Elton Stoneman

Docker on
Windows

From 101 to production with Docker on Windows

L1 Packh

Docker on Windows

AAAAAAA

From 101 to production with Docker on Windows

Elton Stoneman

- Packb

A

BIRMINGHAM - MUMBALI

< html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">

Docker on Windows

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews. Every effort has
been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt
Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

First published: July 2017

Production reference: 1120717

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78528-165-5

www.packtpub.com

http://www.packtpub.com

Credits

Author Copy Editor A
Elton StonemanA A Stuti Srivastava
Reviewer

Project Coordinator
Shashikant Bangera o
A Virginia DiasA A
A

Commissioning Editor

Kartikey PandeyA A

Proofreader

Safis Editing

Acquisition Editor

Rahul NairA A

Indexer A

Aishwarya Gangawane

Content Development Editor

Graphics

Sharon RajA Kirk D'PenhaA A
Technical Editors
Production CoordinatorA
Mohit Hassija
o Aparna Bhagat A
Komal Karne A A

About the Author

Elton Stoneman has been a Microsoft MVP for 8 years and a Pluralsight author for 5 years, and
now he works for Docker, Inc. Before joining Docker, he spent 15 years as a consultant,
architecting and delivering very large and very successful solutions built on .NET and powered
by Windows and Azure.

All the years he worked with Windows, Elton had a secret Linux server in his attic or garage,
running core services for the home, such as music servers and file servers. When Docker started
to take hold in the Linux world, Elton had early experience in a cross-platform project he
worked on, got hooked, and started to focus on containers. He was made a Docker Captain, and
for a time, was one of only two people in the world who were both a Microsoft MVP and a
Docker Captain.A

Elton blogs about Docker, tweets about Docker, and speaks about Docker all the time. He is a
regular at local events and user groups; you will often see him at Docker London, London
DevOps, and WinOps London. He's also had great fun speaking at fantastic conferences around
the world, including DockerCon, NDC London, SDD, DevSum, and NDC Oslo.A

You cana€™¢ write a 300-page technical book without a lot of late nights, a lot of support, and
a decent bean-to-cup coffee machine. Support is the most important of those, after the coffee
machine. There are a lot of people I would like to thank. Everyone I work with at Docker, Inc. is
exceptional, but Michael Friis and Brandon Royal are the pioneers of Docker on Windows and
their work is driving this important technology forward. The Docker Captains are a fabulous
group of people, and I have learned a great deal from Stefan Scherer and all his community
contributions. And my friends and family are just all-out awesome, especially Nikki and
Jackson.

About the Reviewer

Shashikant Bangera is a DevOps architect with 17 years of IT experience. He has vast
experience of DevOps tools across the platform, with core expertise in CI, CD, and aPaaS. He
has helped his customers adopt DevOps, and has architected and implemented Enterprise
DevOps for various domains, such as banking, e-commerce, and retail. He has also contributed
to many open sources platforms, such as DevOps Publication. He has designed an automated on-
demand environment with a set of open source tools and also an environment booking tool,
which is available on GitHub.

He has reviewed two Docker books for Packt: Learning Docker and Docker High Performance.

www.PacktPub.com

For support files and downloads related to your book, please visitA www.PacktPub.com. Did you
know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version atA www.PacktPub.comA i»;and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us

atA service@packtpub.con for more details. AtA www.PacktPub.com, you can also read a collection
of free technical articles, sign up for a range of free newsletters and receive exclusive discounts
and offers on Packt books and eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books
and video courses, as well as industry-leading tools to help you plan your personal development
and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process.
To help us improve, please leave us an honest review on this book's Amazon page at http:/www.a
mazon.in/dp/1785281658. If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in
exchange for their valuable feedback. Help us be relentless in improving our products!

http://www.amazon.in/dp/1785281658

Table of Contents

Preface
What this book covers
What you need for this book
Who this book is for
Conventions

Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata

Piracy

Questions

1. Getting Started with Docker on Windows
Docker and Windows containers

Windows licensing
Understanding the key Docker concepts

The Docker service and Docker command-line
Docker images
Image registries
Docker containers
Docker swarm
Running Docker on Windows
Docker for Windows
Docker as a Windows Service
Docker in an Azure VM
Learning Docker with this book
Summary
2. Packaging and Running Applications as Docker Containers
Running a container from an image
Doing one thing with a task container
Connecting to an interactive container
Keeping a process running in a background container
Building a Docker image
Understanding the Dockerfile
Building an image from a Dockerfile
Examining how Docker builds an image
Packaging your own applications
Compiling the application during the build
Compiling the application before the build
Compiling with multi-stage builds
Using the main Dockerfile instructions
Understanding temporary containers and image state
Working with data in Docker images and containers
Data in layers and the virtual C drive

Sharing data between containers with volumes
Sharing data between container and host with volumes

Mounting volumes from host directories

Using volumes for configuration and state
Packaging a traditional ASP.NET web app as a Docker image

Writing a Dockerfile for NerdDinner
Summary

3. Developing Dockerized .NET and .NET Core Applications
Building good citizens for Docker
Hosting Internet Information Services (IIS) applications in Docker

Configuring IIS for Docker-friendly logging
Promoting environment variables

Building Docker images that monitor applications
Separating dependencies

Creating Docker images for SQL Server databases
Managing database files for SQL Server containers

Running databases in containers

Connecting to database containers from application containers
Breaking up monolithic applications

Extracting high-value components from monoliths

Hosting a UI component in an ASP.NET Core application

Connecting to application containers from other application containers
Summary

4. Pushing and Pulling Images from Docker Registries

Understanding registries and repositories
Examining image repository names
Building, tagging, and versioning images
Pushing images to a registry

Running a local image registry
Building the registry image
Running a registry container

Pushing and pulling images with a local registry
Configuring Docker to allow insecure registries
Storing Windows image layers in a local registry

Using a commercial registry
Docker Hub
Docker Cloud
Docker Store
Docker Trusted Registry
Other registries

Summary

5. Adopting Container-First Solution Design

Design goals for NerdDinner
Dockerizing NerdDinner's configuration
Splitting out the create dinner feature
Packaging .NET console apps in Docker

Running a message queue in Docker

Starting a multi-container solution
Adding new features in containers
Using Elasticsearch with Docker and .NET
Building hybrid .NET Framework and .NET Core solutions in Docker

Compiling the hybrid NerdDinner solution
Packaging .NET Core console apps in Docker
Providing analytics with Kibana

From monolith to distributed solution
Managing build and deployment dependencies
Summary
6. Organizing Distributed Solutions with Docker Compose
Defining applications with Docker Compose
Capturing service definitions
Defining infrastructure services
Configuring application services

Specifying application resources
Managing applications with Docker Compose

Running applications
Scaling application services
Stopping and starting application services
Upgrading application services
Monitoring application containers
Managing application images

Configuring application environments
Specifying external resources
Using multiple Compose files

Summary

7. Orchestrating Distributed Solutions with Docker Swarm

Creating a swarm and managing nodes
Creating and managing services in swarm mode

Running services across many containers
Global services
Deploying stacks to Docker swarm
Docker secrets
Defining a stack using Compose files

Deploying a stack from a Compose file
Running Docker swarm in the cloud
Managed Docker services in the cloud

Docker on Amazon Elastic Container Service
Docker on Google Container Platform
Docker on Azure Container Service
Docker cloud editions
Deploying updates with zero downtime
Load balancing across swarm nodes
Updating application services
Rolling back service updates
Configuring update behavior
Updating swarm nodes
Mixing hosts in hybrid swarms
Summary

8. Administering and Monitoring Dockerized Solutions
Managing containers with Windows tools

IS Manager
SQL Server Management Studio
Event logs

Server Manager
Managing containers with Docker tools

Docker visualizer

Portainer
CaaS with Docker EE

Understanding UCP
Navigating the UCP Ul
Managing nodes
Volumes
Images
Networks
Deploying stacks
Creating services
Monitoring services
RBAC

Summary

9. Understanding the Security Risks and Benefits of Docker
Understanding container security

Container processes
Container user accounts and ACLs
Running containers with resource constraints
Running containers with restricted capabilities
Isolation in Hyper-V containers

Securing applications with secure Docker images
Building minimal images
Docker Security Scanning

Managing Windows updates
Securing the software supply chain with DTR

Repositories and users
Organizations and teams
Image Signing and Content Trust

Golden images
Understanding security in swarm mode

Nodes and join tokens
Encryption and secrets
Node labels and external access
Summary
10. Powering a Continuous Deployment Pipeline with Docker
Designing CI/CD with Docker
Running shared development services in Docker
Packaging a Git server into a Windows Docker image
Running the Bonobo Git server in Docker
Packaging a CI server into a Windows Docker image

Running the Jenkins automation server in Docker
Configuring CI/CD using Jenkins in Docker

Setting up Jenkins credentials

Configuring the Jenkins CI job

Building the solution using Docker Compose in Jenkins

Multi-stage builds in CI pipelines

Running and verifying the solution

Running end-to-end tests in Docker

Tagging and pushing Docker images in Jenkins
Deploying to a remote Docker swarm using Jenkins

Summary

11. Debugging and Instrumenting Application Containers
Working with Docker in integrated development environments
Docker in Visual Studio 2017

Debugging with Docker Compose in Visual Studio 2017
Docker in Visual Studio 2015

Docker in Visual Studio Code
Instrumentation in Dockerized applications
Instrumentation with Prometheus

Adding a Prometheus endpoint to .NET projects
Adding a Prometheus exporter alongside existing apps

Running a Prometheus server in a Windows Docker container
The bug fixing workflow in Docker

Bug fixing before Docker
Bug fixing with Docker
Summary

12. Containerize What You Know - Guidance for Implementing Docker
Dockerizing what you know

Selecting a simple Proof-of-Concept app
Generating an initial Dockerfile with Image2Docker

Engaging other stakeholders
Case studies for implementing Docker

Case study 1 - an in-house WebForms app
Case study 2 - a database integration service
Case study 3 - an Azure loT app

Summary

Preface

Docker is a platform for running server applications in lightweight units called containers. You
can run Docker on Windows Server 2016 and Windows 10, and run your existing apps in
containers to get significant improvements in efficiency, security, and portability. This book
teaches you all you need to know about Docker on Windows, from 101 to deploying highly
available workloads in production.

What this book covers

Chapter 1, Getting Started with Docker on Windows, introduces the Docker runtime and walks
through the options for running Docker on Windows, covering Docker Toolbox for older client
versions, native Docker for Windows 10 and Windows Server 2016, and running Docker hosted
on an Azure VM.

Chapter 2, Packaging and Running Applications as Docker Containers, focuses on the Docker
image: a packaged application with all its dependencies that will run in the same way on any
host that can run Docker. We’ll see how to build Docker images with a Dockerfile for a simple
website, and then run it on Windows.

Chapter 3, Developing Dockerized .NET and .NET Core Applications, shows how we can build
applications with Microsoft technologies that can run on any operating system. .NET Core apps
run equally on Windows (including Nano Server) and Linux, and they are ideally suited for
packaging into a portable Docker container.

Chapter 4, Pushing and Pulling Images from Docker Registries, will look at publishing images we
build in development and using automated builds, hooking Docker Hub into GitHub so new
container image versions are built when code gets pushed. The chapter will also cover running
your own private Docker registry for internal use.

Chapter 5, Adopting Container-First Solution Design, builds on the previous chapters, showing
how the range of high-quality Docker images makes it straightforward to design distributed
solutions, and mixing off-the-shelf images with custom ones. The Windows slant here is that
you can run Windows hosts and manage them in the same way as other machines, but they could
be running Linux software inside a Docker container.

Chapter 6, Organizing Distributed Solutions with Docker Compose, takes the ad hoc distributed
solution from Chapter 5, Adopting Container-First Solution Design and builds it into a deployable
package using Docker Compose--with a Docker Network so containers can communicate using
hostnames. The chapter will also cover the structure of the Docker Compose YAML file and the
runtime for Docker Compose.

Chapter 7, Orchestrating Distributed Solutions with Docker Swarm, covers production-ready
clustering with Docker Swarm, briefly introducing the old Docker Swarm product for
awareness, but focusing on the new Swarm Mode built into Docker from version 1.12. We'll set
up a Swarm running on Windows in Azure, explore how the Routing Mesh works, and look at
service discovery and reliability by deploying the solution from Chapter 6, Organizing
Distributed Solutions with Docker Compose as Swarm services.

Chapter 8, Administering and Monitoring Dockerized Solutions, covers management of
distributed Docker solutions. You’ll see how to set up log shipping so container logs are sent to
a central location, use both free and commercial tools to visualize the containers in a Swarm,
and learn how to do rolling upgrades of a running service.

Chapter 9, Understanding the Security Risks and Benefits of Docker, covers the key aspects of
Docker security: the risks of having multiple containers on one node, the potential for an
attacker to compromise one container and access others, and how to mitigate that. We'll also
look at how Docker improves security, with vulnerability scanning for images built into Docker
Hub and Docker Trusted Registry and flagging security issues with the software inside images.
Lastly, we'll cover built-in security between nodes in Docker Swarm.

Chapter 10, Powering a Continuous Deployment Pipeline with Docker, covers Docker in a
DevOps workflow, where everything is automated. We’ll build out a whole deployment pipeline
using Docker, running GitLab for source control and builds, which will package a new Docker
image when code is pushed, run automated tests, and deploy to a test environment.

Chapter 11, Debugging and Instrumenting Application Containers, 1ooks at troubleshooting
Docker containers during both build and run. We will cover how to structure the Dockerfile so
that infrequently changing layers are preserved and containers are quicker to build, and see the
best way to build up an image. For running containers, we’ll cover viewing the logs, checking
process performance, and connecting to the container for exploratory checks.

Chapter 12, Containerize What You Know. Guidance for Implementing Docker, will look at
containerizing existing software stacks for non-production deployment, and also extracting a
vertical slice from an application that can run in Docker, as a first move toward a microservice
architecture.

What you need for this book

To execute the examples given in this book, you will need the following:

e Docker for Windows 17.06 or later
e Windows 10 or Windows Server 2016

Who this book is for

If you want to modernize an old monolithic application without rewriting it, smooth the
deployment to production, or move to DevOps or the cloud, then Docker is the enabler for you.
This book gives you a solid grounding in Docker so you can confidently approach all of these
scenarios.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning. Code
words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "If you run docker
container 1s, Which lists all the active containers, you won't see this container."

A block of code 1s set as follows:

FROM microsoft/nanoserver
COPY scripts/print-env-details.psl c:\\print-env.psl
CMD ["powershell.exe", "c:\\print-env.psl"]

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

FROM microsoft/nanoserver
COPY scripts/print-env-details.psl c:\\print-env.psl
CMD ["powershell.exe", "c:\\print-env.psl"]

Any command-line input or output is written as follows:

|docker container run dockeronwindows/chOl-whale

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-
what you liked or disliked. Reader feedback is important for us as it helps us develop titles that
you will really get the most out of. To send us general feedback, simply e-

mail feedbackepacktpub.com, and mention the book's title in the subject of your message. If there is
a topic that you have expertise in and you are interested in either writing or contributing to a
book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.c
om. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you. You can download the code files by following
these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
Click on Code Downloads & Errata.

hat

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NV ke

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/github.com/PacktPublishing/Docker-on
-Windows. We also have other code bundles from our rich catalog of books and videos available
at https:/github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/

Downloading the color images of
this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You can
download this file from
https://www.packtpub.com/sites/default/files/downloads/DockeronWindows _ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If
you find a mistake in one of our books-maybe a mistake in the text or the code-we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title. To view the previously submitted errata, go
to https://www.packtpub.com/books/content/support and enter the name of the book in the search field.
The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy. Please contact us

at copyright@packtpub.com With a link to the suspected pirated material. We appreciate your help
in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at questionsepacktpub.com,
and we will do our best to address the problem.

Getting Started with Docker on
Windows

Docker is an application platform. It's a new way of running applications in isolated, lightweight
units called containers. Containers are a very efficient way of running apps - they start in
seconds, and the container doesn't add any overhead to the memory and compute requirements
of the app. Docker is completely agnostic to the type of apps it can run. You can run a brand
new .NET Core app in one container and a 10-year old ASP.NET 2.0 WebForms app in another
container on the same server.

Containers are isolated units, but they can integrate with other components. Your WebForms
container can access a REST API hosted in your .NET Core container. Your .NET Core
container can access a SQL Server database running in a container or a SQL Server instance
running on a separate machine. You can even set up a cluster with a mixture of Linux and
Windows machines all running Docker, and have Windows containers transparently
communicate with Linux containers.

Companies big and small are moving to Docker to take advantage of this flexibility and
efficiency. The case studies from Docker, Inc. - the company behind the Docker platform - show
that you can reduce your hardware requirements by 50% when you move to Docker, while still
supporting high availability for your applications. These significant reductions apply equally to
on-premises data centers and to the cloud.

Efficiency isn't the only gain. When you package your application to run in Docker, you get
portability. You can run your app in a Docker container on your laptop, and it will behave in
exactly the same way on a server in your data center and on a virtual machine (VM) in any
cloud. This means your deployment process is simple and risk-free because you're deploying the
exact same artifacts that you've tested, and you're also free to choose between hardware vendors
and cloud providers.

The other big motivator is security. Containers add secure isolation between applications, so you
can be confident that if one application is compromised, the attacker can't move on to
compromise other apps on the same host. There are wider security benefits in the platform too.
Docker can scan the contents of packaged applications and alert you to security vulnerabilities in
your application stack. And you can digitally sign packages and configure Docker to run
containers only from package authors that you trust.

Docker is built from open source componentsA and is shipped asA Docker Community
Edition (DockerA CE) andA Docker Enterprise Edition (Docker EE). Docker CE is free to
use and has monthly releases. Docker EE is a paid subscription, it comes with extended features
and support and has quarterly releases. Docker CE and Docker EE are available on Windows,
and both versions use the same underlying platform, so you can run your apps in containers on
Docker CE and EE in the same way.

Docker and Windows containers

Docker originally ran on Linux, taking advantage of core Linux features but making it simple
and efficient to use containers for application workloads. Microsoft saw the potential and
worked closely with the Docker engineering team to bring the same functionality to Windows.
Windows Server 2016 and Windows 10 are the first versions of Windows that can run Docker
containers. Right now, you can run only Windows containers on Windows, but Microsoft is
adding support for Linux containers to run on Windows too.

There is no integration between containers and the Windows UI, though. Containers are only for
server side applications - workloads like websites, APIs, databases, message queues, message
handlers, and console applications. You can't use Docker to run a client app, like a .NET
WinForms or WPF application, but you could use Docker to package and distribute the
application, which would give you a consistent build and release process for all your apps.

There is also a distinction between how containers run on Windows Server 2016 and Windows
10. The user experience for working with Docker is the same, but the way containers are hosted
is different. On Windows Server, the process that serves your application actually runs on the
server, and there's no layer between the container and the host. In the container, you may see
w3wp.exe TUNNINg to serve a website, but that process is actually running on the server - if you had
ten web containers running, you would see ten instances of w3wp.exe in task manager on the
server.

Windows 10 doesn't have the same operating system kernel as Windows Server 2016, so in
order to provide containers with the Windows Server kernel, Windows 10 runs each container in
a very light VM. These are called Hyper-V containers, and if you run a web app in a container
on Windows 10, you won't see w3up.exe running on the host - it's actually running inside a
dedicated Windows Server kernel in the Hyper-V container.

It's good to understand this distinction. You use the same Docker artifacts and the same Docker
commands on Windows 10 and Windows Server 2016, so the processes are the same, but there
is a slight performance hit in using Hyper-V containers on Windows 10. Later in this chapter, I'll
show you the options for running Docker on Windows, and you can choose the best approach
for you.

Windows licensing

Windows containers don't have the same licensing requirements as servers or VMs running
Windows. Windows is licensed at the host level, not the container level. If you have 100
Windows containers running on one server, you only need a license for the server. There are
considerable savings to be had if you currently use VMs to isolate application workloads.
Removing the VM layer and running apps in containers directly on the server removes the
licensing requirement for all the VMs.

Hyper-V containers have separate licensing. On Windows 10, you can run multiple containers,
but not for production deployments. On Windows Server, you can also run containers in Hyper-
V mode to get increased isolation. This can be useful in multi-tenant scenarios, where you need
to expect and mitigate for hostile workloads. Hyper-V containers are separately licensed, but in
a high-volume environment, you would use a Datacenter license run Hyper-V containers
without individual licenses.

Microsoft and Docker, Inc. have partnered to provide Docker EE at no cost with Windows
Server 2016. The price of the Windows Server license includes Docker EE Basic, which gives
you support to run applications in containers. If you have problems with a container or with the
Docker service, you can raise it with Microsoft and they can go on to escalate it to Docker
engineers.

Understanding the key Docker
concepts

Docker is a very powerful but very simple application platform. You can get started with
running your existing apps in Docker in just a few days, and be ready to move to production in a
few days more. This book will take you through lots of examples of .NET Framework and .NET
Core applications, running in Docker. You'll learn how to build, ship, and run applications in
Docker and move on to advanced topics like solution design, security, administration,
instrumentation, and continuous integration and continuous delivery (CI/CD).

To start with, you need to understand the core Docker concepts: images, registries, containers,
and swarms—and understand how Docker actually runs.

The Docker service and Docker
command-line

Docker runs as a background Windows service. This service manages all the running

containers and exposes a REST API for consumers to work with containers and other Docker
resources. The main consumer of that API is the Docker command-line tool, which is what I use
for most of the code samples in this book.

The Docker REST API is public, and there are alternative management tools that are powered
by the API, like Portainer (which is open source) and Docker Universal Control Plane (UCP)
(which is a commercial product). The Docker CLI is very simple to use; you use commands
like docker container run tO run an application in a container and docker container rm tO reMOVe a
container.

You can also configure the Docker API to be remotely accessible and configure your Docker
CLI to connect to a remote service. This means you can manage a Docker host running in the
cloud using Docker commands on your laptop. The setup to allow remote access should also
include encryption, so your connection is secure—and in this chapter, I will show you an easy
way to configure that.

When you have Docker running, you'll start by running containers from images.

Docker images

A Docker image is a complete application package. It contains one application and all of its
dependencies, the language runtime, the application host, and the underlying operating system.
Logically, the image is a single file, and it's a portable unit—you can share your application by
pushing your image to a Docker registry. Anyone who has access can pull that image themselves
and run your application in a container. It will behave in exactly the same way for them as it
does for you.

Here's a concrete example. An ASP.NET WebForms app is going to run on Internet
Information Services (IIS) in Windows Server. To package that application in Docker, you
build an image that is based on Windows Server Core, add IIS, add ASP.NET, copy your
application, and configure it as a website in IIS. You describe all these steps in a simple script
called a Dockerfile, and you can use PowerShell or batch files for each step you need to
perform.

You build the image by running docker image build. The input is the Dockerfile and any
resources that need to be packaged into the image (like the web application content). The output
is a Docker image. In this case, the image will have a logical size of about 11 GB, but 10 GB of
that 1s the Windows Server Core image you're using as a base, and that image can be shared as
the base across many other images (I will cover image layers and caching more in Chapter 4,
Pushing and Pulling Images from Docker Registries).

The Docker image is like a snapshot of the filesystem for one version of your application. The
image is static, and you distribute it using a registry.

Image registries

A registry is a storage server for Docker images. Registries can be public or private, and there
are free public registries and commercial registry servers that allow fine-grained access control
for images. Images are stored with a unique name within the registry. Anyone with access can
upload an image by running docker image push and download an image by running docker image
pull.

The most popular registries are the public ones hosted by Docker:

e Docker Hub is the original registry, which has become hugely popular for open source
projects in the Linux ecosystem. It has over 600,000 images stored and has hosted over 12
billion image pulls.

e Docker Cloud is where you store images you build yourself, and you can configure images
to be public or private. It's suitable for internal products, where you can limit access to the
images. You can set up Docker Cloud to automatically build images from Dockerfiles
stored in GitHub—currently, this is supported only for Linux-based images, but Windows
support is coming soon.

e Docker Store is where you get commercial software, pre-packaged as Docker images.
Vendors are increasingly supporting Docker as a platform for their own applications, and
you will find software from Microsoft, Oracle, HPE, and more on Docker Store.

In a typical workflow, you might build images as part of a CI pipeline and push them to a
registry if all the tests pass. The image is then available for other users to run your application in
a container.

Docker containers

A container is an instance of an application created from an image. The image contains the
whole application stack, and it also specifies the process to start the application, so Docker
knows what to do when you run a container. You can run multiple containers from the same
image, and you can run containers in different ways (I describe them all in the next chapter).

You start your application with docker container run, specifying the name of the image and your
configuration options. Distribution is built into the Docker platform, so if you don't have a copy
of the image on the host where you're trying to run the container, Docker will pull the image
first. Then it starts the specified process, and your app is running in a container.

Containers don't need a fixed allocation of CPU or memory, and the processes for your
application can use as much of the host's compute power as they need. You can run dozens of
containers on modest hardware, and unless the applications all try and use a lot of CPU at the
same time, they will happily run concurrently. You can also start containers with resource limits
to restrict how much CPU and memory they have access to.

Docker provides the container runtime as well as image packaging and distribution. In a small
environment and in development, you will manage individual containers on a single Docker
host, which would be your laptop or a test server. When you move to production, you'll need
high availability and the option to scale, and that comes with Docker swarm.

Docker swarm

Docker has the ability to run on a single machine or as one node in a cluster of machines all
running Docker. This cluster is called a swarm, and you don't need to install anything extra to
run in swarm mode. You install Docker on a set of machines, and on the first you run docker
swarm init to initialize the swarm, and on the others you run docker swarm join to join the swarm.

I will cover swarm mode in depth in Chapter 7, Orchestrating Distributed Solutions with Docker
Swarm, but it's important to know before you get much further that the Docker platform has high
availability, scale, and resilience built in. Your Docker journey will hopefully lead you to
production, where you'll need all these attributes.

In swarm mode Docker uses exactly the same artifacts, so you can run your app across 50
containers in a 20-node swarm, and the functionality will be the same as when you run it in a
single container on your laptop. On the swarm, your app is more performant and tolerant of
failure, and you'll be able to perform automated rolling updates to new versions.

Nodes in a swarm use secure encryption for all communication, using trusted certificates for
each node. You can store application secrets as encrypted data in the swarm too, so database
connection strings and API keys can be saved securely, and the swarm will deliver them only to
containers that need them.

Docker is an established platform. It's new to Windows Server 2016, but it arrived on Windows
after four years of releases on Linux. Docker is written in Go, which is a cross-platform
language, and only a minority of code is specific to Windows. When you run Docker on
Windows, you're running an application platform that has had years of successful production
use.

Running Docker on Windows

It's easy to install Docker on Windows 10 and Windows Server 2016. On these operating
systems, you can use the Docker for Windows installer, which sets up all the prerequisites,
deploys the latest version of Docker CE, and gives you some useful options to manage image
repositories and remote swarms with Docker Cloud.

In production, you should ideally use Windows Server 2016 Core, the installation with no UL.
This reduces the attack surface and the amount of Windows updates your server will need. If
you move all your apps to Docker, you won't need any other Windows features installed; you'll
just have Docker EE running as a Windows service.

I'll walk through both these installation options and show you a third option using a VM in
Azure, which is useful if you want to try Docker but don't have access to Windows 10 or
Windows Server 2016.

Windows support is currently in beta, and it's a great way to try Docker without

There is a fantastic online Docker playground at https.//dockr.ly/play-with-docker.
9 having to make any investment - you just browse the site and get started.

https://dockr.ly/play-with-docker

Docker for Windows

Docker for Windows is available from Docker Store—navigate to https://dockr.ly/docker-for-
windows. You can choose between the Stable channel and the Edge channel. Both channels give
you Docker CE, but the Edge channel follows the monthly release cycle, and you will get
experimental features. The Stable channel follows the EE release cycle, with quarterly updates.

You should use the Edge channel in development if you want to work with the
latest features. In test and production, you will use Docker EE, so you need to be

careful that you don't use features in development that are not yet available in
EFE.

Download and run the installer. The installer will verify that you can run Docker in your setup
and will configure the Windows features needed to support Docker. When Docker is running,
you will see a whale icon in the notification bar, which you can click on for options:

About Docker

Discover Docker Enterprise Edition

Settings...
Check for Updates...
Diagnose and Feedback...

Switch to Windows containers...
Docker Store

Documentation

Kitematic
Sign in / Create Docker [D...
Swarms

Repositories

CQuit Docker

You need to select Switch to Windows containers before you do anything else. Docker for
Windows can run Linux containers by running Docker inside a Linux VM on your machine.
That's great to test out Linux apps to see how they run in containers, but this book is all about
Windows containers - switch over, and Docker will remember that setting in future.

While Docker for Windows is running, you can open Command Prompt or a PowerShell session
and start working with containers. First, verify that everything is working as expected by
running docker version. YOU should see output similar to this:

> docker version

Client:

Version: 17.06.0-ce

API version: 1.30

Go version: gol.8.3

Git commit: 02c1d87

Built: Fri Jun 23 21:30:30 2017

https://dockr.ly/docker-for-windows

OS/Arch: windows/amdé64

Server:

Version: 17.06.0-ce

API version: 1.30 (minimum version 1.24)
Go version: gol.8.3

Git commit: 02c1d87

Built: Fri Jun 23 22:19:00 2017
0S/Arch: windows/amdé4

Experimental: true

service. The operating system field should read Windows for both; if not, then

The output tells you the version of the command-line client and the Docker
8 you may be in Linux mode, and you'll need to switch to Windows containers.

Now run a simple container:

|docker container run dockeronwindows/chOl-whale

This uses a public image on Docker Cloud—one of the sample images for this book, which
Docker will pull the first time you use it. If you don't have any other images, this will take few
minutes, as it will also download the Microsoft Nano Server image that my image uses as a
base. When the container runs, it shows some ASCII art and then exits. Run the same command
again, and you will see that it executes much more quickly as the images are now cached
locally.

That's all the setup you need. Docker for Windows also contains the Docker Compose tool I'll be
using later in the book, so you're all set to follow along with the code samples.

Docker as a Windows Service

You can use Docker for Windows on Windows 10 and Windows Server 2016, and it's great for
development and test environments. For production environments where you have a headless
server with no UI, you can install Docker using a PowerShell module.

On a new installation of Windows Server 2016 core, use the sconfig tool to install all the latest
Windows updates, and then run these PowerShell commands:

Install-Module -Name DockerMsftProvider -Repository PSGallery -Force
Install-Package -Name docker -ProviderName DockerMsftProvider

This will configure the server with the necessary Windows features, install Docker, and set it up
to run as a Windows service. Depending on how many Windows updates were installed, you
may need to reboot the server:

|Restart—Computer -Force

When the server is online, check whether Docker is running with docker version, and then try to
run a container from the sample image for this chapter:

|docker container run dockeronwindows/ch0Ol-whale

I use this configuration for some of my environments—running Windows Server 2016 Core in a
lightweight VM, which has only Docker installed. You can use Docker on the server by
connecting with Remote Desktop, or you can configure the Docker service to allow remote
connections. This is a more advanced setup, but it does give you secure remote access.

It's best to set up the Docker service so that communication with the client is secured using TLS.
Clients can connect only if they have the right TLS certificates to authenticate with the service.
You can set this up by running these PowerShell commands inside the VM, supplying the VM's
external IP address:

$ipAddress = '<vm-ip-address>'
mkdir -p C:\certs\client

docker container run --rm °
--env SERVER NAME=$ (hostname) °
--env IP_ADDRESSES=127.0.0.1,$vm-ip-address °
--volume 'C:\ProgramData\docker:C:\ProgramData\docker' °
--volume 'C:\certs\client:C:\Users\ContainerAdministrator\.docker' °
stefanscherer/dockertls-windows

Restart-Service docker

Don't worry too much about what this command is doing. Over the next few

chapters, you'll get a good understanding of all these Docker options. I'm using a
0 Docker image from Stefan Scherer, who is a Microsoft MVP and Docker Captain.

The image has a script that secures the Docker service with TLS certificates. You
can read more details on Stefan's blog at https://stefanscherer.github.io.

https://stefanscherer.github.io

When this command completes, it will have configured the Docker service to allow only secure
remote connections and will also have created the certificates that the client needs to use to
connect. Copy these certificates from c:\certs\ciient on the VM onto the machine where you
want to use the Docker client.

On the client machine, you can set environment variables to point the Docker client to use a
remote Docker service. These commands will set up a remote connection to the VM (assuming
you have used the same path for the certificate files on the client):

$ipAddress = '<vm-ip-address>'

$env:DOCKER HOST='tcp://$ ($ipAddress) :2376"'
$env:DOCKER_TLS_VERIFY='1'
$env:DOCKER CERT_ PATH='C:\certs\client'’

You can use this approach to securely connect to any remote Docker service. If you don't have
access to Windows 10 or Windows Server 2016, you can create a VM on the cloud and connect
to it using the same commands.

Docker in an Azure VM

Microsoft makes it easy to run Docker in Azure. They provide a VM image with Docker
installed and configured and with the base Windows images already pulled so you can get
started quickly.

For testing and exploring, I always use DevTest labs in Azure. It's a great feature for non-
production environments. By default, any VMs you create in a DevTest lab will be turned off
every evening, so you don't end up with a big Azure bill from a VM you used for a few hours
and forgot to turn off.

You can create a DevTest Lab through the Azure Portal and then create a VM from Microsoft's
VM image Windows Server 2016 Datacenter - with Containers. As an alternative to the
Azure Portal, you can use the az command-line to manage the DevTest lab. I've packaged az in a
Docker image, which you can run in a Windows container:

| docker run -it dockeronwindows/ch0l-az

This runs an interactive Docker container that has the az command packaged and ready to use.
Run az 10gin, and you'll need to open a browser and authenticate the Azure CLI. Then, you can
run this in the container to create a VM:

az lab vm create °
--lab-name docker-on-win --resource-group docker-on-winRG236992 ~
--name dow-vm-01 °
--image 'Windows Server 2016 Datacenter - with Containers' °
--image-type gallery --size Standard DS2 °
--admin-username 'elton' --admin-password 'S3crett20!7'

The VM uses the full Windows Server 2016 installation with the Ul, so you can connect to the
machine with RDP, open a PowerShell cmdlet, and start using Docker right away. Just like the
other options, you can check whether Docker 1s running with docker version and then run a
container from the sample image for this chapter:

|docker container run dockeronwindows/chOl-whale

If an Azure VM is your preferred option, you can follow the steps from the previous section to
secure the Docker API for remote access. This way, you can run the Docker command-line on
your laptop to manage containers on the cloud.

Learning Docker with this book

Every code listing in this book is accompanied by a full code sample on my GitHub repository
at https://github.com/sixeyed/docker-on-windows. The source tree is organized into a folder for each
chapter, and for each chapter there's a folder for each code sample. In this chapter, I've used two
samples to create Docker images, which you'll find in choi\cho1-whale and choi\choi-az.

The code listings in the book may be condensed for the page, but the full code is
8 always in the GitHub repository.

I prefer to follow along with the code samples when I'm learning a new technology, but if you
want to use working versions of the demo applications, every sample is also available as a
public Docker image on Docker Cloud. Wherever you see a docker container run command, the
image already exists on Docker Cloud, so you can use mine rather than building your own if you
wish. All the images in the dockeronwindows Oorganization, such as this chapter's
dockeronwindows/ch01-whale—were built from the relevant Dockerfile in the GitHub repository.

My own development environment is based on Windows Server 2016, where I use Docker for
Windows. My test environment is based on Windows Server 2016 Core, where I run Docker as
a Windows Service. I've also verified all the code samples using Windows 10.

I'm using version 17.06 of Docker, which is the latest release at the time of writing. Some of the
features I demonstrate need version 17.06 as a minimum—such as multi-stage builds and
secrets. But Docker has always been backward-compatible, so if you're using a version later than
17.06, then the sample Dockerfiles and images should work in the same way.

My goal is for this to be a definitive book about Docker on Windows, so I've covered everything
from the 101 on containers through modernizing .NET apps with Docker and the security
implications of containers to CI/CD and administration in production. The book ends with a
guide to moving forward with Docker in your own projects.

If you want to discuss the book or your own Docker journey with me, feel free to
o ping me on Twitter at eritonstoneman.

https://github.com/sixeyed/docker-on-windows

Summary

In this chapter I introduced Docker, an application platform that can run new and old apps in
lightweight units of compute called containers. Companies are moving to Docker for efficiency,
security, and portability. I covered:

e How Docker works on Windows and how containers are licensed
e The key Docker concepts: images, registries, containers, and swarms
e The options to run Docker on Windows 10, Windows Server 2016, and Azure

If you're planning to work along with the code samples in the rest of the book, you should have a
working Docker environment by now. In Chapter 2, Packaging and Running Applications as
Docker Containers, I'll move on to packaging more complex apps as Docker images and
showing how to manage state in containers with Docker volumes.

Packaging and Running
Applications as Docker
Containers

Docker reduces the logical view of your infrastructure to three core components: hosts,
containers, and images. Hosts run containers, which are isolated instances of an application.
Containers are created from images, which are packaged applications. The Docker container
image is conceptually very simple - it's a single unit that contains a complete, self-contained
application. The image format is very efficient, and the integration between the image and the
runtime is very smart, so mastering images is your first step to using Docker effectively.

You've already seen some images in Chapter 1, Getting Started with Docker on Windows, by
running some basic containers to check your Docker installation was working correctly - but I
didn't look very closely at the image or how Docker used it. In this chapter, you'll get a thorough
understanding of Docker images: learning how they're structured, understanding how Docker
uses them, and looking at how to package your own applications as Docker images.

The first thing to understand is the difference between an image and a container, which you can
see very clearly by running different types of container from the same image.

In this chapter, you'll get a lot of experience of the Docker basics:

e Running containers from images

Building images from Dockerfiles

Packaging your own applications as Docker images
Working with data in images and containers

Packaging legacy ASP.NET web apps as Docker images

Running a container from an
image

The docker container run command creates a container from an image and starts the application
inside the container. It's actually equivalent to running two separate commands, docker container
create and docker container start, which shows that containers can have different states. You can
create a container without starting it, and you can pause, stop, and restart running containers.
Containers can be in different states, and you can use them in different ways.

Doing one thing with a task
container

The dockeronwindows/ch02-powershell-env Image is an example of a packaged application that is
meant to run in a container and perform a single task. The image is based on Microsoft Nano
Server and is set up to run a simple PowerShell script when it starts, printing details about the
current environment. Let's see what happens when I run a container directly from the image:

> docker container run dockeronwindows/chO2-powershell-env

Name Value

ALLUSERSPROFILE C:\ProgramData

APPDATA C:\Users\ContainerAdministrator\AppData\Roaming
CommonProgramFiles C:\Program Files\Common Files
CommonProgramFiles (x86) C:\Program Files (x86)\Common Files
CommonProgramWé6432 C:\Program Files\Common Files

COMPUTERNAME 361CB712CB4B

Without any options, the container runs a PowerShell script that is built into the image, and the
script prints out some basic information about the operating system environment. I call that a
task container because the container performs one task and then exits. If you run dgocker
container 1s, Which lists all the active containers, you won't see this container. But if you run
docker container 1s --all, Which shows containers in all states, you'll see it in the exited status:

> docker container 1ls --all
CONTAINER ID IMAGE COMMAND CREATED
361cb712cb4b dockeronwindows/ch02-powershell-env "powershell.exe c:..." 30 seconds ago

Task containers are very useful in automating repetitive tasks - like running scripts to set up an
environment, backing up data, or collecting log files. Your container image packages the script
to run, along with the exact version of the engine that the script needs, so anyone with Docker
installed can run that script without having to install the engine.

This is especially useful for PowerShell, where scripts can be dependent on several PowerShell
modules. The modules may be publicly available, but your script is dependent on specific
versions. Instead of sharing a script that requires users to install the correct version of many
different modules, you build an image that has the modules already installed. Then, you only
need Docker to run the script task.

Images are self-contained units, but you can also use them as a template. An image may be
configured to do one thing, but you can run containers from the image in different ways to do
different things.

Connecting to an interactive
container

An interactive container is one that has an open connection to the Docker command line, so you
work with the container as if you were connected to a remote machine. You can run an
interactive container from that same Nano Server image by specifying the interactive options
and a command to run when the container starts:

> docker container run --interactive --tty dockeronwindows/ch02-powershell-env °
powershell

Windows PowerShell
Copyright (C) 2016 Microsoft Corporation. All rights reserved.

PS C:\> Write-Output 'This is an interactive container'
This is an interactive container
PS C:\> exit

The --interactive Option runs an interactive container, and the --tty flag attaches a dummy
terminal connection to the container. The powershe11 statement after the name of the container
image is the command to run when the container starts. By specifying a command, you replace
the startup command that's been set up in the image. In this case, I start a PowerShell session,
and that runs instead of the configured command, so the environment printout script doesn't run.

An interactive container keeps running as long as the command inside is running. While you're
connected to PowerShell, running docker container 1s on another window on the host will show
the container is still running. When you type exit in the container, the PowerShell session ends,
so there's no process running and the container exits too.

Interactive containers are useful when you're building your own container images, as you can
work through the steps interactively first and verify that everything will work as you expect.
They're good exploratory tools too. You'll see as you move further into this book that Docker
can host complex distributed systems in a virtual network, with each component running in its
own container. If you want to examine parts of the system, you can run an interactive container
inside the network and check on individual components, without having to make the parts
publicly accessible.

Keeping a process running in a
background container

The last type of container is the one that you'll use most in production - the background
container, which keeps a long-running process running in the background. It's a container that
behaves like a Windows Service. In Docker terminology, it's called a detached container, and
it's the Docker service that keeps it running in the background. Inside the container, the process
runs in the foreground. The process might be a web server or a console application polling a
message queue for work, but as long as the process keeps running, Docker will keep the
container alive.

I can run a background container from the same image again, specifying the detacnh option and a
command that runs for some minutes:

> docker container run --detach dockeronwindows/ch02-powershell-env °
powershell Test-Connection 'localhost' -Count 100

ce7b2604£681871a8dcd2£f£fd8898257fad26b24edec7135e76aedd47cdcdc427

In this case, when the container has launched control returns to the terminal; the long random
string 1s the ID of the new container. You can run docker container 1s and see the container
running, and the docker container logs command shows you the console output from the
container. For commands operating on specific containers, you can reference them by the
container name or by part of the container ID:

> docker container logs ce7

Source Destination IPV4Address IPV6Address

CE7B2604F681 localhost
CE7B2604F681 localhost

The --aetacn flag detaches the container so it moves into the background, and the command in
this case just pings 1ocalnost repeatedly one hundred times. After a few minutes, the PowerShell
command completes so there's no process running and the container exits. That's a key thing to
remember - if you want to keep a container running in the background, the process that Docker
starts when it runs the container has to keep running.

Now you've seen that a container is created from an image, but it can run in different ways - so
you can use the image exactly as it was prepared, or treat the image as a template, with a default
startup mode built in. Next, I'll show you how to build that image.

Building a Docker image

Docker images are layered. The bottom layer is the operating system, which can be a full OS
like Windows Server Core, or a minimal OS like Microsoft Nano Server. On top of that are
layers for each change you make to the base OS when you build an image - by installing
software, copying files, and running commands. Logically, Docker treats the image as a single
unit, but physically, each layer is stored as a separate file in Docker's cache, so images with a lot
of common features can share layers from the cache.

Images are built using a text file with the Dockerfile language - specifying the base OS image to
start with, and all the steps to add on top. The language is very simple, and there are only a few
commands you need to master in order to build production-grade images. I'll start by looking at
the basic PowerShell image I've been using so far in this chapter.

Understanding the Dockerfile

The Dockerfile is the source code for an image. The complete code for the PowerShell image is
just three lines:

FROM microsoft/nanoserver
COPY scripts/print-env-details.psl c:\\print-env.psl
CMD ["powershell.exe", "c:\\print-env.psl"]

It's pretty easy to guess what's happening even if you've never seen a Dockerfile before. By
convention, the instructions (rrowm, cory and cup) are uppercase and the arguments are lowercase,
but that's not mandatory. Also by convention, you save the text in a file called pockerrite, but
that's not mandatory either (a file with no extension looks odd in Windows, but remember that
Docker's heritage is in Linux).

Let's take a look at the instructions in that Dockerfile line by line:

® FROM microsoft/nanoserver USES the image called microsoft/nanoserver as the starting pOiIlt for
this image

® COPY scripts/print-env-details.psl c:\\print-env.psl COPY the PowerShell SCI’ipt from the
local computer into a specific location on the image

® CMD ["powershell.exe", "c:\\print-env.psl"] specifies the startup command when a
container runs, in this case running the PowerShell script

There are a few obvious questions here. Where does the base image come from? Built into
Docker is the concept of an image registry, which is a store for container images. The default
registry is a free public service called Docker Hub. Microsoft has made the Nano Server image
available on Docker Hub, and that image is called microsoft/nanoserver. The first time you use
the image, Docker will download it to your local machine and then cache it for further use.

Where does the PowerShell script get copied from? When you build an image, the directory
containing the Dockerfile is used as the context for the build. When you build an image from
this Dockerfile, Docker will expect to find a folder called scripts in the context directory,
containing a file called print-env-details.ps1. If it doesn't find that file, the build will fail.

Dockerfiles use the backslash as an escape character in order to continue

instructions onto a new line. This clashes with Windows file paths, so you have to
0 Write c:\print.ps1 aS c:\\print.psl OF c:/print.psi. There is a nice way to get

around this, using a processor directive at the start of the Dockerfile, which I'll
demonstrate later in the chapter.

How do you know PowerShell is available for use? It's part of the Nano Server base image, so
you can rely on it being there. You can install any software that isn't in the base image with
additional Dockerfile instructions. You can add Windows features, copy or download files into
the image, extract ZIP files and do whatever else you need.

This is a very simple Dockerfile but even so, two of the instructions are optional. Only the rrowm
instruction is mandatory, so if you wanted to build an exact clone of Microsoft's Nano Server
image, you could do that with just a rrom statement in your Dockerfile.

Building an image from a
Dockertile

Now that you have a Dockerfile, you use the docker command line to build it into an image. Like
most Docker commands, the image builda command is straightforward and has very few required
options, preferring conventions instead. To build an image, open a command line and navigate
to the directory where your Dockerfile is. Then, run docker image builda and give your image a
tag, which is the name that will identify the image:

|docker image build --tag dockeronwindows/ch02-powershell-env .

Every image needs a tag, specified with the --tag option, which is a unique identifier for the
image in your local image cache and in image registries. The tag is how you'll refer to the image
when you run containers. A full tag specifies the registry to use, the repository name, which is
the identifier for the application and a suffix, which is the identifier for this version of the image.

When you're building an image for yourself, you can call it anything, but the convention is to
name your repository as your username for the registry, followed by the application name:
{user}/{app}. YOU can use also the tag to identify application versions or variations, such

aS sixeyed/hadoop-dot-net:latest and sixeyed/hadoop-dot-net:2.7.2, which are two of my images
on Docker Hub.

The period at the end of the inage buila command tells Docker the location of the context to use
for the image, . is the current directory. Docker copies the contents of the directory tree into a
temporary folder for the build, so the context needs to contain any files you reference in the
Dockerfile. After copying the context, Docker starts executing the instructions in the Dockerfile.

Examining how Docker builds
an image

Understanding how Docker images are constructed will help you build efficient images. The
image build command produces a lot of output, which tells you exactly what Docker does for
each step of the build. Each instruction in the Dockerfile is executed as a separate step that
produces a new image layer, and the final image will be the combined stack of all the layers.
This is the output from building my image:

> docker image build --tag dockeronwindows/ch02-powershell-env .

Sending build context to Docker daemon 3.584kB
Step 1/3 : FROM microsoft/nanoserver
---> d9bccb9d4cac
Step 2/3 : COPY scripts/print-env-details.psl c:\\print-env.psl
---> ad4026142eaa
Removing intermediate container 9901221bbf99
Step 3/3 : CMD powershell.exe c:\print-env.psl
---> Running in 56af93a47abl
---> 253feb55a9c0
Removing intermediate container 56af93a47abl
Successfully built 253feb55a9c0
Successfully tagged dockeronwindows/ch02-powershell-env:latest

This is what's happening in these execution steps:

e Step 1: The rrov image already exists in my local cache, so Docker doesn't need to
download it. The output is the ID of Microsoft's Nano Server image (starting dob).

e Step 2: Docker creates a temporary, intermediate container from the base image and copies
the script file from the build context into the container. Then it saves the container as a
new image layer (ID a44) and removes the intermediate container (ID 990).

e Step 3: Docker configures the command to execute when a container is run from the
image. It creates a temporary container from the Step 2 image, configures the startup
command, saves the container as a new image layer (ID 253), and deletes the intermediate
container (ID s6a).

The final layer is tagged with the image name, but all the intermediate layers are also added to
the local cache. The layered approach means Docker can be very efficient when it builds images
and runs containers. The latest Windows Nano Server image is over 900 MB uncompressed, but
when you run multiple containers based from Nano Server they will all use the same base image
layers, you don't end up with multiple copies of the 900 MB image.

You'll understand more about image layers and storage later in the chapter, but first I'll look at
some more complex Dockerfiles that package .NET and .NET Core applications.

Packaging your own
applications

The goal of building an image is to package your application in a portable, self-contained unit.
The image should be as small as possible, so it's easy to move around when you want to run the
application, and it should have as few OS features as possible, so it has a fast startup time and a
small attack vector.

Docker doesn't impose restrictions on the image size. Your long-term goal may be to build
minimal images that run lightweight .NET Core applications on Linux or Nano Server. But you
can start by packaging your existing ASP.NET apps in their entirety as Docker images to run on
Windows Server Core. Docker also doesn't impose restrictions on how to package your app, so
you can choose from different approaches.

Compiling the application
during the build

There are two common approaches to packaging your own apps in Docker images. The first is to
use a base image that contains the application platform and the build tools, so in your
Dockerfile, you copy the source code into the image and compile the app as a step during the
image building process.

This 1s a popular approach for public images because it means that anyone can build the image
without having the application platform installed locally. It also means the tooling for the
application is bundled with the image, so that can make it possible to debug and troubleshoot the
application running in the container.

Here's an example with a simple .NET Core application. This Dockerfile is for the image
dockeronwindows/ch02-dotnet-helloworld.
FROM microsoft/dotnet:1.l-sdk-nanoserver

WORKDIR /src
COPY src/ .

RUN dotnet restore; dotnet build
CMD ["dotnet", "run"]

The Dockerfile uses Microsoft's .NET Core image from Docker Hub as the base image. It's a
specific variation of the image, one which is based on Nano Server and has the .NET Core 1.1
SDK installed. The build copies in the application source code from the context, and compiles
the application as part of the container build process.

There are two new instructions in this Dockerfile which you haven't seen before:

¢ workpIr specifies the current working directory. Docker creates the directory in the
intermediate container, if it doesn't already exist, and sets it to be the current directory. It
remains the working directory for the subsequent instructions in the Dockerfile, and for
containers when they run from the image.

e run executes a command inside an intermediate container and saves the state of the
container after the command completes, creating a new image layer.

When I build this image, you'll see the dotnet command output, which is the application being
compiled from the run instruction in the image build:

> docker image build --tag dockeronwindows/ch02-dotnet-helloworld .
Sending build context to Docker daemon 367.1kB
Step 1/5 : FROM microsoft/dotnet:1l.1-sdk-nanoserver
---> 80950bc5c558
Step 2/5 : WORKDIR /src
---> 00352aflc40a
Removing intermediate container 1167582ec3ae

Step 3/5 : COPY src/ .

---> abd047ca95d7
Removing intermediate container 09d543e402c5

Step 4/5 : RUN dotnet restore; dotnet build

---> Running in 4ec42bb93cal

Restoring packages for C:\src\HelloWorld.NetCore.csproj...

Generating MSBuild file C:\src\obj\HelloWorld.NetCore.csproj.nuget.g.props.
Writing lock file to disk. Path: C:\src\obj\project.assets.json

Restore completed in 10.36 sec for C:\src\HelloWorld.NetCore.csproj.

You'll see this approach a lot on Docker Cloud for applications built with platforms like .NET
Core, Go, and Node.js, where the tooling is easy to add to a base image. It means that you can
set up an automated build on Docker Cloud so Docker's servers build your image from the
Dockertfile when you push code changes to GitHub. The servers can do that without having
NET Core, Go, or Node.js installed because all the build dependencies are inside the base
image.

This option means that the final image will be a lot bigger than it needs to be for a production
application. Platform tooling will probably use more disk than the app itself, and your end result
is meant to be the application - all the build tools taking up space in your image will never be
used when the container runs in production. An alternative is to build the application first and
then package the compiled binaries into your container image.

Compiling the application
before the build

Building the application first fits in neatly with existing build pipelines. Your build servers need
to have all the application platforms and build tools installed, but your finished container image
only has the minimum it needs to run the app. With this approach, the Dockerfile for my .NET
Core app becomes even simpler:

FROM microsoft/dotnet:1.l-runtime-nanoserver

WORKDIR /dotnetapp
COPY ./src/bin/Debug/netcoreappl.l/publish .

CMD ["dotnet", "HelloWorld.NetCore.dll"]

This Dockerfile uses a different rrom image, one that contains just the .NET Core 1.1 runtime
and not the tooling (so it can run a compiled application, but it can't compile one from source).
You can't build this image without building the application first, so you'll need to wrap the
docker image build command in a build script that also runs the dotnet pubiish command to
compile the binaries.

A simple build script that compiles the application and builds the Docker image looks like this:

dotnet restore src; dotnet publish src

docker image build --file Dockerfile.slim --tag dockeronwindows/ch02-dotnet-helloworld:slim .

Dockerfile, you can build it by specifying the filename with the --riie option, as
shown in this example: image build --file Dockerfile.slim.

0 If you put your Dockerfile instructions in a file called something other than

I've moved the requirements for the platform tooling from the image to the build server, and that
results in a smaller final image: 1.15 GB for this version compared to 1.68 GB for the previous
one. You can see the size difference by listing images, and filtering on the image repository
name:

> docker image ls --filter reference=dockeronwindows/ch02-dotnet-helloworld

REPOSITORY TAG IMAGE ID CREATED SIZE
dockeronwindows/ch02-dotnet-helloworld latest ebdf7accda4b 6 minutes ago 1.68GB
dockeronwindows/ch02-dotnet-helloworld slim 63aebf93b60e 13 minutes ago 1.15GB

This new version is also a more restricted image. The source code and the .NET Core SDK
aren't packaged in the image, so you can't connect to a running container and inspect the
application code, or make changes to the code and recompile the app.

For enterprise environments, or for commercial applications, you're likely to already have a
well-equipped build server, and packaging the built app can be part of a more comprehensive

workflow:

In this pipeline, the developer pushes their changes to the central source code repository (1). The
build server compiles the application and runs unit tests - if they pass, then the container image
is built and deployed in a staging environment (2). Integration tests and end-to-end tests are run
against the staging environment, and if they pass, then your versioned container image is a good
release candidate for testers to verify (3).

You deploy a new release by running a container from the image in production, and you know
that your whole application stack is the same set of binaries which passed all the tests.

The downside with this approach is that you need to have the application SDK installed on all
your build agents, and the versions of the SDK and all its dependencies need to match what the
developers are using. Often in Windows projects, you find CI servers with Visual Studio
installed, to ensure the server has the same tools as the developer. That makes for heavy build
servers which take a lot of effort to commission and maintain.

It also means that you can't build this Docker image yourself unless you have the
0 .NET Core 1.1 SDK installed on your machine.

You can get the best of both options by using a multi-stage build, where your Dockerfile defines
one step to compile your application, and another step to package it into the final image. Multi-
stage Dockerfiles are portable, so anyone can build the image with no pre-requisites, but the
final image only contains the minimum needed for the app.

Compiling with multi-stage
builds

In a multi-stage build, you have multiple rrom instructions in your Dockerfile, where each rrow
instruction starts a new stage in the build. Docker executes all the instructions when you build
the image, and later stages can access the output from earlier stages, but only the final stage is
used for the completed image.

I can write a multi-stage Dockerfile for the NET Core console app by combining the previous
two Dockerfiles into one:

build stage

FROM microsoft/dotnet:1.l-sdk-nanoserver AS builder
WORKDIR /src

COPY src/ .

RUN dotnet restore; dotnet publish

final image stage

FROM microsoft/dotnet:1.l-runtime-nanoserver

WORKDIR /dotnetapp

COPY --from=builder /src/bin/Debug/netcoreappl.l/publish .
CMD ["dotnet", "HelloWorld.NetCore.dll"]

There are a couple of things that are new here. The first stage uses the large base image, with the
NET Core SDK installed. I've named that stage vuiider, using the as option in the rrowm
instruction. The rest of that stage goes on to copy in the source code and publish the application.
When the builder stage completes, the published application will be stored in an intermediate
container.

The second stage uses the runtime .NET Core image, which doesn't have the SDK installed. In
that stage I copy the published output from the previous stage, specifying --from=builder in the
copy instruction. Anyone can compile this application from source, without needing .NET Core
installed on their machine.

Multi-stage Dockerfiles for Windows apps are completely portable. To compile the app and
build the image, the only pre-requisite is to have a Windows machine with Docker installed, and
a copy of the code. The builder stage contains the SDK and all the compiler tools, but the final
image just has the minimum needed to run the application.

This approach isn't just for .NET Core. You can write a multi-stage Dockerfile for a .NET
Framework app, where the first stage uses an image with MSBuild installed, which you use to
compile your application. There are plenty of examples of that later in this book.

Whichever approach you take, there are just a few more Dockerfile instructions you need to
understand in order to build more complex application images, which can integrate with other
systems.

Using the main Dockertfile
instructions

The Dockerfile syntax is very simple. You've already seen rrowm, copy, run, and cvp which are
enough to package up a basic application to run as a container. For real-world images, you'll
need to do more than that, and there are three more key instructions to understand.

Here's a Dockerfile for a simple static website - it uses Internet Information Services (IIS) and
serves an HTML page in the default website, which shows some basic details:

escape="
FROM microsoft/iis
SHELL ["powershell"]

ARG ENV_NAME=DEV

EXPOSE 80

COPY template.html C:\template.html

RUN (Get-Content -Raw -Path C:\template.html) °
-replace '{hostname}', [Environment]::MachineName °

-replace '{environment}', [Environment]::GetEnvironmentVariable ('ENV _NAME') °
| Set-Content -Path C:\inetpub\wwwroot\index.html

This Dockerfile starts differently, with the escape directive. That tells Docker to use the backtick
* for the escape character, to split commands over multiple lines, rather than the default
backslash \. With the escape directive, I can use backslashes in file paths and backticks to split
long PowerShell commands - which is more natural to Windows users.

The base image 1S microsort/iis Which is a Microsoft Windows Server Core image with IIS
already set up. I copy an HTML template file from the Docker build context into the root folder.
Then I run a PowerShell command to update the content of the template file and save it in the
default website location for IIS.

In this Dockerfile, I use two new instructions:

e arg specifies a build argument to use in the image with a default value
¢ =xrose Will make a port available in the image, so containers from the image can have
traffic sent in by the host

This static website has a single home page, which tells you the name of the server that sent the
response, with the name of the environment in the page title. The HTML template file has
placeholders for the host name and the environment name. The rux command executes a
PowerShell script to read the file contents, replace the placeholders with the actual host name
and environment value, and then write the contents out.

Containers run in an isolated space, and the host can only send network traffic into the container

if the image has explicitly made the port available for use. That's the exrose instruction, which
you can use to expose the ports that your application is listening on. When you run a container
from this image, port so is available to be published so Docker can serve web traffic from the
container.

I can build this image in the usual way, and make use of the arc specified in the Dockerfile to
override the default value at build-time with the --buiid-arg option:

|docker image build --build-arg ENV_NAME=TEST --tag dockeronwindows/ch02-static-website .

Docker processes the new instructions in the same way as those you've already seen—it creates
a new, intermediate container from the previous image in the stack, executes the instruction, and
extracts a new image layer from the container. After the build, I have a new image that I can run
to start the static web server:

> docker container run --detach --publish 80 dockeronwindows/ch0O2-static-website

3472a4f0efdb7£4215d49c44dcbfc8leae0426clfc56ad75be86£63a5abf9ble

This is a detached container so it runs in the background, and the --pub1ish option makes port so
in the container available to the host. Published ports mean traffic coming into the host can be
directed into containers by Docker. But when I'm logged into the host like on my dev machine -
I need to use the container's IP address to use the app. I can find the IP address with docker
container inspect. The inspect command returns a lot of data, but I can pass a format string to
just return the attribute I want, so this gives me the IP address of the container:

> docker container inspect --format '{{ .NetworkSettings.Networks.nat.IPAddress }}' 3472
172.26.204.5

That's a virtual IP address assigned by Docker, which I can use on the host to communicate with
the container. I can browse to that [P address and see the response from IIS running inside the
container, showing me the host name - which is actually a container ID, and in the title bar there
is the name of the environment:

Y ® ThisisTEST m - o x
4 I C 1 |® 172262045 v O ||Qr searchGe v
EI Hello from FSD20D2AD720!

g

®

=

The environment name is just a text description, but the value came from the argument passed to
the docker image puild command - which overrides the default value from the arc instruction in
the Dockerfile. The hostname should show the container ID, but there's a problem with the
current implementation.

On the web page, the hostname starts F5D2, but my container ID actually starts with 3472. To
understand that, I'll look again at the temporary containers used during image builds.

Understanding temporary
containers and image state

My website container has an ID that starts 3472, which is the hostname the application inside the
container should see, but that's not what the website claims. So what went wrong? Remember
that Docker executes every build instruction inside a temporary, intermediate container.

The run instruction to generate the HTML ran in a temporary container, so the PowerShell script
wrote that container's ID as the hostname in the HTML file. The intermediate container gets
removed by Docker, but the HTML file it created is persisted in the image.

This is an important concept - when you build a Docker image, the instructions execute inside
temporary containers. The containers are removed, but the state they write is persisted in the
final image and will be present in any containers you run from that image. If I run multiple
containers from my website image, they will all show the same hostname from the HTML file,
because that's saved inside the image, which is shared by all containers.

Of course you can store state in individual containers, which is not part of the image so it's not
shared between containers. I'll look at how to work with data in Docker now and then finish the
chapter with a real-world Dockerfile example.

Working with data in Docker
images and containers

Applications running in a Docker container see a single filesystem that they can read from and
write to in the usual way for the operating system. The container sees a single filesystem drive
but it's actually a virtual filesystem, and the underlying data can be in many different physical

locations.

Files that a container can access on its c drive could actually be stored in an image layer, in the
container's own storage layer, or in a volume that is mapped to a location on the host. Docker
merges all these locations into a single virtual filesystem.

Data in layers and the virtual C
drive

The virtual filesystem is how Docker can take a set of physical image layers and treat them as
one logical container image. Image layers are mounted as read-only parts of the filesystem in a
container, so they can't be altered, and that's how they can be safely shared by many containers.

Each container has its own writable layer on top of all the read-only layers, so every container
can modify its own data without affecting any other containers:

o o

Writeable Layer ‘

Setup App

Install NET

‘ Writeable Layer

Install IIS

== Server Core]

This diagram shows two containers running from the same image. The image (1) is physically
composed of many layers - one built from each instruction in the Dockerfile. The two containers
(2 and 3) use the same layers from the image when they run, but they each have their own
isolated, writeable layers.

Docker presents a single filesystem to the container. The concept of layers and read-only base
layers is hidden, and your container just reads and writes data as if it had a full native filesystem,
with a single drive. If you create a file when you build a Docker image and then edit the file
inside a container, Docker actually creates a copy of the changed file in the container's writable
layer and hides the original read-only file. So the container has edited a copy of the file, but the
original file in the image is unchanged.

You can see this by creating some simple images with data in different layers. The Dockerfile
for the image dockeronwindows/cho2-£s-1 uses Nano Server as the base image, creates a directory,
and writes a file into it:

escape="
FROM microsoft/nanoserver

RUN md c:\data °

echo 'from layer 1' > c:\data\filel.txt

The Dockerfile for the image dockeronwindows/cho2-rs-2 creates an image based from that image,
and adds a second file to the data directory:

escape="
FROM dockeronwindows/ch0O2-fs-1

RUN echo 'from image 2' > c:\data\file2.txt

There's nothing special about base images - any image can be used in the rrom
instruction for a new image. It can be an official image curated on the Docker
Hub, a commercial image from Docker Store, a local image built from scratch, or
an image that is many levels deep in a hierarchy.

I'll build both images and run an interactive container from dockeronwindows/ch02-fs-2, SO I can
take a look at the files on the c drive. This command starts a container and gives it an explicit
name, c1, so I can work with it without using the random container ID:

docker container run -it --name cl dockeronwindows/ch02-fs-2 powershell

Many options in Docker commands have short and long forms. The long form
starts with two dashes, like --interactive. The short form is a single letter and
starts with a single dash, like -i. Short tags can be combined, so -it is equivalent
to -i -t, which is equivalent to —-interactive —-tty. RUn docker --heip to navigate
the commands and their options.

The 1s command is a PowerShell alias for cet-chiiarten, which I can use to list the directory
contents inside the container:

> 1ls C:\data

Directory: C:\data

Mode LastWriteTime Length Name
-a--—-- 6/22/2017 7:35 AM 17 filel.txt
-a--—-- 6/22/2017 7:35 AM 17 file2.txt

Both the files are there for the container to use in the c:\data directory - the first file is in a layer
from the cho2-rs-1 image, and the second file is in a layer from the cho2-rs-2 image. The
PowerShell executable is available from another layer in the base Nano Server image, and the
container sees them all in the same way.

I'll append some more text to one of the existing files and create a new file in the c1 container:

PS C:\> echo ' * ADDITIONAL * ' >> c:\data\file2.txt
PS C:\> echo 'New!' > c:\data\file3.txt
PS C:\> 1ls c:\data

Directory: C:\data

Mode LastWriteTime Length Name

-a--—-- 6/22/2017 7:35 AM 17 filel.txt
-a---- 6/22/2017 7:47 AM 53 file2.txt
-a---- 6/22/2017 7:47 AM 14 file3.txt

From the file listing, you can see that riie2.txt from the image layer has been modified and

there is a new file, ri1e3.cxt. Now I'll exit this container and create a new one using the same
image:

PS C:\> exit
PS> docker container run -it --name c2 dockeronwindows/ch02-fs-2 powershell
What are you expecting to see in the c:\data directory in this new container? Let's take a look:

> 1ls C:\data

Directory: C:\data

Mode LastWriteTime Length Name
-a---- 6/22/2017 7:35 AM 17 filel.txt
-a---- 6/22/2017 7:35 AM 17 file2.txt

You know that image layers are read-only and every container has its own writeable layer, so the
results should be clear. The new container c2 has the original files from the image without the
changes from the first container <1 - which are stored in the writeable layer for c1. Each

container's filesystem is isolated, so one container doesn't see any changes made by another
container.

If you want to share data between containers, or between containers and the host, you can use
Docker volumes.

Sharing data between
containers with volumes

Volumes are defined in an image with the vorume instruction, specifying a directory path. When
you run a container with a volume defined, the volume is mapped to a physical location on the
host, which is specific to that one container. More containers running from the same image will
have their volume mapped to a different host location.

In Windows, volume directories need to be empty - in your Dockerfile, you can't create files in a
directory and then expose it as a volume. Volumes also need to be defined on a disk that exists
in the image. In the Windows base images, there is only a c drive available, so volumes need to
be created on the c drive.

The Dockerfile for dockeronwindows/cho2-volumes creates an image with two volumes:

escape="
FROM microsoft/nanoserver

VOLUME C:\app\config
VOLUME C:\app\logs

ENTRYPOINT powershell

When I run a container from that image, Docker creates a virtual filesystem from three sources.
The image layers are read-only, the container's layer is writeable, and the volumes can be set to
read-only or writeable:

‘ Volume 1 ‘

i ‘ Volume 2 ‘

Image Layer

[== Nano Server]

Because volumes are separate from the container, they can be shared with other containers even
if the source container isn't running. I can run a task container from this image, with a command
to create a new file in the volume:

|docker container run --name source dockeronwindows/ch02-volumes "echo 'start' > c:\app\logs\Ilc

Docker starts the container, which writes the file, and then exits. The container and its volumes
haven't been deleted, so I can connect to the volumes in another container using the --vo1umes-

from Option and by specifying my first container's name:

|docker container run -it --volumes-from source dockeronwindows/ch02-volumes

This is an interactive container, and when I list the contents of the c:\app directory, I'll see the
two directories 10gs and config, which are volumes from the first container:

> 1s C:\app

Directory: C:\app

Mode LastWriteTime Length Name
d----1 6/22/2017 8:11 AM config
d----1 6/22/2017 8:11 AM logs

The shared volume has read and write access, so I can see the file created in the first container
and append to it:

PS C:\> cat C:\app\logs\log-1.txt
start

PS C:\> echo 'more' >> C:\app\logs\log-1l.txt
PS C:\> cat C:\app\logs\log-1.txt

start
more

Sharing data between containers like this is very useful - you can run a task container that takes

a backup of data or log files from a long-running background container. The default access is for

volumes to be writeable, but that's something to be wary of, as you could edit data and break the
application running in the source container.

Docker lets you mount volumes from another container in the read-only mode instead by adding
the :ro flag to the name of the container in the --voiumes-from Option. This is a safer way to
access data if you want to read it without making changes. I'll run a new container, sharing the
same volumes from the original container in read-only mode:

> docker container run -it --volumes-from source:ro dockeronwindows/ch02-volumes

PS C:\> cat C:\app\logs\log-1.txt
start
more

PS C:\> echo 'more' >> C:\app\logs\log-1.txt

out-file : Access to the path 'C:\app\logs\log-l.txt' is denied.
At line:1 char:1

+ echo 'more' >> C:\app\logs\log-1.txt

+ CategoryInfo : OpenError: (:) [Out-File], UnauthorizedAccessException
+ FullyQualifiedErrorId : FileOpenFailure,Microsoft.PowerShell.Commands.OutFileCommand

In the new container, I can't write to the log file. However I can see the content in the log file
from the original container, and the line appended by the second container.

Sharing data between container
and host with volumes

Container volumes are stored on the host, so you can access them directly from the machine
running Docker - but they'll be in a nested directory somewhere in Docker's program data
directory. The docker container inspect command tells you the physical location for a container's
volumes, along with a lot more information - ['ve used it previously to fetch the container's IP
address.

I can use explicit JSON formatting in the container inspect command, and extract just the
volume information which is in the mounts field. This command pipes the Docker output into a
PowerShell cmdlet to show the JSON in a friendly format:

> docker container inspect --format '{{ json .Mounts }}' source | ConvertFrom-Json

Type : volume

Name : 3514e9620e667028b7e3caB8bc42£3615ea94108e2c08875d50c102c9da7cbc06
Source : C:\ProgramData\Docker\volumes\3514e96...\ data

Destination : c:\app\config

Driver : local

RW : True

Type : volume

Name : a342dc516el9fe2b84d7514067d48cl7e5324bbda5£f3e97962blad8£fad4043247
Source : C:\ProgramData\Docker\volumes\a342dc5..._data

Destination : c:\app\logs

Driver : local

RW : True

I've abbreviated the output, but in the source file you can see the full path where the volume data
is stored on the host. I can access the container's files directly from the host, using the source
directory. When I run this command on my Windows machine, I'll see the file created inside the
container volume:

> 1ls C:\ProgramData\Docker\volumes\a342dc5..._data

Directory: C:\ProgramData\Docker\volumes\a342dc5..._data

Mode LastWriteTime Length Name

-a---- 22/06/2017 08:13 28 log-1.txt

Accessing the files on the host is possible this way, but it's awkward to use the nested directory
location with the volume ID. Instead, you can mount a volume from a specific location on the
host when you create a container.

Mounting volumes from host
directories

You use the --vo1ume oOption to explicitly map a directory in a container from a known location
on the host. The target location in the container can be a directory created with the voruue
command, or any directory in the container's filesystem. The source is the location on the host
filesystem.

I'll create a dummy configuration file for my app in a directory on the c drive on my Windows
machine:

PS> mkdir C:\app-config | Out-Null
PS> echo 'VERSION=17.06' > C:\app-config\version.txt

Now I'll run a container which maps a volume from the host, and read the configuration file
which is actually stored on the host:

> docker container run °
--volume C:\app-config:C:\app\config °
dockeronwindows/ch02-volumes °
cat C:\app\config\version.txt
VERSION=17.06

The --vo1ume option specifies the mount in the format (source}: {target}. The source is the host
location, which needs to exist. The target is the container location, which does not need to exist -
but needs to be empty if it does exist.

Volume mounts are different in Windows and Linux containers. In Linux the
target folder does not need to be empty, and Docker will merge the contents from
the source into the target. Docker on Linux also lets you mount a single file
location, but on Windows you can only mount whole directories.

Volume mounts are useful for running stateful applications in containers, like databases. You
can run SQL Server in a container, and have the database files stored in a location on the host -
which could be a RAID array on the server. When you have schema updates, you remove the
old container and start a new container from the updated Docker image. You use the same
volume mount for the new container, so the data is preserved from the old container.

Using volumes for configuration
and state

Application state is an important consideration when you're running applications in containers.
Containers can be long-running, but they are not intended to be permanent. One of the biggest
advantages with containers over traditional compute models is that you can easily replace them,
and the replacement starts in seconds. When you have a new feature to deploy, or a security
vulnerability to patch, you just build an upgraded image, stop the old container, and start a
replacement from the new image.

Volumes let you manage that upgrade process by keeping your data separate from your
application container. I'll demonstrate this with a simple web application that stores the hit count
for a page in a text file - each time you browse to the page, the site increments the count.

The Dockerfile for the image dockeronwindows/ch02-hitcount-website USCS multi-stage bUildS,
compiling the application using the microsort/dotnet image and packaging the final app using
microsoft/aspnetcore as the base:

escape="

FROM microsoft/dotnet:1.1.2-sdk-nanoserver AS builder
WORKDIR C:\src

COPY src .

RUN dotnet restore; dotnet publish

app image

FROM microsoft/aspnetcore:1.1.2-nanoserver
WORKDIR C:\dotnetapp

RUN New-Item -Type Directory -Path .\app-state

CMD ["dotnet", "HitCountWebApp.dll"]
COPY --from=builder C:\src\bin\Debug\netcoreappl.l\publish .

In the Dockerfile I create an empty directory at c:\dotnetapp\app-state Which is where the
application will store the hit count in a text file. I've built the first version of the app into an
image with the v1 tag:

|docker image build --tag dockeronwindows/ch02-hitcount-website:vl .

I'll create a directory on the host to use for the container's state, and run a container that mounts
the application state directory from a directory on the host:

mkdir C:\app-state

docker container run -d -P °
-v C:\app-state:C:\dotnetapp\app-state °
--name appvl
dockeronwindows/ch02-hitcount-website:vl

I can get the IP address of the container from docker container inspect, and then browse to the

site. When I refresh the page a few times I'll see the hit count increasing:

v - HitCountWebApp 'IE = L&/ 2
£] C Y ® 172261923 v [| Qr Search Google =
H
3
B Hit count: 19.
@ This is Version 1
+
© 2017 - HitCountWebApp
o d

Now when I have an upgraded version of the app to deploy, I can package it into a new image
tagged with v2. When the image is ready, I can stop the old container and start a new one, using
the same volume mapping:

PS> docker container stop appvl
appvl

PS> docker container run -d -P °

-v C:\app-state:C:\dotnetapp\app-state °
--name appv2
dockeronwindows/ch02-hitcount-website:v2

£6433a09e9479d76db3cd0bc76£9f817acfc6c52375c5e33dbc1d4c9780feb6d

The volume containing the application state is being reused, so the new version will continue
using the saved state from the old version. I have a new container with a new IP address. When 1
browse to it for the first time, I see the updated UI with an attractive icon, but the hit count is
carried forward from version 1:

VY |- - HitCountWeblpp 'IE a = 2
4 7] 172.26.200.144 v N ||Qr Search Google v
H
i
E .
o Hit count: 20.
"y This is Version 2
© 2017 - HitCountWebApp
£

Application state can have structural changes between versions, which is something you will
need to manage yourself. The Docker image for the open source Git server, GitLab, is a good
example of this - the state is stored in a database on a volume, and when you upgrade to a new
version, the app checks the database and runs upgrade scripts, if needed.

Application configuration is another place to make use of volumes. You can ship your

application with a default configuration set built into the image but with a volume created for
users to override the base configuration with their own values.

You'll see these techniques put to good use in the next chapter.

Packaging a traditional
ASP.NET web app as a Docker
image

Microsoft has made the Windows Server Core base image available on Docker Hub, and that's a
version of Windows Server 2016 which has much of the functionality of the full server edition
but without the UI. As base images go, it's very large - 5 GB compressed on Docker Hub,
compared to 380 MB for Nano Server, and 2 MB for the tiny Alpine Linux image. But it means
you can Dockerize pretty much any existing Windows app, and that's a great way to start
migrating your systems to Docker.

Remember NerdDinner? It was an open source ASP.NET MVC showcase app, originally
written by Scott Hanselman and Scott Guthrie - among others at Microsoft. You can still get the
code at CodePlex, but there hasn't been a change committed since 2013, so it's an ideal
candidate for proving that old ASP.NET apps can be migrated to Docker, and that can be the
first step in modernizing them.

Writing a Dockertile for
NerdDinner

I'll follow the multi-stage build approach for NerdDinner, so the Dockerfile for the
dockeronwindows/ch-02-nerd-dinner iImages starts with a builder stage:

escape="
FROM sixeyed/msbuild:netfx-4.5.2-webdeploy-10.0.14393.1198 AS builder

WORKDIR C:\src\NerdDinner
COPY src\NerdDinner\packages.config .
RUN nuget restore packages.config -PackagesDirectory ..\packages

COPY src C:\src

RUN msbuild .\NerdDinner\NerdDinner.csproj /p:OutputPath=c:\out\NerdDinner °
/p:DeployOnBuild=true °
/p:VSToolsPath=C:\MSBuild.Microsoft.VisualStudio.Web.targets.14.0.0.3\tools\VSToo!

The stage uses sixeyed/msbuila as the base image for compiling the application, which is an
image I maintain on Docker Cloud. That image installs MSBuild, NuGet and the other
dependencies you need for packaging a Visual Studio Web project, without using Visual Studio.
The build stage happens in two parts:

e First, copy the NuGet packages.config file into the image, and then run nuget restore
e Next, copy the rest of the source tree and run msouiid

Separating those parts means Docker will use multiple image layers, the first layer will contain
all the restored NuGet packages and the second layer will contain the compiled web app. This
means I can take advantage of Docker's layer caching. Unless I change my NuGet references,
the packages will be loaded from the cached layer and Docker won't run the restore part, which
is an expensive operation. The MSBuild step will run every time any source files change.

If I had a deployment guide for NerdDinner, before the move to Docker, it would look
something like this:

e Install Windows on a clean server

e Run all Windows Updates

Install IIS

Install NET

Set up ASP.NET

e Copy the web app into the c drive

e Create an application pool in IIS

e Create the website in IIS using the application pool
e Delete the default website

This will be the basis for the second stage of the Dockerfile, but I will be able to simplify all the
steps. I can use microsoft/aspnet as the rrom image, which gives me a clean install of Windows

with IIS and ASP.NET installed. That takes care of the first five steps in one instruction. This is
the remainder of the Dockerfile for dockeronwindows/ch-02-nerd-dinner:

FROM microsoft/aspnet:windowsservercore-10.0.14393.1198
SHELL ["powershell", "-Command", "S$SErrorActionPreference = 'Stop';"]

WORKDIR C:\nerd-dinner

RUN Remove-Website -Name 'Default Web Site'; °
New-Website -Name 'nerd-dinner' -Port 80 -PhysicalPath 'c:\nerd-dinner' -ApplicationPool '

RUN & c:\windows\system32\inetsrv\appcmd.exe unlock config /section:system.webServer/handlers

COPY --from=builder C:\out\NerdDinner\ PublishedWebsites\NerdDinner C:\nerd-dinner

Using the escape directive and srerw instruction lets me use normal Windows file paths without
double backslashes and PowerShell-style backticks to separate commands over many

lines. Removing the default website and creating a new website in IIS is simple with
PowerShell, and the Dockerfile clearly shows me the port the app is using and the path of the
content.

I'm using the built-in .NET 4.5 application pool, which is a simplification from the original
deployment process. In IIS on a VM, you'd normally have a dedicated application pool for each
website in order to isolate processes from each other. But in the containerized app, there will be
only one website running - another website would be in another container, so we already have
isolation, and each container can use the default application pool without worrying about
interference.

The final cory instruction copies the published web application from the builder stage into the
application image. It's the last line in the Dockerfile to take advantage of Docker's caching
again. When I'm working on the app, the source code is the most frequent thing to change. The
Dockerfile is structured so that when I change code and run docker image build the only
instructions that run are MSBuild in the first stage and the copy in the second stage, so the build
is very fast.

This could be all you need for a fully functioning Dockerized ASP.NET website, but in the case
of NerdDinner, there is one more instruction, which proves that you can cope with awkward,
unexpected details when you containerize your application. The NerdDinner app has some
custom configuration settings in the system.webserver section of its web.config file, and by default
that section is locked by IIS. I need to unlock the section, which I do with appcmd in the

second run instruction.

Now I can build the image and can run a legacy ASP.NET app in a Windows container:

docker container run -d -P dockeronwindows/ch02-nerd-dinner

I can get the container's IP address with docker container inspect, and browse to the NerdDinner
homepage:

1} MNerd Dinner Tw— N - »
K C @ © im2zs20043 v 0O a :

Register Login

nert”inner

v
<

|
+
B
®
.

Nerd Dinner. Organizing the world's nerds and helping them eat in packs.

Enter your location or View All
Find a Dinner Upcoming Dinners .

Popular Dinners

ASIA
MNORTH EUROPE
AMERICA

AFRICA

The specified credentials are invalid. You can sign up for a free developer account at
http://www.bingmapsportal.com

b bing ANTARCTICA _ 2500 miles 3000 km

ve Ward . ASP.NET MVIC by Haack and friends, Style by Michael Dorian Bach .
ugh at http/finyurl.comy/aspnetmve .

At this point, the app isn't fully functional - I just have a basic version running. The Bing Maps
object doesn't show a real map because I haven't provided an API key. The API key is
something that will change for every environment (each developer, the test environments, and
production will have different keys). In Docker you manage environment configuration with
environment variables, which I will use for the next iteration of the Dockerfile in Chapter 3,
Developing Dockerized .NET and .NET Core Applications.

If you navigate around this version of NerdDinner and try to register a new user or search for a
dinner, you'll see a yellow screen crash page telling you the database isn't available. In its
original form, NerdDinner uses SQL Server LocalDB as a lightweight database and stores the
database file in the app directory. I could install the LocalDB runtime into the container image,
but that doesn't fit with the Docker philosophy of having one function per container. Instead, I'll
build a separate image for the database so I can run it in its own container.

I'll be iterating on the NerdDinner example in the next chapter, adding environment variables,
running SQL Server as a separate component in its own container, and demonstrating how you
can start modernizing traditional ASP.NET apps by making use of the Docker platform.

Summary

In this chapter, I took a closer look at Docker images and containers. Images are packaged
applications, and containers are instances of an application, run from an image. You can use
containers to do simple fire-and-forget tasks, you can work with them interactively, or have
them running in the background. As you start to use Docker more, you'll find yourself doing all
three.

The Dockerfile is the source to build an image. It's a simple text file with a small number of
instructions to specify a base image, copy files, and run commands. You use the Docker
command-line tool to build an image, which is very easy to add as a step to your CI build. When
a developer pushes code that passes all the tests, the output of the build will be a versioned
Docker image, which you can deploy to any host knowing that it will always run in the same
way.

I looked at a few simple Dockerfiles in this chapter, and finished with a real-world application.
NerdDinner is a legacy ASP.NET MVC app that was built to run on Windows and IIS. Using
multi-stage builds I packaged that legacy app into a Docker image and ran it in a container. This
shows that the new model of compute that Docker offers isn't just for greenfield projects using
.NET Core and Nano Server - you can migrate existing apps to Docker and put yourself in a
good place to start modernizing them.

In the next chapter, I'll use Docker to modernize the architecture of NerdDinner, breaking
features out into separate components and using Docker to plug them all together.

Developing Dockerized .NET
and .NET Core Applications

Docker is a platform for packaging, distributing, and running applications. When you package
your applications as Docker images, they all have the same shapea€”’you can deploy, manage,
secure, and upgrade them all in the same way. All Dockerized applications have the same
requirements to run them: the Docker Engine running on a compatible operating system.
Applications run in isolated environments, so you can host different application platforms and
different platform versions on the same machine with no interference.

In the .NET world, this means you can run multiple workloads on a single Windows machinea
€”they could be ASP.NET websites or Windows Communication FoundationA (WCF)A apps
on .NET console applicationsA or NET Windows Services. You saw in the previous chapter
that you can Dockerize legacy .NET applications without any code change, but Docker has some
simple expectations about how applications running inside containers should behave, so they
can get the full benefit of the platform.

In this chapter, you'll look at how toA build applications so they can take complete advantage of
the Docker platform, including the following:

e The integration points between Docker and your application

e Configuring your application with environment variables

e Monitoring applications with health checks

e Running distributed solutions with components in different containers

This will help you develop .NET and .NET Core applications that behave in the way Docker
expects, so you can manage them fully with Docker.

Building good citizens for
Docker

The Docker platform makes very few demands on applications that want to use it. You're not
restricted to certain languages or frameworks, and you don't need to use special libraries to
communicate from the app to the container and you don't need to structure your application in a
certain way.

To support the widest possible range of applications, Docker uses the console to communicate
between the application and the container runtime. Application logs and error messages are
expected on the console output and error streams. Storage managed by Docker is presented as a
normal disk to the operating system, and Docker's networking stack is transparent. The
application appears to be running on its own machine, connected to other machines by a normal
TCP/IP network.

A good citizen for Docker is an app that makes very few assumptions about the system it's
running on and uses basic mechanisms that all operating systems support: the filesystem,
environment variables, networking, and the console. Most importantly, the application should
only do one thing. As you've seen, when Docker runs a container, it starts the process specified
in the Dockerfile or the command line, and it watches that process. When the process ends, the
container exits, so ideally, you should build your app to have a single process, which ensures
Docker is watching the process that matters.

These are recommendations, though, not requirements. You can start multiple processes in a
bootstrap script when a container runs and Docker will run it happily—but it will only monitor
the last process that started. Your apps can write log entries to local files instead of the console
and Docker will still run them, but you won't see any output if you use Docker to check the
container logs.

In .NET, you can easily meet the recommendations by running a console application, which
provides a simplified integration between the application and the host, and it's one reason why
all NET Core apps - including websites and web APIs—run as console applications. For legacy
NET apps, you won't be able to make them into perfect citizens, but you can extend them to
make good use of the Docker platform.

Hosting Internet Information

Services (IIS) applications in
Docker

Complete .NET Framework apps can be easily packaged into Docker images, but there are some
limitations you need to be aware of. Microsoft provides Nano Server and Windows Server Core
base images on Docker Hub. The complete .NET Framework doesn't run on Nano Server, so to
host your existing .NET apps in Docker, you need to use the Windows Server Core base image.

Running from Windows Server Core means your application images will be around 10 GB in
size, the bulk of which is in the base image. You have a complete Windows Server operating
system, with all the packages available to enable Windows Server features, such as DNS and
DHCP—even though you only want to use it for a single application role. It's perfectly
reasonable to run containers from Windows Server Core, but you need to be aware of the
implications:

e The base image has a large surface area with a lot of software installed, which means it's
likely to have more frequent security and functional patches

e The OS runs a lot of its own processes in addition to your application process, as several
core parts of Windows run as background Windows services

e Windows has its own application platforms, with high-value feature sets for hosting and
management, which do not natively integrate with the Docker approach

You can take an ASP.NET web application and dockerize it in a few hours. It will build into a
large Docker image that takes longer to distribute and start up than an application built on a
lightweight, modern application stack. But you still have a single package with your whole
application deployed, configured, and ready to run. This is a big step in improving quality and
reducing deployment time, and it can be the first part of a program to modernize a legacy
application.

To integrate an ASP.NET app more closely with Docker, you can modify how IIS logs are
written and specify how Docker checks whether the container is healthy—without any changes
to the application code. If changing code is part of your modernization program, then with
minimal changes, you can use the container's environment variables for application
configuration.

Configuring IIS for Docker-
friendly logging

IIS writes log entries to text files, recording HTTP requests and responses. You can configure
exactly what fields are written, but the default installation records useful things, such as the
route of the HTTP request, the response status code, and the time taken for IIS to respond. It
would be good to surface these logs entries to Docker, but IIS manages its own log files,
buffering entries before writing them to the disk and rotating log files to manage the disk space.

Log management is a fundamental part of application platforms, which is why IIS takes care of
it for web apps, but Docker has its own logging system. Docker logging is far more powerful
and pluggable than the text filesystem that IIS uses, but it only reads log entries from the
container's console output stream. You can't have IIS writing logs to the console because it runs
in a background Windows Service with no console attached, so you need a different approach.

There are two options for this. The first is to build an HTTP module that plugs into the IIS
platform with an event handler that receives logs from IIS. This handler can publish all
messages to a queue or a Windows pipe, so you don't change how IIS logs; you just add another
log sink. Then, you'd package your web application together with a console app that listened for
published log entries and relayed them on the console. The console app would be the entry point
when a container starts, so every IIS log entry would get routed to the console for Docker to
read.

The HTTP module approach is robust and scalable, but it adds more complexity than we need
when we're getting started. A simpler option is to configure IIS to write all log entries to a single
text file and in the startup command for the container run a PowerShell script to watch that file
and echo new log entries to the console. When the container is running, all the IIS log entries get
echoed to the console, which surfaces them to Docker.

To set this up in the Docker image, you first need to configure IIS so it writes all log entries
from any site to a single file, and it lets the file grow without rotating it. You can do this with
PowerShell, using the set-webconfigurationproperty cmdlet in the Dockerfile, modifying the
central logging properties at the application host level. I use this cmdlet in the Dockerfile for the
dockeronwindows/chO3—iis—log—watcherin]age:

RUN Set-WebConfigurationProperty -p 'MACHINE/WEBROOT/APPHOST' -fi 'system.applicationHost/log'
Set-WebConfigurationProperty -p 'MACHINE/WEBROOT/APPHOST' -fi 'system.applicationHost/logy
Set-WebConfigurationProperty -p 'MACHINE/WEBROOT/APPHOST' -fi 'system.applicationHost/logy
Set-WebConfigurationProperty -p 'MACHINE/WEBROOT/APPHOST' -fi 'system.applicationHost/logy

This configures IIS to log all entries to a file in c:\iis10g, and to set the maximum file size for
log rotation—Ietting the log file grow to 4 GB. That's plenty of room to play with; remember
containers that are not meant to be long-lived, so we shouldn't have gigabytes of log entries in a
single container. IIS still uses a subdirectory format for the log file, so the actual log file path
will be c:\iislog\w3svc\u extendl.log. Now that I have a known log file location, I can use

PowerShell to echo log entries to the console.

I do that in the cvp instruction, so the final command that Docker runs and monitors is the
PowerShell cmdlet to echo log entries. When new entries are written to the console, they get
picked up by Docker. PowerShell makes it easy to watch the file, but there's a complication

because the file needs to exist before PowerShell can watch it. In the Dockerfile, I use multiple
commands at startup:

CMD Start-Service W3SVC; °

Invoke-WebRequest http://localhost -UseBasicParsing | Out-Null; °
netsh http flush logbuffer | Out-Null; °

Get-Content -path 'c:\iislog\W3SVC\u_extendl.log' -Tail 1 -Wait

There are four parts to this command:

e Start the IIS Windows service (W3SVC)
e Make an HTTP cer request to the localhost, which starts the IIS worker process and
writes the first log entry

e Flush the HTTP log buffer, so the log file gets written to the disk and exists for PowerShell
to watch

e Read the content of the log file in the tail mode, so any new lines written to the file get
shown on the console.

I can run a container from this image in the usual way:

| docker container run -d -P --name log-watcher dockeronwindows/ch03-iis-log-watcher

When I send some traffic to the site by browsing to the container's IP address (or using rnvoke-

webrequest 1N PowerShell), I can see the IIS log entries that are relayed to Docker from the cet-
content cmdlet USil’lg docker container logs.

> docker container logs log-watcher

2017-06-22 10:38:54 W3SVC1 ::1 GET / - 80 - ::1 Mozilla/5.0+ (Windows+NT;+Windows+NT+10.0;+en-{
2017-06-22 10:39:21 W3SVC1l 172.26.207.181 GET / - 80 - 172.26.192.1 Mozilla/5.0+ (Windows+NT+1(
2017-06-22 10:39:21 W3SVCl 172.26.207.181 GET /iisstart.png - 80 - 172.26.192.1 Mozilla/5.0+(V

11S always buffers log entries in the memory before writing them to the disk, so it
micro-batches the writes to improve performance. The flush happens every 60
seconds or when the buffer is 64 KB in size. If you want to force the I1S log in a
container to flush, use the same netsh command I used in the Dockerfile: docker

container exec log-watcher netsh http flush logbuffer. You'll see an ox OMtlet, and
new entries will be there in docker container logs.

I've added configuration to IIS in the image and a new command, which means all 1IS log
entries get echoed to the console. This will work for any application hosted in IIS, so I can echo
HTTP logs for ASP.NET applications and static websites without any changes to the apps or the
site content. Console output is where Docker looks for log entries, so this simple extension
integrates logging from the existing application into the new platform.

Promoting environment
variables

Modern apps increasingly use environment variables for configuration settings because they're
supported by practically every platform, from physical machines to serverless functions. All
platforms use environment variables in the same way, as a store of key-value pairs, so using
environment variables for configuration, you make your app highly portable.

ASP.NET apps already have a rich configuration framework in web.conrig, but with some small
code changes, you can take key settings and move them to environment variables. This lets you
build one Docker image for your app, which you can run in different environments, setting
environment variables in containers to change configuration.

Docker lets you specify environment variables in the Dockerfile and give them initial default
values. The exv instruction sets environment variables, and you can set either one variable or
many variables in each ewv, this example is from the Dockerfile for dockeronwindows/cho3-iis-

environment-variables.

ENV A01_KEY A0l value
ENV A02_KEY="A02 value" °
A03_KEY="A03 value"

Settings added to the Dockerfile with exv become part of the image, so every container you run
from the image will have these values set. When you run a container, you can add new
environment variables or replace the value of existing image variables using the --env or -

e option. You can see how environment variables work with a simple Nano Server container:

> docker container run °
--env ENV_0Ol='Hello' --env ENV_02='World' °
microsoft/nanoserver °
powershell 'Write-Output $env:ENV_01 $env:ENV_02'
Hello
World

With apps hosted in IIS, there's a complication in using environment variables from Docker.
When IS starts, it reads all the environment variables from the system and caches them. When
Docker runs a container with environment variables set, it writes them at the process level, but
that's after IIS has cached the original values, so they don't get updated and IIS applications
won't see the new value. IIS doesn't cache machine-level environment variables in the same
way, though, so we can promote the values set by Docker to machine-level environment
variables, and IIS apps will be able to read them.

Promoting environment variables can be done by copying them from the process level to the
machine level. This PowerShell script does that by looping through all process-level variables
and copying them to machine-level unless the machine-level key already exists:

| foreach (Skey in [System.Environment]::GetEnvironmentVariables ('Process') .Keys) {

if ([System.Environment]::GetEnvironmentVariable (Skey, 'Machine') -eqg $null) {
Svalue = [System.Environment]::GetEnvironmentVariable (Skey, 'Process')
[System.Environment] ::SetEnvironmentVariable (key, Svalue, 'Machine')

}

I can use this script block to the cvp instruction in my Dockerfile, but if I add that to the block to
echo the log, the command runs to 10 lines, and it gets difficult to manage inside the Dockerfile.
Instead, ['ve put the environment commands and the log echo commands into one script file and
used that as enTrypoINT:

COPY bootstrap.psl C:\
ENTRYPOINT ["powershell", "C:\bootstrap.psl"]

The entrypornt and cuvo instructions both tell Docker how to run your application.
You can combine them to specify a default entry point and allow users of your
image to override the command when they start a container.

The application in the image is a simple ASP.NET Web Forms page that lists out environment
variables. I can run this in a container in the usual way:

|docker container run -d -P --name iis-env dockeronwindows/ch0O3-iis-environment-variables

When the container starts, I can get the IP address and open a browser on the ASP.NET Web
Forms page:

$ip = docker inspect --format '{{ .NetworkSettings.Networks.nat.IPAddress }}' iis-env
start "http://$ip"

I see output like this, with the default environment variable values from the Docker image:

¥V | @ ASPNETinline e B
4 i C 1@ ® 1722620033 v [||Qr search Google v
D - - .

) Machine-level Environment Variables

E A01 KEY: A01 value

o) A02 KEY: A02 value

A03 KEY: A03 value

ALLUSERSPROFILE: C:\ProgramData

APPDATA: C:\Users\ContainerAdministrator'AppData\Roaming
CommonProgramFiles: C:\Program Files\Common Files
CommonProgramFiles(x86): C:\Program Files (x86)\Common Files
CommonProgramWe432: C:\Program Files\Common Files

. COMPUTERNAME: 6E7CC4500D4A

You can run the same image with different environment variables, overriding one of the image
variables and adding a new variable:

docker run -d -P --name iis-env2 °

-e AOl_KEY=‘NEW VALUE!' °

-e BOl_KEY='NEW KEY!' °
dockeronwindows/ch03-iis-environment-variables

Browse the container's IP address again, and you'll see the new values written out by the
ASP.NET page:

v
<

A
¥
5|
®©

+

i

& ASP.NET inline

4

C @ ® 1722519183 v [| Q searchG

Machine-level Environment Variables

A01 KEY: NEW VALUE!

A02 KEY: A02 value

A03 KEY: A03 value

ALLUSERSPROFILE: C:\ProgramData

APPDATA: C:\Users'\ContainerAdministrator\AppData'Roaming
B01 KEY: NEW KEY!

CommonProgramFiles: C:\Program Files\Common Files
CommonProgramFiles(x86): C:\Program Files (x86)\Common Files
CommonProgramWe432: C:\Program Files'\Common Files

S E TR TIIWWR R T 4 R WS AT T s i mTa

El

4

-

I've added support for Docker's environment variable management into an IIS image now, so
ASP.NET apps can use the system.Environment class to read configuration settings. I've retained
the IIS log echo in this new image, so this is a good Docker citizen now—you can configure the
application and check the logs through Docker.

One last improvement I can make is to tell Docker how to monitor the application running inside
the container, so Docker can determine whether the application is healthy and take action if it
becomes unhealthy.

Building Docker images
that monitor applications

When I add these new features to the NerdDinner Dockerfile and run a container from the
image, I'll be able to see the web request and response logs with the docker container

10gs command, which relays all the IIS log entries captured by Docker, and I can use an
environment variable to specify the database user credentials. This makes running and
administering the legacy ASP.NET application consistent with how I use any other
containerized application running on Docker. But I can also configure Docker to monitor the
container for me, so I can manage any unexpected failures.

Docker provides the ability to monitor the application health rather than just checking whether
the application process is still running, with the searracueck instruction in the Dockerfile. With
nearracHECK, you tell Docker how to test whether the application is still healthy. The syntax is
similar to the run and cup instructions—you pass in a shell command to execute, which should
have a return code of o if the application is healthy and 1 if it is not. Docker runs the health
check periodically when the container is running and emits status events if the health of a
container changes.

The simple definition of ealthy for a web application is the ability to respond normally to
HTTP requests. Which request you make depends on how thorough you want the check to be
—ideally, the request should execute key parts of your application, so you're confident it is all
working correctly. But equally, the request should complete quickly and have a minimal
compute impact, so processing lots of health checks doesn't affect consumer requests.

A simple health check for any web application just uses the rnvoke-webrequest PowerShell cmdlet
to fetch the home page and check whether the HTTP response code is 200, which means the
response was successfully received:

try {
Sresponse = iwr http://localhost/ -UseBasicParsing
if ($Sresponse.StatusCode -eq 200) {
return 0
} else {
return 1
}

catch { return 1 }

For a more complex web application, it can be useful to add a new endpoint specifically for
healthchecks. You can add a diagnostic endpoint to APIs and websites that exercise some of the
core logic for your app and returns a Boolean result to indicate whether the app is healthy. You
can call that endpoint in the Docker health check and check the response content as well as the
status code in order to give you more confidence that the app 1s working correctly.

The searracarck instruction in the Dockerfile is very simple. You can configure the interval
between checks and the number of checks that can fail before the container is considered

unhealthy, but to use the default values, just specify the test script in aeavracueck cvp . This
example from the Dockerfile for the dockeronwindows/ch03-iis-healthcheck image uses PowerShell
to make a cer request to the diagnostics URL and check the response status code:

HEALTHCHECK --interval=5s °
CMD powershell -command °
try { °
Sresponse = iwr http://localhost/diagnostics -UseBasicParsing; °
if ($response.StatusCode -eq 200) { return 0} °
else {return 1}; °~
} catch { return 1 }

I've specified an interval for the health check, so Docker will execute this command inside the
container every five seconds (the default interval is 30 seconds if you don't specify one). The
health check is very cheap to run, as it's local to the container, so you can have a short interval
like this and catch any problems quickly.

The application in this Docker image is an ASP.NET Web API app, which has a diagnostics
endpoint, and a controller you can use to toggle the health of the application. The

Dockerfile contains a health check, and you can see how Docker uses it when we run a container
from that image:

|docker container run -d -P --name healthcheck dockeronwindows/ch03-iis-healthcheck

If you run docker container 1s after starting that container, you'll see a slightly different output in
the status field, similar to up 3 seconds (health: starting). Docker runs the health check every
five seconds for this container, so at this point, the check hasn't been run. Wait a little longer and
then the status will be something like up 46 seconds (healthy).

This container will stay healthy until I make a call to the controller to toggle the health. I can do
that with a rost request that sets the API to return HTTP status so0 for all subsequent requests:

$ip = docker inspect -f '{{ .NetworkSettings.Networks.nat.IPAddress }}' healthcheck
iwr "http://$ip/toggle/unhealthy" -Method Post

Now the application will respond with a 500 response to all the cer requests the Docker platform
makes, which will fail the health check. Docker keeps trying the health check, and if there

are three failures in a row, then it considers the container to be unhealthy. At this point, the
status field in the container list Shows vp 3 minutes (unnealtny). Docker doesn't take automatic
action on single containers that are unhealthy, so this one is left running and you can still access
the API.

Health checks are important when you start running containers in a clustered Docker
environment (which I cover in Chapter 7, Orchestrating Distributed Solutions with Docker
Swarm), and it's a good practice to include them in all Dockerfiles. Being able to package an
application that the platform can test for health is a very useful feature; this means that wherever
you run the app, we can keep a check on it.

Now you have all the tools to containerize an ASP.NET application and make it a good Docker
citizen, integrating with the platform so it can be monitored and administered in the same way as
other containers. A full NET Framework application running on Windows Server Core can't
meet the expectation of running a single process because of the all the necessary background
Windows services. But we should still build container images so they run only one logical

function and separate any dependencies.

Separating dependencies

In the last chapter, I dockerized the legacy NerdDinner app and got it running but without a
database. The original application expected to use SQL Server LocalDB on the same host where
the app is running. LocalDB is an MSI-based installation, and I can add it to the Docker image,
just by downloading the MSI and installing it with ruon commands in the Dockerfile. But this
means that when I start a container from the image, it has two functions—hosting a web
application and running a database.

Having two functions in one container is not a good idea; what would happen if
you wanted to upgrade your website without changing the database? Or, what if
you needed to do some maintenance on the database, which didn't impact the
website? What if you need to scale out the website? By coupling the two functions
together, you've added a deployment risk, test effort, and administration
complexity and reduced your operational flexibility.

Instead, I'm going to package the database in a new Docker image and run it in a separate
container—using Docker's network layer to access the database container from the website
container. SQL Server is a licensed product, but the free variant, SQL Server Express, is
available from Microsoft as an image on the Docker Hub and comes with a production license. I
can use that as the base for my image, building on it to prepare a pre-configured database
instance, with the schema deployed and ready to connect to the web application.

Creating Docker images for
SQL Server databases

Setting up a database image is just like any other Docker image; I'll be encapsulating the setup
tasks in a Dockerfile. Broadly, for a new database, the steps will be as follows:

Install SQL Server

Configure SQL server

Run DDL scripts to create the database schema
Run DML scripts to populate static data

This fits in very well with a typical build process using Visual Studio's SQL database project
type and the Dacpac deployment model. The output from publishing the project is a .dacpac file
that contains the database schema and any custom SQL scripts to run. Using the SqlPackage
tool, you can deploy the Dacpac file to a SQL Server instance—and it will either create a new
database if it doesn't exist, or it will upgrade an existing database so the schema matches the
Dacpac.

This approach is perfect for a custom SQL Server Docker image. I can use multi-stage builds
again for the Dockerfile, so you don't need Visual Studio installed to package the database from
the source code. This is the first stage of the Dockerfile for the dockeronwindows/ch03-nerd-dinner-
do 1mage:

escape="
FROM sixeyed/msbuild:netfx-4.5.2-ssdt AS builder

WORKDIR C:\src\NerdDinner.Database
COPY src\NerdDinner.Database .

RUN msbuild NerdDinner.Database.sglproj °
/p:SQLDBExtensionsRefPath="C:\Microsoft.Data.Tools.Msbuild.10.0.61026\1ib\net40" °
/p:SglServerRedistPath="C:\Microsoft.Data.Tools.Msbuild.10.0.61026\1ib\net40"

The vuilder stage just copies in the SQL project source and runs MSBuild to produce the
Dacpac. I'm using a variant of the public sixeyed/nsbui1a image on Docker Cloud, which
includes the NuGet packages you need to compile SQL projects.

Here's the second stage of the Dockerfile, which packages the NerdDinner Dacpac to run in SQL
Server Express:
FROM microsoft/mssgl-server-windows-express
ENV ACCEPT_ EULA="Y" °
DATA PATH="C:\data" °

sa_password="N3rdD!Nne720"6"

VOLUME ${DATA PATH}
WORKDIR C:\init

COPY Initialize-Database.psl .
CMD ./Initialize-Database.psl -sa password Senv:sa password -data path Senv:data path -Verbose

COPY --from=builder C:\src\NerdDinner.Database\bin\Debug\NerdDinner.Database.dacpac .

There are no new instructions here, beyond what you've seen so far. You'll see that there are no
ron commands, so I'm not actually setting up the database schema when I build the image; I'm
just packaging the Dacpac file into the image so I have everything I need to create or upgrade
the database when the container starts.

In cup, I run a PowerShell script that sets up the database. It's usually not a good idea to hide all
the startup details in a separate script because that means you can't see what's going to happen
when the container runs from the Dockerfile alone. But in this case, the startup procedure has a
few functions, and they would make for a huge Dockerfile if we put them all in there.

The base SQL Server Express image defines environment variables called acceer rura, so the
user can accept the license agreement and sa password to set the administrator password. I extend
this image and set default values for the variables. I'll use the variables in the same way in order
to allow users to specify an administrator password when they run the container. The rest of the
startup script deals with the problem of storing the database state in a Docker volume.

Managing database files for
SQL Server containers

A database container is like any other Docker container, but with a focus on statefulness. You'll
want to ensure your database files are stored outside of the container, so you can replace the
database container without losing any data. You can easily do that with volumes, as we saw in
the last chapter, but there is a catch.

If you build a custom SQL Server image with a deployed database, your database files will be
inside the image in a known location. You can run a container from that image without
mounting a volume and it will just work, but the data will be stored in the container's writable
layer. If you replace the container, when you have a database upgrade to perform—then you'll
lose all your data.

Instead, you can run the container with a volume mounted from the host, mapping the expected
SQL Server data directory from a host directory so your files live outside of the container in a
known location on the host. This way, you can ensure your data files are stored in a RAID array
on your server. But that means you can't deploy the database in the Dockerfile because the data
directory will have data files from the image and you can't mount a directory that isn't empty.

The SQL Server images from Microsoft deal with this by letting you attach database and log
files when it runs, so it works on the basis that you already have your database files on the host.
In this case, you can use the image directly, mount your data folder, and run a SQL Server
container with arguments telling it which database(s) to attach. This is a very limited approach,
though—it means you need to create the database on a different SQL Server instance first and
then attach it when you run the container. This doesn't fit with an automated release process.

For my custom image, I want to do something different. The image contains the Dacpac, so it
has everything it needs to deploy the database. When the container starts, I want it to check the
data directory, and if it's empty, then I create a new database by deploying the Dacpac. If the
database files already exist when the container starts, then attach the database files first and
upgrade the database using the Dacpac.

This approach means you can use the same image to run a fresh database container for a new
environment or upgrade an existing database container without losing any of its data. And this
works just as well whether you mount the database directory from the host or not, so you can let
the user choose how to manage the container storage, and my image supports many different
scenarios.

The logic to do that is all in the tnitialize-patabase.ps1 PowerShell script, which the Dockerfile
sets as the entry point for containers. In the Dockerfile, I pass the data directory to the
PowerShell script in the data patnh variable, and the script checks whether the NerdDinner data
(mar) and log (1ar) files are in that directory:

SmdfPath "$data path\NerdDinner Primary.mdf"
$ldfPath = "Sdata path\NerdDinner Primary.ldf"

attach data files if they exist:
if ((Test-Path $mdfPath) -eq S$true) {
$sglcmd = "IF DB _ID('NerdDinner') IS NULL BEGIN CREATE DATABASE NerdDinner ON (FILENAME = N'¢
if ((Test-Path $1dfPath) -eqg $true) {
$sglcmd = "$sqglcmd, (FILENAME = N'$1ldfPath')"

}

$sglcmd = "$sglcmd FOR ATTACH; END"

Invoke-Sglcmd -Query $sglcmd -ServerInstance ".\SQLEXPRESS"

}

This script looks complex, but actually, it's just building a creats parapase. . .For
arracu Statement, filling in the paths of the MDF data file and LDF log file if they
exist. Then, it invokes the SQL statement, which attaches the database files from
the external volume as a new database in the SQL Server container.

This covers the scenario where a user runs a container with a volume mount, where the host
directory has data files from a previous container. These files are attached, and the database is
available in the new container. Next, the script uses the SqlPackage tool to generate a
deployment script from the Dacpac. I know the SqlPackage tool exists and I know the path to it
because it's built into the SQL Server Express base image:

$SqlPackagePath = 'C:\Program Files (x86)\Microsoft SQL Server\130\DAC\bin\SglPackage.exe'
& $SglPackagePath °

/sf:NerdDinner.Database.dacpac

/a:Script /op:deploy.sqgl /p:CommentOutSetVarDeclarations=true °

/tsn:.\SQLEXPRESS /tdn:NerdDinner /tu:sa /tp:S$sa password

If the database directory was empty when the container started, there's no verdapinner database on
the container, and SqlPackage will generate a script with a set of creare statements to deploy the
new database. If the database directory did contain files, then the existing database would have
been attached. In that case, SqlPackage would generate a script with a set of avrer and create
statements to bring the database in line with the Dacpac.

The dep1oy.sq1 script generated in this step will create the new schema or apply changes to the
old schema to upgrade it. The final database schema will be the same in both cases.

Lastly, the PowerShell script executes the SQL script, passing in variables for the database
name, file prefixes, and data paths:

$SqlCmdvVars = "DatabaseName=NerdDinner", "DefaultFilePrefix=NerdDinner", "DefaultDataPath=$dat

Invoke-Sqlcmd -InputFile deploy.sql -Variable $SqglCmdVars -Verbose

After the SQL script runs, the database exists in the container with the schema modelled in the
Dacpac, which was built from the SQL project in the builder stage of the Dockerfile. The
database files are in the expected location with the expected names, so if this container is
replaced with another one from the same image, the new container will find the existing
database and attach it.

Running databases in containers

Now I have an image that can work for new deployments and upgrades. The image can be used
by developers who might run it without mounting a volume while they're working on a feature,
so they can start with a fresh database every time they run a container. And the same image can
be used in environments where the existing database needs to be preserved by running the
container with a volume that contains the database files.

This is how you run the NerdDinner database in Docker, using the default administrator
password, using a host directory for the database files, and naming the container so I can access
it from other containers:

mkdir -p C:\databases\nd

docker container run -d -p 1433:1433 °
--name nerd-dinner-db °
-v C:\databases\nd:C:\data °
dockeronwindows/ch03-nerd-dinner-db

The first time you run that container, the Dacpac will run to create the database, saving the data
and log files in the mounted directory on the host. You can check whether the files exist on your
host with 1s, and the output from docker container 10gs shows the generated SQL script running
and creating resources:

> docker container logs nerd-dinner-db

VERBOSE: Starting SQL Server

VERBOSE: Changing SA login credentials

VERBOSE: No data files - will create new database

Generating publish script for database 'NerdDinner' on server '.\SQLEXPRESS'.
Successfully generated script to file C:\init\deploy.sql.

VERBOSE: Changed database context to 'master'.

VERBOSE: Creating NerdDinner...

VERBOSE: Changed database context to 'NerdDinner'.

VERBOSE: Creating [dbo]. [Dinners]...

The run command also publishes the standard SQL Server port 1433, so you can connect to the
database running inside the container remotely—through a .NET connection or with SQL
Server Management Studio (SSMS). If you already have a SQL Server instance running on
your host, you can map the container's port 1433 to a different port on the host.

To connect to the SQL Server instance running in the container with SSMS, Visual Studio, or
Visual Studio Code, just use the container's IP address, select SQL Server Authentication, and
use the sa credentials:

Add Connection 7 *

Enter information to connect to the selected data source or click "Change” to choose a different
data source and/or provider.

Data source:

|Microsuf‘t SOL Server (5qlClient)

Change...

Server name:

|1?z.31 12791 “ Refresh

Log on to the server

Authentication: | SOL Server Authentication w

User name: |sa |

Password: |.............. |

Save my password
Connect to a database

(®) Select or enter a database name:
| [~
O;master

model
msdb

tempdb

Advanced...

Test Connection Cancel

Then, you can work with the dockerized database just like any other SQL Server database,
querying tables and inserting data. From the Docker host machine, you use the container's IP
address as the database server name, but by publishing the port, you can access the containerized
database outside of the host, using the host machine name as the server name. Docker will route
any traffic on port 1433 into SQL Server running on the container.

Connecting to database
containers from application
containers

Docker has a DNS server built into the platform, which is used by containers for service
discovery. I started the NerdDinner database container with an explicit name, and any other
containers running in the same Docker network can access that container by its name—in
exactly the same way as a web server would access a remote database server by its DNS
hostname:

2 \
I 1
! 1
! |
1 i 3 \
N —
I 1
: | :
I I
I 1
! ‘ nerd-dinner-web ‘ ‘ nerd-dinner-db ‘ :
| :
____________________ R
| Docker Network |

This makes application configuration much simpler than a traditional distributed solution. Every
environment will look the same—in dev, QA, and production, the web container will always
connect to a database using the hostname nerd-dinner-do, which is actually running inside a
container. The container could be on the same Docker host or a separate machine in a swarm
cluster, and that's transparent to the application.

Service discovery in Docker isn't for containers only. A container can access
another host on the network using its hostname. You could run your web
application in a container but still have it connected to SQL Server running on a
physical machine rather than using a database container.

One piece of configuration could be different for each environment, and that's the SQL Server
login credentials. In the NerdDinner database image, I use an environment variable with a
default value to set the administrator password, and I use a similar approach in the web
application container. The connection string for the database is in the web.conrig file, with the
expected hostname and user ID, but with a placeholder for the password:

|Data Source=nerd-dinner-db,1433;Initial Catalog=NerdDinner;User Id=sa;Password={SA PASSWORD}

In the NerdDinner application image, I can add an environment variable for the password and
take a similar approach to the database image—do some preprocessing in the entry point that
Docker runs to start the container in order to set up the application. The web.contig file is in a

known place on the image, so the startup script just needs to update the connection strings. This
can be done easily with PowerShell:

SconnectionString="Data Source=nerd-dinner-db,1433;Initial Catalog=NerdDinner;User Id=sa;Passv

$file = 'C:\nerd-dinner\Web.config'

[xml] $config = Get-Content $file;

SdblNode = $Sconfig.configuration.connectionStrings.add | where {$.name -eq 'DefaultConnectior
$dblNode.connectionString = $connectionString

Sconfig.Save ($file)

This is a simplified approach to security credentials, which I'm using to show
how we can make our application more Docker-friendly without changing the
code. Environment variables are not the best approach to managing secrets,
though, and I'll look at this again in Chapter 9, Understanding the Security Risks
and Benefits of Docker, when I cover security in Docker.

I've added this to a vootstrap.ps1 script file, which also has the logic from this chapter to make
NerdDinner a better Docker citizen—promoting environment variables and echoing the IIS
logs. I can use this script as the startup command in the Dockerfile and add a nearracaeck
instruction so Docker monitors the web app for me.

The Dockerfile for dockeronwindows/cho3-nerd-dinner-web has one other important instruction,
which is currently needed for Windows containers to work with Docker's service discovery:

RUN Set-ItemProperty -Path 'HKLM:\SYSTEM\CurrentControlSet\Services\Dnscache\Parameters' °
-Name ServerPriorityTimeLimit -Value 0 -Type DWord

This command writes a registry entry that effectively turns off the Windows DNS cache.
Windows caches DNS entries heavily, and this means it doesn't return to Docker frequently
enough to get updated information. If a container is replaced, it will have a new IP address, and
so we want containers to always use the DNS server in Docker to get the latest information and
not cache any results. That's accomplished with this line.

So far in this chapter, I still haven't made any functional changes to the NerdDinner code base,
only altering the database connection string in web.config to use the connection details for the
SQL Server database container. When I run the web application container now, it will be able to
connect to the database container by name and use the SQL Server Express database running in
Docker:

|docker container run -d -P dockeronwindows/ch03-nerd-dinner-web

You can explicitly specify the Docker network a container should join when it's
created, but on Windows, all containers default to joining the system created
the nat network. Because of the database container and web container on the nat
network, they can reach each other by the container name.

When the container starts up, I can now open the website using the container's IP address, click
on the Register link, and create an account:

Y 1] Register] = | X

< L] c ‘Q‘ ® Not Secure 172.26.200.180/Account/Register v 0| QrsearchG gle v
Register Login
3 g 9
E]
+
-
Register. Create a new account.
User name
elton
Password
............
Confirm password
Register
Code by Hanselman, Guthrie, Galleway, Mourfield , Petersen and Arnott . JavaScript by Dave Ward . ASP.NET MWC by Haack and friends. Style by Michael Dorian Bach .
Source Code at hitpe//nerddinner.codeplex.com . Free Sample Book Chapter and code walkthrough at httpe/tinyurl.com/aspnetmve .
Version: 1.0
% -

The register page queries the ASP.NET membership database, running in the SQL Server
container, so if the page is functioning, then the web application has a working connection to the
database. I can verify this in SSMS, querying the user table and seeing the new user row:

5QLQueryl.sgl™ # X
B - Ll ,!EI !5 !j MNerdDinner
I select from UserProfile

00% -

|Eﬂ// T H Results_._..-l"" Message
Userld UserName

I've now separated the LocalDB database from the web application, and each component is
running in a lightweight Docker container. On my development laptop, each container uses less
than 1% of the host CPU at idle, with the database using 600 MB of memory and the web server
under 300 MB. Containers are light on resources so there's no penalty in splitting functional
units into different containers and then you can scale, deploy, and upgrade these components
individually.

Breaking up monolithic
applications

Traditional .NET web applications that rely on a SQL Server database can be migrated to
Docker with minimal effort and without having to rewrite any application code. At this stage in
my NerdDinner migration, I have an application Docker image and a database Docker image
that I can reliably and repeatably deploy and maintain. I also have some beneficial side-effects.

Encapsulating the database definition in a Visual Studio project may be a new departure, but it
adds quality assurance to database scripts and brings the schema into the code base, so it can be
source-controlled and managed alongside the rest of the system. Dacpacs, PowerShell scripts,
and Dockerfiles provide a new common ground for different functions of IT. Development,
operations, and database administration teams can work together on the same artifacts, using the
same language.

Docker is an enabler for DevOps transitions, but whether or not DevOps is on your road map,
Docker provides the foundations for fast, reliable releases. To take the most advantage of that,
you need to look at breaking down monolithic apps into smaller pieces, so you can release high-
value components frequently without having to do a regression test on the whole of a large
application.

Extracting core components from an existing application lets you bring modern, lightweight
technologies into your system without having to do a large, complex rewrite. This is a
microservices style of architecture applied to an existing solution, where you already understand
the areas that are worth extracting into their own services.

Extracting high-value
components from monoliths

The Docker platform offers a huge opportunity to modernize legacy applications, allowing you
to take features out of monoliths and run them in separate containers. If you can isolate the logic
in a feature, that's also an opportunity migrate it to .NET Core, which lets you package it into a
much smaller .NET Core image.

Microsoft's road map for .NET Core will see it adopt more and more functionality of the full
NET Framework, but porting parts of a legacy .NET application to .NET Core could still be a
large undertaking. But you don't need to take that step. The value in breaking down the monolith
is having features that can be developed, deployed, and maintained independently—if the
components have full NET Framework, you still get those benefits.

The advantage of a legacy app is that you understand the feature set. You can identify the high-
value functionality in your system and start by extracting those features into their own
components. Good candidates would be features that offer value to the business if they change
frequently, so new feature requests can be rapidly built and deployed without modifying and
testing the whole application.

Equally, good candidates are features that offer value to IT if they stay the same—complex
components with a lot of dependencies that the business doesn't change often. Extracting such a
feature into a separate component means you can deploy upgrades to the main application
without having to test the complex component because it remains unchanged. Breaking up a
monolith like this gives you a set of components that each have their own delivery cadence.

In NerdDinner, there are some good candidates to break out into their own services. In the rest
of this chapter, I'll focus on one of them, the home page. The home page is the feature that
renders the HTML for the first page of the application. A process to deploy changes to the home
page quickly and safely in production will let the business experiment with a new look and feel,
evaluate the impact of the new version, and decide whether to continue with it.

The current application is distributed among two containers. For the part of this chapter, I'll
break the home page out into its own component, so it will run in three containers:

I Public entrypoint

i
! |
1

i \ !
! I
I : = -

i | nerd-dinner-homepage | | nerd-dinner-web | nerd-dinner-db j
!]
!]

e s ’_ _________________________________ tl

| Docker Network |

I won't change the routing for the application; users will still come to the NerdDinner
application first, and the application container will call the home page service container to get
the content to show. This way, I don't need to expose the new container publicly. There is only
one technical requirement for the change—the main application needs to be able to
communicate with the new service component.

You're free to choose how the applications in containers communicate—Docker networking
gives you full protocol support for TCP/IP and UDP. You could make the whole process
asynchronous, running a message queue in another container, with message handlers listening in
other containers—but I'll start with something simpler in this chapter.

Hosting a Ul component in an
ASP.NET Core application

ASP.NET Core is a modern application stack that delivers the best of ASP.NET MVC and web
API in a slim and performant runtime. ASP.NET Core websites run as console applications, they
write logs to the console output stream, and they can use environment variables for
configuration. The architecture makes them good Docker citizens out of the box.

The easiest way to extract the NerdDinner home page into a new service is to write it as an
ASP.NET Core website with a single page and relay the new application's output from the
existing application. Here's my stylish, modern redesign of the home page running in ASP.NET
Core on a local machine:

|- Nerd Dinner 0 - i o
K C Q ® localhost:5000 * [||Qr search Google v

O Al <€

+ @ @ |e

Nerd Dinner

Organizing the world's nerds and helping them eat in packs.

Find Dinner =

To package the home page application as a Docker image, I'm using the same multi-stage build
approach I've used for the main application and the database images. In Chapter 10, Powering a
Continuous Deployment Pipeline with Docker, you'll see how to use Docker to power a CI/CD
build pipeline and tie the whole automated deployment process together.

The Dockerfile for the dockeronwindows/ch03-nerd-dinner-homepage image uses the same pattern I
have for the full ASP.NET application, separating the package restore and the compilation steps:

escape="
FROM microsoft/dotnet:1.1.2-sdk-nanoserver AS builder

WORKDIR C:\src\NerdDinnerHomepage
COPY src\NerdDinnerHomepage\NerdDinnerHomepage.csproj .

RUN dotnet restore

COPY src\NerdDinnerHomepage .
RUN dotnet publish

The final stage of the Dockerfile provides a default value for the nerp prwner urL environment
variable. The application uses it as the target for the link on the home page. The rest of the
Dockerfile instructions just copy in the published application and set up the entry point:

FROM microsoft/aspnetcore:1.1.2-nanoserver

ENV NERD_DINNER_URL="/home/find"
CMD ["dotnet", "NerdDinnerHomepage.dll"]

WORKDIR C:\dotnetapp
COPY —--from=builder C:\src\NerdDinnerHomepage\bin\Debug\netcoreappl.l\publish .

I can run the home page component in a separate container, but it's not connected to the main
NerdDinner app yet. [need to make a code change to the original app in order to integrate the
new home page service.

Connecting to application
containers from other
application containers

Calling the new home page service from the main application container is fundamentally the
same as connecting to the database—I will run the home page container with a known name,
and I can access the service in other containers using its name and Docker's built-in service
discovery.

A simple change to the somecontroiier class in the main NerdDinner application will relay the
response from the new home page service instead of rendering the page from the main
application:

static HomeController ()
{
var homepageUrl = Environment.GetEnvironmentVariable ("HOMEPAGE URL", EnvironmentVariableT:
var request = WebRequest.Create (homepageUrl) ;
using (var response = request.GetResponse())
using (var responseStream = new StreamReader (response.GetResponseStream()))
{
_NewHomePageHtml = responseStream.ReadToEnd() ;
}
}

public string Index()
{

return 7NewHomePagthml;

}

In the new code, I get the URL for the home page service from an environment variable. Just as
with the database connection, I can set a default value for that in the Dockerfile. This would be a
bad practice in a distributed application where we can't guarantee where the components are
running—but in a dockerized application, I can do it safely because I will control the names of
the containers, so I can be sure the service names are correct when I deploy them.

I've tagged this updated image as dockeronwindows/ch03-nerd-dinner-web:v2. T0 start the whole
solution now, I need to run three containers:

docker container run -d -p 1433:1433 --name nerd-dinner-db °
-v C:\databases\nd:C:\data dockeronwindows/ch03-nerd-dinner-db

docker container run -d -P --name nerd-dinner-homepage dockeronwindows/chO3-nerd-dinner-homeg
docker container run -d -P dockeronwindows/ch03-nerd-dinner-web:v2

When the containers are running, I go to the NerdDinner container, and I see the home page
from the new component:

v 1§ Merd Dinner o — O '8
{ > W C @ ® 17226195145 v 0 ||Qr sesrch Gac -
H
+ Nerd Dinner
- Organizing the world's nerds and helping them eat in packs.
®
Find Dinner
+

2

The Find Dinner link takes me back to the original web app, and now I can iterate over the home
page and release a new Ul just by replacing that container—without releasing or testing the rest
of the app.

What happened to the new UI? In this simple example, the integrated home page
doesn't have the styling of the new ASP.NET Core version because the main

0 application only reads the HTML for the page, not the CSS files or other assets. A
better approach would be to run a proxy in a container and use that as the entry
point to other containers, so each container serves all its assets.

Now that I have my solution split across three containers, I've dramatically improved flexibility.
During build time, I can focus on features that give the highest value without spending effort to
test components that haven't changed. At deployment time, I can release quickly and
confidently, knowing that the new image we push to production will be exactly what was tested.
And at runtime, I can scale components independently according to their requirements.

I do have a new nonfunctional requirement—which is to ensure that all the containers have the
expected names, are started in the correct order, and are in the same Docker network, so the
solution as a whole works correctly. Docker has support for this, which I'll show you in Chapter 6,
Organizing Distributed Solutions with Docker Compose, which 1s focused on organizing
distributed systems with Docker Compose.

Summary

In this chapter, we covered three main topics:

e Containerizing legacy .NET Framework applications so they are good Docker citizens and
integrate with the platform for configuration, logging, and monitoring

¢ Containerizing database workloads with SQL Server Express and the Dacpac deployment
model, building a versioned Docker image that can run as a new database or upgrade an
existing database

e Extracting functionality from monolithic apps into separate containers, using ASP.NET
Core and Windows Nano Server to package a fast, lightweight service that the main
application consumes

You've learned how to use more images from Microsoft on Docker Hub and how to use
Windows Server Core for full NET applications, SQL Server Express for databases, and the
Nano Server flavors of the NET Core image.

In later chapters, I'll return to NerdDinner and continue to modernize it by extracting features
into dedicated services. Before that, in the next chapter, I'll look more closely at Docker Hub
and other registries to store images.

Pushing and Pulling Images
from Docker Registries

Shipping applications is an integral part of the Docker platform. The Docker service can
download images from a central location to run containers from them, and also upload images
that were built locally to a central location. These shared image stores are called registries, and
in this chapter I'll look more closely at how image registries work and the type of registries that
are available to you.

The primary image registry is Docker Hub, which is a free online service and is the default
location for the Docker service to work with images. Docker Hub is a great place for the
community to share images built to package open source software that is free to redistribute.
Docker Hub has been hugely successful. At the time of writing this book, there are over 600,000
images available on the Hub, with over 12 billion downloads between them.

A public registry may not be suitable for your own applications. Docker Cloud is an alternative
which offers a commercial plan to host private images (in a similar way that GitHub lets you
host public and private source code repositories), and there are other commercial registries. You
can also run your own registry server in your environment, using an open-source registry
implementation which is freely available.

In this chapter, I'll show you how to use those registries, and I'll cover the finer details of
tagging images - which is how you can version your Docker images, and work with images from
different registries.

Understanding registries and
repositories

You download an image from a registry using the docker image pu11 command. When you run
the command, the Docker service connects to the registry, authenticates - if it needs to - and
pulls the image down. The pull process downloads all the image layers and stores them in the
local image cache on the machine. Containers can only be run from images that are available in
the local image cache, so unless they're built locally, they need to be pulled first.

One of the earliest commands you run when you get started with Docker on Windows is
something simple, like this example from Chapter 2, Packaging and Running Applications as
Docker Containers SSR:

> docker container run dockeronwindows/chO2-powershell-env

Name Value

ALLUSERSPROFILE C:\ProgramData
APPDATA C:\Users\ContainerAdministrator\AppData\Roaming

This will work even if you don't have the image in your local cache because Docker can pull it
from the default registry - Docker Cloud, in this case. If you try to run a container from an
image that you don't have stored locally, Docker will automatically pull it before creating the
container.

In this example, I haven't given Docker much information to go on - just the image name
dockeronwindows/ch02-powershell-env. That detail is enough for Docker to find the right image in
the registry, because Docker fills in some of the missing details with default values. The name of
the repository 1S dockeronwindows/ch02-powershell-env; a Fepository is a storage unit that can
contains many versions of a Docker image.

Examining image repository
names

Repositories have a fixed naming scheme: {registry-domain}/{account-id}/{repository-name}:
(tag}. All parts are required, but Docker assumes defaults for some values. So,
dockeronwindows/ch02-powershell-env 18 actually a short form of the full repository name

docker.io/dockeronwindows/ch02-powershell-env:latest.

® registry-domain 1S the domain name or IP address of the registry that stores the image.
Docker Hub, Docker Cloud and Docker Store are default registries, so you can omit the
registry domain when you're using those images. Docker will use docker.io as the registry
if you don't specify one.

e account-id 1S the name of the account or organization that owns the image on the registry.
On Docker Hub the account name is mandatory—my own account ID is sixeyed, and the
organization account ID for the images that accompany this book is called dockeronwindows.
On other registries the account ID may not be needed.

e repository-name: It is the name you want to give your image to uniquely identify the
application, within all the repositories for your account on the registry.

e tag: 1s how you distinguish between different image variations in the repository.

You use the tag for versioning your applications or to identify variants. If you don't specify a tag
when you build or pull images, Docker assumes the default tag 1atest. When you start with
Docker, you will use Docker Hub and the 1atest tag, which are the defaults Docker provides to
hide some of the complexity until you're ready to dig deeper. As you continue with Docker,
you'll use tags to make clear distinctions between different versions of your application package.

A good example is Microsoft's .NET Core base image, which is on Docker Hub in the
nicrosoft/dotnet repository. .NET Core is a cross-platform application stack that runs on Linux
and Windows. You can run only Linux containers on Linux-based Docker hosts, and you can
run only Windows containers on Windows-based Docker hosts, so Microsoft includes the
operating system in the tag name.

At the time of writing, Microsoft has dozens of versions of the .NET Core image available for
use in the microsoft/dotnet repository, identified with different tags. These are just some of the
tags:

e 1.1.2-runtime-jessie @ Linux image based on Debian that has the NET Core 1.1 runtime
installed

® 1.1.2-runtime-nanoserver @ Nano Server image that has the NET Core 1.1 runtime installed

e 1.1.2-sdk-jessie a Linux image based on Debian that has the NET Core 1.1 runtime and
SDK installed

e 1.1.2-sdk-nanoserver @ Nano Server image that has the .NET Core 1.1 runtime and
SDK installed

The tags make it clear what each image contains, but they are all fundamentally similar - they
are all variations of microsoft/dotnet.

i

Docker also supports multi-arch images, where a single repository name is used
as an umbrella for many variations. There could be image variations based on
Linux and Windows, Intel and Advanced RISC Machines (ARM) processors.
They all use the same umbrella repository name, and when you run docker image

pu1l, Docker pulls the matching image for your host's operating system and CPU
architecture.

Building, tagging, and
versioning images

You tag images when you first build them, but you can also explicitly add tags to an image with
the docker image tag command. This is very useful in versioning mature applications, so users
can choose which versioning level they want to work with. If you run these commands, you
would build an image with five tags, with ascending levels of precision for the application
version:

docker image build -t myapp .

docker image tag myapp:latest myapp:5
docker image tag myapp:latest myapp:5.1
docker image tag myapp:latest myapp:5.1.6
docker image tag myapp:latest myapp:bc90e9

The initial docker image build command doesn't specify a tag, so the new image will default to
nyapp: latest. Bach subsequent docker image tag command adds a new tag to the same image.
Tagging doesn't copy the image, so there's no data duplication, you just have one image which
can be referred to with several tags. By adding all these tags, you give consumers the choice of
image to use, or to base their own image on.

This example application uses semantic versioning. The final tag could be the ID of the source
code commit that triggered the build; this might be used internally but not made public. 5.1.6 is
the patch version, s.1 is the minor version number, and s is the major version number.

Users can explicitly use myapp:5.1.6, which is the most specific version number, knowing that the
tag won't change at that level and the image will always be the same. The next release will have
the tag s.1.7, but that will be a different image with a different application version.

nyapp:5.1 Will change with each patch release - with the next build, 5.1 will be a tagged alias of
5.1.7 - but users can be confident there won't be any breaking changes. nyapp:5 will change with
each minor release - next month it could be an alias of myapp:5.2. Users can choose the major
version if they always want the latest release for version 5, or they could use latest if they always
want the latest version, and can accept the possibility of breaking changes.

As the producer of images, you can decide how to support versioning in your image tags. As the
consumer, you should favor being more specific - especially with images you use as the

rrom Image for your own builds. If you're packaging a .NET Core application, you will have
problems if you start your Dockerfile like this:

|FROM microsoft/dotnet:runtime-nanoserver

At the time of writing, this image has version 1.1 of the NET Core runtime installed. If
your application targets version 1.1 then that's fine, the image will build and your application
will run correctly in a container. But when .NET Core 1.2 or 2.0 is released, the generic runtime-

nanoserver tag will be applied to the new image, which may not support the 1.1 target. When you
use the exact same Dockerfile after that release, it will use a new base image - your image will
build but the application may fail if the base image no longer supports your application.

Instead, you should use consider using a tag for the minor version of the application framework
you're using:

| FROM microsoft/dotnet:1.l-runtime-nanoserver

This way, you'll benefit from any patch releases to the image, but you'll always be using the 1.1
release of .NET Core, so your application will always have a matching host platform in the base
image.

You can tag any image you have in your local cache, not just images you build yourself. This is
useful if you want to re-tag a public image and add it to an approved set of base images in your
local, private registry.

Pushing images to a registry

Building and tagging images are local operations. The end result of docker image build and docker
image tag 1S a change to the image cache on the Docker host where you run the commands.
Images need to be explicitly shared to a registry with the docker image push command.

Docker Hub is available for use without authenticating to pull public images, but to upload
images (or pull private images), you need to register for an account. Registration is free at https:/
cloud.docker.com/ - where you can create a Docker ID that you can use on Docker Hub, Docker
Cloud, and other Docker services. Your Docker ID is how you authenticate with the Docker
service to access Docker Hub, with the docker 10gin command:

> docker login

Login with your Docker ID to push and pull images from Docker Hub. If you don't have a Docker
Username: dockeronwindows

Password:

Login Succeeded

To push images to Docker Hub, the repository name must contain your Docker ID as the
account ID. You can tag an image using account account ID - like microsoft/my-app - but you
can't push it to Microsoft's organization on the registry. The Docker ID you are logged in with
needs to have permission to push to the account on the registry.

When I publish images to go along with this book, I build them with dockeronwindows as the
account name in the repository, log in with that account, and push:

docker image build -t dockeronwindows/ch03-iis-healthcheck .
docker image push dockeronwindows/chO03-iis-healthcheck

The output from the Docker CLI shows how the image is split into layers, and it tells you
the upload status for each layer:

The push refers to a repository [docker.io/dockeronwindows/ch03-iis-healthcheck]

177624560099:
badbec9dc449:
£87d75e4972b:
0c3e4b980d94:
19150debad5f:
1225b6de9£9d:
64e9e8b7£7a8:
48c58914e7al:
ef215b8all76:
72ee693ca2b2:
de57d9086f9%a:
£358bel0862c:

Pushed
Pushed

Pushing [
Pushed
Pushed
Pushed

Pushing [

Pushing [
Pushing [==>
Pushed

Skipped foreign layer
Skipped foreign layer

1 7.925 MB/12.66 MB

] 22.14 MB/62.19 MB
1 20.45 MB/66.33 MB
] 14.07 MB/280.3 MB

This image uses Windows Server Core as the base image. The base image is not

layers.

publicly redistributable - it's publicly available on Docker Hub, but Microsoft
have not licensed the image to be stored on other public image registries. That's
why we see the lines stating Skipped foreign layer - Docker will not push those

https://cloud.docker.com/

You can't publish to another user's account, but you can tag another user's images with your own
account name. This is a perfectly valid set of commands, which I could run if I wanted to
download a specific version of the Windows Server Core image, give it a friendlier name, and
make it available on the Hub under that new name in my account:

docker image pull microsoft/windowsservercore:10.0.14393.1358
docker image tag microsoft/windowsservercore:10.0.14393.1358 sixeyed/windowsservercore:2017-0"
docker image push sixeyed/windowsservercore:2017-07

Pushing images to a registry doesn't get any more complex than that, for the user - although
under the hood Docker runs some smart logic. Image layering applies to registries as well as to
the local image cache on the Docker host. When you push an image based on Windows Server
Core to the Hub, Docker doesn't upload the 10 GB base image - it knows that base layer already
exists on the Hub, and it will only upload the layers which are missing on the target registry.

The last example of tagging a public image and pushing it to the public Hub is valid but unlikely
- you're much more likely to tag and push images to your own local, private registry.

Running a local image registry

The Docker platform is portable because it's written in Go, which is a cross-platform language.
Go applications can be compiled to native binaries, so Docker can run on Linux or Windows
without users having to install Go. On the Docker Hub the registry image contains a registry
server written in Go, so you can host your own image registry by running a Docker container
from that image.

registry 1S an official repository, but at the time of writing, it only has images available for
Linux. It's likely that a Windows version of the registry will be published soon, but in this
chapter I will walk you through building your own registry image, as it demonstrates some
common Docker usage patterns.

Official repositories are available on Docker Hub like other public images, but
they have been curated by Docker, Inc, and are maintained either by Docker
themselves or by the application owners. You can rely on them containing
correctly packaged and up-to-date software. The majority of official images only
have Linux variants, but the number of Windows-based official images is
growing.

Building the registry image

Docker's registry server is an open source application. It's hosted on GitHub in the
docker/distribution repository. To build the application, you need to install the Go SDK first. If
you did that, you can run a simple command to compile the application:

| go get github.com/docker/distribution/cmd/registry

But if you're not a regular Go developer, you don't want the overhead of installing and
maintaining the Go tools on your local machine, just so you can build the registry server when
you want to update it. It would be better to package the Go tools into a Docker image and set up
the image so that when you run a container, it builds the registry server for you. You can do this
with the same multi-stage build approach I demonstrated in

Chapter 3, Developing Dockerized .NET and .NET Core Applications.

The multi-stage pattern has a lot of advantages. Firstly, it means that your application image can
be kept as lightweight as possible - you don't need to package the build tools along with the
runtime. Secondly, it means that your build agent is encapsulated in a Docker image so you don't
need to install those tools on your build server. Thirdly, it means that developers can use exactly
the same build process that the build server uses, so you avoid a situation where developer
machines and the build server have different tool sets installed, with the risk of them drifting and
causing build issues.

The Dockerfile for dockeronwindows/cho4-registry uses the official Go image, which has a
Windows Server Core variant on Docker Hub. The builder stage uses that image to compile the
registry application:

escape="
FROM golang:1l.8-windowsservercore AS builder
SHELL ["powershell", "-Command", "S$ErrorActionPreference = 'Stop';"]

ARG REGISTRY VERSION=v2.6.1

WORKDIR C:\gopath\src\github.com\docker

RUN git clone https://github.com/docker/distribution.git; °
cd distribution; °
git checkout $env:REGISTRY VERSION; °
go build -o C:\out\registry.exe .\cmd\registry

I'm using an arc instruction to specify the version of the source code to build - the GitHub
repository has labels for each released version, and I'm defaulting to version 2.6.1. Then I use
git to clone the source code and switch to the labelled version of the code, and go buila to
compile the application. The output will be registry.exe, a native Windows executable which
doesn't need Go installed to run.

The final stage of the Dockerfile uses Nano Server as the base, which can run the Go application
just fine. I'll look at this stage in detail, because the setup addresses a problem with storage in
Windows containers which impacts Go and other languages. The start of the stage just specifies
the version of Nano Server to use as the base, and switches to PowerShell:

FROM microsoft/nanoserver:10.0.14393.1358
SHELL ["powershell", "-Command", "S$ErrorActionPreference = 'Stop';"]

Next there are instructions to configure storage for the registry server. I use environment
variables to specify the paths, create a volume, and then set a Windows registry flag to create a
drive mapping for the volume path:

ENV DATA PATH="C:\data" °
REGISTRY STORAGE FILESYSTEM ROOTDIRECTORY="G:\\"

VOLUME ${DATA PATH}

RUN Set-ItemProperty -Path 'HKLM:\SYSTEM\CurrentControlSet\Control\Session Manager\DOS Devices
-Name 'G:' -Value "\??\$($env:DATA PATH)" -Type String

This is a pattern you may have to use with Java, Node, PHP and even in .NET applications in
Windows containers. It's necessary because of the way Windows implements volumes. My
volume creates the directory path c:\dat= inside the container, but that's actually a symbolic link
(symlink) to another directory location.

Symlinks are very common in Linux. Windows has supported them for a long time, but they're
far less common. Some language rutimes see a directory is a symlink, and try to resolve the
underlying path. In a container, the path will be something like \\2\\containerMappedpirectories\
(cutp}. Making sense of that path can cause the app to fail.

So this setup creates a drive alias for the directory - inside the container, the c: drive actually
maps to c:\data. When applications see c:\ they don't see it as a symlink, so they don't try to
resolve the path. They write directly to the c: drive, and Windows redirects it to c:\data, which
is actually a volume hosted outside of the container.

If you're interested in the mechanics of this fix, the details are in a GitHub issue:
https://github.com/moby/moby/issues/27537.

The registry server uses the rRecrsTRY STORAGE FTLESYSTEM ROOTDIRECTORY €nvironment variable to
configure the storage location. That's set to ¢: so the Go runtime can work without hitting the
symlink issue. The rest of the Dockerfile sets up the image to allow traffic on port sooo, the
conventional registry port, and copies in the output from the builder stage:

EXPOSE 5000
WORKDIR C:\registry
CMD ["registry", "serve", "config.yml"]

COPY —--from=builder C:\out\registry.exe .
COPY --from=builder C:\gopath\src\github.com\docker\distribution\...\config-example.yml .\coni

Building the registry image is the same as any other image, but when you use it to run your own
registry, there are some important factors to consider.

https://github.com/moby/moby/issues/27537

Running a registry container

Running your own registry lets you share images between team members and store the output of
all your application builds using the fast local network instead of an internet connection. You
would typically run the registry container on a server that can be widely accessed, in a
configuration like this:

The registry is running in a container (1) on a server (2). The client machines (3) connected to
the server to use the local registry to push and pull private images.

To make the registry container accessible, you need to publish port so00 from the container to
port sooo on the host. Registry users can access the container using the host server's IP address or
hostname, and that will be the registry domain you use in repository names. You'll also want to
mount a volume from the host to store the image data in a known location. When you replace
the container for a new version, it will still be available using the host's domain name, and it

will still have all the image layers stored by the previous container.

On my host server | have a RAID array configured as disk &:, which I'll use for my registry data,
so I can run my registry container mapping that volume:

mkdir E:\registry-data
docker container run -d -p 5000:5000 -v E:\registry-data:C:\data dockeronwindows/chO04-registry

The volume is mapped to c:\data - the c: drive alias only exists inside the
8 container.

In my network, I'll be running the container on a physical machine with the IP address
192.168.2.146. | could use 192.168.2.146:5000 as the registry domain to tag images, but that isn't
very flexible. It's better to use the domain name of the host, so I could point that to a different
physical server if I needed to, without having to re-tag all my images.

For the hostname you can use your network's Domain Name System (DNS) service, or a

Canonical Name (CNAME) if you're running a public server, or you could add an entry to
the hosts file on the client machines and use a custom domain name. This is the PowerShell
command I use to add the host name entry for registry.10cal pointing to my Docker server:

|Add—Content -Path 'C:\Windows\System32\drivers\etc\hosts' -Value '192.168.2.146 registry.local

Now my server is running a registry server in a container with reliable storage, and my client
is set up to access the registry host using a friendly domain name. I can start pushing and pulling
private images from my own registry, which is only available to users on my network.

Pushing and pulling images with
a local registry

You can only push images to a registry if the image tag matches the registry domain. The
process for tagging and pushing is the same as with Docker Hub, but you need to explicitly
include the local registry domain in the new tag. These commands pull the registry server image
from Docker Hub and add a new tag, making it suitable to be pushed to the local registry:

docker image pull dockeronwindows/chO4-registry

docker image tag dockeronwindows/chO04-registry registry.local:5000/infrastructure/registry:v2.

In the docker image tag command, you can change every part of the image name for the new tag.
I've used the following:

® registry.local:5000 the registry domain. The original image name had an implied domain
of docker. io.

e infrastructure the account name. The original account name was dockeronwindows.

e rcgistry the repository name. The original was choa-registry.

e 2.6.1 the image tag. The original implied tag was 1atest.

I can try to push the new tagged image to the local registry, but Docker won't let me use the
registry yet:

> docker push registry.local:5000/infrastructure/registry:v2.6.1

The push refers to a repository [registry.local:5000/infrastructure/registry]
Get https://registry.local:5000/v2/: http: server gave HTTP response to HTTPS client

The Docker platform is secure by default, and the same principle extends to image registries.
The Docker service expects to use SSL to communicate with registries, so the traffic is
encrypted. My simple registry installation uses plaintext HTTP, so I get an error saying Docker
tried to use an encrypted transport for the registry but only an unencrypted transport was
available.

There are two options to set up Docker to use the local registry. The first is to extend the registry
server to secure the communication - the registry server image can run over HTTPS if you
supply it with an SSL certificate. That's what I would do in a production environment, but to
start out I can use the other option and make an exception in the Docker configuration. The
Docker service will allow an HTTP registry to be used if it's explicitly named in an allowed list
of insecure registries.

You can run the registry image with HTTPS using your company's SSL certificate

or a self-signed certificate, which means that you don't need to configure the
9 Docker Engine to allow insecure registries. There is a Windows

registry walkthrough in Docker's lab repository on GitHub docker/1abs which

explains how to do that.

Configuring Docker to allow
insecure registries

The Docker service can use a JSON configuration file to change settings, including the list of
insecure registries the engine will allow. Any registry domains in that list can use HTTP rather
than HTTPS, so this is not something you should do for a registry hosted on a public network.

Docker's configuration file is located at

$programdata%\docker\config\daemon.json (daemon is Linux terminology for a background service,
so this is the name of the Docker service configuration file). You can manually edit it to add the
local registry as a secure option and then restart the Docker Windows service. This configuration
allows Docker to use the local registry with HTTP:

{
"insecure-registries": [
"registry.local:5000"
]
}

If you're using Docker for Windows, the UI has a nice configuration window that takes care of
this for you. Instead of editing the file manually, just right-click on the Docker logo in the status
bar, select Settings, navigate to the Daemon page, and add an entry to the tnsecure registries
list:

13‘7 Settings *

General ﬂ
Daemon]

Proxies Configure the Docker daemon by typing a json docker daemon e
configuration file.

Daemon

P SR Experimental features

Reset Insecure registries:

registry.local:SOOCl

Registry mirrors:

@ Docker is running Docker will restart when applying these settings. Appiy

With the local registry domain added to my insecure list, I can use it to push and pull images:

> docker push registry.local:5000/infrastructure/registry:v2.6.1

The push refers to a repository [registry.local:5000/infrastructure/registry]

8aeflb3b4856: Pushed

cacb6be%e720: Pushed

415729850£90: Pushed

£f£6770fb£f55¢c: Pushed

9acef5971c00: Pushed

45049fa42adf: Pushed

3c7d57559064: Pushed

£f6£3d7c5a77¢c: Pushed

c5dc94330b3£f: Pushed

e6537bd7a896: Skipped foreign layer
6c357baed9f5: Skipped foreign layer
v2.6.1: digest: sha256:970ea320b67116cea565f5af24ed99deab65b6e3d8aeldbb285acfb2673d4307b size:

Any users with network access to my Docker server can use images stored in the local registry
with the docker image pull OF docker image run cOmmands. You can also use local images as the
base image in other Dockerfiles, specifying the name with the registry domain, the repository
name, and the tag in the rrom instruction:

FROM registry.local:5000/infrastructure/registry:v2.6.1
CMD ["powershell", "Write-Output", "Hello from Chapter 4."]

There is no way to override the default registry, so you can't set your local
registry to be the default when a domain isn't specified - the default is always
Docker Hub. If you want to use a different registry for images, the registry
domain always has to be specified in the image name. Any image names you use
without a registry address will be assumed to refer to images from docker. io.

Storing Windows image layers
in a local registry

You are not allowed to publicly redistribute the base layers for the Microsoft images, but you
are allowed to store them in a private registry. This 1s particularly useful for the Windows Server
Core image. The compressed size of that image is 5 GB, and Microsoft release a new version of
the image every month on Docker Hub with the latest security patches.

The updates usually only add one new layer to the image, but that layer could be a 1 GB
download. If you have many users working with Windows images, they will all need to
download those layers and that's a lot of bandwidth and a lot of time. If you run a local registry
server, you can pull those layers once from Docker Hub, and push them to your local registry.
Every other user then pulls from the local registry, downloading from the fast local network
rather than the internet.

You need to enable this feature for specific registries in the Docker configuration file, using
the a1low-nondistributable-artifacts field:

{
"insecure-registries": [
"registry.local:5000"
1,
"allow-nondistributable-artifacts": [
"registry.local:5000"
]
}

This setting isn't exposed directly in the Docker for Windows Ul, but you can set it in the
Advanced mode of the settings screen:

& settings *

General

Daemon a
Proxies Configure the Docker daemon by typing a json docker daemon e

configuration file.
Daemon
) Advanced

Diagnose & Feedback : ! 3
9 This can prevent Docker from starting. Use at your own risk!

{
“insecure-registries™: [
“registry.local:5000"

Reset

]

“allow-nondistributable-artifacts™ [
“registry.local:5000"
]

@ Dockeris running Docker will restart when applying these settings. Apply

Now I can push the Windows foreign layers to my local registry. I can tag the latest Nano
Server image with my own registry domain and push the image there:

PS> docker image tag microsoft/nanoserver:10.0.14393.1358 registry.sixeyed:5000/microsoft/nanc

PS> docker image push registry.sixeyed:5000/microsoft/nanoserver:10.0.14393.1358
The push refers to a repository [registry.sixeyed:5000/microsoft/nanoserver]
e6537bd7a896: Pushing [>] 146.1MB/344.1MB

On another Docker host, I can pull my local Nano Server image. But I don't need to use the
custom image Name registry.sixeyed:5000/microsoft/nanoserver:10.0.14393.1358 when [want to
use Nano Server - | can use the standard microsoft/nanoserver:10.0.14393.1358 name. Docker will
see that image doesn't exist and start to pull it from Docker Hub - but it will find the layers
already available on the host's image cache, from the local registry, and it will use them instead
of downloading from Docker Hub.

Using a commercial registry

Running your own registry is not the only way to have a secure, private store for image
repositories, there are several third-party offerings you can use. In practice they all work in the
same way - you need to tag your images with the registry domain and authenticate with the
registry server. There are several options available, and the most comprehensive ones come
from Docker, Inc, which has different products available for different levels of service.

Docker Hub

Docker Hub is the most widely used public container registry, averaging one billion image pulls
per month at the time of writing. You can host unlimited public repositories on the Hub and pay
a subscription to host multiple private repositories.

Docker Hub has an automated build system, so you can link image repositories to source code
repositories in GitHub or BitBucket, and Docker's servers will build an image from the
Dockerfile in the repository whenever you push changes - it's a simple and effective hosted
Continuous Integration (CI) solution, especially if you are using portable multi-stage
Dockerfiles.

A Hub subscription is suitable for smaller projects or teams with multiple users working on the
same applications. It has an authorization framework where users can create an organization -
which becomes the account name in the repository rather than an individual user's account
name. Many users can be given access to the organization repositories, which allows multiple
users to push images to the repository, something you can't do with individual user repositories.

Docker Cloud

Docker Cloud is a hosted platform which provides a registry and a platform for managing
Docker swarms running in the cloud. You can create Docker swarms on virtual machines in
AWS, Azure, DigitalOcean or other cloud providers and use Docker Cloud to deploy Docker on
the VMs, and Docker for Windows to manage the remote Docker nodes.

In addition to the CI builds of Docker Hub, with Cloud you can configure automated application
testing. You define tests in your source code repository, and when you push changes Docker
Cloud will build the image, run a container, and execute the test suite. This means that you can
use Docker Cloud for a full CI/CD pipeline, where new changes are automatically deployed to
the cloud servers managed by Docker Cloud.

The registry in Docker Cloud also provides security scanning, a feature where Docker examines
the contents of images, looking at the software installed and comparing it with industry-standard
databases of known vulnerabilities. Docker can flag security issues with the operating system
used in the base image or with software dependencies installed on top of the base image.
Security scanning and organization-level authorization make Docker Cloud ideal for smaller
teams and projects.

Docker Cloud is a good option to manage containerized workloads in the cloud. Docker images
are portable by definition, so you can limit your cloud requirements to basic Infrastructure as a
Service (IaaS) offerings - you just need VMs, storage, and virtual networking to support Docker
workloads. You can run multi-cloud applications or move between providers easily using the
consistent administration platform in Docker Cloud. I will cover Docker swarm in Chapter 7,
Orchestrating Distributed Solutions with Docker Swarm.

Docker Store

Docker Store is a registry for commercial software distribution. It's like an app store for server-
side applications. If your company produces commercial software, Docker Store could be a
good choice for distributing it. You build and push images in exactly the same way, but your
source can be kept private - only the packaged application is publicly available.

There is also a certification process you can go through, for images being hosted on Docker
Store. Docker certification applies across software images and hardware stacks. If your image is
certified, it's guaranteed to work on Docker Enterprise Edition (Docker EE) on any certified
hardware. Docker tests all the combinations in the certification process, and that end-to-end
guarantee is very attractive to large enterprises.

Docker Trusted Registry

Docker Trusted Registry (DTR) is part of the Docker EE Advanced suite, the enterprise-grade
Containers-as-a-Service (CaaS) platform from Docker, Inc. It's aimed at enterprises running a
cluster of Docker hosts in their own data centers or in a virtual private cloud. Docker EE
Advanced comes with a comprehensive management suite called Universal Control Plane
(UCP), which provides an interface to administer all the resources in your Docker cluster - the
host servers, images, containers, networks, volumes, and everything else. Docker EE Advanced
also provides DTR, which is a secure, scalable registry.

DTR runs over HTTPS and is a clustered service, so you can deploy multiple registry servers
across your cluster for scalability and failover. You can use local storage or cloud storage for
DTR, so images can be persisted on an Azure backend with practically unlimited capacity. Like
Docker Cloud, you can create organizations for shared repositories, but with DTR you manage
authentication by creating your own user accounts or plugging into an Lightweight Directory
Access Protocol (LDAP) service (such as Active Directory). Then you can configure role-based
access control for fine-grained permissions.

Security scanning is also available in DTR, so you can have the service running in your own
environment. You can configure scans to run whenever an image is pushed, or on a schedule.
Scheduled scans can alert you when a new vulnerability is found in one of the dependencies for
an old image. The DTR Ul lets you drill down into the details of the vulnerability and see the
exact file and the exact exploit.

There is one other major security feature that is only available in Docker EE Advanced, and that
is content trust. Docker content trust lets users digitally sign images to capture an approval
workflow - so QA and security teams may run an image version through their test suites and
sign it to confirm that they approve a release candidate for production. Those signatures are
stored in DTR. UCP can be configured to only run images that have been signed by certain
teams, so you get close control over what software your cluster will run, together with an

audit trail proving who built and approved the software.

Docker EE Advanced has a rich suite of features that can be accessed through friendly web Uls
as well as through the standard Docker command line. Security, reliability, and scalability are
major factors in the feature set, which makes it a good choice for enterprise users looking for a
standard way to manage images, containers, and Docker hosts. I will cover UCP in Chapter 8,
Administering and Monitoring Dockerized Solutions and DTR in Chapter 9, Understanding the
Security Risks and Benefits of Docker.

Other registries

Many third-party services have added an image registry to their existing offerings. On the cloud,
you have the EC2 Container Registry (ECR) from Amazon Web Services (AWS), Azure
Container Registry from Microsoft, and Container Registry on Google Cloud Platform. All these
offerings integrate with the standard Docker command line and with the other products in each
respective platform, so they can be good options if you are heavily invested in one cloud service
provider.

There are also standalone registry offerings, including Artifactory from JFrog, and Quay.io -
which are hosted services. Having a hosted registry

removes the management overhead of running your own registry server, and if you are already
using a platform that provides a registry, it makes sense to evaluate that option.

All the registry providers have different feature sets and service levels - you should compare the
offerings and most importantly, check the level of Windows support. Most of the

existing platforms were originally built to support Linux images and Linux clients, and there
may not be feature parity for Windows.

Summary

In this chapter, you learned what an image registry does and how you work with it using
Docker. I covered repository names and image tagging to identify application versions or
platform variations, and how to run and use a local registry server - running in a container.

Using a private registry is something you're likely to do quite early in your Docker journey. As
you start to Dockerize existing applications and experiment with new software stacks, it may be
useful to push and pull images across the fast local network - or use Docker Cloud if local
storage space is an issue. As you use Docker more and progress to production

implementation, you may have a roadmap to upgrade to DTR for a supported registry with rich
security features.

Now that you have a good understanding on how to share images and use images shared by
other people, you can look at bringing tried and trusted software components into our own
applications with a container-first solution design.

Adopting Container-First
Solution Design

Adopting Docker as your application platform brings clear operational benefits. Containers are a
much lighter unit of compute than virtual machines, but they still provide isolation, so you can
run more workloads on less hardware. All these workloads have the same shape in Docker, so
operations teams can manage .NET, Java, Go, and Node.js applications in the same way. The
Docker platform also has benefits in application architecture. In this chapter, I'll look at how
container-first solution design helps you add features to your application with high quality and
low risk.

I'll be returning to NerdDinner in this chapter, picking up from where I left off in Chapter 3,
Developing Dockerized .NET and .NET Core Applications. NerdDinner is a traditional .NET
application, a monolithic design with tight coupling between components, where all
communication is synchronous. There is no unit testing, integration testing, or end-to-end
testing. NerdDinner is like millions of other .NET apps - it may have the features the users need,
but it's difficult and dangerous to modify. Moving apps like this to Docker lets you take a
different approach to modifying or adding features.

Two aspects of the Docker platform change the way you think about solution design. First,
networking and service discovery means you can distribute applications across multiple
components, each running in containers that can be moved, scaled, and upgraded independently.
Second, the expanding range of production-grade software available on Docker Hub and Docker
Store means you can use off-the-shelf software for many generic services and manage them in
the same way as your own components. This gives you the freedom to design better solutions
without infrastructure or technology restrictions.A

In this chapter I'll show you how to modernize a traditional .NET application, by adopting
container-first design:

e Splitting functionality into separate containers, to address performance issues and add
features

e Adding enterprise-grade software to your solution by running containers from official
images

e Building hybrid .NET Framework and .NET Core solutions in Docker

e Moving from monoliths to distributed solutions

Design goals for NerdDinner

In Chapter 3, Developing Dockerized .NET and .NET Core Applications, I extracted the
NerdDinner home page into a separate component, which enabled rapid delivery of UI changes.
Now I'm going to make some more fundamental changes. The data layer in NerdDinner uses
Entity Framework (EF), and all database access is synchronous. A lot of traffic to the site will
create a lot of open connections to SQL Server and run a lot of queries. Performance will
deteriorate as load increases, to the point where queries time out or the connection pool is
starved, and the site will show errors to the users.

One way to improve this would be to make all the data access methods async, but that's an
invasive change - all the controller actions would need to be made async too, and there is no
automated test suite to verify such a wholesale set of changes. Alternatively, I could add a cache
for data retrieval so cer requests would hit the cache and not the database. That's also a complex
change, and I would need to cache data for long enough to make a cache hit likely while keeping
the cache in sync when data changes. Again, the lack of tests means complex changes like this
are hard to verify, so this is also a risky approach.

It would be hard to estimate the benefit if I did implement these complex changes. If all the data
access moves to asynchronous methods, will that make the website run faster and able to handle
more traffic? If I can integrate a cache that is efficient enough to take reads away from the
database, will that improve the overall performance? These benefits are difficult to quantify until
you've actually made the change, when you might find that the improvement doesn't justify the
investment.

With a container-first approach, you can look at the design differently. If you identify one
feature that makes expensive database calls but doesn't need to run synchronously, you can
move the database code to a separate component. Then you use asynchronous messaging
between the components, publishing an event from the main web app onto a message queue and
acting on the event message in the new component. With Docker, each of these components will
run in one or more containers:

If I focus on just one feature then I can implement the change quickly. This design has none of

| i
[nerd-dinner-homepage ‘ ‘ nerd-dinner-web ‘ nerd-dinner-db

w_l []‘ ___]

message-queue save-handler

______________________________ T______________________________/

Docker Network

the drawbacks of the other approaches:

There are other advantages too. The new component is completely independent of the original
application, it just needs to listen for an event message and act on it. You can use .NET, .NET
Core or any other technology stack for the message handler; you don't need to be constrained to
a single stack. And you also have events being published from the app, so you have the option to

It's a targeted change and only one controller action changes in the main application

The new message handler component is small and highly cohesive, so it will be easy to test
The web layer and the data layer are being decoupled, so they can be scaled independently
I'm moving work away from the web application, so we can be sure of a performance
improvement.

add other features later by adding new handlers listening for these events.

Dockerizing NerdDinner's
configuration

NerdDinner uses web.config for configuration - both for application configuration values that are
constant between releases, and for environmental configuration values that change between
different environments. The configuration file is baked into the release package, which makes it
awkward to change. In Chapter 3, Developing Dockerized .NET and .NET Core Applications,

I worked around this without changing code by using a start up script in the Dockerfile to update
values in web.config from environment variables set by Docker.

In preparation for the bigger changes to come, I've updated the code for this chapter to use
environment variables directly. The env class in the web project is a helper class that fetches
values for known configuration items, including the database connection strings and secrets such
as the Bing Maps API key. Some of these settings have default values in the Dockerfile, but
others need to be provided at runtime:

ENV BING MAPS KEY="" °
IP INFO DB KEY="" °
HOMEPAGE URL="http://nerd-dinner-homepage" °
MESSAGE QUEUE _URL="nats://message-queue:4222" °
AUTH DB CONNECTION STRING="Data Source=nerd-dinner-db..." °
APP DB CONNECTION STRING="Data Source=nerd-dinner-db..."

Using default values for the database connection strings means that the app is usable when you
start the database and web containers without having to specify any environment variables. The
app 1sn't 100% functional, though, because the API keys are needed for Bing Maps and the 1P
geolocation services. These are rate-limited services, so you are likely to have different keys for
each developer and each environment.

To keep environment values safe, Docker lets you load them from a file rather than specifying
them in plaintext in the docker container run command. Isolating values in a file means that the
file itself can be secured, so only administrators and the Docker service account can access it.
The environment file is a simple text format, with one line for each environment variable,
written as a key-value pair. For the web container, my environment file contains the secret API
keys:

BING MAPS KEY=*my key*
IP INFO DB KEY=*my key*

To run the container and load the file contents as environment variables, you can use the --env-
file Option.

I've packaged those changes in a new version of the NerdDinner Docker image,
dockeronwindows/ch05-nerd-dinner-web. Like other examples from Chapter 3, Developing Dockerized
.NET and .NET Core Applications, the Dockerfile uses a bootstrap script as the entry point,
which promotes environment variables to the machine level so the ASP.NET application can

read them.

The new version of the NerdDinner website runs in Docker with this command:

docker container run -d -P °

--name nerd-dinner-web °

--env-file api-keys.env °
dockeronwindows/ch05-nerd-dinner-web

The application needs these API keys set in the environment variables to run properly, but that's
a runtime requirement that is not clear from the Dockerfile alone. I have a PowerShell script that
starts containers in the right order, with the right options, but by the end of the chapter, that
script will be unwieldy. I'll address this in the next chapter when I look at composition.

Splitting out the create dinner
feature

In the pinnercontrolier class, the create action is a relatively expensive database operation, which
doesn't need to be synchronous. This feature is a good candidate for splitting into a separate
component. I can publish a message from the web app instead of saving to the database while
the user waits - if the site is experiencing high load, the message may wait in the queue for
seconds or even minutes before being processed, but the response back to the user will be almost
instant.

There are two pieces of work to split the feature into a new component. The web application
needs to publish a message to a queue when a dinner is created, and a message handler needs to
listen on the queue and save the dinner when it receives a message. In NerdDinner, there's a bit
more work to do because the existing code base is a physical monolith as well as a logical
monolith, and there's just one Visual Studio project that contains everything: all the

model definitions as well as the Ul code.

In this chapter's source code, I've added a new .NET assembly project called nerdapinner.mode1 to
the solution and moved the EF classes to that project, so they can be shared between the web
app and the message handler. The model project targets the full NET Framework rather than
NET Core, so I can use the existing code as it is and I don't need to bring an upgrade of EF into
scope for this feature change. This choice restricts the message handler to being a full NET
application too.

There's also a shared assembly project to isolate the message queue code in verdpinner.messaging.
I'll be using the nats message system, which is a high-performance open source message queue.
There is a nats client package on NuGet which targets NET Standard, so it can be used in both
NET and .NET Core, and my messaging project does the same. This means that I can be
flexible, so other message handlers that don't use the EF model could be written in .NET Core.

In the model project, the original definition of the pinner class is polluted with a lot of EF and
MVC code to capture validation and storage behavior, like this definition for the description

property:

[Required (ErrorMessage = "Description is required")]

[StringLength (256, ErrorMessage = "Description may not be longer than 256 characters")]
[DataType (DataType.MultilineText)]

public string Description { get; set; }

The class should be a simple POCO definition, but these attributes mean the model definition is
not portable because any consumers also need to reference EF and MVC. To avoid that in the
messaging project, [have a simple pinner entity defined without any of these attributes, and that
class is the one I use to send dinner information in messages. I can use the automapper NuGet
package to convert between dinner class definitions, as the properties are fundamentally the
same.

This is the sort of challenge you will find in lots of older projects - there's no
clear separation of concerns, so breaking out features is not straightforward. You
can take this approach and restructure the code base without fundamentally
changing logic, which will help in modernizing the app.

The main code in the create method of the pinnerscontroliler class now maps the dinner model to
the clean dinner entity and publishes an event instead of writing to the database:

if (ModelState.IsValid)
{
dinner.HostedBy = User.Identity.Name;
var eventMessage = new DinnerCreatedEvent
{
Dinner = Mapper.Map<entities.Dinner>(dinner),
CreatedAt = DateTime.UtcNow
}:
MessageQueue.Publish (eventMessage) ;
return RedirectToAction ("Index") ;

This is the fire-and-forget messaging pattern. The web application is the producer, publishing an
event message. The producer doesn't wait for a response and doesn't know which components—
if any, will consume the message and act on it. It's loosely coupled and fast, and it puts the
responsibility to deliver the message onto the message queue, which is where it should be.

Listening for this event message is a new .NET console project in
NerdDinner.MessageHandlers.CreateDinner. The main method of the console app uses the shared
messaging project to open a connection to the message queue and subscribe to these dinner-
created event messages. When a message is received, the handler maps the dinner entity in the
message back to a dinner model and saves the model to the database using code taken from the
original implementation in the pinnerscontrolier class (and tidied up a little):

var dinner = Mapper.Map<models.Dinner> (eventMessage.Dinner) ;
using (var db = new NerdDinnerContext ())
{
dinner.RSVPs = new List<RSVP>
{
new RSVP
{
AttendeeName = dinner.HostedBy
t
}i
db.Dinners.Add (dinner) ;
db.SaveChanges () ;
}

Now the message handler can be packaged into its own Docker image and run in a container
alongside the website container.

Packaging .NET console apps in
Docker

Console apps are easy to build as good citizens for Docker. The compiled executable for the app
will be the main process Docker starts and monitors, so you just need to make use of the console
for logging, and environment variables for configuration.

For my message handler I'm using a multi-stage build with a slightly different pattern. [have a
separate image for the builder stage, which I use to compile the whole solution - the web project
and the new projects I've added. I'll walk through the builder image later in the chapter, when
you've seen all the new components.

The builder compiles the solution, and the Dockerfile for the console application references the
dockeronwindows/ch05-nerd-dinner-builder image in a stage called builder. The final stage
packages the compiled executable from the builder stage and sets up default configuration
values:

escape="
FROM dockeronwindows/chO5-nerd-dinner-builder AS builder

app image
FROM microsoft/windowsservercore:10.0.14393.1198
SHELL ["powershell", "-Command", "S$SErrorActionPreference = 'Stop';"]

CMD ["NerdDinner.MessageHandlers.SaveDinner.exe"]

ENV APP DB CONNECTION STRING="Data Source=nerd-dinner-db..."
MESSAGE QUEUE URL="nats://message-queue:4222"

WORKDIR C:\save-handler
COPY --from=builder C:\src\NerdDinner.MessageHandlers.SaveDinner\bin\Debug\ .

The new message handler needs to access the message queue and the database, and the
connection strings for each are captured as environment variables. In the code for the project,
there is an env class to read these values from environment variables.

In the Dockerfile, the entry point in the cup instruction is the console executable, so the container
will keep running as long as the console app is running. The listener for the message queue runs
asynchronously on a separate thread. The handler code will fire when a message is received, so
there's no polling of the queue and the app runs very efficiently.

Keeping the console app running indefinitely is straightforward, using a manuairesetrvent object.
In the nain method, I wait for a reset event that never happens, so the program keeps running:

class Program

{

private static ManualResetEvent ResetEvent = new ManualResetEvent (false);

static void Main(string[] args)

{

// set up message listener
_ResetEvent.WaitOne () ;
}
}

This is a simple and efficient way of keeping a .NET (or .NET Core) console app alive. When |
start a message handler container, it will keep running in the background and listen for messages
until the container is stopped.

Running a message queue in
Docker

The web application now publishes messages, and a handler listens for them, so the final
component | need is a message queue to connect the two. Queues need the same level of
availability as the rest of the solution, so they're good candidates for running in Docker
containers. In a distributed solution deployed on many servers, the queue can be clustered across
multiple containers for performance and redundancy.

Your choice of messaging technology depends on the features you need, but there are plenty of
options with .NET client libraries—Microsoft Message Queue (MSMQ) is the native Windows
queue, RabbitMQ is a popular open source queue that supports durable messaging, and nats is
an open source in-memory queue that is hugely performant.

The high throughput and low latency of nats messaging make it a good choice to communicate
between containers, and there is an official image for nats on Docker Hub. nats is a Go
application that runs cross-platform and there are Linux, Windows Server Core, and Nano
Server variants of the Docker image.

You run the nats message queue like any other container, publishing port 4222 which is the port
clients use to connect to the queue:

docker container run --detach °
--publish 4222 °
--name message-queue
nats:nanoserver

I'm using the Nano Server version of the nats image because the lighter profile
means it starts more quickly, runs more efficiently, and exposes a smaller attack
surface.

The nats server application logs messages to the console, so the log entries are collected by
Docker. When the container is running, you can verify that the queue is listening using docker

container logs:

> docker container logs message-queue

[1416] 2017/06/23 09:20:41.329327 [INF] Starting nats-server version 0.9.6

[1416] 2017/06/23 09:20:41.329327 [INF] Starting http monitor on 0.0.0.0:8222

[1416] 2017/06/23 09:20:41.331269 [INF] Listening for client connections on 0.0.0.0:4222
[1416] 2017/06/23 09:20:41.331269 [INF] Server is ready

[1416] 2017/06/23 09:20:41.334275 [INF] Listening for route connections on 0.0.0.0:6222

The message queue is an infrastructure-level component with no dependencies on other
components. It can be started before other containers and left running when application
containers are stopped or upgraded.

Starting a multi-container
solution

As you make more use of Docker, your solution will become distributed across more containers
- either running custom code that you split out from a monolith, or tried and trusted third-party
software from Docker Hub or Docker Store.

NerdDinner now runs across four containers - SQL Server, the web app, the nats message queue,
and the message handler. There are dependencies between the containers, and they need to be
started in the correct order and created with the correct names so that components can be found
using Docker's service discovery.

In the next chapter, I'll use Docker Compose to declaratively map out these dependencies. For
now, I have a PowerShell script chos-run-nerd-dinner part-1.ps1 which explicitly starts the
containers with the correct configuration:

docker container run -d -p 4222 °
--name message-queue
nats:nanoserver;

docker container run -d -p 1433 °
--name nerd-dinner-db °
-v C:\databases\nd:C:\data °
dockeronwindows/ch03-nerd-dinner-db;

docker container run -d -p 80 °
--name nerd-dinner-homepage °
dockeronwindows/ch03-nerd-dinner-homepage;

docker container run -d °
--name nerd-dinner-save-handler °
dockeronwindows/ch0O5-nerd-dinner-save-handler;

docker container run -d -p 80 °
--name nerd-dinner-web °
--env-file api-keys.env °
dockeronwindows/ch05-nerd-dinner-web;

In this script I'm using the SOL database and home page images from Chapter 3,
Developing Dockerized .NET and .NET Core Applications - these components
haven't changed, so they can be run alongside the new components.
0 If you want to run this yourself with full functionality, you will need to populate
your own API keys in the file api-keys.env. You'll need to sign up to the Bing
Maps API and the IP information database. You can run the app without those
keys, but not all features will work correctly.

When I run the script with my own API keys set and inspect the web container to get the IP
address, I can browse to the application. It's a fully featured version of NerdDinner now. I can
log in and complete the create dinner form, complete with map integration:

v 1§ Hosta Nerd Dinner

{ M C @ ©® 17225192.214/Dinners/Create v 0 a v
l:l Hello, elton! 'Log off =
i L]

B neraainner

®©

D % g Title
: | 'Docker on Windows' Launch Party

Event Date
8/1/2017 7:30:00 PM

) =
0 ‘% Camden X ksl =
S s Cross
L2 - o =l
% z 1 : Description
B pentonvil
2 King's Cro . : .
@ e Gy, Launch dinner for ‘Docker on Windows
& I"
& =Y
o = 2
3 B ko
) L .
% Q‘o?"\’ N\ T it Host's Name
broet o S
+°
o St Pancras Elton
EustenE3
2 Contact Info

@EltonStoneman

Address, City, State, ZIP
NW1 2AR

I bing 500fest

©2017 HERE & 2017 Microsafi.Cy
1At k)

3

(drag the pin in the map if it doesn't lock right) *
Country

Create UK ¥

0 Back to List

When I submit the form, the web app publishes an event message to the queue. That is a very
cheap operation, so the web app returns to the user almost immediately. Listening for messages
is the console application, running in a different container - potentially on a different host. It
picks up the message and processes it. The handler logs the activity to the console, so admin

users can monitor it using docker container logs:

> docker container logs nerd-dinner-save-handler

Connecting to message queue url: nats://message-queue:4222
Listening on subject: events.dinner.created, queue: save-dinner-handler

Received message, subject: events.dinner.created
Saving new dinner, created at: 6/24/2017 8:44:21 PM; event ID: b7ecb300-af6f-4f2e-abl8-19bead(

Dinner saved. Dinner ID: 1; event ID: b7ecb300-af6f-4f2e-abl8-19bea90d4684

The functionality of the create dinner feature is the same - data entered by the user is saved to
SQL Server, and the user experience is the same, but the scalability of this feature is massively
improved. Designing for containers lets me extract the persistence code into a new component,
knowing the component can be deployed on the same infrastructure as the existing solution and
that it will inherit the existing levels of scalability and failover, if the application is deployed on

a cluster.

I can rely on the Docker platform and take a dependency on a new core component, the message
queue. The queue technology itself is enterprise-grade software, capable of processing hundreds
of thousands of messages per second. nats is free open source software that is available on
Docker Hub to drop straight into your solution, running as a container and connected to other

containers in the Docker network.

So far, I've used the container-first design and the power of Docker to modernize one part of

NerdDinner. Targeting a single feature means I can release this new version confidently, after
testing only the feature that's changed. If I wanted to add auditing to the create dinner feature, I
would just make an update to the message handler and I wouldn't need to do a full regression
test of the web application, because that component is not going to be updated.

Designing with containers in mind also gives me a foundation to add more features.

Adding new features in
containers

Decoupling components from a monolith has a beneficial side effect. The approach I've taken
has introduced a style of event-driven architecture for one feature. I can build on that to add new
features, again taking a container-first approach.

In NerdDinner there is a single data store, a transactional database stored in SQL Server. That's
fine to service the website, but it's limited when it comes to user-facing features, such as
reporting. There's no user-friendly way to search the data, build dashboards, or enable self-
service reporting.

An ideal solution for this would be to add a secondary data store, a reporting database, using a
technology which does provide self-service analytics. Without Docker that would be a major
project, needing a redesign or additional infrastructure or both. With Docker, I can leave the
existing application alone and add new features running in containers on the existing servers.

Elasticsearch is another enterprise-grade open source project which is available as a Windows
image on Docker Hub. Elasticsearch is a full search document data store which works well as a
reporting database, along with the companion product Kibana which provides a user friendly
web front end.

I can add self-service analytics for the dinners created in NerdDinner by running Elasticsearch
and Kibana in containers in the same network as the other containers. The current solution
already publishes events with dinner details, so to add dinners to the reporting database I need to
build a new message handler which subscribes to the existing events and saves the details in
Elasticsearch.

When the new reporting feature is ready, it can be deployed to production without any changes
to the running application. Zero-downtime deployment is another benefit of container-first
design. Features are built to run in decoupled units, so individual containers can be started or
upgraded without affecting other containers.

For the next feature, I'll add a new message handler which is independent of the rest of the
solution. If I needed to replace the implementation of the save-dinner handler, I could also do
that with zero-downtime, using the message queue to buffer events while replacing the handler.

Using Elasticsearch with Docker
and NET

Elasticsearch is such a widely useful technology that it's worth looking at in a little detail. It's a
Java application, but running in Docker you can treat it as a black box and manage it in the same
way as all other Docker workloads - you don't need to install Java or configure the JDK.
Elasticsearch exposes a REST API for writing, reading, and searching data, and there are client
wrappers for the API available in all major languages.

Data in Elasticsearch is stored as JSON documents, and every document can be fully indexed so
you can search for any value in any field. It's a clustered technology that can run across many
nodes for scale and resilience. In Docker, you can run each node in a separate container and
distribute them across your server estate to gain scale and resilience, but add the ease of
deployment and management you get with Docker.

The same storage considerations apply to Elasticsearch as with any stateful workload - in
development, you can save data inside the container, so when the container is replaced, you start
with a fresh database. In test environments, you can use a Docker volume mounted to a drive on
the host to keep persistent storage outside of the container. In production, you can use a volume
with a driver for an on-premises storage array or a cloud storage service.

There's an official Elasticsearch image on Docker Hub, but currently it only has Linux variants.
I have my own image on Docker Cloud which packages Elasticsearch into a Windows Docker
image. Running Elasticsearch in Docker is the same as starting any container. This command
exposes port 9200, which is the default port for the REST API:

docker container run -d -p 9200 °

--name elasticsearch °

--env ES_JAVA OPTS='-Xms512m -Xmx512m' °
sixeyed/elasticsearch:nanoserver

Elasticsearch is a memory-hungry application, and by default it allocates 2 GB of system
memory when it starts. In a development environment I don't need that much memory for the
database. I can configure that by setting the s _sava oprs environment variable. In this command
I limit Elasticsearch to 512 MB of memory.

Elasticsearch is a cross-platform application like nats. As with nats, I'm using the
8 Nano Server image to get the most lightweight runtime.

There is a NuGet package for Elasticsearch called NEST, which is an API client for reading and
writing data, and is targeted for the .NET Framework and .NET Core. I use that package in a
new .NET Core console project, nerdpinner.MessageHandlers.Indexbinner. 1he new console

app listens for the create dinner event message from nats and writes the dinner details as a

document in Elasticsearch.

The code to connect to the message queue and subscribe to messages is the same as the existing
message handler. [have a new pinner class, which represents the Elasticsearch document, so the
message handler code maps from the dinner entity to the dinner document and saves it in
Elasticsearch:

var eventMessage = MessageHelper.FromData<DinnerCreatedEvent>(e.Message.Data);
var dinner = Mapper.Map<documents.Dinner> (eventMessage.Dinner);

var node = new Uri(Env.ElasticsearchUrl);

var client = new ElasticClient (node);

client.Index (dinner, idx => idx.Index ("dinners")):;

Elasticsearch and the document message handler will run in a container, all in the same Docker
network as the rest of the NerdDinner solution. I can start the new containers while the existing
solution is running, as there are no changes to the web application or the SQL Server message
handler. Adding this new feature with Docker is a zero-downtime deployment.

The Elasticsearch message handler has no dependency on EF or any of the legacy code. I've
taken advantage of that to write the app in .NET Core, which gives me the freedom to run it in a
Docker container on Linux or Windows hosts. That means the Visual Studio solution has both
NET Framework and .NET Core application projects, and the apps both refer to a .NET
Standard assembly project. That setup needs a slightly more complicated build agent.

Building hybrid .NET
Framework and .NET Core
solutions in Docker

The multi-stage builds you've seen up until now have all used my sixeyed/msbui1d images on
Docker Cloud. Those images provide MSBuild and NuGet, and any extra packages needed to
build specific project types - like web projects and SQL Server projects. You can find the
Dockerfiles for those images on GitHub at sixeyed/dockerfiles-windows, and you'll see they're all
very simple.

I've been using the sixeyed/msbuild image as the build agent to compile individual .NET
Framework projects. You can build Visual Studio solutions with the MSBuild tool, and if there
are multiple .NET projects with project references, MSBuild will compile them in the correct
order. If your Visual Studio solution contains both .NET and .NET Core projects, you can't build
it with MSBuild alone - you need the .NET Core SDK too.

That's the case with NerdDinner in this chapter, so I have a new Docker image which packages
MSBuild and the .NET Core SDK and I can use that to compile the solution. The Dockerfile for
dockeronwindows/ch05-msbuild-dotnet 18 itself a multi-stage build, and the output is an image that
can be used to compile a hybrid .NET Framework and .NET Core solution.

The Dockerfile starts by installing Chocolatey and then using the choco command to install the
Visual Studio 2017 build tools and the NuGet command line. The build tools package contains
the latest release of MSBuild:

FROM microsoft/windowsservercore:10.0.14393.1198 AS buildtools
SHELL ["powershell", "-Command", "S$ErrorActionPreference = 'Stop';"]

RUN Invoke-WebRequest -UseBasicParsing https://chocolatey.org/install.psl | Invoke-Expression;
choco install -y visualstudio20l7buildtools --version 15.2.26430.20170605; °
choco install -y nuget.commandline --version 4.1.0

Running this in a separate stage means I can use Chocolatey for easy package install. In the final
image I'll copy the package output from this stage - but I won't copy Chocolatey itself. That
makes for a smaller and cleaner image for my build agent. The next stage uses Microsoft's .NET
Core image with the SDK installed. I don't add anything to this stage, I just reference the image
so I can copy the SDK from it in the final image:

|FROM microsoft/dotnet:1.1.2-sdk-nanoserver AS dotnet

The last stage puts together the build agent. It starts from Windows Server Core, sets file paths
as environment variables and copies the .NET Core SDK, MSBuild and NuGet from the earlier
stages:

FROM microsoft/windowsservercore:10.0.14393.1198
SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop'"]

ENV MSBUILD PATH="C:\Program Files (x86)\Microsoft Visual Studio\2017\BuildTools\MSBuild\15.0"
NUGET PATH="C:\ProgramData\chocolatey\lib\NuGet.CommandLine\tools"
DOTNET PATH="C:\Program Files\dotnet"

COPY --from=dotnet ${DOTNET PATH} ${DOTNET PATH}
COPY --from=buildtools ${MSBUILD PATH} ${MSBUILD PATH}
COPY --from=buildtools ${NUGET PATH} ${NUGET_ PATH}

Next I add packages for the .NET 4.5.2 targeting pack, web deploy, and the build targets for web
projects:

RUN Install-PackageProvider -Name chocolatey -RequiredVersion 2.8.5.130 -Force;
Install-Package -Name netfx-4.5.2-devpack -RequiredVersion 4.5.5165101 -Force;
Install-Package -Name webdeploy -RequiredVersion 3.6.0 -Force;

& nuget install MSBuild.Microsoft.VisualStudio.Web.targets -Version 14.0.0.3

I build this Dockerfile in the usual way, and the output is an image which has the complete
toolchain to compile a Hybrid .NET Framework and .NET Core solution.

Compiling the hybrid
NerdDinner solution

I'm taking a different approach to building NerdDinner in this chapter, one which fits nicely with
a CI process if you're mixing .NET Core and .NET Framework projects (I cover CI and CD with
Docker in Chapter 10, Powering a Continuous Deployment Pipeline with Docker). I'll compile the
whole solution in one image, and use that image as the build stage in my application
Dockerfiles.

This is how the build agent and builder images are used to package the application images for
this chapter:

‘ ch05-nerd-dimner-web

F /s
’
lé ————— ’[m | ch05-nerd-dinner-save-handler
N
[N |
N
N
ch05-msbuild-dotnet ‘ | ch05-nerd-dinner-builder | \\ m
4[||

All the tools I need to build the solution are in the build agent, so the Dockerfile for
dockeronwindows/ch05-nerd-dinner-builder 18 straightforward. It starts from the build agent and
copies in the source tree for the solution:

{ ch05-nerd-dinner-mdex-handler

escape="
FROM dockeronwindows/ch0O5-msbuild-dotnet

WORKDIR C:\src
COPY src .

Next it restores all the packages used in the projects, using dotnet restore for the .NET Core
projects and NuGet restore for the .NET Framework projects:

RUN dotnet restore; °
nuget restore -msbuildpath $env:MSBUILD PATH

The two steps are necessary, because the tooling is different. Package references for .NET Core
projects are listed inside the .csproj files, whereas for NET Framework projects they're in
packages.config. Both commands run from the verapinner.sin file, so I don't need to list
individual projects, and as the solution grows I won't need to update the builder.

There are only two more instructions in the builder, and they compile all the projects and
publish the applications:

RUN dotnet build .\NerdDinner.Messaging\NerdDinner.Messaging.csproj;
dotnet msbuild NerdDinner.sln

RUN dotnet publish .\NerdDinner.MessageHandlers.IndexDinner; °
msbuild .\NerdDinner\NerdDinner.csproj
/p:DeployOnBuild=true /p:OutputPath=c:\out\NerdDinner °
/p:VSToolsPath=C:\MSBuild.Microsoft.VisualStudio.Web.targets.14.0.0.3\tools\VSToo!

Again there are separate steps for the .NET Core and .NET Framework apps, because the tooling
1s not yet integrated. I expect later releases of MSBuild and .NET Core will have integrated
tooling, so the complexity of managing multiple toolchains will go away. Until then, you can
use Docker to isolate the complexity - building all the tools into one image, which lets you have
a clean builder image with no clutter for the tooling.

The disadvantage of this approach is that there's no use of the Docker cache. The whole source
tree 1s copied into the image as the first step. Whenever there is a code change the build will
update the packages, even if the package references haven't changed. You could write this
builder differently, to copy in the .sin, .csproj, and package.config files first for the restore phase,
and then copy in the rest of the source for the build phase.

That would give you package caching and a faster build, at the cost of a more brittle Dockerfile -
you'd need to edit the initial file list every time you add or remove a project.

You can choose the approach that works best with your processes. In the case of a more
complex solution like this, developers may build and run the app from Visual Studio, and only
build the Docker images to run tests before checking in code. In that case, the slower Docker
image build is not an issue (I discuss the options for running your application in Docker while
you're developing it in Chapter 11, Debugging and Instrumenting Application Containers).

One thing is different in how this image is built. The Dockerfile copies in the src folder, which
is one level higher than the folder where the Dockerfile lives. To make sure the src folder is
included in the Docker context, I need to run the vuiid image command from the cnos folder, and
specify the path to the Dockerfile with the --fi1e option:

docker image build °
--tag dockeronwindows/ch05-nerd-dinner-builder °
--file chO05-nerd-dinner-builder\Dockerfile .

Building the image compiles and packages all the projects, so I can use that image as the source
stage in the application Dockerfiles. I only need to build the builder once, and then I can use it to
build all the other images.

Packaging .NET Core console
apps in Docker

In Chapter 3, Developing Dockerized .NET and .NET Core Applications, 1 built the replacement
NerdDinner home page as an ASP.NET Core web application, and in this chapter, I have the
Elasticsearch message handler as a NET Core console application. In this case the application
can be packaged as a Docker image using the microsoft/dotnet image from Microsoft on Docker
Hub.

The Dockerfile for dockeronwindows/ch05-index-handler USES multi-stage bUildS, with the builder
image as the source:

escape="
FROM dockeronwindows/chO5-nerd-dinner-builder AS builder

app image
FROM microsoft/dotnet:1.1.2-runtime-nanoserver

SHELL ["powershell", "-Command", "S$ErrorActionPreference = 'Stop';"]

ENV ELASTICSEARCH URL="http://elasticsearch:9200" °
MESSAGE QUEUE URL="nats://message-queue:4222"

CMD ["dotnet", "NerdDinner.MessageHandlers.IndexDinner.dl1l"]

WORKDIR /index-handler
COPY --from=builder C:\src\NerdDinner.MessageHandlers.IndexDinner\bin\Debug\netcoreappl.l\pub!

The content is very similar to the .NET Frameworks console app used for the SQL Server
message handler. The differences are the rrom image—here I'm using the .NET Core runtime
image, and the cwp instruction—here it's the dotnet command running the console application
DLL. Both the message handlers use the builder image as the source for copying the compiled
application, and then set up the environment variables and startup commands they need.

The index handler application uses environment variables for configuration, specifying the
URLSs for the message queue and the Elasticsearch API. These values have defaults set in the
Dockerfile in the same way as the other NerdDinner components, because I'll control the
deployment stack and can safely rely on these values. The start up command runs the .NET Core
application, which writes log entries to the console and stays alive with a manuairesetrvent Object,
so it integrates well with Docker.

When the application runs, it will listen for messages from nats, with the create dinner message
subject. When events are published from the web application, nats will send copies to every
subscriber, so the SQL Server save handler and the Elasticsearch index handler will both get
copies of the event. The event message contains enough detail for both handlers to operate. If a
future feature requires more detail, then the web app can publish a new version of the event with
additional information, but the existing message handlers would not need to change.

Running another container with Kibana will complete this feature and add self-service analytics

to NerdDinner.

Providing analytics with Kibana

Kibana is an open source web frontend for Elasticsearch, which gives you visualizations for
analytics and the ability to search for specific data. It's produced by the company behind
Elasticsearch and is very widely used because it provides a user friendly way to navigate around
huge quantities of data. You can explore the data interactively, and power users can build
comprehensive dashboards to share with others.

The latest version of Kibana is a Node.js application, so like Elasticsearch and nats, it's a cross-
platform application, which you can find packaged on Docker Hub with Linux and Windows
variants. The Kibana image is built using the same convention-based approach that I've used in
the message handlers—it expects to connect to a container called e1asticsearch on the default
API port 9200.

In the source code directory for this chapter, there is a second PowerShell script which deploys
the containers for this feature. chos-run-nerd-dinner part-2.ps1 starts the additional Elasticsearch,
Kibana, and index handler containers—it assumes the other components are already running
from the part-1 script:

docker container run -d -p 9200 °
--name elasticsearch °
sixeyed/elasticsearch:nanoserver

docker container run -d -p 5601 °
--name kibana °
sixeyed/kibana:nanoserver;

docker container run -d °
--name nerd-dinner-index-handler °
dockeronwindows/chO5-nerd-dinner-index-handler;

The full stack is running now. When I add a new dinner, I will see the logs from the message
handler containers showing the data is now being saved to Elasticsearch as well as to SQL
Server:

> docker container logs nerd-dinner-save-handler

Connecting to message queue url: nats://message-queue:4222

Listening on subject: events.dinner.created, queue: save-dinner-handler

Received message, subject: events.dinner.created

Saving new dinner, created at: 6/24/2017 10:58:31 PM; event ID: a7530414-d2ad-407a-9b03-ade7a:
Dinner saved. Dinner ID: 2; event ID: a7530414-d2ad-407a-9b03-ade7a22flf7e

> docker container logs nerd-dinner-index-handler

Connecting to message queue url: nats://message-queue:4222

Listening on subject: events.dinner.created, queue: index-dinner-handler

Received message, subject: events.dinner.created

Indexing new dinner, created at: 6/25/2017 12:13:13 AM; event ID: a7530414-d2ad-407a-9b03-ade"

Kibana runs on port 5601, so I can fetch the container IP address and navigate to that port in the
browser. The only configuration the launch screen needs is the name of the document collection
- which Elasticsearch calls an index. In this case, the index is called dinners. I've already added
a document Kibana, so can access the Elasticsearch metadata to determine the fields in the
documents:

© @

o <

l« O A <
=

1§ Upcoming Nerd Dinners

4 Kitana

-} m - ¢©

C 1} ® 17226.204.1765601/app/kibana ¥ M || Qr Search Google

Visualize

Dashboard

Timelion

Dev Tools

Management

Collapse

Management / Kibana

Index Patterns Saved Objects Advanced Settings

No default

index pattern. You must

select or create one to
continue,

Configure an index pattern

In order to use Kibana you must configure at least one index pattern. Index patterns are used to identify the
Elasticsearch index to run search and analytics against. They are also used to configure fields.

[l Index contains time-based events

Index name or pattern

Patterns allow you to define dynamic index names using * as a wildcard. Example: logstash-*

dinners

Every dinner created will now be saved in the original transactional database, SQL Server, and

also in the new reporting database, Elasticsearch. Users can create visualizations over
aggregated data—Ilooking for patterns in popular times or locations, and they can search for
particular dinner details and retrieve specific documents:

L]

®

<
H
+:

©@ m

o <

% 1} Upcoming Nerd Dinners

kibana

Discover
Visualize
Dashboard
Timelion
Dev Tools

Management

Collapse

[kicana

1 hit

winops

Selected Fields
7 _source
Available Fields n

t_id

r _index

_score

t _type

t country
@ eventDate
@ location

t titde

-

[+] W - O x
C' 1} ® 17226204.176:5601/app/kibana ¥ M || Qr Search Google

v

New Save Open Share o

_source

title: [WROPS: Docker on Windows Workshop eventDate: September 20th 2017, 10:30:00.000 country: U
K location: { "lat": 51.5185737609863, "lon": -0.0862570032477379 } _id: AVzcnwyuduS7I7mDubet

_type: dinner _index: dinners _score: -

Lirk to /dinners/dinner/AvzcrwvuduS7I7mbubet

Table 150N

- Ay I | @ @ M * AvzcnwyuiduS7I7mDubet
t _index @ 6 [M % dinners

_score aad*« -

t _type @ g [@ % dinner

t country @ a0 #* UK

@ eventDate @ Q [0 % September 20th 2017, 10:30:00.000

@ location @ & @M * {

"lat™: 51.5185737609863,
"lon™: -0.0862570032477379
¥

title @ QO % -: Docker on Windows Workshop

Elasticsearch and Kibana are hugely capable software systems. I won't cover
them in any further detail in this book, but they are popular components with a

lot of online resources if you want to learn more.

From monolith to distributed
solution

NerdDinner has evolved from a legacy monolith to an easily scalable, easily extensible solution
running on a modern application platform using modern design patterns. It's been a fast and low
risk evolution, powered by the Docker platform and container-first design.

The project started by migrating NerdDinner to Docker as-is, running containers for the web
application and the SQL Server database. Now I have eight components, each running in a
lightweight Docker container and each capable of being independently deployed, so they can
follow their own release cadence:

Public entrypoint

i
lnerd-dinner-homepage ‘ ‘ nerd-dinner-web ‘ nerd-dinner-db

o o o

‘ index-handler ‘ ‘ message-queuc ‘ save-handler

Docker Network

One of the great benefits of Docker is the huge library of packaged software available to add to
your solution. The official images on Docker Hub are enterprise-grade open source software
systems that have been tried and trusted by the community for years. Certified images on
Docker Store provide commercial software which is guaranteed to work correctly on Docker
EE.

More and more software packages are becoming available for Windows in easily-consumed
Docker images, giving you the scope to add features to your application without significant
development.

The new custom components in the NerdDinner stack are the message handlers—both simple

console applications of around 100 lines of code. The save dinner handler uses the original code
from the web application and uses the EF model - which I refactored into its own project to
enable that reuse. The index dinner handler uses all new code written in .NET Core, which
makes it efficient and portable at runtime, but at build time, all the projects are in a single Visual
Studio solution.

The container-first approach is about breaking features into discrete components and
designing these components to run in containers, either as small custom applications you write
yourself, or as off-the-shelf images from Docker Hub. The feature-driven approach means you
focus on an area that is valuable to the project's stakeholders:

e To the business because it gives them new functionality or more frequent releases

e To operations because it makes the application more resilient and easier to maintain

e To the development team because it addresses technical debt and allows greater
architectural freedom

Managing build and deployment
dependencies

In the current evolution, NerdDinner has a well-structured and logical architecture, but
practically it has a lot of dependencies. The container-first design approach gives me technology
stack freedom, but that can lead to a lot of new technologies. If you were to join the project at
this stage and wanted to run the application locally, outside of Docker, you'd need the following:

Visual Studio 2017

.NET Core 1.1.2 runtime and SDK 1.0.4
IIS and ASP.NET 4.5

SQL Server

nats, Elasticsearch, and Kibana

If you join the project and you have Docker for Windows installed, you don't need any of those
dependencies. When you've cloned the source code, you can build and run the whole application
stack with Docker. You can even develop and debug the solution with Docker and a lightweight
editor like VS Code, removing even the dependency for Visual Studio.

This also makes continuous integration very easy - your build servers only need Docker installed
to build and package the solution. You can use disposable build servers, spinning up a VM when
you have builds queued and then destroying the VM when the queue is empty. You don't need
complex initialization scripts for the VM, just a scripted Docker install.

There are still runtime dependencies for the solution, which I'm currently managing with a script
that starts all the containers with the right options and in the right order. This is a brittle and
limited approach - the script has no logic to handle any failures or to allow for a partial start
where some containers are already running. I'll address this in the next chapter using Docker
Compose to define and run the whole solution.

Summary

In this chapter, I looked at the container-first solution design, making use of the Docker platform
at design time to easily and safely add features to your application. I covered a feature-driven
approach to modernizing an existing software project, which maximizes return on investment
and gives clear visibility on progress.

The container-first approach to features lets you use production-grade software from Docker
Hub or Docker Store to add capabilities to your solution, with official and certified images that
are high-quality curated applications. You can add these off-the-shelf components, and focus on
building small custom components to complete features. Your application will evolve to be
loosely coupled, so individual elements can each have the most appropriate release cycle.

The speed of development in this chapter has outpaced operations, so we currently have a well-
architected solution that is fragile to deploy. In the next chapter, I'll introduce Docker Compose,
which provides a clear and uniform way to describe and manage multi-container solutions.

Organizing Distributed
Solutions with Docker Compose

Shipping software is an integral part of the Docker platform. The public registries on Docker
Hub, Docker Cloud, and Docker Store make it easy to design a distributed solution using tried-
and-tested components. In the previous chapter, I showed how to integrate these components
into your own solution, taking a container-first design approach. The end result is a distributed
solutionA with several moving parts. In this chapter, you'll learn how to organizeA all those
moving parts into one unit using Docker Compose.

Docker Compose is another open source product from Docker, Inc., which extends the Docker
ecosystem. The Docker Command LineA InterfaceA (CLI) and Docker API work on
individual resources, such as images and containers. Docker Compose works on a higher level
of services applications. An application is a single unit composed of multiple resources, which
are Docker containers, networks, and volumes at runtime.A You use compose to define all the
resources of the application and the dependencies between them.

There are two parts to Docker Compose. The design-time element captures the application
definition in a YAML file, and at runtime, Docker Compose can manage an application from the
YAML file. I'll cover both these parts in this chapter, showing you how to:

Define distributed solutions with the Docker Compose file format

Start, stop, upgrade, and scale applications using Docker Compose
Manage containers and images with Docker Compose

Structure Docker Compose files to support multiple environments

Docker using the PowerShell installer, that doesn't give you compose. You can

Docker Compose is installed as part of Docker for Windows CE. If you install
0 download it from the releases on GitHub at docker/compose.

Defining applications with
Docker Compose

The Docker Compose file format is very simple. YAML is a human-readable superset of JSON,
and the Compose file specification uses descriptive attribute names. In the Compose file, you
define the services, networks, and volumes that make up your application. Networks and
volumes are the same concepts that you use with the Docker engine. Services are an abstraction
over containers.

A container is a single instance of a component, but a service can be multiple instances of the
same component running in different containers. You could have three containers in the service
used for your web application and two containers in the service you use for a message handler:

Jad
e

4 1

| e 1
message-queue — L
message-handler

A service is like a template to run a container from an image, with a known configuration. Using
services, you can scale up components of the application—running multiple containers from the
same image and configuration and managing them as a single unit. Services are not used in the
standalone Docker engine, but they are used in Docker Compose and also with a cluster of
Docker engines running in the swarm mode (which I cover in the next chapter).

Docker provides discoverability for services in the same way that it does for containers.
Consumers access the service by name, and Docker can load-balance requests across multiple
containers in a service. The number of instances in the service is transparent to consumers; they
always refer to the service name, and they are always directed to a single container by Docker.

In this chapter, I'll use Docker Compose to organize the distributed solution I built in the
previous chapter, replacing the brittle docker container run PowerShell scripts with a reliable and
production-ready Docker Compose file.

Capturing service definitions

Services can be defined in any order in the Compose file. To make it easier to read, I prefer to
start with the simplest services, which have no dependencies—infrastructure components such
as message queue and databases.

Docker Compose files are conventionally called docker-compose.ym1, and they start with an
explicit statement of the API version; the latest is version 3.3. Application resources are defined
at the top level—this is a template Compose file with sections for services, networks, and
volumes:

version: '3.3'

services:
networks:

volumes:

All resources need a unique name, and the name is how resources refer to other resources.
Services may have a dependency on networks, volumes, and other services, which are all
captured by name. The configuration for each resource is in its own section, and the attributes
available are broadly the same as the respective create command in the Docker CLI such

as docker network create aNd docker volume create.

In this chapter, I'll build a Compose file for the distributed NerdDinner application and show
you how to use Docker Compose to manage the application. I'll start my Compose file with the
common services first.

Defining infrastructure services

The simplest service I have is the message queue, nats, which has no dependencies. Each service
needs a name and the image name to start containers from. Optionally, you can include start up
parameters that you would use in docker container run. For the nats message queue, I add a
network name, which means any containers created in this service will all be attached to the na-
net network:

message-queue:
image: nats:nanoserver
networks:
- nd-net

In this service definition, I have all the parameters required to start message queue containers:

e nessage-queue: This is the name of the service; this becomes the DNS entry for other
services to access nats.

e image: This is the full name of the image to start containers from. In this case, it's the
official nats:nanoserver image from the public Docker Hub, but you can also use an image
from a private registry by including the registry domain in the image name.

e networks: This is a list of the networks to connect containers to when they start. This service
connects to one network named nd-net. This will be a Docker network used for all the
services in this application. Later in the Docker Compose file, I'll explicitly capture the
details of the network.

I haven't published any ports for the nats service. The message queue is used only
internally by other containers. Within a Docker network, containers can access
ports on other containers without them being published to the host. This keeps the
message queue secure, as it is only accessible through the Docker platform by
other containers in the same network. No external server and no applications
running on the server can access the message queue.

The next infrastructure service is Elasticsearch, which also has no dependencies on other
services. It will be used by the message handler that also uses the nats message queue, so [will
need to join all these services to the same Docker network. For Elasticsearch, I also want to limit
the amount of memory it uses and use a volume for the data so it will be stored outside of the
container:

elasticsearch:
image: sixeyed/elasticsearch:nanoserver
environment:
- ES_JAVA OPTS=-Xms512m -Xmx512m
volumes:
- es-data:C:\data
networks:
- nd-net

Here, c1asticsearcn 1s the name of the service and sixeyed/elasticsearch 1s the name of the image,
which is my public image on Docker Cloud. I'm connecting the service to the same na-

net network, and I also mount a volume to a known location in the container. When
Elasticsearch writes data to c:\data on the container, it will actually be stored in a volume.

Just like with networks, volumes are first-class resources in the Docker Compose file. For
Elasticsearch, I'm mapping a volume called es-data to the data location in the container. I'll
specify how the es-data volume should be created later in the Compose file.

Kibana is the first service that is available outside of the Docker network, so I need to publish
ports, and it's the first that depends on another service. I can capture both these attributes in the
service definition:

kibana:
image: sixeyed/kibana:nanoserver
ports:
- "5601:5601"
depends_on:
- elasticsearch
networks:
- nd-net

Port publishing is the same in Docker Compose as it is when running a container. You specify
which container port to publish and which host port it should publish to, so Docker routes
incoming host traffic to the container. The ports section allows multiple mappings, and you can
optionally specify TCP or UDP protocols if you have a specific requirement.

The depends_on attribute shows how to capture dependencies between services. In this case, as
Kibana is dependent on Elasticsearch, Docker will ensure the e1asticsearcn service is up and
running before starting the xivana service.

Containers for the Kibana service also connect to the application network. In an alternative
configuration, I could have separate backend and frontend networks. All the infrastructure
services would connect to the backend network, and the public-facing services would connect to
the backend and frontend networks. These are both Docker networks, but separating them would
give me the flexibility to configure the networks differently.

Configuring application services

The infrastructure services I've specified so far haven't needed application-level configuration.
I've configured the integration points between the containers and the Docker platform with
networks, volumes, and ports, but the applications use the configuration built into each Docker
image.

The Kibana image connects to Elasticsearch by convention using the hostname eiasticsearch,
which is the service name ['ve used in the Docker Compose file to support that convention. The
Docker platform will route any requests to the e1asticsearch hostname to the service, load-
balancing between containers if there are multiple containers running the service, so Kibana will
be able to find Elasticsearch at the expected domain name.

My custom applications need configuration settings specified, which I can include in the
Compose file using environment variables. Defining environment variables for a service in the
Compose file sets these environment variables for every container running the service.

The index-dinner message handler service subscribes to the nats message queue and creates
documents in Elasticsearch, so it needs to connect to the same Docker network, and it also
depends on these services. I can capture these dependencies in the Compose file and specify the
configuration for the application:

nerd-dinner-index-handler:
image: dockeronwindows/chO5-nerd-dinner-index-handler
depends_on:
- elasticsearch
- message-gqueue
environment:
- ELASTICSEARCH URL=http://elasticsearch:9200
- MESSAGE QUEUE_URL=nats://message-queue:4222
networks:
- nd-net

Here, I'm using the environment section to specify two environment variables—each with a key-
value pair—to configure the URLs for the message queue and Elasticsearch. These are actually
the default values baked into the message handler image, so I don't need to include them in the
Compose file, but it's useful to explicitly set them.

You can think of the Compose file as the complete deployment guide for the
8 distributed solution. If you explicitly specify the environment values, it makes it

clear what configuration options are available.

Storing configuration variables in plain text is fine for simple application settings, but using a
separate environment file is better for sensitive values, which is the approach I used in the
previous chapter. This is also supported in the Compose file format. For the database service, 1
can use an environment file for the administrator password, specified with the env-ri1e attribute:

nerd-dinner-db:
image: dockeronwindows/ch03-nerd-dinner-db

env_file:
- db-credentials.env
volumes:
- db-data:C:\data
networks:
- nd-net

When the database service starts, Docker will set up the environment variables from the file
called ab-credentials.env. I've used a relative path, so that file needs to be in the same location as
the Compose file. Like earlier, the contents of that file are key-value pairs, with one line per
environment variable. In this file, I've included the connection strings for the application as well
as the password for the database, so the credentials are all in one place:

sa password=4jsZedB32!iSm
AUTH DB CONNECTION STRING=Data Source=nerd-dinner-db,1433;Initial Catalog=NerdDinner...
APP DB CONNECTION STRING=Data Source=nerd-dinner-db,1433;Initial Catalog=NerdDinner...

The sensitive data is still in plain text, but by isolating it in a separate file, I can do two things.
First, I can secure the file to restrict access. Second, I can take advantage of the separation of the
service configuration from the application definition and use the same Docker Compose file for
different environments, substituting different environment files.

Environment variables are not secure even if you secure access to the file. You
can view environment variable values when you inspect a container, so anyone
with access to the Docker API can read this data. For sensitive data such as
passwords and API keys, you should use Docker secrets with Docker swarm,
which I cover in the next chapter.

For the save-dinner message handler, I can make use of the same environment file. The handler
depends on the message queue and database services, but there are no new attributes in this
definition:

nerd-dinner-save-handler:
image: dockeronwindows/ch05-nerd-dinner-save-handler
depends_on:
- nerd-dinner-db
- message-gqueue
env file:
- db-credentials.env
networks:
- nd-net

The last service is the website itself. Here, I will use a combination of environment variables and
environment files. Variable values that are typically consistent across environments can be
explicitly stated to make the configuration clear. Sensitive data can be read from separate files—
in this case, containing the database credentials and the API keys:

nerd-dinner-web:
image: dockeronwindows/ch05-nerd-dinner-web
ports:
- "80:80"
environment:
- HOMEPAGE URL=http://nerd-dinner-homepage
- MESSAGE QUEUE_URL=nats://message-queue:4222
env_file:
- api-keys.env
- db-credentials.env

depends_on:
- nerd-dinner-homepage
- nerd-dinner-db
- message-gqueue
networks:
- nd-net

The website containers need to be publicly available, so I publish the port exposed in the image.
The application needs access to the other services, so it's connected to the same network. The
home page service is also defined in the Compose file, but there is no configuration required, so
that's a simple definition with just the image and network attributes.

All the services are configured now, so I just need to specify the network and volume resources
to complete the Compose file.

Specifying application resources

Docker Compose separates network and volume definitions from service definitions, which
allows flexibility between environments. I'll cover this flexibility later in the chapter, but to
finish the NerdDinner Compose file, I'll start with the simplest approach using default values.

The services in my Compose file all use a network called na-net, which needs to be specified in
the Compose file. Docker networks are a good way to segregate applications. You could have
several solutions that all use Elasticsearch but that have different SLAs and storage
requirements. If you have a separate network for each application, you can run separate
Elasticsearch services, individually configured for each application, but all named e1asticsearch.
This keeps to the expected conventions but segregates by the network so services only see the
Elasticsearch instance in their own network.

Docker Compose can create networks at runtime, or you can define the resource to use an
external network that already exists on the host. This specification for the NerdDinner network
uses the default nat network that Docker creates when it is installed, so this setup will work for
all standard Docker hosts:

networks:
nd-net:
external:
name: nat

Volumes also need to be specified. Both of my stateful services, Elasticsearch and SQL Server
—use named volumes for data storage, es-data and nd-data, respectively. Like networks,
volumes can be specified as external so Docker Compose will use existing volumes. There are
no default volumes, though, so if I use an external volume, I would need to create it on each host
before running the application. Instead, I'll specify the volumes without any options, so Docker
Compose will create them for me:

volumes:
es-data:
db-data:

These volumes will store the data on the host rather than in the container's writeable layer.
They're not host-mounted volumes, so although the data is stored on the local disk, I'm not
specifying the location. Each volume will write its data in the Docker data directory,
c:\programpata\bocker. I'll look at managing these volumes later in the chapter.

My Compose file has services, networks, and volumes all specified, so it's ready to run.

Managing applications with
Docker Compose

Docker Compose presents a similar interface to the Docker CLI. The docker-compose command
uses some of the same command names and arguments for the functionality it supports—which
is a subset of the functionality of the full Docker CLI. When you run commands through the
compose CLI, it sends requests to the Docker engine to act on the resources in the Compose file.

Compose treats all the resources in a Compose file as a single application, and to disambiguate
applications running on the same host, the runtime adds a project name to all the resources it
creates for the application. When you run an application through compose and then look at the
containers running on your host, you won't see a container with a name that exactly matches the
service name. Compose adds the project name and an index to container names in order to
support multiple containers in the service.

Running applications

I have the first Compose file for NerdDinner in the chos6-docker-compose directory, which also
contains the environment variable files. From that directory, I can start the whole application
with a single docker-compose command:

> docker-compose up -d

Creating volume "chO6édockercompose_db-data" with default driver
Creating volume "chO6édockercompose_es-data" with default driver
Creating chO6dockercompose nerd-dinner-homepage 1 ...

Creating chO6édockercompose_elasticsearch 1 ...

Creating chO6dockercompose nerd-dinner-db 1 ...

Creating chO6dockercompose message-queue 1 ...

Creating chO6dockercompose nerd-dinner-index-handler 1 ...
Creating chO6édockercompose nerd-dinner-web 1 ...

Creating chO6dockercompose nerd-dinner-save-handler_ 1 ...

e The uwp command is used to start the application, creating networks, and volumes and
running containers
e The -a option runs all the containers in the background; it's the same as the --detacn option

1N docker container run

You can see that Docker Compose creates all the services in a dependency order. Services
without any dependencies are created first, and when they're running, the application services
are started—the web and save-handler services are the last of all, as they have the most
dependencies.

The names in the output are individual container names, with the naming format

{project} {service} {index}. Each service has only one container running, which is the default, so
the indexes are all 1. The project name is a sanitized version of the directory name where I ran
the compose command.

When you run a docker-compose command and it completes, you can manage the containers with
Docker Compose or with the standard Docker CLI. The containers are just normal Docker
containers, with some extra metadata used by compose to manage them as a whole unit. Listing
containers shows me all the service containers created by compose:

> docker container ls

CONTAINER ID IMAGE COMMAND CREATEI
e264defce984 dockeronwindows/ch05-nerd-dinner-save-handler "NerdDinner .Messag..." 6 minut
d4ad2405a76b dockeronwindows/ch05-nerd-dinner-web "powershell C:\\boo..." 6 minut
7a858e0d8019 sixeyed/kibana:nanoserver "powershell -Comma..." 6 minut
2c235ad3f2ab dockeronwindows/ch05-nerd-dinner-index-handler "dotnet NerdDinner..." 6 minut
9de3ed80lccb sixeyed/elasticsearch:nanoserver "powershell -Comma..." 7 minut
abb480eb4416 dockeronwindows/ch06-nerd-dinner-db "powershell -Comma..." 7 minui
a3df821dl47a nats:nanoserver "gnatsd -c gnatsd...." 7 minut
9e30bcae2a67 dockeronwindows/ch03-nerd-dinner-homepage "dotnet NerdDinner..." 7 minut

The container running the website is called cno 6dockercompose nerd-dinner-web 1, and I can inspect
that container to get the IP address and test the website. Both the NerdDinner site and the
Kibana analytics will behave as expected because the full configuration is captured in the

Compose file, and all the components are started by Docker Compose.

This is one of the most powerful features of the Compose file format. The file contains the
complete specification to run your application, and anyone can use it to run your app. In this
case, all the NerdDinner components are images on public registries, so anyone can start the app
from this Compose file. You don't need any prerequisites other than Docker and Docker
Compose to run NerdDinner, which is now a distributed application containing .NET
Framework, .NET Core, Java, Go, and Node.js components.

Scaling application services

Docker Compose lets you scale services up and down easily, adding or removing containers to a
running service. When a service is running with multiple containers, it's still accessible to other
services in the network. Consumers use the service name for discovery and the DNS server in
Docker load balances requests across all the containers in the service.

Adding more containers doesn't automatically give scale and resilience to your service, though;
that depends on the application running the service. You won't get a SQL Server failover cluster
just by adding another container to a SQL database service because SQL Server needs to be
explicitly configured for failover. If you add another container, you'll just have two distinct
database instances with separate data stores.

Web applications typically scale well if they are designed to support scale-out. Stateless
applications can run in any number of containers because any container can handle any request.
But if your application maintains the session state locally, requests from the same user need to
be handled by the same service, which prevents you from load-balancing across many
containers.

Services that publish ports to the host can't be scaled if they're running on a single Docker
engine. Ports can have one only operating system process listening on them, and that's also true
for Docker—you can't have the same host port mapped to multiple container ports. On a Docker
swarm where you have multiple hosts, you can scale services with published ports, and Docker
will run the containers on different hosts.

In NerdDinner, the message handlers are truly stateless components. They receive a message
from the queue that contains all the information they need, and they process it. The nats supports
grouping of subscribers on the same message queue, which means I can have several containers
running the save-dinner handler, and nats will ensure only one handler gets a copy of each
message, so | don't have duplicate message processing. The code in the message handlers
already takes advantage of that.

Scaling up the message handler is something I can do at peak time in order to increase the
throughput for message processing. I can do that with the uwp command and the --scaie option,
specifying the service name and the desired number of instances:

> docker-compose up -d --scale nerd-dinner-save-handler=3

ch06dockercompose nerd-dinner-homepage_ 1 is up-to-date
ch06dockercompose nerd-dinner-db_1 is up-to-date
chO6édockercompose message-queue 1 is up-to-date
chO6édockercompose_elasticsearch 1 is up-to-date
chO6dockercompose _kibana 1 is up-to-date

chO6dockercompose nerd-dinner-index-handler 1 is up-to-date
Starting chOédockercompose nerd-dinner-save-handler 1 ...
Creating chO6dockercompose nerd-dinner-save-handler 2 ...
Creating chO6dockercompose nerd-dinner-save-handler_ 3 ...

Docker Compose compares the state of the running application with the configuration in the

Compose file and the overrides specified in the command. In this case, all the services are
unchanged except for the save-dinner handler, so they are listed as up to date. The save-handler
has a new service level, so Docker Compose adds two more containers.

With three instances of the save-message handler running, they share the incoming message load
in a round-robin approach. That's a great way to increase the scale. The handlers concurrently
process messages and write to the SQL database, which increases the throughput for saves and
reduces the time taken for messages to be handled. But there is still a strict limit to the number
of processes writing to SQL Server, so the database is unlikely to become a bottleneck.

I can create multiple dinners through the web application, and the message handlers will share
the load when the event messages are published. I can see in the logs that different handlers
process different messages, and there is no duplicate processing of events:

PS> docker container logs chO6dockercompose nerd-dinner-save-handler 1

Received message, subject: events.dinner.created

Saving new dinner, created at: 6/25/2017 7:34:24 PM; event ID: 39b4c8d2-a9ad-4bf0-9e58-f60edfc¢
Dinner saved. Dinner ID: 1; event ID: 39b4c8d2-a9ad-4bf0-9e58-f60edfc57a84

PS> docker container logs chO6dockercompose nerd-dinner-save-handler_ 2

Received message, subject: events.dinner.created

Saving new dinner, created at: 6/25/2017 7:47:37 PM; event ID: f£f636870-049b-4328-87a4-e32dfac
Dinner saved. Dinner ID: 2; event ID: f£f636870-049b-4328-87a4-e32dfacb79db

PS> docker container logs chO6édockercompose nerd-dinner-save-handler 3

Received message, subject: events.dinner.created

Saving new dinner, created at: 6/25/2017 7:47:43 PM; event ID: eedeb29d-9d4c-4411-abb5-ac6501]
Dinner saved. Dinner ID: 3; event ID: eedeb29d-9d4c-441l1-abb5-acé650llaace6

Stopping and starting
application services

There are several commands to manage container life cycle in Docker Compose. It's important
to understand the differences between the options so you don't remove resources unexpectedly.

The up and down commands are blunt tools to start and stop the whole application.

The uwp command creates any resources in the Compose file that don't exist, and it creates and
starts containers for all the services. The down command does the reverse—it stops any running
containers and removes the application resources. Containers and networks are removed if they
were created by Docker Compose, but volumes are not removed—so any application data you
have is retained.

The stop command just stops all the running containers without removing them or other
resources. Stopping the container ends the running process with a graceful shutdown.

The xi11 command stops all the containers by forcibly ending the running process. Stopped
application containers can be started again with start, which runs the entry point program in the
existing container.

Stopped containers retain all their configuration and data but don't use any compute resources.
Starting and stopping containers is a very efficient way to switch context if you work on
multiple projects. If I'm developing on NerdDinner when another piece of work comes in as a
priority, I can stop the whole NerdDinner application to free up my development environment:

PS> docker-compose stop

Stopping chO6dockercompose nerd-dinner-save-handler 3 ... done
Stopping chOédockercompose nerd-dinner-save-handler 2 ... done
Stopping chO6dockercompose_nerd-dinner-save-handler 1 ... done
Stopping chOédockercompose_nerd-dinner-web_1 ... done

Stopping chO6dockercompose_kibana 1 ... done

Stopping chOédockercompose nerd-dinner-index-handler 1 ... done
Stopping chO6dockercompose_elasticsearch_1 ... done

Stopping chO6dockercompose message-queue_l ... done

Stopping chOédockercompose nerd-dinner-db_1 ... done

Stopping chOédockercompose_nerd-dinner-homepage 1 ... done

Now I have no containers running, and I can switch to the other project. When that work is
done, I can fire up NerdDinner again by running docker-compose start.

Stopping a container releases the IP address used by the container, and starting
it again allocates a new IP address. This is transparent to other services and
external consumers, but in your development environment, you will need to
inspect web containers to find the new IP address to browse to.

You can also stop individual services by specifying a name, which is very useful if you want to
test how your application manages failures. I can check how the index-dinner handlers behave if
they can't access Elasticsearch by stopping the Elasticsearch service:

> docker-compose stop elasticsearch
Stopping chO6dockercompose_elasticsearch 1 ... done

All of these commands are processed by comparing the Compose file to the service running in
Docker. You need to have access to the Docker Compose file in order to run any compose
commands. This is one of the biggest drawbacks of using Docker Compose on a single host to
run your applications. The alternative is to use the same Compose file but to deploy it as a stack
to a Docker swarm, which I'll cover in the next chapter.

Upgrading application services

If you run docker compose up repeatedly from the same Compose file, no changes will be made
after the first run. Docker Compose compares the configuration in the Compose file with the
active containers at runtime and won't change resources unless the definition has changed. This
means you can use Docker Compose to manage application upgrades.

My Compose file is currently using the database service from the image I built in Chapter 3,
Developing Dockerized .NET and .NET Core Applications, tagged dockeronwindows/ch03-nerd-
dinner-db. For this chapter, I've added audit fields to the tables in the database schema and built a
new version of the database image, tagged dockeronwindows/ch06-nerd-dinner-db.

I have a second Compose file in the same chos-docker-compose directory, called docker-compose-do-
upgrade.ynl. In the second file, all the service definitions are the same as the first file, except the
database that uses the new image:

nerd-dinner-db:
image: dockeronwindows/ch06-nerd-dinner-db
env_file:
- db-credentials.env
volumes:
- db-data:c:database
networks:
- nd-net

While the application is running, I can execute docker compose up -d again, specifying the new
Compose filename. Docker Compose sees that the database definition has changed and recreates
the service using the new database image:

> docker-compose -f docker-compose-db-upgrade.yml up -d

Recreating chOédockercompose nerd-dinner-db 1 ...
ch06dockercompose_elasticsearch_1l is up-to-date
chO06dockercompose message-queue_l is up-to-date

Recreating chOé6dockercompose nerd-dinner-db 1
chO6édockercompose_nerd-dinner-homepage 1 is up-to-date
chO6dockercompose _kibana 1 is up-to-date

Recreating chOédockercompose nerd-dinner-db_1 ... done
Recreating chOédockercompose nerd-dinner-web_ 1 ...
Recreating chOédockercompose nerd-dinner-web 1

Recreating chOé6dockercompose_nerd-dinner-save-handler 1 ...
Recreating chOédockercompose_nerd-dinner-save-handler 1 ... done

Docker Compose recreates the database service by removing the old container and starting a
new one. Services that don't depend on the database are left as they are, with the log entry up-to-
date, and any services which do depend on the database are also recreated once the new
container is running.

Compose uses the containing directory as the project name for services. You can
have multiple application versions defined in different Compose files in the same
directory. Docker Compose uses the same project name for them all, so you can
switch between different versions by specifying the file name.

My database container uses a volume to store the data. In the Compose file, I use a default
definition for the volume, so Docker Compose creates it for me. Just like the containers created
by compose, volumes are a standard Docker resource and can be managed with the Docker CLI.
The docker volume 1s lists all the volumes on the host:

> docker volume 1ls
DRIVER VOLUME NAME

local chO6édockercompose_db-data
local ch06dockercompose_es-data

I have two volumes for my NerdDinner deployment. They both use the local driver, which
means the data is stored on the local disk. I can inspect the SQL Server volume to see where the
data is physically stored on the host (in the mountpoint attribute) and then check the contents to
see the database files:

PS> docker volume inspect -f '{{ .Mountpoint }} 'chO6dockercompose db-data
C:\ProgramData\Docker\volumes\chO6dockercompose db-data_data

PS> 1s C:\ProgramData\Docker\volumes\chO6édockercompose db-data_data

Directory: C:\ProgramData\Docker\volumes\chO6dockercompose db-data_data

Mode LastWriteTime Length Name
-a---- 25/06/2017 21:41 8388608 NerdDinner Primary.ldf
-a---- 25/06/2017 21:41 8388608 NerdDinner Primary.mdf

The volume is stored outside of the container, so when Docker Compose removes the old
container database, all the data is preserved. The new database image bundles a Dacpac and is
configured to do schema upgrades for the existing data file in the same way as the SQL Server
database from Chapter 3, Developing Dockerized .NET and .NET Core Applications.

When the new container has started, I can check the logs and see that the new container attached
the database files from the volume and then altered the Dinners table to add the new audit
column:

> docker container logs chO6dockercompose nerd-dinner-db_1

VERBOSE: Data files exist - will attach and upgrade database

Generating publish script for database 'NerdDinner' on server '.\SQLEXPRESS'.
Successfully generated script to file C:\init\deploy.sql.

VERBOSE: Changed database context to 'NerdDinner'.

VERBOSE: Altering [dbo].[Dinners]...

VERBOSE: Update complete.

VERBOSE: Deployed NerdDinner database, data files at: C:\data

Docker Compose looks for any differences between resources and their definitions, not just the
name of the Docker image. If you change environment variables, port mappings, volume setup,
or any other configuration, compose will remove or create resources to bring the running
application to the desired state.

You need to be careful with modifying Compose files to run applications. If you
remove the definition for a running service from the file, Docker Compose won't
recognize that the service containers are part of the application, so they won't be
included in the difference checks.

Monitoring application
containers

Treating a distributed application as a single unit makes it easier to monitor and trace problems.
Docker Compose provides its own top and 10gs commands, which operate over all the containers
in the application services and display the collected results.

To check the memory and CPU usage of all the components, run docker-compose top:

> docker-compose top

chO6édockercompose_elasticsearch 1

Name PID CPU Private Working Set
Smss.exe 11620 00:00:00.031 200.7 kB

csrss.exe 6676 00:00:00.015 352.3 kB
wininit.exe 10872 00:00:00.015 606.2 kB

java.exe 1652 00:01:11.765 735.8MB

Containers are listed in the alphabetical order by name, and processes in each container are
listed without a specific order. There's no way to change the ordering, so you can't show that the
most intensive processes in the hardest working container first, but the result is in plain text, so
you can manipulate it in PowerShell.

To see the log entries from all the containers, run docker-compose 1ogs:

> docker-compose logs

nerd-dinner-save-handler 1 | Connecting to message queue url: nats://message-queue:4222
nerd-dinner-save-handler 1 | Listening on subject: events.dinner.created, queue: save-dinner-t
nerd-dinner-web_1 | 2017-06-25 20:42:01 W3SVC1002144328 ::1 GET / - 80 - ::1 Mozilla/5.0+(Winc
nerd-dinner-db_1 | VERBOSE: Starting SQL Server

nerd-dinner-db_1 | VERBOSE: Data files exist - will attach and upgrade database
nerd-dinner-index-handler 1 | Connecting to message queue url: nats://message-queue:4222

On screen, the container names are color-coded, so you can easily distinguish entries from
different components. One advantage of reading logs through Docker Compose is that it shows
output for all the containers even if the component has shown errors and the container is
stopped. These error message are useful to see in context—you may see that one component
throws a connection error before another component logs that it has started, which may highlight
a missing dependency in the Compose file.

Docker Compose shows all the log entries for all the service containers, so the output can be
extensive. You can limit this with the --tai1 option, restricting the output to a specified number
of the most recent log entries for each container.

These are useful commands when you are running in development or in a low-scale project with
a single server running a small number of containers. The approach doesn't work so well for

large projects running on multiple containers across multiple hosts. For that, you need container-
centric administration and monitoring, which I'll demonstrate in Chapter 8, Administering and
Monitoring Dockerized Solutions.

Managing application images

Docker Compose can manage Docker images as well as containers. In the Compose file, you
can include attributes that tell Docker Compose how to build your images. You can specify the
location of the build context to send to the Docker service, which is the root folder for all your
application content—and the location of the Dockerfile.

The context path is relative to the location of the Compose file, and the Dockerfile path is
relative to the context. This is very useful for complex source trees such as the demo source for
this book, where the context for each image is in a different folder. In the cho6-docker-compose-
puild folder, I have a Compose file with all the build attributes specified.

This is how the build details are specified for my images:

nerd-dinner-db:
image: dockeronwindows/chO6-nerd-dinner-db
build:
context: ../ch0O6-nerd-dinner-db
dockerfile: ./Dockerfile

nerd-dinner-save-handler:
image: dockeronwindows/ch05-nerd-dinner-save-handler
build:
context: ../../ch05
dockerfile: ./ch05-nerd-dinner-save-handler/Dockerfile

When you run docker-compose build, any services that have the vuiia attribute specified will be
built and tagged with the name in the image attribute. The build process uses the normal Docker
API, so the image layer cache is still used, and only changed layers are rebuilt. Adding build
details to your Compose file is a very efficient way of building all your application images, and
it's also a central place to capture how the images are built.

One other useful feature of Docker Compose is the ability to manage whole groups of images.
The Compose file for this chapter uses images that are all publicly available on Docker Hub, so
you can run the full application with docker-compose up—but the first time you run it, all the
images will be downloaded, which is going to take a while. You can preload images before you
use them with docker-compose pull, which will pllll all the images:

> docker-compose pull

Pulling message-queue (nats:nanoserver)...

nanoserver: Pulling from library/nats

Digest: sha256:£138484bac20175e858d72297bd7770ccf854edlce63c7b7712££6£850ae58d4
Status: Image is up to date for nats:nanoserver

Similarly, you can use docker-compose push to upload images to remote repositories. For both
commands, Docker Compose uses the authenticated user from the most recent docker 1ogin
command. If your Compose file contains images, you don't have access to push (such as the
official nats image used in NerdDinner); those pushes will fail. For any repositories you are
authorized to write to, whether in Docker Hub or a private registry, these images will be pushed.

Configuring application
environments

When you define your full application configuration in Docker Compose, you have a single
artifact that describes all the components of the application and the integration points between
them. In the same way that the Dockerfile explicitly defines the steps to install and configure
one piece of software, the Docker Compose file explicitly defines the steps to deploy the whole
solution.

Docker Compose also lets you capture application definitions that can be deployed to different
environments, so your Compose files are usable throughout the deployment pipeline. Usually,
there are differences between environments, either in the infrastructure setup or the application
settings. Docker Compose gives you two options to manage these environmental differences.

Infrastructure typically differs between production and non-production environments, which
affects volumes and networks in Docker applications. On a development laptop, your database
volume may be mapped to a known location on the local disk, which you periodically clean up.
In production, you could have a volume plugin for a shared storage hardware device. Similarly,
with networks, production environments may need to be explicit about subnet ranges, which are
not a concern in development.

Docker Compose lets you specify resources as being external to the Compose file, so the
application will use resources that already exist. These resources need to be created in advance,
but that means each environment can be configured differently and still use the same Compose
file.

Compose also supports an alternative approach, where you explicitly capture the configuration
of your resources for each environment in different Compose files and use multiple Compose
files when you run the application. I'll demonstrate both of these options. Like other design
decisions, Docker doesn't impose any practices, and you can use whichever best suits your
processes.

Specifying external resources

Volume and network definitions in the Compose file follow the same pattern as service
definitions—each resource is named and can be configured using the same options available in
the relevant docker ... create command. There's an extra option in Compose files to point to an
existing resource.

To use existing volumes for my SQL Server and Elasticsearch data, I need to specify the
external attribute and optionally, a name for the resource. In the cho6-docker-compose-external
directory, my Compose file has these volume definitions:

volumes:
es-data:
external:
name: nerd-dinner-elasticsearch-data

db-data:
external:
name: nerd-dinner-database-data

With external resources declared, I can't just run the application using docker-compose up.
Compose won't create volumes defined as external; they need to exist before the application
starts. And these volumes are required by services, so compose won't create any containers
either. Instead, you'll see an error message:

|ERROR: Volume nerd-dinner-database-data declared as external, but could not be found. Please ¢

The error message tells you the command you need to run in order to create the missing
resource. This will create basic volumes with default configurations, and that will allow Docker
Compose to start the application:

docker volume create --name nerd-dinner-elasticsearch-data
docker volume create --name nerd-dinner-database-data

Docker lets you create volumes with different configuration options, so you can
specify an explicit mount point—such as a RAID array or an NF'S share.
Windows doesn't support options for the local driver currently, but you can use

other drivers—there are volume plug-ins to use Azure storage and enterprise
storage units such as HPE 3PAR.

The same approach can be used to specify networks as external resources. In my Compose file,
I initially used the default nat network, but in this Compose file, I specify a custom external
network for the application:

networks:
nd-net:
external:
name: nerd-dinner-network

Docker on Windows has several networking options. The default is network address translation,
with the nat network, but you can also use other drivers for different network configurations. I'll

create my application network with the transparent driver—this will give each container an IP
address provided by my physical router, so containers are accessible outside of the Docker
network:

| docker network create -d transparent nerd-dinner-network --gateway=192.168.1.1 --subnet=192.1¢

There's no port mapping possible with transparent networks, so I need to remove the ports
attributes before I run docker-compose up -a. When the application starts, I can access the website
container from an IP address in the 192.168.1.0 range, as though it were running in a server
attached to my network.

Using multiple Compose files

Editing the Compose file to remove attributes means the configuration isn't portable. In this
case, the behavior of the external network resource has an impact on the service specification,
and that stops me from using a single Compose file for all environments. [need to have one
Compose files for developers, where port publishing is specified for the nat network, and one for
shared environments, where port publishing is removed for the transparent network.

This means two Compose files with additional overhead to keep them in sync—and more
importantly, there's a risk of environments drifting if they aren't kept in sync. Using multiple
Compose files addresses this and means your requirements for each environment are explicitly
stated.

Docker COI’l'lpOSC looks for files called docker-compose.yml and docker-compose.override.yml by
default, and if it finds both, it will use the override file to add to or replace parts of the
definitions in the main Compose file. When you run the Docker Compose CLI, you can pass
additional files to be combined for the whole application specification. This lets you keep the
core solution definition in one file and have explicit environment-dependent overrides in other
files.

In the ch06-docker-compose-multiple folder, I've taken this approach. The core docker-compose.yml
file has the service definitions that describe the structure of the solution without any
environment specifics. As an example, the database service is defined with a volume and no
ports published:

nerd-dinner-db:
image: dockeronwindows/ch03-nerd-dinner-db
env_file:
- db-credentials.env
volumes:
- db-data:C:\data
networks:
- nd-net

Alongside the core Compose file, there 1S docker-compose-10cal.ym1, an override file that adds
environmental attributes for local development. This publishes the SQL Server port so
developers can connect with SSMS and specifies the default nat network:

services:
nerd-dinner-db:
ports:
- "1433"

networks:
nd-net:
external:
name: nat

change or add to the attributes in the base Compose file. The values in the
override file take precedence.

8 You don't have to specify all the attributes in the override file, only the ones that

I combine both files by running this:

|docker—compose -f docker-compose.yml -f docker-compose.local.yml up -d

This combines the two files, which returns the application to the original development
environment setup. I also have a production environment override file called docker-
compose.production.yml, Which 1s an override file that specifies the production attributes:

services:
nerd-dinner-db:
volumes:
- E:\nerd-dinner-mssql:C:\data

networks:
nd-net:
external:
name: nerd-dinner-network

There are three differences in production:

e The ports attribute is not specified, so there's no port publishing to the host from the
container

e The vo1umes section is not specified; instead, the service volumes are explicitly mounted to
a location on the host—in this case, the £ drive, which is my RAID array

e An external network is used, which is a transparent network, and given containers' [P
addresses from the network.

To run the application in a production configuration, I just specify the production override file:

|docker—compose -f docker-compose.yml -f docker-compose.production.yml up -d

The combination of the base Compose file and the override file gives me the desired
configuration, and there's no editing of files between environments. In the override file, you can
add or change any attributes, including environment variables—so you could turn down the
logging level in production if your app uses an environment variable to set that.

You can even combine several Compose files. If you have multiple test environments that share
a lot of commonality, you can define the application setup in the base Compose file, shared test
configuration in one override file, and each specific test environment in an additional override
file.

As a final example, in the same folder, I have a docker-compose.build.ym1 file that isolates all the
build attributes. This configuration is used only by developers and the CI process, so it doesn't
need to be in the core Compose file:

services:
nerd-dinner-db:
build:
context: ../ch06-nerd-dinner-db
dockerfile: ./Dockerfile

This keeps my main Compose file clear and clean, while still allowing me to build the whole
solution with a single compose command:

|docker—compose -f docker-compose.yml -f docker-compose.local.yml -f docker-compose.build.yml 1

Summary

In this chapter, I covered Docker Compose, the tool used to organize distributed Docker
solutions. With Compose, you explicitly define all the components of your solution, the
configuration of the components, and the relationship between them in a simple, clean format.

The Compose file lets you manage all the application containers as a single unit. You learned in
this chapter how you can use the docker-compose command line to spin up and tear down the
application, creating all the resources and starting or stopping containers. You also learned that
you can use Docker Compose to scale components up or down and release upgrades to your
solution.

Docker Compose is a powerful tool to define complex solutions. The Compose file effectively
replaces lengthy deployment documents and fully describes every part of the application. With
external resources and multiple Compose files, you can even capture the differences between
environments and build a set of YAML files that you can use to drive your whole deployment
pipeline.

The limitation of Docker Compose is that it's a client-side tool. The docker-compose command
needs access to the Compose file to execute any commands. There is a logical grouping of
resources into a single application, but that happens only in the Compose file. The Docker
service sees only a set of resources, it does not recognize them as being part of the same
application. Docker Compose is also limited to single-node Docker deployments.

In the next chapter, I'll move on to clustered Docker deployments, with multiple nodes running
in a Docker swarm. In a production environment, this gives you high availability and scale.
Docker swarm is a powerful orchestrator for container solutions, which is very easy to use. It
also supports the Compose file format, so you can use your existing Compose files to deploy
applications. But Docker preserves the logical architecture within the swarm, so you can manage
your application without needing the Compose file.

Orchestrating Distributed
Solutions with Docker Swarm

You can run Docker on a single PC, which is what I've done so far in this book, and it's how you
would work with Docker in development and basic test environments. In more advanced test
environments and in production, a single server isn't suitable. For high availability and to give
you the flexibility to scale your solutions, you need multiple servers running as a single cluster.
Docker has cluster support built into the platform, and you can join several Docker hosts
together using theA swarm mode.

All the concepts you've learned so far: images, containers, registries, networks, volumes, and
servicesa€”’still apply in the swarm mode. The swarm mode is an orchestration layer. It presents
the same API as the standalone Docker engine, with additional functions to manage aspects of
distributed computing. When you run a service in the swarm mode, Docker determines which
hosts to run the containers on; it manages secure communication between containers on different
hosts, and it monitors the hosts. If a server in a swarm goes down, Docker schedules the
containers it was running to start on different hosts in order to maintain the service level of the
application.

Swarm mode was introduced in Docker 1.12, and it provides production-grade service
orchestration. All communication in a swarm is secured with TLS, so network traffic between
nodes is always encrypted. You can store application secrets securely in the swarm, and Docker
presents them only to those containers that need access. Swarms are scaleable, so you can easily
add nodes to increase capacity or remove nodes for maintenance. Docker can also run automated
rolling service updates in the swarm mode, so you can upgrade your application with zero
downtime.

In this chapter, I'll set up a swarm and run NerdDinner across multiple nodes. I'll start by
creating individual services and then move on to deploying the whole stack from a Compose
file. You'll learn how to do the following:

Create a swarm and join nodes

Run, manage, scale, and update services in the swarm
Manage sensitive data as secrets in the swarm

Deploy a distributed application stack using a Compose file
Isolate nodes in the swarm so you can run Windows updates

Creating a swarm and
managing nodes

Docker swarm mode uses a manager-worker architecture with high availability for managers
and workers. Managers are administrator-facing, and you use the active manager to manage the
cluster and the resources running on the cluster. Workers are user-facing, and they run the
containers for your application services.

Swarm managers can also run containers for your applications, which is unusual in manager-
worker architectures. The overhead of managing a small swarm is relatively low, so if you have
10 nodes and three are managers, the managers can also run a share of the application workload.

Swarms can be practically any size. You can run a single-node swarm on your laptop to test the
functionality, and you can scale up to thousands of nodes. You start by initializing the swarm
with the docker swarm init command:

> docker swarm init --listen-addr 192.168.2.232 --advertise-addr 192.168.2.232
Swarm initialized: current node (60biyvldelwche3oldbviaclv) is now a manager.

To add a worker to this swarm, run the following command:
docker swarm join

--token SWMTKN-1l-lrmgginooh3f0t8zxhuauds7vxcqpf5g0244xtd7£fnz9fn43p3-azln29jvzg4bdodd05zpu55vt

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructi

This creates the swarm with a single node—the Docker engine where you run the command—
and that node becomes the swarm manager. My machine has multiple IP addresses, so I've
specified the 1isten-addr and advertise-addar options that tell Docker which network interface to
use for swarm communication. It's a good practice to always specify the IP address and to use
static addresses for the manager nodes.

You can keep your swarm secure using an internal private network for the swarm
traffic, so that communication is not on the public network. You can even keep
your managers off the public network completely. Only worker nodes with public-
facing workloads need connecting to the public network in addition to the
internal networtk.

The output from docker swarm init tells you how to expand the swarm by joining other nodes.
Nodes can only belong to one swarm, and to join, they need to use the joining token. The token
prevents rogue nodes joining your swarm if the network is compromised, so you need to treat it
as a secure secret. Nodes can join as workers or managers, and there are different tokens for
each. You can view and rotate the tokens with the docker swarm join-token command.

On a second machine running the same version of Docker, I can run the swarn j0in command to
join the swarm:

> docker swarm join --token SWMTKN-1l-lrmgginooh3f0t8zxhuauds7vxcqpf5g0244xtd7£fnz9£fn43p3-azln2¢
This node joined a swarm as a worker.

You can have a mixture of Windows and Linux nodes in the same swarm, which is a great way
to manage mixed workloads. It's recommended that you have all nodes running the same version
of Docker, but it can be Docker CE or EE—the swarm functionality is built into the core Docker
service.

Now my Docker host is running in the swarm mode, there are more commands available to me.
The docker node commands manage the nodes in the swarm, so I can list all the nodes in the
swarm and see their current status with docker node 1s:

> docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
huwd8nrhikrdcbd5yficgpnry WIN-V3VBGAOBBGR Ready Active
w7719btn951lamwt7hcs05zn0k * DESKTOP-74UL7AB Ready Active Leader

The starus value tells you whether the node is online in the swarm, and the avariasrrrry value
tells you whether the node is able to run containers. The vanacer starus field has three options:

e reader: The active manager controlling the swarm
e reachable: A backup manager; it can become the leader if the current leader goes down
e Mo value! A worker node

Multiple managers support high availability. Docker swarm uses the Raft protocol to elect a new
leader if the current leader is lost, so with an odd number of managers, three or five is common
—your swarm can survive hardware failure. Worker nodes do not automatically get promoted to
managers, so if all your managers are lost, then you cannot administer the swarm. In that
situation, the containers on the worker nodes continue running, but there are no managers to
monitor the worker nodes.

You can make worker nodes managers with docker node promote and make manager nodes
workers with docker node demote—these are commands you run on a manager node. To leave a
swarm, you need to run the docker swarm 1eave command on the node itself:

> docker swarm leave
Node left the swarm.

If you have a single-node swarm, you can exit swarm mode with the same command, but you
need the --rorce flag.

The docker swarm and docker node commands manage the swarm. When you're running in swarm
mode, you use swarm-specific commands to manage your container workload.

Creating and managing services
in swarm mode

In the previous chapter, you saw how to use Docker Compose to organize a distributed solution.
In a Compose file, you define the parts of your application as services using networks to connect
them together. The same service concept is used in swarm mode—a service runs an application
image across one or more containers called replicas. With the Docker command-line, you can
create services on the swarm, and the swarm manager will create the replicas as containers.

I'll deploy the NerdDinner stack by creating services. All the services will run in the same
Docker network, and in swarm mode, Docker has a special type of network called overlay
networking. Overlay networks are virtual networks that span multiple physical hosts, so
containers running on one swarm node can reach containers running on another node. Service
discovery works in the same way; containers access each other by the service name, and Docker
directs them to a container.

To create an overlay network, you need to specify the driver to be used and give the network a
name. The Docker CLI returns with the ID of the new network, as it does with other resources:

> docker network create --driver overlay nd-swarm
j7z5fivvgpbloule%4oti6bral

You can list the networks, and you'll see that the new network uses the overlay driver and is
scoped to the swarm—which means any containers using this network can communicate with
each other, whichever node they're running on:

> docker network 1ls --filter name=nd-swarm

NETWORK ID NAME DRIVER SCOPE
j7z5fivvgpbl nd-swarm overlay swarm

I'll use that network for the NerdDinner services. As with the Compose file, I'll start with the
infrastructure components that have no dependencies, but now I'll use the docker service create
command to run the services manually. I'll run a script that specifies all the services and creates
them in the correct order, starting with nats:

docker service create °
--detach=true °
--network nd-swarm --endpoint-mode dnsrr °
--name message-queue
nats:nanoserver

There are no required options for docker service create Other than the image name, but for a
distributed application, you will want to specify the following:

e network: The Docker network to connect to the service containers
® ecndpoint-mode: The method of DNS name resolution that Docker uses

e name: The service name used as the DNS entry for other components

Docker supports two endpoint modes, vip and dnsrr. The default vip is optimized
for Linux but doesn't have full support in the Windows kernel, so you need to
specify dnsrr—DNS round-robin mode for Docker services on Windows.

In the source code for this chapter, the cho7-create-services folder has a script that starts all the
services for NerdDinner in the correct order. The options for each service create command are
the equivalent of the service definition in the Compose file for Chapter 6, Organizing Distributed
Solutions with Docker Compose. The simplest service to create is the nats message queue, and

the most complex is the NerdDinner web application:

docker service create °
--network nd-swarm --endpoint-mode dnsrr °
--env-file db-credentials.env °
--env-file api-keys.env °
--env HOMEPAGE URL=http://nerd-dinner-homepage °
--env MESSAGE QUEUE URL=nats://message-queue:4222 °
--publish mode=host,target=80,published=80 °
--name nerd-dinner-web °
dockeronwindows/ch05-nerd-dinner-web

This command creates a service using the same Docker network and the same endpoint mode.

The application is configured using environment variables and environment files, and port so is
published to the host. Any traffic coming into port so on the host node will be directed into the
container for this service.

Docker supports multiple service replicas running on a single mode but not if the

Windows.

ports are published using the host mode. In this case, I can run only one replica
of my web application per node. The alternative is to use the ingress mode for
publishing ports but that uses networking features that are not supported in

When I run the script on my swarm, I get a list of service IDs as the output:

Now I can see all the running services with docker service 1s:

ID

8bme2svunl22
deevhll7z4jg
1xwfb5s9erq6
017u97cpwdcn
rrgn4n3pecgf
w7d7svtq2k5k
ydzblzlaf88g
ywrz3ecxvkii

> .\ch07-run-
8bme2svunl222j08o0ff2iyczo
rrgn4n3pecgf8m347v£fisémbj
1xwfb5s9erq6516whhh819588
ywrz3ecxvkiigtkptlinid2pk
w7d7svtq2k5kpl8£98wydslcr
0l17u97cpwdcnslabv471lhehlr
deevhll7z4jgaomsbrtht775b
ydzblzlaf88gvoyuyiyn9g526

nerd-dinner.psl

> docker service 1s

NAME

message-queue
nerd-dinner-homepage
nerd-dinner-db
nerd-dinner-index-handler
elasticsearch
nerd-dinner-save-handler
nerd-dinner-web

kibana

MODE

replicated
replicated
replicated
replicated
replicated
replicated
replicated
replicated

REPLICAS IMAGE

1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1

nats:nanoserver
dockeronwindows/ch03-nerd-dinner-hc
dockeronwindows/ch0O6-nerd-dinner-dt
dockeronwindows/ch05-nerd-dinner-ir
sixeyed/elasticsearch:nanoserver
dockeronwindows/ch05-nerd-dinner-s:
dockeronwindows/ch05-nerd-dinner-we
sixeyed/kibana:nanoserver

Each of the services is listed as having a replica status of 1/1, which means one replica is

running out of a requested service level of one replica. Replicas are the number of containers
used to run the service. Swarm mode supports two types of distributed service, and the default is
to have a distributed service with a single replica, which means one container on the swarm. The
service create commands in my script don't specify a replica count, so they all use the default of
one.

Running services across many
containers

Replicated services are how you scale in swarm mode, and you can update running services to
add or remove containers. Unlike Docker Compose, you don't need a Compose file that defines
the desired state of each service; that detail is already stored in the swarm from the docker
service create cOmmand. To add more message handlers, I use docker service scale, passing the
name of one or more services and the desired service level:

> docker service scale nerd-dinner-save-handler=3
nerd-dinner-save-handler scaled to 3

The message handler services were created with the default single replica, so this adds two more
containers to share the work of the SQL Server handler service. In a multi-node swarm, the
manager can schedule the containers to run on any node with a capacity. I don't need to know or
care which server is actually running the containers, but I can drill down into the service list
Wwith docker service ps to see where the containers are running:

> docker service ps nerd-dinner-save-handler

ID NAME IMAGE
NODE DESIRED STATE CURRENT STATE

Omlmgtig4acm nerd-dinner-save-handler.l dockeronwindows/ch05-nerd-dinner-save-handler:latest
WIN-V3VBGAOBBGR Running Running 44 minutes ago

uj8lotkz28rl nerd-dinner-save-handler.2 dockeronwindows/ch0O5-nerd-dinner-save-handler:latest
WIN-V3VBGAOBBGR Running Running 35 seconds ago

e3bgxfvpegy6 nerd-dinner-save-handler.3 dockeronwindows/ch05-nerd-dinner-save-handler:latesi
WIN-V3VBGAOBBGR Running Running 36 seconds ago

In this case, I'm running a single-node swarm so all the replicas are on the same machine.
Swarm mode refers to service processes as replicas, but they're actually just containers. You can
log onto the nodes of the swarm and administer service containers with the same docker ps,
docker logs and docker top commands, as usual.

Typically, you won't connect to swarm nodes directly to manage containers; you work with
them as services through the manager node. Just as Docker Compose presents a consolidated
view of logs for a service, you can get the same from the Docker CLI in swarm mode:

> docker service logs nerd-dinner-save-handler
nerd-dinner-save-handler.2.uj8lotkz28r1Q@WIN-V3VBGAOBBGR

| Connecting to message queue url: nats://message-queue:4222
nerd-dinner-save-handler. 3.e3bgxfvpegy6Q@WIN-V3VBGAOBBGR

| Connecting to message queue url: nats://message-queue:4222
nerd-dinner-save-handler.1l.0mlmgtig4acm@WIN-V3VBGAOBBGR

| Connecting to message queue url: nats://message-queue:4222

Replicas are how the swarm provides fault tolerance to services. When you specify the replica
level for a service with the docker service create , docker service update, O docker service scale
command, the value is recorded in the swarm. The manager node monitors all the tasks for the
service. If containers stop and the number of running services falls below the desired replica

level, new tasks are scheduled to replace the stopped containers. Later in the chapter, I'll
demonstrate that when I run the same solution on a multi-node swarm, then I take a node out of
the swarm without any loss of service.

Global services

An alternative to replicated services is global services. In some cases, you may want the same
service running on every node of the swarm as a single container on each server. To do that, you
can run a service in the global mode—Docker schedules one task on each node, and any new
nodes that join will also have a task scheduled.

Global services can be useful for high availability with components that are used by many
services, but again, you don't get a clustered application just by running many instances of it.
The nats message queue can run as a cluster across several servers, and it could be a good
candidate to run as a global service. To run nats as a cluster, though, each instance needs to
know the address of other instances—which doesn't work well with dynamic virtual IP
addresses allocated by the Docker engine.

Instead, I can run my Elasticsearch message handler as a global service, so every node will have
an instance of the message handler running. You can't change the mode of a running service, so
first, I need to remove the original service:

> docker service rm nerd-dinner-index-handler
nerd-dinner-index-handler

Then, I can create a new global service:

docker service create °
--mode=global °
--detach=true °
--network nd-swarm --endpoint-mode dnsrr °
--env ELASTICSEARCH URL=http://elasticsearch:9200 °
--env MESSAGE_QUEUE URL=nats://message-queue:4222 °
--name nerd-dinner-index-handler °
dockeronwindows/ch05-nerd-dinner-index-handler

Now I have one task running on each node in the swarm, and the total number of tasks will grow
if nodes are added to the cluster or shrink if nodes are removed. This can be useful for services
that you want to distribute for fault tolerance, and you want the total capacity of the service to be
proportionate to the size of the cluster.

Global services are also useful in monitoring and auditing functions. If you have a centralized
monitoring system such as splunk, or you're using Elasticsearch for log capture, you could run
an agent on each node as a global service.

With global and replicated services, swarm mode provides the infrastructure to scale your
application and maintain specified service levels. This works well for on-premises deployments
if you have a fixed-size swarm but variable workloads. You can scale application components
up and down to meet the demand provided they don't all require peak processing at the same
time.

Deploying services manually or with scripts doesn't take full advantage of the Docker swarm. In

swarm mode, you can define your application using the Docker Compose file format and deploy
and manage it as a single unit called a stack.

Deploying stacks to Docker
swarm

Stacks in Docker swarm address the limitations of using Docker Compose with a single host.
You create a stack from a Compose file, and Docker stores all the metadata for the stack's
services in the swarm. This means Docker is aware that the set of resources represents one
application, and you can manage services from any Docker client without needing the Compose
file.

You can also make use of Docker secrets to make sensitive data available to service containers
instead of using environment variables.

Docker secrets

Swarm mode is inherently secure—communication between all the nodes is encrypted, and the
swarm provides an encrypted data store that is distributed among the manager nodes. You can
use this store for application secrets, which are a first-class resource in the Docker swarm.

Secrets are created with a name and the contents of the secret, which can be read from a file or
entered into the command-line. In the cho7-docker-stack folder, I have a folder called secrets that
contains all the sensitive data for the NerdDinner application. Each secret holds one piece of
data, so the database connection string is in the nerd-dinner.connectionstring file:

|Data Source=nerd-dinner-db,1433;Initial Catalog=NerdDinner;User Id=sa;Password=N3rdD!Nne720"6;

I can create a secret named nerd-dinner.connectionstring and populate it with the contents of that
file using docker secret create.

|docker secret create nerd-dinner.connectionstring .\secrets\nerd-dinner.connectionstring

Now the connection string is securely stored in the swarm. You can't view the plain text of a
secret and Docker will deliver secrets only to services that explicitly request them. The secret is
encrypted at rest in the managers and encrypted in transit, where it is only made available to
workers who are running a replica for the service that requested the secret.

Administrators can create secrets in the swarm and make them available to the application
without ever sharing the file that contained the original plain text of the secret.

The secret is decrypted only for the container, where it is presented as a text file in a known
location. You need to change your application to read secrets from files, but that's a small
change for such a big step forward in security. In the src folder for this chapter, I've added secret
classes to projects that need to read sensitive data from secrets. This example fetches the
database connection string:

public class Secret

{
private const string SECRET ROOT PATH = @"C:\ProgramData\Docker\secrets";

public static string DbConnectionString { get { return Get ("nerd-dinner.connectionstring");

private static string Get (string name)
{
var path = Path.Combine (SECRET ROOT PATH, name);
return File.ReadAllText (path);
}

It's safe to hardcode the path strings, as Docker will always surface the secret file in the
C:\Programbata\Docker\secrets folder in the container, using the secret name as the filename.

The secret files surfaced to the container have restricted access, so only administrator accounts
can read them. This is fine for the console applications that will run under the context of the

container administrator, so they have access to the secret files. IIS application pools run under
restricted user accounts that don't have access to read the files.

In the Dockerfile for cho7-nerd-dainner-web, I explicitly create an app pool that runs under the
Localsystem account in the container and create the NerdDinner website to use that app pool:

RUN Import-Module WebAdministration;
Remove-Website -Name 'Default Web Site';
New-WebAppPool -Name 'ap-nd';
Set-ItemProperty IIS:\AppPools\ap-nd -Name managedRuntimeVersion -Value v4.0;
Set-ItemProperty IIS:\AppPools\ap-nd -Name processModel.identityType -Value LocalSystem;
New-Website -Name 'nerd-dinner'
-Port 80 -PhysicalPath 'C:\nerd-dinner' -ApplicationPool 'ap-nd'

Running your web application with elevated permissions is less of a concern
when you run in a container, as I explain in Chapter 9, Understanding the Security
Risks and Benefits of Docker. The Docker secrets implementation for Windows is
evolving, and in a later version, you will be able to grant secret access to specific
users and you won't need to run your website as rocaisystem.

You can request one or more secrets for a service in the service create and service update
commands. If I wanted to run my save-dinner handler as a service, using the connection string
secret, | would add the --secret option to the create command instead of using an environment
file:

docker service create °
--detach=true °
--network nd-swarm --endpoint-mode dnsrr °
--secret nerd-dinner.connectionstring °
--name nerd-dinner-save-handler °
dockeronwindows/ch05-nerd-dinner-save-handler

Instead of creating individual services, I'm going to use Compose files to define my
deployment and replace environment variable files with secrets in the service definitions.

Defining a stack using Compose
files

The Docker Compose file schema has evolved from supporting client-side deployments on
single Docker hosts to stack deployments across Docker swarms. Different sets of attributes are
relevant in different scenarios, and the tools enforce that. Docker Compose will ignore attributes
that apply only to stack deployments, and Docker swarm will ignore attributes that apply only to
single-node deployments.

I can make use of multiple Compose files to exploit this, defining the basic setup of my
application in one file, adding local settings in one override file and swarm settings in another
override file. I've done that with the Compose files in the cho7-docker-compose folder. The core
service definitions are very simple now—they only include attributes that apply to every
deployment mode, such as this example for the web service:

nerd-dinner-web:
image: dockeronwindows/chO7-nerd-dinner-web
environment:
- HOMEPAGE URL=http://nerd-dinner-homepage
- MESSAGE QUEUE URL=nats://message-queue:4222
networks:
- nd-net

In the local override file, I add the attributes that are relevant when I'm developing the
application on my laptop and deploying with Docker Compose:

nerd-dinner-web:
ports:
—_ "80"
depends_on:
- nerd-dinner-homepage
- nerd-dinner-db
- message-gqueue
env_file:
- api-keys.env
- db-credentials.env

Swarm mode does not support the depends on attribute, and when you deploy a stack, there is no
guarantee which order the services will start in. If your application components are resilient and
have retry logic for any dependencies, then the service startup order doesn't matter. If your
components are not resilient and crash when they can't access dependencies, then Docker will
restart failed containers and the application should be ready after a few retries.

Resilience is often missing from legacy applications, which assume that their
dependencies are always available and respond immediately. This is not the case

9 if you move to cloud services, and it is true of containers. Docker will keep
replacing failed containers, but if you're changing code, then it's a good idea to
add resilience.

My other override file specifies the attributes that are needed for the service to run in swarm
mode:

nerd-dinner-web:
ports:
- mode: host
published: 80
target: 80
deploy:
endpoint mode: dnsrr
placement:
constraints:
- node.platform.os == windows
secrets:
- nerd-dinner.connectionstring
- nerd-dinner-bing-maps.apikey
- nerd-dinner-ip-info-db.apikey

I need to specify the ports to use host mode publishing for swarm mode, and I'm mapping port so
in the container to port so on the host.

The adepioy section is used only in swarm mode, and there are two extra attributes here. The first
1S endpoint_mode, Which specifies the DNS round-robin mode needed for Windows containers.
The next is constraints, which you can use to restrict the service to run only on certain nodes in
the swarm. You can apply arbitrary labels to swarm nodes (which I cover in Chapter 9,
Understanding the Security Risks and Benefits of Docker) and add constraints based on those
labels. In this case, I'm using the node.p1atform.os label, which is a system label applied by
Docker to each node.

I'll be deploying this stack to a hybrid swarm with some Windows and some Linux nodes. This
constraint tells Docker to run only this service on Windows nodes, which saves time in
deployment as Docker won't consider any Linux nodes as candidates to host replicas of this
service. I've added these attributes to all the services in my swarm override file.

In the secrets section, I have named all the secrets that needs to be made available to the web
service, which are the database connection string and API keys that used to be read from
environment files. Secrets are top-level resources in the Compose file, so the names refer to
entries later in the file, where I identify all the secrets as external resources:

secrets:

nerd-dinner-bing-maps.apikey:
external: true

nerd-dinner-ip-info-db.apikey:
external: true

nerd-dinner-sa.password:
external: true

nerd-dinner.connectionstring:
external: true

I can deploy the application with Docker Compose by specifying multiple Compose files—the
core file and the local override—but the Docker command line doesn't support multiple files for
stack deployment. I can still ensure the override functionality by running docker-compose config,
which joins multiple Compose files into one output. This command generates a single Compose
file called docker-stack.ym1 from the two Compose files for the stack deployment:

|docker—compose -f docker-compose.yml -f docker-compose.swarm.yml config > docker-stack.yml

Docker Compose joins the input files and checks whether the output configuration is valid. Now

I can deploy my stack on the swarm, using the stack file that contains the core service
descriptions plus the secrets and deployment configuration.

Deploying a stack from a
Compose file

You deploy a stack from a Compose file with a single command, docker stack depioy. You need
to pass the location of the Compose file and a name for the stack, and then Docker creates all the
resources in the Compose file:

> docker stack deploy --compose-file docker-stack.yml nerd-dinner

Creating network nerd-dinner_ nd-net

Creating service nerd-dinner nerd-dinner-web

Creating service nerd-dinner_elasticsearch

Creating service nerd-dinner_ kibana

Creating service nerd-dinner_ message-queue

Creating service nerd-dinner_ nerd-dinner-db

Creating service nerd-dinner nerd-dinner-homepage
Creating service nerd-dinner nerd-dinner-index-handler
Creating service nerd-dinner nerd-dinner-save-handler

The result is a set of services that are grouped together, but unlike Docker Compose, which
relies on naming conventions and labels to identify the grouping, the stack is a first-class citizen
in Docker. I can list all stacks, which gives me the basic details—the stack name and the number
of services in the stack:

> docker stack 1s
NAME SERVICES
nerd-dinner 8

I can also drill down into the services with docker stack services, and list the individual
containers with docker stack ps.

> docker stack ps nerd-dinner

ID NAME IMAGE ...

d84oouSmxbr6 nerd-dinner nerd-dinner-homepage.l dockeronwindows/ch03-nerd-dinner-homep:
ung0b6j59jcw nerd-dinner nerd-dinner-db.1 dockeronwindows/ch07-nerd-dinner-db:lat
n4jvdpx5hgn9 nerd-dinner message-queue.l nats:nanoserver

apc0djz5v37n nerd-dinner kibana.l sixeyed/kibana:nanoserver

vecauuy3nhez nerd-dinner_ elasticsearch.l sixeyed/elasticsearch:nanoserver
ixtsljeuclzi nerd-dinner_ nerd-dinner-web.l dockeronwindows/ch0O7-nerd-dinner-web: 1:
oalu3dpxOhsy nerd-dinner nerd-dinner-save-handler.1l dockeronwindows/ch07-nerd-dinner-save-t
vtans6ekbub9 nerd-dinner nerd-dinner-index-handler.l dockeronwindows/ch05-nerd-dinner-index-

Grouping services into stacks makes it much easier to manage your application, especially when
you have multiple apps running with multiple services in each. The stack is an abstraction over a
set of Docker resources, but you can still manage the individual resources directly. If I run dgocker
service rm, it Will remove a service even if the service is part of a stack. When I run docker stack
deploy again, Docker will see that a service is missing from the stack and will recreate it.

When it comes to updating your application with new image versions or changes to service
attributes, you can modify the services directly, or you can modify the stack file and deploy it
again. Docker doesn't force a process on you, but you need to be careful if you mix both

approaches.

I can scale up the message handlers in my solution either by adding repiicas :2 in the deploy
section of the stack file and deploying it again or by running docker service update --replicas=2
nerd-dinner nerd-dinner-save-handler. If I update the service and don't change the stack file as
well, the next time I deploy the stack, my handler will go down to one replica. The stack file is
viewed as the desired final state, and if the current state has deviated, it will be corrected when
you deploy again.

Running a single node swarm is fine for development and test environments. I can run the full
NerdDinner suite as a stack, verifying that the stack file is correctly defined, and I can scale up
and down to check the behavior of the app. This doesn't give me high availability because the
services are all running on a single node, so if the node goes down, I will lose all my services.

You can build a swarm with greater elasticity for HA and scale by running it in the cloud. All
the major cloud operators support Docker, and some provide a managed option to run a cluster
of Docker nodes. The cloud container services all support the Docker image format and runtime,
but some use custom orchestrators or custom deployment artifacts. Others support Docker
swarm as the orchestrator, which means you can use all the same artifacts in every environment.

Running Docker swarm in the
cloud

Docker has a minimal set of infrastructure requirements, so you can easily spin up a Docker host
or a clustered Docker swarm in any cloud. All you need is the capacity to run Windows Server
virtual machines and connect them on a network.

The cloud is a great place to run Docker, and Docker is a great way to move to the cloud.
Docker gives you the power of a modern application platform without the restrictions of a
Platform as a Service (PaaS) product. PaaS options typically have proprietary deployment
systems, may need proprietary integrations in your code, and the dev experience will not use the
same runtime.

Docker lets you package your applications and define your solution structure in a portable way
that will run the same way on any machine and on any cloud. You can use basic Infrastructure
as a Service (IaaS) services, which all cloud providers support, and have a consistent
deployment, management, and runtime experience in every environment. The Docker Cloud
editions let you choose your own cloud provider and deploy a standard Docker swarm with a
production-grade configuration.

The major clouds also provide their own managed container services. If you're already using
[aaS or PaaS services from Microsofr Azure, Amazon Web Services (AWS), or Google Cloud
Platform (GCP), the managed option may be a good fit. If you prefer to keep your deployments
portable, then the Docker Cloud editions are a better option.

Managed Docker services in the
cloud

Azure, AWS, and GCP have managed container services that let you run Docker containers.
AWS and GCP don't support Docker swarm mode; they use their own orchestration layers.
Azure lets you choose between orchestrators, including Docker swarm, and you can add
supported Windows nodes to the cluster.

These are managed services to the extent that they are simple to deploy and come with support
and service-level agreements for the cloud resources that make up the service. The compute
resources are all virtual machines, though, so you're billed for the VMs in your cluster, not for
the containers running in the cluster.

Docker on Amazon Elastic
Container Service

The Elastic Container Service (ECS) on Amazon supports Docker containers, with a custom
AWS orchestration and management layer. ECS does not use swarm mode to power the cluster,
so you can't use Docker secrets and you can't deploy stacks from a Compose file. The ECS
command-line lets you import a Compose file, but only a subset of attributes are supported.

The ECS cluster is built from existing AWS components, using EC2 VMs for the nodes and
ELB or ALB load balancers for incoming traffic. If you already have an existing investment in
AWS, that may fit your current infrastructure, but you need to be aware of the disconnect
between environments. If you are running Docker in a single-node swarm for development and a
local multi-node swarm for testing, the production EC2 instance will need different deployment
artifacts and will run on a different orchestration platform.

You can't manage the cluster remotely with the Docker CLI, so you can't use a single set of
management processes for every environment. There may be technical restrictions as well. At
the time of writing this, EC2 runs an older version of Docker that does not support the health
check functionality. You can run Windows nodes as part of an EC2 cluster, but that's currently
flagged as a beta implementation.

Docker on Google Container
Platform

Google Container Platform (GKE) supports Docker containers but not the Docker swarm
mode. GKE uses Kubernetes as the orchestration layer, which is an open source orchestrator
originally built by Google. Kubernetes has broadly the same feature set as Docker swarm but
uses its own file format to describe deployments and has its own command-line tool.

GKE deploys a Kubernetes cluster across virtual machines in the Compute Engine service. As
with the other cloud options, you pay for the VMs in the cluster and not for the number of
containers you're running. Setting up Kubernetes is a difficult task that GKE abstracts away, and
Google adds higher-level management features, such as autoscaling for nodes (currently in
beta). You can't create a GKE cluster that contains Windows nodes, so you can run only Linux
workloads.

Kubernetes does have support for Windows nodes, but currently, it's in the alpha status so it's
only suitable for initial testing, and you would need to deploy a custom laaS cluster to use it in
GKE. Networking in Kubernetes does not use the Docker overlay network built into Windows;
it uses its own networking stack with a proxy component and a dedicated VM switch.

Docker on Azure Container
Service

Microsoft has taken a different approach with the Azure Container Service (ACS). Rather than
building a custom management layer, they are supporting all major open source orchestrators.
You can create an ACS cluster running on Apache Mesos, on Kubernetes, or using Docker
swarm mode. The swarm mode option means you can use the same container runtime in Azure
as you have locally and deploy to production using the same artifacts you use in dev and test.

ACS doesn't currently have an option to provision Windows nodes in the cluster. You can create
a swarm using Linux nodes as managers and then create Windows VMs in the same resource
group and join them to the swarm. This needs additional steps in your deployment process, but
the end result is a hybrid Linux/Windows swarm, where the Windows nodes are using Docker
EE in a supported configuration.

It's likely that new releases of ACS will allow you to provision Windows nodes in Docker
swarm. Other orchestrators don't have the same level of Windows support—Kubernetes is in
alpha, and Mesos doesn't yet have a public release for Windows.

Docker cloud editions

If you are keen on maintaining consistency between your local Docker environments and the
cloud, Docker for Azure, Docker for AWS, and Docker for GCP are the best options. These are
free Community Editions from Docker Store that create a Docker cluster running in swarm
mode, optimized for the infrastructure on the Microsoft, Amazon, or Google clouds.

You can deploy a swarm from Docker Cloud by providing your subscription details. I've
connected Docker Cloud with my Microsoft Azure subscription, so I can deploy a swarm using
Docker Cloud, which will create all the resources in Azure:

¥ & Docker Cloud m - O X
< L] c ‘Q‘ @ couddockercomyswar.. ¥ M || Qr Search Google v
H bk

docker cloud Swarm mode 4 Repositories Swarms GetHelp ~ ﬁ) sixeyed -

BETA

Swarms Create

© M |«

+ Swarm Name

/ docker-on-windows

Service Provider

ml Microsoft
famazon Ml Azure
" webservices™

s not connected & Cconnected
= yelect e = vy

Powered by Docker CE for AWS

Docker Community Edition

Docker Community Edition (CE) is ideal for developers and small teams looking to get started with
Daocker and experimenting with container-based apps.

Learn More

Cancel

-]

The Docker Cloud editions use a template to create laaS components on the cloud—ARM for
Azure, CloudFormation for AWS, and Deployment Manager for GCP. They give you a best-
practice configuration for Docker swarm, and they're maintained by Docker, Inc. so they're kept
up to date with the latest releases.

Docker Cloud doesn't currently let you create Windows nodes in the swarm. It's
worth checking whether Windows Server is an option in the latest release. If it is,
this will be the easiest way to create a Windows-based Docker swarm in the
cloud.

Alternatively, you can create your own template deployment, which gives you the freedom to
arrange the cluster as you wish. Both AWS and Azure have VM images based on Windows
Server 2016, with Docker preinstalled, which you can spin up as your swarm nodes. In Azure,
you can create separate VNets and Network Security groups for managers and workers, keeping
the manager nodes isolated from the Internet—a suitable approach for production clusters.

Outside of production, I use the DevTest Lab feature in Azure for my Docker swarms. The lab
functionality in Azure is perfect for experimental and test environments—you can configure the
whole lab to shut down and start up on daily schedules, so you only pay for compute when the
swarm is in use.

I won't get into details on DevTest labs, but I can tell you that they allow you to create formulas
to customize virtual machines. You can easily create a formula that uses the VM

image Windows Server 2016 Datacenter—with Containers and runs a startup script to pull all
the Windows images you need with PowerShell. A simple PowerShell script like this will pull
the images you want:

Stag ='10.0.14393.1198"

docker pull "microsoft/dotnet:1.1.2-sdk-nanoserver-S$tag"

docker pull "microsoft/mssgl-server-windows-developer:2016-spl-windowsservercore-S$tag"
docker pull "microsoft/aspnet:windowsservercore-S$tag"

Running a multi-node Docker swarm in the cloud gives you a good working environment for
load testing, failover testing, and to perfect deployment processes. I'll use my Azure DevTest lab
to deploy NerdDinner and demonstrate zero-downtime updates, both of the application and of
the Windows hosts.

Docker Cloud lets you adopt an existing swarm that you've created on a cloud provider. This
associates a swarm you've created manually with your Docker ID. Docker Cloud integrates with
Docker for Windows and Docker for Mac, so you can easily manage remote swarms.

I've created a custom swarm in a DevTest lab and adopted it in Docker Cloud with the name
sixeyed/docker-on-windows. In the Docker for Windows client app, I can click on the whale icon
and see a list of remote swarms that are registered with Docker Cloud:

About Docker

Discover Docker Enterprise Edition

Settings...
Check for Updates...
Diagnose and Feedback...

Switch to Linux containers...
Docker Store

Documentation

Kiternatic

SC-SWarm-we :
sixeyed

docker-on-windows

Swarms

View All Repositories

Create... Cuit Docker

When you select a swarm, Docker opens a new command shell window, already configured to
securely connect to your remote swarm. The swarm could be Windows or Linux nodes running
in any cloud. In this case, I can manage the hybrid Linux/Windows swarm in my Azure DevTest
lab from my Windows laptop:

BN Docker Cloud - sixeyed/docker-on-windows - powershell - O X
PS> node 1s)
D HOSTNAME STATUS AVATLABILITY MANAGER STATUS
02t2z4jd1lybbltzjscp36geos * ub-nodedl Ready Active Leader
absunex8751s1tdkts6ggsdso win-node@l Ready Active
m2ydcculea897dam2wbzo7on7 win-node@2 Ready Active
t+32iwp38808uiwflgsmkaghdd win-node@@ Ready Active
P52

The integration between Docker Cloud and the Docker desktop editions is a very powerful
feature. It's a great way to take advantage of your preferred cloud but still keep your deployment
options open. From this command shell, I can run dgocker stack deploy using my local stack file.
This starts the NerdDinner solution running across multiple nodes in the cloud with exactly the
same deployment and management experience that I have on my laptop.

Running across multiple nodes gives me high availability so my application keeps running in
case of failure, and I can take advantage of that to deploy zero-downtime updates.

Deploying updates with zero
downtime

In swarm mode, Docker has two features that enable updates of the whole stack without
application downtime—rolling updates and node draining. Rolling updates replace application
containers with new instances from a new image—updates are staggered, so provided you have
multiple replicas, there will always be tasks running to serve requests while other tasks are being
upgraded.

Application updates will occur frequently, but less frequently, you will also need to update the
host—either to upgrade Docker or to apply Windows patches. Docker supports draining a node,
which means all the containers running on the node are stopped and no more will be scheduled.
If the replica level drops for any services when the node is drained, tasks are started on other
nodes. When the node is drained, you can update the host and then join it back into the swarm.

Load balancing across swarm
nodes

I've connected to my Azure swarm using Docker for Windows and deployed my NerdDinner
stack. The stack definition creates only one web container, so I'll scale up the web component by
updating the service:

> docker service update --replicas=3 nerd-dinner nerd-dinner-web
nerd-dinner nerd-dinner-web

Now I have a web container running on each of my Windows worker nodes (the manager is a
Linux node):

> docker service ps nerd-dinner nerd-dinner-web

ID NAME IMAGE NODI
i83a5xzf9sai nerd-dinner nerd-dinner-web.l dockeronwindows/ch07-nerd-dinner-web:latest win-
3bkm4mh26234 nerd-dinner nerd-dinner-web.2 dockeronwindows/chO7-nerd-dinner-web:latest win-
exsb590k6gx2 nerd-dinner nerd-dinner-web.3 dockeronwindows/ch07-nerd-dinner-web:latest win-

In Azure, I've created a traffic manager profile that acts as simple load balancer across the
Windows worker nodes. When I browse to nttp://dow.trafficmanager.net, Azure will direct the
traffic to any one of my worker nodes, which in turn forwards the traffic to the container
listening on port so. I see a new deployment of NerdDinner:

v 1] Merd Dinner 'Im' — O 4
< M c ﬁ]‘ ® dow.trafficmanager.net * [| arses v
H
+ Nerd Dinner
= Organizing the world's nerds and helping them eat in packs.
®
Find Dinner
+
&

The traffic manager in Azure has its own health check, so it won't direct traffic to a node that
doesn't respond on the HTTP port. This lets me perform a zero-downtime update. Docker will
update one task at a time, and the Azure load balancer will direct traffic to the live tasks while
the other task is being updated.

For my application update, I have an updated home page component with a restyled Ul—a nice
easy change to validate.

Updating application services

There are two steps to this update. First, I need to update the home page service to deploy the
new UL This is an internal component that is used only by the web application service:

> docker service update --image dockeronwindows/ch07-nerd-dinner-homepage nerd-dinner nerd-dir
nerd-dinner nerd-dinner-homepage

® nerd-dinner-homepage 1s the name of the service to update
e —-image specifies the new image for the update

The update command doesn't have any restrictions on the image you're
upgrading to. It doesn't need to be a new tag from the same repository name; it
can be a completely different image. This is very flexible, but it means you need
to be careful that you don't accidentally update your message handlers with a
new version of the web application or vice versa.

Updating the home page component doesn't show the changed Ul because the web containers
cache the home page content. The web app uses a static cache, so it will not refresh the content
until the app is restarted. I don't have a new image to deploy, but I can force a service update,
which will restart all the containers from the current image:

> docker service update --force nerd-dinner nerd-dinner-web
nerd-dinner nerd-dinner-web

Docker updates one container at a time, and you can configure the delay interval between
updates and the behavior to take if updates fail. While the update is in process, I can run dgocker
service ps and see that the original containers are in the shutdown state and the replacement
containers are Running OI Starting.

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS

i83a5xzf9sai nerd-dinner_ nerd-dinner-web.l dockeronwindows/chO07-nerd-dinner-web:latest v
Running Running about an hour ago *:80->80/tcp
2d3i60h2vbvl nerd-dinner nerd-dinner-web.2 dockeronwindows/chO7-nerd-dinner-web:latest v

Running Running about a minute ago *:80->80/tcp

3bkm4mh26234 _ nerd-dinner nerd-dinner-web.2 dockeronwindows/ch07-nerd-dinner-web:latest v
Shutdown Shutdown 3 minutes ago

r9j830zezdn8 nerd-dinner nerd-dinner-web.3 dockeronwindows/ch07-nerd-dinner-web:latest wi
Running Starting about a minute ago

exsb590k6gx2 _ nerd-dinner nerd-dinner-web.3 dockeronwindows/ch07-nerd-dinner-web:latest wi
Shutdown Shutdown about a minute ago

The Dockerfile for the NerdDinner web application has a health check, and Docker waits until
the health check on the new container passes before it moves on to replacing the next container.
During the rolling update, some users will see the old home page, and some users will see the
new home page:

1§ Merd Dinner 'u_u' = o x

v
< L] c ‘m‘ ® dow.trafficmanager.net v H ||9Qr search Google hd
H

Nerd Dinner

Organizing the world's nerds and helping them eat in packs.

Find Dinner =

As long as the load balancer can detect status changes quickly enough, it will send traffic only to
hosts that have running containers—users will get a response from a container that has been
updated or one that is due to be updated. During the update, there is no container listening on
port so on that host, so the load balancer detects that the host is unavailable and sends traffic
elsewhere.

The whole update process is automated, and there will be no application downtime as tasks are
updated individually and the load balancer sends traffic only to nodes that have running tasks. If
it's a high-traffic application, you need to ensure there's spare capacity in your service, so when
one task is being updated, the remaining tasks can handle the load.

Rolling updates give you zero downtime, but that doesn't necessarily mean your app will
function correctly during the update. This process is only suitable for stateless applications—if
tasks store the session state, then the user experience will be impacted. When the container
holding state is replaced, the state will be lost, so if you have stateful applications, you will need
to plan a more careful upgrade process.

Rolling back service updates

When you update a service in swarm mode, the swarm stores the configuration of the previous
deployment. If you find a problem with the release, you can roll back to the previous state with a
single command:

> docker service update --rollback nerd-dinner nerd-dinner-homepage
nerd-dinner nerd-dinner-homepage

The rollback is a specialized form of service update. Instead of passing an image name for tasks
to update to, the ro11pack flag does a rolling update to the previous image used by the service.
Again, the rollback happens one task at a time, so this is a zero-downtime process.

Service updates retain only one prior service configuration for rollbacks. If you update from
version 1 to version 2 and then to version 3, the configuration of version 1 is lost. You can roll
back from version 3 to version 2—but if you roll back again from version 2, it will be to the
previous version, which will take you back to version 3.

Configuring update behavior

For large scale deployments, you may want to change the default update behavior, either to
complete the roll out more quickly or to run a more conservative roll out strategy. The default
behavior updates one task at a time, with no delay between task updates, and if a task update
fails, the roll out is paused. The configuration can be overridden with three parameters:

e update-parallelism: The number of tasks to update concurrently

e update-delay: Lhe period to wait between task updates; can be specified as hours, minutes,
and seconds

e update-failure-action: The action to take if a task update fails; either continue or stop the
roll out

You can specify the default parameters in the Dockerfile, so they're baked into the image, or the
Compose file so they're set at deployment time or with the service commands. For a production
deployment of NerdDinner, I might have nine instances of the SQL message handler, with
update config In the Compose file set to update in batches of three with a 10-second delay:

nerd-dinner-save-handler:
deploy:
endpoint _mode: dnsrr
replicas: 9
update_config:
parallelism: 3
delay: 10s

Update configuration for a service can also be changed with the docker service update command,
so you can alter the update parameters and initiate a rolling upgrade with a single command.

Health checks are especially important in service updates. If a health check fails for a new task
in a service update, that could mean there's a problem with the image. Completing the roll out
could result in 100% unhealthy tasks and a broken application. The default update configuration
prevents this, so if an updated task does not enter the running state, the roll out is paused. The
update will not go ahead, but that's a better outcome than having an updated app that is broken.

Updating swarm nodes

Application updates are one part of the update routine and host updates are the other. Your
Windows Docker hosts should be running a minimal operating system, preferably Windows
Server 2016 Core. This version has no Ul, so there's a much smaller surface area for updates, but
there will still be some Windows updates that require a reboot.

Rebooting the server is an invasive process—it stops the Docker service, killing all running
containers. Upgrading Docker is equally invasive for the same reason; it means a restart of the
Docker service. In swarm mode, you can manage this by taking nodes of service for the update
period without impacting service levels.

I'll show this with my Azure swarm. If I need to work on win-nodeo2, I can gracefully reschedule
the tasks it is running with docker node update in order to put it into drain mode:

> docker node update --availability drain win-node02
win-node02

Putting a node into drain mode means all containers are stopped, and as these are service task
containers, they will be replaced with new containers on the other nodes. When the drain
completes, I have no running tasks on win-node02: they have all been shut down. You can see that
the tasks have been deliberately shut down, as shutdown 1s listed as the desired state:

> docker node ps win-node02

ID NAME IMAGE NODE DESIRE
rcrcwgao3cOm nerd-dinner message-queue.l nats:nanoserver

win-node02 Shutdown
zetse09726t9 nerd-dinner kibana.l sixeyed/kibana:nanoserver

win-node02 Shutdown

gdg3owrdjcur nerd-dinner nerd-dinner-homepage.l dockeronwindows/ch03-nerd-dinner-homepage:
win-node02 Shutdown

r9j830zezdn8 nerd-dinner nerd-dinner-web.3 dockeronwindows/ch07-nerd-dinner-web:latest
win-node02 Shutdown
exsb590k6gx2 _ nerd-dinner nerd-dinner-web.3 dockeronwindows/ch07-nerd-dinner-web:latest

win-node02 Shutdown

I can check the service list and see that every service is at the required replica level except the
web application service:

> docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS

4q7kmlxclwo6 nerd-dinner_ elasticsearch replicated 1/1
e2obujts50tp nerd-dinner message-queue replicated 1/1
e660rl6zkk8s nerd-dinner_ nerd-dinner-db replicated 1/1

goc2dhOrpaid nerd-dinner nerd-dinner-index-handler replicated 1/1
hhfvwsukl2do nerd-dinner nerd-dinner-save-handler replicated 1/1

06mjy5jbj57x nerd-dinner nerd-dinner-web replicated 2/3
gxlhhp8o0o5r5 nerd-dinner kibana replicated 1/1
w48ffc5ejx52 nerd-dinner nerd-dinner-homepage replicated 1/1

The swarm has created new containers to replace the replicas that were running on win-nodeo2,
but in the reduced swarm, there isn't any capacity to run another web container. The web
application service needs to run on a Windows node and publish port so to the host. There are

only two Windows nodes available to run containers, and both have port so already allocated.
The web service will stay at a replica level of 2/3 until there is enough capacity in the swarm to
schedule another container.

Nodes in the drain mode are considered to be not available, so if the swarm needs to schedule

new tasks, none will be allocated to drained nodes. win-nodeo2 is effectively out of commission
now, so I could log on and run a Windows update with the sconfig tool, or update the Docker

service.

Updating the node may mean restarting the Docker service or rebooting the server. When that's
done, I can bring the server back online in the swarm with another docker node update command:

|docker node update --availability active win-node02

This makes the node available again. When nodes join the swarm Docker doesn't automatically
rebalance the services, so the containers running on win-node00o and win-nodeo1 Will stay there,
even though win-node02 is available and has more capacity. The extra capacity does mean there's
a Windows Server with port so free now, so the swarm will schedule the missing third web
container onto win-node02:

> docker node ps --filter desired-state=running win-node02
ID NAME IMAGE NODI
bguulese9lga nerd-dinner nerd-dinner-web.3 dockeronwindows/ch07-nerd-dinner-web:latest win-

In a high-throughput environment where services are regularly started, stopped, and scaled, any
nodes that join the swarm will soon be running their share of tasks. In a more static
environment, you may add an extra node as a temporary increase in compute power in order to
give you headroom while you update other nodes.

Swarm mode gives you the power to update any component of your application and the nodes
running the swarm without any downtime. You may need to commission additional nodes in the
swarm during the updates, but these can be removed afterward. You don't need any additional
tooling to get rolling updates, automated rollback, and host management—it's all built into
Docker.

Mixing hosts in hybrid swarms

There's one more feature of swarm mode that makes it hugely powerful. Nodes in the swarm
communicate using the Docker API, and the API is cross-platform—which means you can have
a single swarm running a mixture of Windows and Linux servers.

Linux isn't the focus of this book, but I will cover hybrid swarms briefly because they open up a
new range of possibilities. A hybrid swarm can have Linux and Windows nodes as managers
and workers. You administer the nodes and the services they're running in the same way, using
the exact same Docker CLI.

One use case for hybrid swarms is to run your manager nodes on Linux to reduce licensing costs
or running costs if you have your swarm in the cloud. A production swarm will need at least
three manager nodes. Even if all your workloads are Windows-based, it may be more cost
effective to run Linux nodes as managers and save the Windows nodes for user workloads.

The other use case is for mixed workloads. My NerdDinner solution is configured with the web
service as the entry point, so HTTP requests are sent directly to the ASP.NET containers. It
would be more flexible to run a reverse proxy in a container as the entry point and have requests
forwarded from the proxy to the web containers.

A reverse proxy can do SSL termination, caching, load balancing, and more. You can modify
HTTP headers in the proxy and disguise the fact that the actual application runs on ASP.NET.
Caching is particularly important—the proxy can serve all static resources (images, style sheets,
and JavaScript), reducing the number of requests to the application.

There isn't a great software reverse proxy in Windows, but in Linux, there are two—Nginx and
HAProxy. Both of these are available as official images on Docker Hub, which you can drop
into your solution if you have a hybrid swarm. You could have Nginx running on the Linux
nodes in the swarm, forwarding traffic to the ASP.NET application on the Windows nodes.

Similarly, you could migrate any cross-platform components to run in Linux containers. That
could be the .NET Core message handler from Chapter 5, Adopting Container-First Solution
Design, as well as the nats message queue, Elasticsearch, Kibana, and even SQL Server. Linux
images are typically much smaller and lighter than Windows images, so you should be able to
run with greater density, packing more containers onto each host.

The great benefit of the hybrid swarm is that you manage all these components in the same way,
from the same user interface. You can connect your local Docker CLI to the swarm manager and
administer the Nginx proxy on Linux and the ASP.NET application on Windows with exactly
the same commands.

Summary

This chapter was all about the Docker swarm mode, the native clustering option built right into
Docker. You learned how to create a swarm and how to add and remove swarm nodes

and deploy services on the swarm connected with an overlay network. I showed that you have to
create services for high availability and also discussed how to use secrets to store sensitive
application data securely in the swarm.

You can deploy your application as a stack on the swarm using a Compose file, which makes it
very easy to group and manage your application components. I demonstrated stack deployment
on a single node swarm and on a multi-node swarm running in Azure and managed with Docker
Cloud.

High availability in the swarm means you can perform application updates and rollbacks without
downtime. You can even take nodes out of commission when you need to update Windows or
Docker and have your application still running with the same service level on the remaining
nodes.

In the next chapter, I'll look more closely at the administration options for dockerized solutions.
I'll start by looking at how to use your existing management tools with applications running in
Docker. Then, I'll move on to managing swarms in production with Docker Enterprise Edition.

Administering and Monitoring
Dockerized Solutions

Applications built on Docker are inherently portable, and the process of deployment is the same
for every environment. As you promote your application through system tests and user tests to
production, you'll use the same artifacts every time. The Docker images you use in production
are the exact same versioned images that were signed off in the test environments, and any
environmental differences can be captured in compose files.

In a later chapter, I'll cover how continuous deployment works with Docker, so your whole
deployment process can be automated. But when you adopt Docker, you'll be moving to a new
application platform, and the path to production is about more than just the deployment process.
Containerized applications run in fundamentally different ways to apps deployed on VMs or
bare metal servers. In this chapter, I'll look at administering and monitoring applications running
in Docker.

Some of the tools you use to manage Windows applications today can still be used when the
apps are moved to Docker, and I'll start by looking at some examples. But there are different
management needs and opportunities for apps running in containers, and the main focus of this
chapter will be management products specific to Docker.

In this chapter, I'll be using simple Dockerized applications to show how you can do the
following:

e Connect Internet Information ServicesA (IIS) Manager to IIS services running in
containers

e Connect Server Manager to containers to see event logs and features

e Use open source projects to view and administer Docker swarms

e Use Universal Control Plane (UCP) with Docker Enterprise EditionA (Docker EE)

Managing containers with
Windows tools

Many of the administration tools in Windows are able to manage services running on remote
machines. IIS Manager, Server Manager, and, of course, SQL Server Management

Studio (SSMS) can all be connected to a remote server on the network for inspection and
administration.

Docker containers are different from remote machines, but they can be set up to allow remote
access from these tools. Typically, you need to explicitly set up access for the tool by exposing
management ports, enabling Windows features, and running PowerShell cmdlets. This can all be
done in the Dockerfile for your application, and I'll cover the setup steps for each of these tools.

Being able to use familiar tools can be helpful, but there are limits to what you should do with
them; remember, containers are meant to be disposable. If you connect to a web application
container with IIS Manager and tweak the app pool settings, that tweak will be lost when you
update the app with a new container image. You can use the graphical tools to inspect a running
container and diagnose problems, but you should make changes in the Dockerfile and redeploy.

IIS Manager

The IIS web management console is a perfect example. Remote access is not enabled by default
in the Windows base images, but you can configure it with a simple PowerShell script. Firstly,
the web management feature needs to be installed:

Import-Module servermanager
Add-WindowsFeature web-mgmt-service

Then, you need to enable remote access with a registry setting and start the web management
Windows service:

Set-ItemProperty -Path HKLM:\SOFTWARE\Microsoft\WebManagement\Server -Name EnableRemoteManager
Start-Service wmsvc

You also need an exrose instruction in the Dockerfile to allow traffic into the management
service on the expected port s172. This will allow you to connect, but IIS management console
requires user credentials for the remote machine. To support this without having to connect the
container to Active Directory (AD), you can create a user and password in the setup script:

net user iisadmin "!!Sadmin*" /add

net localgroup "Administrators" "iisadmin" /add

There are security issues here. You need to create an administrative account in
the image, expose a port, and run an additional service - all increasing the attack
surface of your application. Instead of running the setup script in the Dockerfile,
it would be better to attach to a container and run the script interactively if you
need remote access.

I've set up a simple web server in an image, packaged with a script to enable remote
management in the Dockerfile for dockeronwindows/ch08-iis-with-management. I'll run a container
from this image, publishing the HTTP and IIS management ports:

|docker container run -d -p 80 -p 8172 --name iis dockeronwindows/ch08-iis-with-management

When the container is running, I'll execute the enablerisremoteManagement.ps1 script, which sets up
remote access with the IIS management service:

|docker container exec iis powershell \EnablelisRemoteManagement.psl

Now I can run IIS Manager on my Windows host, choose Start...Connect to a Server , and enter
the IP address of the container. When IIS challenges me to authenticate, [use the credentials for
the iisaamin user I created in the setup script:

HE Internet Information Services (15} Manag

o r
= q_—:_] » Start Page

File View Help

I Connections
:“," H -
5-----‘?3’ Start Page
3 ..Hﬂ SC-KPS-WIN16 (SC-XPS-WIN16\elton)

I Recent connections I
Connect to Server

? Provide Credentials
-

Connecting to "172.31.120.34".

Uszer name:
[sodmin 7]

Password:

Here, I can navigate around the application pools and the website hierarchy as if [were
connected to a remote server:

CY . S T e
“E Internet Information Services (IIS) Manager

fe & |63 1723112034 »

File View Help

iy @5 1723112034 H
- o 1 i ome
@i "8 |
! @3 Start Page ==
! Filter: * W Go - \gyShowAll | G by: ¥, &
> 83 SC-XPS-WINTG (SC-XPS-WIN18\elton) b Go - EaShowal | Groupby: Area
V--Gfi 172.31.120.24 {jisadmin) 115
.2} Application Pools 7 . ; FED =
e 4 i P = =
w -[@| Sites S!E) %ﬁ| @ a0 @E] = i—:J
» @ Default Web Site Authentic.. Compression Default Directory Error Pages Handler HTTP Loegging
\ @ Website2 Document Browsing Mappings Respon...
= 7 = .
A= -!$E| food| = {%
B 4=t F) o= «ky
MIME Types Modules Output Request Worker
Caching Filtering Processes
Management

B & & &

Configurat... Feature 115 Manager 115 Manager
Editor Delegation Permissions Users

This is a good way of checking the configuration of IIS or an ASP.NET application running on

IIS. You can check the virtual directory setup, application pools, and application configuration,
but this should be used for investigation only.

If I find that something in the application is not configured correctly, I need to go back to the
Dockerfile and fix it and not make a change to the running container. This technique can be very
useful when you're migrating an existing app to Docker. If you install an MSI with the web app

in the Dockerfile, you can't see what the MSI actually does - but you can connect with IIS
manager and see the results.

SQL Server Management
Studio

SSMS is more straightforward because it uses the standard SQL client port 1433. You don't need
to expose any extra ports or start any extra services; the SQL Server images from Microsoft
already have everything set up. You can connect using SQL Server authentication with the sa
credentials you use when you run the container.

This command runs a SQL Server Developer Edition container, publishing port 1433 to the host
and specifying sa credentials:

docker container run -d -p 1433 -e sa_password=DockerOnW!ndOws -e ACCEPT EULA=Y °
--name sql microsoft/mssql-server-windows-developer

You connect to the SQL Server instance in the container using the host's IP address from a
remote machine or using the container's IP address if you're connected to the host. In SSMS, just
specify the SQL credentials:

®L Connect to Server b4

SQL Server

Servertype: Database Engine W
Server name: 172.31.117.137 ~|
Authertication: SQL Server Authentication 2
Login: |sa v |
Password: |W |

] Remember password

Cancel Help Options ==

You can administer this SQL instance in the same way as any SQL Server—creating databases,
assigning user permissions, restoring Dacpacs, and running SQL scripts. Remember that any
changes you make won't impact the image, and you'll need to build your own image if you want
the changes to be available to new containers.

This approach lets you build a database through SSMS, if that's your preference, and get it
working in a container without installing and running SQL Server. You can perfect your
schema, add service accounts and seed data, and then export the database as a script.

I've done this for a simple example database, exporting the schema and data to a single file
called init-db. sql. The Dockerfile for dockeronwindows/ch08-mssgl-with-schema takes the SQL
script and packages it into a new image, with a bootstrap PowerShell script that deploys the

database when you create a container:

escape="
FROM microsoft/mssgl-server-windows-express
SHELL ["powershell", "-Command", "S$SErrorActionPreference = 'Stop';"]

ENV sa password DockerOnW!ndOws
VOLUME C:\mssql

WORKDIR C:\init
COPY . .

CMD ./InitializeDatabase.psl -sa password $env:sa password -Verbose

HEALTHCHECK CMD powershell -command

try { °
Sresult = invoke-sglcmd -Query 'SELECT TOP 1 1 FROM Authors' -Database DockerOnWindows; °
if ($Sresult[0] -eq 1) { return 0} °

else {return 1}; °
} catch { return 1 }

There's a uearrucueck in the SOQL Server image here, which is good practice—it
lets Docker check whether the database is running correctly. In this case, the test
will fail if the schema has not been created, so the container won't report as
healthy until the schema deployment has completed successfully.

I can run a container from this image in the usual way:

|docker container run -d -p 1433 --name db dockeronwindows/ch08-mssql-with-schema

By publishing port 1433, I connect to the database with SSMS and see the schema and data from
the script. This represents a fresh deployment of an application database, and in this case, ['ve
used SQL Server development edition to work out my schema but SQL Server Express for the
actual database - all running in Docker with no local SQL Server instances.

If you think using SQL Server authentication is a retrograde step, you need to remember that
Docker enables a different runtime model. You won't have a single SQL Server instance running
multiple databases; that could all be targets if the credentials were compromised. Each SQL
workload will be in a dedicated container with its own set of credentials, so you effectively have
one SQL instance per database, and you could potentially have one database per service.

Security can be increased by running in Docker. Unless you need to connect to SQL Server
remotely, you don't need to publish the port from the SQL container. Any applications that need
database access will run as containers in the same Docker network as the SQL container and will
be able to access port 1433 without publishing it to the host. This means SQL is only accessible
to other containers running in the same Docker network.

that in Docker. Containers can be domain-joined when they start, so you can use

If you need to use Windows authentication with an AD account, you can still do
0 service accounts for SQL Server instead of SOL Server authentication.

Event logs

You can connect Event Viewer on your local machine to a remote server, but currently, the
remote event log services are not enabled on the Windows Server Core or Nano Server images.
This means you can't connect to a container and read event log entries with the Event Viewer Ul
—but you can do that with the Server Manager UI, which I'll cover in the next section.

If you just want to read event logs, you can execute PowerShell cmdlets against running
containers to get the log entries. This command reads the two latest event log entries for the
SQL Server application from my database container:

> docker exec db powershell °
"Get-EventLog -LogName Application -Source MSSQL* -Newest 2 | Format-Table TimeWritten, Mes:s

TimeWritten Message
6/27/2017 5:14:49 PM Setting database option READ WRITE to ON for database '...
6/27/2017 5:14:49 PM Setting database option query store to off for database...

Reading event logs can be useful if you have an issue with a container that you can't diagnose
any other way. But it's an approach that doesn't scale when you have dozens or hundreds of
containers running. It's better to relay the event logs that are of interest to the console, so they're
collected by the Docker platform and you can read them with docker container 1ogs, Or @
management tool that can access the Docker API.

Relaying event logs is simple to do, taking a similar approach to relaying IIS logs in Chapter

3, Developing Dockerized .NET and .NET Core Applications. For any apps that write to the
event log, you use a startup script as the entry point, which runs the app and then enters a read
loop—getting entries from the event log and writing them out to the console.

This is a useful approach for apps that run as Windows Services, and it's an approach Microsoft
has used in the SQL Server Windows images. The Dockerfile uses a PowerShell script as cwp,
and that script ends with a loop that calls the same cet-eventrog cmdlet to relay logs to the
console:

$lastCheck = (Get-Date) .AddSeconds (-2)
while ($true) {
Get-EventLog -LogName Application -Source "MSSQL*" -After $lastCheck | °
Select-Object TimeGenerated, EntryType, Message
$lastCheck = Get-Date
Start-Sleep -Seconds 2
}

This script reads the event log every 2 seconds, gets any entries since the last read, and writes
them out to the console. The script runs in the process started by Docker, so the log entries are
captured and can be surfaced by the Docker API.

This is not a perfect approach - it uses a timed loop, only selects some of the data from the log,
and it means storing data in both the container's event log and in Docker. It is valid if your
application already writes to the event log and you want to Dockerize it without rebuilding the

app. In this case, you need to be sure you have a mechanism to keep your application process
running, such as a Windows Service, because Docker is monitoring only the event log loop.

Server Manager

Server Manager is a great tool to remotely administer and monitor servers, and it works well
with containers based on Windows Server Core. You need to take a similar approach to the IIS
management console, configuring a user in the container with administrator access and then
connecting from the host.

Just like with IIS, you can add a script to the image, which enables access, so you can run it
when you need it. This is safer than always enabling remote access in the image. The script just
needs to add a user, configure the server to allow remote access from administrator accounts,
and ensure the Windows Remote Management (WinRM) service is running:

net user serveradmin "s3rv3radmin*" /add
net localgroup "Administrators" "serveradmin" /add

New-ItemProperty -Path HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System °
-Name LocalAccountTokenFilterPolicy -Type DWord -Value 1
Start-Service winrm

I have a sample image, dockeronwindows/ch08-iis-with-server-manager, Which is based on IIS and
packages a script to enable remote access with Server Manager. The Dockerfile also exposes the
ports used by WinRM, 5985 and s9ss. I can start a container running IIS in the background and
then enable remote access:

> docker container run -d -P --name iis2 dockeronwindows/ch08-iis-with-server-manager
b4d2c57d54e6c01e991dc4ed1b2a931386£9432b6£06235cc7dcac525c0bad25

> docker exec iis2 powershell .\EnableRemoteServerManagement.psl
The command completed successfully.

You can connect to the container with Server Manager using the container's IP address, but the
container isn't domain-joined. Server Manager will try to authenticate over a secure channel and
fail, so you'll get a WinRM authentication error. To add a server that isn't domain-joined, you
need to add it as a trusted host. The trusted host list needs to use the hostname of the container,
not the IP address, so first, I'll get the hostname of the container:

> docker exec iis2 hostname
b4d2c57d54e6

And now, I can add the container to the trusted list. This command needs to run on the host, not
in the container. You're adding the container's hostname to the local machine's list of trusted
servers. I run this on my Windows Server 2016 host:

|Set-Item wsman: \localhost\Client\TrustedHosts b4d2c57d54e6 -Concatenate -Force

I'm running Windows Server 2016, but you can use Server Manager on Windows
10 too. Install the Remote Server Administration Tools (RSAT) and you can use
Server Manager on Windows 10 in the same way.

In Server Manager, navigate to All Servers | Add Servers and open the DNS tab. Here, you can

enter the IP address of the container, and Server Manager will resolve the hostname:

% Add Servers

Search:l‘l?2,31.‘|‘|5.192 HE' Computer

MName IP Address

fel0:35ee:2c2e4705:1F5%24

2 Sdeh
RN 172.21.115.192

0 Computer(s) selected

Select the server details and click on OK—now Server Manager will try to connect to the
container. You'll see an updated status in the All Servers tab, which says the server is online but
access is denied:

Bm= SERVERS

All servers | 2 total

(¥ Refresh failed

o fimy =
Filter p \iE) ._‘E) -

Server Name 1Pvd Address Manageability

Online - Access denied

bdd2c57d54eb

Now you can right-click on the container in the server list and click on Manage As to provide
the credentials for the local administrator account. You need to specify the hostname as the
domain part of the username. The local user created in the script is called serveradmin , but I
need to authenticate with bad2c57d54e6\serveradmin.

Now the connection succeeds and you'll see the data from the container surfaced in Server
Manager, including the event log entries, Windows Services, and all the installed roles and
features:

Ba= SERVERS

]
l. All servers | 2 total

. fomy o
Cois (=] w i | -
Futer 00 et \.HJ

Server Eamc— IPvd Address Manageability

BAD2C57D54E6 172.31.115.192 Online - Performance counters not started

SC-XPS-WIN16 169.254.123.217,169.254.252,188,172.31.112.1,192.168.2.146,192.168.56.1 Online - Performance counters not started

EVENTS
All events | 4 total
7 =y f e
Filter jo E> H >

Server Name] Severity Source Log Date and Time
B4D2C57D54E6 8198 Error Microsoft-Wind ows-Security-SPP Application 03/05/2017 09:58:42
EAD2C57D54E6 701 Error Microsoft-Windows-TaskScheduler System 03/05/2017 09:56:41
B4D2C57D534E6 701 Error Microsoft-Windows-TaskScheduler System 03/05/2017 09:56:41
B4D2C57D54E6 7023 Error Microsoft-Windows-Service Control Manager System 03/05/2017 09:56:41

You can even add features to the container from the remote Server Manager Ul—but that
wouldn't be a good practice. Like the other Ul management tools, it's better to use them for
exploration and investigation but not to make any changes in the Dockerfile.

Managing containers with
Docker tools

You've seen that you can use existing Windows tools to administer containers, but what you can
do with these tools doesn't always apply in the Docker world. A container will run a single web
application, so the hierarchy navigation of IIS Manager isn't really helpful. Checking event logs
in Server Manager can be useful, but it is much more useful to relay entries to the console so
they can be surfaced from the Docker API.

Images also need to be explicitly set up to enable access to remote management tools, exposing
ports, adding users, and running additional Windows services. All this adds to the attack surface
of your running container. You should look at these existing tools as useful in debugging in
development and test environments, but they're not really suitable for production.

The Docker platform provides a consistent API for any type of application running in a
container, and that's an opportunity for a new type of admin interface. For the rest of the chapter,
I'll be looking at management tools that are Docker-aware and provide an alternative
management interface to the Docker command line. I'll start with some open source tools and
move on to the commercial Containers-as-a-Service (CaaS) platform in Docker EE.

Docker visualizer

Visualizer is a very simple web Ul that shows basic information about nodes and containers in a
Docker swarm. It's an open source project on GitHub in the dockersampies/docker-swarn-
visualizer repository. It's a Node.js application, and it comes packaged in Docker images for
Linux and Windows.

On my hybrid swarm in Azure, I can run the visualizer as a Linux container on the manager
node. I connect to the swarm with Docker for Windows and run the following:

docker service create °
--name=viz °
--publish=8080:8080/tcp °
--constraint=node.role==manager °
--mount=type=bind, src=/var/run/docker.sock,dst=/var/run/docker.sock °
dockersamples/visualizer

The constraint ensures the container runs only on a manager node, and as my manager runs on
Linux, I can use the mount option to let the container talk to the Docker API. In Linux, you can
treat sockets like filesystem mounts, so the container can use the API socket without having to
publicly expose it over Transmission Control Protocol (TCP).

currently support mounting named pipes as volumes, but there is a workaround

You can also run the visualizer in an all-Windows swarm. Windows doesn't
9 described in the documentation for the visualizer project.

The visualizer gives you a read-only view of the containers in the swarm. The UI shows the
status of hosts and containers and gives you a quick way to check the distribution of the
workload on your swarm. This is how my Azure swarm looks with the NerdDinner stack
deployed:

Y & Visuslizer]E e O X

]
pam |
R
T

1l

s}
c

<

c Q‘ ® ub-noded1.westeurope.cloudapp.azure.com:2020 v Search Google

b

|4

@ m@

dockercloud-server-proxy| : nerd-dinner_elnslicsear:l']l nerd-dinner_message-que

nerd-dinner_nerd-dinner-c | ® nerd-dinner_nerd-dinner-f

nerd-dinner_kibana

nerd-dinner_nerd-dinner-

portainer » nerd-dinner_nerd-dinner- nerd-dinner_nerd-dinner-y

I can see at a glance that all my nodes and containers are healthy and that Docker has distributed
containers across the swarm as evenly as it can. Visualizer uses the API in the Docker service,
which exposes all the Docker resources with a RESTful interface.

The Docker API also provides write access, so you can create and update resources. An open
source project called Portainer provides administration using these APIs.

Portainer

Portainer is a lightweight management UI for Docker. It runs as a container, and it can manage
single Docker hosts and clusters running in swarm mode. It's an open source project hosted
on GitHub in the portainer/portainer repository. Portainer is written in Go, so it's cross-platform

and you can run it as a Linux or a Windows container.

On my hybrid swarm, I can run Portainer on the manager node:

docker service create °
--name portainer °
--publish 9000:9000 °
--constraint 'node.role == manager'

--mount type=bind,src=//var/run/docker.sock,dst=/var/run/docker.sock °

portainer/portainer -H unix:///var/run/docker.sock

The portainer/portainer image on Docker Hub is a multi-arch image, which

API on Windows.

means you can use the same image tag on Linux and Windows, and Docker will
use the matching image for the host OS. You can't mount the Docker socket on
Windows, but the Portainer documentation shows you how to access the Docker

When you first browse to Portainer, you need to specify an administrator password. Then, the
service connects to the Docker API and surfaces details about all the resources. In swarm mode,
I can see the nodes in the swarm, their compute capacity, Docker version, and status:

Nodes

+

Docker APl version

Dashboard
Total CPU

4 B

AEEileiniates Total memory

@

Services

Containers & Node status

&

Images

Name Role CPU Memory Engine
Networks

ub-node0l manager 2 7.3GB 17.06.0-ce-rc5
Volumes win-nodeQ0 worker 2 75GB 17.06.0-ce-rc5
Secrets win-node02 worker 2 7.5 GB 17.06.0-ce-rc5

win-node01 worker 2 7.5 GB 17.06.0-ce-rc5

Swarm

o Q) Portainer 113.3

v ® Portainer
< L] C ﬁ} ® ub-node01.westeurope.cloudapp.azure.com:9000 v [||Qr Search Google
H portainerio Cluster overview &
} el Swarm
B
& Cluster status
o

m - O x

v

@ admin
A my account & logout

g
130
8

2985GB

Items per page: |10 v

IP Address Status
10.0.0.4
10.0.0.5
10.0.0.6

10007

The Services view shows me all the running services, and from here, I can drill down into
service details, and there's a quick link to update the scale of the service:

® Portainer

] c Q‘ ® ub-node01.westeurope.cloudapp.azure.com:3000

ﬂ;portoiner.io =

© Hl«e O A <€

primary v

Dashkoard

+

App Templates
Services
Containers
Images
Networks
Volumes
Secrets

Swarm

-3 O Portalner 113.3

Name ¥

dockercloud-server-proxy

nerd-dinner_elasticsearch

nerd-dinner_kibana

nerd-dinner_message-

queue

nerd-dinner_nerd-dinner-
db

nerd-dinner_nerd-dinner-
homepage

nerd-dinner_nerd-dinner-
index-handler

nerd-dinner_nerd-dinner-
save-handler

nerd-dinner_nerd-dinner-
web

portainer

Image

dockercloud/server-proxy

sixeyed/elasticsearch:nanoserver

sixeyed/kibana:nanoserver

nats:nanoserver

dockeronwindows/ch07-nerd-dinner-

db:latest

dockeronwindows/ch03-nerd-dinner-

homepage:latest

dockeronwindows/ch05-nerd-dinner-

index-handlerlatest

dockeronwindows/ch07-nerd-dinner-

save-handler:latest

dockeronwindows/ch07-nerd-dinner-

web:latest

portainer/portainer:latest

v [||Qr search Google

Scheduling

mode

global 1 / &

replicated
1] Scale

replicated
1] Scale

replicated
1 | Scale

replicated
1] Scale

replicated
1] Scale

replicated
1] Scale

replicated
1 | Scale

replicated
1 | Scale

replicated
1 | Scale

1./

£/

-
~

.
~

[
~

o
~

.
2,

i
-~

[
~

Published
Ports

& 2376:2376

£ 5601:5601

' 80:80

=
92000-5000

El

Updated at

2017-06-27
22:43.02

2017-06-28
00:01:40

2017-06-28
00:01:43

2017-06-28
00:01:45

2017-06-28
00:01:48

2017-06-28
00:01:50

2017-06-28
00:01:52

2017-06-28
00:01:54

2017-06-28
00:01:57

2017-06-27
23:25:19

Ownership

@ public

@ public

@ public

@ public

@ public

@ public

@ public

@ public

@ public

@ public

You can create containers and services from Portainer, but as of the current version (1.13), you

can't deploy a stack from a compose file or manage stacks on the swarm.

Portainer is a great tool and an active open source project, but there are features where you need
to understand the source of the data—some views that show the status of the node Portainer is
connected to rather than the swarm as a whole. The Services view shows all services, but the
Volumes and Containers views show only those resources on the node where Portainer is

running.

You can create multiple users and teams in Portainer and apply access control to resources. You
can create services that have access limited to certain teams. Authentication is managed by
Portainer, so all users exist in the Portainer database and you can't connect to external identity

providers.

In a production environment, you may have a requirement to run software with support.

Portainer is open source, but there is a commercial support option available. For enterprise
deployments or environments with strict security processes, Docker EE offers a complete feature

set.

CaaS with Docker EE

Docker EE is the commercial edition from Docker, Inc. and the standard and advanced options
come with the management suite called Docker Datacenter (DDC). DDC is Docker's

CaaS platform and makes full use of Docker to provide a single pane of glass to manage any
number of containers running on any number of hosts.

DDC is an enterprise-grade product that you run on a cluster of machines in your data center or
in the cloud. The clustering functionality uses Docker swarm mode, so in production, you could
have a 100-node cluster using the exact same application platform as your development laptop
running as a single-node swarm.

There are two parts to DDC. There's the Docker Trusted Registry (DTR), which is like
running your own private instance of Docker Hub, complete with image signing and security
scanning. I'll cover DTR in Chapter 9, Understanding the Security Risks and Benefits of

Docker, when I look at security in Docker. The administration component is called UCP, and it's
a new type of management interface.

Understanding UCP

UCP is a web-based interface used to manage swarm nodes, images, services, and containers.
UCEP itself is a distributed application that runs in containers across connected services in the
swarm. UCP gives you a single place to administer all your Docker applications in the same
way. It provides role-based access control to resources so you can set fine-grained controls over
who can do what.

DDC runs in swarm mode. You can deploy your application as a stack with a compose file, and
UCP will create services on the cluster. UCP gives you the full range of administration features -
you can create, scale and remove services, inspect, and connect to the tasks running the services
and manage the nodes running the swarm. All the additional resources you need, such as Docker
networks and volumes, are surfaced in UCP for management in the same way.

You can run a hybrid DDC cluster with Linux nodes for UCP and DTR and Windows nodes for
your user workloads. As a subscription service from Docker, you have support from Docker's
team for the setting up of your cluster and dealing with any issues, covering all the Windows
and Linux nodes.

Navigating the UCP Ul

You log in to UCP from the home page. You can either use the authentication built in to DDC,
managing users manually from UCP, or you can connect DDC to any Lightweight Directory
Access Protocol (LDAP) authentication store. This means you can set up DDC to use your
organization's AD and log in with your Windows account.

The UCP home page is a dashboard that shows the key performance indicators of your cluster,
the number of nodes, services, and containers running at that moment, together with the overall
compute utilization of the cluster:

% Dashboard ~ Resources User Management Admin Settings

Resources
[voos | [sorvons |
25% 1 Active Manager 100% 10 Active 67% 2 33 Running
75% 3 Active Workers 53%
4 Total Nodes 10 Total Services 49 Total Containers
=T =3
99% Available 96% Available 88% Available
1% Used A% Used 12%
4 Total Nodes 4 Total Nodes 4Total Nodes

From the dashboard, you can navigate to the resource views that give you access grouped by the
resource type: services, containers, images, nodes, networks, volumes, and secrets. For most of
the resource types, you can list the existing resources, inspect them, delete them, and create new
ones.

UCP provides Role Based Access Control (RBAC) for all the Docker resources. You can apply
a permission label to any resource and secure access based on that label. Teams can be assigned
permissions to labels—ranging from no access to full control—which secures access to team
members for all the resources that have these labels.

Managing nodes

The node view shows you all the nodes in the cluster, listing the operating system and CPU
architecture, the node status, and the node manager status:

%ﬁ- Dashboard Resources User Management Admin Settings
Stacks & Applications
+ Add Node
Services
Containers
Images @ m win-worker-01 Worker 10.0.06 17.03.1-ee-3 windows x86_64
Nodes | e EB uoworkern Worker 10007 17.031-ee-3 linux x86_64
Networks
e EN uwupn Manager [Lead 10004 17.031-ee-3 linux x86_64
Volumes
® Active ub-dtr-01 Worker 10.0.05 1703.1-ee-3 linux x86_64
Secrets -

I have four nodes in my cluster, two Linux nodes used for DDC workloads—the UCP and DTR
services—and one Windows and one Linux node for user workloads. Like in swarm mode, I can
configure DDC to exempt manager nodes from running user workloads—but I can also do this
for the nodes running DTR. This is a good way to ring fence compute power for the DDC
services.

In node administration, you have a graphical way to view and manage the swarm servers you
have access to. You can put nodes into the drain mode, allowing you to run Windows update or
upgrade Docker on the node. You can promote workers to managers, demote managers to
workers, and see the tokens you need to join new nodes to the swarm.

Drilling into each node, you can see the total CPU, memory, and disk usage of the server, with a
graph showing the current and recent historical usage:

Node: ub-ucp-01

STATS

CPU

100.00
90.00
80.00
70.00
60.00

50.00

CPU %

40.00

30.00

100.00

90.00!

80.00!

70.00!

60.00!

50.00!

RAM %

40.00!

30.00!

10.00!

0.00
7o. Pl 7. 7 /0.
02 e %3 O3z O34l

You can also list the tasks running on each node, which gives you a view of all the service
containers running on the node:

win-worker-01

DETAILS STATS ENGINE TASKS AGENT LOG NEMOUE Node
Fiter -
IMAGE CONTAIMNER ID
[dockeronwindows/ch05-nerd-dinner-index-handler:latest cf204c447174
2 dockeronwindows/ch03-nerd-dinner-homepage:latest f79b673d765¢e
@ dockeronwindows/ch05-nerd-dinner-save-handler:latest 98c47178c090
L] sixeyed/elasticsearch:nanoserver 2efeBebbl473
[nats:nanoserver 94ba3c9da348
-] dockeronwindows/ch06-nerd-dinner-db:latest 7ddd0ldedcc2
& dockeronwindows/ch05-nerd-dinner-web:latest 92f402172b1f

From each task, you can navigate to the container view, which I'll cover shortly.

Volumes

Volumes exist at the node level rather than the swarm level, but you can manage them in UCP
across all the swarm nodes. How you manage volumes in the swarm depends on the type of
volume you're using. Local volumes are fine for scenarios such as global services that write logs
and metrics to the disk and then forward them centrally.

Persistent data stores running as clustered services could also use local storage. You might
create a local volume on every node but add labels to servers with high-volume RAID arrays.
When you create the data service, you can use a constraint to limit it to RAID nodes, so other
nodes will never have a task scheduled on them, and where the tasks are running, they will write
data to the volume on the RAID array.

For on-premises data centers and in the cloud, you can use shared storage with volume plugins.
With shared storage, services can continue to access data even if containers move to different
swarm nodes. Service tasks will read and write data to the volume that gets persisted on the
shared storage device. There are many volume plugins available on Docker Store, including for
cloud services such as AWS and Azure cloud, physical infrastructure from HPE and Nimble,
and virtualization platforms such as vSphere.

The Docker platform is likely to add native shared storage in the future without requiring a
specific provider plugin. Docker acquired a distributed storage company called Infinit, which
built a peer-to-peer transfer mechanism. In the announcement of this acquisition, Docker shared
plans to incorporate distributed storage into the Docker platform, which could allow data
volumes to be accessible from any cluster node using swarm-wide storage.

Volumes have a limited number of options, so creating them is a case of specifying the driver
and applying any driver options:

Create Volume x

NAME @

‘ nerd-dinner-database-data)

PERMISSIONS LABEL [COM DOCKER.UCPACCESS1ABEL] @

Do not use a permissions label E

DRIVER &

local

OPTIONS @

Labels @

+ Add label

No labels defined

A permissions label can be applied to volumes, like other resources, to control availability with
RBAC.

Images

UCP is not an image registry - DTR is the enterprise private registry in DDC. In the images
view, UCP shows you which images have been pulled on the cluster nodes, and it also allows
you to pull new images.

One drawback of swarm mode in Docker Community Edition (CE) is that image pulling is not
done cluster-wide. On a CE swarm, you need to connect to each node and pull images if you
want to preload them before starting a service. UCP doesn't have this limitation - you can use the
Pull image function to download the image onto every node:

Pull Image

NAME @

sixeyed/elasticsearchnanoserver]

Registry requires authentication @

Docker images are compressed for distribution, and the Docker engine decompresses the layers
when you pull an image. There are OS-specific optimizations to start containers as soon as the
pull completes, which is why you can't pull Windows images on Linux hosts or vice versa. UCP
will try and pull the image on every host, but if some fail because of an OS mismatch, it will
continue with the remaining nodes.

In the image view, you can drill down and see the details of an image, including the history of
the layers, the health check, any environment variables, and the exposed ports. The basic details
also show you the OS platform of the image, the virtual size, and the date on which it was
created:

Image: 7¢8b98013171 x

DETAILS CONFIGURATION HISTORY MEOVE: FRaos

D @ sha256:7c8b980131718da0d0cadd47b2fectbbbc3386dfd134d9f18d1191338515a901
ted @ 2017-02-13 17:12:24 +0000
ize @ 9 GB [virtual 9 GB)
@ Unknown
“omment @ Naone
n @ 1131

m @ windows amd64

Tags @

dockeronwindows/ch05-nerd-dinner-web:latest

Digests

dockeronwindows/ch05-nerd-dinner-
web@sha2s56:19615Ff7ca247af15681c5475c4aa2f4aab35b826045aa9144db8cf96cf40fds

Labels @

This image does not have any labels defined

In UCP, you can also remove images from the cluster. You may have a policy of retaining just
the current and previous image versions on the cluster in order to allow rollback. Other images

can be safely removed from the DDC nodes, leaving all previous image versions in DTR so they
can be pulled if needed.

Networks

Network management is straightforward, and UCP presents the same interface as other resource
types. The network list shows you the networks in the cluster, and these can be labeled with
RBAC applied, so you'll only see networks you're allowed to see.

There are several options for networks, allowing you to specify IPv6 and custom MTU packet
sizes. Swarm mode supports encrypted networks, where the traffic between nodes is
transparently encrypted, and it can be enabled through UCP. In a DDC cluster, you'll typically
use the overlay driver to allow services to communicate in a virtual network across the cluster
nodes:

nerd-dinner-network

Do not use a permissions label =

overlay|

Encrypt communications between containers on different nodes

Allow any container to attach to this network

Enable IPvE networking

Internal network

Enable hostname based routing

IPAM

default

Docker supports a special type of swarm network called an ingress network. Ingress networks
have load balancing and service discovery for external requests. This makes port publishing very
flexible. On a 10-node cluster, you could publish port so on a service with three replicas. If a
node receives an incoming request on port so but it isn't running one of the service tasks, Docker
will intelligently redirect it to a node that is running a task.

not supported in the Windows networking stack. Support is planned, but it will be

Ingress networks are a powerful feature, but at the time of writing this, they are
8 in a future Windows update rather than a Docker release.

Networks can also be deleted through UCP but only if there are no containers attached. If you
have services defined that use the network, you'll get a warning if you try to delete it.

Deploying stacks

There are two ways to deploy your applications with UCP, which are analogous to deploying
individual services with docker service create, and deploying a full compose file with docker
stack deploy. Stacks are the easiest to deploy and will let you use a compose file that you've
verified in preproduction environments.

From the stacks and applications view, click on Deploy and you can import a compose YML
file:

nerd-dinner-stack

dockeronwindows/ch06-nerd-dinner-db
env_file:
db-credentials.env

db-data:c:\database

nd-net

sixeyed/kibana:nanoserver
elasticsearch

nd-net

dockeronwindows/ch05-nerd-dinner-save-handler
nerd-dinner-db
message-queue
env_file:
db-credentials.env

nd-net

dockeronwindows/ch05-nerd-dinner-index-handler

elasticsearch

Import a docker-compose yml file

UCP validates the contents and highlights any issues - in this case, it has flagged the env-riie
option. Environment files can't be used in the same way as with the Docker Compose tool. With

Docker Compose, the environment file needs to exist on the client machine where you run the
docker-compose command. UCP deploys the compose file on the cluster without using Docker
Compose, so there is no client where the environment file can be found. Similarly, options such
as builda are not supported and would show as an error.

Valid compose files are deployed as a stack, and you will see all the resources in UCP:
networks, volumes, and services. Stacks are the preferred deployment model, as they continue to
use the known compose file format, and they automate all the resources. But stacks are not
suitable for every solution. In a stack deployment, there's no guarantee about the order in which
the services will be created; the depends on option used by Docker Compose doesn't apply. This
is a deliberate design decision based on the idea that services should be resilient, but not all
services are.

Modern applications should be built for failure. If a web component can't connect to the
database, it should use a policy-based retry mechanism to repeatedly reconnect rather than
failing to start. Traditional applications usually expect their dependencies to be available and
don't have graceful retries built in. NerdDinner is like that, so if I deploy a stack from the
compose file, the web app could start before the database service is created, and it will fail.

In these cases, the application will be available when all the failing tasks have been restarted and
have found their dependencies available. If these restarts are likely to cause a problem with your
legacy application, you may prefer to manually create services rather than deploying a stack.
UCP supports this workflow too, and it lets you ensure that all the dependencies are running
before you start each service.

Creating services

There are dozens of options for the docker service create command. UCP supports them all in a
guided UI, which you start with Create a Service from the services view. First, you specify the
basic details—the name of the image to use for the service, the service name (which is how
other services will discover this one), the replication mode, and the number of replicas:

Scheduling Eaoue Environment

Attach networks, mount

Adjust scheduler related Labels and envircnment

setl resources
settings and constraints variables

message-queue|

.

nats:nanoserver

Registry requires authentication

Replicated - 1 5

Do not use a permissions label V

Here, you can specify credentials if the image repository is not public. You can also override the
working directory, the startup command, and arguments for containers created in the service,
giving you the flexibility to use the image in different ways. Next, you can configure how the
service is scheduled to run on the swarm nodes:

e Resources
scheduling 4

Details ﬁf"" Environment
Basic service configuration .- ey ; Lt

L environment
variables

Restart Policy

Constraints

node platform.os==windows

The Restart Policy defaults to Always. This works in conjunction with the replica count, so if
any tasks fail or are stopped, they will be restarted to maintain the service level. You can
configure the update settings for automated rollouts, and you can also add scheduling
constraints. Constraints work with node labels to limit which nodes can be used to run service
tasks. You can use this to restrict tasks to high-capacity nodes or to nodes that have strict access
controls.

Swarm node doesn't currently evaluate the host platform when it schedules tasks, so it could try
to run a Windows image on a Linux node or a Linux image on a Windows node. Adding a
scheduling constraint prevents this. You can use the built-in labels that Docker applies to nodes
when they join the swarm, specifying node.platform.os==windows to restrict to Windows nodes or
node.platform.os==linux for Linux nodes.

Next, you can configure how the service integrates with other resources in the cluster, including
networks and volumes:

d Resources =
= Scheduling Environment
Details i nitaks: sant

i Adjust scheduler related ‘
Basic service configuration

settings and constraints

Labels and envircnment

variables

Ports

© The UCP HTTP Routing Mesh is not enabled on this cluster, 1o use hostname
based routes, contact an administrator to enable this feature

Networks

nerd-dinner-network overlay x

Mounts

Reservations

For a service that is one part of a distributed application, you would choose an existing overlay
network to attach, allowing the services to communicate. Within a network, services do not need
to have ports published, so the web application can reach the database without publicly exposing
the ports. For external-facing services, you can publish ports and select the port mapping and
publish mode. The resources section is where you can specify compute reservations and limits.
You can restrict services to a share of the CPU and memory, or you can request a minimum
share of CPU and memory.

The final section is to configure the service environment:

. Resources }
Scheduling Environment

®»

Details

Basic service configurstion

Adjust sl

settings and

Secrets

Environment Variables

ENV_NAME | prod

:-

Service Labels

app.name nerd-dinner #

Container Labels

Log Driver

Here, you can add environment variables to be set in the service's containers and labels to apply
to the service as a whole or to the containers themselves. The plug-in logging framework is
exposed here, and you can specify a custom log driver. You can also select secrets to be made
available to the service's containers.

When you deploy the service, UCP takes care of pulling the image onto any nodes that need
it and starting the required number of containers. That would be one container per node for
global services or the specified number of tasks for replicated services.

Monitoring services

UCP lets you deploy any type of application in the same way, either with a stack compose file or
by creating services. The application can use many services with any combination of
technologies—parts of the new NerdDinner stack can run on Linux, so I can make use of a
hybrid cluster. Then, I'd be deploying Java, Go, and Node.js components as Linux

containers and .NET Framework and .NET Core components as Windows containers on the
same cluster.

All these different technology platforms can be managed in the same way with UCP. The
service view shows all services with basic information, such as the overall status, the number of
tasks, and the last time an error was reported. For any service, you can drill down into a detailed
view that shows much the same information as the create service screens:

6x7cbs9wobuforpb4biraafok
nerd-dinner_nerd-dinner-index-handler

User Container ™
2017-05-04 09-35:26 +0100

2017-05-04 09:40:38 <0100

update completed
@ 2 hours ago

task: non-zero exit [255]

Task Template

dockeronwindows/ch05-nerd-dinner-index-
handler:latest@sha256:404530%acebadld018a50be2b985fbef5799227951fd982640773c78ce 1dal

You'll use this view to check the overall status of the service and make changes—you can add
environment variables, change the networks or volumes, and change the scheduling constraints.
Any changes you make to the service definition will be implemented by restarting the service, so
you need to understand the application impact. Stateless apps and apps that gracefully handle
transient failures can be amended on the fly, but there may be application downtime—depending

on your solution architecture.

You can adjust the scale of the service without restarting existing tasks. Just specify the new
level of scale in the Sheduling tab, and UCP will create or remove containers to meet the service

level:

Replicated

When you increase scale, the existing containers are retained and new ones are added, so that
won't affect the availability of your application (unless the app keeps the state in individual

containers). However, many replicas are running, and you can see them in the task list:

Filter x

& bedi06a32298

@ 3081d2afedad

@® 5d8e2cdbc3cd

@ 18d41238000e

& 68dfe3b22fff

nerd-dinner_nerd-
dinner-index-handler.4

nerd-dinner_nerd-
dinner-index-handler.2

nerd-dinner_nerd-
dinner-index-handler.]

nerd-dinner_nerd-
dinner-index-handier.3

nerd-dinner_nerd-
dinner-index-handler.5

@ 5 Active

dockeronwindows/ch05-
nerd-dinner-index-handler:latest

dockeronwindows/ch05-
nerd-dinner-index-handler-latest

dockeronwindows/ch05-
nerd-dinner-index-handler:latest

dockeronwindows/ch05-
nerd-dinner-index-handler:latest

dockeronwindows/ch05-
nerd-dinner-index-handler:latest

win-worker-01

win-worker-01

win-worker-01

win-worker-01

win-worker-01

0 Updating @ 4 Errored

2017-05-04
11:31:53 +~0100

2017-05-04
11:31:53 +0100

2017-05-04
09:39:38 +0100

2017-05-04
11:32:25 +0100

2017-05-04
11:31:53 +0100

@ 1lInactive

From there, you can select a task to drill down into the container view, which is where the

consistent management experience makes administering Dockerized applications so

straightforward. Every detail about the running container is surfaced, and you can even interact

with the container. The DETAILS tab shows you key details, such as exposed ports,
environment variables, and active processes:

Environment =

http://elasticsearch:9200

nats://message-queue:4232

https://dotnetcli.blob.core.windows.net/dotnet/preview/Binaries/1.0.3
/dotnet-win-x64.1.0.3.zip

Labels +
Networks +
Ports
Processes =
Smss.exe 11180 00:00:00.000 200.7 kB
CSrss.exe 10672 00:00:00.015 340 kB

On the LOGS tab, you can see all the output from the container—in this case, it's the console
output written by my .NET Core application, but it could by IIS logs or event logs relayed to the
console:

- 100 = lines Auto-scroll logs

Connecting to message queue url: nats://message-queue:4222
Listening on subject: events.dinner.created, queue: index-dinner-handler

Received message, subject: events.dinner.created
Indexing new dinner, created at: 5/4/2017 8:56:19 AM; event ID: 8fcfd9eb-48f0-4fbc-9e50-0a1694b51095

The STATS tab graphically shows how much CPU and memory the container is using, and the
CONSOLE tab lets you connect directly to a command shell running inside the container:

powershel

HWindows PowerShell

Copyright (C) 2016 Microsoft Corporation. All rights reserved.

P5 C:hZindex-handler> get-process dotnet

Handles HNEM(E)

0

P8 C:\index-handler> I

UCP gives you an interface that lets you drill down from the overall health of the cluster,
through the status of all the running services, to the individual containers running on specific
nodes. You can easily monitor the overall health of your applications, check application logs,
and connect to containers for debugging—all within the same management UI. You can also
download a client bundle, which you can use to manage the cluster from a remote Docker
Command-Line Interface (CLI) client.

The client bundle contains a script to point your local CLI to the remote Docker API running on
the cluster and also sets up client certificates for secure communication. The certificates identify
a specific user in UCP, whether they have been created in UCP or whether they're an external
LDAP user. So, users can log in to the UCP Ul or use the docker commands to manage
resources, and for both options, they will have the same access defined by the UCP RBAC
policies.

RBAC

Authorization in UCP gives you fine-grained access control over all the Docker resources.
Individual users have a default access policy, ranging from No Access, which means they can't
view event resources in a list, to Full Control, which gives them read and write access to
everything except the UCP admin settings. RBAC is defined at the team level—teams can have
different levels of access to different permissions labels.

In my UCP instance, I have a team called Content Management System (CMS) Admins. Let's
say the NerdDinner home page has been replaced with a CMS running in Docker and certain
users need access to administer the CMS:

*’ Dashboard Resources User Management Admin Settings

All Users

CMS Admins |

CMS Users

cms Full Control o
finance No Access i

nerd-dinner View Only i

Users in this team have Full Control over any resources with the cms permission label. This
means they can stop containers, scale services, and delete volumes if these resources are set up
with the cms permissions label. This team's users also have the View Only permission over the
nerd-dinner label, so they can see the NerdDinner resources and drill into the details, but they
can't modify any resources. They have no access to any resources with the finance permission
label - they won't even see these resources in the UL

You create permissions labels by adding them here first, in the team section of User
Management. Then, you can apply them as the permission label when you create or update a
resource. Here, I've added the cms label to the cms service:

DETAILS

I62rfgo3rik2j8itdrk7yason

cms

cms >

I have a second team configured to represent CMS users, who only have view access to the cms
label. They can log in to UCP and check the status of the service, but they can't make any
changes. A user with the default no-access permission who is in the CMS users team can't see
any services listed except those with the cms label:

@- Dashboard Resources cms-user -
Stacks & Applications s
Create a Service
i Services |
Containers
MNodes ®1/1 cms sixeyed/umbraco-demo:msbuild Replicated @ 7 minutes ago te an hour ago
Networks
Volumes
Secrets

Also, note that the Images option isn't available. The images view is not available for users with
a default No Access permission. On the service view, the user can navigate to the service and
see the tasks and check the logs and resource usage, but they can't make any changes. If they try
to remove the service or connect to a container, they'll see an access denied error.

Teams can have multiple permissions for different resource labels, and users can belong to
multiple teams. Resource labels themselves are arbitrary strings, so the authorization system in
UCRP is flexible enough to suit many different security models. You could take a DevOps
approach and apply labels for specific projects, with all the team members getting complete
control over the project resources. Or, you could have a dedicated admin team with complete
control over everything and individual developer teams, where the members have restricted
control over the apps they work on.

RBAC is a major feature of UCP, and it complements the wider security story of Docker, which
will be covered in Chapter 9, Understanding the Security Risks and Benefits of Docker.

Summary

This chapter focused on the operations side of running Dockerized solutions. I showed you how
to use existing management tools with Docker containers and how that can be useful for
investigation and debugging. The main focus was on a new way of administering and
monitoring applications—using UCP to manage all kinds of workloads in the same way.

You learned how to use existing Windows management tools, such as IIS Manager and Server
Manager, to administer Docker containers, and you also learned about the limitations of this
approach. Sticking with the tools you know can be useful when you start with Docker, but
dedicated container management tools are a better option.

I covered two open source options to manage containers: the simple visualizer and the more
advanced Portainer. Both run as containers and connect to the Docker API, and they are cross-
platform apps packaged in Linux and Windows Docker images.

Lastly, I walked you through the products in Docker EE used to manage production workloads. I
demonstrated UCP as a single pane of glass to administer a diverse range of containerized
applications and showed how RBAC lets you secure access to all of your Docker resources.

The next chapter is focused on security. Applications running in containers potentially offer a
new avenue of attack. You need to be aware of the risks, but security is at the center of the
Docker platform. Docker lets you easily set up an end-to-end security story, where policies are
enforced by runtime—something that is very hard to do without Docker.

Understanding the Security
Risks and Benefits of Docker

Docker is a new type of application platform, and it has been built with a strong focus on
security. You can package an existing application as a Docker image, run it in a Docker
container, and get significant security benefits without changing any code.

A NET 2.0 WebForms app currently running on Windows Server 2003 will happily run under
NET 4.5 in a Windows container based on Windows Server Core 2016 with no code changes,
an immediate upgrade that applies 14 years of security patches!

Security in Docker encompasses a wide range of topics, which I will cover in this chapter. I'll
explain the security aspects of containers and images, the extended features in Docker Trusted
Registry (DTR), and the secure configuration of Docker in swarm mode.

In this chapter, I'll look at some of the internals of Docker to show how security is implemented
and cover the following:

e Container processes run as an unknown user on the host, minimizingA the scope for
attackers

Containers can be run with resource constraints so they can't starve the host's resources
Images should be optimized in order to reduce the attack surface of your application
Images can be scanned for vulnerabilities and digitally signed to record provenance
Docker swarm encrypts communication between the nodes and encrypts stored secrets

Understanding container
security

Application processes running in Windows Server containers are actually running on the host. If
you run multiple ASP.NET applications in containers, you'll see multiple w3wp.exe processes in
the task list on the host machine. Sharing the operating system kernel between containers is how
Docker containers are so efficient, the container doesn't load its own kernel, so the startup and
shutdown times are very fast and the overhead on runtime resources is minimal.

Software running inside a container may have security vulnerabilities, and the big question
security folks ask about Docker is, how secure is the isolation between containers? If an app in a
Docker container is compromised, that means a host process is compromised. Could the attacker
use that process to compromise other processes, potentially hijacking the host machine or other
containers running on the host.

Breaking out of a container and compromising other containers and the host could be possible if
there was a vulnerability in the operating system kernel that the attacker could exploit. The
Docker platform is built with the principle of security-in-depth, so even if that were possible, the
platform provides multiple ways to mitigate it.

The Docker platform has near feature parity between Linux and Windows, with
the few gaps on the Windows side being actively worked on. But Docker has a
longer history of production deployment on Linux and much of the guidance and
tooling such as Docker Bench and the CIS Docker Benchmark is specific to
Linux. It's useful to know the Linux side, but many of the practical points do not
apply to Windows containers.

Container processes

All Windows processes are started and owned by a user account. The permissions of the user
account determine whether the process can access files and other resources and whether they are
available to modify or just to view. In the Docker base image for Windows Server Core, there is
a default user account called container administrator. Any process you start in a container will
use that user account:

> docker container run microsoft/windowsservercore whoami
user manager\containeradministrator

You can run an interactive container starting a PowerShell and find the user ID (SID) of the
container administrator account:

> docker container run -it --rm microsoft/windowsservercore powershell

> $Suser = New-Object System.Security.Principal.NTAccount ("containeradministrator") ;
$sid = $user.Translate ([System.Security.Principal.SecurityIdentifier]);
$sid.vValue

S-1-5-93-2-1

You'll find that the container user always has the same SID s-1-5-93-2-1, as the account is part of
the Windows image so it has the same attributes in every container. The container process is
really running on the host, but there is no container administrator user on the host. In fact, if you
look at the container process on the host, you'll see a blank entry for the username. I'll start a
long-running ping process and check the process ID (PID) inside the container:

> docker container run -d --name ping microsoft/windowsservercore ping -t localhost
£8060e0£95ba0£56224£1777973e9%9a66fc2ccblblba5073bal918b854491ee5b

> docker container exec ping powershell Get-Process ping -IncludeUserName
Handles WS (K) CPU(s) Id UserName ProcessName

69 3828 0.00 8264 User Manager\Contai... PING

This is a Windows Server container running in Docker on Windows Server 2016, so the ping
process is running directly on the host, and the PID inside the container will match the PID on
the host. On the server, I can check the details of that same PID, s264 in this case:

> Get-Process -Id 8264 -IncludeUserName
Handles WS (K) CPU(s) 1Id UserName ProcessName

There is no username because the container user does not map any users on the host. Effectively,
the host process is running under an anonymous user, and it has no permissions on the host, only
within the sandboxed environment of one container. If a Windows Server vulnerability was
found that allowed attackers to break out of a container, they would be running a host process
with no access to host resources.

It's possible that a more extreme vulnerability could allow the anonymous user on the host to
assume wider privileges - but that would be a major security hole in the core Windows

permissions stack of the scale that typically gets a very fast response from Microsoft. The
anonymous host user approach is a good mitigation to limit the impact of any unknown
vulnerabilities.

Container user accounts and
ACLS

In a Windows Server container, the default user account is the container administrator. This
account is in the administrator group on the container, so it has complete access to the whole
filesystem and all the resources on the container. The process specified in the cvp or entrypoINT
instruction in a Dockerfile will run under the container administrator account.

This can be problematic if there is a vulnerability in the application. The app could be
compromised, and while the chances of an attacker breaking out of the container are small, the
attacker could still do a lot of damage inside the application container. Administrative access
means the attacker could download malicious software from the internet and run it in the
container or copy state from the container to an external location.

You can mitigate this by running container processes under a nonadministrative user account.
The Internet Information Services (IIS) and ASP.NET images from Microsoft do this. The
external-facing process is the IIS Windows service, which runs under a local account in the
11s_tusks group. This group has read access to the IIS root path c:\inetpub\wwwroot but no write
access. An attacker could compromise the web application, but they would not be able to write
files, so the ability to download malicious software is gone.

In some cases, the web application needs write access to save the state, but it can be granted at a
very fine level in the Dockerfile. As an example, the open source content management system
(CMS) Umbraco can be packaged as a Docker image, but the IIS user group needs write
permissions to the content folder. In the Dockerfile, you can set ACL permissions with a RUN
instruction:

RUN $acl = Get-Acl $env:UMBRACO ROOT; °
$newOwner = [System.Security.Principal.NTAccount] ('BUILTIN\IIS IUSRS'); °
$acl.SetOwner ($newOwner) ; °
Set-Acl -Path $env:UMBRACO ROOT -AclObject $acl; °
Get-ChildItem -Path $env:UMBRACO ROOT -Recurse | Set-Acl -AclObject $acl

I won't go into detail on Umbraco here, but you can find sample Dockerfiles in
9 my GitHub repository at https://github.com/sixeyed/dockerfiles-windows.

You should use a nonadministrative user account to run processes and set ACLs as narrowly as
possible. This limits the scope for any attackers who gain access to the process inside the
container, but there are still attack vectors from outside the container you need to consider.

https://github.com/sixeyed/dockerfiles-windows

Running containers with
resource constraints

You can run Docker containers with no constraints, and the container process will use as much
of the host's resources as it needs. That's the default, but it could be an easy attack vector, a
malicious user could generate excess load on the application in the container, which could try
and grab 100% CPU and memory, starving other containers on the host. This is especially
significant if you're running hundreds of containers serving multiple application workloads.

Docker has mechanisms to prevent individual containers using excessive resources. You can
start containers with explicit constraints to limit the resources they can use, ensuring no single
container consumes the majority of the host's compute power. You can limit a container to an
explicit number of CPU cores and memory.

I have a simple .NET console app and a Dockerfile to package it in the cho9-resource-check
folder. The app hogs compute resources, and I can run it in a container to show how Docker
limits the impact of a rogue application. I can use the app to successfully allocate 600 MB of
memory like this:

> docker container run dockeronwindows/ch09-resource-check /r Memory /p 600
I allocated 600MB of memory, and now I'm done.

The console application allocates 600 GB of memory in the container, which is actually 1 GB of
memory from the server in a Windows Server container. I ran the container without any
constraints, so the app is able to use as much memory as the server has. If I limit the container to
500 MB of memory, then the application cannot allocate 600 MB:

> docker container run --memory 500M dockeronwindows/ch09-resource-check /r Memory /p 600
Unhandled Exception: OutOfMemoryException.

The sample application can also hog the CPU. It computes Pi to a given number of decimal
places, which is a computationally expensive operation. In an unrestricted container, computing
Pi to 20,000 decimal places takes just over a second on my development laptop:

> docker container run dockeronwindows/ch09-resource-check /r Cpu /p 20000
I calculated Pi to 20000 decimal places in 1013ms. The last digit is 8.

I can use a CPU restriction, and Docker will limit the compute resources available to this
container, retaining more CPU for other tasks. The same computation takes twice as long:

> docker container run --cpus 1 dockeronwindows/ch09-resource-check /r Cpu /p 20000
I calculated Pi to 20000 decimal places in 2043ms. The last digit is 8.

It can be challenging to verify that the resource constraints are in place. The underlying
Windows APIs to get the CPU count and memory capacity use the OS kernel, which is the host's
kernel. The kernel reports the full hardware spec, so the limits don't appear to be in place inside

the container, but they are enforced. You can use WMI to check the constraints, but the output
will not be as expected:

> docker container run --cpus 1 --memory 1G microsoft/windowsservercore powershell °
"Get-WmiObject Win32 ComputerSystem | select NumberOfLogicalProcessors, TotalPhysicalMemory"

NumberOflLogicalProcessors TotalPhysicalMemory

8 17078218752

Here, the container reports eight CPUs and 16 GB of RAM even though it has been constrained
to one CPU and 1 GB of RAM. The constraints are actually in place, but they operate at a level
above the WMI call. If a process running inside the container tried to allocate more than 1 GB of
RAM, then it would fail.

Remember that only Windows Server containers have access to all the host's
compute power, where the container process is actually running on the host. On
o Windows Server 10, Docker uses Hyper-V containers so each container has a
lightweight VM where the process is running. That VM has its own CPU and
memory restrictions, so the container can use only what's available to the VM.

Running containers with
restricted capabilities

There are two useful features of the Docker platform to restrict what applications can do inside
containers. Currently, they work only for Linux containers, but they are worth understanding if
you need to deal with mixed workloads, and support for Windows may be coming in future
versions.

Linux containers can be run with the read-on1y flag, which creates the container with a read-only
filesystem. The option can be used with any image, and it will start a container with the same
entry process as usual. The difference is that the container does not have a writeable filesystem
layer, so no files can be added or changed, the container cannot modify the contents of the
image.

This 1s a useful security feature. A web application could have a vulnerability that allows
attackers to execute code on the server, but a read-only container severely limits what the
attacker can do. They cannot change app configuration files, alter access permissions, download
new malware, or replace application binaries.

Read-only containers can be combined with Docker volumes, so applications can write to
known locations for logging or caching data. If you have an application that writes to the
filesytem, that's how you can run it in a read-only container without changing functionality. You
need to be aware that if you write logs to a file in a volume and an attacker gained access to the
filesystem, they could read historical logs which they can't do if logs are written to standard
output and consumed by the Docker platform.

When you run Linux containers, you can also explicitly add or drop the system capabilities that
are available to the container. You can start a container without the chown capability, so no
process inside the container can change file access permissions. Similarly, you can restrict
binding to network ports or write access to kernel logs.

The read-only, cap-add, and cap-drop Options have no effect on Windows containers, but support
may come in future versions of Docker on Windows.

One great thing about Docker is that the free CE feeds into the supported EFE.
You can make feature requests and track bugs on GitHub in the moby /moby
repository, which is the source code for Docker CE. When features are
implemented in Docker CE, they become available in the subsequent EE release.

Isolation in Hyper-V containers

Docker on Windows has one big security feature that Docker on Linux does not have, extended
isolation with Hyper-V containers. Containers running on Windows Server 2016 use the host's
operating system kernel. You can see this when you run a container, and the process inside the
container is listed on Task Manager on the host.

On Windows 10, the behavior is different. Windows 10 does not have the exact same kernel as
Windows Server, so when you run Docker containers on Windows 10, each one is created with
its own Windows Server kernel.

Containers with their own kernel are called Hyper-V containers. They are implemented with a
lightweight virtual machine that provides the server kernel, but this is not a full VM and doesn't
have the typical overhead of a VM. Hyper-V containers use normal Docker images and the
normal Docker engine, they don't show in the Hyper-V management tool because they are not
full virtual machines.

Hyper-V containers can also be run on Windows Server using the isoiation option. This
command runs the IIS image as a Hyper-V container, publishing port so:

|docker container run -d -p 80 --isolation=hyperv microsoft/iis:nanoserver

The container behaves in the same way. External users can browse to port so on the host and the
traffic is handled by the container. On the host, you can run docker container inspect to see the
IP address and go to the container directly. Features such as Docker networking, volumes, and
swarm mode work in the same way for Hyper-V containers.

The extended isolation of Hyper-V containers offers additional security. There is no shared
kernel, so even if a kernel vulnerability allowed the container application to access the host, the
host is just a thin VM layer running in its own kernel. There are no other processes or containers
running on that kernel, so there is no ability for attackers to compromise other workloads.

Hyper-V containers have additional overheads because of the separate kernels. They typically
have a slower start up time, and by default, they impose memory limits, restricting memory at
the kernel level that the container can't exceed. In some scenarios, the trade-off is worthwhile. In
multi-tenant situations where you assume zero trust for every workload, extended isolation can
be a useful defense.

Licensing is different for Hyper-V containers. Normal Windows Server containers

are licensed at the host level, so you need licenses for your servers, but then you
9 can run as many containers as you like. Hyper-V containers each have their own

kernel, and there are licensing levels that restrict the number of containers you
can run on each host.

Securing applications with
secure Docker images

I've covered many aspects of securing containers at runtime, but the Docker platform provides
security in depth that starts before any containers are run. You start securing your application by
securing the image that packages your application.

Building minimal images

It's unlikely that an attacker can compromise your application and gain access to the container,
but you should build your image to mitigate the damage if that happened. Building a minimal
image is key. The ideal Docker image should contain nothing more than the application and the
dependencies it needs to run.

This is more difficult to achieve for Windows applications than Linux apps. A Docker image for
a Linux app can use a minimal distribution as the base, packaging just the application binaries
on top. The attack surface for that image is very small even if an attacker gained access to the
container, they would find themselves in an operating system with very few features.

In contrast, Docker images using Windows Server Core have a fully featured operating system
at the base. The minimal alternative is Nano Server, which has a significantly reduced API but
still has PowerShell installed, which has a large feature set that could be exploited. In theory,
you can remove features, disable Windows Services, and even delete Windows binaries in your
Dockerfile in order to limit the capabilities of the final image. That's not a well-explored option
at the moment.

Docker's recognition for experts and community leaders is the Captain's
program. Docker Captains are like Microsoft MVPs, and Stefan Scherer is both a

8 Captain and an MVP. Stefan has done some promising work by looking at
reducing Windows image size by creating images with an empty filesystem and
adding a minimal set of Windows binaries.

You can't easily limit the features of the base Windows image, but you can limit what you add
on top. Wherever possible, you should add just your application content and the minimal
application runtime so an attacker can't modify the app. Some programming languages have
better support for this than others, for example, the following:

e Go applications can be compiled to native binaries, so you only need to package the
executable in your Docker image, not the Go runtime.

e NET Core apps can be published as assemblies, so you only need to package the .NET
Core runtime to execute them, not the full NET Core SDK.

e NET Framework apps need the matching .NET Framework installed in the container
image, but you can still minimize the app content that you package. You should compile
the app in release mode and ensure you don't package debug files.

e Node.js uses V8 as an interpreter and compiler, so to run apps in Docker, the image needs
to have the full Node.js runtime installed, and the full source code for the app needs to be
packaged.

You will be limited by what your application stack supports, but a minimal image is the goal. If
your application will run on Nano Server, it's definitely preferable to Windows Server Core. Full
NET apps don't run on Nano Server, but .NET Standard is advancing rapidly, so it could be a
viable option to port your app to .NET Core, which can then run on Nano Server.

When you run your application in Docker, the unit you work with is the container, and you
administer and monitor it using Docker. The underlying operating system doesn't affect how you
interact with the container, so having a minimal OS doesn't limit what you can do with your
application.

Docker Security Scanning

A minimal Docker image could still contain software with known vulnerabilities. Docker
images use a standard, open format, which means tools can be reliably built to navigate and
inspect image layers. One tool is Docker Security Scanning, which examines the software inside
Docker images for vulnerabilities.

Docker Security Scanning looks at all the binary files in the image, in your application
dependencies, the application framework, and even the operating system. Every binary is
checked against multiple Common Vulnerability and Exploit (CVE) databases, looking for
known vulnerabilities. If any issues are found, Docker reports the details.

Docker Security Scanning is available on Docker Hub for official repositories, on Docker Cloud
for your private repositories, and on DTR for your own private registry. The web interface of
those systems shows the output of each scan. Minimal images such as Alpine Linux can be
completely free of vulnerabilities:

Scan results for alpine:3.5

Your image is clean! No known vulnerabilities were found.

New scan in progress, showing results from 2 months ago
Layers Components
ADD file:730030a98415...1b42321140c3927 in /

No vulnerable components

The official nats image has a Nano Server variant, and you can see that there is a vulnerability in
that image:

Scan results for nats:nanoserver

1 of 82 components is vulnerable

Scanned 4 months ago
Layers Components
powershell -Command $... 'SilentlyContinue';]

1 vulnerable component

Where there are vulnerabilities, you can drill down to see exactly which binaries are flagged,
and that links off to the CVE database, describing the vulnerability. In the case of the
nats:nanoserver Image, the vulnerability is in the version of SQLite that is packaged in the Nano
Server base image:

Layers Components

powershell -Command $... 'SilentlyContinue';]

4

sqlite3 3.9.2 CVE-2016-6153

If you find vulnerabilities in your images, you can see exactly where they are and decide how to
mitigate them. You could try removing the binaries altogether if you have an automated test
suite that you can confidently use to verify that your app still works without them. Or, you may
decide that there's no path to the vulnerable code from your application and leave the image as it
is.

However you manage it, knowing that there are vulnerabilities in your application stack is
extremely useful. Docker Security Scanning can work on each push, so you get immediate
feedback if a new version introduces a vulnerability. It can also work on a schedule, so if a new
vulnerability is discovered that affects an existing image, you get alerted to that too. This could
identify a problem in an old dependency, which you could address by updating package versions
in your Dockerfile.

Managing Windows updates

The process of managing updates to the application stack for your Docker image applies to
Windows updates too. You wouldn't connect to a running container to update the version of
Node.js it uses, and you wouldn't run Windows Update either.

Microsoft released a combined set of security patches and other hotfixes for Windows, typically
on a monthly basis as a Windows update. At the same time, they published new versions of the
Windows Server Core and Nano Server base images and any dependent images on Docker Hub.
The version number in the image tag matches the version number of the Windows release.

It's a good practice to explicitly state the Windows version to use in the rrom instruction in your
Dockerfile and use specific versions of any dependencies you install. This makes your
Dockerfile deterministic any time you build it in future, you will get the same image as a result.

Specifying the Windows version also makes it clear how you manage Windows updates for your
dockerized applications. The Dockerfile for an ASP.NET application may start like this:

|FROM microsoft/aspnet:windowsservercore-10.0.14393.1066

This pins the image to Windows Server 2016 release 1066. With the release of the new base
image, you update your application by changing the tag in the rrom instruction, in this case, to
release 1198 and rebuilding your image:

|FROM microsoft/aspnet:windowsservercore-10.0.14393.1198

I'll cover automated build and deployment in this chapter. With a good CI/CD pipeline, you can
rebuild your images with a new Windows version and run all your tests to confirm that the
update doesn't impact any features. Then, you can roll out the update to all your running
applications, with no downtime, using docker stack deploy OI docker service update, Specifying
the new versions of your application images. The whole process can be automated, so the IT
Admin's pain on Patch Tuesday disappears with Docker.

Securing the software supply
chain with DTR

DTR is the second part of Docker's extended EE offering (I covered Universal Control Plane
(UCP) in Chapter 8, Administering and Monitoring Dockerized Solutions). DTR is a private
Docker registry, which adds an important piece to the overall security story of the Docker
platform: a secure software supply chain.

You can digitally sign Docker images with DTR, and DTR lets you configure who can push and
pull images, securely storing all the digital signatures users have applied to an image. It also
works in conjunction with UCP to enforce content trust. With Docker Content Trust, you can set
up your cluster so it will only run containers from images that have been signed by specific
users or teams.

This 1s a powerful feature that meets the audit requirements for a lot of regulated industries.
There may be requirements for a company to prove that the software running in production is
actually built from the code in the repository. This is very difficult to do without a software
supply chain; you have to rely on manual processes and a document trail. With Docker, you can
enforce it at the platform and meet the audit requirements with automated processes.

Repositories and users

DTR uses the same authentication model as UCP, so you can use either your Active Directory
(AD) account to log in, or you can use an account created in UCP. But DTR has a separate
authorization model. Users can have completely different access rights to image repositories in
DTR and the services that are running from those images in UCP.

Some parts of the DTR authorization model are familiar to Docker Hub and Docker Cloud.
Users can own public or private repositories, which are prefixed with their username.
Administrators can create organizations, and organization repositories can set user access with a
fine level of control.

I covered image registries and repositories in Chapter 4, Pushing and Pulling Images from Docker
Registries. The full name for a repository contains the registry host, the owner, and the
repository name. ['ve set up Docker Datacenter in Azure using the Azure Marketplace. In my
DTR instance, I've created a user called elton. The user has one private repository that they can
push and pull from:

- O X
@ Docker Trusted Registry X EE

(' ':DF https:/fub-dtr-01.westeurope.cloudapp.azures &= Q, Search ﬁ’ @ ‘ ﬁ Q .

& %’ docker trusted registry Q search

Users > elton

REPOSITORIES TEAMS SETTINGS

elton / private-app

A private repc

View Details

To push and pull the image in the repository called private-app for the user elton, I need to tag
it with the full DTR domain in the repository name. My DTR instance is running at ub-dtr-
01.westeurope.cloudapp.azure.com, so the full image name is ub-datr-

01.westeurope.cloudapp.azure.com/elton/private-app.

docker image tag microsoft/iis:nanoserver °
ub-dtr-01.westeurope.cloudapp.azure.com/elton/private-app

This is a private repository, so it can be accessed only by the elton user. DTR presents the same
API as any other Docker registry, so I log in with the docker 109in command, specifying the
DTR domain as the registry address:

> docker login ub-dtr-01.westeurope.cloudapp.azure.com/elton/private-app
Username: elton

Password:

Login Succeeded

> docker image push ub-dtr-01.westeurope.cloudapp.azure.com/elton/private-app
The push refers to a repository [ub-dtr-01l.westeurope.cloudapp.azure.com/elton/private-app]

If I make the repository public, anyone with access to DTR can pull the image but this is a user-
owned repository, so only the elton account has permission to push.

This is the same as Docker Hub, where anyone can pull an image from my sixeyed user
repositories, but only I can push them. For shared projects where multiple users need access to
push images, you use organizations.

Organizations and teams

Organizations are for shared ownership of repositories. Organizations and the repositories they
own are separate from the users who have permissions to the repositories, specific users may
have admin access, others may have read-only access, and specific teams may have read-write
access.

The user and organization model of DTR is the same in Docker Cloud. If you
8 don't need the full enterprise suite of Docker EE but you need private repositories

with shared access, you can use Docker Cloud.

Here, I have an organization set up called nerd-dinner, which has repositories for all the images
I've been using in the sample application so far. The organization represents a project with
multiple components, and the members of the project team can have different access levels for
each component:

REPOSITORIES

020

e@s

a
nerd-dinner Add repository

Org Members
i nerd-dmner /db View Details

infrastructure

project nerd-dinner / elasticsearch View Details

nerd-dinner / homepage View Details

nerd-dinner / index-handler ; ;
View Details

nerd-dinner / kibana View Details

nerd-dinner / nats View Details

nerd-dinner / save-handler : .
View Details

nerd-dinner / web View Details

There are different types of images there. The nats message queue, Elasticsearch, and Kibana are
infrastructure components, they're stock images that aren't modified for the NerdDinner project.
They originally came from Docker Hub, but I have re-tagged them and pushed to DTR, which
gives me the benefits of image signing, scanning, and content trust.

Access to the stock components is different from the custom application images, as they are
managed by different groups of users. In the organization, I have two teams: infrastructure and
project. In this scenario, members of the infrastructure team have read-write access to the nats,

Elasticsearch, and Kibana images, so team members can pull and push image versions:

REPOSITORIES SETTINGS

nerd-dinner

Org Members

+ nerd-dinner / elasticsearch ‘ Read & Write ~ ‘0
= = in)

infrastructure View Details

project -
nerd-dinner / kibana ‘ Read & Write ~ | @
ban -ser nal
View Details
nerd-dinner / nats ‘ Read & Write ~ ‘ (]

View Details

Members of the project team have only read-access to infrastructure repositories such as
Elasticsearch:

REPOSITORIES

nerd-dinner

Org Members
- 3 nerd-dinner / db | Readawre - |©

infrastructure View Details
project S
nerd-dinner / elasticsearch ‘ Read only v |©
. e

View Details

nerd-dinner / homepage ‘ Read & Write ~ | ©
lew | -
View Details

This means shared components can be managed by a dedicated team, and an update to nats or
Elasticsearch has to be approved by an infrastructure team member. NerdDinner project
members have read access, so they can always pull the latest infrastructure images and run the
full application, but they can't push updates.

Conversely, the project team members have read-write access to the web application image,
where the infrastructure team has only read access. This means only members of the project
team can push app updates, but members of the infrastructure team can pull them, so they could
run the whole stack if they needed to test a new version of nats.

DTR has permission levels of none, read, read-write, and admin. They can be applied at the
repository level to teams or individual users. The consistent authentication but separate
authorization models of DTR and UCP mean a developer can have full access to pull and push
images in DTR but may have only read access to view running containers in UCP.

Image Signing and Content
Trust

DTR also makes use of the client certificates managed by UCP to sign images with a digital
signature that can be tracked to a known user account. Users download a client bundle from
UCP, which contains a public and private key for their client certificate, which is used by the
Docker command-line.

You can switch Docker Content Trust on with an environment variable, and when you push
images to a registry, Docker will sign them using the key from your client bundle. Content trust
will work only for specific image tags and not the default 1atest tag, as the signatures are stored
against the tag.

I can add the vrext tag to my image, enable content trust in the PowerShell session, and push the
tagged image to DTR:

> docker image tag ub-dtr-01.westeurope.cloudapp.azure.com/nerd-dinner/index-handler °
ub-dtr-01.westeurope.cloudapp.azure.com/nerd-dinner/index-handler:vNext

> $env:DOCKER_CONTENT_ TRUST=1

> docker image push ub-dtr-01.westeurope.cloudapp.azure.com/nerd-dinner/index-handler:vNext

The act of pushing the image adds the digital signature, in this case, using the certificate for the
elton account. DTR records the signatures for each image tag, and users can push images to add
their own signature. This enables an approval pipeline, where authorized users pull an image,
run whatever tests they need to, and then push it again to confirm their approval.

DTR uses Notary to manage access keys and signatures. Like SwarmKit and

LinuxKit, Notary is an open source project that Docker integrates into a
9 commercial product, adding features and providing support. To see image

signing and content trust in action, check out my Pluralsight course Getting
Started with Docker Datacenter.

UCP integrates with DTR to verify image signatures. In the Admin Setting, you can configure
UCP so it will run containers from only those images that have been signed by a known group of
users:

Content Trust Settings

« Only run signed images

Release Managers * Sys Admins ¥ UAT %

I've configured Docker Content Trust so UCP will only run containers that have been signed by
members of the Sys Admins, UAT, and release managers teams. This explicitly captures the
release approval workflow, and the platform enforces it. Not even administrators can run
containers from images that have not been signed by users from the required set of teams.

Golden images

One final security consideration for images and registries is the source of the base images used
for application images. Companies running Docker in production typically restrict the base
images developers can use to a set that has been approved by infrastructure or security
stakeholders. This set of Golden images available to use may just be captured in documentation,
but it is easier to enforce with a private registry.

Golden images in a Windows environment may be limited to two options: a version of Windows
Server Core and a version of Nano Server. Instead of allowing users to use the public Microsoft
images, the Ops team may build custom images from Microsoft's base images. The custom
images may add security or performance tweaks or set some defaults that apply to all
applications, such as packaging the company's Certificate Authority certs.

Using DTR, you can create an organization called base-images, where the Ops team has read-
write access to the repositories, while all other users have read access. Checking that images are
using a valid base just means checking that the Dockerfile is using an image from the base-
images organization, which is an easy test to automate in your CI/CD process.

This feature may soon be available in Docker EE. Docker demonstrated a new policy engine at
DockerCon that works across UCP and DTR. A policy could state that images need to have zero
security vulnerabilities. The engine would then automatically promote images from a testing
repository to a production repository if they met the policy and then deploy an update to a
running service. As this functionality matures, policies may be configurable to include checks
on the source image.

DockerCon is the container conference organized by Docker. It runs in America

and Europe every year and is packed with workshops and sessions ranging from
0 black-belt Docker internals to production use cases from global enterprises. The

Docker ecosystem is out in force at DockerCon too, and it's one of the most
educational, fun, and inspiring conferences you can go to.

Understanding security in
swarm mode

Docker's security-in-depth approach covers the whole software life cycle, from image signing
and scanning at build time through to container isolation and management at runtime. I'll end
this chapter with an overview of the security features implemented in swarm mode.

Distributed software offers a lot of attractive attack vectors. Communication between
components can be intercepted and modified. Rogue agents can join the network and gain access
to data or run workloads. Distributed data stores can be compromised. Docker swarm mode,
built on top of the open source SwarmKit project, addresses these vectors at a platform level so
your application is running on a secure base by default.

Nodes and join tokens

You switch to swarm mode by running docker swarm init. The output of this command gives you
a token to use for other nodes to join the swarm. There are separate tokens for workers and
managers. Nodes cannot join a swarm without the token, so you need to keep the token
protected like any other secret.

The join tokens are comprised of the prefix, the format version, the hash of the
0 root key, and a cryptographically strong random string.

Docker uses a fixed swrxn prefix for tokens, so you can run automated checks to see whether a
token has been accidentally shared in the source code or on another public location. If the token
1s compromised, rogue nodes could join the swarm if they had access to your network. Swarm
mode can use a specific network for node traffic, so you should use a network that is not
publicly accessible.

Join tokens can be rotated with the join-token rotate command, which can target either the
worker token or the manager token:

> docker swarm join-token --rotate worker
Successfully rotated worker join token.

To add a worker to this swarm, run the following command:

docker swarm join --token SWMTKN-1-OngmvmnpzOtwctlya5ifu3ajy3pv8420st... 10.211.55.7:2377

Token rotation is a fully managed operation by the swarm, existing nodes are all updated, and
any error conditions, such as nodes going offline or joining mid-rotation are gracefully handled.

Encryption and secrets

Communication between swarm nodes is encrypted using Transport Layer Security (TLS).
The swarm manager configures itself as a certification authority when you create the swarm, and
the manager generates certificates for each node when they join. Communication between nodes
in the swarm is encrypted using mutual TLS.

Mutual TLS means that the nodes can securely communicate and trust each other, as every node
has a trusted certificate to identify itself. Nodes are assigned a random ID that is used in the
certificate, so the swarm doesn't rely on attributes such as the hostname, which could potentially
be faked.

Trusted communication between nodes is the foundation for Docker Secrets in swarm mode.
Secrets are stored and encrypted in the Raft log on the managers, and a secret is sent to

the worker only if that worker is going to run a container that uses the secret. The secret is
always encrypted in transit, using mutual TLS. On the worker node, the secret is made available
in plain text on a temporary RAM drive that is surfaced to the container as a volume mount. The
data is never persisted in plain text.

Windows doesn't have a native RAM drive, so the secrets implementation
currently stores the secret data on the disk on the worker nodes, with the

0 recommendation that BitLocker is used for the system drive. This limitation will
be addressed in a future release of Docker, which will store secrets in a RAM
drive on Windows too.

Inside the container, access to secret files is restricted to certain user accounts. The accounts
with access can be specified in Linux, but in Windows, there's currently a fixed list. I use secrets
in the ASP.NET web application in Chapter 7, Orchestrating Distributed Solutions with Docker
Swarm and you can see there that I configure the IIS application pool to use an account with
access.

When containers are stopped, paused, or removed, the secrets that were available to the
container are removed from the host. On Windows, where secrets are currently persisted to disk,
if the host is forcefully shut down, then secrets are removed when the host restarts.

Node labels and external access

Once a node has been added to a swarm, it is a candidate for container workloads to be
scheduled. Many production deployments will use constraints to ensure applications run on the
correct type of node, Docker will try to match the requested constraints to labels on the nodes.

In a regulated environment, you may have requirements to ensure applications run only on those
servers that have met required audit levels, such as PCI compliance for credit card processing.
You can identify compliant nodes with labels and use constraints to ensure the applications run
only on those nodes. Swarm mode helps ensure that these constraints are properly enforced.

There are two types of labels in swarm mode. Engine labels are set by the machine, in the
Docker service configuration, so if a worker was compromised, an attacker could add labels and
make a restricted machine appear to be compliant. Node labels are set by the swarm, so they can
only be created by a user with access to a swarm manager. Node labels mean you don't have to
rely on claims made by individual nodes, so if they are compromised, the impact can be limited.

Node labels are also useful in segregating access to applications. You may have Docker hosts
that are accessible only on your internal network and others that have access to the public
internet. With labels, you can explicitly record that it is a distinction and run containers with
constraints based on the labels. You could have a content management system in a container that
is only available internally but a web proxy that is available publicly.

Summary

This chapter looked at the security considerations of Docker and Windows containers. You
learned that the Docker platform is built for security in depth, and the runtime security of
containers is only one part of the story. Security scanning, image signing, content trust, and
secure distributed communication combine to give you a secure software supply chain.

You looked at the practical security aspects of running apps in Docker and learned how
processes in Windows container run in a context that makes it difficult for attackers to escape
from containers and invade other processes. Container processes will use all the compute
resources they need, but I also demonstrated how to limit CPU and memory usage, which can
prevent rogue containers starving the host's compute resources.

In a dockerized application, you have much more scope to enforce security in depth. I explained
why minimal images help keep applications safe and how you can use Docker Security
Scanning to be alerted if there are vulnerabilities in any of the dependencies your application
uses. You can enforce good practices by digitally signing images and configuring Docker, so it
will run containers only from images that have been signed by approved users.

Lastly, I looked at the security implementation in the Docker swarm mode. Swarm mode has the
most in-depth security of all the orchestration layers, and it provides a solid foundation for you
to run your apps securely. Using secrets to store sensitive application data and node labels to
identify host compliance makes it very easy for you to run a secure solution.

In the next chapter, we'll work with a distributed application and look at building a pipeline for
CI/CD. The Docker service can be configured to provide remote access to the API, so it's easy to
integrate Docker deployments with any build system. The CI server can even run inside a
Docker container and you can use Docker for the build agents, so you don't need any complex
configuration for CI/CD.

Powering a Continuous
Deployment Pipeline with
Docker

Docker supports building and running software in components that can be easily distributed and
managed. The platform also lends itself to development environments, where source control,
build servers, build agents, and test agents can all be run in Docker containers from standard
images.

Using Docker for development lets you consolidate many projects onto a single set of hardware
while maintaining isolation. You could have services for Git and the image registry, running in
highly available configurations in a Docker swarm, shared by many projects. Each project could
have a dedicated build server configured with their own pipeline and their own build setup,
running in a lightweight Docker container.

Setting up a new project in this environment is simply a case of creating a source control
repository and a registry account and running new containers for the build process. These steps
can all be automated, so project on-boarding becomes a simple process that takes minutes and
uses existing hardware.

In this chapter, I'll walk you through theA setup of a continuous integration and continuous
delivery (CI/CD) pipeline using Docker, including the following:

e Running shared services, such as a Git server and an automation server in Docker
containers

¢ Using multi-stage builds to compile and package .NET applications without MSBuild or
Visual Studio

e End-to-end testing of distributed solutions, with the application and the test agents running
in containers

e Publishing to local and external Docker Registries and deploying to a remote Docker
swarm

Designing CI/CD with Docker

The pipeline will support full continuous integration—when developers push code to the shared
source repository, which will trigger a build that produces a release candidate. The release
candidates will be tagged Docker images stored in a local registry. The CI workflow deploys the
solution from the built images as containers and runs an end-to-end test pack.

My sample pipeline has a manual quality gate. If the tests pass, the image versions are made
publicly available on Docker Hub, and the pipeline can start a rolling upgrade in the public QA
environment.

The stages of the pipeline will all be powered by software running in Docker containers:

e Source control: Bonobo, a simple open source Git server written in ASP.NET

e Build server: Jenkins, a Java-based automation tool using plugins to support many
workflows

e Build agent: MSBuild packaged into a Docker image to compile code in a container

e Test agent: NUnit packaged into a Docker image to run integration or end-to-end tests
against deployed code

Bonobo and Jenkins can run in long-running containers on a Docker swarm or an individual
Docker host. The build and test agents are task containers that will be run by Jenkins to perform
the pipeline steps and then end. The release candidate will be deployed as a set of containers that
are removed when the tests are completed.

The only requirement to set this up is to have remote access to the Docker API—both in the
development and QA environments. I covered remote API access in Chapter 1, Getting Started
with Docker on Windows, using the stefanscherer/dockertls-windows Image to generate
certificates so the API is secured. You need to have remote access configured so the Jenkins
container can create containers in development and start the rolling upgrade in QA.

The workflow for this pipeline starts when a developer pushes code to the Git server, which is
running Bonobo in a Docker container. Jenkins is configured to poll the Bonobo repository, and
it will start a build if there are any changes. All the custom components in the solution use
multi-stage Dockerfiles, which are stored in the Git repository for the project. Jenkins runs
docker image build commands for each Dockerfile, building the image on the Docker host where
Jenkins itself is running as a container.

When the builds complete, Jenkins deploys the solution locally as containers on the same
Docker host. Then, it runs end-to-end tests, which are packaged in a Docker image and run as a
container in the same Docker network as the solution under test. If all the tests pass, then the
final pipeline step pushes these images as release candidates to the local registry, also running in
a Docker container.

When you run your development tools in Docker, you get the same benefits as when you run

production workloads in Docker. The whole tool chain becomes portable, and you can run it
wherever you like with minimal compute requirements.

Running shared development
services in Docker

Services such as source control and the image registry are good candidates to be shared between
many projects. They have similar requirements for high availability and reliable storage, so they
can be deployed across a cluster that has enough capacity for many projects. The CI server can
be run as a shared service or as a separate instance for each team or project.

I covered running a private registry in a Docker container in Chapter 4, Pushing and Pulling
Images from Docker Registries. Here, I'll look at running a Git server and a CI server in Docker.

Packaging a Git server into a
Windows Docker image

Bonobo is a popular open source Git server. It's written in ASP.NET using the full NET
Framework, and you can easily package it as a Docker image based on Windows Server Core.
Bonobo is a simple Git server; it provides remote repository access over HTTP and HTTPS, and
it has a web UL. It supports integrated Windows authentication, but I won't cover that here.

Windows containers are not domain-joined, but you can make use of Windows
authentication in Docker containers. You need to create a group Managed
Service Account (gMSA) in Active Directory and give the Docker host access to
the gMSA. Then, you run containers with an additional security option, and any
processes in the container running as the Local System or Network Service
account will actually use the gMSA.

Packaging Bonobo in a Docker image is straightforward. It's a full . NET Framework application,
so my Docker image is based on microsoft/aspnet:windowsservercore. There are no additional
dependencies to install. In the Dockerfile for dockeronwindows/ch10-bonobo, I download the
packaged ZIP file, expand it, and remove the ZIP file using the normal pattern (with the set the
Bonobo version as an environment variable):

RUN Invoke-WebRequest "https://bonobogitserver.com/resources/releases/$ ($env:BONOBO VERSION) .:
-OutFile 'bonobo.zip' -UseBasicParsing; °
Expand-Archive bonobo.zip; °
Remove-Item bonobo.zip

Inside the ZIP file is the web.conrig file for the app, which is set with the default configuration
values. The default values save the state to the local c drive, which I want to change so I can
store the repository database and the repository content in a Docker volume. You can change the
settings in the UI, but I want a fully configured Docker image so that in my Dockerfile, I update
the values in wep. config.

This is a useful approach when you want to change a subset of configuration values in a
packaged application, but you don't want to maintain a separate config file. Copying my own
config file over the packaged one would be easier initially, but I would need to keep my copy up
to date with every new version of the application. By overwriting specific values, I can leave the
rest of the defaults in place. I read the config file as XML in a PowerShell using ruwn instruction
and update the element values:

RUN $file = $env:BONOBO PATH + '\Web.config'; °

[¥ml] $config = Get-Content $file; °
$repo = $config.configuration.appSettings.add | where {$_.key -eq 'DefaultRepositoriesDire

$repo.value = 'G:\repositories'; °
$db = $config.configuration.connectionStrings.add | where {$_.name -eq 'BonoboGitServerCor
$db.connectionString = 'Data Source=G:\Bonobo.Git.Server.db;BinaryGUID=False;'; °

$config.Save ($file)

I set the database file path and the repositories directory to use the ¢ drive. There is no ¢ drive in
the container, but this is a neat way of getting around any problems with symbolic
link (symlink).

Docker volumes are exposed in the container as a symlink directory, with a value like \\»
\ContainerMappedDirectories\01BA2580-95DA-48B9-94F2-B397D00cn0a1. If applications try to resolve
this path (which actually points to a location on the host), the resolution can fail. The
workaround is to create the Docker volume and then map the volume location as a drive letter
with a registry entry:

ENV DATA PATH="C:\data"

VOLUME C:\data

RUN Set-ItemProperty -Path 'HKLM:\SYSTEM\CurrentControlSet\Control\Session Manager\DOS Devices
-Name 'G:' -Value "\??\$ (Senv:DATA PATH)" -Type String

The ¢ drive mapping isn't a symlink, so the application writes to it without resolving the path.
The Windows filesystem uses c:\data instead of , and the filesystem calls work correctly with
symlink directories. Bonobo will write data to directories on the ¢ drive, which is actually a
Docker volume stored on the host.

One final piece of setup work is needed. Bonobo writes temporary files to the app pata folder, as
many ASP.NET apps do. The Dockerfile commands execute as the container administrator
account, so that account will be the owner of the app pata directory when it is created from the
ZIP file. Bonobo runs as a website in Internet Information Services (IIS), so the IIS user
account needs to be given permission to write to that folder. I do this with a simple PowerShell
script called set-owneraci.ps1 to set the access control list (ACL):

Sacl = Get-Acl S$path;

SnewOwner = [System.Security.Principal.NTAccount] (Sowner) ;
Sacl.SetOwner (SnewOwner) ;

Set-Acl -Path $path -AclObject Sacl;

Get-ChildItem -Path S$path -Recurse | Set-Acl -AclObject $acl

In the Dockerfile, I call that script to set the IIS user group as the owner of app pata:

RUN $path = $env:BONOBO PATH + '\App Data';
.\Set-OwnerAcl.psl -Path $path -Owner 'BUILTIN\IIS IUSRS'

Building this image gives me a Git server that [can run in a Windows container.

Running the Bonobo Git server
in Docker

Run Bonobo just like any other detached container, mapping the HTTP port and using a host
mount to store the data outside of the container:

docker run -d -p 80:80 °
-v C:\bonobo:C:\data °
dockeronwindows/chl0-bonobo

Browse /eonobo.Git.server in the container's IP address (or the Docker host's IP address if you're
accessing externally), and you'll see the logon page. The default username is aamin and the
password is admin, which will take you to the home page:

BONOBO GIT SERVER 2 Repositories & Users 4 Teams & Settings § admin @ Sign Out

Your first step should be to create a new user account with a secure password, log in as that user,
and delete the default admin account. Then, you can customize Bonobo in the settings page and
create repositories. Bonobo stores all repositories at the root level, but you can assign a group
tag to a repository, which is used to arrange repositories in the home display:

BONOBO @HOME B8 Repositories & Users 4 Teams ©f Settings & Elton Stoneman @ Sign Out

Reposiories

Name Description

& dockerfiles-windows @ & @

& presentations @ F o
@ dockersamples

Name Descripticn

8 newsletter-signup @ Z @
@ packt

Name Description

& docker-on-windows @ F @

Now you can use Bonobo running in your Docker container just like any other remote Git server
—such as GitHub or GitLab. The Windows server address on my home network is
192.168.2.160, SO | can add Bonobo as a remote to my Git repository like this:

| git remote add bonobo http://192.168.2.160/Bonobo.Git.Server/docker-on-windows.git

And then, we can use git push bonobo and git pull bonobo to Work with the remote repository.
Bonobo is stable and lightweight when running in a Docker container. My instance typically
uses 200 MB of memory and less than 1% CPU at idle.

Running a local Git server is a good idea even if you use a hosted service such as
GitHub or GitLab. Hosted services have outages, and although rare, they can
have a significant impact. Having a local secondary running with very little cost
can protect you from being impacted when the next outage occurs.

The next step is to run a CI server in Docker.

Packaging a CI server into a
Windows Docker image

Jenkins is a popular automation server that is used for CI/CD and that supports custom
workflows with multiple trigger types. It's a Java application that's straightforward to package in
Docker—although it's not so simple to fully automate the Jenkins setup.

In the source code for this chapter, I have a Dockerfile for the image dockersampies/chio-jenkins-
pase. This Dockerfile packages a clean installation of Jenkins, using the official OpenJDK image
as the base and downloading the Jenkins web archive (using environment variables for the
Jenkins version and SHA hash):

WORKDIR C:\jenkins

RUN Invoke-WebRequest "https://repo.jenkins-ci.org/.../$($env:JENKINS VERSION)/jenkins-war-$ ({
-OutFile 'jenkins.war' -UseBasicParsing; °
if ((Get-FileHash jenkins.war -Algorithm sha256) .Hash.ToLower () -ne $env:JENKINS_SHA256) {exi

Like the Bonobo image, I create a Docker volume at c:\data and use the Windows registry
setting to map that path to the ¢ drive. Jenkins is simple to configure when it comes to the main
storage location; you just set the value of the senkins nove environment variable in the
Dockerfile:

| ENV JENKINS HOME="G:\jenkins"

A clean Jenkins installation doesn't have many useful features; almost all functionality 1s
provided by plugins that you install after Jenkins is set up. Some of these plugins also install the
dependencies they need, but others don't. For my CI/CD pipeline, I need a Git client in Jenkins,
so it can connect to the Git server running in Bonobo, and I also want the Docker CLI so I can
use Docker commands in my builds.

I can install these dependencies in the Jenkins Dockerfile, but that would make it large and
difficult to manage. Instead, I can split these tools into their own Docker images and combine
them using multi-stage builds. The dockeronwindows/ch10-git packages the Git client into a
Windows Docker image, and dockeronwindows/ch10-docker packages the Docker and Docker
Compose clients into a second image.

I can use both of these, along with the Jenkins base image, to build my final Jenkins image. The
Dockerfile for dockeronwindows/ch10-jenkins starts with multiple rrou instructions:

FROM dockeronwindows/chlO-git AS git
FROM dockeronwindows/chl0-docker AS docker
FROM dockeronwindows/chl0-jenkins-base

To add the Git client to the final Jenkins image, I set up a directory, add it to the path, and then
copy the content from the Git image:

|RUN New-Item -Type Directory 'C:\git'; °

$env:PATH = 'C:\git\cmd;C:\git\mingw64\bin;C:\git\usr\bin;' + $env:PATH;
[Environment] : :SetEnvironmentVariable ('PATH', $env:PATH, [EnvironmentVariableTarget]: :Mact

COPY --from=git C:\git C:\git

The process is the same for the Docker command-line tools, copied from the Docker image into
the Jenkins image:

RUN New-Item -Type Directory 'C:\docker';
$env:PATH = 'C:\docker;' + $env:PATH;
[Environment] : :SetEnvironmentVariable ('PATH', $env:PATH, [EnvironmentVariableTarget]::Machine

COPY --from=docker C:\docker\docker.exe C:\docker
COPY --from=docker C:\docker\docker-compose.exe C:\docker

Using different Dockerfiles for the dependencies gives me a final Docker image with all the
components I need but with a manageable Dockerfile and a set of reusable source images. Now |
can run Jenkins in a container and finish the setup by installing plugins.

Running the Jenkins
automation server in Docker

Jenkins uses port soso for the Web UI, so you can run it from the sample image using this
command—which maps the port and mounts a local folder for the Jenkins root directory:

|docker run -d -p 8080:8080 -v C:\jenkins:C:\data --name jenkins dockeronwindows/chlO-jenkins

Before you browse to the web interface, check the logs of your Jenkins container to find the
administrator password that Jenkins generates for each new deployment:

> docker logs jenkins

khkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkkkhkkhkkhkkhkkhkkhkkkhkkhkkkhkhkkhhkkkk

Jenkins initial setup is required. An admin user has been created and a password generated.
Please use the following password to proceed to installation:
969fe9£8b2894d75b5950e267564£fcf2

This may also be found at: G:\jenkins\secrets\initialAdminPassword
khkkhkkkhkkhkhkkhkkkhkkhkhkhkkhkhkhkhkkhkhkkhkkhkhkkhkhkhkkhkkhkhkhkkhkhkkhkkhkhkhkkhkhkkhkkkhkkkkkkk

Now you can browse to port soso on the container IP address or the Docker host's IP address;
enter the generated password and add the Jenkins plugins you need. As a bare minimum
example, I've chosen to customize the plugin installation and chosen only Folders Plugin and Git
plugin from the recommended options:

Getting Started

Getting Started

| « Folders Plugin Git plugin ** bouncycastle REI Flugin
Folders Plugin

I need one more plugin to run PowerShell scripts in build jobs. This isn't a recommended plugin,
so once Jenkins starts, I go to Manage Jenkins...Manage Plugins, and from the Available list, I
choose PowerShell plugin and click on Install without restart:

L] = -
@1 Jenklns (el search ! admin | log out
Jenkins Plugin Manager
Back to Dashboard
Filter:
r""" Manage Jenkins
45 Update Center Aallablc
Install | Name Version
_NET Development
CCM Plug-in i
This plug-in generates the trend report for CCM, an open source static code -
[] change-assembly-version-plugin 151
O FxCop Runner plugin 11
O MSBuild Plugin 1.27
MS&Test plugin
o R o 0.19
Senerates test reports for MSTest
[0 MSTestRunner plugin 13.0
() MAnt Plugin 143
] MNCover plugin 0.3
PowerShell plugin 13
Violation Comments to Bitbucket Server Plugin
(o] {or Stash) pull 150
O Violations plugin 071
[0 Visual Studio Code Metrics Plugin 1.7
(] VSTest Runner plugin 1.04

You can automate the plugin installation with Jenkins, but it requires an
additional download and some scripting of the Jenkins API. Plugin dependencies
are not always resolved when you install that way, so it can be safer to manually
set up the plugins and your user accounts and then export the container to a

custom image Wlfh docker contaliner commit.

&

When this is complete, I have all the infrastructure services I need to run my CI/CD pipeline.

For my setup, I use a Docker Compose file to configure Jenkins, Bonobo, and the Docker
Registry on my server rather than running individual containers. This isn't a distributed solution
where the containers access each other directly, but these services all have the same SLA, so
defining them in a compose file lets me capture that and start all the services together.

Configuring C1I/CD
using Jenkins in Docker

I'll configure my build to poll a Git repository and use Git pushes as the trigger for a new build.

Jenkins will connect to Git through the repository URL for Bonobo, and all the actions to build,
test, and deploy the solution will run as Docker containers. The Bonobo server and the Docker
engine have different authentication models, but Jenkins supports many credential types, and |
can configure the build job to securely access the source repository and Docker on the host.

Setting up Jenkins credentials

Bonobo provides basic username/password authentication, which I'm using in my setup. In a
business environment, I would use HTTPS for Bonobo, either by packaging a Secure Sockets
Layer (SSL) certificate in the image or using a proxy server in front of Bonobo. In the users
section of the Bonobo interface, I've created a Jenkins CI user and given it read access to the
docker-on-windows Git repository, which I'll use for my sample CI/CD job:

BONOBO @HOME &2 Repositories & Users @ Teams #f Settings & Elton Stoneman @ Sign Out

docker-on-windows

& Details £#1 Repository Browser X Commits % Tags & Download £ Clone

docker-on-windows

@ Copy http://192.168.2.160/Bonobo.Git.Server/docker-on-windows.git

#cCopy http://sixeyed@192.168.2.160/Bonobo.Git.Server/docker-on-windows.git
packt

No

Global

Jenkins CI

Elton Stoneman

I've added the username and password to Jenkins as global credentials:

.. Fa) =
@ Jenkll‘ls 4 searc @ Elton Stoneman | log out
Jenkins Credentials System Global credentials (unrestricted) jenkins/™** (bonobo-jenkins)
A Backto Global credentials (unrestricted) Scope Global (Jenkins, nodes, items, all child items, etc) @
£ Undate Usemame jorikine ®
(0 Delete
5 Password -
L. Move @
ID N =
bonobo-jenkins (7]
Uemcapion bonobo-jenkins ®

Jenkins doesn't display the password once entered, and it records an audit trail for all the jobs
that use the credential, so this is a secure way of authenticating.

To authenticate with Docker, I'll use the Transport Layer Security (TLS) certificates I
generated when securing the Docker engine. There are three certificates—the Certificate
Authority (CA), the server certificate, and the key. They need to be passed to the Docker CLI
as file paths, and Jenkins supports this with credentials that can be saved as secret files. I've
uploaded the PEM files containing the certificates as global credentials, so my Jenkins instance
has credentials for Git and Docker:

@ J enkins @i search @ Elton Stoneman | log out

Jenkins Credentials System Global credentials (unrestricted)

4% Back to credential domains

@= Add Credentals :Ux Global credentials (unrestricted)

Credentials that should be available irespective of domain specification to requirements matching.

Name Kind Description
@ jenkins/™**** (honobo-jenkins) Username with password bonobo-jenkins &
== ca.pem (docker-server-ca) Secret file docker-server-ca &
= cert.pem (docker-server-cert) Secret file docker-server-cert .
= key pem (docker-server-key) Secret file docker-server-key &

lcon: SML

Configuring the Jenkins CI job

In this chapter, the sample solution is in the chi0-newsietter folder. It's a simple distributed
application based on the Docker sample solution on GitHub—dockersamples/newsletter-signup.
I've created a freestyle job in Jenkins to run the build and configured Git for source code
management. It's simple to configure Git—I'm using the same repository URL that I use for the
Git repository on my laptop, and I've selected the Bonobo credentials for Jenkins to access:

None

Source Code Management

Source Code Management

& Git
Repositories (7]
Repository URL http://192.168.2.160/Bonobo. Git. Server/docker-on-windows . git '@'
Credentials jenkins/***** (bonobo-jenkins) ¥ = &= Add#
Advanced...
Add Repository
Branches to build n
Branch Specifier (blank for 'any’) | */master (2]
Add Branch
Repository browser {Auto) y @
Additional Behaviours Add -

Jenkins is running in a Docker container, and Bonobo is running in a container
on the same Docker network. I could use the container name instead of the host
IP address and Docker would resolve the service. But that would restrict me to
running the containers in the same Docker network, and it also means I'm using
different repository URLs on the CI server and the client, so it's preferable to use
the full URL.

Jenkins supports multiple types of build triggers. In this case, I'm going to poll the Git server on
a set schedule. I'm using /5 + + + » as the schedule frequency, which means Jenkins will check
the Bonobo repository every five minutes. If there are any new commits since the last build,
Jenkins will run the job.

I need to give the job explicit access to the secret files where the Docker TLS certificates are
stored in Jenkins. On the Build Environment page, I specify that secret files are to be made
available, and then for each certificate file, I create a binding, selecting the certificate file and
giving it a variable name:

Build Environment

Build Environment

Delete workspace before build starts
Abort the build if it's stuck

Add timestamps to the Console Cutput

¥ Use secret text(s) or file(s) ®
Bindings
Secret file I (7))
Variable DOCKER_CA (2]
Credentials '@ Specific credentials Parameter expression .0
ca.pem (docker-server-ca) ¥ | &= Ads

The certificates are surfaced to the job steps as temporary files, and the variable name contains
the path to the temporary file. In this example, the pocker ca environment variable contains the
path to the CA certificate for the Docker engine. That's all the job configuration I need, and all

the build steps will now run using Docker containers.

Building the solution using
Docker Compose in Jenkins

All the build steps will use PowerShell, running as simple scripts so there's no dependency on
more complex Jenkins plugins. There are plugins specific to Docker that wrap up several tasks,
such as building images and pushing them to a registry, but I can do everything I need with
basic PowerShell steps. The first step builds the solution using Docker Compose:

cd source\chlO\chlO-newsletter

$config = '--host', 'tcp://192.168.160.1:2376', '--tlsverify',6 °
'--tlscacert', $env:DOCKER CA,'--tlscert', $env:DOCKER CERT, '--tlskey', $env:DOCKER KEY

& docker-compose $config °
-f .\app\docker-compose.yml -f .\app\docker-compose.build.yml build

There are several configuration settings needed to connect securely to the remote Docker engine.
I capture them in a PowerShell array and pass it to the Docker Compose command, so the
variables don't pollute the significant command. The config options contain the following:

e nost: The IP address of the Docker gateway

t1sverify: Ensures the TLS mode is used and the certificates are checked
t1scacert: The location of the CA certificate file

e t1scert: The location of the server certificate file

e tiscacert: The location of the server key file

The TLS certificate paths use the environment variables from the Jenkins build configuration.
Each certificate is stored in a different temporary file location, and the environment variables
contain the path. When the Docker CLI runs, it will read the certificates from the temporary
files, which Jenkins copies into the job from the global secret files.

Docker builds the images using multi-stage Dockerfiles, and each step of the build will execute
in a Docker container. Jenkins itself is running in a container, and it has the Docker and Docker
Compose CLIs available in the image. To connect the CLI inside the container to the Docker
engine running on the host, I need to pass the host's address—but this is not the external IP
address of the host.

My server runs on 192.168.2.160, but inside the container, Docker can't access that address.
Instead, you need to use the gateway address, which is how the container resolves access to the
host. There are two ways to find the gateway address. On the host, you can get the IP address of
the vethernet adapter using PowerShell:

> Get-NetIPAddress | °
Where {$_.InterfaceAlias -Like 'vEthernet*' -and $_.AddressFamily -eq 'IPv4'} | °
Select IPAddress

IPAddress

| 192.168.160.1

Or, you can get the default gateway from the container using cet-netroute:

> docker exec -it jenkins powershell "Get-NetRoute -DestinationPrefix '0.0.0.0/0' | Select Ne:

NextHop

192.168.160.1

Both values should be the same, in my case, it's 192.168.160.1. This is the address that is used for
the Docker host.

I'm using Docker Compose for the build, so I can build every component with a single
command. I use overrides in Docker Compose (which I covered in Chapter 6, Organizing
Distributed Solutions with Docker Compose) to separate the concerns. The basic docker-
compose .ym1 file specifies the services and their configuration. This describes the solution
architecture that is applicable for every environment. I also have an override file called docker-
compose.build.yml, Which adds the build configuration for my images:

version: '3.3"
services:

signup-app:
build:
context: ../
dockerfile: ./docker/web/Dockerfile

signup-save-handler:
build:
context: ../
dockerfile: ./docker/save-handler/Dockerfile

signup-index-handler:
build:
context: ../
dockerfile: ./docker/index-handler/Dockerfile

Each of these Dockerfiles contains a multi-stage build, where the first stage compiles the
application in a container using MSBuild, and the second stage copies the compiled application
into the final Docker image.

Multi-stage builds in CI
pipelines

When I configured Jenkins, I didn't add any build agents; there's no MSBuild, NuGet, or Visual
Studio components in the Jenkins Docker container. Everything needed to build the application
is configured in Docker. This is how the Dockerfile starts for the dockeronwindows/chio-
newsletter-save-handler image, which is a simple .NET console app:

escape="
FROM sixeyed/msbuild:netfx-4.5.2 AS builder

WORKDIR C:\src\SignUp.MessageHandlers.SaveProspect
COPY src\SignUp\SignUp.MessageHandlers.SaveProspect\packages.config .
RUN nuget restore packages.config -PackagesDirectory ..\packages

COPY src\SignUp C:\src
RUN msbuild SignUp.MessageHandlers.SaveProspect.csproj =
/p:OutputPath=c:\out\save-prospect\SaveProspectHandler

This is the first stage of the build. It uses sixeyed/msbuild as the rrom image, and it gives this stage
the name buiider. The base image is a public image on Docker Hub, which packages MSBuild
with the NET Framework 4.5.2 Developer Pack and NuGet. This image has all the requirements
to build .NET Framework apps in a Docker container.

In the Dockerfile, I use NuGet first—copying in the package configuration and running nuget
restore (the base image sets up all the paths for the command-line tools). Then, I copy in the rest
of the source code and run msbuiia to compile the project.

I split the NuGet part from the MSBuild part so I can take advantage of Docker's image layer
caching. Restoring packages from NuGet can be time consuming, so I don't want to do that for
every build. By copying just the packages.config file and running nuget restore, I'm building
image layers that will be cached until the packages.contig file changes. Unless I change the
package configuration in the project, the layers containing the restored NuGet packages will be
used from the cache.

The MSBuild layers will also be cached unless any of the source code files change. You can run
the build repeatedly, and if there are no code changes, it will finish in seconds. Fast builds are
especially important in a CI process, where many developers can be pushing changes. You want
the build process to do as little work as possible in order to generate the latest artifacts in the
shortest time and the Docker image layer cache makes it easy to do that.

The Dockerfile for the image continues, with another rrom instruction delineating a new stage in
the build. This is the final stage, so this will be my application image:

FROM microsoft/windowsservercore
SHELL ["powershell", "-Command", "S$ErrorActionPreference = 'Stop';"]

RUN Set-ItemProperty -path 'HKLM:\SYSTEM\CurrentControlSet\Services\Dnscache\Parameters' -Name

WORKDIR /save-prospect-handler
CMD .\SignUp.MessageHandlers.SaveProspect.exe

ENV MESSAGE QUEUE URL="nats://message-queue:4222" °
DB_MAX RETRY COUNT="5" °
DB_MAX DELAY SECONDS="10"

COPY —--from=builder C:\out\save-prospect\SaveProspectHandler .

This component is a message handler running as a .NET Framework console application. It's
packaged into a Windows Server Core image, with the usual Dockerfile instructions to switch to
PowerShell and turn off the Windows DNS cache. The cvp instruction runs the console app, and
the env instructions specify default environment variables used for the message queue and the
SQL Server connection.

This is the final line in the Dockerfile that connects the two stages. copy --from=builder ...
instructs Docker to copy content into the image, from the previous part of the build, the stage
called vuiider. The compiled application is copied from the known location in the builder stage
into the desired location in the final application image.

In the sample solution, the other custom images—dockeronwindows/chl0-newsletter-index-

handler and dockeronwindows/chlO-newsletter-web, follow exactly the same pattern. They use the
relevant MSBuild image as the base in the builder stage and package the full application in the
final stage. This gives me a set of nice, efficient, repeatable builds. The application images don't
have any unnecessary components because the build tools are all isolated in the builder stage.
Anyone can build this app if they have Docker on Windows; there are no other dependencies.

The sixeyed/msbuild images have multiple variants, supporting different project
types. The basic image supports the .NET Framework app, and there are variants
to build Visual Studio web projects and SOL Server database projects.

It takes only a single docker-compose command to build the entire solution, and it's
straightforward to deploy and verify the solution as the next step in the Jenkins build.

Running and veriftying the
solution

The next build step in Jenkins will deploy the solution locally on the build server, running in
Docker containers, and verify that the build is working correctly. This step is another
PowerShell script, which starts by deploying the application with Docker Compose:

cd source\chl0\chlO-newsletter

$config = '--host', 'tcp://192.168.160.1:2376', '--tlsverify',6 °
'--tlscacert', $env:DOCKER_CA,'——tlscert', $env:DOCKER_CERT, '--tlskey', $env:DOCKER KEY

& docker-compose $config °
-f .\app\docker-compose.yml -f .\app\docker-compose.local.yml up -d

As before, I pass the remote connection details for the Docker host, including the gateway IP
address and the TLS certificate paths as a configuration array. Each step in the Jenkins job
executes in a separate PowerShell session, so I need to set the values each time. In addition to
the base compose file, I use the docker-compose.10cal.ym1 override file that publishes the ports and
specifies the network configuration to run locally:

version: '3.3'
services:

signup-app:
ports:
- 80

kibana:
ports:
- 5601

networks:
app-net:
external:
name: nat

I'm not specifying host ports to publish, so Docker will use random ports (port so
on the application container may be published to port 33504). This is important
because ports are scarce resources. If you publish to known ports, then you limit
the scalability of your build server with my app server publishing to port so, 1
couldn't run any other projects that also tried to use port so. Random ports

mean I can run as many containers as the host can manage.

The docker-compose command starts the whole solution in detached containers. The web
application uses Entity Framework Code-First to deploy the database schema, so when the
containers are started, there is still setup work to be done. In the web application Dockerfile,
there is a mearTHCHECK InStruction, so the container will start the setup work but I don't want to run
automated tests until that is complete; otherwise, the build could fail on a timing issue.

In the deployment step, I continue with a short sleep to give the setup time to finish, and then I
get the IP address of the web container and make a verification call to check whether the website
is available:

Start-Sleep -Seconds 20
$ip = & docker $config inspect --format '{{ .NetworkSettings.Networks.nat.IPAddress }}' app_si

Invoke-WebRequest -UseBasicParsing "http://$ip/SignUp"

At this point, the application is up and running and I've verified that the home page is accessible.
The build steps are all console commands, so the output will be written to the job log in Jenkins.
For a fresh build, you will see the all the output, including the following:

e Docker pulling the sixeyed/msbui1la images

NuGet and MSBuild steps compiling the application
Docker building the application images

Docker Compose starting the application containers
PowerShell making the web request to the application

The 1nvoke-webrequest cmdlet is a simple build verification test. If it gives an error, the build will
fail, but if it succeeds, that does not mean the application is working correctly. For greater
confidence in the build, I run end-to-end integration tests in the next build step.

Running end-to-end tests in
Docker

There's one more component to my sample solution, it's a test project that uses a simulated
browser to interact with the web application and which then checks for the expected output in
SQL Server.

The signup.EndToEndTests project uses SpecFlow to define feature tests, stating the expected
behavior of the solution. The SpecFlow tests are executed using selenium, which automates
browser testing, and SimpleBrowser, which presents a headless browser. These are web tests
that can be run from the console, so no Ul components are needed and the tests can be executed
in a Docker container.

I have a Dockerfile to build the dockeronwindows/chl0-newsletter-e2e-tests image, which uses a
multi-stage build to compile the test project and then package the test assembly. The final stage
of the build configures NUnit with the compiled test assembly, copying the output from the
builder stage:

FROM sixeyed/nunit:3.6.1
SHELL ["powershell", "-Command", "S$ErrorActionPreference = 'Stop';"]

RUN Set-ItemProperty -path 'HKLM:\SYSTEM\CurrentControlSet\Services\Dnscache\Parameters' -Name

WORKDIR /e2e-tests
CMD nunit3-console SignUp.EndToEndTests.dll

COPY --from=builder C:\out\tests\EndToEndTests .

The next step of the Jenkins build runs these end-to-end tests. It's a simple PowerShell script
again, building the Docker image and then running a container. The test container will execute
in the same Docker network as the application, so the test browser can reach the web application
using the container name in the URL.

cd source\chl0\chlO-newsletter

$config = '--host', 'tcp://192.168.160.1:2376', '--tlsverify',6 °
'--tlscacert', $env:DOCKER CA,'--tlscert', $env:DOCKER CERT, '--tlskey', $env:DOCKER KEY

& docker $config build -t dockeronwindows/chlO-newsletter-e2e-tests -f docker\e2e-tests\Docke:

& docker $config run --env-file app\db-credentials.env dockeronwindows/chlO-newsletter-e2e-tes

Each build step runs in a separate PowerShell session, which is why the steps
start by switching to the source directory and setting up the config array. Every
docker And docker-compose command needs the TLS and host settings from the
array, which is expanded with the PowerShell s syntax.

When this step runs, it will execute a suite of 26 tests against the application. Each test uses a
simulated browser to enter details into a web form and then queries SQL Server to verify that the

data has been saved. In the Jenkins build output, you will see the results of the test run like this:

Run Settings

DisposeRunners: True

WorkDirectory: C:\e2e-tests

ImageRuntimeVersion: 4.0.30319
ImageTargetFrameworkName: .NETFramework,Version=v4.5.2
ImageRequiresX86: False
ImageRequiresDefaultAppDomainAssemblyResolver: False
NumberOfTestWorkers: 2

Test Run Summary

Overall result: Passed

Test Count: 26, Passed: 26, Failed: 0, Warnings: 0, Inconclusive: 0, Skipped: 0
Start time: 2017-05-30 22:41:372

End time: 2017-05-30 22:41:582Z

Duration: 20.622 seconds

Results (nunit3) saved as TestResult.xml

The test suite uses a fixed set of data. Ordinarily, this is one of the problems of integration tests,
the database needs to be in a known state before running the tests to be sure that you're verifying
the output of this test run and not some previous test run. With Docker, this is not an issue
because each test run uses a new SQL Server database running in a container. When the tests

complete, the database container and all the other application containers are removed in the last
part of the test step:

|& docker-compose $config -f .\app\docker-compose.yml -f .\app\docker-compose.local.yml down

Now I have a set of application images that are tested and known to be good. The images exist
only on the build server, so the next step is to push them to the local registry.

Tagging and pushing Docker
images in Jenkins

How you push images to your registry during the build process is your choice. You might start
by tagging every image with the build number and pushing every image version to the registry
as part of the CI build. Projects using efficient Dockerfiles will have minimal differences
between builds, so you benefit from cached layers, and the amount of storage you use in your
registry shouldn't be excessive.

If you have larger projects with a lot of development churn and a shorter release cadence, the
storage requirements could grow so you might move to a scheduled push, tagging images daily,
and pushing the latest build to the registry. Or, if you have a pipeline with a manual quality gate,
the final release stage could push to the registry, so the only images you store are valid release
candidates.

For my sample CI job, I'll push to the local registry with every successful build once the tests
have passed using the Jenkins build number as the image tag. The build step to tag and push
images is another PowerShell script that uses the built-in environment variables from Jenkins for

tagging:

$config = '--host', 'tcp://192.168.160.1:2376', '--tlsverify',6 °
'--tlscacert', $env:DOCKER CA,'--tlscert', $env:DOCKER CERT, '--tlskey', $env:DOCKER KEY

& docker $config °
tag dockeronwindows/chlO-newsletter-web "registry.sixeyed:5000/dockeronwindows/chl0O-newslette

& docker $config °
push "registry.sixeyed:5000/dockeronwindows/chl0-newsletter-web:$ ($env:BUILD_ TAG)"

This snippet shows the web application image being pushed, and the same process is used for
the message handler images.

L use an alias in the host's file for my registry, using registry.sixeyed as the
hostname. On the Docker server that runs the registry container, the

8 registry.sixeyed name is set to resolve to the container's IP address. On remote
machines, the registry.sixeyed name resolves to the Docker server. This way, 1
can use consistent image tags on every machine.

After a few builds have completed, I can make a rest call to the registry API from my
development laptop to query the tags for the dockeronwindows/ch10-newsletter-web repository. The
API will give me a list of all the tags for my web application image, so I can verify that they've
been pushed by Jenkins:

> Invoke-RestMethod http://registry.sixeyed:5000/v2/dockeronwindows/chl0-newsletter-web/tags/]
Select tags

tags

{jenkins-docker-on-windows-chl0-chl0-newsletter-20,
jenkins-docker-on-windows-chl0-chlO-newsletter-21,
jenkins-docker-on-windows-chl0-chlO-newsletter-22}

The Jenkins build tag gives me the complete path to the job that created the images. I can use the
crr_comurt environment that Jenkins provides variable instead to tag images with the commit ID.
This makes for a much shorter tag, but the Jenkins build tags include the incrementing build
number, so I can always find the latest version by ordering the tags. The Jenkins web UI shows
the Git commit ID for each build, so it's easy to track back from the job number to the exact
source revision.

The CI part of the build is done now. For every new push to the Git server, Jenkins will compile,
deploy, and test the application and then push good images to the local registry. The next part is
deploying the solution to the QA environment.

Deploying to a remote Docker
swarm using Jenkins

The workflow for my sample application uses a manual quality gate and separates the concerns
for local and external artifacts. On every source code push, the solution is deployed locally and
tests are run. If they pass, images are saved to the local registry. The final deployment stage is to
push these images to an external registry and deploy the application to the public QA
environment. This simulates a project approach where builds happen internally, and approved
releases are then pushed externally.

In this example, I'll use public repositories on Docker Hub and deploy to a Windows VM in
Microsoft Azure running as a single-node Docker swarm. I'll continue to use PowerShell scripts
and run basic docker and docker-compose commands. The principles are exactly the same to push
images to other registries and deploy to larger Docker swarms or to Universal Control Plane
(UCP) running on Docker Enterprise Edition (Docker EE).

I've created a new Jenkins job for the deployment step, which is parameterized to take the
version number to deploy. The version number is the job number from the CI build, so I can
deploy a known version at any time. In the new job, I need some additional credentials. I've
added secret files for the swarm manager's TLS certificates, which will allow me to connect to
the manager node of the Docker swarm running in Azure.

I'm also going to push images to Docker Hub as part of the release step, so I've added a
username and password credential in Jenkins in order to authenticate to Docker Hub. To
authenticate in the job step, I've added a binding for the credentials in the deployment job, which
exposes the username and password as environment variables:

Username and password (separated) n (3]

Usemame Variable DOCKER_HUB_USER (7]

Password Variable = DOCKER_HUB_PASSWORD @

Credentials e Specific credentials Parameter expression '@'
jenkinssc/™*** (dockerhub-jenkinssc) ¥ &= Add

Then, I set up the command configuration and use docker 1o0gin in the PowerShell build step,
specifying the credentials from the environment variables:

$config = '--host', 'tcp://192.168.160.1:2376', '--tlsverify',6 °
'--tlscacert', $env:DOCKER CA,'--tlscert', $env:DOCKER CERT, '--tlskey', $env:DOCKER KEY

& docker $config °
login --username $env:DOCKER HUB USER --password "$env:DOCKER HUB PASSWORD"

I'm still using my local Docker server here, connecting to the gateway IP
address. That's my internal environment, which is the source for pushing to the
external repositories on Docker Hub.

Now for each of the custom images, I pull them from the local registry, tag them for Docker
Hub, and then push them to Hub. The initial pull is there in case I want to deploy a previous
build, and the local server cache has been cleaned since the build, it ensures the correct image is
present from the local registry. For Docker Hub, I use a simpler tagging format, just applying
the version number.

This example is for the web image, and the pattern is repeated for the message handlers:

& docker $config °
pull "registry.sixeyed:5000/dockeronwindows/chl0O-newsletter-web: jenkins-docker-on-windows-chl

& docker $config °
tag "registry.sixeyed:5000/dockeronwindows/chl0O-newsletter-web: jenkins-docker-on-windows-chl(
"dockeronwindows/chl0-newsletter-web:$ ($env: VERSION NUMBER) "

& docker $config °
push "dockeronwindows/chlO-newsletter-web:$ ($env:VERSION NUMBER) "

When this step completes, the images are publicly available on Docker Hub. Now the last step in
the deployment job deploys the latest application version on the remote Docker swarm using
these public images. I use Docker Compose to pull the latest images and to compile the stack
deploy file for the QA environment. Then, I deploy to the swarm using docker stack deploy:

cd source\chl0\chlO-newsletter

$config = '--host', 'tcp://dockerwin-test.westeurope.cloudapp.azure.com:2376', '--tlsverify',
'--tlscacert', $env:DOCKER QA CA,'--tlscert', $env:DOCKER QA CERT, '--tlskey', $env:DOCKER Q2

& docker-compose $config °
-f .\app\docker-compose.yml -f .\app\docker-compose.ga.yml pull

& docker-compose $config °
-f .\app\docker-compose.yml -f .\app\docker-compose.ga.yml config > docker-compose.stack.yml

& docker $config °
stack deploy -c docker-compose.stack.yml newsletter

In this step, the configuration is set up to use the remote Docker server, the hostname is the
Azure VM, and the credential files are the certificates for that QA server. Pulling the images
means the latest versions are available when the application is upgraded, as this is just a single-
node swarm. The override file specifies the extra settings needed for the QA environment.

Remember that Docker stacks use the Docker Compose file format, but multiple
ﬁle overrides are not Supported IN docker stack deploy. I use docker-compose config
to compile the basic compose file and the QA override file into a single output
file. This consolidated file is used to deploy the stack.

The QA override file specifies the DNS round-robin endpoint mode for all services, which is
required for Windows containers to communicate in an overlay network:

version: '3.2"
services:

signup-db:

deploy:
endpoint mode: dnsrr

message-queue:
deploy:
endpoint mode: dnsrr

The public-facing services need to be configured in the override file with host port publishing.
As an example, the Kibana override publishes port se01:

kibana:
ports:
- mode: host
target: 5601
published: 5601
deploy:
endpoint mode: dnsrr

The services from my custom images need to use the same network configuration and specify
the version number in the image tag. Docker Compose supports environment variable
expansion, so I use the verston numeer environment variable as the image tag. This is the version
number that was generated in the build job and passed into Jenkins as a parameter for the deploy
job:

signup-app:
image: dockeronwindows/chlO-newsletter-web:${VERSION NUMBER}
ports:
- mode: host
target: 80
published: 80
deploy:
endpoint mode: dnsrr

signup-save-handler:
image: dockeronwindows/chlO-newsletter-save-handler:${VERSION NUMBER}
deploy:
endpoint mode: dnsrr

signup-index-handler:
image: dockeronwindows/cth—newsletter—index—handler:${VERSION_NUMBER}
deploy:
endpoint mode: dnsrr

Lastly, the QA override contains a basic entry for the application network. This means Docker
will create the network using the default driver and scope. As the target is a Docker swarm, it
will create an overlay network:

networks:
app-net:

When this job completes, the updated services are deployed. Docker compares stack definitions
against running services in the same way that Docker Compose does for containers, so services

are updated only if the definition has changed. After the deployment job is complete, I can go to
the Azure VM and see the application:

v ‘l Home Page |’E ‘m:. P et

L} C Q‘ ® dockerwin-testwesteurope.cloudapp.azure.com v H || search Google

+®IEII4-EIA“

Have you tried Image2Docker?

Image2Docker - tools for extracting apps from VMs into Dockerfiles.

dotkercbnl?

register now

Automatically migrate apps to Docker Interested? Get the newsletter!

Your first step in lifting and shifting existing workloads to Docker, Give us your details and we'll keep you posted.
without changing code. Open source tools for Linux and Windows.

It only takes 30 seconds to sign up.
Image2Docker is focused on Web workloads. You can extract LAMP
apps from Linux, and ASP.NET apps from Windows - straight into

Dockerfiles. Sign Up »

Check out Image2Docker for Linux J Check out Image2Docker for Windows

And we probably won't spam you very much.

My workflow uses two jobs so I can manually control the release to the QA environment. This
can be automated instead for a full CD setup, and you can easily build on your Jenkins jobs to
add more functionalities, such as displaying the test output and coverage, joining the builds into
a pipeline, and breaking jobs up into reusable parts.

Summary

This chapter covered CI/CD in Docker, with a sample deployment workflow configured in
Jenkins. Every part of the process I demonstrated ran in Docker containers, the Git server,
Jenkins, the build agents, the test agents, and the local registry.

You saw that it is straightforward to run your own development infrastructure with Docker,
giving you an alternative to hosted services. It's also straightforward to use these services for
your own deployment workflow, whether it's full CI/CD or separate workflows with a gated
manual step.

You saw how to configure and run the Bonobo Git server and the Jenkins automation server in
Docker to power the workflow. I used multi-stage builds for all the images in my application,
which means I can have a very simple Jenkins setup with no need to deploy any toolchains or
SDKs.

My CI pipeline was triggered from a developer pushing changes to Git, and the build job pulled
the source, compiled the application components, built them into Docker images, and ran a local
deployment of the app in Docker. I run end-to-end tests in another container, and if they pass, I
tag and push all the images to the local registry.

I demonstrated a manual deployment step, with a job that the user initiates, specifying the built
version to be deployed. This job pushes the built images to the public Docker Hub and deploys
an update to the QA environment by deploying the stack on a Docker swarm running in Azure.

There are no hard dependencies on any of the technologies I used in this chapter. The process I
implemented with Bonobo, Jenkins, and the open source registry can just as easily be

implemented with hosted services such as GitHub, AppVeyor, and Docker Cloud. All the steps
of the process use simple PowerShell scripts and can be run on any stack that supports Docker.

In the next chapter, I'll step back to the developer experience and look at the practicalities of
running, debugging, and troubleshooting applications in containers.

Debugging and Instrumenting
Application Containers

Docker can remove a lot of the friction in the typical developer workflow process and
significantly reduce the time spent on overhead tasks, such as dependency management and
environment configuration. When developers run the changes they're working on using the exact
same application platform where the final product will run, there are far fewer opportunities for
deployment mistakes, and the upgrade path is straightforward and well understood.

Running your application in a container during development adds another layer to your
development environment. You'll be working with different types of assets such as Dockerfiles
and Compose files and that experience is much improved if your IDE supports these file types.
Also there's a new runtime between the IDE and your app, so the debugging experience will be
different. You may need to change your workflow to make the most of the platform benefits.

In this chapter, I'll look at the development process with Docker, covering IDE integration and
debugging and how to add instrumentation to your Dockerized applications. You'll learn:

How Visual Studio 2017, 2015, and Visual Studio Code provide Docker support
How to debug your application when it's running in a container

How to instrument your code in a Docker-friendly way

How to add runtime metrics to existing projects without changing code

What the bug fixing workflow looks like with Docker

Working with Docker in
integrated development
environments

In the previous chapter, I demonstrated a containerized outer loop, the compilation and
packaging CI process that is triggered from central source control, when developers push
changes. The integrated development environments (IDEs) are beginning to support
containerized workflows for the inner loop, the developer process of writing, running, and
debugging applications before pushing changes to central source control.

Visual Studio 2017 has native support for Docker artifacts, including IntelliSense and code
completion for Dockerfiles. There is also runtime support for ASP.NET projects running in
containers, both .NET Framework and .NET Core. In Visual Studio 2017, you can hit

the F5 key and your web app launches inside a container, running in Docker for Windows. The
application uses the same base image and Docker runtime that you will use in all other
environments.

Visual Studio 2015 has a plugin that provides support for Docker artifacts, and Visual Studio
Code has a very useful Docker extension. Visual Studio 2015 and Visual Studio Code don't
provide an integrated F5 debugging experience for .NET apps running in Windows containers,
but you can configure this manually, and I will demonstrate that in this chapter.

There's a compromise when you debug inside a container, it means creating a disconnect
between the inner loop and the outer loop. Your development process uses a different set of
Docker artifacts from your continuous integration (CI) process in order to make the debugger
available to the container and to map the application assemblies to the source code. The benefit
is that you can run in a container in development but with the same developer build and debug
experience that you're used to. The downside is that your development Docker image is not the
exact same image you'll be promoting to test.

A good way to mitigate that is to use the local Docker artifacts for development when you're
iterating rapidly over a feature. And then, use the CI Docker artifacts, still running locally for the
final build and end-to-end tests before pushing your changes.

Docker in Visual Studio 2017

Visual Studio 2017 has the most complete Docker support of all the NET IDEs. You can open
an ASP.NET Web project in Visual Studio 2017 which is full ASP.NET, right-click on the
project and select Add | Docker Support:

Solution Explorer
B -

fad Solution "WebApi' (1 project)
4 =1 WebAniNetFx
¢4 Build

Rebuild

Clean

Analyze

Convert

Publish...

Crverview

Scope to This

Mew Solution Explorer View
Area... Add

New ltem... Ctrls+ Shift+A Mane HuGet Rackages-
Manage Bower Packages...

Existing ltem... Shift+Alt+4

Mew Scaffolded ltem...
Add ASP.NET Folder

Mew Folder

Set as StartUp Project
Debug

Initialize Interactive with Project

Application Insights Telemetry... Cut
Docker Support

REST API Client... Remove

: : Rename
MNew Azure Weblob Project
Existing Project as Azure Weblob Unload Project

Reference Open Folder in File Explorer

Properties Alt+Enter

vervice Reference...

Connected Service...

Visual Studio then generates a set of Docker artifacts. In the Web project, it creates a Dockerfile
that looks like this:

FROM microsoft/aspnet

ARG source

WORKDIR /inetpub/wwwroot

COPY ${source:-obj/Docker/publish}

There's full IntelliSense support for the Dockerfile syntax, so you can hover over instructions
and see information about them and use Ctr/ + spacebar to open a prompt for all Dockerfile
instructions.

The generated Dockerfile uses the microsort/aspnet base image, which comes with ASP.NET 4.6
installed and configured. It uses a build argument to specify the location of the source folder,
and then it copies the content of that folder to the web root directory c:\inetpub\wwwroot.

In the solution root, Visual Studio creates a set of Docker Compose files. There are multiple
files, and Visual Studio uses them with the Docker Compose vui1d and vp commands to package
and run the application. This works behind the scenes when you run the app with the F5 key ,
but it's worth looking at how Visual Studio uses them; it shows you how you can add this level
of support to different IDEs.

Debugging with Docker
Compose in Visual Studio 2017

You'll need to select Show all files at the solution level to see all the Docker Compose files
generated by Visual Studio 2017. There's a basic docker-compose . ym1 With the web application
defined as a service, complete with build details for the Dockerfile:

services:
webapi.netfx:
image: webapi.netfx
build:
context: .\WebApi.NetFx
dockerfile: Dockerfile

There's also a docker-compose.vs.debug.yn1, Which makes use of Docker volumes to provide the
Visual Studio debugger experience:

services:
webapi.netfx:
image: webapi.netfx:dev
build:
args:
source: ${DOCKER BUILD SOURCE}
volumes:
- .\WebApi.NetFx:C:\inetpub\wwwroot
- ~\msvsmon:C:\msvsmon:ro
labels:
- "com.microsoft.visualstudio.targetoperatingsystem=windows"

There are a few things to note here:

e The Docker image uses the dev tag to distinguish it from the release build

e The build argument for the source location uses the environment variable
DOCKER BUILD SOURCE

e A volume is used to map the web root in the container to the project folder on the host

e A second volume is used to map the Visual Studio remote debugger (called nsvsmon) to the
container from the host

In debug mode, the argument for the source code environment variable is an empty directory.
Visual Studio builds a Docker image with an empty web directory and then mounts the source
code folder from the host into the web root in the container in order to populate that folder at
runtime.

You can hit £5 now, and Visual Studio will build the app, run it in a Windows Docker
container, and attach the debugger.

At the time of writing, the generated Docker artifacts in Visual Studio 2017 do
0 not include the port mappings you need for the debugger. In the source code for

this chapter, in the folder chii-webapi-vs2017, you will see that ['ve exposed ports

3072 and 4022 in the Dockerfile and published them in the Docker Compose file.

With the remote debugging ports published, you can add a breakpoint and debug directly in the
container with the 5 experience:

Eile Edit View Project Build Debug Team JTools Test Apalyze Window Help

o - S W9 b Continue - ¢ - M _

ValuesController.cs 8 # X docker-composeyml docker-composevs.debugyml Dockerfile

&1 Web Api NetFx - ‘I: WebApi.NetFx.Controlls
I

tionResult Get()

1g[] { "valuel™, "wvalue2" });

“# Connecting...

% 172.24.9.110/apifvalues/11

This XML file does not appear to have any style information associated
with it. The document tree is shown below.

string>value: 10, yeah!</string>

Waiting for 172.24.9.110...

Visual Studio 2017 keeps the container running in the background when you stop debugging. If
you make a change to the program and rebuild, the same container is used, so there's no startup
lag. By mounting the project location into the container, any changes in content or binaries are
reflected when you rebuild. By mounting the remote debugger from the host, your image doesn't
have any development tools baked into it; they stay on the host.

This is the inner loop process, where you get fast feedback. Whenever you change and rebuild
your app, you see these changes in the container. However the Docker image from the debug
mode is not usable for the outer loop CI process; the app is not copied into the image; it works
only if you mount the app from your local source into a container.

To support the outer loop, there's also a Docker compose override file for release mode in

docker-compose.vs.release.yml.

services:
webapi.netfx:
build:
args:
source: ${DOCKER BUILD SOURCE}
volumes:
- ~\msvsmon:C:\msvsmon:ro
labels:
- "com.microsoft.visualstudio.targetoperatingsystem=windows"

The only difference here is that there's no volume mapping the local source location to the web
root in the container. When you compile in release mode, the value of the pocker surLD source
environment variable is a published location that contains the web app. Visual Studio builds the
release image by packaging the published application into the container.

There's a Docker output window in Visual Studio 2017, where you can see all the

commands Visual Studio executes. The F'5 workflow uses docker-compose build and
8 docker-compose run to Start the app and executes msvsmon inside the container to

start the remote debugger. Then, it grabs the container IP address and launches
the browser.

In Release mode, you can still run the application in a Docker container and you can still debug
the application. But you lose the fast feedback loop because in order to change the app, Visual
Studio needs to rebuild the Docker image and start a new container.

This 1s a good compromise, and the Docker tooling in Visual Studio 2017 gives you a seamless
development experience, along with the basis for your CI build. One thing Visual Studio 2017
doesn't do right now is use multi-stage builds, so the project compilation still happens on the
host rather than inside a container. This makes the generated Docker artifacts less portable, you
need more than just Docker to build this app on a build agent.

Docker in Visual Studio 2015

Visual Studio 2015 has a plugin available from the Marketplace, called Visual Studio Tools for
Docker. This gives you syntax highlighting for Dockerfiles, but it doesn't integrate Visual
Studio with Docker for .NET Framework apps. With Visual Studio 2015, you can add Docker
support to a .NET Core project, but you need to manually write your own Dockerfile and
Docker Compose files for full .NET.

Also, there's also no integrated debugging for applications running in Windows containers. You
can still debug code running in a container, but you need to manually configure the setup. I'll
demonstrate how to do that now, using the same approach as Visual Studio 2017 and with some
of the same compromises.

In Visual Studio 2017, you can mount the folder containing the remote debugger from the host
into your container. When you run the project, Visual Studio starts a container and executes
the msvsmon.exe from the host which is the remote debugger agent. You don't need to install
anything in your image to provide the debugging experience.

The remote debugger in Visual Studio 2015 is not so portable. You can mount the debugger
from the host in the container, but when you try to start the agent, you'll see errors about missing
files. Instead, you need to install the remote debugger into your image.

I have this set up in the image dockeronwindows/ch11-webapi-vs2015. In the Dockerfile for this
image, I use a build-time argument to conditionally install the debugger if the value
configuration 18 S€t t0 debug. This means I can build locally with the debugger installed, but when
I build for deployment, the image doesn't have the debugger:

ARG configuration

RUN if ($env:configuration -eq 'debug') °
{ Invoke-WebRequest -OutFile c:\rtools setup x64.exe -UseBasicParsing -Uri http://download.m!:
Start-Process c:\rtools setup x64.exe -ArgumentList '/install', '/quiet' -NoNewWindow -Wait]

I use the same approach as Visual Studio 2017 to mount the source directory on the host into the
container when running in the debug mode, but I create a custom website rather than using the
default one:

ARG source
WORKDIR C:\web-app
RUN Remove-Website —-Name 'Default Web Site';"
New-Website -Name 'web-app' -Port 80 -PhysicalPath 'C:\web-app'
COPY ${source:-.\Docker\publish} .

The :- syntax in the corv instruction specifies a default value if the source argument is not
provided. The default is to copy from the published web application unless it is specified in the
puild command. [have a core docker-compose.ym1 file with the basic service definition and a
docker-compose .debug. ynl file that mounts the host source location, maps the debugger ports, and
specifies the configuration variable:

services:
chll-webapi-vs2015:
build:
context: ..\
dockerfile:
args:
- source=.\Docker\empty
- configuration=debug
ports:
- "3702/udp"
- "4020"
- "4021"
environment:
- configuration=debug
labels:
- "com.microsoft.visualstudio.targetoperatingsystem=windows"
volumes:
- ..\WebApi.NetFx:C:\web-app

.\Docker\Dockerfile

The label specified in the compose file attaches a key-value pair to the container.
The value isn't visible inside the container, unlike an environment variable but it
is visible to external processes on the host. In this case, it is used by Visual Studio
to identify the operating system of the container.

To start the app in debug mode, I use both Compose files to start the application:

|docker—compose -f docker-compose.yml -f docker-compose.debug.yml up -d

Now the container is running my web app using Internet Information Services (IIS) inside the
container, and the Visual Studio remote debugger agent is running as well. I can connect to a
remote process in Visual Studio 2017 and use the IP address of the container:

Attach to Process ? X
Transport: Remote (no authentication) i
Qualifier: 172.24.1.174:4020 & Find...

Transport Information
The 'Remote (no authentication)' transport should never be used on a network that might have hostile traffic. Use 'Default' transport where
possible.

Attach to: Automatic: Managed (v4.6, v4.5, v4.0) code caloet

Available Processes

Process ID Title Type User Name Session "~
svchost.exe 8760 x64 SYSTEM 129
svchost.exe 1008 x64 NETWORK SERVICE 129
svchost.exe 5840 x64 SYSTEM 129
svchost.exe 13428 x64 LOCAL SERVICE 129
svchost.exe 13800 x64 LOCAL SERVICE 129
svchost.exe 4476 x64 NETWORK SERVICE 129
svchost.exe 640 x64 NETWORK SERVICE 129
svchost.exe 2792 x64 SYSTEM 129

System 4 x64 0

w3wp.exe 11948 Managed (v4.... 1IS APPPOOI\Default... 129
wininit.exe 10504 x64 SYSTEM 129
WmiPrvSE.exe 11260 x64 SYSTEM 129 v

Show processes from all users

Refresh

The debugger in Visual Studio attaches to the agent running in the container, and I can add
breakpoints and view variables, just like debugging to a local process. In this approach, the
container is using the host mount for the content of the web app. I can stop the debugger, make

changes, rebuild the app and see the changes in the same container without having to start a new
container.

This approach has the same benefits and drawbacks as the integrated Docker support in Visual
Studio 2017. I'm running my app in a container for local debugging, so I get all the features of
the Visual Studio debugger, and my app is running in the same platform I'll use in other
environments. But [won't be using the same image, as the Dockerfile has conditional branches,
so it produces different outputs for the debug and release modes.

There is an advantage to manually building debugger support in your Docker artifacts. You can
construct your Dockerfile with conditioning so that the default docker image buila command
produces the production-ready image without requiring any additional artifacts. This example
still does not use a multi-stage build, though, so the Dockerfile is not portable and the
application needs to be compiled before it can be packaged.

In development, you build the image once in debug mode, run the container, and then attach the
debugger whenever you need to. Your integration tests build and run the production image, so
only the inner loop has the additional debugger components.

Docker in Visual Studio Code

Visual Studio Code is intended as a cross-platform IDE for cross-platform languages. The C#
extension installs a debugger that can attach to .NET Core applications, but there's no support
for debugging full .NET Framework apps.

The Docker extension adds some very useful features, including the ability to add Dockerfiles
and Docker Compose files to existing projects, but the generated files do not currently provide
debugging support for Windows containers. There is syntax highlighting for Dockerfiles and
Docker Compose files and IntelliSense for Dockerfiles.

There are also integrations with the Ul , you can right-click on a Dockerfile and have the option

to build an image. You can hit F'/ key, type pocker, and see a list of useful options to run
containers and manage services with compose files:

>docker

: Add docker files to workspace

: Attach Shell to a running container
: Azure CLI

: Build Image

: Compose Down

: Compose Up

: Push

: Remove Images

:Run

: Run Interactive

: Show Logs

Visual Studio Code has a very flexible system for running and debugging your projects, so you
can add your own configuration to provide debugging support for apps running in Windows
containers. You can edit the 1aunch. json file to add a new configuration for debugging in Docker.

In the chi1-webapi-vscode folder, I have a sample .NET Core project set up to run the application
in Docker and attach a debugger. It uses the same approach as Visual Studio 2017. The
debugger for .NET Core is called vsang and is installed with the C# extension in Visual Studio
Code, so I mount the vsang folder from the host into the container, along with the source
location, U.Sil’lg ad docker-compose.debug.yml file:

volumes:
- .\bin\Debug\netcoreappl.l\publish:C:\app
- ~\.vscode\extensions\ms-vscode.csharp-1.10.0\.debugger:C:\vsdbg:ro

This setup uses a specific version of the C# extension. That's 1.10 in my case, but

you may have a later version, check for the location of vsdbg.exe in the .vscode
folder in your user directory.

When you run the app through Docker Compose using the debug override file, it starts the .NET
Core application and makes the debugger from the host available to run in the container. This is
configured for a debugging experience in Visual Studio Code in the 1zaunch. json file. The pebug

Docker container configuration specifies what type of application to debug and the name of the
process to attach:

"name": "Debug Docker container",
"type": "coreclr",
"request": "attach",
"sourceFileMap": {
"C:\\app": "${workspaceRoot}"
by

"processName": "dotnet"

This configuration also maps the application root in the container to the source code location on
the host, so the debugger can associate the correct source files with the debug files. In addition,

the debugger configuration specifies how to launch the debugger by running a docker container
exec command on the named container:

"pipeTransport": {
"pipeCwd": "${workspaceRoot}",
"pipeProgram": "docker",
"pipeArgs": [
"exec", "-i", "webapinetcore webapi 1"
] 4
"debuggerPath": "C:\\vsdbg\\vsdbg.exe",
"quoteArgs": false
}

To debug my app, first, I start the container with the debug configuration using Docker
Compose:

|docker—compose -f .\docker-compose.yml -f .\docker-compose.debug.yml up

Then, I can activate the debugger using the Debug action and selecting Debug Docker container:

>4 launch,json — WebApi.NetCore — Visual Studio Code
File Edit Selection View Go Debug Help

@ DEBUG » Debug Docker container v {#
VARIABLES
WATCH
CALL STACK
BREAKPOINTS

B All Exceptions

User-Unhandled Exceptions

ValuesController.cs Controllers

Visual Studio Code starts the NET Core debugger vsang inside the container and attaches to the

running dotnet process. You'll see the output from the .NET Core application redirected into the
DEBUG CONSOLE window in Visual Studio Code:

DEBUG CONSOLE

Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request starting HTTP/1.1 GET http://172.24.9.127/api/values/12

Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker:Information: Executing action method WebApi.NetCore.Controllers.Va
luesController.Get (WebApi.NetCore) with arguments (12) - ModelState is Valid
Microsoft.AspNetCore.Mvc.Internal.ObjectResultExecutor:Information: Executing ObjectResult, writing value Microsoft.AspNetCo
re.Mvc.ControllerContext.

Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker:Information: Executed action WebApi.NetCore.Controllers.ValuesCont
roller.Get (WebApi.NetCore) in 8.2853ms

Microsoft.AspNetCore.Hosting.Internal.WebHost:Information: Request finished in 17.0881ms 200 text/plain; charset=utf-8

At the time of writing, Visual Studio Code doesn't fully integrate with the
debugger running inside a Windows Docker container. You can place
breakpoints in the code and the debugger will pause the process, but control does
not pass to Visual Studio Code. Development is happening quickly in Visual
Studio Code, so expect this to be fixed soon, check out my blog at hitps://blog.sixeye
d.com for updates.

Running your application in a container and being able to debug from your normal IDE is a
huge benefit. It means your app is running on the same platform and with the same deployment
configuration it will use in all other environments, but you can step into code just as if it were
running locally.

Docker support in IDEs is improving rapidly, so I expect all the manual steps I've detailed in this
chapter to be built into products and extensions soon.

https://blog.sixeyed.com

Instrumentation in Dockerized
applications

Debugging your app is what you do when the logic doesn't work as expected and you're trying to
track down what's going wrong. You don't debug in production, so you need your app to record
its behavior in order to help you trace any problems that occur.

Instrumentation is often neglected, but it should be a crucial component of your development, as
it's the best way to understand the health and activity of your app in production. Running your
app in Docker provides new opportunities for centralized logging and instrumentation, so you
can get a consistent view across the different parts of your application even if they use different
languages and platforms.

Instrumentation with
Prometheus

The ecosystem around Docker is very large and active, taking advantage of the open standards
and extensibility of the platform. As the ecosystem has matured, a few technologies have
emerged as strong candidates for inclusion in most Dockerized applications.

Prometheus is an open source instrumentation framework. It's a flexible component that you can
use in different ways, but the typical implementation is to run a Prometheus server in a Docker
container, configured to read instrumentation endpoints in your other Docker containers.

You configure Prometheus to poll all the container endpoints, and it stores the results in a time-
series database. You can add a Prometheus endpoint to your application by simply adding a
REST endpoint, which responds to cer requests from the Prometheus server with a list of the
metrics you're interested in collecting.

For .NET projects, there is a nucet package that does this for you, adding a Prometheus endpoint
to your application. It exposes a useful set of metrics by default, including the values of key
NET statistics and Windows performance counters. You can add Prometheus support directly to
your application, or you can run a Prometheus exporter alongside your app.

Adding a Prometheus endpoint
to .NET projects

The prometheus-net NuGet package provides a set of default metric collectors and a metricserver
class that provides the instrumentation endpoint that Prometheus hooks into. This package is
great for adding Prometheus support to any app, the metrics are provided by a self-hosted HTTP
endpoint, and you can record provide custom metrics for your application.

In the dockeronwindows/chl1-api-with-metrics image, I've added Prometheus support into a Web
API project. The code to configure and start the metrics endpoint is in the prometheusserver class:

public static void Start()
{
_Server = new MetricServer (50505, new IOnDemandCollector[] ({
new DotNetStatsCollector (), new PerfCounterCollector ()
1)
_Server.Start();

}

This starts a new metricserver instance, listening on port sosos, and running the .NET statistics
and performance counter collectors that the nucet package provides. These are on-demand
collectors, which means they provide metrics when the Prometheus server calls into the
endpoint.

The vetricserver class will also return any custom metrics you set up in your application. In the

valuesController class, I have set up some simple counters to record requests and responses to the
API:

private Counter requestCounter =
Metrics.CreateCounter ("ValuesController Requests", "Request count", "method",
"urlll) ’.

private Counter responseCounter =
Metrics.CreateCounter ("ValuesController Responses", "Response count", "code",
'Iurl Il) ;

When requests come into the controller, the controller action method increments the request
count for the URL and increments the status count for the response code by calling the nc ()
method on the counter objects:

public IHttpActionResult Get ()

{
_requestCounter.Labels ("GET", "/™).Inc();
_responseCounter.Labels ("200", "/")y.Inc();
return Ok (new string[] { "valuel", "value2" });

}

Prometheus has various types of metrics that you can use to record key information about your
app. It also allows grouping by arbitrary labels, in this case, I add the urr and the nrre method to
the request count and the URL and status code to the response count.

The counters I set up in the Web API controller give me a set of custom metrics showing which
endpoints are being used and the status of the responses. These are exposed by the server
component in the nucet package, along with the default metrics to record the system
performance.

In the Dockerfile for this app, there are two additional lines needed for the Prometheus endpoint:

EXPOSE 50505
RUN netsh http add urlacl url=http://+:50505/metrics user=BUILTIN\IIS IUSRS;
net localgroup 'Performance Monitor Users' 'IIS APPPOOL\DefaultAppPool' /add

The first line just exposes the custom port I'm using for the metrics endpoint. The second line
sets up the permissions needed for that endpoint. In this case, the metrics endpoint is hosted
inside the ASP.NET app, so the IIS user account needs permissions to listen on the custom port
and to access the system performance counters.

You can build the Dockerfile and run a container from the image in the usual way, publishing all
the ports with -»:

|docker container run -d -P --name api dockeronwindows/chll-api-with-metrics

To check whether the metrics are being recorded and exposed, I can run some PowerShell
commands to grab the IP address of the container, make some calls to the API endpoint, and
check the metrics:

$ip = docker inspect -f '{{.NetworkSettings.Networks.nat.IPAddress}}' api
for ($i=0; $i -1t 10; S$i++) {

iwr -useb "http://$($ip)/api/values"
}

(iwr -useb "http://$($ip) :50505/metrics") .Content

You'll see a plain text list of metrics, grouped by name and label. Each metric also contains the
metadata for Prometheus, including the metric name, the type, and a friendly description:

HELP process_windows_num_threads Total number of threads
TYPE process_windows_num threads GAUGE
process_windows_num_threads 32

HELP dotnet_totalmemory Total known allocated memory

TYPE dotnet_totalmemory GAUGE

dotnet_totalmemory 15225400

HELP ValuesController Requests Request count
TYPE ValuesController Requests COUNTER
ValuesController_Requests{method:"GET",ur1="/"} 10

HELP ValuesController Responses Response count
TYPE ValuesController Responses COUNTER
ValuesController Responses{code="200",url="/"} 10

The complete output is much larger. In this snippet, I've shown the total number of threads and
the total allocated memory which comes from performance counters inside the container. I've
also shown the custom urre request and response counters.

My custom counters in this application show the URL and the response code. In this case, I can
see ten requests to the root URL of the value controller, and ten responses with status code 200.
Later in the chapter, I'll show how to graph these statistics using Prometheus.

Adding the nucet package to the project and running the metricserver is a simple extension to the
source code. It lets me record any kind of metric that is useful but it does mean changing the

app.

In some cases, you may want to add monitoring without altering the application you want to
instrument. In that case, you can run an exporter alongside your app. The exporter pulls metrics
from your application process and exposes them to Prometheus.

Adding a Prometheus exporter
alongside existing apps

In a Dockerized solution, Prometheus will make scheduled calls to the metrics endpoint exposed
from a container and store the results. For an existing app, you don't need to add a metrics
endpoint; you can run a console app alongside the current application and host the metrics in
that console app.

I've added a Prometheus endpoint to the Bononbo Git server I set up in the previous

chapter without changing any of the Bonobo code. In the dockeronwindows/ch11-bonobo-with-
netrics image, [have a console app that provides the metrics endpoint, using the same nucet
package and metricsserver class as the previous example. The console app is watching the w3wp
process that hosts Bonobo, so it exposes Bonobo's metrics without altering the Bonobo app.

The DotNetExporter console application implements a custom counter collector, which reads
the performance counter values for a named process running on the system. It uses the same set
of counters as the default collector in the nucet package, but by targeting a different process, I
can monitor other processes running in the same container.

In the program class, I use environment variables to configure the app and start counter collectors
for each configured process:

var collectors = new List<IOnDemandCollector>();
foreach (var process in Config.MetricsTargets)

{
WriteLine ($"Adding collectors for process: {process}");
collectors.Add (new ProcessPerfCounterCollector (process));

}

Then I create and start a vetricserver Object, using the configured collectors and listening on the
configured metrics endpoint:

var server = new MetricServer (Config.MetricsPort, collectors);
server.Start () ;
WriteLine ($"Metrics server listening on port: {Config.MetricsPort}");

The console app is a lightweight component. It runs indefinitely and only uses compute
resources when the metrics endpoint is called, so it has minimal impact when running on a
Prometheus schedule. To provide metrics for Bonobo, I need to create a Dockerfile that
packages the exporter app alongside Bonobo. I start with the Bonobo image from Chapter 10,
Powering a Continuous Deployment Pipeline with Docker and set up the environment for the
metrics exporter:

FROM dockeronwindows/chl0-bonobo
EXPOSE 50505
ENV METRICS_TARGETS="w3wp"

This exposes my default metrics port, sosos and sets the exporter to monitor the w3wp process.

Then, I copy the exporter console app, compiled in the builder stage in this Dockerfile, and set
up the entry point to use a bootstrap PowerShell script:

WORKDIR C:\prometheus-exporter
COPY --from=builder C:\out\dotnet-exporter .

COPY bootstrap.psl /
ENTRYPOINT ["powershell", "C:\\bootstrap.psl"]

In the bootstrap script, I start the IIS Windows service and make an HTTP call. This will launch
the w3wp worker process to handle the request:

Start-Service W3SVC
Invoke-WebRequest http://localhost/Bonobo.Git.Server -UseBasicParsing | Out-Null

Now that there's a process running, I start the exporter console app that will provide metrics
from the w3wp process:

|& C:\prometheus-exporter\DotNetExporter.Console.exe

When I build this image and run a container, I can use Bonobo in the normal way, with my
additional exporter process running and providing access to metrics. I'll start the container and
open the browser using PowerShell:

docker container run -d -P --name bonobo °
dockeronwindows/chll-bonobo-with-metrics

$ip = docker inspect -f '{{.NetworkSettings.Networks.nat.IPAddress}}' bonobo

start "http://$($ip) /Bonobo.Git.Server"

I can use Bonobo in the browser, and the exporter will expose the metrics for the Bonobo
worker process. I am using the same metrics endpoint as earlier, so I can see the statistics on
port 50505:

> (iwr -useb "http://$($ip) :50505/metrics") .Content

HELP process_pct processor_time % Processor Time Perf Counter
TYPE process_pct_processor_time GAUGE

process_pct processor_time{process="w3wp"} 6.06265497207642

HELP process_working set Working Set Perf Counter

TYPE process_working set GAUGE

process_working set{process="w3wp"} 329969664

In this case, there are no custom counters from the application, and all the metrics come from
standard Windows and .NET performance counters. The exporter application can read these
performance counter values for the running w3wp process, so the application doesn't need to
change in order to provide basic information to Prometheus. To record custom metrics, you do
need to instrument your code and explicitly record the data points you're interested in.

Adding instrumentation to your Dockerized application means providing the metrics endpoint
that Prometheus can query. The Prometheus server itself runs in a Docker container, configured
with the names of containers you want to monitor.

Running a Prometheus server in
a Windows Docker container

Prometheus is a cross-platform application, written in Go, which can run on Nano Server. The
installer for Prometheus comes as a GZipped Tar file, which you can't natively extract in
Windows. To package Prometheus in Docker, I use a multi-stage build, where I download and
extract the package in the first stage.

The best tool to extract a GZipped TAR file in Windows is 7-Zip, and I have a Docker image
that installs 7-Zip called dockeronwindows/ch11-721p. The Dockerfile for the Prometheus image
dockeronwindows/chll-prometheus Starts using this image and then runs PowerShell cmdlets to
download the package and extract it:

RUN Invoke-WebRequest "https://github.com/prometheus/prometheus/releases/download/v$ ($Senv:PROD
-OutFile 'prometheus.tar.gz' -UseBasicParsing;

& 'C:\Program Files\7-Zip\7z.exe' x prometheus.tar.gz;

& 'C:\Program Files\7-Zip\7z.exe' x prometheus.tar;

Rename-Item —-Path "C:\prometheus—$($env:PROMETHEUS_VERSION).windows—amd64" -NewName 'C:\prome

The second (and final) stage of the Dockerfile starts from Nano Server and copies the extracted
files from the installer stage. They are copied to specific locations, so the user of the container
can override the contents with volume mounts to run Prometheus with a different configuration:

FROM microsoft/nanoserver:10.0.14393.1198

COPY --from=installer /prometheus/prometheus.exe /bin/prometheus.exe

COPY --from=installer /prometheus/promtool.exe /bin/promtool.exe

COPY --from=installer /prometheus/prometheus.yml /etc/prometheus/prometheus.yml
COPY --from=installer /prometheus/console libraries/ /etc/prometheus/

COPY --from=installer /prometheus/consoles/ /etc/prometheus/

There is much you can configure in Prometheus, but typically, you can get started just by
specifying the JSON configuration file. My Dockerfile has an entryrornt with default values for
all the settings and a cwp that lets the user override the config file location:

ENTRYPOINT ["C:\\bin\\prometheus.exe",
"-storage.local.path=/prometheus",
"-web.console.libraries=/etc/prometheus/console libraries",
"-web.console.templates=/etc/prometheus/consoles"]

CMD ["-config.file=/etc/prometheus/prometheus.yml"]

Docker Captain and Microsoft MVP Stefan Scherer have an alternative
Dockerfile to package Prometheus, which has more flexibility in the startup
command. It's on GitHub in the stefanscherer/dockerfiles-windows F€p0Si107y.

I have containers running from my instrumented API and Bonobo Git server images, which
expose metrics endpoints for Prometheus to consume. To monitor them in Prometheus, I need to
specify the metric locations in the configuration file. Prometheus will poll these endpoints on a

configurable schedule, it calls this scraping, and I can add my container names and ports in the
scrape configuration:

scrape_ configs:
- job name: 'Api'
static _configs:
- targets: ['api:50505']
- Jjob name: 'Bonobo'
static configs:
- targets: ['bonobo:50505"]

Each application to monitor is specified as a job, and each endpoint is listed as a target.
Prometheus will be running in a container on the same Docker network, so I can refer to the
targets by the container name. Now I can start the Prometheus server in a container, mounting
local folders for the configuration file and the data volume and specifying the config file
location in the command:

docker container run -d -P °
--name prometheus °
-v "C:\prometheus\data:C:\prometheus" °
-v "C:\prometheus:C:\config" °
dockeronwindows/chll-prometheus '-config.file=/config/prometheus.yml’

Prometheus polls the all the configured metrics endpoints and stores the data. You can use
Prometheus as the back-end for a rich UI component such as Grafana, building all your runtime
KPIs into a single dashboard. For basic monitoring, the Prometheus server also provides a
simple Web UI.

I can go to the IP address of the Prometheus server on port 9090, and set up a graph view
showing me the responses for my Web API, which gives me a different line for each request
URL and response status code:

Graph Console

- 5m + « 2017-06-13 17:18 » O stacked

8 Tue, 13 Jun 2017 16:15:53 GMT
ValuesController_Responses: 42

code: 200
instance: api:50505
job: Api

urk: /11

ValuesController_Responses{code: Jinstance="api:5050:
ValuesController_Responses{code: ,instance="api:5050:
W ValuesController_Responses{code Jinstance="api:50505" job="Api
¥ ValuesController_Responses{code="200" instance="api:50505" job="Api",

These are counters that increase for the life of the container, so the graphs will always go up.
Prometheus has a rich set of functions so you can also graph the rate of change over time,
aggregate metrics, and select projections over the data.

Other counters from the Prometheus nucet package are snapshots such as the performance
counter statistics. I can compare the memory usage of the Bonobo instance and the API by
looking at the working set.

Using a stacked graph here shows that Bonobo is using more memory, but there's a sharp fall,
which is probably after a .NET garbage collector run:

Graph = Console

- 15m| + « | Until » Res. (s)

400M

300M

200M

100M

process_working_set{instance="bonobo:50505",job="Bonobo",process="w3wp"}
process_working_set{instance="api:50505",job="Api"}

In Chapter 8, Administering and Monitoring Dockerized Solutions, 1 demonstrated Universal
Control Plane (UCP), the Containers-as-a-Service (CaaS) platform in Docker Enterprise
Edition (Docker EE). The standard APIs to start and manage Docker containers lets this tool
present a consolidated management and administration experience. The openness of the Docker
platform lets open source tools take the same approach to rich, consolidated monitoring.

Prometheus is a good example of that. It runs as a lightweight server, which is well suited to
running in a container. You add support for Prometheus to your application either by adding a
metrics endpoint to your app, or by running a metrics exporter alongside your existing app.

You can add instrumentation to all your applications with very little effort and gain a detailed
insight into what's happening in your solution. What's more, you can have the exact same
monitoring facility in every environment, so in development and test, you can see the same
metrics you use in production. This is very useful in tracking down issues when you're
replicating bugs from other environments.

The bug fixing workflow in
Docker

One of the biggest difficulties in fixing production defects is replicating them in your
development environment. This is the first step in confirming that you have a bug and the
starting point for drilling down to find the problem. It can also be the most time-consuming part
of the problem.

Large .NET projects tend to have infrequent releases because the release process is complex,
and a lot of manual testing is needed to verify the new features and check for any regressions.
It's not unusual to have just three or four releases a year and for developers to find themselves
having to support multiple versions of an application in different parts of the release process.

In this scenario, you may have version 1.0 in production, version 1.1 in user acceptance testing
(UAT), and version 1.2 in system testing. Bugs could be raised in any of these versions, which
the development team needs to track down and fix while they're currently working on version
1.3 or even a major upgrade for 2.0.

Bug fixing before Docker

I've been in this position lots of times, having to context switch from the refactored 2.0 code
base I'm working on back to the 1.1 code base that is due to be released. The context switch is
expensive, but the process of setting up my development environment to recreate the 1.1 UAT
environment is even more costly.

The release process may create a versioned MSI, but typically, you can't just run that in your
development environment. The installer may be packaged with the configuration for a specific
environment. It may have been compiled in release mode and packaged without PDB files, so
there's no option to attach a debugger. And it may have prerequisites that I don't have available
in development such as certificates or encryption keys or additional software components.

Instead, I need to recompile the 1.1 version from source. Hopefully, the release process has
enough information for me to find the exact source code used to build the release, take a branch,
and clone it locally (maybe the Git commit ID or the TFS change set is recorded in the built
assemblies). Then the real problems start when I try to recreate another environment on my local
development box.

The workflow looks a little like this, where there are lots of differences between my setup and
the 1.1 environment:

e Compile the source locally. I'll build the app in Visual Studio, but the released version uses
MSBuild scripts, which do a lot of extra things.

e Run the app locally. I'll be using IIS Express on Windows 10, but the release uses an MSI
that deploys to IIS 8 on Windows Server 2012.

e My local SQL Server database is set up for the 2.0 schema I'm working on. The release has
upgrade scripts from 1.0 to 1.1, but there are no downgrade scripts from 2.0 to 1.1, so I
need to manually fix the local schema.

e [have stubs for any dependencies I can't run locally, such as third-party APIs. The release
uses real application components.

Even if I can get the exact source code for version 1.1, my development environment is hugely
divergent from the UAT environment. This is the best I can do, and it may take several hours of
effort. To reduce this time, I could take shortcuts, like using my knowledge of the app to run
version 1.1 against the 2.0 database schema, but taking shortcuts means my local environment is
less like the target environment.

I can run the app in debug at this point and try to replicate the issue. If the bug is caused by a
data problem or an environmental problem, then I won't be able to replicate it and it could have
taken a whole day of effort to find that out. If I suspect the issue is to do with the setup of UAT,
I can't verify that in my environment; I need to work with the Ops team to look at the UAT
configuration.

But hopefully, I can reproduce the issue following the steps in the bug report. When I have the

manual steps worked out, I can write a failing test that replicates the issue and be confident that
I've fixed the problem when I change the code and the test runs green. There are differences
between my environment and UAT, so it could be that my analysis is not correct and the fix
won't fix UAT but I won't find that out until the next release.

How that fix does get released into the UAT environment is another problem. Ideally, the full CI
and packaging process is already set up for the 1.1 branch, so I just push my changes and a new
MSI comes out that is ready to be deployed. In the worst case, the CI runs only from the master
branch, so I need to set up a new job on the fix branch and try to configure that job to be the
same as it was for the last 1.1 release.

If any part of the toolchain has moved on between 1.1 and 2.0, then it makes every step of the
process more difficult, from configuring the local environment, running the app, analyzing the
problem, and pushing the fix.

Bug fixing with Docker

The process is much simpler with Docker. To replicate the UAT environment locally, I just need
to run containers from the same images that are running in UAT. There will be a Docker
compose or stack file describing the whole solution, which is versioned, so by deploying version
1.1, I get the exact same environment as UAT without having to build from the source.

I should be able to replicate the issue at this point and confirm whether it's a coding issue or
something to do with data or the environment. If it's a configuration issue, then I should see the
same problem as UAT, and I could test the fix with an updated compose file. If it's a coding
issue, then I need to dig into the code.

At this point, I can clone the source from the version 1.1 tag and build the Docker images in the
debug mode, but I don't spend time doing that until I'm pretty sure this is a problem in the app. If
I'm using multi-stage builds with all versions pinned in the Dockerfile, the local build will
produce an identical image to the one running in UAT but with the extra artifacts for debugging.

Now I can find the problem, write a test, and fix the bug. When the new integration test passes,
it's executing against the same Dockerized solution I'll be deploying in UAT, so I can be very
confident that the bug is fixed.

If there's no CI configured for the 1.1 branch, then setting it up should be straightforward
because the build task will jU.St need to run the docker image build OI docker-compose build
commands. If I want fast feedback, I can even push the locally built image to the registry and
update the UAT environment to verify the fix while the CI setup is being configured.

The workflow with Docker is much cleaner and faster, but more importantly, there is far less
risk. When you replicate the issue locally, you are using the exact same application components
running on the exact same platform as the UAT environment. When you test your fix, you know
it will work in UAT because you'll be deploying the same new artifacts.

The time you invest in dockerizing your application will be repaid by the time saved in
supporting multiple versions of the app.

Summary

This chapter looked at troubleshooting applications running in containers, along with debugging
and instrumentation. Docker is a new application platform, but applications in containers run as
processes on the host, so they're still suitable targets for remote debugging and centralized
monitoring.

Support for Docker is available in all the current versions of Visual Studio. Visual Studio 2017
has complete support, covering Linux and Windows containers. Visual Studio 2015 and Visual
Studio Code currently have extensions that provide debugging for Linux containers, but you can
easily add your own support for Windows containers.

In this chapter, I also introduced Prometheus, a lightweight instrumentation and monitoring
component that you can run in a Windows Docker container. Prometheus stores the metrics it
extracts from applications running on other containers. The standardized nature of containers
makes monitoring solutions such as these very simple to configure.

The next chapter is the final chapter of the book. I'll end by sharing some approaches to get
started with Docker in your own domain, including case studies where I have used Docker on
Windows for existing projects.

Containerize What You Know -
Guidance for Implementing
Docker

In this book, I have used older .NET technologies for the sample applications to show you that
Docker works just as well with them as it does with modern .NET Core apps. You can
Dockerize a ten year old WebForms application and get many of the same benefits you get from
running a greenfield ASP.NET Core Model-View-ControllerA (MVC) application in a
container.

You've seen lots of examples of containerized applicationsA and learned how to build, ship, and
run production-grade apps with Docker. Now you're ready to start working with Docker on your
own projects, and this chapter gives you advice on how to get started.

I'll cover some techniques and tools that will help you run a proof-of-concept project to move an
application to Docker. I'll also walk you through some case studies to show how I've introduced
Docker to existing projects:

e A small-scale .NET 2.0 WebForms app
e A database integration service in a Windows Communication FoundationA (WCF) app
e A distributed [oT API app running in Azure

You'll see how to approach typical problems and how the move to Docker can help solve
them.A

Dockerizing what you know

When you move to a new application platform, you have to work with a new set of artifacts and
new operational processes. If you currently use the Windows installer for deployment, your
artifacts are Wix files and MSIs. Your deployment process is to copy the MSI to the target
server, log on, and run the installer.

After the move to Docker, you will have Dockerfiles and images as the deployment artifacts.
You push the image to a registry and run a container or update a service to deploy the app. The
resources and activities are simpler in Docker, and they'll be consistent between projects, but
there's still a learning curve when you start.

Containerizing an app that you know well is a great way to provide a solid basis to that learning
experience. When you first run your app in a container, you may see errors or incorrect behavior
but that will be in the domain of your own application. When you're tracking down the issue,
you'll be dealing with an area you understand well, so although the platform is new, the problem
should be easy to identify.

Selecting a simple Proof-of-
Concept app

Docker is ideally suited to distributed applications, where each component runs in a lightweight
container, making efficient use of a minimal set of hardware. You can choose a distributed
application for your first Docker deployment, but a simpler application will be faster to

migrate and will give you a higher chance of success.

A monolithic app is a good choice. It doesn't have to be a small code base, but the fewer
integrations with other components it has, the more quickly you will have it running in Docker.
An ASP.NET application that stores state in SQL Server is a straightforward option. You can
expect to have a Proof-of-Concept (PoC) running in a day or two with a simple application.

Starting with a compiled application rather than the source code is a good way to prove that the
app can be Dockerized without having to be changed. There are a few factors to consider when
you're selecting your PoC application:

o Statefulness: If your target app stores the state in memory, you won't be able to scale the
PoC by running multiple containers. Each container will have its own state, and you'll get
inconsistent behavior as requests are handled by different containers. Consider stateless
apps or apps that can use a shared state, such as using SQL Server as a session state
provider for ASP.NET.

e Configuration: NET apps typically use XML configuration files in web.config Or
app.config. YOU can set up your PoC to use an existing config file as the base and then
swap out any values that don't apply to the containerized environment. It is preferable to
read config settings through Docker with environment variables and secrets, but staying
with config files is easier for the PoC.

¢ Resilience: Older applications typically make the assumption of availability - the web app
expects the database to be always available and doesn't handle failure conditions
gracefully. If your app has no retry logic for external connections, your PoC will face an
error if there are transient connection failures when containers are starting up.

e Windows Authentication: Containers aren't domain-joined. You can access Active
Directory (AD) objects in containers if you create a Group Managed Service Account in
AD, but that adds complexity. For the PoC , stick to simpler authentication schemes such
as basic authentication.

None of these are major restrictions. You should be able to work on the basis of containerizing
an existing app without changing code, but you need to be aware that the functionality may not
be perfect at the PoC stage.

Generating an initial Dockerfile
with Image2Docker

Image2Docker is an open source tool you can use to generate a Dockerfile for an existing
application. It's a PowerShell module that you can run on the local machine, against a remote
machine, or a Virtual Machine disk file (in Hyper-V vup or vapx format).

It's a very simple way to get started with Docker, you don't even need Docker installed on your
machine to try it out and see what the Dockerfile would look like for your app. Image2Docker
can work with different types of application (called artifacts), but the functionality is most
mature for ASP.NET apps running on IIS.

On my development machine, [have an ASP.NET application deployed to Internet
Information Services (IIS). I can migrate that application to Docker by installing
Image2Docker from the PowerShell gallery and importing the module to use it locally:

Install-Module Image2Docker
Import-Module Image2Docker

PowerShell 5.0 is the minimum required version for tmage2pocker, but the tool has
9 no other dependencies.

I can run the convertro-pockerrile cmdlet, specifying the IIS artifact to build a Dockerfile that
contains all the IIS websites on my machine:

|ConvertTo—Dockerfile -Local -Artifact IIS -OutputPath C:\i2d\iis

This creates a directory at c:\i24\iis, and inside the folder I'll have a Dockerfile and sub
directories for each of the websites. mmage2nocker copies the website content from the source to
the output location. The Dockerfile uses the most relevant base image for the applications it
fhldSJnicrosoft/iis,microsoft/aspnet Ol microsoft/aspnet:3.5.

If there are multiple websites or web applications on the source, tmage2pocker extracts them all
and builds a single Dockerfile that duplicates the original IIS setup, so there will be multiple
apps in the Docker image. That's not what I'm aiming for which I want a single app in my
Docker image, so I can run with a parameter instead to extract a single website:

|ConvertTo—Dockerfile -Local -Artifact IIS -ArtifactParam SampleApi -OutputPath C:\i2d\api

The process is the same, but this time, 1mage2pocker €xtracts only a single application from the
source, the one named in the artifactraram parameter. The Dockerfile contains the steps to
deploy the application, and you can run docker image build to create the image and run the app.

This could be your first step in Dockerizing your application, and then you would run a

container and check the functionality of the app. There may be additional setup needed, which
mmage2bocker doesn't do for you, so you'll likely be iterating on that generated Dockerfile, but the

tool is a good way to get started.

Tmage2Docker IS an open source project. The source is on GitHub - use the short
link https://github.com/docker/communitytools-image2docker-win. The repository has
additional documentation, and you can see the roadmap of the tool in the issues

list.

https://github.com/docker/communitytools-image2docker-win

Engaging other stakeholders

A successful PoC should be possible in just a few days. The output of that will be a sample
application that runs in Docker and a set of extra steps you need to productionize that PoC. If
you're working in a DevOps environment where your team owns the delivery of your project,
you can agree to make the investment to move to Docker for production.

For larger projects or larger teams, you'll need to engage with other stakeholders to take your
PoC further. The type of conversations you have will depend on the structure of your
organization, but there are some themes that focus on the improvements you get with Docker:

e The operations team often has friction in the handover from development when it's time to
deploy the application. The Docker artifacts, Dockerfiles and Docker Compose files, are a
central point where dev and ops can work together. There's no risk that the ops team will
be given an upgrade they can't deploy because the upgrade will be a Docker image that's
already been tried and tested.

e The security team in large companies often has to demonstrate provenance. They need to
prove that the software running in production hasn't been tampered with and is actually
running the code that's in SCM. This may be process-driven right now, but with image
signing and Docker content trust, it can be explicitly proven. In some cases, security also
need to demonstrate that a system will run only on certified hardware, and that's easy to do
with secure labels and constraints in a Docker swarm.

e Product owners are often trying to balance large backlogs against long release schedules.
Enterprise .NET projects are typically difficult to deploy - the upgrade process is slow,
manual, and risky. There's a deployment phase and then a user testing phase, during which
the application is offline to normal users. In contrast, deployments with Docker are fast,
automated, and safe, which means you can deploy more frequently, adding features when
they're ready instead of waiting months for the next scheduled release.

e The management team will have a focus on the product and the cost of running the
product. Docker helps reduce infrastructure costs through more efficient use of compute
resources. It helps reduce project costs by letting the team work more efficiently, removing
the gaps between environments so deployments are consistent. It also helps increase
product quality, as automated packaging and rolling updates mean you can deploy more
often, adding features and fixing defects more quickly.

You can get started with Docker by running the Community Edition (CE) for your PoC, which
you get with Docker for Windows on Windows 10 . Other stakeholders in your organization will
want to understand the support available for applications running in containers. With Docker
Enterprise Edition (EE) Basic, included in the Windows Server 2016 license cost, you have
support from Microsoft and Docker, Inc. Operations and security teams may see a lot of benefit
in Docker EE Advanced, which also gives you Universal Control Plane (UCP) and Docker
Trusted Registry (DTR).

The Dockerfiles and Docker images from your PoC will work in the same way on all these
versions. Docker CE, Docker EE, and Docker EE Advanced all share the same underlying

platform.

Case studies for implementing
Docker

I'm going to finish by looking at three real-life case studies, where I have brought Docker into
existing solutions or prepared a roadmap to bring Docker into a project. These are production
scenarios, ranging from a small company project with tens of users to a large enterprise project
with over a million users.

Case study 1 - an in-house
WebForms app

Some years ago, I took on the support of a WebForms app for a vehicle hire company. The app
was used by a team of about 30, and it was a small-scale deployment, they had one server
hosting the database and one server running the web app. Although small, it was the core
application for the business, and everything they did ran from this app.

The app had a very simple architecture: just one web application and a SQL Server database.
Initially, I did a lot of work to improve the performance and quality of the application. After
that, it became a caretaker role, where I would manage two or three releases a year, adding new
features or fixing old bugs.

These releases were always more difficult and time consuming than they needed to be. The
release usually consisted of:

e A Web Deploy package with the updated application
e A set of SQL scripts with schema and data changes
e A manual testing guide to verify the new features and check for regressions

The deployment was done outside office hours in order to give us a window of time to fix any
problems we found. I would Remote Desktop (RDP) into their servers, copy the artifacts, and
manually run the WebDeploy package and the SQL scripts. It was usually months between
releases, so I'd rely on the documentation that I'd written to remind me of the steps. Then, I'd
walk through the testing guide and check the main features. Sometimes, there were problems
because | was missing a SQL script or a dependency for the web application, and I'd need to try
and track down an issue [hadn't seen earlier.

Until recently, the application was running on Windows Server 2003. When the company
wanted to upgrade Windows, I recommended the move to Windows Server 2016 Core and
Docker. My suggestion was to use Docker to run the web application and leave SQL Server
running natively on its own server, but use Docker as a distribution mechanism to deploy
database upgrades.

The move to Docker was very simple. I used Image2Docker against the production server to
produce an initial Dockerfile, and then I iterated on that by adding a health check and
environment variables for configuration. I already had a SQL Server project in Visual Studio for
the schema, so I added another Dockerfile to package the Dacpac with a deployment script for
the database. It took only two days to finalize the Docker artifacts and have the new version
running in a test environment. This was the architecture with Docker:

e 1: The web application runs in a Windows Docker container. In production, it connects to
a separate SQL Server instance. In non-production environments, it connects to a local
SQL Server instance running in a container.

e 2: The database is packaged into a Docker image based on SQL Server Express and
deployed with the database schema in a Dacpac. In production, a task container is run from
the image to deploy the schema to the existing database. In non-production environments,
a background container is run to host the database.

Since then, deployments have been straightforward, and they always follow the same steps. We
have a set of private repositories on Docker Cloud, where the versioned application and database
images are stored. I configure my local Docker CLI to work against their Docker engine, and
then I do the following:

e Stop the web application container
e Run a container from the new database image to upgrade SQL Server
e Use Docker Compose to update the web application to the new image

The biggest benefits from moving to Docker have been fast and reliable releases and reduced
infrastructure requirements. The company is currently looking at replacing their current web
server with two smaller servers, so they can run Docker in swarm mode and have zero downtime
upgrades.

An additional benefit is the simplicity of the release process. Because the deployment is already
tried and tested, using the same Docker images that are going to be used in production, there's
no need to have someone who understands the app available to track down issues. The
company's IT support folks do the releases now, and they can do that without my help.

Case study 2 - a database
integration service

I worked on a big, complex web application for a financial company. It was an internal-facing
app that managed very large volumes of trades. The frontend was in ASP.NET MVC, but most
of the logic was in the service tier, written in WCF. The service tier was also a facade over many
third-party apps, isolating the integration logic in the WCF layer.

Most of the third-party apps had XML web services or JSON REST APIs we could consume,
but one of the older apps had no integration options. We used it only for reference data, so the
facade was implemented as a database-level integration. The WCF service exposed nicely
encapsulated endpoints, but the implementation connected directly to the external application
database to provide the data.

Database integration is brittle because you have to rely on a private database schema instead of a
public service contract, but sometimes there are no other options. In this case, the schema
changed infrequently, and we could manage the disruption. Unfortunately, the release process
was back-to-front. The Ops team would release new versions of database in production

first because the app had support from the vendor in production only. When it was all working,
they would replicate the release in the dev and test environments.

One release had a database schema change that broke our integration. Any features that used the
reference data from the third-party app stopped working, and we had to get a fix out as quickly
as possible. The fix was straightforward, but the WCF app was a large monolith and it needed a
lot of regression testing before we could be confident this change didn't impact other areas. I
was tasked with looking at Docker as a better way of managing the database dependency.

The proposal was straightforward. I didn't recommend moving the whole app to Docker - that
was already on a longer-term roadmap - but just moving one service into Docker. The WCF
endpoint for that the database app facade would run in Docker, isolated from the rest of the
application. The web application was the only consumer of the service, so it would just be a case
of changing the URL for the service in the consumer. The proposed architecture looked like this:

il 2

1: The web application runs in IIS. The code is unchanged, but the configuration is
updated to use the URL for the new integration component, running in a container

2: The original WCF services continue to run in IIS but with the previous database
integration component removed

3: The new integration component uses the same WCF contract as earlier, but now it is
hosted in a container, isolating access to the third-party application database

This approach has a lot of benefits:

e If the database schema changes, we only need to change the Dockerized service

e Service changes can be released without a full application release just by updating the
Docker image

e [tis a sandboxed introduction to Docker, so the dev and Ops teams can use it for
evaluation

In this case, the most important benefit was the reduced amount of testing effort. For the full
monolithic app, a release needs several weeks of testing. By breaking out the services into
Docker containers, only the services that have changed need testing for the release. This
drastically reduces the amount of time and effort, which allows more frequent releases, getting
new features out to the business more quickly.

Case study 3 - an Azure IoT app

I was the API architect on a project delivering backend services consumed by a mobile
application. There were two main APIs. The configuration API was read-only, the devices called
it to check for updates to settings and software. The events API was write-only, the devices
posted anonymous events about user behavior, which the product team used to design the next
generation of devices.

The APIs supported over 1.5 million devices. The configuration APIs needed high availability;
they had to respond quickly to device calls and scale to thousands of concurrent requests per
second. The events APIs consumed data from the devices and pushed events to a message
queue. Listening on the queue were two sets of handlers, one that stored all event data in
Hadoop, for long-term analysis, and one that stored a subset of events to provide real-time
dashboards.

All the components ran in Azure, and at the peak of the project, we were using cloud services,
Event Hubs, SQL Azure, and HDInsight. The architecture looked like this:

E 1
E E=E\’\
8 o e

“QA

1: The events API, hosted in a cloud service with multiple instances. Devices post events
to the API, which does some preprocessing and posts them in batches to an Azure Event
Hub.

2: The Configuration API, also hosted in a Cloud Service with multiple instances. Devices
connect to the API to check software updates and configuration settings.

3: Real-time analytics data, used for a subset of key performance indicators. Stored in SQL
Azure for fast access, as these are modest quantities of data.

4: Batch analytics data, storing all the events posted by all devices. Stored in HDInsight,
the managed Hadoop service on Azure for long-running Big Data queries.

This system was expensive to run, but it gave the product team a lot of information on how the
devices were used, which they fed into the design process for the next generation. Everyone was
happy, but then the product roadmap was canceled and there weren't going to be any more

devices, so we had to cut running costs.

I had the job of reducing the Azure bill from $50K per month to under $1K per month. I could
lose some of the reporting features, but the events API and configuration API had to stay highly
available.

This happened before Docker was available on Windows, so my first revision of the architecture
used Linux containers running on a Docker swarm in Azure. I replaced the analytics side of the
system with Elasticsearch and Kibana and replaced the configuration API with static content
served from Nginx. I left the custom .NET components running in cloud services for the events
API feeding Azure Event Hubs with device data and the message handler pushing data to

Elasticsearch:

‘_:_i 1

O @

. N
' NGINX E kibana s elasticsearch
|

[U I

e 1: The Configuration API, now running as a static website in Nginx. Configuration data is
served as JSON payloads, maintaining the original API contract.

e 2: Kibana used for real-time and historical analytics. By reducing the amount of data
stored, we reduced the data storage requirements significantly, at the cost of losing detailed
metrics

¢ 3: Flasticsearch used to store incoming event data. A .NET Cloud service is still used to
read from Event Hubs, but this version saves data in Elasticsearch

This first revision gave us the cost savings we needed, mainly by reducing the number of nodes
needed for the APIs and the amount of data we stored from the devices. Instead of storing
everything in Hadoop and real-time data in SQL Azure, I centralized on Elasticsearch and stored
just a small subset of the data. Using Nginx to serve the configuration APIs, we lost the user-
friendly feature the product team had in order to publish configuration updates, but we could run
with far smaller compute resources.

I oversaw a second revision, when Windows Server 2016 launched and Docker on Windows
was supported. I added Windows nodes to the existing Linux nodes in the Docker swarm and
migrated the events API and message handlers over to Windows Docker containers. At this
time, I also moved the messaging system over to NATS, running in a Linux container:

0 .

@ ________ Nems 00
: dh i &
— @ @ @
& @ |
O O ¢

NGINX K kibana @ elasticsearch

—

- o = =

1: The Events API is now hosted in a Docker container, the code hasn't changed; this is
still an ASP.NET web API project, running in a Windows container.

2: The messaging component is using NATS instead of Event Hubs. We lose the ability to
store and reprocess messages, but the message queue now has the same availability as the
Events API.

3: The message handler reads from nats and saves data in Elasticsearch. The majority of
the code is unchanged, but it now runs as a .NET console app in a Windows container.

This second revision further reduced costs and complexity:

e Every component is now running in Docker, so I can replicate the whole system in
development

e All components are built with Dockerfiles and packaged as Docker images, so everything
uses the same artifacts

e The whole solution has the same level of service, running efficiently on a single Docker
swarm

In this case, the project is destined to wind down, and it will be easy to accommodate that with
the new solution. Device usage is still recorded and shown with a Kibana dashboard. As fewer
devices are used over time, the services need less compute, and we can remove nodes from the
swarm. Ultimately, the project will run on minimal infrastructure, possibly just a two-node
swarm, running on small VMs in Azure or it could move back into the company's data center.

Summary

Large and small companies all over the world are moving to Docker on Windows and Linux.
Some of the main drivers are efficiency, security, and portability. Many new projects are
designed from the ground up using containers, but there are many more existing projects that
would benefit from the move to Docker.

In this chapter I've looked at migrating existing apps to Docker on Windows, recommending
that you start with an application you know well. A short, time-boxed PoC for Dockerizing that
app will quickly show you how your app looks in Docker. The outcome of that PoC will help
you understand what you need to do next and who you need to involve to get that PoC moved
into production.

I finished with some very different cases studies, showing you how you can introduce Docker in
existing projects. In one case, I used Docker primarily for the packaging benefits in order to run
a monolithic app without changing it, but to power clean upgrades for future releases. In another
case, | took one component from a monolithic app and extracted it to run in a container, in order
to reduce the testing burden for releases. And in the last case, I completely migrated an existing

solution to Docker, making it cheaper to run, easier to maintain, and giving me the option to run
it anywhere.

I hope this chapter has helped you think about how you can introduce Docker into your own
projects, and I hope the rest of the book has shown you what you can do with Docker and why
it's such an exciting technology. Thanks for reading, make sure to follow me on Twitter, and
good luck in your journey with Docker on Windows.

Table of Contents

Preface

What this book covers

What you need for this book

Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

Getting Started with Docker on Windows
Docker and Windows containers
Windows licensing
Understanding the key Docker concepts
The Docker service and Docker command-line
Docker images
Image registries
Docker containers
Docker swarm
Running Docker on Windows
Docker for Windows
Docker as a Windows Service
Docker in an Azure VM
Learning Docker with this book
Summary

Packaging and Running Applications as Docker Containers
Running a container from an image
Doing one thing with a task container
Connecting to an interactive container
Keeping a process running in a background container
Building a Docker image
Understanding the Dockerfile
Building an image from a Dockerfile

17
18
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
42
44
45
46

47
48
49
50
51
52
53
55

Examining how Docker builds an image
Packaging your own applications
Compiling the application during the build
Compiling the application before the build
Compiling with multi-stage builds
Using the main Dockerfile instructions
Understanding temporary containers and image state
Working with data in Docker images and containers
Data in layers and the virtual C drive
Sharing data between containers with volumes
Sharing data between container and host with volumes
Mounting volumes from host directories
Using volumes for configuration and state
Packaging a traditional ASP.NET web app as a Docker image
Writing a Dockerfile for NerdDinner
Summary

Developing Dockerized .NET and .NET Core Applications
Building good citizens for Docker
Hosting Internet Information Services (IIS) applications in Docker
Configuring IIS for Docker-friendly logging
Promoting environment variables
Building Docker images that monitor applications
Separating dependencies
Creating Docker images for SQL Server databases
Managing database files for SQL Server containers
Running databases in containers
Connecting to database containers from application containers
Breaking up monolithic applications
Extracting high-value components from monoliths
Hosting a Ul component in an ASP.NET Core application

Connecting to application containers from other application containers

Summary

Pushing and Pulling Images from Docker Registries
Understanding registries and repositories
Examining image repository names
Building, tagging, and versioning images
Pushing images to a registry

56
57
58
60
62
63
66
67
68
71
73
74
75
78
79
82

83
84
85
86
88
91
94
95
97
99
101
104
105
107
109
111

112

113
114
116
118

Running a local image registry
Building the registry image
Running a registry container
Pushing and pulling images with a local registry
Configuring Docker to allow insecure registries
Storing Windows image layers in a local registry
Using a commercial registry
Docker Hub
Docker Cloud
Docker Store
Docker Trusted Registry
Other registries
Summary

Adopting Container-First Solution Design
Design goals for NerdDinner
Dockerizing NerdDinner's configuration
Splitting out the create dinner feature
Packaging .NET console apps in Docker
Running a message queue in Docker
Starting a multi-container solution
Adding new features in containers
Using Elasticsearch with Docker and .NET
Building hybrid .NET Framework and .NET Core solutions in Docker
Compiling the hybrid NerdDinner solution
Packaging .NET Core console apps in Docker
Providing analytics with Kibana
From monolith to distributed solution
Managing build and deployment dependencies
Summary

Organizing Distributed Solutions with Docker Compose
Defining applications with Docker Compose
Capturing service definitions
Defining infrastructure services
Configuring application services
Specifying application resources
Managing applications with Docker Compose
Running applications

120
121
123
125
127
129
131
132
133
134
135
136
137

138
139
141
143
145
147
148
151
152
154
156
158
160
162
164
165

166
167
168
169
171
174
175
176

Scaling application services 178

Stopping and starting application services 180
Upgrading application services 182
Monitoring application containers 184
Managing application images 186
Configuring application environments 187
Specifying external resources 188
Using multiple Compose files 190
Summary 192
Orchestrating Distributed Solutions with Docker Swarm 193
Creating a swarm and managing nodes 194
Creating and managing services in swarm mode 196
Running services across many containers 199
Global services 201
Deploying stacks to Docker swarm 203
Docker secrets 204
Defining a stack using Compose files 206
Deploying a stack from a Compose file 209
Running Docker swarm in the cloud 211
Managed Docker services in the cloud 212
Docker on Amazon Elastic Container Service 213
Docker on Google Container Platform 214
Docker on Azure Container Service 215
Docker cloud editions 216
Deploying updates with zero downtime 219
Load balancing across swarm nodes 220
Updating application services 221
Rolling back service updates 223
Configuring update behavior 224
Updating swarm nodes 225
Mixing hosts in hybrid swarms 227
Summary 228
Administering and Monitoring Dockerized Solutions 229
Managing containers with Windows tools 230
IIS Manager 231
SQL Server Management Studio 233

Event logs 235

Server Manager 237

Managing containers with Docker tools 240
Docker visualizer 241
Portainer 243

CaaS with Docker EE 245
Understanding UCP 246
Navigating the UCP Ul 247
Managing nodes 248
Volumes 251
Images 253
Networks 255
Deploying stacks 257
Creating services 259
Monitoring services 263
RBAC 267

Summary 269

Understanding the Security Risks and Benefits of Docker 270

Understanding container security 271
Container processes 272
Container user accounts and ACLs 274
Running containers with resource constraints 275
Running containers with restricted capabilities 277
Isolation in Hyper-V containers 278

Securing applications with secure Docker images 279
Building minimal images 280
Docker Security Scanning 282
Managing Windows updates 284

Securing the software supply chain with DTR 285
Repositories and users 286
Organizations and teams 288
Image Signing and Content Trust 290
Golden images 292

Understanding security in swarm mode 293
Nodes and join tokens 294
Encryption and secrets 295
Node labels and external access 296

Summary 297

Powering a Continuous Deployment Pipeline with Docker

Designing CI/CD with Docker
Running shared development services in Docker

Packaging a Git server into a Windows Docker image

Running the Bonobo Git server in Docker

Packaging a CI server into a Windows Docker image

Running the Jenkins automation server in Docker
Configuring CI/CD using Jenkins in Docker

Setting up Jenkins credentials

Configuring the Jenkins CI job

Building the solution using Docker Compose in Jenkins

Multi-stage builds in CI pipelines

Running and verifying the solution

Running end-to-end tests in Docker

Tagging and pushing Docker images in Jenkins
Deploying to a remote Docker swarm using Jenkins
Summary

Debugging and Instrumenting Application Containers
Working with Docker in integrated development environments
Docker in Visual Studio 2017
Debugging with Docker Compose in Visual Studio 2017
Docker in Visual Studio 2015
Docker in Visual Studio Code
Instrumentation in Dockerized applications
Instrumentation with Prometheus
Adding a Prometheus endpoint to .NET projects
Adding a Prometheus exporter alongside existing apps
Running a Prometheus server in a Windows Docker container
The bug fixing workflow in Docker
Bug fixing before Docker
Bug fixing with Docker
Summary

Containerize What You Know - Guidance for Implementing

Docker
Dockerizing what you know
Selecting a simple Proof-of-Concept app
Generating an initial Dockerfile with Image2Docker

298
299
301
302
304
306
308
311
312
314
316
318
320
322
324
326
330

331
332
333
335
338
341
344
345
346
349
351
355
356
358
359

360

361
362
363

Engaging other stakeholders

Case studies for implementing Docker
Case study 1 - an in-house WebForms app
Case study 2 - a database integration service

Case study 3 - an Azure [oT app
Summary

365
367
368
370

372
375

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Getting Started with Docker on Windows
	Docker and Windows containers
	Windows licensing

	Understanding the key Docker concepts
	The Docker service and Docker command–line
	Docker images
	Image registries
	Docker containers
	Docker swarm

	Running Docker on Windows
	Docker for Windows
	Docker as a Windows Service
	Docker in an Azure VM

	Learning Docker with this book
	Summary

	Packaging and Running Applications as Docker Containers
	Running a container from an image
	Doing one thing with a task container
	Connecting to an interactive container
	Keeping a process running in a background container

	Building a Docker image
	Understanding the Dockerfile
	Building an image from a Dockerfile
	Examining how Docker builds an image

	Packaging your own applications
	Compiling the application during the build
	Compiling the application before the build
	Compiling with multi-stage builds
	Using the main Dockerfile instructions
	Understanding temporary containers and image state

	Working with data in Docker images and containers
	Data in layers and the virtual C drive
	Sharing data between containers with volumes
	Sharing data between container and host with volumes
	Mounting volumes from host directories

	Using volumes for configuration and state

	Packaging a traditional ASP.NET web app as a Docker image
	Writing a Dockerfile for NerdDinner

	Summary

	Developing Dockerized .NET and .NET Core Applications
	Building good citizens for Docker
	Hosting Internet Information Services (IIS) applications in Docker
	Configuring IIS for Docker-friendly logging

	Promoting environment variables
	Building Docker images that monitor applications

	Separating dependencies
	Creating Docker images for SQL Server databases
	Managing database files for SQL Server containers
	Running databases in containers

	Connecting to database containers from application containers

	Breaking up monolithic applications
	Extracting high-value components from monoliths
	Hosting a UI component in an ASP.NET Core application
	Connecting to application containers from other application containers

	Summary

	Pushing and Pulling Images from Docker Registries
	Understanding registries and repositories
	Examining image repository names
	Building, tagging, and versioning images
	Pushing images to a registry

	Running a local image registry
	Building the registry image
	Running a registry container

	Pushing and pulling images with a local registry
	Configuring Docker to allow insecure registries
	Storing Windows image layers in a local registry

	Using a commercial registry
	Docker Hub
	Docker Cloud
	Docker Store
	Docker Trusted Registry
	Other registries

	Summary

	Adopting Container-First Solution Design
	Design goals for NerdDinner
	Dockerizing NerdDinner's configuration
	Splitting out the create dinner feature
	Packaging .NET console apps in Docker

	Running a message queue in Docker
	Starting a multi-container solution
	Adding new features in containers
	Using Elasticsearch with Docker and .NET
	Building hybrid .NET Framework and .NET Core solutions in Docker
	Compiling the hybrid NerdDinner solution
	Packaging .NET Core console apps in Docker

	Providing analytics with Kibana

	From monolith to distributed solution
	Managing build and deployment dependencies

	Summary

	Organizing Distributed Solutions with Docker Compose
	Defining applications with Docker Compose
	Capturing service definitions
	Defining infrastructure services
	Configuring application services
	Specifying application resources

	Managing applications with Docker Compose
	Running applications
	Scaling application services
	Stopping and starting application services
	Upgrading application services
	Monitoring application containers
	Managing application images

	Configuring application environments
	Specifying external resources
	Using multiple Compose files

	Summary

	Orchestrating Distributed Solutions with Docker Swarm
	Creating a swarm and managing nodes
	Creating and managing services in swarm mode
	Running services across many containers
	Global services

	Deploying stacks to Docker swarm
	Docker secrets
	Defining a stack using Compose files
	Deploying a stack from a Compose file

	Running Docker swarm in the cloud
	Managed Docker services in the cloud
	Docker on Amazon Elastic Container Service
	Docker on Google Container Platform
	Docker on Azure Container Service

	Docker cloud editions

	Deploying updates with zero downtime
	Load balancing across swarm nodes
	Updating application services
	Rolling back service updates
	Configuring update behavior
	Updating swarm nodes
	Mixing hosts in hybrid swarms

	Summary

	Administering and Monitoring Dockerized Solutions
	Managing containers with Windows tools
	IIS Manager
	SQL Server Management Studio
	Event logs
	Server Manager

	Managing containers with Docker tools
	Docker visualizer
	Portainer

	CaaS with Docker EE
	Understanding UCP
	Navigating the UCP UI
	Managing nodes
	Volumes
	Images
	Networks
	Deploying stacks
	Creating services
	Monitoring services
	RBAC

	Summary

	Understanding the Security Risks and Benefits of Docker
	Understanding container security
	Container processes
	Container user accounts and ACLs
	Running containers with resource constraints
	Running containers with restricted capabilities
	Isolation in Hyper-V containers

	Securing applications with secure Docker images
	Building minimal images
	Docker Security Scanning
	Managing Windows updates

	Securing the software supply chain with DTR
	Repositories and users
	Organizations and teams
	Image Signing and Content Trust
	Golden images

	Understanding security in swarm mode
	Nodes and join tokens
	Encryption and secrets
	Node labels and external access

	Summary

	Powering a Continuous Deployment Pipeline with Docker
	Designing CI/CD with Docker
	Running shared development services in Docker
	Packaging a Git server into a Windows Docker image
	Running the Bonobo Git server in Docker
	Packaging a CI server into a Windows Docker image
	Running the Jenkins automation server in Docker

	Configuring CI/CD using Jenkins in Docker
	Setting up Jenkins credentials
	Configuring the Jenkins CI job
	Building the solution using Docker Compose in Jenkins
	Multi-stage builds in CI pipelines
	Running and verifying the solution
	Running end-to-end tests in Docker
	Tagging and pushing Docker images in Jenkins

	Deploying to a remote Docker swarm using Jenkins
	Summary

	Debugging and Instrumenting Application Containers
	Working with Docker in integrated development environments
	Docker in Visual Studio 2017
	Debugging with Docker Compose in Visual Studio 2017

	Docker in Visual Studio 2015
	Docker in Visual Studio Code

	Instrumentation in Dockerized applications
	Instrumentation with Prometheus
	Adding a Prometheus endpoint to .NET projects

	Adding a Prometheus exporter alongside existing apps
	Running a Prometheus server in a Windows Docker container

	The bug fixing workflow in Docker
	Bug fixing before Docker
	Bug fixing with Docker

	Summary

	Containerize What You Know - Guidance for Implementing Docker
	Dockerizing what you know
	Selecting a simple Proof-of-Concept app
	Generating an initial Dockerfile with Image2Docker
	Engaging other stakeholders

	Case studies for implementing Docker
	Case study 1 - an in-house WebForms app
	Case study 2 - a database integration service
	Case study 3 - an Azure IoT app

	Summary

