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Preface

What is this DSP thing I keep hearing about? What’s so great about it? What do DSP
engineers do? And how do I get in on the action? Great questions! Take a journey with me
and all will be revealed...

Defining DSP

First, let’s figure out what DSP is. The acronym DSP has two alternate meanings: Digital
Signal Processing and Digital Signal Processor. Let’s look at each, starting with digital signal
processing. The meaning of “digital” is obvious—it means we are working in the world of
I’s and 0’s, and not in the analog world. The idea of a “signal” is a bit trickier. Our friend
Wikipedia defines the term as “any time-varying or spatial-varying quantity.” Speech is

an example of a time-varying quantity; the pitch and volume of a voice changes from one
moment to the next. A photograph is an example of a space-varying quantity; the color and
brightness of an image are different in different areas of the photo. Now we are left to define
“processing.” This is a broad concept, but it generally involves analysis and manipulation
using mathematical algorithms. For example, we could analyze a voice recording to
determine its pitch, and we could manipulate a photograph by adjusting its colors.

DSP applications fall into four main categories:
o Communications
o Audio, video, and imaging (sometimes referred to as media processing)
» Motion control
o Military and aerospace
Of these areas, communications and video receive the most attention. Both areas are evolving

rapidly, and both impose high computational loads. In addition, both areas include systems
with severely limited power budgets.

With this background, it’s easy to define the term digital signal processor. A digital signal
processor is a simply a processor with specialized features for signal processing. For example,
many signal processing algorithms involve multiplication followed by addition, an operation
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commonly referred to as a multiply accumulate or MAC. Since the MAC operation is so
common in signal processing, all digital signal processors include special MAC hardware.
As another example. many DSP applications have limited power budgets. Thus, many DSPs
offer advanced power-saving features, such as the ability to change speeds and voltages n the
fly—a feature known as dynamic frequency and voltage scaling.

It is important to note that digital signal processing does not require digital signal processors.
Many signal processing systems use general-purpose processors (such as those available from
ARM and MIPS) or custom hardware (built using ASICs and FPGAs). Many systems use

a mix of hardware. For example, many systems contain both a DSP and a general-purpose
processor (GPP).

The Role of the DSP Engineer

So much for the basics. What do DSP engineers actually do? My friend Shiv Balakrishnan
recently wrote an article on this topic, and I agree with his conclusion that DSP engineers
typically fall into three categories:

1. System designers create algorithms and (in some cases) the overall system.
2. Hardware designers implement (1) in hardware.

3. Programmers implement (1) in software, either by using hardware created by (2) or by
using off-the-shelf hardware.

This book is intended mainly for programmers. This is the most common role for DSP engineers,
and the role that is easiest to address without getting into graduate-level concepts. Nonetheless, it
is worth looking at each of these jobs in detail, and exploring the skill sets for each.

System Designer

The system designer focuses on the big picture. This engineer may design the overall
functionality of the system, including all of the attendant algorithms, or they may focus on
specific subsystems and algorithms. The latter case is common for products such as cell
phones where the system complexity is too great for a single engineer.

The system designer is referred to as a domain expert because they need an expert
understanding of the system requirements and how to meet them. This includes expertise on
the analog world, because most DSP systems have analog inputs and outputs. For example,
wireless system designers must know how signals degrade as they propagate through the air.
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The system designer also needs top-notch algorithmic expertise. To meet these demands, the
system designer often needs a master’s degree or even a PhD.

The system designer builds a functional model of the system using graphical tools such

as Simulink and LabVIEW as well as text-based tools like MATLAB and C. The system
designer often does not get into the details of the hardware and software design, but they must
understand the basics of these disciplines. Even the most brilliant design is worthless if no
one can build it! System designers must also take great care to ensure that hardware designers
and programmers fully understand the functional model. Among other things, this means that
the system designer must provide a means of testing the hardware and software against the
system model. To meet these goals, system designers are increasingly turning to Electronic
System Level (ESL) tools. ESL tools perform a number of functions, including automatic
generation of reference hardware and software, as well as generation of test vectors.

Hardware Designer

Once the system is designed, it’s the hardware designer’s turn. The role of the hardware
designer varies widely. As with the system designer, the hardware designer may work on

the entire system or may focus on specific subsystems. The hardware designer may create
custom hardware, or they may build a system using off-the-shelf parts. For custom hardware,
designers once turned to ASICs, but ASIC design has become prohibitively expensive for all
but the highest-volume products. As a result, hardware designers often use FPGAs instead.
Structured ASICs are also an option, particularly for medium-volume applications.

In any of these cases, the hardware designer realizes the hardware as a set of blocks.
Traditionally, the designer would implement each block in hand-coded RTL (either VHDL or
Verilog), verify it, and optimize it. While hand-coded RTL is still in use, hardware engineers
increasingly rely on ESL tools to generate hardware. This is particularly true for key DSP
algorithms like FFTs and FIR filters. ESL tools have become quite proficient at generating
hardware for these algorithms. In addition to the custom-built blocks, most applications also
include one or more programmable processors. The processors may be implemented inside an
ASIC or FPGA, or the hardware designer may use off-the shelf processors.

For systems that use off-the-shelf hardware, the hardware designer’s job is much simpler.
However, the hardware designer still has to make many careful choices in order to meet
the system requirements. The processors must have enough performance to handle

the workload, the buses must have enough bandwidth to handle the data, and so on. In
many cases, it is impossible to find off-the-shelf hardware that fully meets the system
requirements, so the hardware designer must create a small amount of custom hardware.
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For example, many systems use an FPGA to implement I/O that is not available in the off-
the-shelf processor.

The upshot of all of this is that hardware designers need a variety of skills. Although ESL
tools are lightening the workload, the hardware designer must have good RTL coding skills.
Obviously, hardware designers must understand the algorithms they implement. They must
also understand the requirements of the software so they can make wise design decisions.
Although it is possible to meet all of these requirements with a bachelor’s-level education, a
master’s degree is quite helpful.

Programmer

Next up: the programmer. The programmer writes code to implement the remaining
functionality on the systems processor or processors. Like programmers in any other field,

the DSP programmer generally writes in C/C+ +. However, DSP code is unusual for two
reasons. First, DSP code often begins as a MATLAB or Simulink model. Thus, tools that
convert MATLAB to C are drawing a great deal of interest. Second, DSP code requires heavy
optimization for performance, size, and power. In many cases, this requires the programmer to
optimize key sections of their code using assembly language. To achieve these extreme levels of
optimization, the DSP engineer must be intimately familiar with the details of their hardware.

As mentioned earlier, many DSP systems include multiple processors. For example, many
systems include both a GPP and a DSP. In recent years, multicore processors have also become
commonplace. (Multicore processors combine two or more processor cores on a single chip.)
Thus, multiprocessor programming is a critical skill for many DSP programmers.

Until recently, DSP programmers wrote most of their own software. Today, DSP
programmers often use off-the-shelf software for large parts of the system. This is particularly
true for speech- and media-processing codecs. These codecs have become highly standardized
and commoditized.

Obviously, the programmer must understand the algorithms they implement. Programmers
who use off-the-shelf DSP software only need to know the basics of the underlying
algorithms. In either case, a bachelor’s-level education is generally sufficient, but a master’s-
level education is helpful.

DSP Project Flow

So far we have described the three DSP roles as separate disciplines, but the three roles tend
to overlap in practice. For example, a single engineer may fill all three roles in a smaller



Preface xiii

project. It is also important to note that we have implied a linear project handoff from one
discipline to the next. Projects rarely work this way in practice. Instead, most projects follow
an iterative process with extensive feedback between the various roles. In addition, the system
design, hardware design, and programming often proceed in parallel.

The Future of DSP

DSP was once a narrow, highly specialized field. Five years ago, DSP was nearly
synonymous with telecom. If someone told you they were a DSP engineer, you had a good
idea of what they did. You could be certain that they had good math skills and could explain
exactly how a FIR filter works. Today, DSP is everywhere, often disguised under a moniker
like “media processing.” Many of the engineers working on DSP systems have only a general
understanding of the underlying algorithms. With all these changes, it is hard to clearly define
exactly what a DSP engineer is, or what they do—and this confusion is likely to get worse

as DSP diffuses into an ever-growing list of applications. However, one thing is certain: DSP
engineering will remain an important and in-demand skill for many years to come.
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A chapter on analog? What’s this doing in a DSP book? And at the very front of the book, no less!

Relax. You don’t need to be an analog expert to do DSP. However; a little analog knowledge is

a big help! Nearly all DSP systems have analog inputs. Before we can manipulate this analog
data, we need to pass it through an analog-to-digital converter (ADC). This conversion process
is always flawed—the digital data cannot capture the analog signal with perfect precision. ADCs
also change the data by adding noise and distortion. What’s worse, ADCs present the possibility
of aliasing—a phenomenon where two signals that are obviously different in the analog world
become indistinguishable in the digital world.

Things are just as bad on the output side. Most DSP systems have analog outputs, so we have to
pipe the output through digital-to-analog converters (DACs). DACs cannot reproduce our digital
signal with perfect precision—they always introduce noise and distortion.

If all of this sounds frightening, don’t worry. As long as you understand the limitations of ADCs
and DACs, these limitations are usually easy to manage. This chapter by Walt Kester will help
you do just that. The author explains the principles behind ADCs and DACs, including the all-
important Nyquist sampling theorem. He explains the basic operation of ADCs and DACs, and
shows how even “ideal” ADCs and DACs introduce errors. He then goes on to explain the flaws
of real-world ADCs and DACs.

The information in this chapter will be more than enough for most DSP engineers. If you want to
dive deeper, I heartily recommend these series:

ADCs for DSP
http://www.dspdesignline.com/howto/202200877

DAC:s for DSP
http://www.dspdesignline.com/howto/205601725
—Kenton Williston
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1.1 Coding and Quantizing

Analog-to-digital converters (ADCs) translate analog quantities, which are characteristic of
most phenomena in the “real world,” to digital language, used in information processing,
computing, data transmission, and control systems. Digital-to-analog converters (DACs) are
used in transforming transmitted or stored data, or the results of digital processing, back to
“real-world” variables for control, information display, or further analog processing. The
relationships between inputs and outputs of DACs and ADCs are shown in Figure 1.1.

Analog input variables, whatever their origin, are most frequently converted by transducers
into voltages or currents. These electrical quantities may appear (1) as fast or slow “DC”
continuous direct measurements of a phenomenon in the time domain, (2) as modulated AC
waveforms (using a wide variety of modulation techniques), (3) or in some combination, with
a spatial configuration of related variables to represent shaft angles. Examples of the first are
outputs of thermocouples, potentiometers on DC references, and analog computing circuitry;
of the second, “chopped” optical measurements, AC strain gage or bridge outputs, and digital
signals buried in noise; and of the third, synchros and resolvers.

The analog variables to be dealt with in this chapter are those involving voltages or currents
representing the actual analog phenomena. They may be either wideband or narrowband.
They may be either scaled from the direct measurement, or subjected to some form of analog
preprocessing, such as linearization, combination, demodulation, filtering, sample-hold, etc.

VRer
MSB O— +FS
Digital 0O
in%ut . N-bit Analog Range
N-bits . DAC output (Spfn)
LSB O— 0 OR-FS
VRer
0O MSB
+FS —© iqi
) Digital
+ Analog N-bit . output
Range input ADC N-bits
(span) .
——CO LSB
0 OR -FS

Figure 1.1: Digital-to-analog converter (DAC) and analog-to-digital converter (ADC)

input and output definitions
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As part of the process, the voltages and currents are ‘“normalized” to ranges compatible
with assigned ADC input ranges. Analog output voltages or currents from DACs are direct
and in normalized form, but they may be subsequently post-processed (e.g., scaled, filtered,
amplified, etc.).

Information in digital form is normally represented by arbitrarily fixed voltage levels referred
to “ground,” either occurring at the outputs of logic gates, or applied to their inputs. The
digital numbers used are all basically binary; that is, each “bit,” or unit of information has

one of two possible states. These states are “off,” “false,” or “0,” and “on,” “true,” or “1.” It is
also possible to represent the two logic states by two different levels of current; however, this
is much less popular than using voltages. There is also no particular reason why the voltages
need be referenced to ground—as in the case of emitter-coupled-logic (ECL), positive-
emitter-coupled-logic (PECL) or low-voltage-differential-signaling logic (LVDS) for example.

Words are groups of levels representing digital numbers; the levels may appear
simultaneously in parallel, on a bus or groups of gate inputs or outputs, serially (or in a time
sequence) on a single line, or as a sequence of parallel bytes (i.e., “byte-serial”’) or nibbles
(small bytes). For example, a 16-bit word may occupy the 16 bits of a 16-bit bus, or it may be
divided into two sequential bytes for an 8-bit bus, or four 4-bit nibbles for a 4-bit bus.

Although there are several systems of logic, the most widely used choice of levels are those
used in TTL (transistor-transistor logic) and, in which positive frue, or 1, corresponds to a
minimum output level of 2.4V (inputs respond unequivocally to “1” for levels greater than
2.0V); and false, or 0, corresponds to a maximum output level of 0.4 V (inputs respond
unequivocally to “0” for anything less than 0.8 V). It should be noted that even though CMOS
is more popular today than TTL, CMOS logic levels are generally made to be compatible
with the older TTL logic standard.

A unique parallel or serial grouping of digital levels, or a number, or code, is assigned to each
analog level which is quantized (i.e., represents a unique portion of the analog range).
A typical digital code would be this array:

a,agasasaza,a; = 10111001

It is composed of 8 bits. The “1” at the extreme left is called the most significant bit (MSB, or
bit 1), and the one at the right is called the least significant bit (LSB, or bit N: 8 in this case).
The meaning of the code, as either a number, a character, or a representation of an analog
variable, is unknown until the code and the conversion relationship have been defined. It is
important not to confuse the designation of a particular bit (i.e., bit 1, bit 2, and so on) with

the subscripts associated with the “a” array. The subscripts correspond to the power of 2
associated with the weight of a particular bit in the sequence.
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The best-known code (other than base-10) is natural or straight binary (base-2). Binary codes
are most familiar in representing integers; i.e., in a natural binary integer code having N bits,
the LSB has a weight of 2° (i.e., 1), the next bit has a weight of 2 (i.e., 2), and so on up to the
MSB, which has a weight of 2¥~! (i.e., 2V/2). The value of a binary number is obtained by
adding up the weights of all non-zero bits. When the weighted bits are added up, they form a
unique number having any value from 0 to 2N—1. Each additional trailing zero bit, if present,
essentially doubles the size of the number.

In converter technology, full-scale (abbreviated FS) is independent of the number of bits of
resolution, N. A more useful coding is fractional binary, which is always normalized to full-
scale. Integer binary can be interpreted as fractional binary if all integer values are divided by
2N, For example, the MSB has a weight of ¥ (i.e., 2N"D/2N=2"1)  the next bit has a weight
of Y (i.e., 272), and so forth down to the LSB, which has a weight of 1/2N (i.e., 27N). When
the weighted bits are added up, they form a number with any of 2N values, from 0 to (1—27Y)
of full-scale. Additional bits simply provide more fine structure without affecting full-scale
range. The relationship between base-10 numbers and binary numbers (base-2) are shown in
Figure 1.2 along with examples of each.

1.1.1 Unipolar Codes

In data conversion systems, the coding method must be related to the analog input range (or
span) of an ADC or the analog output range (or span) of a DAC. The simplest case is when
the input to the ADC or the output of the DAC is always a unipolar positive voltage (current
outputs are very popular for DAC outputs, much less for ADC inputs). The most popular

Whole numbers:

Number;q = an_12N "+ ay_12N2+ ... +a,2"+ a,2°

MSB LSB
Example: 1011, = (1x23) + (0x22) + (1x2') + (1x29)
—8+0+2+1=11y

Fractional numbers:

Number;o = ay_127'+ ay_p272+ ... +a,2" N4 g2 N

T

MSB LSB
Example: 0.1011, = (1X0.5) + (0X0.25) + (1X0.125) + (1X0.0625)
= 0.5+ 0 + 0.125 + 0.0625 = 0.6875,,

Figure 1.2: Representing a base-10 number with a binary number (base-2)
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code for this type of signal is straight binary and is shown in Figure 1.3 for a 4-bit converter.
Notice that there are 16 distinct possible levels, ranging from the all-zeros code 0000, to the
all-ones code 1111. It is important to note that the analog value represented by the all-ones
code is not full-scale (abbreviated FS), but FS—1 LSB. This is a common convention in

data conversion notation and applies to both ADCs and DACs. Figure 1.3 gives the base-10
equivalent number, the value of the base-2 binary code relative to full-scale (FS), and also the
corresponding voltage level for each code (assuming a 10V full-scale converter. The Gray
code equivalent is also shown, and will be discussed shortly.

Figure 1.4 shows the transfer function for an ideal 3-bit DAC with straight binary input
coding. Notice that the analog output is zero for the all-zeros input code. As the digital input
code increases, the analog output increases 1 LSB (1/8 scale in this example) per code. The
most positive output voltage is 7/8 FS, corresponding to a value equal to FS—1 LSB. The
midscale output of 1/2 FS is generated when the digital input code is 100.

The transfer function of an ideal 3-bit ADC is shown in Figure 1.5. There is a range of
analog input voltage over which the ADC will produce a given output code; this range is

the quantization uncertainty and is equal to 1 LSB. Note that the width of the transition
regions between adjacent codes is zero for an ideal ADC. In practice, however, there is
always transition noise associated with these levels, and therefore the width is non-zero. It is
customary to define the analog input corresponding to a given code by the code center which
lies halfway between two adjacent transition regions (illustrated by the black dots in the

Base 10 Scale +10V FS Binary Gray
+15 | +FS —1LSB = +15/16 FS 9.375 1111 1000
+14 +7/8 FS 8.750 1110 1001
+13 +13/16 FS 8.125 1101 1011
+12 +3/4 FS 7.500 1100 1010
+11 +11/16 FS 6.875 1011 1110
+10 +5/8 FS 6.250 1010 1111

+9 +9/16 FS 5.625 1001 1101
+8 +1/2 FS 5.000 1000 1100
+7 +7/16 FS 4.375 0111 0100
+6 +3/8 FS 3.750 0110 0101
+5 +5/16 FS 3.125 0101 0111
+4 +1/4 FS 2.500 0100 0110
+3 +3/16 FS 1.875 0011 0010
+2 +1/8 FS 1.250 0010 0011
+1 1LSB = +1/16 FS 0.625 0001 0001

0 0 0.000 0000 0000

Figure 1.3: Unipolar binary codes, 4-bit converter
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diagram). This requires that the first transition region occur at ¥2 LSB. The full-scale analog
input voltage is defined by 7/8 FS, (FS—1 LSB).

1.1.2 Gray Code

Another code worth mentioning at this point is the Gray code (or reflective-binary), which
was invented by Elisha Gray in 1878 (Reference 1) and later re-invented by Frank Gray in
1949 (see Reference 2). The Gray code equivalent of the 4-bit straight binary code is also
shown in Figure 1.3. Although it is rarely used in computer arithmetic, it has some useful
properties which make it attractive to A/D conversion. Notice that in Gray code, as the
number value changes, the transitions from one code to the next involve only one bit at a
time. Contrast this to the binary code where all the bits change when making the transition
between 0111 and 1000. Some ADCs make use of it internally and then convert the Gray
code to a binary code for external use.

One of the earliest practical ADCs to use the Gray code was a 7-bit, 100kSPS electron beam
encoder developed by Bell Labs and described in a 1948 reference (Reference 3).

The basic electron beam coder concepts for a 4-bit device are shown in Figure 1.6. The
early tubes operated in the serial mode (a). The analog signal is first passed through

X deflectors

(a) Serial mode Electron gun

Y deflectors

Shadow mask
@ Collector

Figure 1.6: The electron beam coder: (a) serial mode and (b) parallel or “Flash” mode

(b) Parallel mode  Electron gun
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a sample-and-hold, and during the “hold” interval, the beam is swept horizontally across the
tube. The Y-deflection for a single sweep therefore corresponds to the value of the analog
signal from the sample-and-hold. The shadow mask is coded to produce the proper binary
code, depending on the vertical deflection. The code is registered by the collector, and the
bits are generated in serial format. Later tubes used a fan-shaped beam (shown in Figure
1.6b), creating a “Flash” converter delivering a parallel output word.

Early electron tube coders used a binary-coded shadow mask, and large errors can occur if
the beam straddles two adjacent codes and illuminates both of them. The way these errors
occur is illustrated in Figure 1.7a, where the horizontal line represents the beam sweep at

the midscale transition point (transition between code 0111 and code 1000). For example,

an error in the most significant bit (MSB) produces an error of %2 scale. These errors were
minimized by placing fine horizontal sensing wires across the boundaries of each of the
quantization levels. If the beam initially fell on one of the wires, a small voltage was added to
the vertical deflection voltage which moved the beam away from the transition region.

The errors associated with binary shadow masks were eliminated by using a Gray code
shadow mask as shown in Figure 1.7b. As mentioned above, the Gray code has the property
that adjacent levels differ by only one digit in the corresponding Gray-coded word. Therefore,
if there is an error in a bit decision for a particular level, the corresponding error after
conversion to binary code is only one least significant bit (LSB). In the case of midscale,

note that only the MSB changes. It is interesting to note that this same phenomenon can

(a) 4-bit binary code (b) 4-bit reflected-binary code
(Gray code)
1111 1000
DDE 1110 ] 1001
— 1101 D 1011
|:||:| 1100 - 1010
1011 ] 1110
Dg 1010 DE} 1111
— 1001 1101
1000 1100
111
Shadow mask 81 10 Shadow mask 81 8(1)
0101 0111
0100 0110
0011 0010
0010 0011
0001 0001
0000 0000
MSB LSB MSB LSB

Figure 1.7: Electron beam coder shadow masks for (a) binary code and (b) Gray code
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occur in modern comparator-based Flash converters due to comparator metastability. With
small overdrive, there is a finite probability that the output of a comparator will generate the
wrong decision in its latched output, producing the same effect if straight binary decoding
techniques are used. In many cases, Gray code, or “pseudo-Gray” codes are used to decode
the comparator bank. The Gray code output is then latched, converted to binary, and latched
again at the final output.

As a historical note, in spite of the many mechanical and electrical problems relating to
beam alignment, electron tube coding technology reached its peak in the mid-1960s with
an experimental 9-bit coder capable of 12 MSPS sampling rates (Reference 4). Shortly
thereafter, however, advances in all solid-state ADC techniques made the electron tube
technology obsolete.

Other examples where Gray code is often used in the conversion process to minimize errors
are shaft encoders (angle-to-digital) and optical encoders.

ADC:s that use the Gray code internally almost always convert the Gray code output to
binary for external use. The conversion from Gray-to-binary and binary-to-Gray is easily
accomplished with the exclusive-or logic function as shown in Figure 1.8.

1.1.3 Bipolar Codes

In many systems, it is desirable to represent both positive and negative analog quantities with
binary codes. Either offset binary, two’s complement, one’s complement, or sign magnitude
codes will accomplish this, but offset binary and two’s complement are by far the most

Binary Gray Gray Binary

MSB MSB
10 O 1 10O O 1

O%jDﬂ1
e D

Figure 1.8: Binary-to-Gray and Gray-to-binary conversion using the exclusive-or

i

%W

logic function
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Base 10 i

number Scale *5VFS 81::?;/ -(I:-\(I)vrswsp. Sonrﬁz. igg.
+7 +FS—1LSB= +7/8FS| +4.375 | 1111 0111 0111 0111
+6 +3/4FS| +3750 | 1110 | 0110 0110 | 0110
+5 +5/8 FS| +3.125 | 1101 0101 0101 0101
+4 +1/2FS| +2500 | 1100 | 0100 0100 | 0100
+3 +3/8FS| +1.875 | 1011 0011 0011 0011
+2 +1/4FS| +1.250 | 1010 | 0010 0010 | 0010
+1 +1/8FS| +0.625 | 1001 0001 0001 0001
0 0| 0.000 | 1000 | 0000 *0000 | *1000
-1 -1/8FS| —0.625 | 0111 1111 1110 | 1001
-2 —-1/4FS| -1.250 | 0110 | 1110 1101 1010
-3 -3/8FS| —1.875 | 0101 1101 1100 | 1011
—4 —1/2FS| —2.5500 | 0100 | 1100 1011 1100
-5 —5/8FS| —3.125 | 0011 1011 1010 | 1101
-6 -3/4FS| —3.750 | 0010 | 1010 1001 1110

=7 | -FS+1LSB=-7/8FS| —4.375 | 0001 1001 | 1000 | 1111 .

[=Fs][-5.000]|[0o000]|[1000]

Ones Sign
comp. mag.
Not normally used * 8:”‘ ???? ‘ (13888
in computations (see text)

Figure 1.9: Bipolar codes, 4-bit converter

popular. The relationships between these codes for a 4-bit system is shown in Figure 1.9.
Note that the values are scaled for a £5V full-scale input/output voltage range.

For offset binary, the zero signal value is assigned the code 1000. The sequence of codes is
identical to that of straight binary.

The only difference between a straight and offset binary system is the half-scale offset
associated with analog signal. The most negative value (—FS +1 LSB) is assigned the code
0001, and the most positive value (+FS —1 LSB) is assigned the code 1111. Note that in
order to maintain perfect symmetry about midscale, the all-zeros code (0000) representing
negative full-scale (—FS) is not normally used in computation. It can be used to represent a
negative off-range condition or simply assigned the value of the 0001 (—FS +1 LSB).

The relationship between the offset binary code and the analog output range of a bipolar 3-bit
DAC is shown in Figure 1.10. The analog output of the DAC is zero for the zero-value input
code 100. The most negative output voltage is generally defined by the 001 code (—FS +1
LSB), and the most positive by 111 (+FS —1 LSB). The output voltage for the 000 input
code is available for use if desired, but makes the output nonsymmetrical about zero and
complicates the mathematics.
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+FS
FB/B e o

+1/4 — f 4

+1/8 — [

Analog output
o
1
®

-1/8—t [
—1/4— [
~3)8— @

_ ¢ | | | | | | |
FS @— | | | | | |
000 001 o010 011 100 101 110 111
Digital input (offset binary)

Figure 1.10: Transfer function for ideal bipolar 3-bit DAC

The offset binary output code for a bipolar 3-bit ADC as a function of its analog input is
shown in Figure 1.11. Note that zero analog input defines the center of the midscale code 100.
As in the case of bipolar DACs, the most negative input voltage is generally defined by the
001 code (—FS +1 LSB), and the most positive by 111 (+FS—1 LSB). As discussed above,
the 000 output code is available for use if desired, but makes the output nonsymmetrical about
zero and complicates the mathematics.

Two’s complement is identical to offset binary with the most-significant-bit (MSB)
complemented (inverted). This is obviously very easy to accomplish in a data converter,
using a simple inverter or taking the complementary output of a “D” flip-flop. The popularity
of two’s complement coding lies in the ease with which mathematical operations can be
performed in computers and DSPs. Two’s complement, for conversion purposes, consists

of a binary code for positive magnitudes (0 sign bit), and the two’s complement of each
positive number to represent its negative. The two’s complement is formed arithmetically by
complementing the number and adding 1 LSB. For example, —3/8 FS is obtained by taking
the two’s complement of +3/8 FS. This is done by first complementing +3/8 FS, 0011
obtaining 1100. Adding 1 LSB, we obtain 1101.
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Figure 1.11: Transfer function for ideal bipolar 3-bit ADC

Two’s complement makes subtraction easy. For example, to subtract 3/8 FS from 4/8 FS, add
4/8 to —3/8, or 0100 to 1101. The result is 0001, or 1/8, disregarding the extra carry.

One’s complement can also be used to represent negative numbers, although it is much less
popular than two’s complement and rarely used today. The one’s complement is obtained by
simply complementing all of a positive number’s digits. For instance, the one’s complement
of 3/8 FS (0011) is 1100. A one’s complemented code can be formed by complementing
each positive value to obtain its corresponding negative value. This includes zero, which is
then represented by either of two codes, 0000 (referred to as 0+) or 1111 (referred to as 0—).
This ambiguity must be dealt with mathematically, and presents obvious problems relating to
ADCs and DAC:s for which there is a single code that represents zero.

Sign-magnitude would appear to be the most straightforward way of expressing signed analog
quantities digitally. Simply determine the code appropriate for the magnitude and add a
polarity bit. Sign-magnitude BCD is popular in bipolar digital voltmeters, but has the problem
of two allowable codes for zero. It is therefore unpopular for most applications involving
ADCs or DACs.

Figure 1.12 summarizes the relationships between the various bipolar codes: offset binary,
two’s complement, one’s complement, and sign-magnitude, and shows how to convert
between them.
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To convert from —p
To | Sign magnitude Two’s complement Offset binary One’s complement
* _ Complement MSB
Icfo’\fi;;rft fnewMSB =1, | IfMSB =1,
Sign magnitude No ple complement complement
Change other bits, ther bit ther bit
add 00...01 other bits, other bits
add 00...01
IfMSB = 1,
, complement No Complement If MSB = 1,
Two's complement | - o pits, Change MSB add 00...01
add 00...01
Complement MSB
If new MSB = 0 Complement Complement MSB
Offset binary complement I\/IpSB hNO If new MSB = 0,
other bits, change add 00...01
add 00...01
7 If MSB = 1, If MSB = 1, Complement MSB No
One’s complement comple_ment add 11...11 If new MSB = 1, change
other bits add 11...11

Figure 1.12: Relationships among bipolar codes

The last code to be considered in this section is binary-coded decimal (BCD), where each
base-10 digit (0 to 9) in a decimal number is represented as the corresponding 4-bit straight
binary word as shown in Figure 1.13. The minimum digit O is represented as 0000, and the

digit 9 by 1001. This code is relatively inefficient, since only 10 of the 16 code states for each
decade are used. It is, however, a very useful code for interfacing to decimal displays such as
in digital voltmeters.

1.1.4 Complementary Codes

Some forms of data converters (for example, early DACs using monolithic NPN quad current
switches), require standard codes such as natural binary or BCD, but with all bits represented
by their complements. Such codes are called complementary codes. All the codes discussed
thus far have complementary codes which can be obtained by this method. A complementary
code should not be confused with a one’s complement or a two’s complement code.

In a 4-bit complementary-binary converter, O is represented by 1111, half-scale by 0111, and
FS—1 LSB by 0000. In practice, the complementary code can usually be obtained by using
the complementary output of a register rather than the true output, since both are available.
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Base 10

number Scale +10V FS |Decade 1 Decade 2 Decade 3 Decade 4
+15 +FS —1LSB = +15/16 FS 9.375 1001 0011 0111 0101
+14 +7/8 FS 8.750 1000 0111 0101 0000
+13 +13/16 FS 8.125 1000 0001 0010 0101
+12 +3/4 FS 7.500 0111 0101 0000 0000
+11 +11/16 FS 6.875 0110 1000 0111 0101
+10 +5/8 FS 6.250 0110 0010 0101 0000
+9 +9/16 FS 5.625 0101 0110 0010 0101
+8 +1/2 FS 5.000 0101 0000 0000 0000
+7 +7/16 FS 4.375 0100 0011 0111 0101
+6 +3/8 FS 3.750 0011 0111 0101 0000
+5 +5/16 FS 3.125 0011 0001 0010 0101
+4 +1/4 FS 2.500 0010 0101 0000 0000
+3 +3/16 FS 1.875 0001 1000 0111 0101
+2 +1/8 FS 1.250 0001 0010 0101 0000
+1 1LSB = +1/16 FS 0.625 0000 0110 0010 0101

0 0 0.000 0000 0000 0000 0000

Figure 1.13: Binary-coded decimal (BCD) code

Sometimes the complementary code is useful in inverting the analog output of a DAC.
Today many DACs provide differential outputs which allow the polarity inversion to be
accomplished without modifying the input code. Similarly, many ADCs provide differential
logic inputs which can be used to accomplish the polarity inversion.

1.1.5 DAC and ADC Static Transfer Functions and DC Errors

The most important thing to remember about both DACs and ADC:s is that either the input
or output is digital, and therefore the signal is quantized. That is, an N-bit word represents
one of 2N possible states, and therefore an N-bit DAC (with a fixed reference) can have only
2N possible analog outputs, and an N-bit ADC can have only 2N possible digital outputs. As
previously discussed, the analog signals will generally be voltages or currents.

The resolution of data converters may be expressed in several different ways: the weight

of the least significant bit (LSB), parts per million of full-scale (ppm FS), millivolts (mV),
etc. Different devices (even from the same manufacturer) will be specified differently, so
converter users must learn to translate between the different types of specifications if they are
to compare devices successfully. The size of the least significant bit for various resolutions is
shown in Figure 1.14.

Before we can consider the various architectures used in data converters, it is necessary to
consider the performance to be expected, and the specifications which are important. The
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Resolution Voltage ppm FS % FS dB FS
N 2N (10V FS)
2-bit 4 25V 250,000 25 —-12
4-bit 16 625 mV 62,500 6.25 —24
6-bit 64 156 mV 15,625 1.56 —36
8-bit 256 39.1 mV 3,906 0.39 —48
10-bit 1,024 9.77 mV (10 mV) 977 0.098 —60
12-bit 4,096 2.44 mV 244 0.024 -72
14-bit 16,384 610 uVv 61 0.0061 -84
16-bit 65,536 153 uv 15 0.0015 —96
18-bit 262,144 38 uv 4 0.0004 -108
20-bit 1,048,576 9.54 pV (10 pv) 1 0.0001 -120
22-bit 4,194,304 2.38 uv 0.24 0.000024 —-132
24-bit 16,777,216 596 uVv- 0.06 0.000006 —144

*600nV is the Johnson Noise in a 10 kHz BW of a 2.2kQ Resistor @ 25°C

Remember: 10 bits and 10V FS yields an LSB of 10 mV, 1000 ppm, or 0.1%.
all other values may be calculated by powers of 2.

Figure 1.14: Quantization: the size of a least significant bit (LSB)

following sections will consider the definition of errors and specifications used for data
converters. This is important in understanding the strengths and weaknesses of different
ADC/DAC architectures.

The first applications of data converters were in measurement and control where the

exact timing of the conversion was usually unimportant, and the data rate was slow. In

such applications, the DC specifications of converters are important, but timing and AC
specifications are not. Today many, if not most, converters are used in sampling and
reconstruction systems where AC specifications are critical (and DC ones may not be)—these
will be considered in Section 1.3 of this chapter.

Figure 1.15 shows the ideal transfer characteristics for a 3-bit unipolar DAC and a 3-bit
unipolar ADC. In a DAC, both the input and the output are quantized, and the graph consists of
eight points. While it is reasonable to discuss the line through these points, it is very important
to remember that the actual transfer characteristic is not a line, but a number of discrete points.

The input to an ADC is analog and is not quantized, but its output is quantized. The transfer
characteristic therefore consists of eight horizontal steps. When considering the offset, gain
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Figure 1.15: Transfer functions for ideal 3-bit DAC and ADC

and linearity of an ADC we consider the line joining the midpoints of these steps—often
referred to as the code centers.

For both DACs and ADC:s, digital full-scale (all “1”’s) corresponds to 1 LSB below the analog
full-scale (FS). The (ideal) ADC transitions take place at ¥2 LSB above zero, and thereafter
every LSB, until 1Y2 LSB below analog full-scale. Since the analog input to an ADC can

take any value, but the digital output is quantized, there may be a difference of up to ¥2 LSB
between the actual analog input and the exact value of the digital output. This is known as

the quantization error or quantization uncertainty as shown in Figure 1.15. In AC (sampling)
applications this quantization error gives rise to quantization noise which will be discussed in
Section 1.3 of this chapter.

As previously discussed, there are many possible digital coding schemes for data converters:
straight binary, offset binary, one’s complement, two’s complement, sign magnitude, Gray
code, BCD, and others. This section, being devoted mainly to the analog issues surrounding
data converters, will use simple binary and offset binary in its examples and will not consider
the merits and disadvantages of these, or any other forms of digital code.

The examples in Figure 1.15 use unipolar converters, whose analog port has only a single
polarity. These are the simplest type, but bipolar converters are generally more useful in real-
world applications. There are two types of bipolar converters: the simpler is merely a unipolar
converter with an accurate 1 MSB of negative offset (and many converters are arranged
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Figure 1.16: Unipolar and bipolar converters

so that this offset may be switched in and out so that they can be used as either unipolar

or bipolar converters at will), but the other, known as a sign-magnitude converter is more
complex, and has N bits of magnitude information and an additional bit which corresponds to
the sign of the analog signal.

Sign-magnitude DACs are quite rare, and sign-magnitude ADCs are found mostly in digital
voltmeters (DVMs). The unipolar, offset binary, and sign-magnitude representations are
shown in Figure 1.16.

The four DC errors in a data converter are offset error, gain error, and two types of linearity
error (differential and integral). Offset and gain errors are analogous to offset and gain errors
in amplifiers as shown in Figure 1.17 for a bipolar input range. (Though offset error and

zero error, which are identical in amplifiers and unipolar data converters, are not identical in
bipolar converters and should be carefully distinguished.)

The transfer characteristics of both DACs and ADCs may be expressed as a straight line given
by D = K + GA, where D is the digital code, A is the analog signal, and K and G are constants.
In a unipolar converter, the ideal value of K is zero; in an offset bipolar converter it is —1 MSB.
The offset error is the amount by which the actual value of K differs from its ideal value.

The gain error is the amount by which G differs from its ideal value, and is generally
expressed as the percentage difference between the two, although it may be defined as the
gain error contribution (in mV or LSB) to the total error at full scale. These errors can usually
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be trimmed by the data converter user. Note, however, that amplifier offset is trimmed at zero

input, and then the gain is trimmed near to full scale. The trim algorithm for a bipolar data
converter is not so straightforward.

The integral linearity error of a converter is also analogous to the linearity error of an
amplifier, and is defined as the maximum deviation of the actual transfer characteristic of the
converter from a straight line, and is generally expressed as a percentage of full scale (but
may be given in LSBs). For an ADC, the most popular convention is to draw the straight line
through the mid-points of the codes, or the code centers. There are two common ways of
choosing the straight line: end point and best straight line as shown in Figure 1.18.

Actual

|

Zero error Zero error
Offset No gain error: With gain error:
error Zero error = Offset error Offset error = 0
Zero error results
~Fs ~FS

from gain error

Figure 1.17: Bipolar data converter offset and gain error

End point method Best straight line method .

// ’
// i
/) /,
,

Linearity Linearity
error = x error=x/2

Output

Input Input

Figure 1.18: Method of measuring integral linearity errors (same converter
on both graphs)
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In the end point system, the deviation is measured from the straight line through the origin
and the full-scale point (after gain adjustment). This is the most useful integral linearity
measurement for measurement and control applications of data converters (since error
budgets depend on deviation from the ideal transfer characteristic, not from some arbitrary
“best fit”), and is the one normally adopted by Analog Devices, Inc.

However, the best straight line does give a better prediction of distortion in AC applications,
and also gives a lower value of “linearity error” on a data sheet. The best fit straight line is
drawn through the transfer characteristic of the device using standard curve-fitting techniques,
and the maximum deviation is measured from this line. In general, the integral linearity error
measured in this way is only 50% of the value measured by end point methods. This makes
the method good for producing impressive data sheets, but it is less useful for error budget
analysis. For AC applications it is better to specify distortion than DC linearity, so it is rarely
necessary to use the best straight line method to define converter linearity.

The other type of converter nonlinearity is differential nonlinearity (DNL). This relates to
the linearity of the code transitions of the converter. In the ideal case, a change of 1 LSB in
digital code corresponds to a change of exactly 1 LSB of analog signal. In a DAC, a change
of 1 LSB in digital code produces exactly 1 LSB change of analog output, while in an ADC
there should be exactly 1 LSB change of analog input to move from one digital transition to
the next. Differential linearity error is defined as the maximum amount of deviation of any
quantum (or LSB change) in the entire transfer function from its ideal size of 1 LSB.

DAC ADC
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Figure 1.19: Transfer functions for nonideal 3-bit DAC and ADC
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Where the change in analog signal corresponding to 1 LSB digital change is more or less than
1 LSB, there is said to be a DNL error. The DNL error of a converter is normally defined as
the maximum value of DNL to be found at any transition across the range of the converter.
Figure 1.19 shows the nonideal transfer functions for a DAC and an ADC and shows the
effects of the DNL error.

The DNL of a DAC is examined more closely in Figure 1.20. If the DNL of a DAC is less
than —1 LSB at any transition, the DAC is nonmonotonic; i.e., its transfer characteristic
contains one or more localized maxima or minima. A DNL greater than +1 LSB does not
cause nonmonotonicity, but is still undesirable. In many DAC applications (especially closed-
loop systems where nonmonotonicity can change negative feedback to positive feedback),

it is critically important that DACs are monotonic. DAC monotonicity is often explicitly
specified on data sheets, although if the DNL is guaranteed to be less than 1 LSB (i.e.,

IDNL| = 1 LSB), the device must be monotonic, even without an explicit guarantee.

A
FS —
;’ 1LSB
Bit 2 is 1 LSB high ' DNL=0
— Bit 1 is 1 LSB low , ----- beene-
1 | 2 LSB,
= i DNL = +1LSB
o |
= |
o I
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1 S B DNL <—1LSB
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v

° I | | | | | |
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Digital code input

Figure 1.20: Details of DAC differential nonlinearity
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In Figure 1.21, the DNL of an ADC is examined more closely on an expanded scale. ADCs
can be nonmonotonic, but a more common result of excess DNL in ADCs is missing codes.
Missing codes in an ADC are as objectionable as nonmonotonicity in a DAC. Again, they
result from DNL < —1 LSB.

Not only can ADCs have missing codes, they can also be nonmonotonic as shown in
Figure 1.22. As in the case of DACs, this can present major problems—especially in servo
applications.

In a DAC, there can be no missing codes—each digital input word will produce a
corresponding analog output. However, DACs can be nonmonotonic as previously discussed.
In a straight binary DAC, the most likely place a nonmonotonic condition can develop is at
midscale between the two codes: 011...11 and 100...00. If a nonmonotonic condition occurs
here, it is generally because the DAC is not properly calibrated or trimmed. A successive
approximation ADC with an internal nonmonotonic DAC will generally produce missing
codes but remain monotonic. However, it is possible for an ADC to be nonmonotonic—again
depending on the particular conversion architecture. Figure 1.22 shows the transfer function
of an ADC, which is nonmonotonic and has a missing code.

ADC:s that use the subranging architecture divide the input range into a number of
coarse segments, and each coarse segment is further divided into smaller segments—and
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Figure 1.21: Details of ADC differential nonlinearity
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Digital output code

' «—— Nonmonotonic

Analog input

Figure 1.22: Nonmonotonic ADC with missing code

ultimately the final code is derived. An improperly trimmed subranging ADC may exhibit
nonmonotonicity, wide codes, or missing codes at the subranging points as shown in Figure
1.23 a, b, and c, respectively. This type of ADC should be trimmed so that drift due to aging
or temperature produces wide codes at the sensitive points rather than nonmonotonic or
missing codes.

Defining missing codes is more difficult than defining nonmonotonicity. All ADCs suffer
from some inherent transition noise as shown in Figure 1.24 (think of it as the flicker between
adjacent values of the last digit of a DVM). As resolutions and bandwidths become higher,
the range of input over which transition noise occurs may approach, or even exceed, 1 LSB.
High resolution wideband ADCs generally have internal noise sources that can be reflected to
the input as effective input noise summed with the signal. The effect of this noise, especially
if combined with a negative DNL error, may be that there are some (or even all) codes where
transition noise is present for the whole range of inputs. Therefore, there are some codes for
which there is no input that will guarantee that code as an output, although there may be a
range of inputs that will sometimes produce that code.

For low resolution ADCs, it may be reasonable to define no missing codes as a combination
of transition noise and DNL, which guarantees some level (perhaps 0.2 LSB) of noise-

free code for all codes. However, this is impossible to achieve at the very high resolutions
achieved by modern sigma-delta ADCs, or even at lower resolutions in wide bandwidth
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Figure 1.23: Errors associated with improperly trimmed subranging ADC
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Figure 1.24: Combined effects of code transition noise and DNL

sampling ADCs. In these cases, the manufacturer must define noise levels and resolution in
some other way. Which method is used is less important, but the data sheet should contain
a clear definition of the method used and the performance to be expected. A complete
discussion of effective input noise follows in Section 1.3 of this chapter.

The discussion thus far has dealt with only the most important DC specifications associated
with data converters. Other less important specifications require only a definition. For
specifications not covered in this section, the reader is referred to Section 1.5 of this chapter
for a complete alphabetical listing of data converter specifications along with their definitions.
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1.2 Sampling Theory

This section discusses the basics of sampling theory. A block diagram of a typical real-time
sampled data system is shown in Figure 1.25. Prior to the actual analog-to-digital conversion,
the analog signal usually passes through some sort of signal conditioning circuitry which
performs such functions as amplification, attenuation, and filtering. The low-pass/band-pass
filter is required to remove unwanted signals outside the bandwidth of interest and prevent
aliasing.

The system shown in Figure 1.25 is a real-time system; i.e., the signal to the ADC is
continuously sampled at a rate equal to f,, and the ADC presents a new sample to the DSP

at this rate. In order to maintain real-time operation, the DSP must perform all its required
computation within the sampling interval, 1/f;, and present an output sample to the DAC
before arrival of the next sample from the ADC. An example of a typical DSP function would
be a digital filter.

In the case of FFT analysis, a block of data is first transferred to the DSP memory. The FFT
is calculated at the same time a new block of data is transferred into the memory, in order
to maintain real-time operation. The DSP must calculate the FFT during the data transfer
interval so it will be ready to process the next block of data.

Note that the DAC is required only if the DSP data must be converted back into an analog
signal (as would be the case in a voiceband or audio application, for example). There

: -

Cfa ST N A psp A NBt L, T
BPF Ll RS BPF
Amplitude . Discrete‘
quantization /tlme sampling

Figure 1.25: Sampled data system
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are many applications where the signal remains entirely in digital format after the initial
A/D conversion. Similarly, there are applications where the DSP is solely responsible for
generating the signal to the DAC. If a DAC is used, it must be followed by an analog anti-
imaging filter to remove the image frequencies. Finally, there are slower speed industrial
process control systems where sampling rates are much lower—regardless of the system, the
fundamentals of sampling theory still apply.

There are two key concepts involved in the actual analog-to-digital and digital-to-
analog conversion process: discrete time sampling and finite amplitude resolution due to
quantization. An understanding of these concepts is vital to data converter applications.

1.2.1 The Need for a Sample-and-hold Amplifier (SHA) Function

The generalized block diagram of a sampled data system, shown in Figure 1.25, assumes some
type of AC signal at the input. It should be noted that this does not necessarily have to be so,
as in the case of modern digital voltmeters (DVMs) or ADCs optimized for DC measurements,
but for this discussion assume that the input signal has some upper frequency limit f,.

Most ADCs today have a built-in sample-and-hold function, thereby allowing them to process
AC signals. This type of ADC is referred to as a sampling ADC. However many early ADCs,
such as Analog Devices’ industry-standard AD574, were not of the sampling type, but simply
encoders as shown in Figure 1.26. If the input signal to a SAR ADC (assuming no SHA
function) changes by more than 1 LSB during the conversion time (8 ps in the example),

Analog input N
oNT N-bit
Vi) =q H sin@nft) — SAR ADC encoder 7L’

conversion time = 8 ps

dv 2N T
&V _g=—onf 2mft
a —9p 2rfeos@mft) f, = 100 kSPS
dv
ot =q2N-D2rf
max .
Example:
‘3—" dv=1LSB = q
t | max dt = 8us
frax = —————— N =12, 2V= 4096
2NN or g
dv fax = 9.7 Hz
dt | max
fmax = aw oN

Figure 1.26: Input frequency limitations of nonsampling ADC (encoder)
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the output data can have large errors, depending on the location of the code. Most ADC
architectures are subject to this type of error—some more, some less—with the possible
exception of Flash converters having well-matched comparators.

Assume that the input signal to the encoder is a sinewave with a full-scale amplitude (q2"/2),
where q is the weight of 1 LSB.

v(t) = q(2N /2)sin(2xft). (1.1)

Taking the derivative:

dv/dt = q2nf(2N /2)cos(2nft). (1.2)

The maximum rate of change is therefore:

dv/dt| = q2nf2"/2). (1.3)

Solving for f:

f = (dv/dt| )/qm2"). (1.4)

If N =12, and 1 LSB change (dv = q) is allowed during the conversion time (dt = 8 us),
the equation can be solved for f,,, the maximum full-scale signal frequency that can be
processed without error:

f .. =97Hz

This implies any input frequency greater than 9.7 Hz is subject to conversion errors, even
though a sampling frequency of 100kSPS is possible with the 8 ps ADC (this allows an extra
2 ps interval for an external SHA to reacquire the signal after coming out of the hold mode).

To process AC signals, a sample-and-hold function is added as shown in Figure 1.27. The
ideal SHA is simply a switch driving a hold capacitor followed by a high input impedance
buffer. The input impedance of the buffer must be high enough so that the capacitor is
discharged by less than 1 LSB during the hold time. The SHA samples the signal in the
sample mode, and holds the signal constant during the hold mode. The timing is adjusted
so that the encoder performs the conversion during the hold time. A sampling ADC can
therefore process fast signals—the upper frequency limitation is determined by the SHA
aperture jitter, bandwidth, distortion, etc., not the encoder. In the example shown, a good
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Figure 1.27: Sample-and-hold function required for digitizing AC signals

sample-and-hold could acquire the signal in 2 s, allowing a sampling frequency of 100kSPS,
and the capability of processing input frequencies up to 50kHz. A complete discussion of the
SHA function including these specifications follows later in this chapter.

It is important to understand a subtle difference between a true sample-and-hold amplifier
(SHA) and a track-and-hold amplifier (T/H, or THA). Strictly speaking, the output of a
sample-and-hold is not defined during the sample mode; however, the output of a track-and-
hold tracks the signal during the sample or track mode. In practice, the function is generally
implemented as a track-and-hold, and the terms track-and-hold and sample-and-hold are
often used interchangeably. The waveforms shown in Figure 1.27 are those associated with a
track-and-hold.

In order to better understand the types of AC errors an ADC can make without a sample-
and-hold function, consider Figure 1.28. The photos show the reconstructed output of an
8-bit ADC (Flash converter) with and without the sample-and-hold function. In an ideal
Flash converter the comparators are perfectly matched, and no sample-and-hold is required.
In practice, however, there are timing mismatches between the comparators that cause high
frequency inputs to exhibit nonlinearities and missing codes as shown in the right-hand
photos. The data was taken by driving a DAC with the ADC output. The DAC output is a low
frequency aliased sinewave corresponding to the difference between the sampling frequency
(20 MSPS) and the ADC input frequency (19.98 MHz). In this case, the alias frequency is
20kHz. (Aliasing is explained in detail in the next section.)
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Figure 1.28: 8-bit, 20 MSPS Flash ADC with and without sample-and-hold

1.2.2 The Nyquist Criteria

A continuous analog signal is sampled at discrete intervals, t, = 1/f;, which must be carefully
chosen to ensure an accurate representation of the original analog signal. It is clear that the
more samples taken (faster sampling rates), the more accurate the digital representation;
however, if fewer samples are taken (lower sampling rates), a point is reached where critical
information about the signal is actually lost. The mathematical basis of sampling was set
forth by Harry Nyquist of Bell Telephone Laboratories in two classic papers published in
1924 and 1928, respectively. (See References 1 and 2.) Nyquist’s original work was shortly
supplemented by R. V. L. Hartley (Reference 3). These papers formed the basis for the

PCM work to follow in the 1940s, and in 1948 Claude Shannon wrote his classic paper on
communication theory (Reference 4).

Simply stated, Nyquist’s criteria require that the sampling frequency be at least twice the
highest frequency contained in the signal, or information about the signal will be lost. If the
sampling frequency is less than twice the maximum analog signal frequency, a phenomena
known as aliasing will occur.

In order to understand the implications of aliasing in both the time and frequency domain, first
consider the case of a time domain representation of a single tone sinewave sampled as shown
in Figure 1.30. In this example, the sampling frequency f; is not at least 2 f,, but only slightly
more than the analog input frequency f,—the Nyquist criteria is violated. Notice that the
pattern of the actual samples produces an aliased sinewave at a lower frequency equal to f,—f.
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* A signal with a maximum frequency f, must be sampled at a rate fg > 2f,
or information about the signal will be lost because of aliasing.

* Aliasing occurs whenever fg < 2 f,

* The concept of aliasing is widely used in communications applications
such as direct IF-to-digital conversion.

» A signal which has frequency components between f, and f,
must be sampled at a rate f; > 2 (f,—f,) in order to prevent alias
components from overlapping the signal frequencies.

Figure 1.29: Nyquist’s criteria

/ Input = fa

Aliased signal = fg—f,

/

Note: f, is slightly less than fg

Figure 1.30: Aliasing in the time domain

The corresponding frequency domain representation of this scenario is shown in Figure 1.31b.
Now consider the case of a single frequency sinewave of frequency f, sampled at a frequency
f, by an ideal impulse sampler (see Figure 1.31a). Also assume that f; > 2f, as shown. The
frequency-domain output of the sampler shows aliases or images of the original signal around
every multiple of f; i.e., at frequencies equal to | =Kf*+f,|, K=1,2,3,4, .....

The Nyquist bandwidth is defined to be the frequency spectrum from DC to f/2. The
frequency spectrum is divided into an infinite number of Nyquist zones, each having a width
equal to 0.5 f; as shown. In practice, the ideal sampler is replaced by an ADC followed by an
FFT processor. The FFT processor only provides an output from DC to f/2, i.e., the signals or
aliases that appear in the first Nyquist zone.

Now consider the case of a signal that is outside the first Nyquist zone (Figure 1.31b). The
signal frequency is only slightly less than the sampling frequency, corresponding to the
condition shown in the time domain representation in Figure 1.30. Notice that even though
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Figure 1.31: Analog signal f, sampled @ f; using ideal sampler has images (aliases)
at | £Kf,xf,|,K=1,2,3, ...

the signal is outside the first Nyquist zone, its image (or alias), f,—f,, falls inside. Returning
to Figure 1.31a, it is clear that if an unwanted signal appears at any of the image frequencies
of f,, it will also occur at f,, thereby producing a spurious frequency component in the first
Nyquist zone.

This is similar to the analog mixing process and implies that some filtering ahead of the
sampler (or ADC) is required to remove frequency components that are outside the Nyquist
bandwidth, but whose aliased components fall inside it. The filter performance will depend on
how close the out-of-band signal is to f/2 and the amount of attenuation required.

1.2.3 Baseband Antialiasing Filters

Baseband sampling implies that the signal to be sampled lies in the first Nyquist zone. It is
important to note that with no input filtering at the input of the ideal sampler, any frequency
component (either signal or noise) that falls outside the Nyquist bandwidth in any Nyquist
zone will be aliased back into the first Nyquist zone. For this reason, an antialiasing filter is
used in almost all sampling ADC applications to remove these unwanted signals.

Properly specifying the antialiasing filter is important. The first step is to know the
characteristics of the signal being sampled. Assume that the highest frequency of interest is f,.
The antialiasing filter passes signals from DC to f, while attenuating signals above f,.
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Figure 1.32: Oversampling relaxes requirements on baseband antialiasing filter

Assume that the corner frequency of the filter is chosen to be equal to f,. The effect of
the finite transition from minimum to maximum attenuation on system dynamic range is
illustrated in Figure 1.32a.

Assume that the input signal has full-scale components well above the maximum frequency
of interest, fa. The diagram shows how full-scale frequency components above f,—f, are
aliased back into the bandwidth DC to f,. These aliased components are indistinguishable
from actual signals and therefore limit the dynamic range to the value on the diagram which
is shown as DR.

Some texts recommend specifying the antialiasing filter with respect to the Nyquist
frequency, f/2, but his assumes that the signal bandwidth of interest extends from DC to
fy/2 which is rarely the case. In the example shown in Figure 1.32a, the aliased components
between f, and f/2 are not of interest and do not limit the dynamic range.

The antialiasing filter transition band is therefore determined by the corner frequency f,, the
stopband fequency f,—f,, and the desired stopband attenuation, DR. The required system
dynamic range is chosen based on the requirement for signal fidelity.

Filters become more complex as the transition band becomes sharper, all other things being
equal. For instance, a Butterworth filter gives 6 dB attenuation per octave for each filter pole (as
do all filters). Achieving 60dB attenuation in a transition region between 1 MHz and 2 MHz

(1 octave) requires a minimum of 10 poles—not a trivial filter, and definitely a design challenge.
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Therefore, other filter types are generally more suited to applications where the requirement
is for a sharp transition band and in-band flatness coupled with linear phase response. Elliptic
filters meet these criteria and are a popular choice. A number of companies specialize in
supplying custom analog filters; TTE is an example of such a company (Reference 5).

From this discussion, we can see how the sharpness of the antialiasing transition band

can be traded off against the ADC sampling frequency. Choosing a higher sampling rate
(oversampling) reduces the requirement on transition band sharpness (hence, the filter
complexity) at the expense of using a faster ADC and processing data at a faster rate. This is
illustrated in Figure 1.32b which shows the effects of increasing the sampling frequency by
a factor of K, while maintaining the same analog corner frequency, f,, and the same dynamic
range, DR, requirement. The wider transition band (f, to Kf,—f,) makes this filter easier to
design than for the case of Figure 1.32a.

The antialiasing filter design process is started by choosing an initial sampling rate of 2.5

to 4 times f,. Determine the filter specifications based on the required dynamic range and

see if such a filter is realizable within the constraints of the system cost and performance.

If not, consider a higher sampling rate which may require using a faster ADC. It should be
mentioned that sigma-delta ADCs are inherently highly over-sampled converters, and the
resulting relaxation in the analog antialiasing filter requirements is therefore an added benefit
of this architecture.
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Figure 1.33: Characteristics of 11-pole elliptical filter (TTE, Inc., LE1182 Series)
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The antialiasing filter requirements can also be relaxed somewhat if it is certain that there

will never be a full-scale signal at the stopband frequency f; — f,. In many applications, it is
improbable that full-scale signals will occur at this frequency. If the maximum signal at the
frequency f; — f, will never exceed X dB below full-scale, then the filter stopband attenuation
requirement can be reduced by that same amount. The new requirement for stopband attenuation
at f, — f, based on this knowledge of the signal is now only DR — X dB. When making this type
of assumption, be careful to treat any noise signals that may occur above the maximum signal
frequency f, as unwanted signals that will also alias back into the signal bandwidth.

As an example, the normalized response of the TTE, Inc., LE1182 11-pole elliptic
antialiasing filter is shown in Figure 1.33. Notice that this filter is specified to achieve at
least 80dB attenuation between f, and 1.2f_. The corresponding pass band ripple, return
loss, delay, and phase response are also shown in Figure 1.33. This custom filter is available
in corner frequencies up to 100 MHz and in a choice of PC board, BNC, or SMA with
compatible packages.

1.2.4 Undersampling (Harmonic Sampling, Bandpass Sampling, if Sampling, Direct
IF-to-Digital Conversion)

Thus far we have considered the case of baseband sampling, where all the signals of interest
lie within the first Nyquist zone. Figure 1.34a shows such a case, where the band of sampled
signals is limited to the first Nyquist zone, and images of the original band of frequencies
appear in each of the other Nyquist zones.

Consider the case shown in Figure 1.34b, where the sampled signal band lies entirely within
the second Nyquist zone. The process of sampling a signal outside the first Nyquist zone is
often referred to as under-sampling, or harmonic sampling. Note that the image which falls in
the first Nyquist zone contains all the information in the original signal, with the exception of
its original location (the order of the frequency components within the spectrum is reversed,
but this is easily corrected by re-ordering the output of the FFT).

Figure 1.34c shows the sampled signal restricted to the third Nyquist zone. Note that the
image that falls into the first Nyquist zone has no frequency reversal. In fact, the sampled
signal frequencies may lie in any unique Nyquist zone, and the image falling into the first
Nyquist zone is still an accurate representation (with the exception of the frequency reversal
tjat occurs when the signals are located in even Nyquist zones). At this point we can clearly
restate the Nyquist criteria:

A signal must be sampled at a rate equal to or greater than twice its bandwidth in order to
preserve all the signal information.
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Figure 1.34: Undersampling and frequency translation between Nyquist zones

Notice that there is no mention of the absolute location of the band of sampled signals within
the frequency spectrum relative to the sampling frequency. The only constraint is that the
band of sampled signals be restricted to a single Nyquist zone, i.e., the signals must not
overlap any multiple of f/2 (this, in fact, is the primary function of the antialiasing filter).

Sampling signals above the first Nyquist zone has become popular in communications
because the process is equivalent to analog demodulation. It is becoming common practice

to sample IF signals directly and then use digital techniques to process the signal, thereby
eliminating the need for an IF demodulator and filters. Clearly, however, as the IF frequencies
become higher, the dynamic performance requirements on the ADC become more critical.
The ADC input bandwidth and distortion performance must be adequate at the IF frequency,
rather than only baseband. This presents a problem for most ADCs designed to process
signals in the first Nyquist zone, therefore an ADC suitable for undersampling applications
must maintain dynamic performance into the higher order Nyquist zones.

1.2.5 Antialiasing Filters in Undersampling Applications

Figure 1.35 shows a signal in the second Nyquist zone centered around a carrier frequency,
f., whose lower and upper frequencies are f; and f,. The antialiasing filter is a bandpass filter.
The desired dynamic range is DR, which defines the filter stopband attenuation. The upper
transition band is f, to 2f; — f,, and the lower is f; to f; — ;. As in the case of base-band
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Figure 1.35: Antialiasing filter for undersampling

sampling, the antialiasing filter requirements can be relaxed by proportionally increasing the
sampling frequency, but f. must also be increased so that it is always centered in the second
Nyquist zone.

Two key equations can be used to select the sampling frequency, f;, given the carrier
frequency, f,, and the bandwidth of its signal, Af. The first is the Nyquist criteria:

£ > 2Af (1.5)

The second equation ensures that f, is placed in the center of a Nyquist zone:

A (1.6)

2NZ — 1
where NZ = 1, 2, 3, 4, .... and NZ corresponds to the Nyquist zone in which the carrier and
its signal fall (see Figure 1.36).

NZ is normally chosen to be as large as possible while still maintaining f, > 2Af. This results
in the minimum required sampling rate. If NZ is chosen to be odd, then f_ and its signal will
fall in an odd Nyquist zone, and the image frequencies in the first Nyquist zone will not be
reversed. Trade-offs can be made between the sampling frequency and the complexity of the
antialiasing filter by choosing smaller values of NZ (hence a higher sampling frequency).

As an example, consider a 4 MHz wide signal centered around a carrier frequency of 71 MHz.
The minimum required sampling frequency is therefore 8 MSPS. Solving Eq. 1.6 for NZ
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Figure 1.36: Centering an undersampled signal within a Nyquist zone

using f. = 71 MHz and f; = 8 MSPS yields NZ = 18.25. However, NZ must be an integer, so
we round 18.25 to the next lowest integer, 18. Solving Eq. 1.6 again for f; yields f, = 8.1143
MSPS. The final values are therefore f; = 8.1143 MSPS, f. = 71 MHz, and NZ = 18.

Now assume that we desire more margin for the antialiasing filter, and we select f; to be 10 MSPS.
Solving Eq. 1.6 for NZ, using f, = 71 MHz and f; = 10 MSPS yields NZ = 14.7. We round 14.7
to the next lowest integer, giving NZ = 14. Solving Eq. 1.6 again for f; yields f; = 10.519 MSPS.
The final values are therefore f, = 10.519 MSPS, f. = 71 MHz, and NZ = 14.

The above iterative process can also be carried out starting with f; and adjusting the carrier
frequency to yield an integer number for NZ.

1.3 Data Converter AC Errors

This section examines the AC errors associated with data converters. Many of the errors and
specifications apply equally to ADCs and DACs, while some are more specific to one or the
other. All possible specifications are not discussed here, only the most common ones. Section
1.4 of this chapter contains a comprehensive listing of converter specifications as well as their
definitions, including some not discussed in this section.

1.3.1 Theoretical Quantization Noise of an Ildeal N-Bit Converter

The only errors (DC or AC) associated with an ideal N-bit data converter are those related

to the sampling and quantization processes. The maximum error an ideal converter makes
when digitizing a signal is =% LSB. The transfer function of an ideal N-bit ADC is shown in
Figure 1.37. The quantization error for any AC signal that spans more than a few LSBs can



ADCs, DACs, and Sampling Theory 37

Digital
output

v

Analog
input

Error l
(input—outputy A4 A A A A A S

Figure 1.37: Ideal N-bit ADC quantization noise

be approximated by an uncorrelated sawtooth waveform having a peak-to-peak amplitude of
g, the weight of an LSB. Although this analysis is not precise, it is accurate enough for most
applications. W. R. Bennett of Bell Laboratories analyzed the actual spectrum of quantization
noise in his classic 1948 paper (Reference 1). With certain simplifying assumptions, his
detailed mathematical analysis simplifies to that of Figure 1.37. Other significant papers on
converter noise (References 2-5) followed Bennett’s classic publication.

The quantization error as a function of time is shown in Figure 1.38. Again, a simple
sawtooth waveform provides a sufficiently accurate model for analysis. The equation of the
sawtooth error is given by

e(t) = st,—q/2s <t < +q/2s (1.7)

The mean-square value of e(t) can be written:

2 (t) = §f+q/2s(st)2 dt (1.8)

e2(t) = L (1.9)
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Figure 1.38: Quantization noise as a function of time

The root-mean-square quantization error is therefore:

rms quantization noise = \/rz(t) =4 (1.10)

Ji2

As Bennett points out (Reference 1), this noise is approximately Gaussian and spread more
or less uniformly over the Nyquist bandwidth DC to f/2. The underlying assumption here is
that the quantization noise is uncorrelated to the input signal. Under certain conditions where
the sampling clock and the signal are harmonically related, the quantization noise becomes
correlated and the energy is concentrated at the harmonics of the signal—the rms value
remains approximately q/ Jiz.

The theoretical signal-to-noise ratio can now be calculated assuming a full-scale input
sinewave:
. q2N .
Input FS Sinewave = v(t) = Tsm(Zﬁft) (1.11)

The rms value of the input signal is therefore:

rms value of FS input = (1.12)

2"
22
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Figure 1.39: Theoretical signal-to-quantization noise ratio of an ideal N-bit converter

The rms signal-to-noise ratio for an ideal N-bit converter is therefore:

rms value of FS input

SNR = 20log,, (1.13)

rms value of quantization noise

QN /2\/5
a/V12

SNR = 20log,,, = 6.02N + 1.76dB,overdctof, /2bandwidth ~ (1.14)

These relationships are summarized in Figure 1.39.

Bennett’s paper shows that although the actual spectrum of the quantization noise is quite
complex to analyze—the simplified analysis which leads to Eq. 1.14 is accurate enough

for most purposes. However, it is important to emphasize again that the rms quantization
noise is measured over the full Nyquist bandwidth, DC to f/2. In many applications, the
actual signal of interest occupies a smaller bandwidth, BW. If digital filtering is used to filter
out noise components outside the bandwidth BW, then a correction factor (called process
gain) must be included in the equation to account for the resulting increase in SNR. The
process of sampling a signal at a rate greater than twice its bandwidth is often referred to

as oversampling. In fact, oversampling in conjunction with quantization noise shaping and
digital filtering is a key concept in sigma-delta converters.

f
SNR = 6.02N + 1.76dB + 10log,, ————,over bandwidthBW (1.15)
2 X BW
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The significance of process gain can be seen from the following example. In many digital
basestations or other wideband receivers the signal bandwidth is composed of many
individual channels, and a single ADC is used to digitize the entire bandwidth. For instance,
the analog cellular radio system (AMPS) in the U.S. consists of 416 30-kHz-wide channels,
occupying a bandwidth of approximately 12.5 MHz. Assume a 65 MSPS sampling frequency,
and that digital filtering is used to separate the individual 30 kHz channels. The process gain
due to oversampling is therefore given by:

¢ 6
Process Gain = 10log,, ———— = 10log ©x19

o———— =303dB  (1.16)
2 X BW 2 X 30 X 10

The process gain is added to the ADC SNR specification to yield the actual SNR in the
30kHz bandwidth. In the above example, if the ADC SNR specification is 65dB (DC to

f/2), then it is increased to 95.3dB in the 30kHz channel bandwidth (after appropriate digital
filtering).

Figure 1.41 shows an application that combines oversampling and undersampling. The signal
of interest has a bandwidth BW and is centered around a carrier frequency f.. The sampling
frequency can be much less than f, and is chosen such that the signal of interest is centered in
its Nyquist zone. Analog and digital filtering removes the noise outside the signal bandwidth
of interest, and therefore results in process gain per Eq. 1.16.

A
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Figure 1.40: Quantization noise spectrum
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Although the rms value of the noise is accurately approximated by g / 12, its frequency
domain content may be highly correlated to the AC input signal. For instance, there is greater
correlation for low amplitude periodic signals than for large amplitude random signals. Quite
often, the assumption is made that the theoretical quantization noise appears as white noise,
spread uniformly over the Nyquist bandwidth DC to /2. Unfortunately, this is not true in

all cases. In the case of strong correlation, the quantization noise appears concentrated at the
various harmonics of the input signal, just where you don’t want them. Bennett (Reference

1) has an extensive analysis of the frequency content contained in the quantization noise
spectrum in his classic 1948 paper.

In most practical applications, the input to the ADC is a band of frequencies (always
summed with some unavoidable system noise), so the quantization noise tends to be random.
In spectral analysis applications (or in performing FFTs on ADCs using spectrally pure
sinewaves—see Figure 1.42), however, the correlation between the quantization noise and
the signal depends upon the ratio of the sampling frequency to the input signal. This is
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Figure 1.41: Undersampling and oversampling combined results in process gain
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Figure 1.42: Dynamic performance analysis of an ideal N-bit ADC
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demonstrated in Figure 1.43, where the output of an ideal 12-bit ADC is analyzed using a
4096-point FFT. In the left-hand FFT plot, the ratio of the sampling frequency to the input
frequency was chosen to be exactly 32, and the worst harmonic is about 76 dB below the
fundamental. The right hand diagram shows the effects of slightly offsetting the ratio to 409
6/127 = 32.25196850394, showing a relatively random noise spectrum, where the SFDR is
now about 92dBc. In both cases, the rms value of all the noise components is approximately
q / J12 , but in the first case, the noise is concentrated at harmonics of the fundamental.

Note that this variation in the apparent harmonic distortion of the ADC is an artifact of the
sampling process and the correlation of the quantization error with the input frequency. In a
practical ADC application, the quantization error generally appears as random noise because
of the random nature of the wideband input signal and the additional fact that there is a
usually a small amount of system noise which acts as a dither signal to further randomize the
quantization error spectrum.

It is important to understand the above point, because single-tone sinewave FFT testing of
ADCs is one of the universally accepted methods of performance evaluation. In order to
accurately measure the harmonic distortion of an ADC, steps must be taken to ensure that

the test setup truly measures the ADC distortion, not the artifacts due to quantization noise
correlation. This is done by properly choosing the frequency ratio and sometimes by injecting
a small amount of noise (dither) with the input signal. The exact same precautions apply to
measuring DAC distortion with an analog spectrum analyzer.

Figure 1.44 shows the FFT output for an ideal 12-bit ADC. Note that the average value of the
noise floor of the FFT is approximately 100dB below full-scale, but the theoretical SNR of a
12-bit ADC is 74 dB. The FFT noise floor is not the SNR of the ADC, because the FFT acts

fyfa =32 M = 4096 f/f, = 4096/127
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Figure 1.43: Effect of ratio of sampling clock to input frequency on SFDR
for ideal 12-bit ADC
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like an analog spectrum analyzer with a bandwidth of /M, where M is the number of points in
the FFT. The theoretical FFT noise floor is therefore 10log10(M/2) dB below the quantization
noise floor due to the processing gain of the FFT. In the case of an ideal 12-bit ADC with

an SNR of 74 dB, a 4096-point FFT would result in a processing gain of 10log10(4096/

2) = 33dB, thereby resulting in an overall FFT noise floor of 74 + 33 = 107 dBc. In fact,

the FFT noise floor can be reduced even further by going to larger and larger FFTs; just as

an analog spectrum analyzer’s noise floor can be reduced by narrowing the bandwidth. When
testing ADCs using FFTs, it is important to ensure that the FFT size is large enough that the
distortion products can be distinguished from the FFT noise floor itself.

1.3.2 Noise in Practical ADCs

A practical sampling ADC (one that has an integral sample-and-hold), regardless of
architecture, has a number of noise and distortion sources as shown in Figure 1.45. The
wideband analog front-end buffer has wideband noise, nonlinearity, and also finite bandwidth.
The SHA introduces further nonlinearity, bandlimiting, and aperture jitter. The actual
quantizer portion of the ADC introduces quantization noise, and both integral and differential
nonlinearity. In this discussion, assume that sequential outputs of the ADC are loaded into

a buffer memory of length M and that the FFT processor provides the spectral output. Also
assume that the FFT arithmetic operations themselves introduce no significant errors relative
to the ADC. However, when examining the output noise floor, the FFT processing gain
(dependent on M) must be considered.
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33dB = 10logyy |5
100 + l/ FFT noise floor
“‘““‘ 777777777 T1O7dB
Lt el

f
Bin spacing = ﬁ 5

Figure 1.44: Noise floor for an ideal 12-bit ADC using 4096-point FFT
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Figure 1.45: ADC model showing noise and distortion sources

1.3.2.1 Equivalent Input Referred Noise

Wideband ADC internal circuits produce a certain amount of rms noise due to resistor noise
and “kT/C” noise. This noise is present even for DC input signals, and accounts for the

fact that the output of most wideband (or high resolution) ADC:s is a distribution of codes,
centered around the nominal value of a DC input (Figure 1.46). To measure its value, the
input of the ADC is either grounded or connected to a heavily decoupled voltage source, and
a large number of output samples are collected and plotted as a histogram (sometimes referred
to as a grounded-input histogram). Since the noise is approximately Gaussian, the standard
deviation of the histogram is easily calculated (Reference 6), corresponding to the effective
input rms noise. It is common practice to express this rms noise in terms of LSBs rms,
although it can be expressed as an rms voltage referenced to the ADC full-scale input range.

1.3.2.2 Noise-Free (Flicker-Free) Code Resolution

The noise-free code resolution of an ADC is the number of bits beyond which it is impossible to
distinctly resolve individual codes. The cause is the effective input noise (or input-referred noise)
associated with all ADCs and described above. This noise can be expressed as an rms quantity,
usually having the units of LSBs rms. Multiplying by a factor of 6.6 converts the rms noise into
peak-to-peak noise (expressed in LSBs peak-to-peak). The total range of an N-bit ADC is 2N
LSBs. The noise-free (or flicker-free) resolution can be calculated using the equation:

Noise-Free Code Resolution = log, (2" / Peak-to-Peak Noise) (L.17)
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Figure 1.46: Effect of input-referred noise on ADC “grounded input” histogram

The specification is generally associated with high-resolution sigma-delta measurement
ADC:s, but is applicable to all ADCs.

The ratio of the FS range to the rms input noise is sometimes used to calculate resolution. In
this case, the term effective resolution is used. Note that under identical conditions, effective
resolution is larger than noise-free code resolution by log,(6.6), or approximately 2.7 bits.

Effective Resolution = 10g2(2N /RMS Input Noise) (1.18)

Effective Resolution = Noise-Free Code Resolution + 2.7 bits (1.19)

The calculations are summarized in Figure 1.47.

1.3.3 Dynamic Performance of Data Converters

There are various ways to characterize the AC performance of ADCs. Before the 1970s, there
was little standardization with respect to AC specifications, and measurement equipment

and techniques were not well understood or available. Over nearly a 30-year period,
manufacturers and customers have learned more about measuring the dynamic performance
of converters, and the specifications shown in Figure 1.48 represent the most popular ones
used today. Practically all the specifications represent the converter’s performance in the
frequency domain. The FFT is the heart of practically all these measurements.
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Figure 1.47: Calculating noise-free (flicker-free) code resolution from input-referred noise
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Figure 1.48: Quantifying data converter dynamic performance

1.3.3.1 Integral and Differential Nonlinearity Distortion Effects

One of the first things to realize when examining the nonlinearities of data converters is that
the transfer function of a data converter has artifacts that do not occur in conventional linear
devices such as op amps or gain blocks. The overall integral nonlinearity of an ADC is due to
the integral nonlinearity of the front-end and SHA as well as the overall integral nonlinearity
in the ADC transfer function. However, differential nonlinearity is due exclusively to the
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Figure 1.49: Typical ADC/ DAC DNL errors (exaggerated)

encoding process and may vary considerably, dependent on the ADC encoding architecture.
Overall integral nonlinearity produces distortion products whose amplitude varies as a
function of the input signal amplitude. For instance, second-order intermodulation products
increase 2dB for every 1dB increase in signal level, and third-order products increase 3 dB
for every 1dB increase in signal level.

The differential nonlinearity in the ADC transfer function produces distortion products

which not only depend on the amplitude of the signal but the positioning of the differential
nonlinearity errors along the ADC transfer function. Figure 1.49 shows two ADC transfer
functions having differential nonlinearity. The left-hand diagram shows an error that occurs
at midscale. Therefore, for both large and small signals, the signal crosses through this point
producing a distortion product which is relatively independent of the signal amplitude. The
right-hand diagram shows another ADC transfer function which has differential nonlinearity
errors at 1/4 and 3/4 full-scale. Signals above 1/2 scale peak-to-peak will exercise these codes
and produce distortion, while those less than 1/2 scale peak-to-peak will not.

Most high-speed ADCs are designed so that differential nonlinearity is spread across the entire
ADC range. Therefore, for signals that are within a few dB of full-scale, the overall integral
nonlinearity of the transfer function determines the distortion products. For lower level
signals, however, the harmonic content becomes dominated by the differential nonlinearities
and does not generally decrease proportionally with decreases in signal amplitude.

1.3.3.2 Harmonic Distortion, Worst Harmonic, Total Harmonic Distortion (THD), Total
Harmonic Distortion Plus Noise (THD + N)

There are a number of ways to quantify the distortion of an ADC. An FFT analysis can be
used to measure the amplitude of the various harmonics of a signal. The harmonics of the
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input signal can be distinguished from other distortion products by their location in the
frequency spectrum. Figure 1.50 shows a 7 MHz input signal sampled at 20 MSPS and the
location of the first nine harmonics. Aliased harmonics of f, fall at frequencies equal to

| =Kf,*nf,|, where n is the order of the harmonic, and K=0, 1, 2, 3,.... The second and third
harmonics are generally the only ones specified on a data sheet because they tend to be the
largest, although some data sheets may specify the value of the worst harmonic.

Harmonic distortion is normally specified in dBc (decibels below carrier), although at
audio frequencies it may be specified as a percentage. Harmonic distortion is generally
specified with an input signal near full-scale (generally 0.5 to 1dB below full-scale to
prevent clipping), but it can be specified at any level. For signals much lower than full-scale,
other distortion products due to the DNL of the converter (not direct harmonics) may limit
performance.

Total harmonic distortion (THD) is the ratio of the rms value of the fundamental signal to
the mean value of the root-sum-square of its harmonics (generally, only the first five are
significant). THD of an ADC is also generally specified with the input signal close to full-
scale, although it can be specified at any level.

Total harmonic distortion plus noise (THD + N) is the ratio of the rms value of the
fundamental signal to the mean value of the root-sum-square of its harmonics plus all
noise components (excluding DC). The bandwidth over which the noise is measured must
be specified. In the case of an FFT, the bandwidth is DC to f/2. (If the bandwidth of the
measurement is DC to f/2, THD+N is equal to SINAD—see below).

3z

Relative f,= 7MHz
amplitude
Harmonics at: |=Kfs=nf,| f, = 20MSPS
n = order of harmonic, K=0,1,2, 3, ...
Harmonics
NG
3 2 Harmonics
6 4

[ 1] ||

1 2 3 4 5 6 7 8 9 10
Frequency — MHz

Figure 1.50: Location of distortion products: input signal = 7 MHz,
sampling rate = 20 MSPS
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1.3.3.3 Signal-to-Noise-and-Distortion Ratio (SINAD), Signal-to-Noise Ratio (SNR), and
Effective Number of Bits (ENOB)

SINAD and SNR deserve careful attention, because there is still some variation between
ADC manufacturers as to their precise meaning. Signal-to-Noise-and Distortion (SINAD, or
S/(N + D) is the ratio of the rms signal amplitude to the mean value of the root-sum-square
(rss) of all other spectral components, including harmonics, but excluding DC (Figure 1.50).
SINAD is a good indication of the overall dynamic performance of an ADC as a function of
input frequency because it includes all components which make up noise (including thermal
noise) and distortion. It is often plotted for various input amplitudes. SINAD is equal to
THD + N if the bandwidth for the noise measurement is the same. A typical plot for the
AD9226 12-bit, 65 MSPS ADC is shown in Figure 1.52.

The SINAD plot shows where the AC performance of the ADC degrades due to high-
frequency distortion and is usually plotted for frequencies well above the Nyquist frequency
so that performance in undersampling applications can be evaluated. SINAD is often
converted to effective-number-of-bits (ENOB) using the relationship for the theoretical SNR
of an ideal N-bit ADC: SNR=6.02N + 1.76dB.The equation is solved for N, and the value of
SINAD is substituted for SNR:

ENOB = SINAD —1.76dB (1.20)

6.02

Signal-to-noise ratio (SNR, or SNR-without-harmonics) is calculated the same as SINAD
except that the signal harmonics are excluded from the calculation, leaving only the noise

¢ SINAD (Signal-to-noise-and-distortion ratio):
— The ratio of the rms signal amplitude to the mean value of the
root-sum-squares (RSS) of all other spectral components,
including harmonics, but excluding dc

* ENOB (effective number of bits):

SINAD —1.76dB
ENOB= —————
6.02
* SNR (Signal-to-noise ratio, or signal-to-noise ratio without

harmonics:

— The ratio of the rms signal amplitude to the mean value of the
root-sum-squares (RSS) of all other spectral components,
excluding the first five harmonics and dc

Figure 1.51: SINAD, ENOB, and SNR
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Figure 1.52: AD9226 12-bit, 65 MSPS ADC SINAD and ENOB for various

input full-scale spans (range)

terms. In practice, it is only necessary to exclude the first five harmonics since they dominate.
The SNR plot will degrade at high frequencies, but not as rapidly as SINAD because of the
exclusion of the harmonic terms.

Many current ADC data sheets somewhat loosely refer to SINAD as SNR, so the engineer
must be careful when interpreting these specifications.

1.3.3.4 Analog Bandwidth

The analog bandwidth of an ADC is that frequency at which the spectral output of the
Jfundamental swept frequency (as determined by the FFT analysis) is reduced by 3dB. It may
be specified for either a small signal (SSBW—small signal bandwidth), or a full-scale signal
(FPBW—{ull power bandwidth), so there can be a wide variation in specifications between
manufacturers.

Like an amplifier, the analog bandwidth specification of a converter does not imply that

the ADC maintains good distortion performance up to its bandwidth frequency. In fact,

the SINAD (or ENOB) of most ADCs will begin to degrade considerably before the input
frequency approaches the actual 3 dB bandwidth frequency. Figure 1.53 shows ENOB and
full-scale frequency response of an ADC with a FPBW of 1 MHz, however, the ENOB begins
to drop rapidly above 100kHz.
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Figure 1.53: ADC gain (bandwidth) and ENOB versus frequency shows importance
of ENOB specification

1.3.3.5 Spurious Free Dynamic Range (SFDR)

Probably the most significant specification for an ADC used in a communications application
is its spurious free dynamic range (SFDR). SFDR of an ADC is defined as the ratio of the
rms signal amplitude to the rms value of the peak spurious spectral content measured over the
bandwidth of interest. Unless otherwise stated, the bandwidth is assumed to be the Nyquist
bandwidth DC to f/2.

Occasionally the frequency spectrum is divided into an in-band region (containing the signals
of interest) and an out-of-band region (signals here are filtered out digitally). In this case there
may be an in-band SFDR specification and an out-of-band SFDR specification, respectively.

SFDR is generally plotted as a function of signal amplitude and may be expressed relative to
the signal amplitude (dBc) or the ADC full-scale (dBFS) as shown in Figure 1.54.

For a signal near full-scale, the peak spectral spur is generally determined by one of the first
few harmonics of the fundamental. However, as the signal falls several dB below full-scale,
other spurs generally occur which are not direct harmonics of the input signal. This is because
of the differential nonlinearity of the ADC transfer function as discussed earlier. Therefore,
SFDR considers all sources of distortion, regardless of their origin.

The AD6645 is a 14-bit, 80 MSPS wideband ADC designed for communications applications
where high SFDR is important. The single-tone SFDR for a 69.1 MHz input and a sampling
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Figure 1.55: AD6645 14-bit, 80/105 MSPS ADC SFDR for 69.1 MHz input

frequency of 80 MSPS is shown in Figure 1.55. Note that a minimum of 89 dBc SFDR is
obtained over the entire first Nyquist zone (DC to 40 MHz).

SFDR as a function of signal amplitude is shown in Figure 1.56 for the AD6645. Notice that
over the entire range of signal amplitudes, the SFDR is greater than 90 dBFS. The abrupt
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Figure 1.56: AD6645 14-bit, 80/105 MSPS ADC SFDR versus input
power level for 69.1 MHz input

changes in the SFDR plot are due to the differential nonlinearities in the ADC transfer
function. The nonlinearities correspond to those shown in Figure 1.49B, and are offset from
midscale such that input signals less than about 65 dBFS do not exercise any of the points of
increased DNL. It should be noted that the SFDR can be improved by injecting a small out-
of-band dither signal—at the expense of a slight degradation in SNR.

SFDR is generally much greater than the ADCs theoretical N-bit SNR (6.02N + 1.76dB). For
example, the AD6645 is a 14-bit ADC with an SFDR of 90dBc and a typical SNR of 73.5dB
(the theoretical SNR for 14 bits is 86dB). This is because there is a fundamental distinction
between noise and distortion measurements. The process gain of the FFT (33 dB for a 4096-
point FFT) allows frequency spurs well below the noise floor to be observed. Adding extra
resolution to an ADC may serve to increase its SNR but may or may not increase its SFDR.

1.3.3.6 Two-Tone Intermodulation Distortion (IMD)

Two-tone IMD is measured by applying two spectrally pure sinewaves to the ADC at
frequencies f; and f,, usually relatively close together. The amplitude of each tone is set
slightly more than 6 dB below full scale so that the ADC does not clip when the two tones
add in-phase. The location of the second- and third-order products are shown in Figure 1.57.
Notice that the second-order products fall at frequencies that can be removed by digital filters.
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Figure 1.57: Second and third-order intermodulation products for f; = 5MHz, f, = 6 MHz

However, the third-order products, 2f, — f; and 2f; — f,, are close to the original signals and
more difficult to filter. Unless otherwise specified, two-tone IMD refers to these third-order
products. The value of the IMD product is expressed in dBc relative to the value of either of
the two original tones, and not to their sum.

Note, however, that if the two tones are close to f/4, the aliased third harmonics of the
fundamentals can make the identification of the actual 2f, — f; and 2f; — f, products difficult.
This is because the third harmonic of f/4 is 3f/4, and the alias occurs at f; — 3f/4 = { /4.
Similarly, if the two tones are close to f/3, the aliased second harmonics may interfere with
the measurement. The same reasoning applies here; the second harmonic of f/3 is 2f/3, and
its alias occurs at f, — 2f/3 = £/3.

1.3.3.7 Second- and Third-Order Intercept Points, 1dB Compression Point

Third-order IMD products are especially troublesome in multichannel communications
systems where the channel separation is constant across the frequency band. Third-order IMD
products can mask out small signals in the presence of larger ones.

In amplifiers, it is common practice to specify the third-order IMD products in terms of the
third-order intercept point, as shown by Figure 1.58. Two spectrally pure tones are applied
to the system. The output signal power in a single tone (in dBm) as well as the relative
amplitude of the third-order products (referenced to a single tone) are plotted as a function
of input signal power. The fundamental is shown by the slope = 1 curve in the diagram. If
the system nonlinearity is approximated by a power series expansion, it can be shown that
second-order IMD amplitudes increase 2 dB for every 1dB of signal increase, as represented
by slope = 2 curve in the diagram.
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Figure 1.58: Definition of intercept points and 1dB compression points for amplifiers

Similarly, the third-order IMD amplitudes increase 3 dB for every 1dB of signal increase, as
indicated by the slope = 3 plotted line. With a low level two-tone input signal, and two data
points, one can draw the second- and third-order IMD lines as they are shown in Figure 1.58
(using the principle that a point and a slope define a straight line).

Once the input reaches a certain level however, the output signal begins to soft-limit, or
compress. A parameter of interest here is the 1dB compression point. This is the point where
the output signal is compressed 1dB from an ideal input/output transfer function. This is
shown in Figure 1.58 within the region where the ideal slope=1 line becomes dotted, and the
actual response exhibits compression (solid).

Nevertheless, both the second- and third-order intercept lines may be extended, to intersect
the (dotted) extension of the ideal output signal line. These intersections are called the
second- and third-order intercept points, respectively, or IP2 and IP3. These power level
values are usually referenced to the output power of the device delivered to a matched load
(usually, but not necessarily 502) expressed in dBm.

It should be noted that IP2, IP3, and the 1 dB compression point are all a function of
frequency and, as one would expect, the distortion is worse at higher frequencies.
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For a given frequency, knowing the third-order intercept point allows calculation of the
approximate level of the third-order IMD products as a function of output signal level.

The concept of second- and third-order intercept points is not valid for an ADC, because the
distortion products do not vary in a predictable manner (as a function of signal amplitude).
The ADC does not gradually begin to compress signals approaching full scale (there is no
1dB compression point); it acts as a hard limiter as soon as the signal exceeds the ADC input
range, thereby suddenly producing extreme amounts of distortion because of clipping. On the
other hand, for signals much below full scale, the distortion floor remains relatively constant
and is independent of signal level. This is shown graphically in Figure 1.59.

The IMD curve in Figure 1.59 is divided into three regions. For low level input signals, the
IMD products remain relatively constant regardless of signal level. This implies that as the
input signal increases 1dB, the ratio of the signal to the IMD level will also increase 1dB.
When the input signal is within a few dB of the ADC full-scale range, the IMD may start to
increase (but it might not in a very well-designed ADC). The exact level at which this occurs
is dependent on the particular ADC under consideration—some ADCs may not exhibit
significant increases in the IMD products over their full input range, however, most will. As

ADC hard limits /,
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has no practical
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Figure 1.59: Intercept points for data converters have no practical significance
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the input signal continues to increase beyond full scale, the ADC should function to act as an
ideal limiter, and the IMD products become very large.

For these reasons, the second and third order IMD intercept points are not specified for
ADC:s. It should be noted that essentially the same arguments apply to DACs. In either
case, the single- or multitone SFDR specification is the most accepted way to measure data
converter distortion.

1.3.3.8 Multitone Spurious Free Dynamic Range

Two-tone and multitone SFDR is often measured in communications applications. The
larger number of tones more closely simulates the wideband frequency spectrum of cellular
telephone systems such as AMPS or GSM. Figure 1.60 shows the two-tone intermodulation
performance of the AD6645 14-bit, 80/105 MSPS ADC. The input tones are at 55.25 MHz
and 56.25 MHz and are located in the second Nyquist Zone.

The aliased tones therefore occur at 23.75 MHz and 24.75 MHz in the first Nyquist Zone.
High SFDR increases the receiver’s ability to capture small signals in the presence of large
ones, and prevents the small signals from being masked by the intermodulation products of
the larger ones. Figure 1.61 shows the AD6645 two-tone SFDR as a function of input signal
amplitude for the same input frequencies.
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Figure 1.60: Two-tone SFDR for AD6645 14-bit, 80/105 MSPS ADC, input tones: 55.25 MHz
and 56.25 MHz
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Figure 1.61: Two-tone SFDR versus input amplitude for AD6645 14-bit,
80/105 MSPS ADC

1.3.3.9 Wideband CDMA (WCDMA) Adjacent Channel Power Ratio (ACPR) and Adjacent
Channel Leakage Ratio (ADLR)

A wideband CDMA channel has a bandwidth of approximately 3.84 MHz, and channel
spacing is 5 MHz. The ratio in dBc between the measured power within a channel relative to
its adjacent channel is defined as the adjacent channel power ratio (ACPR).

The ratio in dBc between the measured power within the channel bandwidth relative to the
noise level in an adjacent empty carrier channel is defined as adjacent channel leakage ratio
(ACLR).

Figure 1.62 shows a single wideband CDMA channel centered at 140 MHz sampled at
a frequency of 76.8 MSPS using the AD6645. This is a good example of undersampling
(direct IF-to-digital conversion). The signal lies within the fourth Nyquist zone:

3f/2 to 2f, (115.2MHz to 153.6 MHz). The aliased signal within the first Nyquist

zone is therefore centered at 2f; — f, = 153.6 — 140 = 13.6 MHz. The diagram also
shows the location of the aliased harmonics. For example, the second harmonic of

the input signal occurs at 2 X 140 = 280 MHz, and the aliased component occurs at

4f, — 2f, = 4 X 76.8 — 280 = 307.2 — 280 = 27.2MHz.
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Figure 1.62: Wideband CDMA (WCDMA) adjacent channel leakage ratio (ACLR)

1.3.3.10 Noise Power Ratio (NPR)

Noise power ratio has been used extensively to measure the transmission characteristics of
frequency division multiple access (FDMA) communications links (Reference 7). In a typical
FDMA system, 4 kHz wide voice channels are “stacked” in frequency bins for transmission
over coaxial, microwave, or satellite equipment. At the receiving end, the FDMA data is
demultiplexed and returned to 4 kHz individual base-band channels. In an FDMA system
having more than approximately 100 channels, the FDMA signal can be approximated by
Gaussian noise with the appropriate bandwidth. An individual 4kHz channel can be measured
for “quietness” using a narrow-band notch (band-stop) filter and a specially tuned receiver
which measures the noise power inside the 4kHz notch (Figure 1.63).

Noise Power Ratio (NPR) measurements are straightforward. With the notch filter out, the
rms noise power of the signal inside the notch is measured by the narrowband receiver. The
notch filter is then switched in, and the residual noise inside the slot is measured. The ratio
of these two readings expressed in dB is the NPR. Several slot frequencies across the noise
bandwidth (low, midband, and high) are tested to characterize the system adequately. NPR
measurements on ADCs are made in a similar manner except the analog receiver is replaced
by a buffer memory and an FFT processor.

The NPR is plotted as a function of rms noise level referred to the peak range of the system.
For very low noise loading level, the undesired noise (in nondigital systems) is primarily
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Figure 1.63: Noise power ratio (NPR) measurements

thermal noise and is independent of the input noise level. Over this region of the curve, a 1dB
increase in noise loading level causes a 1dB increase in NPR. As the noise loading level is
increased, the amplifiers in the system begin to overload, creating intermodulation products
that cause the noise floor of the system to increase. As the input noise increases further,

the effects of “overload” noise predominate, and the NPR is dramatically reduced. FDMA
systems are usually operated at a noise loading level a few dB below the point of maximum
NPR.

In a digital system containing an ADC, the noise within the slot is primarily quantization

noise when low levels of noise input are applied. The NPR curve is linear in this region. As

the noise level increases, there is a one-for-one correspondence between the noise level and the
NPR. At some level, however, “clipping” noise caused by the hard-limiting action of the ADC
begins to dominate. A theoretical curve for 10-, 11-, and 12-bit ADCs is shown in Figure 1.64
(References 8 and 21).

Figure 1.65 shows the maximum theoretical NPR and the noise loading level at which the
maximum value occurs for 8- to 16-bit ADCs. The ADC input range is 2 Vg peak-to-peak.
The rms noise level is o, and the noise-loading factor k (crest factor) is defined as Vg/o, the
peak-to-rms ratio (k is expressed either as numerical ratio or in dB).

In multichannel high frequency communication systems, where there is little or no phase
correlation between channels, NPR can also be used to simulate the distortion caused by a
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Figure 1.64: Theoretical NPR for 10-, 11-, 12-bit ADCs

Bits k optimum k(dB) Max NPR (dB)
8 3.92 11.87 40.60
9 4.22 12.50 46.05
10 4.50 13.06 51.56
11 4.76 13.55 57.12
12 5.01 14.00 62.71
13 5.26 14.41 68.35
14 5.49 14.79 74.01
15 5.72 15.15 79.70
16 5.94 15.47 85.40

ADC range = * V,
k =Vplo
6 = RMS noise level

Figure 1.65: Theoretical maximum NPR for 8- to 16-bit ADCs

large number of individual channels, similar to an FDMA system. A notch filter is placed
between the noise source and the ADC, and an FFT output is used in place of the analog
receiver. The width of the notch filter is set for several MHz as shown in Figure 1.66 for
the AD9430 12-bit 170/210 MSPS ADC. The notch is centered at 19 MHz, and the NPR
is the “depth” of the notch. An ideal ADC will only generate quantization noise inside the
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Figure 1.66: AD9430 12-bit, 170/210 MSPS ADC NPR measures 57 dB (62.7 dB theoretical)

notch; however, a practical one has additional noise components due to additional noise and
intermodulation distortion caused by ADC imperfections. Notice that the NPR is about 57 dB
compared to 62.7 dB theoretical.

1.3.3.11 Noise Factor (F) and Noise Figure (NF)

Noise figure (NF) is a popular specification among RF system designers. It is used to
characterize RF amplifiers, mixers, etc., and widely used as a tool in radio receiver design.
Many excellent textbooks on communications and receiver design treat noise figure
extensively (see Reference 9, for example)—it is not the purpose here to discuss the topic in
much detail, but only how it applies to data converters.

Since many wideband operational amplifiers and ADCs are now being used in RF
applications, the inevitable day has come where the noise figure of these devices becomes
important. As discussed in Reference 10, in order to determine the noise figure of an op amp
correctly, one must not only know op amp voltage and current noise, but the exact circuit
conditions—closed-loop gain, gain-setting resistor values, source resistance, bandwidth, etc.
Calculating the noise figure for an ADC is even more of a challenge as will be seen.

Figure 1.67 shows the basic model for defining the noise figure of an ADC. The noise factor,
F, is simply defined as the ratio of the total effective input noise power of the ADC to the
amount of that noise power caused by the source resistance alone. Because the impedance is
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Figure 1.67: Noise figure for ADCs: use with caution

matched, the square of the voltage noise can be used instead of noise power. The noise figure,
NF, is simply the noise factor expressed in dB, NF = 10log;(F.

This model assumes the input to the ADC comes from a source having a resistance, R, and
that the input is band-limited to f/2 with a filter having a noise bandwidth equal to f/2. It is
also possible to further band-limit the input signal resulting in oversampling and process gain,
and this condition will be discussed shortly.

It is also assumed that the input impedance to the ADC is equal to the source resistance.
Many ADCs have a high input impedance, so this termination resistance may be external to
the ADC or used in parallel with the internal resistance to produce an equivalent termination
resistance equal to R. The full-scale input power is the power of a sinewave whose peak-to-
peak amplitude fills the entire ADC input range. The full-scale input sinewave given by the
following equation has a peak-to-peak amplitude of 2V, corresponding to the peak-to-peak
input range of the ADC:

v(t) = Vg sin2rft (1.21)

The full-scale power in this sinewave is given by:

_ Vo /N2P VY
R 2R

Pes (1.22)
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It is customary to express this power in dBm (referenced to 1 mW) as follows:

PF S

Prsanm) = 1010g)g 1mW (1.23)

The noise bandwidth of a nonideal brick wall filter is defined as the bandwidth of an ideal
brick wall filter which will pass the same noise power as the nonideal filter. Therefore, the
noise bandwidth of a filter is always greater than the 3 dB bandwidth of the filter by a factor
which depends upon the sharpness of the cutoff region of the filter. Figure 1.68 shows the
relationship between the noise bandwidth and the 3 dB bandwidth for Butterworth filters up to
five poles. Note that for two poles, the noise bandwidth and 3 dB bandwidth are within 11%
of each other, and beyond that the two quantities are essentially equal.

The first step in the NF calculation is to calculate the effective input noise of the ADC from
its SNR. The SNR of the ADC is given for a variety of input frequencies, so be sure and use
the value corresponding to the input frequency of interest. Also, make sure that the harmonics
are not included in the SNR number—some ADC data sheets may confuse SINAD with SNR.
Once the SNR is known, the equivalent input rms voltage noise can be calculated starting
from the equation:

V,
FS RMS
SNR = 20log, (1.24)
NOISE RMS
Solving for Vyorsg rus:
_ —SNR/20
VNoise rus = Vs rus X 10 (1.25)
Number of poles Noise BW/3dB BW
1 1.57
2 1.11
3 1.05
4 1.03
5 1.02

Figure 1.68: Relationship between noise bandwidth and 3 dB bandwidth
for Butterworth filter
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This is the total effective input rms noise voltage at the carrier frequency measured over the
Nyquist bandwidth, DC to /2. Note that this noise includes the source resistance noise.
These results are summarized in Figure 1.69.

The next step is to actually calculate the noise figure. In Figure 1.70 notice that the amount
of the input voltage noise due to the source resistance is the voltage noise of the source
resistance +/(4kTBR) divided by two, or /(kTBR) because of the 2:1 attenuator formed by
the ADC input termination resistor. The expression for the noise factor F can be written:

2 2
_ Vaoise rvs _ | Vesrus || 1 [IO—SNR/ 10] 1 (1.26)
kTRB R kT B
The noise figure is obtained by converting F into dB and simplifying:
NF = 10,ylogF = Pgg4py) T 174dBm — SNR — 10,,logB, (1.27)

where SNR is in dB, B in Hz, T = 300K, k = 1.38 X 1073 J/K.

Oversampling and filtering can be used to decrease the noise figure as a result of the process
gain as has been previously discussed. In this case, the signal bandwidth B is less than f/2.
Figure 1.71 shows the correction factor which results in the following equation:

NF = 10,5 10gF = Pggqpy, +174dBm — SNR — 10log, [f, /2B] — 10log,, B.  (1.28)

¢ Start with the SNR of the ADC measured at the carrier frequency
(Note: this SNR value does not include the harmonics of the
fundamental and is measured over the Nyquist bandwidth, dc to f,/2)

VEsRMs
SNR = 20 log4o

VNOISE-RMS

_ _SNR/20
VNoise-rRvs = Vrs-rus 10

* This is the total ADC effective input noise at the carrier frequency
measured over the Nyquist bandwidth, dc to fy/2

Figure 1.69: Calculating ADC total effective input noise from SNR
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B = Filter
Noise bandwidth

_ ~SNR/20
Vnoise-rvs = Vrs-rus10

Vioise-rms” Ves.aus® 1 1
F= — 1 O*SNR/‘] 0 -
KTRB R KT B

NF =10 logsoF = Prg(gem) + 174dBm — SNR — 10 log4oB,

Where SNRis in dB, Bin Hz, T = 300K, k = 1.38 x10~23 J/K

Figure 1.70: ADC noise figure in terms of SNR, sampling rate, and input power

B = Filter
noise bandwidth

O O O
Filter
s

S B< Ne FS(dBm) S

NF = Prgiggm) + 174dBm — SNR — 10 logyo [

52 | “1010g,,B,
B

N e/
Measured Process
DCtofy/ 2 gain

where SNRis in dB, B in Hz, T = 300K, k = 1.38 x 10728 J/K

Figure 1.71: Effect of oversampling and process gain on ADC noise figure

Figure 1.72 shows an example NF calculation for the AD6645 14-bit, 80 MSPS ADC. A 52.3(Q2
resistor is added in parallel with the AD6645 input impedance of 1k{2 to make the net input
impedance 50€2. The ADC is operating under Nyquist conditions, and the SNR of 74 dB is the
starting point for the calculations using Eq. 1.28 above. A noise figure of 34.8 dB is obtained.

Figure 1.73 shows how using an RF transformer with voltage gain can improve the noise
figure. Figure 1.73A shows a 1:1 turns ratio, and the noise figure (from Figure 1.72) is 34.8.
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1:1

°V =22
. AD6645 FS P-P
Turns ratio Vrsrgs 22
*SNR = 74dB
H * Input 3dB BW = 250 MHz
1kQ
Vespp =22V T
Ves.pus = 0.778V f, = 80 MSPS
2
Prs= 2778 —q2.1mw
50

Prsiem = +10.8dBm

NF = Prg(gm + 174dBm — SNR — 10 log,, B

= +10.8dBm + 174 dBm — 74 dB — 10 log,, (40 x 106)

34.8dB

Figure 1.72: Example calculation of noise figure under Nyquist conditions for AD6645

1:1 Turns ratio

' AD6645
1k Q

Prsem = +10.8dBm

1:2 Turns ratio
AD6645
1kQ

Prs(sm = +4.8dBM

1:4 Turns ratio

' AD6645
1k Q

*Vegpp = 2.2V

«f, = 80 MSPS

*SNR = 74dB

« Input 3dB BW = 250 MHz
NF = 34.8dB

NF = 28.8dB

NF = 22.8dB

Figure 1.73: Using RF transformers to improve overall ADC noise figure

www.newnespress.com
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Figure 1.73B shows a transformer with a 1:2 turns ratio. The 2492 resistor in parallel with
the AD6645 internal resistance results in a net input impedance of 200¢2. The noise figure is
improved by 6 dB because of the “noise-free” voltage gain of the transformer. Figure 1.73C
shows a transformer with a 1:4 turns ratio. The AD6645 input is paralleled with a 4.02k(2
resistor to make the net input impedance 800¢2. The noise figure is improved by another 6 dB.
Transformers with higher turns ratios are not generally practical because of bandwidth and
distortion limitations.

Even with the 1:4 turns ratio transformer, the overall noise figure for the AD6645 was still
22.8dB, still relatively high by RF standards. The solution is to provide low noise high gain
stages ahead of the ADC. Figure 1.74 shows how the Friis equation is used to calculate

the noise factor for cascaded gain stages. Notice that high gain in the first stage reduces

the contribution of the noise factor of the second stage—the noise factor of the first stage
dominates the overall noise factor.

Figure 1.75 shows the effects of a high-gain (25 dB) low-noise (NF = 4dB) stage placed in
front of a relatively high NF stage (30 dB)—the noise figure of the second stage is typical of
high performance ADCs. The overall noise figure is 7.53dB, only 3.53 dB higher than the
first stage noise figure of 4dB.

In summary, applying the noise figure concept to characterize wideband ADCs must be done
with extreme caution to prevent misleading results. Simply trying to minimize the noise
figure using the equations can actually increase circuit noise.

For instance, NF decreases with increasing source resistance according to the calculations,
but increased source resistance increases circuit noise. Also, NF decreases with increasing

BGIDINIDE

_ F2 -1, F3-1 F4 —1
Fr G1 " G1xG2 GixG2xG3

High gain in the first stage reduces the
contribution of the NF of the second stage

NF of the first stage dominates the total NF

NFy = 10logqo Fr

Figure 1.74: Cascaded noise figure using the Friis equation
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ADC input bandwidth if there is no input filtering. This is also contradictory, because
widening the bandwidth increases noise. In both these cases, the circuit noise increases,

and the NF decreases. The reason NF decreases is that the source noise makes up a larger
component of the total noise (which remains relatively constant because the ADC noise is
much greater than the source noise); therefore, according to the calculation, NF decreases, but
actual circuit noise increases.

It is true that on a standalone basis ADCs have relatively high noise figures compared to other
RF parts such as LNAs or mixers. In the system the ADC should be preceded with low noise
gain blocks as shown in the example of Figure 1.75. Noise figure considerations for ADCs are
summarized in Figure 1.76.

G1ys = 250B G245 = 0B |
RL
NF1 = 4dB NF2 = 30dB

=10%5/10 = 1025 = 316, F1 = 10%10= 104 = 2 51
G2 =1, F2 = 103910 = 103 = 1000

F2 —1 — o057 4+ 1000 —1

=F1+ .
Fr=F1+ 51 316

= 251 +3.16 = 5.67

NFy = 10 logy45.67 = 7.53 dB

* The first stage dominates the overall NF
* |t should have the highest gain possible with the lowest NF possible

Figure 1.75: Example of two-stage cascaded network

* NF decreases with increasing source resistance.

* NF decreases with increasing ADC input bandwidth if there is no
input filtering.

¢ In both cases, the circuit noise increases, and the NF decreases.

* The reason NF decreases is that the source noise makes up a larger
component of the total noise (which remains relatively constant
because the ADC noise is much greater than the source noise).

* In practice, input filtering is used to limit the input noise bandwidth
and reduce overall system noise.

* ADCs have relatively high NF compared to other RF parts. In the
system the ADC should be preceded with low-noise gain blocks.

* Exercise caution when using NF.

Figure 1.76: Noise figure considerations for ADCs: summary and caution
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1.3.3.12 Aperture Time, Aperture Delay Time, and Aperture Jitter

Perhaps the most misunderstood and misused ADC and sample-and-hold (or track-and-
hold) specifications are those that include the word aperture. The most essential dynamic
property of a SHA is its ability to disconnect quickly the hold capacitor from the input buffer
amplifier as shown in Figure 1.77. The short (but non-zero) interval required for this action
is called aperture time (or sampling aperture), t,. The actual value of the voltage held at the
end of this interval is a function of both the input signal slew rate and the errors introduced
by the switching operation itself. Figure 1.77 shows what happens when the hold command
is applied with an input signal of two arbitrary slopes labeled as 1 and 2. For clarity, the
sample-to-hold pedestal and switching transients are ignored. The value that is finally held is
a delayed version of the input signal, averaged over the aperture time of the switch as shown
in Figure 1.77. The first-order model assumes that the final value of the voltage on the hold
capacitor is approximately equal to the average value of the signal applied to the switch over
the interval during which the switch changes from a low to high impedance (t,).

The model shows that the finite time required for the switch to open (t,) is equivalent to
introducing a small delay (t.) in the sampling clock driving the SHA. This delay is constant
and may be either positive or negative. The diagram shows that the same value of t, works for
the two signals, even though the slopes are different. This delay is called effective aperture
delay time, aperture delay time, or simply aperture delay, t.. In an ADC, the aperture delay

Analog / t, = Aperture time
delay, ty, Aperture , tga = Apglog delay
Input time, t, Pt [+ tyg = Digital delay

signal e N ! te = ty/2 = Aperture delay
Q—|>—//Of|>—0 / Time for ty,= tyq

i ;gohold R R @
Input ‘ K \

sampling ! Voltage on
clock ; hold capacitor
o— Sd"‘."t"h Switch v

river . . (1)

input signals Q/

%K—J .
Digital \
delay, tyq ts' = Aperture delay

time referenced to inputs

1 ta
te' = tyg ~lgat 5~

Hold

[ty >

Switch Sample
driver output

Figure 1.77: Sample-and-hold waveforms and definitions
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time is referenced to the input of the converter, and the effects of the analog propagation
delay through the input buffer, ty, and the digital delay through the switch driver, tyy, must be
considered. Referenced to the ADC inputs, aperture time, t.’, is defined as the time difference
between the analog propagation delay of the front-end buffer, ty,, and the switch driver digital
delay, tyq, plus one-half the aperture time, t,/2.

The effective aperture delay time is usually positive, but may be negative if the sum of one-
half the aperture time, t,/2, and the switch driver digital delay, tyg4, is less than the propagation
delay through the input buffer, ty,. The aperture delay specification thus establishes when the
input signal is actually sampled with respect to the sampling clock edge.

Aperture delay time can be measured by applying a bipolar sinewave signal to the ADC and
adjusting the synchronous sampling clock delay such that the output of the ADC is midscale
(corresponding to the zero-crossing of the sinewave). The relative delay between the input
sampling clock edge and the actual zero-crossing of the input sinewave is the aperture delay
time (see Figure 1.78).

Aperture delay produces no errors (assuming it is relatively short with respect to the

hold time), but acts as a fixed delay in either the sampling clock input or the analog input
(depending on its sign). However, in simultaneous sampling applications or in direct I/Q
demodulation where two or more ADCs must be well matched, variations in the aperture
delay between converters can produce errors on fast slewing signals. In these applications,
the aperture delay mismatches must be removed by properly adjusting the phases of the
individual sampling clocks to the various ADCs.

-~ +FS
\|
Analog input Zero crossing
sinewave oV
\
\
-FS
+ty < -t
Sampling
clock
st |e—

Figure 1.78: Effective aperture delay time measured with respect to ADC input
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If, however, there is sample-to-sample variation in aperture delay (aperture jitter), a
corresponding voltage error is produced as shown in Figure 1.79. This sample-to-sample
variation in the instant the switch opens is called aperture uncertainty, or aperture jitter and is
usually measured in rms picoseconds. The amplitude of the associated output error is related
to the rate-of-change of the analog input. For any given value of aperture jitter, the aperture
jitter error increases as the input dv/dt increases. The effects of phase jitter on the external
sampling clock (or the analog input for that matter) produce exactly the same type of error.

The effects of aperture and sampling clock jitter on an ideal ADC’s SNR can be predicted by
the following simple analysis. Assume an input signal given by

v(t) = Vgsin2rft (1.29)

The rate of change of this signal is given by:

dv/dt = 2nfVycos2rft (1.30)

The rms value of dv/dt can be obtained by dividing the amplitude, 2wfV, by V2
dv/dt| =27V, /N2 (1.31)

Av=d—v X At
dt

Analog
input

Avgys = Aperture jitter error

held
output

******* ENominal

<— Atgus = Aperture jitter

Hold

Figure 1.79: Effects of aperture jitter and sampling clock jitter
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Now let Av,,,; = the rms voltage error and A t = the rms aperture jitter t;, and substitute:

AVt = 27V /N2 (1.32)

Solving for Av,,g:

AV = 27Vt /N2 (1.33)

The rms value of the full-scale input sinewave is V_/ V2 , therefore the rms signal to rms
noise ratio is given by:

Vo /2

2nf Vot; /N2

= 20log,, (1.34)

= 20log,, 5 {f

’ntj

rms

This equation assumes an infinite-resolution ADC where aperture jitter is the only factor
in determining the SNR. This equation is plotted in Figure 1.80 and shows the serious

120

1
SNR = 20log4o |: 2nift, :| 418

100

SNR - dB
IS[O\E|

20 | | |

[ I I
1 3 10 30 100

Full-scale sinewave analog input frequency - MHz

Figure 1.80: Theoretical SNR and ENOB due to jitter versus full-scale

sinewave input frequency
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effects of aperture and sampling clock jitter on SNR, especially at higher input/output
frequencies. Therefore, extreme care must be taken to minimize phase noise in the sampling/
reconstruction clock of any sampled data system.

This care must extend to all aspects of the clock signal: the oscillator itself (for example, a 555
timer is absolutely inadequate, but even a quartz crystal oscillator can give problems if it uses
an active device that shares a chip with noisy logic); the transmission path (these clocks are
very vulnerable to interference of all sorts), and phase noise introduced in the ADC or DAC.
As discussed, a very common source of phase noise in converter circuitry is aperture jitter in
the integral sample-and-hold (SHA) circuitry; however, the total rms jitter will be composed
of a number of components—the actual SHA aperture jitter often being the least of them.

1.3.3.13 A Simple Equation for the Total SNR of an ADC

A relatively simple equation for the ADC SNR in terms of sampling clock and aperture jitter,
DNL, effective input noise, and the number of bits of resolution is shown in Figure 1.81.

The equation combines the various error terms on an rss basis. The average DNL error, &,

is computed from histogram data. This equation is used in Figure 1.82 to predict the SNR
performance of the AD6645 14-bit, 80 MSPS ADC as a function of sampling clock and
aperture jitter.

Before the 1980s, most sampling ADCs were generally built up from a separate SHA
and ADC. Interface design was difficult, and a key parameter was aperture jitter in the

Sampling Quantization Effective

clock jitter noise, DNL input noise
1

]2
of1+el 2 X2 X Vyoise
SNR =—2010gyg | (21 X fa X t e)? + — o %Pms
3 2N 2N

—

a = Analog input frequency of full-scale input sinewave

i rms = Combined rms jitter of internal ADC and external clock

€ = Average DNL of the ADC (typically 0.41 LSB for AD6645)

N = Number of bits in the ADC

Vnoiserms = Effective input noise of ADC (typically 0.9LSB rms for AD6645)

—

If t=0,e=0, and Vnoisem = 0, the above equation reduces to the familiar:
SNR =6.02 N + 1.76dB

Figure 1.81: Relationship between SNR, sampling clock jitter, quantization
noise, DNL, and input noise
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SHA. Today, almost all sampled data systems use sampling ADCs that contain an integral
SHA. The aperture jitter of the SHA may not be specified as such, but this is not a cause

of concern if the SNR or ENOB is clearly specified, since a guarantee of a specific SNR

is an implicit guarantee of an adequate aperture jitter specification. However, the use of an
additional high-performance SHA will sometimes improve the high frequency ENOB of even
the best sampling ADC by presenting “DC” to the ADC, and may be more cost effective than
replacing the ADC with a more expensive one.

1.3.3.14 ADC Transient Response and Overvoltage Recovery

Most high-speed ADCs designed for communications applications are specified primarily in
the frequency domain. However, in general-purpose data acquisition applications the transient
response (or settling time) of the ADC is important. The transient response of an ADC is the
time required for the ADC to settle to rated accuracy (usually 1 LSB) after the application
of a full-scale step input. The typical response of a general-purpose 12-bit, 10 MSPS ADC
is shown in Figure 1.83, showing a 1 LSB settling time of less than 40 ns. The settling time
specification is critical in the typical data acquisition system application where the ADC is
being driven by an analog multiplexer as shown in Figure 1.84. The multiplexer output can
deliver a full-scale sample-to-sample change to the ADC input. If both the multiplexer and
the ADC have not settled to the required accuracy, channel-to-channel crosstalk will result,
even though only DC or low frequency signals are present on the multiplexer inputs.

80
s \.\‘*-.. — | AN=30MH:
\ M —
\\\ AIN = 70 MHz
» 70 = ~]
T AIN = 110 MHz \
& 65 | . o~
AIN = 150MHz = )s \\
AIN = Lgo MHZ”| \\
60
55
0 0.1 0.2 0.3 0.4 05 0.6
Jitter—ps

Figure 1.82: AD6645 SNR versus jitter
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Figure 1.83: ADC transient response (settling time)
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Figure 1.84: Settling time is critical in multiplexed applications

Most ADCs have settling times which are less than 1/f; ..., even if not specified. However
sigma-delta ADCs have a built-in digital filter that can take several output sample intervals
to settle. This should be kept in mind when using sigma-delta ADCs in multiplexed
applications.
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Resolution, # of time
# of bits LSB (%FS) constants
6 1.563 4.16
8 0.391 5.55
10 0.0977 6.93
12 0.0244 8.32
14 0.0061 9.70
16 0.00153 11.09
18 0.00038 12.48
20 0.000095 13.86
22 0.000024 15.25

Figure 1.85: Settling time as function of time constant for various resolutions

The importance of settling time in multiplexed systems can be seen in Figure 1.85, where the
ADC input is modeled as a single-pole filter having a corresponding time constant, T = RC.
The required number of time constants to settle to a given accuracy (1 LSB) is shown. A
simple example will illustrate the point.

Assume a multiplexed 16-bit data acquisition system uses an ADC with a sampling frequency
f, = 100kSPS. The ADC must settle to 16-bit accuracy for a full-scale step function input in
less than 1/f; = 10ps. The chart shows that 11.09 time constants are required to settle to 16-bit
accuracy. The input filter time constant must therefore be less than T = 10us/11.09 = 900ns.
The corresponding rise time t, = 2.2 = 1.98 ps. The required ADC full power input
bandwidth can now be calculated from BW = 0.35/t, = 177 kHz. This neglects the settling
time of the multiplexer and second-order settling time effects in the ADC.

Overvoltage recovery time is defined as that amount of time required for an ADC to achieve
a specified accuracy, measured from the time the overvoltage signal re-enters the converter’s
range, as shown in Figure 1.86. This specification is usually given for a signal that is some
stated percentage outside the ADC’s input range. Needless to say, the ADC should act as an
ideal limiter for out-of-range signals and should produce either the positive full-scale code or
the negative full-scale code during the overvoltage condition. Some converters provide over-
and underrange flags to allow gain-adjustment circuits to be activated. Care should always be
taken to avoid overvoltage signals that will damage an ADC input.

1.3.3.15 ADC Sparkle Codes, Metastable States, and Bit Error Rate (BER)

A primary concern in the design of many digital communications systems using ADC:s is the bit
error rate (BER). Unfortunately, ADCs contribute to the BER in ways that are not predictable
by simple analysis. This section describes the mechanisms within the ADCs that can contribute
to the error rate, ways to minimize the problem, and methods for measuring the BER.
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Random noise, regardless of the source, creates a finite probability of errors (deviations from
the expected output). Before describing the error code sources, however, it is important to
define what constitutes an ADC error code. Noise generated prior to or inside the ADC can

be analyzed in the traditional manner. Therefore, an ADC error code is any deviation from the
expected output that is not attributable to the equivalent input noise of the ADC. Figure 1.87
illustrates an exaggerated output of a low amplitude sinewave applied to an ADC that has error
codes. Note that the noise of the ADC creates some uncertainty in the output. These anomalies
are not considered error codes, but are simply the result of ordinary noise and quantization.
The large errors are more significant and are not expected. These errors are random and so
infrequent that an SNR test of the ADC will rarely detect them. These types of errors plagued
a few of the early ADCs for video applications, and were given the name sparkle codes

ADC input ADC should
\// read FS code

+FS
I
I
]
1
I
1
]
I
1
— FS s ion s +
: Overvoltage :
i recovery
: time !

Figure 1.86: Overvoltage recovery time

Error codes

(sparkle codes,
flyers, rabbits)

Low amplitude /

digitized sinewave

Figure 1.87: Exaggerated output of ADC showing error codes
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because of their appearance on a TV screen as small white dots or “sparkles” under certain
test conditions. These errors have also been called rabbits or flyers. In digital communications
applications, this type of error increases the overall system bit error rate (BER).

In order to understand the causes of the error codes, we will first consider the case of a

simple Flash converter. The comparators in a Flash converter are latched comparators usually
arranged in a master-slave configuration. If the input signal is in the center of the threshold of
a particular comparator, that comparator will balance, and its output will take a longer period
of time to reach a valid logic level after the application of the latch strobe than the outputs

of its neighboring comparators which are being overdriven. This phenomenon is known as
metastability and occurs when a balanced comparator cannot reach a valid logic level in the
time allowed for decoding. If simple binary decoding logic is used to decode the thermometer
code, a metastable comparator output may result in a large output code error. Consider the
case of a simple 3-bit Flash converter shown in Figure 1.88. Assume that the input signal

Analog 0 111 Wired - or
input o
0 110
0 101
X 100
X 011
0 010
0 001
T 1
~On
One-hot © o o
X = Metastable out of Bit 1 Bit 2 Bit 3
~Vr state 7 code Binary output

000, 011, 100, or 111

Figure 1.88: Metastable comparator output states may cause error

codes in data converters
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is exactly at the threshold of Comparator 4 and random noise is causing the comparator to
toggle between a “1” and a “0” output each time a latch strobe is applied. The corresponding
binary output should be interpreted as either 011 or 100. If, however, the comparator output
is in a metastable state, the simple binary decoding logic shown may produce binary codes
000, 011, 100, or 111. The codes 000 and 111 represent a one-half scale departure from the
expected codes.

The probability of errors due to metastability increases as the sampling rate increases because
less time is available for a metastable comparator to settle.

Various measures have been taken in Flash converter designs to minimize the metastable state
problem. Decoding schemes described in References 12 to 15 minimize the magnitude of
these errors. Optimizing comparator designs for regenerative gain and small time constants is
another way to reduce these problems.

Metastable state errors may also appear in successive approximation and subranging ADCs
that make use of comparators as building blocks. The same concepts apply, although the
magnitudes and locations of the errors may be different.

The test system shown in Figure 1.89 may be used to test for BER in an ADC. The analog
input to the ADC is provided by a high stability low noise sinewave generator. The analog
input level is set slightly greater than full-scale, and the frequency such that there is always
slightly less than 1 LSB change between samples as shown in Figure 1.90.

A Logic
. N
Sinewave Buffer Buffer B |A-B| > X
source ADC reg. N reg. ?
f, Yes
- Error
Timing counter

E = Number of errors in interval T

Ber =
2T fg

Figure 1.89: ADC bit error rate test setup
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The test set uses series latches to acquire successive codes A and B. A logic circuit
determines the absolute difference between A and B. This difference is then compared to the
error limit, chosen to allow for expected random noise spikes and ADC quantization errors.
Errors that cause the difference to be larger than the limit will increment the counters. The
number of errors, E, are counted over a period of time, T. The error rate is then calculated as
BER = E/2Tf,. The factor of 2 in the denominator is required because the hardware records
a second error when the output returns to the correct code after making the initial error. The
error counter is therefore incremented twice for each error. It should be noted that the same
function can be accomplished in software if the ADC outputs are stored in a memory and
analyzed by a computer program.

The input frequency must be carefully chosen such that at least one sample is taken per code.

Assume a full-scale input sinewave having an amplitude of 21V/2:

N

27
v(t) = 751n2ﬁft (1.35)
The maximum rate of change of this signal is
dv
= =2Ngf (1.36)
dt |«
fs
— =
Slow () 2
analog \
input
Analog changes < 1 LSB
ol 1
Tl

-
clock

Figure 1.90: ADC analog signal for low frequency BER test
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Letting dv = 1 LSB, dt = 1/f,, and solving for the input frequency:

(o< s (1.37)

mn
2Nx

Choosing an input frequency less than this value will ensure that there is at least one sample
per code. The same test can be conducted at high frequencies by applying an input frequency
slightly offset from fy/2 as shown in Figure 1.91. This causes the ADC to slew full-scale
between conversions. Every other conversion is compared, and the “beat” frequency is chosen
such that there is slightly less than 1 LSB change between alternate samples. The equation for
calculating the proper frequency for the high frequency BER test is derived as follows.

Assume an input full-scale sinewave of amplitude 2™/2 whose frequency is slightly less than
f/2 by a frequency equal to Af.

N f,
v(t) = —sin|27w| = — Af |t (1.38)
2 2
The maximum rate of change of this signal is:
R AR LN, (1.39)
dt ] . 2

Analog changes
<1LSB

clock

Figure 1.91: ADC analog input for high frequency BER Test
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Letting dv = 1 LSB and dt = 2/f,, and solving for the input frequency Af:

f
Afszs[l——z 12N ] (1.40)
X ™

Establishing the BER of a well-behaved ADC is a difficult, time-consuming task; a single unit
can sometimes be tested for days without an error. For example, tests on a typical 8-bit Flash
converter operating at a sampling rate of 75 MSPS yield a BER of approximately 3.7X107!2
(1 error per hour) with an error limit of 4 LSBs. Meaningful tests for longer periods of time
require special attention to EMI/RFI effects (possibly requiring a shielded screen room),
isolated power supplies, isolation from soldering irons with mechanical thermostats, isolation
from other bench equipment, etc. Figure 1.92 shows the average time between errors as

a function of BER for a sampling frequency of 75 MSPS. This illustrates the difficulty in
measuring low BER because the long measurement times increase the probability of power
supply transients, noise, etc., causing an error.

1.3.4 DAC Dynamic Performance

The AC specifications most likely to be important with DACs are settling time, glitch impulse
area, distortion, and Spurious Free Dynamic Range (SFDR).

1.3.4.1 DAC Settling Time

The input to output settling time of a DAC is the time from a change of digital code (t = 0) to
when the output comes within and remains within some error band as shown in Figure 1.93.
With amplifiers, it is hard to make comparisons of settling time, since their specified error bands
may differ from amplifier to amplifier, but with DACs the error band will almost invariably be

Bit error rate (BER) Average time between errors
1x 1078 1.3 seconds
1x107° 13.3 seconds
1x 10710 2.2 minutes
1x 107" 22 minutes
1x 10712 3.7 hours
1x 10718 1.5 days
1x 10" 15 days

Figure 1.92: Average time between errors versus BER when sampling at 75 MSPS
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specified as =1 or =2 LSB. Note that in some cases, the output settling time may be of more
interest, in which case it is referenced to the time the output first leaves the error band.

The input to output settling time of a DAC is made up of four different periods: the switching
time or dead time (during which the digital switching, but not the output, is changing), the
slewing time (during which the rate of change of output is limited by the slew rate of the
DAC output), the recovery time (when the DAC is recovering from its fast slew and may
overshoot), and the linear settling time (when the DAC output approaches its final value in
an exponential or near-exponential manner). If the slew time is short compared to the other
three (as is usually the case with current output DACs), the settling time will largely be
independent of the output step size. On the other hand, if the slew time is a significant part of
the total, the larger the step, the longer the settling time.

Settling time is especially important in video display applications. For example a

standard 1024 X 768 display updated at a 60 Hz refresh rate must have a pixel rate of

1024 X 768 X 60Hz = 47.2 MHz with no overhead. Allowing 35% overhead time increases
the pixel frequency to 64 MHz corresponding to a pixel duration of 1/(64 X 10%) = 15.6ns.
In order to accurately reproduce a single fully-white pixel located between two black pixels,
the DAC settling time should be less than the pixel duration time of 15.6ns.

Error band

Settling
time (output)

! Dead Slew Recovery Linear
i time time time settling
— Settling time (input to output) —>

Figure 1.93: DAC settling time
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Higher resolution displays require even faster pixel rates. For example, a 2048 X 2048
display requires a pixel rate of approximately 330 MHz at a 60 Hz refresh rate.

1.3.4.2 Glitch Impulse Area

Ideally, when a DAC output changes it should move from one value to its new one
monotonically. In practice, the output is likely to overshoot, undershoot, or both (Figure 1.94).
This uncontrolled movement of the DAC output during a transition is known as a glitch.

It can arise from two mechanisms: capacitive coupling of digital transitions to the analog
output, and the effects of some switches in the DAC operating more quickly than others and
producing temporary spurious outputs.

Capacitive coupling frequently produces roughly equal positive and negative spikes (sometimes
called a doublet glitch) which more or less cancel in the longer term. The glitch produced by
switch timing differences is generally unipolar, much larger, and of greater concern.

Glitches can be characterized by measuring the glitch impulse area, sometimes inaccurately
called glitch energy. The term glitch energy is a misnomer, since the unit for glitch impulse
area is volt-seconds (or more probably pV-sec or pV-sec. The peak glitch area is the area

of the largest of the positive or negative glitch areas. The glitch impulse area is the net area
under the voltage-versus-time curve and can be estimated by approximating the waveforms
by triangles, computing the areas, and subtracting the negative area from the positive area as
shown in Figure 1.95.

The midscale glitch produced by the transition between the codes 0111...111 and 1000...000
is usually the worst glitch because all switches are changing states. Glitches at other code
transition points (such as 1/4 and 3/4 full scale) are generally less. Figure 1.96 shows the
midscale glitch for a fast low glitch DAC. The peak and net glitch areas are estimated using
triangles as described above. Settling time is measured from the time the waveform leaves the

A Transition with A Transition with
doublet glitch unipolar (skew) glitch

A Ideal transition

3>
>

t t

\4

—~+ Vv

Figure 1.94: DAC transitions (showing glitch)
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® Peak glitch impulse area = A1 = e
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¢ Net glitch impulse area = A1 — A2 = % o

Figure 1.95: Calculating net glitch impulse area

I I I
Settling time = 4.5ns
Net glitch area = 1.34 pV-s
Peak glitch area = 1.36 pV-s

2 mV/division l - -‘ _\_Uﬂ\_/ NP l

_____/_'\__/“___-____T_ 1LSB
— \J I T
'T“ """ -7 7]° 1LsSB
1LSB
| 5 ns/division
—> =4.5ns «——

Figure 1.96: DAC midscale glitch shows 1.34 pV-s net impulse area and settling
time of 4.5ns

initial 1 LSB error band until it enters and remains within the final 1 LSB error band. The step
size between the transition regions is also 1 LSB.

1.3.4.3 DAC SFDR and SNR

DAC settling time is important in applications such as RGB raster scan video display
drivers, but frequency-domain specifications such as SFDR are generally more important in
communications.
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Figure 1.97: Effect of code-dependent glitches on spectral output

If we consider the spectrum of a waveform reconstructed by a DAC from digital data, we

find that in addition to the expected spectrum (which will contain one or more frequencies,
depending on the nature of the reconstructed waveform), there will also be noise and
distortion products. Distortion may be specified in terms of harmonic distortion, Spurious
Free Dynamic Range (SFDR), intermodulation distortion, or all of the above. Harmonic
distortion is defined as the ratio of harmonics to fundamental when a (theoretically) pure sine
wave is reconstructed, and is the most common specification. Spurious free dynamic range is
the ratio of the worst spur (usually, but not necessarily always a harmonic of the fundamental)
to the fundamental.

Code-dependent glitches will produce both out-of-band and in-band harmonics when the
DAC is reconstructing a digitally generated sinewave as in a Direct Digital Synthesis (DDS)
system. The midscale glitch occurs twice during a single cycle of a reconstructed sinewave
(at each midscale crossing), and will therefore produce a second harmonic of the sinewave, as
shown in Figure 1.97. Note that the higher order harmonics of the sinewave, which alias back
into the Nyquist bandwidth (DC to f/2), cannot be filtered.

It is difficult to predict the harmonic distortion or SFDR from the glitch area specification
alone. Other factors, such as the overall linearity of the DAC, also contribute to distortion as
shown in Figure 1.98. In addition, certain ratios between the DAC output frequency and the
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* Resolution

* Integral nonlinearity

* Differential nonlinearity

¢ Code-dependent glitches

* Ratio of clock frequency to output frequency (even in an ideal DAC)
* Mathematical analysis is difficult

Figure 1.98: Contributors to DDS DAC distortion
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Figure 1.99: Test setup for measuring DAC SFDR

sampling clock cause the quantization noise to concentrate at harmonics of the fundamental
thereby increasing the distortion at these points.

It is therefore customary to test reconstruction DACs in the frequency domain (using a
spectrum analyzer) at various clock rates and output frequencies as shown in Figure 1.99.
Typical SFDR for the 16-bit AD9777 Transmit TxDAC is shown in Figure 1.100. The clock
rate is 160 MSPS, and the output frequency is swept to S0 MHz.As in the case of ADCs,
quantization noise will appear as increased harmonic distortion if the ratio between the
clock frequency and the DAC output frequency is an integer number. These ratios should be
avoided when making the SFDR measurements.

There is nearly an infinite combination of possible clock and output frequencies for a

low distortion DAC, and SFDR is generally specified for a limited number of selected
combinations. For this reason, Analog Devices offers fast turnaround on customer-specified
test vectors for the Transmit TXDAC family. A test vector is a combination of amplitudes,
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Figure 1.100: AD9777 16-bit TxDAC SFDR, data update rate = 160 MSPS

output frequencies, and update rates specified directly by the customer for SFDR data on a
particular DAC.

1.3.4.4 Measuring DAC SNR with an Analog Spectrum Analyzer

Analog spectrum analyzers are used to measure the distortion and SFDR of high performance
DAC:s. Care must be taken that the front end of the analyzer is not overdriven by the
fundamental signal. If overdrive is a problem, a band-stop filter can be used to filter out the
fundamental signal so the spurious components can be observed.

Spectrum analyzers can also be used to measure the SNR of a DAC provided attention is
given to bandwidth considerations. SNR of an ADC is normally defined as the signal-to-noise
ratio measured over the Nyquist bandwidth DC to f/2. However, spectrum analyzers have

a resolution bandwidth less than f/2—this therefore lowers the analyzer noise floor by the
process gain equal to 10 log;o[f/(2 X BW)], where BW is the resolution noise bandwidth of
the analyzer (Figure 1.101).

It is important that the noise bandwidth (not the 3-dB bandwidth) be used in the calculation;
however, from Figure 1.68 the error is small assuming that the analyzer narrowband filter

is at least two poles. The ratio of the noise bandwidth to the 3-dB bandwidth of a one-pole
Butterworth filter is 1.57 (causing an error of 1.96dB in the process gain calculation). For a
two-pole Butterworth filter, the ratio is 1.11 (causing an error of 0.45dB in the process gain
calculation).
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Figure 1.101: Measuring DAC SNR with an Analog spectrum analyzer

1.3.4.5 DAC Output Spectrum and sin (x)/x Frequency Roll-off

The output of a reconstruction DAC can be represented as a series of rectangular pulses
whose width is equal to the reciprocal of the clock rate as shown in Figure 1.102. Note that
the reconstructed signal amplitude is down 3.92dB at the Nyquist frequency, f./2. An inverse
sin(x)/x filter can be used to compensate for this effect in most cases. The images of the
fundamental signal occur as a result of the sampling function and are also attenuated by the
sin(x)/x function.

1.3.4.6 Oversampling Interpolating DACs

In ADC-based systems, oversampling can ease the requirements on the antialiasing filter. In
a DAC-based system (such as DDS), the concept of interpolation can be used in a similar
manner. This concept is common in digital audio CD players, where the basic update rate

of the data from the CD is 44.1 kSPS. Early CD players used traditional binary DACs and
inserted ‘“Zeros” into the parallel data, thereby increasing the effective update rate to 4 times,
8 times, or 16 times the fundamental throughput rate. The 4 X, 8 X, or 16X data stream is
passed through a digital interpolation filter that generates the extra data points. The high
oversampling rate moves the image frequencies higher, thereby allowing a less complex filter
with a wider transition band. The sigma-delta 1-bit DAC architecture uses a much higher
oversampling rate and represents the ultimate extension of this concept and has become
popular in modern CD players.
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Figure 1.102: DAC sin (x)/x roll-off (amplitude normalized)

The same concept of oversampling can be applied to high speed DACs used in
communications applications, relaxing the requirements on the output filter as well as
increasing the SNR due to process gain.

Assume a traditional DAC is driven at an input word rate of 30 MSPS (Figure 1.103A).
Assume the DAC output frequency is 10 MHz.The image frequency component at

30 — 10 = 20MHz must be attenuated by the analog antialiasing filter, and the transition band
of the filter is 10 to 20 MHz.Assume that the image frequency must be attenuated by 60 dB.
The filter must therefore go from a pass band of 10 MHz to 60dB stopband attenuation over
the transition band lying between 10 and 20 MHz (one octave). A filter gives 6 dB attenuation
per octave for each pole. Therefore, a minimum of 10 poles is required to provide the desired
attenuation. Filters become even more complex as the transition band becomes narrower.

Assume that the DAC update rate is increased to 60 MSPS and insert a “zero” between each
original data sample. The parallel data stream is now 60 MSPS, but must now be determined
the value of the zero-value data points. This is done by passing the 60 MSPS data stream with
the added zeros through a digital interpolation filter that computes the additional data points.
The response of the digital filter relative to the 2 times oversampling frequency is shown in
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Figure 1.103: Analog filter requirements for f,=10MHz: (A) f.=30 MSPS, and (B) f.=60 MSPS

Figure 1.103B. The analog antialiasing filter transition zone is now 10 to 50 MHz (the first
image occurs at 2f, — f, = 60 — 10 = 50 MHz). This transition zone is a little greater than
two octaves, implying that a 5- or 6-pole filter is sufficient.

The AD9773/AD9775/AD9777 (12-/14-/16-bit) series of Transmit DACs (TxDAC) are
selectable 2X, 4 X, or 8 X oversampling interpolating dual DACs, and a simplified block
diagram is shown in Figure 1.104. These devices are designed to handle 12-/14-/16-bit input
word rates up to 160 MSPS. The output word rate is 400 MSPS maximum. For an output
frequency of S0 MHz, an input update rate of 160 MHz, and an oversampling ratio of 2X, the
image frequency occurs at 320MHz — 50 MHz = 270 MHz. The transition band for the analog
filter is therefore 50 MHz to 270 MHz. Without 2 X oversampling, the image frequency occurs at
160MHz — 50MHz = 110MHz, and the filter transition band is 50 MHz to 110 MHz.

Notice also that an oversampling interpolating DAC allows both a lower frequency input
clock and input data rate, which are much less likely to generate noise within the system.
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Figure 1.104: Oversampling interpolating TxDAC simplified block diagram

1.4 General Data Converter Specifications
1.4.1 Overall Considerations

Data converters, as we have observed, have a digital port and an analog port and, like all
integrated circuits, they require power supplies and will draw current from those supplies.
Data converter specifications will therefore include the usual specifications common to any
integrated circuit, including supply voltage and supply current, logic interfaces, power on
and standby timing, package and thermal issues and ESD. We shall not consider these at any
length, but there are some issues that may require a little consideration.

An overriding piece of advice here is read the data sheet. There is no excuse for being
unaware of the specifications of a device for which one owns a data sheet—and it is often
possible to deduce extra information that is not printed on it by understanding the issues and
conventions involved in preparing it.

Traditional precision analog integrated circuits (which include amplifiers, converters, and
other devices) were designed for operation from supplies of =15V, and many (but not all—it
is important to check with the data sheet) would operate within specification over quite a wide
range of supply voltages. Today the processes used for many, but by no means all, modern
converters have low breakdown voltages and absolute maximum ratings of only a few volts.
Converters built with these processes may only work to specification over a narrow range of
supply voltages.
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It is therefore important when selecting a data converter to check both the absolute maximum
supply voltage(s) and the range of voltages where correct operation can be expected. Some
low-voltage devices work equally well with both 5V and 3.3V supplies, others are sold in 5V
and 3.3V versions with different suffixes on their part numbers—with these it is important to
use the correct one.

Absolute maximum ratings are ratings that can never be exceeded without grave risk of
damage to the device concerned—they are not safe operating limits, but they are conservative.
Integrated circuit manufacturers try to set absolute maximum ratings so that every device they
manufacture will survive brief exposures to absolute maximum conditions. As a result many
devices will, in fact, appear to operate safely and continuously outside the permitted limits.
Good engineers do not take advantage of this for three reasons: (1) components are not tested
outside their absolute maximum limits so, although they may be operating, they may not be
operating at their specified accuracy. Also the damage done by incorrect operation may not
be immediately fatal, but may cause low levels of disruption which, in turn, may (2) shorten
the device’s life, or (3) may affect its subsequent accuracy even when it is operated within
specification again. None of these effects is at all desirable and absolute maximum ratings
should always be respected.

The supply current in a data converter specification is usually the no-load current—i.e., the
current consumption when the data converter output is driving a high impedance or open-
circuit load. CMOS logic, and to a lesser extent some other types, have current consumption
that is proportional to clock speed so a CMOS data converter current may be defined at a
specific clock frequency and will be higher if the clock runs faster. Current consumption will
also be higher when the output (or the reference output if there is one, or both) is loaded.
There may be another figure for “standby” current—the current that flows when the data
converter is connected to a power supply but is internally shut down into a non-operational
low power state to conserve current.

When power is first applied to some data converters they may take several tens, hundreds, or
even thousands of microseconds for their reference and amplifier circuitry to stabilize and,
although this is less common, some may even take a long time to “wake up” from a power
saving standby mode. It is therefore important to ensure that data converters that have such
delays are not used in applications where full functionality is required within a short time of
power-up or wake-up.

All integrated circuits are vulnerable to electrostatic discharge (ESD), but precision analog
circuits are, on the whole, more vulnerable than some other types. This is because the
technologies available for minimizing such damage also tend to degrade the performance of
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precision circuitry, and there is a necessary compromise between robustness and performance.
It is always a good idea to ensure that when handling amplifiers, converters and other
vulnerable circuits the necessary steps are taken to avoid ESD.

Specifications of packages, operating temperature ranges, and similar issues, although
important, do not need further discussion here.

1.4.2 Logic Interface Issues

As it is important to read and understand power supply specifications, so it is equally
important to read and understand logic specifications. In the past most integrated circuit logic
circuitry (with the exception of emitter-coupled logic or ECL) operated from 5V supplies
and had compatible logic levels—with a few exceptions 5V logic would interface with other
5V logic. Today, with the advent of low voltage logic operating with supplies of 3.3V, 2.7V,
or even less, it is important to ensure that logic interfaces are compatible. There are several
issues which must be considered—absolute maximum ratings, worst-case logic levels, and
timing. The logic inputs of integrated circuits generally have absolute maximum ratings, as
do most other inputs, of 300mV outside the power supply. Note that these are instantaneous
ratings. If an IC has such a rating and is currently operating from a +5V supply, the logic
inputs may be between —0.3V and +5.3 V—but if the supply is not present, that input must
be between +0.3V and —0.3V, not the —0.3V to +5.3V which are the limits once the power
is applied—ICs cannot predict the future.

The reason for the rating of 0.3 V is to ensure that no parasitic diode on the IC is ever turned
on by a voltage outside the IC’s absolute maximum rating. It is quite common to protect an
input from such overvoltage with a Schottky diode clamp. At low temperatures the clamp
voltage of a Schottky diode may be a little more than 0.3V, and so the IC may see voltages
just outside its absolute maximum rating. Although, strictly speaking, this subjects the IC

to stresses outside its absolute maximum ratings and so is forbidden, this is an acceptable
exception to the general rule provided the Schottky diode is at a temperature similar to the IC
it is protecting (say within =10°C).

Some low voltage devices, however, have inputs with absolute maximum ratings that are
substantially greater than their supply voltage. This allows such circuits to be driven by higher
voltage logic without additional interface or clamp circuitry. But it is important to read the
data sheets and ensure that both logic levels and absolute maximum voltages are compatible
for all combinations of high and low supplies.

This is the general rule when interfacing different low voltage logic circuitry—it is always
necessary to check that at the lowest value of its power supply (a) the Logic 1 output from the
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driving circuit applied to its worst-case load is greater than the specified minimum Logic 1
input for the receiving circuit, and (b) with its output sinking maximum allowed current, the
logic O output is less than the specified Logic O input of the receiver. If the logic specifications
of the chosen devices do not meet these criteria it will be necessary to select different devices,
use different power supplies, or use additional interface circuitry to ensure that the required
levels are available. Note that additional interface circuitry introduces extra delays in timing.

It is not sufficient to build an experimental setup and test it. In general, logic thresholds are
generously specified and usually logic circuits will work correctly well outside their specified
limits—but it is not possible to rely on this in a production design. At some point a batch of
devices near the limit on low output swing will be required to drive some devices needing
slightly more drive than usual—and will be unable to do so.

1.4.3 Data Converter Logic: Timing and Other Issues

It is not the purpose of this brief section to discuss logic architectures, so we shall not define
the many different data converter logic interface operations and their timing specifications
except to note that data converter logic interfaces may be more complex than expected—read
the data sheet. Do not expect that because there is a pin with the same name on memory and
interface chips it will behave in exactly the same way in a data converter. Also, some data
converters reset to a known state on power-up but many more do not.

It is very necessary to consider general timing issues. The new low voltage processes used for
many modern data converters have a number of desirable features. One that is often overlooked
by users (but not by converter designers) is their higher logic speed. DACs built on older
processes frequently had logic that was orders of magnitude slower than the microprocessors
with which they interfaced, and it was sometimes necessary to use separate buffers, or multiple
WAIT instructions, to make the two compatible. Today it is much more common for the write
times of DACs to be compatible with those of the fast logic with which they interface.

Nevertheless, not all DACs are speed compatible with all logic interfaces, and it is still
important to ensure that minimum data setup times and write pulsewidths are observed.
Again, experiments will often show that devices work with faster signals than their
specification requires—but at the limits of temperature or supply voltage some may not, and
interfaces should be designed on the basis of specified rather than measured timing.

1.5 Defining the Specifications

The following list, in alphabetical order, should prove helpful regarding specifications and
their definitions. The original source for these definitions was provided by Dan Sheingold
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from Chapter 11 in his classic book Analog-to-Digital Conversion Handbook, Third Edition,
Prentice-Hall, 1986.

Accuracy, Absolute. Absolute accuracy error of a DAC is the difference between actual analog
output and the output that is expected when a given digital code is applied to the converter.
Error is usually commensurate with resolution, i.e., less 1/2 LSB of full-scale, for example.
However, accuracy may be much better than resolution in some applications; for example, a
4-bit DAC having only 16 discrete digitally chosen levels would have a resolution of 1/16, but
might have an accuracy to within 0.01 % of each ideal value.

Absolute accuracy error of an ADC at a given output code is the difference between the actual
and the theoretical analog input voltages required to produce that code. Since the code can

be produced by any analog voltage in a finite band (see Quantizing Uncertainty), the “input
required to produce that code” is usually defined as the midpoint of the band of inputs that
will produce that code. For example, if 5V, =1.2mV, will theoretically produce a 12-bit
half-scale code of 1000 0000 0000, then a converter for which any voltage from 4.997V to
4.999V will produce that code will have absolute error of (1/2)(4.997 + 4.999) — 5V = +2mV.

Sources of error include gain (calibration) error, zero error, linearity errors, and noise.
Absolute accuracy measurements should be made under a set of standard conditions with
sources and meters traceable to an internationally accepted standard.

Accuracy, Logarithmic DACs. The difference (measured in dB) between the actual transfer
function and the ideal transfer function, as measured after calibration of gain error at 0 dB.

Accuracy, Relative. Relative accuracy error, expressed in %, ppm, or fractions of 1 LSB, is
the deviation of the analog value at any code (relative to the full analog range of the device
transfer characteristic) from its theoretical value (relative to the same range), after the full-
scale range (FSR) has been calibrated (see Full-Scale Range).

Since the discrete analog values that correspond to the digital values ideally lie on a straight
line, the specified worst-case relative accuracy error of a linear ADC or DAC can be
interpreted as a measure of end-point nonlinearity (see Linearity).

The “discrete points” of a DAC transfer characteristic are measured by the actual analog
outputs. The “discrete points” of an ADC transfer characteristic are the midpoints of the
quantization bands at each code (see Accuracy, Absolute).

Acquisition Time. The acquisition time of a track-and-hold circuit for a step change is the time
required by the output to reach its final value, within a specified error band, after the track
command has been given. Included are switch delay time, the slewing interval, and settling
time for a specified output voltage change.
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Adjacent Channel Power Ratio (ACPR). The ratio in dBc between the measured power within
a channel relative to its adjacent channel. See Adjacent Channel Leakage Ratio (ACLR).

Adjacent Channel Leakage Ratio (ACLR). The ratio in dBc between the measured power
within the carrier bandwidth relative to the noise level in an adjacent empty carrier channel.
Both ACPR and ACLR are Wideband CDMA (WCDMA) specifications. The channel
bandwidth for WCDMA is approximately 3.84 MHz with 5 MHz spacing between channels.

Aliasing. A signal within a bandwidth f, must be sampled at a rate f,>>2f, in order to avoid the
loss of information. If f;<<2f,, a phenomenon called aliasing, inherent in the spectrum of the
sampled signal, will cause a frequency equal to f,—f,, called an alias, to appear in the Nyquist
bandwidth, DC to f/2. For example, if f, = 4kSPS and f, = 3kHz, a 1kHz alias will appear.
Note also that for f, = 1kHz (within the DC to f/2 bandwidth), an alias will occur at 3kHz
(outside the DC to f/2 bandwidth). Since noise is also aliased, it is essential to provide
low-pass (or band-pass) filtering prior to the sampling stage to prevent out-of-band noise on
the input signal from being aliased into the signal range and thereby degrading the SNR.

Analog Bandwidth. For an ADC, the analog input frequency at which the spectral power of
the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB. This can
be specified as full power bandwidth, or small signal bandwidth. (See also Bandwidth, Full
Linear and Bandwidth, Full Power.)

Analog Bandwidth, 0.1 dB. For an ADC, the analog input frequency at which the spectral
power of the fundamental frequency (as determined by the FFT analysis) is reduced

by 0.1dB. This is a popular video specification. (See also Bandwidth, Full Linear and
Bandwidth, Full Power.)

Aperture Time (classic definition). Aperture time in a sample-and-hold is defined as the time
required for the internal switch to switch from the closed position (zero resistance) to the
fully open position (infinite resistance). A first-order analysis that neglects nonlinear effects
assumes that the input signal is averaged over this time interval to produce the final output
signal. The analysis shows that this does not introduce an error as long as the switch opens in
a repeatable fashion, and as long as the aperture time is reasonably short with respect to the
hold time. There exists an effective sampling point in time that will cause an ideal sample-
and-hold to produce the same held voltage. The difference between this effective sampling
point and the actual sampling point is defined as effective aperture delay time.

Aperture Delay Time, or Effective Aperture Delay Time. In a sample-and-hold or track-and-
hold, there exists an effective sampling point in time that will cause an ideal sample-and-hold
to produce the same held voltage. The difference between this effective sampling point and
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the actual sampling point is defined as the aperture delay time or effective aperture delay
time. In a sampling ADC, aperture delay time can be measured by sampling the zero crossing
of a sinewave with a sampling clock locked to the sinewave. The phase of the sampling clock
is adjusted until the output of the ADC is 100...00. The time difference between the leading
edge of the sampling clock and the zero crossing of the sinewave—referenced to the analog
input—is the effective aperture delay time. A dual trace oscilloscope can be used to make the
measurement.

Aperture Uncertainty (or Aperture Jitter). The sample-to-sample variation in the sampling
point because of jitter. Aperture jitter is expressed as an rms quantity and produces a
corresponding rms voltage error in the sample-and-hold output. In an ADC it is caused by
internal noise and jitter in the sampling clock path from the sampling clock input pin to the
internal switch. Jitter in the external sampling clock produces the same type of error.

Automatic Zero. To achieve zero stability in many integrating-type converters, a time interval
is provided during each conversion cycle to allow the circuitry to compensate for drift errors.
The drift error in such converters is substantially zero. A similar function exists in many high
resolution sigma-delta ADCs.

Bandwidth, Full-Linear. The full-linear bandwidth of an ADC is the input frequency at which
the slew-rate limit of the sample-and-hold amplifier is reached. Up to this point, the amplitude
of the reconstructed fundamental signal will have been attenuated by less than 0.1 dB. Beyond
this frequency, distortion of the sampled input signal increases significantly.

Bandwidth, Full-Power (FPBW). The full-power bandwidth is that input frequency at which
the amplitude of the reconstructed fundamental signal (measured using FFTs) is reduced

by 3dB for a full-scale input. In order to be meaningful, the FPBW must be examined

in conjunction with the signal-to-noise ratio (SNR), signal-to-noise-plus-distortion ratio
(SINAD), effective number of bits (ENOB), and harmonic distortion in order to ascertain the
true dynamic performance of the ADC at the FPBW frequency.

Bandwidth, Analog Input Small-Signal. Analog input bandwidth is measured similarly

to FPBW at a reduced analog input amplitude. This specification is similar to the small
signal bandwidth of an op amp. The amplitude of the input signal at which the small signal
bandwidth is measured should be specified on the data sheet.

Bandwidth, Effective Resolution (ERB). Some ADC manufacturers define the frequency

at which SINAD drops 3 dB as the effective resolution bandwidth (ERB). This is the same
frequency at which the ENOB drops Y2 bit. This specification is a misnomer, however, since
bandwidth normally is associated with signal amplitude.
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Bias Current. The zero-signal DC current required from the signal source by the inputs of
many semiconductor circuits. The voltage developed across the source resistance by bias
current constitutes an (often negligible) offset error. When an instrumentation amplifier
performs measurements of a source that is remote from the amplifier’s power-supply, there
must be a return path for bias currents. If it does not already exist and is not provided, those
currents will charge stray capacitances, causing the output to drift uncontrollably or to
saturate. Therefore, when amplifying outputs of “floating” sources, such as transformers,
insulated thermocouples, and AC-coupled circuits, there must be a high impedance DC
leakage path from each input to common, or to the driven-guard terminal (if present). If a DC
return path is impracticable, an isolator must be used.

Bipolar Mode. (See Offset.)
Bipolar Offset. (See Offset.)

Bus. A bus is a parallel path of binary information signals—usually 4, 8, 16, 32, or 64-bits
wide. Three common types of information usually found on buses are data, addresses, and
control signals. Three-state output switches (inactive, high, and low) permit many sources—
such as ADCs—to be connected to a bus, while only one is active at any time.

Byte. A byte is a binary digital word, usually 8 bits wide. A byte is often part of a longer word
that must be placed on an 8-bit bus in two stages. The byte containing the MSB is called the
high byte; that containing the LSB is called the low byte. A 4-bit byte is called a nibble on an
8-bit or greater bus.

Channel-to-Channel Isolation. In multiple DACs, the proportion of analog input signal
from one DAC’s reference input that appears at the output of the other DAC, expressed
logarithmically in dB. See also crosstalk.

Charge Transfer, Charge Injection (or Offset Step). The principal component of sample-
to-hold offset (or pedestal) is the small charge transferred to the storage capacitor via
interelectrode capacitance of the switch and stray capacitance when switching to the hold
mode. The offset step is directly proportional to this charge:

Offset error=Incremental Charge/Capacitance=AQ/C

It can be reduced somewhat by lightly coupling an appropriate polarity version of the hold
signal to the capacitor for first-order cancellation. The error can also be reduced by increasing
the capacitance, but this increases acquisition time.

Code Width. This is a fundamental quantity for ADC specifications. In an ADC where the
code transition noise is a fraction of an LSB, it is defined as the range of analog input values



ADCs, DACs, and Sampling Theory 101

for which a given digital output code will occur. The nominal value of a code width (for all
but the first and last codes) is the voltage equivalent of 1 least significant bit (LSB) of the
full-scale range, or 2.44mV out of 10V for a 12-bit ADC. Because the full-scale range is
fixed, the presence of excessively wide codes implies the existence of narrow and perhaps
even missing codes. Code transition noise can make the measurement of code width difficult
or impossible. In wide bandwidth and high resolution ADCs additional noise modulates the
effective code width and appears as input-referred noise. Many ADCs have input-referred
noise that spans several code widths, and histogram techniques must be used to accurately
measure differential linearity.

Common-Mode Range. Common-mode rejection usually varies with the magnitude of the
range through which the input signal can swing, determined by the sum of the common-mode
and the differential voltage. Common-mode range is that range of fotal input voltage over
which specified common-mode rejection is maintained. For example, if the common-mode
signal is =5V and the differential signal is =5V, the common-mode range is =10V.

Common-Mode Rejection (CMR). A measure of the change in output voltage when both inputs
are changed by equal amounts of AC and/or DC voltage. Common-mode rejection is usually
expressed either as a ratio (e.g., CMRR=1,000,000:1) or in decibels: CMR =20log;CMRR;

if CMRR=10%, CMR=120dB. A CMRR of 10° means that 1 V of common mode is processed
by the device as though it were a differential signal of 1V at the input.

CMR is usually specified for a full range common-mode voltage change (CMV), at a given
frequency, and a specified imbalance of source impedance (e.g., 1 k{2 source unbalance, at

60 Hz). In amplifiers, the common-mode rejection ratio is defined as the ratio of the signal
gain, G, to the common-mode gain (the ratio of common-mode signal appearing at the output
to the CMYV at the input.

Common-Mode Voltage (CMV). A voltage that appears in common at both input terminals

of a differential-input device, with respect to its output reference (usually “ground”). For
inputs, V| and V,, with respect to ground, CMV=%(V+V,). An ideal differential-input
device would ignore CMV. Common-mode error (CME) is any error at the output due to the
common-mode input voltage. The errors due to supply voltage variation, an internal common-
mode effect, are specified separately.

Compliance-Voltage Range. For a current-output DAC, the maximum range of (output)
terminal voltage for which the device will maintain the specified current-output characteristics.

Conversion Complete. An ADC digital output signal which indicates the end of conversion.
When this signal is in the opposite state, the ADC is considered to be “busy.” Also called
end-of-conversion (EOC), data ready, or status in some converters.
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Conversion Time and Conversion Rate. For an ADC without a sample-and-hold, the time
required for a complete measurement is called conversion time. For most converters
(assuming no significant additional systemic delays), conversion time is essentially identical
with the inverse of conversion rate. For simple sampling ADCs, however, the conversion rate
is the inverse of the conversion time plus the sample-and-hold’s acquisition time. However,
in many high speed converters, because of pipelining, new conversions are initiated before
the results of prior conversions have been determined; thus, there can one, two, three, or
more clock cycles of conversion delay (plus a fixed delay in some cases). Once a train of
conversions has been initiated, as in signal-processing applications, the conversion rate can
therefore be much faster than the conversion time would imply.

Crosstalk. Leakage of signals, usually via capacitance between circuits or channels of a
multichannel system or device, such as a multiplexer, multiple input ADC, or multiple DAC.
Crosstalk is usually determined by the impedance parameters of the physical circuit, and
actual values are frequency-dependent. See also channel-to-channel isolation.

Multiple DACs have a digital crosstalk specification: the spike (sometimes called a glitch)
impulse appearing at the output of one converter due to a change in the digital input code of
another of the converters. It is specified in nanovolt- or picovolt-seconds and measured at
VREF =0V

Data Ready. (See Conversion Complete.)

Deglitcher (See Glitch.) A device that removes or reduces the effects of time-skew in D/A
conversion. A deglitcher normally employs a track-and-hold circuit, often specifically
designed as part of the DAC. When the DAC is updated, the deglitcher holds the output of
the DAC’s output amplifier constant at the previous value until the switches reach
equilibrium, then acquires and tracks the new value.

DAC Glitch. A glitch is a switching transient appearing in the output during a code transition.
The worst-case DAC glitch generally occurs when the DAC is switched between the
011...111 and 100...000 codes. The net area under the glitch is referred to as glitch impulse
area and is measured in millivolt-nanoseconds, nanovolt-seconds, or picovolt-seconds.
Sometimes the term glitch energy is used to describe the net area under the glitch—this
terminology is incorrect because the unit of measurement is not energy.

Differential Analog Input Resistance, Differential Analog Input Capacitance, and Differential
Analog Input Impedance. The real and complex impedances measured at each analog input
port of an ADC. The resistance is measured statically and the capacitance and differential
input impedances are measured with a network analyzer.
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Differential Analog Input Voltage Range. The peak-to-peak differential voltage that must

be applied to the converter to generate a full-scale response. Peak differential voltage is
computed by observing the voltage on a single pin and subtracting the voltage from the other
pin, which is 180 degrees out of phase. Peak-to-peak differential is computed by rotating

the inputs phase 180 degrees and taking the peak measurement again. The difference is then
computed between both peak measurements.

Differential Gain (AG). A video specification that measures the variation in the amplitude
(in percent) of a small amplitude color subcarrier signal as it is swept across the video range
from black to white.

Differential Phase (Ad). A video specification that measures the phase variation (in degrees)
of a small amplitude color subcarrier signal as it is swept across the video range from black
to white.

Droop Rate. When a sample-and-hold circuit using a capacitor for storage is in hold, it will
not hold the information forever. Droop rate is the rate at which the output voltage changes
(by increasing or decreasing), and hence gives up information. The change of output occurs
as a result of leakage or bias currents flowing through the storage capacitor. The polarity of
change depends on the sources of leakage within a given device. In integrated circuits with
external capacitors, it is usually specified as a (droop or drift) current, in ICs having internal
capacitors, a rate of change. Note: dv/dt (volts/second)=1/C (picoamperes/picofarads).

Dual-Slope Converter. An integrating ADC in which the unknown signal is converted to

a proportional time interval, which is then measured digitally. This is done by integrating
the unknown for a predetermined length of time. A reference input is then switched to the
integrator, which integrates “down” from the level determined by the unknown until the
starting level is reached. The time for the second integration process, as determined by the
counter, is proportional to the average of the unknown signal level over the predetermined
integrating period. The counter provides the digital readout.

Effective Input Noise. (See Input-Referred Noise.)

Effective Number of Bits (ENOB). With a sinewave input, Signal-to-Noise-and-Distortion
(SINAD) can be expressed in terms of the number of bits. Rewriting the theoretical SNR
formula for an ideal N-bit ADC and solving for N:

N=(SNR—1.76dB)/6.02
The actual ADC SINAD is measured using FFT techniques, and ENOB is calculated from:
ENOB=(SINAD—1.76dB)/6.02
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Effective Resolution. (See Noise-Free Code Resolution.)
Encode Command. (See Encode, Sampling Clock.)

Encode (Sampling Clock) Pulsewidth/Duty Cycle. Pulsewidth high is the minimum amount
of time that the ENCODE pulse should be left in Logic 1 state to achieve rated performance;
pulsewidth low is the minimum time ENCODE or pulse should be left in low state. See
timing implications of changing the width in the text of high speed ADC data sheets. At a
given clock rate, these specs define an acceptable ENCODE duty cycle.

Feedthrough. Undesirable signal coupling around switches or other devices that are supposed
to be turned off or provide isolation, e.g., feedthrough error in a sample-and-hold, multiplexer,
or multiplying DAC. Feedthrough is variously specified in percent, dB, parts per million,
fractions of 1 LSB, or fractions of 1V, with a given set of inputs, at a specified frequency.

In a multiplying DAC, feedthrough error is caused by capacitive coupling from an AC Vggr to
the output, with all switches off. In a sample-and-hold, feedthrough is the fraction of the input
signal variation or AC input waveform that appears at the output in hold. It is caused by stray

capacitive coupling from the input to the storage capacitor, principally across the open switch.

Flash Converter. A converter in which all the bit choices are made at the same time. It
requires 2N—1 voltage-divider taps and comparators and a comparable amount of priority
encoding logic. A scheme that gives extremely fast conversion, it requires large numbers of
nearly identical components, hence it is well suited to integrated-circuit form for resolutions
up to eight bits. Several Flash converters are often used in multistage subranging converters,
to provide high resolution at somewhat slower speed than pure Flash conversion.

Four-Quadrant. In a multiplying DAC, “four quadrant” refers to the fact that both the
reference signal and the number represented by the digital input may be of either positive or
negative polarity. Such a DAC can be thought of as a gain control for AC signals (“reference”
input) with a range of positive and negative digitally controlled gains. A four-quadrant
multiplier is expected to obey the rules of multiplication for algebraic sign.

Frequency-to-Voltage Conversion (FVC). The input of an FVC device is an AC waveform—
usually a train of pulses (in the context of conversion); the output is an analog voltage,
proportional to the number of pulses occurring in a given time. FVC is usually performed by
a voltage-to-frequency converter in a feedback loop. Important specifications, in addition to
the accuracy specs typical of VFCs (see Voltage-to-Frequency conversion), include output
ripple (for specified input frequencies), threshold (for recognition that another cycle has been
initiated, and for versatility in interfacing several types of sensors directly), hysteresis, to
provide a degree of insensitivity to noise superimposed on a slowly varying input waveform,
and dynamic response (important in motor control).
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Full-Scale Input Power (ADC). Expressed in dBm (power level referenced to 1 mW).
Computed using the following equation, where Vg scale rms 18 1n volts, and Zi,, is in €.

2
\4 Full Scale rms

Z|
| Input

Powergsce = 1010g 0.001

Full-Scale Range (FSR). For binary ADCs and DACs, that magnitude of voltage, current,
or—in a multiplying DAC—gain, of which the MSB is specified to be exactly one-half or

for which any bit or combination of bits is tested against its (their) prescribed ideal ratio(s).
FSR is independent of resolution; the value of the LSB (voltage, current, or gain) is 2~ N FSR.
There are several other terms, with differing meanings, that are often used in the context of
discussions or operations involving full-scale range. They are:

Full-scale—similar to full-scale range, but pertaining to a single polarity. Thus, full-scale for
a unipolar device is twice the prescribed value of the MSB and has the same polarity. For a
bipolar device, positive or negative full-scale is that positive or negative value, of which the
next bit after the polarity bit is tested to be one-half.

Span—the scalar voltage or current range corresponding to FSR.

All-1s—All bits on, the condition used, in conjunction with all-zeros, for gain adjustment

of an ADC or DAC, in accordance with the manufacturer’s instructions. Its magnitude, for

a binary device, is (1—27N) FSR. All-Is is a positive-true definition of a specific magnitude
relationship; for complementary coding the “all-1s” code will actually be all zeros. To avoid
confusion, all-Is should never be called full-scale; FSR and FS are independent of the number
of bits, all-Is isn’t.

All-0Os—All bits off, the condition used in offset (and gain) adjustment of a DAC or ADC,
according to the manufacturer’s instructions. All-Os corresponds to zero output in a unipolar
DAC and negative full-scale in an offset bipolar DAC with positive output reference. In a
sign-magnitude device, all-Os refers to all bits after the sign bit. Analogous to “all-Is,” “all-0s”
is a positive-true definition of the all-bits-off condition; in a complementary-coded device,

it is expressed by all ones. To avoid confusion, all-Os should not be called “zero” unless it
accurately corresponds to true analog zero output from a DAC.

Gain. The “gain” of a converter is that analog scale factor setting that establishes the nominal
conversion relationship, e.g., 10V full-scale. In a multiplying DAC or ratiometric ADC, it
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is indeed a gain. In a device with fixed internal reference, it is expressed as the full-scale
magnitude of the output parameter (e.g., 10V or 2mA). In a fixed-reference converter, where
the use of the internal reference is optional, the converter gain and the reference may be
specified separately. Gain and zero adjustment are discussed under zero.

Glitch. Transients associated with code changes generally stem from several sources. Some
are spikes, known as digital-to-analog feedthrough, or charge transfer, coupled from the
digital signal (clock or data) to the analog output, defined with zero reference. These spikes
are generally fast, fairly uniform, code-independent, and hence filterable. However, there is a
more insidious form of transient, code-dependent, and difficult to filter, known as the “glitch.”

If the output of a counter is applied to the input of a DAC to develop a “staircase” voltage,

the number of bits involved in a code change between two adjacent codes establish “major”
and “minor” transitions. The most major transition is at ¥2-scale, when the DAC switches all
bits, i.e., from 011...111 to 100...000. If, for digital inputs having no skew, the switches are
faster to switch off than on, this means that, for a short time, the DAC will seek zero output,
and then return to the required 1 LSB above the previous reading. This large transient spike

is commonly known as a “glitch.” The better matched the input transitions and the switching
times, the faster the switches, the smaller will be the area of the glitch. Because the size of the
glitch is not proportional to the signal change, linear filtering may be unsuccessful and may,
in fact, make matters worse. (See also Deglitcher.)

The severity of a glitch is specified by glitch impulse area, the product of its duration and its
average magnitude, i.e., the net area under the curve. This product will be recognized as the
physical quantity, impulse (electromotive force X Atime); however, it has also been incorrectly
termed “glitch energy” and “glitch charge.” Glitch impulse area is usually expressed, for fast
converters, in units of pV-s or mV-ns.

The glitch can be minimized through the use of fast, nonsaturating logic, such as ECL, LVDS,
matched latches, and nonsaturating CMOS switches.

Glitch Charge, Glitch Energy, Glitch Impulse, Glitch Impulse Area. (See Glitch.)

Harmonic Distortion, 2nd. The ratio of the rms signal amplitude to the rms value of the
second harmonic component, reported in dBc.

Harmonic Distortion, 3rd. The ratio of the rms signal amplitude to the rms value of the third
harmonic component, reported in dBc.

Harmonic Distortion, Total (THD). The ratio of the rms signal amplitude to the rms sum of
all harmonics (neglecting noise components). In most cases, only the first five harmonics are
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included in the measurement because the rest have negligible contribution to the result. The
THD can be derived from the FFT of the ADC’s output spectrum. For harmonics that are
above the Nyquist frequency, the aliased component is used.

Harmonic Distortion, Total, Plus Noise (THD+ N). Total harmonic distortion plus noise
(THD+N) is the ratio of the rms signal amplitude to the rms sum of all harmonics and noise
components. THD+N can be derived from the FFT of the ADC’s output spectrum and is a
popular specification for audio applications.

Impedance, Input. The dynamic load of an ADC presented to its input source. In unbuffered
CMOS switched-capacitor ADCs, the presence of current transients at the converter’s clock
frequency mandates that the converter be driven from a low impedance (at the frequencies
contained in the transients) in order to accurately convert. For buffered-input ADCs, the input
impedance is generally represented by a resistive and capacitive component.

Input-Referred Noise (Effective Input Noise). Input-referred noise can be viewed as the net
effect of all internal ADC noise sources referred to the input. It is generally expressed in
LSBs rms, but can also be expressed as a voltage. It can be converted to a peak-to-peak value
by multiplying by the factor 6.6. The peak-to-peak input-referred noise can then be used to
calculate the noise-free code resolution. (See Noise-Free Code Resolution).

Intermodulation Distortion (IMD). With inputs consisting of sinewaves at two frequencies,

f; and f,, any device with nonlinearities will create distortion products of order (m+n), at sum
and difference frequencies of mf; £nf,, where m, n=0, 1, 2, 3, .... Intermodulation terms are
those for which m or n is not equal to zero. For example, the second-order terms are (f; +f5,)
and (f,—f)), and the third-order terms are (2f, +1,), (2f,—1,), (f; +2f,), and (f; —2f,). The IMD
products are expressed as the dB ratio of the rms sum of the distortion terms to the rms sum
of the measured input signals.

Latency. (See Pipelining.)

Leakage Current, Output. Current that appears at the output terminal of a DAC with all

bits “off.” For a converter with two complementary outputs (for example, many fast CMOS
DAC:S), output leakage current is the current measured at OUT 1, with all digital inputs low—
and the current measured at OUT 2, with all digital inputs high.

Least-Significant Bit (LSB). In a system in which a numerical magnitude is represented by

a series of binary (i.e., two-valued) digits, the least-significant bit is that digit (or “bit”) that
carries the smallest value, or weight. For example, in the natural binary number 1101 (decimal
13, or (1X2%)+(1X2%)+(0x21)+(1x29%), the rightmost digit is the LSB. Its analog weight,
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in relation to full-scale (see Full-Scale Range), is 2~ N, where N is the number of binary digits.
It represents the smallest analog change that can be resolved by an n-bit converter.

In data converter nomenclature, the LSB is bit N; in bus nomenclature (integer binary), it is
Data Bit 0.

Left-Justified Data. When a 12-bit word is placed on an 8-bit bus in two bytes, the high byte
contains the 4 or 8 most-significant bits. If 8, the word is said to be left justified; if 4 (plus
filled-in leading sign bits), the word is said to be right justified.

Linearity. (See also Nonlinearity.) Linearity error of a converter (also, integral nonlinearity—
see Linearity, Differential), expressed in % or parts per million of full-scale range, or
(sub)multiples of 1 LSB, is a deviation of the analog values, in a plot of the measured
conversion relationship, from a straight line. The straight line can be either a “best straight
line,” determined empirically by manipulation of the gain and/or offset to equalize maximum
positive and negative deviations of the actual transfer characteristic from this straight line;

or, it can be a straight line passing through the end points of the transfer characteristic after
they have been calibrated, sometimes referred to as “end- point” linearity. “End-point”
nonlinearity is similar to relative accuracy error (see Accuracy, Relative). It provides an easier
method for users to calibrate a device, and it is a more conservative way to specify linearity.

For multiplying DACs, the analog linearity error, at a specified analog gain (digital code), is
defined in the same way as for analog multipliers, i.e., by deviation from a “best straight line”
through the plot of the analog output-input response.

Linearity, Differential. In a DAC, any two adjacent digital codes should result in measured
output values that are exactly 1 LSB apart (2N of full-scale for an N-bit converter).

Any positive or negative deviation of the measured “step” from the ideal difference is
called differential nonlinearity, expressed in (sub)multiples of 1 LSB. It is an important
specification, because a differential linearity error more negative than —1 LSB can lead to
nonmonotonic response in a DAC and missed codes in an ADC using that DAC.

Similarly, in an ADC, midpoints between code transitions should be 1 LSB apart. Differential
nonlinearity is the deviation between the actual difference between midpoints and 1 LSB,

for adjacent codes. If this deviation is equal to or more negative than —1 LSB, a code will be
missed (See Missing Codes.)

Often, instead of a maximum differential nonlinearity specification, there will be a simple
specification of “monotonicity” or “no missing codes,” which implies that the differential
nonlinearity cannot be more negative than —1 for any adjacent pair of codes. However, the
differential linearity error may still be more positive than +1 LSB.
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Linearity, Integral. (See Linearity.) While differential linearity deals with errors in step size,
integral linearity has to do with deviations of the overall shape of the conversion response.
Even converters that are not subject to differential linearity errors. (e.g., integrating types)
have integral linearity (sometimes just “linearity”) errors.

Maximum Conversion Rate. The maximum sampling (encode) rate at which parametric
testing is performed.

Minimum Conversion (Sampling) Rate. The encode rate at which the SNR of the lowest
analog signal frequency drops by no more than 3 dB below the guaranteed limit.

Missing Codes. An ADC is said to have missing codes when a transition from one quantum of
the analog range to the adjacent one does not result in the adjacent digital code, but in a code
removed by one or more counts. Missing codes can be caused by large negative differential
linearity errors, noise, or changing inputs during conversion. A converter’s proclivity towards
missing codes is also a function of the architecture and temperature.

Monotonicity. An DAC is said to be monotonic if its output either increases or remains
constant as the digital input increases, with the result that the output will always be a single-
valued function of the input. The condition “monotonic” requires that the derivative of

the transfer function never change sign. Monotonic behavior requires that the differential
nonlinearity be more positive than —1 LSB. The same basic definition applies to an ADC—
the digital output code either increases or remains constant as the digital input increases.

In practice, however, noise will cause the ADC output code to oscillate between two code
transitions over a small range of analog input. Input-referred noise can make this effect worse,
so histogram techniques are often used to measure ADC monotonicity in these situations.

Most Significant Bit (MSB). In a system in which a numerical magnitude is represented by

a series of binary (i.e., two-valued) digits, the most-significant bit is that digit (or “bit”) that
carries the greatest value or weight. For example, in the natural binary number 1101 (decimal
13, or (1X2%)+(1X22)+(0x2")+(1x2%), the leftmost “1” is the MSB, with a weight of ¥4
nominal peak-to-peak full-scale (full-scale range). In bipolar devices, the sign bit is the MSB.

In converter nomenclature, the MSB is bit 1; in bus nomenclature, it is Data Bit (N—1).

Multiplying DAC. A multiplying DAC differs from the conventional fixed-reference DAC in
being designed to operate with varying (or AC) reference signals. The output signal of such
a DAC is proportional to the product of the “reference” (i.e., analog input) voltage and the
fractional equivalent of the digital input number. (See also Four-Quadrant.)

Multitone Spurious Free Dynamic Range (SFDR). The ratio of the rms value of an input tone
to the rms value of the peak spurious component. The peak spurious component may or may
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not be an intermodulation distortion (IMD) product. May be reported in dBc (dB relative to
the carrieror in dBFS (dB relative to full-scale). The amplitudes of the individual tones are
equal and chosen such that the ADC is not overdriven when they add in-phase.

Noise-Free (Flicker-Free) Code Resolution. The noise-free code resolution of an ADC is the
number of bits beyond which it is impossible to distinctly resolve individual codes. The cause
is the effective input noise (or input-referred noise) associated with all ADCs. This noise can
be expressed as an rms quantity, usually having the units of LSBs rms. Multiplying by a factor
of 6.6 converts the rms noise into peak-to-peak noise (expressed in LSBs peak-to-peak). The
total range of an N-bit ADC is 2N. The noise-free (or flicker-free) resolution can be calculated
using the equation:

Noise-Free Code Resolution=1log,(2N/Peak-to-Peak Noise)

The specification is generally associated with high-resolution sigma-delta measurement
ADC:s, but is applicable to all ADCs.

The ratio of the FS range to the rms input noise is sometimes used to calculate resolution.
In this case, the term effective resolution is used. Note that effective resolution is larger than
noise-free code resolution by log,(6.6), or approximately 2.7 bits.

Effective Resolution=log, (2N /RMS Input Noise).

Noise, Peak and RMS. Internally generated random noise is not a major factor in DACs,
except at extreme resolutions and dynamic ranges. Random noise is characterized by rms
specifications for a given bandwidth, or as a spectral density (current or voltage per root
hertz); if the distribution is Gaussian, the probability of peak-to-peak values exceeding 6.6 X
the rms value is less than 0.1%.

Of much greater importance in DACs is interference, in the form of high amplitude, low
energy (hence low rms) spikes appearing at a DAC’s output, caused by coupling of digital
signals in a surprising variety of ways; they include coupling via stray capacitance, via power
supplies, via inadequate ground systems, via feedthrough, and by glitch-generation (see
Glitch). Their presence underscores the necessity for maximum application of the designer’s
art, including layout, shielding, guarding, grounding, bypassing, and deglitching.

Noise in ADCs in effect narrows the region between transitions. Sources of noise include the
input sample-and-hold, resistor noise, “KT/C” noise, the reference, the analog signal itself,
and pickup in infinite variety.

Noise Power Ratio (NPR). In this measurement, wideband Gaussian noise (bandwidth < f/2)
is applied to an ADC through a narrowband notch filter. The notch filter removes all noise
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within its bandwidth. The output of the ADC is examined with a large FFT. The ratio of the
rms noise level to the rms noise level inside the notch (due to quantization noise, thermal
noise, and intermodulation distortion) is defined as the noise power ratio (NPR). The rms
noise level at the input to the ADC is generally adjusted to give the best NPR value.

No Missing Codes Resolution. (See Resolution, No Missing Codes.)

Nonlinearity (or “gain nonlinearity”) The deviation from a straight line on the plot of output
versus input. The magnitude of linearity error is the maximum deviation from a “best straight
line,” with the output swinging through its full-scale range. Nonlinearity is usually specified
in percent of full-scale output range.

Normal Mode. For an amplifier used in instrumentation, the normal-mode signal is the

actual difference signal being measured. This signal often has noise associated with it. Signal
conditioning systems and digital panel instruments usually contain input filtering to remove
high frequency and line frequency noise components. Normal-mode rejection (NMR), is

a logarithmic measure of the attenuation of normal-mode noise components at specified
frequencies in dB.

Offset, Bipolar. For the great majority of bipolar converters (e.g., =10V output), negative
currents are not actually generated to correspond to negative numbers; instead, a unipolar DAC
is used, and the output is offset by half full-scale (1 MSB). For best results, this offset voltage
or current is derived from the same reference supply that determines the gain of the converter.

Because of nonlinearity, a device with perfectly calibrated end points may have offset error at
analog zero.

Offset Step. (See Pedestal.)

Output Propagation Delay. For an ADC having a single-ended sampling (or ENCODE) clock
input, the delay between the 50% point of the sampling clock and the time when all output data
bits are within valid logic levels. For an ADC having differential sampling clock inputs, the
delay is measured with respect to the zero crossing of the differential sampling clock signal.

Output Voltage Tolerance. For a reference, the maximum deviation from the normal output
voltage at 25°C and specified input voltage, as measured by a device traceable to a recognized
fundamental voltage standard.

Overload. An input voltage exceeding the ADC’s full-scale input range producing an
overload condition.

Overvoltage Recovery Time. Overvoltage recovery time is defined as the amount of time
required for an ADC to achieve a specified accuracy after an overvoltage (usually 50% greater
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than full-scale range), measured from the time the overvoltage signal reenters the converter’s
range. The ADC should act as an ideal limiter for out-of-range signals, producing a positive
or negative full-scale code during the overvoltage condition. Some ADCs provide over- and
underrange flags to allow gain-adjustment circuits to be activated.

Overrange, Overvoltage. An input signal that exceeds the full-scale input range of an ADC,
but is less than an overload.

Pedestal, or Sample-to-Hold Offset Step. In sample/track-and-hold amplifiers, a shift in level
between the last value in sample and the value settled-to in hold; in devices having fixed
internal capacitors, it includes charge transfer, or offset step. However, for devices that may
use external capacitors, it is often defined as the residual step error after the charge transfer is
accounted for and/or cancelled. Since it is unpredictable in magnitude and may be a function
of the signal, it is also known as offset nonlinearity.

Pipelining. A pipelined converter is a multistage converter capable of accepting a new signal
before it has completed the conversion of one or more previous ones. A new signal arrives
while others are still “in the pipeline.” This is a technique used where a fast conversion rate is
desired and the latency of individual conversions is relatively unimportant.

Power-Supply Rejection Ratio (PSRR). The ratio of a change in DC power supply voltage to
the resulting change in the specified device error, expressed in percentage, parts per million,
or fractions of 1 LSB. It may also be expressed logarithmically, in dB, PSR=20 log;, (PSRR).

Quad-Slope Converter. This is an integrating analog-to-digital converter that goes through
two cycles of dual-slope conversion, once with zero input and once with the analog input
being measured. The errors determined during the first cycle are subtracted digitally from the
result in the second cycle. The scheme can result in high-accuracy conversion.

Quantizing Uncertainty (or “Quantization Error”). The analog continuum is partitioned
into 2N discrete ranges for N-bit conversion and processing. All analog values within a given
quantum are represented by the same digital code, usually assigned to the nominal midrange
value. There is, therefore, an inherent quantization uncertainty of *%2 LSB, in addition to
the actual conversion errors. In integrating ADCs, this “error” is often expressed as “=*1
count.” Depending on the system context, it may be interpreted as a truncation (round-oft)
eITor Or as noise.

Ratiometric. The output of an ADC is a digital number proportional to the ratio of (some
measure of ) the input to a reference voltage. Most requirements for conversions call for an
absolute measurement, i.e., against a fixed reference; but this presumes that the signal applied
to the converter is either reference-independent or in some way derived from another fixed
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reference. However, real references are not truly fixed; the references for both the converter
and the signal source vary with time, temperature, loading, etc. Therefore, if the converter is
used with signal sources that also rely on references (for example, strain-gage bridges, RTDs,
thermistors), it makes sense to replace this multiplicity of references by a single system
reference. In this case, reference-caused errors will tend to cancel out. This can be done

by using the converter’s internal reference (if it has one) as the system reference. Another
way is to use a separate external system reference, which also becomes the reference for a
ratiometric converter. For instance, if a bridge is excited with the same voltage used for the
ADC reference, ratiometric operation is achieved, and the ADC output code is not a function
of the reference. This is because the bridge output signal is proportional to the same voltage
which defines the ADC input range.

Resolution. An N-bit binary converter has N digital data inputs (DAC) or N digital data
outputs (ADC). A converter that satisfies this criterion is said to have a resolution of N bits.

Resolution, No Missing Codes. The no missing code resolution of an ADC is the maximum
number of bits of resolution beyond which the ADC will have missing codes. For instance, if
an 18-bit ADC has a no missing code resolution of 16 bits, there will be no missing codes if
only the 16 MSBs are utilized. Codes may be missed at the 17- and 18-bit level. The smallest
output change that can be resolved by a linear DAC is 2N of the full-scale span. Thus,

for example, the resolution of an 8-bit DAC would be 278 or 1/256. On the other hand, a
nonlinear device, such as the AD7111 LOGDAC™, can ideally achieve a dynamic range of
89.625dB, or 30,000:1, in 0.375dB steps, using only 8 bits of digital resolution.

Right-Justified Data. When a 12-bit word is placed on an 8-bit bus in two stages, the high
byte contains the 4 or 8 most-significant bits. If 8, the word is said to be left justified; if 4
(plus filled-in leading sign bits), the word is said to be right justified.

Sample-to-Hold Offset.(See Pedestal.)

Sampling ADC. A sampling ADC includes a sample-and-hold function that acquires the input
value at a given instant and holds it throughout the conversion time (or until the converter is ready
for the next sample point). Flash ADCs and sigma-delta ADCs are inherently sampling devices.

Sampling Clock. (See Encode Command).

Sampling Frequency. The rate at which an ADC converts an analog input signal into digital
outputs, not to be confused with conversion time.

Serial Output. A bit-serial output consists of a series of bits clocked out on a single line.
There must be some means of identifying the beginning and ends of words; this can be
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accomplished via an additional clock line, by using synchronized clocks, and/or by providing
a consistent identifying signature for the beginning of a word. Byte-serial consists of a series
of bytes transmitted in sequence on a bus. (See Byte.)

Settling Time—ADC. The time required, following an analog input step change (usually
full-scale), for the digital output of the ADC to reach and remain within a given fraction
(usually =% LSB).

Settling Time—DAC. The time required, following a prescribed data change, for the output of
a DAC to reach and remain within an error band (usually *'2 LSB) of the final value. Typical
prescribed changes are full-scale, 1 MSB, and 1 LSB at a major carry. Settling time of
current-output DACs is quite fast. The major share of settling time of a voltage-output DAC
is usually contributed by the settling time of the output op-amp. DAC settling time can also
be defined with respect to the output. Output settling time is the time measured from the point
the output signal leaves an error band referenced to the initial output value until the time the
signal enters and remains within the error band referenced to the final output value.

Signal-to-Noise-and-Distortion Ratio (SINAD). The ratio of the rms signal amplitude (set
1dB below full-scale to prevent overdrive) to the rms value of the sum of all other spectral
components, including harmonics but excluding DC.

Signal-to-Noise Ratio (without Harmonics). The ratio of the rms signal amplitude (set at
1dB below full-scale to prevent overdrive) to the rms value of the sum of all other spectral
components, excluding the first five harmonics and DC. Technically, all harmonics should be
excluded, but in practice, only the first five are generally significant.

Single-Slope Conversion. In the single-slope converter, a reference voltage is integrated until
the output of the integrator is equal to the input voltage. The time period required for the
integrator to go from zero to the level of the input is proportional to the magnitude of the
input voltage and is measured by an internal clock. Measurement accuracy is sensitive to
clock speed and integrating capacitance, as well as the reference accuracy.

Slew(ing) Rate. A limitation in the rate of change of output voltage, usually imposed by
some basic circuit consideration, such as limited current to charge a capacitor. The output
slewing speed of a voltage-output DAC is usually limited by the slew rate of the amplifier
used at its output.

Spurious-Free Dynamic Range (SFDR). The ratio of the rms signal amplitude to the rms
value of the peak spurious spectral component. The peak spurious component may or may
not be a harmonic. May be reported in dBc (i.e., degrades as signal level is lowered) or dBFS
(related back to converter full-scale).
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Stability. In a well-designed, intelligently applied converter, dynamic stability is not an
important question. The term stability usually applies to the insensitivity of the converter’s
characteristics to time, temperature, etc. All measurements of stability are difficult and time
consuming, but stability versus temperature is sufficiently critical in most applications to
warrant universal inclusion in tables of specifications (see Temperature Coefficient).

Staircase. A voltage or current, increasing in equal increments as a function of time and
having the appearance of a staircase (in a time plot); it is generated by applying a pulse train
to a counter, and the output of the counter to the input of a DAC.

Subranging ADCs. In this type of converter, a fast converter produces the most-significant portion
of the output word. This portion is stored in a holding register and also converted back to analog
with a fast, high-accuracy DAC. The analog result is subtracted from the input, and the resulting
residue is amplified, converted to digital at high speed, and combined with the results of the
earlier conversion to form the output word. In digitally corrected subranging (DCS) ADCs, the
two conversions are combined in a manner that corrects for the error of the LSB of the most
significant bits. For example, using 8-bit and 5-bit conversion, plus this technique and a great deal
of video-speed converter expertise, a full-accuracy high speed 12-bit ADC can be built. Many
pipelined subranging ADCs use more than two stages with error correction between each stage.

Successive Approximation. Successive approximation is a method of conversion by
comparing an unknown against a group of weighted references. The operation of a
successive-approximation ADC is generally similar to the orderly weighing of an unknown
quantity on a precision balance, using a set of weights, such as 1 gram %2 gram, % gram,
etc. The weights are tried in order, starting with the largest. Any weight that tips the scale is
removed. At the end of the process, the sum of the weights remaining on the scale will be
within 1 LSB of the actual weight (*'2 LSB, if the scale is properly biased—see Zero). The
successive approximation ADC is often called a SAR ADC, because the logic block that
controls the conversion process is known as a successive approximation register (SAR).

Switching Time. In a DAC, the switching time is the time taken for an analog switch to change
to a new state from the previous one. It includes propagation delay time, and rise time from
10% to 90%, but does not include settling time.

Temperature Coefficient. In general, temperature instabilities are expressed as %/°C, ppm/°C,
fractions of 1 LSB per degree C, or as a change in a parameter over a specified temperature
range. Measurements are usually made at room temperature (25°C) and at the extremes of the
specified range, and the temperature coefficient (tempco, TC) is defined as the change in the
parameter, divided by the corresponding temperature change. Parameters of interest include
gain, linearity, offset (bipolar), and zero.



116 Chapter 1

a. Gain Tempco: Two factors principally affect converter gain stability with temperature.
In fixed-reference converters, the reference voltage will vary with temperature. The
reference circuitry and switches (and comparator in ADCs) will also contribute to the
overall gain TC.

b. Linearity Tempco: Sensitivity of linearity (integral and/or differential linearity) to
temperature, in % FSR/°C or ppm FSR/°C, over the specified range. Monotonic behavior
in DAC:s is achieved if the differential nonlinearity is less than 1 LSB at any temperature
in the range of interest. The differential nonlinearity temperature coefficient may be
expressed as a ratio, as a maximum change over a temperature range, and/or implied by
a statement that the device is monotonic over the specified temperature range. To avoid
missing codes in noiseless ADCs, it is sufficient that the differential nonlinearity error be
less than —1 LSB at any temperature in the range of interest. The differential nonlinearity
temperature coefficient is often implied by the statement that there are no missed
codes when operating within a specified temperature range. In DACs, the differential
nonlinearity TC is often implied by the statement that the DAC is monotonic over a
specified temperature range.

c. Zero TC (unipolar converters): The temperature stability of a unipolar fixed-reference
DAC, measured in % FSR/°C or ppm FSR/°C, is principally affected by current leakage
(current-output DAC), and offset voltage and bias current of the output op amp (voltage-
output DAC). The zero stability of an ADC is dependent on the zero stability of the DAC
or integrator and/or the input buffer and the comparator. It is typically expressed in pV/°C
or in percent or ppm of full-scale range (FSR) per degree C.

d. Offset Tempco: The temperature coefficient of the all-DAC-switches-off (minus full-
scale) point of a bipolar converter (in % FSR/°C or ppm FSR/°C) depends on three major
factors—the tempco of the reference source, the voltage zero-stability of the output
amplifier, and the tracking capability of the bipolar-offset resistors and the gain resistors.
In an ADC, the corresponding tempco of the negative full-scale point depends on similar
quantities—the tempco of the reference source, the voltage stability of the input buffer
and the sample-and-hold, and the tracking capabilities of the bipolar offset resistors and
the gain-setting resistors.

Thermal Tail. The slow drift of an amplifier having a thermally induced offset due to self-
heating as it settles to a final electrical equilibrium value corresponding to internal thermal
equilibrium.

Total Unadjusted Error. A comprehensive specification on some devices which includes full-
scale error, relative-accuracy and zero-code errors, under a specified set of conditions.
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Transient Response. (See Settling Time.)

Two-Tone SFDR. The ratio of the rms value of either input tone to the rms value of the peak
spurious component. The peak spurious component may or may not be an intermodulation
distortion (IMD) product. May be reported in dBc (i.e., degrades as signal level is lowered) or
in dBFS (always related back to converter full-scale).

Worst Other Spur. The ratio of the rms signal amplitude to the rms value of the worst spurious
component (excluding the second and third harmonic) reported in dBc.
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Digital Filters

Robert Meddins

Most introductory texts on DSP are very similar. Every author seems compelled to demonstrate
that they can still derive the fundamental equations of DSP—never mind that you don’t need

to see these derivations! In this introduction to DSP, the author’s stated goal is a genuine
introduction without going into the usual derivations and examples. It’s a refreshing approach.
The text does a good job of quickly explaining the essential ideas without any fuss. If you want
the derivations and more examples, the author provides plenty of references.

The chapter introduces the most basic principles of DSP, starting with the difference between
analog and digital processing. It then moves on to sampling, anti-aliasing filters, and analog-
to-digital converters (ADC). Finally, it wraps up with examples of basic digital systems such as
finite-impulse-response (FIR) filters and infinite-impulse-response (IIR) filters.

The examples are very simple. For instance, ADCs are much more complex than the simple
circuit given. But the example lets you know how ADCs operate, which is all most of us need
to know. Wrap your brain around these examples and you will be well on your way to calling
yourself a DSP engineer.

The text is showing its age in places (first published in 1995). It spends a few skippable
paragraphs making the case for DSP over analog signal processing—a war long won by DSP.
And its comments about DSP processors don’t apply too well to the current generation of DSP
Processors.

All in all, however, this chapter should quickly give you the basic concepts needed to move on to
the more advanced topics in this book.
—Kenton Williston

2.1 Chapter Preview

In this chapter you will be introduced to the basic principles of digital signal processing
(DSP). We will look at how digital signal processing differs from the more conventional
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analog signal processing and also at its many advantages. Some simple digital processing
systems will be described and analyzed. The main aim of this chapter is to set the scene and
give a feel for what digital signal processing is all about.

2.2 Analog Signal Processing

You are probably very familiar with analog signal processing. Some obvious examples of this
type of processing are amplification, rectification and filtering. With all analog processing,
signals enter a system, are processed by passing them through circuits containing capacitors,
resistors, inductors, op amps, transistors, etc. They are then outputted from the system with

a different shape or size. Figure 2.1 shows a very elementary example of an analog signal
processing system, consisting of just a resistor and a capacitor—you will probably recognize
it as a simple type of lowpass filter. Analog signal processing circuits are commonplace

and have been very important system building blocks since the early days of electrical
engineering.

Unfortunately, as useful as they are, analog processing systems do have major defects. An
obvious one is that they have to be physically modified if the processing needs to be changed.
For example, if the gain of an amplifier has to be increased, then this usually means that

at least a resistor has to be changed. What if a different cut-off frequency is required for a
filter or, even worse, we want to replace a highpass filter with a lowpass filter? Once again,
components must be changed. This can be very inconvenient to say the least—it’s bad enough
when a single system has to be adjusted but imagine the situation where a batch of several
thousand is found to need modifying. How much better if changes could be achieved by
altering a parameter or two in a computer program...

—1 Processed
Input c_ N output
voltage voltage

Figure 2.1
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Another problem with analog systems is that of “repeatability.” It is very unlikely that two
analog systems will have identical performances, even though they have been made in

exactly the same way, with supposedly the same value components. This is mainly because of
component tolerances. Analog devices have two further disadvantages. The first is that their
components age and so the device performance changes. The other is that components are
also affected by temperature changes.

2.3 An Alternative Approach

So, having slightly dented the reputation of analog processors, what’s the alternative?
Luckily, signal processing systems do exist which work in a completely different way and

do not have these problems. A major difference is that these systems first sample, at regular
intervals, the signal to be processed (Figure 2.2). The sampled voltages are then converted to
equivalent binary values, using an analog-to-digital converter (Figure 2.3). Next, these binary
numbers are fed into a digital processor, containing a particular program, which will change
the samples. The way in which the digital values are modified will obviously depend on the
type of signal processing required—for example, do we want lowpass or highpass filtering
and what cut-off frequency do we require? The transformed samples are then outputted, via a
digital-to-analog converter, to produce the reconstituted but processed analog output signal.

Because computers can process data so quickly, the signal processing can be done almost in
“real time,” i.e., the processed output samples are fed out continuously, almost in step with
the corresponding input samples. Alternatively, the processed data could be stored, perhaps
on a chip or CD-ROM, and then read when required.

Analog Sampled
signal values

Voltage / J

> 4 Time
Sampling
interval (Tg)

Figure 2.2
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By now, you’ve probably guessed that this form of processing is called digital signal

processing. Digital signal processing (DSP) does not have the drawbacks of analog signal
processing, already mentioned. For example, the type of processing required can be modified
very easily—if the specification of a filter needs to be changed then new parameters can
simply be keyed into the DSP system, i.e., the processing is programmable. The performance
of a digital filter is also constant, not changing with either time or temperature. DSP systems
are also inherently repeatable—if several DSP systems have been programmed to process
signals in a certain way then they will all behave identically. DSP systems can also process

signals in ways impossible for analog systems.

To summarize:

o Digital signal processing systems are available that will do almost everything that

analog signals can do, and much more—versatile.

o They can be easily changed—programmable.

¢ They can be made to process signals identically—repeatable.

o They are not affected by temperature or aging—physically stable.

2.4 The Complete DSP System

The heart of the digital signal processing system, the analog-to-digital converter (ADC),
digital processor and the digital-to-analog converter (DAC), is shown in Figure 2.3. However,
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this sub-unit needs “topping and tailing” in order to create the complete system. An entire,
general DSP system is shown in Figure 2.4.

Each block will now be described briefly.

2.4.1 The Anti-Aliasing Filter

If the analog input voltage is not sampled frequently enough then this results in something of

a shambles. Basically, high frequency input signals will appear as low frequency signals at the
output, which will be very confusing to say the least! This phenomenon is called aliasing. In other
words, the high frequency input signals take on another identity, or “alias,” on leaving the system.

To get a feel for the problem of aliasing, consider a sinusoidal signal, of fixed frequency, which is
being sampled every 7/8 of a period, i.e., 77/8 (Figure 2.5). Having only the samples as a guide, it
can be seen that the sampled signal appears to have a much lower frequency than it really has.

In practice, a signal will not usually have a single frequency but will consist of a very wide
range of frequencies. For example, audio signals can contain frequency components in the
range of about 20 Hz to 20kHz.
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To prevent aliasing, it can be shown that the signal must be sampled at least twice as fast as
the highest frequency component.

This very important rule is known as the Nyquist criterion, or Shannon’s sampling theorem,
after two distinguished pioneers from the world of signal processing.

If this sampling rate cannot be achieved, perhaps because the components used just cannot
respond this quickly, then a lowpass filter must be used on the input end of the system.
This has the job of removing signal frequencies greater than f,/2, where f; is the sampling
frequency. This is the role of the anti-aliasing filter. An anti-aliasing filter is therefore a
lowpass filter with a cut-off frequency of f/2.

The important frequency of f;/2 is usually called the Nyquist frequency.

2.4.2 The Sample-and-Hold Device

An ADC should not be presented with a changing voltage to convert. The changing signal
should be sampled and then this sampled voltage held while the conversion is carried out
(Figure 2.6). (In practice, the sampled value is normally held until the next sample is taken.)
If the voltage is not kept constant during conversion then, depending on the type of converter
used, the digital output might not just be a little inaccurate but could be absolute rubbish,
bearing no relationship to the true value.

At the heart of the sample-and-hold device is a capacitor (Figure 2.7). The electronic switch, S,
is closed, causing the capacitor to charge to the current value of the input voltage. After a brief
time interval the switch is reopened, so keeping the sampled voltage across the capacitor constant
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while the ADC carries out its conversion. The complete sample-and-hold device usually includes
a voltage follower at both the input and the output of the basic system shown in Figure 2.7. The
characteristically low output impedance and high input impedance of the voltage followers ensure
that the capacitor is charged very quickly by the input voltage and discharges very slowly through
the ADC connected to its output, so maintaining the stored voltage.

2.4.3 The Analog-to-Digital Converter

This converts the steady, sampled voltage, supplied by the sample-and-hold device, to an
equivalent digital value in preparation for processing. The more output bits the converter has,
the finer the resolution of the device, i.e., the smaller is the voltage change represented by the
least significant output bit changing from 0 to 1 or from 1 to 0.

You are probably aware that there are many different types of ADC available. However, some of
these are too slow for most DSP applications, e.g., single- and dual-slope and the basic counter-
feedback versions. An ADC widely used in DSP systems is the sigma-delta converter. If you feel
the need to do some extra reading in order to brush up on ADCs then some keywords to look out
for are: single-slope, dual-slope, counter-feedback, successive approximation, flash, tracking and
sigma-delta converters and also converter resolution. Millman and Grabel (1987) is just one of
many books that give a good general treatment, while Marven and Ewers (1994) and also Proakis
and Manolakis (1996) are two texts that give good coverage of the sigma-delta converter.

2.4.4 The Processor

This could be a general-purpose microprocessor chip, but this is unlikely. The data processing
part of a purpose-built DSP chip is designed to be able to do a limited number of fairly
simple operations, in particular addition and multiplication, but they do these exceptionally
quickly. Most of the major chip-producing companies have developed their own DSP chips,
e.g., Motorola, Texas Instruments and Analog Devices, and their user manuals are obvious
reference sources for further reading.
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2.4.5 The Digital-to-Analog Converter

This converts the processed digital value back to an equivalent analog voltage. Common
types are the weighted resistor and the R-2R ladder converters, although the weighted resistor
version is not a practical proposition, as it cannot be fabricated sufficiently accurately as an
integrated circuit. Details of these two devices can be found in Millman and Grabel (1987),
while Marven and Ewers (1994) describes the more sophisticated “bit-stream” DAC, often
used in DSP systems.

2.4.6 The Reconstruction Filter

As the anti-aliasing filter ensures that there are no frequency components greater than f/2
entering the system, then it seems reasonable that the output signal will also have no frequency
components greater than f;/2. However, this is not so! The output from the DAC will be
“steppy”” because the DAC can only output certain voltage values. For example, an 8-bit DAC
will have 256 different output voltage levels going from perhaps —5V to +5V. When this
quantized output is analyzed, frequency components of f;, 2f;, 3f., 4f;, etc. (harmonics of the
sampling frequency) are found. The very action of sampling and converting introduces these
harmonics of the sampling frequency into the output signal. It is these harmonics which give the
output signal its steppy appearance. The reconstruction filter is a lowpass filter having a cut-off
frequency of f/2, and is used to filter out these harmonics and so smooth the output signal.

2.5 Recap

« Analog signal processing systems have a variety of disadvantages, such as
components needing to be changed in order to change the processor function,
inaccuracies due to component aging and temperature changes, processors built in the
same way not performing identically.

« Digital processing systems do not suffer from the problems above.

« Digital signal processing systems sample the input signal and convert the samples to
equivalent digital values. These values are processed and the resulting digital outputs
converted back to analog voltages. This series of discrete voltages is then smoothed
to produce the processed analog output.

o The analog input signal must be sampled at a frequency which is at least twice as
high as its highest frequency component, otherwise “aliasing” will take place.
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2.6 Digital Data Processing

For the rest of this chapter we will concentrate on the processing of the digital values by the
digital data processing unit—this is where the clever bit is done!

So, how does it all work? The digital data processor (Figure 2.4) is constantly being
bombarded with digital values, one following the other at regular intervals. Its job is to
output a suitable digital number in response to each digital input. This is something of an
achievement as all that the processor has to work with is the current input value and the
previous input and output samples. Somehow it has to use these to generate the output value
corresponding to the current input value.

The mechanics of what happens is surprisingly simple. First, a number of the previous input
and/or output values are stored in special data storage registers, the number stored depending
on the nature of the signal processing to be done. Weighted versions of these stored values

are then added to (or subtracted from) the current input sample to generate the corresponding
output value—the actual algorithm obviously depending on the type of signal processing
required. It is this processing algorithm which is at the heart of the whole system—arriving at
this can be a very complicated business! This is something we will examine in detail in later
chapters. Here we will look at some fairly simple examples of processing, just to get a feel for
what is involved.

2.7 The Running Average Filter

A good example to start with is the running (or moving) average filter. This processing
system merely outputs a value which is the average of the current input and a particular
number of the previous input samples.

As an example, consider a simple running average filter that averages the current input and
the last three input samples. Let’s assume that the sampled input values are as shown in Table
2.1, where T represents the sampling period.

As we need to average the current sample and the previous three input samples, the processor
will clearly need three registers to store the previous input samples, the contents of these
registers being updated every time a new sample is taken. For simplicity, we will assume that
these three registers have initially been reset, i.e., they contain the value zero.
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Table 2.1
Time Input sample
0 2
T 1
2T 4
3T 5
4T 7
5T 10
6T 8
7T 7
8T 4
9T 2

The following sequence shows how the first three samples of ‘2°, ‘1°, and ‘4’ are processed:

Time = 0, input sample = 2

Current

Sample Reg 1 Reg 2 Reg 3
===
20 e ] e ] [ ]

.. Output value = w =0.5
Time =T, input sample = 1

Current

sample Reg 1 Reg 2 Reg 3
|————-

o0 L2 | e ] [

storage register 'Reg 1"

.. Output value = 1+2+0+0_

i.e. the previous input sample of '2' has now been shifted to

0.75

www.newnespress.com
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Time = 2T, input sample = 4

Current
Sample Reg 1 Reg 2 Reg 3
[
L4 ] L2 | [0
*. Output value = ﬂ—& =1.75
and so on.
Table 2.2
Time Input sample Output sample
0 2 0.5
T 1 0.75
2T 4 1.75
3T 5 3.00
4T 7 4.25
5T 10 6.50
6T 8 7.50
7T 7 8.00
8T 4 7.25
oT 2 5.25

Table 2.2 shows all of the output values—check that you agree with them before

moving on.

N.B.1 The first three output values of 0.5, 0.75 and 1.75, represent the initial “transient,”

i.e., the part of the output signal where the initial three zeros are being shifted out of

the three storage registers. The output values are only valid once these initial zeros

have been cleared out of the storage registers.

N.B.2 A running average filter tends to smooth out any rapid changes in a signal and so is a

form of lowpass filter.
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2.8 Representation of Processing Systems

The running average filter, just discussed, could be represented by the block diagram
shown in Figure 2.8. Each of the three T blocks represents a time delay of one sample
period, while the X box represents the summation of the four values. The 0.25 triangle is
an attenuator which ensures that the average of the four values is outputted and not just
the sum. So A is the current input divided by four, B the previous input, again divided by
four, C the input before that, again divided by four, etc. If we catch the system at 6T say,
then, from Table 2.2, A=8/4, B=10/4, C=7/4 and D=5/4, giving the output of 7.5, i.e.,
A+B+C+D.

N.B. The division by four could have been done after the summation rather than before,
and this might seem the obvious thing to do. However, the option used is preferable as
it means that, as we are processing smaller numbers, i.e., numbers already divided by
four, we can get away with using smaller registers during processing. Here there were
only four numbers to be added, but what if there had been a thousand? Dividing before
addition, rather than after, would clearly makes a huge difference to the size of the
registers needed.

2.9 Feedback (or Recursive) Filters

So far we have only met filters which make use of previous inputs. There is nothing to stop us
from using the previous outputs instead—in fact, much more useful filters can be made in this
way. A simple example is shown in Figure 2.9.

Because it is the previous output values which are fed back into the system and added to
the current input, these filters are called feedback or recursive filters. Another name very
commonly used is infinite impulse response filters—the reason for this particular name will
become clear later.
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As we know, the T boxes represent time delays of one sampling period, and so A is the
previous output and B the one before that. It is often useful to think of these boxes as the
storage registers for the previous outputs, with A and B being their contents.

From Figure 2.9 you should see that:

Data out = Datain — 0.4A + 0.2B (2.1)

This is the simple processing that the digital processor needs to do for every input sample.

Imagine that this particular recursive filter is supplied with the data shown in Table 2.3, and
that the two storage registers needed are initially reset.

From Eq. (2.1), as both A and B are initially zero, the first output must be the same as the
input value, i.e., 10.

By the time the second input of 15 is received the previous output of 10 has been shifted into
the storage register, appearing as A (Table 2.3). In the meantime, the previous A value (0) has
been moved to B, while the previous value of B has been shifted right out of the system and
lost, as it is no longer of any use.

So, when time=T, we have:

Input data=15, A=10, B=0
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Table 2.3

Time Input data A B Output data
0 10 0.0 0.0 10.0
T 15 10.0 0.0 11.0
2T 20 11.0 10.0 17.6
3T 15 17.6 11.0 10.2
4T 8 10.2 17.6 7.5
5T 6 7.5 10.2 5.1
6T 9 5.1 7.5 8.5
7T 0 8.5 5.1 —2.4
8T 0 —2.4 8.5 2.7
oT 0 2.7 —2.4 —1.53

From Eq. (2.1), the new output value is given by:

15-04X10+02X0=11

2.1

In preparation for generating the next output value, the current output of 11 is now shifted
to A, the A value of 10 having already been moved to B. The third output value is therefore

given by:

20—04 X114+ 02 X10 = 17.6

Before moving on it’s best to check through the rest of Table 2.3 for yourself. (Spreadsheets

lend themselves well to this application.)

You will notice from Table 2.3 that we are getting outputs even when the input values are
zero (at times 77, 8T and 97). This makes sense as, at time 77, we are pushing the previous

output value of 8.5 back through the system to produce the next output of —2.4. This

output value is, in turn, fed back into the system, and so on. Theoretically, the output could
continue for ever, i.e. even if we put just a single pulse into the system we could get output

values, every sampling period, for an infinite time. This explains the alternative name of
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infinite impulse response (IIR) filter for feedback filters. Note that this persisting output will
not happen with processing systems which use only the input samples (nonrecursive)—with
these, once the input stops, the output will continue for only a finite time. To be more
specific, the output samples will continue for a time of N X T, where N is the number of
storage registers. This is why filters which make use of only the previous inputs are often
called finite impulse response (FIR) filters (pronounced “F-I-R”), for short. A running
average filter is therefore an example of an FIR filter. (Yet another name used for this type of
filter is the transversal filter.)

IIR filters require fewer storage registers than equivalent FIR filters. For example, a particular
highpass FIR filter might need 100 registers but an equivalent IIR filter might need as few

as three or four. However, I must add a few words of warning here, as there are drawbacks

to making use of the previous outputs. As with any system which uses feedback, we have to
be very careful during the design as it is possible for the filter to become unstable. In other
words, instead of acting as a well-behaved system, processing our signals in the required way,
we might find that the output values very rapidly shoot up to the maximum possible and sit
there. Another possibility is that the output oscillates between the maximum and minimum
values. Not a pretty sight! We will look at this problem in more detail in later chapters.

So far we have looked at systems which make use of either previous inputs or previous
outputs only. This restriction is rather artificial as, generally, the most effective DSP systems
use both previous inputs and previous outputs.

2.10 Chapter Summary

Hopefully, you now have a reasonable understanding of the basics of digital signal
processing. You should also realize that this type of signal processing is achieved in a

very different way from “traditional” analog signal processing. In this chapter we have
concentrated on the heart of the DSP system, i.e., the part that processes the digital samples
of the original analog signal. Several processing systems have been analyzed. At this stage

it will not be clear how these systems are designed to achieve a particular type of signal
processing, or even the nature of the signal processing being carried out. This very important
aspect will be dealt with in more detail in later chapters. We have met finite impulse response
filters (those that make use of previous input samples only, such as running average filters)
and also infinite impulse response filters (also called feedback or recursive filters)—these
make use of the previous output samples. Although IIR systems generally need fewer storage
registers than equivalent FIR systems, IR systems can be unstable if not designed correctly,
while FIR systems will never be unstable.
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Frequency Domain Processing

Nasser Kehtarnavaz

Frequency transforms are one of the most important concepts of DSP. Transforming a signal reveals a
whole world of previously invisible information and enables the engineer to manipulate signal in ways
that are not possible in the time domain. For example, frequency transforms are the basis for most
modern audio and video compression algorithms. Taking audio and video into the frequency domain
reveals data that can be “thrown away” without affecting the perceived quality of the signal.

Frequency transforms are also a powerful computational tool. Processing a signal in the
frequency domain is often more computationally efficient than doing it in the time domain.

In this chapter, Nasser Kehtarnavaz provides the concepts you need to implement the most
common transforms. He starts with the basic discrete Fourier transform (DFT) and its inverse,
the IDFT. He then moves on to the fast Fourier transform (FFT), short time Fourier transform
(STFT), and the discrete wavelet transform (DWT). Finally, he points us to a LabVIEW toolkit
that uses these and other transforms for time-frequency analysis.

Of these transforms. the FFT is the most important—along with the FIR filter, it is an essential tool
for every DSP engineer. There are many variants of the FFT, and the FFT presented in this chapter
(taken from a Texas Instruments application note) may not be the best for your application. For a
derivation of another common FFT variant, check out this informative article on the DFT and FFT:

http://www.dspdesignline.com/howto/206800602

The STFT is simply the FFT applied to a windowed time-domain signal. As noted in the chapter,
choosing the right window and window size can be tricky. There are whole textbooks concerning
this. For an introduction to windowing and time-frequency analysis, this page on power spectrum
analysis is a good place to start:

http://www.dspdesignline.com/howto/206801391

The discrete wavelet transform is newer and less commonly used. However, it is often more
efficient than the FFT and is being quickly adopted in signal processing applications. It is
particularly popular for image processing.

For more on working in the frequency domain, see these online references:

Frequency domain tutorial
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http://www.dspdesignline.com/howto/208403009
FFT convolution and the overlap-add method

http://www.dspdesignline.com/howto/199901970
—Kenton Williston

Transformation of signals to the frequency domain is widely used in signal processing.

In many cases, such transformations provide a more effective representation and a more
computationally efficient processing of signals as compared to time domain processing. For
example, due to the equivalency of convolution operation in the time domain to multiplication
in the frequency domain, one can find the output of a linear system by simply multiplying the
Fourier transform of the input signal by the system transfer function.

This chapter presents an overview of three widely used frequency domain transformations,
namely fast Fourier transform (FFT), short-time Fourier transform (STFT), and discrete
wavelet transform (DWT). More theoretical details regarding these transformations can be
found in many signal processing textbooks, e.g., [1].

3.1 Discrete Fourier Transform (DFT) and Fast Fourier
Transform (FFT)

The discrete Fourier transform (DFT) X[k] of an N-point signal x[x] is given by:

N—-1
X[k] = > xnWy, k=01, ..,N -1
n=0

N-1
x[n] = %ZX[k]WN"k, n=01..,N—-1 3.1

n=0

where Wy = e /2N, The above transform equations require N complex multiplications and N — 1
complex additions for each term. For all N terms, N> complex multiplications and N> — N complex
additions are needed. As it is well known, the direct computation of Eq. (3.1) is not efficient.

To obtain a fast or real-time implementation of Eq. (3.1), one often uses a fast Fourier
transform (FFT) algorithm, which makes use of the symmetry properties of DFT.

There are many approaches to finding a fast implementation of DFT; that is, there are many
variations of FFT algorithms. Here, we mention the approach presented in the 71 Application
Report SPRA291 for computing a 2N-point FFT [2]. This approach involves forming two new
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N-point signals x[n] and x,[n] from a 2N-point signal g[n] by splitting it into an even and an
odd part as follows:

x,[n] = gl2n] 0=n=N-1
x,[n] = g[2n +1] 3.2)

From the two sequences x;[n] and x,[n], a new complex sequence x[#] is defined to be:

x[n] = x[n] + jx,[n] O0=n=N-—-1 (3.3)
To get G[k], the DFT of g[n], the equation:

Glk] = X[k]A[k] + X * [N — k]B[k]

k=01, .. N-—1withX[N] = X[0] (3.4)
is used, where,
Alk] = %(1 — jWiy) (3.5)
and,
Blk] = l(1 + Wiy ) (3.6)
2

Only N points of G[k] are computed from Eq. (3.4). The remaining points are found by using
the complex conjugate property of G[k], that is, G[2N — k] = G * [k]. As a result, a 2N-point
transform is calculated based on an N-point transform, leading to a reduction in the number of
operations.

3.2 Short-Time Fourier Transform (STFT)

Short-time Fourier transform (STFT) is a sequence of Fourier transforms of a windowed
signal. STFT provides the time-localized frequency information for situations in which
frequency components of a signal vary over time, whereas the standard Fourier transform
provides the frequency information averaged over the entire signal time interval.

The STFT pair is given by:
L—1 .
Xgpprm,n] = ZX[k]g[k — m]e AL
k=0

Akl = 303" Xy Imanlglk — e (3.7)
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Figure 3.1: Short-time Fourier transform

where x[k] denotes a signal and g[k] denotes an L-point window function. From

Eq. (3.7), the STFT of x[k] can be interpreted as the Fourier transform of the product
x[k]glk — m]. Figure 3.1 illustrates computing STFT by taking Fourier transforms of a
windowed signal.

There exists a trade-off between time and frequency resolution in STFT. In other words,
although a narrow-width window results in a better resolution in the time domain, it generates
a poor resolution in the frequency domain, and vice versa. Visualization of STFT is often
realized via its spectrogram, which is an intensity plot of STFT magnitude over time. Three
spectrograms illustrating different time-frequency resolutions are shown in Figure 3.2. The
implementation details of STFT are described in Lab 3.

3.3 Discrete Wavelet Transform (DWT)

Wavelet transform offers a generalization of STFT. From a signal theory point of view,
similar to DFT and STFT, wavelet transform can be viewed as the projection of a signal into a
set of basis functions named wavelets. Such basis functions offer localization in the frequency
domain. In contrast to STFT having equally spaced time-frequency localization, wavelet
transform provides high frequency resolution at low frequencies and high time resolution at
high frequencies. Figure 3.3 provides a tiling depiction of the time-frequency resolution of
wavelet transform as compared to STFT and DFT.
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The discrete wavelet transform (DWT) of a signal x[#] is defined based on approximation
coefficients, W@[ Jo-k] and detail coefficients, W, [ j,k], as follows:

1
W, Lokl = sz[n](bjn,k[n]
1
W, ikl = WZx[n]%,k[n] forj = j (3.8)

and the inverse DWT is given by:

xn] = Z igklo, (In] + —= ZZ W, [.k1, , [n] (3.9)
\/7 J=Jo k
wheren =0,1,2,...,M-1,j=0,1,2,...,J-1,k=0,1,2, ..., 2-1, and M denotes
the number of samples to be transformed. This number is selected to be M = 2/, where J

indicates the number of transform levels. The basis functions {¢, [n]} and {1y, [n]} are
defined as:

ijqk[l’l] = 2j/2¢[2jn - k]
Y, [n] = 272942 — k] (3.10)

where ¢[n] is called the scaling function and [n] is called the wavelet function.

For an efficient implementation of DWT, the filter bank structure is often used. Figure 3.4
shows the decomposition or analysis filter bank for obtaining the forward DWT coefficients.
The approximation coefficients at a higher level are passed through a highpass and a lowpass
filter, followed by a downsampling by two to compute both the detail and approximation
coefficients at a lower level. This tree structure is repeated for a multi-level decomposition.

Inverse DWT (IDWT) is obtained by using the reconstruction or synthesis filter bank shown
in Figure 3.5. The coefficients at a lower level are upsampled by two and passed through
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Figure 3.5: Discrete wavelet transform reconstruction filter bank, Hy lowpass and H; highpass

reconstruction filters

a highpass and a lowpass filter. The results are added together to obtain the approximation
coefficients at a higher level.

3.4 Signal Processing Toolset

Signal Processing Toolset (SPT) is an add-on toolkit of LabVIEW that provides useful tools
for performing time-frequency analysis [3]. SPT has three components: joint time-frequency
analysis (JTFA), super-resolution spectral analysis (SRSA), and wavelet analysis.

The VIs associated with STFT are included as part of the JTFA component. The SRSA
component is based on the model-based frequency analysis normally used for situations in
which a limited number of samples is available. The VIs associated with the SRSA component
include high-resolution spectral analysis and parameter estimation, such as amplitude, phase,
damping factor, and damped sinusoidal estimation. The VIs associated with the wavelet analysis
component include 1D and 2D wavelet transform as well as their filter bank implementations.

Lab 3: FFT, STFT, and DWT

This lab shows how to use the LabVIEW tools to perform FFT, STFT, and DWT as part of a
frequency domain transformation system.

L3.1 FFT versus STFT

To illustrate the difference between FFT and STFT transformations, three signals are combined
here to form a 512-point input signal: a 75 Hz sinusoidal signal sampled at 512 Hz, a chirp
signal with linearly decreasing frequency from 200 to 120 Hz, and an impulse signal having

an amplitude of 2 for 500 ms located at the 256th sample. This composite signal is shown in
Figure L3.1. The FFT and STFT graphs are also shown in this figure. The FFT graph shows
the time averaged spectrum reflecting the presence of a signal from 120 to 200 Hz, with

one major peak at 75 Hz. As one can see from this graph, the impulse having the short time
duration does not appear in the spectrum. The STFT graph shows the spectrogram for a time
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Figure L3.1: FP of FFT versus STFT

increment of 1 and a rectangular window of width 32 by which the presence of the impulse
can be detected.

As far as the FP is concerned, two Menu Ring controls (Controls » Modern » Ring &
Enum » Menu Ring) are used to input values via their labels. The labels and corresponding
values of the ring controls can be modified by right-clicking and choosing Edit Items... from
the shortcut menu. This brings up the dialog box shown in Figure L3.2.

An Enum (enumerate) control acts the same as a Menu Ring control, except that values of
an Enum control cannot be modified and are assigned sequentially. A Menu Ring or Enum
can be changed to a Ring Constant or Enum Constant when used on a BD.
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Figure L3.2: Properties of a ring control

Several spectrograms with different time window widths are shown in Figure 1.3.3.

Figure L.3.3(a) shows an impulse (vertical line) at time 500 ms because of the relatively
time-localized characteristic of the window used. Even though a high resolution in the time
domain is achieved with this window, the resolution in the frequency domain is so poor that
the frequency contents of the sinusoidal and chirp signals cannot be easily distinguished. This
is due to the Heisenberg’s uncertainty principle [4], which states that if the time resolution is
increased, the frequency resolution is decreased.

Now, let us increase the width of the time-frequency window. This causes the frequency
resolution to become better while the time resolution becomes poorer. As a result, as shown
in Figure L.3.3(d), the frequency contents of the sinusoidal and chirp signals become better
distinguished. One can also see that as the time resolution becomes poorer, the moment of
occurrence of the impulse becomes more difficult to identify.
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Figure L3.3: STFT with time window of width (a) 16, (b) 32, (c) 64, and (d) 128

The BD of this example is illustrated in Figure L.3.4. To build this VI, let us first generate the
input signal with the specifications stated previously. Figure L.3.5(a) shows the generation

of the input signal (512 samples generated with the sampling frequency of 512Hz) using a
MathScript Node. In order to use this VI as the signal source of the system, an output
terminal in the connector pane is wired to a waveform indicator. Then, the VI is saved as
Composite Signal.vi.

Alternatively, the three signals can be generated using the built-in LabVIEW VIs and

added together to form a composite signal; see Figure L.3.5(b). The sinusoidal waveform is
generated by using the Sine Waveform VI (Functions » Signal Processing » Waveform
Generation » Sine Waveform), and the chirp signal is generated by using the Chirp
Pattern VI (Functions » Signal Processing » Signal Generation » Chirp Pattern).
Also, the impulse is generated by using the Impulse Pattern VI (Functions » Signal
Processing » Signal Generation » Impulse Pattern).
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Figure L3.4: BD of FFT and STFT

Now, let us create the entire transformation system using the Composite Signal VI just
made. Create a blank VI; then select Functions » Select a VI... This brings up a window for
choosing and locating a VI. Click Composite Signal.vi to insert it into the BD. The composite
signal output is connected to three blocks consisting of a waveform graph, an FF'T, and

an STFT VI. The waveform data (Y component) are connected to the input of the FFT VI
(Functions » Signal Processing » Transforms » FFT). Only the first half of the output

data from the FFT VI is taken, since the other half is a mirror image of the first half. This is
done by placing an Array Subset function and wiring to it one half of the signal length.
The magnitude of the FFT output is then displayed in the waveform graph. Properties of an
FP object, such as scale multiplier of a graph, can be changed programmatically by using a
property node. Property nodes are discussed in the next subsection.

Getting the STFT output is more involved than FFT. The STFT VI (Functions » Addons »
Time Frequency Analysis » Time Frequency Transform » STFT), which is part of the
Signal Processing Toolkit (SPT), is used here for this purpose. To utilize the STFT VI,

one needs to connect several inputs as well as the input signal. These inputs are time-freq
sampling info, extension, window info, and user-defined window. The time-freq sampling
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info is a cluster of time steps and frequency bins where time steps specify the sampling
period along the time axis and the frequency bins indicate the FFT block size of the STFT.

A constant of 1 is used for time steps in the example shown in Figure L3.4. The extension
input specifies the method to pad data at both ends of a signal to avoid abrupt changes in the
transformed outcome. There exist three different extension options: zero padding, symmetric,
and periodic. The periodic mode is used in the example shown in Figure L.3.4. The window
info input specifies which commonly used sliding window to apply and defines the resolution
of the resulting time-frequency representation. On the other hand, the user-defined window
input allows one to have a customized sliding window by specifying the coefficients. In

our example, a Hanning window is considered by passing an array of all 1’s whose width is
adjustable by the user through the Hanning window VI (Functions » Signal Processing »
Window » Hanning Window). Similar to FFT, only one-half of the frequency values are
taken while the time values retain the original length. The start index of the array subset is set
to one-half the number of frequency bins to access the positive frequency values, as shown

in Figure L.3.4. The reason is that the output of the STFT corresponding to the negative
frequency values is followed by the output belonging to the positive frequency values.
Additional details on using the STFT VI can be found in [5].

The output of the STFT is displayed in the Intensity Graph (Controls » Modern »
Graph » Intensity Graph). Right-click on the Intensity Graph and then uncheck the
Loose Fit option under both X Scale and Y Scale from the shortcut menu. When this is done,
the STFT output graph gets fitted into the entire plotting area. Enable auto-scaling of intensity
by right-clicking on the Intensity Graph and choosing Z Scale » AutoScale Z.

L3.1.1 Property Node

The number of FFT values varies based on the number of samples. Similarly, the number

of frequency rows of STFT varies based on the number of frequency bins specified by the
user. However, the scale of the frequency axis in FFT or STFT graphs should always remain
between 0 and f,/2, which is 256 Hz in the example, regardless of the number of frequency
bins, as illustrated in Figure L.3.1 and Figure L.3.3. For this reason, the multiplier for the
spectrogram scale needs to be changed depending on the width of the time window during
run time.

A property node can be used to modify the appearance of an FP object. A property node
can be created by right-clicking either on a terminal icon in a BD or an object in an FP,
and then by choosing the visible property element through Create » Property Node. This
way, the default element of the chosen property gets created in a BD, which is linked to a
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corresponding FP object. Various property elements of the property node can be modified
to reflect the read or the write mode. Note that, by default, a property node is set to read. To
change to the write mode, right-click on a property element and choose Change to Write.
The read/write mode of all elements can be changed together by choosing Change all to
Read/Write.

To change the scale of the spectrogram graph, one needs to modify the value of the element
YScale.Multiplier. Replace the element visible with YScale.Multiplier by clicking it and
choosing Y Scale » Offset and Multiplier » Multiplier. The sampling frequency of the
signal divided by the number of frequency bins, which defines the scale multiplier, is wired to
the element YScale.Multiplier of the property node. Two more elements, XScale.Multiplier
and XScale.Precision, are added to the property node for modifying the time axis multiplier
and precision, respectively.

A property node of the FFT graph is also created and modified in a similar way considering
that the resolution of FFT is altered depending on the sampling frequency and number

of input signal samples. The property nodes of the STFT and FFT graphs are shown in
Figure L3.4. More details on using property nodes can be found in LabVIEW User

Manual [6].

L3.2 DWT

In this transformation, the time-frequency window has high frequency resolution for higher
frequencies and high time resolution for lower frequencies. This is a great advantage over
STFT where the window size is fixed for all frequencies.

The BD of a 1D decomposition and reconstruction wavelet transform is shown in Figure
L3.6. Three VIs including WA Wavelet Filter VI (Functions » Addons » Wavelet
Analysis » Discrete Wavelet » Filter Banks), WA Discrete Wavelet Transform
VI, and WA Inverse Discrete Wavelet Transform VI (Functions » Addons »
Wavelet Analysis » Discrete Wavelet) are used here from the wavelet analysis palette.

A chirp type signal, shown in Figure L.3.7, is considered to be the input signal source. This
signal is designed to consist of four sinusoidal signals, each consisting of 128 samples with
increasing frequencies in this order: 250, 500, 1000, 2000 Hz. This makes the entire chirp
signal 512 samples. The Fourier transform of this signal is also shown in Figure L3.7.

Figure L3.8(a) illustrates the BD of this signal generation process. Save this VI as Chirp
Signal.vi to be used as a signal source subVI within the DWT VI. Note that the Concatenate
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Figure L3.9: Waveform decomposition tree

Inputs option of the Build Array function should be chosen to build the 1D chirp signal.
This VI has only one output terminal. As an alternative to the graphical approach, a MATLAB
Script Node can be used to generate the chirp signal. This way, the four signals need to
be concatenated using the operator [ ], as shown in Figure L3.8(b).

The WA Discrete Wavelet Transform VIrequires four inputs, including input
signal, extension, levels, and analysis filter. The input signal is provided by the Chirp
Signal VI For the extension input, the same options are available as mentioned earlier for
STFT. The input levels specify the number of levels of decomposition. In the BD shown in
Figure L3.6, a three-level decomposition is used via specifying a constant 3. The filter bank
implementation for a three-level wavelet decomposition is illustrated in Figure L.3.9. In this
example, the Daubechies-2 wavelet is used. The coefficients of the filters are generated by the
Wavelet Filter VI This VI provides the coefficient sets for both the decomposition and
reconstruction parts.

The result of the WA Discrete Wavelet Transform VIis structured into a 1D array
corresponding to the components of the transformed signal in the order LLL, LLH, LH, H,
where L stands for low and H for high. The length of each component is also available from
this VI. The wavelet decomposed outcome for each stage of the filter bank is shown in Figure
L3.10. From the outcome, it can be observed that lower frequencies occur earlier and higher
frequencies occur later in time. This demonstrates the fact that wavelet transform provides
both frequency and time resolution, a clear advantage over Fourier transform.

The decomposed signal can be reconstructed by the WA Inverse Discrete Wavelet
Transform VI. From the reconstructed signal, shown in Figure L.3.10, one can see that the
wavelet decomposed signal is reconstructed perfectly by using the synthesis or reconstruction
filter bank.
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Audio Coding

Khalid Sayood

Audio processing has been an important part of DSP from the very beginning, and it is one of
the few areas of DSP that is well-known among nonengineers. Recording studios have used DSP
for over 20 years, and today every album on the shelves has gone through some form of digital
signal processing. Audiophiles know about DSP thanks to the “DSP” button on receivers from
Yamaha and other manufacturers. Even the average consumer knows a little bit about DSP
thanks to the prevalence of audio compression. If you have an iPod, listen to satellite or Internet
radio, or watch DVDs, you’ve experienced the wonders of audio compression.

In this chapter, Khalid Sayood gives an introduction to audio compression, focusing on popular
compression standards. The author’s stated goal is to help you understand these standards
without getting bogged down in details. In this respect he succeeds. If you already understand
basic DSP concepts such as frequency transforms (audio compression algorithms use the
modified discrete cosine transform, or MDCT), you will walk away with a solid understanding of
how these algorithms work, where they’ve been applied, and why.

Sayood starts with the basic principles of audio coding, and then dives into MPEG layer I and
II—two of the first frequency-based codecs. This is primarily a setup for a discussion of the big
kahuna of codecs: MPEG layer III, or MP3. Sayood describes MP3 in detail, giving us insight
into why it is so successful. We also learn of its Achilles heel: it was designed for backwards
compatibility with MPEG layer I/Il, and is therefore inefficient. This leads to a discussion of
more efficient codecs, including MPEG Advanced Audio Coding (AAC) and Dolby AC3 (Dolby
Digital). Finally, we’re given a brief rundown of other notable codecs such as DTS and the open-
source Ogg Vorbis. (Yes, Ogg Vorbis is a real codec name—never doubt the creative power of the
open-source community!)

—Kenton Williston
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4.1 Overview

Lossy compression schemes can be based on a source model, as in the case of speech
compression, or a user or sink model, as is somewhat the case in image compression. In this
chapter we look at audio compression approaches that are explicitly based on the model of
the user. We will look at audio compression approaches in the context of audio compression
standards. Principally, we will examine the different MPEG standards for audio compression.
These include MPEG Layer I, Layer 11, Layer III (or mp3) and the Advanced Audio Coding
Standard. As with other standards described in this book, the goal here is not to provide all
the details required for implementation. Rather the goal is to provide the reader with enough
familiarity so that they can then find it much easier to understand these standards.

4.2 Introduction

The various speech coding algorithms rely heavily on the speech production model to identify
structures in the speech signal that can be used for compression. Audio compression systems
have taken, in some sense, the opposite tack. Unlike speech signals, audio signals can be
generated using a large number of different mechanisms. Lacking a unique model for audio
production, the audio compression methods have focused on the unique model for audio
perception, a psychoacoustic model for hearing. At the heart of the techniques described in
this chapter is a psychoacoustic model of human perception. By identifying what can and,
more importantly, what cannot be heard, the schemes described in this chapter obtain much
of their compression by discarding information that cannot be perceived. The motivation

for the development of many of these perceptual coders was their potential application in
broadcast multimedia. However, their major impact has been in the distribution of audio over
the Internet.

We live in an environment rich in auditory stimuli. Even an environment described as quiet is
filled with all kinds of natural and artificial sounds. The sounds are always present and come
to us from all directions. Living in this stimulus-rich environment, it is essential that

we have mechanisms for ignoring some of the stimuli and focusing on others. Over the
course of our evolutionary history we have developed limitations on what we can hear.
Some of these limitations are physiological, based on the machinery of hearing. Others are
psychological, based on how our brain processes auditory stimuli. The insight of researchers
in audio coding has been the understanding that these limitations can be useful in selecting
information that needs to be encoded and information that can be discarded. The limitations
of human perception are incorporated into the compression process through the use of
psychoacoustic models. We briefly describe the auditory model used by the most popular
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Figure 4.1: A typical plot of the audibility threshold

audio compression approaches. Our description is necessarily superficial and we refer readers
interested in more detail to Moore, An Introduction to the Psychology of Hearing (Academic
Press) and Bosi/Goldberg, Introduction to Digital Audio Coding and Standards (Kluwer
Academic Press).

The machinery of hearing is frequency dependent. The variation of what is perceived as
equally loud at different frequencies was first measured by Fletcher and Munson at Bell
Labs in the mid-1930s. These measurements of perceptual equivalence were later refined
by Robinson and Dadson. This dependence is usually displayed as a set of equal loudness
curves, where the sound pressure level (SPL) is plotted as a function of frequency for
tones perceived to be equally loud. Clearly, what two people think of as equally loud will
be different. Therefore, these curves are actually averages and serve as a guide to human
auditory perception. The particular curve that is of special interest to us is the threshold-of
hearing curve. This is the SPL curve that delineates the boundary of audible and inaudible
sounds at different frequencies. In Figure 4.1 we show a plot of this audibility threshold in
quiet. Sounds that lie below the threshold are not perceived by humans. Thus, we can see that
a low amplitude sound at a frequency of 3 kHz may be perceptible while the same level of
sound at 100 Hz would not be perceived.

4.2.1 Spectral Masking

Lossy compression schemes require the use of quantization at some stage. Quantization can
be modeled as as an additive noise process in which the output of the quantizer is the input
plus the quantization noise. To hide quantization noise, we can make use of the fact that
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Figure 4.2: Change in the audibility threshold

signals below a particular amplitude at a particular frequency are not audible. If we select the
quantizer step size such that the quantization noise lies below the audibility threshold, the
noise will not be perceived. Furthermore, the threshold of audibility is not absolutely fixed
and typically rises when multiple sounds impinge on the human ear. This phenomenon gives
rise to spectral masking. A tone at a certain frequency will raise the threshold in a critical
band around that frequency. These critical bands have a constant Q, which is the ratio of
frequency to bandwidth. Thus, at low frequencies the critical band can have a bandwidth

as low as 100 Hz, while at higher frequencies the bandwidth can be as large as 4 kHz. This
increase of the threshold has major implications for compression. Consider the situation in
Figure 4.2. Here a tone at 1 kHz has raised the threshold of audibility so that the adjacent
tone above it in frequency is no longer audible. At the same time, while the tone at S00Hz is
audible, because of the increase in the threshold the tone can be quantized more crudely. This
is because increase of the threshold will allow us to introduce more quantization noise at that
frequency. The degree to which the threshold is increased depends on a variety of factors,
including whether the signal is sinusoidal or atonal.

4.2.2 Temporal Masking

Along with spectral masking, the psychoacoustic coders also make use of the phenomenon
of temporal masking. The temporal masking effect is the masking that occurs when a
sound raises the audibility threshold for a brief interval preceding and following the sound.
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In Figure 4.3 we show the threshold of audibility close to a masking sound. Sounds that occur
in an interval around the masking sound (both after and before the masking tone) can be
masked. If the masked sound occurs prior to the masking tone, this is called premasking or
backward masking, and if the sound being masked occurs after the masking tone this effect is
called postmasking or forward masking. The forward masking remains in effect for a much
longer time interval than the backward masking.

4.2.3 Psychoacoustic Model

These attributes of the ear are used by all algorithms that use a psychoacoustic model. There are
two models used in the MPEG audio coding algorithms. Although they differ in some details,
the general approach used in both cases is the same. The first step in the psychoacoustic model
is to obtain a spectral profile of the signal being encoded. The audio input is windowed and
transformed into the frequency domain using a filter bank or a frequency domain transform.
The Sound Pressure Level (SPL) is calculated for each spectral band. If the algorithm uses a
subband approach, then the SPL for the band is computed from the SPL for each coefficient X;.
Because tonal and nontonal components have different effects on the masking level, the next
step is to determine the presence and location of these components. The presence of any tonal
components is determined by first looking for local maxima where a local maximum is declared
at location k if |Xk |2 > |X,H |2 and |Xk |2 = |Xk+1|2. A local maximum is determined to be a
tonal component if

20log,, LX"' =7

%,




164  Chapter 4

where the values j depend on the frequency. The identified tonal maskers are removed from
each critical band and the power of the remaining spectral lines in the band is summed to
obtain the nontonal masking level. Once all the maskers are identified, those with SPL below
the audibility threshold are removed. Furthermore, of those maskers that are very close to
each other in frequency, the lower-amplitude masker is removed. The effects of the remaining
maskers are obtained using a spreading function that models spectral masking. Finally, the
masking due to the audibility level and the maskers is combined to give the final masking
thresholds. These thresholds are then used in the coding process.

In the following sections we describe the various audio coding algorithms used in the
MPEG standards. Although these algorithms provide audio that is perceptually noiseless,
it is important to remember that even if we cannot perceive it, there is quantization noise
distorting the original signal. This becomes especially important if the reconstructed audio
signal goes through any postprocessing. Postprocessing may change some of the audio
components, making the previously masked quantization noise audible. Therefore, if there
is any kind of processing to be done, including mixing or equalization, the audio should be
compressed only after the processing has taken place. This “hidden noise” problem also
prevents multiple stages of encoding and decoding or tandem coding.

4.3 MPEG Audio Coding

We begin with the three separate, stand-alone audio compression strategies that are used in
MPEG-1 and MPEG-2 and known as Layer I, Layer II, and Layer III. The Layer III audio
compression algorithm is also referred to as mp3. Most standards have normative sections
and informative sections. The normative actions are those that are required for compliance
to the standard. Most current standards, including the MPEG standards, define the bitstream
that should be presented to the decoder, leaving the design of the encoder to individual
vendors. That is, the bitstream definition is normative, while most guidance about encoding
is informative. Thus, two MPEG-compliant bitstreams that encode the same audio material
at the same rate but on different encoders may sound very different. On the other hand, a
given MPEG bitstream decoded on different decoders will result in essentially the same
output.

A simplified block diagram representing the basic strategy used in all three layers is shown in
Figure 4.4. The input, consisting of 16-bit PCM words, is first transformed to the frequency
domain. The frequency coefficients are quantized, coded, and packed into an MPEG
bitstream. Although the overall approach is the same for all layers, the details can vary
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Figure 4.4: The MPEG audio coding algorithms

significantly. Each layer is progressively more complicated than the previous layer and also
provides higher compression. The three layers are backward compatible. That is, a decoder
for Layer III should be able to decode Layer I- and Layer II-encoded audio. A decoder for
Layer II should be able to decode Layer I-encoded audio. Notice the existence of a block
labeled Psychoacoustic model in Figure 4.4.

4.3.1 Layer | Coding

The Layer I coding scheme provides a 4:1 compression. In Layer I coding the time frequency
mapping is accomplished using a bank of 32 subband filters. The output of the subband filters
is critically sampled. That is, the output of each filter is down-sampled by 32. The samples
are divided into groups of 12 samples each. Twelve samples from each of the 32 subband
filters, or a total of 384 samples, make up one frame of the Layer I coder. Once the frequency
components are obtained the algorithm examines each group of 12 samples to determine a
scalefactor. The scalefactor is used to make sure that the coefficients make use of the entire
range of the quantizer. The subband output is divided by the scalefactor before being linearly
quantized. There are a total of 63 scalefactors specified in the MPEG standard. Specification
of each scalefactor requires 6 bits.

To determine the number of bits to be used for quantization, the coder makes use of the
psychoacoustic model. The inputs to the model include the fast Fourier transform (FFT) of
the audio data as well as the signal itself. The model calculates the masking thresholds in each
subband, which in turn determine the amount of quantization noise that can be tolerated and
hence the quantization step size. As the quantizers all cover the same range, selection of the
quantization stepsize is the same as selection of the number of bits to be used for quantizing
the output of each subband. In Layer I the encoder has a choice of 14 different quantizers for
each band (plus the option of assigning 0 bits). The quantizers are all midtread quantizers
ranging from 3 levels to 65,535 levels. Each subband gets assigned a variable number of bits.
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Figure 4.5: Frame structure for Layer 1

However, the total number of bits available to represent all the subband samples is fixed.
Therefore, the bit allocation can be an iterative process. The objective is to keep the noise-to-
mask ratio more or less constant across the subbands.

The output of the quantization and bit allocation steps is combined into a frame as shown in
Figure 4.5. Because MPEG audio is a streaming format, each frame carries a header, rather
than having a single header for the entire audio sequence. The header is made up of 32 bits.
The first 12 bits comprise a sync pattern consisting of all 1s. This is followed by a 1-bit
version ID, a 2-bit layer indicator, a 1-bit CRC protection. The CRC protection bit is set to

0 if there is no CRC protection and is set to a 1 if there is CRC protection. If the layer and
protection information is known, all 16 bits can be used for providing frame synchronization.
The next 4 bits make up the bit rate index, which specifies the bit rate in kbits/sec. There are
14 specified bit rates to choose from. This is followed by 2 bits that indicate the sampling
frequency. The sampling frequencies for MPEG-1 and MPEG-2 are different (one of the few
differences between the audio coding standards for MPEG-1 and MPEG-2) and are shown in
Table 4.1 These bits are followed by a single padding bit. If the bit is “1,” the frame needs an
additional bit to adjust the bit rate to the sampling frequency. The next two bits indicate the
mode. The possible modes are “stereo,” “joint stereo,” “dual channel,” and “single channel.”
The stereo mode consists of two channels that are encoded separately but intended to be
played together. The joint stereo mode consists of two channels that are encoded together.
The left and right channels are combined to form a mid and a side signal as follows:

L+ R
2

M =

L—R

S =

2
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Table 4.1: Allowable sampling frequencies in MPEG-1 and MPEG-2

Index MPEG-1 MPEG-2
00 441 kHz 22.05kHz
01 48 kHz 24 kHz

10 32kHz 16 kHz

11 Reserved

The dual-channel mode consists of two channels that are encoded separately and are not
intended to be played together, such as a translation channel. These are followed by two mode
extension bits that are used in the joint stereo mode. The next bit is a copyright bit (“1” if the
material is copyrighted, “0” if it is not). The next bit is set to “1” for original media and “0”
for copy. The final two bits indicate the type of de-emphasis to be used.

If the CRC bit is set, the header is followed by a 16-bit CRC. This is followed by the bit
allocations used by each subband and is in turn followed by the set of 6-bit scalefactors. The
scalefactor data is followed by the quantized 384 samples.

4.3.2 Layer Il Coding

The Layer II coder provides a higher compression rate by making some relatively minor
modifications to the Layer I coding scheme. These modifications include how the samples are
grouped together, the representation of the scalefactors, and the quantization strategy. Where
the Layer I coder puts 12 samples from each subband into a frame, the Layer II coder groups
three sets of 12 samples from each subband into a frame. The total number of samples per
frame increases from 384 samples to 1152 samples. This reduces the amount of overhead

per sample. In Layer I coding a separate scalefactor is selected for each block of 12 samples.
In Layer II coding the encoder tries to share a scale factor among two or all three groups of
samples from each subband filter. The only time separate scalefactors are used for each group
of 12 samples is when not doing so would result in a significant increase in distortion. The
particular choice used in a frame is signaled through the scalefactor selection information
field in the bitstream.

The major difference between the Layer I and Layer II coding schemes is in the quantization
step. In the Layer I coding scheme the output of each subband is quantized using one of

14 possibilities; the same 14 possibilities for each of the subbands. In Layer II coding the
quantizers used for each of the subbands can be selected from a different set of quantizers
depending on the sampling rate and the bit rates. For some sampling rate and bit rate
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Figure 4.6: Frame structure for Layer 2

combinations, many of the higher subbands are assigned 0 bits. That is, the information
from those subbands is simply discarded. Where the quantizer selected has 3, 5, or 9 levels,
the Layer II coding scheme uses one more enhancement. Notice that in the case of 3 levels
we have to use 2 bits per sample, which would have allowed us to represent 4 levels. The
situation is even worse in the case of 5 levels, where we are forced to use 3 bits, wasting three
codewords, and in the case of 9 levels where we have to use 4 bits, thus wasting 7 levels.

To avoid this situation, the Layer II coder groups 3 samples into a granule. If each sample
can take on 3 levels, a granule can take on 27 levels. This can be accommodated using

5 bits. If each sample had been encoded separately we would have needed 6 bits. Similarly,
if each sample can take on 9 values, a granule can take on 729 values. We can represent

729 values using 10 bits. If each sample in the granule had been encoded separately, we
would have needed 12 bits. Using all these savings, the compression ratio in Layer II coding
can be increase from 4:1 to 8:1 or 6:1.

The frame structure for the Layer II coder can be seen in Figure 4.6. The only real difference
between this frame structure and the frame structure of the Layer I coder is the scalefactor
selection information field.

4.3.3 Layer Il Coding—mp3

Layer III coding, which has become widely popular under the name mp3, is considerably
more complex than the Layer I and Layer II coding schemes. One of the problems with
the Layer I and coding schemes was that with the 32-band decomposition, the bandwidth
of the subbands at lower frequencies is significantly larger than the critical bands. This
makes it difficult to make an accurate judgement of the mask-to-signal ratio. If we get a
high amplitude tone within a subband and if the subband was narrow enough, we could
assume that it masked other tones in the band. However, if the bandwidth of the subband is
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significantly higher than the critical bandwidth at that frequency, it becomes more difficult to
determine whether other tones in the subband will be be masked.

A simple way to increase the spectral resolution would be to decompose the signal directly
into a higher number of bands. However, one of the requirements on the Layer III algorithm
is that it be backward compatible with Layer I and Layer II coders. To satisfy this backward
compatibility requirement, the spectral decomposition in the Layer III algorithm is performed
in two stages. First the 32-band subband decomposition used in Layer I and Layer II is
employed. The output of each subband is transformed using a modified discrete cosine
transform (MDCT) with a 50% overlap. The Layer III algorithm specifies two sizes for the
MDCT, 6 or 18. This means that the output of each subband can be decomposed into 18
frequency coefficients or 6 frequency coefficients.

The reason for having two sizes for the MDCT is that when we transform a sequence into
the frequency domain, we lose time resolution even as we gain frequency resolution. The
larger the block size the more we lose in terms of time resolution. The problem with this is
that any quantization noise introduced into the frequency coefficients will get spread over
the entire block size of the transform. Backward temporal masking occurs for only a short
duration prior to the masking sound (approximately 20 msec). Therefore, quantization noise
will appear as a pre-echo. Consider the signal shown in Figure 4.7. The sequence consists

of 128 samples, the first 118 of which are 0, followed by a sharp increase in value. The 128-
point DCT of this sequence is shown in Figure 4.8. Notice that many of these coefficients are
quite large. If we were to send all these coefficients, we would have data expansion instead
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Figure 4.9: Reconstructed sequence from 10 DCT coefficients

of data compression. If we keep only the 10 largest coefficients, the reconstructed signal is
shown in Figure 4.9. Notice that not only are the nonzero signal values not well represented,
there is also error in the samples prior to the change in value of the signal. If this were an
audio signal and the large values had occurred at the beginning of the sequence, the forward
masking effect would have reduced the perceptibility of the quantization error. In the situation
shown in Figure 4.9, backward masking will mask some of the quantization error. However,
backward masking occurs for only a short duration prior to the masking sound. Therefore, if
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the length of the block in question is longer than the masking interval, the distortion will be
evident to the listener.

If we get a sharp sound that is very limited in time (such as the sound of castanets) we would
like to keep the block size small enough that it can contain this sharp sound. Then, when we
incur quantization noise it will not get spread out of the interval in which the actual sound
occurred and will therefore get masked. The Layer III algorithm monitors the input and where
necessary substitutes three short transforms for one long transform. What actually happens is
that the subband output is multiplied by a window function of length 36 during the stationary
periods (that is a blocksize of 18 plus 50% overlap from neighboring blocks). This window

is called the long window. If a sharp attack is detected, the algorithm shifts to a sequence of
three short windows of length 12 after a transition window of length 30. This initial transition
window is called the start window. If the input returns to a more stationary mode, the short
windows are followed by another transition window called the stop window of length 30 and
then the standard sequence of long windows. The process of transitioning between windows
is shown in Figure 4.10. A possible set of window transitions is shown in Figure 4.11. For
the long windows we end up with 18 frequencies per subband, resulting in a total of 576
frequencies. For the short windows we get 6 coefficients per subband for a total of 192
frequencies. The standard allows for a mixed block mode in which the two lowest subbands
use long windows while the remaining subbands use short windows. Notice that while
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the number of frequencies may change depending on whether we are using long or short
windows, the number of samples in a frame stays at 1152. That is 36 samples, or 3 groups of
12, from each of the 32 subband filters.

The coding and quantization of the output of the MDCT is conducted in an iterative fashion
using two nested loops. There is an outer loop called the distortion control loop whose
purpose is to ensure that the introduced quantization noise lies below the audibility threshold.
The scalefactors are used to control the level of quantization noise. In Layer III scalefactors
are assigned to groups or “bands” of coefficients in which the bands are approximately the
size of critical bands. There are 21 scalefactor bands for long blocks and 12 scalefactor bands
for short blocks.

The inner loop is called the rate control loop. The goal of this loop is to make sure that a
target bit rate is not exceeded. This is done by iterating between different quantizers and
Huffman codes. The quantizers used in mp3 are companded nonuniform quantizers. The
scaled MDCT coefficients are first quantized and organized into regions. Coefficients at the
higher end of the frequency scale are likely to be quantized to zero. These consecutive zero
outputs are treated as a single region and the run-length is Huffman encoded. Below this
region of zero coefficients, the encoder identifies the set of coefficients that are quantized
to 0 or =1. These coefficients are grouped into groups of four. This set of quadruplets is the
second region of coefficients. Each quadruplet is encoded using a single Huffman codeword.
The remaining coefficients are divided into two or three subregions. Each subregion is
assigned a Huffman code based on its statistical characteristics. If the result of using this
variable length coding exceeds the bit budget, the quantizer is adjusted to increase the
quantization stepsize. The process is repeated until the target rate is satisfied.

Once the target rate is satisfied, control passes back to the outer, distortion control loop. The
psychoacoustic model is used to check whether the quantization noise in any band exceeds
the allowed distortion. If it does, the scalefactor is adjusted to reduce the quantization

noise. Once all scalefactors have been adjusted, control returns to the rate control loop.

The iterations terminate either when the distortion and rate conditions are satisfied or the
scalefactors cannot be adjusted any further.
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There will be frames in which the number of bits used by the Huffman coder is less than the
amount allocated. These bits are saved in a conceptual bit reservoir. In practice what this
means is that the start of a block of data does not necessarily coincide with the header of the
frame. Consider the three frames shown in Figure 4.12. In this example, the main data for
the first frame (which includes scalefactor information and the Huffman coded data) does
not occupy the entire frame. Therefore, the main data for the second frame starts before the
second frame actually begins. The same is true for the remaining data. The main data can
begin in the previous frame. However, the main data for a particular frame cannot spill over
into the following frame.

All this complexity allows for a very efficient encoding of audio inputs. The typical mp3
audio file has a compression ratio of about 10:1. In spite of this high level of compression,
most people cannot tell the difference between the original and the compressed
representation.

We say most because trained professionals can at times tell the difference between the
original and compressed versions. People who can identify very minute differences between
coded and original signals have played an important role in the development of audio coders.
By identifying where distortion may be audible they have helped focus effort onto improving
the coding process. This development process has made mp3 the format of choice for
compressed music.

4.4 MPEG Advanced Audio Coding

The MPEG Layer III algorithm has been highly successful. However, it had some built-
in drawbacks because of the constraints under which it had been designed. The principal
constraint was the requirement that it be backward compatible. This requirement for
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Table 4.2: AAC DecoderTools (ISO/IEC)

Tool Name

Bitstream Formatter Required
Huffman Decoding Required
Inverse Quantization Required
Rescaling Required
M/S Optional
Interblock Prediction Optional
Intensity Optional
Dependently Switched Coupling Optional
TNS Optional
Block switching/MDCT Required
Gain Control Optional
Independently Switched Coupling Optional

backward compatibility forced the rather awkward decomposition structure involving a
subband decomposition followed by an MDCT decomposition. The period immediately
following the release of the MPEG specifications also saw major developments in hardware
capability. The Advanced Audio Coding (AAC) standard was approved as a higher quality
multichannel alternative to the backward compatible MPEG Layer III in 1997.

The AAC approach is a modular approach based on a set of self-contained tools or modules.
Some of these tools are taken from the earlier MPEG audio standard while others are new. As
with previous standards, the AAC standard actually specifies the decoder. The decoder tools
specified in the AAC standard are listed in Table 4.2. As shown in the table, some of these
tools are required for all profiles while others are only required for some profiles. By using
some or all of these tools, the standard describes three profiles. These are the main profile,

the low complexity profile, and the sampling-rate-scalable profile. The AAC approach used in
MPEG-2 was later enhanced and modified to provide an audio coding option in MPEG-4. In
the following section we first describe the MPEG-2 AAC algorithm, followed by the MPEG-4
AAC algorithm.

4.4.1 MPEG-2 AAC

A block diagram of an MPEG-2 AAC encoder is shown in Figure 4.13. Each block represents
a tool. The psychoacoustic model used in the AAC encoder is the same as the model used in
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Figure 4.13: An MPEG-2 AAC encoder (ISO/IEC IS 14496)

the MPEG Layer III encoder. As in the Layer III algorithm, the psychoacoustic model is used
to trigger switching in the blocklength of the MDCT transform and to produce the threshold
values used to determine scalefactors and quantization thresholds. The audio data is fed in
parallel to both the acoustic model and to the modified Discrete Cosine Transform.

4.4.1.1 Block Switching and MDCT

Because the AAC algorithm is not backward compatible it does away with the requirement
of the 32-band filterbank. Instead, the frequency decomposition is accomplished by a
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Modified Discrete Cosine Transform (MDCT). The AAC algorithm allows switching between
a window length of 2048 samples and 256 samples. These window lengths include a 50%
overlap with neighboring blocks. So 2048 time samples are used to generate 1024 spectral
coefficients, and 256 time samples are used to generate 128 frequency coefficients. The k"
spectral coefficient of block i, X;  is given by:

1

k+—

N-1
X, = ZZZM cos >

n=0

[27‘('(7’1 +n,)

where z;, is the n” time sample of the i’ block, N is the window length and

N2 +1
l’lo— ) .

The longer block length allows the algorithm to take advantage of stationary portions of
the input to get significant improvements in compression. The short block length allows the
algorithm to handle sharp attacks without incurring substantial distortion and rate penalties.
Short blocks occur in groups of eight in order to avoid framing issues. As in the case of
MPEG Layer 111, there are four kinds of windows: long, short, start, and stop. The decision
about whether to use a group of short blocks is made by the psychoacoustic model. The
coefficients are divided into scalefactor bands in which the number of coefficients in the
bands reflects the critical bandwidth. Each scalefactor band is assigned a single scalefactor.
The exact division of the coefficients into scalefactor bands for the different windows and
different sampling rates is specified in the standard (ISO/IEC IS 14496).

4.4.1.2 Spectral Processing

In MPEG Layer III coding the compression gain is mainly achieved through the unequal
distribution of energy in the different frequency bands, the use of the psychoacoustic model,
and Huffman coding. The unequal distribution of energy allows use of fewer bits for spectral
bands with less energy. The psychoacoustic model is used to adjust the quantization step size
in a way that masks the quantization noise. The Huffman coding allows further reductions

in the bit rate. All these approaches are also used in the AAC algorithm. In addition, the
algorithm makes use of prediction to reduce the dynamic range of the coefficients and thus
allow further reduction in the bit rate.

Recall that prediction is generally useful only in stationary conditions. By their very nature,
transients are almost impossible to predict. Therefore, generally speaking, predictive coding
would not be considered for signals containing significant amounts of transients. However,
music signals have exactly this characteristic. Although they may contain long periods of
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stationary signals, they also generally contain a significant amount of transient signals. The AAC
algorithm makes clever use of the time frequency duality to handle this situation. The standard
contains two kinds of predictors, an intrablock predictor, referred to as temporal noise shaping
(TNS), and an interblock predictor. The interblock predictor is used during stationary periods.
During these periods it is reasonable to assume that the coefficients at a certain frequency do not
change their value significantly from block to block. Making use of this characteristic, the AAC
standard implements a set of parallel DPCM systems. There is one predictor for each coefficient
up to a maximum number of coefficients. The maximum is different for different sampling
frequencies. Each predictor is a backward adaptive two-tap predictor. This predictor is really
useful only in stationary periods. Therefore, the psychoacoustic model monitors the input and
determines when the output of the predictor is to be used. The decision is made on a scalefactor
band by scalefactor band basis. Because notification of the decision that the predictors are being
used has to be sent to the decoder, this would increase the rate by one bit for each scalefactor
band. Therefore, once the preliminary decision to use the predicted value has been made, further
calculations are made to check if the savings will be sufficient to offset this increase in rate. If
the savings are determined to be sufficient, a predictor_data_present bit is set to 1 and one bit
for each scalefactor band (called the prediction_used bit) is set to 1 or O depending on whether
prediction was deemed effective for that scalefactor band. If not, the predictor_data_present

bit is set to 0 and the prediction_used bits are not sent. Even when a predictor is disabled,

the adaptive algorithm is continued so that the predictor coefficients can track the changing
coefficients. However, because this is a streaming audio format it is necessary from time to time
to reset the coefficients. Resetting is done periodically in a staged manner and also when a short
frame is used.

When the audio input contains transients, the AAC algorithm uses the intraband predictor.
Recall that narrow pulses in time correspond to wide bandwidths. The narrower a signal

in time, the broader its Fourier transform will be. This means that when transients occur

in the audio signal, the resulting MDCT output will contain a large number of correlated
coefficients. Thus, unpredictability in time translates to a high level of predictability in terms
of the frequency components. The AAC uses neighboring coefficients to perform prediction.
A target set of coefficients is selected in the block. The standard suggests a range of 1.5kHz
to the uppermost scalefactor band as specified for different profiles and sampling rates.

A set of linear predictive coefficients is obtained using any of the standard approaches, such
as the Levinson-Durbin algorithm. The maximum order of the filter ranges from 12 to 20
depending on the profile. The process of obtaining the filter coefficients also provides the
expected prediction gain g,. This expected prediction gain is compared against a threshold
to determine if intrablock prediction is going to be used. The standard suggests a value of
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1.4 for the threshold. The order of the filter is determined by the first PARCOR coefficient
with a magnitude smaller than a threshold (suggested to be 0.1). The PARCOR coefficients
corresponding to the predictor are quantized and coded for transfer to the decoder. The
reconstructed LPC coefficients are then used for prediction. In the time domain predictive
coders, one effect of linear prediction is the spectral shaping of the quantization noise. The
effect of prediction in the frequency domain is the temporal shaping of the quantization noise,
hence the name Temporal Noise Shaping. The shaping of the noise means that the noise will
be higher during time periods when the signal amplitude is high and lower when the signal
amplitude is low. This is especially useful in audio signals because of the masking properties
of human hearing.

4.4.1.3 Quantization and Coding

The quantization and coding strategy used in AAC is similar to what is used in MPEG Layer
III. Scalefactors are used to control the quantization noise as a part of an outer distortion
control loop. The quantization step size is adjusted to accommodate a target bit rate in an
inner rate control loop. The quantized coefficients are grouped into sections. The section
boundaries have to coincide with scalefactor band boundaries. The quantized coefficients in
each section are coded using the same Huffman codebook. The partitioning of the coefficients
into sections is a dynamic process based on a greedy merge procedure. The procedure starts
with the maximum number of sections. Sections are merged if the overall bit rate can be
reduced by merging. Merging those sections will result in the maximum reduction in bit rate.
This iterative procedure is continued until there is no further reduction in the bit rate.

4.4.1.4 Stereo Coding

The AAC scheme uses multiple approaches to stereo coding. Apart from independently
coding the audio channels, the standard allows Mid/Side (M/S) coding and intensity stereo
coding. Both stereo coding techniques can be used at the same time for different frequency
ranges. Intensity coding makes use of the fact that at higher frequencies two channels can

be represented by a single channel plus some directional information. The AAC standard
suggests using this technique for scalefactor bands above 6 kHz. The M/S approach is used to
reduce noise imaging. As described previously in the joint stereo approach, the two channels
(L and R) are combined to generate sum and difference channels.

4.4.1.5 Profiles

The main profile of MPEG-2 AAC uses all the tools except for the gain control tool of
Figure 4.13. The low complexity profile in addition to the gain control tool the interblock
prediction tool is also dropped. In addition the maximum prediction order for intra-band
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prediction (TNS) for long windows is 12 for the low complexity profile as opposed to 20 for
the main profile.

The Scalable Sampling Rate profile does not use the coupling and interband prediction tools.
However this profile does use the gain control tool. In the scalable-sampling profile the
MDCT block is preceded by a bank of four equal width 96 tap filters. The filter coefficients
are provided in the standard. The use of this filterbank allows for a reduction in rate and
decoder complexity. By ignoring one or more of the filterbank outputs the output bandwidth
can be reduced. This reduction in bandwidth and sample rate also leads to a reduction in the
decoder complexity. The gain control allows for the attenuation and amplification of different
bands in order to reduce perceptual distortion.

4.4.2 MPEG-4 AAC

The MPEG-4 AAC adds a perceptual noise substitution (PNS) tool and substitutes a long

term prediction (LTP) tool for the interband prediction tool in the spectral coding block. In

the quantization and coding section the MPEG-4 AAC adds the options of Transform-Domain
Weighted Interleave Vector Quantization (TwinVQ) and Bit Sliced Arithmetic Coding (BSAC).

4.4.2.1 Perceptual Noise Substitution (PNS)

There are portions of music that sound like noise. Although this may sound like a harsh (or
realistic) subjective evaluation, that is not what is meant here. What is meant by noise here

is a portion of audio where the MDCT coefficients are stationary without containing tonal
components (Watkinson, The MPEG Handbook). This kind of noise-like signal is the hardest
to compress. However, at the same time it is very difficult to distinguish one noise-like signal
from another. The MPEG-4 AAC makes use of this fact by not transmitting such noise-like
scalefactor bands. Instead the decoder is alerted to this fact and the power of the noise-

like coefficients in this band is sent. The decoder generates a noise-like sequence with the
appropriate power and inserts it in place of the unsent coefficients.

4.4.2.2 Long Term Prediction

The interband prediction in MPEG-2 AAC is one of the more computationally expensive
parts of the algorithm. MPEG-4 AAC replaces that with a cheaper long term prediction (LTP)
module.

4.4.2.3 TwinVQ

The Transform-Domain Weighted Interleave Vector Quantization (TwinVQ) (Iwakami et al.)
option is suggested in the MPEG-4 AAC scheme for low bit rates. Developed at NTT in the
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early 1990s, the algorithm uses a two-stage process for flattening the MDCT coefficients.
In the first stage, a linear predictive coding algorithm is used to obtain the LPC coefficients
for the audio data corresponding to the MDCT coefficients. These coefficients are used to
obtain the spectral envelope for the audio data. Dividing the MDCT coefficients with this
spectral envelope results in some degree of “flattening” of the coefficients. The spectral
envelope computed from the LPC coefficients reflects the gross features of the envelope

of the MDCT coefficients. However, it does not reflect any of the fine structure. This fine
structure is predicted from the previous frame and provides further flattening of the MDCT
coefficients. The flattened coefficients are interleaved and grouped into subvectors and
quantized. The flattening process reduces the dynamic range of the coefficients, allowing
them to be quantized using a smaller VQ codebook than would otherwise have been possible.
The flattening process is reversed in the decoder as the LPC coefficients are transmitted to
the decoder.

4.4.2.4 Bit Sliced Arithmetic Coding (BSAC)

In addition to the Huffman coding scheme of the MPEG-2 AAC scheme, the MPEG-4 AAC
scheme also provides the option of using binary arithmetic coding. The binary arithmetic
coding is performed on the bitplanes of the magnitudes of the quantized MDCT coefficients.
By bitplane we mean the corresponding bit of each coefficient. Consider the sequence of 4-bit
coefficients x,: 5, 11, 8, 10, 3, 1. The most significant bitplane would consist of the MSBs of
these numbers, 011100. The next bitplane would be 100000. The next bitplane is 010110. The
least significant bitplane is 110011.

The coefficients are divided into coding bands of 32 coefficients each. One probability table
is used to encode each coding band. Because we are dealing with binary data, the probability
table is simply the number of zeros. If a coding band contains only zeros, this is indicated

to the decoder by selecting the probability table 0. The sign bits associated with the nonzero
coefficients are sent after the arithmetic code when the coefficient has a 1 for the the first
time.

The scalefactor information is also arithmetic coded. The maximum scalefactor is coded as an
8-bit integer. The differences between scalefactors are encoded using an arithmetic code. The
first scalefactor is encoded using the difference between it and the maximum scalefactor.

4.5 Dolby AC3 (Dolby Digital)

Unlike the MPEG algorithms described in the previous section, the Dolby AC-3 method
became a de facto standard. It was developed in response to the standardization activities
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Figure 4.14: The Dolby AC3 algorithm

of the Grand Alliance, which was developing a standard for HDTV in the United States.
However, even before it was accepted as the recommendation for HDTV audio, Dolby-

AC3 had already made its debut in the movie industry. It was first released in a few theaters
during the showing of Star Trek IV in 1991 and was formally released with the movie Batman
Returns in 1992. It was accepted by the Grand Alliance in October of 1993 and became an
Advanced Television Systems Committee (ATSC) standard in 1995. Dolby AC-3 had the
multichannel capability required by the movie industry along with the ability to downmix the
channels to accommodate the varying capabilities of different applications. The 5.1 channels
include right, center, left, left rear, and right rear, and a narrowband low-frequency effects
channel (the 0.1 channel). The scheme supports downmixing the 5.1 channels to 4, 3, 2, or

1 channel. It is now the standard used for DVDs as well as for Direct Broadcast Satellites
(DBS) and other applications.

A block diagram of the Dolby-AC3 algorithm is shown in Figure 4.14. Much of the Dolby-
AC3 scheme is similar to what we have already described for the MPEG algorithms. As in

the MPEG schemes, the Dolby-AC3 algorithm uses the modified DCT (MDCT) with 50%
overlap for frequency decomposition. As in the case of MPEG, there are two different sizes of
windows used. For the stationary portions of the audio a window of size 512 is used to get a
256 coefficient. A surge in the power of the high frequency coefficients is used to indicate the
presence of a transient and the 512 window is replaced by two windows of size 256. The one
place where the Dolby-AC3 algorithm differs significantly from the algorithm described is in
the bit allocation.
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4.5.1 Bit Allocation

The Dolby-AC3 scheme has a very interesting method for bit allocation. Like the MPEG
schemes, it uses a psychoacoustic model that incorporates the hearing thresholds and the
presence of noise and tone maskers. However, the input to the model is different. In the
MPEG schemes the audio sequence being encoded is provided to the bit allocation procedure
and the bit allocation is sent to the decoder as side information. In the Dolby-AC3 scheme the
signal itself is not provided to the bit allocation procedure. Instead a crude representation of
the spectral envelope is provided to both the decoder and the bit allocation procedure. As the
decoder then possesses the information used by the encoder to generate the bit allocation, the
allocation itself is not included in the transmitted bitstream.

The representation of the spectral envelope is obtained by representing the MDCT
coefficients in binary exponential notation. The binary exponential notation of a number
110.101 is 0.110101 X 23, where 110101 is called the mantissa and 3 is the exponent.
Given a sequence of numbers, the exponents of the binary exponential representation
provide an estimate of the relative magnitude of the numbers. The Dolby-AC3 algorithm
uses the exponents of the binary exponential representation of the MDCT coefficients as the
representation of the spectral envelope. This encoding is sent to the bit allocation algorithm,
which uses this information in conjunction with a psychoacoustic model to generate the
number of bits to be used to quantize the mantissa of the binary exponential representation
of the MDCT coefficients. To reduce the amount of information that needs to be sent to the
decoder, the spectral envelope coding is not performed for every audio block. Depending on
how stationary the audio is, the algorithm uses one of three strategies (Bosi/Goldberg).

4.5.1.1 The D15 Method

When the audio is relatively stationary, the spectral envelope is coded once for every six
audio blocks. Because a frame in Dolby-AC3 consists of six blocks, during each block we
get a new spectral envelope and hence a new bit allocation. The spectral envelope is coded
differentially. The first exponent is sent as is. The difference between exponents is encoded
using one of five values {0, £1, =2}. Three differences are encoded using a 7-bit word. Note
that three differences can take on 125 different combinations. Therefore, using 7 bits, which
can represent 128 different values, is highly efficient.

4.5.1.2 The D25 and D45 Methods

If the audio is not stationary, the spectral envelope is sent more often. To keep the bit rate
down, the Dolby-AC3 algorithm uses one of two strategies. In the D25 strategy, which is
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used for moderate spectral activity, every other coefficient is encoded. In the D45 strategy,
used during transients, every fourth coefficient is encoded. These strategies make use of the
fact that during a transient the fine structure of the spectral envelope is not that important,
allowing for a more crude representation.

4.6 Other Standards

We have described a number of audio compression approaches that make use of the
limitations of human audio perception. These are by no means the only ones. Competitors
to Dolby Digital include Digital Theater Systems (DTS) and Sony Dynamic Digital

Sound (SDDS). Both of these proprietary schemes use psychoacoustic modeling. The
Adaptive TRansform Acoustic Coding (ATRAC) algorithm (Tsutsui et al.) was developed
for the minidisc by Sony in the early 1990s, followed by enhancements in ATRAC3 and
ATRAC3plus. As with the other schemes described in this chapter, the ATRAC approach uses
MDCT for frequency decomposition, though the audio signal is first decomposed into three
bands using a two-stage decomposition. As in the case of the other schemes, the ATRAC
algorithm recommends the use of the limitations of human audio perception in order to
discard information that is not perceptible.

Another algorithm that also uses MDCT and a psychoacoustic model is the open source
encoder Vorbis. The Vorbis algorithm also uses vector quantization and Huffman coding to
reduce the bit rate.

4.7 Summary

The audio coding algorithms described in this chapter take, in some sense, the opposite tack
from speech coding algorithms. Instead of focusing on the source of information, as is the
case with the speech coding algorithm, the focus in the audio coding algorithm is on the sink,
or user, of the information. By identifying the components of the source signal that are not
perceptible, the algorithms reduce the amount of data that needs to be transmitted.
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Video Processing

Keith Jack

Video processing has become one of the main applications of signal processing technology. One
reason for the increasing importance of digital video is that it is everywhere, from YouTube to
unpiloted military drones. The other reason is that digital video is hard to do—the algorithms
are complicated, and they demand huge computational power. Thus, video applications will keep
many of us employed for years to come!

In this chapter, Keith Jack gives an in-depth treatment of digital video processing. The main
topics include display enhancement, video mixing and graphics overlay, frame rate conversion,
interlacing/deinterlacing, video scaling, and user controls (brightness, contrast, etc).

You may have noticed that this list does not include compression and decompression algorithms
(i.e., codecs) such as H.264. The end of the chapter does give some insight into discrete cosine
transform (DCT) based compression, but otherwise I have decided to leave the details out of this
book. Few DSP engineers design or implement video codecs, so most of us just need to know

the basics. For a good general overview of video codecs, I recommend reading “How Video
Compression Works”:

http://www.dspdesignline.com/howto/201202637

Jack brings a wealth of experience to the topic. He’s currently director of product marketing at
Sigma Designs, which develops system-on-chips (SoC) for IPTV, set-top-boxes, HD-DVD players,
portable media players, and more. Before that he was involved in designing or marketing over
forty multimedia chips for the consumer market. In this text, his experience shows. Each topic
is chock-full of practical technical detail one would need to implement the video processing
covered.

—Kenton Williston

In addition to encoding and decoding MPEG, NTSC/PAL, and many other types of video, a
typical system usually requires considerable additional video processing.

Since many consumer displays, and most computer displays, are progressive (noninterlaced),
interlaced video must be converted to progressive (“deinterlaced”). Progressive video must
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be converted to interlaced to drive a conventional analog VCR or interlaced TV, requiring
noninterlaced-to-interlaced conversion.

Many computer displays support refresh rates up to at least 75 frames per second. CRT-based
televisions have a refresh rate of 50 or 59.94 (60/1.001) fields per second. Refresh rates of

up to 120 frames per second are becoming common for flat-panel televisions. For film-based
compressed content, the source may only be 24 frames per second. Thus, some form of frame
rate conversion must be done.

Another not-so-subtle problem includes video scaling. SDTV and HDTV support multiple
resolutions, yet the display may be a single, fixed resolution.

Alpha mixing and chroma keying are used to mix multiple video signals or video with
computer-generated text and graphics. Alpha mixing ensures a smooth crossover between
sources, allows subpixel positioning of text, and limits source transition bandwidths to
simplify eventual encoding to composite video signals.

Since no source is perfect, even digital sources, user controls for adjustable brightness,
contrast, saturation, and hue are always desirable.

5.1 Rounding Considerations

When two 8-bit values are multiplied together, a 16-bit result is generated. At some point, a
result must be rounded to some lower precision (for example, 16 bits to 8 bits or 32 bits to 16
bits) in order to realize a cost-effective hardware implementation. There are several rounding
techniques: truncation, conventional rounding, error feedback rounding, and dynamic rounding.

5.1.1 Truncation

Truncation drops any fractional data during each rounding operation. As a result, after only
a few operations, a significant error may be introduced. This may result in contours being
visible in areas of solid colors.

5.1.2 Conventional Rounding

Conventional rounding uses the fractional data bits to determine whether to round up or round
down. If the fractional data is 0.5 or greater, rounding up should be performed—positive
numbers should be made more positive and negative numbers should be made more negative.
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Figure 5.1: Error feedback rounding

If the fractional data is less than 0.5, rounding down should be performed—positive numbers
should be made less positive and negative numbers should be made less negative.

5.1.3 Error Feedback Rounding

Error feedback rounding follows the principle of “never throw anything away.” This

is accomplished by storing the residue of a truncation and adding it to the next video
sample. This approach substitutes less visible noise-like quantizing errors in place of
contouring effects caused by simple truncation. An example of an error feedback rounding
implementation is shown in Figure 5.1. In this example, 16 bits are reduced to 8 bits using
error feedback.

5.1.4 Dynamic Rounding

This technique (a licensable Quantel patent) dithers the LSB according to the weighting of the
discarded fractional bits. The original data word is divided into two parts, one representing
the resolution of the final output word and one dealing with the remaining fractional data. The
fractional data is compared to the output of a random number generator equal in resolution

to the fractional data. The output of the comparator is a 1-bit random pattern weighted by the
value of the fractional data, and serves as a carry-in to the adder. In all instances, only one
LSB of the output word is changed, in a random fashion. An example of a dynamic rounding
implementation is shown in Figure 5.2.

5.2 SDTV-HDTV YCbCr Transforms

SDTV and HDTYV applications have different colorimetric characteristics. Thus, when SDTV
(HDTYV) data is displayed on an HDTV (SDTV) display, the YCbCr data should be processed
to compensate for the different colorimetric characteristics.
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Figure 5.2: Dynamic rounding

5.2.1 SDTV to HDTV

A 3 X 3 matrix can be used to convert from Y4y CbCr (SDTV) to Y¢99CbCr (HDTV):
1 —0.11554975 —0.20793764

0 1.01863972 0.11461795

0 0.07504945 1.02532707

Note that before processing, the 8-bit DC offset (16 for Y and 128 for CbCr) must be
removed, then added back in after processing.

5.2.2 HDTV to SDTV

A 3 X 3 matrix can be used to convert from Y;poCbCr (HDTV) to Y¢3;CbCr (SDTV):
1 0.09931166 0.19169955

0 0.98985381 —0.11065251

0 —0.07245296 0.98339782

Note that before processing, the 8-bit DC offset (16 for Y and 128 for CbCr) must be
removed, then added back in after processing.
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Figure 5.3: 4:4:4 to 4:2:2 YCbCr conversion

5.3 4:4:4 to 4:2:2 YCbCr Conversion

Converting 4:4:4 YCbCr to 4:2:2 YCbCr (Figure 5.3) is a common function in digital video.
4:2:2 YCbCr is the basis for many digital video interfaces, and requires fewer connections to
implement than 4:4:4.

Saturation logic should be included in the Y, Cb, and Cr data paths to limit the 8-bit range
to 1-254. The 16 and 128 values shown in Figure 5.3 are used to generate the proper levels
during blanking intervals.

5.3.1 Y Filtering

A template for the Y lowpass filter is shown in Figure 5.4 and Table 5.1.

Because there may be many cascaded conversions (up to 10 were envisioned), the filters were
designed to adhere to very tight tolerances to avoid a buildup of visual artifacts. Departure
from flat amplitude and group delay response due to filtering is amplified through successive
stages. For example, if filters exhibiting —1dB at 1 MHz and —3dB at 1.3 MHz were
employed, the overall response would be —8dB (at 1 MHz) and —24 dB (at 1.3 MHz) after
four conversion stages (assuming two filters per stage).
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Figure 5.4: Y filter template. F, = Y1 X sample rate

Table 5.1: Y filter ripple and group delay tolerances. F, = Y1 X sample rate. T = 1/F;

Frequency Range | Typical SDTV Tolerances | Typical HDTV Tolerances
Passband Ripple Tolerance
0 to 0.40F, | £0.01dBincreasingto +0.05dB | +0.05dB
Passband Group Delay Tolerance
0to 0.27F; 0 increasing to*1.35ns +0.075T
0.27F, to 0.40F; *1.35ns increasing to *2ns *0.110T

Although the sharp cut-off results in ringing on Y edges, the visual effect should be minimal
provided that group-delay performance is adequate. When cascading multiple filtering
operations, the passband flatness and group-delay characteristics are very important. The
passband tolerances, coupled with the sharp cut-off, make the template very difficult (some
say impossible) to match. As a result, there is usually a temptation to relax passband accuracy,
but the best approach is to reduce the rate of cut-off and keep the passband as flat as possible.

5.3.2 CbCr Filtering

Cb and Cr are lowpass filtered and decimated. In a standard design, the lowpass and
decimation filters may be combined into a single filter, and a single filter may be used for
both Cb and Cr by multiplexing.
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Figure 5.5: Cb and Cr filter template for digital filter for sample rate conversion from 4:4:4 to
4:2:2. F, = Y1 X sample rate

Table 5.2: CbCr filter ripple and group delay tolerances. F; = Y1 X sample rate. T = 1/F;

Frequency Range | Typical SDTV Tolerances | Typical HDTV Tolerances

Passband Ripple Tolerance
0 to 0.20F, | 0dB increasing to +0.05dB | +0.05dB

Passband Group Delay Tolerance

0 to 0.20F; | delay distortion is zero by design |

As with Y filtering, the Cb and Cr lowpass filtering requires a sharp cut-off to prevent
repeated conversions from producing a cumulative resolution loss. However, due to the low
cut-off frequency, the sharp cut-off produces ringing that is more noticeable than for Y.

A template for the Cb and Cer filters is shown in Figure 5.5 and Table 5.2.

Since aliasing is less noticeable in color difference signals, the attenuation at half the
sampling frequency is only 6 dB. There is an advantage in using a skew-symmetric response
passing through the —6dB point at half the sampling frequency—this makes alternate
coefficients in the digital filter zero, almost halving the number of taps, and also allows using
a single digital filter for both the Cb and Cr signals. Use of a transversal digital filter has the
advantage of providing perfect linear phase response, eliminating the need for group-delay
correction.
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As with the Y filter, the passband flatness and group-delay characteristics are very important,
and the best approach again is to reduce the rate of cut-off and keep the passband as flat as
possible.

5.4 Display Enhancement
5.4.1 Brightness, Contrast, Saturation (Color), and Hue (Tint)

Working in the YCbCr color space simplifies the implementation of brightness, contrast,
saturation, and hue controls, as shown in Figure 5.6. Also illustrated are multiplexers to allow
the output of black screen, blue screen, and color bars.

The design should ensure that no overflow or underflow wraparound errors occur, effectively
saturating results to the 0 and 255 values.

5.4.1.1 Y Processing

16 is subtracted from the Y data to position the black level at zero. This removes the DC
offset so adjusting the contrast does not vary the black level. Since the Y input data may have
values below 16, negative Y values should be supported at this point.

The contrast (or picture or white level) control is implemented by multiplying the YCbCr data
by a constant. If Cb and Cr are not adjusted, a color shift will result whenever the contrast is
changed. A typical 8-bit contrast adjustment range is 0—1.992X.

The brightness (or black level) control is implemented by adding or subtracting from the Y
data. Brightness is done after the contrast to avoid introducing a varying DC offset due to
adjusting the contrast. A typical 8-bit brightness adjustment range is —128 to +127.

Finally, 16 is added to position the black level at 16.

5.4.1.2 CbCr Processing

128 is subtracted from Cb and Cr to position the range about zero.
The hue (or tint) control is implemented by mixing the Cb and Cr data:

Cb’ = Cbcos0 + Crsin 0
Cr' = Crcos® — Cbsin 0

where 0 is the desired hue angle. A typical 8-bit hue adjustment range is —30° to +30°.
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Figure 5.6: Hue, saturation, contrast, and brightness controls

The saturation (or color) control is implemented by multiplying both Cb and Cr by a constant.
A typical 8-bit saturation adjustment range is 0—1.992X. In the example shown in Figure 5.6,
the contrast and saturation values are multiplied together to reduce the number of multipliers
in the CbCr datapath.

Finally, 128 is added to both Cb and Cr.

Many displays also use separate hue and saturation controls for each of the red, green, blue,
cyan, yellow, and magenta colors. This enables tuning the image at production time to better
match the display’s characteristics.

5.4.2 Color Transient Improvement

YCbCr transitions should be aligned. However, the Cb and Cr transitions are usually slower
and time-offset due to the narrower bandwidth of color difference information.
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Figure 5.7: Color transient improvement

By monitoring coincident Y transitions, faster horizontal and vertical transitions may be
synthesized for Cb and Cr. Small pre- and after-shoots may also be added to the Cb and Cr
signals.

The new Cb and Cr edges are then aligned with the Y edge, as shown in Figure 5.7.

Displays commonly use this technique to provide a sharper-looking picture.
5.4.3 Luma Transient Improvement

In this case, the Y horizontal and vertical transitions are shortened, and small pre- and after-
shoots may also be added, to artificially sharpen the image.

Displays commonly use this technique to provide a sharper-looking picture.
5.4.4 Sharpness

The apparent sharpness of a picture may be increased by increasing the amplitude of high-
frequency luminance information.

As shown in Figure 5.8, a simple bandpass filter with selectable gain (also called a peaking
filter) may be used. The frequency where maximum gain occurs is usually selectable to be
either at the color subcarrier frequency or at about 2.6 MHz. A coring circuit is typically used
after the filter to reduce low-level noise.

Figure 5.9 illustrates a more complex sharpness control circuit. The high-frequency
luminance is increased using a variable bandpass filter, with adjustable gain. The coring
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function (typically =1LSB) removes low-level noise. The modified luminance is then added
to the original luminance signal.

In addition to selectable gain, selectable attenuation of high frequencies should also be
supported. Many televisions boost high-frequency gain to improve the apparent sharpness of
the picture. Although the sharpness control on the television may be turned down, this affects
the picture quality of analog broadcasts.

5.4.5 Blue Stretch

Blue stretch increases the blue value of white and near-white colors in order to make whites
appear brighter. When applying blue stretch, only colors only within a specified color range
should be processed.

Colors with a Y value of ~80% or more of the maximum, have a low saturation value, and
fall within a white detection area in the CbCr-plane, have their blue components increased
by ~4% (the blue gain factor) and their red components decreased the same amount. For
more complex designs, the white detection area and blue gain factor can be dependent on the
color’s Y value and saturation level.

A transition boundary can be used around the white detection area for gradually decreasing
the blue gain factor as colors move away from the white detection area boundary. This can
prevent hard transitions between areas that are blue stretched and areas that are not. If a
color falls inside the transition boundary area, it is blue stretched using a fraction of the blue
gain factor, with the fraction decreasing as the distance from the edge of the detection area
boundary increases.

5.4.6 Green Enhancement

Green enhancement creates a richer, more saturated green color when the level of green is
low. Displays commonly use this technique to provide greener looking grass, plants, etc.
When applying green enhancement, only colors only within a specified color range should be
processed.

Colors with a low green saturation value, and fall within a green detection area in the CbCr-
plane, have their saturation increased. Rather then centering the green detection area about the
green axis (241° in Figure 9.28) some designs use ~213° for the green detection axis so the
same design can also easily be used to implement skin tone correction.
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Simple implementations have the maximum saturation gain (~1.2X) occurring on the green
detection axis, with the saturation gain decreasing to 1X as the distance from the green
detection axis increases. For more complex designs, the green detection area and maximum
saturation gain can be dependent on the color’s Y value and saturation level

Some displays also use this technique to implement blue enhancement, used to make the sky
appear more blue.

5.4.7 Dynamic Contrast

Using dynamic contrast (also called adaptive contrast enhancement), the differences between
dark and light portions of the image are artificially enhanced based on the content in the
image. Displays commonly use this technique to improve their contrast ratio.

Bright colors in mostly dark images are enhanced by making them brighter (white stretch).
This is typically done by using histogram information to modify the upper portion of the
gamma curve.

Dark colors in mostly light images are enhanced by making them darker (black stretch). This
is typically done by using histogram information to modify the lower portion of the gamma
curve.

For a medium-bright image, both techniques may be applied.

A minor gamma correction adjustment may also be applied to colors that are between dark
and light, resulting in a more detailed and contrasting picture.

5.4.8 Color Correction

The RGB chromaticities are usually slightly different between the source video and what the
display uses. This results in red, green and blue colors that are not completely accurate.

Color correction can be done on the source video to compensate for the display
characteristics, enabling more accurate red, green and blue colors to be displayed.

An alternate type of color correction is to perform color expansion, taking advantage of

the greater color reproduction capabilities of modern displays. This can result in greener
greens, bluer blues, etc. One common technique of implementing color expansion is to use
independent hue and saturation controls for each primary and complementary color, plus the
skin color.
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5.4.9 Color Temperature Correction

In an uncalibrated television, the color temperature (white color) varies based on the
brightness level.

The color temperature of Dgs, the white point specified by most video standards, is 6500°K.
Color temperatures above 6500°K. are more bluish (cool); color temperatures below 6500°K.
are more reddish (warm).

Many televisions ship from the factory with a very high average color temperature
(7000-8000°K..) to emphasize the brightness of the set. Viewers can select from two or
three factory presets (warm, cool, etc.) or viewing modes (movies, sports, etc.) which are a
reference to the color temperature. A “cool” setting is brighter (like what you see in midday
light) and is better for daylight viewing, such as sporting events, because of the enhanced
brightness. A “warm” setting is softer (like what you see in a softly lit indoor environment)
and is better for viewing movies, or in darkened environments.

The color temperature may be finely adjusted by using a 3 X 3 matrix multiplier to process
the YCbCr or R'G’B’ data. 10 registers (one for every 10 IRE step from 10-100 IRE)
provide the nine coefficients for the 3 X 3 matrix multiplier. The values of the registers are
determined by a calibrating process. YCbCr or R'G’'B’ values for intermediate IRE levels
may be determined using interpolation.

5.5 Video Mixing and Graphics Overlay

Mixing video signals may be as simple as switching between two video sources. This is
adequate if the resulting video is to be displayed on a computer monitor.

For most other applications, a technique known as alpha mixing should be used. Alpha
mixing may also be used to fade to or from a specific color (such as black) or to overlay
computer-generated text and graphics onto a video signal.

Alpha mixing must be used if the video is to be encoded to composite video. Otherwise,
ringing and blurring may appear at the source switching points, such as around the edges of
computer-generated text and graphics. This is due to the color information being lowpass
filtered within the NTSC/PAL encoder. If the filters have a sharp cut-off, a fast color transition
will produce ringing. In addition, the intensity information may be bandwidth-limited to
about 4-5 MHz somewhere along the video path, slowing down intensity transitions.
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Mathematically, with alpha normalized to have values of 01, alpha mixing is
implemented as:

out = (alpha_0)(in_0) + (alpha_1)(in_1) + ...

In this instance, each video source has its own alpha information. The alpha information may
not total to one (unity gain).

Figure 5.10 shows mixing of two YCbCr video signals, each with its own alpha information.
As YCbCr uses an offset binary notation, the offset (16 for Y and 128 for Cb and Cr) is
removed prior to mixing the video signals. After mixing, the offset is added back in. Note that
two 4:2:2 YCbCr streams may also be processed directly; there is no need to convert them to
4:4:4 YCbCr, mix, then convert the result back to 4:2:2 YCbCr.

When only two video sources are mixed and alpha_0 + alpha_1 = 1 (implementing a
crossfader), a single alpha value may be used mathematically shown as:

out = (alpha)(in_0) + (1 — alpha)(in_1)

When alpha = 0, the output is equal to the in_1 video signal; when alpha=1, the output is
equal to the in_0 video signal. When alpha is between 0 and 1, the two video signals are
proportionally multiplied, and added together.

Expanding and rearranging the previous equation shows how a two-channel mixer may be
implemented using a single multiplier:

out = (alpha)(in_0 — in_1) + in_1

Fading to and from a specific color is done by setting one of the input sources to a constant
color.

Figure 5.11 illustrates mixing two YCbCr sources using a single alpha channel. Figures 5.12
and 5.13 illustrate mixing two R'G’B’ video sources (R'G’B’ has a range of 0-255). Figures
5.14 and 5.15 show mixing two digital composite video signals.

A common problem in computer graphics systems that use alpha is that the frame buffer
may contain preprocessed R'G'B’ or YCbCr data; that is, the R’"G'B’ or YCbCr data in the
frame buffer has already been multiplied by alpha. Assuming an alpha (A) value of 0.5,
nonprocessed R’G'B’A values for white are (255, 255, 255, 128); preprocessed R'G’'B’'A
values for white are (128, 128, 128, 128). Therefore, any mixing circuit that accepts R'G'B’
or YCbCr data from a frame buffer should be able to handle either format.
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Figure 5.10: Mixing two YCbCr video signals, each with its own alpha channel
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Figure 5.11: Simplified mixing (crossfading) of two YCbCr video signals using a

single alpha channel

By adjusting the alpha values, slow to fast crossfades are possible, as shown in Figure 5.16.

Large differences in alpha between samples result in a fast crossfade; smaller differences

result in a slow crossfade. If using alpha mixing for special effects, such as wipes, the

switching point (where 50% of each video source is used) must be able to be adjusted to
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Figure 5.13: Simplified mixing (crossfading) of two RGB video signals (RGB has a range
of 0-255) using a single alpha channel

an accuracy of less than one sample to ensure smooth movement. By controlling the alpha
values, the switching point can be effectively positioned anywhere, as shown in Figure 5.16a.

Text can be overlaid onto video by having a character generator control the alpha inputs.
By setting one of the input sources to a constant color, the text will assume that color.
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Figure 5.15: Simplified mixing (crossfading) of two digital composite video signals using a

single alpha channel

Note that for those designs that subtract 16 (the black level) from the Y channel before
processing, negative Y values should be supported after the subtraction. This allows the
design to pass through real-world and test video signals with minimum artifacts.

5.6 Luma and Chroma Keying

Keying involves specifying a desired foreground color; areas containing this color are
replaced with a background image. Alternately, an area of any size or shape may be specified;
foreground areas inside (or outside) this area are replaced with a background image.
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Figure 5.16: Controlling alpha values to implement (A) Fast or (B) Slow keying. In (A), the
effective switching point lies between two samples. In (B), the transition is wider and is aligned

at a sample instant.

5.6.1 Luminance Keying

Luminance keying involves specifying a desired foreground luminance level; foreground
areas containing luminance levels above (or below) the keying level are replaced with the
background image.

Alternately, this hard keying implementation may be replaced with soft keying by specifying
two luminance values of the foreground image: Yy and Y, (Y1, < Yy). For keying the
background into white foreground areas, foreground luminance values (Ygg) above Yy are
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replaced with the background image; Ygg values below Y| contain the foreground image.
For Ygg values between Y| and Yy, linear mixing is done between the foreground and
background images. This operation may be expressed as:

if Y, >,

H
K =1 = background only

if Y, <Y

L

K = 0 = foreground only

lf YH = FG = YL

K = (Y — Y)Y, —Y,) = mix

By subtracting K from 1, the new luminance keying signal for keying into black foreground
areas can be generated.

Figure 5.17 illustrates luminance keying for two YCbCr sources. Although chroma keying
typically uses a suppression technique to remove information from the foreground image, this
is not done when luminance keying as the magnitudes of Cb and Cr are usually not related to
the luminance level.

Figure 5.18 illustrates luminance keying for R’"G'B’ sources, which is more applicable for
computer graphics. Yrg may be obtained by the equation:

Y., = 0.299R’ + 0.587G’ + 0.114B’

In some applications, the red and blue data is ignored, resulting in Ygg being equal to only the
green data.

Figure 5.19 illustrates one technique of luminance keying between two digital composite
video sources.

5.6.2 Chroma Keying

Chroma keying involves specifying a desired foreground key color; foreground areas
containing the key color are replaced with the background image. Cb and Cr are used to
specify the key color; luminance information may be used to increase the realism of the
chroma keying function. The actual mixing of the two video sources may be done in the
component or composite domain, although component mixing reduces artifacts.
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Figure 5.19: Luminance keying of two digital composite video signals

Early chroma keying circuits simply performed a hard or soft switch between the foreground
and background sources. In addition to limiting the amount of fine detail maintained in

the foreground image, the background was not visible through transparent or translucent
foreground objects, and shadows from the foreground were not present in areas containing the
background image.

Linear keyers were developed that combine the foreground and background images in a
proportion determined by the key level, resulting in the foreground image being attenuated
in areas containing the background image. Although allowing foreground objects to appear
transparent, there is a limit on the fineness of detail maintained in the foreground. Shadows
from the foreground are not present in areas containing the background image unless
additional processing is done—the luminance levels of specific areas of the background
image must be reduced to create the effect of shadows cast by foreground objects.

If the blue or green backing used with the foreground scene is evenly lit except for shadows
cast by the foreground objects, the effect on the background will be that of shadows cast by
the foreground objects. This process, referred to as shadow chroma keying, or luminance
modulation, enables the background luminance levels to be adjusted in proportion to the
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brightness of the blue or green backing in the foreground scene. This results in more realistic
keying of transparent or translucent foreground objects by preserving the spectral highlights.

Note that green backgrounds are now more commonly used due to lower chroma noise.

Chroma keyers are also limited in their ability to handle foreground colors that are close to
the key color without switching to the background image. Another problem may be a bluish
tint to the foreground objects as a result of blue light reflecting off the blue backing or being
diffused in the camera lens. Chroma spill is difficult to remove since the spill color is not the
original key color; some mixing occurs, changing the original key color slightly.

One solution to many of the chroma keying problems is to process the foreground and
background images individually before combining them, as shown in Figure 5.20. Rather
than choosing between the foreground and background, each is processed individually and
then combined. Figure 5.21 illustrates the major processing steps for both the foreground and
background images during the chroma key process. Not shown in Figure 5.20 is the circuitry
to initially subtract 16 (Y) or 128 (Cb and Cr) from the foreground and background video
signals and the addition of 16 (Y) or 128 (Cb and Cr) after the final output adder. Any DC

Foreground Foreground
video (YCbCr) suppressor
Y
K it F d
Key FG | Nonadditive | ¢ oregroun . Qi}
generator mix gain

Key

rocessor +)— Output
P < video (YCbCr)

Ksg
Garbage Backgl_’ound
matte gain

&

Background
video (YCbCr)

Figure 5.20: Typical component chroma key circuit
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Figure 5.21: Major processing steps during chroma keying. (A) Original foreground scene
(B) Original background scene (C) Suppressed foreground scene (D) Background keying signal
(E) Background scene after multiplication by background key (F) Composite scene generated
by adding (C) and (E)
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offset not removed will be amplified or attenuated by the foreground and background gain
factors, shifting the black level.

The foreground key (Kgg) and background key (Kgg) signals have a range of O to 1. The
garbage matte key signal (the term matte comes from the film industry) forces the mixer to
output the foreground source in one of two ways.

The first method is to reduce Ky in proportion to increasing Kgg. This provides the
advantage of minimizing black edges around the inserted foreground.

The second method is to force the background to black for all nonzero values of the matte
key, and insert the foreground into the background hole. This requires a cleanup function to
remove noise around the black level, as this noise affects the background picture due to the
straight addition process.

The garbage matte is added to the foreground key signal (Kgg) using a non-additive mixer
(NAM). A non-additive mixer takes the brighter of the two pictures, on a sample-by-sample
basis, to generate the key signal. Matting is ideal for any source that generates its own keying
signal, such as character generators, and so on.

The key generator monitors the foreground Cb and Cr data, generating the foreground keying
signal, Kgg. A desired key color is selected, as shown in Figure 5.22. The foreground Cb

and Cr data are normalized (generating Cb" and Cr") and rotated 0 degrees to generate the X
and Z data, such that the positive X axis passes as close as possible to the desired key color.
Typically, 8 may be varied in 1° increments, and optimum chroma keying occurs when the X
axis passes through the key color.

X and Z are derived from Cb and Cr using the equations:

X = Cb'cosf + Cr'sinf
Z = Cr'cosf — Cb’sin 0

Since Cb’ and Cr’ are normalized to have a range of =1, X and Z have a range of *1.

The foreground keying signal (Kgg) is generated from X and Z and has a range of 0-1:

K., = X — (|Z)/(tan(c/2)))
K., = 0if X < (|Z/(tan(a/2)))

where « is the acceptance angle, symmetrically centered about the positive X axis, as shown
in Figure 5.23. Outside the acceptance angle, Kgg is always set to zero. Inside the acceptance
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Figure 5.22: Rotating the normalized Cb and Cr (Cb’' and Cr’) axes by 0 to obtain the X and Z
axes, such that the X axis passes through the desired key color (blue in this example)

angle, the magnitude of Krg linearly increases the closer the foreground color approaches
the key color and as its saturation increases. Colors inside the acceptance angle are further
processed by the foreground suppressor.

The foreground suppressor reduces foreground color information by implementing
X = X — Kgg, with the key color being clamped to the black level. To avoid processing Cb
and Cr when Krg = 0, the foreground suppressor performs the operations:

Cb,; = Cb — K, cost

FG
Cr; = Cr — K sinf

FG

where Cbgg and Crgg are the foreground Cb and Cr values after key color suppression. Early
implementations suppressed foreground information by multiplying Cb and Cr by a clipped
version of the Kgg signal. This, however, generated in-band alias components due to the
multiplication and clipping process and produced a hard edge at key color boundaries.

Unless additional processing is done, the Cbgg and Crgg components are set to zero only
if they are exactly on the X axis. Hue variations due to noise or lighting will result in areas
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Figure 5.23: Foreground key values and acceptance angle

of the foreground not being entirely suppressed. Therefore, a suppression angle is set,
symmetrically centered about the positive X axis. The suppression angle (3) is typically
configurable from a minimum of zero degrees, to a maximum of about one-third the
acceptance angle (o). Any CbCr components that fall within this suppression angle are set to
zero. Figure 5.24 illustrates the use of the suppression angle.

Foreground luminance, after being normalized to have a range of 0-1, is suppressed by:

Yig = Y — yKgg

Y, =0 if yK, > Y

Here, yq is a programmable value and used to adjust Ygg so that it is clipped at the black level
in the key color areas.

The foreground suppressor also removes key-color fringes on wanted foreground areas caused
by chroma spill, the overspill of the key color, by removing discolorations of the wanted
foreground objects.
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Figure 5.24: Suppression angle operation for a gradual change from a red foreground object to

the blue key color. (A) Simple suppression (B) Improved suppression using a suppression angle

www.newnespress.com



216 Chapter 5

Ultimatte® improves on this process by measuring the difference between the blue and green
colors, as the blue backing is never pure blue and there may be high levels of blue in the
foreground objects. Pure blue is rarely found in nature, and most natural blues have a higher
content of green than red. For this reason, the red, green, and blue levels are monitored to
differentiate between the blue backing and blue in wanted foreground objects.

If the difference between blue and green is great enough, all three colors are set to zero to
produce black; this is what happens in areas of the foreground containing the blue backing.

If the difference between blue and green is not large, the blue is set to the green level unless
the green exceeds red. This technique allows the removal of the bluish tint caused by the blue
backing while being able to reproduce natural blues in the foreground. As an example, a white
foreground area normally would consist of equal levels of red, green, and blue. If the white
area is affected by the key color (blue in this instance), it will have a bluish tint—the blue
levels will be greater than the red or green levels. Since the green does not exceed the red, the
blue level is made equal to the green, removing the bluish tint.

There is a price to pay, however. Magenta in the foreground is changed to red. A green
backing can be used, but in this case, yellow in the foreground is modified. Usually, the
clamping is released gradually to increase the blue content of magenta areas.

The key processor generates the initial background key signal (K'gg) used to remove areas

of the background image where the foreground is to be visible. K'gg is adjusted to be zero in
desired foreground areas and unity in background areas with no attenuation. It is generated
from the foreground key signal (Krg) by applying lift (k; ) and gain (kg) adjustments followed
by clipping at zero and unity values:

Kie = Kig =k kg

Figure 5.25 illustrates the operation of the background key signal generation. The transition
between K'gg = 0 and K'gg = 1 should be made as wide as possible to minimize
discontinuities in the transitions between foreground and background areas.

For foreground areas containing the same CbCr values, but different luminance (Y) values, as
the key color, the key processor may also reduce the background key value as the foreground
luminance level increases, allowing turning off the background in foreground areas containing
a lighter key color, such as light blue. This is done by:

Kio = Kig = ¥ Yo
Kge =0 if y Y > Kig
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Figure 5.25: Background key generation

To handle shadows cast by foreground objects, and opaque or translucent foreground objects,
the luminance level of the blue backing of the foreground image is monitored. Where the
luminance of the blue backing is reduced, the luminance of the background image also is
reduced. The amount of background luminance reduction must be controlled so that defects in
the blue backing (such as seams or footprints) are not interpreted as foreground shadows.

Additional controls may be implemented to enable the foreground and background signals
to be controlled independently. Examples are adjusting the contrast of the foreground so

it matches the background or fading the foreground in various ways (such as fading to the
background to make a foreground object vanish or fading to black to generate a silhouette).

In the computer environment, there may be relatively slow, smooth edges—especially edges
involving smooth shading. As smooth edges are easily distorted during the chroma keying
process, a wide keying process is usually used in these circumstances. During wide keying,
the keying signal starts before the edge of the graphic object.
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5.6.2.1 Composite Chroma Keying

In some instances, the component signals (such as YCbCr) are not directly available. For
these situations, composite chroma keying may be implemented, as shown in Figure 5.26.

To detect the chroma key color, the foreground video source must be decoded to produce the
Cb and Cr color difference signals. The keying signal, Kgg, is then used to mix between the
two composite video sources. The garbage matte key signal forces the mixer to output the
background source by reducing Kgg.

Chroma keying using composite video signals usually results in unrealistic keying, since there
is inadequate color bandwidth. As a result, there is a lack of fine detail, and halos may be
present on edges.

5.6.3 Superblack and Luma Keying

Video systems also may make use of superblack or luma keying. Areas of the foreground
video that have a value within a specified range below the blanking level (analog video) or
black level (digital video) are replaced with the background video information.

Cb, Cr
Decode Key Garbage
generator matte
Kea
B
ackground o o Ogtput

video p video
Foreground +

video / ®

Figure 5.26: Typical composite chroma key circuit
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5.7 Video Scaling

With all the various video resolutions (Table 5.3), scaling is usually needed in almost every
solution.

When generating objects that will be displayed on SDTV, computer users must be concerned
with such things as text size, line thickness, and so forth. For example, text readable on a
1280 X 1024 computer display may not be readable on an SDTV display due to the large
amount of downscaling involved. Thin horizontal lines may either disappear completely or
flicker at a 25 or 29.97 Hz rate when converted to interlaced SDTV.

Note that scaling must be performed on component video signals (such as R’"G’'B’ or YCbCr).
Composite color video signals cannot be scaled directly due to the color subcarrier phase
information present, which would be meaningless after scaling.

In general, the spacing between output samples can be defined by a Target Increment (tarinc)
value:

tarinc = 1/0

where I and O are the number of input (I) and output (O) samples, either horizontally or
vertically.

The first and last output samples may be aligned with the first and last input samples by
adjusting the equation to be:

tarinc = (I — 1)/(0 — 1)

Table 5.3: Common active resolutions for consumer displays and broadcast sources

Displays SDTV Sources HDTYV Sources
704 X 480 640 X 480 704 X 360’ 704 X 4321 1280 X 720
854 X 480 800 X 600 480 X 480 480 X 576 1440 X 8162
704 X 576 1024 X 768 528 X 480 1440 X 10403
854 X 576 1280 X 768 544 X 480 544 X 576 1280 X 1080
1280 X 720 1366 X 768 640 X 480 1440 X 1080
1280 X 768 1024 X 1024 704 X 480 704 X 576 1920 X 1080
1920 X 1080 1280 X 1024 768 X 576
116:9 letterbox on a 4:3 display. 22.35:1 anamorphic for a 16:9 1920 X 1080 display. 31.85:1 anamorphic for a 16:9
1920 X 1080 display
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5.7.1 Pixel Dropping and Duplication

This is also called nearest neighbor scaling since only the input sample closest to the output
sample is used.

The simplest form of scaling down is pixel dropping, where (m) out of every (n) samples
are thrown away both horizontally and vertically. A modified version of the Bresenham
line-drawing algorithm (described in most computer graphics books) is typically used to
determine which samples not to discard.

Simple upscaling can be accomplished by pixel duplication, where (m) out of every (n)
samples are duplicated both horizontally and vertically. Again, a modified version of the
Bresenham line-drawing algorithm can be used to determine which samples to duplicate.

Scaling using pixel dropping or duplication is not recommended due to the visual artifacts
and the introduction of aliasing components.

5.7.2 Linear Interpolation

An improvement in video quality of scaled images is possible using linear interpolation.
When an output sample falls between two input samples (horizontally or vertically), the
output sample is computed by linearly interpolating between the two input samples. However,
scaling to images smaller than one-half of the original still results in deleted samples.

Figure 5.27 illustrates the vertical scaling of a 16:9 image to fit on a 4:3 display. A simple bi-
linear vertical filter is commonly used, as shown in Figure 5.28a. Two source samples, L, and
L.+, are weighted and added together to form a destination sample, D,,,.

D, = 0.75L, + 0.25L,
D, = 0.5L, + 0.5L,
D, = 0.25L, + 0.75L,

However, as seen in Figure 5.28a, this results in uneven line spacing, which may result in
visual artifacts. Figure 5.28b illustrates vertical filtering that results in the output lines being
more evenly spaced:

= L0
= Q2B)L, + (3L,
D, = (I/3)L, + (2/3)L,

oo



Video Processing 221

60
360
16:9 36
Letterbox Visible
rogram af:tlve
P lines
(480) * (4/3)/(16/9) = 360 ‘
60
(a)
72
432
16:9 43
Letterbox \alllcstli?/f
program lines
(576) * (4/3)/(16/9) = 432 \
72

(b)

480
Total
active
lines

576
Total
active
lines

Figure 5.27: Vertical scaling of 16:9 images to fit on a 4:3 display. (A) 480-line systems

(B) 576-line systems

The linear interpolator is a poor bandwidth-limiting filter. Excess high-frequency detail is
removed unnecessarily and too much energy above the Nyquist limit is still present, resulting

in aliasing.

5.7.3 Anti-Aliased Resampling

The most desirable approach is to ensure the frequency content scales proportionally with the

image size, both horizontally and vertically.
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Figure 5.28: 75% vertical scaling of 16:9 images to fit on a 4:3 display. (A) Unevenly spaced
results (B) Evenly spaced results
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Figure 5.29: General anti-aliased resampling structure

Figure 5.29 illustrates the fundamentals of an anti-aliased resampling process. The input
data is upsampled by A and lowpass filtered to remove image frequencies created by the
interpolation process. Filter B bandwidth-limits the signal to remove frequencies that will
alias in the resampling process B. The ratio of B/A determines the scaling factor.

Filters A and B are usually combined into a single filter. The response of the filter largely
determines the quality of the interpolation. The ideal lowpass filter would have a very flat
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passband, a sharp cutoff at half of the lowest sampling frequency (either input or output), and
very high attenuation in the stopband. However, since such a filter generates ringing on sharp
edges, it is usually desirable to roll off the top of the passband. This makes for slightly softer
pictures, but with less pronounced ringing.

Passband ripple and stopband attenuation of the filter provide some measure of scaling
quality, but the subjective effect of ringing means a flat passband might not be as good as one
might think. Lots of stopband attenuation is almost always a good thing.

There are essentially three variations of the general resampling structure. Each combines the
elements of Figure 5.29 in various ways.

One approach is a variable-bandwidth anti-aliasing filter followed by a combined interpolator/
resampler. In this case, the filter needs new coefficients for each scale factor—as the scale
factor is changed, the quality of the image may vary. In addition, the overall response is poor
if linear interpolation is used. However, the filter coefficients are time-invariant and there are
no gain problems.

A second approach is a combined filter/interpolator followed by a resampler. Generally, the
higher the order of interpolation, n, the better the overall response. The center of the filter
transfer function is always aligned over the new output sample. With each scaling factor, the
filter transfer function is stretched or compressed to remain aligned over n output samples.
Thus, the filter coefficients, and the number of input samples used, change with each new
output sample and scaling factor. Dynamic gain normalization is required to ensure the sum
of the filter coefficients is always equal to one.

A third approach is an interpolator followed by a combined filter/resampler. The input data
is interpolated up to a common multiple of the input and output rates by the insertion of zero
samples. This is filtered with a low-pass finite-impulse-response (FIR) filter to interpolate
samples in the zero-filled gaps, then resampled at the required locations. This type of design
is usually achieved with a “polyphase” filter which switches its coefficients as the relative
position of input and output samples change.

5.7.4 Display Scaling Examples

Figures 5.30 through 5.38 illustrate various scaling examples for displaying 16:9 and 4:3
pictures on 4:3 and 16:9 displays, respectively.
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Figure 5.30: 16:9 source example
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Figure 5.31: Scaling 16:9 content for a 4:3 display: “Normal” or pan-and-scan mode. Results in
some of the 16:9 content being ignored (indicated by gray regions)

How content is displayed is a combination of user preferences and content aspect ratio.

For example, when displaying 16:9 content on a 4:3 display, many users prefer to have the
entire display filled with the cropped picture (Figure 5.31) rather than seeing black or gray
bars with the letterbox solution (Figure 5.32). In addition, some displays incorrectly assume
any progressive video signal on their YPbPr inputs is from an “anamorphic” source. As a
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Figure 5.32: Scaling 16:9 content for a 4:3 display: “Letterbox” mode. Entire 16:9 program
visible, with black bars at top and bottom of display
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Figure 5.33: Scaling 16:9 content for a 4:3 display: “Squeezed” mode. Entire 16:9 program
horizontally squeezed to fit 4:3 display, resulting in a distorted picture

result, they horizontally upscale progressive 16:9 programs by 25% when no scaling should

be applied. Therefore, for set-top boxes it is useful to include a “16:9 (Compressed)” mode,
which horizontally downscales the progressive 16:9 program by 25% to precompensate for

the horizontal upscaling being done by the 16:9 display.
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Figure 5.34: 4:3 Source example
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Figure 5.35: Scaling 4:3 content for a 16:9 display: “Normal” mode. Left and right portions of
16:9 display not used, so made black or gray

5.8 Scan Rate Conversion

In many cases, some form of scan rate conversion (also called remporal rate conversion,
Jframe rate conversion, or field rate conversion) is needed. Multi-standard analog VCRs
and scan converters use scan rate conversion to convert between various video standards.
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Figure 5.36: Scaling 4:3 content for a 16:9 display: “Wide” mode. Entire picture
linearly scaled horizontally to fill 16:9 display, resulting in distorted picture unless used with

anamorphic content
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Figure 5.37: Scaling 4:3 content for a 16:9 display: “Zoom” mode. Top and bottom portion of
4:3 picture deleted, then scaled to fill 16:9 display

www.newnespress.com



228 Chapter 5
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Figure 5.38: Scaling 4:3 content for a 16:9 display: “Panorama” mode. Left and right
25% edges of picture are nonlinearly scaled horizontally to fill 16:9 display, distorted
picture on left and right sides

Computers usually operate the display at about 75 Hz noninterlaced, yet need to display 50
and 60 Hz interlaced video. With digital television, multiple frame rates can be supported.

Note that processing must be performed on component video signals (such as R'G'B’
or YCbCr). Composite color video signals cannot be processed directly due to the color
subcarrier phase information present, which would be meaningless after processing.

5.8.1 Frame or Field Dropping and Duplicating

Simple scan-rate conversion may be done by dropping or duplicating one out of every N
fields. For example, the conversion of 60 Hz to 50 Hz interlaced operation may drop one out
of every six fields, as shown in Figure 5.39, using a single field store.

The disadvantage of this technique is that the viewer may see jerky motion, or motion judder.
In addition, some video decompression products use top-field only to convert from 60 Hz to
50Hz, degrading the vertical resolution.

The worst artifacts are present when a noninteger scan rate conversion is done—for example,
when some frames are displayed three times, while others are displayed twice. In this
instance, the viewer will observe double or blurred objects. As the human brain tracks an
object in successive frames, it expects to see a regular sequence of positions, and has trouble
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Figure 5.39: 60 Hz to 50 Hz conversion using a single field store by dropping

one out of every six fields
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Figure 5.40: 50 Hz to 60 Hz conversion using temporal interpolation

with no motion compensation

reconciling the apparent stop-start motion of objects. As a result, it incorrectly concludes that
there are two objects moving in parallel.

5.8.2 Temporal Interpolation

This technique generates new frames from the original frames as needed to generate the
desired frame rate. Information from both past and future input frames should be used to
optimally handle objects appearing and disappearing.

Conversion of 5S0Hz to 60 Hz operation using temporal interpolation is illustrated in Figure
5.40. For every five fields of 50Hz video, there are six fields of 60 Hz video.
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After both sources are aligned, two adjacent 50 Hz fields are mixed together to generate a
new 60 Hz field. This technique is used in some inexpensive standards converters to convert
between S0Hz and 60 Hz standards. Note that no motion analysis is done. Therefore, if the
camera operating at 50 Hz pans horizontally past a narrow vertical object, you see one object
once every six 60 Hz fields, and for the five fields in between, you see two objects, one fading
in while the other fades out.

5.8.2.1 50Hz to 60 Hz Examples

Figure 5.41 illustrates a scan rate converter that implements vertical, followed by temporal,
interpolation. Figure 5.42 illustrates the spectral representation of the design in Figure 5.41.

Many designs now combine the vertical and temporal interpolation into a single design, as
shown in Figure 5.43, with the corresponding spectral representation shown in Figure 5.44.
This example uses vertical, followed by temporal, interpolation. If temporal, followed by
vertical, interpolation were implemented, the field stores would be half the size. However, the
number of line stores would increase from four to eight.

In either case, the first interpolation process must produce an intermediate, higher-resolution
progressive format to avoid interlace components that would interfere with the second
interpolation process. It is insufficient to interpolate, either vertically or temporally, using

a mixture of lines from both fields, due to the interpolation process not being able to
compensate for the temporal offset of interlaced lines.

5.8.2.2 Motion Compensation

Higher-quality scan rate converters using temporal interpolation incorporate motion
compensation to minimize motion artifacts. This results in extremely smooth and natural
motion, and images appear sharper and do not suffer from motion judder.

Motion estimation for scan rate conversion differs from that used by MPEG. In MPEG, the
goal is to minimize the displaced frame difference (error) by searching for a high correlation
between areas in subsequent frames. The resulting motion vectors do not necessarily
correspond to true motion vectors.

For scan rate conversion, it is important to determine true motion information to perform
correct temporal interpolation. The interpolation should be tolerant of incorrect motion
vectors to avoid introducing artifacts as unpleasant as those the technique is attempting to
remove. Motion vectors could be incorrect for several reasons, such as insufficient time to
track the motion, out-of-range motion vectors, and estimation difficulties due to aliasing.



Video Processing 231

Vertical interpolator

625/50 g | | |
H H H H
Interlaced L L L [
[ q q q
&) & &)
& & &
525/50
Sequential
F F F F
525/60
& N\ & Interlaced

Temporal interpolator

F
H

Field store
Line store

Figure 5.41: Typical 50 Hz to 60 Hz conversion using vertical,
followed by temporal, interpolation

5.8.2.3 100 Hz Interlaced Television Example

A standard 50 Hz interlaced television shows 50 fields per second. The images flicker,
especially when you look at large areas of highly saturated color. A much improved picture
can be achieved using a 100 Hz interlaced frame rate (also called double scan).
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Figure 5.42: Spectral representation of vertical, followed by temporal, interpolation (A) Vertical
lowpass filtering (B) Resampling to intermediate sequential format and temporal lowpass
filtering (C) Resampling to final standard
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Figure 5.44: Spectral representation of combined vertical and temporal interpolation
(A) Two-dimensional lowpass filtering (B) Resampling to final standard

Early 100 Hz televisions simply repeated fields (F,F,F,F,F3F3FF,...), as shown in Figure
5.45(A). However, they still had line flicker, where horizontal lines constantly jumped
between the odd and even lines. This disturbance occurred once every twenty-fifth of a
second.

The field sequence F,F,F;F,F;F,F;F,... can be used, which solves the line flicker problem.
Unfortunately, this gives rise to the problem of judder in moving images. This can be
compensated for by using the F|F,F,F,F;F,F;F,... sequence for static images, and the
F,F,F,F,F;F;F F,... sequence for moving images.

An ideal picture is still not obtained when viewing programs created for film. They are subject
to judder, owing to the fact that each film frame is transmitted twice. Instead of the field
sequence FFF,F,F3F3F,F,..., the situation calls for the sequence F;F; F,F, F;F3 F/F, ...
(Figure 5.45(B)), where F, is a motion-compensated generated image between F, and F, ;.

5.8.3 2:2 Pulldown

This technique is used with some film-based compressed content for 50 Hz regions. Film is
usually recorded at 24 frames per second.
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Figure 5.45: 50 Hz to 100 Hz (double scan interlaced) techniques

During compression, the telecine machine is sped up from 24 to 25 frames per second,
making the content 25 frames per second progressive. During decompression, each film frame
is simply mapped into two video fields (resulting in 576i25 or 1080i25 video) or two video
frames (resulting in 576p50, 720p50, or 1080p50 video).

This technique provides higher video quality and avoids motion judder artifacts. However, it
shortens the duration of the program by about 4%, cutting the duration of a 2-hour movie
by ~5 minutes. Some audio decoders cannot handle the 4% faster audio data via S/PDIF
(IEC 60958).

To compensate the audio changing pitch due to the telecine speedup, it may be resampled
during decoding to restore the original pitch (costly to do in a low-cost consumer product) or
resampling may be done during the program authoring.
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Figure 5.46: 3:2 pulldown for converting 24 Hz film to 60 Hz video

5.8.4 3:2 Pulldown

When converting 24 frames per second content to 60Hz, 3:2 pulldown is commonly used, as
shown in Figure 5.46. During compression, the film speed is slowed down by 0.1% to 23.976
(24/1.001) frames per second since 59.94 Hz is used for NTSC timing compatibility. During
decompression, 2 film frames generate 5 video fields (resulting in 480i30 or 1080i30 video)
or 5 video frames (resulting in 480p60, 720p60, or 1080p60 video).

In scenes of high-speed motion of objects, the specific film frame used for a particular video
field or frame may be manually adjusted to minimize motion artifacts.

3:2 pulldown may also be used during video decompression to simply to increase the frame
rate from 23.976 (24/1.001) to 59.94 (60/1.001) frames per second, avoiding the deinterlacing
issue.

Varispeed may be used to cover up problems such as defects, splicing, censorship cuts, or
to change the running time of a program. Rather than repeating film frames and causing a
stutter, the 3:2 relationship between the film and video is disrupted long enough to ensure a
smooth temporal rate.
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Analog laserdiscs used a white flag signal to indicate the start of another sequence of related
fields for optimum still-frame performance. During still-frame mode, the white flag signal
tells the system to back up two fields (to use two fields that have no motion between them) to
re-display the current frame.

5.8.5 3:3 Pulldown

This technique is used in some displays that support 72 Hz frame rate. The 24 frames per
second film-based content is converted to 72 Hz progressive by simply duplicating each film
frame three times.

5.8.6 24:1 Pulldown

This technique, also called /2:1 pulldown, can be used to convert 24 frames/second content to
50 fields per second.

Two video fields are generated from every film frame, except every 12th film frame generates
3 video fields. Although the audio pitch is correct, motion judder is present every one-half
second when smooth motion is present.

5.9 Noninterlaced-to-Interlaced Conversion

In some applications, it is necessary to display a noninterlaced video signal on an interlaced
display. Thus, some form of noninterlaced-to-interlaced conversion may be required.

Noninterlaced-to-interlaced conversion must be performed on component video signals (such
as R'G'B’ or YCbCr). Composite color video signals (such as NTSC or PAL) cannot be
processed directly due to the presence of color subcarrier phase information, which would be
meaningless after processing. These signals must be decoded into component color signals,
such as R'G’'B’ or YCbCr, prior to conversion.

There are essentially two techniques: scan line decimation and vertical filtering.
5.9.1 Scan Line Decimation

The easiest approach is to throw away every other active scan line in each noninterlaced
frame, as shown in Figure 5.47. Although the cost is minimal, there are problems with this
approach, especially with the top and bottom of objects.

If there is a sharp vertical transition of color or intensity, it will flicker at one-half the frame
rate. The reason is that it is only displayed every other field as a result of the decimation.
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Figure 5.47: Noninterlaced-to-interlaced conversion using scan line decimation

For example, a horizontal line that is one noninterlaced scan line wide will flicker on and off.
Horizontal lines that are two noninterlaced scan lines wide will oscillate up and down.

Simple decimation may also add aliasing artifacts. While not necessarily visible, they will
affect any future processing of the picture.

5.9.2 Vertical Filtering

A better solution is to use two or more lines of noninterlaced data to generate one line of
interlaced data. Fast vertical transitions are smoothed out over several interlaced lines.

For a 3-line filter, such as shown in Figure 5.48, typical coefficients are [0.25, 0.5, 0.25].
Using more than three lines usually results in excessive blurring, making small text difficult
to read.

An alternate implementation uses IIR rather than FIR filtering. In addition to averaging, this
technique produces a reduction in brightness around objects, further reducing flicker.

Note that care must be taken at the beginning and end of each frame in the event that fewer
scan lines are available for filtering.
5.10 Interlaced-to-Noninterlaced Conversion

In some applications, it is necessary to display an interlaced video signal on a noninterlaced
display. Thus, some form of deinterlacing or progressive scan conversion may be required.
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Figure 5.48: Noninterlaced-to-interlaced conversion using 3-line vertical filtering

Note that deinterlacing must be performed on component video signals (such as R'G'B’

or YCbCr). Composite color video signals (such as NTSC or PAL) cannot be deinterlaced
directly due to the presence of color subcarrier phase information, which would be
meaningless after processing. These signals must be decoded into component color signals,
such as R'G'B’ or YCbCr, prior to deinterlacing.

There are two fundamental deinterlacing algorithms: video mode and film mode. Video mode
deinterlacing can be further broken down into inter-field and intra-field processing. The goal
of a good deinterlacer is to correctly choose the best algorithm needed at a particular moment.

In systems where the vertical resolution of the source and display do not match (due to, for
example, displaying SDTV content on an HDTV), the deinterlacing and vertical scaling can
be merged into a single process.

5.10.1 Video Mode: Intra-Field Processing
This is the simplest method for generating additional scan lines using only information in the
original field. The computer industry has coined this technique as bob.

Although there are two common techniques for implementing intra-field processing, scan line
duplication and scan line interpolation, the resulting vertical resolution is always limited by
the content of the original field.

5.10.1.1 Scan Line Duplication

Scan line duplication (Figure 5.49) simply duplicates the previous active scan line. Although
the number of active scan lines is doubled, there is no increase in the vertical resolution.
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Figure 5.49: Deinterlacing using scan line duplication. New scan lines are generated by

duplicating the active scan line above it
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Figure 5.50: Deinterlacing using scan line interpolation. New scan lines are generated by
averaging the previous and next active scan lines.

5.10.1.2 Scan Line Interpolation

Scan line interpolation generates interpolated scan lines between the original active scan
lines. Although the number of active scan lines is doubled, the vertical resolution is not.

The simplest implementation, shown in Figure 5.50, uses linear interpolation to generate a
new scan line between two input scan lines:

out = (in,_, +in_,,)/2
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Better results, at additional cost, may be achieved by using a FIR filter:

out, = (160*(in,_, + in_,,)
— 48*(@n,_, +in ;)
+ 24%(in, _, +in, )
—12*%(in,_, +in_,,)
+ 6*(n,_, +1in )
— 2%(in,_,, tin,,,,)

5.10.1.3 Fractional Ratio Interpolation

In many cases, there is a periodic, but nonintegral, relationship between the number of input
scan lines and the number of output scan lines. In this case, fractional ratio interpolation may
be necessary, similar to the polyphase filtering used for scaling only performed in the vertical
direction. This technique combines deinterlacing and vertical scaling into a single process.

5.10.1.4 Variable Interpolation

In a few cases, there is no periodicity in the relationship between the number of input and
output scan lines. Therefore, in theory, an infinite number of filter phases and coefficients are
required. Since this is not feasible, the solution is to use a large, but finite, number of filter
phases. The number of filter phases determines the interpolation accuracy. This technique also
combines deinterlacing and vertical scaling into a single process.

5.10.2 Video Mode: Inter-Field Processing

In this method, video information from more than one field is used to generate a single
progressive frame. This method can provide higher vertical resolution since it uses content
from more than a single field.

5.10.2.1 Field Merging

This technique merges two consecutive fields together to produce a frame of video (Figure
5.51). At each field time, the active scan lines of that field are merged with the active scan
lines of the previous field. The result is that for each input field time, a pair of fields combine
to generate a frame (see Figure 5.52). Although simple to implement, the vertical resolution is
doubled only in regions of no movement.
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Figure 5.51: Deinterlacing using field merging. Shaded scan lines are generated by using the

input scan line from the next or previous field.
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Figure 5.52: Producing deinterlaced frames at field rates

Moving objects will have artifacts, also called combing, due to the time difference between
two fields—a moving object is located in a different position from one field to the next. When
the two fields are merged, moving objects will have a double image (see Figure 5.53).

It is common to soften the image slightly in the vertical direction to attempt to reduce the
visibility of combing. When implemented, it causes a loss of vertical resolution and jitter on
movement and pans.

The computer industry refers to this technique as weave, but weave also includes the inverse
telecine process to remove any 3:2 pull-down present in the source. Theoretically, this
eliminates the double image artifacts since two identical fields are now being merged.

5.10.2.2 Motion Adaptive Deinterlacing

A good deinterlacing solution is to use field merging for still areas of the picture and scan
line interpolation for areas of movement. To accomplish this, motion, on a sample-by-sample
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Figure 5.53: Movement artifacts when field merging is used

basis, must be detected over the entire picture in real time, requiring processing several fields
of video.

As two fields are combined, full vertical resolution is maintained in still areas of the picture,
where the eye is most sensitive to detail. The sample differences may have any value, from
0 (no movement and noise-free) to maximum (for example, a change from full intensity to
black). A choice must be made when to use a sample from the previous field (which is in the
wrong location due to motion) or to interpolate a new sample from adjacent scan lines in the
current field. Sudden switching between methods is visible, so crossfading (also called soft
switching) is used. At some magnitude of sample difference, the loss of resolution due to a
double image is equal to the loss of resolution due to interpolation. That amount of motion
should result in the crossfader being at the 50% point. Less motion will result in a fade
towards field merging and more motion in a fade towards the interpolated values.

Rather than “per pixel” motion adaptive deinterlacing, which makes decisions for every
sample, some low-cost solutions use “per field” motion adaptive deinterlacing. In this case,
the algorithm is selected each field, based on the amount of motion between the fields. “Per
pixel” motion adaptive deinterlacing, although difficult to implement, looks quite good
when properly done. “Per field” motion adaptive deinterlacing rarely looks much better than
vertical interpolation.



244  Chapter 5

5.10.3 Motion-Compensated Deinterlacing

Motion-compensated (or motion vector steered) deinterlacing is several orders of magnitude
more complex than motion adaptive deinterlacing, and is commonly found in pro-video
format converters.

Motion-compensated processing requires calculating motion vectors between fields for each
sample, and interpolating along each sample’s motion trajectory. Motion vectors must also
be found that pass through each of any missing samples. Areas of the picture may be covered
or uncovered as you move between frames. The motion vectors must also have sub-pixel
accuracy, and be determined in two temporal directions between frames.

The motion vector errors used by MPEG are self-correcting since the residual difference
between the predicted macroblocks is encoded. As motion-compensated deinterlacing is
a single-ended system, motion vector errors will produce artifacts, so different search and
verification algorithms must be used.

5.10.4 Film Mode (Using Inverse Telecine)

For sources that have 3:2 pulldown (i.e., 60 fields/second video converted from 24 frames/
second film), higher deinterlacing performance may be obtained by removing duplicate fields
prior to processing.

The inverse telecine process detects the 3:2 field sequence and the redundant third fields are
removed. The remaining field pairs are merged (since there is no motion between them) to
form progressive frames at 24 frames/second. These are then repeated in a 3:2 sequence to get
to 60 frames/second.

Although this may seem to be the ideal solution, some content uses both 60 fields/second
video and 24 frames/second video (film-based) within a program. In addition, some content
may occasionally have both video types present simultaneously. In other cases, the 3:2
pulldown timing (cadence) doesn’t stay regular, or the source was never originally from film.
Thus, the deinterlacer has to detect each video type and process it differently (video mode vs.
film mode). Display artifacts are common due to the delay between the video type changing
and the deinterlacer detecting the change.

5.10.5 Frequency Response Considerations

Various two-times vertical upsampling techniques for deinterlacing may be implemented by
stuffing zero values between two valid lines and filtering, as shown in Figure 5.54.
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Figure 5.54: Frequency response of various deinterlacing filters (A) Line duplication
(B) Line interpolation (C) Field merging

Line A shows the frequency response for line duplication, in which the lowpass filter
coefficients for the filter shown are 1, 1, and O.

Line interpolation, using lowpass filter coefficients of 0.5, 1.0, and 0.5, results in the
frequency response curve of Line B. Note that line duplication results in a better high-
frequency response. Vertical filters with a better frequency response than the one for line
duplication are possible, at the cost of more line stores and processing.

The best vertical frequency response is obtained when field merging is implemented.
The spatial position of the lines is already correct and no vertical processing is required,
resulting in a flat curve (Line C). Again, this applies only for stationary areas of the
image.
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5.11 DCT-Based Compression

The transform process of many video compression standards is based on the Discrete Cosine
Transform, or DCT. The easiest way to envision it is as a filter bank with all the filters
computed in parallel.

During encoding, the DCT is usually followed by several other operations, such as
quantization, zig-zag scanning, run-length encoding, and variable-length encoding. During
decoding, this process flow is reversed.

Many times, the terms macroblocks and blocks are used when discussing video compression.
Figure 5.55 illustrates the relationship between these two terms, and shows why transform
processing is usually done on 8 X 8 samples. MPEG-4.10 (H.264) also supports 8 X 4,

4 X 8, and 4 X 4 blocks.

5.11.1 DCT

The 8 X 8 DCT processes an 8 X 8 block of samples to generate an 8 X 8 block of DCT
coefficients. The input may be samples from an actual frame of video or motion-compensated
difference (error) values, depending on the encoder mode of operation. Each DCT coefficient
indicates the amount of a particular horizontal or vertical frequency within the block.

Divide picture
into 16 X 16 blocks
(macroblocks)

n

Each macroblock is
16 samples by 16 lines (4 blocks)

Each block is 8
samples by 8 lines

Figure 5.55: The relationship between macroblocks and blocks
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DCT coefficient (0,0) is the DC coefficient, or average sample value. Since natural images
tend to vary only slightly from sample to sample, low frequency coefficients are typically
larger values and high frequency coefficients are typically smaller values.

A reconstructed 8 X 8 block of samples is generated using an 8 X 8 inverse DCT (IDCT).
Although exact reconstruction is theoretically achievable, it is not practical due to finite-
precision arithmetic, quantization and differing IDCT implementations. As a result, there are
mismatches between different IDCT implementations.

Mismatch control attempts to reduce the drift between encoder and decoder IDCT results by
eliminating bit patterns having the greatest contribution towards mismatches.

MPEG-1 mismatch control is known as oddification since it forces all quantized DCT
coefficients to negative values. MPEG-2 and MPEG-4.2 use an improved method called LSB
toggling, which affects only the LSB of the 63rd DCT coefficient after inverse quantization.

H.264 (also known as MPEG-4.10) neatly sidesteps the issue by using an “exact-match
inverse transform.” Every decoder will produce exactly the same pictures, all else being equal.

5.11.2 Quantization

The 8 X 8 block of DCT coefficients is quantized, which reduces the overall precision of
the integer coefficients and tends to eliminate high frequency coefficients, while maintaining

Frequency
coefficients
DC term
Increasing
horizontal
? frequency
DCT
Isolated
high-frequency
ﬂ term
8 X 8 BLOCK
Increasing
vertical
frequency

Figure 5.56: The DCT processes the 8 X 8 block of samples or error terms to generate an
8 X 8 block of DCT coefficients
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9 |11 (18|24 | 31|40 | 44|53

1019123 |32 |39|45 |52 | 54

20 (22 | 33|38 |46 |51 | 55|60

21|34 |37 |47 |50 | 56 | 59 | 61 Linear array

of 64 frequency
35|36 |48 |49 | 57 | 58 | 62 | 63 coefficients

Zig-Zag scan of
8 X 8 block of
quantized
frequency
coefficients
Figure 5.57: The 8 X 8 block of quantized DCT coefficients are zig-zag scanned to arrange in
order of increasing frequency. This scanning order is used for H.261, H.263, MPEG-1, MPEG-2,

MPEG-4.2, ITU-R BT.1618, ITU-R BT.1620, SMPTE 314M, and SMPTE 370M

perceptual quality. Higher frequencies are usually quantized more coarsely (fewer values
allowed) than lower frequencies, due to visual perception of quantization error. The quantizer
is also used for constant bit-rate applications where it is varied to control the output bit-rate.

5.11.3 Zig-Zag Scanning

The quantized DCT coefficients are re-arranged into a linear stream by scanning them in
a zig-zag order. This rearrangement places the DC coefficient first, followed by frequency
coefficients arranged in order of increasing frequency, as shown in Figures 5.57, 5.58, and
5.59. This produces long runs of zero coefficients.

5.11.4 Run Length Coding

The linear stream of quantized frequency coefficients is converted into a series of [run,
amplitude] pairs. [run] indicates the number of zero coefficients, and [amplitude] the nonzero
coefficient that ended the run.



Video Processing 249

Linear array
of 64 frequency
coefficients

H.263, MPEG-2, and MPEG-4.2 “alternate-vertical” scanning order

0| 4|6 |20|22|36|38]52
1|15 |7 ]21|23[37|39|53
2 | 8|19|24 |34 |40 |50 |54
3|9 (18|25(35|41 |51 |55
10 ({17 |26 | 30 | 42 | 46 | 56 | 60
11|16 |27 | 31 | 43 | 47 | 57 | 61
12 15|28 | 32 | 44 | 48 | 58 | 62
1314|129 (33 |45|49 |59 |63
Zig-Zag scan of
8 X 8 block of
quantized
frequency
coefficients
Figure 5.58:
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Figure 5.59: H.263 and MPEG-4.2 “alternate-horizontal” scanning order
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5.11.5 Variable-Length Coding

The [run, amplitude] pairs are coded using a variable-length code, resulting in additional
lossless compression. This produces shorter codes for common pairs and longer codes for less
common pairs.

This coding method produces a more compact representation of the DCT coefficients, as a
large number of DCT coefficients are usually quantized to zero and the re-ordering results
(ideally) in the grouping of long runs of consecutive zero values.

5.12 Fixed Pixel Display Considerations

The unique designs and color reproduction gamuts of fixed-pixel displays have resulted in
new video processing technologies being developed. The result is brighter, sharper, more
colorful images regardless of the video source.

5.12.1 Expanded Color Reproduction

Broadcast stations are usually tuned to meet the limited color reproduction characteristics
of CRT-based televisions. To fit the color reproduction capabilities of PDP and LCD,
manufacturers have introduced various color expansion technologies. These include using
independent hue and saturation controls for each primary and complementary color, plus the
flesh color.

5.12.2 Detail Correction

In CRT-based televisions, enhancing the image is commonly done by altering the electron
beam diameter. With fixed-pixel displays, adding overshoot and undershoot to the video
signals causes distortion. An acceptable implementation is to gradually change the brightness
of the images before and after regions needing contour enhancement.

5.12.3 Nonuniform Quantization

Rather than simply increasing the number of quantization levels, the quantization steps can
be changed in accordance with the intensity of the image. This is possible since people better
detect small changes in brightness for dark images than for bright images. In addition, the
brighter the image, the less sensitive people are to changes in brightness. This means that
more quantization steps can be used for dark images than for bright ones. This technique can
also be used to increase the quantization steps for shades that appear frequently.
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5.12.4 Scaling and Deinterlacing

Fixed-pixel displays, such as LCD and plasma, usually upscale then downscale during
deinterlacing to minimize moiré noise due to folded distortion. For example, a 1080i source
is deinterlaced to 2160p, scaled to 1536p, then finally scaled to 768p (to drive a 1024 X 768
display). Alternately, some solutions deinterlace and upscale to 1500p, then scale to the
display’s native resolution.

5.13 Application Example

Figures 5.60 and 5.61 illustrate the typical video processing done after video decompression
and deinterlacing.

In addition to the primary video source, additional video sources typically include an on-
screen-display (OSD), content navigation graphics, closed captioning or subtitles, and a
second video for picture-in-picture (PIP).

The OSD plane displays configuration menus for the box, such as video output format and
resolution, audio output format, etc. OSD design is unique to each product, so the OSD

plane usually supports a wide variety of RGB/YCbCr formats and resolutions. Lookup tables
gamma-correct linear RGB data, convert 2-, 4-, or 8-bit indexed color to 32-bit YCbCrA data,
or translate 0-255 graphics levels to the 16-235 video levels.

The content navigation plane displays graphics generated by Blu-ray BD-J, HD DVD HD;j,
electronic program guides, etc. It should support the same formats and capabilities as the
OSD plane.

The subtitle plane is a useful region for rendering closed captioning, DVB subtitles, DVD
subpictures., etc. Lookup tables convert 2-, 4-, or 8-indexed color to 32-bit YCbCrA data.

The secondary video plane is usually used to support a second video source for picture-
in-picture (PIP) or graphics (such as JPEG images). For graphics data, lookup tables can
gamma-correct linear RGB data, convert 2-, 4-, or 8-indexed color to 32-bit YCbCrA data, or
translate 0-255 graphics levels to the 16-235 video levels.

Being able to scale each source independently offers maximum flexibility. In addition to
being able to output any resolution regard-less of the source resolutions, special effects can
also be accommodated.

Chromaticity correction ensures colors are accurate independent of the sources and display
(SDTV vs. HDTV).
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Figure 5.60: Video composition simplified block diagram
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Figure 5.61: Video output port processing

Independent brightness, contrast, saturation, hue, and sharpness controls for each source and
video output interface offers the most flexibility. For example, PIP can be adjusted without
affecting the main picture, video can be adjusted without affecting still picture video quality, etc.

The optional downscaling and progressive-to-interlaced conversion block for the top NTSC/
PAL encoder in Figure 5.61 enables simultaneous HD and SD outputs, or simultaneous
progressive and interlaced outputs, without affecting the HD or progressive video quality.

The second NTSC/PAL encoder shown at the bottom of Figure 5.61 is useful for recording a
program without any OSD or subtitle information being accidently recorded.
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Modulation

lan Poole

Communications is by far the largest market for signal processing technology. Shipments of
wireless handsets alone have reached an incredible one billion units per year—and this is just
one of the many wireless applications we encounter every day. Add in other applications such

as terrestrial radio and television, satellite radio and televison, WiFi and WiMAX, Bluetooth and
RFID, and the size of this market becomes absolutely mind-boggling.

While these various applications have many important differences, all of them rely on the
principles of modulation. With so many applications of modulation, there is a good chance that
you will encounter it at some point in your career. That can be a scary prospect: Modulation is a
complicated subject, filled with complex math and advanced DSP concepts.

In this chapter author lan Poole accomplishes an impressive feat. He starts with a succinct,
layman’s definition of modulation, and without introducing complex math or advanced concepts,
manages to escort us in a mere twenty-three pages to a basic understanding of how today’s
complex, 3G modulation schemes work.

He does this by starting with the oldest and simplest form of modulation, amplitude modulation
(AM). He then works his way up in complexity (and through history), to frequency modulation
(FM) and its variants, phase modulation, and finally more advanced methods such as quadrature
amplitude modulation (QAM), spread spectrum techniques, and orthogonal frequency division
multiplex (OFDM).

Along the way, he introduces important concepts, such as the modulation index and deviation
ratio, which help you understand the theoretical limits of the various schemes. The author also
provides some practical information, such as telling you what modulation schemes are used for
what standards and why.

This text does assume some basic DSP theory knowledge. But the fact that the author takes that
basic DSP knowledge as far as he does without more theoretical background is impressive.
—Kenton Williston
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Radio signals can be used to carry information. The information, which may be audio, data
or other forms, is used to modify (modulate) a single frequency known as the carrier. The
information superimposed onto the carrier forms a radio signal which is transmitted to the receiver.

Here, the information is removed from the radio signal and reconstituted in its original format
in a process known as demodulation. It is worth noting at this stage that the carrier itself does
not convey any information.

There are many different varieties of modulation but they all fall into three basic categories,
namely amplitude modulation, frequency modulation and phase modulation, although
frequency and phase modulation are essentially the same. Each type has its own advantages
and disadvantages. A review of all three basic types will be undertaken, although a much
greater focus will be placed on those types used within phone systems. By reviewing all the
techniques, a greater understanding of the advantages and disadvantages can be gained.

6.1 Radio Carrier

The basis of any radio signal or transmission is the carrier. This consists of an alternating
waveform like that shown in Figure 6.1. This is generated in the transmitter, and if it is
radiated in this form it carries no information—it appears at the receiver as a constant signal.

6.2 Amplitude Modulation

Possibly the most obvious method of modulating a carrier is to change its amplitude in line
with the modulating signal.

AL
T

Figure 6.1: An alternating waveform
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The simplest form of amplitude modulation is to employ a system known as on-off keying
(OOK), where the carrier is simply turned on and off. This is a very elementary form of
digital modulation and was the method used to carry Morse transmissions, which were widely
used especially in the early days of “wireless.” Here, the length of the on and off periods
defined the different characters.

More generally, the amplitude of the overall signal is varied in line with the incoming audio or
other modulating signal, as shown in Figure 6.2. Here, the envelope of the carrier can be seen
to change in line with the modulating signal. This is known as amplitude modulation (AM).

The demodulation process for AM where the radio frequency signal is converted into an audio
frequency signal is very simple. It only requires a simple diode detector circuit like that shown
in Figure 6.3. In this circuit the diode rectifies the signal, only allowing the one-half of the
alternating radio frequency waveform through. A capacitor is used as a simple low-pass filter
to remove the radio-frequency parts of the signal, leaving the audio waveform. This can be fed
into an amplifier, after which it can be used to drive a loudspeaker. This form of demodulator
is very cheap and easy to implement, and is still widely used in many AM receivers today.

Modulating Time
waveform

Envelope of
modulated signal

Radio frequency
signal

Figure 6.2: An amplitude modulated signal
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The signal may also be demodulated more efficiently using a system known as synchronous
detection (Figure 6.4). Here, the signal is mixed with a locally generated signal with the same
frequency and phase as the carrier. In this way the signal is converted down to the baseband
frequency. This system has the advantage of a more linear demodulation characteristic than
the diode detector, and it is more resilient to various forms of distortion. There are various
methods of generating the mix signal. One of the easiest is to take a feed from the signal
being received and pass it through a very high-gain amplifier. This removes any modulation,
leaving just the carrier with exactly the required frequency and phase. This can be mixed with
the incoming signal and the result filtered to recover the original audio.

AM has the advantage of simplicity, but it is not the most efficient mode to use—both in
terms of the amount of spectrum it takes up and the usage of the power. For this reason, it

is rarely used for communications purposes. Its only major communications use is for VHF
aircraft communications. However, it is still widely used on the long, medium, and short wave
bands for broadcasting because its simplicity enables the cost of radio receivers to be kept to
a minimum.

Rectified signal
The capacitor removes
the radio frequency element

Ay " i

Figure 6.3: A simple diode detector circuit

Radio frequency
S|gnal

Demodulated
output

Input ) .| Low-pass

> Mixer . —
filter

High-gain
limiting
amplifier

Figure 6.4: Synchronous AM demodulation



Modulation 259

To find out why it is inefficient, it is necessary to look at a little theory behind the operation of
AM. When a radio-frequency signal is modulated by an audio signal, the envelope will vary.
The level of modulation can be increased to a level where the envelope falls to zero and then
rises to twice the unmodulated level. Any increase above this will cause distortion because the
envelope cannot fall below zero. As this is the maximum amount of modulation possible, it is
called 100% modulation (Figure 6.5).

Even with 100% modulation, the utilization of power is very poor. When the carrier is
modulated, sidebands appear at either side of the carrier in its frequency spectrum. Each
sideband contains the information about the audio modulation. To look at how the signal is
made up and the relative powers, take the simplified case where the 1-kHz tone is modulating
the carrier. In this case, two signals will be found: 1kHz either side of the main carrier, as
shown in Figure 6.6. When the carrier is fully modulated (i.e., 100%), the amplitude of the

Level when no Peak amplitude is twice

modulation is that when no modulation
present is present

\

N

Figure 6.5: Fully modulated signal

Carrier
Lower sideband Upper sideband
(quarter the power level (quarter the power level
of the carrier at 100% of the carrier at 100%
modulation) \ modulation)
f— 1kHz f f+ 1kHz Frequency

Figure 6.6: Spectrum of a signal modulated with a 1-kHz tone
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modulation is equal to half that of the main carrier—that is, the sum of the powers of the
sidebands is equal to half that of the carrier. This means that each sideband is just a quarter
of the total power. In other words, for a transmitter with a 100 W carrier, the total sideband
power will be 50 W and each individual sideband will be 25 W. During the modulation
process the carrier power remains constant. It is only needed as a reference during the
demodulation process. This means that the sideband power is the useful section of the signal,
and this corresponds to (50/150)X100%, or only 33% of the total power transmitted.

Not only is AM wasteful in terms of power, it is also not very efficient in its use of spectrum.
If the 1-kHz tone is replaced by a typical audio signal made up of a variety of sounds with
different frequencies, then each frequency will be present in each sideband (Figure 6.7).
Accordingly, the sidebands spread out either side of the carrier as shown and the total
bandwidth used is equal to twice the top frequency that is transmitted. In the crowded
conditions found on many of the short wave bands today this is a waste of space, and other
modes of transmission that take up less space are often used.

To overcome the disadvantages of AM, a derivative known as single sideband (SSB) is often
used. By removing or reducing the carrier and removing one sideband, the bandwidth can

Amplitude

Audio signal
spectrum

Maximum audio
frequency

Amplitude Carrier

Frequency

Lower sideband Upper sideband

Bandwidth is twice the
maximum audio frequency

Frequency

Figure 6.7: Spectrum of a signal modulated with speech or music
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be halved and the efficiency improved. The carrier can be introduced by the receiver for
demodulation.

Neither AM in its basic form nor SSB is used for mobile phone applications, although in

some applications AM combined with phase modulation is used.

6.3 Modulation Index

It is often necessary to define the level of modulation that is applied to a signal. A factor or
index known as the modulation index is used for this. When expressed as a percentage, it is
the same as the depth of modulation. In other words, it can be expressed as:

_ _RMS value of modulating signal
RMS value of unmodulated signal

The value of the modulation index must not be allowed to exceed 1 (i.e., 100% in terms of the
depth of modulation), otherwise the envelope becomes distorted and the signal will spread out
either side of the wanted channel, causing interference to other users.

6.4 Frequency Modulation

While AM is the simplest form of modulation to envisage, it is also possible to vary the
frequency of the signal to give frequency modulation (FM). It can be seen from Figure 6.8
that the frequency of the signal varies as the voltage of the modulating signal changes.

The amount by which the signal frequency varies is very important. This is known as
the deviation, and is normally quoted in kilohertz. As an example, the signal may have a
deviation of =3 kHz. In this case, the carrier is made to move up and down by 3 kHz.

FM is used for a number of reasons. One particular advantage is its resilience to signal-

level variations and general interference. The modulation is carried only as variations in
frequency, and this means that any signal-level variations will not affect the audio output
provided that the signal is of a sufficient level. As a result, this makes FM ideal for mobile

or portable applications where signal levels vary considerably. The other advantage of FM

is its resilience to noise and interference when deviations much greater than the highest
modulating frequency are used. It is for this reason that FM is used for high-quality broadcast
transmissions where deviations of £75kHz are typically used to provide a high level of
interference rejection. In view of these advantages, FM was chosen for use in the first-
generation analog mobile phone systems.
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Modulating signal

Radio frequency signal

Figure 6.8: A frequency modulated signal

To demodulate an FM signal, it is necessary to convert the frequency variations into voltage
variations. This is slightly more complicated than demodulating AM, but it is still relatively
simple to achieve. Rather than just detecting the amplitude level using a diode, a tuned circuit
has to be incorporated so that a different output voltage level is given as the signal changes its
frequency. A variety of methods is used to achieve this, but one popular approach is to use a
system known as a quadrature detector. It is widely used in integrated circuits, and provides

a good level of linearity. It has the advantages that it requires a simple tuned circuit and it is
also very easy to implement in a form that is applicable to integrated circuits.

The basic format of the quadrature detector is shown in Figure 6.9. It can be seen that the
signal is split into two components. One of these passes through a network that provides

a basic 90 phase-shift, plus an element of phase shift dependent upon the deviation. The
original signal and the phase-shifted signal are then passed into a multiplier or mixer. The
mixer output is dependent upon the phase difference between the two signals, i.e., it acts as a
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Low-pass

J- Mixer filter
i
|

Figure 6.9: Block diagram of an FM quadrature detector

Incoming signal
Audio output

phase detector and produces a voltage output that is proportional to the phase difference and
hence to the level of deviation of the signal.

6.5 Modulation Index and Deviation Ratio

In many instances a figure known as the modulation index is of value and is used in other
calculations. The modulation index is the ratio of the frequency deviation to the modulating
frequency, and will therefore vary according to the frequency that is modulating the
transmitted carrier and the amount of deviation:

Frequency deviation

Modulation frequency

However, when designing a system it is important to know the maximum permissible values.
This is given by the deviation ratio, and is obtained by inserting the maximum values into the
formula for the modulation index:

D= Maximum frequency deviation

Maximum modulation frequency -

6.6 Sidebands

Any signal that is modulated produces sidebands. In the case of an amplitude modulated
signal they are easy to determine, but for frequency modulation the situation is not quite
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as straightforward. They are dependent upon not only the deviation, but also the level of
deviation — i.e., the modulation index M. The total spectrum is an infinite series of discrete
spectral components, expressed by the complex formula:

Spectrum components = Vc{J (M)cos w, t
+J, (M)[cos(w, + w, )t — cos(w, — w, )]
+J,(M)[cos(w, + 2w, )t — cos(w, — 2w, )t]
+J,(M)[cos(w, + 3w, )t — cos(w, — 3w, )t]
+...}

In this relationship, J,,(M) are Bessel functions of the first kind, w, is the angular frequency of
the carrier and is equal to 27f, and w,,, is the angular frequency of the modulating signal. Vc is
the voltage of the carrier.

It can be seen that the total spectrum consists of the carrier plus an infinite number of
sidebands spreading out on either side of the carrier at integral frequencies of the modulating
frequency. The relative levels of the sidebands can be read from a table of Bessel functions,
or calculated using a suitable computer program. Figure 6.10 shows the relative levels to give
an indication of the way in which the levels of the various sidebands change with different
values of modulation index.
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Figure 6.10: The relative amplitudes of the carrier and the first 10 side frequency components of

a frequency modulated signal for different values of modulation index
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Figure 6.11: Spectra of frequency-modulated signals with various values of modulation index
for a constant modulation frequency. It can be seen that for small values of the modulation
index M (e.g., M = 0.5), the signal appears to consist of the carrier and two sidebands. As the
modulation index increases, the number of sidebands increases and the level of the carrier can be
seen to decrease for these values.

It can be gathered that for small levels of deviation (that is, what is termed narrowband FM)
the signal consists of the carrier and the two sidebands spaced at the modulation frequency
either side of the carrier. The spectrum appears the same as that of an AM signal. The major
difference is that the lower sideband is out of phase by 180.

As the modulation index increases, other sidebands at twice the modulation frequency start to
appear (Figure 6.11). As the index is increased, further sidebands can also be seen. It is also
found that the relative levels of these sidebands change, some rising in level and others falling
as the modulation index varies.

6.7 Bandwidth

It is clearly not acceptable to have a signal that occupies an infinite bandwidth. Fortunately,
for low levels of modulation index all but the first two sidebands may be ignored. However,
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as the modulation index increases the sidebands further out increase in level, and it is often
necessary to apply filtering to the signal. This should not introduce any undue distortion.

To achieve this it is normally necessary to allow a bandwidth equal to twice the maximum
frequency of deviation plus the maximum modulation frequency. In other words, for a VHF
FM broadcast station with a deviation of £75kHz and a maximum modulation frequency of
15kHz, this must be (2 3 X 75) + 15kHz; i.e., 175kHz. In view of this a total of 200kHz is
usually allowed, enabling stations to have a small guard band and their center frequencies on
integral numbers of 100kHz.

6.8 Improvement in Signal-to-Noise Ratio

It has already been mentioned that FM can give a better signal-to-noise ratio than AM when
wide bandwidths are used. The amplitude noise can be removed by limiting the signal. In fact,
the greater the deviation, the better the noise performance. When comparing an AM signal
with an FM signal, an improvement equal to 3D? is obtained where D is the deviation ratio.
This is true for high values of D—i.e., wideband FM.

An additional perceived improvement in signal-to-noise ratio can be achieved if the audio
signal is pre-emphasized. To achieve this, the lower-level high-frequency sounds are
amplified to a greater degree than the lower-frequency sounds before they are transmitted.
Once at the receiver, the signals are passed through a network with the opposite effect to
restore a flat frequency response.

To achieve the pre-emphasis, the signal may be passed through a capacitor-resistor (CR)
network. At frequencies above the cut-off frequency, the signal increases in level by 6 dB per
octave. Similarly, at the receiver the response falls by the same amount.

6.9 Frequency-Shift Keying

Many signals employ a system called frequency-shift keying (FSK) to carry digital data
(Figure 6.12). Here, the frequency of the signal is changed from one frequency to another, one
frequency counting as the digital 1 (mark) and the other as a digital O (space). By changing
the frequency of the signal between these two it is possible to send data over the radio.

There are two methods that can be employed to generate the two different frequencies needed
for carrying the information. The first and most obvious is to change the frequency of the
carrier. Another method is to frequency-modulate the carrier with audio tones that change in
frequency, in a scheme known as audio frequency-shift keying (AFSK). This second method
can be of advantage when tuning accuracy is an issue.
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Figure 6.12: Frequency-shift keying

6.10 Phase Modulation

Another form of modulation that is widely used, especially for data transmissions, is phase
modulation (PM). As phase and frequency are inextricably linked (frequency being the rate of
change of phase), both forms of modulation are often referred to by the common term angle
modulation.

To explain how phase modulation works, it is first necessary to give an explanation of phase.
A radio signal consists of an oscillating carrier in the form of a sine wave. The amplitude
follows this curve, moving positive and then negative, and returning to the start point after
one complete cycle. This can also be represented by the movement of a point around a circle,
the phase at any given point being the angle between the start point and the point on the
waveform as shown in Figure 6.13.

Modulating the phase of the signal changes the phase from what it would have been if no
modulation were applied. In other words, the speed of rotation around the circle is modulated
about the mean value. To achieve this it is necessary to change the frequency of the signal for
a short time. In other words, when phase modulation is applied to a signal there are frequency
changes and vice versa. Phase and frequency are inseparably linked, as phase is the integral
of frequency. Frequency modulation can be changed to phase modulation by simply adding

a CR network to the modulating signal that integrates the modulating signal. As such, the
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Figure 6.13: Phase modulation

information regarding sidebands, bandwidth and the like also holds true for phase modulation
as it does for frequency modulation, bearing in mind their relationship.

6.11 Phase-Shift Keying

Phase modulation may be used for the transmission of data. Frequency-shift keying is robust,
and has no ambiguities because one tone is higher than the other. However, phase-shift
keying (PSK) has many advantages in terms of efficient use of bandwidth and is the form of
modulation chosen for many cellular telecommunications applications.

The basic form of phase-shift keying is known as binary phase-shift keying (BPSK) or,
occasionally, phase reversal keying (PRK). A digital signal alternating between +1 and —1 (or 1
and 0) will create phase reversals—i.e., 180° phase-shifts—as the data shifts state (Figure 6.14).

The problem with phase-shift keying is that the receiver cannot know the exact phase of

the transmitted signal, to determine whether it is in a mark or space condition. This would
not be possible even if the transmitter and receiver clocks were accurately linked, because

the path length would determine the exact phase of the received signal. To overcome this
problem, PSK systems use a differential method for encoding the data onto the carrier. This

is accomplished by, for example, making a change in phase equal to a 1 and no phase change
equal to a 0. Further improvements can be made upon this basic system, and a number of
other types of phase-shift keying have been developed. One simple improvement can be made
by making a change in phase of 90° in one direction for a 1, and 90° the other way for a 0.
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Figure 6.14: Binary phase-shift keying
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Figure 6.15: Phasor constellations for BPSK and QPSK

This retains the 180° phase reversal between the 1 and O states, but gives a distinct change for
a 0. In a basic system not using this process it may be possible to lose synchronization if a
long series of zeros is sent. This is because the phase will not change state for this occurrence.

There are many variations on the basic idea of phase-shift keying. Each has its own advantages
and disadvantages, enabling system designers to choose the one most applicable for any given
circumstances. Other common forms include quadrature phase-shift keying (QPSK), where four
phase states are used, each at 90° to the other; 8-PSK, where there are eight states, and so forth.

It is often convenient to represent a phase-shift keyed signal, and sometimes other types of
signal, using a phasor or constellation diagram (see Figure 6.15). Using this scheme, the
phase of the signal is represented by the angle around the circle, and the amplitude by the
distance from the origin or centre of the circle. In this way the signal can be resolved into
quadrature components representing the sine or I for In-phase component, and the cosine for
the quadrature component. Most phase-shift-keyed systems use a constant amplitude, and
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therefore points appear on one circle with a constant amplitude and the changes in state being
represented by movement around the circle. For binary shift keying using phase reversals, the
two points appear at opposite points on the circle. Other forms of phase-shift keying may use
different points on the circle, and there can be more points on the circle.

When plotted using test equipment, errors may be seen from the ideal positions on the

phase diagram. These errors may appear as the result of inaccuracies in the modulator and
transmission and reception equipment, or as noise that enters the system. It can be imagined
that if the position of the real measurement when compared to the ideal position becomes too
large, then data errors will appear because the receiving demodulator is unable correctly to
detect the intended position of the point on the circle.

Using a constellation view of the signal enables quick fault-finding in a system. If the problem

is related to phase, the constellation will spread around the circle. If the problem is related to
magnitude, the constellation will spread off the circle, either towards or away from the origin. These
graphical techniques assist in isolating problems much faster than when using other methods.

QPSK is used for the forward link from the base station to the mobile in the IS-95 cellular
system, and uses the absolute phase position to represent the symbols. There are four phase
decision points, and when transitioning from one state to another it is possible to pass through
the circle’s origin, indicating minimum magnitude.

On the reverse link from mobile to base station, offset-quadrature phase-shift keying (O-QPSK)
is used to prevent transitions through the origin. Consider the components that make up any
particular vector on the constellation diagram as X and Y components. Normally, both of these
components would transition simultaneously, causing the vector to move through the origin.

In O-QPSK one component is delayed, so the vector will move down first and then over, thus
avoiding moving through the origin, and simplifying the radio’s design. A constellation diagram
will show the accuracy of the modulation.

6.12 Minimum-Shift Keying

It is found that binary data consisting of sharp transitions between 1 and O states and vice
versa potentially create signals that have sidebands extending out a long way from the
carrier, and this is not ideal from many aspects. This can be overcome in part by filtering
the signal, but the transitions in the data become progressively less sharp as the level of
filtering is increased and the bandwidth is reduced. To overcome this, a form of modulation
known as Gaussian-filtered minimum-shift keying (GMSK) is widely used; for example, it
has been adopted for the GSM standard for mobile telecommunications. It is derived from
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a modulation scheme known as minimum-shift keying (MSK), which is what is known as a
continuous-phase scheme. Here, there are no phase discontinuities because the frequency
changes occur at the carrier zero crossing points.

To illustrate this, take the example shown in Figure 6.16. Here, it can be seen that the
modulating data signal changes the frequency of the signal and there are no phase
discontinuities. This arises as a result of the unique factor of MSK that the frequency
difference between the logical 1 and logical O states is always equal to half the data rate. This
can be expressed in terms of the modulation index, and is always equal to 0.5.

While this method appears to be fine, in fact the bandwidth occupied by an MSK signal is too
wide for many systems, where a maximum bandwidth equal to the data rate is required.

A plot of the spectrum of an MSK signal shows sidebands extending well beyond a
bandwidth equal to the data rate (Figure 6.17). This can be reduced by passing the modulating
signal through a low-pass filter prior to applying it to the carrier. The requirements for

the filter are that it should have a sharp cut-off and a narrow bandwidth, and its impulse
response should show no overshoot. The ideal filter is known as a Gaussian filter, which has a
Gaussian-shaped response to an impulse and no ringing.

There are two main ways in which GMSK can be generated. The most obvious way is to filter
the modulating signal using a Gaussian filter and then apply this to a frequency modulator
where the modulation index is set to 0.5, as shown in Figure 6.18. While simple, this method
has the drawback that the modulation index must exactly equal 0.5. In practice, this analog
method is not suitable because component tolerances drift and cannot be set exactly.

A second method is more widely used. Here, what is known as a quadrature modulator is used.
The term quadrature means that the phase of a signal is in quadrature, or 90°, to another one.

1 0 1 1

Data 0 Time

MSK 5 E/\ ) ' /\ ' Time
SREVATA VA Vi

Figure 6.16: An example of an MSK signal
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Figure 6.18: Generating GMSK using a Gaussian filter and a frequency modulator with the
modulation index set to 0.5

The quadrature modulator uses one signal that is said to be in phase and another that is in
quadrature to this. In view of the in-phase and quadrature elements, this type of modulator is often
said to be an I-Q modulator (Figure 6.19). When using this type of modulator, the modulation
index can be maintained at exactly 0.5 without the need for any settings or adjustments. This
makes it much easier to use, and capable of providing the required level of performance without
the need for adjustments. For demodulation, the technique can be used in reverse.

A further advantage of GMSK is that it can be amplified by a nonlinear amplifier and remain
undistorted. This is because there are no elements of the signal that are carried as amplitude
variations, and it is therefore more resilient to noise than some other forms of modulation.

6.13 Quadrature Amplitude Modulation

Another form of modulation that is widely used in data applications is known as quadrature
amplitude modulation (QAM). It is a signal in which two carriers shifted in phase by 90° are
modulated, and the resultant output consists of both amplitude and phase variations. In view
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of the fact that both amplitude and phase variations are present, it may also be considered as a
mixture of amplitude and phase modulation.

A continuous bit stream may be grouped into threes and represented as a sequence of eight

permissible states:

Bit sequence Amplitude Phase (°)
000 172 0(0°)
001 1 0(0°)
010 1/2 ™/2 (90°)
011 1 /2 (90°)
100 1/2 T (180°)
101 1 7 (180°)
110 1/2 3m/2(270°)
111 1 3m/2 (270°)

Phase modulation can be considered as a special form of QAM where the amplitude remains
constant and only the phase is changed. By doing this, the number of possible combinations is

halved.
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Although QAM appears to increase the efficiency of transmission by utilizing both amplitude
and phase variations, it has a number of drawbacks. The first is that it is more susceptible to
noise because the states are closer together, so that a lower level of noise is needed to move
the signal to a different decision point. Receivers for use with phase or frequency modulation
can both use limiting amplifiers that are able to remove any amplitude noise and thereby
improve the noise reliance. This is not the case with QAM. The second limitation is also
associated with the amplitude component of the signal. When a phase or frequency modulated
signal is amplified in a transmitter there is no need to use linear amplifiers, whereas

when using QAM that contains an amplitude component, linearity must be maintained.
Unfortunately, linear amplifiers are less efficient and consume more power, and this makes
them less attractive for mobile applications.

6.14 Spread Spectrum Techniques

In many instances it is necessary to keep transmissions as narrow as possible to conserve
the frequency spectrum. However, under some circumstances it is advantageous to use
what are known as spread spectrum techniques, where the transmission is spread over a
wide bandwidth. There are two ways of achieving this: one is to use a technique known as
Jfrequency hopping, while the other involves spreading the spectrum over a wide band of
frequencies so it appears as background noise. This can be done in different ways, and the
two most widely used systems for this are DSSS and OFDM.

6.15 Frequency Hopping

In some instances, particularly in military applications, it is necessary to prevent any people
apart from intended listeners from picking up a signal or from jamming it. Frequency hopping
may also be used to reduce levels of interference. If interference is present on one channel,
the hopping signal will only remain there for a short time and the effects of the interference
will be short lived. Frequency hopping is a well-established principle. In this system, the
signal is changed many times a second in a pseudo-random sequence from a predefined

block of channels. Hop rates vary, and are dependent upon the requirements. Typically the
transmission may hop a hundred times a second, although at HF this will be much less.

The transmitter will remain on each frequency for a given amount of time before moving
on to the next. There is a small dead time before the signal appears on the next channel, and
during this time the transmitter output is muted. This is to enable the frequency synthesizer
time to settle, and to prevent interference to other channels as the signal moves.
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To receive the signal, the receiver must be able to follow the hop sequence of the transmitter.
To achieve this, both transmitter and receiver must know the hop sequence, and the hopping
of both transmitter and receiver must be synchronized.

Frequency hopping transmissions usually use a form of digital transmission. When speech
is used, this has to be digitized before being sent. The data rate over the air has to be greater
than the overall throughput to allow for the dead time while the set is changing frequency.

6.16 Direct-Sequence Spread Spectrum

Direct-sequence spread spectrum (DSSS) is a form of spread spectrum modulation that is
being used increasingly as it offers improvements over other systems, although this comes

at the cost of greater complexity in the receiver and transmitter. It is used for some military
applications, where it provides greater levels of security, and it has been chosen for many of the
new cellular telecommunications systems, where it can provide an improvement in capacity.

In this application it is known as code division multiple access, because it is a system whereby
a number of different users can gain access to a receiver as a result of their different “codes.”
Other systems use different frequencies (frequency division multiple access—FDMA), or
different times or time slots on a transmission (time division multiple access—TDMA).

Its operation is more complicated than those that have already been described. When selecting
the required signal, there has to be a means by which the selection occurs. For signals such as
AM and FM different frequencies are used, and the receiver can be set to a given frequency
to select the required signal. Other systems use differences in time. For example, using pulse
code modulation, pulses from different signals are interleaved in time, and by synchronizing
the receiver and transmitter to look at the overall signal at a given time, the required signal
can be selected. CDMA uses different codes to distinguish between one signal and another.
To illustrate this, take the analogy of a room full of people speaking different languages.
Although there is a large level of noise, it is possible to pick out the person speaking English,
even when there may be people who are just as loudly (or maybe even louder) speaking a
different language you may not be able to understand.

The system enables several sets of data to be placed onto a carrier and transmitted from
one base station, as in the case of a cellular telecommunications base station. It also allows
for individual units to send data to a receiver that can receive one of more of the signals

in the presence of a large number of others. To accomplish this, the signal is spread over

a given bandwidth. This is achieved by using a spreading code, which operates at a higher
rate than the data. The code is sent repeatedly, each data bit being multiplied by each bit
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of the spreading code successively. The codes for this can be either random or orthogonal.
Orthogonal codes are ones which, when multiplied together and then added up over a period
of time, have a sum of zero. To illustrate this, take the example of two codes:

Code A 1 —1 —1 1

Code B 1 -1 1 =1

Product 1 1 -1 —1 summed over a period of
time =0,ie,1+1—-1-1=0

Using orthogonal codes, it is possible to transmit a large number of data channels on the same
signal. To achieve this, the data are multiplied with the chip stream (Figure 6.20). This chip
stream consists of the codes being sent repeatedly, so that the each data bit is multiplied with
the complete code in the chip stream—in other words, if the chip stream code consists of four
bits, then each data bit will be successively multiplied by four chip bits. It is also worth noting
that the spread rate is the number of data bits in the chip code (i.e., the number of bits that
each data bit is multiplied by). In this example the spread rate is four, because there are four
bits in the chip code.

Data

Spread
data

Spreading or
chip code

Figure 6.20: Multiplying the data stream with the chip stream
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To produce the final signal that carries several data streams, the outputs from the individual
multiplication processes are summed (Figure 6.21). This signal is then converted up to the
transmission frequency and transmitted.

At the receiver, the reverse process is adopted. The signal is converted down to the base band
frequency. Here, the signal is multiplied by the relevant chip code and the result summed
over the data bit period to extract the relevant data in a process known as correlation. By
multiplying by a different chip code, a different set of data will be extracted.

To see how the system operates, it is easier to refer to a diagram. In Figure 6.22, it can be
seen that the waveforms (a) and (b) are the spreading codes. The spreading code streams are
multiplied with their relevant data. Here, the spreading code stream (a) is multiplied by the
data in (c) to give the spread data stream shown in (d). Similarly, spreading code stream (b) is
multiplied by the data in (e) to give (f). The two resulting spread data streams are then added
together to give the baseband signal ready to be modulated onto the carrier and transmitted.

In this case, it can be seen that chip stream (a) is repeated in waveform (h). This is multiplied by
(g) to give the waveform (i). Each group of four bits (as there are four bits in the chip code used
in the example) is summed, and from this the data can be reconstituted as shown in waveform (j).

When a random or, more correctly, a pseudo-random spreading code is used, a similar process is
followed. Instead of using the orthogonal codes, a pseudo-random spreading sequence is used.

Both the transmitter and receiver will need to be able to generate the same pseudo-random code.
This is easily achieved by ensuring that both transmitter and receiver use the same algorithms to

-
Spread | —————————— — — Output signal
data < > — for modulation
signals | —————————— =] onto a carrier
-
Summing
circuit

Figure 6.21: Generating a signal that carries several sets of data
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generate these sequences. The drawback of using a pseudo-random code is that the codes are not
orthogonal, and as a result some data errors are expected when regenerating the original data.

6.17 Orthogonal Frequency Division Multiplexing

Another form of modulation that is being used more frequently is orthogonal frequency division
multiplexing (OFDM). A form of this, known as coded OFDM or COFDM, is used for many
Wi-Fi applications, such as IEEE Standard 802.11 as well as digital radio (DAB), and it is likely
that it will be used for the fourth-generation (4G) mobile standards to provide very high data rates.

A COFDM signal consists of a number of closely-spaced modulated carriers. When
modulation of any form—voice, data, etc.—is applied to a carrier, then sidebands spread
out on either side. It is necessary for a receiver to be able to receive the whole signal in
order to successfully demodulate the data. As a result, when signals are transmitted close
to one another they must be spaced so that the receiver can separate them using a filter, and
there must be a guard band between them. This is not the case with COFDM. Although the
sidebands from each carrier overlap, they can still be received without the interference that
might be expected because they are orthogonal to each another. This is achieved by having
the carrier spacing equal to the reciprocal of the symbol period.

Figure 6.23 shows a traditional view of receiving signals carrying modulation, and
Figure 6.24 shows the spectrum of a COFDM signal.

To see how this works, we must look at the receiver. It acts as a bank of demodulators,
translating each carrier down to DC. The resulting signal is integrated over the symbol period

Receiver
filter passband:
one signal is selected

Mﬁg Freauency

Multiple signals

Figure 6.23: Traditional view of receiving signals carrying modulation
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Figure 6.24: The spectrum of a COFDM signal

to regenerate the data from that carrier. The same demodulator also demodulates the other
carriers. As the carrier spacing equal to the reciprocal of the symbol period means that they
will have a whole number of cycles in the symbol period, their contribution will sum to
zero—in other words, there is no interference contribution.

One requirement of the transmitting and receiving systems is that they must be linear, as any
nonlinearity will cause interference between the carriers as a result of intermodulation distortion.

This will introduce unwanted signals that will cause interference and impair the orthogonality
of the transmission.

In terms of the equipment to be used, the high peak-to-average ratio of multicarrier systems
such as COFDM requires the RF final amplifier on the output of the transmitter to be able
to handle the peaks while the average power is much lower, and this leads to inefficiency.
In some systems, the peaks are limited. Although this introduces distortion that results in a
higher level of data errors, the system can rely on the error correction to remove them.

The data to be transmitted are spread across the carriers of the signal, each carrier taking part
of the payload. This reduces the data rate taken by each carrier. The lower data rate has the
advantage that interference from reflections is much less critical. This is achieved by adding
a guard band time (or guard interval) into the system (Figure 6.25), which ensures that the
data are only sampled when the signal is stable (i.e., a sine wave) and no new delayed signals
arrive that will alter the timing and phase of the signal.

The distribution of the data across a large number of carriers has some further advantages. Nulls
caused by multipath effects or interference on a given frequency only affect a small number of
the carriers, the remaining ones being received correctly. Using error-coding techniques, which
does mean adding further data to the transmitted signal, enables many or all of the corrupted data
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Figure 6.25: The guard interval used to prevent intersymbol interference

to be reconstructed within the receiver. This can be done because the error correction code
is transmitted in a different part of the signal. It is this error coding that is referred to in the
“Coded” of COFDM.

6.18 Bandwidth and Data Capacity

One of the features that is of paramount importance in any communications system is the amount
of data throughput. With users requiring more data and at faster rates, it is essential to make

the optimum use of the available channels. It has been seen that there are many different types

of modulation that can be used, some being more efficient than others for particular purposes.
Nevertheless, there are certain laws that govern the amounts of data that can be transferred.

The bandwidth of a channel that is used is one of the major factors that influences the amount
of data that can be accommodated. Bandwidth is literally the width of a band of frequencies
measured in hertz (Hz). It is found simply by subtracting the lower limit of the frequencies
used from the upper limit of the frequencies used.

Nyquist’s theorem relates the bandwidth to the data rate by stating that a data signal with a
transmission rate of 2 W can be carried by frequency of bandwidth W. The converse is also
true: given a bandwidth of W, the highest signal rate that can be accommodated is 2 W. The
data signal need not be encoded in binary, but if it is then the data capacity in bits per second
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(bps) is twice the bandwidth in hertz. Multilevel signaling can increase this capacity by
transmitting more bits per data signal unit.

The problem with multilevel signaling is that it must be possible to distinguish between the
different signaling levels in the presence of outside interference—in particular, noise. A law
known as Shannon’s Law defines the way in which this occurs. It was formulated by Claude
Shannon, a mathematician who helped build the foundations for the modern computer, and it is

a statement of information theory that expresses the maximum possible data speed that can be
obtained in a data channel. Shannon’s Law says that the highest obtainable error-free data speed
is dependent upon the bandwidth and the signal-to-noise ratio. It is usually expressed in the form:

C = Wlog,(1+ S/N)

where C is the channel capacity in bits per second, W is the bandwidth in hertz and
S/N 1s the signal-to-noise ratio.

Theoretically, it should be possible to obtain between 2 and 12 bps/Hz, but generally this
cannot be achieved and figures of between 1 and 4 bps/Hz are more reasonable. As a matter
of simplicity, no attempt will be made here to provide a serious distinction between the two
kinds of ways of measuring capacity and we will simply talk about “bandwidth” in terms of
bits per second. However, it must be remembered that bandwidth and digital data rate are two
different quantities. Bandwidth is a measure of the range of frequencies used in an analog
signal, and bits per second is a measure of the digital data rate.

Error correction codes can improve the communications performance relative to un-coded
transmissions, but no practical error correction coding system exists that can closely approach
the theoretical performance limit given by Shannon’s Law.

6.19 Summary

There are three ways in which a signal can be modulated: its amplitude, phase or frequency
can be varied, although of these phase and frequency are essentially the same. However,
there are a great many ways in which this can be achieved, and each type has its advantages
and disadvantages. Accordingly, the choice of the correct type of modulation is critical when
designing a new system.



DSP Hardware Options

Dake Liu

One of the most confusing aspects of DSP is the fact that the acronym has two meanings: It is
used as shorthand for both digital signal processing and digital signal processor. This sometimes
leads to the false impression that all signal processing takes places on digital signal processors.
In fact, DSP engineers have many other hardware options, and choosing the right hardware
platform is an important part of the DSP development process.

In this chapter Dake Liu lays out the key DSP hardware options: general-purpose processors
(GPPs), DSPs, ASIC, FPGA, and application-specific instruction-set processors (ASIPs). He
also explains the implementation issues associated with each option. Liu gives an overview of a
generic DSP architecture and explains how the DSP fits into an embedded system. (For a closer
look at DSP architectures, check out the next chapter in this book.)

Before getting into the details of the hardware, Liu offers an overview of DSP theory and
applications. This overview assumes a basic level of experience with DSP theory, applications,
and implementations. If you are just getting started in DSP, you should start by reviewing the
earlier chapters in this book.

The section on DSP theory is similar to what you’ll find in most DSP textbooks. Here we find the
usual equations and diagrams related to sampling, FIR filters, FFTs, etc. Liu deviates from these texts
in the end by introducing the more advanced DSP topics of adaptive filtering and random processes.

In the DSP applications section, were introduced to the concept of real-time processing. Liu
illustrates DSP applications through two examples: a basic communications system and a
multimedia processing system.

If you take only one idea away from the chapter; it should be that you have many hardware
options. Choosing the wrong option can sink a project. Thinking outside the box and choosing
and making an unusual choice can give you a big competitive advantage. For more on this
important topic, check out this article:

http://www.dspdesignline.com/howto/199001104
—Kenton Williston
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7.1 DSP Theory for Hardware Designers

Many theoretical books about DSP algorithms are available [2,3]. It is not this book’s intent
to review DSP algorithms; instead, DSP algorithms will be discussed from a profiling point
of view in order to expose the computing cost.

The remaining part of this chapter is a collection of background knowledge. If you feel that
it is insufficient, we recommend that you read a basic DSP book. However, all readers are
recommended to carefully read through Section 7.3.

7.1.1 Review of DSP Theory and Fundamentals

A signal is generated by physical phenomena. It has detectable energy and it carries
information; for example, variation in air pressure (sound), or variation in electromagnetic
radiation (radio). In order to process these signals, they first must be converted into electrical
analog signals. These signals must be further converted into digital electrical signals before
any digital signal processing can take place. A digital signal is a sequence of (amplitude)
quantized values. In the time domain, this sequence is in fixed order with fixed time intervals.
In the frequency domain, the spectrum sequence is in fixed order with fixed frequency
intervals. A continuous signal can be converted into a digital signal by sampling. A sampling
circuit is called an analog-to-digital converter (ADC). Inversely, a digital signal can be
converted into an analog signal by interpolation. A circuit for doing this conversion is called a
digital-to-analog converter (DAC).

A system is an entity that manipulates signals to accomplish certain functions, yielding

new signals. The process of digital signal manipulation therefore is called digital signal
processing (DSP). A system that handles digital signal processing is called a DSP system. A
DSP system handles signal processing either in the time domain or in the frequency domain.
Transformation algorithms translate signals between time- and frequency domains.

DSP is a common name for the science and technology of processing digital signals using
computers or digital electronic circuits (including DSP processors). Processing here stands
for running algorithms based on a set of arithmetic kernels.

An arithmetic operation is specified as an atomic element of computing operations, for
instance, addition, subtraction, multiplication, and division. Special DSP arithmetic
operations such as guarding, saturation, truncation, and rounding will be discussed in
more detail later. If it is not specially mentioned, two’s complement is the default data
representation in this book.
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DSP operation

x(n) oy y(n)
..X(2), x(1), X(0) -y(2), y(1), y(0)

Figure 7.1: A simple DSP operation or a DSP system

An algorithm is the mathematical representation of a task. An algorithm specifies a group of
arithmetic operations to be performed in a certain order. However, it does not specify how
the arithmetic operations involved are implemented. An algorithm can be implemented in
software (SW) using a general-purpose computer or a DSP processor, or in hardware (HW)
as an ASIC.

A simplified digital signal processing (DSP) system is shown in Figure 7.1. It has at least one
input sequence x(n) and one output sequence y(n) that is generated by applying operation
OP{} to x(n).

Signals x(n) and y(n) are actually x(nT) and y(nT), where T is a time interval representing the
sampling period. This means that the time interval between x(n) and x(n — 1) is 7. OP{} in
Figure 7.1 can be a single operation or a group of operations. A DSP system can be as simple
as pure combinational logic, or as complicated as a complete application system including
several processors such as video encoders.

In Figure 7.2, fundamental knowledge is classified and depicted in the top part. Applications
using fundamental knowledge are listed in the middle, and basic knowledge related to
implementations is listed in the bottom part of the figure.

7.1.2 ADC and Finite-length Modeling

As mentioned earlier, a continuous electrical signal can be converted into a digital signal by
an ADC. A digital signal can be converted into an analog signal by a DAC. Figure 7.3 shows
a simplified and general DSP system based on a digital signal processor (DSP in this figure).

During the conversion from analog to digital and the subsequent processing, two types of
errors are introduced. The first type is aliasing, which occurs if the sampling speed is close

to the Nyquist rate. The second type is quantization error due to the finite word-length of the
system. The ADC performs amplitude quantization of the analog input signal into binary
output with finite-length precision. The maximum signal-to-quantization-noise ratio, in dB, of
an ideal N-bit ADC is described in [4].

SNR = 6.02N +4.77 — 3 = 6.02N + 1.77 (dB) (7.1

Q-max
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Applications and implementations will be discussed in detail later on

Figure 7.2: Review of DSP theory and related activities for ICT (Information and

Communication Technology)
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Figure 7.3: Overview of a DSP system

1.77dB is based on a sinusoidal waveform statistic and varies for other waveforms. N represents
the data word length of the ADC. The SNR,_,,x €xpression gives a commonly used rule of
thumb of 6 dB/bit for the SNR of an ADC. The maximum signal-to-noise ratio of a 12 bits ADC
is 74 dB. The principle of deriving the SNR¢,_p, can be found in fundamental ADC books.

www.newnespress.com
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Figure 7.4: Filter specifications

7.1.3 Digital Filters

A filter attenuates certain frequency components of a signal. All frequency components of an
input signal falling into the pass-band of the filter will have little or no attenuation, whereas
those falling into the stop-band will have high attenuation. It is not possible to achieve an
abrupt change from pass-band to stop-band, and between these bands there will be always

be a transition-band. The frequency where the transition-band starts is called transition start
frequency fps- The frequency where the transition-band ends is called stop frequency fyop.
Figure 7.4 illustrates examples of typical filters. In this figure, (a) is a low-pass filter, (b) is a
high-pass filter, (c) is a band-pass filter, and (d) is a band-stop filter. All filters can be derived
from the general difference equation given in the following form.!

) = S ax(n — k) = S by(n — 1) (12)
k=0 =1

!Equations representing fundamental DSP knowledge can be found in any DSP book. We will not
explain and derive equations of fundamental DSP in this book. You can find details in [2,3].
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Figure 7.5: A 5-tap FIR filter with a FIFO data buffer

From Equation 7.2, the FIR (Finite Impulse Response) and the IIR (Infinite Impulse
Response) filters can be defined by Equation 7.3 and Equation 7.4:

y(n) = iakx(n — k) (7.3)
y(n) = iakx(n — k) — ibly(n -1 (7.4)
k=0 =1

When FIR or IIR later appears in this book, it will implicitly stand for “a filter.”

Let us take a 5-tap FIR filter as an example and explore how an FIR filter works. The
algorithms of the 5-tap FIR filter is y(n) = Xx(n—k)*h(k), k = 0 to 4. Here, x(n — k) is the
input signal, A(k) is the coefficient, and k is the number of iterations. To unroll the iteration
loop, the basic computing is given in the following pseudocode of a 5-tap FIR.

//5-tap FIR behavior code

{
A0 = x(n)*h(0);
Al = A0 + x(n-1)*h(1);
A2 = Al + x(n-2)*h(2);
A3 = A2 + x(n-3)*h(3);
Y(n) = A3 + x(n-4)*h(4);

The signal flow diagram is illustrated in Figure 7.5. In this figure, a FIFO (First In First
Out) buffer consists of n — 1 memory positions keeping 7 — 1 input values. Z~! denotes the
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Figure 7.6: A Biquad IIR filter

delay of the input signal or the next position of the FIFO. The triangle symbol denotes the
multiplication operation. If the FIFO data and the coefficients are stored in memories, FIR
computing of one data sample usually consists of K multiplications, K accumulations, and
2 K memory accesses. Here K denotes the number of taps of the filter.

Equation 7.4 illustrates an IIR filter. Because the filter output is fed back as part of the inputs
for regressive computing, the filter may be unstable if it is not properly designed. The most
used IIR filter is the so-called Biquad IIR.A Biquad IIR is a two-tap IIR filter that is defined
by the following equation:

y(n) = ayx(n) + ax(n — 1) + a,x(n —2) + byy(n — 1) + b,y(n — 2) (7.5)

The signal flow graph for a Biquad IIR filter of Equation 7.5 is shown in Figure 7.6.

For minimizing the computing cost, b is set to 1. Programming a Biquad IIR filter usually
means that two short loops are unrolled. For processing one data sample, up to 19 operations
are required including five multiplications, four additions, and ten memory accesses.

7.1.4 Transform

In this book, a transform is an algorithm to translate signals or elements in one style to
another style without losing information. Typical transforms are FFT (fast Fourier transform),
and DCT (discrete cosine transform). These two transforms translate signals between the time
domain and frequency domain.

Time-domain signal processing may consume too much computing power, so signal
processing in other domains might be necessary. In order to process a signal in another
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domain, a domain transformation of the signal is required before and after the signal
processing. Digital signal processing in the frequency domain is popular because of its explicit
physical meaning and lower computational cost in comparison with time-domain processing.
For example, if a FIR filter is implemented in the time domain, the filtering operation is
done by convolution. The computing cost of a convolution is K * N, where K is the number
of taps of the filter and N is the number of samples. If the FIR filter is implemented in the
frequency domain, the computing cost will be reduced to N because the filtering operation in
the frequency domain is Y(f) = H(f) * X(f). Here, Y is the output in frequency domain, H is
the system transfer function in frequency domain, and X is the input signal in the frequency
domain. The total cost of frequency-domain signal processing includes the computing cost in
the frequency domain, and the cost of the transform and inverse transform. In general we can
summarize that the condition to select frequency-domain algorithms is:

TD_. > FFT__ + FD__ + IFFT (7.6)

cost cost cost cost

TD,. 1s the execution time cost in the time domain, the FD_ is the execution time cost in
the frequency domain, and the FFT . and IFFT, are the execution time cost of FFT and
inverse FFT.

The computational complexity of a direct Fourier transform (DFT) involves at least N*
complex multiplications or at least 2 N(N —1) arithmetic operations, without including

extra addressing and memory accesses. The computing cost can be reduced if the FFT is
introduced. FFT is not a new transform from the theoretical perspective; instead it is an
efficient way of computing the DFT (discrete Fourier transform). If the DFT is decomposed
into multiple 2-point DFTs, it is called a radix-2 algorithm. If the smallest DFT in the
decomposition is a 4-point DFT, then it is called a radix-4 algorithm. Detailed discussions on
FFT and DFT can be found in [2].

There are two main radix-2 based approaches, decimation in time (DIT) and decimation in
frequency (DIF). The complexities of both algorithms are the same considering the number
of basic operations, the so-called butterfly operations. The butterfly operations are slightly
different between the DIT and DIF implementations. Both butterfly schematics (DIT and
DIF) are illustrated in Figure 7.7.

X and Y in Figure 7.7 are two complex data inputs of the butterfly algorithm. W is the
coefficient of the butterfly algorithm in complex data format. Computing a DIT or DIF
butterfly consists of 10 operations including a complex data multiplication (equivalent to six
integer operations), two complex data additions (equivalent to four integer operations), and
five memory accesses of complex data (two data load, one coefficient load, and two data
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Figure 7.7: DIT butterfly and DIF butterfly of Radix-2 FFT
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Figure 7.8: Signal flow of an 8-point Radix-2 DIF FFT

store, equivalent to 10 integer data accesses). For the DIT algorithm, the input data should be
in bit-reversed order. Bit-reversal addressing is given in Figure 7.8 for an 8-point FFT. The
bit-reversal computing cost is at least V.

An 8-point FFT signal flow is given as an example in Figure 7.8.

It can be seen in Figure 7.8 that the computation consists of log, N computing layers.

Each layer consists of N/2 butterfly subroutines. The total computing cost is at least

N + 0.5N X (the cost of a butterfly) X log, N. Therefore, the computing cost of a 256-point
FFT is at least 0.5 X 256 X 10 X log, 256 = 10240 arithmetic operations and 10240 basic
memory accesses (not including bit-reversal addressing, illustrated in Table 7.1).



292  Chapter 7

Table 7.1: Bit-reversal addressing

Sequential Order Bit-reversed Order
Sample order Binary Binary Sample order
X[0] 000 000 X[0]
X[1] 001 100 X [4]
X[2] 010 010 X[2]
X[3] 011 110 X[6]
X [4] 100 001 X[1]
X[5] 101 101 X[5]
X[6] 110 011 X[3]
X[7] 111 111 X[7]

7.1.5 Adaptive Filter and Signal Enhancement

In order to adapt to the dynamic environment, such as dynamic noise, dynamic echo, or
dynamic radio channel of a mobile radio transceiver, some filter behaviors should be updated
according to the change of the environment.

An adaptive filter is a kind of filter where the coefficients can be updated by an adaptive
algorithm in order to improve or optimize the filter’s response to a desired performance
criterion. An adaptive filter consists of two basic parts: the filter, which applies the required
processing to the incoming signal, and the adaptive algorithm, which adjusts the coefficients
of the filter to improve its performance.

The structure of an adaptive filter is depicted in Figure 7.9. The input signal, x(n), is filtered
(or weighted) in a digital filter, which provides the output y(rn). The adaptive algorithm will
continuously adjust the coefficients c(n) in the filter in order to minimize the error e(7n). The
error is the difference between the filtered output y(n), and the desired response of the filter d(n).

A room acoustic echo canceller, shown in Figure 7.10, is a typical application of an adaptive
filter. The purpose of the filter is to cancel the echo sampled by the microphone.

In this acoustic echo canceller, the new coefficient is calculated by the following adaptive
algorithm:

c(n),., = Kx(n) — c(n),, (7.7)

Here K = f (e(n)) is the convergence factor. The filter is usually a FIR filter operating in the
time domain using convolution. A convolution of a data sample consists of N multiplications,
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Figure 7.9: General form of an adaptive filter
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Figure 7.10: A room acoustic echo canceller

N accumulations, and 2 N memory read operations. Similar to convolution, coefficient
adaptation during one data sample consists of N multiplication and N accumulator operations.
There is no extra memory load because the access of the old coefficient and the data were
counted for by the computing of the filter. However, the new coefficient should be updated
and written back to the coefficient memory. Thus there will be N memory write operations.
To conclude, the processing cost of an adaptive filter during one data sampling period

could be up to 4N computations and 3N memory accesses if the coefficients are updated
continuously. The computing cost and the memory accesses are at least twice that of

a fixed FIR filter.

7.1.6 Random Process and Autocorrelation

Statistics and probability theories are used in DSP to characterize signals and processes.
One purpose of DSP is to reduce different types of interference such as noise and other
undesirable components in the acquired data. Signals are always impaired by noise during
data acquisition, or noise is induced as an unavoidable byproduct of finite-length DSP
operations (quantization). The theories of statistics and probability allow these disruptive
features to be measured and classified.

Mean and standard deviation are basic measurements for statistics. The mean, p, is the
average value of a signal. The mean is simply calculated by dividing the sum of N samples
by N, the number of samples. The standard variance is achieved by squaring each of the
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deviations before taking the average, and the standard deviation o is the square root of the
standard variation.

SN N - PRRES
v DDy (7.8)

The mean indicates the statistics behavior of a signal and is an estimation of the expected
signal value. The standard deviation gives a creditable measurement of the estimation. The
computing cost of mean is 2 N+1 (N additions, N memory accesses, and the final step of
1/N). Similarly, the computing cost of standard deviation is 4 N+2 (three arithmetic and one
memory access operations in each tap).

Two other algorithms, autocorrelation and cross-correlation, are useful for signal
detection. Autocorrelation is used for finding regularities or periodical features of a signal.
Autocorrelation is defined as:

atk) = Nz_:lx(i)x(i — k) (7.9)

i=0

The computing cost of autocorrelation is similar to the cost of FIR. The main difference is
that autocorrelation uses two variables from the same data array.

Cross-correlation is used for measuring the similarity of a signal with a known signal pattern.
Cross-correlation is defined as:

y(k) = z_:c(i)x(i — k) (7.10)

i=0

The computing cost is exactly the same as the cost of a FIR.

7.2 Theory, Applications, and Implementations

The scope of DSP is huge, and DSP as an abbreviation has been used by different people
with different meanings. In this book, DSP is divided into three categories: DSP theory, DSP
applications, and DSP implementations.

DSP theory is the mathematical description of signals and systems using discrete-time or
discrete-frequency methods. Most DSP books have DSP theory as the main subject, and this
area is today a mature science. On the other hand, applications and implementations based on
DSP theory have become major challenges in today’s DSP academia and industry. The three
DSP categories are summarized in Figure 7.11.
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Figure 7.11: DSP categories for ICT (Information Communication Technology)

The theory of digital signal processing (DSP) is the mathematical study of signals in a digital
representation and the processing methods of these signals. By using DSP theory, a system
behavior is modeled and represented mathematically in a discrete-time domain or discrete-
frequency domain. The scope of DSP theory is huge, and the main activities (related to this
chapter) are selectively listed in Figure 7.11.

DSP has turned out to be one of the most important technologies in the development of
communications systems and other electronics. After Marconi and Armstrong’s invention

of basic radio communication and transceivers, users were soon dissatisfied with the poor
communication quality. The noise was high and the bandwidth utility was inefficient.
Parameters changed due to variations in temperature, and the signals could not be reproduced
exactly. In order to improve the quality, analog radio communication had to give way to
digital radio communication.

DSP applications in this chapter are processes through which systems with specific purposes
can be modeled using the knowledge of DSP theory. DSP applications based on established
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DSP theory can be found everywhere in daily life. For example, coding for communications
is a kind of DSP application. Coding for communications can be further divided into reliable
coding (for error detection and error correction) and efficient coding (compression). Other
DSP applications will be discussed.

DSP applications can be divided into two categories: applications following standards and
those not following standards. When a system must communicate with other systems, or
access data from certain storage media, standards are needed. Standards regulate the data
format and the transmission protocol between the transmitter and the receiver or between
the data source and the data consumer. There are several committees and organizations
working with standards, such as IEEE (Institute of Electronics and Electrical Engineering),
ISO (International Standard Organization), ITU (International Telecom Union), and ETSI
(European Telecommunications Standard Institute) [5]. A standard gives requirements,
regulations, and descriptions of functions, performance, and constraints.

Standards do not describe or define implementation details. For example, a physical

layer standard of WLAN (Wireless Local Area Network) specifies the format and quality
requirement of a radio channel and regulations for radio signal coding and transmission.
However, this standard does not regulate the implementation. A semiconductor manufacturer
can implement the radio and the baseband part in an integrated or a distributed way, and into
a programmable or a dedicated nonprogrammable device. Efficient implementations make
successful stories, and all companies have fair chances to compete in the market.

DSP implementation is about realizing DSP algorithms in a programmable device or into an
ASIC. DSP implementation can be divided into concept development, system development,
software development, hardware development, product development, and fabrication. In this
book, focus will be on development and implementation of hardware systems.

7.3 DSP Applications

In this section, DSP applications are introduced briefly through examples. The motivation

is to provide examples of real-time systems where digital signal processing is intensively

used, because real-time applications form the implicit scope throughout this book. For entry-
level readers and students, it might be a bit hard to fully understand every application case
presented here. However, this will not prevent you from understanding other parts of the book.
From an engineering point of view, the examples selected in this section are simpler than those
real-world designs in industrial products. Simplification is necessary because understanding a
real-world design might take a very long time and may even be confusing sometimes.
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As ASIP designers, you should know more about the methods to analyze the cost of
applications instead of a deep understanding of the theory behind them. You should
understand where the cost is from, and how to analyze and estimate it. To obtain more details,
visit the related company websites [6].

7.3.1 Real-Time Concepts

There are two types of systems: real-time and non-real-time [7,8]. A real-time system is
the simplification of a real-time computing system. The system processes data in a time-
predictable fashion so that the results are available in time to influence the process being
monitored, played, or controlled. The definition of a real-time system is not absolutely
unambiguous; however, it is generally accepted that a real-time DSP subsystem is a system
that processes periodical signals. A real-time system in this chapter, therefore, creates the
output signal samples at the same rate at which the input signals arrive. It means that the
processing capacity must be enough for processing one sample within the time interval

of two consecutively arriving samples. For example, digital signal processing for voice
communication in a mobile phone must be real-time. If the decoding of a voice data packet
cannot be finished before the arrival of the next data packet, the computing resource has to
abort the current computation and information will be lost. To formalize, a real-time system
processes tasks within a time interval and finishes the processing before a certain deadline.

Non-real-time digital signal processing has no strict requirements on the execution time.
For instance, image encoding in a digital camera does not necessarily have to be real-time
because the slow execution will not introduce any system error (though it may annoy the
camera user).

7.3.2 Communication Systems

A communication system is usually a real-time system, which transmits a message stream
from the source to the destination through a noisy channel. The message source is called a
transmitter, and the destination is called a receiver. A simplified communication system is
given in Figure 7.12 [9].

Message Transmitted Received Estimated
signal ) signal signal ) message signal
—»| Transmitter » Channel » Receiver >

Figure 7.12: A communication system
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The transmitter and the receiver are usually at different physical locations. The channel is the
physical medium between them, which can be either the air interface of a radio system (e.g., a
mobile phone and a radio base station) or a telephone wire.

The received signal that has propagated through the channel is interfered with by the
external environment and distorted internally by the receiver itself due to the physical
characteristics of the channel. Thus, the signal received is actually different from the
signal sent by the transmitter. For example, a receiver may get continuous interference
from other neighboring radio systems and interference such as burst glitches from
surrounding equipment. The receiver may receive both the wave in the direct path with
normal delay and waves from paths experiencing multiple reflections with longer delays.
The signal attenuation may change quickly according to the change of the relative position
between the transmitter and the receiver.

The function of the receiver in Figure 7.13 is to recover the transmitted data by estimating
the received signal and dynamically modeling the channel behavior. The function of the
transmitter is not only to send data, but also to code it in order to enable and facilitate the
estimation of the channel impulse response at the receiver side. This enables the receiver

to compare the received signal with a known training data and to find the difference
between the expected signal and the signal actually received, in order to finally calculate the
approximation of the channel impulse response. As soon as the channel is correctly modeled,
data can be received and recovered by symbol detection with sufficient accuracy. All these
heavy computations in the transmitter and the receiver are called radio baseband signal
processing, and include coding, channel model estimation, signal reception, error detection,
and error correction. All radio baseband signal processing is a class of DSP applications
based on well-known DSP theory.

The computing cost of baseband signal processing varies significantly according to the
channel condition and the coding algorithms. An advanced radio receiver requires several

A streaming period

... Normal signal Training signal ... Normal signal ... Training ...
A 4 A 4
Known | Synchronization and Channel . Received
) ; Receiver
data channel estimator behavior data

Figure 7.13: Streaming signal between a transceiver pair
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hundred to several thousand operations (including memory accesses) for recovering one data
bit received from a radio channel. Thus, receiving one megabit per second might require
several giga-operations per second. The principle of typical radio baseband signal processing
is illustrated in Figure 7.13. The receiver gets a training signal packet first, which is the
known signal used for detecting the current channel model as the transfer function H(f) =
Y(H)/X(f) by comparing the known training signal stored in the receiver (X) to the received
signal (Y). Note that this computation must be conducted in a very short time in order to
process the normal signal (payload) in time [10]. The estimated channel model H is used for
recovering the normal signal during data reception.

7.3.3 Multimedia Signal Processing Systems

Multimedia signal processing is an important class of DSP applications. Here, the concept
of multimedia covers various information formats such as voice, audio, image, and video.
Data can be stored in different ways—for example, on CD, hard disk, or memory card, and
transmitted via fixed-line or radio channel. Both transmission bandwidth and storage volume
will directly affect the end cost. Therefore, data must be compressed for transmission and
storage. The compressed data needs to be decompressed before being presented [11].

There are two efficient coding techniques for compression and decompression of data: lossy
compression and lossless compression. Lossy compression can be used for voice-, audio-,
and image-based applications because the imperfect human hearing and visual capability
allows certain types of information to be removed. Lossless compression is required when all
information in the data has to be fully recovered.

7.3.3.1 Lossless Compression

Lossless compression is a method of reducing the size of a data file without losing any
information, which means that less storage space or transmission bandwidth is needed after
the data compression. However, the file after compression and decompression must exactly
match the original information. The principle of lossless compression is to find and remove
any redundant information in the data. For example, when encoding the characters in a
computer system, the length of the code assigned to each character is the same. However,
some characters may appear more often than the others, thus making it more efficient to use
shorter codes for representing these characters.

A common lossless compression scheme is Huffman coding, which has the following
properties:

o Codes for more probable symbols are shorter than those for less probable symbols.

o Each code can be uniquely decoded.
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A Huffman tree is used in Huffman coding. This tree is built based on statistical
measurements of the data to be encoded. As an example, the frequencies of the different
symbols in the sequence ABAACDAAAB are calculated and listed in Table 7.2.

The Huffman tree is illustrated in Figure 7.14.

In this case, there are four different symbols (A, B, C, and D), and at least two bits per symbol
are needed. Thus 10 X 2 = 20 bits are required for encoding the string ABAACDAAAB.

If the Huffman codes in Table 7.4 are used, only 6 X 1 + 2 X 2 + 3 + 3 = 16 bits are
needed. Thus four bits are saved. Once the Huffman codes have been decided, the code of
each symbol can be found from a simple lookup table.

Decoding can be illustrated by the same example. Assume that the bit stream 01000110111
was generated from the Huffman codes in Table 7.2. This binary code will be translated in
the following way: 0 — A, 10 - B,0 — A,0 — A, 110 — C, and 111 — D. Obviously the
Huffman tree must be known to the decoder.

Without special hardware acceleration, the performance of Huffman coding and decoding is
usually much lower than one bit per instruction. With special hardware acceleration, two bits
per instruction can be achieved. In reference [12], the throughput of Huffman encoding was
enhanced from 0.083 bit per clock cycle to more than 2 bits per clock cycle by using a special
hardware architecture. Huffman coding and decoding are typical applications for a FSM
(finite state machine).

Table 7.2: Symbol frequencies and Huffman codes?

Symbol Frequency Normal code Huffman code
A 6 00 0
B 2 01 10
C 1 10 110
D 1 11 111

root

Figure 7.14: Huffman tree

2Power point files are available at the web page of the book.
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7.3.3.2 Voice Compression

In order to reach a high compression ratio, lossy compression can be used. In this case, data
cannot be completely recovered. However, if the lost information is not important to the user
or is negligible for other reasons, lossy compression can be very useful for some applications
[13]. For example, modern voice compression techniques can compress 104 kbits/s voice data
(8 kHz sampling rate with 13 bits resolution) into a new stream with a data rate of 1.2 kbits/s
with reasonable (limited) distortion using an eMELP voice codec. The compression ratio here
is 86:1 [14].

Voice (speech) compression has been thoroughly investigated, and advanced voice
compression today is based on voice synthesis techniques. A simplified example of a voice
encoder can be found in Figure 7.15.

The voice encoder depicted in Figure 7.15 [13] synthesizes both the vocal model and the
voice features within a period of time. A typical period is between 5 and 20 milliseconds. The
vocal mode is modeled using a 10-tap IIR filter emulating the shape of the mouth. The voice
features are described by four parameters: gain (volume of the voice), pitch (fundamental
frequency of the voice providing the vocal feature), attenuation (describes the change in voice
volume), and noise pattern (describes the consonants of the voice).

Instead of transferring or storing the original voice, the vocal model and voice patterns will
be transferred or stored. Taking the voice codec in Figure 7.15 as an example, the data size of
the original voice during 20 milliseconds is 104 kb X 0.02 = 2.08 kb. After compression, the
vocal and voice patterns can be coded using 10 X 8 + 4 X 8 = 112 bits. This corresponds

to a compression ratio of 18:1. For implementing the encoder and the decoder, many DSP
algorithms will be used such as autocorrelation, Fast Fourier transform, adaptive filtering,
quantization, and waveform generation. The computing cost of a complete voice encoder is

The vocal model synthesis: e.g. to model a vocal
channel using a 10-tap IIR filter

The gain of the voice

Analog
to digital . .
[O—» converter The pitch of the voice
(ADC)
The attenuation of the voice

The noise of the voice

v v v v
33333
Synthesized voice pattern

Figure 7.15: A voice encoder based on voice synthesis technique
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around 10 to 50 million operations per second for compressing 104 kbits per second using the
voice synthesis technique. This is equivalent to about 100 to 500 operations per voice sample.

A voice codec (coder and decoder) is a real-time system, which means that the complete
coding and decoding must be finished before the next data arrives (in other words, the data
processing speed must be faster than the data rate).

7.3.3.3 Image and Video Compression

Generally, compression techniques for image and video [15] are based on two-dimensional
signal processing. Both lossy and lossless compression techniques are used for these
applications. Image and video compression techniques are illustrated in Figure 7.16.

The complete algorithm flow in Figure 7.16 is a simplified video compression flow, and

the shaded subset is a simplified image compression flow. The first step in image and video
compression is color transformation. The three original color planes R, G, B (R = red,

G = green, B = blue) are translated to the Y, U, V color planes (Y = luminance, U and

V = chrominance). Because the human sensitivity to chrominance (color) is lower than the
sensitivity to luminance (brightness), the U and V planes can be down-sampled to a quarter of
their original size. Therefore, a frame with a size factor of 3 (3 color planes) is down-sampled
to a frame with the size factor of 1 + 1/4 + 1/4 = 1.5. The compression ratio here is 2.

Frequency-domain compression is executed after the RGB to YUV transformation. The DCT
is used for transferring the image from the time domain to the frequency domain. Because
the human sensitivity to spatially high-frequency details is low, the information located in the
higher frequency parts can be reduced by quantization (the information is represented with
lower resolution).
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Figure 7.16: Image and video compression
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After the frequency-domain compression, a lossless compression such as Huffman coding
will finally be carried out.

The classical JPEG (Joint Picture Expert Group) compression for still images can reach
20:1 compression on average. Including the memory access cost, JPEG encoding consumes
roughly 200 operations and decoding roughly 150 operations, for one RGB pixel (including
three color components). The processing of Huffman coding and decoding can vary a lot
between different images, so the JPEG computing cost of a complete image cannot be
accurately estimated.

Video compression is an extension of image compression. Video compression is utilizing
two types of redundancies: spatial and temporal. Compression of the first video frame, the
reference frame, is similar to compression of a still image frame. The reference frame is used
for compressing later frames, the inter-frames.

If the difference between a reference frame and a neighbor frame is calculated, the result
(motion vectors) can be used for representing this frame. The size of this data is usually very
small compared to the size of the original frame. Often there is little difference between

the corresponding pixels in consecutive frames except for the movement of some objects.
The data transferred will consist of a reference frame and a number of consecutive frames
represented by motion vectors. The video stream can therefore be significantly compressed.

The classical MPEG2 (Moving Picture Expert Group) video compression standard can
reach a 50:1 compression ratio on average. The advanced video codec H.264/AVC standard
can increase this ratio to more than 100:1. The computing cost of a video encoder is very
dependent on the complexity of the video stream and the motion estimation algorithm used.
Including the cost of memory accesses, an H.264 encoder may consume as much as 4000
operations and its decoder about 500 operations for a pixel on average. As an example, for
encoding a video stream with QCIF size (176 X 144) and 30 frames per second, the encoder
requires about 3 X 10° operations per second. The corresponding decoder requires about

4 X 108 operations per second.

7.3.4 Review on Applications

You may have realized that the application examples discussed in this section are applicable
to a high-end mobile phone with a video camera. The total digital signal processing cost,
including 3G (third-generation) baseband, voice codec, digital camera, and video camera, is
actually much more than the capacity of a Pentium running at 2 GHz!

How can a DSP subsystem in a mobile phone supply so much computing capacity while
keeping the power consumption low? The answer is the use of application-specific



304 Chapter 7

processors! Both the radio baseband and media (voice, audio, and video) processors are
application-specific instruction set processors (ASIP) or ASIC modules. They are designed
for a class of applications and optimized for low power and low silicon cost.

For designing an ASIP, the computing cost of the target applications is an essential design
input. In this section, the cost is measured as the unit cost, the cost per sample (a voice
sample, a pixel in a picture, or a bit of recovered data from radio channel). We strongly
recommend that you use this way of counting the computing cost.

7.4 DSP Implementations

A DSP application can be implemented in a variety of ways. One way is to implement the
application algorithms using a general-purpose computer, like a personal computer or a
workstation. There are two reasons for implementing a DSP application on a general-purpose
computer:

1. To quickly supply the application to the final user within the shortest possible time.

2. To use this implementation as a reference model for the design of an embedded system.

The discussion of the DSP implementation using a general computer in this section follows
the first reason. Many DSP applications are implemented using a general-purpose DSP
(off-the-shelf processor). Here, general-purpose DSP stands for a DSP available from a
semiconductor supplier and not targeted for a specific class of DSP applications. For example,
the TMS320C55X processor from Texas Instruments [6] is available on the market and can be
used for many DSP applications requiring a computing performance of less than 500 million
arithmetic operations per second.

DSP applications can also be implemented using an ASIP DSP. An ASIP is designed for a
class of applications such as radio baseband processing in a multimode mobile phone, audio
processing in an MP3 player, or image processing in a digital camera.

Another alternative for implementing DSP applications is the nonprogrammable ASIC
(Application Specific Integrated Circuit). Many DSP applications were implemented

this way in the 1980s due to limitations in silicon area and performance. Recently the
nonprogrammable DSP ASIC has been taken over gradually by the DSP ASIP in accordance
with increasing requirements on flexibility.

An FPGA (Field-Programmable Gate Array) is also an alternative as an intermediate or the
final implementation of DSP applications.
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7.4.1 DSP Implementation on GPP

Many DSP applications, with or without real-time requirements, can be implemented on

a general-purpose processor (GPP). Recently, applications for media entertainment have
become popular in personal computers, for example, audio and video players. A video player
is a video decoder that is decompressing data according to international standards (e.g., ISO/
IEC MPEG-4) or proprietary standards (e.g., Windows Media Video from Microsoft).

The video player must be able to decode the video stream in real-time using the operating
system (OS). However, most operating systems for desktops are not originally designed for
real-time applications. When designing a high quality media player using such an OS, attention
must be paid to the real-time features by correctly setting the priorities of the running tasks.

Another type of DSP application, without real-time requirements, is high performance
computing. Typical examples are analysis of the stock market, weather forecast, or
earthquakes. This type of analysis often is implemented in software running on a personal or
supercomputer. The execution time of such a software program is not strictly regulated and
this software therefore is defined as general software instead of real-time DSP software.

7.4.2 DSP Implementation on GP DSP Processors

A general-purpose DSP can be bought off-the-shelf from a number of different DSP suppliers
(e.g., Texas Instruments, Analog Devices, or Freescale) [6]. A general-purpose DSP has

a general assembly instruction set that provides good flexibility for many applications.
However, high flexibility usually means fewer application-specific features or less acceleration
of both arithmetic and control operations. Therefore, a general-purpose DSP is not suitable
for applications with very high performance requirements. High flexibility also means that

the chip area will be large. A general-purpose DSP processor can be used for initializing a
product because the system design time will be short. When the volume has gone up, a DSP
ASIP could replace the general-purpose processor in order to reduce the component cost.

No general-purpose DSP is 100% general. Most general-purpose DSP processors are
actually designed with different target applications in mind. General-purpose DSP processors
can be divided into processors targeted for either low power or high performance. For
example, TMS320C2X of Texas Instruments is designed for low-cost applications, whereas
TMS320C55 of Texas Instruments is designed for applications with medium performance
and medium power. TMS320C6X of Texas Instruments is designed for applications requiring
high performance. General-purpose DSP processors can also be divided into floating-point
processors and fixed-point processors.
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“General-purpose” implies only that the DSP is designed neither for a specific task nor for a
class of specific tasks. It is available on the device market for all possible applications. The
instruction set and the architecture must be general, meaning that the instruction set covers all
basic arithmetic functions and sufficient control functions. The instruction set is not designed
for accelerating a specific group of algorithms. At the same time, peripherals and interfaces
must be comprehensive in order to be able to connect to various microcontrollers, memories,
and peripheral devices.

Since the processor is off-the-shelf, the main development of a DSP product will be software
design. The hardware development is limited to peripheral design, which means connecting
the DSP to the surrounding components, including the MCU (microcontroller), main memory,
and other input—output components. The best way of designing peripherals for an available
DSP is to find a reference design from the DSP supplier such as a debug board [6].

7.4.3 DSP Implementation on ASIP

A DSP ASIP has an instruction set optimized for a single application or a class of
applications. On the one hand, a DSP ASIP is a programmable machine with a certain level
of flexibility, which allows it to run different software programs. On the other hand, its
instruction set is designed based on specific application requirements, making the processor
very suitable for these applications. Low power consumption, high performance, and low
cost by manufacturing in high volume can be achieved. In case the processor is used for
applications for which it was not intended, poor performance can be expected. For example,
using a video or image DSP for radio baseband applications will result in catastrophically
poor performance. DSP ASIPs are suitable in volume products such as mobile phones, digital
cameras, video camcorders, and audio players (MP3 player).

An ASIP DSP has a dedicated instruction set and dedicated data types. These two features
will be discussed and implemented throughout this book. You will find later in this book

that one instruction of an ASIP DSP could be equivalent to a kernel subroutine or part of

a kernel subroutine running on a general-purpose DSP. For supporting algorithm-level
acceleration, special functions will be implemented using specific hardware. This yields
better performance, lower power consumption, and higher performance/silicon ratio
compared to a general-purpose DSP. At the same time, the range of application is limited due
to simplification of the instruction set.

An ASIP can be an in-house product or a commercial off-the-shelf (COTS) component available
on the market. In-house means a dedicated design for a specific product within a company.
COTS means that the processor is designed as an ASSP (application-specific standard product).
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7.4.4 DSP Implementation on ASIC

There are two cases when an ASIC is needed for digital signal processing. The first is to
meet extreme performance requirements. In this case, a programmable device would not be
able to handle the processing load. The second case is to meet ultra-low power or ultra-low
silicon area, when the algorithm is stable and simple. In this case, there is no requirement on
flexibility, and a programmable solution is not needed.

A typical ASIC application example is decimation for synthetic aperture radar baseband
processing. The requirement for this application is up to 1011 MAC (multiplication and
accumulation) operations per second with relative low power consumption. Nonprogrammable
devices can give such performance (as of 2006). Another typical application is a hearing aid
device that includes a band-pass filter bank (synthesizer) and an echo canceller. About 40 MIPS
(million instructions per second), high data dynamic range, and the power consumption below

1 mW are required. A programmable device will not likely meet these requirements (as of 2006).

ASIC implementation is to map algorithms directly to an integrated circuit [16]. Comparing
a programmable device supplying the flexibility at every clock cycle, an ASIC has very
limited flexibility. It can be configurable to some extent in order to accommodate very similar
algorithms, but typically it cannot be updated in every clock cycle.

When designing an ASIP DSP, functions are mapped to subroutines consisting of assembly
instructions. When designing an ASIC, the algorithms are directly mapped to circuits.
However, most DSP applications are so complicated that mapping functions to circuits is
becoming increasingly difficult. On the other hand, mapping DSP functions to an instruction
set is becoming more popular because the challenge of complexity is handled in both
software and hardware, and conquered separately.

Example 7.1 exposes the way to map functions directly to a circuit.
Finally the circuit is shown in Figure 7.17.

In order to avoid accumulation-induced overflow in this example, the data width should be
increased after each accumulation. Because the result y(n) shall have the same data type as
the input x(n), a rounding operation is necessary before truncating the lower 16 bits. Overflow
might happen, so saturation is necessary before using the result.

We can see in Example 7.1 that mapping an FIR to hardware is simple. However, when
algorithms or applications are complicated, especially when the algorithm details cannot
be decided during the system design, this method cannot be used. In this case mapping
applications to an instruction set is the only solution.
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Example 7.1

Mapping a 5-tap FIR filter to a hardware circuit: The algorithm of the 5-tap FIR filter is
y(n) = Xx(n — k)*h(k). Here, k is the number of iterations from k = 0 to k = 4.

The algorithm can be mapped to hardware after unrolling the iteration. The
pseudocode of a 5-tap FIR becomes:

//5-tap FIR behavior
{
Al = x(n)*h0 + x(n-1)*hl;
A2 = Al + x(n-2)*h2;
A3 = A2 + x(n-3)*h3;
Y(n) = A3 + x(n-4)*h4;

The pseudo HDL code of a 5-tap FIR becomes:

//5-tap FIR HDL

{
A0[32:0] >= x(n)[15:0]1*h0[15:0]
Al1[32:0] = A0[32:0] + x(n-1)[15:0]1*h1[15:0];
A2[33:0] >= A1[32:0] + x(n-2)[15:0]1*h2[15:0];
A3[34:0] >= A2[33:0] + x(n-3)[15:0]1*h3[15:0];
A4[35:0] >= A3[34:0] + x(n-2)[15:0]1*h4[15:0];
Y(n)[15:0] >= saturation (round (A4[35:0]));

}

clk = ‘1’ and clk’event

{
X(n-4)>= x(n-3); x(n-3)>= x(n-2); X(n-2)>= x(n-1);
x(n-1)>= x(n);

}

7.4.5 Trade-off and Decision of Implementations

In Figure 7.18, the power consumption (based on a 90 nm digital silicon process) is

shown as a function of the MOPS (million operations per second) figure for different

DSP implementations. The power consumption of the memory is very dependent on the
application-specific hardware configuration, so the memory cost is not included in this figure.
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Figure 7.18: Comparing three types of DSP implementations

The general DSP processor typically is used for applications with not more than a thousand
MOPS. The DSP ASIC can support applications with very low power consumption (less

than 0.01 mW/MHz) and high performance but without requirements on flexibility. The DSP
ASIP, however, is used mostly when a trade-off between silicon/power cost, performance, and
development effort is required.

7.5 Review of Processors and Systems

Most DSP applications are implemented using either general-purpose or ASIP DSP
processors. A digital signal processor is a programmable integrated circuit for data
manipulation. A DSP processor is designed for performing arithmetic functions like add,
subtract, multiply, and shift as well as logic functions.
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7.5.1 DSP Processor Architecture

Learning processor design is an iterative process. In this chapter, you will get a bird’s-eye
view of the methodology of DSP processor design and the processor architecture.

7.5.1.1 What Is Inside a DSP?

Similar to other types of processors, a DSP contains five key components:

e Program memory (PM): PM is used for storing programs (in binary machine code).
PM is part of the control path.

o Programmable FSM: It is a programmable finite state machine consisting of a program
counter (PC) and an instruction decoder (ID). It supplies addresses to the program
memory for fetching instructions. Meanwhile, it also performs instruction decoding
and supplies control signals to the data processing unit and data addressing unit.

o Data memory and data memory addressing: DM stores information to be processed.
Three types of data are stored in DM: input/output data, intermediate data in a
computing buffer (a part of the data memory), and parameters or coefficients. The
data memory addressing unit is controlled by programmable FSM and supplies
addresses to data memories.

« Data processing unit (DU): The data processing unit, or datapath, performs arithmetic
and logic computing. A DU includes at least a register file (RF), a multiplication and
accumulation unit (MAC), and an arithmetic logic unit (ALU). A data processing unit
may also include some special or accelerated functions.

o Input/output unit (I/O): I/O serves as an interface for functional units connected to
the outside world. I/O also handles the synchronization of external signals. Memory
buses and peripherals are also included.

A simplified block diagram is given in Figure 7.19.
7.5.2 DSP Firmware

Before introducing firmware in detail, you should simply accept that firmware is fixed
software running in an electronic product. Only real-time firmware will be discussed in this
book. Real-time DSP firmware usually consists of an infinite loop that processes real-time
signals continuously and periodically. Figure 7.20 depicts a typical top-level infinite loop in a
real-time system. One data unit (one data packet or one data sample) is processed in the figure
through one complete execution of the infinite loop.
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Figure 7.20: An infinite loop in a DSP processor

The executable binary code is developed in four steps:

1.

2.

Design the hardware dependent source code. The behavior source code must be
modified or rewritten in order to adapt it to the hardware. Hardware adaptation includes
modifying hardware constraints and utilizing hardware features.

Design the behavior source code. The behavior source code is the original description
that models an application or an algorithm.
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3. Design the assembly code. The hardware-dependent source code is translated to
assembly code, or the assembly code is written using the hardware-dependent source
code as a reference.

4. Generate and debug the binary machine code. Finally, the assembly code is assembled
and linked to executable binary machine code. The binary machine code is verified by
executing it on an assembly instruction set simulator.

Most DSP applications do not require ultra-high data precision. Therefore, fixed-point
processors can be used in order to reduce the silicon cost. For a fixed-point DSP the silicon
cost can be less than half compared to a standard floating-point DSP. As fixed-point DSP
processors are dominant on the DSP market, the discussions in this book will be focused on
this type of processor.

Quantization (noise) error and offset of frequency response are unwanted behaviors when
using a fixed-point processor. These errors are due to the finite data length, and handling
them will increase firmware complexity. The firmware must maintain the quality of input
and intermediate data in the computing buffers. Data quality here stands for a measure of the
quantization error (which should be minimized) and the dynamic range (which should be
maximized). The final firmware for a fixed-point DSP will contain both functional firmware
and firmware for data quality control. The firmware for data quality control includes data
quality measurement and scaling (to be discussed with Figure 7.22). Data quality can be
optimized by data scaling. Normally, the execution of the data quality control firmware does
not occur very often, and it is only needed when the amplitude of the input data is changed or
the algorithm in the firmware is changed.

The program flow is shown in Figure 7.21 and further illustrated in Figure 7.22. The complete
firmware running on a fixed-point processor can be divided into three flows. The main flow is
shown with gray background, the measurement flow is shown with a background of vertical
filling lines, and the scaling flow is shown with a background of horizontal filling lines.

In Figure 7.21 and Figure 7.22, the main flow is executed once for each input streaming data.
The data quality control flows are not executed very often. In most cases, the quality control
part is skipped (via the default path in Figure 7.21) until it is needed. The measurement

flow monitors inputs and intermediate results. In the measurement flow, parameters such

as signal-to-noise ratio, signal level on average, and maximum/minimum values will be
measured. Other parameters may also be observed, for example, event counting of overflow
and saturation. Counters are used for collecting statistics of certain events. The results from
measurements will be used in the scaling flow. Finally, scaling factors for input, output, and
internal data are modified.
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7.5.3 Embedded System Overview

An embedded system is a system that is inside a product system or a product [18]. An
embedded system is a special-purpose computer system designed to perform one or a class
of dedicated functions. In contrast, a general-purpose computer, such as a personal computer,
can do many different tasks, depending on programming. The product user may not even be
aware of the existence of the embedded system, although it may play an important role in the
function of the product. An embedded system could be a component of a personal computer
such as a keyboard controller, mouse controller, or a wireless modem. An embedded system
could also be a digital subsystem inside a mobile phone, a digital camera, a digital TV, or

in medical equipment. Except for general computers, most microelectronic systems are
embedded systems.

A general computer system is not designed for any specific purpose. A desktop computer can
be a general-purpose computing engine, a home electronics system, a documentation editing
system, a media terminal, or a network terminal. An embedded system is an application-
specific system, different from a general computer system. Within the specific application
domain, the embedded system may have much higher performance or much lower power
consumption compared to a general computer system. An embedded system, such as a radar
signal processing system or a computer tomography (CT) processing system, can have
teraflops performance (~1000 times more than the performance of a Pentium). Ultra low power
consumption in the range 30 to 50 MIPS/mW is possible for hearing aid embedded systems.

However, it will be impossible to use an embedded processor for applications outside the
specific domain. For example, a processor designed for controlling a washing machine can
never be used as a DSP for video applications. On the other hand, a desktop computer can
handle both these tasks. But flexibility has a price tag. A processor for a washing machine can
cost less than one dollar, and a Pentium 4 in a desktop costs much more than $100 (in 2005).

To summarize: embedded systems are application-specific. Product cost, design cost,
performance, power consumption, and lifetime are all application-specific. In general,
embedded system design covers almost all activities in the area of electrical engineering.
Thus, the number of different types of embedded systems is very big. In this book, we discuss
only DSP subsystems inside embedded systems.

7.5.4 DSP in an Embedded System

DSP processors are essential components in many embedded systems. One or several DSP
processors consist of a DSP subsystem in an embedded system. A general embedded system,
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Figure 7.23: DSP processor in an embedded system

including a DSP subsystem, is shown in Figure 7.23. Such a system is also called a system on
a chip (SoC) platform for embedded applications.

The system in Figure 7.23 can be divided into four parts. The first part is the microcontroller
(MCU), which is the master of the chip or the system. The MCU is responsible for handling
miscellaneous tasks, except computing for real-time algorithms. Typical miscellaneous tasks
are operating system, connection protocols, Java programs, human-machine-interface, and
hardware management.

The second part is the ASIP DSP subsystem including accelerators, which is the main
computing engine of the system. All heavy computing tasks should be allocated to this
subsystem. The DSP subsystem could include a single processor with accelerators or a
multicore processor cluster. For example, in a 3G mobile phone, the DSP subsystem usually
has two processors: a baseband processor and an application processor.

The third part is the memory subsystem, which supports data and program storage for the
DSP subsystem and the MCU. A SoC usually has multiple levels of memories. Within the
MCU core and the DSP core, local memories or level-1 caches can be found. At SoC level, a
level-2 cache or an on-chip main memory can be found. Level three in the memory hierarchy
is the off-chip main memory.

The fourth part consists of peripherals including high-speed and low-speed I/Os. Analog
circuits could be part of the low-speed 1/O.

7.5.5 Fundamentals of Embedded Computing

Within a DSP subsystem, embedded computing can be divided into three parts: computing
using ASIC, computing using hardware/software (HW/SW) (processors + accelerators), and
computing using SW. Here, the focus is to discuss the computing using HW/SW and SW
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Example 7.2

Classify the following systems. Which is a real-time system, and which is not a real-time
system?

« A mobile phone receiving and sending voice data.

« A mobile phone receiving and sending short message packets.

« A person calculating the statistics on the quality of stored data.
« A computer that analyzes stock information.

Answers

»  Mobile phone sending and receiving voice data. It is a real-time system because the
decoding of the received voice packet must be finished before the arrival of the next
voice data packet.

»  Mobile phone receiving and sending short messages. The baseband part is a real-time
system because a symbol must be processed before the arrival of the next symbol.
The application part for message display is not a real-time system, because the
display of the short message can be delayed for a while without affecting the
functionality of the system.

o Statistics on stored data. It is not a real-time system. Your boss might ask you to
speed up the process. Nevertheless, the arriving new data will not be lost if your
processing speed is low.

o Stock analysis. Even though the processing result must be available in time, it is not
a real-time system because the new arriving data will not be lost when the
processing is slow.

instead of using ASIC. Embedded SW can be divided further into three categories: operating
system, SW for real-time computing, and SW for best-effort embedded computing. In this
book, the focus is the SW for real-time computing.

SW for real-time computing must be executed on a specific DSP platform based on real-
time scheduling. The platform must supply enough computational capacity, and the real-
time scheduling guarantees that the execution will consume less time than the time interval
between arriving input data.

In an embedded system, the complexity or dependency is relatively known before runtime.
Static scheduling can therefore be used to enhance the utilization of the time and hardware
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resources. In a general computing system, on the contrary, the management of running
applications is dynamic, and the issue of a task is based on a dynamic priority table.

Another special feature of embedded computing is the application-specific precision. Both
the precision of operands and the precision of computing are specified according to the
application. The precision of audio processing can be rather high (around 24 bits), whereas
the precision of video can be as low as 8 to 12 bits.

7.6 Design Flow

The system development process from conceptualization to manufacturing includes modeling,
implementation, and verification. This is known as the design flow. Conducting designs using
the design flow is called the design methodology. In this section, methodologies for designing
hardware, including processors, will be briefly reviewed.

7.6.1 Hardware Design Flow in General

The design of an embedded system includes implementation of complete and correct
functions with a specified performance (not necessarily the highest), affordable cost,
reasonable reliability, and within a limited amount of design time. In most cases, the product
lifetime is also a design parameter. In order to design a system, with complex functions
optimized and allocated to both hardware and software, an efficient and reliable design flow
or methodology is required.

A design consists of several transformation steps from a high-level to a low-level description.
More hardware, control information, and constraints are inserted during each transformation
to a lower level. A transformation from one level to the next lower level can be executed

via description or synthesis. Two basic types of transformations, described as two design
methodologies, are introduced in most methodology books: the capture-and-simulate
methodology and the describe-and-synthesize methodology [19].

Capture-and-simulate has been the dominant methodology since the 1960s. According to this
method, the system is described at every level and each description is proved by simulation.
This method is not efficient, because it consumes a lot of design time and designs cannot be
sufficiently optimized. However, this is still the only proven way (as of 2007) of high-level
design from system specification down to RTL coding.

The describe-and-synthesize methodology was introduced during the late 1980s by the
success of logic synthesis. This methodology can be further divided into two levels of
abstraction. At the higher level, behavioral synthesis translates the behavioral description
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into a structural RTL description, including the data flow at bit level and the control details

at cycle and bit level. The main tasks for behavioral synthesis are allocation, scheduling, and
binding. At the lower level, RTL synthesis translates the RTL code to a gate level description,
the net list.

Behavioral synthesis is currently (in 2007) far from mature. In most cases, behavioral
synthesis of an ASIP is impossible today. There is hardly any automatic method for
translating an assembly instruction set to a good HW architecture. One reason for this is
the extremely large design space that makes it difficult to optimize the design toward HW
multiplexing, high performance, and power efficiency.

A well-known methodology for embedded system design is to divide the design activities
using the famous Y-chart, shown in Figure 7.24, which was proposed by Professor Daniel
Gajski [19].

In using the Y-chart, an assumption is made that each design can be modeled in three basic
ways, emphasizing different properties, no matter how complex the design is. The Y-chart has
three axes representing design behavior (function, specification), design structure (net list,
block diagram), and physical design (layout, boards, packages).

Behavior design of a system means that the design is represented as a black box with
specified input and output data relations. The black box behavior does not indicate in any way
how it is implemented or how its internal structure looks.

Structure design gives a description of the hardware partition and the relation
(interconnection) between the black boxes. Each black box should be further refined by a

System
) rocessor
:Behzta_wor Structure
unction m

&

Physical

Figure 7.24: Y-chart
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more detailed structure description including functionality, timing cost, and interconnects
until the design reaches the register transfer level (RTL).

Physical design implements functions based on logic gates or transistors and interconnects.
Physical features include the size and the position of each component, the wire routing
between components, the placement, physical delay, power consumption, and thermo
behavior. Physical parameters are taken into account, such as parasitic capacitance and
resistance of interconnects.

7.6.2 ASIP Hardware Design Flow

Processor design is a complicated process. Without an advanced design flow, a processor
cannot be designed in time and the quality of the design will not be high. The design flow is
therefore essential for complicated systems such as ASIP.

The ASIP design flow is introduced briefly here. The ASIP design flow is divided into three
parts: architecture design, design of programming tools, and firmware design, as depicted in
Figure 7.25. In this section, focus will be on architecture design, and in particular on system
architecture and hardware development flow. Other topics such as design of programming
tools and design of application firmware will be addressed briefly.

The first and most important step in the design of a processor is the instruction set design.
This design step is complicated, and no one can really claim that a certain instruction set is
the best. The instruction set design is a trade-off among a multitude of parameters including
performance, functional coverage, flexibility, power consumption, silicon cost, and design

DSP FW DSP
design firmware
tools design

Figure 7.25: Knowledge required in ASIP design
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time. In Figure 7.26, a simplified design flow is described, including the basic flow for the
design of an instruction set architecture.

The starting point of the design of an ASIP is the application analysis. Application coverage
should be specified first and then translated to functional (algorithm) coverage. Application
coverage is the process of reading and understanding specifications and standards of

the relevant applications. Functional coverage of an ASIP is decided based on both the
current standard specifications and carefully collected knowledge (e.g., books and research
publications) in order to add extra features for future usage. Performance and cost should also
be specified as design constraints.

After the functional coverage is determined, the partitioning of hardware and software should
be decided through profiling of the source code. Hardware/software partitioning for an ASIP
is to meet the performance constraint by defining what functions should be accelerated by
application-specific instructions and what functions should be implemented as software
routines using conventional instructions. This is an important design step of an instruction
set, which is called the 10%-90% code locality. The locality rule means that 10% of the

Specify function coverage, performance and cost. Conduct the
source code profiling

»
>

y

Specify an assembly instruction set

!

Implement instruction set simulator and assembler

v

Assembly instruction set benchmarking and usage profiling

v

Instruction set optimization: trade off performance and costs

No Satisfied

Yes

Release the instruction set architecture

-

Microarchitecture design, RTL, and VLSI implementation

Figure 7.26: ASIP design flow
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instructions run 90% of the time and 90% of the instructions appear only 10% of the time
during execution. In other words, ASIP design is to find the best instruction set architecture
optimized for the 10% most frequently used instructions and to select those among the 90%
of the not often used instructions in order to guarantee the functional coverage.

During the process of hardware and software partitioning, the instruction set of the ASIP is
gradually specified. The next design step is to implement the instruction set, which includes
instruction coding, design of the instruction set simulator, and benchmarking. The coding of
the instruction set includes the design of the assembly syntax and the design of the binary
machine codes. The instruction set simulator must be implemented after the instruction

set has been coded. Finally, the instruction set must be evaluated by benchmarking. The
performance of the instruction set and the usage of each instruction will be exposed as inputs
for further optimization.

The ASIP architecture can be specified when the assembly instruction set is released. The
microarchitecture design is a refinement of the architecture design including fine-grained

function allocation and hardware pipeline scheduling, specifying hardware modules, and

interconnections between modules.

The ASIP design flow starts from the requirement specification and is complete after

the microarchitecture design. The design of an ASIP is based mostly on experience,

and it is essential to minimize the cost of design iteration. The implementation of the
microarchitecture, which involves RTL coding, is not the focus of this section. You can find
more information in references [17] and [22].

7.6.3 ASIP Design Automation

This subsection is written for researchers and project managers. Custom design of an ASIP
DSP Processor is based on experience and is error prone. Design automation has been
investigated and can be used to replace the custom ASIP design. ASIP design automation
tools is summarized in Figure 7.27.

Figure 7.27 presents the research on ASIP design automation, which can be divided into three
steps. The first step is the architecture exploration (selecting or generating an architecture

and assembly instruction set according to the application analyses). Different profilers were
designed by researchers, but the constraint specification tool has not been investigated. The
tool to merge multiple CFG has not been extensively investigated. (CFG in this step stands for
control flow graph.)

The second step is to specify an ADL (Architecture Description Language) to model the
instruction set and architecture. This step can be very difficult. The language must be easy
enough that ASIP designers can use it in modeling the design. However, if an ADL is easy, it
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Figure 7.27: Automatic ASIP design flow (tool researcher’s view)

cannot carry sufficient information to generate all tools and architectures. For example, tool
generation requires sufficient modeling of the instruction set, and the hardware (datapath,
control path) generation requires sufficient modeling of the microarchitecture (for example,
structure of hardware multiplexing) and its function. If the ADL carries sufficient information
for generating tools and architectures, the ADL will not be readable and cannot be used by
ASIP designers. Details are beyond the scope of this chapter and can be found in our NoGAP
research [38,39].

The third step involves generations and verifications. Enormous research on generation
of tools and architectures can be found in Tensilica [32,33] and the famous LISA project
[34,35]. As of 2007, there have been few research contributions to the ASIP formal
verification.

It is good for designers to know the basic concepts behind design automation tools.
Designers’ interests actually focus on how to use the tools to generate instruction set,
architecture, and assembly programming tools, as well as support for design verifications.
This is summarized in Figure 7.28.

Architecture and assembly instruction set exploration according to application profiling is the
first step of processor design automation. This is actually the most difficult part, because the
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Figure 7.28: Automatic ASIP design flow (designer’s view)

distance between CFGs of multiple applications and an ASM (assembly instruction set) is very
large, and there are too many choices to make in selecting different instruction set architectures.
To manage the large gap, another design step (constraint specification) might be needed.

Optimum ways to make decisions concerning tools have not yet been thoroughly investigated.
Tools to generate accelerator instructions are available, but the tool to generate a complete
processor instruction set does not exist.

Instruction set architecture of a processor is proposed and decided by designers, and the
instruction set and the architecture selected will be inputs of processor modeling. The
processor model will be used for generating the instruction set simulator, the compiler,
assembler, and the architecture behavior model. After benchmarking of the instruction set
and architecture, RTL code will finally be generated by the ASIP automation design tools. In
Table 7.3, selected ASIP design tools are briefly discussed [25-39].

The last column in the table shows a feature of ASIP design automation tools; the instruction
set and architecture selection may or may not be limited by a built-in architecture. Limited by
an architecture means that the automation tool offers instruction extension based on a built-in
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Table 7.3: Review of ASIP design automation tools
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LISA y y y y y y y limited
MESCAL yes yes yes yes yes yes no
PEAS-11I yes yes yes yes yes limited
NoGAP yes yes yes yes yes yes no

processor instruction set architecture. The drawback is obviously that the built-in processor
may not be suitable for all applications. Therefore, “no” in that column is superior to “limited”.

MIMOLA is possibly the first processor design automation tool. It was proposed by Professor
Zimmermann in 1976 and was the research product of Professor Zimmermann and Professor
Marwedel of Kiel University and TU Dortmund in Germany. Cathedral-I and II proposed

by Professor Rabaey and Professor De Man of IMEC in Belgium was possibly the first

tool successfully used by industry (on the Mentor DSP station). Target was a successful
research spin-off of Dr. Gert Goossens of IMEC, Belgium. ARC and Tensilica are successful
companies that supply programmable hardware acceleration based on their processor core as
the master of the platform.

LISA of CoWare was the research spin-off of Professor Meyr and Professor Leupers of ISS
Aachen University, Germany. MESCAL is the research project of GigaScale of UC, Berkeley,
California. NoGAP is the research project of Linkdping University, Sweden.

7.7 Conclusions

The scope of DSP is huge, and includes DSP theory, DSP-related standards and applications,
and DSP implementations. The intention of this chapter is to make a good partitioning of
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DSP concepts into these three categories, and to focus on the hardware implementation of
application-specific instruction set DSP processors.

In this chapter, knowledge required by the ASIP designer was briefly reviewed. DSP
implementation was discussed based on four platforms—the general computer, the general-
purpose DSP, the ASIP DSP, and the ASIC. DSP architectures were briefly introduced.
Furthermore, the concepts of embedded systems and embedded computing also have been
introduced, because the DSP subsystem is an essential part of most embedded systems. ASIP
design flow and methodologies of ASIP design automation were briefly introduced. All topics
covered in this chapter are only introductions.

We strongly recommend that you study the listed reference books [2,17,21,22] if you are not
acquainted with the background knowledge discussed in this chapter.
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DSP Processors and
Fixed-Point Arithmetic

Li Tan

This chapter presents the basic concepts of DSP hardware and software. And by basic, I mean

it starts by referencing von Neumann's seminal 1946 paper introducing the von Neumann
architecture, and contrasts it with the almost-as-old Harvard architecture favored by most DSPs.
It then delves into the operation of basic execution units such as the multiply-accumulate (MAC)
unit, shifter, and address generation unit (AGU).

You may be wondering, “Why do I need to know how a shifter works? Why do I need to know

the difference between an opcode and operand?” The reason is that DSP algorithms are
computationally intensive, and generally require high levels of optimization to meet performance,
power, and cost targets. This optimization often entails working in assembly or another low-level
language. To work in these low-level languages, you must know the underlying hardware.

On the software side, Tan gives us fundamental concepts that every DSP engineer needs. He
starts with an explanation of fixed-point and floating-point data formats and then dives into the
problems of underflow and overflow—the main reasons fixed-point implementations take so long.
Then, he gets practical and lays out the IEEE standards for fixed and floating-point operations.

In the end of the chapter, Tan illustrates the above concepts with real hardware and software. He
implements FIR and IIR filters—two of the most common DSP functions—on Texas Instruments’
fixed-point C54x DSP and floating-point C3x DSP. If you want to tinker with your own filters, you
are in luck: Tan provides sample C and MATLAB code for each example.

—Kenton Williston

8.1 Digital Signal Processor Architecture

Unlike microprocessors and microcontrollers, digital signal (DS) processors have special
features that require operations such as fast Fourier transform (FFT), filtering, convolution
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and correlation, and real-time sample-based and block-based processing. Therefore, DS
processors use a different dedicated hardware architecture.

We first compare the architecture of the general microprocessor with that of the DS processor.
The design of general microprocessors and microcontrollers is based on the von Neumann
architecture, which was developed from a research paper written by John von Neumann and
others in 1946. Von Neumann suggested that computer instructions, as we shall discuss, be
numerical codes instead of special wiring. Figure 8.1 shows the von Neumann architecture.

As shown in Figure 8.1, a von Neumann processor contains a single, shared memory for
programs and data, a single bus for memory access, an arithmetic unit, and a program control
unit. The processor proceeds in a serial fashion in terms of fetching and execution cycles.
This means that the central processing unit (CPU) fetches an instruction from memory and
decodes it to figure out what operation to do, then executes the instruction. The instruction
(in machine code) has two parts: the opcode and the operand. The opcode specifies what

the operation is, that is, tells the CPU what to do. The operand informs the CPU what data

to operate on. These instructions will modify memory, or input and output (I/O). After an
instruction is completed, the cycles will resume for the next instruction. One an instruction or
piece of data can be retrieved at a time. Since the processor proceeds in a serial fashion,

it causes most units to stay in a wait state.

As noted, the von Neumann architecture operates the cycles of fetching and execution by
fetching an instruction from memory, decoding it via the program control unit, and finally
executing the instruction. When execution requires data movement—that is, data to be read
from or written to memory—the next instruction will be fetched after the current instruction

Address Program
generator control unit
A A
v v Address bus
v
v Arithmetic Program and
Input/output unit data memory
devices 7'y 7y
A
v v v v v Data bus

Figure 8.1: General microprocessor based on von Neumann architecture
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is completed. The von Neumann-based processor has this bottleneck mainly due to the use of
a single, shared memory for both program instructions and data. Increasing the speed of the
bus, memory, and computational units can improve speed, but not significantly.

To accelerate the execution speed of digital signal processing, DS processors are designed
based on the Harvard architecture, which originated from the Mark 1 relay-based computers
built by IBM in 1944 at Harvard University. This computer stored its instructions on punched
tape and data using relay latches. Figure 8.2 shows today’s Harvard architecture. As depicted,
the DS processor has two separate memory spaces. One is dedicated to the program code,
while the other is employed for data. Hence, to accommodate two memory spaces, two
corresponding address buses and two data buses are used. In this way, the program memory
and data memory have their own connections to the program memory bus and data memory
bus, respectively. This means that the Harvard processor can fetch the program instruction
and data in parallel at the same time, the former via the program memory bus and the latter
via the data memory bus. There is an additional unit called a multiplier and accumulator
(MAC), which is the dedicated hardware used for the digital filtering operation. The last
additional unit, the shift unit, is used for the scaling operation for fixed-point implementation
when the processor performs digital filtering.
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generator control unit
7} 7}
i i Program memory address bus
v v Data memory address bus
v v
v Arithmetic Program Data
Input/output logic unit memory memory
devices 7'y 7'y 7'y
A
y Program memory data bus
y y 7 y y Data memory data bus
A A
4 4
Multiplier/ . .
accumulator Shift unit

Figure 8.2: Digital signal processors based on the Harvard architecture
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Let us compare the executions of the two architectures. The von Neumann architecture
generally has the execution cycles described in Figure 8.3. The fetch cycle obtains the opcode
from the memory, and the control unit will decode the instruction to determine the operation.
Next is the execute cycle. Based on the decoded information, execution will modify the
content of the register or the memory. Once this is completed, the process will fetch the next
instruction and continue. The processor operates one instruction at a time in a serial fashion.

To improve the speed of the processor operation, the Harvard architecture takes advantage
of a common DS processor, in which one register holds the filter coefficient while the other
register holds the data to be processed, as depicted in Figure 8.4.

As shown in Figure 8.4, the execute and fetch cycles are overlapped. We call this the
pipelining operation. The DS processor performs one execution cycle while also fetching the
next instruction to be executed. Hence, the processing speed is dramatically increased.

The Harvard architecture is preferred for all DS processors due to the requirements of most DSP
algorithms, such as filtering, convolution, and FFT, which need repetitive arithmetic operations,
including multiplications, additions, memory access, and heavy data flow through the CPU.

For other applications, such as those dependent on simple microcontrollers with less of a
timing requirement, the von Neumann architecture may be a better choice, since it offers
much less silicon area and is thus less expensive.

..........................

Figure 8.4: Execution cycle based on the Harvard architecture
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8.2 Digital Signal Processor Hardware Units
In this section, we will briefly discuss special DS processor hardware units.
8.2.1 Multiplier and Accumulator

As compared with the general microprocessors based on the von Neumann architecture,

the DS processor uses the MAC, a special hardware unit for enhancing the speed of digital
filtering. This is dedicated hardware, and the corresponding instruction is generally referred
to as a MAC operation. The basic structure of the MAC is shown in Figure 8.5.

As shown in Figure 8.5, in a typical hardware MAC, the multiplier has a pair of input
registers, each holding the 16-bit input to the multiplier. The result of the multiplication is
accumulated in a 32-bit accumulator unit. The result register holds the double precision data
from the accumulator.

8.2.2 Shifters

In digital filtering, to prevent overflow, a scaling operation is required. A simple scaling-down
operation shifts data to the right, while a scaling-up operation shifts data to the left. Shifting data
to the right is the same as dividing the data by 2 and truncating the fraction part; shifting data to
the left is equivalent to multiplying the data by 2. As an example, for a 3-bit data word 011, = 3,

Operand Operand

v v

X register Y register

S Fu

Multiplier

32
v Vv

Accumulator

32
A 4

Result
register

l

Figure 8.5: The multiplier and accumulator (MAC) dedicated to DSP
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shifting 011 to the right gives 001, = 1; that is, 3/2 = 1.5, and truncating 1.5 results in 1. Shifting
the same number to the left, we have 110, = 6,(; that is, 3 X 2 = 6. The DS processor often shifts
data by several bits for each data word. To speed up such operations, the special hardware shift
unit is designed to accommodate the scaling operation, as depicted in Figure 8.2.

8.2.3 Address Generators

The DS processor generates the addresses for each datum on the data buffer to be processed.
A special hardware unit for circular buffering is used (see the address generator in Figure 8.2). Figure
8.6 describes the basic mechanism of circular buffering for a buffer having eight data samples.

In circular buffering, a pointer is used and always points to the newest data sample, as shown in
the figure. After the next sample is obtained from analog-to-digital conversion (ADC), the data
will be placed at the location of x(n — 7), and the oldest sample is pushed out. Thus, the location
for x(n — 7) becomes the location for the current sample. The original location for x(n) becomes

a location for the past sample of x(n — 1). The process continues according to the mechanism just
described. For each new data sample, only one location on the circular buffer needs to be updated.

The circular buffer acts like a first-in/first-out (FIFO) buffer, but each datum on the buffer
does not have to be moved. Figure 8.7 gives a simple illustration of the 2-bit circular buffer.
In the figure, there is data flow to the ADC (q, b, ¢, d, ¢, f, g, ...) and a circular buffer initially
containing a, b, ¢, and d. The pointer specifies the current data of d, and the equivalent FIFO
buffer is shown on the right side with a current data of d at the top of the memory. When e

Data point

Figure 8.6: lllustration of circular buffering
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comes in, as shown in the middle drawing in Figure 8.7, the circular buffer will change the
pointer to the next position and update old a with a new datum e. It costs the pointer only
one movement to update one datum in one step. However, on the right side, the FIFO has to
move each of the other data down to let in the new datum e at the top. For this FIFO, it takes
four data movements. In the bottom drawing in Figure 8.7, the incoming datum f for both the
circular buffer and the FIFO buffer continues to confirm our observations.

Like finite impulse response (FIR) filtering, the data buffer size can reach several hundreds.
Hence, using the circular buffer will significantly enhance the processing speed.

8.3 Digital Signal Processors and Manufacturers

DS processors are classified for general DSP and special DSP. The general-DSP processor
is designed and optimized for applications such as digital filtering, correlation, convolution,

Data flow: a, b, ¢, d, e, f, g, ...

FIFO
\ \ Current data
Pointer d
d c Past data
Equivalent to b
a b e
a
FIFO
Past data Current data
/v e ——
d c d
\ A Equivalent to c Data
e —_—>
Pointer b
FIF
o Current data
f D —
d c
Equivalent to °
Past data d bt
e f S

. c
Pointer
\ —__

Figure 8.7: Circular buffer and equivalent FIFO
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and FFT. In addition to these applications, the special DSP processor has features that are
optimized for unique applications such as audio processing, compression, echo cancellation,
and adaptive filtering. Here, we will focus on the general-DSP processor.

The major manufacturers in the DSP industry are Texas Instruments (TI), Analog Devices,
and Motorola. TI and Analog Devices offer both fixed-point DSP families and floating-point
DSP families, while Motorola offers fixed-point DSP families. We will concentrate on TI
families, review their architectures, and study real-time implementation using the fixed-and
floating-point formats.

8.4 Fixed-Point and Floating-Point Formats

In order to process real-world data, we need to select an appropriate DS processor, as well as
a DSP algorithm or algorithms for a certain application. Whether a DS processor uses a fixed-
or floating-point method depends on how the processor’s CPU performs arithmetic. A fixed-
point DS processor represents data in 2’s complement integer format and manipulates data
using integer arithmetic, while a floating-point processor represents numbers using a mantissa
(fractional part) and an exponent in addition to the integer format and operates data using
floating-point arithmetic (discussed in a later section).

Since the fixed-point DS processor operates using the integer format, which represents only
a very narrow dynamic range of the integer number, a problem such as overflow of data
manipulation may occur. Hence, we need to spend much more coding effort to deal with
such a problem. As we shall see, we may use floating-point DS processors, which offer a
wider dynamic range of data, so that coding becomes much easier. However, the floating-
point DS processor contains more hardware units to handle the integer arithmetic and the
floating-point arithmetic, hence is more expensive and slower than fixed-point processors
in terms of instruction cycles. It is usually a choice for prototyping or proof-of-concept
development.

When it is time to make the DSP an application-specific integrated circuit (ASIC), a chip
designed for a particular application, a dedicated hand-coded fixed-point implementation can

be the best choice in terms of performance and small silica area.

The formats used by DSP implementation can be classified as fixed or floating point.
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Table 8.1: A 3-bit 2’s complement number representation

Decimal Number 2’s Complement
3 011
2 010
1 001
0 000
—1 111
-2 110
-3 101
—4 100

8.4.1 Fixed-Point Format

We begin with 2’s complement representation. Considering a 3-bit 2’s complement, we can
represent all the decimal numbers shown in Table 8.1.

Let us review the 2’s complement number system using Table 8.1. Converting a decimal
number to its 2’s complement requires the following steps:

1. Convert the magnitude in the decimal to its binary number using the required number
of bits.

2. If the decimal number is positive, its binary number is its 2’s complement representation;
if the decimal number is negative, perform the 2’s complement operation, where we negate
the binary number by changing the logic 1’s to logic 0’s and logic 0’s to logic 1’s and then
add a logic 1 to the data. For example, a decimal number of 3 is converted to its 3-bit 2’s
complement as 011; however, for converting a decimal number of —3, we first get a 3-bit
binary number for the magnitude in the decimal, that is, 011. Next, negating the binary
number 011 yields the binary number 100. Finally, adding a binary logic 1 achieves the
3-bit 2’s complement representation of —3, that is, 100 + 1 = 101, as shown in Table 8.1.

As we see, a 3-bit 2’s complement number system has a dynamic range from —4 to 3,
which is very narrow. Since the basic DSP operations include multiplications and additions,
results of operation can cause overflow problems. Let us examine the multiplications in
Example 8.1.
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Example 8.1

Given:
1. 2X(—1)
2. 2X(—3),

a. Operate each using its 2’s complement.

a. 1. 010
X 001

010
000
+ 000

00010

and 2’s complement of 00010=11110. Removing two extended sign bits
gives 110.
The answer is 110 (—2), which is within the system.

2. 010
X 011

010
010
+ 000

00110
and 2’s complement of 00110 = 11010. Removing two extended sign bits
achieves 010.

Since the binary number 010 is 2, which is not (—6) as we expect, overflow occurs; that
is, the result of the multiplication (—6) is out of our dynamic range (—4 to 3).

Let us design a system treating all the decimal values as fractional numbers, so that we obtain
the fractional binary 2’s complement system shown in Table 8.2.

To become familiar with the fractional binary 2’s complement system, let us convert a

ositive fraction number 3 and a negative fraction number —4 in decimals to their 2’s
4 4

complements. Since

%=0x2°+1><2"+1><2‘2,
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Table 8.2: A 3-bit 2’s complement system using fractional representation

Decimal Number Decimal Fraction 2’s Complement
3 3/4 0.11
2 2/4 0.10
1 1/4 0.01
0 0 0.00
-1 —1/4 1.11
-2 —2/4 1.10
-3 —3/4 1.01
—4 —4/4 = —1 1.00

its 2’s complement is 011. Note that we did not mark the binary point for clarity. Again, since

i=0><2°+0><2‘1+1><2‘2,

its positive-number 2’s complement is 001. For the negative number, applying the 2’s
complement to the binary number 001 leads to 110 + 1 = 111, as we see in Table 8.2.

Now let us focus on the fractional binary 2’s complement system. The data are normalized
to the fractional range from —1 to 1 — 27> = 2. When we carry out multiplications with two
fractions, the result should be a fraction, so that multiplication overflow can be prevented. Let

us verify the multiplication (010) X (101), which is the overflow case in Example 8.1:

0.10
X 0.11

010
010
+ 000

0.0110

2’s complement of 0.0110 = 1.1010.

The answer in decimal form should be:

1.1010 = (=1) X (0.0110), = =0 x (2) "' +1X 2> +1X 27 +0x (2)™)

3

g
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This number is correct, as we can verify from Table 8.2, thatis, (2 X (—=3)) = —2.

If we truncate the last two least-significant bits to keep the 3-bit binary number, we have an
approximated answer as:

110 = (=1) X (0.10), = =1 X )" + 0 X (2)?) = —%,

The truncation error occurs. The error should be bounded by 27 = 1. We can verify that:

1
4
=172 = (= 3/8)| = 1/8 < 1/4.

To use such a scheme, we can avoid the overflow due to multiplications but cannot prevent
the additional overflow. In the following addition example,

0.11
+ 0.01
1.00

where the result 1.00 is a negative number.

Adding two positive fractional numbers yields a negative number. Hence, overflow

occurs. We see that this signed fractional number scheme partially solves the overflow in
multiplications. Such fractional number format is called the signed Q-2 format, where there
are 2 magnitude bits plus one sign bit. The additional overflow will be tackled using a scaling
method discussed in a later section.

Q-format number representation is the most common one used in fixed-point DSP
implementation. It is defined in Figure 8.8.

As indicated in Figure 8.8, Q-15 means that the data are in a sign magnitude form in which
there are 15 bits for magnitude and one bit for sign. Note that after the sign bit, the dot shown
in Figure 8.8 implies the binary point. The number is normalized to the fractional range from
—1 to 1. The range is divided into 2'6 intervals, each with a size of 27'>. The most negative
number is — 1, while the most positive number is 1—27'. Any result from multiplication

is within the fractional range of —1 to 1. Let us study the following examples to become
familiar with Q-format number representation.

Q-15 | ,2012—1 | 52 | 53 | o4 | 55 | 56 | -7 | 58 | 59 |271o|2711|2712|2713|2714| 515 |

—

Implied binary point

Figure 8.8: Q-15 (fixed-point) format
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Example 8.2

a. Find the signed Q-15 representation for the decimal number 0.560123.
Solution

a. The conversion process is illustrated using Table 8.3. For a positive fractional
number, we multiply the number by 2 if the product is larger than 1, carry bit 1 as
a most-significant bit (MSB), and copy the fractional part to the next line for the
next multiplication by 2; if the product is less than 1, we carry bit 0 to MSB. The
procedure continues to collect all 15 magnitude bits.

We yield the Q-15 format representation as
0.1700011110110010.

Since we use only 16 bits to represent the number, we may lose accuracy after conversion.
Like quantization, the truncation error is introduced. However, this error should be
less than the interval size, in this case, 2~ "> = 0.000030517. We shall verify this in

Table 8.3: Conversion process of Q-15 representation

Number Product Carry
0:560123 X 2 1120246 1 (MSB)
0:120246 X 2 0.240492 0
0:240492 X 2 0.480984 0
0:480984 X 2 0.961968 0
0:961968 X 2 1.923936 1
0:923936 X 2 1.847872 1
0:847872 X 2 1.695744 1
0:695744 X 2 1.391488 1
0:391488 X 2 0.782976 0
0:782976 X 2 1.565952 1
0:565952 X 2 1.131904 1
0:131904 X 2 0.263808 0
0:263808 X 2 0.527616 0
0:527616 X 2 1.055232 1
0:055232 X 2 0.110464 0 (LSB)

MSB, most-significant bit; LSB, least-significant bit.
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Example 8.5. An alternative way of conversion is to convert a fraction, let’s say %, to Q-2
format, multiply it by 22, and then convert the truncated integer to its binary, that s,
(3/4)X 22 =3 =011,
In this way, it follows that:
(0.560123) X 2'° = 18354.

Converting 18354 to its binary representation will achieve the same answer. The
next example illustrates the signed Q-15 representation for a negative number.

Example 8.3

a. Find the signed Q-15 representation for the decimal number —0.160123.

Solution

a. Converting the Q-15 format for the corresponding positive number with the same
magnitude using the procedure described in Example 8.2, we have:

0.160123 = 0.0001010001111110.

Then, after applying 2’s complement, the Q-15 format becomes:
—0.160123 = 1.110101110000010.

Alternative way: Since (—0.160123)X2"5 = —5246.9, converting the truncated number
—5246 to its 16-bit 2’s complement yields 1110101110000010.

Example 8.4
a. Convert the Q-15 signed number 1.110101110000010 to the decimal number.

Solution
a. Since the number is negative, applying the 2’s complement yields:
0.001010001111110.
Then the decimal number is:

@425 420 42710 42 42712 42713 4 971 = 0160095
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Example 8.5

a. Convert the Q-15 signed number 0.100011110110010 to the decimal number.

Solution
a. The decimal number is:
2742 420 42 4278 2710 4 71T 4 5714 = 0.560120.

As we know, the truncation error in Example 8.2 is less than 27'°=0:000030517. We
verify that the truncation error is bounded by:
|O.560120 — 0.560123| = 0.000003 < 0.000030517.

Note that the larger the number of bits used, the smaller the round-off error that may
accompany it.

Examples 8.6 and 8.7 are devoted to illustrating data manipulations in the Q-15 format.

Example 8.6

a. Add the two numbers in Examples 8.4 and 8.5 in Q-15 format.

Solution

a. Binary addition is carried out as follows:

1.110101110000010
+ 0.100011110110010

10.011001100110100

Then the resultis:
0.011001100110100.

This number in the decimal form can be found to be:

272423 427040277 42710 L 271 4 >713 — 9 400024,
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Example 8.7

This is a simple illustration of fixed-point multiplication.

a. Determine the fixed-point multiplication of 0.25 and 0.5 in Q-3 fixed-point 2’s
complement format.

Solution

a. Since 0.25 = 0.010 and 0.5 = 0.100, we carry out binary multiplication as follows:

0.010
X 0.100

0000
0000
0010
+ 0000

0.001000

Truncating the least-significant bits to convert the result to Q-3 format, we have:

0.010 X 0.100 = 0.001.

Note that 0.001 = 273 = 0.125. We can also verify that 0.25 X 0.5 = 0.125.

As a result, the Q-format number representation is a better choice than the 2’s complement
integer representation. But we need to be concerned with the following problems.

1. Converting a decimal number to its Q-N format, where N denotes the number of
magnitude bits, we may lose accuracy due to the truncation error, which is bounded by
the size of the interval, that is, 27%.

2. Addition and subtraction may cause overflow, where adding two positive numbers leads
to a negative number, or adding two negative numbers yields a positive number; similarly,
subtracting a positive number from a negative number gives a positive number, while
subtracting a negative number from a positive number results in a negative number.

3. Multiplying two numbers in Q-15 format will lead to a Q-30 format, which has 31 bits
in total. As in Example 8.7, the multiplication of Q-3 yields a Q-6 format, that is, 6
magnitude bits and a sign bit. In practice, it is common for a DS processor to hold the
multiplication result using a double word size such as MAC operation, as shown in
Figure 8.9 for multiplying two numbers in Q-15 format. In Q-30 format, there is one
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sign-extended bit. We may get rid of it by shifting left by one bit to obtain Q-31 format
and maintaining the Q-31 format for each MAC operation. Sometimes, the number in Q-
31 format needs to be converted to Q-15; for example, the 32-bit data in the accumulator
needs to be sent for 16-bit digital-to-analog conversion (DAC), where the upper most-
significant 16 bits in the Q-31 format must be used to maintain accuracy. We can shift
the number in Q-30 to the right by 15 bits or shift the Q-31 number to the right by 16
bits. The useful result is stored in the lower 16-bit memory location. Note that after
truncation, the maximum error is bounded by the interval size of 215 which satisfies
most applications. In using the Q-format in the fixed-point DS processor, it is costive to
maintain the accuracy of data manipulation.

4. Underflow can happen when the result of multiplication is too small to be represented
in the Q-format. As an example, in the Q-2 system shown in Table 8.2, multiplying
0.01 X 0.01 leads to 0.0001. To keep the result in Q-2, we truncate the last two bits of
0.0001 to achieve 0.00, which is zero. Hence, underflow occurs.

8.4.2 Floating-Point Format

To increase the dynamic range of number representation, a floating-point format, which
is similar to scientific notation, is used. The general format for floating-point number
representation is given by:

x =M -2°F, (8.1)
where M is the mantissa, or fractional part, in Q format, and FE is the exponent. The mantissa

and exponent are signed numbers. If we assign 12 bits for the mantissa and 4 bits for the
exponent, the format looks like Figure 8.10.

Since the 12-bit mantissa has limits between —1 and + 1, the dynamic range is controlled
by the number of bits assigned to the exponent. The bigger the number of bits assigned to

Q-15( 8| 15 magnitude bits X Q-15|S| 15magnitude bits |

Q30| s|s]| 30 magnitude bits |

Figure 8.9: Sign bit extended Q-30 format

4 bit exponent 12 bit mantissa

|723| 22 | 21 | 20 |720|271 |272|273|274|275|276|277|278|279|2710|2711|

Figure 8.10: Floating-point format
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the exponent, the larger the dynamic range. The number of bits for the mantissa defines
the interval in the normalized range; as shown in Figure 8.10, the interval size is 27'! in the
normalized range, which is smaller than the Q-15. However, when more mantissa bits are
used, the smaller interval size will be achieved. Using the format in Figure 8.10, we can
determine the most negative and most positive numbers as:

Most negative number = (1.00000000000), - 2°'""> = (=1) X 27 = —128.0

Most positive number = (0.11111111111), - 2" = (1 —27"") x 27 = 127.9375.
The smallest positive number is given by
Smallest positive number = (0.000000000001), - 2" = 27'") x 27% = 27"

As we can see, the exponent acts like a scale factor to increase the dynamic range of the
number representation. We study the floating-point format in the following example.

Example 8.8

Convert each of the following decimal numbers to the floating-point number using the
format specified in Figure 8.10.

1. 0.1601230
2. —20.430527

Solution

a. 1. We first scale the number 0.1601230 to 0.160123/2™2 = 0:640492
with an exponent of —2 (other choices could be 0 or —1) to get 0.160123 =
0.640492X 272 Using 2’s complement, we have —2 = 1110. Now we convert
the value 0.640492 using Q-11 format to get 010100011111. Cascading the
exponent bits and the mantissa bits yields:

1110010100011111.

2. Since —20.430527/2° = —0.638454, we can convert it into the fractional part
and exponent part as —20.430527 = —0.638454 X 2°.

Note that this conversion is not particularly unique; the forms —20.430527 =
—0.319227 X 26 and —20.430527 = —0.1596135 X 27 . . . are still valid
choices. Let us keep what we have now. Therefore, the exponent bits should be
0101. Converting the number 0.638454 using Q-11 format gives:

010100011011.
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Using 2’s complement, we obtain the representation for the decimal number
—0.638454 as:

101011100101.
Cascading the exponent bits and mantissa bits, we achieve:

0101101011100101.

two floating-point numbers. Rules for arithmetic addition are given as:
X, = /\/112E1
Xy, = /\/IZZEZ.
The floating-point sum is performed as follows:
X + x, = (M'I + MZ X 2_(E1_E2)) X 2E17 If:E‘I = E2
i = —(E.— .
(M, x 27 E7E) + My x 25 ifE, < E,

As a multiplication rule, given two properly normalized floating-point numbers:
x; = M2
_ E
X, = M,272,

where 0.5 = IM4] < 1 and 0.5 = IM,| < 1. Then multiplication can be performed as
follows:

X; X x, = (My X M,) X 25%F = M x 2F,
That is, the mantissas are multiplied while the exponents are added:

M = M, X M,
E=E +E,.

The floating arithmetic is more complicated. We must obey the rules for manipulating

Examples 8.9 and 8.10 serve to illustrate manipulators.

Next, we examine overflow and underflow in the floating-point number system.

8.4.2.1 Overflow

During operation, overflow will occur when a number is too large to be represented in the

floating-point number system. Adding two mantissa numbers may lead to a number larger than
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Example 8.9
a. Add two floating-point numbers achieved in Example 8.8:

1110 010100011111 = 0.640136718 X 22
0101 101011100101 = —0.638183593 X 2°.

Solution

a. Before addition, we change the first number to have the same exponent as the
second number, that is,

0101 000000001010 = 0.005001068 X 2°.

Then we add two mantissa numbers:
0.00000001010
+ 1.01011100101
1.01011101111

and we get the floating number as:
0101 101011101111.
We can verify the result by the following:

2 '+23 +277 +27 "y x2°
= —0.633300781X 2° = —20.265625.

0101101011101111

Example 8.10

a. Multiply two floating-point numbers achieved in Example 8.8:

1110 010100011111 = 0.640136718 X 22
0101101011100101 = —0.638183593 X 2°.
Solution

a. From the results in Example 8.8, we have the bit patterns for these two numbers as:

E; =1110, E, = 0101, M; = 010100011111, M, = 101011100101.
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Adding two exponents in 2’s complement form leads to:
E=E +E =1110+0101= 0011,
which is +3, as we expected, since in decimal domain (—2) + 5 = 3.

As previously shown in the multiplication rule, when multiplying two mantissas,
we need to apply their corresponding positive values. If the sign for the final

value is negative, then we convert it to its 2’s complement form. In our example,
M; = 010100011111 is a positive mantissa. However, M, = 101011100101 is

a negative mantissa, since the MSB is 1. To perform multiplication, we use 2’s
complement to convert M, to its positive value, 010100011011, and note that the
multiplication result is negative. We multiply two positive mantissas and truncate
the result to 12 bits to give:

010100011111X 010100011011 = 001101000100.

Now we need to add a negative sign to the multiplication result with 2’s
complement operation. Taking 2’s complement, we have:

M =110010111100.
Hence, the product is achieved by cascading the 4-bit exponent and 12-bit mantissa as:
0011110010111100.

Converting this number back to the decimal number, we verify the result to be
0.408203125 X 2° = —3.265625.

1 or less than —1; and multiplying two numbers causes the addition of their two exponents, so
that the sum of the two exponents could overflow. Consider the following overflow cases.

Case 1. Add the following two floating-point numbers:

0111 011000000000 + 0111 010000000000.

Note that two exponents are the same and they are the biggest positive number in 4-bit 2’s
complement representation. We add two positive mantissa numbers as:

0.11000000000
+ 0.10000000000
1.01000000000.

The result for adding mantissa numbers is negative. Hence, the overflow occurs.
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Case 2. Multiply the following two numbers:

0111 011000000000 + 0111 011000000000.

Adding two positive exponents gives:

0111 + 0111 = 1000 (negative; the overflow occurs).
Multiplying two mantissa numbers gives:

0.11000000000 X 0.11000000000 = 0.10010000000 (OK!).

8.4.2.2 Underflow

As we discussed before, underflow will occur when a number is too small to be represented in
the number system. Let us divide the following two floating-point numbers:

1001 001000000000 =+ 0111 010000000000.
First, subtracting two exponents leads to:

1001 + 1001
= 0010 (positive; the underflow occurs)

1001 (negative) — 0111 (positive)

Then, dividing two mantissa numbers, it follows that:
0.01000000000 = 0.10000000000 = 0.10000000000 (OK!).

However, in this case, the expected resulting exponent is — 14 in decimal, which is too small
to be presented in the 4-bit 2’s complement system. Hence the underflow occurs.

Understanding basic principles of the floating-point formats, we can next examine two
floating-point formats of the Institute of Electrical and Electronics Engineers (IEEE).

8.4.3 IEEE Floating-Point Formats

8.4.3.1 Single Precision Format

IEEE floating-point formats are widely used in many modern DS processors. There are two
types of IEEE floating-point formats (IEEE 754 standard). One is the IEEE single precision
format, and the other is the IEEE double precision format. The single precision format is
described in Figure 8.11.
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31 30 23 22 0
| S | Exponent | Fraction |

x = (—1)S x (1.F)x 25127

Figure 8.11: IEEE single precision floating-point format

The format of IEEE single precision floating-point standard representation requires 23
fraction bits F; 8 exponent bits E, and 1 sign bit S, with a total of 32 bits for each word.

F is the mantissa in 2’s complement positive binary fraction represented from bit O to bit 22.
The mantissa is within the normalized range limits between +1 and +2. The sign bit S is
employed to indicate the sign of the number, where when S = 1 the number is negative, and
when S = 0 the number is positive. The exponent E is in excess 127 form. The value of 127
is the offset from the 8-bit exponent range from 0 to 255, so that E-127 will have a range
from —127 to +128. The formula shown in Figure 8.11 can be applied to convert the IEEE
754 standard (single precision) to the decimal number. The following simple examples also
illustrate this conversion:

0 1000000 000000000000000000000000 = (—=1)° X (1.0,) X 27" =20
0 1000000 110100000000000000000000 = (—1)° X (1.101,) X 2'*7*" = 6.51
1 1000000 110100000000000000000000 = (—1)' X (1.101,) X 27" = —6.5.

Let us look at Example 8.11 for more explanation.

8.4.3.2 Double Precision Format

The IEEE double precision format is described in Figure 8.12.

The IEEE double precision floating-point standard representation requires a 64-bit word,
which may be numbered from 0 to 63, left to right. The first bit is the sign bit S, the next
eleven bits are the exponent bits E, and the final 52 bits are the fraction bits . The IEEE
floating-point format in double precision significantly increases the dynamic range of number
representation, since there are eleven exponent bits; the double precision format also reduces
the interval size in the mantissa normalized range of +1 to +2, since there are 52 mantissa
bits as compared with the single precision case of 23 bits. Applying the conversion formula
shown in Figure 8.12 is similar to the single precision case.
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Example 8.11

a. Convert the following number in the IEEE single precision format to the decimal
format:

110000000.010...0000.
Solution

a. From the bit pattern in Figure 8.11, we can identify the sign bit, exponent, and
fractional as:

s=1E=2" =128
1F=1.01,=2)° +(@2)? =125

Then, applying the conversion formula leads to:

x = (-1)'(125) X 2'871%" = —1 25 x 2" = —235.

In conclusion, the value x represented by the word can be determined based on the
following rules, including all the exceptional cases:

o IfE= 255 and Fis nonzero, then x = NaN (“Not a number”).

o IfE= 255, Fiszero, and Sis 1, then x = —Infinity.

o IfE= 255, Fiszero,and Sis 0, then x = +Infinity.

o If0<E<255,thenx = (—1) X (1.F) X 267127 'where 1.F represents the binary
number created by prefixing F with an implicit leading 1 and a binary point.

« IfE=0and Fis nonzero, then x=(—1)* X (0.F) X 27?6 This is an
“unnormalized” value.

e IfE=0,Fiszero,andSis 1, thenx = —0.

e IfE=0, Fiszero,and Sis 0, then x = 0.

Typical and exceptional examples are shown as follows:

0 00000000 00000000000000000000000 = 0
100000000 00000000000000000000000 = —0
01111111100000000000000000000000 = Infinity

111111111 00000000000000000000000 = —Infinity
01111111100000100000000000000000 = NaN
111111111001000100071001010101010 = NaN

0 00000001 00000000000000000000000 = (—1)° X (1.0,) X 2'1%7 = 27126

0 00000000 10000000000000000000000 = (—1)° X (0.1,) X 207126 = 271%/

0 00000000 00000000000000000000001 = (—1)° X (0.00000000000000000000001,) X 2°~'2¢
= 27" (smallest positive value)




DSP Processors and Fixed-Point Arithmetic 353

31 30 20 19 0 31 0
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x=(—1)%x (1.F) x 2671023

Figure 8.12: IEEE double precision floating-point format

Example 8.12
a. Convert the following number in IEEE double precision format to the decimal
format:
001000. . .0.110. . .0000
Solution

b. Using the bit pattern in Figure 8.12, we have:

s=0,E=2°=512and
1F=111,=@°+@2) "' +@) % =1.75.

Then, applying the double precision formula yields:

x = (—1)°(1.75) x 2°17198 =175 x 27°" = 26104 x 107",

For purposes of completeness, rules for determining the value x represented by the double
precision word are listed as follows:

If E = 2047 and F is nonzero, then x = NaN (“Not a number”).
If E = 2047, F is zero, and S is 1, then x = —Infinity.
If E = 2047, F is zero, and S is 0, then x = +Infinity.

If 0 < E < 2047, then x = (—1)* X (1.F) X 2571923 'where 1.F is intended to represent
the binary number created by prefixing F with an implicit leading 1 and a binary point.

If E = 0 and F is nonzero, then x = (=1)° X (0.F) X 271922, This is an “unnormalized”
value.

If E= 0, Fis zero, and S is 1, then x = 0.
If E =0, Fis zero, and S is 0, then x = 0.
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8.4.4 Fixed-Point Digital Signal Processors

Analog Devices, Texas Instruments, and Motorola all manufacture fixed-point DS processors.
Analog Devices offers a fixed-point DSP family such as ADSP21xx. Texas Instruments
provides various generations of fixed-point DSP processors based on historical development,
architectural features, and computational performance. Some of the most common ones are
TMS320C1x (first generation), TMS320C2x, TMS320C5x, and TMS320C62x. Motorola
manufactures varieties of fixed-point processors, such as the DSP5600x family. The new
families of fixed-point DS processors are expected to continue to grow. Since they share
some basic common features such as program memory and data memory with associated
address buses, arithmetic logic units (ALUs), program control units, MACs, shift units, and
address generators, here we focus on an overview of the TMS320C54x processor. The typical
TMS320C54x fixed-point DSP architecture appears in Figure 8.13.

The fixed-point TMS320C54x families supporting 16-bit data have on-chip program memory
and data memory in various sizes and configurations. They include data RAM (random
access memory) and program ROM (read-only memory) used for program code, instruction,
and data. Four data buses and four address buses are accommodated to work with the data
memories and program memories. The program memory address bus and program memory
data bus are responsible for fetching the program instruction. As shown in Figure 8.13, the

C and D data memory address buses and the C and D data memory data buses deal with
fetching data from the data memory, while the E data memory address bus and the E data
memory data bus are dedicated to moving data into data memory. In addition, the E memory
data bus can access the I/O devices.

Computational units consist of an ALU, an MAC, and a shift unit. For TMS320C54x families,
the ALU can fetch data from the C, D, and program memory data buses and access the E
memory data bus. It has two independent 40-bit accumulators, which are able to operate
40-bit addition. The multiplier, which can fetch data from C and D memory data buses and
write data via the E memory data bus, is capable of operating 17-bitX 17-bit multiplications.
The 40-bit shifter has the same capability of bus access as the MAC, allowing all possible
shifts for scaling and fractional arithmetic such as we have discussed for the Q-format.

The program control unit fetches instructions via the program memory data bus. Again, in
order to speed up memory access, there are two address generators available: one responsible
for program addresses and one for data addresses.

Advanced Harvard architecture is employed, where several instructions operate at the same
time for a given single instruction cycle. Processing performance offers 40 MIPS (million
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Figure 8.13: Basic architecture of TMS320C54x family

instruction sets per second). To further explore this subject, the reader is referred to Dahnoun
(2000), Embree (1995), Ifeachor and Jervis (2002), and Van der Vegte (2002), as well as the
website for Texas Instruments (www.ti.com).

8.4.5 Floating-Point Processors

Floating-point DS processors perform DSP operations using floating-point arithmetic, as
we discussed before. The advantages of using the floating-point processor include getting
rid of finite word length effects such as overflows, round-off errors, truncation errors, and
coefficient quantization errors. Hence, in terms of coding, we do not need to do scaling
input samples to avoid overflow, shift the accumulator result to fit the DAC word size, scale
the filter coefficients, or apply Q-format arithmetic. The floating-point DS processor with

www.newnespress.com
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high-performance speed and calculation precision facilitates a friendly environment to
develop and implement DSP algorithms.

Analog Devices provides floating-point DSP families such as ADSP210xx and TigerSHARC.
Texas Instruments offers a wide range of floating-point DSP families, in which the TMS320C3x
is the first generation, followed by the TMS320C4x and TMS320C67x families. Since the first
generation of a floating-point DS processor is less complicated than later generations but still
has the common basic features, we overview the first-generation architecture first.

Figure 8.14 shows the typical architecture of Texas Instruments” TMS320C3x families. We
discuss some key features briefly. Further detail can be found in the TMS320C3x User’s
Guide (Texas Instruments, 1991), the TMS320C6x CPU and Instruction Set Reference Guide
(Texas Instruments, 1998), and other studies (Dahnoun, 2000; Embree, 1995; Ifeachor and
Jervis, 2002; Kehtarnavaz and Simsek, 2000; Sorensen and Chen, 1997; van der Vegte, 2002).
The TMS320C3x family consists of 32-bit single chip floating-point processors that support
both integer and floating-point operations.

The processor has a large memory space and is equipped with dual-access on-chip memories.
A program cache is employed to enhance the execution of commonly used codes. Similar to

Program RAM RAM ROM
XRDY cache block 0 block 1 block 0 XRDY
IOSTRB (64 X 32) (1K x 32) (1K x 32) (4K X 32) IOSTRB
XA v oYY v v v XAW
XD31-0 & Data bus » XD31-0
XA12-0 1 1 1 XA12—-0
MSTRB - v v v MSTRB
RDY  _,)] CPU DMA <] Serial
INT3—-0 —p Integer/ Integer/ Address generators g port 0
IACK floating-point | floating-point : = -
XF1—0 4> 2 multiplier ALU Control registers g N serrt'i'
- _9 _ . .S_ po
McBLMP — = 8 exter:gdtpreusmn 2
X1 3 gisters D o .
mer
X2/CLKIN —, Address Address I
Vop  — generator O | generator 1
V. —> :
s 8 auxilliary registers > Timer 1
SHz — 12 control registers

Figure 8.14: The typical TMS320C3x floating-point DS processor
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the fixed-point processor, it uses the Harvard architecture, in which there are separate buses
used for program and data so that instructions can be fetched at the same time that data are
being accessed. There also exist memory buses and data buses for direct-memory access
(DMA) for concurrent I/0 and CPU operations, and peripheral access such as serial ports, I/O
ports, memory expansion, and an external clock.

The C3x CPU contains the floating-point/integer multiplier; an ALU, which is capable of
operating both integer and floating-point arithmetic; a 32-bit barrel shifter; internal buses; a
CPU register file; and dedicated auxiliary register arithmetic units (ARAUS). The multiplier
operates single-cycle multiplications on 24-bit integers and on 32-bit floating-point values.
Using parallel instructions to perform a multiplication, an ALU will cost a single cycle, which
means that a multiplication and an addition are equally fast. The ARAUSs support addressing
modes, in which some of them are specific to DSP such as circular buffering and bit-reversal
addressing (digital filtering and FFT operations). The CPU register file offers 28 registers,
which can be operated on by the multiplier and ALU. The special functions of the registers
include eight extended 40-bit precision registers for maintaining accuracy of the floating-
point results. Eight auxiliary registers can be used for addressing and for integer arithmetic.
These registers provide internal temporary storage of internal variables instead of external
memory storage, to allow performance of arithmetic between registers. In this way, program
efficiency is greatly increased.

The prominent feature of C3x is its floating-point capability, allowing operation of numbers
with a very large dynamic range. It offers implementation of the DSP algorithm without
worrying about problems such as overflows and coefficient quantization. Three floating-
point formats are supported. A short 16-bit floating-point format has 4 exponent bits, 1 sign
bit, and 11 mantissa bits. A 32-bit single precision format has 8 exponent bits, 1 sign bit,
and 23 fraction bits. A 40-bit extended precision format contains 8 exponent bits, 1 sign bit,
and 31 fraction bits. Although the formats are slightly different from the IEEE 754 standard,
conversions are available between these formats.

The TMS320C30 offers high-speed performance with 60-nanosecond single-cycle instruction
execution time, which is equivalent to 16.7 MIPS. For speech-quality applications with

an 8 kHz sampling rate, it can handle over 2,000 single-cycle instructions between two
samples (125 microseconds). With instruction enhancement such as pipelines executing each
instruction in a single cycle (four cycles required from fetch to execution by the instruction
itself) and a multiple interrupt structure, this high-speed processor validates implementation
of real-time applications in floating-point arithmetic.
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8.5 Finite Impulse Response and Infinite Impulse Response Filter
Implementations in Fixed-Point Systems

With knowledge of the IEEE formats and of filter realization structures such as the

direct form I, direct form I, and parallel and cascade forms, we can study digital filter
implementation in the fixed-point processor. In the fixed-point system, where only integer
arithmetic is used, we prefer input data, filter coefficients, and processed output data to be in
the Q-format. In this way, we avoid overflow due to multiplications and can prevent overflow
due to addition by scaling input data. When the filter coefficients are out of the Q-format
range, coefficient scaling must be taken into account to maintain the Q-format. We develop
FIR filter implementation in Q-format first, and then infinite impulse response (IIR) filter
implementation next. In addition, we assume that with a given input range in Q-format, the
filter output is always in Q-format even if the filter passband gain is larger than 1.

First, to avoid overflow for an adder, we can scale the input down by a scale factor S, which
can be safely determined by the equation:

S =1, S |h) = 1., (O] + [RD] + [n2)] + ), (8.2)
k=0

where h(k) is the impulse response of the adder output and [, the maximum amplitude of
the input in Q-format. Note that this is not an optimal factor in terms of reduced signal-to-
noise ratio. However, it shall prevent the overflow. Equation (8.2) means that the adder output
can actually be expressed as a convolution output:

adder output = hA(0)x(n) + h(Hx(n — 1) + h(Q)x(n — 2) + ---

Assuming the worst condition, that is, that all the inputs x(n) reach a maximum value of I,
and all the impulse coefficients are positive, the sum of the adder gives the most conservative
scale factor, as shown in Equation (8.2). Hence, scaling down of the input by a factor of S will
guarantee that the output of the adder is in Q-format.

When some of the FIR coefficients are larger than 1, which is beyond the range of Q-format
representation, coefficient scaling is required. The idea is that scaling down the coefficients
will make them less than 1, and later the filtered output will be scaled up by the same amount
before it is sent to DAC. Figure 8.15 describes the implementation.

In the figure, the scale factor B makes the coefficients b;/B convertible to the Q-format. The
scale factors of S and B are usually chosen to be a power of 2, so the simple shift operation
can be used in the coding process. Let us implement an FIR filter containing filter coefficients
larger than 1 in the fixed-point implementation.
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Example 8.13

Given the FIR filter:
y(n) = 0.9x(n) + 3x(n — 1) — 0.9x(n — 2),

with a passband gain of 4, and assuming that the input range occupies only 1/4 of the
full range for a particular application,

a. Develop the DSP implementation equations in the Q-15 fixed-point system.
Solution

a. The adder may cause overflow if the input data exists for % of a full dynamic range.
The scale factor is determined using the impulse response, which consists of the FIR
filter coefficients.

S = %(|h(0)| + (1] +[A(2)]) = —(0.9+ 3+ 0.9) = 1.2.

1
4

Overflow may occur. Hence, we select S = 2 (a power of 2). We choose B = 4
to scale all the coefficients to be less than 1, so the Q-15 format can be used.
According to Figure 8.15, the developed difference equations are given by:
x(n
x(n =2
ys(n) = 0.225x,(n) + 0.75x,(n — 1) — 0.225x,(n — 2)
y(n) = 8y(n)

x(n) /S xg(n) by/B Ye(n) y(n)

Figure 8.15: Direct-form | implementation of the FIR filter
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Next, the direct-form I implementation of the IIR filter is illustrated in Figure 8.16.

As shown in Figure 8.16, the purpose of a scale factor C is to scale down the original filter
coefficients to the Q-format. The factor C is usually chosen to be a power of 2 for using a
simple shift operation in DSP.

xm 1S x{n byc YN oy g

Figure 8.16: Direct-form | implementation of the IIR filter

Example 8.14

The following IIR filter,
y(n) = 2x(n) + 0.5y(n — 1),

uses the direct form |, and for a particular application, the maximum input is
lmax = 0.010 ... 0, = 0.25.

a. Develop the DSP implementation equations in the Q-15 fixed-point system.

Solution

a. Thisis an lIR filter whose transfer function is:

2 2z
H(z) = — = .
1— 0.5z z—0.5

Applying the inverse z-transform, we have the impulse response:

h(n) = 2 X (0.5)"u(n).
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To prevent overflow in the adder, we can compute the S factor with the help of the
Maclaurin series or approximate Eq. (9.2) numerically. We get:

_O.25><2><1_1

S =0.25X (2(0.5)° +2(0.5)' +2(0.5)% +...) 08

MATLAB function impz() can also be applied to find the impulse response and the S
factor:

» h=1dmpz(2,[1 - 0.5]); % Find the impulse response

» sf =0.25*% sum(abs(h)) % Determine the sum of absolute
values of h(k)

sf=1

Hence, we do not need to perform input scaling. However, we need to scale down
all the coefficients to use the Q-15 format. A factor of C = 4 is selected. From
Figure 8.16, we get the difference equations as:

xs(m) = x(n)
ys(n) = 0.5x,(n) + 0125y, (n — 1)
yi(n) = 4y (n)
y(n) = y(n).
We can develop these equations directly. First, we divide the original difference
equation by a factor of 4 to scale down all the coefficients to be less than 1, that is,
1 1 1
—ye(n) = — X 2x.(n)+ —X0.5y:(n—1),
L p(n) = 7 X 2x(n) + 5 X 0.5yp(n =)
and define a scaled output:

:
szzﬁ®-

Finally, substituting y,(n) to the left side of the scaled equation and rescaling up the
filter output as y{n) = 4y,(n) we have the same results we got before.

The fixed-point implementation for the direct form II is more complicated. The developed
direct-form II implementation of the IIR filter is illustrated in Figure 8.17.

As shown in Figure 8.17, two scale factors A and B are designated to scale denominator
coefficients and numerator coefficients to their Q-format representations, respectively. Here
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Figure 8.17: Direct-form Il implementation of the IIR filter

S is a special factor to scale down the input sample so that the numerical overflow in the first
sum in Figure 8.17 can be prevented. The difference equations are listed here:

whn) =xmn)—awmn —1) —awmn —2)— - —a,whn — M)
y@m) =bwmn)+bwn—1+--+b,wn—M).

The first equation is scaled down by the factor A to ensure that all the denominator
coefficients are less than 1, that is,

w. (n) =

wn) =

Similarly, scaling the second equation yields:

1 1 1 1
y,(n) = Ey(n) = Ebow(n) + Eblw(n D+ + Ewa(n - M)

and
y(n) = B Xy (n)
To avoid the first adder overflow (first equation), the scale factor S can be safely determined
by Eq. (8.3):
S=1_(

max

h(O)| + |h(D)| + [A2)] + -+, 8.3)
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where h(k) is the impulse response of the filter whose transfer function is the reciprocal of the
denominator polynomial, where the poles can cause a larger value to the first sum:

1
l+az '+ +a™/|

hn) = 27 (8.4)

All the scale factors A, B, and S are usually chosen to be a power of 2, respectively, so
that the shift operations can be used in the coding process. Example 8.15 serves for
illustration.

The implementation for cascading the second-order section filters can be found in Ifeachor
and Jervis (2002).

A practical example will be presented in the next section. Note that if a floating-point DS
processor is used, all the scaling concerns should be ignored, since the floating-point format
offers a large dynamic range, so that overflow hardly ever happens.

Example 8.15

Given the following IIR filter:
y(n) = 0.75x(n) + 1.49x(n — 1) + 0.75x(n —2) —1.52y(n — 1) — 0.64 y(n — 2),
with a passband gain of 1 and a full range of input,

a. Use the direct-form Il implementation to develop the DSP implementation
equations in the Q-15 fixed-point system.

Solution
a. The difference equations without scaling in the direct-form Il implementation are
given by:
w(n) = x(n) — 1.52w(n — 1) — 0.64w(n — 2)
y(n) = 0.75w(n) + 1.49w(n — 1) + 0.75w(n — 2).
To prevent overflow in the first adder, we have the reciprocal of the denominator
polynomial as:
1

141522 '+ 06472

A(2)
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Using the MATLAB function leads to:

» h = impz (1, [1 1:52 0.64]);
» sf = sum(abs (h))

sf = 10.4093.

We choose the S factor as S = 16 and we choose A = 2 to scale down the denominator
coefficients by half. Since the second adder output after scaling is:

0.75 1.49 0.75
n) = ——w(n)+ —wn—1)+ —w(n— 2),
yoln) = =) + =Zw(n =)+ = Zw(n =)

we have to ensure that each coefficient is less than 1, as well as the sum of the absolute
values:

0.75 + 1.49 + 0.75 -
B B B

1

to avoid second adder overflow. Hence B = 4 is selected. We develop the DSP
equations as:

x(n)/16
0.5x,(n) — 0.76w(n — 1) — 0.32w(n — 2)

¥, 0.1875w(n) + 0.3725w(n — 1) + 0.1875w(n — 2)
y(n) = (B X S)y (n) = 64y,(n)

8.6 Digital Signal Processing Programming Examples

In this section, we first review the TMS320C67x DSK (DSP Starter Kit), which offers
floating-point and fixed-point arithmetic. We will then investigate real-time implementation of
digital filters.

8.6.1 Overview of TMS320C67x DSK

In this section, a Texas Instruments TMS320C67x DSK is chosen for demonstration in Figure
8.18. This DSK board (Kehtarnavaz and Simsek, 2001; Texas Instruments, 1998) consists of
the TMS320C67x chip, SDRAM (synchronous dynamic random access memory) and ROM
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Figure 8.18: C6711 DSK board

for storing program code and data, and an ADC535 chip performing 16-bit ADC and DAC
operations. The gain of the ADC channel is programmable to provide microphone or other
line inputs, such as from the function generator or other sensors. The DAC channel is also
programmable to deliver the power gain to drive a speaker or other devices. The ADC535
chip sets a fixed sampling rate of 8 kHz for speech applications. The on-board daughter card
connections facilitate the external units for advanced applications. For example, a daughter
card designed using PCM3001/3 offers a variable high sampling rate, such as 44.1kHz, and
its own programmable ADC and DAC for CD-quality audio applications. The parallel port is
used for connection between the DSK board and the host computer, where the user program
is developed, compiled, and downloaded to the DSK for real-time applications using the user-
friendly software called the Code Composer Studio, which we shall discuss later.

The TMS320C67x operates at a high clock rate of 300 MHz. Combining with high speed and
multiple units operating at the same time has pushed its performance up to 2,400 MIPS at
300 MHz. Using this number, the C67x can handle 0.3 MIPS between two speech samples at
a sampling rate of 8 kHz and can handle over 54,000 instructions between two audio samples
with a sampling rate of 44.1 kHz. Hence, the C67x offers great flexibility for real-time
applications with a high-level C language.

Figure 8.19 shows a C67x architecture overview, while Figure 8.20 displays a more detailed
block diagram. C67x contains three main parts, which are the CPU, the memories, and
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Figure 8.19: Block diagram of TMS320C67x floating-point DSP

the peripherals. As shown in Figure 8.19, these three main parts are joined by an external
memory interface (EMIF) interconnected by internal buses to facilitate interface with
common memory devices; DMA; a serial port; and a host port interface (HPI).

Since this section is devoted to showing DSP coding examples, C67x key features and
references are briefly listed here:

1. Architecture: The system uses Texas Instruments Veloci  architecture, which is an
enhancement of the VLIW (very long instruction word architecture) (Dahnoun, 2000;
Ifeachor and Jervis, 2002; Kehtarnavaz and Simsek, 2000).

CPU: As shown in Figure 8.20, the CPU has eight functional units divided into two sides
A and B, each consisting of units .D, .M, .L, and .S. For each side, an .M unit is used for
multiplication operations, an .L unit is used for logical and arithmetic operations, and a
.D unit is used for loading/storing and arithmetic operations. Each side of the C67x CPU
has sixteen 32-bit registers that the CPU must go through for interface. More detail can
be found in Kehtarnavaz and Simsek (2000) and Texas Instruments (1998).

Memory and internal buses: Memory space is divided into internal program memory,
internal data memory, and internal peripheral and external memory space. The internal
buses include a 32-bit program address bus, a 256-bit program data bus to carry out eight
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Program cache/program memory
32-bit address 256-bit data
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Figure 8.20: Registers of the TMS320C67x floating-point DSP

32-bit instructions (VLIW), two 32-bit data address buses, two 64-bit load data buses,
two 64-bit store data buses, two 32-bit DMA buses, and two 32-bit DMA address buses
responsible for reading and writing. There also exist a 22-bit address bus and a 32-bit data
bus for accessing off-chip or external memory.

Peripherals:

« EMIF, which provides the required timing for accessing external memory.

o DMA, which moves data from one memory location to another without interfering
with the CPU operations.

o Multichannel buffered serial port (McBSP) with a high-speed multichannel serial
communication link.

« HPI, which lets a host access internal memory.

« Boot loader for loading code from off-chip memory or the HPI to internal memory.
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e Timers (two 32-bit counters).

o Power-down units for saving power for periods when the CPU is inactive.

The software tool for the C67x is the Code Composer Studio (CCS) provided by TIL. It allows
the user to build and debug programs from a user-friendly graphical user interface (GUI) and
extends the capabilities of code development tools to include real-time analysis. Installation,
tutorial, coding, and debugging can be found in the CCS Getting Started Guide (Texas
Instruments, 2001) and in Kehtarnavaz and Simsek (2000).

8.6.2 Concept of Real-Time Processing

We illustrate real-time implementation in Figure 8.21, where the sampling rate is 8,000
samples per second; that is, the sampling period 7 = 1/f; = 125 microseconds, which is the
time between two samples.

As shown in Figure 8.21, the required timing includes an input sample clock and an output
sample clock. The input sample clock maintains the accuracy of sampling time for each ADC
operation, while the output sample clock keeps the accuracy of time instant for each DAC
operation. Time between the input sample clock # and the output sample clock n consists

of the ADC operation, algorithm processing, and the wait for the next ADC operation.

The numbers of instructions for ADC and DSP algorithms must be estimated and verified

to ensure that all instructions have been completed before the DAC begins. Similarly, the
number of instructions for DAC must be verified so that DAC instructions will be finished

A T=125us A T=125us A
R R ERERREEEREEE Bid )
A T=125us A T=125us . . T=125ps :©
>
5o r 5o
S I = )
EQX E 2l 29X E ®E| o
X ¢ E ;3 S < c € ;, S
0 2E £ 2 8 = £ 9:
Qg5 = . ©5 =
L o (L} (=)
“go> = © 82 =
o o
Input sample n : Input sample n + 1 : Input sample n + 2
Output sample n Output sample n + 1

Figure 8.21: Concept of real-time processing
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between the output sample clock n and the next input sample clock n+ 1. Timing usually is
set up using the DSP interrupts (we will not pursue the interrupt setup here).

Next, we focus on the implementation of the DSP algorithm in the floating-point system for
simplicity.

8.6.3 Linear Buffering

During DSP such as digital filtering, past inputs and past outputs are required to be buffered and
updated for processing the next input sample. Let us first study the FIR filter implementation.

8.6.3.1 Finite Impulse Response Filtering
Consider implementation for the following 3-tap FIR filter:

y(n) = 0.5x(n) + 02x(n — 1) + 0.5x(n — 2).

The buffer requirements are shown in Figure 8.22. The coefficient buffer b[3] contains

3 FIR coefficients, and the coefficient buffer is fixed during the process. The input buffer
x[3], which holds the current and past inputs, is required to be updated. The FIFO update

is adopted here with the segment of codes shown in Figure 8.22. For each input sample,

we update the input buffer using FIFO, which begins at the end of the data buffer; the

oldest sampled is kicked out first from the buffer and updated with the value from the upper
location. When the FIFO completes, the first memory location x[0] will be free to be used to
store the current input sample. The segment of code in Figure 8.22 explains implementation.

Note that in the code segment, x[0] holds the current input sample x(n), while b[0] is the
corresponding coefficient; x[1] and x[2] hold the past input samples x(rn — 1) and x(n — 2),
respectively; similarly, b[1] and b[2] are the corresponding coefficients.

Again, note that using the array and loop structures in the code segment is for simplicity

in notations and assumes that the reader is not familiar with the C pointers in C-language.
This concern for simplicity has to do mainly with the DSP algorithm. More coding
efficiency can be achieved using the C pointers and circular buffer. The DSP-oriented coding
implementation can be found in Kehtarnavaz and Simsek (2000).

8.6.3.2 Infinite Impulse Response Filtering

Similarly, we can implement an IIR filter. It requires an input buffer, which holds the
current and past inputs; an output buffer, which holds the past outputs; a numerator
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Update of input
buffer x[3] (FIFO)
new input x(n)

Coefficient buffer b[3]
b[0] 0.5 x[0] x(n)ﬁ

b[1] 0.2 X1 | x(n—1) %
b[2] 0.5 X2 | x(n—2)

Free for new sample

First step
Kicked out

volatile int sample;
float x[3]={0.0, 0.0, 0.0};
float b[3]={0.5, 0.2, 0.5};
float y[1]={0.0};
interrupt void AtoD()
{
int i;
sample = mcbsp0 read(); /*ADC*/
for(i=2; i >0; i--)/" Update the input buffer x[3] ¥/
{
x[i] =x[i-1];
}
x[0]=(float) sample;
y[0]=0;
for(i=0; i<3; i++)
{
y[0] =y[0] +b[i]*x[i];
}
sample = (int) y[0]; /* The processed sample will be sent to DAC ¥

Figure 8.22: Example of FIR filtering with linear buffer update

coefficient buffer; and a denominator coefficient buffer. Considering the following IIR filter
for implementation,

y(m) = 05x(n) +0.7x(n — 1) — 0.5x(n —2) — 04y(n — 1) + 0.6y(n — 2),

we accommodate the numerator coefficient buffer b[3], the denominator coefficient buffer
a[3], the input buffer x[3], and the output buffer y[3] shown in Figure 8.23. The buffer
updates for input x[3] and output y[3] are FIFO. The implementation is illustrated in the
segment of code listed in Figure 8.23.
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Coefficients b[3] Coefficients a[3]
b[0] 0.5 a[0] 1
b[1] 0.7 a[1] 0.4
b[2] -0.5 a[2] -0.6

Update of input
Update of output

buffer x[3] (FIFO)
new input () buffer y[3] (FIFO)

x[0] x(n) ) Free for new sample y[0] y(n) ) Free for output sample
X1 x(n-1) ) yi11| y(n—1) )
x2] | x(n-2) yl2l| y(n—-2)
) First step ) First step
Kicked out Kicked out

volatile int sample;
float b[3]={0.5, 0.7, —0.5};
float a[3]={1, 0.4, —0.6}
float x[3]1={0.0, 0.0, 0.0
float y[3]={0.0, 0.0, 0.0
interrupt void AtoD()
{

inti;

sample=mcbsp0 read(); /° ADC */

for(i=2; i>0; i--) /® Update the input buffer */

{

x[i] =x[1-1];

}

x[0]= (float) sample;

for (i=2;1i>0;1i--) /" Update the output buffer */

{

ylil=yl[i-1];

}

y[0] =b[0]*x[0] +b[1]*x[1] +b[2]"x[2]-a[l]*y[1]-a[2]"y[2];

sample= (int) y[0]; /* the processed sample will be sent to DAC */

| &
}.

r

Figure 8.23: Example of IIR filtering using linear buffer update

Again, note that in the code segment, x[0] holds the current input sample, while y[0] holds the
current processed output, which will be sent to the DAC unit for conversion. The coefficient
a[0] is never modified in the code. We keep that for a purpose of notation simplicity and
consistency during the programming process.

www.newnespress.com
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8.6.3.3 Digital Oscillation with Infinite Impulse Response Filtering

The principle for generating digital oscillation is where the input to the digital filter is the
impulse sequence, and the transfer function is obtained by applying the z-transform of the
digital sinusoidal function. Applications can be found in dual-tone multifrequency (DTMF)
tone generation, digital carrier generation for communications, and so on. Hence, we can
modify the implementation of IIR filtering for tone generation with the input generated
internally instead of by using the ADC channel.

Let us generate an 800 Hz tone with a digital amplitude of 5,000. The transfer function,
difference equation, and impulse input sequence are found to be, respectively,

0.587785z "
H(z) = S
1—1.618034z " + z
y(n) = 0.587785x(n — 1) + 1.618034y(n — 1) — y(n — 2)
x(n) = 50006(n).

We define the numerator coefficient buffer b[2], the denominator coefficient buffer a[3], the
input buffer x[2], and the output buffer y[3], shown in Figure 8.24, which also shows the
modified implementation for the tone generation.

Initially, we set x[0] = 5000. Then it will be updated with x[0] = O for each current
processed output sample y[0].

8.6.4 Sample C Programs

8.6.4.1 Floating-Point Implementation Example

Real-time DSP implementation using the floating-point processor is easy to program. The
overflow problem hardly ever occurs. Therefore, we do not need to consider scaling factors,
as described in the last section. The code segment shown in Figure 8.25 demonstrates the
simplicity of coding the floating-point IIR filter using the direct-form I structure.

8.6.5 Fixed-Point Implementation Example

Where execution time is critical, fixed-point implementation is preferred in a floating-point
processor. We implement the following IIR filter with a unit passband gain in direct form II:

0.0201 — 0.0402z % + 0.0201z7*

H e

) = 21192 + 2.69522 7 — 1.69242 " + 0.64142"
wn) = x(n) + 2.1192w(n — 1) — 2.6952w(n — 2) + 1.6924w(n — 3) — 0.6414w (n — 4)
y(n) = 0.0201w (1) — 0.0402w(n — 2) + 0.0201w (1 — 4).
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Coefficients b[2] Coefficients a[3]
b[0] 0.0 a[0] 1.0
b[1]| 0.587785 a[1] [~1.618034
a[2] 1.0

Update of input

buffer x[2] Update of output
(FIFO) new input x(n)=0 buffer y[3] (FIFO)
x[0] 500(? Free for new sample y[0] y(n) ) Free for output sample
X1 x(n—1) ) y[1I| y(n—1)
First step )
Kicked out yl2]| y(n=2)
) First step

Kicked out

volatile int sample;
float b[2]= {0.0,0.587785};
float a[3]={1, —1.618034,1};
float x[2]= {5000, 0.0}; /"Set up the input as an impulse function */
float y[3]={0.0, 0.0, 0.0};
interrupt void AtoD()
{
int i;
sample = mcbsp0 read(); /"ADC*/
y[0] =b[0]*x[0] +b[1l]*x([1]-a[l]l*y[1l]-a[2]*y([2];
sample= (int) y[0]; /*The processed sample will be sent to DAC */
for{i=1; i >0; i--) /"Update the input buffer */
{
x[i] =x[i-1];
1
x[0] =0;
for(i=2>0;i--)/* Update the output buffer */
{
yli] =yli-1];
1

Figure 8.24: Example of IIR filtering using linear buffer update and the impulse sequence input

Using MATLAB to calculate the scale factor S, it follows that:

> h = impz([1],[1 - 2.1192 2.6952 — 1.6924 0.6414]);
>> sf = sum(abs(h))
sf = 28.2196

www.newnespress.com
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volatile int sample;

float a[5]={1.00,—-2.1192, 2.6952,—1.6924, 0.6414};

float b[5]={0.0201,0.00,—0.0402, 0.00, 0.0201};

float x[5]={0.0, 0.0, 0.0, 0.0, 0.0};

float y[5]={0.0, 0.0, 0.0, 0.0, 0.0};
/******************************************************************/
/*AtoD () Interrupt Service Routine (ISR)->interrupt 12 defined in IST
of vectors.asm (read McBSP) */

/******************************************************************/
interrupt void AtoD ()
{
int i;
float temp, sum;
sample = mcbsp0_read () ;/"ADC*/
//Insert DSP Algorithm Here ()
temp = (float) sample;
for(i=4; i>0; 1i--)
{
x[i]l=x[i—-1];
}
x[0] =temp;
for(i=4; 1i>0; i--)
{
ylil=yli—-11;
1

sum=b[0]"x[0] +b[1]"x[1]1+b[2]"x[2] +b[3]1"x[3] +b[4]"x[4] —a[1]"y[1]—al2]"
yl21—-al3]"y[3]—al4l'y[4];

y [0] = sum;

sample = sum;
/******************************************************************/
/*DtoA () Interrupt Service Routine (ISR)->interrupt 11 defined in IST

of vectors.asm (write to McBSP)*/
/******************************************************************/
interrupt void DtoA ()

sample = sample & Oxfffe; /“set LSB to 0 for primary communication®/
mcbsp0_write (sample); /*DAC™/

}

Figure 8.25: Sample C code for IIR filtering (float-point implementation)

www.newnespress.com
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Table 8.4: Filter coefficients in Q-15 format

IIR Filter Filter Coefficients Q-15 Format (Hex)
—a 0.5298 0x43D0

—ay —0.6738 0xA9C1

—as 0.4230 0x3628

—dy —0.16035 OxEB7A

b 0.0201 0 X 0293

by 0.0000 0 X 0000

b, —0.0402 0 X FADB

b, 0.0000 0 X 000

by 0.0201 0 X 0293

Hence we choose S = 32. To scale the filter coefficients in the Q-15 format, we use the
factors A = 4 and B = 1. Then the developed DSP equations are:

x,(n) = x(n)/32

w (n) = 0.25x (n) + 0.5298w (n — 1) — 0.6738w (n — 2) + 0.4231w (n — 3)
+ 0.4231w (n — 3) + 0.16035w (n — 4)

w(n) = 4w (n)

v, (n) = 0.0201w(n) — 0.0402w(n — 2) + 0.0201w(n — 4)

y(n) = 32y .(n).

We can convert filter coefficients into the Q-15 format; each coefficient is listed in Table 8.4.

The list of codes for the fixed-point implementation is displayed in Figure 8.26, and some
coding notations are given in Figure 8.27.

8.7 Summary

1. The von Neumann architecture consists of a single, shared memory for programs and
data, a single bus for memory access, an arithmetic unit, and a program control unit. The
von Neumann processor operates fetching and execution cycles in series.

2. The Harvard architecture has two separate memory spaces dedicated to program code and
to data, respectively, two corresponding address buses, and two data buses for accessing
two memory spaces. The Harvard processor offers fetching and execution cycles in
parallel.
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volatile in tsample;

/“float a[5]={1.00,-2.1192,2.6952,—-1.6924,0.6414};
float b[5]={0.0201,0.00,-0.0402,0.00,0.0201}; */
short al[5]={0X2000,0X43D0,0XA9C1,0X 3628,0XEB7A};/ coefficients in Q-15 forme
short b[5] ={0 X 0293,0 X 0000,0 X FADB,0 X 0000,0 X 0293};
int w[5]={0,0,0,0,0};

interrupt void AtoD()

{int 1i,sum=0;

sample = mcbsp0_read () ; /“ADC "/

//Insert DSP Algorithm Here ()

sample = (sample<<16) ;/ “Move to high 16 bits™/

sample = (sample>>>5) ;/“Scaled down by 32 to avoid overflow”/
for(i=4;1i>0;1i--)

{

wlil=wli—1];

1

sum = (sample>>>2) ;/"Scaled down by 4 to use Q—157/
for(i=1;i<5; i++)

{

sum + = ( mpyhl(w[i], ali])) <<1;

1

sum = (sum<<2); /“scaled up by 47/

w[0] = sum;

sum = 0;

for(i=0;1i<5;1i++)

{

sum + = (_mpyhl(w[i], b[i])) <<1;

1

sum = (sum<<5); /“Scaled up by 32 to get y(n) ¥/
sample = sum>>16) ; /"Move to low 16 bits™/

}

*
stttk skt skt skt skt skt skt skt sk ok sk stk sk stk sk stk sk ok skt sk skt sk sk stk skt sk stk sktokskt ok /)

/*DtoA () Interrupt Service Routine (ISR) —>interrupt 11 defined in IST of
vectors.asm(write to McBSP) ¥/

N
J D D L D I,

interrupt void DtoA ()

{

sample = sample & Oxfffe; /“set LSB to 0 for primary communication®/
mcbsp0_write (sample) ;/ “DAC™/

}

Figure 8.26: Sample C code for lIR filtering (fixed-point implementation)

www.newnespress.com
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short coefficient;  declaration of 16 bit signed integer

int sample, result; declaration of 32 bit signed integer

MPYHL assembly instruction (signed multiply high low 16 MSB X16 LSB)
result = (_mpyhl(sample, coefficient) ) <<1;

sample must be shifted left by 16 bits to be stored in the high 16 MSB.

coefficient is the 16 bit data to be stored in the low 16 LSB.

result is shifted left by one bit to get rid of the extended sign bit, and high 16

MSB’s are designated for the processed data.

Final result will be shifted down to right by 16 bits before DAC conversion.

sample = (result>>16);

Figure 8.27: Some coding notations for the Q-15 fixed-point implementation

The DSP special hardware units include an MAC dedicated to DSP filtering operations, a
shifter unit for scaling, and address generators for circular buffering.

The fixed-point DS processor uses integer arithmetic. The data format Q-15 for the fixed-
point system is preferred to avoid overflows.

The floating-point processor uses floating-point arithmetic. The standard floating-point
formats include the IEEE single precision and double precision formats.

The architectures and features of fixed-point processors and floating-point processors
were briefly reviewed.

Implementing digital filters in the fixed-point DSP system requires scaling filter
coefficients so that the filters are in Q-15 format, and input scaling for the adder so that
overflow during the MAC operations can be avoided.

The floating-point processor is easy to code using floating-point arithmetic and develops
the prototype quickly. However, it is not efficient in terms of the number of instructions it
has to complete compared with the fixed-point processor.

The fixed-point processor using fixed-point arithmetic takes much effort to code. But it
offers the least number of instructions for the CPU to execute.
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Code Optimization and Resource
Partitioning

David Katz
Rick Gentile

DSP is all about algorithms. These algorithms place heavy burdens on systems that often have
limited cost and power budgets. Thus, DSP code usually requires heavy optimization and careful
use of memory and other resources. In the early days of DSP, there was only one way to meet
these goals: Use DMA to bring data into internal SRAM (caches were rare) and then process it
in hand-coded assembly (many early DSPs only had an assembler!).

Today, DSP algorithms are implemented on many different classes of hardware, often with
caches and multiple processing cores. You can program in high-level languages like C, low-
level assembly, or a mixture of both. This presents developers with a much more complex set of
decisions.

In this chapter, David Katz and Rick Gentile show the modern programmer how to manage
code optimization and system resource partitioning. Katz and Gentile do a good job exploring
the topic, and bring up important issues that every DSP programmer should understand. This
chapter focuses on the Blackfin processor from Analog Devices, but their ideas apply to most
processors used for DSP.

The chapter starts with a look at event handling and generation. These are hugely important
topics because most DSP systems require fast real-time responses. Katz and Gentile then show
how to choose between C/C++, assembly, or a mixture of both. With this out of the way, they
present guidelines for efficient programming, including tips on helping compilers produce
efficient code. Finally, they go into some detail on memory management. They show when to use
cache over DMA (and vice versa), how to use a memory management unit (MMU), and they
review the physics of data movement. This last point is important, because data movement can
create major bottlenecks and can boost system power significantly.

There’s a lot to digest in this chapter, but it is all crucial information. Woe to any developer who
starts coding without a firm grasp of these concepts!
—Kenton Williston
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9.1 Introduction

In an ideal situation, we can select an embedded processor for our application that provides
maximum performance for minimum extra development effort. In this utopian environment,
we could code everything in a high-level language like C, we wouldn’t need an intimate
knowledge of our chosen device, it wouldn’t matter where we placed our data and code, we
wouldn’t need to devise any data movement subsystem, the performance of external devices
wouldn’t matter... In short, everything would just work.

Alas, this is only the stuff of dreams and marketing presentations. The reality is, as embedded
processors evolve in performance and flexibility, their complexity also increases. Depending

on the time-to-market for your application, you will have to walk a fine line to reach your
performance targets. The key is to find the right balance between getting the application to
work and achieving optimum performance. Knowing when the performance is “good enough”
rather than optimal can mean getting your product out on time versus missing a market window.

In this chapter, we want to explain some important aspects of processor architectures that can
make a real difference in designing a successful multimedia system. Once you understand the
basic mechanics of how the various architectural sections behave, you will be able to gauge
where to focus your efforts, rather than embark on the noble yet unwieldy goal of becoming
an expert on all aspects of your chosen processor.

Here, we’ll explore in detail some Blackfin processor architectural constructs. Again, keep
in mind that much of our discussion generalizes to other processor families from different
vendors as well.

We will begin with what should be key focal points in any complex application: interrupt and
exception handling and response times.

9.2 Event Generation and Handling

Nothing in an application should make you think “performance” more than event
management. If you have used a microprocessor, you know that “events” encompass two
categories: interrupts and exceptions. An interrupt is an event that happens asynchronous to
processor execution. For example, when a peripheral completes a transfer, it can generate an
interrupt to alert the processor that data is ready for processing.

Exceptions, on the other hand, occur synchronously to program execution. An exception
occurs based on the instruction about to be executed. The change of flow due to an exception
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occurs prior to the offending instruction actually being executed. Later in this chapter, we’ll
describe the most widely used exception handler in an embedded processor—the handler
that manages pages describing memory attributes. Now, however, we will focus on interrupts
rather than exceptions, because managing interrupts plays such a critical role in achieving
peak performance.

9.2.1 System Interrupts

System level interrupts (those that are generated by peripherals) are handled in two stages—
first in the system domain, and then in the core domain. Once the system interrupt controller
(SIC) acknowledges an interrupt request from a peripheral, it compares the peripheral’s
assigned priority to all current activity from other peripherals to decide when to service

this particular interrupt request. The most important peripherals in an application should be
mapped to the highest priority levels. In general, the highest-bandwidth peripherals need the
highest priority. One “exception” to this rule (pardon the pun!) is where an external processor
or supervisory circuit uses a nonmaskable interrupt (NMI) to indicate the occurrence of an
important event, such as powering down.

When the SIC is ready, it passes the interrupt request information to the core event controller
(CEC), which handles all types of events, not just interrupts. Every interrupt from the SIC
maps into a priority level at the CEC that regulates how to service interrupts with respect to
one another, as Figure 9.1 shows. The CEC checks the “vector” assignment for the current
interrupt request, to find the address of the appropriate interrupt service routine (ISR). Finally,
it loads this address into the processor’s execution pipeline to start executing the ISR.

There are two key interrupt-related questions you need to ask when building your system. The
first is, “How long does the processor take to respond to an interrupt?” The second is, “How
long can any given task afford to wait when an interrupt comes in?”

The answers to these questions will determine what your processor can actually perform
within an interrupt or exception handler.

For the purposes of this discussion, we define interrupt response time as the number of cycles
it takes from when the interrupt is generated at the source (including the time it takes for the
current instruction to finish executing) to the time that the first instruction is executed in the
interrupt service routine. In our experience, the most common method software engineers
use to evaluate this interval for themselves is to set up a programmable flag to generate an
interrupt when its pin is triggered by an externally generated pulse. The first instruction in
the interrupt service routine then performs a write to a different flag pin. The resulting time
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System interrupt source IVG # Core event source IVG# Core event name

RTC IVG7 Emulator 0 EMU
PPI IVG7 Reset 1 RST
Ethernet IVG7 Nonmaskable interrupt 2 NMI
SPORTO IVG8 ] Exceptions 3 EVSW
SPORTH vee || Reserved 4 -
SPIO IVG9 ] Hardware error 5 IVHW
SPI1 vao | | Core timer 6 IVTMR
UARTO IVG10 ] —»| General purpose 7 7 IVG7
UART1 IVG10 J »| General purpose 8 8 IVG8
TIMERO IVG11 ] »| General purpose 9 9 IVG9
TIMER1 IVG11 »| General purpose 10 10 IVG10
TIMER2 IVG11 J \—b General purpose 11 11 IVG11
GPIOA IVG12 ] ,—> General purpose 12 12 IVG12
GPIOB IVG12 J »| General purpose 13 13 IVG13
Memory DMA IVG13 ] »| General purpose 14 14 IVG14
Watchdog timer IVG13 J »| General purpose 15 15 IVG15
Software interrupt 1 IVG14

Software interrupt 2 IVG15 IVG = Interrupt Vector Group

Figure 9.1: Sample system-to-core interrupt mapping

difference is then measured on an oscilloscope. This method only provides a rough idea of
the time taken to service interrupts, including the time required to latch an interrupt at the
peripheral, propagate the interrupt through to the core, and then vector the core to the first
instruction in the interrupt service routine. Thus, it is important to run a benchmark that more
closely simulates the profile of your end application.

Once the processor is running code in an ISR, other higher priority interrupts are held off
until the return address associated with the current interrupt is saved off to the stack. This

is an important point, because even if you designate all other interrupt channels as higher
priority than the currently serviced interrupt, these other channels will all be held off until
you save the return address to the stack. The mechanism to re-enable interrupts kicks in
automatically when you save the return address. When you program in C, any register the
ISR uses will automatically be saved to the stack. Before exiting the ISR, the registers are
restored from the stack. This also happens automatically, but depending on where your stack
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is located and how many registers are involved, saving and restoring data to the stack can take
a significant amount of cycles.

Interrupt service routines often perform some type of processing. For example, when a line of
video data arrives into its destination buffer, the ISR might run code to filter or downsample
it. For this case, when the handler does the work, other interrupts are held off (provided that
nesting is disabled) until the processor services the current interrupt.

When an operating system or kernel is used, however, the most common technique is to
service the interrupt as soon as possible, release a semaphore, and perhaps make a call to

a callback function, which then does the actual processing. The semaphore in this context
provides a way to signal other tasks that it is okay to continue or to assume control over some
resource.

For example, we can allocate a semaphore to a routine in shared memory. To prevent more
than one task from accessing the routine, one task takes the semaphore while it is using the
routine, and the other task has to wait until the semaphore has been relinquished before it can
use the routine. A Callback Manager can optionally assist with this activity by allocating a
callback function to each interrupt. This adds a protocol layer on top of the lowest layer of
application code, but in turn it allows the processor to exit the ISR as soon as possible and
return to a lower-priority task. Once the ISR is exited, the intended processing can occur
without holding off new interrupts.

We already mentioned that a higher-priority interrupt can break into an existing ISR once you
save the return address to the stack. However, some processors (like Blackfin) also support
self-nesting of core interrupts, where an interrupt of one priority level can interrupt an ISR

of the same level, once the return address is saved. This feature can be useful for building a
simple scheduler or kernel that uses low-priority software-generated interrupts to preempt an
ISR and allow the processing of ongoing tasks.

There are two additional performance-related issues to consider when you plan out your
interrupt usage. The first is the placement of your ISR code. For interrupts that run most
frequently, every attempt should be made to locate these in L1 instruction memory.

On Blackfin processors, this strategy allows single-cycle access time. Moreover, if the
processor were in the midst of a multi-cycle fetch from external memory, the fetch would be
interrupted, and the processor would vector to the ISR code.

Keep in mind that before you re-enable higher priority interrupts, you have to save more than
just the return address to the stack. Any register used inside the current ISR must also be
saved. This is one reason why the stack should be located in the fastest available memory in
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your system. An L1 “scratchpad” memory bank, usually smaller in size than the other L1 data
banks, can be used to hold the stack. This allows the fastest context switching when taking an
interrupt.

9.3 Programming Methodology

It’s nice not to have to be an expert in your chosen processor, but even if you program in a
high-level language, it’s important to understand certain things about the architecture for
which you’re writing code.

One mandatory task when undertaking a signal-processing-intensive project is deciding what
kind of programming methodology to use. The choice is usually between assembly language
and a high-level language (HLL) like C or C+ +. This decision revolves around many factors,
so it’s important to understand the benefits and drawbacks each approach entails.

The obvious benefits of C/C+ + include modularity, portability and reusability. Not only

do the majority of embedded programmers have experience with one of these high-level
languages, but also a huge code base exists that can be ported from an existing processor
domain to a new processor in a relatively straightforward manner. Because assembly language
is architecture-specific, reuse is typically restricted to devices in the same processor family.
Also, within a development team it is often desirable to have various teams coding different
system modules, and an HLL allows these cross-functional teams to be processor-agnostic.

One reason assembly has been difficult to program is its focus on actual data flow between
the processor register sets, computational units and memories. In C/C+ +, this manipulation
occurs at a much more abstract level through the use of variables and function/procedure
calls, making the code easier to follow and maintain.

The C/C+ + compilers available today are quite resourceful, and they do a great job of
compiling the HLL code into tight assembly code. One common mistake happens when
programmers try to “outsmart” the compiler. In trying to make it easier for the compiler, they
in fact make things more difficult! It’s often best to just let the optimizing compiler do its
job. However, the fact remains that compiler performance is tuned to a specific set of features
that the tool developer considered most important. Therefore, it cannot exceed handcrafted
assembly code performance in all situations.

The bottom line is that developers use assembly language only when it is necessary to
optimize important processing-intensive code blocks for efficient execution. Compiler
features can do a very good job, but nothing beats thoughtful, direct control of your
application data flow and computation.
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9.4 Architectural Features for Efficient Programming

In order to achieve high performance media processing capability, you must understand the
types of core processor structures that can help optimize performance. These include the
following capabilities:

«  Multiple operations per cycle

o Hardware loop constructs

o Specialized addressing modes

o Interlocked instruction pipelines

These features can make an enormous difference in computational efficiency. Let’s discuss
each one in turn.

9.4.1 Multiple Operations per Cycle

Processors are often benchmarked by how many millions of instructions they can execute

per second (MIPS). However, for today’s processors, this can be misleading because of the
confusion surrounding what actually constitutes an instruction. For example, multi-issue
instructions, which were once reserved for use in higher-cost parallel processors, are now also
available in low-cost, fixed-point processors. In addition to performing multiple ALU/MAC
operations each core processor cycle, additional data loads and stores can be completed in the
same cycle. This type of construct has obvious advantages in code density and execution time.

An example of a Blackfin multi-operation instruction is shown in Figure 9.2. In addition
to two separate MAC operations, a data fetch and data store (or two data fetches) can also
be accomplished in the same processor clock cycle. Correspondingly, each address can be
updated in the same cycle that all of the other activities are occurring.

9.4.2 Hardware Loop Constructs

Looping is a critical feature in real-time processing algorithms. There are two key looping-
related features that can improve performance on a wide variety of algorithms: zero-overhead
hardware loops and hardware loop buffers.

Zero-overhead loops allow programmers to initialize loops simply by setting up a count value
and defining the loop bounds. The processor will continue to execute this loop until the count
has been reached. In contrast, a software implementation would add overhead that would cut
into the real-time processing budget.
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Instruction:
R1.H = (A1+= R0.H*R2.H), R1.L = (A0 += RO.L*R2.L) || R2 = [I0--] || [1 ++] = R1;

R1.H = (A1 += R0.H*R2.H), R1.L = (A0 += R0.L*R2.L)
e Multiply RO.H*R2.H, accumulate to A1, store to R1.H
¢ Multiply RO.L*R2.L, accumulate to AO, store to R1.L

[M++]=R1
* Store two registers R1.H and R1.L
to memory for use in next instruction

RO.H RO.L ¢ Increment pointer register |1 by 4 bytes  Memory

é E') » A1 | | |14;
R1H | Ri1L

| e —

R2.H | R2.L '04

li
R2 = [10-]

e Load two 16-bit registers R2.H and R2.L from
memory for use in next instruction
* Decrement pointer register 10 by 4 bytes

Figure 9.2: Example of single-cycle, multi-issue instruction

Many processors offer zero-overhead loops, but hardware loop buffers, which are less
common, can really add increased performance in looping constructs. They act as a kind of
cache for instructions being executed in the loop. For example, after the first time through a
loop, the instructions can be kept in the loop buffer, eliminating the need to re-fetch the same
code each time through the loop. This can produce a significant savings in cycles by keeping
several loop instructions in a buffer where they can be accessed in a single cycle. The use of
the hardware loop construct comes at no cost to the HLL programmer, since the compiler
should automatically use hardware looping instead of conditional jumps.

Let’s look at some examples to illustrate the concepts we’ve just discussed.

9.4.3 Specialized Addressing Modes

9.4.3.1 Byte Addressability

Allowing the processor to access multiple data words in a single cycle requires substantial
flexibility in address generation. In addition to the more signal-processing-centric access sizes
along 16-and 32-bit boundaries, byte addressing is required for the most efficient processing.
This is important for multimedia processing because many video-based systems operate on



Code Optimization and Resource Partitioning 387

Example 9.1 Dot Product

The dot product, or scalar product, is an operation useful in measuring orthogonality
of two vectors. It’s also a fundamental operator in digital filter computations. Most C
programmers should be familiar with the following implementation of a dot product:

short dot (const short a[],const short b[],int size) {

/* Note: It is important to declare the input buffer arrays as const, because this gives
the compiler a guarantee that neither “a” nor “b” will be modified by the function. */
int i;
int output=0;

for(i=0; i<size; it++) {
output += (ali]l * b[i]);

}

return output;

}
Below is the main portion of the equivalent assembly code:

/* PO=Loop Count, Pl & I0 hold starting addresses of a & Db
arrays */

Al1=A0=0; /* A0 & Al are accumulators */

LSETUP (loopl, loopl) LCO=PO ; /* Set up hardware loop
starting and ending at label loopl */

loopl: A1 += R1.H * RO.H , A0 += R1.L * RO.L || R1=[ P1 ++ ]
|| RO=[ I0 ++ 1 ;

The following points illustrate how a processor’s architectural features can facilitate this
tight coding.

Hardware loop buffers and loop counters eliminate the need for a jump instruction at the
end of each iteration. Since a dot product is a summation of products, it is implemented
in a loop. Some processors use a JUMP instruction at the end of each iteration in order to
process the next iteration of the loop. This contrasts with the assembly program above,
which shows the LSETUP instruction as the only instruction needed to implement a loop.

Multi-issue instructions allow computation and two data accesses with pointer
updates in the same cycle. In each iteration, the values a[i] and b[i] must be read, then
multiplied, and finally written back to the running summation in the variable output. On
many microcontroller platforms, this effectively amounts to four instructions. The last
line of the assembly code shows that all of these operations can be executed in one cycle.

Parallel ALU operations allow two 16-bit instructions to be executed simultaneously. The
assembly code shows two accumulator units (A0 and A1) used in each iteration. This
reduces the number of iterations by 50%, effectively halving the original execution time.
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8-bit data. When memory accesses are restricted to a single boundary, the processor may
spend extra cycles to mask off relevant bits.

9.4.3.2 Circular Buffering

Another beneficial addressing capability is circular buffering. For maximum efficiency, this
feature must be supported directly by the processor, with no special management overhead.
Circular buffering allows a programmer to define buffers in memory and stride through them
automatically. Once the buffer is set up, no special software interaction is required to navigate
through the data. The address generator handles nonunity strides and, more importantly,
handles the “wrap-around” feature illustrated in Figure 9.3. Without this automated address

Address
000 |0 00000001 m 0 X 00000001
0 X 04 | 0 X 00000002 »{ 0 00000002 m
008 |0 x 00000003 0 X 00000003
0x0C |0 x 00000004 0 X 00000004
0x 10 |0 X 00000005 m 0 X 00000005
0x 14 | 0 x 00000006 0 X 00000006 m
0 18 | 0 X 00000007 0 X 00000007
0x1C [0 x 00000008 0 X 00000008
0x20 |0 00000009 m- 0 X 00000009
0x24 [0 0000000A 0 X 0000000A
0% 28 |0 X 00000008 0 X 00000008

* Base address and starting index address = 0 X 0

* Index address register 10 points to address 0 X 0

* Buffer length L = 44 (11 data elements * 4 bytes/element)

* Modify register MO = 16 (4 elements * 4 bytes/element)

Sample code:

RO = [I0++M0]; // RO = 1 and |0 points to 0 X 10 after execution
R1 = [I0++M0]; //R1 = 5 and I0 points to 0 X 20 after execution
R2 = [I0++MO0]; // R2 =9 and I0 points to 0 X 04 after execution
R3 = [I0++M0]; // R3 = 2 and |0 points to 0 X 14 after execution
R4 = [10++MO0]; // R4 = 6 and |0 points to 0 X 24 after execution

Figure 9.3: Circular buffer in hardware
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generation, the programmer would have to manually keep track of buffer pointer positions,
thus wasting valuable processing cycles.

Many optimizing compilers will automatically use hardware circular buffering when they
encounter array addressing with a modulus operator.
9.4.3.3 Bit Reversal

An essential addressing mode for efficient signal-processing operations such as the FFT
and DCT is bit reversal. Just as the name implies, bit reversal involves reversing the bits

Example 9.2 Single-Sample FIR

The finite impulse response filter is a very common filter structure equivalent to the
convolution operator. A straightforward C implementation follows:

// sample the signal into a circular buffer
x[cur]= sampling_function () ;
cur = (cur+1)%TAPS; // advance cur pointer in circular fashion

// perform the multiply-addition
y = 0;
for (k=0; k<TAPS; k++) {

y += hlk] * x[(cur+k)3%TAPS];
}

The essential part of an FIR kernel written in assembly is shown below.

/* the samples are stored in the RO register, while the
coefficients are stored in the R1 register */

LSETUP (loop_begin, loop_end) LCO=P0; /* loop counter set to
traverse the filter */

loop_begin: A1+=R0O.H*R1.L, A0+=RO.L*R1.L || RO.L=[I0++] ;
/* perform MAC and fetch next data */
loop_end: Al1+=RO.L*R1.H, AO+=R0.H*R1.H || RO.H=[I0++] ||
R1=[I1++7];

/* perform MAC and fetch next data */

In the C code snippet, the % (modulus) operator provides a mechanism for circular
buffering. As shown in the assembly kernel, this modulus operator does not get
translated into an additional instruction inside the loop. Instead, the Data Address
Generator registers 10 and |1 are configured outside the loop to automatically wrap
around to the beginning upon hitting the buffer boundary.
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in a binary address. That is, the least significant bits are swapped in position with the most
significant bits. The data ordering required by a radix-2 butterfly is in “bit-reversed” order,
so bit-reversed indices are used to combine FFT stages. It is possible to calculate these bit-
reversed indices in software, but this is very inefficient. An example of bit reversal address
flow is shown in Figure 9.4.

Example 9.3 FFT

A fast Fourier transform is an integral part of many signal-processing algorithms. One
of its peculiarities is that if the input vector is in sequential time order, the output comes
out in bit-reversed order. Most traditional general-purpose processors require the
programmer to implement a separate routine to unscramble the bit-reversed output.
On a media processor, bit reversal is often designed into the addressing engine.

Allowing the hardware to automatically bit-reverse the output of an FFT algorithm
relieves the programmer from writing additional utilities, and thus improves
performance.

Input Bit-reversed
Address Lsg  Puffer buffer dress LSB
000 0 X 00000000 0 X 00000000 000
001 0 X 00000001 0 X 00000004 100
010 0 X 00000002 0 X 00000002 010
011 0 X 00000003 0 X 00000006 110
100 0 X 00000004 0 X 00000001 001
101 0 X 00000005 0 X 00000005 101
110 0 X 00000006 0 X 00000003 011
111 0 X 00000007 0 X 00000007 111
Sample code:

LSETUP (start, end) LCO = PO;

end: [I2++] = RO;

start: RO = [10] || 10 += MO (BREV);

//Loop count = 8
//'10 points to input buffer, automatically incremented in
//bit-reversed progression

//'12 points to bit-reversed buffer

Figure 9.4: Bit reversal in hardware
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Since bit reversal is very specific to algorithms like fast Fourier transforms and discrete
Fourier transforms, it is difficult for any HLL compiler to employ hardware bit reversal. For
this reason, comprehensive knowledge of the underlying architecture and assembly language
are key to fully utilizing this addressing mode.

9.4.4 Interlocked Instruction Pipelines

As processors increase in speed, it is necessary to add stages to the processing pipeline.
For instances where a high-level language is the sole programming language, the compiler
is responsible for dealing with instruction scheduling to maximize performance through
the pipeline. That said, the following information is important to understand even if you’re
programming in C.

On older processor architectures, pipelines are usually not interlocked. On these architectures,
executing certain combinations of neighboring instructions can yield incorrect results.
Interlocked pipelines like the one in Figure 9.5, on the other hand, make assembly

IF1-3: Instruction Fetch
DC: Decode
AC: Address Calculation
EX1-4: Execution
WB: Writeback
IF1 IF2 IF3 DC AC EX1 EX2 EX3 EX4 wB
1 Inst1
2 Inst2 Inst1
3 Inst3 Inst2 Inst1
g 4 Inst4 Inst3 Inst2 Inst1
i 5 Inst5 | Inst4 | Inst3 | Inst2 | Inst1
6 Branch | Inst5 Inst4 Inst3 Inst2 Inst1
7 Stall | Branch | Inst5 Inst4 Inst3 Inst2 Inst1
8 Stall Stall | Branch | Inst5 Inst4 Inst3 Inst2 Inst1
9 Stall Stall Stall | Branch | Inst5 Inst4 Inst3 Inst2 Inst1
v 10 Stall Stall Stall Stall | Branch | Inst5 Inst4 Inst3 Inst2 Inst1

Figure 9.5: Example of interlocked pipeline architecture with stalls inserted
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programming (as well as the life of compiler engineers) easier by automatically inserting
stalls when necessary. This prevents the assembly programmer from scheduling instructions
in a way that will produce inaccurate results. It should be noted that, even if the pipeline

is interlocked, instruction rearrangement can still yield optimization improvements by
eliminating unnecessary stalls.

Let’s take a look at stalls in more detail. Stalls will show up for one of four reasons:

1.

The instruction in question may itself take more than one cycle to execute. When this

is the case, there isn’t anything you can do to eliminate the stall. For example, a 32-bit
integer multiply might take three core-clock cycles to execute on a 16-bit processor. This
will cause a “bubble” in two pipeline stages for a three-cycle instruction.

2. The second case involves the location of one instruction in the pipeline with respect to an

instruction that follows it. For example, in some instructions, a stall may exist because
the result of the first instruction is used as an operand of the following instruction. When
this happens and you are programming in assembly, it is often possible to move the
instruction so that the stall is not in the critical path of execution.

Here are some simple examples on Blackfin processors that demonstrate these concepts.

Register Transfer/Multiply latencies (One stall, due to RO being used in the multiply):

RO=R4; /* load RO with contents of R4 */
<STALL>
R2.H=R1.L * RO.H; /* RO is used as an operand */

In this example, any instruction that does not change the value of the operands can be
placed in-between the two instructions to hide the stall.

When we load a pointer register and try to use the content in the next instruction, there
is a latency of three stalls:

P3=[SP++]; /* Pointer register loaded from stack */

<STALL>

<STALL>

<STALL>

RO=P3; /* Use contents of P3 after it gets its value from earlier
instruction */

3. The third case involves a change of flow. While a deeper pipeline allows increased clock

speeds, any time a change of flow occurs, a portion of the pipeline is flushed, and this
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consumes core-clock cycles. The branching latency associated with a change of flow
varies based on the pipeline depth. Blackfin’s 10-stage pipeline yields the following
latencies:

Instruction flow dependencies (Static Prediction):

Correctly predicted branch (4 stalls)
Incorrectly predicted branch (8 stalls)
Unconditional branch (8 stalls)

“Drop-through” conditional branch (O stalls)

The term “predicted” is used to describe what the sequencer does as instructions that

will complete ten core-clock cycles later enter the pipeline. You can see that when the
sequencer does not take a branch, and in effect “drops through” to the next instruction after
the conditional one, there are no added cycles. When an unconditional branch occurs, the
maximum number of stalls occurs (eight cycles). When the processor predicts that a branch
occurs and it actually is taken, the number of stalls is four. In the case where it predicted no
branch, but one is actually taken, it mirrors the case of an unconditional branch.

One more note here. The maximum number of stalls is eight, while the depth of the
pipeline is ten. This shows that the branching logic in an architecture does not implicitly
have to match the full size of the pipeline.

4. The last case involves a conflict when the processor is accessing the same memory space
as another resource (or simply fetching data from memory other than L.1). For instance,
a core fetch from SDRAM will take multiple core-clock cycles. As another example, if
the processor and a DMA channel are trying to access the same memory bank, stalls will
occur until the resource is available to the lower-priority process.

9.5 Compiler Considerations for Efficient Programming

Since the compiler’s foremost task is to create correct code, there are cases where the
optimizer is too conservative. In these cases, providing the compiler with extra information
(through pragmas, built-in keywords, or command-line switches) will help it create more
optimized code.

In general, compilers can’t make assumptions about what an application is doing. This is why
pragmas exist—to let the compiler know it is okay to make certain assumptions. For example,
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a pragma can instruct the compiler that variables in a loop are aligned and that they are not
referenced to the same memory location. This extra information allows the compiler to optimize
more aggressively, because the programmer has made a guarantee dictated by the pragma.

In general, a four-step process can be used to optimize an application consisting primarily of
HLL code:

1. Compile with an HLL-optimizing compiler.

2. Profile the resulting code to determine the “hot spots” that consume the most processing
bandwidth.

3. Update HLL code with pragmas, built-in keywords, and compiler switches to speed up
the “hot spots.”

4. Replace HLL procedures/functions with assembly routines in places where the optimizer
did not meet the timing budget.

For maximum efficiency, it is always a good idea to inspect the most frequently executed
compiler-generated assembly code to make a judgment on whether the code could be more
vectorized. Sometimes, the HLL program can be changed to help the compiler produce faster
code through more use of multi-issue instructions. If this still fails to produce code that is fast
enough, then it is up to the assembly programmer to fine-tune the code line-by-line to keep all
available hardware resources from idling.

9.5.1 Choosing Data Types

It is important to remember how the standard data types available in C actually map to the
architecture you are using. For Blackfin processors, each type is shown in Table 9.1.

Table 9.1: C data types and their mapping to Blackfin registers

C type Blackfin equivalent
char 8-bit signed

unsigned char 8-bit unsigned

short 16-bit signed integer
unsigned short 16-bit unsigned integer

Int 32-bit signed integer
unsigned int 32-bit unsigned integer
long 32-bit signed integer
unsigned long 32-bit unsigned integer
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The float (32-bit), double (32-bit), long long (64-bit) and unsigned long long
(64-bit) formats are not supported natively by the processor, but these can be emulated.

9.5.2 Arrays versus Pointers

We are often asked whether it is better to use arrays to represent data buffers in C, or whether
pointers are better. Compiler performance engineers always point out that arrays are easier to
analyze. Consider the example:

void array example (int a[],int b[],int sum[],int n)

{
int i;
for (i=0; i<n; ++1i)
sum[i]l=ali]l+Dbl[i];

}

Even though we chose a simple example, the point is that these constructs are very easy to
follow.

Now let’s look at the same function using pointers. With pointers, the code is “closer” to the
processor’s native language.
void pointer_example (int al],int b[],int sum[],int n){
int i;
for (1 = 0; 1 < n; ++1)
*out++ = *at++ + *b++ ;
}

Which produces the most efficient code? Actually, there is usually very little difference. It
is best to start by using the array notation because it is easier to read. An array format can
be better for “alias” analysis in helping to ensure there is no overlap between elements in
a buffer. If performance is not adequate with arrays (for instance, in the case of tight inner
loops), pointers may be more useful.

9.5.3 Division

Fixed-point processors often do not support division natively. Instead, they offer division
primitives in the instruction set, and these help accelerate division.

The “cost” of division depends on the range of the inputs. There are two possibilities: You
can use division primitives where the result and divisor each fit into 16 bits. On Blackfin
processors, this results in an operation of ~40 cycles. For more precise, bitwise 32-bit
division, the result is ~10X more cycles.
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If possible, it is best to avoid division, because of the additional overhead it entails. Consider
the example:

if ( X/Y > A/B )

This can easily be rewritten as:
if (X *B > A *Y)

to eliminate the division.

Keep in mind that the compiler does not know anything about the data precision in your
application. For example, in the context of the above equation rewrite, two 12-bit inputs are
“safe,” because the result of the multiplication will be 24 bits maximum. This quick check
will indicate when you can take a shortcut, and when you have to use actual division.

9.5.4 Loops

We already discussed hardware looping constructs. Here we’ll talk about software looping
in C. We will attempt to summarize what you can do to ensure best performance for your
application.

1. Try to keep loops short. Large loop bodies are usually more complex and difficult to
optimize. Additionally, they may require register data to be stored in memory, decreasing
code density and execution performance.

2. Avoid loop-carried dependencies. These occur when computations in the present iteration
depend on values from previous iterations. Dependencies prevent the compiler from
taking advantage of loop overlapping (i.e., nested loops).

3. Avoid manually unrolling loops. This confuses the compiler and cheats it out of a job at
which it typically excels.

4. Don’t execute loads and stores from a noncurrent iteration while doing computations
in the current loop iteration. This introduces loop-carried dependencies. This means
avoiding loop array writes of the form:

for (i=0; i<n; ++1i)
alil=Dbl[i]l * alcl[il]l; /* has array dependency*/

5. Make sure that inner loops iterate more than outer loops, since most optimizers focus on
inner loop performance.
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6. Avoid conditional code in loops. Large control-flow latencies may occur if the compiler
needs to generate conditional jumps.
As an example,

for {
if { ... } else {....}
}

should be replaced, if possible, by:

if {
for {....}
} else {
for {....}
}

7. Don’t place function calls in loops. This prevents the compiler from using hardware loop
constructs, as we described earlier in this chapter.

8. Try to avoid using variables to specify stride values. The compiler may need to use
division to figure out the number of loop iterations required, and you now know why this
is not desirable!

9.5.5 Data Buffers

It is important to think about how data is represented in your system. It’s better to pre-arrange
the data in anticipation of “wider” data fetches—that is, data fetches that optimize the amount
of data accessed with each fetch. Let’s look at an example that represents complex data.

One approach that may seem intuitive is:

short Real Part[ N ];
short Imaginary Part [ N ];

While this is perfectly adequate, data will be fetched in two separate 16-bit accesses. It is
often better to arrange the array in one of the following ways:

short Complex [ N*2 ];
or
long Complex [ N ];

Here, the data can be fetched via one 32-bit load and used whenever it’s needed. This single
fetch is faster than the previous approach.



398 Chapter 9

On a related note, a common performance-degrading buffer layout involves constructing a
2D array with a column of pointers to malloc’d rows of data. While this allows complete
flexibility in row and column size and storage, it may inhibit a compiler’s ability to optimize,
because the compiler no longer knows if one row follows another, and therefore it can see no
constant offset between the rows.

9.5.6 Intrinsics and In-lining

It is difficult for compilers to solve all of your problems automatically and consistently. This
is why you should, if possible, avail yourself of “in-line”” assembly instructions and intrinsics.

In-lining allows you to insert an assembly instruction into your C code directly. Sometimes
this is unavoidable, so you should probably learn how to in-line for the compiler you’re using.

In addition to in-lining, most compilers support intrinsics, and their optimizers fully
understand intrinsics and their effects. The Blackfin compiler supports a comprehensive
array of 16-bit intrinsic functions, which must be programmed explicitly. Below is a simple
example of an intrinsic that multiplies two 16-bit values.

#include <fract.h>
fract32 fdot (fractl6é *x,fractlé *y,int n)

{
fract32 sum=0;
int i;
for (1 = 0; 1 < n; i++)

sum = add_frl1x32(sum, mult_frix32(x[i], yI[i]));
return sum;

}
Here are some other operations that can be accomplished through intrinsics:
« Align operations
« Packing operations
« Disaligned loads
o Unpacking
¢ Quad 8-bit add/subtract
o Dual 16-bit add/clip

¢ Quad 8-bit average
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o Accumulator extract with addition
o Subtract/absolute value/accumulate

The intrinsics that perform the above functions allow the compiler to take advantage of video-
specific instructions that improve performance but that are difficult for a compiler to use natively.

When should you use in-lining, and when should you use intrinsics? Well, you really don’t
have to choose between the two. Rather, it is important to understand the results of using
both, so that they become tools in your programming arsenal. With regard to in-lining of
assembly instructions, look for an option where you can include in the in-lining construct
the registers you will be “touching” in the assembly instruction. Without this information,
the compiler will invariably spend more cycles, because it’s limited in the assumptions it can
make and therefore has to take steps that can result in lower performance. With intrinsics,
the compiler can use its knowledge to improve the code it generates on both sides of the
intrinsic code. In addition, the fact that the intrinsic exists means someone who knows the
compiler and architecture very well has already translated a common function to an optimized
code section.

9.5.7 Volatile Data

The volatile data type is essential for peripheral-related registers and interrupt-related data.

Some variables may be accessed by resources not visible to the compiler. For example, they
may be accessed by interrupt routines, or they may be set or read by peripherals.

The volatile attribute forces all operations with that variable to occur exactly as written
in the code. This means that a variable is read from memory each time it is needed, and

it’s written back to memory each time it’s modified. The exact order of events is preserved.
Missing a volatile qualifier is the largest single cause of trouble when engineers port
from one C-based processor to another. Architectures that don’t require volatile for
hardware-related accesses probably treat all accesses as volatile by default and thus may
perform at a lower performance level than those that require you to state this explicitly. When
a C program works with optimization turned off but doesn’t work with optimization on, a
missing volatile qualifier is usually the culprit.

9.6 System and Core Synchronization

Earlier we discussed the importance of an interlocked pipeline, but we also need to
discuss the implications of the pipeline on the different operating domains of a processor.
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On Blackfin devices, there are two synchronization instructions that help manage the
relationship between when the core and the peripherals complete specific instructions or
sequences. While these instructions are very straightforward, they are sometimes used
more than necessary. The CSYNC instruction prevents any other instructions from entering
the pipeline until all pending core activities have completed. The SSYNC behaves in a
similar manner, except that it holds off new instructions until all pending system actions
have completed. The performance impact from a CSYNC is measured in multiple CCLK
cycles, while the impact of an SSYNC is measured in multiple SCLKs. When either of these
instructions is used too often, performance will suffer needlessly.

So when do you need these instructions? We’ll find out in a minute. But first we need to talk
about memory transaction ordering.

9.6.1 Load/Store Synchronization

Many embedded processors support the concept of a Load/Store data access mechanism.
What does this mean, and how does it impact your application? “Load/Store” refers to the
characteristic in an architecture where memory operations (loads and stores) are intentionally
separated from the arithmetic functions that use the results of fetches from memory
operations. The separation is made because memory operations, especially instructions that
access off-chip memory or I/O devices, take multiple cycles to complete and would normally
halt the processor, preventing an instruction execution rate of one instruction per core-clock
cycle. To avoid this situation, data is brought into a data register from a source memory
location, and once it is in the register, it can be fed into a computation unit.

In write operations, the “store” instruction is considered complete as soon as it executes,
even though many clock cycles may occur before the data is actually written to an external
memory or I/O location. This arrangement allows the processor to execute one instruction
per clock cycle, and it implies that the synchronization between when writes complete and
when subsequent instructions execute is not guaranteed. This synchronization is considered
unimportant in the context of most memory operations. With the presence of a write buffer
that sits between the processor and external memory, multiple writes can, in fact, be made
without stalling the processor.

For example, consider the case where we write a simple code sequence consisting of a
single write to L3 memory surrounded by five NOP (“no operation”) instructions. Measuring
the cycle count of this sequence running from L1 memory shows that it takes six cycles to
execute. Now let’s add another write to L3 memory and measure the cycle count again. We
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will see the cycle count increase by one cycle each time, until we reach the limits of the write
buffer, at which point it will increase substantially until the write buffer is drained.

9.6.2 Ordering

The relaxation of synchronization between memory accesses and their surrounding instructions
is referred to as “weak ordering” of loads and stores. Weak ordering implies that the timing of
the actual completion of the memory operations—even the order in which these events occur—
may not align with how they appear in the sequence of a program’s source code.

In a system with weak ordering, only the following items are guaranteed:
« Load operations will complete before a subsequent instruction uses the returned data.

» Load operations using previously written data will use the updated values, even if
they haven’t yet propagated out to memory.

« Store operations will eventually propagate to their ultimate destination.

Because of weak ordering, the memory system is allowed to prioritize reads over writes. In
this case, a write that is queued anywhere in the pipeline, but not completed, may be deferred
by a subsequent read operation, and the read is allowed to be completed before the write.
Reads are prioritized over writes because the read operation has a dependent operation waiting
on its completion, whereas the processor considers the write operation complete, and the write
does not stall the pipeline if it takes more cycles to propagate the value out to memory.

For most applications, this behavior will greatly improve performance. Consider the case
where we are writing to some variable in external memory. If the processor performs a write
to one location followed by a read from a different location, we would prefer to have the read
complete before the write.

This ordering provides significant performance advantages in the operation of most memory
instructions. However, it can cause side effects—when writing to or reading from non-
memory locations such as I/O device registers, the order of how read and write operations
complete is often significant.

For example, a read of a status register may depend on a write to a control register. If the
address in either case is the same, the read would return a value from the write buffer rather
than from the actual I/O device register, and the order of the read and write at the register
may be reversed. Both of these outcomes could cause undesirable side effects. To prevent
these occurrences in code that requires precise (strong) ordering of load and store operations,
synchronization instructions like CSYNC or SSYNC should be used.
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The CSYNC instruction ensures all pending core operations have completed and the core
buffer (between the processor core and the L.1 memories) has been flushed before proceeding
to the next instruction. Pending core operations may include any pending interrupts,
speculative states (such as branch predictions) and exceptions. A CSYNC is typically required
after writing to a control register that is in the core domain. It ensures that whatever action you
wanted to happen by writing to the register takes place before you execute the next instruction.

The SSYNC instruction does everything the CSYNC does, and more. As with CSYNC, it
ensures all pending operations have to be completed between the processor core and the L1
memories. SSYNC further ensures completion of all operations between the processor core,
external memory and the system peripherals. There are many cases where this is important,
but the best example is when an interrupt condition needs to be cleared at a peripheral before
an interrupt service routine (ISR) is exited. Somewhere in the ISR, a write is made to a
peripheral register to “clear” and, in effect, acknowledge the interrupt. Because of differing
clock domains between the core and system portions of the processor, the SSYNC ensures
the peripheral clears the interrupt before exiting the ISR. If the ISR were exited before the
interrupt was cleared, the processor might jump right back into the ISR.

Load operations from memory do not change the state of the memory value itself.
Consequently, issuing a speculative memory-read operation for a subsequent load instruction
usually has no undesirable side effect. In some code sequences, such as a conditional branch
instruction followed by a load, performance may be improved by speculatively issuing the
read request to the memory system before the conditional branch is resolved.

For example,

IF CC JUMP away_from_here
RO =[P2];

away_from_here:

If the branch is taken, then the load is flushed from the pipeline, and any results that are in the
process of being returned can be ignored. Conversely, if the branch is not taken, the memory
will have returned the correct value earlier than if the operation were stalled until the branch
condition was resolved.

However, this could cause an undesirable side effect for a peripheral that returns sequential
data from a FIFO or from a register that changes value based on the number of reads that are
requested. To avoid this effect, use an SSYNC instruction to guarantee the correct behavior
between read operations.
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Store operations never access memory speculatively, because this could cause modification of
a memory value before it is determined whether the instruction should have executed.

9.6.3 Atomic Operations

We have already introduced several ways to use semaphores in a system. While there are
many ways to implement a semaphore, using atomic operations is preferable, because they
provide noninterruptible memory operations in support of semaphores between tasks.

The Blackfin processor provides a single atomic operation: TESTSET. The TESTSET
instruction loads an indirectly addressed memory word, tests whether the low byte is zero,
and then sets the most significant bit of the low memory byte without affecting any other bits.
If the byte is originally zero, the instruction sets a status bit. If the byte is originally nonzero,
the instruction clears the status bit. The sequence of this memory transaction is atomic—
hardware bus locking insures that no other memory operation can occur between the test

and set portions of this instruction. The TESTSET instruction can be interrupted by the core.
If this happens, the TESTSET instruction is executed again upon return from the interrupt.
Without something like this TESTSET facility, it is difficult to ensure true protection when
more than one entity (for example, two cores in a dual-core device) vies for a shared resource.

9.7 Memory Architecture—The Need for Management

In this section we will discuss how to best use memory in your application.

9.7.1 Memory Access Trade-offs

Embedded media processors usually have a small amount of fast, on-chip memory, whereas
microcontrollers usually have access to large external memories. A hierarchical memory
architecture combines the best of both approaches, providing several tiers of memory with
different performance levels. For applications that require the most determinism, on-chip
SRAM can be accessed in a single core-clock cycle. Systems with larger code sizes can
utilize bigger, higher-latency on-chip and off-chip memories.

On its own, this hierarchy is only part of the answer, since most complex programs today

are large enough to require external memory, and this would dictate an unacceptably slow
execution speed. As a result, programmers would be forced to manually move key code in and
out of internal SRAM. Howeyver, by adding data and instruction caches into the architecture,
external memory becomes much more manageable. The cache reduces the manual movement of
instructions and data into the processor core, thus greatly simplifying the programming model.
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Figure 9.6 demonstrates a typical memory configuration where instructions are brought in
from external memory as they are needed. Instruction cache usually operates with some type
of least recently used (LRU) algorithm, insuring that instructions that run more often get
replaced less often. The figure also illustrates that having the ability to configure some on-
chip data memory as cache and some as SRAM can optimize performance. DMA controllers
can feed the core directly, while data from tables can be brought into the data cache as they
are needed.

When porting existing applications to a new processor, “out-of-the-box” performance is
important. As we saw earlier, there are many features compilers exploit that require minimal
developer involvement. Yet, there are many other techniques that, with a little extra effort by
the programmer, can have a big impact on system performance.

Proper memory configuration and data placement always pays big dividends in improving
system performance. On high-performance media processors, there are typically three paths into

Instruction cache Large external memory
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Figure 9.6: Typical memory configuration
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a memory bank. This allows the core to make multiple accesses in a single clock cycle (e.g.,
a load and store, or two loads). By laying out an intelligent data flow, a developer can avoid
conflicts created when the core processor and DMA vie for access to the same memory bank.

9.7.2 Instruction Memory Management—To Cache or To DMA?

Maximum performance is only realized when code runs from internal L1 memory. Of course,
the ideal embedded processor would have an unlimited amount of L1 memory, but this is not
practical. Therefore, programmers must consider several alternatives to take advantage of the
L1 memory that exists in the processor, while optimizing memory and data flows for their
particular system. Let’s examine some of these scenarios.

The first, and most straightforward, situation is when the target application code fits entirely
into L1 instruction memory. For this case, there are no special actions required, other than for
the programmer to map the application code directly to this memory space. It thus becomes
intuitive that media processors must excel in code density at the architectural level.

In the second scenario, a caching mechanism is used to allow programmers access to larger,
less expensive external memories. The cache serves as a way to automatically bring code into
L1 instruction memory as needed. The key advantage of this process is that the programmer
does not have to manage the movement of code into and out of the cache. This method is best
when the code being executed is somewhat linear in nature. For nonlinear code, cache lines
may be replaced too often to allow any real performance improvement.

The instruction cache really performs two roles. For one, it helps pre-fetch instructions from
external memory in a more efficient manner. That is, when a cache miss occurs, a cache-line
fill will fetch the desired instruction, along with the other instructions contained within the
cache line. This ensures that, by the time the first instruction in the line has been executed, the
instructions that immediately follow have also been fetched. In addition, since caches usually
operate with an LRU algorithm, instructions that run most often tend to be retained in cache.

Some strict real-time programmers tend not to trust cache to obtain the best system
performance. Their argument is that if a set of instructions is not in cache when needed for
execution, performance will degrade. Taking advantage of cache-locking mechanisms can
offset this issue. Once the critical instructions are loaded into cache, the cache lines can be
locked, and thus not replaced. This gives programmers the ability to keep what they need in
cache and to let the caching mechanism manage less-critical instructions.

In a final scenario, code can be moved into and out of L1 memory using a DMA channel that
is independent of the processor core. While the core is operating on one section of memory,
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the DMA is bringing in the section to be executed next. This scheme is commonly referred to
as an overlay technique.

While overlaying code into L1 instruction memory via DMA provides more determinism
than caching it, the tradeoff comes in the form of increased programmer involvement. In
other words, the programmer needs to map out an overlay strategy and configure the DMA
channels appropriately. Still, the performance payoff for a well-planned approach can be well
worth the extra effort.

9.7.3 Data Memory Management

The data memory architecture of an embedded media processor is just as important to the
overall system performance as the instruction clock speed. Because multiple data transfers take
place simultaneously in a multimedia application, the bus structure must support both core

and DMA accesses to all areas of internal and external memory. It is critical that arbitration
between the DMA controller and the processor core be handled automatically, or performance
will be greatly reduced. Core-to-DMA interaction should only be required to set up the DMA
controller, and then again to respond to interrupts when data is ready to be processed.

A processor performs data fetches as part of its basic functionality. While this is typically
the least efficient mechanism for transferring data to or from off-chip memory, it provides
the simplest programming model. A small, fast scratchpad memory is sometimes available
as part of L1 data memory, but for larger, off-chip buffers, access time will suffer if the core
must fetch everything from external memory. Not only will it take multiple cycles to fetch
the data, but the core will also be busy doing the fetches. It is important to consider how the
core processor handles reads and writes. As we detailed above, Blackfin processors possess a
multi-slot write buffer that can allow the core to proceed with subsequent instructions before
all posted writes have completed. For example, in the following code sample, if the pointer
register PO points to an address in external memory and P1 points to an address in internal
memory, line 50 will be executed before RO (from line 46) is written to external memory:

Line 45: RO =R1+R2;

Line 46: [PO]=R0O; /* Write the value contained in RO to slower
external memory */

Line 47: R3=0x0 (z);

Line 48: R4=0x0 (z);

Line 49: R5=0x0 (z);

Line 50: [P1]=RO; /* Write the value contained in RO to faster
internal memory */
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In applications where large data stores constantly move into and out of external DRAM,
relying on core accesses creates a difficult situation. While core fetches are inevitably needed
at times, DMA should be used for large data transfers, in order to preserve performance.

9.7.3.1 What about Data Cache?

The flexibility of the DMA controller is a double-edged sword. When a large C/C+ +
application is ported between processors, a programmer is sometimes hesitant to integrate
DMA functionality into already-working code. This is where data cache can be very useful,
bringing data into L1 memory for the fastest processing. The data cache is attractive because
it acts like a mini-DMA, but with minimal interaction on the programmer’s part.

Because of the nature of cache-line fills, data cache is most useful when the processor
operates on consecutive data locations in external memory. This is because the cache doesn’t
just store the immediate data currently being processed; instead, it prefetches data in a region
contiguous to the current data. In other words, the cache mechanism assumes there’s a good
chance that the current data word is part of a block of neighboring data about to be processed.
For multimedia streams, this is a reasonable conjecture.

Since data buffers usually originate from external peripherals, operating with data cache is
not always as easy as with instruction cache. This is due to the fact that coherency must be
managed manually in “non-snooping” caches. “Non-snooping” means that the cache is not
aware of when data changes in source memory unless it makes the change directly. For these
caches, the data buffer must be invalidated before making any attempt to access the new data.
In the context of a C-based application, this type of data is “volatile.” This situation is shown
in Figure 9.7.

In the general case, when the value of a variable stored in cache is different from its value in
the source memory, this can mean that the cache line is “dirty” and still needs to be written
back to memory. This concept does not apply for volatile data. Rather, in this case the cache
line may be “clean,” but the source memory may have changed without the knowledge of the
core processor. In this scenario, before the core can safely access a volatile variable in data
cache, it must invalidate (but not flush!) the affected cache line.

This can be performed in one of two ways. The cache tag associated with the cache line
can be directly written, or a “Cache Invalidate” instruction can be executed to invalidate the
target memory address. Both techniques can be used interchangeably, but the direct method
is usually a better option when a large data buffer is present (e.g., one greater in size than
the data cache size). The Invalidate instruction is always preferable when the buffer size

is smaller than the size of the cache. This is true even when a loop is required, since the
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Figure 9.7: Data cache and DMA coherency

Invalidate instruction usually increments by the size of each cache line instead of by the more
typical 1-, 2- or 4-byte increment of normal addressing modes.

From a performance perspective, this use of data cache cuts down on improvement gains, in
that data has to be brought into cache each time a new buffer arrives. In this case, the benefit
of caching is derived solely from the pre-fetch nature of a cache-line fill. Recall that the prime
benefit of cache is that the data is present the second time through the loop.

One more important point about volatile variables, regardless of whether or not they

are cached—if they are shared by both the core processor and the DMA controller, the
programmer must implement some type of semaphore for safe operation. In sum, it is best to
keep volatiles out of data cache altogether.

9.7.4 System Guidelines for Choosing Between DMA and Cache

Let’s consider three widely used system configurations to shed some light on which approach
works best for different system classifications.

9.7.4.1 Instruction Cache, Data DMA

This is perhaps the most popular system model, because media processors are often
architected with this usage profile in mind. Caching the code alleviates complex instruction
flow management, assuming the application can afford this luxury. This works well when the
system has no hard real-time constraints, so that a cache miss would not wreak havoc on the
timing of tightly coupled events (for example, video refresh or audio/video synchronization).
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Also, in cases where processor performance far outstrips processing demand, caching
instructions is often a safe path to follow, since cache misses are then less likely to cause
bottlenecks. Although it might seem unusual to consider that an “oversized” processor would
ever be used in practice, consider the case of a portable media player that can decode and
play both compressed video and audio. In its audio-only mode, its performance requirements
will be only a fraction of its needs during video playback. Therefore, the instruction/data
management mechanism could be different in each mode.

Managing data through DMA is the natural choice for most multimedia applications, because
these usually involve manipulating large buffers of compressed and uncompressed video,
graphics and audio. Except in cases where the data is quasi-static (for instance, a graphics
icon constantly displayed on a screen), caching these buffers makes little sense, since the
data changes rapidly and constantly. Furthermore, as discussed above, there are usually
multiple data buffers moving around the chip at one time—unprocessed blocks headed for
conditioning, partly conditioned sections headed for temporary storage, and completely
processed segments destined for external display or storage. DMA is the logical management
tool for these buffers, since it allows the core to operate on them without having to worry
about how to move them around.

9.7.4.2 Instruction Cache, Data DMA/Cache

This approach is similar to the one we just described, except in this case part of L1 data
memory is partitioned as cache, and the rest is left as SRAM for DMA access. This structure
is very useful for handling algorithms that involve a lot of static coefficients or lookup tables.
For example, storing a sine/cosine table in data cache facilitates quick computation of FFTs.
Or, quantization tables could be cached to expedite JPEG encoding or decoding.

Keep in mind that this approach involves an inherent tradeoff. While the application gains
single-cycle access to commonly used constants and tables, it relinquishes the equivalent
amount of L1 data SRAM, thus limiting the buffer size available for single-cycle access to
data. A useful way to evaluate this tradeoff is to try alternate scenarios (Data DMA/Cache
versus only DMA) in a Statistical Profiler (offered in many development tools suites) to
determine the percentage of time spent in code blocks under each circumstance.

9.7.4.3 Instruction DMA, Data DMA

In this scenario, data and code dependencies are so tightly intertwined that the developer must
manually schedule when instruction and data segments move through the chip. In such hard
real-time systems, determinism is mandatory, and thus cache isn’t ideal.
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Although this approach requires more planning, the reward is a deterministic system where
code is always present before the data needed to execute it, and no data blocks are lost

via buffer overruns. Because DMA processes can link together without core involvement,

the start of a new process guarantees that the last one has finished, so that the data or code
movement is verified to have happened. This is the most efficient way to synchronize data and
instruction blocks.

The Instruction/Data DMA combination is also noteworthy for another reason. It provides
a convenient way to test code and data flows in a system during emulation and debug.
The programmer can then make adjustments or highlight “trouble spots” in the system
configuration.

An example of a system that might require DMA for both instructions and data is a video
encoder/decoder. Certainly, video and its associated audio need to be deterministic for a
satisfactory user experience. If the DMA signaled an interrupt to the core after each complete
buffer transfer, this could introduce significant latency into the system, since the interrupt
would need to compete in priority with other events. What’s more, the context switch at the
beginning and end of an interrupt service routine would consume several core processor
cycles. All of these factors interfere with the primary objective of keeping the system
deterministic.

Figures 9.8 and 9.9 provide guidance in choosing between cache and DMA for instructions
and data, as well as how to navigate the tradeoff between using cache and using SRAM,
based on the guidelines we discussed previously.

As a real-world illustration of these flowchart choices, Tables 9.2 and 9.3 provide actual
benchmarks for G.729 and GSM AMR algorithms running on a Blackfin processor under
various cache and DMA scenarios. You can see that the best performance can be obtained
when a balance is achieved between cache and SRAM.

In short, there is no single answer as to whether cache or DMA should be the mechanism of
choice for code and data movement in a given multimedia system. However, once developers
are aware of the tradeoffs involved, they should settle into the “middle ground,” the perfect
optimization point for their system.

9.7.5 Memory Management Unit (MMU)

An MMU in a processor controls the way memory is set up and accessed in a system. The
most basic capabilities of an MMU provides for memory protection, and when cache is used,
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Figure 9.8: Checklist for choosing between instruction cache and DMA

it also determines whether or not a memory page is cacheable. Explicitly using the MMU
is usually optional, because you can default to the standard memory properties on your
processor.

On Blackfin processors, the MMU contains a set of registers that can define the properties
of a given memory space. Using something called cacheability protection look-aside buffers
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(CPLBs), you can define parameters such as whether or not a memory page is cacheable, and
whether or not a memory space can be accessed. Because the 32-bit-addressable external
memory space is so large, it is likely that CPLBs will have to be swapped in and out of the

MMU registers.
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Table 9.2: Benchmarks (relative cycles per frame) for G.729A algorithm with cache enabled

L1 banks configured as L1 banks configured as cache Cache + SRAM
SRAM
All L2 L1 Code only | Code + DataA | Code + DataB DataA cache,
DataB SRAM
Coder 1.00 0.24 0.70 0.21 0.21 0.21
Decoder 1.00 0.19 0.80 0.20 0.19 0.19

Table 9.3: Benchmarks (relative cycles per frame) for GSM AMR algorithm with cache enabled

L1 banks configured as L1 banks configured as cache Cache + SRAM
SRAM
All L2 L1 Code Code + DataA Code + DataB DataA cache,
DataB SRAM
Coder 1.00 0.34 0.74 0.20 0.20 0.20
Decoder 1.00 0.42 0.75 0.23 0.23 0.23

9.7.5.1 CPLB Management

Because the amount of memory in an application can greatly exceed the number of available
CPLBs, it may be necessary to use a CPLB manager. If so, it’s important to tackle some
issues that could otherwise lead to performance degradation. First, whenever CPLBs are
enabled, any access to a location without a valid CPLB will result in an exception being
executed prior to the instruction completing. In the exception handler, the code must free up a
CPLB and re-allocate it to the location about to be accessed. When the processor returns from
the exception handler, the instruction that generated the exception then executes.

If you take this exception too often, it will impact performance, because every time you

take an exception, you have to save off the resources used in your exception handler. The
processor then has to execute code to re-program the CPLB. One way to alleviate this
problem is to profile the code and data access patterns. Since the CPLBs can be “locked,” you
can protect the most frequently used CPLBs from repeated page swaps.

Another performance consideration involves the search method for finding new page
information. For example, a “nonexistent CPLB” exception handler only knows the address
where an access was attempted. This information must be used to find the corresponding
address “range” that needs to be swapped into a valid page. By locking the most frequently used



414 Chapter 9

pages and setting up a sensible search based on your memory access usage (for instructions
and/or data), exception-handling cycles can be amortized across thousands of accesses.

9.7.5.2 Memory Translation

A given MMU may also provide memory translation capabilities, enabling what’s known as
virtual memory. This feature is controlled in a manner that is analogous to memory protection.
Instead of CPLBs, translation look-aside buffers (TLBs) are used to describe physical memory
space. There are two main ways in which memory translation is used in an application. As

a holdover from older systems that had limited memory resources, operating systems would
have to swap code in and out of a memory space from which execution could take place.

A more common use on today’s embedded systems still relates to operating system support.
In this case, all software applications run thinking they are at the same physical memory
space, when, of course, they are not. On processors that support memory translation,
operating systems can use this feature to have the MMU translate the actual physical memory
address to the same virtual address based on which specific task is running. This translation is
done transparently, without the software application getting involved.

9.8 Physics of Data Movement

So far, we’ve seen that the compiler and assembler provide a bunch of ways to maximize
performance on code segments in your system. Using of cache and DMA provide the next
level for potential optimization. We will now review the third tier of optimization in your
system—it’s a matter of physics.

Understanding the “physics” of data movement in a system is a required step at the start of
any project. Determining if the desired throughput is even possible for an application can
yield big performance savings without much initial investment.

For multimedia applications, on-chip memory is almost always insufficient for storing entire
video frames. Therefore, the system must usually rely on L3 DRAM to support relatively fast
access to large buffers. The processor interface to off-chip memory constitutes a major factor
in designing efficient media frameworks, because access patterns to external memory must be
well planned in order to guarantee optimal data throughput. There are several high-level steps
that can ensure that data flows smoothly through memory in any system. Some of these are
discussed below and play a key role in the design of system frameworks.
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1. Grouping Like Transfers to Minimize Memory Bus Turnarounds

Accesses to external memory are most efficient when they are made in the same direction
(e.g., consecutive reads or consecutive writes). For example, when accessing off-chip
synchronous memory, 16 reads followed by 16 writes is always completed sooner than 16
individual read/write sequences. This is because a write followed by a read incurs latency.
Random accesses to external memory generate a high probability of bus turnarounds.

This added latency can easily halve available bandwidth. Therefore, it is important to take
advantage of the ability to control the number of transfers in a given direction. This can be
done either automatically (as we’ll see here) or by manually scheduling your data movements.

A DMA channel garners access according to its priority, signified on Blackfin processors by
its channel number. Higher priority channels are granted access to the DMA bus(es) first.
Because of this, you should always assign higher priority DMA channels to peripherals with
the highest data rates or with requirements for lowest latency.

To this end, MemDMA streams are always lower in priority than peripheral DMA activity.
This is due to the fact that with Memory DMA, no external devices will be held off or
starved of data. Since a Memory DMA channel requests access to the DMA bus as long as
the channel is active, efficient use of any time slots unused by a peripheral DMA are applied
to MemDMA transfers. By default, when more than one MemDMA stream is enabled and
ready, only the highest priority MemDMA stream is granted.

When it is desirable for the MemDMA streams to share the available DMA bus bandwidth,
however, the DMA controller can be programmed to select each stream in turn for a fixed
number of transfers.

This “Direction Control” facility is an important consideration in optimizing use of DMA
resources on each DMA bus. By grouping same-direction transfers together, it provides a way
to manage how frequently the transfer direction changes on the DMA buses. This is a handy
way to perform a first level of optimization without real-time processor intervention. More
importantly, there’s no need to manually schedule bursts into the DMA streams.

When direction control features are used, the DMA controller preferentially grants data
transfers on the DMA or memory buses that are going in the same read/write direction as in
the previous transfer, until either the direction control counter times out, or until traffic stops
or changes direction on its own. When the direction counter reaches zero, the DMA controller
changes its preference to the opposite flow direction.
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In this case, reversing direction wastes no bus cycles other than any physical bus turnaround
delay time. This type of traffic control represents a tradeoff of increased latency for improved
utilization (efficiency). Higher block transfer values might increase the length of time each
request waits for its grant, but they can dramatically improve the maximum attainable
bandwidth in congested systems, often to above 90%.

Here’s an example that puts these concepts into some perspective.

As a rule of thumb, it is best to maximize same-direction contiguous transfers during
moderate system activity. For the most taxing system flows, however, it is best to select a
block transfer value in the middle of the range to ensure no one peripheral gets locked out
of accesses to external memory. This is especially crucial when at least two high-bandwidth
peripherals (like PPIs) are used in the system.

In addition to using direction control, transfers among MDMA streams can be alternated in

a “round-robin” fashion on the bus as the application requires. With this type of arbitration,
the first DMA process is granted access to the DMA bus for some number of cycles, followed
by the second DMA process, and then back to the first. The channels alternate in this pattern
until all of the data is transferred. This capability is most useful on dual-core processors (for
example, when both core processors have tasks that are awaiting a data stream transfer).

Example 9.4

First, we set up a memory DMA from L1 to L3 memory, using 16-bit transfers, that
takes about 1100 system clock (SCLK) cycles to move 1024 16-bit words.

We then begin a transfer from a different bank of external memory to the video port
(PPI). Using 16-bit unpacking in the PPI, we continuously feed an NTSC video encoder
with 8-bit data. Since the PPl sends out an 8-bit quantity at a 27 MHz rate, the DMA
bus bandwidth required for the PPI transfer is roughly 13.5 M transfers/second.

When we measure the time it takes to complete the same 1024-word MemDMA transfer
with the PPI transferring simultaneously, it now takes three times as long.

Why is this? It’s because the PPl DMA activity takes priority over the MemDMA channel
transactions. Every time the PPl is ready for its next sample, the bus effectively reverses
direction. This translates into cycles that are lost both at the external memory interface
and on the various internal DMA buses.

When we enable Direction Control, the performance increases because there are fewer
bus turn-arounds.
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Without this “round-robin” feature, the first set of DMA transfers will occur, and the second
DMA process will be held off until the first one completes. Round-robin prioritization can
help insure that both transfer streams will complete back-to-back.

Another thing to note: using DMA and/or cache will always help performance because these
types of transactions transfer large data blocks in the same direction. For example, a DMA
transfer typically moves a large data buffer from one location to another. Similarly, a cache-
line fill moves a set of consecutive memory locations into the device, by utilizing block
transfers in the same direction.

Buffering data bound for L3 in on-chip memory serves many important roles. For one, the
processor core can access on-chip buffers for pre-processing functions with much lower
latency than it can by going off-chip for the same accesses. This leads to a direct increase in
system performance. Moreover, buffering this data in on-chip memory allows more efficient
peripheral DMA access to this data. For instance, transferring a video frame on-the-fly
through a video port and into L3 memory creates a situation where other peripherals might
be locked out from accessing the data they need, because the video transfer is a high-priority
process. However, by transferring lines incrementally from the video port into L1 or L2
memory, a Memory DMA stream can be initiated that will quietly transfer this data into L3
as a low-priority process, allowing system peripherals access to the needed data.

2. Understanding Core and DMA SDRAM Accesses

Consider that on a Blackfin processor, core reads from L1 memory take one core-clock
cycle, whereas core reads from SDRAM consume eight system clock cycles. Based on
typical CCLK/SCLK ratios, this could mean that eight SCLK cycles equate to 40 CCLKs.
Incidentally, these eight SCLKs reduce to only one SCLK by using a DMA controller in a
burst mode instead of direct core accesses.

There is another point to make on this topic. For processors that have multiple data fetch
units, it is better to use a dual-fetch instruction instead of back-to-back fetches. On Blackfin
processors with a 32-bit external bus, a dual-fetch instruction with two 32-bit fetches takes
nine SCLKs (eight for the first fetch and one for the second). Back-to-back fetches in separate
instructions take 16 SCLKs (eight for each). The difference is that, in the first case, the request
for the second fetch in the single instruction is pipelined, so it has a head start.

Similarly, when the external bus is 16 bits in width, it is better to use a 32-bit access rather
than two 16-bit fetches. For example, when the data is in consecutive locations, the 32-bit
fetch takes nine SCLKs (eight for the first 16 bits and one for the second). Two 16-bit fetches
take 16 SCLKs (eight for each).
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3. Keeping SDRAM Rows Open and Performing Multiple Passes on Data

Each access to SDRAM can take several SCLXK cycles, especially if the required SDRAM
row has not yet been activated. Once a row is active, it is possible to read data from an entire
row without reopening that row on every access. In other words, it is possible to access any
location in memory on every SCLK cycle, as long as those locations are within the same row
in SDRAM. Multiple SDRAM clock cycles are needed to close a row, and therefore constant
row closures can severely restrict SDRAM throughput. Just to put this into perspective, an
SDRAM page miss can take 20—50 CCLK cycles, depending on the SDRAM type.

Applications should take advantage of open SDRAM banks by placing data buffers
appropriately and managing accesses whenever possible. Blackfin processors, as an example,
keep track of up to four open SDRAM rows at a time, so as to reduce the setup time—and
thus increase throughput—for subsequent accesses to the same row within an open bank.
For example, in a system with one row open, row activation latency would greatly reduce

the overall performance. With four rows open at one time, on the other hand, row activation
latency can be amortized over hundreds of accesses. Let’s look at an example that illustrates
the impact this SDRAM row management can have on memory access bandwidth:

Figure 9.10 shows two different scenarios of data and code mapped to a single external
SDRAM bank. In the first case, all of the code and data buffers in external memory fit in a
single bank, but because the access patterns of each code and data line are random, almost
every access involves the activation of a new row. In the second case, even though the access
patterns are randomly interspersed between code and data accesses, each set of accesses has
a high probability of being within the same row. For example, even when an instruction fetch
occurs immediately before and after a data access, two rows are kept open and no additional
row activation cycles are incurred.

When we ran an MPEG-4 encoder from external memory (with both code and data in
SDRAM), we gained a 6.5% performance improvement by properly spreading out the code
and data in external memory.

4. Optimizing the System Clock Settings and Ensuring Refresh Rates are
Tuned for the Speed at Which SDRAM Runs

External DRAM requires periodic refreshes to ensure that the data stored in memory retains
its proper value. Accesses by the core processor or DMA engine are held off until an in-
process refresh cycle has completed. If the refresh occurs too frequently, the processor can’t
access SDRAM as often, and throughput to SDRAM decreases as a result.



Code Optimization and Resource Partitioning 419

Code
Code
Video frame 0

Video frame 1

Video frame 0
Reference
External r— External
memory | <(u—> memory | <>
Unused Video frame 1
Unused Re}l;:igce

Row activation cycles
are taken
almost every access

Row activation cycles
are spread across

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
bus ! bus
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
! hundreds of accesses

Figure 9.10: Taking advantage of code and data partitioning in external memory

On the Blackfin processor, the SDRAM Refresh Rate Control register provides a flexible
mechanism for specifying the Auto-Refresh timing. Since the clock frequency supplied to
the SDRAM can vary, this register implements a programmable refresh counter. This counter
coordinates the supplied clock rate with the SDRAM device’s required refresh rate.

Once the desired delay (in number of SDRAM clock cycles) between consecutive refresh
counter time-outs is specified, a subsequent refresh counter time-out triggers an Auto-Refresh
command to all external SDRAM devices.

Not only should you take care not to refresh SDRAM too often, but also be sure you’re
refreshing it often enough. Otherwise, stored data will start to decay because the SDRAM
controller will not be able to keep corresponding memory cells refreshed.

Table 9.4 shows the impact of running with the best clock values and optimal refresh

rates. Just in case you were wondering, RGB, CYMK and YIQ are imaging/video formats.
Conversion between the formats involves basic linear transformation that is common in
video-based systems. Table 9.4 illustrates that the performance degradation can be significant
with a nonoptimal refresh rate, depending on your actual access patterns. In this example,
CCLK is reduced to run with an increased SCLK to illustrate this point. Doing this improves
performance for this algorithm because the code fits into L1 memory and the data is partially
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Table 9.4: Using the optimal refresh rate

Sub-optimal Optimal SDRAM
SDRAM refresh rate refresh rate
CCLK (MHz) 594MHz | 526 MHz 526 MHz
SCLK (MHz) 119MHz | 132MHz 132 MHz
RGB to CMYK Conversion (iterations per second) | 226 244 250
RGB to YIQ Conversion (iterations per second) 266 276 282 Total
Cumulative Improvement 5% 2% 7%

in L3 memory. By increasing the SCLX rate, data can be fetched faster. What’s more, by
setting the optimal refresh rate, performance increases a bit more.

5. Exploiting Priority and Arbitration Schemes between System Resources

Another important consideration is the priority and arbitration schemes that regulate

how processor subsystems behave with respect to one another. For instance, on Blackfin
processors, the core has priority over DMA accesses, by default, for transactions involving
L3 memory that arrive at the same time. This means that if a core read from L3 occurs at the
same time a DMA controller requests a read from L3, the core will win, and its read will be
completed first.

Let’s look at a scenario that can cause trouble in a real-time system. When the processor has
priority over the DMA controller on accesses to a shared resource like L3 memory, it can lock
out a DMA channel that also may be trying to access the memory. Consider the case where
the processor executes a tight loop that involves fetching data from external memory. DMA
activity will be held off until the processor loop has completed. It’s not only a loop with a
read embedded inside that can cause trouble. Activities like cache line fills or nonlinear code
execution from L3 memory can also cause problems because they can result in a series of
uninterruptible accesses.

There is always a temptation to rely on core accesses (instead of DMA) at early stages in

a project, for a number of reasons. The first is that this mimics the way data is accessed

on a typical prototype system. The second is that you don’t always want to dig into the
internal workings of DMA functionality and performance. However, with the core and DMA
arbitration flexibility, using the memory DMA controller to bring data into and out of internal
memory gives you more control of your destiny early on in a project.



Code Optimization and Resource Partitioning 421

Bibliography
Analog Devices, Inc., ADSP-BF533 Blackfin Processor Hardware Reference, Rev 3.0,
September 2004.

Analog Devices, Inc., VisualDSP+ + 4.1C/C+ + Compiler and Library Manual for Blackfin
Processors.

Heath, S. (2003). Embedded Systems Design (Second edition). Elsevier (Newnes).



This page intentionally left blank



Testing and Debugging DSP Systems

Robert Oshana

While not the sexiest part of embedded design, test and debug is crucial for a product’s success.
It’s also one of the most vexing parts. In survey after survey, developers list test and debug as their
biggest source of project delays. In the 2008 Tech Insights survey, for example, 38% of engineers
reported that debugging was their biggest concern. This was followed closely by worries over

the related issue of code complexity, a concern that vexed 26% of respondents. The responding
engineers’ greatest concern for future projects? Debugging tools and software integration.

The anxiety over the future is unsurprising. Test and debug isn’t getting any easier. With design
complexity on the rise, particularly in multi-core designs, makers of debug hardware and
software tools face an uphill battle. DSP applications can be particularly difficult to debug, as
DSP engineers are often called upon to do more low-level optimization—and therefore are more
likely to introduce changes that will break the code.

In this chapter, Robert Oshana tackles this complicated subject, giving us a broad overview of

the state of the art of test and debug. He starts with the old methods like printf statements and

shows how theyre broken. He then goes into some detail on JTAG, the most commonly used debug

technology. JTAG is built into most of today’s processors, and is a technology most DSP engineers

will use at some point in their careers. He then delves into many important topics such as emulation,

trace, high-speed data collection and visualization, compiler and linker dependencies, real-time

embedded software testing techniques, and common DSP algorithm bugs. By the time you get to the

end of the chapter, you should have a good handle on the key techniques for DSP debugging.
—Kenton Williston

10.1 Multicore System-on-a-Chip

Designing and building embedded systems is a difficult task, given the inherent scarcity of
resources in embedded systems (processing power, memory, throughput, battery life, and cost).
Various trade-offs are made between these resources when designing an embedded system.
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Figure 10.1: Block diagram of a DSP SoC

Modern embedded systems are using devices with multiple processing units manufactured
on a single chip, creating a sort of multicore system-on-a-chip (SoC), which can increase the
processing power and throughput of the system while at the same time increasing the battery
life and reducing the overall cost. One example of a DSP-based SoC is shown in Figure 10.1.
Multicore approaches keep hardware design in the low frequency range (each individual
processor can run at a lower speed, which reduces overall power consumption as well as heat
generation), offering significant price, performance, and flexibility (in software design and
partitioning) over higher speed single-core designs.

There are several characteristics of SoC that we will discuss (see Jerraya). I will use an example
processor to demonstrate these characteristics and how they are deployed in an existing SoC.

1. Customized to the application — Like embedded systems in general, SoCs are customized to
an application space. As an example, I will reference the video application space. A suitable
block diagram showing the flow of an embedded video application space is shown in
Figure 10.2. This system consists of input capture, real-time signal processing, and output
display components. As a system there are multiple technologies associated with building
a flexible system including analog formats, video converters, digital formats, and digital
processing. An SoC processor will incorporate a system of components; processing
elements, peripherals, memories, I/O, and so forth to implement a system such as that
shown in Figure 10.2. An example of an SoC processor that implements a digital video
system is shown in Figure 10.3. This processor consists of various components to input,
process, and output digital video information. More about the details of this in a moment.

2. SoCs improve power/performance ratio — Large processors running at high frequencies
consume more power, and are more expensive to cool. Several smaller processors
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Figure 10.2: Digital video system application model (courtesy of Texas Instruments)

running at a lower frequency can perform the same amount of work without consuming
as much energy and power. In Figure 10.1, the ARM processor, the two DSPs, and the
hardware accelerators can run a large signal processing application efficiently by properly
partitioning the application across these four different processing elements.

3. Many apps require programmability — SoCs contain multiple programmable processing
elements. These are required for a number of reasons:

o New technology — Programmability supports upgradeability and changeability easier
than nonprogrammable devices. For example, as new video codec technology is
developed, the algorithms to support these new standards can be implemented on a
programmable processing element easily. New features are also easier to add.

o Support for multiple standards and algorithms — Some digital video applications
require support for multiple video standards, resolutions, and quality. Its easier to
implement these on a programmable system.

o Full algorithm control — A programmable system provides the designer the ability
to customize and/or optimize a specific algorithm as necessary which provides the
application developer more control over differentiation of the application.
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o Software reuse in future systems — By developing digital video software as components,
these can be reuse/repackaged as building blocks for future systems as necessary.

4. Constraints such as real-time, power, cost — There are many constraints in real-time
embedded systems. Many of these constraints are met by customizing to the application.

5. Special instructions — SoCs have special CPU instructions to speed up the application. As
an example, the SoC in Figure 10.3 contains special instructions on the DSP to accelerate
operations such as:

e 32-bit multiply instructions for extended precision computation

« Expanded arithmetic functions to support FFT and DCT algorithms

www.newnespress.com
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o Improve complex multiplications

« Double dot product instructions for improving throughput of FIR loops
o Parallel packing Instructions

» Enhanced Galois Field Multiply

Each of these instructions accelerate the processing of certain digital video algorithms. Of
course, compiler support is necessary to schedule these instructions, so the tools become
an important part of the entire system as well.

Extensible — Many SoCs are extensible in ways such as word size and cache size. Special
tooling is also made available to analyze systems as these system parameters are
changes.

Hardware acceleration — There are several benefits to using hardware acceleration in an
SoC. The primary reason is better cost/performance ratio. Fast processors are costly. By
partitioning into several smaller processing elements, cost can be reduced in the overall
system. Smaller processing elements also consume less power and can actually be better
at implementing real-time systems as the dedicated units can respond more efficiently to
external events.

Hardware accelerators are useful in applications that have algorithmic functions that

do not map to a CPU architecture well. For example, algorithms that require a lot of

bit manipulation require a lot of registers. A traditional CPU register model may not be
suited to efficiently execute these algorithms. A specialized hardware accelerator can be
built that performs bit manipulation efficiently which sits beside the CPU and used by the
CPU for bit manipulation operations. Highly responsive 1/O operations are another area
where a dedicated accelerator with an attached I/O peripheral will perform better. Finally,
applications that are required to process streams of data, such as many wireless and
multimedia applications, do not map well to the traditional CPU architecture, especially
those that implement caching systems. Since each streaming data element may have a
limited lifetime, processing will require the constant thrashing of cache for new data
elements. A specialized hardware accelerator with special fetch logic can be implemented
to provide dedicated support to these data streams.

Hardware acceleration is used on SoCs as a way to efficiently execute classes of
algorithms. The use of accelerators if possible can lower overall system power, since
these accelerators are customized to the class of processing and, therefore, perform these
calculations very efficiently. The SoC in Figure 10.3 has hardware acceleration support.
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In particular, the video processing subsystem (VPSS) as well as the Video Acceleration
block within the DSP subsystem are examples of hardware acceleration blocks used to
efficiently process video algorithms. Figure 10.4 shows a block diagram of one of the
VPSS. This hardware accelerator contains:

A front end module containing:
« CCDC (charge coupled device)
o Previewer

« Resizer (accepts data from the previewer or from external memory and resizes from
14X to 4X)

and a back end module containing:
o Color space conversion

« DACS

o Digital output

e On-screen display

This VPSS processing element eases the overall DSP/ARM loading through hardware
acceleration. An example application using the VPSS is shown in Figure 10.5.
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(courtesy of Texas Instruments)

8. Heterogeneous memory systems — Many SoC devices contain separate memories for the
different processing elements. This provides a performance boost because of lower latencies
on memory accesses, as well as lower power from reduced bus arbitration and switching.

This programmable coprocessor is optimized for imaging and video applications. Specifically,
this accelerator is optimized to perform operations such as filtering, scaling, matrix multiplication,
addition, subtraction, summing absolute differences, and other related computations.

Much of the computation is specified in the form of commands which operate on arrays
of streaming data. A simple set of APIs can be used to make processing calls into this
accelerator. In that sense, a single command can drive hundreds or thousands of cycles.

As discussed previously, accelerators are used to perform computations that do not map
efficiently to a CPU. The accelerator in Figure 10.6 is an example of an accelerator that
performs efficient operations using parallel computation. This accelerator has an 8-parallel
multiply accumulate (MAC) engine which significantly accelerates classes of signal
processing algorithms that requires this type of parallel computation.
Examples include:

« JPEG encode and decode

o  MPEG-1/2/4 encode and decode

« H.263 encode and decode
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¢ WMV decode
« H.264 baseline profile decode

The variable length code/decode (VLCD) module in this accelerator supports the following
fundamental operations very efficiently;

¢ Quantization and inverse quantization (Q/IQ)

e Variable length coding and decoding (VLC/VLD)
¢ Huffman tables

o Zigzag scan flexibility

The design of this block is such that it operates on a macroblock of data at a time (max 6 8 X 8
blocks, 4:2:0 format). Before starting to encode or decode a bitstream, the proper registers and
memory in the VLCD module must first be initialized by the application software.

This hardware accelerator also contains a block called a sequencer which is really just a
16-bit microprocessor targeted for simple control, address calculation, and loop control
functions. This simple processing element offloads the sequential operations from the DSP.
The application developer can program this sequencer to coordinate the operations among
the other accelerator elements including the iMX, VLCD, System DMA, and the DSP.
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The sequencer code is compiled using a simple macro using support tools, and is linked with
the DSP code to be later loaded by the CPU at run time.

One of the other driving factors for the development of SoC technology is the fact that there

is an increasing demand for programmable performance. For many applications, performance
requirements are increasing faster than the ability of a single CPU to keep pace. The allocation
of performance, and thus response time, for complex real-time systems is often easier with
multiple CPUs. And dedicated CPUs in peripherals or special accelerators can offload low-
level functionality from a main CPU, allowing it to focus on higher-level functions.

10.2 Software Architecture for SoC

Software development for SoC involves partitioning the application among the various
processing elements based on the most efficient computational model. This can require a
lot of trial and error to establish the proper partitioning. At a high level the SoC partitioning
algorithm is as follows:

o Place the state machine software (those algorithms that provide application control,
sequencing, user interface control, event driven software, and so on) on a RISC
processor such as an ARM.

o Place the signal processing software on the DSP, taking advantage of the application
specific architecture that a DSP offers for signal processing functions.

o Place high rate, computationally intensive algorithms in hardware accelerators, if they
exist and if they are customized to the specific algorithm of consideration.

As an example, consider the software partitioning shown in Figure 10.7. This SoC model
contains a general-purpose processor (GPP), a DSP, and hardware acceleration. The GPP
contains a chip support library which is a set of low level peripheral APIs that provide
efficient access to the device peripherals, a general-purpose operating system, an algorithmic
abstraction layer and a set of API for and application and user interface layer. The DSP
contains a similar chip support library, a DSP centric kernel, a set of DSP specific algorithms
and interfaces to higher level application software. The hardware accelerator contains a

set of APIs for the programmer to access and some very specific algorithms mapped to

the acceleration. The application programmer is responsible for the overall partitioning of
the system and the mapping of the algorithms to the respective processing elements. Some
vendors may provide a “black box” solution to one or more of these processing elements,
including the DSP and the hardware accelerators. This provides another level of abstraction
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Figure 10.7: Software architecture for SoC (courtesy of Texas Instruments)

to the application developer who does not need to know the details of some of the underlying
algorithms. Other system developers may want access to these low level algorithms, so there
is normally flexibility in the programming model for these systems, depending on the amount
of customization and tailoring required.

Communication in an SoC is primarily established by means of software. The communication
interface between the DSP and the ARM in Figure 10.7, for example, is realized by defining
memory locations in the DSP data space as registers. The ARM gains read/write access to
these registers through a host interface. Both processors can asynchronously issue commands
to each other, no one masters the other. The command sequence is purely sequential;

the ARM cannot issue a new command unless the DSP has sent a “command complete”
acknowledgement.

There exist two register pairs to establish the two-way asynchronous communication between
ARM and DSP, one register pair is for the sending commands to ARM, and the other register
pair is for the sending commands to DSP. Each register pair has:

o acommand register, which is used pass commands to ARM or DSP;

« acommand complete register, which is used to return the status of execution of the
command;
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each command can pass up to 30 words of command parameters;

also, each command execution can return up to 30 words of command return
parameters.

An ARM to DSP command sequence is as follows:

ARM writes a command to the command register

ARM writes number of parameters to number register

ARM writes command parameters into the command parameter space
ARM issues a nonmaskable interrupt to the DSP

DSP reads the command

DSP reads the command parameters

DSP executes the command

DSP clears the command register

DSP writes result parameters into the result parameter space

DSP writes “command complete” register

DSP issues HINT interrupt to ARM

The DSP to ARM command sequence is as follows:

DSP writes command to command register

DSP writes number of parameters to number register

DSP writes command parameters into the command parameter space
DSP issues an HINT interrupt to the DSP

ARM reads the command

ARM reads the command parameters

ARM executes DSP command

ARM clears the command register

ARM writes result parameters into the result parameter space
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e« ARM writes “command complete” register

« ARM sends an INTO interrupt to the DSP

Communication between the ARM and the DSP is usually accomplished using a set of
communication APIs. Below is an example of a set of communication APIs between

a general-purpose processor (in this case an ARM) and a DSP. The detailed software
implementation for these APIs is given at the end of the chapter.

#define ARM_DSP_COMM_AREA_START ADDR 0X80
Start DSP address for ARM-DSP.
#define ARM_DSP_COMM_AREA_END_ADDR OxFF
End DSP address for ARM-DSP.
#define ARM_DSP_DSPCR (ARM_DSP_COMM_AREA_START_ADDR)

ARM to DSP, parameters and command from ARM.

#define ARM_DSP_DSPCCR (ARM_DSP_COMM_AREA_START ADDR+32)
ARM to DSP, return values and completion code from
DSP.

#define ARM_DSP_ARMCR (ARM_DSP_COMM_AREA_START_ADDR+64)

DSP to ARM, parameters and command from DSP.

#define ARM_DSP_ARMCCR (ARM_DSP_COMM_AREA_START ADDR+96)
DSP to ARM, return values and completion code from
ARM.

#define DSP_CMD_MASK (Uintl6)0XOFFF

Command mask for DSP.

#define DSP_CMD_COMPLETE (Uint16)0X4000
ARM-DSP command complete, from DSP.

#define DSP_CMD_OK (Uint16)0X0000
ARM-DSP valid command.

#define DSP_CMD_INVALID_CMD (Uintl16)0X1000
ARM-DSP invalid command.

#define DSP_CMD_INVALID_PARAM (Uintl6)0X2000
ARM-DSP invalid parameters.
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10.2.1 Functions

STATUS ARMDSP_sendDspCmd (Uintlé cmd, Uintlé *cmdParams,
Uintl6 nParams)

Send command, parameters from ARM to DSP.

STATUS ARMDSP_getDspReply (Uintlé6 *status, Uintlé6
*retParams, Uintl6 nParams)

Get command execution status, return parameters sent
by DSP to ARM.

STATUS ARMDSP_getArmCmd (Uintlé *cmd, Uintlé *cmdParams,
Uintl6 nParams)

Get command, parameters sent by DSP to ARM.
STATUS ARMDSP_sendArmReply (Uintlé status, Uintlé
*retParams, Uintlé nParams)
Send command execution status, return parameters
from ARM to DSP.
STATUS ARMDSP_clearReg ()

Clear ARM-DSP communication area.

10.3 SoC System Boot Sequence

Normally, the boot image for DSP is part of the ARM boot image. There could be many
different boot images for the DSP for the different tasks DSP needs to execute. The sequence
starts with the ARM downloading the image related to the specific task to be executed by

the DSP. ARM resets then the DSP (via a control register) and then brings the DSP out of
reset. At this stage the DSP begins execution at a predefined location, usually in ROM. The
ROM code at this address initializes the DSP internal registers and places the DSP into an
idle mode. At this point ARM downloads the DSP code by using a host port interface. After
it completes downloading the DSP image, the ARM can send an interrupt to the DSP, which
wakes it up from the idle mode, vectors to a start location and begins running the application
code loaded by the ARM. The DSP boot sequence is given below:

o ARM resets DSP and then brings it out of reset.
o DSP gets out of reset and load its program counter (PC) register with a start address.

o« The ROM code in this location branches the DSP to an initialization routine address.
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« A DSP status register is initialized to move the vector table to a dedicated location, all
the interrupts are disabled except for a dedicated unmaskable interrupt and the DSP is
set to an mode.

e While DSP is in its mode, the ARM loads the DSP Program/Data memory with the
DSP code/data.

e When the ARM finishes downloading the DSP code, it wakes up DSP from the mode
by asserting an interrupt signal.

o The DSP then branches to a start address where the new interrupt vector table is located.
The ARM should have loaded this location with at least a branch to the start code.

10.4 Tools Support for SoC

SoC, and heterogeneous processors in general, require more sophisticated tools support.
A SoC may contain several programmable debuggable processing elements that require
tools support for code generation, debug access and visibility, and real-time data analysis.
A general model for this is shown in Figure 10.8. A SoC processor will have several
processing elements such as an ARM and DSP. Each of these processing elements will

ARM/DSP
basic debug

DSP stream data
System stream data
—

g

ARM stream data I‘

Figure 10.8: An SoC tools environment (courtesy of Texas Instruments)
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require a development environment that includes mechanisms to extract, process, and
display debug and instrumentation streams of data, mechanisms to peak and poke at memory
and control execution of the programmable element, and tools to generate, link, and build
executable images for the programmable elements.

SoC tools environments also contain support for monitoring the detailed status of each of
the processing elements. As shown in Figure 10.9, detailed status reporting and control of
the processing elements in an SoC allows the developer to gain visibility into the execution
profile of the system. Also, since power-sensitive SoC devices may power down some or all
of the device as the application executes, it is useful to also understand the power profile of
the application. This can also be obtained using the proper analysis tools.

10.5 A Video Processing Example of SoC

Video processing is a good example of a commercial application requiring a system on a
chip solution. Video processing applications are computationally intensive and demand a lot
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Figure 10.9: Tools support provides visibility into the status of each of the SoC processing

elements (courtesy of Texas Instruments)
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of MIPS to maintain the data throughput required for these applications. Some of the very
compute-intensive algorithms in these applications include:

« Image pipe processing and video stabilization
o Compression and decompression
o Color conversion

o Watermarking and various forms of encryption

To perform a 30 frame per second MPEG-4 algorithm can take as much as 2500 MIPS
depending on the resolution of the video.

The Audio channel processing is not as demanding but still requires enough overall MIPS to
perform audio compression and decompression, equalization and sample rate conversion.

As these applications become even more complex and demanding (for example new
compression technologies are still being invented), these SoC will need to support not just one
but several different compression standards. SoCs for video applications include dedicated
instruction set accelerators to improve performance. The SoC programming model and
peripheral mix allows for the flexibility to support several formats of these standards efficiently.

For example the DM320 SoC processor in Figure 10.10 has an on chip SIMD engine (called
iMX) dedicated to video processing. This hardware accelerator can perform the common
video processing algorithms (Discrete Cosine Transform (DCT), IDCT, Motion Estimation,
Motion Correlation to name a few).

The VLCD (variable length coding/decoding) processor is built to support variable length
encoding and decoding as well as quantization of standards such as JPEG, H.263, MPEG-
1/2/4 video compression standards.

As you can see from the figure, an SoC solution contains appropriate acceleration
mechanisms, specialized instruction sets, hardware coprocessors, etc. that provide efficient
execution of the important algorithms in DSP applications. We discussed an example of video
processing but you will find the same mechanisms supporting other applications such as
wireless basestation and cellular handset.

The code listings below implement the ARM-side APIs that talk to the DSP Controller
module that manages the ARM/DSP interface across the DSP’s Host Port Interface. These
APIs are used to boot and reset the DSP and load the DSP code from the ARM, since the
DSP can only execute code from internal memory that ARM loads.
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Figure 10.10: A SoC designed for video and image processing using a RISC device (ARM926)
and a DSP (courtesy of Texas Instruments)

/**
\ DSP Control Related APIs
*/
static STATUS DSPC_hpiAddrValidate (Uint32 dspAddr, Uint8 read);
/**
\ Reset the DSP, Resets the DSP by toggling the DRST bit of
HPIB Control Register. \n
*/
STATUS DSPC_reset () {
DSPC_FSET( HPIBCTL, DRST, 0);
DSPC_FSET( HPIBCTL, DRST, 1);
return E_PASS;

www.newnespress.com
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/*k*
\ Generate an Interrupt to the DSP. Generates either INTO or
NMI interrupt to the DSP depending on which one is specified.

\param int ID DSP interrupt ID : INTO -interrupt 0 NMI -NMI
interrupt

\return i1f success, \c E_PASS, else error code
*/
STATUS DSPC_strobeINT (DSP_INT ID intID) {

STATUS status = E_PASS;
switch (intID) {
case INTO:
DSPC_FSET( HPIBCTL, DINTO, O0);
DSPC_FSET( HPIBCTL, DINTO, 1);
status = E_PASS;
break;
case NMI:
DSPC_FSET( HPIBCTL, HPNMI, O);
DSPC_FSET( HPIBCTL, HPNMI, 1);
status = E_PASS;
break;
default:
status = E_INVALID INPUT;
break;

}
return (status);
}
/**
\ Assert the hold signal to the DSP
*/
STATUS DSPC_assertHOLD() {
DSPC_FSET( HPIBCTL, DHOLD, O0);
return E_PASS;
}
/**
\ Release the hold signal that was asserted to the DSP
*/
STATUS DSPC_releaseHOLD() {
DSPC_FSET( HPIBCTL, DHOLD, 1);
return E_PASS;

/*k*

\ Check if HOLD acknowledge signal received from DSP
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*/
DM_BOOL DSPC_checkHOLDACK () {
return((DM_BOOL) ( DSPC_FGET( HPIBSTAT, HOLDA ) == 0 ? DM_TRUE
DM_ FALSE)) ;
}
/**

\ Enable/Disable byte swapping when transferring data over HPI
interface
\param enable Byte swap, DM_TRUE: enable, DM_FALSE: disable

*/
STATUS DSPC_byteSwap (DM_BOOL enable) {
DSPC_FSET( HPIBCTL, EXCHG, ((enable == DM_TRUE) 2?2 1 : 0));
return E_PASS;
}
/**
\ Enable/Disable HPI interface
\param enable HPI interface, DM_TRUE: enable, DM_FALSE: disable
*/
STATUS DSPC_hpiEnable (DM_BOOL enable) {
DSPC_FSET( HPIBCTL, EXCHG, ((enable == DM_TRUE) 2?2 1 : 0));
return E_PASS;
}
/**
\ Get HPI interface status register HPIBSTAT
\return register HPIBSTAT (0X30602)
*/

Uintl6 DSPC_hpiStatus () {
return DSPC_RGET( HPIBSTAT ) ;

/**

\ Write data from ARM address space to DSP address space
Memory map in DSP address space is as follows:

\code

Address Address Access Description

Start End

0X60 OX7F R/W DSP specific memory area (32W)
0Xx80 OX7FFF R/W DSP on-chip RAM, mapped on

both program and data space (~32KW)
0X8000 O0XBFFF R/W DSP on-chip RAM, mapped on
data space only (16KW)
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0X1c000 OX1FFFF R/W DSP on-chip RAM, mapped on program
space only (16KW)
\endcode

\param address Absolute address in ARM address space, must be
16-bit aligned

\param size Size of data to be written, in units of 16-bit
words

\param dspAddr Absolute address in DSP address space, 0XO0
OX1FFFF

\return if success, \c E_PASS, else error code
*/
STATUS DSPC_writeData (Uintl6 *address, Uint32 size, Uint32 dspAddr) {
if(size==0)
return E_PASS;
if ((Uint32)address & 0X1 )
return E_INVALID_INPUT;
if( DSPC_hpiAddrValidate (dspAddr, 0) != E_PASS )
return E_INVALID_INPUT;

Uintl6 *hpiAddr;

Uintl6 *armAddr;
hpiAddr=(Uintl6*)HPI_DSP_START_ ADDR;
armAddr= (Uintl6*)address;

if(((dspAddr >= 0X10000) && (dspAddr<0X18000)) ||
(dspAddr >= 0X1C000 ))
{
hpiAddr += (dspAddr-0X10000);
telse if ((dspAddr >= 0X0060) && (dspAddr<<0XC000)) {
hpiAddr += dspAddr;
telse {
hpiAddr= (Uint16*)COP_SHARED MEM_START ADDR;
hpiAddr += (dspAddr-0XC000);
}
while(size--)
*hpiAddr++=*armAddr++;
}
return E_PASS;

/**
\ Read data from DSP address space to ARM address space

Memory map in DSP address space is as follows:
\code
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Address Address Access

Start End

0X60 OX7F R/W

0X80 OX7FFF R/W

0X8000 0XBFFF R/W

0X1c000 OX1FFFF R/W
\endcode

\param address
\param size
\param dspAddr

\return if success,
*/

STATUS DSPC_readData (Uintlé *address,

if(size==0)
return E_PASS;
1f((Uint32)address & 0X1

\c E_PASS,

Description

DSP specific memory area (32W)
DSP on-chip RAM, mapped on both
program and data space (~32KW)
DSP on-chip RAM, mapped on data
space only (16KW)

DSP on-chip RAM, mapped on
program space only (16KW)

Absolute address in ARM address
space, must be 16-bit aligned
Size of data to be read,
of 16-bit words
Absolute address in DSP address
space, 0XO0 OX1FFFF

else error code

in units

Uint32 size, Uint32 dspAddr) {

)

return E_INVALID_INPUT;

if( DSPC_hpiAddrValidate (dspAddr,

1) != E_PASS )

return E_INVALID_INPUT;

Uintl6 *hpiAddr;
Uintl6 *armAddr;

hpiAddr= (Uintl6*)HPI_DSP_START_ADDR;
armAddr= (Uintl6*)address;

if(((dspAddr >= 0X10000) && (dspAddr<0X18000)) |
(dspAddr >+ 0X1C000 ))
{
hpiAddr += (dspAddr - 0X10000) ;
}else if((dspAddr >= 0X0060) && (dspAddr<;0XC000)){

hpiaddr += dspaAddr;

}else {

hpiAddr= (Uint16*)COP_SHARED MEM_START ADDR;

hpiaddr +=
}

while(size--)

(dspAddr -

0XC000) ;

**armAddr++=hpiAddr++;
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}
return E_PASS;

}

/*k*

\ Similar to DSPC_writeData(), except that after writing it
verifies the contents written to the DSP memory
Memory map in DSP address space is as follows:

\code

Address Address Access Description

Start End

0X60 OX7F R/W DSP specific memory area (32W)

0X80 O0X7FFF R/W DSP on-chip RAM, mapped on both
program and data
space
(~32KW)

0X8000 OXBFFF R/W DSP on-chip RAM, mapped on data
space only (16KW)

0X1Cc000 OX1FFFF R/W DSP on-chip RAM, mapped on
program space o

\endcode

\param address

\param size

\param dspAddr

\param retryCount

\return if success,
*/

Absolute address in ARM address space,
must be 16-bit aligned

Size of data to be written, in units of
16-bit words

Absolute address in DSP address space,
0X0 .. OX1FFFF

Number of times to retry in case of
failure in writing data to DSP

memory

\c E_PASS, else error code

STATUS DSPC_writeDataVerify (Uintl6 *address, Uint32 size, Uint32

dspAddr, Uintlé retryCount) {
if (size==0)
return E_PASS;

if ((Uint32)address & 0X1 )
return E_INVALID INPUT;

if ( DSPC_hpiAddrValidate (dspAddr, 0) != E_PASS )
return E_INVALID_INPUT;

volatile Uintl6 *hpiAddr;
volatile Uintl6é *armAddr;
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/**

*/

}

hpiAddr= (Uintl6*)HPI_DSP_START_ADDR;

armAddr= (Uintl6*)address;

1f(((dspAddr >= 0X10000) && (dspAddr<<0X18000)) |

(dspAddr >= 0X1C000 ))

{
hpiAddr += (dspAddr-0X10000);

}else if((dspAddr >= 0X0060) && (dspAddr<<0XcC000))/{
hpiAddr += dspAddr;

telse {
hpiAddr= (Uintl6*)COP_SHARED_MEM_START_ADDR;
hpiAaddr += (dspAddr-0XcC000) ;

Uintlé 1i;
volatile DM_BOOL error;

while(size--) {
error= (DM_BOOL)DM_TRUE;
for(i=0;i<retryCount;i++) {
*hpiAddr=*armAddr;
if (*hpiAddr==*armAddr) {
error= (DM_BOOL)DM_FALSE;
break;

}

if (error==DM_TRUE)
return E_DEVICE;

hpiAddr++;

armAddr++;

return E_PASS;

\ Download code to DSP memory
\param pCode code to be dowloaded
\see DSPCODESOURCE

STATUS DSPC_loadCode (const DSPCODESOURCE* pCode) {

if ( pCode == NULL || pCode->size == 0 )

return E_INVALID_ INPUT;
// reset DSP
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DSPC_reset () ;

// download the code to DSP memory
while ( pCode->sgize !'= 0 ) {
Uintl6 nRetry=5;
if( DSPC_writeDataVerify ((Uintl6é *)pCode->code, pCode-

>gize, pCode->address, nRetry) != E_PASS )
return E_DEVICE;
pCode++;

}
// let DSP go
DSPC_strobeINT (INTO) ;
return E_PASS;
}
static STATUS DSPC_hpiAddrValidate (Uint32 dspAddr, Uint8 read) {
// even if dspAddr <= 0X80 allow write
if (dspAddr >= 0X60 && dspAddr <= 0OXFFFF )
return E_PASS;
if (dspAddr >= 0X10000 && dspAddr <= 0X17FFF )
return E_PASS;
if (dspAddr >= 0X1c000 && dspAddr <= 0X1FFFF )
return E_PASS;
return E_INVALID_INPUT;

/**
\ ARM-DSP Communication APIs
*/
/*
/**
\ Send command, parameters from ARM to DSP
This routine also triggers the NMI interrupt to DSP
\param cmd command to be sent to DSP
\param cmdParams pointer to paramters
\param nParams number of parameters to be sent 0..30, \n
if \c nParams<30, then remaining ARM-DSP register set is filled with 0’s
\return if success, \c E_PASS, else error code
*/
STATUS ARMDSP_sendDspCmd (Uintlé cmd, Uintlé6* cmdParams, Uintl6
nParams) {
DSPC_writeData( &cmd, 1, ARM_DSP_COMM_AREA_START_ ADDR) ;
DSPC_writeData( &nParams, 1, ARM DSP_COMM AREA_START ADDR+1);
DSPC_writeData( cmdParams, nParams,
ARM_DSP_COMM_AREA_START ADDR+2) ;
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DSPC_strobeINT (NMI) ;

return E_PASS;
}
/**

\ Get command execution status, return parameters sent by DSP
to ARM

\param status command status received from DSP
\param retParams pointer to return paramters
\param nParams number of parameters to be fetched

from ARM-DSP communication area, 0..30
\return if success, \c E_PASS, else error code
*/
STATUS ARMDSP_getDspReply( Uintl6* status, Uintlé* retParams, Uintl6
nParams)
{
DSPC_readData( status, 1, ARM _DSP_COMM_AREA_START_ADDR+32);
DSPC_readData( retParams, nParams,
ARM_DSP_COMM_AREA_START_ADDR+34) ;
return E_PASS;

/**
\ Get command, parameters sent by DSP to ARM
\param cmd command received from DSP
\param cmdParams pointer to paramters
\param nParams number of parameters to be fetched from
ARM-DSP communication area, 0..30
\return if success, \c E_PASS, else error code
*/

STATUS ARMDSP_getArmCmd( Uintlé6* cmd, Uintlé6* cmdParams, Uintlé
nParams) {

DSPC_readData( cmd, 1, ARM_DSP_COMM_AREA_START ADDR+64) ;

DSPC_readData( cmdParams, nParams,
ARM_DSP_COMM_AREA_START_ADDR+66) ;

return E_PASS;

/**
\ Send command execution status, return parameters from ARM to
DSP
This routine also triggers the NMI interrupt to DSP
\param status command execution status to be sent to DSP
\param retPrm pointer to return paramters
\param nParams number of parameters to be sent 0..30, \n

if \c nParams<30, then remaining ARM-DSP register set is filled with 0’s
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\return if success, \c E_PASS, else error code
*/
STATUS ARMDSP_sendArmReply( Uintlé status, Uintl6* retParams, Uintlé
nParams )

{
DSPC_writeData( &status, 1, ARM_DSP_COMM_AREA_START ADDR+96) ;

DSPC_writeData( retParams, nParams,
ARM_DSP_COMM_AREA_START_ADDR++98) ;

DSPC_strobeINT (INTO) ;

return E_PASS;

/‘k*

\ Clear ARM-DSP communication area

\return i1f success, \c E_PASS, else error code
*/
STATUS ARMDSP_clearReg() {

Uintl6é nullArray[128];

memset ( (char*)nullArray, 0, 256);

if (DSPC_writeData (nullArray, 128,ARM_DSP_COMM_AREA_START_ADDR)
= E_PASS )

return E_DEVICE;
return E_PASS;
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logic interface issues, 95-6
overall considerations, 93-5
timing and issues, 96
Nyquist criteria, 28-30
sample-and-hold amplifier (SHA)
function, 25-7
undersampling, 334
antialiasing filters in, 34—6
Address generators, 334-5
Adjacent channel leakage ratio
(ACLR), 58, 59, 98
Adjacent channel power ratio
(ACPR), 58, 98
ADL (Architecture Description
Language), 321-2
ADSP21xx, 354
ADSP210xx, 356
Advanced Audio Coding (AAC), 174
Aliasing, 1, 28, 29, 98, 127, 285
All-0s, 105
All-1s, 105
Alpha mixing, 186, 198, 199, 201
Amplitude modulation (AM), 256-61
Analog bandwidth, 50-1, 98
Analog Devices, 19, 125, 129, 336,
354, 356
Analog signal processing, 124-5
Analog spectrum analyzer, 89-90
Analog-to-digital converter (ADC),
129, 284
and finite-length modeling, 285-6
Angle modulation, 267
Anti-aliased resampling, 221-3
Anti-aliasing filter, 127-8
Aperture delay time, 70, 71, 98-9
Aperture jitter, 70, 72—4, 99
Aperture time, 70, 71, 98
Aperture uncertainty, see Aperture
jitter
Application-specific instruction set
processors (ASIP), 304

Index

design automation, 321-4
DSP implementation on, 306
DSP subsystem, 315
hardware design flow, 319-21
Application specific integrated circuit
(ASIC), 304
DSP implementation on, 307-8
ARC, 324
ARM and DSP, 432-4, 435-6, 438
ARM processor, 425
Arrays versus pointers, 395
Assembly code, 312
Assembly language, 384
Atomic operations, 403
Audio coding, 159
Adaptive Transform Acoustic
Coding (ATRAC), 183
Digital theater systems (DTS), 183
Dolby AC3, 180-3
MPEG advanced audio coding, 173
MPEG-2 AAC, 174-9
MPEG-4 AAC, 179-80
MPEG audio coding, 164
Layer I coding, 165-7
Layer II coding, 167-8
Layer III coding, 168-73
psychoacoustic model, 1634
Sony Dynamic Digital Sound
(SDDS), 183
spectral masking, 161-2
temporal masking, 162-3
Audio frequency-shift keying
(AFSK), 266
Autocorrelation, 294

B
Background key signal generation,
216-17
Backward masking, see Premasking
Bandwidth, 265-6
analog bandwidth, 98
analog input bandwidth, 99
and data capacity, 281-2
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Bandwidth (continued)
effective resolution bandwidth
(ERB), 99
full-linear bandwidth, 99
full-power bandwidth (FPBW), 99
Baseband antialiasing filters, 30-3
Batman Returns, 181
Behavior source code, 311
Behavioral synthesis, 317-18
Best straight line, 18, 19
Binary-coded decimal (BCD) code,
13, 14
Binary codes, 4, 8, 311-12
Binary machine code, 312
Binary phase-shift keying (BPSK),
268, 269
Binary-to-gray and gray-to-binary
conversion, 9
Bipolar codes, 9-13
Bipolar converters, 16, 17
Biquad IIR filter, 289
Bit error rate (BER), 77-83
Bit reversal addressing, 291, 292,
389-91
Bit Sliced Arithmetic Coding
(BSAC), 180
Black box, 318
Blackfin processors, 383, 385, 391,
394, 395, 403, 406, 411, 417,
418, 419, 420
Block switching and MDCT, 175-6
Blue stretch, 196
Bob, see Intra-field processing
Brightness (black level) control, 192,
193
Build Array function, 155
Butterfly operations, 290
Byte addressability, 386, 388

C

C/C++, 384

“Cache Invalidate” instruction, 407—-8

Cacheability protection look-aside
buffers (CPLBs), 411

management, 413-14

Caching mechanism, 405

Callback Manager, 383

Capture-and-simulate methodology,
317

Carrier, definition of, 256
Cathedral-II, 324
CbCr filtering, 190-2
CbCr processing, 192-3
CCLK cycles, 400
CCS Getting Started Guide, 368
Chip stream, 276
Chirp Pattern VI, 148
Chroma keying, 186, 206, 209-18
Circular buffering, 334-5, 388-9
Code centers, 5, 16
Code-dependent glitches, 87
Code division multiple access
(CDMA), 275
Code optimization and resource
partitioning, 379
data movement, physics of, 414
core and DMA SDRAM
accesses, 417
grouping like transfers to
minimize memory bus
turnarounds, 415-17
priority and arbitration schemes
between system resources,
420
SDRAM refresh rates and clock
settings, 418-20
SDRAM row management, 418
efficient programming,
architectural features for, 385
hardware loop constructs, 385-6
interlocked instruction pipelines,
391-3
multiple operations per cycle,
385
specialized addressing modes,
386-91
efficient programming, compiler
considerations for, 393
arrays versus pointers, 395
data buffers, 397-8
data types, choosing, 394-5
division, 395-6
intrinsics and in-lining, 398-9
loops, 3967
volatile data, 399
event generation and handling, 380
system interrupts, 3814
memory architecture, 403

data memory management,
406-8
DMA and cache, choosing
between, 408—10
instruction memory
management, 405-6
memory access trade-offs, 403-5
memory management unit
(MMU), 410-14
programming methodology, 384
system and core synchronization,
399
atomic operations, 403
load/store synchronization,
400-1
ordering, 401-3
Coded OFDM (COFDM), 279, 280
Color correction, 197
Color temperature correction, 198
Color transient improvement, 193—4
Commercial off-the-shelf (COTS), 306
Common-mode range, 101
Common-mode rejection (CMR), 101
Common-mode voltage (CMV), 101
Communication system, 297-9
Compiler considerations, for efficient
programming, 393
arrays versus pointers, 395
data buffers, 397-8
data types, choosing, 394-5
division, 395-6
intrinsics and in-lining, 398-9
loops, 3967
volatile data, 399
Complementary codes, 13—14
Complete DSP system, 126
analog-to-digital converter, 129
anti-aliasing filter, 127-8
digital-to-analog converter, 130
processor, 129
reconstruction filter, 130
sample-and-hold device, 128-9
Compliance-voltage range, 101
Composite chroma keying, 218
Composite Signal VI, 148, 149,
150
Computer tomography (CT)
processing system, 314
Concatenate Inputs option, 152—155
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Contrast (picture/white level) control,
192, 193
Conventional rounding, 186-7
Conversion complete, 101
Conversion rate, 102
Conversion time, 102
Convolution, 292-3
Core and DMA SDRAM accesses,
417
Core event controller (CEC), 381
Core Synchronization (CSYNC), 399
atomic operations, 403
Load/Store synchronization, 400-1
ordering, 401-3
Cross-correlation, 294
Crosstalk, 102

D
D15 method, 182
D25 method, 182-3
D45 method, 183
DAC settling time, 83-5, 114
Data buffers, 397-8
Data cache, 407-8
and DMA, 412
Data capacity and bandwidth, 281-2
Data converter AC errors, 36
DAC dynamic performance, 83
DAC output spectrum and sin
(x)/x frequency roll-off, 90
DAC settling time, 83-5
DAC SNR measurement, with
analog spectrum analyzer,
89, 90
glitch impulse area, 85-6
oversampling interpolating
DACs, 90-3
SDFR and SNR, 86-9
dynamic performance, 45
ADC sparkle codes, metastable
states, and bit error rate,
77-83
ADC transient response and
overvoltage recovery, 75-7
analog bandwidth, 50-1
aperture time, aperture delay
time, and aperture jitter, 70—4
differential nonlinearity
distortion effects, 467

harmonic distortion, 47, 48
integral nonlinearity distortion
effects, 467
intercept points and 1dB
compression points, 547
multitone spurious free dynamic
range, 57-8
noise factor (F) and noise figure
(NF), 62-9
noise power ratio (NPR), 59-62
SINAD, SNR, and ENOB,
49-50
spurious free dynamic range
(SFDR), 51-3
total harmonic distortion (THD),
47,48
total harmonic distortion plus
noise (THD + N), 47, 48
total SNR of ADC, equation for,
74-5
two-tone intermodulation
distortion (IMD), 53—4
WCDMA ACPR and ACLR,
58-9
worst harmonic, 47-8
ideal N-bit converter, theoretical
quantization noise of, 36-43
practical ADCs, noise in, 43
equivalent input referred noise,
44
noise-free code resolution, 44—5
Data converter specifications
logic interface issues, 95-6
overall considerations, 93-5
timing and issues, 96
Data DMA, 408-9
Data DMA/cache, 409
Data memory (DM), 310
management, 406—8
Data memory addressing, 310
Data movement, physics of, 414
core and DMA SDRAM accesses,
417
grouping like transfers to minimize
memory bus turnarounds,
415-17
SDRAM row management, 418
priority and arbitration schemes
between system resources, 420

SDRAM refresh rates and clock
settings, 418-20
Data processing unit (DU), 310
Data types, for efficient
programming, 394-5
DCT (discrete cosine transform),
246-7, 289, 302
DCT-based compression, 246
DCT, 246-7
quantization, 247-8
run length coding, 248
variable-length coding, 250
zig-zag scanning, 248, 249
Dead time, see Switching time
Decimation in frequency (DIF), 290,
291
Decimation in time (DIT), 290, 291
Deinterlacing algorithms, 239
Demodulation, 256, 257, 258
Describe-and-synthesize
methodology, 317-18
Design flow
hardware design flow, 317-19
ASIP, 319-24
Deviation, definition of, 261
Deviation ratio
and modulation index, 263
Differential analog input voltage
range, 103
Differential gain (AG), 103
Differential linearity error, 19, 108,
109
Differential nonlinearity (DNL), 19,
20, 21, 46-7, 108
Differential phase (Ad), 103
Digital data processing, 131
Digital filters, 123, 287-9
alternative approach, 125-6
analog signal processing, 124-5
complete DSP system, 126
analog-to-digital converter, 129
anti-aliasing filter, 127-8
digital-to-analog converter, 130
processor, 129
reconstruction filter, 130
sample-and-hold device,
128-9
digital data processing, 131
feedback filters, 134-7
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Digital filters (continued)
processing systems representation,
134
running/moving average filter,
131-3
Digital signal processing (DSP),
definition of, 284
Digital theater systems (DTS), 183
Digital-to-analog converter (DAC), 2,
130, 284
Diode detector circuit, 257, 258
Direct Broadcast Satellites (DBS),
181
Direct Digital Synthesis (DDS)
system, 87
Direct Fourier transform, 290
Direct-sequence spread spectrum
(DSSS), 275-9
see also Spread spectrum
techniques
Direction Control, 415
Discrete Cosine Transform (DCT),
246-7, 289, 438
Discrete Fourier transform, 1401,
290
Discrete wavelet transform (DWT),
139, 142-5
FP of, 156
LabVIEW tools for, 152-6
Display enhancement, 192
blue stretch, 196
brightness, contrast, saturation
(color), and hue (tint), 192-3
color correction, 197
color temperature correction, 198
color transient improvement, 193—4
dynamic contrast, 197
green enhancement, 1967
luma transient improvement, 194
sharpness, 194-6
Display scaling examples, 2236,
227,228
Distortion control loop, 172
DMA versus cache, 408-10
Dolby AC3, 180
bit allocation, 182
D15 method, 182
D25 method, 182-3
D45 method, 183

Dolby digital, see Dolby AC3
Dot product, 387
Double (32-bit) format, 395
Double precision format, 351-3
Doublet glitch, 85
Droop rate, 103
DSP processors and fixed-point
arithmetic
architecture, 329-32
finite impulse response and infinite
impulse response filter
implementations, 358-64
fixed-point and floating-point
formats, 336
fixed-point digital signal
processors, 354-5
fixed-point format, 337-45
floating-point format, 345-50
floating-point processors, 355—7
IEEE floating-point formats,
350-3
hardware units
address generators, 334-5
multiplier and accumulator
(MAC), 333
shifters, 333—4
and manufacturers, 335-6
programming examples, 364
fixed-point implementation, 372,
375,376, 377
floating-point implementation,
372,374
linear buffering, 36972
real-time processing, 368-9
sample C programs, 372
TMS320C67x DSK, 364-8
DSP theory, 284
applications, 295-6, 296-304
firmware, 310-13
and fundamentals, review of,
284-5, 294, 295
implementations, 296, 304-9
processor architecture, 310, 311
DSP5600x family, 354
Dual-slope converter, 103
Duplication, 220
see also Scan line duplication
Dynamic contrast, 197
Dynamic rounding, 187, 188

E

Effective aperture delay time, 70, 71,
98, 99

Effective number of bits (ENOB),
49-50, 51, 103

Effective resolution, 45, 110

Effective resolution bandwidth
(ERB), 99

Embedded computing, 315-17

Embedded system, 314

DSPin, 314-15

Emitter-coupled-logic (ECL), 3

Encode (sampling clock) pulsewidth/
duty cycle, 104

End-of-conversion (EOC), 101

end-point linearity, 108

end-point nonlinearity, 108

End point system, 18, 19

Enum Constant, 146

Enum control, 146

Equivalent input referred noise, 44

Error feedback rounding, 187

Event generation and handling, 380

system interrupts, 3814
Exceptions, 380-1

F
Fast Fourier transform (FFT), 140-1,
165, 289, 290, 291, 390
block diagram, 149
property node, 151-2
versus STFT, 145-52
Feedback filters, 134-7
Feedthrough error, 104
FFT, see Fast Fourier transform
Field merging, 241-2, 245
Field rate conversion, see Scan rate
conversion
FIFO (First In First Out) buffer,
288-9, 334, 335
Film mode deinterlacing, 239, 244
Filters, 287
Finite impulse response (FIR) filter,
137, 288
implementation, in fixed-point
systems, 358-9, 369, 370
Firmware, DSP, 310-13
First-in/first-out (FIFO) buffer, see
FIFO (First In First Out) buffer
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Fixed pixel display considerations,
250
detail correction, 250
expanded color reproduction, 250
nonuniform quantization, 250
scaling and deinterlacing, 251
Fixed-point and floating-point
formats, 336
fixed-point digital signal
processors, 354-5
fixed-point format, 33745
floating-point format, 345-50
floating-point processors, 355—7
IEEE floating-point formats, 350-3
Fixed-point digital signal processors,
354-5
Fixed-point DSP firmware flow, 312,
313
Fixed-point systems
FIR filter implementation in,
358-9, 369, 370
IIR filter implementation in, 3604,
369-71, 372, 373
Flash converter, 27, 104
Float (32-bit) format, 395
Floating-point format, 345-50
overflow, 347-50
underflow, 350
Floating-point processors, 3557
Forward masking, see Postmasking
FPBW (full power bandwidth), 50, 99
FPGA (Field-Programmable Gate
Array), 304
Fractional binary, 4
Fractional ratio interpolation, 241
Frame rate conversion, see Scan rate
conversion
Frame/field dropping and duplicating,
228-9
Frequency division multiple access
(FDMA), 59, 60, 275
Frequency domain processing, 139
discrete Fourier transform (DFT),
140-1
discrete wavelet transform (DWT),
142-5
LabVIEW tools for, 152-6
fast Fourier transform (FFT),
140-1

LabVIEW tools for, 145-51
short-time Fourier transform
(STFT), 141-2
LabVIEW tools for, 145-51
signal processing toolset, 145
Frequency-domain signal processing,
290
Frequency hopping, 274-5
Frequency modulation (FM), 261-3
Frequency response, of deinterlacing
filters, 244-5
Frequency shift keying (FSK), 2667
Frequency-to-voltage conversion
(FVC), 104
Friis equation, 68
Full-scale input power (ADC), 105
Full-scale range (FSR), 105
Fully modulated signal, see 100%

modulation

G

G.729A algorithm, benchmarks for,
413

Gain error, 17-18

Gain tempco, 116

Gaussian filter, 271

Gaussian-filtered minimum shift-
keying (GMSK), 270, 271,
272

General-purpose processor (GPP),
431

DSP implementations on, 305

Glitch, 85, 102, 106

Glitch energy, 85, 102, 106

Glitch impulse area, 85-6, 102, 106

Grand Alliance, 181

Gray code, 7-9

Green enhancement, 1967

Grounded-input histogram, 44

GSM AMR algorithm, benchmarks
for, 413

H

H.264, 247

Hanning Window VI, 151

Hardware dependent source code, 311
see also Assembly code

Hardware design flow, 317-19

Hardware loop buffers, 386

Hardware loop constructs, 385-6
Hardware options, 283
design flow, 317-24
DSP applications, 295-6
communication system, 297-9
multimedia signal processing
systems, 299-303
non-real-time system, 297
real-time system, 297
review on, 3034
DSP firmware, 310-13
DSP implementations, 296, 304
on application-specific
instruction set processors
(ASIP), 306
on application specific integrated
circuit (ASIC), 307-8
on general-purpose DSP (GP
DSP) processors, 305-6
on general-purpose processor
(GPP), 305
trade-off and decision of, 308-9
DSP theory, 284, 294-5
adaptive filter and signal
enhancement, 292-3
ADC and finite-length modeling,
285-6
autocorrelation, 294
cross-correlation, 294
digital filters, 287-9
and fundamentals, 284-5
random process and
autocorrelation, 293—4
transforms, 289-92
DSP processors and systems,
review of, 309
architecture, 310
embedded computing,
fundamentals of, 315-17
embedded system, 314-15
firmware, 310-13
Harmonic distortion, 47, 48
Harmonic sampling, 33
Harvard processor, 331, 332
HDTV to SDTV, 188
Heterogeneous memory systems,
429
High-level language (HLL), 384
High-pass filter, 287
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High performance media processing
capability
hardware loop constructs, 385-6
interlocked instruction pipelines,
391-3
multiple operations per cycle, 385
specialized addressing modes,
386-91
Hue (tint) control, 192, 193
Huffman coding, 299, 300
Huffman tree, 300

I
1-Q modulator, 272, 273
Image and video compression, 302-3
Impulse Pattern VI, 148
IMX, 438
Infinite impulse response (IIR) filter,
137, 288, 289
implementation, in fixed-point
systems, 3604, 369-71, 372,
373,374
In-lining, 398-9
Input impedance, 107
Input/output unit (I/0), of DSP, 310
Input-referred noise, 107
Institute of Electrical and Electronics
Engineers (IEEE) floating-
point formats
double precision format, 351-3
single precision format, 350-1
Instruction cache, 404, 405
data DMA, 408-9
data DMA/cache, 409
Instruction/data DMA combination,
409-10, 411, 412
Instruction memory management,
405-6
Integral linearity error, 18, 19
Integral nonlinearity, of ADC, 46, 47
Intensity graph, 151
Intercept points and 1dB compression
points, 547
Inter-field processing, 241
field merging, 241-2
motion adaptive deinterlacing,
242-3
Interlaced-to-noninterlaced
conversion, 238

film mode, 244
frequency response considerations,
244-5
inter-field processing, 241-3
intra-field processing, 239-41
motion-compensated deinterlacing,
244
Interlocked instruction pipelines,
391-3
Intermodulation distortion (IMD),
107
Interrupt service routine (ISR), 381,
383,402,410
Intra-field processing, 239
fractional ratio interpolation, 241
scan line duplication, 239, 240
scan line interpolation, 240-1
variable interpolation, 241
Intrinsics, 398-9
Invalidate instruction, 407-8
Inverse DCT (IDCT), 247, 438
Inverse Discrete Wavelet Transform
VI, 155
Inverse DWT (IDWT), 144
Inverse telecine process, 244

J

Joint time-frequency analysis (JTFA),
145

JPEG (Joint Picture Expert Group),
303

L
L1 memory, 405
L3 memory, 420
Least significant bit (LSB), 3, 107-8
Left-justified data, 108
Levinson—Durbin algorithm, 177
Linear buffering, 369
digital oscillation with infinite
impulse response filtering,
372
finite impulse response filtering,
369
infinite impulse response filtering,
369-71
Linear settling time, 84
Linearity error, 17, 108
Linearity tempco, 116

LISA, 324
Long long (64-bit) format, 395
Long term prediction (LTP) tool, 179
Long window, 171
Looping, 385-6
in C, 396-7
Lossless compression, 299-300
Lossy compression, 160, 161, 299,
301
Low-pass filter, 287
Low-voltage-differential-signaling
logic (LVDS), 3
Luma and chroma keying, 204
chroma keying, 206, 209-18
luminance keying, 205-6, 207,
208, 209
superblack and luma keying, 218
Luma transient improvement, 194
Luminance keying, 205-6, 207, 208,
209
Luminance modulation, see Shadow
chroma keying

M
Macroblocks and blocks, relationship
between, 246
MathScript Node, 148
MATLAB Script Node, 155
Maximum conversion rate, 109
Maximum signal-to-quantization-
noise ratio, 285, 286
Mean, 293
MemDMA streams, 415
Memory architecture
choosing between DMA and cache,
system guidelines for, 408—10
data memory management, 406—8
instruction memory management,
405-6
memory access trade-offs, 403-5
memory management unit (MMU),
410-14
Memory management unit (MMU),
410-14
Memory subsystem, 315
Menu Ring controls, 146
properties, 147
MESCAL, 324
Metastability, 79
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Metastable state errors, 80
Metastable states, 77, 79-80
Microcontroller (MCU), 306, 315
Midscale glitch, 85, 87
MIMOLA, 324
Minimum conversion rate, 109
Minimum-shift keying (MSK), 270-2
Missing codes, 21, 22, 109
Modified discrete cosine transform
(MDCT), 169, 181
Modulation, 255
amplitude modulation, 256-61
bandwidth, 265-6
bandwidth and data capacity,
281-2
deviation ratio, 263
direct-sequence spread spectrum,
275-9
frequency hopping, 274-5
frequency modulation, 261-3
frequency shift keying, 266—7
minimum-shift keying, 270-2
modulation index, 261, 263
and deviation ratio, 263
orthogonal frequency division
multiplexing, 279-81
phase modulation, 267-8
phase-shift keying, 268-70
quadrature amplitude modulation,
272-4
radio carrier, 256
sidebands, 263-5
signal-to-noise ratio, improvement
in, 266
spread spectrum techniques, 274
Monotonicity, 109
Most significant bit (MSB), 3, 109
Motion adaptive deinterlacing, 242-3
Motion-compensated deinterlacing,
244
Motion compensation, 230
Motion Correlation, 438
Motion Estimation, 438
Motion vector steered deinterlacing,
see Motion-compensated
deinterlacing
Motorola, 129, 336, 354
Moving average filter, see Running
average filter

MPEG advanced audio coding, 173
MPEG-2 AAC, 174-9
MPEG-4 AAC, 179-80
MPEG audio coding, 164
layer I coding, 165-7
layer II coding, 167-8
layer III coding, 168-73
MPEG?2 (Moving Picture Expert
Group), 303
MPEG-2 AAC, 174
block switching and MDCT, 175-6
profiles, 178-9
quantization and coding, 178
spectral processing, 176-8
stereo coding, 178
MPEG-4 AAC, 179
BSAC, 180
long term prediction, 179
perceptual noise substitution, 179
TwinVQ, 179-80
MPEG-4.10, see H.264
Multicore system-on-a-chip (SoC),
423-31
Multimedia signal processing
systems, 299
image and video compression,
302-3
lossless compression, 299-300
voice compression, 301-2
Multiple operations per cycle, 385
Multiplier and accumulator (MAC),
333
Multiplying DAC, 104, 105-6, 109
Multitone spurious free dynamic
range (SFDR), 57-8, 109-10

N

Narrowband FM, 265

Nearest neighbor scaling, 220

No missing code resolution, 113

NoGAP, 324

Noise bandwidth, 64, 89

Noise factor (F), 62-9

Noise figure (NF), 62-9

Noise-free code resolution, 44-5,
107, 110

Noise power ratio (NPR), 59-62,
110-11

transient response, of ADC, 75-7

Noninterlaced-to-interlaced
conversion, 237
scan line decimation, 237-8
vertical filtering, 238
Nonlinearity/gain nonlinearity, 111
Nonmaskable interrupt (NMI), 381
Nonprogrammable ASIC, see
Application specific integrated
circuit (ASIC)
Non-real-time digital signal
processing, 297
Nonuniform quantization, 250
Normal-mode rejection (NMR), 111
Normal-mode signal, 111
Nyquist bandwidth, 39, 41, 98
Nyquist criteria, 28-30, 35
Nyquist frequency, 31, 49, 90, 128
Nyquist zone, 30, 33, 34, 35
undersampling and frequency
translation, 34
Nyquist’s theorem, 281-2

(0]

Oddification, 247

Offset binary, 9, 10, 11, 16

Offset error, 17, 100

Offset nonlinearity, 112

Offset-quadrature phase-shift keying
(0-QPSK), 270

Offset tempco, 116

On-off keying (OOK), 257

One’s complement, 9, 12, 16

Ordering, 401-3

Orthogonal codes, 276

Orthogonal frequency division
multiplexing (OFDM),
279-81

Oscilloscope, 382

Output leakage current, 107

Output propagation delay, 111

Output voltage tolerance, 111

Overlay technique, 406

Oversampling, 39, 63

interpolating DACs, 90-3

Overvoltage recovery time, 77,

111-12

P
Peak differential voltage, 103
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PEAS-III, 324

Pedestal/sample-to-hold offset step,
112

Perceptual noise substitution (PNS),
179

Periodic mode, 151

Phase modulation (PM), 267-8

Phase reversal keying (PRK), see
Binary phase-shift keying
(BPSK)

Phase-shift keying (PSK), 268-70

Phasor diagram, 269

Pipelined converter, 112

Pipelining operation, 332

Pixel dropping, 220

Positive-emitter-coupled-logic
(PECL), 3

Postmasking, 163

Power-Supply Rejection Ratio
(PSRR), 112

Premasking, 163

Priority and arbitration schemes,
between system resources,
420

Process gain, 39, 40

Processing systems, representation
of, 134

Processor, 129

Processor architecture, of DSP, 310,
311

Program memory (PM), of DSP, 310

Programmable finite state machine,
310

Programming methodology, 384

“Pseudo-gray”, 9

Pseudo-random spreading code, 277,
279

Psychoacoustic model, 163—4

Q

Q-format number representation,
340-5

Quad-slope converter, 112

Quadrature amplitude modulation
(QAM), 2724

Quadrature detector, 262, 263

Quadrature modulator, 271, 272, 273

Quadrature phase-shift keying
(QPSK), 269, 270

Quantization, 247-8
and coding strategy, in MPEG-2

AAC, 178

Quantization error, 16, 37, 38, 42,
112,285

Quantization noise, 40, 41, 161, 162,
165, 169

Quantization uncertainty, 5, 16, 112

R
Rabbits/flyers, 79
Radar signal processing system, 314
Radio carrier, 256
Radix-2 algorithm, 290
Radix-4 algorithm, 290
Rate control loop, 172
Ratiometric converter, 112—13
Real-time DSP firmware, 310
Real-time processing, 368-9
Real-time system, 297
Receiver, 297, 298
Reconstruction filter, 130
Recovery time, 84
Recursive filters, see Feedback filters
Reference frame, 303
Reflective-binary, see Gray code
Register transfer level (RTL)
synthesis, 318
Register Transfer/Multiply latencies,
392
Relative accuracy error, 97
Right-justified data, 113
Ring Constant, 146
Room acoustic echo canceller, 292,
293
Round-robin prioritization, 41617
Rounding techniques, 186
conventional rounding, 1867
dynamic rounding, 187, 188
error feedback rounding, 187
truncation, 186
Run length coding, 248
Running average filter, 131-3

S

Sample-and-hold amplifier (SHA)
function, need for, 25-7

Sample-and-hold device, 128-9

Sample C programs

fixed-point implementation
example, 372, 375
floating-point implementation
example, 372, 374
Sampled data system, 24
Sampling ADC, 25, 26, 43, 99, 113
Sampling aperture, see Aperture time
Sampling clock jitter, 72, 74
Sampling frequency, 113
Sampling theory, 24
baseband antialiasing filters, 30-3
Nyquist criteria, 28-30
sample-and-hold amplifier (SHA)
function, 25-7
undersampling, 33—4
antialiasing filters in, 34-6
Saturation (color) control, 193
Scalar product, see Dot product
Scaling and deinterlacing, 251
Scaling function, 144
Scan line decimation, 237-8
Scan line duplication, 239, 240
Scan line interpolation, 240-1
Scan rate conversion, 226
2:2 pulldown, 234-5
3:2 pulldown, 236-7
3:3 pulldown, 237
24:1 pulldown, 237
frame/field dropping and
duplicating, 228-9
temporal interpolation, 229-34
SCLK cycles, 400,417,418
SDRAM
refresh rates and clock settings,
418-20
row management, 418
SDTV-HDTV YCbCr transforms, 187
HDTV to SDTV, 188
SDTV to HDTV, 188
Sequencer, 430
Serial output, 113-14
Settling time, of ADC, 114
Shadow chroma keying, 209-10
Shannon’s Law, 282
Shannon’s sampling theorem
Sharpness, of picture, 194-6
Shifters, 333—4
Short-time Fourier transform (STFT),
141-2, 148



Index 459

block diagram, 149
versus FFT, 145-51
property node, 151-2
time-frequency tiling, 143
with different time-frequency
resolutions, 143
Short window, 171
Sidebands, 263-5
Sign-magnitude, 12
Sign-magnitude converter, 17
Signal processing toolkit, 149
Signal processing toolset, 145
Signal-to-noise-and-distortion
(SINAD) ratio, 49-50, 103,

114
Signal-to-noise ratio (SNR), 38,
49-50, 114

improvement in, 266
Signed Q-2 format, 340
Simply aperture delay, 70
Sine Waveform VI, 148
Single precision format, 350-1
Single-sample FIR, 389
Single sideband (SSB), 260
Single-slope conversion, 114
Slew(ing) rate, 114
Slewing time, 84
Software architecture, for SoC, 431
functions, 435
Software looping, in C, 396-7
Sony Dynamic Digital Sound
(SDDS), 183
Sound pressure level (SPL), 161, 163
Sparkle codes, 78
Specialized addressing modes
bit reversal, 389-91
byte addressability, 386-8
circular buffering, 388-9
Spectral masking, 161-2
Spread spectrum techniques, 274
Spurious free dynamic range (SFDR),
51-3,57,87, 114
multitone SFDR, 57
and SNR, 86-9
Stability, 115
Staircase, 115
Standard deviation, 293—4
Star Trek IV, 181
Stereo coding, 178

of MPEG-2 AAC, 178
STFT VI, 149, 151
Stop frequency, 287
Straight binary, 4, 5
Subranging ADCs, 115
Successive approximation, 115
Superblack and luma keying, 218
Super-resolution spectral analysis
(SRSA), 145
Switching time, 84, 115
Synchronous detection, 258
System and core synchronization, 399
atomic operations, 403
Load/Store synchronization, 400-1
ordering, 401-3
System interrupt controller (SIC), 381
System level interrupts, 3814
System-on-a-chip (SoC), 315
boot sequence, 435-6
multicore SoC, 423-31
software architecture, 4314
functions, 435
tools support, 4367
video processing example, 43748
System-to-core interrupt mapping,
382

T
Target, 324
Target Increment (tarinc) value, 219
Temperature coefficient, 115
Temporal interpolation, 229
100 Hz interlaced television
example, 231, 234, 235
50Hz to 60 Hz examples, 230, 231,
232,233
motion compensation, 230
Temporal masking, 162-3
Temporal noise shaping (TNS), 177
Temporal rate conversion, see Scan
rate conversion
Tensilica, 324
Testing and debugging DSP systems,
423
multicore SoC, 423-31
SoC
software architecture, 431-5
system boot sequence, 435-6
tools support, 4367

video processing example,

437-48

TESTSET instruction, 403

Texas Instruments (T1), 129, 336,
354,356

Thermal tail, 116

TigerSHARC, 356

Time division multiple access
(TDMA), 275

Time-domain signal processing,
289-90

TMS320C1x, 354

TMS320C2x, 305, 354

TMS320C3x, 356-7

TMS320C4x, 356

TMS320C5x, 354

TMS320C30, 357

TMS320C54x, 354, 355

TMS320C62x, 354

TMS320C67x, 356

TMS320C67x DSK, 364-8

Total harmonic distortion (THD), 47,
48, 106-7

Total harmonic distortion plus noise
(THD + N), 48, 107

Total unadjusted error, 116

Track-and-hold amplifier, 27

Transform-Domain Weighted
Interleave Vector Quantization
(TwinVQ), 179-80

Transforms, 289-92

Transition start frequency, 287

Translation look-aside buffers
(TLBs), 414

Transmitter, 297, 298

Transversal filter, 137

Truncation, 186

TTL (transistor-transistor logic), 3

Two-tone intermodulation distortion
(IMD), 53-4

Two-tone SFDR, 57, 58, 117

Two’s complement, 11, 12

U

Ultimatte®, 216

Undersampling, 334
antialiasing filters in, 34—-6

Unipolar codes, 4-7

Unipolar converters, 16
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Unsigned long long (64-bit) format,

395

A%

Variable length code/decode (VLCD)
module, 430

Variable-length coding, 250
Vertical filtering, 238
Video and image compression, 302-3
Video Acceleration block, 428
Video mixing and graphics overlay,
198-204, 205
Video mode deinterlacing, 239
inter-field processing, 241-3
intra-field processing, 23941
Video player, 305
Video processing, 185
4:4:4 to 4:2:2 YCbCr conversion,
189
CbCr filtering, 190-2
Y filtering, 189-90
application example, 251-3
DCT-based compression, 246
DCT, 246-7
quantization, 247-8
run length coding, 248
variable-length coding, 250
zig-zag scanning, 248, 249
display enhancement, 192
blue stretch, 196
brightness, contrast, saturation
(color), and hue (tint), 192-3
color correction, 197
color temperature correction,
198
color transient improvement,
1934
dynamic contrast, 197
green enhancement, 1967
luma transient improvement, 194
sharpness, 194-6
fixed pixel display considerations,
250

detail correction, 250
expanded color reproduction,
250
nonuniform quantization, 250
scaling and deinterlacing, 251
interlaced-to-noninterlaced
conversion, 238
film mode, 244
frequency response
considerations, 244-5
inter-field processing, 241-3
intra-field processing, 23941
motion-compensated
deinterlacing, 244
luma and chroma keying, 204
chroma keying, 206, 209-18
luminance keying, 205-6, 207,
208, 209
superblack and luma keying, 218
mixing and graphics overlay,
198-204
noninterlaced-to-interlaced
conversion, 237
scan line decimation, 237-8
vertical filtering, 238
rounding considerations, 186
conventional rounding, 186-7
dynamic rounding, 187, 188
error feedback rounding, 187
truncation, 186
scaling, 219
anti-aliased resampling, 221-3
display scaling examples, 2236,
227,228
linear interpolation, 2201
pixel dropping and duplication,
220
scan rate conversion, 226, 228
2:2 pulldown, 234-5
3:2 pulldown, 236-7
3:3 pulldown, 237
24:1 pulldown, 237

frame/field dropping and
duplicating, 228-9
temporal interpolation, 229-34
SDTV-HDTV YCbCr transforms,
187
HDTYV to SDTYV, 188
SDTV to HDTV, 188
and SoC, 43748
Video processing subsystem (VPSS),
428,429
Virtual memory, 414
VLCD (variable length coding/
decoding) processor, 430, 438
Voice codec, 301, 302
Voice compression, 301-2
Volatile data, 399
von Neumann processor, 330-1, 332

w

‘WA Discrete Wavelet Transform VI,
155

Wavelet analysis, 145

‘Wavelet function, 144

Weak ordering, 401

Wideband CDMA (WCDMA), 58, 59

Worst harmonic, 48

X
Xscale.Multiplier, 152
Xscale.Precision, 152

Y

Y-chart, 318

Y filtering, 189-90

Y processing, 192
Yscale.Multiplier, 152

Z

Zero-overhead hardware loops, 385
Zero TC (unipolar converters), 116
Zig-zag scanning, 248, 249
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