arbitrary points along the water-flow path. For example, suppose we have
recorded 18 survey points, or nodes, using a GPS or an Abney level (or transit). Each
node has coordinates (z;, y;, 2;), where i is the node number. A plot of these points
in three-dimensional (3D) space appears in Fig. 13.1. If the distance between the
nodes is much less than the pipeline total length, we can imagine the pipeline as
being constructed of 18 straight segments of pipe, each having a length calculated by
the Pythagorean theorem. Thus, each segment length is from,

Liimry—i = [(Ts —@im1)® + (4 — yi1)* + (2 — zi1)?]M? (13.1)

where ¢ = 2,3,...,18. The local length, L;,, measured from the origin to an
arbitrary node n is the running sum of the segment lengths to node . Obtain,

Lin=Lia+Lya+ - +Ln-1yn =9 La_1)— (13.2)
1=2

The total length of the pipeline is L; ;3 for this example. With the above notation, it
is understood that the pipeline length from its origin to node 2 is L2, from node 2
to node 3 is L2_3, and so on, as seen in Fig. 13.1.

Further discussion on this topic is presented in Section 8.7.

Elevation changes, needed in the energy equation for the solution of pipe diameters,
are easily obtained in the same manner using just the z component of the position
point (or vector). See Exercise 58.

13.5 ESTIMATING WATER SUPPLY AND DEMAND

One of the first considerations when designing a water supply network is the avail-
ability of water (the supply) in comparison with the water needs (demand) in the
community. This consideration falls into four parts: the supply flow rate, the quality
of this flow, and the uniform and peak water demand flow rates. The uniform de-
mand needs to be considered to determine the adequacy of water flow rate from the
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Figure 13.1 A 3D plot for pipeline from survey data. Here, L1 2, L14-15, and Lis—17 are
shown as sample segment lengths.

source(s), and the peak demand is part of the sizing of the water storage tank. The
latter will be considered in Section 13.6.

The rate of water flow from a spring is easily determined by taking several mea-
surements of timed collection of a known volume of water; say, a 2-L soft drink bottle
for small springs or a barrel of known volume for large ones. Averaging the results
over several, say 5-10, trials will ensure an accurate reading.

Water flow rate in a flowing stream may be estimated by measuring the surface
speed, u, of the flow using any object like a floating leaf timed over a known distance.
From the continuity equation, () is equal to ZA [Eqn (2.21)}. The cross-sectional
area, A, of the stream is estimated by measuring the depth of the stream at various
locations and taking a suitable average. The product of the average depth and the
measured width of the stream produces the cross-sectional area, A. Assuming that
the flow speed is uniform over the entire cross-sectional area, the continuity equation
is used to estimate () for the stream.

Water quality of the source is an important consideration before proceeding with
plans for network development. In most cases, if a spring is properly protected from
contaminated runoff and solid matter, it will provide a reliable supply of good quality
water. There are many types of water sampling and testing kits that are available
for water-quality testing. These are available from commercial vendors or perhaps
borrowed from the local District Health Office.

Once the present population is known for the community for which the water
network is being built, the present and future water demand may be estimated. The
future population is based on the formula for simple compounding,

Pp = Pp(1+1)* (13.3)
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Table 13.1 A Starting Point for Estimating Water Demand

Type of Water Supply Average Consumption Range
(L/person/day) (L/person/day)

Public Water Collection Point

Distance (500-1000 m) 7 5-10

Distance (250-500 m) 12 10-15

Distance (<250 m) 25 15-50

Private Connection

Single Connection 50 30-80

Multiple Connections® 120 70-250

?As reference, eight months of data collected in 2008 from the rural community of Los Morales,
Nicaragua show a range of 78-115 L/person/day with an average consumption of 90 L/person/day.
This system was designed for private connections and has multiple connections per household.

where P is the future population, Pp is the present population, 7 is the growth rate
per year (%/100), and ¢ is the design lifetime in periods (years, in our case). For
example, the rate of growth in a community may be 3.5%/year. Assuming a lifetime
of 20 years, typical for the networks being designed, Eqn (13.3) shows that the future
population will be approximately twice that at present.

The daily, uniform water demand for the community is considered next. There
are a number of techniques that can be used based on the current water consumption.
However, in most cases, the water consumption will change when a new system is
constructed. This is usually because the rate of water consumption per person is, to
a large extent, a function of water availability; increasing accessibility to water will
correlate with an increase in consumption. This is important because an increase
in water consumption often results in improvements in health and hygiene. If we
explore the relationship between water availability and consumption further, we find
that water demand can be accurately estimated based on the distance that people have
to travel to collect it. For example, if someone has a direct household connection,
then they will naturally consume more water than someone who has to travel a long
distance. The water demand will also depend on the end-use of the water. If people
have household gardens, then they might have an additional demand for irrigation.
If someone has livestock, this will also increase the demand. At the same time, we
should always keep in mind that there might be another source of water that can be
used to supplement the demand for these secondary needs.

The following tables (Tables 13.1-13.3) can be used as a starting point to esti-
mate water demand (Hofkes, 1983). Slightly more liberal estimates are presented by
Jordan Jr. (2004).

An initial estimate of domestic per-capita water consumption with very little sec-
ondary demand (for livestock and farming) is between 15-50 L/person/day.' This

'In a World Health Organization (WHO) report concerning minimum drinking-water intake levels, Grand-
jean (2009) notes “Given the extreme variability in water needs which are not solely based on differences
in metabolism, but also in environmental conditions and activity, there is not a single level of water intake
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Table 13.2 Water Demand Estimates for Various Facilities

Type of Facility Range
(L/person/day)
School 15-30
Hospital 220-300
Restaurant 65-90
Church 2540
Office 25-40

Table 13.3 Water Demand Estimates for Various Livestock

Type of Livestock Ranie
day)

(L/uni
Cattle 25-35
Horse 20-25
Sheep 15-95
Pigs 10-15
Chickens 0.015-0.025

includes allowances for drinking, cooking, personal washing, and a small amount
for secondary needs (Jordan Jr., 2004). A recommended conservative estimate is
100 L/person/day that includes an allowance for some gardening and other small sec-
ondary uses. By using a larger water demand, we will also be able to account for the
possibility that people will eventually connect a private water pipe to their houses so,
this estimate will allow for expansion in the future.

The present demand can then be written as,

_ Pp - 100 L/person/day
60 s/min - 60 min/h - 24 h/day

Qa.p =116x1073-PpL/s  (13.4)

A community of 300 persons, for example, will require a uniform water flow rate of
~0.35 L/s from the source(s). The future demand (in 20 years), Q4 r, Will be twice
this value based on the above assumptions.

At this point in the design process, there is the need to verify that the available
supply from the yield of the sources is greater than the present and future demand.
This is determined by calculating the instantaneous rate of water supply available
from the souRces, Q g, and comparing it with the instantaneous water demand, Q.
If Qr > Qg for the present, as well as the future, water demand, plans can be made
to proceed with development of the source(s). If this condition is not met, the current
and future demands should be considered to see if it makes sense to develop additional
sources as a measure to meet both.

that would ensure adequate hydration and optimal health for half of all apparently healthy persons in all
environmental conditions.” However, WHO recommends the availability of a minimum of 20 L/person/day
from a source within 1 km of the community (Mihelcic et al., 2009).
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B.13.1 Water Supply and Demand Example

Three springs have been found to potentially supply clean water to a community
seeking to develop a water network. The yields from the springs are Qg 1 of
0.85L/s, QR of 0.30 L/s, and Qg 13 of 0.55 L/s. A community of 520 persons
is proposing to develop some or all of these sources for their use. The popu-
lation growth rate is estimated at 2.5%/year. Assuming a 20-year lifetime and
100 L/person/day at present, report to the community leaders which sources you
would recommend developing.

The present water demand is estimated from Eqn (13.4),

520 persons - 100 L /person /day
"~ 60 s/min - 60 min/h - 24 h/day

Qa,p = 0.602L/s

The future population is estimated from Eqn (13.3),
Pr = 520 persons - (1 + 0.025)*° = 852 persons

from which the future demand becomes,

852 persons - 100 L./person/day

Qar = s/min - 60 min/h - 24 h/day

= 0.986L/s

Our comparison of the future demand with the yields from the three sources
shows that source 1 with either source 2 or source 3 will be adequate, whereas
just sources 2 and 3 together will not be able to meet the future demand. Sources 2
and 3 together can meet the present demand, however. Depending on the relative
locations of the sources, available funding, and local issues with obtaining the
rights to use each, the community may want to consider source 1 with either
source 2 or source 3 or reconsider the future demand model to determine its
appropriateness. If water demand for the future is 0.85 L/s (the sum of () g > and
Qr,3) or smaller, the recommendation would be to consider developing source 2
and source 3 if more desirable than source 1 and either of the remaining two.
Cost will need to be considered in this recommendation.

Note that it is not uncommon for there to be a seasonal variation in the available
water supply at the source between the rainy and the dry seasons. For this reason,
developing source 1 and one other may account for this difference in the event of
a reduced water supply during the dry season.

This example above typifies a semianalytical solution for assessing the develop-
ment of anumber of potential sources for a network. Clearly, a full-analytical solution
could be carried out where the pipes for the gravity mains are sized for the various
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candidate sources to the tank and the cost of pipe and associated fittings is included
in the calculation. From among these candidates, the minimum-cost solutions would
likely be those recommended for development (see Exercise 59).

13.6 THE RESERVOIR TANK

When the water demand of the community cannot be met by direct flow from the
source a reservoir (or storage) tank is generally required. A storage tank can be con-
structed of reinforced concrete, ferrocement (Watt, 1978), or prefabricated ultraviolet
(UV)-resistant plastic, like polyethylene. The latter are becoming more common and
can be cost-competitive with concrete tanks, but are typically no larger than ~12 m3
and, for large volumes, may be difficult to transport to the site.

The tank is sized by first considering typical water demand schedules appropriate
to the community under consideration. One schedule is presented in Chapter 15, and
two in Jordan Jr. (2004). The schedule appearing in Fig. 15.3 is thought to apply
to many communities worldwide. It consists of high hourly demand over a period
of a few hours in the morning (40% of daily demand), a smaller peak over a 2-h
period at midday (20%), and high hourly demand over a several-hour period in late
afternoon/early evening (30%). Other schedules have been proposed (Ermilio, 2005).
All schedules report in terms of fraction of total demand so that they can be applied
to any community where the total daily water demand is known. As we will see in
the example below, the high hourly demand in the morning or evening are normally
the bases for sizing the storage tank.

The remaining 10% of the daily demand falls in between the morning and evening
peaks. Water demand between late-evening and early-morning (e.g., 7 pm-5 am) is
generally negligible.

The relationship between storage volume and the rates of water supply and demand
is determined by the following integral formula, written by considering the definition
of volume flow rate,

Vs(t) = Vs(0) + / Qu(0) — Quld) df (13.5)

where Vs (0) is the initial volume of water in the tank (at the start of the day; the
end of hour 1 or 1 am) and £ is a dummy variable of integration. The integrand in
Eqn (13.5) is the net flow rate that enters the tank. A positive value of Vg(¢) at the end
of any hour indicates that the tank contains some water for use at that time, whereas
a zero or negative value of Vg(t) shows that the tank is empty. During the latter
periods, there is obviously no water available to meet demand. The volume of the
tank is determined by a trial-and-error procedure by choosing a series of increasing
tank volumes (starting from a small value) and calculating from Eqn (13.5) the water
volume in the tank for each at the end of every hour of the day. In these calculations,
we assume that the tank is full at ¢ = 0 because of the normal fill-up during the
evening hours when there is no water demand, but supply continues unabated. An
acceptable volume, in principle, is that which eliminates all zero or negative values
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of water volume at the end of each hour. The tank volume calculated by this approach
will normally be conservative compared with other methods. For practical reasons,
a volume is normally chosen that keeps the number of hours where there are zero
or negative volumes to perhaps just one or two. The understanding here is that
communities will tend to adjust their schedules to accommodate water availability
once the network is installed and functioning (Jordan Jr., 2004). Uncertainty of the
design data would also argue for the acceptability of an hour of empty tank.

As suggested by Mihelcic et al. (2009), to get a sense for the appropriateness of
the final value for the tank volume, the flow rate per capita able to be delivered to
the community (in 1 day) in the event of a source shutdown can be calculated. If
this result provides for less than the WHO recommended minimum availability of
20 L/person/day, the tank volume should be increased if practical.

In many areas, the general operation of a community-based water system is not
completely understood by the local residents. In some cases, household beneficiaries
will be accustomed to having running water at or near their homes throughout the day
and night. This habit is a result of previous water collection and delivery techniques
that simply insert a hose to a running stream and extend it to a private home. This type
of water collection can be beneficial for private homes in areas where water resources
are sufficient. However, the habit of leaving the water system open at all times can
do serious harm to a community-based gravity water system that uses water storage
to manage peak demands. As a result, it is important to incorporate education about
system operation and maintenance into any water supply project.

B.13.2 Example: Sizing of Storage Tank

Consider the textbox B.13.1 example. The community has reconsidered its
future water needs and has decided to restrict the per-capita demand rate to
74 L/person/day (for the maximum of 852 persons) and to develop sources 2
and 3. Thus, the yield is 0.85 L/s. Based on the demand model of Fig. 15.3, size
the storage tank for this community.

The calculations are carried out in the spreadsheet (supplied with this book) that
solves Eqn (13.5). By trial-and-error, we select a range of tank sizes from 14,000
to 16,000 L. A plot of tank volume versus hour of the day is shown in Fig. 13.2
for 14,000, 15,000, and 16,000 L. At 6-7 pm the 15,000 L tank is empty whereas
for 16,000 L it remains filled the entire day. We would recommend a tank volume
between these two, say, 15,500L (15.5 m?). The numerical values for the volumes
versus the hour of day are shown in Table 13.4 for the recommended tank size.
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Figure 13.2 Water volume in tank versus hour of day. Hour 1 is at 1 am.

Example: Sizing of Storage Tank (Cont’d)

Note that the tank would overflow for several hours in the early morning hours.
Overflow from storage tanks is normal. If there were an integrated approach
to managing this water supply, the overflow volume could be used for other
purposes, such as irrigating fields or livestock demand.

The flow rate per capita able to be delivered to the community (in 1 day) in the
event of a source shutdown is 15,500 L / 852 persons / day = 18.2 L/person/day.
This is slightly less than the minimum value recommended by WHO. Consid-
eration should be given to increasing the tank size to ~17,000 L to meet the
WHO-recommended target.

Planning for the construction of a reinforced-concrete tank is a time-consuming
task. This is because of the need for the many different constituents of the reinforced
concrete (cement, gravel, sand, steel reinforcing rod, wire mesh, and tie wires) along
with forming timber to hold the concrete in place while it hardens. Once the volume
of the tank walls is calculated using elementary volume formulas from geometry,?

2A quick estimate of the volume of concrete needed for a tank can be had by adding up the product of
the wall (and floor) areas from lengths measured midway through the wall thicknesses and the appropriate
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Table 13.4 Water Volume in Tank versus Hour of Day for a Tank Volume of 15,500 L.

Hour Qs Demand Q4 Water State of
(L/h)  Percentage (L/h) Volume (L) Tank

1 3060 0 0 15,500 Overflow
2 3060 0 0 15,500 Overflow
3 3060 0 0 15,500 Overflow
4 3060 0 0 15,500 Overflow
5 3060 5 3,150 15,410 Filling
6 3060 20 12,600 5,870 Filling
7 3060 10 6,300 2,630 Filling
8 3060 5 3,150 2,540 Filling
9 3060 1 630 4,970 Filling
10 3060 1 630 7,400 Filling
11 3060 5 3,150 7,310 Filling
12 3060 10 6,300 4,070 Filling
13 3060 5 3,150 3,980 Filling
14 3060 2.5 1,575 5,465 Filling
15 3060 2.5 1,575 6,950 Filling
16 3060 5 3,150 6,860 Filling
17 3060 10 6,300 3,620 Filling
18 3060 10 6,300 3,80 Filling
19 3060 5 3,150 2,90 Filling
20 3060 2 1,260 2,090 Filling
21 3060 1 630 4,520 Filling
22 3060 0 0 7,580 Filling
23 3060 0 0 10,640 Filling
24 3060 0 0 13,700 Filling

the amounts of constituents can be calculated for a prescribed strength of concrete.
See, for example, the spreadsheet of Ermilio (2005).

13.7 THETAPSTAND

Communal water collection points are referred to as tapstands and are designed to
deliver water to a central location in an area to provide equal access to the collection
facility. A picture of a completed tapstand is presented in Fig. 1.12. This topic is
discussed in some detail in Section 15.3.3.4. The reader is referred to this section for
tapstand features and design recommendations.

13.8 ESTIMATING PEAK WATER FLOW RATES

One could imagine the demand of the household daily consumption (of, say Qg =
100 L/person/day) for a community as being spread out uniformly over the day.
However, the demand model of Fig. 15.3 shows that itis not. Infact, inthis model, 40%
of water flow from the storage tank to the community is delivered in an approximate

wall thicknesses. A wall thickness of about 6 in. is necessary for most reservoir tanks in the 812 m3-size
range.
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3-h period in the morning peak. If there were uniform (nonpeak) demand during this
period, one would expect 3 h/24 h = 1/8 = 12.5% of the demand to occur during these
hours. Thus, we need to increase the volume flow rate delivered to the distribution
main from 12.5 to 40% by multiplying the uniform, or on-average, volume flow rate
by a factor of 40/12.5 = 3.2 to obtain the peak flow rate.> The value 3.2 is called a
“peak factor” and given the symbol PF. The peak volume flow rate determined in
this manner is referred to as the “peak (or design) volume flow rate”. The expression
relating the peak flow rate to the uniform flow rate for any segment i—j in the network
is then,

Qi—jpp=PF -Qi_;p (13.6)

where the p subscript on ();_; , means the peak or design flow rate, and P refers to
the present time.
The peak flow rates in the future are determined in the same way except that ¢;_;
in Eqn (13.6) are the future flow rates, based on the future population from Eqn (13.3).
It is worth noting that the peak factor of 3.2 calculated above applies to the demand
model of Fig. 15.3. For other demand models, the largest of the peak factors is used
to calculate the design flow rates for the network.

B.13.3 Example: Peak Water Flow Rates

Consider the multiple-branch network of Fig. 11.16. Using a peak factor of
PF = 3.2, and assuming the flow rates shown in this figure are on-average
during the day, calculate the design flow rates for each segment of the network. If
the flow rates shown in Fig. 11.16 are based on the present population, calculate
the design flow rates that would accommodate the future population. Assume an
annual growth rate, 7, of 3% and a 20-year network lifetime.

For pipe segment 1-2, for example, from Eqn (13.6) the design flow rate becomes,
Qi-2,pp=PF-Q1_3=32-11L/s =3.52L/s

For an annual growth rate, i, of 3% and a 20-year network lifetime, the result
from Eqn (13.3) shows the design flow rates need to increase a factor of 1.806 to
accommodate the future population. Thus, for pipe segment 1-2,

Qi_2,rp= (144" Q1-2,pp =1.806-3.52 L/s = 6.36 L/s

*Note that the morning peak produces a peak factor larger than the mid-day and late-afternoon—evening
peaks. We will select pipe diameters based on the largest of the three peak factors.
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Table 13.5 Uniform and Peak Water Flow Rates for the Multiple-Branch Network of
Fig. 11.16

Pipe Segment, i —j  Qi—j;p (Ls) Qi—jpp(Ls) Qi—jrp (L)

1-2 1.10 3.52 6.36
2-3 0.78 2.50 4.52
34 0.51 1.63 294
4-5 0.25 0.80 1.44
2-6 0.32 1.02 1.84
3-7 0.27 0.86 1.55
4-8 0.26 0.83 1.50

Peak Water Flow Rates (Cont’d)

The flow-rate results for this network are presented in Table 13.5. Recall that
the subscripts on the flow rate are i~j, the pipe segment indices; P, present; F,
future; and p, peak.

13.9 SOURCE DEVELOPMENT

The primary considerations for a water supply system are source selection and source
protection. Source selection considers the quantity of water available and the quality
of the supply. Groundwater is water that can be accessed through the proper design
and development of a borehole or well that taps into an underground water bearing
stratum called an aquifer. Groundwater is generally of good-to-excellent quality.
Surface water is a combination of groundwater that interacts with the surface of
the terrain and runoff that collects within the watershed and becomes channelized
during precipitation. Spring water is groundwater that comes into contact with the
ground’s surface due to subsurface geological conditions. Springs typically occur in
mountainous areas because of steep elevation changes that cause infiltrated rainfall
to emerge from fractured rock.

Source protection includes measures for preventing contamination from entering
the supply. The primary consideration with groundwater is protecting against con-
tamination that results from leaking septic tanks and pit latrines that are within 20 m
from any extraction points. Surface water generally has poor-to-moderate quality.
It should be assumed that any water supply that uses surface water, such as a small
stream or river, requires water treatment using physical, biological, and chemical
processes (Ermitio, 2005).

The primary concern with protecting surface water intakes is preventing agricul-
tural runoff from entering the system. This is because agriculture-based pollutants,
such as pesticides, are difficult to measure and expensive to remediate. Despite having
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Figure 13.3 Source design.

generally lower yields than ground or surface water, springs are often the preferred
water resource for community-based water supply projects. This is because a prop-
erly protected spring can typically provide a sustainable supply of high-quality water
for a community. Springs are easier to contain than ground or surface water and are
also easier to protect against contamination.

The components of a properly protected spring intake-reservoir are (see Fig. 13.3):

e A concrete retaining wall, or a spring box (Fig. 13.4) to capture the supply,
e A stone filter for screening of large debris,

e A concrete cap,

e A drainage canal to prevent surface runoff from entering the supply.

A removable cover should be included in the cap to allow for inspection of the water
in the reservoir and to facilitate periodic cleanout of the reservoir if needed. See
Fig. 13.4 and those from Fig. 1.2.

Source development is discussed in detail in other works on international devel-
opment [cf. Jordan Jr. (2004)].

The outlet pipe penetrates the retention wall — the downstream part of the reservoir
(if there is water storage at the source) or spring box, and forms the beginning of the
“intake” part of water network. There are several things associated with the outlet
that are important. First, a gate valve should be installed just downstream of the
retention wall in the outlet pipe.* The gate valve is necessary to isolate the reservoir
or spring-box when maintenance on the network is performed. Second, the intake
end of the outlet pipe, submerged in water held by the reservoir or spring box, should

4Since no throttling will be done at the source there is no need for a globe valve. The latter are more
expensive than gate valves and a full-open gate valve has less pressure drop (that is, a smaller K value)
than a full-open globe valve.
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Figure 13.4 A spring box under construction in central Nicaragua. A cast-in-place concrete
cap was installed after this photo was taken (see Fig. 1.2).
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have a filter, perhaps constructed of a fine-mesh screen, installed. This is important
to eliminate sand and other particles, normally present in the flow, from entering the
flow. When designing the screen, care should be taken to maintain a flow area as large
as possible for water to enter the pipe. This will ensure a small loss coefficient that,
if large, could result in substantial negative gage pressure immediately downstream
of the source. This was discussed in Chapter 7.

Third, a 2 or 3-in. cleanout pipe is installed near the bottom of the reservoir or
spring box to allow for periodic clean-out of debris that settles during operation. The
clean-out also allows draining if a large-scale cleaning of the source is needed. Gate
valves should also be installed at local low points along the entire pipe flow path to
facilitate the clean out of sand and other debris that tends to accumulate over time at
these parts. The size of these valves is small, generally of the order of %-in.

To ensure against undesirable vacuum conditions in the pipe coming from the
source, an air vent or “vacuum breaker” should be installed at the source. This pipe,
say of 1/2-in. GI, branches off of the outlet pipe just downstream from the gate
valve (noted above), rises above the level of the reservoir surface, and is open to the
atmosphere. Its purpose is to allow air into the system should negative pressures tend
to occur in the outlet pipe. This would normally occur when the network is shut down
for maintenance. This construction thus serves to “break the vacuum” in the network
should it begin to form. More details on this construct are in Jordan Jr. (2004).

The presence of air in the network presents its own set of concerns. If the contour
of the piping system has high and low points, the air trapped between a high and
low point in the pipeline forms a cylinder-like compression chamber where there
is no water. Because the air is trapped in a downward-directed leg, the density of
water contributes nothing to the elevation pressure head at the low point (air density
is effectively zero compared with that of water). The net effect is a reduction in the
elevation head available to drive the water-flow network. In addition to this dominant
effect, as water on either side of a high point attempts to move the cylinders of
trapped air through the system, it compresses the air, doing work in the process, and
dissipating energy from the flow. Some of this energy is recovered with expansion of
the air upon reduction in static pressure. For both of these reasons, trapped air in the
network acts as an additional minor loss. Should this loss become large, these “air
blocks” could severely restrict the performance of the system.

The addition of manually operated or automatic air vent valves located at the local
high points in the system, relative to nearby local low points, can always be used to
remediate this problem, but they represent a maintenance issue. A brief discussion
of air blocks is in Jordan Jr. (2004) and a more thorough treatment is given by Corcos
(2004). The problem is approached from a fundamentals standpoint and presented
briefly in Chapter 14.

Finally, gate valves should be installed at the lowest end of all runs of pipe that
form valleys. These will allow for periodic cleaning of solid debris from the pipe that
accumulates over time.
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13.10 HYDROSTATIC PRESSURE ISSUES

Because of the energy dissipation associated with a fluid in motion in a pipe, the
static pressure in a moving fluid is always less than when fluid motion ceases and the
pressure becomes hydrostatic. Thus, the ultimate stress associated with pressure is
exerted on the piping when the water in the network is static. Care must be taken to
consider the hydrostatic pressure when designing pipe for the network. The pressure
rating for Class Il high-density polyethylene (HDPE; refer to Chapter 3 and Jordan Jr.
(2004)) is equivalent to ~60 m of water head, whereas for the thicker wall, and more
expensive, Class IV HDPE pipe, it is 100 m of water head. For polyvinyl chloride
(PVCO) pipe, the pressure rating for a wide range of appropriate pipe sizes, including
SDR 26, is 160 psig, or~112 m of head (Table 3.4). Break-pressure tanks (Jordan Jr.,
2004), discussed briefly below, allow the static pressure to return to atmospheric and
should be installed in any network where the change in elevation even approaches
these levels. The pressure rating for heavy-wall galvanized steel (GI) pipe is high
enough (1500 m of head) such that rupture from pressure is not normally a concern.
However, a corroded or poorly assembled fitting will normally be the point of potential
failure for GI pipe.

13.11 THE BREAK-PRESSURE TANK

A break-pressure tank (see Fig. 1.7) is used in a gravity-driven water network to reduce
the static pressure in the pipe flow to atmospheric pressure. Break pressure tanks are
used in high-head gravity-driven water networks, where the build-up of static pressure
at lower elevations would require thick-wall plastic or GI pipe; both expensive alter-
natives. In all cases, the reliability of pipe and fittings in the water network suffers as
the static pressure encroaches on the values discussed in Section 13.10.

A break-pressure tank is needed in the following two instances:

e For the segments in the network that are feeding water to a tapstand, a break-
pressure tank is needed if the static pressure at the tapstand will be greater than
~20-30 m of water head. Larger values may cause the water tap valve (one like
a globe valve, except it has a rubber washer as the seat material; see Fig. 1.11)
to leak or wear prematurely. Also, static pressures that are too large at the water
tap valve will create difficulty in drawing water without severe splashing. See
more discussion in this topic in Section 15.3.3.4.

e For the segments in the network that are not feeding water to a tapstand, a
break-pressure tank is needed if the static pressure in the pipeline will exceed
those values presented in Section 13.10 or the pressure limits as specified by the
pipe or fitting manufacturers. The rule-of-thumb for this case is that one break-
pressure tank is needed for every 100 m of elevation change in the network.

Be aware that a water storage tank acts in the same manner as a break-pressure tank
to reduce the static pressure to atmospheric level. This should be considered in the
decision to install and where to locate a break-pressure tank.
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Unlike water storage tanks, the capacity of a break-pressure tank is not a major
design consideration since there should be no accumulation within the tank; inflow
and outflow rates should match. In practice, this is done by using a float valve (one
that turns off if the water level in the tank reaches a preset level; like a ball-float
valve used in western toilets) Several good conceptual drawings of a break-pressure
tank exist and will not be reproduced here [see Mihelcic et al. (2009) and Jordan Jr.
(2004)].

13.12 THE SEDIMENTATION TANK

Sedimentation is a physical process used to pretreat water that has high levels of
suspended particles, such as stone, sand, silt, and other insoluble materials. Sedi-
mentation will occur in these suspensions when the flow speed of water is reduced
sufficiently in a “retention chamber” or water tank and turbulence in the flow is re-
duced. This process allows for the particles of density greater than that of water to
settle out of suspension. A conceptual drawing with dimensions approximately to
scale for a horizontal-flow sedimentation tank is shown in Fig. 13.5.

The “settling velocity” of a particle, which is independent of the flow speed in
the sedimentation tank, can be determined experimentally and should be verified
prior to the tank design and construction. Analysis may be used to obtain a first
approximation of the settling velocity. The theory is based on Stokes flow of a small
spherical particle.’ Settling velocities for a number of different materials appear in
Jordan Jr. (2004). For typical materials found in water supplies in rural communities,
these range from 0.023 m/h for silty-clay to 9.36 m/h for silt. The efficiency of the
settling process is reduced significantly if turbulence is present in the flow and is not
considered in the design.®

Figure 13.6 shows results of an analysis with tank specifications for typical sed-
imentation facilities used in community water supply projects. The assumed tank
length-to-width ratio of three generally produces a one-dimensional (1D) flow. We
see from this figure that the tank width is largely dependent on the type of material
being settled. In systems where silty-clay material is present, the sedimentation tank
can be fitted with additional measures to reduce the tank dimensions by including
level spreaders within the tank. These are flat plates installed horizontally in the tank
each of which acts as a pseudo-tank bottom to catch particles as they settle. This topic
is covered in more detail in Anon. (1981). Simple techniques to ensure a uniform
velocity across the tank should be included in the design so that water flow is evenly
divided over the width and depth of the tank (Anon., 1981).

3Stokes flow of a solid particle in a fluid occurs where the flow speed and particle size are both smalt. This
gives rise to a Reynolds number (Re, based on equivalent particle diameter) < 1.

60ne of the characteristics of turbulence is localized intense mixing. Mixing will prevent the dense solid
matter from settling in the sedimentation tank.
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Figure 13.5 Elevation view (top) and plan view (bottom) for a horizontal-flow sedimentation

tank.
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Figure 13.6 Sedimentation tank performance.

13.13 FLOW SPEED LIMITS

Erosion of plastic pipe caused by suspended particles in the flow is known to occur
for high flow speeds. The problem worsens as flow speeds increase, based on rec-
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ommendations in the literature (Jordan Jr., 2004), a designer should limit the extent
of pipe exposed to speeds exceeding ~3 m/s. The erosion is especially problematic
just downstream from sharp bends, like 90° elbows and the branches of tees. The
speed of 3 m/s is also the recommended peak speed for a pipe flow to keep flow noise
to acceptable levels for cases where pipe is to be run in or around living spaces. At
the other end of the spectrum, should the flow speed fall to much less than ~0.7 m/s,
there is likelihood of sedimentation from small particles, such as sand and small bits
of organic matter, normally entrained in the flow. Pipe diameters that result in flow
speeds > 3 m/s and < 0.7 m/s should be avoided. For more discussion related to
this topic, see Section 13.15.

13.14 DISSIPATION OF POTENTIAL ENERGY

There are a limited number of discrete pipe diameters from which to choose when
designing a pipe-flow network. Thus, it is seldom that we are able to design a system
such that the elevation head (the potential energy) is exactly offset by energy dissi-
pation from pipe friction between the pipe inlet and outlet. The imbalance between
the potential energy and pipe friction requires the use of either a fixed or variable
energy-loss device (Section 7.5) in the pipeline. Jordan Jr. (2004) refers to the above
imbalance as “excess energy” and the act of dissipating it as “burn-off”. In the fields
of thermodynamics or fluid mechanics, the process of dissipating energy (with no
heat transfer from the pipe) is referred to as “throttling”.

A variable-loss device is normally a globe valve, which has been noted often in
this text, and discussions about it appear in Sections 1.3.4 and 7.5. The globe valve
works by forcing the flow to pass through a small cross section where friction between
the flow and the valve body can be very large. The cross-sectional area for flow is
adjustable based on how it is set by turning the valve handle. A cross-sectional view
of a globe valve is presented in Section 1.3.4. A globe valve is designed to perform in
a partially open state. Another type of valve, such as a gate valve, should not be used
in place of a globe valve for throttling because it is not constructed to throttle the flow
and will likely be noisy when operating and fail prematurely. It is often difficult and
time consuming to replace a failed valve in a pipe-flow network.” Throttling with a
ball valve is not recommended because of the difficulty of controlling the flow near the
closure point for this type of valve. As discussed in several places above, including
Chapter 11, globe valves are used at various locations in every pipe gravity-driven
water flow network to allow the designer and operators flexibility in the flow and
pressure conditions throughout. The presence of a globe valve in the pipe has the
effect of reducing the pipe diameter from its actual ID. In this sense, the globe valve

7Special considerations are needed in networks where galvanized iron (or galvanized steel; GI) pipe is
used. Because of the possible need to replace a throttling valve upstream of a tank or tapstand, for example,
unions (Section 1.3.2) are recommended to be installed upstream and downstream of the valve to facilitate
the replacement. Otherwise, the pipe must be cut, rethreaded, and rejoined which is inconvenient and
costly.
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allows the designer to more-closely match the diameter corresponding to the chosen
nominal pipe size with the required theoretical inside diameter.

What is not widely understood about throttling valves is that they have pressure-
drop limitations. Throttling in a globe valve reduces the pressure across its flow
restriction, causing a pressure drop, Ap, between the upstream and far-downstream
(say, just after the body of the valve) locations, as discussed in the above paragraph.
This occurs in two parts. The first part occurs between the inlet and that immediately
downstream from the seat area of the valve (see Fig. 1.11) where the pressure falls to
more than Ap between the inlet and this location.® In the second part, there is a “static
pressure recovery” effect just downstream from the first, where there is a slight static
pressure increase. For liquid flows, a pressure-drop limitation arises if the absolute
static pressure resulting from the first part of the pressure drop attempts to fall below
the local vapor pressure of the liquid.” If the local static pressure becomes equal to
the vapor pressure of the liquid, the flow will locally vaporize and bubbles will form.
Under this condition, the flow is said to be “choked,” a consequence of which is that
no further pressure drop can be produced by further closing of the valve (the pressure
drop across the valve is controlled by the vapor pressure just downstream from the
valve seat). A further consequence occurs when the bubbles collapse as they move
slightly downstream and are exposed to the higher pressures in the second part of the
above process. If the collapse occurs near t,he valve seat or pipe wall, the seat or wall
will erode as if being hit with small projectiles of dense fluid. Since failure over time
will likely occur under this condition, cavitation should be avoided.

If cavitation is detected (cavitation sounds like small rocks moving in the flow),
the suspect valve should be replaced with one or more globe valves in series or by
a fixed energy-loss device (see below). The former may be adjusted so that just a
fraction of the overall required pressure drop occurs across each of the valves thus
eliminating cavitation. More on this topic is found in the control valve literature. See,
for example, the design handbook from Fisher Controls (Anon., 2005).

A fixed energy-loss device is arestriction placed in the flow. One type of restriction,
given by Jordan Ir. (2004) (frictional diffuser), consists of a PVC cap inserted into
a 32-mm PVC pipe where a small hole is drilled into the cap. The flow restriction
caused by the hole produces a large amount of energy dissipation that reduces the
static pressure from the inlet to the outlet of the diffuser.

Care should be taken when planning to use this diffuser, since the small hole
may very easily become completely blocked with small particles and organic matter
that are normally present in the flow. This characteristic of the diffuser necessitates
that it be designed for easy removal (say, by the use of two unions, one immediately
upstream and the other immediately downstream) for periodic cleaning.'® In addition,

8In fluid mechanics, this region is referred to as the “vena contracta,” the point of minimum cross-sectional
area for flow in the valve. In the vena contracta the highest local flow speed and approximately the lowest
local static pressure as predicted by Eqn (2.3) result.

9This depends on temperature. At 10°C the vapor pressure of water is ~0.178 psia or ~1.2% of an atm.
10Note that a bypass pipe, with the appropriate valves and unions, need to be included in this arrangement
[see Jordan Jr. (2004)].
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the pressure drop across the diffuser is very sensitive to the diameter of the hole in
the cap, an effect that changes over time as the hole will become partially clogged.
This uncertainty requires that the diffuser be calibrated before placed into service in
the field. Only a simple liquid manometer and a pump are required to carry out an
accurate calibration. Partial clogging over time argues for a globe valve to always be
installed in series with the frictional diffuser to enable a throttling adjustment.

As afinal comment on energy dissipation, we note that dissipation can be useful in
contrast with the understanding of it from the above paragraphs in this section where
energy dissipation is viewed as a bothersome task. For example, a water turbine
coupled to a generator may be installed in place of a globe valve. In the turbine-
generator, mechanical power that would have been dissipated as waste heat can now
be put to use to benefit the community. This topic was discussed in Chapter 12.

13.15 DESIGNING FOR PEAK DEMAND: PIPE OVERSIZING

In designs where the peak factor, PF' > 1, the pipe diameters in the distribution and
gravity mains downstream from the storage tank will be oversized for the nonpeak
periods. For example, for PF of 3.2 in the example of Section 13.8, the increase in
flow rate to the peak values increases the pipe diameters by 53% [D ~ Q7/19, see
Eqn (9.4)]. This translates to a 235% increase in the cross-sectional area of each of
the pipes. If we make the conservative assumption of constant friction factor for the
sake of simplicity, the energy equation [Eqn (2.44)} shows that, in each of these pipes,
the major loss (pipe friction) falls to ~12% of its value when sized for the nonpeak
periods (the major loss is proportional to D? if f is assumed constant). In this way,
in a gravity-driven water network, much of the pipe in the network is oversized for
operation during most of the day to accommodate the needs of the peak periods.

Another consideration is that small sources, such as springs, may not remain
constant over time. Variations in rain amounts and soil percolation rates, and changes
in the topology and extent of ground cover in the region, both natural and man-made,
around the source can cause variations in water production rates at the source. This
may also contribute to the reduction in water flow rates and oversized pipe.

This topic is included to highlight it, and to shed light on the importance of trying
to ascertain peak and future water demands as accurately as possible. As discussed
in Section 13.14, oversized pipe will normally require that a greater fraction of the
potential energy of the network be dissipated in minor-loss elements like globe vales.
This is unavoidable. For the case of PF = 3.2, the increase in minor-loss-element
dissipation is equal to about 88% of the major-loss pressure drop that would have
occurred if the pipe were sized for non-peak periods. Overestimating peak and future
water demands will unnecessarily increase the cost of the network (because of the
higher cost of larger pipe) and place a greater load on the throttling devices, or require
more of them, throughout. Controllability of the flows in the network will become
more challenging and premature wear of the throttling devices is possible under these
conditions.
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Figure 13.7 A pipe (bottom) and its composite form (top) that produces approximately the
same head loss.

13.16 THE COMPOSITE PIPELINE

When selecting a nominal pipe size corresponding to a calculated theoretical pipe
diameter, we saw in Section 3.5 that the choice is made for the nominal size that
produces an inside diameter slightly larger than the theoretical value. If we are
restricted to just a single pipe of a single nominal size, this method may result in
excessive energy dissipation in a globe valve and other minor loss elements if the
theoretical diameter is much less than the inside diameter for the chosen pipe size.
As discussed in Section 13.14 this may not be desirable. A remedy to this problem is
the composite pipeline. When used in place of a single pipe, a composite pipeline will
dissipate energy as required by the design in major loss, thus relieving the minor-loss
elements of this task.

A composite pipeline (Fig. 13.7) consists of two series-connected pipes of different
diameters, D, and Dy, and lengths, L, and L,, that produce the same head loss as that
for a uniform pipe of theoretical diameter D and length L = L, + L;. The fluid flow
rate in each pipe is identical. Relative to the uniform-diameter pipe, this is possible if
D, > D (resulting in reduced head loss over length L,) and D, < D (resulting in an
increase in head loss over length Ly). Thus, it is clear that D, < D < D,. The order
of pipes of D, and Dy as shown in Fig. 13.7 may be interchanged with no overall
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effect on the performance of this pipeline.!! Normally the choice is made to install
the larger pipe size upstream of the smaller one to maintain a high a static pressure
over the run of pipe a in case a branch may be needed from this pipe in the future.

For sufficiently long pipelines, the minor losses for the reducer and other possible
fittings are small relative to the major loss and may be neglected. If an exceptional
case is encountered, the following simple development may be modified to include
minor losses as needed. The requirement that the head loss in the single and composite
pipes be identical gives

hp =hpa+hrp (13.7)
The Darcy—Weisbach equation (Eqn (2.10)) is introduced to obtain

=2 —2
_ Lw L,u;

f(uvD)f- = f(ﬁaaDa) D

_ Ly
+ f(uy, D
(@, D) =2

(13.8)

a

Combining the contimiity equation [Eqn (2.21)] with this, and with L = L, + Ly,
we get

L La L - La
f(QaD)ﬁ :f(Q7Da)—D_Z+f(Qan) D? (139)
Rearrange this to obtain
-5 _ -5
Lo DUA@D) =D f@Dy) - p oy, (13.10)

L~ D% f(Q,Da) — D;° £(Q,Dy)’

Once the theoretical pipe diameter, D, is determined from the solution of the
energy equation, and the actual inside diameters for the two nominal pipe sizes, D,
and Dy, that bound D are identified, Eqn (13.10) can then be solved for the length
L,. The friction factor is from Egs (2.16) and (2.17). For smooth pipe over the
range of Re where the Blasius formula for friction factor applies [see Eqn (2.19) and
Section 9.3], a closed-form equation may be easily developed from Eqn (13.10).

La B D~19/4 _Db—19/4

N D174 _ Db—19/4’

Dy < D < D, (13.11)

1A composite pipeline generally falls under the category of the serial network of Section 11.5.1. The
difference between this and the treatment in the current section is that the static pressure at the junction of
the two pipes in the upper part of Fig. 13.7 is assumed to be acceptable for the composite pipeline. That
is, there is no attempt to calculate this pressure in the analysis associated with the composite pipeline.
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B.13.4 Example: Composite Pipeline

Determine the lengths L, and L; (see Fig. 13.7) for a composite pipeline of
1078-m-long, sch. 40 PVC pipe, where the theoretical value for D is calculated as
6.8301in. Assume, and then verify, that the flow is turbulent such that Eqn (13.11)
applies. The flow rate is 3.4 L/s.

From Table 3.1, two actual inside diameters that bound D are 6.065 in. (6-in.
nom.) and 7.981 in. (8-in. nom.). Equation (13.11) becomes

~19/4 _ —19/4
& _ 6.830 6.065 — 0501
L 7.981-19/4 — 6.065-19/4

Thus, L, = 0.591 - 1078 m = 638 m, and L, = 440 m. A composite pipeline
of these lengths of 6 and 8-in. (nom.) pipe will produce approximately the same
head loss as one of D = 6.830 in. for the total length, L.

Re based on pipe b (the smaller size) is

4Q 4-3.4x1073m3/s
avDy  7-1.307 x 10~% m2 /s - (6.065/39.372) m

Rep = = 21,500

a turbulent flow. For the larger pipe size, Re, = 16,340. Thus, Eqn (13.11) is
valid for this problem.

A couple of notes of caution concerning the composite pipeline are in order. First,
recall from the discussion in Section 3.5 that one of the reasons for choosing a pipe
diameter larger than theoretical is that this approach adds flexibility to the design. In
keeping with this idea, if a composite pipeline is to be used, it is recommended to
reduce the length of the smaller-diameter pipe as calculated by Eqn (13.10) (or 13.11)
by perhaps a factor of 0.8-0.9. By doing this, there will be excess static pressure not
dissipated by major loss that can be used if needed for unanticipated needs.

Second, a composite pipeline and globe valve both serve to reduce static pressure
by energy dissipation. The fundamental difference between them is that a globe
valve is adjustable during network operation whereas the composite pipeline is not.
As discussed in Section 11.6.5, globe valves give the designer flexibility in balancing
flows in multiple branch and loop networks and, when closed, allow the removal of
pipe and components for maintenance and repair. The recommendation is do not
replace a globe valve by a composite pipeline if this leg of the network requires static
pressure control or anticipated frequent maintenance.
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13.17 WATER HAMMER

When a liquid flows in a network of pipes, there is a considerable kinetic energy due to
its density and flow speed. If a valve in the pipe is closed rapidly, the liquid attempts
to come to a complete stop over a short period of time. If the valve is closed rapidly
enough, this time is so small that there is little opportunity for the closing valve to
dissipate all of the kinetic energy in friction. The excess energy that is not dissipated
produces an internal wave in the liquid that moves back-and-forth in the pipeline,
dissipating energy in the process. This effect is referred to as water hammer. Thus,
water hammer produces a pressure wave, with an amplitude perhaps much higher
that the hydrostatic pressure, that travels at a high speed through the liquid. Water
hammer causes noise, can result in sudden movement of the pipe, or burst a pipe
if the pressure rise exceeds the safe operating pressure of the pipe or fittings. The
perturbations could also be severe enough to break joints between pipe and fittings,
or loosen pipe anchors, and so it is worth our consideration.

The following simple analysis can be used to approximate the pressure rise result-
ing from the instantaneous closing of a valve in a pipeline. Because of the assumptions
on which it is based, this analysis will predict the worst-case effect from water ham-
mer. Nonetheless, the results are valuable in that they highlight the need for the
designer to take steps to mitigate potential water-hammer problems in the completed
network.

The increase in pressure, Ap, associated with a sudden reduction in flow speed,
— A4, in a pipe flow is from the Joukowski equation!? developed by considering mass
conservation at the location of a shock wave in the liquid,

Ap = —pa,Au (13.12)

where p is the density of, and a,, is wave speed in, the liquid. The wave speed in
water at standard conditions (10°C) is ~1483 m/s if the pipe wall behaves as rigid. If
the pipe wall is elastic, which is a good assumption for plastic pipe, the expression
for the wave speed is much less than this value and is from,

= B/p
Gy _\/1+2'(B/E)/(Dout/Din—1) (13.13)

In Eqn (13.13), B and E are the bulk modulus of water (a thermodynamic property
that is~2.110 GPa at 10°C, where 1 GPa = 10° Pa), and elastic modulus of the pipe
wall, respectively. For PVC, E ~ 2.90 GPa, and for steel (or GI), £ ~ 200 GPa.
The terms D,,,; and D;,, are the outer and inner diameters of the pipe, respectively.

Equations (13.12) and (13.13) can be used to conservatively estimate the magnitude
of the pressure wave that arises in a pipe after the sudden closing of a valve.

12The details of this development ar beyond the scope of the present work, but are found in several textbooks
on fluid mechanics (Streeter et al., 1998; Potter and Wiggert, 2002).
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B.13.5 Example: Pressure Rise in Water Hammer

Consider () = 2.25 L/s of water flow at 10°C in a 2-in. nominal sch. 40 PVC
pipe. A gate valve in the pipeline is suddenly closed. Calculate the amplitude of
the pressure wave resulting from this closure. How would your results change if
the pipe material were steel or GI?

For this size pipe, Table 3.1 gives Dy,; = 2.375 in. and D;,, = 2.067 in. For
water at 10°C at which the density is p = 999.7 kg/m3, Eqn (13.13) becomes

_ /(2.110-10° N/m®)/999.7 kg/m® - (1 - kg m/s2)/N
Gw = 1+2-(2.11-109/2.90 - 109)/(2.375/2.067 — 1)
= 4428 m/s

The flow speed in the pipe before the valve is closed, %, is from the continuity
equation, Eqn (2.21),

Q@ 225L/s-0.001 m3/1
==

A w/4-(2.067 in.)2

=1.04m/s

The change in flow speed is thus,
At=0—u=—-1.04m/s

The magnitude of the pressure wave resulting from the sudden valve closure is
from Eqn (13.12),

Ap = —999.7 kg/m® - 452.1 m/s - —1.04 m/s = 460 kPa

or~47 m of water head at the location of the valve. A quick calculation will show
that the pressure rise would more than double to ~1413 kPa if the pipe material
were GI, or~144 m of head. We see that PVC pipe has a damping effect on water
hammer compared with GI. As the pressure wave travels over distances away
from the valve, the magnitude of this wave will be damped by viscous forces
between water and pipe wall. This damping may take perhaps several seconds
to tens of seconds. The calculations here provide a worst-case estimate of the
pressure rise.

Our inspection of the above example shows that very large pressure rises are
possible, especially if steel (galvanized iron) pipe is used. This points to the need
to consider water hammer in the design stage to take appropriate steps to reduce it.
Among these are
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e Design the distribution network to reduce excessive flow speeds (see Sec-
tion 13.13),

o Ensure that operators of the water network are made aware of the water hammer
problem and are instructed to close all valves slowly, especially those where
the flow speeds are high,

¢ For pipelines where water hammer is known or suspected to be a serious prob-
lem, accumulators or expansion tanks may be installed at locations where large
pressure rises may occur to absorb and dissipate the energy of the pressure
wave. These units, which have an air pocket separated from the water by a
flexible rubber bladder, may be purchased from many commercial vendors.
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CHAPTER 14

AIR POCKETS IN THE NETWORK

“Let all you who Thirst, Come to the Water!”
— Isaiah 55:1

14.1 THE PROBLEM

If the contour of the piping network has high and low points, the air trapped in the
high points forms cylinder-like compression chambers. This is an idealization, but
is useful for visualization of the relatively complicated process of liquid flow in a
partially filled pipe with air. As the denser water on either side of the air attempts
to move the cylinders of trapped air through the system, it compresses the air, doing
work in the process, and dissipating energy from the flow. Nearly all of this energy is
recovered with expansion of the air upon reduction in static pressure so that the work
to compress the air can normally be neglected.

More importantly, the fact that air of essentially negligible density occupies a
fraction of the pipe length reduces the elevation head available to drive flow through
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the system. For this reason, trapped air in the system, referred to as an “air block,”!
acts as a reduction in the driving head or, as an alternate interpretation, an additional
minor loss. Should this minor loss be large, the presence of air could severely restrict
the performance of the system. The addition of manually operated or automatic air
vent valves located at the highest points in the network, relative to nearby local low
points, can always be used to remediate this problem, but they are a maintenance
issue. A brief discussion of air pockets is in Jordan Jr. (2004) and a more thorough
treatment is given by Corcos (2004).

Here, we explore this problem from a fundamentals viewpoint and suggest a
methodology different from that in the previous references to access the impact of air
pockets on the performance of a gravity-driven water system.

14.2 THE PHYSICS OF AIR/LIQUID PIPE FLOWS: FLOW IN A
STRAIGHT PIPE

Consider the flow of water in a straight inclined pipe initially filled with air, as shown
in Fig. 14.1. As the denser water flows to the bottom of the pipe, some of the air
is pushed out by the direct movement of water or entrained in the water and carried
out, and some of the lighter air is displaced to the top. In steady state (Fig. 14.1), we
see that the effect of the initial air-filled pipe is to reduce the elevation head of the
system, from z; to z}. In an extreme case, the elevation head driving the flow in the
system can be reduced to a small fraction of z;. Flow rates will consequently suffer
and conditions of the design may not be met.

The volume of air in the pipe at any time depends on the volume pushed out and
entrained by the water flow, and the pressure of the water on the air. To explore this
further, imagine a pipe of volume V,;,, initially filled with air at atmospheric pressure,
Patm. FOr the moment, assume that no air is removed when water is introduced into
the pipe. In steady state, the static pressure at the top of the pipe is known to be
p1. Recall that air is compressible and, if we assume that the temperature of the air
remains constant as the water flows in the pipe,? the ideal gas law may be written
between the initial state and that of Fig. 14.1 as

patmvpipe = pr/ (141)
or
/
¥ _ Pam (14.2)
Vpipe "

where p is absolute static pressure in all of the equations in this chapter. The symbol
V" refers to the volume of compressed air depicted in Fig. 14.1. If the pipe is constant
diameter, volume terms in Eqn (14.2) may be written as proportional to length and

VThis term is unfortunate in that for most cases air does not actually block the flow, but reduces it from the
Natural-flow value. The term “air pocket” may be more representative of the phenomenon.
2This is reasonable since the ground in which the pipe is buried is approximately at constant temperature.
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Air

Water

Figure 14.1 Water flow in a straight inclined pipe partially filled with air. Gravity acts
downward. Drawings in this chapter are courtesy of Erin Vogel, Villanova University.

Eqn (14.2) becomes

'
Z _ Patm (14.3)
21 J4!

where z{/z; is the fraction of the length of the pipe containing only air. Since it is
reasonable to assume that some air will always be pushed out of the system by flowing
water, either directly or through entrainment, the results of Eqn (14.3) represent a
worst-case or “upper-bound” estimate of the effect of trapped air in gravity-driven
flow of water in a straight, inclined pipe. For this case, for example, if we know that
p; is twice atmospheric pressure, the air will occupy half of the length of the pipe.
The actual elevation head driving the flow, 2, will be z1/2. Clearly, this is not a
desirable situation since the design flow rate may not be satisfied with the reduced
value for the elevation head.

Of course, no system is designed as just a straight pipe without incorporating in
the design some way to remove air from the system. In the case of Fig. 14.1, the
designer needs to include an air vent at the top of the system and the air will, over
a reasonably short period of time from start-up, be pushed from the high part of the
pipe by pressure. Note that the static pressure just downstream from z; is slightly
larger than atmospheric due to the positive elevation head at this location.

The problem of a straight pipe is considered here to illustrate how air in a pipe
reduces the elevation head. It is very idealistic. The more realistic problem, which
we consider in Section 14.3, is one where there are local high points where air can
become trapped.
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Water
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First Valley

Second Valley

Figure 14.2 Water flow in a wavy inclined pipe partially filled with air. Before formation of
air pocket.

14.3 FLOW IN A PIPE WITH LOCAL HIGH POINTS

Consider an initially air-filled pipe of uniform diameter with local high points. The
situation of filling the pipe with water is depicted in Fig. 14.2. As water flows into
the pipe, the first valley becomes filled. Water trickling over the first peak fills the
second valley and, by doing so, traps a mass of air between the first peak and the
second valley. This trapped air becomes the first “air pocket” and appears as shown
in Fig. 14.3.%> The static pressure in the pipe at the location of the first peak is greater
than atmospheric because of the elevation head difference between the inlet and the
first peak. Thus, the air in the first air pocket is compressed, reducing its volume to
less than the volume of the leg of pipe connecting the first peak with the second valley
(refer to Fig. 14.3).

As the pipe continues to fill, each leg of pipe that has a positive slope fills up
to its peak along with the valley that immediately follows it. Air is trapped and
compressed between this peak and valley to form another air pocket. Thus, each
peak/valley combination forms one air pocket that contains compressed air at the
pressure of the water at the peak. Recall that the density of air is small compared with
water by a factor of ~1000. As we saw in Section 14.2, negligible-density air in the
pipe displaces large-density water and reduces the elevation head that drives the flow.
The water flow rate, obtained from the solution of the energy equation, that includes

3Note that there is no air formation above the first valley since air can normally escape upward and be
released through the surface of the reservoir.
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Air Block

Second Valley

Figure 14.3  Water flow in a wavy inclined pipe partially filled with air. After formation of
air pocket.

this “reduced elevation head,” may not be able to satisfy the design requirements for
the system. This is the fundamental problem associated with air pockets.

We see that to assess the impact of air pockets on the performance of a gravity-
driven water network, there is a need to solve the energy equation for flow rate by
using the reduced elevation head. Also needing our attention is the major loss term
since the wetted surface area of the pipe, where the major loss occurs, is less than that
for a totally water-filled pipe. Thus, the major loss in a partially air-filled pipe is less
than its totally water-filled counterpart.

There are several things to keep in mind while assessing the effect of air pockets on
network performance. First, as noted above, the results of our analysis are worst-case
because to keep the problem tractable, we must assume that all air that was initially
in the pipe remains during the filling process. Air that is directly removed by the
flowing water or entrained in the water and carried away, reduces the negative impact
of air pockets on the water flow rate.

Second, the situation depicted in Fig. 14.3 is idealized. For there to be flow in
the system, water must trickle from each peak to the following valley. Therefore, the
pipe is not full and the energy equation needs to be modified to account for this. For
reasons of simplicity and because this effect is not large, we will neglect this in the
analysis that follows.

Third, vent valves installed at the high point in the system, especially those closest
to the source of water, may be used to reduce or eliminate any penalty in flow rate
arising from air pockets. However, it must be kept in mind that these valves, if manual,
must be operated in a reliable way by personnel in the local community. Whether they
are manual or automatic, regular check-ups and maintenance must be performed on
them to ensure they remain in good working condition. If not regularly attended, the
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air valves will not function as designed and the system may accumulate air over time.
Thus, the models developed in this chapter are worthwhile since they can predict the
worst-case performance of the network if it is left unattended.

Finally, the presence of air in the system is not just the result of filling an initially
air-filled pipe with water. Air can get into the system in many ways including air
released from the water itself (even cold water contains dissolved air), and through
vacuum breakers installed at the source (see Section 13.9). Thus, removal of air from
gravity-driven water networks is an on-going responsibility of a community to ensure
proper performance of the network.

14.4 THE EFFECT OF AIR POCKETS ON FLOW RATE

The fundamental problem associated with air pockets is the presence of air in the
system that reduces the driving force for flow. There are two ways of analyzing this
problem. The first, referred to as the “simple approach”, neglects the compressibility
of air. In doing so, a single, relatively simple, single linear algebraic equation for
(Q is obtained, which we can use to calculate the effect of air pockets on ). The
second includes the effect of air compressibility but at the expense of the need to
solve a system of nonlinear algebraic equations for the pressure distribution in the
network and @). The computational effort for the latter is considerably greater than
for the former. In both cases, the value for Q) is conservative, meaning that it is an
underestimate of the true value for Q.

Because of the simplicity of the simple approach, it is tempting to first assess the
problem of air pockets using this one. Based on the outcome of this calculation, the
designer can then judge the need to carry out a more-complete and more-realistic
assessment by including the compressibility of air.

Perhaps a more compelling reason for using the simple approach is that it forms
the fundamental basis for understanding the more-complete problem where air com-
pressibility is included. In other words, the more-complicated, more-exact problem
is more easily understood by first learning the simpler one.

14.4.1 A Simple Approach

The simplest approach to determine the effect of air pockets on the flow is to neglect
compressibility of the air. This approach overestimates the length of pipe occupied by
the air and produces a lower-than-actual estimate of the elevation head that drives flow
in the system. In this sense, the present approach is “worst-case” (or conservative)
but, since the compressibility effect of the air is neglected, relatively simple formulas
may be obtained for the reduced elevation head and wetted (with water) pipe length.

Consider the geometry shown in Fig. 14.4, which consists of an inclined pipe of
constant diameter, [J, having numerous local peaks and valleys. The air pockets have
already formed in the manner as discussed above and appear in Fig. 14.4 as pipe
segments b, d, and f. Water resides in each of the valleys and fills up to the peaks that
immediately follow. These are shown as pipe segments a, ¢, e, and g. The pressures
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Figure 14.4  Water flow in a wavy inclined pipe partially filled with air after formation of
many air pockets. Water appears dark and air appears lighter.

are designated as 1 at the start of each pipe segment (in the z direction) and 2 at the
end of the segment. For example, for segment a, the static pressure at the inlet of this
segment is p,; and its outlet, p,o. Because of the negligible density of the air and
the fact that no air is flowing, the static pressures at the top and bottom of each leg
of air are equal. Thus, for example, p,2 = pr1 = ps2 = pc1, and so on, as shown in
Fig. 14.4.

Because we have neglected the compressibility of air, the length of each pipe
segment is completely determined by the geometry of the pipe. Using the usual
symbol for length, L, we can write, for example, the length of pipe segment a as L,,.
Also, for pipe segment ¢, L. is the length of pipe between the valley at the start of
segment c to the peak at the end of this segment.

We begin the analysis by writing the energy equation, Eqn (11.4), for each pipe
segment containing water. We have

2 -2

gAz, — (‘I% + aa%) = CL’au—;—, Segment a
gAz. + ]—0;—1 — % = CL,cg, Segment ¢
gAz, + ‘%—1— — ‘I% = CL,E%, Segment e (14.4)
gAzg + B,Z_l — % = CL,Q%QQ, Segment g

where, as above, the terms Az refer to the elevation change from the top to the bottomn
of a pipe segment measured in the coordinate system of Fig. 14.4. For example, as
shown in Fig. 14.4, Az, appears as a positive value, whereas Az, Az, and Az, are
negative valued. If we assume uniform pipe diameter, D), for the moment, we can
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write % as 4Q /7 D? [using Eqn (2.21)] in Eqn (14.4). Obtain

4
pgAZa —Da2 = (CL at a)( gg )27 Segment a
4Q
PGAZ. + Pe1 — P2 = ch’C(m)z’ Segment ¢
4
PIAZ. + Pe1 — De2 = gCL,E(;r%)Q, Segment e (14.5)
p 4Q
P9AZg + Pg1 — Pgo = ECL’Q(W)Q’ Segment g

We also note that certain static pressures in Eqn (14.5) are equal; p.1 = Pa2, Pe1 = De2s
and pg1 = pe2. By adding the equations in Eqn (14.5) and canceling the appropriate
pressures, Pe1 — P2, and so on, we obtain

8Q)?
r2gDA
where hga = hge is the prescribed delivery static pressure head, say, at a tapstand,
and Az, Az, etc. are from the geometry of the network as shown in Fig. 14.4.

Equation (14.6) is to be solved for the flow rate (), where D has been already
determined from the methods developed in Chapter 11. Note that the elevation head,
referred to as the reduced elevation head above, Az, + Az, + Az, + Azg, is not as
large as that for a water-filled pipe. In contrast to a wavy pipe that is entirely filled
with water, if there are air pockets, as shown in Fig. 14.4, the constant air pressure on
the left side of each valley does not add to the overall elevation head.

When solving Eqn (14.6), recall from Chapter 11 that Cr, is the loss coefficient
that includes the major and minor loss terms [see Eqn (11.5)]. C', for each segment
depends on ) and D for the pipe (through Re), the segment lengths L, and the values
of the minor loss coefficients, K and L. /D, if they are to be considered.

Equation (14.6) may be generalized for any number of local valleys, N, written in
a compact form,

Az + D24+ Dz +A25—hget = (CLo+CrLc+CLe+CrLg+0)——= (14.6)

N N 8Q2
Z AZ]‘ — hdel = (a + ]2:; CL,]‘)W (147)

and solved for () to assess the effect of air pockets on flow, subject to the assumption
of incompressible air. Note that in Eqn (14.7) the summations are assumed to be
taken only over the segments of the pipe that contain water.

If the pipe diameter changes along the flowpath such that D, # D, # D, # D,
Eqn (14.7) becomes

Z Azj — hge = i Z CL” (14.8)

It is obvious from our inspection of Eqs (14.7) or (14.8) that Z;\;l Azj —hge >0
for any flow to occur. From this result, it is easy to see that flow in the system will be
choked if air pockets are such that Z;\;l Azj < hger.
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14.4.2 Consideration of Compressibility of Air

The fundamental picture of the formation of air pockets is unchanged once the air
is considered to be compressible. Complexity is added to the problem because the
lengths of the water-filled segments of pipe and the elevation heads for each of these
segments are no longer determined solely by pipe geometry. This is because when the
air compresses under the effect of pressure, the length of each air segment shrinks, and
correspondingly, the lengths of the water-filled segments increase. This can be easily
visualized using Fig. 14.4. One outcome is that any negative-valued elevation heads
that appear in Eqn (14.7) become less negative valued. This will serve to increase
the volume flow rate, @), relative to that determined from the solution of Eqs (14.7)
or (14.8). An additional outcome is that there is slightly more major loss since more
of the total length of pipe is wetted by the water. However, this effect is not large
enough to offset the reduction of the negative-valued elevation heads.

It is not possible to write a single equation for ) once the compressibility of air
is considered. The reason for this is that the terms Az and L (embedded in Cp) in
Eqn (14.5) are influenced by the static pressures at each peak through the ideal gas
law. Thus, a system of equations needs to be solved simultaneously that includes
Eqn (14.5), which was written for the water-bearing pipe segments, and the ideal gas
law written for each pipe segment that contains air.

We now outline the solution procedure. The energy equation for flow in segment
a is unchanged as it appears in Eqn (14.5) since the start and end of segment q is
defined only by pipe geometry. Next, we calculate the length of the column of air in
pipe segment b. For this segment, Eqn (14.3) may be written as

Ly _ Patm, (14.9)
Ly Pa2

where L; / Ly is the fraction of the length of pipe segment b that contains air as mea-
sured from the first peak in Fig. 14.4. In Section 14.4.1, we ignored compressibility,
so L} /Ly = 1. Once compressibility is considered, we see that L} /Ly < 1. Pressure
Paz2 is the source of compression of the air, which is initially at atmospheric pressure,
Patm. just before filling begins. From an elevation drawing of the pipe and known
L} /Ly from Eqn (14.9), the designer can then determine the values for Az and L.
(to be used in the major loss calculation for C7, ;). That is,

/
Azc(ﬂ) — Azc(pat'm)

Az, =
Lb Da2
L/ patm
L. = L (&)=L, (14.10)
( Lb) ( o2 )

where Az, and L. are functions of Lj/L; or, alternately, potm/pa2 as seen in
Eqn (14.10).

The procedure continues by considering the effect of pressures p.2 on Az, and
L., and pes on Azg and Lg, respectively. The following two equations, similar to
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Eqn (14.10), resuit

!
Ac(Ety = Az (Peimy

Az, =
¢ Ld Dec2
LI Patm
Le = L(3) =L, (14.11)
‘ ) =G
and
L/
Datm
Az, = Az (=L)=A:
g Q(Lf) g( De2 )
L = L=, (14.12)
! Ly T pea '
Introducing Eqs (14.10)-(14.12) into Eqn (14.5), we obtain
4
PIAZ, — Pao = g(CL*a+a)(7r—]§2)2’ Segment a
pgAZC(patm) +  Paz — De2
Da2
14 Patm 4Q 2
= §CL,C(LC(7);2—))(T(_D_2) , Segment ¢
Patm
PgAzZ(*——=) + Pc2 — Pe2 (14.13)
De2
_ p Patm 4Q 2
= §CL,5(L5( en ))(m) , Segment ¢
PgAzg(patm) +  Pe2 — Pdel
De2
P Paim 4Q
= QCL,g(Lg( Dos ))(m)a Segment g

where static pressure p,; (=14.7 psi) has been added to the first of these equations
since all pressures are in absolute.

The equations of Eqn (14.13) are a system of four nonlinear algebraic equations in
four unknowns, Q, pa2, Pe2, and peo. The static pressure pge; = Pg2 = pPGhaer is the
static pressure at the delivery location as prescribed by the designer. The functions
Az, Az, and Azg, and L, L., and Ly come from the geometry of the pipe also
specified by the designer. Equation (14.13) can are solved in Mathcad using the
Given...Find construct for solving system of nonlinear algebraic equations that we
employed frequently in the study of multiple-pipe networks.

Clearly, the time and effort needed to solve the system of equations that arises
when one considers air compressibility [Eqn (14.13)] is considerably larger than when
compressibility is neglected [Eqn (14.7)]. The designer can weigh the benefits against
this investment in time and effort when deciding the course of action. However, we
have found for the cases studied in this text that the flow-rate result based on the
neglect of air compressibility is overly conservative in many of these.
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14.5 AN EXAMPLE

Consider the elevation view of a simple gravity water distribution pipe, of nominal
1 % in. PVC, as shown in Fig. 14.5. The coordinates, (x, z), at the source, intersections

100 s
90\

z(m)
i/
/ﬂ/

\d
20 \‘
10| \_ € o~
° . _ J
0 500 1000 1500

x (m)

Figure14.5  Elevation view of a simple gravity water distribution pipe with peaks and valleys.
The source is at the entrance to segment a, and the delivery location is at the outlet of segment
f. Note the large difference between the horizontal and vertical scales.

of the pipe segments, and delivery location are: (0,100), (350,50), (600,60), (750,25),
(1000,45), (1150,5), (1300,10), and (1500,0) m. We wish to assess the effect of the
air pockets on the volume flow rate of water in the system. Based on the material
presented in Section 14.3, our inspection of Fig. 14.5 indicates that two air pockets
will form, one in segment b and one in d. Our approach will be to use Eqn (14.7),
the simple approach where air compressibility is neglected, and Eqn (14.13) where
compressibility is included. We will compare the results of the two, and with the case
of no air pockets.

To simplify the calculation, all minor losses will be neglected. This is justified if
the sharp turns in the pipes as seen in Fig. 14.5 are instead well rounded, reducing the
minor loss in the network. The static (gage) pressure head at delivery is assumed to
be 10 m of water (about one atmosphere of pressure). As always, the static pressure
at the source is atmospheric. Recall that for the equations from Section 14.4.2, where
the problem depends on pressure through the ideal gas law, all pressures must be in
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absolute units. Thus, we add 14.7 psi (10.34 m of water) to each gage pressure to get
absolute pressure. Obtain, p,y = 14.7 psi and hge; = 19.34 m.

First, we find the flow rate if there are no air pockets. The mean slope between the
source and delivery points is calculated from Fig. 14.5 as s = 0.0467. We will use
the design figures from Section 5.4, where the source pressure is zero gage pressure.
We calculate the dimensionless delivery static pressure, F', to be F' = hge /2 =
10m/100m=0.1. From Fig. 14.5, the total length of pipe in the system is determined
to be L = 1514 m, and the length of pipe if it were straight between the source and
delivery is 1503 m. Thus, A=1511m/ 1502 m = 1.0072. Following the procedure of
Section 5.4, we first use Fig. 5.5, for F = 0.1 and A = 1, to get @ = 1.9 L/s (result
reported to only two significant digits; refer to textbox B.14.1). Since the value for
A of 1.0072 is very close to 1, it is not necessary to use Fig. 5.9, for I’ = 0.1 and
A = 1.5, and then interpolate between these two. Therefore, flow rate is @ = 1.9 L/s.
It is interesting to note that both Egs (9.2) and (9.3), which assume turbulent flow in
smooth pipe, predict @) = 1.93 L/s; this is perhaps an easier alternative to the use of
the design graphs and almost as accurate.

B.14.1 The Significance of Significant Digits

It is noteworthy for the above calculation that we did not write @ as 1.90 L/s
because the visual nature of the solution for ¢ from the graphs produces un-
certainty beyond two significant digits. By writing Q = 1.90 L/s, we say that
we are certain of the answer to three significant digits, 1, 9, and 0. If the sheet
were used to calculate (), we may be able to write the solution to at least three
digits of accuracy because of the certainty we have in the formulas used in the
calculations and in the input data. This is because the friction factor correlation
used in Mathcad worksheet is accurate to at least three significant figures. Please
be aware that the certainty of the input data, such as elevations, slopes, and so
on, will normally determine the overall certainty of the design. By allowing the
value of each parameter to vary according to its certainty, it is straightforward to
determine the effect of the uncertainty of each parameter on the design.

Next, we neglect air compressibility and use Eqn (14.7) to calculate Q. For this, we
employ the Mathcad worksheet pipe sizing for air block example.xmcd
since the friction factor as a function of () is needed to solve Eqn (14.7). Alter-
nately, Eqs (9.2) and (9.3) may be used since minor losses are neglected. Pipe
segments b and d contain air over the entire segment lengths. The remainder of the
pipe segments flow water. The reduced elevation head, Az, + Az, + Az, + Azy, is
(40—20—5+10) m =25 m, and the length of pipe flowing water, Lo+ Lo+ L+ Ly,
is (603.75 + 250.80 + 150.08 + 200.25) m = 1204.9 m. The corresponding values
for s and A are 25 m/1500 m = 0.0167 and 1204.9 m/1503 m = 0.802, respectively.
Through the Mathcad worksheet, we calculate (2 = 0.066 L/s, a reduction of ~96%
compared with no air pockets. Thus, it is very clear that the effect of air pockets in the
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worst case of neglecting air compressibility, is to significantly reduce the flow rate in
the system. ¢ = 0.066 L/s is the lowest flow rate one would expect for this system,
which may occur on start-up where there is much trapped air in the network. It could
occur during steady state operation of the system, as well, if there is a continual inflow
of air, say though a vacuum breaker, at the source.

If air compressibility is included, we use Eqn (14.13) together with the same
Mathcad worksheet as above to calculate the flow rate. Consider Fig. 14.6 which is
Fig. 14.5 with notation added for elevations and pressures. The ideal gas law [e.g.,
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Figure 14.6 Same as Fig. 14.5 with notation added for elevations and pressures.

see Eqn 14.11] for pipe segment b is written as

L_i:&lt_m:%

(14.14)
Ly  paa Az

where Az, = 21 — 2p2 and Azj = 21 — 2,. The elevation z; is the location of
the water surface in pipe segment b measured in the vertical direction from the top
of the segment at zp;. In Eqn (14.14), Lj is the location of the water surface in pipe
segment b measured along the length of the pipe from the top of the segment at zy;
(see Fig. 14.6). Ly is the length of pipe segment b.

Likewise for pipe segment d, we obtain

é/i — Patm — AZ:i
Ly pa Az

(14.15)

The elevation change between the free surfaces of the leg of water in pipe segment
¢ may then be written as

Az, = 2pp = 22 + Azp — Az (14.16)
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Substituting for Az; from Eqn (14.14), Eqn (14.16) becomes

Aze = 23 — 22 + (201 — 22) (1 — 2 ) (14.17)
The first two terms on the right side of Eqn (14.17) represent the elevation change
between the bottom and top of pipe segment ¢. This is the elevation change that
would arise if the air were incompressible and it is negative valued as seen by our
inspection of Fig. 14.6. The third term on the right side of Eqn (14.17) is the head
of water that resides at the bottom of pipe segments b and ¢ and partially fills pipe
segment b. This is a positive-valued elevation head that offsets some of the negative-
valued head of the first two terms. The third term on the right side of Eqn (14.17)
appears only if air is treated as compressible, and in fact, we see that the head of
water, (251 — 2b2)(1 — Patm/Pa2), depends on the air static pressure that sits above
it’ Pa2-
An equation similar to Eqn (14.17) may be written for the elevation change between
the free surfaces of the leg of water in pipe segment ¢,

Aze = zg3 — 2eg + (201 — 2a2)(1 — p;‘m) (14.18)
c2
Finally, because of similar triangles, the above equations for elevations may also
be written for the water-filled pipe lengths, L. To write these, we let L* be the sum of
the length of the water-filled pipe segment plus the length of a partially water-filled
pipe segment that adjoins it. Obtain

L* = L.+Ly—L},

= L+ Ly(1— Patmy (14.19)
Da2

for water-filled pipe segment ¢ and,

L: = L. + Ly(1 — Batm) (14.20)
Dc2
for water-filled pipe segment e. In each of these equations the second term on the
right sides accounts for the length of water-filled pipe for segments b and d that join
segments ¢ and e at their respective valleys (see Fig. 14.6).

It is interesting to note that as the static pressures p,s or p.o become infinite,
air is compressed to a infinitesimally small volume. Both Egs (14.19) and (14.20)
show that, in this limiting case, the lengths of pipe are completely filled with water,
LY=L.+ Lyand L} = L. + L, for segments ¢ and e, respectively.

Equations (14. 17)—(14 20) represent the functions Azc (B2 ), Az, (Batm ), [ (Batm ),
and L (p“”" ), respectively, in Eqn (14.13).

The next step is to substitute numbers for all of the terms in Eqs (14.17)-(14.20) and
carry out the solution. This is done in Mathcad. Equations (14.17)-(14.20) become
for this example

14.7 psia,
Da2

Aze(paz) = [25 — 45 + (60 — 25)(1 )], m (14.21)
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14.7 psi
Aze(pez) =[5 — 10+ (45 — 5)(1 — — P58y (14.22)
Dec2
14.7 psi
L7 (pa2) = [250.80 + 154.03(1 — — 228y ' (14.23)
Da2
and 14.7 psi
L7 (pea) = [150.08 + 155.24(1 — —L P22y "y (14.24)
De2
Equations (14.13) for this example are written as
4
P9AZL — Pa2 +Pa1 = B(C’L,a + a)(—Q)2, Segment a
2 wD?

PQAZc(paz) +  Pa2 — Pe2
p ) 4Q
= —_ c L a - ,
ZCL, (L (p 2))(71'D2) Segment ¢

PgBze(pc2) + Pe2 — Pe2 (14.25)

= LCLo(Li(pe))(or)?, Segment c

Q.
D2’’’

PgAzZ;  +  Pe2 — Pdel
p 4Q

_ P 2
= QCL’Q(—WDQ)’ Segment g

where p,1 (=14.7 psi) has been added to the first of these equations since all static
pressures are in absolute.

Equation (14.25) is solved in the Mathcad worksheet pipe sizing for air
block example.xmcd for o, Pea, Pez, and . After converting all static pressures
to gage values, we obtain p,o = 24.5 psig, pez = 8.4 psig, pe2 = 10.9 psig, and
@ = 1.49L/s (-21% less than with no air pockets). The heads Az.(pq2) and Aze(pe2)
are 1.86 and 20.0 m, respectively, both positive values (compare these with —20 and
--5 m for the case where we assume incompressible air from above). Thus, although
a conservative estimate of the effect of air pockets on flow in the network is obtained
by assuming compressible air, this result is much more realistic when compared with
the case where we neglected air compressibility. In this case, the reduction of flow
rate by 96% compared with no air, is not realistic. However, there is considerably
more time and effort invested in obtaining the solution for the case of compressible
air.

This example illustrates the methodology for estimating the effect of air-pockets on
the flow rate in the network. Obviously, to reduce the negative impacts of air pockets,
the designer is encouraged at the outset to reduce the number of localized peaks and
their magnitudes in the design to whatever extent possible. The major slopes in the
network for this example (Fig. 14.5) appear in pipe segments at the very beginning
and near the end that gives rise to large static pressures p,o and p.2. However, in
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general, in a well-designed gravity-driven water system, static pressure is smallest at
the top and largest near the delivery location. Recall Eqn (14.14), where we see that
the amount of air in the pocket is inversely proportional to the air pressure. With static
pressure generally the lowest at the top localized peak of the system, the amount of
trapped air should be the largest at that location. Thus, air vents, when used, should
first be located at the highest local peak to assist in the removal of air.

14.6

SUMMARY

Based on the discussion and developments in this chapter, we can summarize the
above as follows:

Air pockets in a gravity-driven water network are realistic, and their formation
must be anticipated in any system where there are local peaks and valleys,

The impact of an air pocket is always to reduce the water flow rate relative to
the Natural flow rate, that which would occur in the absence of any air pockets,

A vacuum breaker installed at any location in the network may continuously
introduce air into the system. While desirable from the perspective of reducing
the local static pressure at key points in the network to prevent possible pipe-
wall collapse, a vacuum breaker is undesirable in the sense that it introduces
air that assists in the formation of air pockets.

By neglecting the compressibility of air, it is relatively easy to estimate the
flow rate that occurs in the presence of air pockets. However, this produces a
conservative result, and for the limited number of cases tested for this writing,
may not be of much practical value. The more-realistic approach is to model air
as compressible. However, the calculations are significantly more complicated
and time consuming.

The problem of air pockets, and their negative impact on the flow, can be greatly
reduced by installing air vent valves at local peaks. Manually operated vent
valves must be opened on a regular schedule if they are to be effective. Even
if automatic valves are used, air vent valves are maintenance items and need
routine inspection to ensure proper operation.
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CHAPTER 15

CASE STUDY

By J. Ermilio and G. F. Jones

“One is trusted because one trusts, and one can trust because one knows one is
trusted.”
— Brother John of Taizé on trust between a teacher and student

15.1 ENGINEERING DESIGN: SCIENCE AND ART

Engineering design, as discussed in Chapter 1, is composed of differing weights of
engineering science and art. The science part consists of most of the hydraulic design
that is the core topic of this book, along with other quantitative-based design perhaps
associated with pipe supports, structural integrity of tanks, and so on. The art of
water distribution network design consists of “rules-of-thumb” or guidelines, passed
along by engineers and other experienced workers, that normally lack a fundamental
theoretical basis.! An example of this would be the recommended range of flow

!In other applications, the art of design may also address the conceptual or graphical aspects of a process
or product that have no little or no quantitative bases.
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speeds in a pipe from the standpoint of pipe-wall erosion at high flow speeds and
sedimentation of particulates in the flow at low speeds. It is unlikely that extensive
systematic studies have been performed for erosion rates of different types of pipe
materials with flows of different fluids at different speeds and different particle load-
ings to determine a theoretical value of speed below which erosion may be neglected.
Likewise, the theoretical minimum flow speeds for various particulate-loaded fluids
where precipitation begins are not commonly modeled. As noted in Chapter 13, flow
speeds between ~0.7 and -3 m/s are known from experience to be such that neither
sedimentation nor erosion should be a problem in most cases.

Both the science and art of design will be considered in the case below.

The case presented in this chapter pertains to an actual system with actual dimen-
sional and flow rate data, and application and discussion of real-world constraints.
Thus, the case amplifies and, in certain instances, goes beyond the analysis and design
content already treated in this text. In addition, it gives the reader an opportunity to
work with the appropriate Mathcad worksheets to carry out the design calculations.
Engineering tradeoffs and sensitivity (or parametric) studies, like those discussed in
Chapter 11, will be demonstrated and discussed where appropriate.

15.2 DESIGN PROCESS REVISITED

The design procedure for this case study follows that in Chapter 13 and in Jordan Jr.
(2004); Jeppson (1976); Nayyar (2002); Trifunovic (2006); Swamee and Sharma
(2008) among others. It includes the following:

e From survey data, elevation and plan-view drawings are produced that identify
locations and elevations of all elements, pipe lengths, mean slopes, and so on.

e From a water-demand survey of the community, and an estimate of the rate of
population growth, the current and future water demands, peak and on-average,
are calculated.

e The water storage requirement is assessed and the volume of the water storage
tank is calculated.

e Knowing water flow rates, the intake (normally a single-pipe network) and
distribution (normally a multiple-pipe network) pipelines are designed. This
includes selecting the pipe material, calculating actual inside diameters (ID),
choosing nominal pipe sizes, and investigating flow control; (i.e., the sensitivity
of the performance of the network to the partial closing of globe valves installed
in the pipe segments).

o The details of the hydraulic design (including valve types and locations; by-
passes; flow speed limits; the need for and location of clean-outs, air vents, and
vacuum breakers; and consideration of air pockets and water hammer effects)

and nonhydraulic design (reservoir construction at the source; structural con-
siderations for the storage and possible break-pressure tanks and pipe supports,
etc.) are executed.
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o Costs are estimated, and final drawings are prepared for the engineering and
construction teams.

15.3 THE CASE

15.3.1 Background

You are an engineer working for an engineering company that specializes in the de-
sign and construction of large-scale water supply and distribution systems. Having
had many years of engineering experience, you decide to volunteer with a service
organization to provide technical assistance on water supply projects in remote com-
munities in the Philippines. As a part of this service, you have committed to giving
assistance to field volunteers who are working on water supply projects. You were
at an orientation seminar last month and you met a number of young engineers who
are working on projects throughout the country. One particular volunteer mentioned
a project she was working on and asked if she could fax you some details to get your
input.

A couple of weeks later, you are in your office and you receive a fax from the field
volunteer who you met at the seminar. She is currently in the Philippines living and
working in Mountain Village, and she is asking for your engineering assistance.

15.3.2 The Request

The fax you received reads as follows:

To: You
From: Ms. Volunteer, Mountain Village, Philippines

Dear Sir,

It was very nice meeting you at the technical seminar the other week. I have
been in Mountain Village working for the past 6 months and, would like to ask
your advice on a few things. After arriving here, I put together a map of the
community using my hand-held Global Positioning System (GPS) (Figs. 15.1
and 15.2) and, as a result, I have basically been appointed to serve as the town
engineer. Recently, there has been an outbreak of diarrhea in this area, and the
District Health Official is planning to visit (with some representatives from the
President’s cabinet) in the next couple of weeks to investigate. The President’s
wife has family in this area and because this is an election year, she wants to
help solve this problem so that her husband looks good at the national level. As a
result, if [ can put together a comprehensive plan for this visit, I could get funding
to build a water system in this area and help alleviate the current health crisis.
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To give you a background of this area; Mountain Village is composed of six
small neighborhoods with a total of 159 households and an estimated population
of 795 people. I looked up statistics from the national census and it looks as if
there is an estimated 2% growth rate in rural areas of the Philippines. The area
is relatively poor and people here earn an estimated $4,000 annually per capita,
primarily from raising livestock, such as cattle and growing rice. The area is
very mountainous and there is an estimated 47 in. of rainfall annually, with a
dry season that lasts about ~3 months. Included in the fax is a map I created
using a GPS. This map shows some key features in the community including the
village centers, estimated number of households, and approximate elevations. In
regards to water resources, there are a number of natural springs that are being
considered for development and a couple of small streams that flow through the
area. These streams currently serve as the primary source for most houses who
typically divert a portion of the water upstream into a hose and deliver water to
their homes by gravity. Whereas, this technique has been successful in the past,
the current health problems and issues with population growth have caused the
community to consider creating a public utility. Several of the key data I have
collected appear in Tables 15.1-15.3. Thank you for your suggestion regarding
collecting and tabulating these data.

In regards to materials, there is a supplier within a few hours who can deliver
to this area. I am not sure about different piping materials but, there are local
contractors here who can construct concrete water tanks. I looked into the cost for
various materials and, it appears the storage tank that they plan to build (roughly
8 m®) is going to cost ~$2,000 dollars for the materials. This would require an
estimated 60 bags of cement. Also there is PVC drain pipe that costs roughly
$1.00/m for 1-in. diameter pipe. So, if we were to construct a system with 1000
meters of piping, then we would probably need a total of $3000 for the project.
Does this sound like a reasonable approach?

As per your suggestion at the seminar, I collected some general information about
the sources of water and I sketched a site map of the area with some rough distances
and elevations. Finally, included in this fax is a preliminary layout of a piping
system that basically follows the path of a local road and some footpaths. Thank
you so much for your help. If you can reply with some general recommendations
about these options, this would be very useful for me.

Sincerely,

Ms. Volunteer J
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Mountain Village

Republic of the Philippines

Figure 15.2 Spot map. Community identification numbers are boxed.
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Table 15.1 Water Resources
Identification Description Safe Yield (@), L/s)  Elevation (m)  Straight-Line Distance
Symbol (id) to Proposed
Tank Location (m)

Sl Spring 0.8 310 200

S2 Spring 1.2 350 944

S3 Spring 1.3 320 1300

TI1(A) Storage Tank NA“ 290.4 NA®

V =8000L
(Proposed)

2Not available = NA.

Table 15.2 Water Collection Points

ID Village Name Households (HH)  Average Elevation (m)

1 Pasa Buena 25 275.8

2 El Barrio 23 273.7

3 Buena Vista 27 276.5

4 Rio Blanco 31 271.7

5 Piedra 25 275.5

6 Barrial 28 272.9

Table 15.3 Proposed Water Network Details

Node Distance (m) Elevation (m) Comment”
1 0 290.4 Storage Tank location, T1
2 76 276.4 Dist. from 1to 2
3 113 275.4 Dist. from 2 to 3
4 19 274.8 Dist. from 3 to 4
5 54 275.1 Dist. from4to 5
6 135 272.9 Dist. from 5 to 6, Barrial community, id-6, 28 HH®
7 80 275.8 Dist. from 2 to 7, Pasa Buena community, id-1, 25 HH
8 99 276.5 Dist. from 3 to 8, Buena Vista community, id-3, 27 HH
9 75 273.7 Dist. from 4 to 9, El Barrio community, id-2, 23 HH
10 95 271.7 Dist. from 9 to 10, Rio Blanco community, id-4, 31 HH
11 75 275.5 Dist. from 5 to 11, Piedra community, 1d-5, 25 HH

“See Fig. 15.2.
*Households = HH.
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15.3.3 Your Response

Dear Ms. Volunteer,

It was nice to meet you at the orientation seminar the other week. It sounds like
you have a very good opportunity to make a difference in the lives of the people who
live in Mountain Village. I admire the commitment you have made to this project
and, T am willing to help in any way that I can.

In regard to your inquiry, please keep in mind that in the analysis and design of
all water-supply problems you need to satisfy the following conservation laws from
engineering science:

o Conservation of mass (continuity).

e Conservation of energy (first law of thermodynamics).

In addition to these, you will also be interested in minimizing the cost of your network.

I will emphasize and elaborate on these in the appropriate parts of my response
below. In particular, cost mnimization will allow the unique determination of the
static pressures throughout the entire pipe network that you design. First, however,
you need to complete the planning part of the project. You have begun this with your
GPS-survey of the area, and recording of elevations and longitude-latitude coordinates
which, I assume, you converted to z—y (or Easting-Northing) coordinates for your
maps (see Appendix B in Jones (2010) for this material). The tables on water flow
rates from the available sources, the number of households, and the tapstand node
locations, distance, and elevations are a good first step in the hydraulic design of the
network.

In order to size the storage tank, and to determine the adequacy of the sources, you
will need to consider water supply and demand. Let us cover this first.

15.3.3.1 Water Supply and Demand One of the first considerations when
designing a water supply network is the availability of water (supply) in comparison
with the water needs (demand) in the community. Based on the information you have
provided, it appears that your community is very fortunate to have three springs that
collectively have a good yield and (it appears) enough elevation potential to serve the
project area. Another variable to consider is the water quality of these sources. In
most cases, if a spring is properly protected, it will provide a reliable supply of good
quality water. There are many types of water sampling and testing kits that might
help you determine which source is the best. Consult with the District Health Office
before they arrive and inquire about borrowing water testing equipment. Keep this in
mind when determining which source to develop.

It appears that all three springs are capable of supplying the water demands. If
you consider the 2% growth rate, you can estimate the future population in this area.
In order to do this, you have to first choose a design life for the infrastructure, often
20-30 years for this type of system. Choosing a 20-year design life, we can calculate
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the future population in this area using?
F=P(1+1)

where F is the future population, P is the present population, i is the growth rate
(%/100) per period (a year), and t is the number of periods (years) in the design
lifetime. From this equation, we estimate that the future population in 20 years will
be F' = 1181 persons.

Next, you have to determine the daily water demand for this community. There
are a number of techniques that can be used based on the current water consumption.
However, in most cases, the water consumption will change when a new system is
constructed. This is usually because the rate of water consumption per person is, to
a large extent, a function of water availability; increasing accessibility to water will
correlate with an increase in consumption. This is important because an increase
in water consumption often results in improvements in health and hygiene. If we
explore the relationship between water availability and consumption further, we would
discover that water demand can be accurately estimated based on the distance that
people have to travel to collect it. For example, if someone has a direct household
connection, then they will naturally consume more water than someone who has to
travel a long distance. The water demand will also depend on the end-use of the
water. If people have household gardens, then they might have an additional demand
for irrigation. If someone has livestock, this will also increase the demand. At the
same time, we should always keep in mind that there might be another source of water
that can be used to supplement the demand for these secondary needs.

The following tables (Tables 15.4—15.6) can be used as a starting point to estimate
water demand (Hofkes, 1983).

Based on the drawing you provided, it appears that you are planning to construct
a system that uses communal water collection points, commonly called tapstands,
to which the walking distance from each house is < 250 m. This usually means
that there would be very little secondary demand for water, so the average domestic
consumption could be estimated between 15 and 50 L/person/day. For the sake of
this design problem, let us assume that the current water demand is conservatively
estimated as 100 L/person/day, which includes an allowance for some light gardening.
By using a larger water demand, we will also be able to account for the possibility that
people will eventually connect a private water line to their houses so, this estimate will
allow for expansion in the future. This becomes more important later when we start
sizing the water distribution system, which is the piping network from the storage
tank to the various neighborhoods in the community.

The next step is to verify that the available supply from the yield of the springs
is greater than the present and future demand. This is determined by calculating the

2Some of the equations in this chapter appear elsewhere in this book. The symbots in this case study are
as would be used by you, the professional, responding to the aid-worker’s request for help with the design.
The symbols may or may not coincide with those appearing elsewhere for the same quantities. This is
intended for the purpose of exposing the readers to a variety of symbols and terminology for the same or
similar things that may be used in the hydraulics community.
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Table 15.4 A Starting Point for Estimating Water Demand

Type of Water Supply Average Consumption Range
(L/person/day) (L/person/day)

Public Water Collection Point

Distance (500-1000 m) 7 5-10

Distance (250-500 m) 12 10-15

Distance (<250 m) 25 15-50

Private Connection

Single Connection 50 30-80

Multiple Connections” 120 70-250

9As reference, eight months of data collected in 2008 from the rural community of Los Morales,
Nicaragua show a range of 78-115 L/person/day with an average consumption of 90 L/person/day.
This system was designed for private connections and has multiple connections per household.

Table 15.5 Water Demand Estimates for Various Facilities

Type of Facility Range
(L/person/day)
School 15-30
Hospital 220-300
Restaurant 65-90
Church 2540
Office 2540

Table 15.6 Water Demand Estimates for Various Livestock

Type of Livestock Rant%e
day)

(L/uni
Cattle 25-35
Horse 20-25
Sheep 15-95
Pigs 10-15
Chickens 0.015-0.025

instantaneous rate of water supply available, ¢}, and comparing it with the instanta-
neous rate of water demand, 4. Thus, if

Qs>Qd

is satisfied, you can proceed with the proposal to develop the source. Otherwise, you
should consider the current demand to see if it makes sense to develop the source as
measured to meet it.

In your project proposal, there are two sources available. Let us call these (s 1
and (), 2, where

Qs,1 = 0.8L/s- 60 s/min - 60 min/h - 24 h/day = 69,120 L/day
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Furthermore, the future demand in 20 years is
Q4,20 = 1,181 persons - 100 L/person/day = 118,100 L/day

The present demand is
Qa0 = 79,500 L/day

Therefore, the available supply at Spring 1 is not sufficient to meet the future or
present demand for the community. This means that you should consider Spring 2
and determine the available supply of this source. Obtain

@s2 =1.2L/s- 60 s/min - 60 min/h - 24 h/day = 103,680 L/day

Whereas the available supply at Spring 2 is sufficient to meet the present demand in the
community, it is not sufficient to meet the future demand. A combination of Springs 1
and 2, however, would be sufficient to meet the water demand of Mountain Village
well beyond the 20-year population growth and should therefore be considered in the
initial proposal. Ultimately, the final decision will depend on the available funding.
Spring 2 will suffice for the present demand but, if funding is available, both sources
should be developed. Additionally, it is not uncommon for there to be a seasonal
variation in the available water supply at the source between the rainy and the dry
seasons. For this reason, developing both sources may account for this difference in
the event of a reduced water supply during the dry season.

The conclusions from the discussion in this section are,

Qs1 < Qgoand Qg1 < Qqo0, Unacceptable

@s2 > Qq0, Acceptable

and
Qs1 +@s2 > Qu20, Acceptable; recommended if funding available.

15.3.3.2 Waler Storage Requirement The next element in the design that we
will consider is the required volume of water storage. The reason for water storage is
to ensure enough water supply for the times of peak water demand in the community.
Whereas, the water supply (on average) for this system is

Qs1+Qs2=2L/s

the instantaneous demand will vary throughout the day. At times, the demand will
likely be > 2 L/s, and other times it will be less. In fact, during the late evening hours,
the demand will most likely tend toward zero when most of the community is asleep.
Intuitively, during morning hours when people first wake up, water consumption will
increase. This is called the “morning-peak demand”. Furthermore, it follows that
there is an expected afternoon peak during the lunch-time hours and an evening-peak
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during the dinner hours, mostly related to food preparation and bathing.® The peak
demand will also be an important variable when designing the water distribution
system which will use a peak factor to determine the design flow rate. The design
flow rate along with mean slopes and tortuosities of all pipe, and static pressure
distributions at all pipe junctions are the primary variables affecting the pipe diameters
in the network.

A rough estimate for the water storage could be determined by allowing for 30—
50% of the total daily demand to be available in storage. This estimate would not
account for the continuous supply and could grossly overestimate water storage where
the supply is large enough to meet the peak demand. For example, if the peak demand
at any time of the day is less than the available supply, it would be feasible to build
the network without water storage. Thus,

If Qs > Qqp — Storage Not Required

where the subscripts s and d, p mean supply and peak demand, respectively.

For your project proposal, use Figs. 15.3-15.4 to determine the water storage
requirement. Figure 15.3 shows a typical demand schedule for understanding the
peak water demand. From this figure we see that there are usually a morning peak
of 40%, an afternoon peak of 20%, and an evening peak of 30%, where each is a
percentage of the total daily demand. The additional 10% of the daily demand occurs
during the time periods separating these periods. In many cases, the morning peak-
demand determines the water-storage volume because it is the largest of the three.

The relationship between storage volume and the rates of water supply and demand
is determined by the following integral formula,

Vs(lt)=vs(0)+/0 Qs(t) — Qa(t) dt (15.1)

where V(0) is the initial volume of water in the tank (at the start of the day; the end of
hour 1 or 1 am) and # is a dummy variable of integration. The integrand in Eqn (15.1)
is the net flow rate that enters the tank. A positive value of Vg(¢) at the end of any
hour indicates that the tank contains some water for use at that time, whereas a zero or
negative value of Vg (t) shows that the tank is empty. During the latter periods, there
is obviously no water available to meet demand. The volume of the tank is determined
by a trial-and-error procedure of choosing a series of increasing tank volumes and
calculating the water volume in the tank for each at the end of every hour of the day.*
In these calculations, we will assume that the tank is full at £ = 0 because of the normal

3This schedule is based on three meals a day and bathing during random hours and may need to be adjusted
depending on local customs. For example, Jordan Jr. (2004) notes a two-meal schedule in Nepal with ritual
bathing before each, which will produce a different demand schedule. In any case, water demand between
6 or 7 pm and 5 or 6 am is generally negligible.

A spreadsheet, like Excel, is the best way to carry out the calculations described here.
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Figure 15.3 Typical water demand schedule for the case of three meals per day.
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Figure 15.4 Water volume in tank versus hour of the day. Hour 1 is at 1 am.
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fill-up during the evening hours.> An acceptable volume, in principal, is that which
eliminates all zero or negative values of water volume at the end of each hour. For
practical reasons, a volume is normally chosen that keeps the number of hours where
there are zero or negative volumes to just one or two. The understanding here is that
communities will tend to adjust their schedules to accommodate water availability
once the network is installed and functioning (Jordan Jr., 2004). Uncertainty of the
design data would also argue for the acceptability of an hour of empty tank.

From this analysis and Fig. 15.4 (the data appear in Table 15.7) we see that a
20,000-L tank (20 m®) experiences a water deficit of ~1000 L for only one hour (at
7 am). Further calculation will show that the deficit at this hour reduces to~30 L for a
tank volume of 21,000 L. Based on the understanding of Jordan Jr. (2004) as above, I
would recommend a 21-m3 tank (if the budget is available) or one of 20 m? for your
design, though I suspect the cost difference will be small.

Another useful piece of information is the time required to fill the water storage
tank. This result will indicate if the tank is over- or under-sized. In this example, if
you were to construct a 20,000-L tank and the supply to the tank is ) = 2 L/s on
average, the time to fill the tank is

Vs,r

T Q.

Equation (15.2) shows that the tank will fill in s = 10,000 s, or ~2.8 h., This means
that during the evening hours when the community is not using water, typically about
a 10-h period (see the evening hours in Fig. 15.3 or 15.4), the tank would overflow
for > 7 hours in the evening (see Table 15.7 for this evidence). Overflow of water is
normal for nearly all networks. If there was an integrated approach to managing this
water supply, which I recommend, this water could be used for other purposes such
as irrigating fields or livestock demand.

Because the peak elevation head of your proposed design is just 14 m, there is
clearly no need for a break-pressure tank in this design.

ts (15.2)

15.3.3.3 Piping Design The largest part of engineering design in a water supply
project is the proper sizing of the water distribution network. This problem requires
maintaining a minimum static pressure in the network during peak hours of water
demand in order to ensure its integrity (low pressures, in the presence of even a small
leak in a pipe connection will allow contaminated ground water to seep into the pipe
flows). At the same time, financial constraints play a key role in the design of these
systems because local governments usually have a limited budget for infrastructure
projects. As aresult, finding a balance between the system cost and the system design
is very important for the engineer on a project like this.

In the past, pipe-flow hydraulics problems were solved using a series of compli-
cated charts, tables, nomographs, or computer programs. Data from these sources

>The designer should verify that this assumption is correct for her/his design. For example, if the source-
flow is diverted for night-time use elsewhere, the tank may be less than full at ¢ = 0. In this case, Vg (0)
is calculated for the particular design.
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Table 15.7 Water Volume in Tank Versus Hour of Day for 20,000-L Tank

Hour Qs Demand Qq Water State of
(L/h)  Percentage (L/h) Volume (L) Tank

1 7200 0 0 20,000 Overflow
2 7200 0 0 20,000 Overflow
3 7200 0 0 20,000 Overflow
4 7200 0 0 20,000 Overflow
5 7200 5 5,905 20,000 Overflow
6 7200 20 23,620 3,580 Filling
7 7200 10 11,810 —1,030 Empty
8 7200 5 5,905 1,295 Filling
9 7200 1 1,181 7,314 Filling
10 7200 1 1,181 13,333 Filling
11 7200 5 5,905 14,628 Filling
12 7200 10 11,810 10,018 Filling
13 7200 5 5,905 11,313 Filling
14 7200 2.5 2,952.5 15,561 Filling
15 7200 2.5 2,952.5 19,808 Filling
16 7200 5 5,905 20,000 Overflow
17 7200 10 11,810 15,390 Filling
18 7200 10 11,810 10,780 Filling
19 7200 5 5,905 12,075 Filling
20 7200 2 2,362 16,913 Filling
21 7200 1 1,181 20,000 Overflow
22 7200 0 0 20,000 Overflow
23 7200 0 0 20,000 Overflow
24 7200 0 0 20,000 Overflow

always required verification before using and were sometimes in question because of
the lack of appropriateness of the equations on which they were based.

The computer programs are typically “opaque” in that the user is not made aware,
or chooses not to be aware, of the program’s basis. This means that an executable file
is run on a computer, which is the result of a compilation of a source program written
in perhaps Fortran or C++.

Optimizing the network for minimum cost is, even today, not regularly done no
matter what design tool is used.

Fortunately, there are “transparent” computer programs used today that employ
the correct friction factor for pipe flow, address pipe cost appropriately, and simplify
the procedure for solving complex pipe-flow hydraulics problems. Though these pro-
grams are very convenient, fundamental knowledge of fluid flow in pipe networks is
very important to correctly program, and understand and interpret the design results.
One of the better books that bracket all of the above is Gravity-Driven Water Flow in
Networks: Theory and Design (Jones, 2010). This book is the only reference that I
know of that places all developments, equations, and design formulas on a sound fun-
damentals footing, includes simple charts for the design of single-pipe networks (for
the intake part of the network covered below), and supplies computational (Mathcad)
Worksheets for the solution of the more-complex distribution part of the network, all
of which include the constraint of minimum network cost. The Worksheets contain
the solution procedure in an easy-to-read, step-by-step manner, and appears as if it
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Node 1A h!ode 1B
Spring Intake Spring Intake
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Node 1C

Qi42:=0.8 I,\"s )

Liaz =200 m Spring Intake
Qez=1.21/s NA
LiB-} =944 m

Node 2

Water Storage Tank
11 =290.4m

Figure 15.5 Intake line diagram.

were written on paper. I have included the Worksheet for your information with this
mailing.

Based on the charts developed by Jones (2010), we solve this problem by first
starting at the source and designing the intake system to provide water to the storage
tank. Using the appropriate Mathcad worksheet provided by Jones (2010), we will
then solve the problem of delivering water to key locations in the community taking
into consideration peak demands in the distribution system.

Intake System The connection between a source and the tank is by a pipe having a
single diameter. If there are no local high points in this pipeline (from your drawings,
none appear), this is known as a single-pipe network (or subnetwork, since it is a part
of a larger one, but we seldom refer to it this way; a pipe that distributes water to
an end point by gravity and has no branches along its length is known as a gravity
main) and there is a particularly simple tool available to design these as I will discuss
below®. First, we need to know the flow rate from each source (Q; a2 and Q1 2),
the mean (or average) slope of each pipe (s1 4,2 and 51 g 2), and the actual pipe length
between each source and the tank. I have revised the map that you provided to identify
the values for these parameters (Fig. 15.5).

From the data you have already provided, I know that Q142 = 0.8 L/s and
Q1p,2 = 1.2 L/s. The slopes are calculated from data in Table 15.1 and Fig. 15.5.

310 m — 290 m
=20 AN 010
514,2 200 m

61 will neglect minor losses that come from fittings, such as clbows, because these are nearly always small.
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F=0, 4 =1, No Minor Losses

Q (liters/s)
3

Mean Slope, s

Figure 15.6  Design graph for intake system for sch. 40 PVC pipe and A = 1.0. F =
hd/zl = 0.

where I rounded down 290.4 m to 290 m because 0.4 m is unrealistically precise given
that it is from a GPS device. For the second pipe, I calculate a slope of s, g 2 = 0.064
using the same method.

Now, let us begin to calculate the pipe sizes needed for the intake system. The
three parameters that are needed are volume flow rate, mean slope, and a term called
the tortuosity, A, of the pipe. The tortuosity is the ratio of the actual length of pipe to
that if it were run directly (along a straight line) between the source and tank. There
are insufficient data for me to calculate this from what you have supplied. However,
typical values for many networks where there is a normal amount of circuitousness in
the pipelines between the source and storage tank is A ~1.25. I will assume A = 1.25
for each pipe.

The appropriate design charts for the case of A = 1.0 and 1.5 are presented in
Figs. 15.6 and 15.7, respectively, for PCV sch. 40 pipe. I will interpolate between
these to get results for A = 1.25 since there is no single chart for this value of A.
Also, note that these figures assume that the tank is at atmospheric pressure (since, of
course, it is open to the atmosphere). If we were trying to design a pipeline from the
tank to a tapstand where we desire a nonzero static pressure head, we would specify
a value for the ratio F = hy/z;. Here, h, is the static pressure head at the delivery
location and z; is the elevation head of the source, and we would use the design chart
appropriate to a value nearest this value of F'. Of course, in our case F' = 0 since the
static pressure head at the top surface of the water in the tank is zero.

For Q142 = 0.8 L/s and s14,2 = 0.1, obtain 1-in. sch. 40 PVC pipe for Dy 4,2
from both Figs. 15.6 and 15.7. In the same manner, for Q142 = 1.2L/sand 8142 =



404 CASE STUDY

F =0, % = 1.5, No Minor Losses

Q (liters/s)

Mean Slope, s

Figure 15.7 Design graph for intake system for sch. 40 PVC pipe and A = 1.5. F' =
hd/zl = 0.

0.064, obtain a lé—in. sch. 40 PVC pipe for D; g 2 from both figures. Because the
same pipe diameter is obtained from charts for A = 1.0 and 1.5, we see the lack of
sensitivity of pipe size to tortuosity in the range of 1.0 < A < 1.5 for this design.

If PVC pipe is not available, or you are required to use galvanized (GI) pipe
because of local restrictions, you should refer to Fig. 5.13 of Jones (2010) for the
chart appropriate to GI pipe. In this case, the Jones Charts yield a pipe diameter of
1 %—in. sch. 40 GI pipe for D 4,2 and 2-in. sch. 40 Gl pipe for D, g ». The differences
between the results for PVC and GI pipe are attributed to the difference in the pipe
relative roughness for these materials. The PVC pipe is smoother and thus exhibits
less frictional loss.

Note the following: In your initial letter, you mentioned a supplier who can provide
PVC drain pipe. This is not recommended for water distribution networks that are
pressurized. Take time to visit the supplier to determine if there is pipe available
appropriate for pressurized water. Different suppliers will provide pipe material
specifications as either sch. 20 (thin-wall), sch. 40 (standard-wall), or sch. 80 (heavy-
wall). A sch. 20 pipe is drain pipe and is not suitable for pressurized networks. You
should use sch. 40 pipe wall thickness. A sch. 80 pipe wall is too heavy duty and is
normally for industrial applications. Some suppliers may also reference pipe using
SDR (Standard Diameter Ratio). This is the ratio of the pipe outside diameter to the
wall thickness. Normally, SDR 26 or SDR 13.6 pipe would be appropriate for your
network. Keep in mind that pressure pipe can be significantly more expensive than
drain pipe. It is not uncommon for unscrupulous contractors to try to save money
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on a contract by using a lesser-quality pipe than specified. For this reason, close
supervision during installation is needed to ensure the use of proper materials.

Before moving on to design of the distribution part of the network, I offer a few
comments on how what we have just done relates to the fundamentals of fluid flow.
You may be curious about this. First, mass is conserved for the flow in both of the
pipes since the volume flow rate that enters a pipe is the same that leaves it. Second,
the design charts used above are developed from the solution of the energy equation
(really, mechanical energy equation) for pipe flow. From your education, you may
recall this as the first law of thermodynamics,

=2 —2
. T u L
m[(%1 tetang +g) - (%2 ter+ar+gz) =g

where 77 is the mass flow rate, e is the internal energy per unit mass, g is the accel-
eration of gravity, and ¢ and 1 are the rates of heat transfer to and work done by the
system, respectively. States 1 and 2 are at any two arbitrary locations along the pipe
flow path, where the normal convention is that state 1 is upstream and state 2 is down-
stream. The terms in each parentheses on the left side of this equation account for
pressure energy, kinetic energy, and potential energy, all per unit mass of fluid. The
term « is the ratio of the kinetic energy in the flow to the kinetic energy based on the
mean flow speed, . It accounts for the non-uniform velocity distribution through the
cross section of the flow and is connected with the acceleration of the flow between
two different flow speeds in the pipe. For example, if the velocity distribution were
uniform through the cross section of the pipe, a would equal 1. Of course there is no
rate of work done on or by the water flow in a pipe , so w = 0.

Upon simplifying this equation with zero static pressure at the source and tank,
and negligible change in kinetic energy due to flow acceleration from the source to
the pipe, we get

s1-F) 8Q* QD) _,
A n2g D5
Here, f(Q, D) is the Darcy friction factor (the one you would normally read from
the Moody diagram), @ is the volume flow rate, and s, F, and A are as defined a few
paragraphs above. Thus, when using the design charts Figs. 15.6 and 15.7, you are
really using the energy equation to solve for the pipe diameter, D, for your problem.

Distribution System Using the table you provided in your fax, I have revised the
spot map that you also provided (Fig. 15.2) to identify all of the key locations in the
network (see Fig. 15.8; the trunk pipeline in the network in this figure is sometimes
referred to as a “distribution main”). The label attached to each of the key locations
is commonly called a node. I also included some important information about the
expected number of households at each connection, as well as information about the
expected peak flow rates through each section of pipe. We will then look at each
section in the system and size the piping so that it will deliver a minimum pressure
of 10 psig (~7 m of water head) at the required peak flow rate.

Before explaining the water system design specifications, we should first discuss
how the peak volume flow rate was determined. Using the same method as above,
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Figure 15.8 Detailed schematic diagram.
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Table 15.8 Summary of Results for Peak Design Flow Rates

Household Size 5 tgersons/house
Growth Rate 2%

Design Life 20 gears
Daily Demand 100 L/person/day
Peak Factor 32

we first determine the expected future population at each service location by using a
2% growth rate for a 20-year lifetime. Note that we use an average household (HH)
size of 5 persons/household based on the information you provided. Thus,

F =P+t

where, for node 7 for example, P = 25 houses - 5 persons/house = 125 persons,
and F' = 186 persons is the population at node 7, where ¢ is 20 years in the future.

The nextstep is to determine the total daily demand at the node based on an average
household daily consumption of Q); = 100 L/person/day. For the pipe connected by
nodes 3 and 7 (designated by subscript 3-7) for example, this is the amount of water
that would have to pass through this pipe over a 24 hour period. Thus,

Q37 = F3_7-Qq = 18,600 1/day = 0.215 L/s

Finally, we need to account for the peak demand on the system which, based on
the demand model from Fig. 15.3, is 40% of the total daily demand in a 3-h period
during the morning peak. This is the highest of the three peaks seen in Fig. 15.3
so this 3-h period is the basis for the calculation of the peak demand. If there were
uniform (nonpeak) demand during this period, one would expect 3 h/24 h = 1/8 =
12.5% of the demand. Thus, we need to increase the volume flow rate from 12.5
to 40% by multiplying the nonpeak volume flow rate by a factor of 40/12.5 = 3.2
to obtain the peak flow rate. The value 3.2 is called a “peak factor”. The peak
volume flow rate determined in this manner is referred to as the “peak (or design)
volume flow rate”. For example, for pipe segement 3-7 in Fig. 15.8, we obtain
Q3-75,=32-0.215L/s = 0.688 L/s = 0.69 L/s. The subscript p on the flow rate
refers to peak.

The results of this discussion on peak volume flow rate are summarized in Ta-
ble 15.8.

Using the same procedure from the above paragraphs, we calculate the design
volume flow rate for each external node (or community tapstand) and for each segment
of the distribution main (at internal nodes) shown in Fig. 15.8. Using the law of mass
conservation (also known as the continuity equation) we can determine the design
volume flow rate for each segment of pipe in the network.

The continuity equation is written as

ZQin—ZQout:O
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Table 15.9 Volume Flow Rates for Distribution Network

Pipe HH Connected  Present Pop. Future Pop. Demand Peak Volume Flow
Segment (Persons) (Personsg) (L/day) Rate (L/s)
2-3 159 795 1,182 118,200 4.37
34 134 670 996 99,600 3.69
4-5 107 535 795 79,500 2.94
5-6 53 265 394 39,400 1.46
3-7 25 125 186 18,600 0.69
4-8 27 135 201 20,100 0.74
5-9 54 270 402 40,200 1.49
9-10 31 155 231 23,100 0.85
6-11 28 140 209 20,900 0.77
6-12 25 125 186 18,600 0.6

where the summations are taken over all of the inflows to a node (Q;,,) and over all
outflows from a node (Q,,;). For example, apply the continuity equation for node 6
in Fig. 15.8 to get

Qs-6p = Qo-11p + Qe—12p

Knowing the design volume flow rates for the tapstands at nodes 11 and 12, we obtain
Q56 =0.77TL/s+0.69L/s =146 L/s

The same procedure is followed for node 5 from which the value for Q45 is
determined, and so on.

The volume flow rate results for the distribution network are summarized in Ta-
ble 15.9 and shown schematically in Fig. 15.9.

The Mathcad Worksheet: We are now ready to use a Mathcad worksheet to calcu-
late the pipe diameters in the distribution system. The network of connected pipes in
this system forms what is referred to as a “multiple-pipe network.” To determine the
diameters for each pipe segment, we need to solve an energy equation for each, where
the volume flow rates are given in Table 15.9, and the pipe lengths and elevations of
each node are from Table 15.3 which refers to your Fig. 15.2.

The Worksheet appears in Figs. 15.10-15.13 and I have attached a copy of the file
to this mailing. The Worksheet is divided into three sections. These are preliminaries,
and the forward and reverse solutions. The forward solution calculates the theoretical
diameters that satisfy the energy equation for prescribed flow rates (), pipe lengths
(L), and elevation changes (A z) for each pipe segment in the network. Once obtained,
a nominal pipe size having the next largest ID is normally chosen for each pipe [see
Chapter 3 in Jones (2010) for pipe dimensions]. The reverse solution uses the actual
ID of the selected pipe sizes to calculate the actual volume flow rates and static
pressure heads at each junction in the network. The static pressure heads at each
pipe junction in the forward solution are arbitrary if we consider just the continuity
and energy equations. Cash conservation (i.e., minimization of pipe cost) is used
as a constraint to determine unique values of junction static pressure heads, (i.e.,
those that minimize cost). This is done in the Mathcad Worksheet using the construct
Given...Minimize.



409

THE CASE

Jas/s133 69°0 = D

's91e] MO dwnjoa uS1sap 23 Surmoys weierp oNeWAYOS ST dIndig

295/519M1 58°0 = 5 D

. v

o1

29s/s19))| £9'0=°D

6T =*°D
(5]

Tt

[ ]
s
sas/sial| £L'0 =" \

sasfs1a 69°E="D
235{s10Ul 9Y'T =TS D £

s fsay| pe'T =" 0
J8s/s1a41 69°0 =D

IesfsiBnvL0=""0 Jasfsiay LEY=*TD

saujddijiyd ay3 Jo gnday

aFe|up wieunoy




410

CASE STUDY

The preliminary calculations in the Worksheet includes the following steps:

Definition of water properties of density, p, and viscosity, v.

A convergence tolerance, TOL, used in Mathcad to determine when a root-
finding algorithm. has found the root to sufficient accuracy.

Definition of Reynolds number (Re) as a function of @ and D, and « as a
function of Reynolds number.

Setting the absolute roughness of the pipe wall.
The friction factor function as defined by Eqs (2.16) and (2.17) in Jones (2010).

The correspondence between nominal pipe size and D for the pipe material
and type (schedule or SDR as necessary) of pipe under consideration (I will
consider sch. 40, PVC pipe in this case).

Cost data for the pipe as a function of nominal pipe size. You will need to adjust
these values to pipe costs in your community. I assume values from central
Nicaragua from several years ago.

The forward solution includes the following:

Initial guesses for the values of D,

Values for the input parameters for each pipe segment in the network, including
pipe lengths L, volume flow rates (J, appropriate minor loss coefficients, K
and ( —g— )e. and elevations, z. I assumed a globe valve in each pipe segment and
included K = 10 for each. This value corresponds to an open globe valve;
see Chapter 2 in Jones (2010). I ignored all other possible minor losses for
this analysis. Once nominal pipe sizes are selected after the forward solution
is obtained, this valve can be adjusted to achieve the correct design flow rates
in the distribution system.

Definition of the energy equation for each pipe segment of the network. Each
is given a symbol r and the needed functional dependence.

Formula for the total pipe material cost, Teosz,1 and Tepst,2. They are added to
get the total pipe cost, 1.

The solution of the energy equations using either the Given...Find construct
or Given...Minimize construct. The latter is discussed in Chapter 10 and
further in Section 11.4.4 in Jones (2010).

Plots of the results or secondary calculations, such as checking to ensure that
all equations are satisfied to the desired tolerance.

The reverse solution includes the following:
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Table 15.10 Pipe Sizes for Distribution Network

Pipe Length Elevation Theor. D Actual D (Nom.”) Actual @ Actual K
Segment (m) Change (m) (in.) (in.) (L/s)

2-3 76 14 2.88 3.068 (3) TBD® TBD
34 113 1 2.65 3.068 (3) TBD TBD
4-5 19 0 2.58 3.068 (3) TBD TBD
5-6 54 0 2.00 2.067 (2) TBD TBD
37 80 0 1.10 1.610 (1 %) TBD TBD
4-8 99 -2 1.49 1.610(1 7 TBD TBD
5-9 75 1 1.64 1.610 (1 7 TBD TBD
9-10 95 2 1.38 1.610 (1¥ TBD TBD
6-11 135 2 1.33 1.610 (1¥ TBD TBD
612 75 ~1 1.49 1.610 (13) TBD TBD

“Pipe is sch. 40 PVC.
bEntries labeled TBD need to be completed.

o Initial guesses for the values of () (from earlier in the worksheet) and static
pressure heads at the junctions of the distribution network.

e Values for the input parameters for each leg in the network as in the forward
solution; normally only K will be included here.

e The solution of the energy equations using either the Given. . .Find construct
or Given...Minimize construct, as above.

e Secondary calculations as above.

I refer you to Chapter 11 in Jones (2010), Section 11.6.1 for further details.

The theoretical and actual diameters for sch. 40 PVC pipe from the forward so-
lution are presented in Table 15.10. The values range from 3-in. nominal for the
segments having the largest flow rates to 1%—in. nominal for the branches. For nearly
all segments, I have chosen a nominal pipe size having ID slightly larger than the
theoretical value for D. This allows me to adjust the minor loss value (K) for the
globe valve in each pipe segment (in terms of the simulation in Mathcad this means
increasing or reducing the value for K) to obtain volume flow rates that match design
requirements.

Note that I have not completed this design. The reverse solution has been pro-
grammed correctly in the Worksheet, but the correct values for K for the pipe segments
have not yet been selected and thus remain for you to complete. You will want to
adjust the values of K to obtain the design flow rates. In this way, you will be assured
that the network will perform as you specified. Since increasing K for a given globe
valve corresponds to its closing, this result will also give you a feel for the sensitivity
of the flow balance in the network to the throttling required in each segment. In any
case, we understand that we are able to obtain the design flow rate in each pipe in the
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Table 15.11 Static Pressure Heads at the Junctions for Distribution Network

Node Static Pressure Head (m)  Static Pressure Head (m)

Based on Theor. D Based on Actual D
(Optimal)
3 12.26 TBD*
4 10.79 TBD
5 10.16 TBD
6 9.23 TBD
9 8.04 TBD

“Entries labeled TBD need to be completed.

system because we chose a pipe size larger than theoretical for all segments (with
one exception, but the theoretical and actual ID were nearly identical in this case).
Be aware that a globe valve, whose job is to throttle the flow (in other words, reduce
the static pressure), effectively reduces the pipe diameter in which it is installed.

As I mentioned above, if you plan to use GI pipe instead of PVC, you will need to
rerun the Mathcad Worksheet with a roughness value (¢) 100 times larger than that
for PVC pipe. Generally, you should expect slightly larger pipe sizes with GI pipe
because of the rougher wall.

The static pressure heads at the junction of multiple pipes in this system are shown
in Fig. 15.11. All values are acceptable because each is > 7 m as required by this
design. Once you solve the reverse problem, you will want to inspect these values
again to ensure their acceptability.

After adjusting the pipe diameters to correspond to nominal sizes, the total cost
of $2263 (central Nicaragua pipe-cost data,) is greater than the pipe cost of $1910
based on the theoretical pipe diameters, as expected. The latter was obtained by
determining the static pressure heads at the junctions that minimize pipe sizes and,
thus, cost. A few plots of cost versus the static pressure heads can be made in the
Mathcad Worksheet to determine the sensitivity of pipe size and cost to the pressure
heads. We refer to this exercise as a “sensitivity” or “parametric” study.

Unfortunately, it appears that your original assumption of $1000 for pipe will
need to be adjusted by more than a factor of two. Perhaps the municipality or state
government will consider making up the difference at your request.

One way to reduce the cost of the material for your network is to use a composite
pipeline in place of a uniform-diameter pipe in one or more network segments. For
example, in your design, the diameter of segment 3-4 is 2.65 in. We chose a 3-in.
(nom.) PVC pipe having an ID of 3.068 in. for it (see Table 15.10). The choice of a
pipe size larger than required has two effects: it costs more, and it does not dissipate
as much potential energy as it should. A composite pipeline is one of two diameters
in series that exhibits the same pressure drop as its uniform-diameter counterpart.
One pipe has a diameter (D,) larger than the theoretical one (of diameter D), and the
other has a diameter (D) smaller than D. The formula, valid for PVC pipe, for the
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Figure 15.14 The elements of a gravity-driven water network.

ratio of the length of pipe a to the overall pipeline length, L, is

& B D-19/4 _Db—19/4
L Da—19/4 _Db—19/4’

Dy <D< D,.

Once this equation is used to calculate L, /L, the lengths of pipes a and b are easily
determined (note that L = L, + L;). These results assure us that the frictional head
loss for the pipeline of theoretical diameter D will match that of the composite pipeline
of D, and D;. For your design, the theoretical D of 2.65 in. is bounded by nominal
2-in. (Dp = 2.067 in.) and nominal 3-in. (D, = 3.068 in.) pipe. With these, I
calculate L,/L = 0.818 and for L = 113 m, L, = 92 m. This gives L, = 21 m,
slightly reducing the cost of the network since less nominal 3-in. pipe is used. To
add flexibility to the design, I recommend reducing the length of the smaller-diameter
pipe as calculated by the above formula by perhaps a factor of 0.8-0.9. By doing this,
there will be “excess” static pressure not dissipated by major loss that can be used for
unanticipated needs.

15.3.3.4 Miscellaneous Hydraulic Elements There are other hydraulic ele-
ments in the network you are designing that need to be considered. Among these are
tapstands and miscellaneous things like valves, air vents, and vacuum breakers (see
Fig.15.14).

Water Collection: There are typically three types of collection points in a gravity-
driven water network. The water collection point can entail acommunal water facility,
a single household connection, or multiple household connections. It is important to
understand that the amount of water consumed and the design flow rate increases sig-
nificantly as the number of connections to system increases. A system that is designed
to supply communal water collection will be under-designed if private households
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begin connecting into the system after is has been installed. For this reason, it is often
advisable to design the distribution mains to be able to provide for private connections
regardless of the type of water collection. This often entails anticipating a future de-
mand on the system and oversizing the water distribution mains to be able to account
for a larger design flow rate. Since we estimated a demand of 100 L/person/day, we
have essentially oversized the mains to accommodate private household connections.

A Tapstand ~ Communal Collection Point: Communal water collection points are
often referred to as tapstands and are designed to deliver water to a central location
in an area to provide equal access to the collection facility. The number of taps can
be increased at a single collection point to provide more households with water and
reduce the waiting time for collection. An important consideration in the design
of a communal water collection system is the tapstand location. This can often be
a sensitive issue in a community as every household will want a tapstand located
close to home for convenience. For this reason, the final design and location of a
communal tapstand should include input from the local community. One of the roles
of the engineer or project manager in a communal water distribution system is to
facilitate the decision-making process for determining the site location of community
tapstands. Incorporating community participation in this phase of the project will also
ensure that any cultural considerations are taken into account and that the final design
is appropriate to the needs of the community. In most situations, a water collection
point is more than a physical structure because it also serves as a meeting point where
people make decisions about the community and spend a significant amount of time.”
For this reason, another design consideration in addition to maintaining good drainage
is having a clean, hygienic, and attractive place for people to socialize.

The project engineer is often involved in establishing minimum standards when
facilitating the final design of a water collection facility. From a technical perspective,
the number of tapstands in an area will depend on two variables, the number of users
and the distance to the collection point. Additionally, the final design of a tapstand
should take into consideration the site drainage as well as the structural integrity of the
design and the pressure limits of the valves, meters and fittings. Tapstand designs are
presented in Jordan Jr. (2004), Mihelcic et al. (2009), Anon. (1979), Anon. (1990),
and Jones (2010). The final water collection points should be determined so as to
provide for a convenient location for as many households as possible. The minimum
standard for most water supply projects is (Anon., 2004),

¢ A maximum distance of 500 m to the nearest water collection point,
¢ A minimum of one tapstand for 250 people.

Whereas, this standard is commonly used for water projects aimed at maintaining a
minimum standard, it is often more appropriate to determine the site locations based
on geography, site topography, and the community’s needs. Another approach would
simply estimate the time required to collect water and define the area using a minimum
recommended round-trip collection time.

7In sociological terms, this is like “the” local street corner or “watering hole” in an urban community.
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A poorly designed tapstand can often limit access to water by not taking into
account the site drainage and conveyance of waste water at the facility. This is pri-
marily a concern because standing water can create breading areas for mosquitoes
that is a vector transmission route for many environmental diseases in tropical cli-
mates. Additionally, poor drainage can often cause already vulnerable populations
within a community to become more isolated. An example of this is handicapped or
elderly people who already have difficulties accessing water. A properly designed
tapstand will take site drainage into consideration by locating the facility in an area
where standing water will not collect around the tap and where runoff will not impede
access. A typical installation will include some type of conveyance for waste water
such as a concrete channel or a drainage pipe that discharges the water to a natural
swale or a stone-filled soak pit. In some cases, the community may decide to use the
waste water for irrigation purposes.

The primary concern when designing the structural supports for a tapstand is
protecting the valves and fittings. In most cases, some type of stone or brick masonry
is used to support the stand-pipe; the water pipe that rises vertically to provide an
easier means of collecting water. Some designs use a steel reinforced concrete column
for this purpose, especially in areas where children have access to the tapstand. This
additional protection is necessary to prevent damage that may result if children were
to play around the water collection point.

An additional structural consideration is the protection of water meters or valves the
tapstand connects into the branch pipe. Where water meters and valves are installed,
a concrete or stone metering box with an access cover is often used to protect against
corrosion and tampering. If a gate-valve is installed, it is feasible to protect the valve
by simply using a 4-in. PVC pipe that is slotted at the bottom to fit around the valve
and has an access cap at the surface.

Pressure limits for public tapstands are important and need to be considered. If
the pressure is too high, the faucet valve may leak or prematurely wear when it is
opened slightly. If the pressure is too low, the water flow rate will be too small. Most
manufacturers of faucet valves rate the pressure limit in the range of 5070 psig which
translates to 35-50 m of water head [these generally agree with Jordan Jr. (2004)].
Under these conditions, the outlet velocity for a typical faucet with a design flow rate
of 0.2 L/s is highly turbulent, and would create an intense jet and splashing during
water collection that is not desirable. For this reason, the recommended pressure
limits at a water collection point often range from between 10-30 psig or, 7-20 m
of water head. In some circumstances, controlling the tapping pressure at the water
connection is not feasible due to terrain and material limitations. In these instances,
a pressure diffuser device [a fixed minor-loss element; see Chapter 7 in Jones (2010)]
can be installed at the location where the delivery pipe connects to the water main.
These devices should be designed specifically for the site conditions and can include
a series-connected globe valve, or an orifice-type of flow restrictor (Jordan Jr., 2004).

Private Connections — Single and Multiple: It is very challenging for an exter-
nal organization to control the number of connections to a community-based water
system. The management of private connections to a gravity-flow water distribution
system requires an intimate understanding of the day-to-day operations of the water
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Figure 15.15 cross-sectional view of large globe valve.

supply network, as well as the specific needs of the community. For this reason, the
role the project engineer is primarily to build the capacity of the local water associ-
ation and provide them with the skills and knowledge to make good decisions about
the water system. To meet these needs, it is recommended that the project engineer
incorporates training and capacity-building workshops into the project implementa-
tion so that local technicians and managers can make informed decisions about the
system’s operations.

Valves, Air Vents, and Vacuum Breakers: Both gate and globe valves appear in
Fig.15.14. A gate valve belongs to a class that may be thought of as “block” valves.
The purpose of these is to either allow the full flow to pass or be totally turned off.
No pressure reducing (throttling) should be performed with a gate valve because they
are not designed for this purpose and will prematurely fail if operated in this way.
The gate in this valve is moved up or down by rotating the handle. When the gate is
down, the flow is blocked, and when up, is fully open and out of the way of the flow.

Although a globe valve can be used as an “on—off” valve, its primary function is
to throttle or reduce the static pressure in the flow. The flow passageway between the
metallic disk and valve seat as seen in Fig. 15.15 is adjustable. When the passageway
is adjusted to be small, a large pressure drop occurs in the flow between the valve
inlet and outlet. Because of the importance of energy management in gravity-driven
water networks [see Section 1.5.1 in Jones (2010)], the globe valve is used in many
locations especially where appropriate for control and flow balancing, in addition to
intentional energy dissipation.

There is a need for air vents at local high points to vent trapped air in any water
distribution network. This is discussed more fully in Chapter 14 in Jones (2010),
where models for the potentially penalizing effect of trapped air in the network are
also developed. A bucket-type air vent opens to vent air when there is an air—water
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level in the body of the air vent. This level indicates the presence of air in the network.
Alternately, a gate valve on the branch of a tee fitting installed at the local high point
can be used to manually vent trapped air. Finally, a long vertical pipe attached to the
local high point may be used to vent air automatically. In this case, the top end of
the pipe is open to the atmosphere and its elevation must be approximately above the
surface level of the reservoir or nearest tank upstreamn from it.

A vacuum breaker prevents the formation of negative gage pressure in a flowing
pipe. Negative pressures in the flow are undesirable for many reasons which, I am
sure you can imagine. A vacuum breaker can be a purchased unit that is installed
in-line in the pipe. In this case, a spring in the body of the vacuum breaker allows air
from the outside to enter the flow should the pressure fall below a pre-set value. In
its simplest form, a vacuum breaker can be a vertical piece of pipe with an open end
at the top. This would automatically bring air into the network when the pressure of
the flow falls below atmospheric.

Finally, you will need to include gate valves at the lowest end of all runs of pipe
that form valleys. These will allow for periodic cleaning of solid debris from the pipe
that accumulates over time.

Non-hydraulic Design: Regarding the important topic of tank and reservoir con-
struction, much is available in the literature, which I assume you have access to, so I
will say just a few words. Water storage tanks are used for storing water during the
nonpeak periods for use during the peak periods of consumption as discussed above.
The design and construction of a water tank is a specialized field of engineering and
needs to consider geotechnical issues with the tank’s foundation and material selec-
tion for construction. In most cases, local expertise and resources can be utilized for
addressing these concerns. It is recommended to consult with a local engineer once
the final location of the storage tank facility has been selected. The local engineer
should make the final decision if the site selected is feasible from a geotechnical
point-of-view. A cross-sectional view of a typical water tank is shown in Fig. 15.16.

Local materials should be used for the construction of a water storage tank. In
some countries, elevated steel water tanks are designed for municipal water systems.
Elevated tanks can be complicated to construct and require very specialized skills
in welding and project management. Given the mountainous nature of your project
area, it is probably not necessary to plan for an elevated water tank.

Some areas of the world have successfully constructed water storage tanks using
ferrocement technology rather than concrete. Ferrocement water tanks consist of a
cement-rich mortar with a water-proofing agent that is plastered onto a steel-mesh
frame. This saves significantly in material cost as the amount of cement required is
much less than that for poured concrete tanks. It may even be feasible to construct
a buried or semisubmerged water tank, if the tank location is sited properly. Buried
tanks can be constructed with concrete block, brick, or ferrocement also have sig-
nificant costsavings because of a reduction in wall thickness and steel reinforcement
requirements.

Steel reinforced concrete water tanks are the most common type in developing
countries because the masonry and carpentry skills for construction are often locally
available. These water tanks are constructed using wood forms with steel-bar rein-
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Figure 15.16 cross-sectional view of water storage tank.

forcement. After the forms and the steel have been assembled, a concrete mixture of
Portland cement, sand, gravel and water is poured into the frame. The forms are then
removed after a 3-7-day curing period. In any water tank design and construction,
care should be taken to ensure that the water does not become contaminated as it
sits in the tank. For this reason, a concrete cover or a wooden roof is constructed
to prevent air-born contaminants from entering the tank. If a concrete cover is used,
steel reinforcement is needed along with an access hole for maintenance. If a wooden
roof is constructed, then some type of mess screen is needed to prevent animals from
getting inside. Finally, care should also be taken to install the piping accessories
prior to any concrete work. This entails determining the exact location, diameter and
material for the inlet, outlet, overflow and the clean-out pipes for the water tank. See
Fig. 15.17 for a picture of a protected valve box and Fig. 15.18 for a typical view of
water inlet flow to a tank and overflow arrangement.

For further details, please see Jordan Jr. (2004), Mihelcic et al. (2009), or other
references from reputable development guides.

I hope my response has been helpful to you. Please contact me if you have any
questions.

Sincerely,

You
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Figure 15.18 Tank inlet and overflow.
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CHAPTER 16

EXERCISES

3

“Practice makes perfect.
— Proverbs

16.1 COMMENTS

The exercises below are specific to the chapter as noted. Their order of appearance
generally matches that in the chapters. Unless directed otherwise, assume all pipe
to be sch. 40, IPS series, PVC pipe. Assume the water temperature is 10°C. The
solutions appear beginning midway through the chapter.

The index does not include entries in this chapter.

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 425
Copyright ©) 2010 John Wiley & Sons, Inc.
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EXERCISES

16.2 THE PROBLEMS

Chapter 2

1. Theturbulent velocity distribution, which appears as the middle curve in Fig. 2.2,

may be approximated based on the “1/7-power law”

u(r) T1y7
m (R) (16.1)

where 1, is the maximum velocity of the flow at the pipe centerline, r is the
local radial location, and R is the outer radius of the pipe. Calculate 4/t a0
forr/R 0f 0.05,0.1,0.2, 0.4, 0.6, 0.8, 0.9, and 1.0 based on the 1/7-power law
and qualitatively compare with the velocity distribution in this figure.

From the general energy equation, Eqn (2.7), develop Eqn (2.25). Simplify it
to obtain Eqn (2.40) for minor-lossless flow.

. Using Egs (2.2), (2.6), and (2.9), calculate the temperature increase from inlet

to outlet for water flow in a 100-m long, straight, 2-in. nom. PVC pipe at a
flow rate of 1.2 L/s. Neglect minor losses and assume there is no heat transfer
from the pipe to the surroundings. Comment on the significance of the results.

Make a list of the restrictions applied to the Bernoulli and energy equation and
compare them. Interpret these restrictions in your own words.

The following flow speed and head loss data were collected in a lab test for
steady flow of water in a straight, horizontal brass tube of inside diameter 1/4 in.

he 137 939 773 744 634 577 492 372 228 117
[ 25 21 1.8 172 161 15 1.4 114 09 0.6

hp is in inches of Hg, and % is in m/s. Use this data to validate the Darcy—
Weisbach equation [Eqn (2.10)]. Calculate and plot the friction factor against
Re from the data and Eqn (2.10). How do the results from Eqn (2.10) qualita-
tively agree with these data?

Beginning with the energy equation for a single-pipe network where the pipe
is straight, Eqn (2.33), develop the same for a minor-lossless flow in a pipe of
arbitrary length and reasonably small slope, Eqn (2.45).

Consider a smooth, single-pipe network of mean slope s = 5.5%, tortuosity
A = 1.18, and peak elevation z; = 20 m, with single globe valve installed at its
lowest point. On the other side of the valve is atmospheric pressure. For a pipe
with ID of 2.067 in., plot the volume flow rate as a function of the minor loss
coefficient, K (K is proportional to the closure fraction of the valve). Vary K
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from 10 (full open) to 500,000 (nearly closed). Ignore other minor losses and
« in the network.

Calculate the volume flow rate in a galvanized iron pipe of ID 3.36 in. and
L = 3.4 km long. The pipeline is under 3-atm of pressure at the inlet and
the outlet discharges to atmospheric pressure. The elevation change, 21 — 23,
is —10 m. There is a partially closed globe valve at the discharge for which
K = 350. Neglect other possible minor losses.

Verify that 1° of longitude at the equator is~111,300 m. Refer to Appendix B
and use the Excel spreadsheet from Dutch (2009). What is the distance equiv-
alence of 1° of longitude at 40° latitude?

Consider the GPS data (obtained by averaging over 10 readings each for latitude
and longitude) in DMS format as shown in Table 16.1. Referring to the material
in Appendix B, calculate the latitude and longitude of the source in decimal
format and the mean slope between the source and delivery locations. The
elevation change between the source and delivery locations, Az, is 46.5 m
obtained by averaging 10 GPS elevation readings.

Table 16.1 Data for Exercise 10

Name Latitude Longitude

Source 19° 13 47" -75° 18° 50”
Delivery  19° 15722  -75° 19’ 207

Chapter 3

Look up and report the inside diameter and pressure rating for the pipe in the
following table. Report pressure rating in values as supplied in Chapter 3 and
in head of water (m). See Chapter 3 for the definition of the pipe materials
PVC, PE, and ABS.

Nominal Size  Wall Thickness Reference  Material

I in. sch. 80 PVC
3L in. sch. 40 ABS
Tin. sch, 40 PVC
1% in. sch. 80 PE
Tin. SDR 11 PE
78 mm SDR 13.6 PVC
25 mm SDR 21 PE

4 in. SDR 26 PVC
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14.

15.

16.

EXERCISES

Chapter 4

An oil refinery requires a flow rate of water (10°C) at 0.3500 m®/min. The
length of supply pipe is 1345 ft between the main and delivery location and
34 m below the plant. It is known that the run will require 10-90° elbows and
flow through the branch of a tee. Determine the minimum nominal galvanized
steel pipe size required if the supply and delivery static pressures are known
to be 1850 and 475 kPa, respectively. How is this calculation performed if
Method 2 (see Section 4.2) is to be used to solve for D? What impact will the
neglect of minor loss have on the calculation of D?

Use the Darcy~Weisbach equation, Eqn (2.9), and the friction factor from either
the Colebrook equation [Eqn (2.12)] or the Churchill correlation [Eqn (2.16)]
to calculate the head loss (in meters) per 100 m of straight pipe for volume flow
rates between 0.1 and 5.0 L/s and for the standard PVC pipe dimensions con-
tained in the appendices in Jordan (2004, reference Table V). For the absolute
wall roughness, assume smooth pipe. The value for the absolute roughness
for smooth pipe is presented in Chapter 2. Compare your results with those of
Jordan Jr. (2004) presented in Reference Table XI. Comment on the extent of
agreement between the two. Base Re on the kinematic viscosity of water at
10°C.

Plot head loss (in m) per 100 m of straight pipe versus the volume flow rate
and in the plot, ignore results for flow speeds less than 0.7 m/s and greater than
3 mfs.

InExercise 13, the kinematic viscosity was based on 10°C. Rework this problem
with the kinematic viscosity based on water at 27°C and compare it with the
results of Exercise 13. What is the range of variation between these two sets
of results, expressed as a percentage difference? Comment on the importance
of this effect in your designs.

Chapter 5

By making the appropriate assumptions for gravity-driven flow in a vertical
pipe, show that the energy equation, Eqn (2.40), reduces to Eqn (5.2). Using
Mathcad, solve Eqn (5.2) and reproduce the results that appear in Fig. 5.2.

In the community of Arena Blanca in central Nicaragua, there is nearly a uni-
form slope between the source and the tank and between the tank and the
tapstand in the village. Because of this we can assume the pipe to be straight
[i.e., it will have no bends from elbows (A = 1)]. A flow rate measurement at
the source has determined @ = 0.23 L/s and an Abney level is used to find the
slope of the system of s = 0.015. An altimeter and a GPS give the elevation
difference between the source and the tank (z;) of 452 m. Neglect minor losses.
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(a) Calculate the PVC nominal pipe size between the source and the tank needed
to satisfy the given geometry and flow conditions. What is the actual maximum
volume flow rate of water with this pipe size? What is Re and is the flow laminar
or turbulent? Check yourresult for D using the approximate formula, Eqn (9.2).

(b) If there is a water demand of () = 0.38 L/s during the peak consumption
periods of the day, calculate the smallest possible PVC pipe size (in inches)
between the tank and the tapstand if the elevation difference between the two is
57 m and the distance measured along the ground between the two is 2840 m.

(c) If there is uncertainty of £10% in the slopes between the source and the
tank, and between the tank and the tapstand, how are the pipe sizes affected?

(d) If there is uncertainty of £20% in the elevation measurement, how is the
pipe size affected? Assume the slopes remain as specified above.

A low-head, high-flow gravity water system is proposed for the town of El
Guayabo in central Nicaragua. The contour of the ground is not uniform and
the flow path between the source and the tank is very circuitous. The pathlength
between the source and the tank is 95 m and a survey of the land between the
two with an Abney level gives a mean slope of s = 0.08. There are 23 bends in
the system and we will approximate each as a 45° elbow. In addition, because
of the locations of several buildings there are many 90° elbows causing an
L./ D value of 502. A filter at the source is known to have a K value of ~22.
A flow rate measurement at the source has determined = 0.55 L/s. From
the Abney level, the elevation difference between the source and the tank (z;)
is found to be 6 m.

Analyze this system and recommend a nominal PVC pipe size from the source
to the tank. Reassess the design if there is uncertainty of +20% in the elevation
measurement. How does the design change to accommodate an annual increase
in the water demand of 2% over a 10-year time period? What is the effect of the
minor losses? The elbows? The source filter? What is Re? Use the appropriate
Mathcad worksheet or, for a first-cut estimate without minor losses, the design
figures from above. Check your result for D using the approximate formula
that appears in footnote 8 of Chapter 9.

Chapter 6

Using a few steps of algebra, show that Eqn (6.6), when written at ¢ = ¥,
reduces to Eqn (2.34) for a straight pipe of constant cross section and slope, s;.

Inspect Fig. 6.4 and explain the reasons for the variation in D™ in your own
words. Focus on the inflection point in the 6000-7000-m range. Carry out
this exercise by examining the terms in the energy equation, Eqn (6.7), without
rereading Section 6.3.
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20. Consider the following example of a three dimensional network. A single-

pipe, gravity-driven water network in a hilly region is being planned and it is
determined that the final run of the pipe is in the form of an inclined helix as
shown in Fig 16.1. The parametric equations that describe this geometry are

z(t) = {400 — 40nt} m
y(t) = {200+ 20cos(2nt) — 10t} m
z(t) = {0.3[200 + 20sin(2nt) — 10t} m

where ¢ is a parameter whose range is 0 < ¢ < 3. If the pipe is nominal 11,
sch. 40 PVC and the flow rate is 2.0 L/s, calculate the static pressure distribution
from Eqn (6.12) and plot it as a function of coordinate z. As the designer, are
you satisfied with this distribution? Ignore minor loss, but include « at the
source.

0=

60—

z {m)

o B 100
o o o
x{m)

y (m)

Figure 16.1  Network of Exercise 20. The vertical axis appears in a magnified scale.

21.

Chapter 7

Follow the example of Section 7.2 and write a small worksheet to solve for the
pressure distribution in a single straight pipe of uniform slope and pipe diameter
with a series of three minor-loss elements uniformly spaced along the pipe (at
L/4, L/2, and 3L/4). To investigate the effect of the minor loss K -values,
imagine each loss element is a globe valve. Plot the dimensionless pressure
distribution, p(z)/pgz1, for s = 5%, L = 1000 m, and Q = 4.3 L/s for
K =10,400, and 700 for each of the three valves. The pipe is 4-in. nominal,
sch. 80 GI. The source is at atmospheric pressure.



22,

23.

24.

THE PROBLEMS 431

Chapter 8

Consider a variation of the data set obtained from a site survey for a network
in San Benito, Nicaragua, where the measured flow rate of water is 0.61 L/s.
The survey data are presented in Table 16.2. (a) Use Mathcad to design the
pipe to produce an acceptable positive static pressure at the station where the
pipe is at its highest local peak. Multiple pipe diameters are permitted. (b) If
the pipe sizes remain fixed at the values determined in part (a), determine the
increase in the value for the flow rate if a static pressure at highest local peak
is allowed to be atmospheric pressure.

Table 16.2 A Variation of the Survey Data for the San Benito Site

Station z(m) y(z)(m) =2(x)(m) Lelz)(m)

0 0.0 0.0 247 0.0

5 —-32.2 —-47.1 13.2 58.2

8 —70.9 16.1 103 132.3
C3 —232.6 84.2 133 307.8
C4 —266.8 106.8 17.1 349.0
C5 —298.2 162.7 11.9 4133
Cé6 —317.6 203.2 8.2 458.4
C7 —350.6 232.6 12.0 502.7
C8 -389.4 2473 11.3 544.3
C9 -398.3 269.5 10.1 568.2
Cl11 —-359.6 388.1 11.4 693.0
Cl2 —360.0 442.0 7.3 747.1
Cl3 —392.2 5533 8.5 862.9
C15 —355.4 668.6 7.3 983.9
C17 —382.4 810.5 12.7 1128
C19 —347.7 917.4 19.5 1241
C21 —280.2 1121 223 1455
C23 —-355.7 1307 4.0 1657
C24 —279.8 1421 27 1795
C28 —-357.8 1636 0.0 2023

Demonstrate that the acceleration term, [ 452 dt2 , in Eqn (8.11) is negligible
relative to the remaining two terms in this equation by making ¢ in Eqn (8.11)

dimensionless with respect to Atge = %@A;ﬂ Show that Eqn (8.11) reduces

to Eqn (8.14) once L4 %2 5 t2 is neglected.

A large tank of 55,000-L capacity and Az, = 4.5 m high is to be drained. The
tank is connected to a 2-in. nominal sch. 40 GI pipe, 187 m long, open to the
atmosphere at its end. There are four 90° elbows and an open globe and gate
valve in this pipeline. The elevation change from the bottom of the tank to the
end of the pipe is Az, = 12.5 m. Calculate the steady state flow speeds for
this process where the flow is driven by

[ ] Azt + Azp

o Az,
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to get Up, 001 and Uz o2, Tespectively (see Fig. 8.15). Calculate the time that it
takes the flow to accelerate from zero speed to 99% of T3 o1 and the time that
it will take to drain the tank. Check your result by using the average flow rate
over the drain time.

One favorite problem on the topic of inviscid flow in fluid mechanics is the
frictionless syphon. To obtain a model for this, ignore the friction term in
Eqn (8.17). The resulting equation can be solved for @) as a function of D.
Compare the volume flow rates for D values of 1, 1.5, 2, 2.5, and 3 in. with
those from Fig. 8.18 that includes the effect of friction. Comment on the
reasonableness of the outcome.

Using the geometry of Fig. 8.17, determine the maximum height (i.e., the value
for r) for a syphon of nominal 1-in. PVC pipe. HINT: The minimum static
pressure corresponds to the saturation pressure for water at 10°C. Refer to
footnote 13 in Chapter 8 for the value of this pressure.

Chapter 9

One of the formulas in the literature pertaining to gravity driven water flow in
pipes is given in an earlier edition of the Piping Handbook (Nayyar, 1992) and
in the Plastic Piping Handbook (Willoughby et al., 2002) as

Q = 27.5D?66740-5 (16.2)

where it is understood that D is ininches and @ is the Natural flow rate in gallons
per minute'. Another one is from a technical publication of the American Water
Works Association (American Water Works Association, 2006).

Q = 42.2D%6350:54 (16.3)

Assuming that F© = 0O (for Natural flow, see Section 2.6.1) and A = 1, and
starting from Eqn (9.7), develop an equation in the form of Egs (16.2) and
(16.3). Comment on the differences between the expression that you develop
and Eqs (16.2) and (16.3) and highlight the assumptions made to develop such
formulas.

The Copper Tube Handbook (Copper Development Association, 2006) reports
pressure drop results for smooth copper tube of various sizes. The Hazen—
Williams formula on which their results are based is given as

Ap 4.52 QL8

L T 18 pasT (164)

I'The coefficient in Eqn (16.2) is 30.5 in Willoughby et al. (2002).
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where Ap/L is the pressure drop in psi per foot of tube length, @ is the flow
rate in gallons per minute, D is the ID of the tube (inches), and C'is a constant
whose numerical value is 150.

By comparing Eqn (16.4) with the Darcy—Weisbach equation, Eqn (2.9), deter-
mine the assumptions upon which Eqn (16.4) is based. What are the units of
the constant C'? Plot the ratio of Ap/L from Eqn (16.4) to that from the Darcy—
Weisbach equation for tube diameters of %-in. nominal (D of 0.662 in.), 1-in.
nominal (D of 1.049 in.), and 2-in. nominal (D of 2.067 in.), for () ranging
from 0.1 L/s to 7 L/s. Comment on your observations.

Develop Eqn (9.2). Simplify it to obtain Eqn (9.3). Note that this is similar to
Exercise 27 except A and F are retained as parameters in the energy equation.

Compare the results of Eqs (9.4) and (9.5) for smooth pipe. Take the ratio of
the two and plot as a function of Q with hy, /L as a parameter to validate the
statement that there is agreement to within £2% over 0.1 L/s < @ <3 L/s
and 0.001 < hr/L < 1. Also, show that this range of conditions generally
produces 4,000 < Re < 325, 000. To do this, plot Re as a function of (§ with
hr,/L as a parameter.

Compare the results of the correlation of Eqn (9.6) for GI pipe with the nu-
merical solution from the Mathcad worksheet SinglePipeNetworkDesign
_Appendix.xmcd for minor-lossless flow. Carry out this comparison for ¢} =
0.012,0.1,1.0,3.0, and 5 L/s, and hr,/L = 0.001,0.01,0.1, and 1.0. Present
your results in tabular form.

It was demonstrated in Chapter 9 that the solution for the energy equation for
flow in a single pipe can be written such that only two dimensionless groups ap-
pear, one for the dimensionless volume flow rate and the other for the modified
slope [see Eqn (9.7)]. Beginning with the form of the energy equation for flow
in a pipe of arbitrary length, Eqn (2.40), recast this in the form of Eqn (9.7) by
rearranging it after writing it in terms of () instead of @. In particular, identify
the hydraulic gradient (or modified slope) term and the one that you would label
as the dimensionless volume flow rate. Comment on the differences between
the dimensionless groups from this exercise and those from Eqn (9.7).

Chapter 10

Give thought to, and list, several instances where optimization of a gravity-
driven water network is possible other than those noted in Chapter 10.

A more realistic cost model for the heat exchanger considered in textbox B.10.3
is to include the cost for a variable tube surface area explicitly. In Eqn (10.13),
this was accounted for as a lumped cost. Inside the heat exchanger are many
tubes of small diameter, perhaps a centimeter, that flow the hot fluid. The cooler
fluid passes over these tubes and this is where the heat transfer takes place.
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With tube cost explicitly included, the improved cost model would be

. DL
F(L,d,n) = $400/m2? ="

+ $370.70/m3° Ld*® + $280.60/m?Ld

where F is in dollars, d and L are the overall diameter and length of the
exchanger (in meters), and n is the number of tubes. Here, D is the tube
diameter, which is 1 cm. The overall volume of the exchanger is fixed at V =
15 m? and the required surface area is 350 m2. The surface area of the tubes is
from A, = nwDL.

Use

o The method of Lagrange multipliers

e The Given.. Minimize block in Mathcad
to solve this problem to obtain the optimal values for L, d, n, and total cost.

Three pipes are connected in series, as shown in Fig. 16.2. Each pipe is 100 m
long and have diameters D,, D;, and D, respectively. The flow rate in each
is Q = 6.1 L/s and the static pressure head at the outlet of pipe c is hgqe; =
10 m. The elevation changes for each pipe are Az, = Az, Az, = Az/2, and
Az. = Az/3, where Az = 50 m. Determine the optimal pipe diameters for
the network and the minimum total pipe cost. Are the static pressure heads at
the junctions a—b and b—c acceptable from your engineering judgement? Recall
that at all junctions the pressure has a single value; this means that the pressure
at the end of one pipe is equal to that at the beginning of the one to which it
is connected. Use pipe cost data for IPS series sch. 40 PVC pipe in central
Nicaragua from the Mathcad worksheet and neglect minor loss throughout.

Chapter 11

Refer to Fig. 11.1 and the data from Table 11.1. Slightly modify the Mathcad
worksheet BranchingPipeExample. xmcdto investigate the effectof L, = L,
over the range of 40-400 m, and ), over the range of 1-3 L/s. Assume all
data from Table 11.1 apply, except the flow from pipe a is evenly split between
pipes b and c for both investigations. Comment on the range of pipe sizes that
you observe.

Obtain the analytical result for the optimal static pressure head, h;p *, using
Eqgs (11.16) for the three-pipe branch network in Fig. 11.1. Assume L, =
Ly = L., Dy = D¢, Qp = Q. = Q4/2, and that cost is linear with pipe
diameter.

Obtain the analytical result for the optimal static pressure head, hj” *, using
Eqn (11.39) for the three-pipe branch network in Fig. 11.1 and data from Ta-
ble 11.1. Use Eqn (11.17) with cost data for IPS-series sch. 40 PVC pipe in
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Junction b-¢

P=pPghy,

Figure 16.2 Optimization of series-connected pipe.

central Nicaragua. Compare your result with Fig. 11.6 for validation of your
result. Note that the results of Fig. 11.6 include minor loss that is not included
in the development of Eqn (11.39).

Develop Eqn (11.20) from the general energy equation, Eqn (2.25), and using
the assumptions appropriate to the series-connected pipe, simplify Eqn (11.20)
to get Eqn (11.21).

An interesting follow-on problem related to textbox B.11.3 is the response to
increases in local peak elevation of the optimal pipe sizes (that minimize total
pipe cost) located before the local peak. To do this, gradually increase the
elevation of Junction c—d from 67 to 84 m. Modify the Mathcad worksheet
SeriesPipeExample_equalQ.3pipe_ withcost.xmcd to include the data
in Table 11.5 and the variable elevation of this junction. Report your results in
a table. Use the cost data on the Mathcad worksheets.

The generalized form of the energy equation for a serial pipeline is from
Egs (11.22). In the section following the serial pipeline, we adopted a dif-
ferent method for labeling that included node numbers, not letters (recall that
letters were carried over from the early developments of the energy equation for
pipe flow from Chapter 2). With this in mind, recast Eqs (11.22) in nodal form,
where the nodes at the junctions for a serial pipeline would be 2,3, ...n — 1,
where n is the total number of nodes (including the first one at the source and
final one at the delivery location).
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Table 16.3  The Design Parameters for Four-pipe Distribution Network for El

Guayabo
Pipe L(m Q@) K L./D Az(m)
a 287 0.81 100 60 12
b 51 0.33 12 360 4
c 37 0.15 12 124 -1
d 12 0.23 12 56 -3
e 48 0.10 12 320 6
42. For the El Guayabo network of Exercise 17, the data in Table 16.3 apply to

43,

the distribution pipes from the tank, through pipe a, to four tapstands, pipes
b through e (see Fig. 11.1 for a two-tapstand design). A survey of the site
provided the slope, pipe length, minor-loss coefficients, and Az data for each
pipe, and the number of people provides the water demand for each tapstand.
Note that the flow rates in pipes b through e sum to the flow rate in pipe a, thus
satisfying continuity.

Calculate the nominal PVC pipe size for pipes a through e for this design. Use
the appropriate Mathcad worksheet.

For the Kiangan community in the Philippines, one distribution main for a
gravity-driven water network consists of the four pipe segments (Fig. 16.3).
Each of the segments has a different flow rate because of attached branches.
The relevant data is shown in Table 16.4. Segment 45 ends in a tapstand where
a static pressure of 7 m of head is required.

VA
Source

X

Figure 16.3 Part of a network for the Kiangan community in the Philippines.
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Table 16.4 Design Parameters for One Leg of the Kiangan-community Network

Pipe Segment Q(L/s) L@m) K L./D Az(m)

12 1.23 76 30 60 18
23 1.04 113 0 90 10
34 0.83 19 0 90 8
45 0.42 75 0 90 6

Calculate the theoretical and nominal PVC pipe sizes for pipe segments for this
design. Verify that the design flow rates can be achieved with junction static
pressures of 7 m. Use the appropriate Mathcad worksheet. What is the total
pipe cost?

Use the appropriate Mathcad worksheet to calculate the nominal PVC pipe size
for pipe segments in the Kiangan community design (Fig. 16.3) by minimizing
total pipe cost. Use Eqn (11.17) with cost data for IPS-series sch. 40 PVC
pipe in central Nicaragua. Verify your numerical solutions using the analytical
result from Eqn (11.54). How do your results, both theoretical and nominal
diameters, compare with those of Exercise 43?

The lengths of all branches in Fig. 16.3 is 50 m and, for each branch, there is
no elevation change between the branch and delivery at the end of the branch.
Using the appropriate Mathcad worksheet, calculate the theoretical and nom-
inal pipe diameters for the network by minimizing total pipe cost. Use cost
data for IPS series sch. 40 PVC pipe in central Nicaragua from the Mathcad
worksheet. Require the minimum static pressure head at all junctions to be
10 m. There is a minor loss in each branch of X = 10 (an open globe valve).

In Fig. 16.3, the flow to the branch at node 2 is turned off. Assuming nominal
pipe sizes for the network of D1z = Da3 = 13 in., D3g = 1in., Dgs = § in,,
and Dyg = D37y = Dyg = % in. (from the results of solution 45), predict the
flow rates in the branches that remain open. Assume that the K values in the
branches from Exercise 45 also apply; globe valve positions remain. Use the

appropriate Mathcad worksheet.

It has been suggested that an optimal set of pipe diameters exist for the following
problem. There is a large change in surface contour for the gravity-driven water
network shown in Figs. 16.4 and 16.5. The frontal (Fig. 16.4) and side views
(Fig. 16.5) of the proposed pipe layout are presented. Following the thinking
in Section11.5.1, the common-sense approach might be to reduce the size of
the pipe in the segment where there is the steepest descent relative to that just
downstream of the source. The length of pipe segment 12 is defined by angle
~ and the radius of curvature of R = 50 m as shown. Segment 12 and 23
lengths sum to mR/2. The lengths and elevation changes for other segments
are: Lgq = 230, L3; = 320, Azzq = 43, and Azz; = 39 m. The flow rate
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from the single source is 3.2 L/s and in segment 34, 1.2 L/s based on source
measurements and a demand model. If minor losses are ignored, is there an
optimal solution for this design? Comment on your findings. Use cost data for
IPS series sch. 40 PVC pipe in central Nicaragua from the Mathcad worksheet.

z Source ¢ 1

Figure 16.4 Front view of geometry for Exercise 47.

Source

Y

Figure 16.5 Side view of geometry for exercise 47.

48. Consider the loop of Fig. 11.29. The flow rate in segment 12 is Q15 = 4.6 L/s,
and we know this flow is to be distributed in the following manner: Q3 =
0.5Q12, Q47 = 0.3Q12, and Q58 = 0.2Q12. In addition, L23 = L34 = L45 =
Lsy; = Lsg = Ly7 = Lsg = 70 m and all branch and delivery points are at
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Table 16.5 Parameter Values for Optimization of a Multiple-Branch Network

Pipe Subscript, i  Li; (m) Q5 (L/s) Az (m)

12 135 4.10 22
23 55 3.90 8
34 48 3.75 7
45 30 3.35 12
56 85 3.00 4
67 151 2.60 6
78 110 2.35 7
89 35 2.10 3
9-10 48 1.85 4
10-11 39 1.45 6
11-12 118 1.20 8
12-13 128 1.05 7
13-14 139 0.75 5
14-15 118 0.55 7
15-16 298 0.25 3

the same elevation. If the static pressure head at node 2 is 21 m, calculate the
theoretical pipe sizes for the network that minimize total pipe cost. Assume
an open globe valve (K = 10) is installed in each branch. Are the static
pressure heads at each junction acceptable? Use Eqn (11.17) with cost data for
IPS-series sch. 40 PVC pipe in central Nicaragua.

Data for the distribution main of a gravity-driven, multiple-branch network is
given in Table 16.5. Modify the Mathcad worksheet BranchPipeExample
_4pipe_withcost_vectorized_ ver3.xmcd by including the data from this
table and calculate the theoretical pipe diameters that minimize the cost of the
distribution main part of this network. Report the pipe diameters and the vector
of static pressure heads at the junctions. Assume hg,; = 10 m at node 16 and
that the pressure at node 1 is atmospheric.

Gravity-driven water networks that are supplied by more than one source are
generally more reliable than with just a single source because of possible flow-
rate depletion from either. Consider the dual-source network in Fig. 16.6 where
the distance between the two sources is 2L;. The measured flow rate from one
source is Q13 = 2.1 L/s and from the other is ()23 = 1.3 L/s. The object of the
design is to supply water at ()34 = 3.4 L/s to the reservoir tank. There are two
limiting cases for the piping of this network. The first is two pipes can be run,
one from each source, over a distance L3 directly to the tank. The second is that
the two sources can be piped directly together along a straight line connecting
the two. A tee fitting installed midway along this line will allow water to flow
to the tank from both sources. For convenience, let the angle between the actual
run of pipe segments 13 and 23 and the line connecting the two sources be «y
(see Fig. 16.6). Using optimization methods from this chapter and Chapter 10,
determine the optimal lengths and diameters for all pipes and the minimum pipe
cost. Is the static pressure at the junction of the three pipes acceptable from



440

51.

52.

EXERCISES

an engineering design standpoint? Use pipe cost data for IPS series sch. 40
PVC pipe in central Nicaragua from the Mathcad worksheet. The sources and
the tank are at atmospheric pressure. Take L; = 50 m, Ly = 1600 m, and
21 = zo = 64 m above the tank. Ignore minor loss from all possible fittings in
the network. The slope is uniform at 4% between the sources and tank and, as
a first approximation, assume all pipes are straight.

YA - >
Source 1 2L, Source 2
1 2
L3 (between tank and
sources)
QS4
4 Tank
X
Figure 16.6 A network with dual sources.
Reconsider the branching network of Fig. 16.3. Instead of solving this problem

as a gravity-driven flow, assume the flow to be pumped from node 5 upward
toward node 1. The discharge pressure of the pump is 35 psig. Segment 12
ends in a tapstand where a static pressure of 7 m of head is required. Calculate
the theoretical pipe diameters for this forced-flow network two ways, First, for
fixed value of h; of 7 m at each junction. Second, by minimizing the cost of the
distribution main using Eqn (11.17) with cost data for IPS-series sch. 40 PVC
pipe in central Nicaragua. Comment on the integrity of the network based on
the values of the optimal static pressure heads at the three junctions. Neglect
minor losses.

Chapter 12

Develop Eqgs (12.6) and (12.7) from Eqgs (2.45) and (12.5) to obtain the final
form of the energy equation for a microhydroelectric turbine. Show that the
hydraulic gradient can be extracted from the right side of Eqn (12.7) and thus
becomes a scale factor.



53.

54.

55.

56.

57.

58.

THE PROBLEMS 441

Table 16.6 Survey Data for Exercise 58

Node,? z;(m) y (m) =z (m)

1 0.0 0.0 493
2 -37.2 =521 222
3 —77.4 9.6 19.9
4 —241.0 757 29.6
5 -277.8 958 33.6
6 -312.5 148.4 25.2
7 -336.2 1847 17.5
8 -374.7 2084 22.5
9 —-420.8 216.0 21.7
10 —439.1 2287 20.0
11 —412.6 335.1 22.3
12 —428.9 373.1 13.5
13 —481.8  463.7 16.7
14 —-471.9  552.1 15.0
15 -533.9  659.1 247
16 —-544.5 720.5 43.0
17 —-536.1 864.9 38.9
18 —688.4 9743 52

Maximize 1, by taking the () derivative of Eqn (12.5) subject to constant
f(Q, D) = f. By setting this result equal to zero and solving for Q°P%, obtain
Eqn (12.10).

By substituting the Blasius formula for f(Q, D) in Eqn (12.7), taking the first
derivative of 1y, with respect (), and setting this result equal to zero, solve for
Q = Q°P* to obtain Eqn (12.9).

Consider textbox B.12.1 example. Calculate the optimal penstock pipe size
and electrical power generated if GI pipe were used.

Using Eqn (12.17), calculate the water flow rates required to produce electrical
power ranging from 10to 100 kW for three cases of S = 0.01,0.05,0.1. As-
sume L = 1000 m, n, = 0.85, 7, = 0.80. Plot your results on a log-log plot
of @ versus power demand.

A Pelton turbine is under consideration for the conditions of Exercise 55. Cal-
culate the nozzle diameter, D,,, jet speed, V1, and system efficiency, 7y, for
this problem based on the actual penstock-pipe diameter.

Chapter 13

Consider the data of Table 16.6 that applies to Fig. 13.1. Using in formation
in Chapter 13, calculate the running sum of the lengths of each of the 17 pipe
segments starting with segment 1-2 and ending with segment 17-18. What
is the total length of the pipeline? What is the elevation change between the
source at node 1 and the next-highest location in the network?
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Several springs have been identified that may contribute to a gravity-driven
water network for a community. The yields from the springs are Qg1 of
0.95 L/s, Qg2 of 0.40 L/s, QR of 1.46 L/s, and Qg 4 of 0.55 L/s. A large
community of 1050 persons is proposing to develop some or all of these sources
for their use. The population growthrate is estimated at 1.5%/year. The distance
to the identified storage tank location for eachis Lg; = 32m, Lgo = 8 m,
Lps =>53m,and Lg 4 = 21 m. The elevations between the sources and the
identified tank location for eachis Azg 1 = 2m, Azg = 3m, Azr 3 = 6 m,
and Azg 4+ = 1 m. Assuming a 20-year lifetime and 80 L/person/day at present,
recommend to the community leaders which sources you would recommend
developing and explain your reasoning. Perform a complete analytical solution
by calculating the pipe sizes and costs for water delivery to the tank for each
source. Assume the pipe to be IPS sch. 40 PVC.

From Exercise 59, developing sources 2 and 3 (producing a yield of 1.86 L/s)
was determined as the most cost effective option. Based on per-capita demand
rate of 80 L/person/day, 1819 persons, and the demand model of Fig. 15.3, size
the storage tank for this community and justify your recommendation.

Consider the 16-node branching network in Fig. 11.41 that refers to data from
Table 11.19. Using a peak factor of PF' = 3.2, appropriate to 40% of the daily
demand in a 3-h period, and assuming the flow rates shown in Table 11.19 are
on-average during the day, calculate the design flow rates for each segment of
the network. If the flow rates shown in Fig. 11.16 are based on the present
population, calculate the design flow rates that would accommodate the future
population. Assume an annual growth rate, 7, of 1% and a 25-year network
lifetime.

Given that the head loss in a uniform-diameter pipe is equal to that in a com-
posite pipe composed of two pipes in series as in Fig. 13.7, use the continuity,
Darcy—Weisbach, and Blasius equations to develop Eqn (13.10).

Determine the lengths L, and L, (see Fig. 13.7) for a pipeline of 378-meter-
long, sch. 40 GI pipe, carrying 2.56 L/s where the theoretical value for D is
calculated as 1.870 in. Re-calculate L, and L, if the pipe is changed to sch. 40
PVC.

Consider ¢ = 48 L/s of water flow at 10°C in a 6-in. nominal IPS sch. 40
PVC pipe that is supplying water to a 85-kW microhydroelectric turbine. An
improperly designed control valve just upstream of the turbine closes suddenly
when a loss of electrical load is detected by the turbine control circuitry. Cal-
culate the amplitude of the pressure wave resulting from this closure. How
would your results change if the pipe material were steel or GI?
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Chapter 14

65. Consider a gravity-driven water system of 1-in. sch. 40 IPS PVC pipe as shown
in Fig. 16.7. The coordinates, (x, z), at the source, intersections of the pipe
segments, and delivery location are (0,200), (350,100), (600,120), (750,50),
(1000,70), and (1300,30), all in meters (note that the lowest elevation is not
zero). Assess the effect of the air pockets on the volume flow rate of water in
the system by calculating the flow rate first assuming no compressibility for
air, and then including the effect of air compressibility. Compare each with the
flow rate if there were no air pockets. Neglect minor losses and assume hge; =

10 m.
200/ N y RN
180
160+
140
£ 129;
L} |
100 -
B0
C
60
d
| .
40
o 200 400 500 800 1000 1200
x (m)
Figure 16.7 Geometry for Exercise 65.
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16.3 THE SOLUTIONS

Chapter 2 Solutions
1. To be done by the student.

2. To be done by the student.

3. For a 2-in. PVC pipe and Q = 1.2 L/s, obtain % = 0.445 m/s. Re=2.24x 104,
clearly a turbulent flow. The friction factor, f(@, D), for this flow is from
Eqgs (2.16)—(2.17) and is 0.0256. Combine Eqs (2.2), (2.6), and (2.9) and
assume an adiabatic pipe to get

Lu*

€2 — €31 ZHLZf(E,D)—D‘?ZCv(TQ—Tl) (165)
Look up the value for ¢, of water in any book on thermodynamics, heat transfer,
or fluid mechanics to get ¢, = 4190 J/kg-K. Upon substituting the numbers and
units into Eqn (16.5), get T, — 77 = 0.00178°C. This is almost an immeasurably
small temperature rise. We see that the dissipation of potential energy that
produces a Natural flow rate of 1.2 L/s causes a temperature increase that is
negligible. This general outcome is caused by the relatively large value of ¢,
for water.

4, See the table below.

| Bernoulli Equation | Energy Equation |
| Incompressible flow | Incompressible flow |
| Steady flow | Steady flow |
| Applies along streamline | Applies at any cross section of the flow |
[ Inviscid flow | Inviscid or viscous flow |
Applies strictly to laminar flow Valid for laminar and turbulent flow

(Approximate for turbulent flow since)
it 1s difficult to follow a streamline)




THE SOLUTIONS 445

5. The friction factor from the Darcy—Weisbach equation is written as

hr/L
= =L 16.6
f /29D (16.6)
where L = 3m, D = 0.25 in., and hy /L and @ are from the test data. Since
hy, are supplied in units of inches of mercury, we need to first convert this to
meters of water using,

Hg 1m

. p
f water) = h hes of Hg) — ———— 16.
hyr (m of water) 1 (inches of Hg) > 39372m. (16.7)

where the density of mercury is pgg = 13579 kg/m3. A plot of Egs (16.6) and
(2.9) versus Reynolds number appears in Fig. 16.8. The agreement is good, to
within ~£+7%, for this particular data set. The range of Re corresponds to the
turbulent regime.

0.065 | - - - S —

©  Laboratory Data
Darcy-Weisbach Equation

0.06

0.055 !‘

5 |
G oosf
w
c
2
B oms
e
0.04 -
0,035 |
003! i | | ) B« B
0 2000 4000 6000 8000 10000 12000 14000

Reynolds number

Figure 16.8 Friction factor laboratory test data compared with that from Darcy—Weisbach
equation.

6. To be done by the student.

7. Solve the energy equation, Eqn (2.40), by first substituting the continuity equa-
tion (Eqn 2.21) to eliminate 7 in favor of ). With only a single K-type minor
loss, no «, and F' = 0, we obtain

- WIrs 270 D)+ 2k 22 g (16.8)
’ 21 wigDP ’ '
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which we solve for ) as a function of K using the root function in Mathcad.
D and 2z, are fixed as specified. The friction factor, f(Q, D), depends on Q
and D through Re and relative roughness of the smooth pipe. Re is

4Q
Re = —5 (16.9)

The solution appears in Fig. 16.9. Even with K = 100, 000 the valve is still
able to pass a few tenths of a L/s.

25}

M. —— -

Q (liter/s)

Figure 16.9  Volume flow rate versus closure fraction of globe valve for single-pipe network.
K is minor loss coefficient.

8. The relevant energy equation is Eqn (2.46), where for this problem, it becomes

BB (1(Q, D)L + Dla + K)o

2 = 6.10
rg n2gD5 0 (16.10)

once it is written in terms of @) instead of w with the help of the continuity
equation. The second term is

p2—p1 _ 0—3atm.-1.01 x 10° Pa/atm.

_—
09 1000 kg/m? - 9.807 m/s? 31.0m

Equation (16.10) becomes

_ 8Q?[f(Q, D) 3500 m +0.0853 m - (1.05 + 350)] _

21.0 _
o 9.807 m/s2 - 72 - (0.0853 m)®
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Table 16.7 Solution to Exercise 11

Nominal Wall Material Inside Press. Rating  Press. Rating
Size Reference Diameter (As Spec’d) [Head (m)]
1in. sch. 80 PVC 0.957 in. 630 psig 442.9

3% in. sch. 40 ABS Not Given 190 psig 133.6
2in. sch. 40 PVC 2.067 in. 280 psig 196.9
1% in. sch. 80 PE 1.5 in. 160 psig 133.6
Lin, SDR 11 PE 0.680 in. 160 psig 1125
73mm  SDR 13.6 PVC 63.8 mm PN 16 160
25 mm SDR 21 PE80 22 mm PN 6.3 63
4in. SDR 26 PVC 4.134 in. 160 psig 112.5

This equation is solved in Mathcad using the root function or Given. . .Find
block to get (Q = 3.04 L/s. The absolute roughness for galvanized iron pipe is
0.152 mm. Clearly, the term « is negligible compared with K for this problem.

9. Use the Excel spreadsheet (supplied with this book) as discussed in Appendix B
to get 111,383.0 m between arbitrarily chosen longitudes of —89 and —90°,
111,314.8 m for longitudes of —1 and —2°, and 111,280.7 m for longitudes
of —44 and —45°. This is contrasted with the distance between longitudes of
—89 and —90° at 40° north latitude of ~85,408 m.

10. From Eqn (B.1), get 19.22972 and —75.31389° for latitude and longitude,
respectively, at the source. Both are recorded and reported to five decimal
places.

Use the Excel spreadsheet as discussed in Appendix B to solve the second part
of this exercise. Obtain £ = 2920 m and s = Az/{ = 1.59%.

Chapter 3 Solutions

11. The results are reported in Table 16.7. The relevant conversions for pressure
are 1 atm. = 1.013x10° Pa = 14.696 psi = 10.33 m. The dimensions for ABS
pipe are not supplied in this chapter. No steel (or GI) pipe cases were examined
here. The pressure ratings for this pipe are very large and may be found from
numerous sources in web and paper format.

Chapter 4 Solutions

12. Following the developments in Section 4.2, Eqn (4.1) becomes

pr—p2 oz kg 8Q? D L,
— =" = = D)1+ — — 16.11
LTI L /@DU+TdE)  asl)
where z; = —34m (see Fig. 2.11) and the term for minor loss has been included.
With L = 1345 ft, Q = 0.3500 m3/min, p; = 1850 kPa, p, = 475 kPa,
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L./D = 30 for a 90° elbow, and L./D = 60 for a flow-though-branch tee
(Table 2.1), Eqn (16.11) is written as

hy D_f(Q,D)
2591 = —= = 266. =
0.2501 = —* = 266.0(1 + 360 ) =~

(16.12)

where the unit of D is inches and the summation of all L./D is 360. The
formula for Re becomes
_2.237 x 10°

D

Re (16.13)

where D is in inches.

Using Method 3 as in Section 4.2, we obtain ) = 1.956 in. from the Mathcad
worksheet. From Table 3.1, we choose a nominal 2-in. GI pipe. A calculation
of the minor loss (360 % in Eqn (16.12)) shows that it is about 4.4% of the major
loss [the 1 in Eqn (16.12)]. This is not a significant impact on the solution for
D.

Method 2, which uses the head loss curve from Fig. 4.1 gives the same result
for Q of 0.3500 m3/min (or 5.8 L/s) and hr/L of 0.26. Please be aware that all
head loss curves from, for example, Figs. 4.1 and 4.2 are only for straight pipe
(i.e., the effect of minor loss needs to be included by iteration). Specifically,
this is done by calculating D by first neglecting the minor loss (the term 360%
in Eqn (16.12)). The value for hy, /L is then modified by the most recent value
for D as in Eqn (16.12), and the head loss curve used to recalculate D. This
procedure is followed until D no longer changes with further iterations.

The head losses from Jordan Jr. (2004) are ~20-30% lower than those from
the Darcy—Weisbach equation [see Figs. 16.10 and 16.11]. Since there is little
systematic variation, itis difficult to determine the sources of this disagreement.
However, these findings are consistent with the results of Exercise 28 where
the pressure drop from a Hazen—Williams-type equation from the Copper Tube
Handbook Copper Development Association (2006) predicts low by, at most,
35%. Thus, it appears that Jordan Jr. (2004) uses a similar formula to develop
his results appearing in Reference Table XI.

The ratio of the head loss at 27 to 10°C for Class IV HDP pipe is shown in
Fig. 16.12. There is ~10% difference between the two, the head loss for 27°C
is smaller. This is not a dominant effect for most designs. The kinematic
viscosity at 27°C is 8.576 x 107 m?/s, and at 10°C, 13.07 x 10~7 m?/s, a
52% difference.

Chapter 5 Solutions

To be done by the student.
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Head Loss from Darcy-Weisbach Equation: Class |l HDP

~ 10° [
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Figure 16.10 Head loss factors for Class 111 HDP pipe.

16. (a) Solution from Mathcad worksheet or Fig. 5.4: 1 in., 0.30 L/s which is
30% more than the design value. Re for this flow is ~14,000, which is
turbulent. Equation (9.2) gives

Al +5_2)1/2 4/19 v Q7 1/19
D = 0741[———F%—] (94 )
= 0.741[(1 +0.01572)/2)4/19.
[13.07 x 1077 m?/s - (0.23 x 1073 m3/s)7]1/19
(9.807 m/s2)4
= 0.0248 m = 0.978 in.

which corresponds to a nominal 1-in. PVC pipe. Note that the simpler
equation, Eqn (9.3), gives the same result as Eqn (9.2) because the mean
slope s <« 1.

(b) Solution from Mathcad worksheet or Fig. 5.4: The smallest possible pipe
size that satisfies the above conditions occurs at a dimensionless delivery
static pressure F' = 0. With this value for F, and the calculated slope
s = 0.0201, the nominal pipe size is 1% in.. The maximum volume flow
rate that this pipe size can pass is 1.13 L/s, which is much larger than the
current demand of 0.38 L/s. The recommended pipe size of 1% in. will



450

EXERCISES

Head Loss from Darcy-Weisbach Equation: Class IV HDP

Head Loss (%)

s 20} MIM
== 32 mm
50 mm |
63 mm |
90 mm |

(©

(d

107 - 10"
Q (liter/s)

Figure 16.11 Head loss factors for Class IV HDP pipe.

allow plenty of increase in future demand. Re for this flow is ~20,000,
which is turbulent.

Solution from Mathcad worksheet or Fig. 5.4: The recommended pipe
sizes remain unchanged.

Solution from Mathcad worksheet or Fig. 5.4: Since minor losses are
neglected and elevation changes enter into the problem only through the
minor losses, the elevation difference between the source and the tank
do not affect the recommended pipe size connecting the two. However,
between the tank and the tapstand, the elevation is used to determine
the slope. If the uncertainty is —20%, the calculated slope is 0.0161
and the nominal pipe size remains 1% in.. If the uncertainty is +20%,
the calculated slope is 0.0241 and the nominal pipe size reduces to 1 in.
However, the maximum flow that this pipe can pass is only ~0.39 L/s,
which allows for very little increase in flow rate in future years. Therefore,
it is best to recommend a nominal lé-in. pipe for this case.

17. Solution from Mathcad worksheet: From Table 2.1 for a 45° elbow, L./D =
16. The sum of L. /D for all minor losses is 502+ 23-16=870. Atan open tank,

F =

0. From the mean slope and elevation, { = 75 mand A = 95 m/75 m =

1.267. With both minor losses, the Mathcad worksheet gives nominal 1% in.

PVC

pipe to satisfy these conditions. If we suppress the minor losses due to
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Ratio of Head Loss from Darcy-Weisbach Equation: Class IV HDP

r T —

0,92}

0.915

Ratio of Head Loss: 27Cto 10 C
o
8

089
0.885
0.88
0.875 |
05 1 1.5 2 25 3 35 4 45 5
Q (liter/s)

Figure 16.12  Ratio of head loss factors for Class IV HDP pipe for water at 27 and 10°C.
Results for flow speeds < 0.7 m/s and > 3 m/s are not plotted.

the elbows, the pipe size is reduced to nominal 1-in. There is no effect on
the nominal pipe size from the minor loss due to the filter at the source if the
elbow loss is neglected. If the elbow loss is included, neglecting the K value
for the source filter also reduces the pipe size to 1 in. Therefore, minor losses
are important for this design.? With the 1 % in. pipe, the maximum flow rate of
wateris 1.52 L/s, 2.76 times the present flow rate. The factor that we apply to the
present flow rate to obtain that in 10 years is 1.02'° = 1.219 or 1.219-0.55 L/s
= 0.67 L/s. This is much less than a 13-in. pipe will flow based on current
conditions. Therefore, for this low-head, high-flow system, a 13 in. nominal
PVC pipe is recommended for the present conditions and those projected for
the future. Re is ~30,000 corresponding to a turbulent flow.

ZNote that the value for the right side of Eqn (7.3) is ~706. Since the sum of the minor losses from all

the elbows is greater than this value, we see that Eqn (7.3) is a valid indicator of the importance of minor
losses.
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18.
19.
20.

EXERCISES

For this problem, the approximate formula for D from the footnote in Sec-
tion 9.3 gives,

D = 0455(AQ%/g)V/°(1 4 s~ 2)/10
1.267(0.55 x 1073 m3 /s)?2
9.807 m/s?

= 0.0249 m = 0.980 in.

= 0.455] 1V/3(1 4 0.0872)/10

which corresponds to a nominal 1-in. PVC pipe, smaller than the 1% in. pipe
predicted from the Mathcad worksheet because Eqn (9.2) neglects minor losses.

As for the uncertainty in elevation data, +20% translates to +1.2 m of elevation
uncertainty and slope uncertainty of +0.016. For the larger slope and elevation,
a nominal 1-in. pipe will accommodate the current flow rate of 0.55 L/s but
with little room for future flow-rate expansion (the maximum flow rate with
1-in. pipe is 0.59 L/s). Recommend the next largest pipe size. For the smaller
slope and elevation, a nominal 1% in. pipe is required for the current flow rate
and that of the future (the maximum flow rate with 13 in. pipe is 1.35 L/s).
Thus, considering the uncertainty in slope, we should choose a nominal 1% in.
PVC pipe.

Chapter 6 Solutions

To be done by the student.
As explained in Section 6.3.

The solution is carried out by breaking up the pipeline into a large number of
increments (100 is used here) and solving Eqn (6.12) for the pressure distribu-
tion in each. This is referred to as finite differences. This approach follows that
of Eqn (6.9) where, instead of dL, dz, and so on, we would write AL and Az
(see further description of this in Chapter 8). Accordingly, 100 increments in
t are used between O and 3. The pathlength distribution is calculated from,

Li=[(zi~zi—1)* + (g — yi-1)? + (2 — z_1)*) V2 + Ly

where 2 < ¢ < 100 and L; = 0. A plot of the pathlength distribution is shown
in Fig. 16.13. The dimensionless static pressure distribution is obtained in the
same manner by writing Eqn (6.12) as

pi Zi 8Q?
092y 21 wigz DA

where p; = 0, and solving for p; for 2 < i < 100. @ = 1.05 and all other «;
are zero. The solution appears in Fig. 16.14. The value of the f(Q, D) for the
prescribed flow rate and D is 0.0214 and is constant. The negative pressures
downstream of the source for the first 50 m due to the elevation increase in this
region and « are a concern. A change in the contour of the pipe in this region
is recommended.
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Figure 16.13 Pathlength distribution for Exercise 20.
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Figure 16.14 Dimensionless static pressure distribution for Exercise 20.

Chapter 7 Solutions

21. The solution comes from Eqn (7.2) that we write as

) * 2
b _ A 8@ a+ZK+fQD)

pgz1 zZy T ngD4 =1

)
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22,

EXERCISES

The elevation 2} = 1 — 2; is measured from the source. To solve Eqn (7.2), we
will use finite differences and break the pipe into 100 units. With this method,
the integral in Eqn (7.2) becomes a summation. 2] is the independent variable,
27 i—1 .
- To-p Tt
and K is the vector of 100 minor loss values that are all zero except for
1 = 25,50, and 75, where they take on the values of 10, 400, or 700, respectively
for the three different cases. The plot of the solution appears in Fig. 16.15.
Note the weak effect for K of 10 and some negative static pressures (below
atmospheric) for K of 700 immediately following the location of the minor
loss element.

pl2p gz,

0.1 02 03 04 05 06 07 048 09 1

Figure 16.15 Dimensionless pressure versus elevation for Exercise 21.

Chapter 8 Solutions

The Mathcad worksheet used to solve this problem is a slight variation of
that shown in Fig. 8.13. The changes from this worksheet are Q = 0.61 L/s,
z = 22.31m, and Ly = 1455 m. A plot of the pressure head at station C21,
which is the highest local peak for the data set given, shows the need for a 3-in.
nominal PVC pipe (see Fig. 16.16). That is, the pressure head fora 2%—in. pipe
(if it is even available) between the source and this station is only marginally
positive. Any pipe size > 3 in. increases the static pressure at station C21
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very little above the value corresponding to 3-in. pipe. Assuming a static
pressure at station C21 of zero, the pipe size required between this station
and the delivery location is 0.898 in. for which we choose a 1-in. nominal
PVC pipe. This solution is from the procedure at the bottom of the Mathcad
worksheet appearing in Fig. 8.13, except that zy = 22.31 m, z = 0 m and
Ly = 2023 m — 1455 m = 568 m.

4 R ——

2|

Pressure Head at Local Peak (m)

40—
1.

D (in.)

Figure 16.16 Pressure head versus pipe size for highest local peak for Exercise 22. Circles
correspond to 11, 2, 2%, 3, 31, and 4-in. nominal sch. 40 PVC pipe.

23.

For anominal 3-in. PVC pipe and p(z)/pgz1 = 0, solve Eqn (6.12) inMathcad
for @ to obtain () = 1.44 L/s, more than a factor of 2 greater than the design
flow rate. There appears to be adequate room for an increase in volume flow
rate before the static pressure at the local high peak becomes negative in value.

Let 7 = t/Ats.. Witht = 7 At,,, the time derivatives in Eqn (8.11) become

du, 1 d*u
d2 At2, dr?

and

d 1 d

dt — Ats dr
Substitute these into Eqn (8.11) and cancel At which appears in all three
terms. The result is

L dzﬂz gAZt(O)__ d L

=2
u
—{[f (@ Z+14+K]-2) =
A a2 T 2t W@ D) G 1+ KIS =0
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24.

25.

26.

EXERCISES

Since %, is of the order of 1 m/s, the derivatives in this equation are of the
order of 1. Now, substitute values for the terms that comprise At to show
that A—f; is of the order of 0.001 m/s. Substitute values for the terms in %A%;E}O)
to see that this group is of the order of 10 m/s. Thus, the acceleration term is
negligible relative to the remaining terms in the equation. The friction term in

Eqn (8.11) will always be important because it is fundamental to the problem.

Taking the derivatives and simplifying to get Eqn (8.14) are left as an exercise
for the student.

The hydraulic gradient is (Az, + Az,)/L = 0.0909. Neglecting minor losses
for the moment, use the Mathcad worksheet HydraulicGradient.xmcd to
calculate Uz o1 = 1.342 mv/s for the pipe ID of D = 2.067 in. (see Table 3.1).
The friction factor is f (U2 001, D) = 0.0520. From Eqn (8.7), we obtain

1.342 m/s B
9.807 m/s” - 0.0909

togy, = 2.646

The length equivalent of an open globe valve (K = 10; see Eqn (2.11)) and
4-90° elbows is ~504 - D ~ 16.4 m. The minor loss for the gate valve is
negligible (Table 2.1). This reduces the hydraulic gradient by only ~8%. If
minor losses were included, the value for ¢4q¢, will be nearly that as above.

Using the Mathcad worksheet Tank Draining.xmcd, calculate Ts o002 =
1.148 m/s for the conditions given. The friction factor is f(Tz,c02, D) =
0.0522. Equations (8.11) and (8.12) are solved numerically to obtain a drain
time of ~6.0 h. The minor losses were included in this solution.

The ratio of the tank volume to the mean volume flow rate obtained by averaging
the flow speeds Ty o1 and Uz, 2 gives a drain time of 5.7 h, within 18 minutes
of the exact solution.

The volume flow rates for D values of 1, 1.5, 2, 2.5, and 3 in. are 10.0, 22.6,
40.1, 62.7, and 90.3 L/s, respectively. These are a factor of 2-5 times larger
than from Fig. 8.18. This is to be expected since friction is clearly not negligible
for the large size of the syphon considered here. Note from Eqn (8.17) that
friction is independent of 2; and the nonfriction term is proportional to 1/z;.
For all else constant, the nonfriction effect is smaller than the friction effect by
a factor of 20.

To solve this problem, we write the energy equation in three different forms and
solve them simultaneously. The first is the energy equation written at z = 25 or
x = x9, where the static pressure is atmospheric. This equation is Eqn (8.17)
and it is solved for the volume flow rate, Q. The second equation identifies the
location of the point of minimum pressure on the p Versus & curve, Tonin (see
Fig. 8.20). Recognizing that this point is an extremum, by taking the derivative,
d/dx, of Eqn (6.12) and setting it equal to zero, we solve this equation to obtain
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Zmin. Thus,
4 2(2) | 8Q° f(Q.D)Le(x)

dr' = w2g21 D5

]=0 (16.14)

The final equation is the energy equation written for the local static pressure,
Eqn (6.12), where the pressure is set equal to the saturation pressure (at the
specified temperature) at the location of minimum static pressure, T.;n. Ob-
tain,

—14.7 psia + Prain z(z)  8Q* (i N F(Q,D)Ly(x)
pgz1 21 w2gz, D4 D5

) (16.15)

where = = Tp. For this problem, pp;:, = 0.178 psia which, for the left-side
term gives (—14.696 + 0.178) psia/(pg-20 m) = -0.511. Equation (16.15) is
solved for the height of the syphon. To do this, we first need to write 2(z) and
L¢(z) in terms of the geometry of the problem. Referring to Fig. 8.17, we can
write

1
“z) _ + i i (E oy (16.16)
21 Y 21
and Z1 8K
Ly(z) = = arccos(1 — —) (16.17)
¥ 2

where v = 2;/r, and r is the height of the syphon.

Equations (8.17) and (16.14)—(16.17) are solved simultaneously in Mathcad
to obtain r = 4.63 m (Figs. 16.17 and 16.18). Note that the volume flow rate
(@ = 2.16 L/s from the Mathcad worksheet is nearly identical to that from
Fig. 5.3 for terminal flow in vertical pipe. The slope for the current problem is
2.16, a very large value indeed.

Chapter 9 Solutions

After substituting the friction factor from the Blasius formula and simplifying,

obtain
Q = 42.7D?71450-571 (16.18)

Itis clear that a different form for the friction factor as a function of Re was used
to obtain the expressions in the two cited references since the exponents and
the coefficient differ among the formulas. The value of the coefficient, 42.7 in
Eqn(16.18), is affected by the kinematic viscosity of water that mustbe assumed
in formulas of these types. This exercise illustrates the attempts at developing
simple formulas for flow rate using Hazen—~Williams-type approximations to
the friction factor. With the ease at which we can solve for accurate flow
rate and pipe diameter using fundamental equations of fluid mechanics and
common software like Mathcad, there is little need for these approximations.
When using a computational package the uncertainties in values for the design
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Syphon exercise

z):=20'm TOL = 1.10 4
” -7 m’ kg
Water properties at 10 C=50F v:=13.07-10 oo p = 1000-—3
m
V-D -6 absolute roughness, ft (increase 100 times for
Ren(V,D) = — =510 "-ft = E
el ) v A galvanized steel)
Moody friction factor that spans the laminar/turbulent range.
ebyD is relative roughness.
alpha(R) := if (R < 2100,2,1.05)
1
- 3 12
- 2
8 [ 1¢]

f
funct(f,R ,ebyD) := Tk (

E
043 {l 0.301-R ‘/? byD-2
+ eby
\ )

inel 3 in Dy := 3.068-in nominal 1 in Dy := 1.049-in
e —T D, := 2.067-in nominal 0.75in D := 0.824-in
nominaldsia D = 1.61-in BN D¢ = 0.662-in
f1:=0.03
fric_fac(Re,ebyD) := root(funct(fl ,Re,ebyD),f1)-4 Moody friction factor
4. £
alphd{ReD(— D“ fric fac(ReD( Q ,l) , W
8Q” L =0 ), (=0’ (2,
(DQ“)':I— Q. J ._+
Pz2 ALY 7 4 5 T Z)
ngzy D D k H J

Energy equation written atz=2z2 =0

Figure 16.17 Mathcad worksheet for syphon exercise. See continuation of this worksheet
in Fig. 16.18.
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2 hﬂ( (ﬂ, n '_ac( (ﬂ \E]
P[X,T,D,Q);IA[HEJE}_ 8¢’ Lﬂp kReDlﬂ'Dz DJJ+ﬁ“ lRBDt,:.Dl 2
W ola ) EZ‘E'le o = l

Energy equation written at local x

U
-3
—_
| =
S—

1=38 guess

_ —14.7-psi+ 0.178 psi
Pmin_vahe = T oem P value = ~0-5105
it
Q= l-£ guess for Q Qm[(]} .7) S TOOt(pﬂ(D,Q,T),Q) Solution for Q from energy equation written at 2= 2.2
] ( d 3
xl= T],‘ bl mtlap(xl 1:D3 ’Qroot(Di 'T))”d quess for x x=7.958m
l

3
d
D:=Dy xmot(T'D) = m{d—xP(’ls‘I‘D ’Qmol(D '7])“! Condition of dp/dx = 0 at location of minimum static pressure

- . Solution for v from energy equaticn written at
Troot(D) = Mt(P(w(T'D)’T'D Quoot® 'T))_ Pmin_vahue ’7) location of minimum static pressure

D) =4318 + solution fer
YroottD) Y Qmm(D ,Tmt(D])= 2-1565 Volume flow rate

&L r; the height of e )

. =7.883 x 104 Reynolds number
Yroot(D) the syphon above 2.1 zDv

Figure 16.18 Mathcad worksheet for syphon exercise. Continued from worksheet in
Fig. 16.17.

parameters can be assessed and included in the design in a much more informed
manner.

28. When we write Ap/ L from the Darcy—Weisbach equation, Eqn (2.9), and for
Eqn (16.4) and compare them, we can see that in this Hazen—Williams formula,
f is assumed to be approximately proportional to Re %15 (i.e., f = Re %),
This approximation is a variation of the Blasius formula, Eqn (2.19) that is
valid for only turbulent flow in smooth pipes where Re < 10°. As discussed
in Chapter 9, the Hazen—Williams formula applies to only turbulent flow and
include other restrictions to which the designer’s attention is needed.
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The units of C' are determined by substituting only the units for each dimen-
sional term into Eqn (16.4). Obtain

D0.13

(1] = p C185 Q0.15 (16.19)

where [1] is a dimensionless number. The units for C are indeed very messy.

A plot of the ratio of Ap/L from Eqn (16.4) to that from the Darcy—Weisbach
equation is given in Fig. 16.19. The nonmonotonic behavior for the 2-in. pipe
size reflects laminar flow for the smallest flow rates followed by transition and
turbulent flow with increasing flow rate. The extent of disagreement between
Eqn (16.4) and the Darcy—Weisbach-based pressure drop per length for the
laminar flow and transition regimes is clear. The remaining two pipe sizes
give evidence of only turbulent flow. Equation (16.4) under-predicts the actual
pressure drop by 30-35% at the low flow-rate end and is relatively accurate
for flow rates approaching 7 L/s for all pipe sizes. The general disagreement
with the results of the Darcy—Weisbach equation, which we recall is based on
fundamental fluid dynamics, should convince one to ignore the approximate
Hazen—Williams formula for pipe flow calculations.

108

Ratioof Ap/L

07 K ——— 0.54n. Nominal PVC Pipe |
’ , == 14n. Nominal PVG Pipe |
4 ~ = 2n. Nominal PVC Pipe
085 .- y (== = 2. Nomina)

10°
Q (liter/s)

Figure 16.19 Ratio of Ap/L from Eqn (16.4) to that from the Darcy—Weisbach equation
for three pipe diameters.

29. To be done by the student.
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30. The solutions are plotted in Fig. 16.20. The statements in Chapter 9 regarding
this comparison are validated.

1.02 \
RatidQ.0.000 "‘\“ \

Ratiq.00n 0T N T TS

1
Ratid(Q, 1) .

S " -

Ratig),0.1) =N \

099

e

ReD(Q.T;Jumlo.n.c-nn] i

;;;?Q,Dj“"!;q.u.m])

Repy (2. Djged Q.0-0)

L-10F

(@ el ) 1 / =

Figure 16.20  Solution for Exercise 30. The left-most plot is the ratio of D from Egs (9.4)
and (9.5). The other plot is Re over the requested range of ¢} and hp /L.

31. The results of the correlation, Eqn (9.6), and the Mathcad worksheet Single
PipeNetworkDesign Appendix.xmcd are shown in Table 16.8. For minor-
lossless flow in GI pipe, differences between D with the two approaches is
< 12%. For smooth pipe like PVC and PE, the agreement is 6% or better.

Table 16.8 Ratio of D from SinglePipe NetworkDesign_Appendix.xmcd to
Eqgn (9.6)

hi/L— 0001 001 01 10

1 Q(Lis)
0.012 0997 0965 0.884 0.987
0.1 1.026 1033 1.012 1.001
1 1.006 0992 0.983 0978
3 0994 0984 0977 0973
5 0990 0982 0976 0972

32. Substituting the continuity equation, Eqn (2.21), into Eqn (2.40), obtain

- F— @D AT g

w2g D5

(16.20)

Rearrange this equation to get

[f(Q. D)2 Q 1 -F /2
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33.
34,

35.

EXERCISES

The dimensionless volume flow rate is the term on the left side of this equation,
and the modified slope is the group on the right. Note that for small s the
modified slope becomes s(1 — F')/\ the same as in Eqn (9.7). The exponent
1/2 and the coefficient, 1.111, in Eqn (16.21) are both different from those
in Eqn (9.7). Also, there is no explicit effect from the kinematic viscosity of
the fluid, v, since Re (where this appears) is embedded in the friction factor,

f(@, D).

Chapter 10 Solutions

To be done by the student.

The solution appears in the Mathcad worksheet shown in Figs. 16.21-16.23.
The solution using the Given.. Minimize block follows exactly as in the
example in Chapter 10 except that there are three unknowns for the present
problem (L, D, and n) instead of two.

For the Lagrange multiplier method, the cost function is

DLnt'?®

F(L,d,n) $400/m? —

+ $370.70/m>*° Ld?*5
+ $280.60/m?Ld + A (V — Zd?L) + A2(As — nDL)

The last two terms are the constraints of fixed exchanger volume and tube sur-
face area. A; and A, are two Lagrange multipliers. The derivatives OF /0L,
8F /8d, OF [On, BF /89X, and OF /&), are taken and set equal to zero, and
appear in their own lines in Figs. 16.21 and 16.22. Mathcad has symbolic
mathematics capability and will take a derivative and report the result sym-
bolically. The five equations are nonlinear and cannot be solved by simple
matrix inversion. Instead, they are solved simultaneously in a Given...Find
block for L°Pt, D°Pt n°Pt and ), and A.. The latter two variables are of no
interest to us. The units for each dependent variable are used to make each one
dimensionless in the Find statement since the results are reported in a single
column vector. They are converted to dimensional form after the solution is
obtained. The solution reported in Mathcad for both methods is d = 1.61 m,
L = 7.41 m, n = 1504, and the total cost is $13,459.

The solution appears in Figs. 16.24 and 16.25. The optimal pipe diameters
are D" = 1.80 in., D;?* = 1.79 in., and D%"* = 1.79 in., respectively;
essentially equal diameters. The optimal static pressure heads at the junctions
a-b and b—c of 22.6 m and 20.5 m, respectively, are acceptable. The minimum
total pipe cost is $602. Evidence that the minimal cost exists at the reported
values of hF" and hy?* comes from our inspection of the two plots at the bottom
of Fig. 16.25 that show total cost versus £ for the two junctions. These figures

reveal that the total cost is not very sensitive to off-optimal values of k., and
Pbe-
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Optimization of Heat Exchanger

By Minimize function:

- - dollars:=1 L:=1m d=1m n=300 D:=1cm

15
doll dollars 1l
Fog(Lod,n) = 400 SIS B 1 4 3907 dolars 25 pgpe S22 4y
2 (n=1) 35 2
m m
L
Given V—%dzLio Ag-nmDL=0 d| := Minimize(Fy,,L.d.n)
- |
By Lagrange multipliers:
dollars _ " dollars 2.5 dollars 2
400 ——D——L+3707 ——d " L+2806 ———dL+X V-—d L +X(A-nmDL)
2 (n—1) 35 2 4 5
m m m
2
280.6 d dollars w T 4"\ 3707 ¢*° dollars 400 D dollars n'”
-®Dnx; - + + - derivative wrt L
2 35 2
m m m (n—1)

Figure 16.21 Page ! of Mathcad worksheet for heat exchanger optimization.
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dollar : dollars 2. dollars
O 1 +3707 o 4P L+ 2806 R d L4 N, V-—d'L 4 (A-nwDL)
) B 2 ! 4 8

m

mLldx 1.3
280.6 L dollars _ 1 N 926.75 Ld ™ dollars " G ET N W @

2 2 35
m m
1.5
ao0 08 [y 0y 3907 SO0 25, L 2506 S g1 n, Vo Z L 4 (A-nwDL)
2 (n—-1) 2 4
m m
600.0 DL dollarsn™> 400 DL dollarsn'*
- - -mDLX : derivative wrt n
l‘l‘l2 (n-1) mz(n— 1)2
Juesses
Given
2
md® X 25 1.5
0= 200 ddollars o 1, 3707 & dollars | 400 Ddollarsn'™®
2 4 35 2
m m m (n—1)

_ 2806 Ldollars TLdXN L 92675 L a"? dollars

2 2 15
m m

0 . derivative wrt d

Figure 16.22 Page 2 of Mathcad worksheet for heat exchanger optimization.
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0.5 1.5
0=600-0D2Ld0“m“ _J0DLdollasn .y,  [dervativewitn
m-(n-1) m’ (n-1)

0=v-TdL 0=A-nwDL  [derivativeswrtAfandA2

4

d:i=dm

Figure 16.23 Page 3 of Mathcad worksheet for heat exchanger optimization.
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Series flow 3-pipe problem optimized for minimum cost

) 2
Mralproponos 100058y = 130710 "B e = 15 TOL= 11010 ORIGIN= |
m3 SeC
0.622 0.50 dollars = 1
0.824 0.82
1.049 1.02
1.610 1.74
IPS sch.-40 PVC pipe cost diam = in cost = | dollars
2.067 2.40 m
2,469 394
3.068 5.58
| 4.026) \775)
4Q _6 :
Re(Q,D) = g =510 -ft absolute roughness, ft (increase
n-Dv 100 times for galvanized steel)

friction factor that spans the laminarfturbulent range. ebyDis relative roughness.

g _3— 12
- 4 2
- ql6
24 8 2
f 4 18765 227 50
funct(f,R,ebyD) = 3— [—f] + [ 8 Gf] +13.29- - +[ f]
R |— R |- R[— 'R|-
SORISD) D]
R [—
1 8
0436 T
1+ 0301R [—ebyD-2
! L L | 8 J11 ]
fl=102 fric_fac(Re,etyD) = root(fnct(fl,Re,etyD),f1)-4 friction factor

a(R) = if(R < 21002,1.09

A 3-pipe netw ork solved in forward w ay (specify volume flow rate and solve for pipe diameters vs.
junction heads):

D,=2in Dy:=2in D, =2in guesses

Ihput Parameters: -- - - -
EEEE CEE K= 0 Laypp =0
B k=0 Layp o=

Figure 16.24 Page 1 of solution for Exercise 35.
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'l'cost(Da,Db_.Dc) = lintcrp(diam,cost ,I}a)La + ]inlerp(diam.cost ,Db}l.b + (]imerp(d.iam,cost ,Dc)lt)

Define energy equation functions: Cost (objective) function

fa(hjab»[’a) = Azy — iy — [Ka + u(Rc(IQi .Da))+ fric_i”aJRc(|Q| pa}il(i +LetyD a q 1R-Q2
\ Pa )| P ) atgp,

Az, . € wl‘o 1 $Q°
(b i Pp ) = == + higpy = hjpe = [Kb + fnc_fac(Re(|Q| ,Db),— H—+ Lepyp b ]
R ( DIC R W

Az _ Le 8Q°
felbibe: D)= 5~ * Moe = hael - [Kc + fnc__f'm{R:(lQ| ‘DC}DLC}{FC + LaD ¢ }] -
n gD,

Solve in Given...Find black Given
0=talbjapDa) 0= rp(abohjpeDp) 0= rellie:Dc)
Ds (fjap hjpe ) = Find(Dy, Dy, D)
TelCap: o) = o (05 bab e 1 D5 (b o oo D5 (i )

hjab = hyg +22m hjbc = hgy + 23m guesses

Problem is in terms of unknow ns  h.jab, hjbc. Mnimize Te subject to inequality constraints below .

Given
hjab 2 hj hjbc E hj hjab, hjbc > hj

. hjab and hjbc < h i
hjab < Az, hjbc < Az, + T jab and h.jbc < hydrostatic

(hiab hjpc )= Minimize(TC,hjab,hjbc)T (D2 Dy D)= Ds(hjab’hjbcj[

hjp lot = ¥m.8.5m. 35m

640 | | 640
|
‘._ [ ]
Tc(hjp[()l‘ hjbc) 620 \\\ 'rc(hjab’hjplcl) 620 \ ; |
\_/ : \ I [
! ‘-‘.\.w’/.-
600 eop—— —
10 20 30 40 0 10 n 30 40
Piplot Biplot

Figure 16.25 Page 2 of solution for Exercise 35.
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36.

Dy(L),

Dy (L),

Dy (L)3

EXERCISES

Chapter 11 Solutions

The solutions are shown in Fig. 16.26. As we saw from the developments in
Chapter 9 for turbulent, minor-lossless flow in a smooth pipe, D ~ L*/19 ~
Q"/19. Theresults in Fig. 16.26 are in close agreement with these relationships.

9 —

100 300 400

Blr'

Figure 16.26  Solution for Exercise 36. D,, Dy, and D, appear in order on the vertical axis
on both plots.

37.

38.

Into Eqgs (11.16) substitute the assumptions: L, = L, = L., Dy, = D,
Qb = Q. = Q. /2. Write the expression for total pipe cost assuming that cost
for each pipe is linear with pipe diameter. After simplifying, take the derivative
of total pipe cost with respect to h;, set it equal to zero, and solve for h; = h;pt.
Obtain the analytical result: h?”t = (2128 Az, ~ Azp + hge) /(1 + 212/23),

opt

Under these assumptions, we see that h 5 isa linear combination of Az,, Azp,

and hdel .

Add Eqn (11.39) to the Mathcad worksheet BranchingPipeExample.xmcd
and solve for the single static pressure at the junction.

Azg —ho
0 = sz/lg( aL 2) (14+4b/19)
7b/19(Azb + hg — hdel )—(1+4b/19)
b Lb

76719, D2c + ha — haer\ _(114p19)
qrno(Rethe baa
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Table 16.9 D (in.) from Mathcad worksheet SeriesPipe Example_equalQ_3pipe
_withcost.xmcd

zg (m) —» 67 72 78 84

| Pipe
a 271 280 3.00 336
b 233 254 271 430
c 233 240 271 280
d 168 168 1.58 1.54
e 153 153 153 153

469

where b = 1.4. Solve this equation for h; using the Root function or in a

Given...Find block to obtain h;pt = 16.8 m. This agrees with Fig. 11.6.

39. To be done by the student.

40. The results are presented in Table 16.9. The static pressure head at Junction
b—c for zg = 84 mis 73.5 m or 7.1 atm (105 psig). The growth in pipe sizes
with increasing z4 is expected as friction must play a more-diminishing role as
the elevation of the local peak approaches 2;. Note that segments d and e are

affected little by the elevation change in this problem.

41. The energy equation for a serial pipeline in nodal format is,

L;; L. 8Q°

— — )iV —— (16.22
Dy; D )1]]}W29D?j ( )

for ij = 12,23,34,...,(n — 1)n, where n is the total number of nodes in
the pipe. It is understood that Ah;; = h; — h; for two consecutive nodes
i and j, and h are the static pressure heads at the junctions. Also, h; = 0
and h,, = hge as always. The term «;; is nonzero only for the first segment,
ij = 12. Equation (16.22) is less cumbersome to use than Eqn (11.22) and is

the form recommended for solutions to serial pipeline problems.
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42.

43.

44.

EXERCISES

Solution from Mathcad worksheet. Following the above developments, the
energy equation for each of the pipes is written as

pr = pglz,+ g(—CL’a + a)( 4%; )2, Pipea
pe = —pglAz, + = (CL b+ a)(ig%) , Pipeb
P2 = —pglz.+ g(C’L,C + a)(:gg )2, Pipec
P = —pudiut §(Cuat )20, Piped
P2 = —pglz.+ g(CL,e + a)(ig; )2,  Pipee

where (7, is defined in Eqn (11.4). These equations are solved simultaneously
to obtain the solution for each D as a function of the arbitrary static pressure, po,
at the end of pipe a. The results are shown in Fig. 16.27. From our inspection
of this figure pipe a requires a 1--1n nominal PVC plpe size (actual diameter
of 1.61 in.), and pipes b through e require a nominal 2 4-in. size (actual diameter
of 0.824 in.) or nominal --1n size (actual dlameter of 0.662 in.). As static
pressure po increases, the driving force for flow in pipe a is lessened so that
the pipe diameter, [),, must increase, which is clearly seen in Fig. 16.27. For
the remaining four pipes, as static pressure py increases, the driving force for
flow increases and thus the pipe diameters decrease to satisfy the constrained
water flow rates. This is also clear from our inspection of Fig. 16.27. Among
the latter four pipes, pipe d demonstrates the greatest sensitivity to changes in
p2 because of the relatively large flow rate and the negative 3-m head that static
pressure p, must overcome.

From the Mathcad worksheet, the elevation heads are large enough to satisfy
the constraint of a 7-m head at the tapstand while satisfying the remainder
of conditions for this design, which are shown in Table 16.10. The theoretical
pipe diameters were obtained by assuming junction static pressures of 7 m. The
final junction static pressures are p12 = 19.3 psig (13.6 m), pa3 = 28.0 psig
(19.7 m), and p34 = 12.4 psig (8.7 m). Pipe cost, which is $341, was not
optimized for this problem. The values for K represent partially closed globe
valves in these pipe segments.

The results are shown in Table 16.11. The cost for the optimized network,
based on theoretical D, is $334, not very different from the solution of ex-
ercise 43. The choice for the nominal size of 1-in. for segment 34, instead
of % for problem 43, adds cost to the final design of the network but addi-
tional flexibility for future expansion. The solution from Eqn (11.54) gives
DP* = [1.13 1.08 1.01 0.832] in. The disagreement between the results
from Eqn (11.54) and the Mathcad solution is because the optimal result shows
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- Pipe a
— 12 = = Pipeb
=) - Pipe ¢
o - = =Piped
a_; ] | = = =Pipee
@
£
o ~
-
© o8} Se
' e R e e o

06 : e T

oal e m e meea oo o

0.2 ! .

5 6 7 8 [:] 10

P, (psi)

Figure 16.27  Solution for Exercise 42. Pipe a requires a 1%-in. nominal PVC pipe size
(actual diameter of 1.61 in.), and pipes b through e require a nominal %-in. size (actual diameter
of 0.824 in.) or nominal %-in. size (actual diameter of 0.662 in.).

Table 16.10  Solution for the Theoretical and Nominal Pipe Diameters, and Actual
Volume Flow Rates and K for Leg of the Kiangan-Community Network

Pipe Subscript  Theor. D (in.) Nom. D (in.) Q(L/s) K

12 1.24 12 124 50
23 1.18 1 1.05 50
34 0.792 3 0.84 40
45 0.762 % 0.43 0

that h?* = 7 m. That is, the optimal solution from Mathcad used the lower-
bound static pressure head. There is no such constraint in the analytical solution
of Eqn (11.54). The solution we should use is the one from Mathcad.

45. The results are presented in Table 16.12. The flow rates in segments 12, 45,
and all branches are maintained as specified in Table 16.4 by adjusting globe
valves in the branches as shown.

46. InBranchPipeExample 4pipe withcost_ver2.xmcd, we solve only the re-
verse problem with the flow rate for the turned-off segment set equal to zero and
the energy equation for this segment disabled in the Given. . .Find block as dis-
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Table 16,11  Values for Design Parameters for a Leg of the Kiangan-Community
Network

Pipe Segment Q(L/s) L(m) K L./D Az(m)

12 1.23 76 30 60 18
23 1.04 113 0 90 10
34 0.83 19 0 90 8
45 0.42 75 0 90 6

Table 16.12  Solution for the Theoretical and Nominal Pipe Diameters, and Actual
Volume Flow Rates and K for Leg of the Kiangan-Community Network

47.

Pipe Subscript  Theor. D (in.) Nom. D (in.) Q(L/s) K

12 1.45 11 1.25 30
23 1.19 1% 1.05 0

34 1.05 1 0.834 0

45 0.685 3 0418 260
26 0.616 1 0.200 85
37 0.629 i 0218 215
48 0.700 % 0416 40

cussed in Section 11.6.3. The flow rates in the branches are Q37 = (.224 LJs,
48 = 0.424 L/s, and Q45 = 0.424 L/s; all slightly larger than required from
Table 16.4 for this design.

The pathlengths and elevations for segments 12 and 23 are from geometry,

Liz(v) = Ry

Lua(v) = R(5-7)
Ale(’Y) - R[I_COS(V)]
Azs(v) = Recos(7).

The energy equations for each of the four pipe segments are written. In each, D
in its respective segment is unknown. In segments 12 and 23, h, is unknown,
and in segments 23, 34, and 35, hg is unknown. Here, «v is the independent
parameter and appears in the energy equations for segments 12 and 23. The
solution is carried out consistent with past worksheets where optimal solu-
tions were sought. The energy equations are first solved simultaneously in a
Given...Find block for their respective pipe diameters as a function of A,
hs3, and ~. The cost is then minimized using a Given...Minimize block and,
by doing so, the value of h; and h3 are determined as a function of angle 7. A
plot of total cost versus v will then reveal the optimal value for v (i.e., the
value that produces the lowest cost).
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The solution appears in Figs. 16.28-16.31. The Mathcad worksheet displayed
in Fig. 11.3 should be consulted for the preliminary calculations for the current
worksheet. Our inspection of the results for this problem show that no optimal
solution exists. The cost is essentially constant over all . This result is
consistent with Section 11.5.1, where we saw that the minimum cost solution
for a serial network is one where the pipe diameters are equal.

48. The solution is presented in Table 16.13. The final static pressure heads at
the three junctions is ASP" = [21.0 16.1 11.3 15.6] m for nodes 2, 3, 4,
and 5. All are acceptable. Based on the correlation of pipe data from central
Nicaragua, the optimal total pipe cost is $776. Nominal pipe sizes are selected
next, followed by the reverse solution where actual flow rates and static pressure
heads at the junctions are determined.

Table 16.13  Solution for the Theoretical Pipe Diameters and Flow Rates for Loop
Network

Pipe Subscript Theor. D (in.) Theor. Q (L/s)

12 1.07 4.60
23 1.93 3.55
34 1.32 1.25
45 0.592 —0.13
52 1.2 —1.05
36 1.52 2.30
47 1.47 1.38
58 1.08 0.920

49. Vectors of optimal pipe diameters for the distribution main and optimal static
pressure heads at the junctions are: ﬁgft =[1.91 1.88 1.86 1.80 1.74 1.67
1.62 1.57 1.52 1.41 1.34 1.29 1.17 1.07 0.861] in. and hort = [0 8.66
11.3 13.8 23.0 19.6 13.2 11.6 11.9 12.5 16.0 16.9 16.6 14.7 16.5 9.99] mat

the 16 nodes. All components of b are acceptable from an integrity standpoint.

50. The solution appears in the Mathcad worksheet in Figs. 16.32 and 16.33. In the
energy equations, all pipe lengths (L13, Lo3, L34) and elevations (Az;3, Azog, Azgy)
depend on the angle -y through simple geometry (see Fig. 16.6). They are writ-
ten as

Lis(y) =

>
N
o
)
—~ o~ A~~~
2
=D DD
(I
w W
~ o~
[
- o+
o o
2 B
N TN
= =2
A -



474

51,

EXERCISES

The energy equations for the three pipes in the network are written where, in
each, D and the static pressure head at the junction (h;) are unknown, and
~ is the independent parameter. The solution is carried out consistent with
past worksheets where optimal solutions were sought. The energy equations
are first solved simultaneously in a Given...Find block for their respective
pipe diameters as a function of h; and «y. The cost is then minimized using a
Given...Minimize block and, by doing so, the value of h; is determined as a
function of angle . A plot of total cost versus v will then reveal the optimal
(i.e., the v value that produces the lowest cost).

From the Mathcad worksheet, the optimal angle is v°P* = 77° and the minimal
cost is $4386. The theoretical pipe diameters are: Dy3 = 1.91 in.,, Dyg =
1.621n.,and D34 = 2.10in. The pipelengths are: L3 = 222m, Loz = 222m,
and L4 = 1383 m. These figures can be determined by using the graphical
trace option in Mathcad or by requesting D and L values at v = °Pt.

At the optimal value of -y, the static pressure head is ~5.82 m. This is a
marginally acceptable value based on our previous work. Note that there is
a generally broad minimum as seen in the leftmost figure at the bottom of the
solution in Fig. 16.33. For example, for v = 44° the total cost is ~$4450,
very close to the optimal cost. For values of v > ~°Pt, however, the total cost
increases dramatically.

Finally, we note for optimal conditions, there is no possibility of water flow
from one source to another. This may have occurred for small optimal values
of v but not for the optimal solution for this problem.

The energy equations for the distribution main from node 5 to node 1 are written
as

L5y, 8Q2
0 = A _ _ 9 54
254 + hs — hg — (fs4 D54)7r2gD‘514
Liz, 8Qi%s
0 = Azgg+hy—hs— (fa®
43+ hy — h3 (43D43)7r2gD23
L3y, 8Q%,

- A —hy — (fa 2
0 232 + hg — h2 (f32D32)7r2gD§2

Ly, 8Q%
0 = A ha — h1 — (fo1—=—
221 + hy — h1 — (f2 Don )ngDél

where hs = 35 psig = 24.61 m and h; = 7 m and it is understood that
Azyy = —Azyp and Loy = Li2, and so on. That is, the pump is raising water
above the location of node 5. An appropriate Mathcad worksheet is modified
to solve this problem.

For h; = 7 m throughout, the pipe cost is $290.50 and the diameters are

—

D = [Dsy D4s D3z Doy] =[1.02 1.17 0.777 0.642] in. When the pipe cost
is minimized it becomes $266.96 for which the optimized diameter results are
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DoPt = [1.01 0.963 0.902 0.742] in. The optimized static pressure heads at
the three internal nodes are AP = [h3P* h3P* h{P'] = [7.34 22.8 18.8] m.
All are acceptable from an integrity standpoint.

Chapter 12 Solutions

To be done by the student.
To be done by the student.
To be done by the student.
The Mathcad worksheet microhydro_theoretical_power.xmcd is used to

solve this exercise. The calculations in this worksheet follow.

The hydraulic gradient S =~ 0.076 from this example. The optimal pipe size,
subject to the design value of Q = Q°P* = 230 L/s in the penstock is from
Eqn (12.13),

Dopt = 0.9192in. - S—0.2054(_Qg)0.3805
u

0.9192 in. - 0.0760-20542300-3805 — 19 3 in.

For sch. 40 IPS pipe, the inside diameter is within 1% of the nominal size for
nomina!l size of 4 in. and larger (Table 3.1). Thus, we choose nominal 14-in.
sch. 40 GI pipe. The flow speed is 2.3 m/s, below the maximum recommended
of 3 m/s when considering abrasion.

The energy equation for the actual turbine power output is Eqn (12.16),
8()?

e = nemg pg Q LIS — f(Q,D)W]

Assume 1, = 0.75 and n, = 0.85. With f(Q,D) = 0.01702 from the
Mathcad worksheet (or Fig. 2.4), obtain,

W, = 0.75-0.85-999.7 kg/m"’ - 9.807 m/s* - 1050 m - [0.076
8- (230 x 1073 m?/s)?
72 -9.807 m/s” - (14/39.372 m)5

— 0.01702 ] =95.5kW

Since 95.5 kW > 65 kW as required by the community, we conclude the above
design specifications will meet the electrical power demand. The designer
needs to consider other inefficiencies in the system (transformer and power
transmission losses), which will reduce this value by ~15%.

The value for Q°P! is 324.7 L/s because of the need to select 14-in. GI pipe
(13 in. pipe is normally not commercially available). This is much larger than
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the design flow rate of () = 230 L/s, and is the reason why the electrical power
production is much higher than for textbox B.12.1 example. More power will
be produced with GI pipe, but at a much greater pipe cost because the large
pipe size is more than needed for optimal turbine performance.

Equation (12.17) is solved in Mathcad using the root-finder root. The solution
appears in Fig. 16.34. The flow rates range from 23 L/s to > 2200 L/s.

In Exercise 55, the sch. 40 GI pipe size is D = 14 in. From the Mathcad work-
sheet microhydro_theoretical_ power.zxmcd, the static pressure head just
before the turbine is ho, = 66.26 m (Fig. 12.5). Assuming C,, = 0.95 at its
mid-range, Eqn (12.26) becomes

A, = 230 x 107% m?%/s

= =6.71 x 107° m? =104 in.?
0.95\/2 +9.807 m/s” - 66.26 m

The nozzle diameter is from
D, = (44, /7)/? = 3.64 in.

With C,, near its optimal point, the efficiency of the turbine, C, =~ 88.7%
The speed of the water jet is
Q 230x107%m3/s

v, = @ 20X Tm/S g4
1= 4, 671 x10-3m? m/s

The tangential velocity of the Pelton wheel, wr, is optimally half of this value.

The system efficiency is 7545 = 66.26 m/80 m = 82.8%, considerably larger
than that based on D = D°Pt,

Chapter 13

The solution is carried out using Eqs (13.1) and (13.2). The results for the
running sum of the local lengths are presented in Table 16.14. The total length
of pipeline is L, 18 = 1454.3 m. From our inspection of the given data set, the
point in the network that is closest to the elevation of the source (at node 1) is
node 17, where Az = 49.3 — 38.9 m = 10.4 m.

The present water demand is estimated from Eqn (13.4)

Qup = 1350 persons - 80 L/person/day
4P~ 60 s/min - 60 min/h - 24 h/day

=1.25L/s

The future population is estimated from Eqn (13.3)

Pp = 1350 persons - {1 + 0.015)%° = 1819 persons
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Table 16.14 Running Sum of Local Lengths for Exercise 58

Node,7 z;(m) y;(m) =z (m) Lg;(m)

0 0 49.3 0
-37.2 =521 222 69.5
—-77.4 9.6 19.9 143.2
—241 75.9 29.6 319.9

—277.8  95.8 33.6 362.0
—-312.5 1484 252 425.6
—-336.2 184.7 17.5 469.6
—-374.7 2084 22.5 515.1
—420.8 216 21.7 561.8
—439.1 2287 20 584.2
—412.6  335.1 223 693.9
—-428.9 373.1 13.5 736.1
—481.8  463.7 16.7 841.1
—471.9  552.1 15 930.1
—533.9  659.1 24.7 1054.1
—544.5  720.5 43 1119.1
—-536.1 864.9 38.9 1263.8
18 —688.4 974.3 52 1454.3

e
Y-S vl e iae—t-T- IRT- NV W YN

Table 16.15 Flow Rate Data for Exercise 59

Present Future Source 1 Source2 Source3  Source 4
Demand Demand Yield Yield Yield Yield
(L/s) (L/s) (L/s) (L/s) (L/s) (L/s)

1.25 1.68 0.95 0.40 1.46 0.55

from which the future demand becomes

Qur = 1819 persons - 80 L/person/day
4F = "60's/min - 60 min/h - 24 h/day

= 1.68L/s

A comparison of the future demand with the yields from the sources is shown in
Table 16.15 for convenience. Our inspection of the data in Table 16.15 shows
the following combination of sources will meet the present and future demand:

(a) Source 3 and any one of the remaining sources.

(b) Sources 1, 2, and 4 together.

To produce a recommendation based on a full-analytical approach, proceed to
calculate the pipe sizes needs to deliver water from each source to the storage
tank. Design Fig. 5.4 is used (F = 0; Natural flow, and A = 1) to calculate
the nominal pipe sizes for each of the candidates. The results are shown in
Table 16.16. Also shown in this table are the total pipe costs for developing
each source, where the pipe cost per length is from any one of the appropriate
Mathcad worksheets. Our inspection of the results of Table 16.16 shows that
option a from the above list of options costs between $97.02 (Sources 3 and 2)
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Table 16.16 Cost Data for the Four Sources in Exercise 59

Source Mean Slope  Yield D (nom.) CostPer Length Total Pipe
(6z/L) (L/s) (in.) Length (m) Cost (US$)

($/m)
1 0.0625 0.95 2 2.40 32 76.80
2 0.375 0.40 3 0.60 8 4.80
3 0.113 1.46 13 1.74 53 9222
4 0.0476 0.95 7 2.40 21 5040

and $169.02 (Sources 3 and 1). The total pipe cost for option b is $132. There-
fore, the most economical choice is to develop sources 2 and 3 that produces
ayield of 1.86 L/s. This recommendation assumes that binding commitments
from the land owner(s) of the source(s) have been obtained for all of them, and
that the owners have agreed to not disturb the native growth around each of
the sources. Disturbing this growth, such as cutting of trees surrounding the
sources could affect the yields from the springs in the future.

We use the spreadsheet Storage Volume Calculation-Textbox _Example
.x1sx, supplied with this book, to calculate the volume of water in the tank at
the end of each hour of the day. Trial-and-error dictate that we consider tank
volumes in the range of 38,000—42,000 L; volumes below this range are empty
> 2 h each day. Volumes greater than this are filled the entire day and have too
many hours of overflow. Table 16.17 shows the results for a tank volume of
40,000 L (40 m®). The recommended tank volume is between 40 and 41 m3.
For the latter value, the tank never empties.

For pipe segment 12, for example, from Eqn (13.6) the design flow rate becomes

Qiopp=PF -Q12=32-35L/s=112L/s.

For an annual growth rate, i, of 1% and a 25-year network lifetime, the result
from Eqn (13.3) shows the design flow rates need to increase a factor of 1.282
to accommodate the future population. Thus, for pipe segment 12,

Qiz,rp = (1+1)" Qo p, =1282-11.2L/s = 144 L/s

The flow-rate results for all segments of this network were calculated in the
same manner and presented in Table 16.18.

To be done by the student.

For GI pipe, solve Eqn (13.10) in Mathcad using the friction factor from
Eqs (2.16) and (2.17) to get L, and L; equal to 280.8 m, and 97.2 m, re-
spectively. For PVC pipe either the Mathcad worksheet or Eqn (13.10) will
give L, and Ly equal to 277.3 m, and 100.7 m, respectively. The differences
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Table 16.17 Water Volume in Tank versus Hour of Day for Tank volume of 40,000 L

Hour Qs Demand Qq Water State of
(I/h)  Percentage (I/h) Volume (1) Tank

1 6696 0 0 40,000 Overflow

2 6696 0 0 40,000 Overflow

3 6696 0 0 40,000 Overflow

4 6696 0 0 40,000 Overflow
5 6696 5 7,276 39,420 Filling
6 6696 20 29,104 17,012 Filling
7 6696 10 14,552 9,156 Filling
8 6696 5 7,276 8,576 Filling
9 6696 1 1,455.2 13,817 Filling
10 6696 1 1,455.2 19,058 Filling
11 6696 5 7,276 18,478 Filling
12 6696 10 14,552 10,622 Filling
13 6696 5 7,276 10,042 Filling
14 6696 2.5 3,638 13,100 Filling
15 6696 2.5 3,638 16,158 Filling
16 6696 5 7,276 15,578 Filling
17 6696 10 14,552 7,722 Filling
18 6696 10 14,552 —134 Empty
19 6696 5 7,276 —580 Empty
20 6696 2 2,910.4 3,786 Filling
21 6696 1 1,455.2 9,026 Filling
22 6696 0 0 15,722 Filling
23 6696 0 0 22,418 Filling
24 6696 0 0 29,114 Filling

Table 16.18 Present and Future Design Volume Flow Rates for Exercise 61

Pipe Subscript, ij  Quj,pp (LIs)  Qij,F,p (Lfs)
14.4
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between the results for PVC and GI hint that Eqn (13.11) is probably adequate
as a first-order estimate for both GI and PVC pipe, especially when one applies
the factor of 0.8-0.9 to allow for possible increase in water flow rate in the
future. The Reynolds numbers for pipes of diameters D, and D, are 47,500
and 60,980, respectively; both are turbulent.

For the given pipe size, Table 3.1 reports D,y = 6.625in. and D;,, = 6.065in.
For water at 10°C at which the density is p = 999.7 kg/m3, Eqn (13.13)
becomes

L [@1ox100 N/m?)/999.7 kg/m® - (1 - kg m/s?)/N
v 1+2-(2.11-109/2.90 x 109)/(6.625/6.065 — 1)
= 3549m/s

where the bulk modulus for water, B = 2.110 x 10 N/m?, and elastic modulus
for PVC, E = 2.90 x 10° N/m?, are as given in Section 13.17.

The flow speed in the pipe before the valve is closed, 4, is from the continuity
equation, Eqn (2.21),

o_ Q@ _48L/s 0.001m/L

A 7/4-(6.065in.)2

= 2.58 m/s

The change in flow speed is thus,
At =0—1a=—-2.58m/s.

The magnitude of the pressure wave resulting from the sudden valve closure is
from Eqn (13.12)

Ap = —999.7 kg/m® - 354.9 m/s - —2.58 m/s = 470 kPa

or ~93 m of water head at the location of the valve.

If the pipe material were GI, the above becomes a,, = 1311 m/s and Ap =
3374 kPa. This is equivalent to ~344 m of water head. Although these results
are worst case, water hammer in the presence of steel (or galvanized iron) pipe
could fail the water delivery pipe. This is especially worrisome if both PVC
and GI are used in the same network. In this case, a pressure wave of large
magnitude is produced in the steel pipe which, when encountering the PVC
pipe, would very likely rupture.

Chapter 14 Solutions

Solution from Mathcad worksheet: Based on the material presented in Sec-
tion 14.3, our inspection of Fig. 16.7 indicates that one air block will form in
segment b. Our approach will be to use Eqn (14.7), the simple approach where
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air compressibility is neglected, and Eqn (14.13) where compressibility is in-
cluded. When we include air compressibility, recall that p,; = 14.7 psi since
all static pressures must be in absolute and hge; = 20.3 m (abs). Otherwise, we
can use gage pressures of p,; =0 psi and hge; = 10 m.

First, we find the flow rate if there are no air blocks. From the geometry of
Fig. 16.7 calculate s = 0.131. With F' = 10 m/170 m = 0.0588, and A =
1333.8 m/1311.1 m = 1.11, the Mathcad worksheet gives ¢ = 0.904 L/s. By
comparison, both Eqs (9.2) and (9.3), which assume a constant friction factor
of 0.03, predict only 0.3% higher, in nearly perfect agreement with the exact
solution.

Now, neglect air compressibility and use Eqn (14.7) to calculate (). With
compressibility neglected, pipe segment b contains air over the entire segment
length. The remainder of the pipe segments flow water. The reduced elevation
head, Azg+Az.+Azg, is (100—20—20+40) m= 100 m, and the length of pipe
flowing water, L, + L.+ Ly, 1s (614.81 + 250.80 + 302.65) m=1168.3 m. The
corresponding values for s, F', and A are 100 m/1300 m = 0.0769, 10 m/100 m
=0.100, and 1168.3 m/1311.3 m = 0.891, respectively. Through the Mathcad
worksheet, we calculate Q) = 0.0925 L/s, a reduction of ~90% compared with
the case where there are no air pockets.

With air compressibility included, we use Eqn (14.13) together with the Mathcad
worksheet to calculate the flow rate. Please refer to the notation appearing in
Fig. 14.6 above to write the equations for Az.(pa2) and L’ (p,2). Obtain

14.7 psi
Azo(paz) = [50 — 70 + (120 — 50)(1 — —%)}, m (16.23)
a2
14.7 psi
L2 (pa2) = [250.80 + 165.50(1 — %)], m (16.24)
a2
Finally, Eqgs (14.13) for this exercise are written as
4
PgAzZg = Paz +Pa1 = -g(CL,a + a)(;%)2, Segment a
pgAZC(pG.Q) +  Da2 — Pe2
4Q

p *
= §CL,c(Lc(Pa2))(m)2a Segment c
(16.25)

pgANGer 4+ Pe2 — Ddel

4
= gCL,d( @

2 )%, Segment d

where p,; (=14.7 psi) has been added to the first of these equations since all
static pressures are in absolute.
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The equations of Eqn (16.25) are solved in the Mathcad worksheet for p,2,
pe2, and Q. After converting all static pressures to gage values, we obtain
Paz = 22.5 psig, pea = 2.198 psig, and = 0.837 L/s (~7.4% less than
with no air pockets). The head Az.(pg2) is 22.3 m, a positive value. This is
contrasted with -20 m for the case where we assume incompressible air from
above. The neglect of air compressibility produces an overly conservative result
as discussed in Chapter 14.
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Figure 16.29 Page 2 of solution for Exercise 47.
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Branching flow 3-pipe problem optimized

2
Water properties  p = 1000"—? vi= 130710 2 se=1s  TOL= 110 "7
m Sec
ORIGIN = 1
0622 0.60 dollar =
0.824 0.82
1.049 1.02
1610 1.74
IPS sch. 40 PVC pipe cost diam = in cost = ot
2.067 240| m
2.469 3.94
3.068 5.58
(4.02¢) \775)
4.Q _6 .
Re(Q,D) = e =510 ".ft absolute roughness, ft (increase
n-D-v

100 times for galvanized steel)

friction factor that spans the laminarfturbulent range. ebyDis relative roughness.

r _3~ 12
- q 2
- ql6
24 8 2

f 4 18765 50

funct(f,R,etyD) = — - + +13.29-——
R [— R |[— -
U] UNe)
0436
+0. 30}R — cbyD EJ
fric_fac(Re,ebyD) = root(funct(f1,Re,ebyD),{1,0.00010.2)-4 S

a(R) = if(R< 21002,1.09
Bj=10m Dig=1lh Dyy=lin Dyy= 2

— N

- 7} = 64m

Yinax = atan(—] Yimax = 58.21deg : maximum angle for v given the problem georretry

\"1)

guesses

Figure 16.32 Page | of solution for Exercise 50.
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Appendix A
List of Mathcad Worksheets

The Mathcad worksheets (and other programs) supplied with this book and the sec-
tions in which they appear are as follows:

e Chapter 2:

— friction factor.xmcd (Section 2.2.2)

— HydraulicGradient.xmcd (textbox B.2.6)
e Chapter 4:

~ single pipe example-method 3.xmcd (Section 4.5.3)
e Chapter 8:

— SinglePipeNetworkDesign Appendix.xmcd (Sections 8.2- 8.5)

— SinglePipeNetworkDesign Metric_Appendix.xmcd (Sections 8.2-
8.5)

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 491
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— example problem on peaks.xmcd (Section 8.6)
- site_survey_data.xmcd (Section 8.7)

— Tank Draining.xmcd (Section 8.8)
o Chapter 10:

~ Optimization _TankHeightvsPipeSize.xmcd (Section 10.6)
e Chapter 11:

~ BranchingPipeExample.xmcd (Section 11.4)

— NumberPipesSeries_Example.xmcd (Section 11.5.1)

— SeriesPipeExample_equalQ_3pipe_withcost.xmcd (Section11.5.1)
— BranchPipeExample_4pipe_withcost_ver2.xmcd (Section 11.6.1)
— BranchPipeExample 4pipe withcost_ver3.xmcd (Section 11.6.6)
— LoopExample_withcost_ver3.xmcd (Section 11.7)

~ LoopExample_withcost_ver8.xmcd (Section 11.7)

— BranchPipeExample 4pipe_withcost_vectorized. ver3.xmcd (Sec-
tion 11.8.3)

Chapter 12:

— microhydro_theoretical_power.xmcd (Section 12.2)

Chapter 13:

— Storage Volume Calculation-Textbox_Example.x1lsx (A Microsoft
Excel spreadsheet; Section 13.6)

Chapter 14

— pipe sizing for air block example.xmcd (Section 14.5)

Chapter 15:
~ BranchNetwork Philippines_withcost_vertl.xmcd (Section 15.3.3.3)

The worksheets have been successfully run onMathcad versions 11, 13, and 14 (the
current version at the time of this writing). There have been a few syntax changes and
additions during the time of the release of these versions. One is for the root function.
The earliest versions require an initial guess outside of the root function whereas, in
the later versions, a range of values over which the root function looks for a solution
is required within the root function itself. It appears that versions 11-14 allow
the latter syntax. In the later versions, there also appear to be improvements to the
Minimize function. The earliest versions take considerably longer to run worksheets
that use Minimize compared with version 14; in some cases one or two orders-of-
magnitude more time on the same computer. In addition, version 14 contains a time
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function that can be used to calculate the execution time for a calculation. Earlier
versions will not recognize this function.

Note that some worksheets have different extensions with the same name. These
are written to run in two different versions of Mathcad. The extension mcd is for
Mathcad version 11. The the extension xmcd is for Mathcad version 14 or later.
Mathcad versions 11 and later can successfully read files with the extension mcd, but
only Mathcad version 14 (or later) will read files with the extension xmcd.

Also, note that several worksheets appear in metric form where the worksheet name
includes the word Metric. An example is SinglePipeNetworkDesign_Appen-
dix and SinglePipeNetworkDesign Metric_Appendix in the above list.
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Appendix B

Calculating Pipe Length and Mean Slope
from GPS Data

B.1 THE BASICS: NORTHING AND EASTING

Dimensions of the potential site for a water network can be measured with land-
based surveying equipment, such as a transit or an Abney level and measuring tape.
Alternately, more sophisticated electronic equipment may be used, such as a global
positioning system or GPS. A GPS uses signals transmitted between itself and satel-
lites to accurately determine the position of the device. The position is given in
terms of three coordinates, latitude, longitude, and elevation from sea level. In prin-
ciple, these are sufficient to allow us to determine everything we need for the survey.
However, latitude and longitude are not immediately useful because they are angles
measured from the equatorial plane for latitude (between 0 and 90°; positive for the
northern hemisphere, negative for the southern) and the prime meridian for longitude

Gravity-Driven Water Flow in Networks. By Gerard F. Jones 495
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Figure B.1 Easting—-Northing coordinates for two points on the earth’s surface.

(between 1 and 180°, positive for the eastern hemisphere, negative for the western)
and we require distances. A conversion is needed.

Universal Transverse Mercator (UTM!) coordinates are Cartesian coordinates
that have been converted from latitude and longitude angles. The two coordinates
are referred to as Easting and Northing, where Easting is the distance coordinate in
the east—west direction (larger numbers are east of smaller numbers) and Northing is
that in the north—south direction (larger numbers are north of smaller numbers). In
engineering, we normally refer to Easting and Northing as the x and y coordinates,
respectively; see Figs. B.1 and B.2 for a comparison between the two.

The conversion is accomplished by applying formulas from geometry relating an-
gular measurements and distances at the earth’s surface. Forexample, 1° of longitude
at the equator (0° latitude) is 111.3 km to better than 0.1% depending on longitude.
This distance gets smaller with increases in either north or south latitude. Fortunately,
we do not have to program these formulas ourselves since others were kind enough
to do this for us.

A Microsoft Excel spreadsheet written by Dutch (2009) is available for the conver-
sions. The inputs include the model for the shape of the earth, latitude and longitude
values entered in either decimal or degree-minutes-seconds (DMS) format, and spec-
ifications of north or south for latitude and east or west for longitude. For the DMS
format there are 60 minutes in a degree and 60 seconds in a minute. The conversion
between the DMS and decimal format is thus,

M S

=D+ — 4+ — B.1
© +6O+36OO ®1

I'The Transverse Mercator Projection that is used on many world maps is a cylindrical projection. In this
projection, the earth is contained within an imaginary cylinder that contacts the globe along its equator.
The earth is then projected on the cylinder to produce the Mercator Projection. To visualize this, imagine a
flashlight positioned on the north-south axis (and normal to it) running through the globe, pointing outward
toward the cylinder. Note that landmasses at the larger north and south latitudes will be compressed in the
north—south direction relative to those at the equator once project onto the cylinder. This is a characteristic
of the Mercator Projection.
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Figure B.2  Easting-Northing coordinates of Fig. B.1 written in conventional z-y form.

where © is the latitude or longitude angle in decimal format. For example, a latitude
of 19°,45’, 33” converts to 19.759167°. Note the designations of a single prime for

minutes and a double prime for seconds in the DMS format.

The model for the earth’s shape essentially means the assumed diameters of the
earth at the equator and poles; it is generally understood that the earth is larger at
the equator than at the poles. Different models, referred to as “datums”, use very
slightly different diameters. The most recent datums are NAD83/WGS84 (World
Geodetic System 1984) and GRS80 (the foundation for the North American Datum
of 1983 or NADS83) which agree with each other to within 1 part in 10,000. Use the
NAD83/WGS84 datum unless information is available to dictate otherwise.

A word about accuracy of the results from these calculations is in order. Since there
are at most 111,300 m in 1° of longitude, 1 m of resolution in the Easting coordinate
will require certainty in longitude to five decimal places. The same accuracy in
latitude is required for the Northing coordinate. Longitude or latitude data to only
four decimal places will produce, at best, certainty to £10 m. The accuracy of
readings from a standard GPS receiver is also unlikely to be greater than £10 m.2.
Thus, the understanding is that calculations involving dimensions from GPS data will
be accurate only to this order of magnitude. To obtain the most meaningful results
at any accuracy level, multiple latitude and longitude readings, say 10 or more, are
recommended before converting the average of these readings to UTM coordinates.

More accurate horizontal and elevation measurements, at the cost of additional time
and perhaps expense, are obtained by surveying the site with a transit as described in
Chapter 13.

20ne popular brand of GPS in the United States, Garmin, states that its GPS receivers are accurate to
within 15 m on average (Anon., 2009) This is probably a worst-case estimate.
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B.2 AN EXAMPLE

Consider the calculation of Northing and Easting coordinates for two locations listed
in Table B.1.> Download the Excel spreadsheet (Dutch, 2009) and launch Excel to run
the sheet. Input the data in DMS format and obtain the results as shown in Table B.2.

Table B.1 Data for a Northing-Easting Example

Name Latitude Longitude

Treasure Island ~ 43° 33° 0~ -71°177 07
Diamond Island  43° 34> 25" —-71° 19’ 20”

Table B.2 Northing—Easting Results

Location Northing Coordinate (m)  Easting Coordinate (m)
Treasure Island ~ N; = 4,824,427.26 F;, = 315,555.29
Diamond Island N, = 4,827,136.64 FE, = 312,487.09

The Pythagorean theorem is used to calculate the distance between the two loca-
tions. Obtain

€ =[(Ny — No)? + (B, — Eq)?)'/? (B.2)
The distance between the two locations is calculated as ¢ = 4093.24 m. If this is the

final result to be reported, it would be rounded to the nearest 10 m. We get £ = 4090 m
=4.09 km.

To calculate the mean slope between these two locations, assuming a source at
Treasure Island Az = 10 m higher than the delivery location on Diamond Island,
from the definition of slope, we use

§= — (B.3)

from which we get s = 0.244%.

From the Pythagorean theorem we can also calculate the pipe length if run directly
from source to delivery or tank location. Thus,

L=(2+A2Y2=[(Ny— No)?+ (B, — E2)? + A2 (B4

We get L = 4093.25 m. Because of the relatively small value of Az, L and ¢ are
essentially identical.

3The locations are on Lake Winnipesaukee, New Hampshire. This is the location of the author while
completing this appendix.
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Appendix C
Mathcad Tutorial

The following tutorial was extracted from Mathcad ver. 11. (with permission).
The areas covered include fundamental math operations (Figs. C.1-C.16), plotting
(Figs. C.17-C.18), the root function (Figs. C.19-C.20), and Given ... Find con-
struction (Fig. C.21). There is also a brief write-up on the Minimize function. If
using a later version, or for information on other topics, please refer to the version’s
tutorial. Small changes in syntax (sometimes) and new features (usually) appear in
later versions.
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Entering Math Calculations

Math in a Mathcad worksheet appears in familiar math notation —
multiplication as a raised dot, division with a fraction bar, exponents in a
raised position, and built-up fractions just as you would see m a book.
Entering math expressions is very straightforward. Here are some quick
exercises to learn a few keystrokes and toolbar buttons. You will also learn
how to get a numeric result and to modify its format.

Definitions
numeric expressions— expressions involving numbers and operators

symbolic expressions— expressions mvolving numbers, unknowns
(variables), and operators

Calculator toolbar— toolbar containing buttons commonly found on a
calculator and other math operator buttons

result— evaluation of numeric expression

result format— type of result, including: decimal, fractional, scientific, etc.

Practice
Entering a Numeric Expression Tip: Don’t press the
i ) Spacebar between parts
Type this: Get this: of the expression.
1 Mathcad enters the
2+1/2 2+ 5 correct spacing as you
type.
Type this: Get this:
9+ 3)

(9+3)/(2*4-5) —_—

(2x4-5)

Figure C.1 Mathcad tutorial - basic math; page 1.
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Type this:

3+\2

Entering a Symbolic Expression
Type this:

3x+2y

Type this:
\16—d~2
Type this:

log(x~2)—log(1000)

Using the Calculator Toolbar

Get this:

3+\/§

Get this:
3x+ 2y

Get this:

16 —d
Get this:

10g(:2) - tog(1000)

The Calculatortoolbar is used primarily for work within the
Worksheet window. It may already be on your desktop, but hidden
under the Resources window. Click in the Worksheet window and
move theCalculatortoolbar over to the far left. Then bring your
Resources window back up, which will make it the “active” window.

If theCalculatortoolbar is not open, in the Worksheet window,

follow these steps:

Select Toolbars = Calculator
fromthe View menu:

All toolbars are floating, which
means you can move them wherever you
want n the window by clicking the top,

usually blue, bar and dragging i.

Get this:
sin cos tan In log
110 ped b e
(e
Nootirg eyl
48 BX
seihigd T e
- g —. =

Figure C.2 Mathcad tutorial - basic math; page 2.
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With your Calculator toolbar in view next to the Resources window and
your Resources window active:

Click the following buttons in Get this:
order:
2n
2 m
Click the following buttons in Get this:
order:
|-8.9]
xk — 8 - 9

Getting a Result

Type this: Get this:
1
2+1/2= 24+ E =2.5

Notice that the result is in
decimal format, the Mathcad

default.
Type or dick this: Get this:
[Shift]\-8.9= |-8.9 = 8.9
or
xt = 8 - 9 =

Figure C.3 Mathcad tutorial - basic math; page 3.
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Changing a Result to Fractional Format

Click on the right side of this Get this:

result and select Result from

the Formatmenu: 1

24— = 2,5||
2 —
1
2+—=2.5

2

Then this:

Result Format T x|

Number Format | Display Options | Uit Display | Tolerance |
Format

Number of decimal places IEI 3:
™ Show trailing zeros

[ Show exponents in engineering
format

Exzponential threshold IE 3:

[ 0k ]| cCoancel | SetasDefaut|  Help |

Click Fraction on the Number Then this:
Format page to select it and
H " ¥, 1 5
click "OK™ 24422
2 2

Figure C.4 Mathcad tutorial - basic math; page 4.
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Buiiding Math Expressions

Click to position the red crosshair to the right and type the following
examples. Pay particular attention to what happens when you press the
spacebar. The spacebar moves you out of the denominator of a fraction.

EXAMPLE

Type this: Get this:
1

1/2 [Spacebar] +2 —+2

2

When you are m an exponent and you want to continue entering more of the
expression, you use the Spacebar to move down from the exponent.

Type this: Get this:
2

xA~2 [Spacebar] +2x+1 X +2x+1

Practice

Entering an Expression

3/4 [Spacebar] +8/9

Hjw
_+_
O | oo

Type this: Get this:

2x~3 [Spacebar] —3x~2 [Spacebar] +x-1 2x3 - 3x2 +x-1

Tip: You might need to
press [Spacebar] two
\a-1 [Spacebar] [Spacebar] + a Ja-1+a ormoretimes to get to
the right position in the
expression before you
can continue typing.

Type this: Get this:
3 1
\3/4 [Spacebar] +1/2 4=
[Spacebar][Spacebar]{Spacebar] /6 4 2
6
Type this: Get this:

x+ 6 -1)

The exponent operator in Mathcad is calledsicky operator because your
keystrokes will stick to the exponent position until you specifically move
back to the baseline by pressing [Spacebar]. Other sticky operators include
square roots, subscripts, and division.

x+6[Spacebar]*(x~3[Spacebar]-1)

Figure C.5 Mathcad tutorial - basic math; page 5.
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Using the Calculator Toolbar

Remember that to use the Calculator toolbar in conjunction with the
Resources window, you must move it over to the far left n your Worksheet
window. Then bring your Resources window back up, which will make it
the “active” window.

With yourCalculatortoolbar in view next to the Resources window and
your Resources window active:

Click and type this: Get this:
2 Tt r~2[Spacebar]-4T r 21‘:r2 — 4nr
Click and type this: Get this:
[ 2 5
15 1[Tab] 2 [Tab] 3 [Spacebar] +5/8 ]? + g

If you select an operator,
such as the mixed number
operator, by clicking a button
on theCalculatortoolbar, you
can use the Tab key to move
from one placeholder to

another,

Click and type this: Get this:

()} x—1 [Spacebar] [Spacebar] { ) (x=1D)(x+2)

X+2 [Spacebar] [Spacebar] [Spacebar] x+4

Ix+4

Getting a Result

Click and type this: Get this: To get a result, you

— 3 can press equal [=] no

{" 8[Tab]3 = V8=2 matter where the blue
editing lines are in a
numeric expression.

Click and type this: Get this:

llog 1000 [Spacebar]—liog 10000 = log(1000) — log(10000) = -1

Figure C.6 Mathcad tutorial - basic math; page 6.
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Editing Math Expressions

Note: The exercises in this tutorial require you to work within the
Worksheet window. To copy the contents of this lesson into the Worksheet
window, choose Seleet All from the Edit menu. Then, either drag and

or copy and pasteall the regions into your Worksheet window.

Practice

Using the Spacebar, Backspace, Delete, Insert, and arrow keys to change
math expressions:

1. Click between the 3 and 4 in the expression Get this:
below; use the left arrow key to mave the

blue editing bar betweenthe 1and 2 1p34

1234 Then this:
Then press [Backspace] to delete the 1 and P34
press 5 to change the whole number to 5234:

2. Click anywhere in the expression below; Get this:

use the [Spacebar] to capture the entire

expression with the blue editing lines: 1234 1234
_— or —

12 12
1234
12

Then, if the vertical blue editing line is to the et

left, press [Del] to highlight the expression;

if the vertical blue editing fine is to the right,

press [Backspace]:

Press [Del] or [Backspace] again to delete the

region.

3. Click the 4 in the denominator of the Get this: Then this:

fraction, 3/4. Use the right arrow key to

move over to the 4 in the denominator of 3 1 3 1

the fraction, 1/4: T | 4+ _4a
AR N R EAR B

+ -4

B w

1
4

Figure C.7 Mathcad tutorial - basic math; page 7.
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Press [Del] to dedete the 4 and press 16 to
change the fraction:

Press [Insert] to movethe vertical blue
editing fine fromright to left:

Press [Spacebar] enough times to seled.
the entire expression under the root:

Press [Del] twice to delete the expression
under the roct and press 9=toget a
result:

4. Click the 2 and then press [Del] to
dekete the +:

1
24—
5

Press - to insert a subtraction sign:

Click the 1 and press [Spacebar] to select
the fraction. Then press [Insert] to change
the direction of selection:

Press [Backspace] to delete the subtraction

sign. Then press + to put badk the addiion
sign:

5. In white space near this expression,
click, hald, and drag to seledt it:

a +b

Press [Insert] to change the direction of
selection. Then press + toinsert an
addtion sign and an empty placeholder:

In the pacehaolder, type:

\a*2 [Spa=bar] b~2

Press [Del] to delete the 4 and press 16 to
change the fraction;

Press [Insert] to movethe vertical blue
editing kne fromright to left:

Press [Spacebar] enough times to seedt
the entire expression under the roat:

Press [Del] twice to delete the expression
under the roct and press 9= togeta
result:

Then this; Then this:

24
4 jw_

Then this:
=z
Z449= 375
4 2
Get this: Then this:
il 1
o= -
i |21
Then this: Then this:

.
5

2+E
5

Get this:

a2+b

Then this:
b+ yal+ b2

Then this:

az—bgi+\}a2+b2

Then this:

§+J§=3.75.

Figure C.8 Mathcad tutorial - basic math; page 8.
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Defining Variables

Often you will want to define a value as a variable you can use in
subsequent calculations. In this worksheet, you will practice defining and
viewing single-value and range variables.

Practice

Defining a Single-Value Variable

Type this: Get this:

x:2 x:=2

Type this: Get this:
dist:25m dist:= 25m

Tip: If you don’t know the
abbreviation for a unit you are trymg
to use, selecfUnit from thd nsert
menu and browse for the units you

want.
Type this: Get this:
mi
v.1:20mi/hr v) = 20—
hr

Tip: This definition uses a literal
subscript, a common notation in
science. You get a literal subscript
by pressing the period (.) key after
the variable name.

Notice that when you type the colon [:] key or press the assignment
operator key

on theCalculatortoolbar, Mathcad displays=. The assignment operator
(colon equals) in Mathcad is used for definitions.

Figure C,9 Mathcad tutorial - basic math; page 9.



512 APPENDIX C

Defining a Range Variable

Before starting these exercises, display the Matrix
toolbar on your desktop bgelecting Toolbars
= Matrix from the View menu.

Remember that to use a toolbar in conjunction with the Resources window,
you must move it over to the far left m your Worksheet window. Then bring
your Resources window back up, which will make it the “active” window.

With your Matrix toolbar i view next to the Resources window and your
Resources window active:

Click or type this; Get this: This definttion will
give you a range of

g:ns 1[Tab] 10 g:=1..10 pumbers between 1 and
10 at whole number
increments.

Type this: (zet this:

n:3.5;12.5 n:=3.5..12.5

This definition will give you a
range of numbers between 3.5 and
12.5 at whole number increments.

Notice that when you type the semicolon charactes it displays on the
screen as two dots .. 1) surrounded by placeholders. This is Mathcad’s
range variable operator.

Get this:
n:3.54.0;12.5 n:=3.5,4.0..12.5

This definition will give you a range
of numbers between 3.5 and 12.5 in
increments of 0.5,

Type this: et this:
11 7
h:1/4 [Spacebar],1/2 [Spacebar];?/4 h:=— — . .—
42 4
This definition will give you a range

1 7 1
of numbers between; and Z n increments of;.

Figure C.10 Mathcad tutorial - basic math; page 10.
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MATHCAD TUTORIAL

In this worksheet, you will practice calculating results based on variables
you have defined. Then, you can practice modifying your variable values
and watching your cakculations update automatically.

Practice

Calculating a result based on one or more variables:

Type this:

xi2

Then, type this:
yx*2[Spacebar] -1
Then, this:

¥=

Type this:
distance:1356ft
Then, type this:
rate:distance /42.4s

Then, this:

rate=

Type this:

a39  and b:52
Then, type this:

c:\a~2 [Spacebar]+b~2
Then, this:

c=

et this:
x:=2
Get this:

y::xz—]

Get this:
distance:= 1356ft
Get this:

__ distance
T 4245

rate:
Get this:
rate = 9. 7482

8
Notice that Mathcad uses scientific units
as the default unit. You can change the

default unit system und&ools =
Worksheet Options

Get this:
a:=139 b:=52

Get this:

r::=\}'az+‘n2

Modifying a Variable to Update a Result

Click the right side of this definition.
Backspace over 1, type 3, and press

[Enter].

time:= lhr

Figure C.11 Mathcad tutorial - basic math; page 11.

513



514

APPENDIX C

Watch this calaulation update:

E.[}_m = 0.031mph
time

Click the right side of the definition
for “losses”. Backspace over 3, type
4, and press [Enter].

wins:= 11
losses:= 3
Watch this calaulation update:
wins 11

losses+ wins 14

Click the right side of the definition
for length. Backspace over 10m, type
12m, and press [Enter].

length:= 10m
Follow the same instructions to
change the width from 30mto 31.6m

width:= 30yd

Watch this calaulation update:
Area := lengthx width
Area = 274.32m’

Click the right side of the definition
for height. Backspace over 2.9m,
type 3m, and press [Enter].

height:= 2.9m

Watch this calaulation update: Notice that this definition uses

definitions already given above. When

you calculate a result, you can use any

Volume = 795.528m° variable or deft mition above or to the left
of the calculation.

Volume := Area % height

Figure C.12 Mathcad tutorial - basic math; page 12.
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Defining Functions

Here you will practice defining functions, calculations that can be used
over and over again in your worksheet without being entered repeatedly.

EXAMPLE

Below is a function to defineas the input and 2x +1 as the output. Notice
that you use the assignment operator to define functions, just as you use
the assignment operator to define variables in Mathcad.

filx) :=2x+ 1

The function is written in function notation, which is a compact way of
saying that f is a rule that takes inputs represented by x and produces an

output given by 2x + 1. Read “f(x)” as“f of x.” It says, “What follows is the
algebraic definttion of what happens when the rule f is applied to the nput
x”

If you want to “call” or evaluate that function for a particular valie, you
enter this:

f2) = 5

This call performed the calculation, 2(2) + 1, automatically by substituting 2
for x in the function f.

Practice

Defining and evaliating a function

Type this: Get this:

2
g(x):15-x~2 g(x):=15-x
Then type this: et this:
9(2)= g2)y=11
9(3)= g3)=6
Type this. Ger this:

s—1
d(s):s—1 [Spacebar] /s+1 d(s) i=——
s+ 1

The algebraic expression on the right-hand side of your
function definition must use the variable noted in parentheses
on the keft-hand side.

Figure C.13 Mathcad tutorial - basic math; page 13.
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Then type this: Get this:
d(101)= d(101) = 0.98
Type this: Get this:
L(g):log(g) L(g) := log(g)
and

n:10430 n:= 1030
Then type this: Get this:

L(n)= L(n) = 30

Evaluating a Function with a Range Variable
Get this:

x0;10 x:=0..10

Tip: Recall that a range variable is a variable that takes on a range of
values from one endpoit to another at a specified increment.

Then type this: Get this:

f(x)= fix) = Tip: The best method for
1] performing the same
3| cakulation on a range of
Y values is to use a range
7] variable in conjunction
3] with a function.
&0

13

[ 1s]
17
[ 19
=

Tip: In this example, the function, f, was defined at the top of the
worksheet. As long as a definition is above or to the keft of where it
is being used, it does not need to be close to calculations using it.

Type this: Get this:
function{y) y~2 functiogy) := y2
Y3,3.5;5 Y:=3,35.5
Then type this: Get this: Tip: You cancalla
) ) function with any
function(Y) = functiodY) = variable defined in the
9 worksheet.
12.25
16
20.25
25

Modifying a Function to Update Your Calculations

Figure C.14 Mathcad tutorial - basic math; page 14.
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function(Y) =
9
1225
16
20.25
25
Modifying a Function to Update Your Calculations
Irspect the results of evaluating the function, H, over
the range variable, Y:
H(x) := ceikx) H(Y) = The ceil function

takes the input and
rounds up to the nearest
whole number.

You can display a
range variabk next to a
function evaliated with
that variable to show
inputs and outputs.

Highlight the ceil on the right side of Get this:

this function definition and delete it:
Hx) = (=)

Then enter the floor fundtion by Get this: The floor
typing: function takes the
floor H(x) 1= floor(x) mput and rounds

down to the nearest
Irspect the new resuks, above. whole number.

Entering a Built-in Function

To see a scrolling list of built-in functions along with brief descriptions,
sekect Functionfrom thdnsertmenu. e Insert Functiondialog box,
pictured below, lets you insert a function name directly into a math
placeholder.

Get this:
Function Category Function Name
- -
Bessel acosh e
: |

Returns the angle (in radians) whose cosine is 2. Principal value for _J
complex z.

@ 1 0K I Insert | Cancel

Figure C.15 Mathcad tutorial - basic math; page 15.
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Fromthe Function Namelist, Get this: Greatest
seledt the function ged and click Common Factor
Insert. ged(n,n,1,0)

(ged) is the largest
number that evenly
factors all the

numbers i the list.

In the four function placeholders, type:  Get this:

—— gcd(88,48,64,112) = 8

You can use the [Tab] key to junp to
the next placeholder. Press = to see a

resutt,

Fromthe Function Name list, select Get this: The built-in mean

the function meanand click Insert. function automatically

mean(s,s,1,1) provides four

placeholders for
numbers you want to
find the mean of, but
you can abways add
more.

Click the first placeholder and type: Get this:

T — mean(12,15,18,13,12.5,13.5) = 14

13,12.5,13.5=

If you know the name of the function you want to use, you can simply
type it with its appropriate arguments. [f not, use the Insert Function
dialog box to find out the function’s name and what arguments it takes.

Figure C.16 Mathcad tutorial - basic math; page 16.
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Plotting Graphs
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Plotting a Single Data Variable from One Data Table or Vector

1. Anywhere below or to the right of your data variable definition, define a
range variable to index the data variable. For example, if your data
variable isdata, type ‘1:0; length(data) .

2. Click below these definttions arzhooseGraph = X-Y Plotfrom the
Insertmenu or type £Shift] 2 ” to insert a 2D Graph.

3. In the x-axis placeholder, enter the name of the range variable ().

4, In the y-axis placeholdettype ‘data [i ” toenter the name of the
variable that contains your data subscripted with the range variable.
Then,press [Enter].

Note: Arrays and tables have a starting index of 0 (zero) by default.

EXAMPLE

Here is a small set of data entered in a single column Data Table. The data
represent the completion times for various speed trials of a car:

times := i:= 0..length(times)

134
145
139
141
162
151

15
14.8

Nl WIN] 2O

The graph has been formatted to show the data as points and the axis limits
have been adjusted.

20T
1 0.0
15 fo} 6 © o o
b
times; 10+
000
5—_
+ —+ } t
0 2 4 6 8

Figure C.17 Mathcad tutorial - plotting; page 1.
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Plotting a Single Data Variable from One Data Table or Vector

Click anywhere below or to the right of your data tabdasl choose
Graph = X-Y Plotfrom thdnsertmenu or type {Shift]2 ”to

msert a 2D Graph.
In the x-axis placeholder, enter the name of the variable containing your

independent data (usually time)
In the y-axis placeholder, enter the name of the variable containing your
dependent data (usually what you measured) and press [Enter].

EXAMPLE

Here are two vectors containing time and population data and a plot of time
versus population, below.

0 0
5 6
10 11
) 15 Wt 25
tme:= opulation:=
20 pop 50
25 90
30 153
\35) {230 )
250T
o
200T
1501 ©
population i
o ‘ ‘
1001 7777(' s
50T : o
! o
o ¢ . \ \
0 10 20 30 40
time

Figure C.18 Mathcad tutorial - plotting; page 2.
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Using the Root Function; Solving a Single Nonlinear
Algebraic Equation
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To solve for avariable in an equation using the root function:

Often the equation you want to solve has a numerical solution but not an
exact algebraic solution. This when you need the root function. To solve
an equation using the root function:
In your worksheet window, define a guess value for the unknown
variable.

Type the root function where the first argument is an expression equal
to zero and the second argument is the unknown variable.

EXAMPLE
x+ 1

10

It is a good idea to first plot the two functions to see approximately the
number of times they intersect:

Solve the equation sin(x) =

157

l__

From the plot it looks like there are seven places where the two
expressions are equal — the seven places where the blue lne crosses the
red sine curve. Use root to find these intersections.

The root function looks for places where an expression is equal to zero. So,
first rearrange the equation into the form “something = 0.”

x+ 1
10

=0

sin(x) —

Figure C.19 Mathcad tutorial - root function; page 1.
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The root function will find only a single solution; since there are actually
seven solutions, you have to tell Mathcad which one you’re after. Do this
by defining a guess value for the solution. In fact even if there’s only one
solution, rootrequires a guess value to get it started. First try to find the
largest solution. From the graph t looks like it’s around x =9, so use this
guess:

x:=9

1)
roofl sin(x) — ~—— x = 8.245
10 7,

Use a different guess value for x to try to find the smallest solution.

Xx:=-9

+1 )
roofl sin(x) — ——,x = —8.567
10 77,

Figure C.20 Mathcad tutorial - root function; page 2.
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Using the Given ... Find Construction; Solving
Multiple Nonlinear Algebraic Equations
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Solving a System of Equations Using a Solve Block

A Solve Block can beused to solve any solvable system of equations with

any number of equations and unknowns. Here are the steps for setting up a
Solve Block:

In your worksheet window, defne guess values for the unknown

variables using a definition equal sign. To do so, type (colon) or click
the Definition button on the Calculatortoolbar.

Below that, ype the word given(as m “given these equations™) as a
math region.

Below that, ater the equations using [Ctrl]=

Below that, type “ Find (x,y,z, etc.) =".Inthe Find statement,
enter all the variables that are unknown in the system.

EXAMPLE
Solve the following system of three equations and three 3-x+ 4-y—4z=2
unknowns:
-Tx+y+z=35
6x+3y-2z=0
xi=1 y===1 z:=1 Guess values
Given The word given as a math region

3x+4y—-4z=2
Ixty+z=5 The equations

6x+3y-z=0

—-0.522
Find(x,y,z) =| 1.12 Find statement

| 0.228 )

Figure C.21 Mathcad tutorial - given ..

. find construction for solving simultaneous
algebraic equations.
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The Minimize Function
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Minimize(f, var1,var2,...)
Maximize(f, var1,var2,..)

Returns the values of var1, var2...that satisfy the constraints in a Solve Block, and make the function f (var1,var2,..)
take on its smallest or largest value, respectively. Minimize and Maximize differ from Find and Minerr in that they
refer to functions defined outside of the Solve Block, rather than defined in the body of the Block. Functions are
used as objective functions, rather than as constraints, as they are with Find and Minerr.If you are solving for n
variables, the solve block must have n equations. The functions choose an appropriate method from a group of
available methods, depending on whether the problem is linear or nonlinear, and other attributes.

Arguments:

var1,var2,...are scalar or array variables found in the system of equations. Guess values for each variable must be
defined above the Given keyword, or within the body of the Solve Block. !f solutions are expected to be complex,
complex guess values must be used. fis a function defined above the solve block.The function is supplied
without its arguments to Maximize and Minimize.

Notes:

The universal notes on constructing Solve Blocks apply. Within the body of the block:

Equations: Equations to be solved must be defined using Boolean equals.Values in the equations and guess
values may be defined within the body of the block using :=.

Constraints: Inequality constraints, using Boolean operators, are allowed.

Output may be assigned to a single variable, a vector of explicit variable names, or a function of argument names

in the objective function.The resulting parameterized solve block can be used either to supply guess values for

the solved variables in the objective function, or to supply parameters in the objective function or the constraints
after the block. Even if the parameters don't appear in the objective function, they must be named as an argument
to the function. If the solved variables have different units, they may only be assigned to an explicit vector of names,
to avoid mixed units in matrices.

When there is one unknown scalar variable, the solution is a scalar. Otherwise the solution is a vector whose first
element is var1, second element is var2, and so on.You cannot solve for a single element of a vector used in the block.
All vector values are adjusted simultaneously to minimize the error.

The Levenberg-Marquardt method is not available for Maximize and Minimize,
TOL and CTOL can affect the solution to nonlinear systems. Setting these vaiues too small may cause the solver to
not converge. If adjusting these parameters does not help, try different guess values, or add an inequality constraint.

If there are no constraints, the keyword Given is not necessary, and Maximize and Minimize may be used without a
Solve Block, like a multivariable version of root. They still require guess variables.

Figure C.22 Mathcad tutorial - minimize.
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Abney level, 63, 160, 172, 196, 343, 344,
428, 429
acceleration of gravity, 30, 155, 197, 405
Africa, 1
Agua Para la Vida, xiii
air blocks, see air pockets
air pockets, xv, 14, 22, 59, 342, 357, see
Chapter 14, 388
air vent, 5, 14, 221, 342, 343, 357, 372, 373,
386, 388, 417, 420
algebraic equation
linear, 209, 376
nonlinear, xv, xvi, 62, 63, 9598, 103,
108, 209, 220, 225, 229, 235,
246, 298, 300, 308-310, 376,
380, 522
analytical solutions, 97
roots, 97
systems, 98, 103
alternator, see generator
altimeter, 53, 160, 161, 343
altitude, 343
analysis, xiv, xvi, 4, 18, 20-24, 28, 31, 41,
48, 57, 59, 62, 66-71, 107, 115,
146, 156, 165, 176, 188, 192,
195, 216, 217, 219-221, 224,

239, 243, 244, 246, 279, 288,
297-299, 310, 311, 320, 339,
359, 367, 375, 377, 388, 394,
400, 410

aqueduct, 1, 2

aquifer, 5

assessment, 4

Bernoulli equation, 32, 36, 147, 177, 336
modified, 32
Blasius formula, 45, 46, 190, 196
bucket, 14, 184, 317, 319, 334, 335, 339,
420
Buckingham Pi theorem, 115
bulk modulus, 367

calculus
chain rule, 275
derivative, xv
integral, xv
ordinary differential equation, xv
partial differential equation, 44
total differential, 275

case study, 18, see Chapter 15

cash conservation, 18

cavitation, 362

Gravity-Driven Water Flow in Networks. By Gerard F. Jones

Copyright ©) 2010 John Wiley & Sons, Inc.
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Central America, 1
CFD, see Computational Fluid Dynamics
(CFD)
characterization, 40, 48
charge conservation, 17, 68, 205
chemical processing plants, 69
Churchill correlation, 41, 42, 45, 52, 62, 63,
96, 99, 103, 108, 141, 161, 213,
229, 410
cleanout, 17, 342, 343, 357, 388
Colebrook equation, 41, 189
competition, 152, 155, 202, 204, 211, 213,
217, 240, 244, 271, 299, 323
Computational Fluid Dynamics (CFD), 44
computer program, xvi, 3, 21, 24, 98, 102,
187, 189, 298, 306, 309, 311,
400
C++, xvi, 24, 401
EES, 189, 197
Fortran, xvi, 24, 297, 298, 401
algorithm, xiv, 23
opaque, xvi, 401
transparent, xvi, 401
concrete, 3
cap, 6, 355
conjugate gradient, 298
continuity equation, see mass conservation
coordinate, 29, 53, 68, 138, 141, 145, 146,
168, 172, 183, 184, 344, 377,
381, 394, 430, 443, 495-498
cost, 3, 390, 400, 421
minimization, xiv, 22-24, 201, 238,
273, 286, 394
network, 20, 21
optimization, 241
Crete, 1
culvert, 2

dam, 6

Darcy—Weisbach equation, 23, 35, 55, 99,
139, 178, 188, 189, 197

Degree-Minutes—Second format, see DMS

delivery, 19, 21, 28, 53-60, 64, 107-109,
113-115, 135, 148, 163, 169,
174, 196, 219, 224-226, 230,
244, 246, 249, 250, 254, 256,
276, 278, 299, 321, 338, 350,
403, 498

design, xiv, xvi, 4, 20-24, 48, 57, 59, 62, 67,
68, 70, 71, 107, 165, 176, 188,
195, 217, 219, 221, 310, 320,
339, 388, 394

chart, xiv, 20, 23, 24, 58, 71, see

Chapter 5, 159, 169, 187, 220,
238, 400, 403, 404

conceptual, 17
engineering, 17
hydraulic, 17, 18, 21, 221, 310,
342, 387, 388, 394
nonhydraulic, 17, 18, 342, 388, 421
formula, 18, 20, 23, 24, 71, 155, 187
graphical, 17
guideline, see design rules-of-thumb
network, 22
nomograph, 187, 400
process, 201
rules-of-thumb, 2, 358, 387
table, 400
tools, 69, 187
design volume flow rate, see peak volume
flow rate
dimensional data, 64, 75, 85, 256, 343
dimensionally
homogeneous, 188-190
nonhomogeneous, 188
dimensionless, 35, 40, 61, 95, 169, 189, 190,
194, 211
elevation, 148, 149, 152
factor, 222
form, 115, 220, 226, 237, 238, 243
group, 35, 41, 56, 57, 60, 111, 113,
238, 336
length, 60, 64
parameter, 226
static pressure, 54, 59, 108, 148, 149,
152, 169, 183, 184, 382
variable, 237
volume flow rate, 194, 197
discharge coefficient, 177
district health office, 345, 389
DMS, 496498
draining time, 177
drawings
elevation-view, 341
plan-view, 341
dropshaft, 2
dummy variable of integration, 145

Easting, 496, 498

economics, 17

efficiency, 359

EL, see Energy Line (EL)

elastic modulus, 367

elevation, 27-29, 48, 53, 64, 67, 138, 139,
141, 143, 146-148, 152, 153,
155, 163, 167-169, 172,
182-184, 316, 322, 323, 338,
341, 343, 358, 495, 497



change, xiv, 21, 94, 105, 139, 174,
177-179, 195, 204, 213, 225,
230, 254, 271, 279, 280, 283,
299, 344, 354, 358, 377, 383,
384, 408
head, 212
energy
balance
local, 151
overall, 152
conservation, 2, 17, 28, 48, 59, 68, 69,
71, 103, 205
mechanical, 23
dissipation, 13, 19, 85, 137, 169, 316,
358, 361, 420
equation, xv, xvi, 18-20, 23, 28-33,
35, 4649, 54, 55, 57-59, 61-63,
66, 67, 69-71, 85, 91, 93-95,
97, 102, 103, 105, 108, 109,
111, 115, 126, 131, 138, 140,
143, 146, 147, 149, 152, 155,
157, 159, 163, 177, 178, 182,
183, 190-192, 194-196, 198,
212, 213, 219-224, 226-231,
235-238, 240, 243-245, 249,
255-258, 262, 271, 273, 275,
277, 280, 281, 283, 286, 287,
295, 298, 299, 301, 302, 308,
311, 320-323, 330, 331, 339,
344, 363, 374, 375, 377, 379,
405, 408, 410, 411
compartmentalization, xvi, 102
differential form, 138
internal, 30, 32, 405
kinetic, 30, 32-34, 59, 147, 222, 315,
336, 367, 405
correction factor, 30, 31, 57, 140,
141, 152, 163, 178, 212, 213,
222, 223, 229, 232, 243, 256,
286, 309, 405, 410
loss, 28, 32, 33, 57-59, 153, 223
major, 19, 23, 34, 55, 59, 68, 147,
152, 363
minor, xv, 19, 23, 24, 34-37, 48,
57, 59, 68, 151, 161, 165, 372
management, 13
mechanical, 33, 59, 102
potential, 19, 30, 32-34, 48, 55,
57-59, 85, 147, 148, 225, 249,
297, 315, 343, 361
pressure, 30, 32-34, 55, 59, 148, 315,
336
spring, 34, 47
Energy Line (EL), 146-148
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engineering
art, 387, 388
science, 387, 388
the discipline of, xiv
the practice of, xiv
wisdom, 4
engineering tradeoff, 85, 145, 165, 271, 388
environmental impact, 17
Excel, xvi, 94, 103, 309, 398, 492, 496, 498
exact differential, 139
exercise, 18, 70, 71, 99, 101, 102, 111, 140,
159, 167, 183, 184, 189, 190,
192, 204, 210, 250, 277, 278,
308, 310, 330, 344, 349
exergy analyses, 216

filter, 6, 10
bed, 12
screen, 6, 7
first law of thermodynamics, 30, 394, 405
fitting, 3, 5, 18, 21, 28, 36, 37, 60
coupling, 36, 37
elbow, 5
22.5°, 8, 36, 37
45°, 8, 36, 37, 94, 95, 110, 141,
332
90°, 8, 14, 36, 37, 68, 77, 161,
164, 165, 178, 179, 332, 361
expander, 8, 36, 37
nut union, see union
reducer, 8, 36, 37
tee, 5, 8, 36, 37
union, 8, 36, 37
fixed energy-loss device, 362
flow
balancing, 13, 420
blower-driven, see forced flow
compressible, 197
control, 19, 37, 105, 108, 156, 159,
192, 198, 332, 342, 388, 420
forced, 69, 103, 108, 126, 131-133,
135
frictionless, see inviscid flow
hydrodynamically developed, 28, 29,
44
incompressible, 59
inertia-dominated, 143
inviscid, 32, 36, 147
laminar, 23, 29, 31, 36, 3941, 43, 44,
46, 48, 51-53, 59, 62, 103, 114,
116, 120, 124, 125, 127, 141,
179, 180, 189, 191, 192, 223
minor-lossless, 58, 61, 62, 71, 108,
137, 159, 198, 221, 275, 277
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Natural, 23, 57-59, 61, 137, 148, 219
open-channel, 28
pump-driven, see forced flow
rate, 3-6, 8, 10, 20, 22, 27, 29, 49, 57,
58, 63
mass, 30, 49
volume, see Chapters 1-16
shear stress, 28
speed, 10, 29-31, 33, 36, 39, 44, 47,
48, 53, 56, 57, 59, 61-63, 69,
70, 94, 95, 108, 113, 139, 140,
147, 152, 178-180, 187, 190,
212, 223, 225, 228, 245, 308,
345, 360, 367, 405
distribution, 30, 44
steady, 21, 28, 31, 32, 59
streamline, 32, 36
terminal, 55
theory, xiv
transient, 28, 197
transition, 41, 43, 44, 46, 62, 103, 191,
192
turbulent, 23, 29-31, 36, 3946, 48,
51-53, 59, 62, 63, 103, 116, 120,
124-127, 141, 187, 189, 191,
192, 194, 197, 198, 223, 238,
241, 275, 2717, 299, 336, 382
velocity, see flow speed
fluid, 23
compressibility, 376, 379-383, 385,
386
density, 23, 29, 49, 161, 213, 229,
367, 410
incompressible, 29, 32
mechanics, xv, 29, 30, 59, 361
static, 47, 58
viscosity, 23, 27, 36, 39, 40, 51, 52,
59, 102, 155, 161, 197, 213,
229, 410
forward solution, 227, 229, 230, 233, 244,
246, 247, 250-252, 256-260,
262, 266, 267, 273, 276, 283,
287, 288, 310, 408, 410, 411
Fr, see Froude number
friction factor, 23, 3942, 44-46, 51, 52, 59,
62, 63, 94, 95, 99, 103, 105,
111, 152, 163, 170, 178, 190,
196, 197, 232, 275, 410
Darcy, 39
Froude number, 111, 113
full-analytical solution, 348

generator, 316-321, 327, 330, 363
geotechnical, 421

global positioning system, see GPS

GPS, 53, 92, 160, 343, 344, 389, 390, 394,
403, 495, 497

gradient, 17, 29, 36

gradient methods, 207

Hardy Cross, 298
Hazen-Williams formula, 102, 187-189, 197
head, 32
elevation, 56, 57, 115, 126, 147, 161,
167, 169, 170, 178, 180, 204,
211, 212, 223, 230, 244, 249,
255, 286, 298, 318, 320,
329-331, 333, 338, 357, 361,
371-376, 378, 379, 384, 400,
403
reduced, 375, 376, 378, 382
hydrostatic, 224, 230, 235, 287
loss, 32-35, 47, 103, 147, 187, 243,
301
charts, 99, 101, 105
coefficient, K, 35, 37, 151-153,
155, 161, 163-165, 177, 178,
212, 222-224, 226, 228, 230,
235, 239, 246, 253, 256, 258,
271, 286, 295, 355, 378, 410,
411
entry, 35
equivalent length, L., 35-37, 101,
151, 155, 156, 161, 163-165,
212, 222, 226, 228, 230, 235,
239, 246, 253, 255, 279, 302,
307, 332, 378, 429
exit, 35
major, 140, 147
minor, 54, 95, 101, 108, 140, 147
per unit length of pipe, 35, 51, 52,
61, 70, 99, 101, 102, 147, 170
pressure, 32, 147, 169, 170, 183, 204,
216, 217, 221, 222, 230,
235-237, 239, 240, 243, 244,
246, 249-251, 255, 257, 258,
262, 270, 271, 273, 275-2717,
280, 283, 285-288, 301, 302,
306, 310, 311, 322, 336, 378,
403, 408, 411, 416
static pressure, see pressure head
total, 147
velocity, 147, 336
heat transfer, 59
HGL, see Hydraulic Grade Line (HGL)
HH, see households
households (HH), 390, 394, 395, 405, 407,
408



Hydraulic Grade Line (HGL), 146-149, 169,
170

hydraulic gradient, 52, 61, 99, 125, 131, 135,
147, 178-180, 188, 191-195,
197, 198, 322, 324, 329,
331-333, 339

hydraulic resistance, 187

hydrology, 60

ideal gas law, 372, 379, 381, 383
intangibles, 202
internal wave, see pressure wave

Jordan, 1
Joukowski equation, 367

Lagrange multiplier, 207-209, 217, 299, 300
land owner, 5
latitude, 344, 394, 495498
laws
conservation, 17, 28, 59
particular, 17
length
differential, 28, 138, 139
equivalent, see head loss equivalent
length, L.
local pathlength, 54, 139-141, 145,
146, 148, 155, 170, 172, 174,
183-185, 344, 431, 457
scale, 48, 63
Levenberg—Marquardt, 298
linear programming, 207
longitude, 344, 394, 495-498

Machu Picchu, 1
main
distribution, 6, 20, 64, 220, 221, 254,
297, 299-302, 306, 307, 311,
342, 353, 405, 407, 418
gravity, 6, 20, 64, 220, 348, 363, 402
map
site, 390
spot, 390, 405
Mathcad, xvi, 94, 105, 168, 189, 197, 210,
230, 255, 257, 283, 287, 288,
301, 309, 310, 380, 384, 410,
411, 428
Given...Find, xvi, 98, 103, 108, 209,
217, 229, 230, 236, 246, 257,
258, 262, 271, 273, 287, 288,
301, 309-311, 410, 411
Given.. Minimize, 24, 213, 217, 230,
257, 270, 277, 283, 287, 288,
295, 301, 302, 306, 310, 311,
408, 410, 411, 492, 501, 527
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root, xvi, 45, 98, 103, 108, 109, 163,
331, 410
syntax, 235, 287
tutorial, xvi, 24, 163, 501
worksheet, 23, 24, 45, 46, 52, 63, 99,
103, 105, 108, 114, 125, 131,
160, 161, 164, 165, 168, 174,
175, 178, 180, 183, 192, 198,
207, 210, 211, 213-215, 220,
224, 230, 231, 235, 238, 241,
243, 246, 249, 251, 256, 258,
262, 270, 271, 287, 288, 297,
302, 306, 308, 327, 329-332,
337, 382, 383, 385, 388, 401,
402, 408, 411, 413416
mass conservation, 2, 17, 23, 28, 49, 51-53,
59, 61, 68, 70, 71, 94, 95, 177,
180, 205, 212, 244, 273, 287,
345, 407
Matagalpa, 316
Matlab, xvi, 24, 42, 141, 207, 210
matrix inversion, 209
minor loss types
fixed, 156
variable, 156
momentum
conservation, 2, 17, 68, 205
equation, 68
Moody chart, 39, 42, 188, 405

Navier-Stokes equations, 44, 59
network

cost, 4, 18, 19, 235, 299, 310, 363,
400, 401

ele,ments, 341

elements, 5, 6, 13, 17, 297, 342, 417

high points, xiv, 14, 20, 23, 64, 66, 67,
71, 138, 145, 148, 149, 160, 166,
167, 172, 176, 204, 219, 357,
371-374, 376, 386, 402, 420

large-scale, complex, 18, 297

loop, 18, 20, 225, 243

equation, 287

low points, 20, 23, 64, 66, 67, 71, 145,
149, 376, 386

multiple branches, 18, 20

multiple-branch, 225, 254, 270, 271,
273, 274, 283, 286, 295, 299,
300, 306-308, 311, 353

multiple-pipe, xiv, 18, 20, 21, 23, 24,
28, 32, 57, 59, 62-64, 66, 67,
71, 105, 107, 114, 149, 195,
216, 217, see Chapter 11, 322,
342, 388, 408
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junctions, 105, 149, 216, 217,
220-225, 227, 228, 230, 231,
234-236, 238-242, 244, 246,
249-251, 254-258, 262, 270,
271, 273, 276-278, 280, 283,
286288, 297, 301, 302, 306,
307, 310, 311, 344, 398, 405,
407, 408, 416

nodes, see multiple-pipe junctions

optimization, 23

overall characteristics, 23
pumped, 22, 221

scale, 21

serial, 18, 20, 225

simple-branch, 224, 225, 230, 241, 243
single-pipe, xiv, 18, 20, 21, 23, 24, 28,

52, 53, 57, 59, 61-64, 66, 67,
71, 107, 108, 113, 131, see
Chapter 8, 198, 204, 211,
219-222, 226-228, 238, 243,
251, 306, 342, 388, 401, 402

three-dimensional (3D), 138, 145, 146,

148, 149
two-dimensional (2D), 138, 145, 146
New York City, 1
Newton’s second law of motion, 68

Nicaragua, xiii, 64, 136, 157, 172, 213, 240,

316, 346, 386, 396, 410, 416
Northing, 496, 498

oil refineries, 69
optimal fluid network, 203
optimization, xv, 18, 59, see Chapter 10,
301--308
constraints, 205
equality, 205
inequality, 205
cost, 211, 280
cost function, see objective function
entropy generation minimization, 215
multiple-branch networks, 299
objective function, 205
off-optimal cases, 202
optimal network cost, 212
optimal pipe diameter, 212
slack variable, 208
overflow gate, 2

Palestine, 1

parametric study, 165, 246, 251, 258,
262-264, 388, 416

path-dependent quantity, 139

pathogens, 5

peak factor, 353, 363, 398, 407

peak volume flow rate, 215, 288, 334, 353,
373, 398, 407411, 419
pedagogy, xiv, 22
Pelton wheel, see Pelton turbine
pendulum, 55
penstock, 316, 320, 322, 323, 327, 329,
331-334, 337, 339
peripheral-velocity factor, 336
Persia, 1
photovoltaic cells, 212
photovoltaic-powered pump, 204
physics, 29
pipe, 5, 28
ABS, 6, see Chapter 3
anchor, 14
arbitrary length, 60, 71
clean-out, 6, 422
composite, 91, 343, 364
Copper Tube Size, see CTS pipe
cost, 230, 232-234, 236-242, 244,
250-252, 255, 257, 258, 262,
265, 266, 270, 271, 273, 275,
2717, 278, 280, 282-284, 286,
288, 295, 297, 300, 302, 306,
307, 311, 316, 317, 319, 320,
342, 348, 349, 389, 401, 408,
416
data, 213, 230, 240, 410, 416
CTS, 78
diameter
appropriate nominal size, 85
nominal, see Chapter 3, 163, 410
dimensionless length, see tortuosity
dimensions, 8, 18, see Chapter 3
DN, 81
soft metric conversion, 85
standards, 85
flow, xv, 21, 23, 27
classes of problems, 18, 93, 105
minor-lossless, 108
friction, 19, 137, 183
galvanized iron, see GI
GI, 8, 10, 41, 63, see Chapter 3, 98,
99, 101, 102, 113-115, 126, 131,
135, 180, 192, 277, 326-328,
330-332, 337, 339, 358, 368,
404, 416
HDPE, 6, see Chapter 3, 196
High Density Polyethylene, see HDPE
pipe
hoop stress, 79
intake, 20, 342, 355, 388, 401404
IPS, see Chapter 3, 160, 225
Iron Pipe Size, see IPS pipe



length, 32, 35, 48, 53, 60, 63, 64, 69,
93, 110, 155, 174, 177, 178,
181, 183, 209-213, 225, 226,
230, 235, 238, 239, 245, 248,
253, 273, 277, 283, 301, 321,
331, 332, 344, 373, 377-379,
384, 408, 410, 498

materials, 17, 18, see Chapter 3, 105,
161, 229, 410

metric, 24, see Chapter 3

Natural diameter, 23, 137, 140-144,
149, 220

overflow, 6, 422

oversized, 99, 343, 363

PE, see Chapter 3, 77, 99, 196, 197

plastic, 6, 41, 63, see Chapter 3

Polyethylene, see PE pipe

Polyvinyl Chloride, see PVC pipe

pressure, 6, see Chapter 3

pressure rating, 8, 18, see Chapter 3

PN, 81

PVC, 6-9, 51, 52, 63, see Chapter 3,
113-115, 120, 126, 131, 133,
153, 160, 165, 168, 170, 171,
174, 176, 179, 183, 186, 191,
197-199, 215, 230, 240, 246,
255, 258, 329-333, 358, 362,
368, 403, 404, 410, 411, 416,
419

relative roughness, 39, 41, 42, 45, 109,
114, 187, 188, 404

rough, 41, 42, 46

roughness, 39, 41, 43, 46, 63, 77, 99,
102, 125, 161, 189, 192, 213,
229, 326, 410, 416

run, 53, 64, 156, 161, 174, 498

rupture, 19

schedule, see Chapter 3, 79, 81, 99,
161, 229, 410

SDR, see Chapter 3, 81, 99, 161, 229,
410

segment, 6, 8, 20, 57, 230, 231, 240,
243, 251, 254, 258, 262-264,
269-271, 273-276, 278-283,
286-288, 295, 298-302, 306,
308, 311, 322, 341, 342, 344,
345, 353, 354, 358, 376-379,
381-385, 388, 407, 408, 410,
411, 416

SIDR, see Chapter 3

slope, 19, 23, 48, 52-56, 59, 61-64,
70, 108-110, 113, 114, 116-125,
127-130, 132-134, 141, 142,
149, 152, 153, 155, 160, 161,
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163, 167, 170, 174, 182, 183,
191, 195, 197, 220, 226, 238,
322, 382, 398, 403
favorable, 137
local, 53, 91, 139, 141, 143, 167
smooth, 41, 42, 46, 64, 190
Standard Diameter Ratio, see SDR pipe
Standard Inside Diameter Ratio, see
SIDR pipe
straight, 48, 53, 58
tortuosity, 60, 62-64, 70, 71, 108-111,
113-125, 127-130, 132-135,
163, 165, 169, 174, 182, 183,
191, 195, 197, 220, 226, 238,
322, 323, 382, 398, 403, 405
Unplasticized Polyvinyl Chloride, see
uPVC pipe
uPVC, see Chapter 3
wall, 404
wall thickness, 21, 57, 59, see
Chapter 3, 99, 105
wavy, 378
pipe support, 342, 387, 388
pipe,
PVC, 113
pipeline coordinate, 146, 149, 239
pit latrine, 354
pond, 5
population
future, 329, 345, 346, 348, 353, 394,
395, 407
present, 345, 346, 353, 395
porous medium, 60
Portland cement, 422
power
electrical, 21, 49, 77, 204, 212,
315-317, 320, 321, 327, 329,
330, 332
hydroelectric, 4, 18, 49, 204, 312, 315,
316, 320-323, 329, 333, 338,
339
mechanical, 21
plants, 69
power coefficient, see turbine efficiency
precise terminology, 67
pressure, 68
absolute, 380
atmospheric, 10, 19, 20, 39, 49, 52,
53, 58, 62, 63, 70, 107, 113,
161, 169, 170, 182, 183, 212,
220, 221, 224, 240, 243, 251,
297, 308, 317, 318, 337, 358,
372, 373, 379, 381, 403
barometric, 343
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delivery
dimensionless, 110
drop, 13, 55, 95, 240, 362, 363, 420
gage, 14, 70, 107, 138, 153, 160, 166,
174, 176, 183, 184, 224, 357,
382, 385, 421, 481
hydrostatic, 47, 57, 59, 169, 235, 251,
255, 257, 270, 342, 343, 358,
367
rating, 358
reducing, 12
static, 8, 10, 13, 17, 19, 20, 27, 29,
33, 48, 53, 54, 57-59, 62, 66,
69, 93, 94, 107, 108, 115, 140,
169, 170, 172, 174, 183, 204,
219-229, 231, 235, 238, 240,
241, 243, 244, 246, 251, 279,
280, 297, 298, 306, 318, 357,
358, 362, 371-374, 377-382,
384, 385, 394, 398, 400, 405,
416, 420
local, xiv, xv, 18, 21, 23, 66,
138-140, 143, 145, 148, 149,
152-155, 159, 166-169, 183,
186, 362, 386, 457
recovery, 362
pressure wave, 367
primitive variable, 226, 228, 238, 243
pump, 18, 212, 312
centrifugal, 318
Pythagorean theorem, 53

rate
flow
mass, 405
flow work, 34
heat transfer, 30, 32, 405
work done, 30, 31, 60, 321, 405
actual, 321, 332
theoretical, 322-324, 327, 332, 333,
338
Re, see Reynolds number
reinforcement, 3
reservoir, 3, 6, 21, 62-64, 343
residence time, 12
reverse solution, 215, 227, 229-231, 234,
235, 246, 248, 250, 251, 256,
258, 261, 262, 273, 283, 287,
288, 301, 310, 342, 408, 410,
411
reversibility, 34
Reynolds number (Re), 17, 40, 41, 4446,
51, 52, 63, 64, 94, 95, 103, 161,
163, 187-189, 192-195,

197-199, 213, 228, 229, 232,
241, 336

Rome, 1

run-of-river system, 317

safety, 17
sea level, 495
search methods, 207
second law of thermodynamics, 216, 217
semianalytical solution, 348
sensitivity study, see parametric study
shell-and-tube heat exchanger, 209
site-survey data, 343, 344
solution methods
analytical, 96
finite differences, 183
numerical, 95
convergence, 97
convergence tolerance, 213
Gauss—Seidel iteration, 97, 98, 109,
110
initial guess, 98
Newton—Raphson, 98, 298
Regula Falsi, xv, 309
tolerance, 161, 229, 301, 306, 410
trial and error, 98-100, 105
trial-and-error, xvi, 149, 241, 283,
288, 294, 295, 311, 349, 350,
398
source, 2-6, 8, 17, 19-21, 28, 48, 49, 52-58,
60-62, 69, 94, 102, 107, 108,
110, 114, 115, 134, 135,
137-141, 145, 147-149, 152,
155, 160, 161, 163, 165, 167,
169, 172, 174, 182, 189, 196,
204, 212, 220, 222, 223, 225,
226, 251, 254, 299, 308, 311,
316, 327, 342, 343, 345-351,
354, 355, 357, 363, 375,
381-383, 388, 390, 394-397,
402, 403, 405, 443, 498
South America, 1
specific heat at constant volume, 32
spring, 2, 5, 107
spring box, 355-357
state, 30, 53, 151, 169, 219, 405
static pressure head, see pressure head
stream, 5, 354
suspended solids, 5, 10
syphon, 182-184
Syria, 1
system
control-volume, see open-system
open, 30, 68



system efficiency, 327

tank, 176--178, 180, 181, 202, 222
break-pressure, 5, 10, 11, 20, 21, 107,
220, 221, 255, 342, 343, 358,
359, 388, 400
construction, 422
design, 422
expansion, 369
ferrocement, 421
overflow, 422
reservoir, see storage tank
sedimentation, 10, 343, 359, 360
septic, 354
storage, 3, 5, 8, 20, 21, 53, 63, 64,
107, 114, 160, 163, 165, 220,
225, 342, 343, 345, 349-352,
358, 359, 361, 363, 387, 388,
390, 394, 395, 398403, 405,
421, 422
cement block, 8
plastic, 8
reinforced concrete, 8, 10
sizing, 8, 21, 343, 345, 349-351,
398, 400
volume, 398
volume, 180, 181, 202, 349, 350, 352,
398, 400, 401
tapstand, 3, 5, 13, 15, 21, 64, 114, 160, 165,
195, 220, 224-226, 343, 352,
358, 361, 378, 394, 395, 403,
407, 408, 417-419
temperature, 32
textbox, xv, 24, 71
thermodynamics, 29, 31, 59, 139, 361
throttling, 12, 13, 355
time
long time solution, 179-181
scales, 178
short time solution, 178, 179
Torricelli’s formula, 176
transit, 343
turbine, 21, 316-323, 326-334, 336-339, 343
axial flow, 318
cross-flow, 317, 318
efficiency, 321, 327, 334, 336, 337,
339
impulse, 317, 318, 339
nozzle, 320, 327, 334, 336-339
Pelton, 313, 317-320, 327, 334-336,
338, 339
radial flow, 318
reaction, 317, 318
turbine-generator, 320, 327, 337, 338
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turbomachinery, 336
Turkey, 1

underflow gate, 2

understanding of concepts, 67

unique junction pressure, 235

Universal Transverse Mercator, see UTM
UTM, 344, 496, 498

vacuum, 19, 151, 153, 167, 172, 174, 183,
184, 231, 357
vacuum breaker, 5, 7, 14, 153, 342, 343,
357, 376, 383, 386, 388, 417,
420, 421
validation, 4
valve, 3, 5, 18, 21, 28, 316
ball, 12, 13, 37, 361
box, 7, 422
control, 362
faucet, see globe valve
gate, 6, 12, 36, 37, 355, 357, 361, 420,
421
globe, 12-14, 19, 36, 37, 85, 91, 105,
107, 134, 156, 157, 161, 169,
224, 227, 231, 234, 243, 245,
254-256, 258, 269, 270, 288,
295, 311, 332, 342, 355, 358,
361-363, 366, 388, 410, 411,
416, 419, 420
throttling, see globe valve, 204
vent, 375
wear, 204
vapor pressure, 183, 184, 362
variable energy-loss device, 361
velocity coefficient, 336
vena contracta, 362
Villanova University, 64, 136, 373

warning:pipe size out of range, 163
Waslala, 316
water
cleanliness model, 17
contamination, 19, 21
demand, 407
ground, S, 107
infiltration, 21
surface, 5, 354
wave speed, 367
water demand, 211, 279, 346, 347, 349,
394-398
daily, 346, 349, 395
future, 164, 165, 342, 345, 348, 363,
388, 397
instantaneous, 8, 347, 396
livestock, 346, 395
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model, 17
peak, 343, 344, 353, 363, 397, 398,
400, 405, 407, 408
present, 342, 345, 347, 348, 388, 395,
397
schedule, 349, 353, 398, 399
secondary, 346
survey, 342, 388
uniform, 343, 344, 346, 347, 353, 395,
407
waler hammer, 69, 342, 343, 367-369, 388
water supply, 2, 3, 76, 203, 220, 279, 312,
317, 333, 343, 344, 347-351,
354, 355, 359, 389, 394,
396-398, 400, 418, 420
waterfall, 49
windage, 327, 337, 339
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CUSTOMER NOTE: IF THIS BOOK IS ACCOMPANIED BY SOFTWARE, PLEASE
READ THE FOLLOWING BEFORE OPENING THE PACKAGE.

This software contains files to help you utilize the models described in the
accompanying book. By opening the package, you are agreeing to be bound by
the following agreement:

This software product is protected by copyright and all rights are reserved

by the author, John Wiley & Sons, Inc., or their licensors. You are licensed to
use this software on a single computer. Copying the software to another medium
or format for use on a single computer does not violate the U.S. Copyright
Law. Copying the software for any other purpose is a violation of the U.S.
Copyright Law.

This software product is sold as is without warranty of any kind, either express
or implied, including but not limited to the implied warranty of merchantability
and fitness for a particular purpose. Neither Wiley nor its dealers or distributors
assumes any liability for any alleged or actual damages arising from the use of
or the inability to use this software. (Some states do not allow the exclusion of
implied warranties, so the exclusion may not apply to you.)
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