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Chapter 1

Introduction
There exists a large body of literature focused on teaching both
general embedded systems principles and design techniques, and
tips and tricks for specific microcontrollers. The majority of this
literature is targeted at small 8-bit microcontrollers such as the
Microchip PIC, Atmel AVR and the venerable 8051, principally
because these devices are inexpensive and readily available in
small quantity, and development hardware is available from a
variety of sources at affordable prices. Historically, higher-per-
formance 16- and 32-bit parts have been hard to obtain in small
quantities, their development toolchains have been prohibitively
expensive, and the devices themselves have been difficult to de-
sign around, with tight electrical and timing requirements on
external circuitry necessitating very careful hardware design. A
dearth of royalty-free, open-source operating system and library
code for these processors also meant that developing a new project
was a huge from-the-ground-up effort.

However, over the past few years we have simultaneously
seen the size and price of 16- and 32-bit cores fall, and the devel-
opment of many highly integrated parts that enable the easy
development of almost single-chip 32-bit systems. In addition,
many readily available appliances now contain a well-documented
32-bit microcontroller with ample flash memory, RAM and a
variety of useful peripherals such as color LCDs, network inter-
faces and so forth, which can be exploited by the cunning
embedded developer as a ready-made hardware platform. Cross-
platform assemblers, high-level language compilers and
debugging tools are available free for the downloading and will
run satisfactorily on the average desktop PC; it is no longer nec-
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essary to spend tens of thousands of dollars on proprietary com-
pilers and special workstations on which to run them.

As these systems have increased in complexity, to a certain
extent the degree of specialization required to develop them has
decreased. This might sound paradoxical, but consider the fact
that high-end 32-bit embedded systems, and the tools used to
develop for them, are effectively converging with the low-end
mainstream PC. The skills required to develop an application for
embedded Linux, NetBSD or Windows CE are by intention not
radically different from the skills used in developing applica-
tions for the desktop equivalents of these operating systems
(though of course different coding best practices usually apply in
embedded environments). In most cases there are mature off-
the-shelf operating systems available ready-to-run for the common
hardware reference designs and manufacturer-supplied evalua-
tion boards, so we are usually spared even the initial bring-up
phase and much of the effort required to debug device drivers.

Given a working hardware platform with reasonably well-
documented components, the only task for which traditional
embedded expertise is absolutely necessary is to create the nec-
essary bootstrap and “glue” code to get a C run-time working on
the target platform, and perhaps create drivers for some periph-
erals (and as discussed above, even this step can often be skipped
if you are building around a reference platform). From that point
on, most of the programming work to be done runs in the appli-
cation layer and can be accomplished using high-level languages.
There is a large workforce available almost ready-trained for this
type of coding.

The end result of this evolutionary process is that it is now
well within the financial and logistical reach of a small company
or even an individual hobbyist or student to develop (or at least
repurpose) advanced embedded systems with exciting function-
ality provided by these high-performance parts. Unfortunately,
however, device vendors’ support infrastructures are still geared
towards large-scale commercial developers. This raises two ma-
jor obstacles:
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1. Development hardware for high-end parts is, by and large,
still too expensive for the average hobbyist or student. This is
partly a chicken-and-egg problem; the only source for evalu-
ation boards for 32-bit parts is usually the chip vendor, because
there isn’t sufficient third-party interest to see third-party evalu-
ation platforms developed. The resulting small volumes and
lack of competition conspire to keep prices high. From hear-
say, it seems likely that some chip vendors also have an
intentional policy of excluding small customers from purchas-
ing high-end devices. In many cases, the evaluation board is
unavoidably expensive because it is designed to showcase what
can be achieved in a maximally configured appliance in the
chip’s target market; consequently, the board has a large num-
ber of peripherals.

2. In order to ensure continued support from major embedded
toolchain vendors, chip designers usually recommend only
specific development environments, all of which are extremely
expensive. It is still quite rare to find explicit manufacturer
support for freely available compilers and debuggers, despite
the widespread adoption of such tools in the industry at large.
One underlying business reason for this is that in order for a
new part to be credible, it should be supported from its re-
lease by well-known commercial toolchain vendors. To
encourage active interest from the developers of these
toolchains, and to reduce their own support workload, the chip
vendors generally avoid mention of free, user-supported tools.

The main object of this book is to illustrate some methods of
overcoming these obstacles and realizing exciting projects around
today’s high-performance chips. A strong secondary objective is
to assist developers in migrating from the coddled environment of
one-click graphical integrated development environments to the
command-line tools typical of free toolchains. Although there are
many references for this available on the Internet and in printed
form, the authors of such guides usually do not archive the tool
versions they discuss in their text, and their instructions often con-
tain information that is not applicable to the currently available
versions of the tools. It can therefore be difficult for the neophyte



4 Chapter 1

to know which of his or her problems are genuine coding errors,
and which are simply the result of documentation inconsistencies.

Given these goals, this volume is aimed at the following groups
of readers:

Hobbyists and students. These people are typically financing
the acquisition of development hardware and software out of their
own pocket. They do not necessarily expect a direct cash return
on this investment, and they are usually working alone or in small
groups. This type of reader is interested in solutions that involve
minimal startup expenses and don’t require large engineering teams.

Entrepreneurs. This class of reader has a product idea that needs
to be at least prototyped so that it can be shown to potential in-
vestors with the aim of securing development financing. Not only
does a real prototype have a much better “wow” value (and hence
a better chance of attracting investors) than a sketch and verbal
description, but developing the prototype will reveal and perhaps
solve many of the engineering problems to be encountered in
making the real product. This obviously translates directly into a
shorter time-to-market.

Engineers working alone or at small companies. Small engi-
neering houses that currently work with 8-bit systems may realize
significant gains by moving to 32-bit parts. In many cases, func-
tionality provided by dedicated hardware in the 8-bit system can
be synthesized in firmware on the 32-bit system – this has obvi-
ous profit benefits because the company can thin its inventory to
just a few standard hardware platforms, differentiating products
by means of firmware features. Customer satisfaction can also
be enhanced, since new features can be added with simple firm-
ware upgrades. Because the hardware is standardized, reference
designs have a longer lifespan, meaning that new projects may
only require incremental software changes – potentially an enor-
mous saving in development time. However, the leap from 8 to
32 bits is a significant one and it can seem prohibitively expen-
sive in the short term even when the long-term benefits are well
understood. After reading this book, it should be clear that the
up-front investment is not necessarily huge, and it may be time
to make the big jump to 32-bit cores.
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Engineers working on pet projects at large corporations. Al-
though such corporations have the wherewithal to fund a
traditional development process, it can be hard for an R&D engi-
neer to inveigle management into bankrolling projects that don’t
have clear delivery dates. Developing an exciting demonstration
of the project and presenting it to management is an excellent
way of drawing official attention to an idea, escalating it from a
pet project to an official project. Many corporations have a cash
bonus program in place for employees who develop new ideas
like this, so there is a clear personal benefit to the engineer, as
well as a new profit opportunity for the employer.

Small to medium-sized corporations trying to reduce their reli-
ance on outsourcing and increase their profit margin by developing
custom solutions in-house rather than buying or contracting turn-
key solutions from external vendors.

In this book we will be working on fragments of a completely
fictitious project. The actual functionality of this device isn’t
important the value of this book lies in the tools and techniques
discussed, and having a project to work on simply allows me to
show concrete examples rather than talking entirely in generali-
ties. For reasons described later, I have chosen an ARM-based
microcontroller for my example project, but no ARM-specific
experience is required to understand the concepts presented here.
By the end of this volume, among other things, you will under-
stand how to get the free GNU toolchain built for a specific target
(ARM is illustrated, but the steps are identical for other targets),
and you will have a good introduction on how to use the various
components of this toolchain, with specific emphasis on func-
tionality of interest to the embedded developer. Such functionality
is often glossed over in general discussions of the GNU toolchain,
and it can be hard to infer the mode of operation of these tools
simply by inspecting example code.

Please note that this book is not an introduction to embedded
systems per se; it is intended to help a reasonably experienced
developer identify and use a variety of inexpensive or free tools
and other resources in lieu of costly commercial alternatives.
Throughout the text, I am assuming mostly that the reader has a
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basic understanding of the C language and experience with some
level of assembly language programming. I have also assumed at
least minimal experience with command-line UNIX (simple di-
rectory listing and manipulation commands such as ls, cp, mkdir,
rm only). The specific aims of this text are:

■ To describe design and component selection rules specific to
the engineer with a severely constrained budget and no sig-
nificant relationship with IC vendors.

■ To describe techniques for PCB layout and assembly that will
enable the reader to build complex 32-bit systems using hob-
byist-grade laboratory equipment.

■ To provide basic documentation on building and using the
GNU toolchain, particularly relevant to programmers with ex-
perience on other toolchains who need to understand the
syntactic idiosyncrasies of the GNU tools.

■ To provide some simple examples illustrating how to use GNU
tools to perform the most common “up and running” tasks
required to bootstrap an embedded system.

■ To provide guidelines on best practices to employ when de-
veloping demonstration products on general-purpose
hardware, with the intention of later developing real, market-
able hardware.

In the sections that discuss hardware and laboratory tools, I
assume some experience with the hardware side of embedded
systems design. Depending on what type of project you’re at-
tempting, and how you approach it (for example, you might
choose to build your device around a commercially-available
single-board computer, rather than designing your own hardware),
not all of this information will be relevant to your case.

You will see that throughout this book, I will mention spe-
cific products and in some cases specific prices. This text is,
however, not a catalog; all prices (though correct at the time of
writing) are mentioned purely to give you a feeling for what kind
of money you will need to invest in projects of the kind we are
discussing. Furthermore, I feel it necessary to point out that I
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have not received any consideration from the suppliers of any of
the software or hardware components I discuss here (except in
some cases, permission to put demonstration versions of their
software on the accompanying CD-ROM). Part of the realism of
this book is, intentionally, that all the equipment and tools that I
mention were acquired with personal funds out of my “hobby”
budget. Readers should also note that products mentioned here
are somewhat US-centric, since I am currently located in the
United States.

Regardless of the nature of the project you attempt, or the path
you follow to develop it, I hope this book will help to dispel the
almost mythical aura surrounding high-end embedded system de-
velopment. Readers are encouraged to visit my web site
(www.zws.com), where I will post corrections and updates to this
text. I can be reached via email as sysadm@zws.com; I can’t guar-
antee to reply to every email I receive, but I will do my best. I can
also usually be found in the Usenet group comp.arch.embedded,
and I invite readers to join in the discussions there.
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Chapter 2

Before You Start—
Fundamental Decisions

General Microcontroller Selection Considerations
The start of a complex embedded project, particularly in a small
organization without engineers who can be dedicated full-time
to component procurement, can be extremely stressful. Until a
first-round prototype is built and tested (and often even after this
stage), it is usual for hardware requirements to be at least slightly
vague, particularly vis-à-vis the exact breakdown of which func-
tions are expected to be integrated into the microcontroller and
which will be off-chip. As the design engineer, some of your
goals are obviously ease of firmware and hardware development,
low bill-of-materials cost, and reliability of sourcing. You will
probably start with a list of hardware requirements, and match
those up against selection matrices from different vendors to find
a part that has as many of your features as possible on-chip.

At this point, what you really want is a vendor-neutral para-
metric search engine, where you can select the performance and
peripherals you want, and obtain a list of suggestions collated
from everybody’s catalogs. Unfortunately, most of the search fa-
cilities available online leave much to be desired. Many
manufacturers don’t have full parametric search engines avail-
able, and those that do obviously only list their own parts.
Third-party search engines do exist, but they are usually pre-
mium services for which you will have to pay—and again, they
only list products from manufacturers with whom they have a
relationship. Also, the total startup cost of development—evalu-
ation boards, tools, etc.—is an important factor to us (for some
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readers, perhaps even more important than the unit cost of the
microcontroller), and this will not be listed by parametric search
engines. Finally, as with any other search facility, it can be diffi-
cult to match your needs with the list of keywords provided in
the search engine.

This is one occasion where there is no substitute for peer
support. Even if you think you’ve found a perfect match already,
it’s well worth searching Usenet archives (groups.google.com)
for discussions on similar applications to your own. A carefully
phrased question may lead to even more useful suggestions. Even
if you are intimately familiar with every IC vendor that impinges
on your industry, you might miss a new product announcement
and thereby not know to check manufacturer X’s catalog. Some-
times the only clue you need to lead you to the right part is the
information that manufacturer X makes 32-bit microcontrollers!
Furthermore, other engineers who have worked with the part may
be able to point you to low-cost third-party evaluation platforms
or off-the-shelf appliances that can be used as demo boards, and
they will be better-positioned than anyone else to give you rela-
tively unbiased opinions on real-world difficulties of using a
specific device.

In the early days, it is also doubly hard to make an optimal
price-performance choice, because the selection sheets generally
won’t show pricing. For any part that can’t be bought anony-
mously off the shelf (and unfortunately the majority of 32-bit
microcontrollers fall into this category), most chip vendors ex-
pect you to establish a relationship with their distributors. This
can waste a lot of time in profitless face-to-face meetings. My
own experiences with local reps and distributors in the United
States have been very patchy, but I have often found that their
knowledge of the 32-bit parts on their line card is limited to what-
ever bullet points the manufacturer printed on the sales literature.
The distributors want accurate annual usage forecasts before they
will give you sensible pricing, and they obviously have little or
no incentive to deal with small-volume purchasers like students
or hobbyists. Political difficulties related to sales commissions
also arise when you are designing the product in one country, but
intend to manufacture it in another. Furthermore, the distributors
and reps will be most likely to quiz you on your other require-
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ments and try vigorously to sell you other parts from their line
card. Although this possibly has some marginal convenience ben-
efits if you intend to source and manufacture locally, it certainly
isn’t the ideal way of minimizing the bill-of-materials cost of
your product.

It’s all too easy to become trapped in an endless circle trying
to seek an optimal solution to all these problems, so you shouldn’t
attempt it. Recognize from the outset that this is a classic “travel-
ing salesman” problem (perhaps even in the literal mathematical
sense) and that your goal is merely to find an acceptable solution
in time to finish your project and send it to the factory (or submit
it to your professor, if you’re a student). Your goal is not to find
the best possible solution. If your team has enough personnel to
dedicate a lot of person-hours to sourcing components, you will
probably be able to find a better solution than the one-person
“team” scouring catalogs on a time limit, but a suboptimal one-
person solution can always be refined later if the project goes
into production in quantities that justify it. As in any other indus-
try, our goal is to develop a product that works properly and is
ready to manufacture in a timely fashion.

With that said, I employ the following useful heuristics to
filter my short list for 32-bit microcontroller selection:

■ The device should be available for anonymous online or cata-
log ordering in single-piece quantity from at least one major
distributor. (In the U.S., the big names commonly mentioned
are Digi-Key, Newark and Avnet Marshall. Digi-Key and
Newark in particular have very broad inventories and gener-
ally allow purchases in small quantity. Avnet Marshall seems
to cater more to manufacturing rather than prototype runs;
they typically have 25 or even 250-piece minimum orders on
parts).

■ Full datasheets for the device should be available without
requiring a non-disclosure agreement or committing to any
kind of purchase.

■ A low-cost development board should be available for the
part; either the manufacturer-recommended board, or a third-
party board, or even some appliance based around the chip,
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as long as sufficient documentation exists to enable use of
the appliance as a testbed for your own code. You should also
ask the manufacturer and distributor if loaner boards are avail-
able; if you can borrow a board for a month or two, it will be
enough to get at least bootstrap code up and running, and
establish a basic level of familiarity with the microcontroller.
You can then move to your own hardware and return the evalu-
ation board.

■ There should be a direct technical contact available at the
chip vendor, at least for emergency issues; it should not be
necessary to route all questions through distribution. (Note
that I’m not advising you to abuse such a privilege—if you
have a direct manufacturer contact, it’s best to contact him or
her only when absolutely necessary. But there are times when
a complex problem will take weeks to solve when there are
several layers in the communication chain, versus only a day
or two if you can communicate directly with the cognoscenti
at the chip manufacturer. As a small customer, the less you
use this resource, the better chance you will have that your
next urgent question will be answered speedily.)

■ The device should have been shipping to OEMs for at least
three to six months.

■ The core should be supported by the GNU toolchain.

■ There should be at least one currently shipping commercial
product that uses the device, and the larger the market for
this device, the better. All too often, parts that are consumed
only by small niche markets are discontinued in favor of parts
with more general applicability.

These are not absolutely binding rules (in particular, the last
one can be hard to obey for a brand-new part) but they provide a
good way of thinning a short list of any undesirable parts that are
going to cause logistical problems later. The first criterion above
is especially important to note, because it can give you some idea
of the part’s longevity. One little-mentioned fact of the
microcontroller industry is that very few high-end parts are just
designed for the marketplace in general; many of the “standard”
32-bit parts and ASSPs started life as proprietary ASICs devel-
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oped under contract for some specific electronics manufacturer.
These contracts typically have large guaranteed order quantities
and forward-planned production schedules. However, once that
manufacturer’s exclusivity expires, the chip vendor is free to sell
it to other people, if it conceivably has any generally applicable
function.

The first step in this process is usually to offer the part qui-
etly to other existing customers or to carefully selected others,
without a highly visible product announcement or other public-
ity. This small group of privileged customers will, again, work
on large volume pre-orders with long-term schedules. If a chip
goes on from this into retail distribution channels (such as Digi-
Key and other stores catering to small orders), it is a very good
sign, because it usually means one of two things:

1. The chip vendor is seeking to gain market share in the field
addressed by this part, and is pushing it heavily (also imply-
ing that excellent support will be available both from the
manufacturer and other users), or

2. The product is so wildly successful that the chip vendor is
producing reasonable quantities of it in advance of any firm
order, in expectation of future unscheduled orders.

In either case, the part is in wide-scale production, and it is
a fairly safe bet to design it into your product. You can be rea-
sonably certain that the part will not be discontinued in the
immediate future.

Choosing the Right Core
Unfortunately, even with the greatest care in choosing parts that
appear to be supported for the long term, there are never any
guarantees. Parts are discontinued or superseded all the time for
marketing reasons that are sometimes not obvious and far from
predictable. For that matter, sometimes your requirements change
slightly and your previous choice of microcontroller is suddenly
no longer suitable. This is particularly annoying when a design
change of this sort is a result of entirely external forces. I have
been involved in several projects where the microcontroller has
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been changed just before production, or even after production
starts, simply because of sudden supply shortages of other parts.

Obviously, the more careful you are in choosing a part that
exactly meets your requirements, the more disruptive it is likely
to be to have to substitute a different part. A large customer might
be able to guarantee the chip vendor enough volume for them to
continue occasional production runs or even perhaps migrate an
old part to a new process and continue general production. Since
we’re going to be a tiny customer, we won’t have this luxury.

The only truly effective preparation for this inevitability is to
anticipate it and pick a microcontroller based around a popular
core to minimize the workload of porting to a new processor
when circumstances demand it. Generally speaking, there are
seven very widely used 32-bit cores on the market at the mo-
ment: Motorola 680x0, Intel x86, PowerPC, MIPS, SuperH, and
ARM1. Numerous less popular or proprietary architectures also
exist, of course; many of these are associated with specific appli-
cations such as laser printers or DVD players.

At the risk of antagonizing its userbase, I recommend against
choosing the 680x0 series for a new design. Usage of this core
appears to be in decline, and it is perhaps actually close to the
end of its life; the principal consumer use at this time is in
PalmOS®  devices. These PDAs are now migrating towards ARM,
and even Motorola has introduced an ARM-cored processor as
its new flagship PDA part. The entry-level laser printer market,
which formerly consumed a lot of MC68000 and MC68008 parts,
has largely been dominated by cheap devices that lack a rasterizer
(they rely on the driver software running on the attached PC); so
they only require simple servo control on the printer mainboard.

Architectures based around the high-end x86 family (and
code-compatible parts from AMD, National Semiconductor, Via
Technologies, etc) have some immediate advantages:

■ You can use almost any PC-compatible operating system, and
free software development tools.

1 Note that I am only mentioning general-purpose microprocessor cores here.
DSPs are a separate world beyond the scope of this text.
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■ Installing operating systems is simple; in most cases there
are automated installers that will probe your hardware com-
bination and automatically install appropriate kernels, drivers
etc. Compare this to the norm with embedded systems, where
you will need to look at the board, work out the hardware
configuration yourself, and sysgen the kernel and driver set
on external hardware, probably using a cross-compiler.

■ It is simple to interface literally thousands of peripheral com-
ponents for almost any imaginable function. Because these
components are produced for the consumer market, with its
enormous volumes and bloodthirsty price competition, pe-
ripheral components are cheap and fairly easy to acquire.

■ Driver support exists (within the framework of most off-the-
shelf operating systems) for almost any piece of hardware
you could want to attach to your system.

■ Highly integrated mainboards are available with many pos-
sible combinations of peripherals, in a wide variety of form
factors.

■ Migrating to a slightly different hardware platform due to
shortages of support parts or evolving customer needs is rela-
tively simple; in many cases, it simply involves recompiling
and reinstalling the operating system and preparing a new
master disk image for duplication.

Having extolled the obvious virtues of these parts, I must
also point out some of the downsides:

■ x86 parts are very expensive, in production quantities2, com-
pared to RISC alternatives of comparable performance. This
may affect your ability to commercialize your device.

■ There are relatively few x86 variants that are true “system on
chip” devices, so you are likely to need quite a bit of external
hardware in addition to the microprocessor itself. Often, in
order to obtain one specific function, you will need to add a

2 This statement needs qualification. Although the x86 CPU is quite expensive, you may
find that a given system configuration is cheaper when built around an x86 than a RISC
processor such as PowerPC, because of the significant economies of scale in producing
large volumes of the x86 board.
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complex multifunction part because the single function you
want isn’t available as a discrete component. Again, this brings
up your system complexity and total bill-of-materials cost.

■ x86 has significant power consumption, heat and size disad-
vantages. (The Transmeta Crusoe x86-compatible device
combats these disadvantages, but it is currently rather expen-
sive and not very many vendors have products based around
this microprocessor).

■ Modern x86 parts and their support chips are very high-speed
devices in dense packages. It is virtually impossible to hand-
prototype your own design based around these parts; unless
you want to spend many thousands of dollars on equipment,
at the very least you will have to contract out some assembly
work.

■ PC peripheral ICs often have very short production lifespans;
twelve to eighteen months is not uncommon, so ongoing
sourcing may be an issue.

■ Code to cold-boot a “bare” PC platform is usually very com-
plicated, because you have to replace numerous layers—
motherboard BIOS, expansion card BIOS, and various OS
layers. The CPU architecture is also complex.

■ Although I personally don’t consider this to be a serious down-
side, it bears pointing out that JTAG-based or other hardware
debugging systems aren’t usually available on commercial
single-board x86 computers.

To the people for whom I have written this book, I recom-
mend x86 as the platform of choice if you are either building just
a few of your appliance, or if you are prototyping something and
want to pull together a lot of miscellaneous hardware features
without spending a lot of time debugging the hardware design.
It’s also a good choice for an initial production run that you can
ship to early adopters while you are developing a cheaper sec-
ond-round customized hardware design. There are other special
situations where you might find x86 to be a good choice, but
these are the major ones.

Of course, you aren’t restricted to using Intel parts; for in-
stance, one x86-compatible part that is fairly popular in embedded



     17Before You Start—Fundamental Decisions

applications is the Geode series from National Semiconductor
(based on intellectual property acquired from Cyrix). This part
was designed for Internet appliances and can be found in several
such devices on the market today. There also exist numerous
single-board computers built around Geode chips, with various
peripheral functions according to the intended application. Ge-
ode was also used as the reference platform to develop and
showcase the new Microsoft Smart Display device, so the prod-
uct family is likely to be supported for quite a while.

Using x86 also doesn’t mean that your device needs to have a
large PC motherboard and expansion cards inside it. Unless your
needs are highly specialized (and perhaps even if they are), it is
probable that you will be able to find a single-board computer
with most or all of your required hardware already integrated.
These boards range in size from “biscuit PCs” with the same
footprint as a 5.25″ disk drive down to a fairly new standard (con-
sisting of a user-designed baseboard holding an off-the-shelf
module containing the CPU and some peripherals) usually re-
ferred to as ETX. Embedded computer boards like this typically
have PC/104 expansion buses (a condensed, stackable version of
ISA using 100 mil headers) or Mini-PCI. Some of the larger
boards will have regular PCI slots, but these start to make the
overall system unavoidably rather bulky, approaching the size of
a normal slim-line PC.

Note that PC-compatible SBC pricing falls into two widely
separated categories: industrial and commercial. Industrial SBCs
are extremely expensive; at least twice the cost of commercial
versions. Commercial SBCs, though substantially more expen-
sive than consumer grade PC hardware of the same nominal
specifications, are a much better choice for the budget-constrained
purchaser. Many SBC vendors specialize in industrial automa-
tion only, so if the prices you are being quoted seem unrealistically
high, you should investigate other vendors before concluding that
x86 is too expensive for your project.

Moving onto the RISC platforms, MIPS, SuperH and
PowerPC are good candidates for many applications, and in par-
ticular the SuperH family is large and contains a wide variety of
useful devices, though MIPS seems to be a more widely licensed
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core in third-party ASICs and ASSPs. PowerPC seems to be found
mainly in applications requiring very high performance. In evalu-
ating all of these parts for various projects, I have found them to
be fairly difficult to develop with on a shoestring budget; evalu-
ation hardware is usually costly, and most variants of these parts
are not readily available to buyers who are unable to demonstrate
a need for large quantities. However, all of these cores are likely
to remain available and well-supported for the foreseeable fu-
ture, so they are all viable choices as long as you can obtain
development systems and parts.

At least in the case of SuperH and MIPS, your cheapest path
to a prototype based on these parts is generally to repurpose some
existing piece of hardware such as a PDA; for PowerPC, I would
suggest buying a commercial single-board industrial control com-
puter based around the chip of interest. Be warned that this is
likely to be expensive; PowerPC boards don’t have the same kind
of mass-market pricing as x86-compatible boards and you can
expect to pay between two and three times as much for a PowerPC
SBC as for a comparable x86-based board.

Bearing the above discussion in mind, unless some of the
Intel arguments apply to your case my primary recommendation
for a 32-bit embedded platform is ARM. This architecture has
many important advantages (some of these are also applicable to
the other RISC platforms mentioned above, of course):

■ It is a mature, well-understood architecture with a solid engi-
neering history and many refinements. The large number of
current licensees and now-shipping parts makes ARM a very
safe bet for future availability.

■ The cores are small and have excellent power consumption
vs. performance characteristics.

■ Many features—coprocessors, external bus widths, memory-
management unit, cache size, etc.—are tunable by the chip
designer, meaning that a core variant can be found to meet
almost any performance/size/power requirement.

■ There are a huge number of attractively priced standard, cus-
tom and semi-custom parts on the market with a wide variety
of integrated peripherals.
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■ Since ARM provides reference designs for many different
peripherals as well as the core itself, there are often similari-
ties in peripheral control on different ARM implementations,
even from different vendors. To take a trivial example, code
to send data out of a serial port can usually be ported from
one ARM variant to another with little effort.

■ Partly because of the above factors, there is a huge amount of
freely available intellectual property—reference designs, ready-
ported operating systems, etc.—already extant for this core.

The cliché often used is that “ARM is the 32-bit 8051,” mean-
ing that it is the universal 32-bit microcontroller core known to
everybody and used everywhere. This is barely an exaggera-
tion; ARM is to the embedded world what x86 is to the desktop
PC world.

It’s important to keep your priority—low overall development
cost—in sight at all times during the selection process. For ex-
ample, I almost always reject parts that are only available in BGA
packages, because it is practically impossible to hand-build proto-
types around these devices, and it’s costly to hire an external contract
assembly house to build your initial development boards. You’ll
also need to consider the price and availability of evaluation hard-
ware for the devices you’re comparing, as well as the complexity
of building a working hardware platform of your own. For ex-
ample, a chip that requires complex analog support circuitry and
careful PCB layout will be very difficult to work with in a hand-
prototype environment. For such a chip, you would quite likely be
better off investing in an expensive known-good evaluation board
before attempting to build your own PCB. Diving straight into the
deep end by designing your own board around such a part is likely
to be costly, because of the need for several respins of your board
to resolve layout-related and other analog issues.

Building Custom Peripherals with FPGAs
While you are evaluating different chips for your application, you
are likely to find yourself tempted by specialized system-on-chip
devices offered by various manufacturers. These chips will have
interesting peripherals specific to various applications—for ex-
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ample, dedicated motion compensation and colorspace conversion
hardware for digital video playback, or discrete cosine transform
(DCT) engines for image compression, typical in devices intended
for the digital camera market. Unfortunately, these are usually pre-
cisely the sorts of devices that are unobtainable to the hobbyist or
small-scale developer. They are usually only available with solid
up-front quantity commitments, and often non-disclosure agree-
ments are also required. In some cases, just to view the datasheet
for a part you will need to pay large fees to join some kind of
specialized industry cartel (DVD/DVB playback hardware can be
like this, for instance, because of the numerous patents in the field
and vested copyright interests at stake).

Because of this annoying fact, one of the most useful money-
saving skills you can acquire is experience working with
synthesizable hardware design language (HDL) code on CPLDs
and FPGAs. Using such devices, you can design your own cus-
tom peripherals, optimized for your specific application, and avoid
the trouble of trying to source a rare ASSP. FPGAs are available
off-the-shelf in many different packages and complexities, and
in many cases the manufacturers supply free development tools.

In fact, there are now products available, such as Altera’s
Nios® and Excalibur™ devices, which consist of a high-perfor-
mance RISC core “wrapped” in an FPGA, all on the one chip.
Nios is a proprietary microcontroller core; Excalibur is built
around a high-performance ARM922T core. With a part like this,
you can effectively create your own custom ASIC; it is an ex-
tremely powerful tool and it seems likely that we can expect to
see many more such devices in the future. ARM and other ven-
dors also supply some cores in soft form, so you could in theory
build your own entirely customized system-on-chip using a ge-
neric FPGA device. However, because of the hefty licensing fees
involved, the per-unit break-even point is only reachable with
very large production volumes.

If you plan to use FPGAs, much as with microcontrollers
you will find that the manufacturer-recommended evaluation
boards and commercial development tools can be very expen-
sive. In the resources list at the end of this book, I make mention
of Trenz electronic (www.trenz-electronic.de); this company is
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one possible source of lower-cost FPGA boards. However, you
might not even need an evaluation board—FPGAs are, after all,
field-programmable, and the interior functionality is controlled
by the firmware you upload to them, so you can be fairly confi-
dent about dropping an FPGA directly onto a first-run prototype
PCB and debugging your design in-circuit. If you’ve never used
FPGAs before, however, I would advise getting a small evalua-
tion board with which to experiment. Connect the I/O lines to
pushbuttons, LEDs, or perhaps an RS232C level-matching IC
like the Maxim MAX232A and play with the device to see what
you can achieve with it.

Since I’m talking about field-programmable logic, I should
also mention Opencores (www.opencores.org), an invaluable re-
source of free, open-source intellectual property ready to be
compiled into your FPGA. If you need a core of some sort—a
UART, for example, or a DRAM controller—then before start-
ing to write your own, you should visit Opencores to see if there
is already a free core available for you to adapt. Opencores is
something like the Linux of hardware; at the time of writing,
there are free cores for SDRAM controllers, UARTs, crypto-
graphic hardware, microcontrollers, a VGA/LCD controller and
many others.

Whose Development Hardware to Use—Chicken or Egg?
The textbook development cycle recommended by chip vendors
is as follows:

1. Choose a microcontroller from the vendor’s selection matrix.

2. Buy the vendor’s evaluation board for this part.

3. Buy one of the commercial compilers, and possibly a hard-
ware debugging module, recommended for the evaluation
board.

4. License one of the operating systems recommended for the
evaluation board.

5. Develop your application in vitro on the evaluation board.

6. Develop your hardware.
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7. Port the operating system and your known-good application
to the real hardware.

One of the driving ideas behind this methodology is that the
software team doesn’t have to wait for the hardware team to fin-
ish designing and debugging the circuit. Unfortunately, as with
most textbook descriptions, the cycle described above ignores
some important realities; not the least of which is that in many
small shops, the job of both the software and hardware “teams”
will be performed by a single person.

The evaluation board and software tools recommended by
the chip manufacturer are usually expensive, for reasons touched
upon in the introduction to this book. Additionally, if you intend
to use complex off-chip functionality, it can be extremely diffi-
cult to attach this to an evaluation board. For instance, if you
intend to implement a PCMCIA socket in your appliance, and
the microcontroller evaluation board doesn’t include one as an
option, it could be hard to hand-build a PCMCIA interface board,
and harder still to graft it onto the evaluation board. The majority
of 32-bit parts are quite closely targeted at specific applications;
evaluation boards tend to have all the hardware required to dem-
onstrate the maximum possible bells-and-whistles configuration
of the CPU’s intended application, and this can get in the way of
adding your own peripherals to the evaluation board. For example,
I was once evaluating a chip targeted at the PDA market. The
appliance I intended to build wasn’t a PDA, so I didn’t need most
of the hardware on the evaluation board—audio I/O, Ethernet,
color LCD, touchscreen, USB interface etc. Not only did I have
to pay for all these peripherals (this particular evaluation board is
US$1500, and the microcontroller itself only costs about US$12),
but I had to cut several dozen traces, remove a 160-pin surface-
mounted chip, and add literally a couple of hundred patch wires
in order to be able to bolt on my own peripherals.

Finally, and following on rather neatly from the anecdote
above, you should remember that the time required to under-
stand the memory map and any special quirks of the evaluation
board, and to get its specific combination of hardware running,
is time that you are “stealing” from the task of getting your own
circuit debugged. This is an acceptable price when you have a
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large team working simultaneously on the hardware and firm-
ware of the final product, but in a smaller or even one-person
environment working on a tight time budget, it is often more
efficient to design your own circuit and start working directly on
your own hardware.

There are three major ways around these problems, in roughly
increasing order of difficulty:

■ Locate a third-party demonstration platform for the part of
interest.

■ Locate a consumer appliance based on the chip that interests
you, and reverse-engineer it enough to load your own firm-
ware and patch on your own hardware.

■ Design your own PCB and have it etched and populated ei-
ther locally or (if this is a commercial project) by your factory;
develop your firmware on this board while debugging the
hardware at the same time.

The first option is rarely available, but usually well-supported
by the board manufacturer. I should point out that in some cases
it can be difficult to use these development boards unless you
also possess a hardware debugging module such as a JTAG pod.
Most difficulties center around how to upload initial bootstrap
code to the board. Some microcontrollers, such as the Cirrus Logic
CL-EP7212 and 7312 parts, contain a tiny on-chip bootstrap ROM
that allows you to upload code to RAM over a serial port. You
can implement your own flash-loader quite easily using this
method, and thereby load your own code onto any board that has
a serial port. Some evaluation board vendors will supply the board
preloaded with a ROM monitor such as Angel or gdb stubs, and
you can communicate with this monitor over a serial link. In a
few instances, the board will feature socketed EPROM or flash
memory devices, which you can simply remove and reprogram
with your own code. Unfortunately, in a handful of cases, the
board is shipped with blank, soldered-down flash memory and
there is no way of getting new code into it short of buying a
JTAG pod or some other specialized hardware device. Third-party
“demo platforms” tend to be devices that were originally designed
for some specific purpose, then later sold to hobbyists with no
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housing, but more detailed technical documentation. Easy field-
reprogrammability with minimal external equipment may not have
been a design criterion of the original appliance.

Repurposing consumer appliances can vary in complexity
from extremely simple to downright impossible, depending on
the microcontroller you’re interested in and its target market. It
can be exceedingly difficult to locate a consumer appliance based
on the specific chipset it contains, and you will often need to do
quite a lot of reverse-engineering in order to determine memory
maps and so forth. It also isn’t necessarily cheap to cannibalize a
brand-new appliance, though it’s almost always cheaper than
buying an expensive evaluation board. The repurposing approach
does have advantages for projects that meet certain prerequisites;
in particular, it works best when you have a fairly good idea of
the hardware capabilities you need (at a macroscopic level, e.g.
“Must have Ethernet,” “Must have TV output”), but you don’t
much care what specific parts are used in your hardware plat-
form. As a result, this method is particularly attractive for hobbyist
and student projects that are very price-sensitive and don’t need
to worry about ongoing component availability. People in this
category can revel in the rich variety of items available on today’s
surplus market.

Between the years 1998–2001 in particular, seemingly doz-
ens of companies—some big names, some unknown
startups—developed many different styles of proprietary set-top
box for various applications including interactive cable TV and
living room Internet access. Over the same period of time, we
have seen a proliferation of digital broadcast satellite service,
digital cable TV, consumer DVD players and other digital media
devices. These sources—particularly bankrupt vendors of pro-
prietary set-top boxes—provide the secondary market with a rich
supply of interesting and powerful hardware. Periodically, batches
of these appliances appear on liquidation websites or in the “in-
teresting surplus items” section of mail-order and online catalogs.
At the very least, these items are often useful learning tools; in
some cases, they can form the basis of a saleable product, an
impressive student project or just a fun hacked appliance to have
around your home. Although these devices usually contain at
least some proprietary hardware (and/or code-protected
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microcontrollers that you can’t read out or reprogram), they are
almost always based around a well-known core, so if you can
replace the firmware you can generally gain control of at least
part of the appliance.

For interest’s sake, I will describe a couple of examples that
happened to be sitting on my workbench as I was writing this
book. (Note: Don’t expect to be able to go out and buy either of
these specific appliances; I mention them, not as product recom-
mendations, but strictly as illustrations of the type of hardware
that frequently becomes available to hobbyists.)

The first example is the Newcom Webpal, an Internet-on-
your-TV set-top box that, due to Newcom’s dissolution, has
recently been appearing on the surplus market in large quantities
for around US$5 each. In fact, so many of these appliances have
spread around in the hacker community that there is a significant
amount of developer support for the product; for instance, a ready-
to-run Linux distribution is available for download. While this
device is perfectly usable as a general-purpose Internet appli-
ance out of the box, it is more interesting for the re-useable
hardware it contains:

■ Cirrus Logic CL-PS7500FE microcontroller. This is a very
powerful and flexible ARM7 system-on-chip device, origi-
nally designed for the Oracle® Network Computer platform.

■ 1Mbyte of flash memory on a proprietary SIMM, with space
for a second 1Mbyte chip.

■ 4Mbyte of DRAM on a standard 72-pin SIMM.

■ Infra-red receiver, remote control and wireless keyboard.

■ Smartcard reader for ISO7816-2 form factor cards.

■ Analog VGA, S-video and composite video outputs, and ste-
reo audio outputs.

■ Two serial ports (unpopulated).

■ ISA bus with a small two-slot backplane, one slot of which is
occupied by the CPU board. (The original retail Webpal had
a 33.6kbps modem in the remaining slot; hackers have mostly
replaced these with Ethernet cards).
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Another recent example is the Virgin Webplayer. This is a
small Internet appliance, very much like a laptop computer, though
without a battery. It is essentially an attractively styled miniature
PC with the following features:

■ 10.4” 800x600-pixel color DSTN LCD.

■ 233MHz National Semiconductor Geode microprocessor
(x86-compatible) with CS5530 companion IC.

■ 64Mb SDRAM on a standard 144-pin SODIMM.

■ MiniPCI slot containing a 56Kbps modem.

■ IDE and floppy controllers.

■ Infra-red keyboard with integrated trackball.

■ DiskonChip socket.

■ Two USB ports.

This device was originally given out free of charge as part of
the “Virginconnect” free Internet service; basically, Virgin ex-
pected to recoup their costs and turn a profit by tracking your
Internet browsing habits and reserving parts of your screen for
paid advertising. When the service was terminated, users were
asked to return their units, but many didn’t do so—large num-
bers immediately appeared for auction on eBay. Not long after
this, the distributor of these appliances dumped vast numbers of
the units on another online auction site. (In an amusing touch,
the distributor’s technical support staff also started directing cus-
tomers with questions to a webpage that I had published several
months earlier, describing the Webplayer’s hardware, with driver
downloads and other usage information.) These appliances are
still in circulation at prices in the $125–$175 range, and judging
from the email I receive, a large number have ended up as the
heart of a student electronics project.

If you intend to work extensively with repurposed consumer
equipment, I strongly recommend investing in a cheap JTAG pod
such as the Macraigor Wiggler. Many microcontrollers have
JTAG/ICE ports and appliance manufacturers using such parts
almost always bring the relevant signal lines out to a header, or at
least a set of pads for “bed of nails” test fixtures. This is done to
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facilitate post-assembly flash programming, factory tests and so
on, but it makes your life a lot easier too.

Another tool I heartily recommend for this sort of work is
Ida Pro (available from DataRescue, www.datarescue.com). This
is an extremely powerful Windows-based interactive disassembler
capable of inspecting and reverse-engineering code from a wide
variety of microprocessors including ARM, Intel x86 and i860
(an older RISC platform that Intel is phasing out in favor of
StrongARM-based parts), MIPS, SPARC, Motorola MC680x0
and Hitachi SuperH, as well as a few DSPs, and many 8-bit
microcontrollers. If you need to reverse-engineer some firmware,
this tool will make the job much faster and the final result more
reliable. You simply load a binary ROM dump into the program,
tell it which areas are code and which areas are data, and you can
fairly easily generate a high-quality source listing of a device’s
firmware. You can scroll around inside the loaded program, fol-
lowing the execution flow or searching for particular strings or
other data. For those of you who are familiar with the PC pro-
gram Sourcer or the old Commodore-Amiga program ReSource,
Ida Pro is conceptually very similar (in particular, it has almost
exactly the same sort of user interface as ReSource); it just cov-
ers a lot more hardware platforms.

A note to non-US residents: If you live outside of the United
States, you will probably find that the surplus channel is not quite
as exciting as I’ve made out above. Unfortunately, many of the
failed dotcom-style schemes that have led to really interesting
hardware being liquidated at bargain basement prices are US-
centric programs, and it’s not usually possible to obtain the
hardware elsewhere; surplus merchants are reluctant to ship over-
seas because of problems with credit card fraud, extra Customs
paperwork required for such shipments, licensing restrictions,
regulatory approvals and so on. However, even overseas it is well
worth looking at local electronics surplus stores and catalog mer-
chants. It’s not uncommon for these dealers to acquire small
quantities of appliances and/or replacement components from
retailers, service centers and similar organizations who are going
out of business or simply ceasing to stock or support a particular
make of appliance. These bits and pieces are frequently sold un-
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der the catch-all of “unknown appliance—sold for parts.” Just
make sure that you order several at once of anything that appears
interesting; if you buy only one, intending to take it home and
reverse-engineer it, you’ll almost certainly find that by the time
you’ve decided whether or not the device is really useful, there
are no more available!

The third development option, prototyping directly on your
own circuit and debugging the hardware and firmware simulta-
neously, is the option I personally use most often. Although this
method is common for low-speed 8-bit circuits, it is fairly rare in
the development of 32-bit systems. However, I find it necessary
to work this way because most of the projects I work on involve
bringing together several fairly complex devices that aren’t found
together on any pre-existing evaluation platform. This method
does have the advantage that you can tweak the hardware design
to simplify firmware development right up until the last PCB
revision before manufacture. Unfortunately, it also has the dis-
advantage that any bottleneck in the hardware development
timeline is also a bottleneck in the software development timeline,
which unavoidably pushes your delivery date further out.

I should warn you that prototyping like this is similar to bungee
jumping; just one catastrophic failure, and you won’t get a sec-
ond chance. If you make a really fatal, unpatchable error in your
PCB, in the worst case scenario you will have to throw it away
(and more than likely the parts on it too; hand-reworked surface-
mount devices have high failure rates) and halt firmware
development until the next batch of boards arrives. This can make
the process expensive, but with careful fault analysis and rigor-
ous checking of your work before submitting a PCB layout for
manufacture (“measure twice, cut once”!), you can keep the ex-
pense to a minimum. In a later section (“Special PCB Layout
Rules For The Shoestring Prototype”), I discuss several rules you
can follow to ease the process of developing this way and mini-
mize your costs.

To summarize the above choices succinctly, then:

■ If your code can be developed on a readily available,
affordable development board (either third-party or direct
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from the chip manufacturer), you should use this develop-
ment board as your prototype hardware platform.

■ If you are building a one-off piece (e.g., a student project or
technology demonstration), if you are certain you will never
need to build more such units, and if you don’t need to build
around any specific component, your easiest route may be to
repurpose a piece of consumer equipment with appropriate
hardware features.

■ If you are designing around a specific component or combi-
nation of components, and the available evaluation boards
are either too expensive or it isn’t feasible to add the pe-
ripherals you need to them, your best option is to design
your own circuit, make a couple of prototype PCBs, and de-
bug the application directly on your own hardware.

If none of the above options seems to be right for your applica-
tion, then I suggest that you develop and demonstrate your software
on an embedded PC type platform, and use this demonstration to
secure sufficient funding to pursue one of the options above.

Our Hardware Choice—The Atmel EB40
For our fictitious project, I’m going to use the Atmel AT91EB40
evaluation board. This board is based around the AT91R40807
microcontroller, a simple 40MHz3  ARM7 device with 136Kbyte
on-chip SRAM and a modest collection of on-chip peripherals.
The EB40 also features:

■ 128Kbyte of flash memory (64K of this is reserved for a
bootloader and the ARM Angel ROM monitor/debugger; you
can erase the whole chip if you wish but if you do so, you
will need external JTAG/ICE hardware to reload it).

■ Two serial ports with RS232C-compatible level matching.

■ 512Kbyte of SRAM (in addition to the AT91R40807’s inter-
nal memory). This can be expanded to 2Mbyte.

3 By default, the EB40 is configured to run the microcontroller at 32.768MHz.
This text will assume that you have left the board at its default settings.
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The EB40 is a superb tool for learning about the ARM series
because it is based on one of the most popular ARM core variants
(ARM7TDMI), and it is both very inexpensive and can readily
be ordered on-line without needing to establish a project rela-
tionship with a distributor. It is also conveniently a “minimalist”
evaluation platform, with a small number of on-board peripher-
als and a simple expansion interface, so not only is it inexpensive,
but it’s easy to add your own peripherals. In particular, if you
combine the EB40 with an FPGA, you have a very flexible
prototyping platform that can easily be turned into a manufactur-
able device.

Atmel also went to great pains to make it easy for almost
anyone to get code onto the board; besides having the Angel ROM
monitor included in flash (which can talk to the professional-
grade compilers available from Green Hills et al as well as the
free GNU gdb debugger), it has a JTAG/ICE port, and as an al-
ternative route, the on-board bootloader can even load code
directly into RAM over a serial port using a free Windows-based
utility (BINCOM) from Atmel.

Recommended Laboratory Equipment
One question that arises frequently at this point is “What other
equipment do I need to buy to equip my laboratory?”. There seems
to be a fairly widespread belief that developing high-end embed-
ded systems requires a great deal of expensive specialized
hardware; storage oscilloscopes, logic analyzers, in-circuit emu-
lators and so on. While this equipment can sometimes be useful,
the truth is that expensive state-of-the-art equipment is only ab-
solutely necessary for a few special applications. For example,
when developing cellular phones, in order to test your device
without causing annoyance to local cellular carriers and the pub-
lic, you need to be able to emulate a cellular network. In order to
debug circuits that have extremely high-speed buses, or delicate
RF or analog sections, you might also need some extra equip-
ment, but for a large number of embedded designs, your needs
are unlikely to exceed the following major appliances:

■ A reasonably feature-rich multimeter.
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■ A good analog oscilloscope. Steer clear of generic no-brand
entry-level scopes intended for the hobbyist market (even if
you are a hobbyist). You’ll find much better value in a refur-
bished piece of name-brand equipment. A quick search of the
Internet will show you a large number of dealers who special-
ize in sales and rental of refurbished test equipment4.
Brand-name units (Tektronix and Hewlett-Packard are the two
most popular) that were state-of-the-art three to five years ago
are now very affordable and more than adequate for most tasks.
Your exact needs will obviously depend on what you’re devel-
oping, but I would recommend a minimum 150MHz bandwidth
2-channel scope and 10x probes. Look for scopes with many
triggering options—these options give you different ways of
focusing on the specific section of the waveform you’re inter-
ested in, and the more flexibility you have there, the better.

■ A laboratory power supply. It should have at least two inde-
pendently adjustable DC current-limited outputs (30V is the
maximum you’re likely to need), with inbuilt current and
voltage indicators.

■ A bench-mounted illuminated magnifier. This item is man-
datory when working with surface-mounted parts, and it’s
useful even when working on larger packages.

■ A temperature-controlled soldering iron. Always keep a few
spare tips on hand, also—especially if you work with sur-
face-mount packages, you will want to keep at least one tip
filed to a very fine point. This point will erode quickly and
you’ll need to keep filing it down as necessary.

If you’re working on something that will be powered from
household wall current, and that you intend to distribute to other
people, it’s also a wise idea to have a variac on hand so that you
can test how your device will behave in mains brownout condi-
tions, but this isn’t essential.

4 You can also buy secondhand equipment from auction sites like eBay, but secondhand
test equipment from a private seller frequently needs recalibration, especially after being
shipped a long distance. It is often worth the additional cost to buy a certified, properly-
packed unit from a reputable vendor of refurbished equipment.
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Note that I haven’t mentioned a digital oscilloscope. If you
do want to buy one, by all means do so, but I suggest you make it
a secondary purchase after acquiring a good analog unit. The
main reason for this is simply cost; the same money will buy a
much more capable analog than digital scope. Digital oscillo-
scopes are a time-saving luxury rather than an essential for many
applications. I have a reasonably powerful digital scope on my
workbench, and I rarely power it up. In fact, I most commonly
use it when I run out of channels on my analog scope and I need
to look at a large number of signals simultaneously.

I also recommend, in general, against the false economy of
oscilloscope add-ons for PCs. The quality of the analog-digital
converter side of these software/hardware packages is critical to
the usefulness of the device. Expensive, high-speed data acquisi-
tion cards are outside the cost range of interest to the average
reader of this book; cheap 8-bit digitizer devices with no internal
buffering (typical of low-end PC oscilloscopes, especially those
sold in kit form) are not money well spent, in my view. This type
of hardware might be useful if you know you will be spending a
lot of time looking at and storing signals at audio frequencies (up
to a few tens of kilohertz); you can use the device as a poor man’s
logic analyzer. As a primary signal inspection tool, I feel this
hardware lacks flexibility and, at worst, may be very misleading
and counter-productive because it hides information that might
be vital for debugging purposes.

Free Development Toolchains
A large majority of 8-bit and smaller embedded systems in the
real world use proprietary (if any) operating systems5 , often
written using a monolithic assembler/linker package. A great
deal of literature for the embedded field deals with specifics
about close-tolerance timing (cycle optimization of code) and
single-byte memory-saving techniques. Professional debugging
toolchains for these parts often center around using a hardware
in-circuit emulator for the microcontroller to simulate the pro-

5 “Proprietary” in this context means “developed specifically for one product or family of
products,” rather than the more general English meaning of “exclusively owned.”
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cessor in vivo, capturing and analyzing its behavior in realtime
by means of an attached PC.

Design processes and priorities are usually very different when
targeting 32-bit parts. To begin with, these parts are so fast that
hardware emulators are unfeasibly expensive and almost all de-
bugging is performed on the real microcontroller. (Sometimes,
the microcontroller itself is used as a kind of in-circuit emulator
using the JTAG interface. However, this serial interface is too
slow for full realtime debugging.)

Also, particularly in the case of a demonstration or hobbyist
project, the designer would probably like to avoid handcrafting
all the code necessary to bring up a complex system, which im-
plies that some kind of ready-made operating system will be used
where possible. RAM and ROM are usually plentiful, making it
unnecessary for users to spend a great deal of time squeezing a
few extra bytes’ efficiency out of their code. Algorithms are also
much more complicated and have more points of interaction with
each other and the external environment, requiring a significantly
different style of design rigor.

As for cycle-exact performance issues, pipeline and cache fea-
tures on these more advanced processors make hand-optimizing
assembly language programs extremely difficult; in fact, instruc-
tion timing on a cached, pipelined CPU core under varying system
load can be so complex that these systems sometimes actually ap-
pear to be nondeterministic. Optimization for speed is generally
best left to a high-level language compiler on 32-bit platforms.
Only if observed performance is inadequate and actual profiler
results point to a specific area of the code is it generally worth the
effort of hand-optimizing in assembly language.

Given these differences, which tools do we choose for our
exciting new 32-bit project? With a few rather rare exceptions,
the choice of embedded operating system will mandate the choice
of a particular toolchain. Despite the proliferation of fairly well-
defined binary file standards such as ELF, COFF and PE,
differences in such compiler- and linker-specific behavior as sym-
bolic debugging information, special directives for memory
allocation, and C++ name mangling semantics usually make it
very difficult to move operating systems from their intended com-
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piler to an alien compiler. This problem is even worse with oper-
ating systems that are shipped partly or wholly precompiled,
without sourcecode. Although it is possible, in some cases, to
force specific combinations of products to work together (e.g.,
object files compiled with the ARM Developer Suite can be mas-
saged to link with code generated by gcc), this is rarely a wise
expenditure of time.

Keep in mind that this interrelationship works in reverse too—
in other words, if you don’t want to spend the money on a costly
commercial toolchain, this is probably going to limit your choice
of operating systems. For the purposes of this book, I am going
to consider all the commercial tools as being too expensive (li-
censes for this type of product typically start at around US$3,000),
so we are going to focus on platforms that are supported by free
compilers. For all practical purposes, this means platforms sup-
ported by the GNU tools; gcc et al. There exist a few free,
manufacturer-supplied proprietary compilers, but these vary
widely in quality and are generally nonstandardized. Unless your
chip or operating system vendor is going to supply you with a
huge variety of free, useful intellectual property in the form of
libraries that can only be linked with the proprietary compiler
and for which you can’t obtain open-source equivalents, I strongly
advise that you stay on the far better-traveled path of GNU tools.
It’s hard to imagine any algorithm from cryptographic applica-
tions to video decoding for which GNU or other open-source
intellectual property isn’t already available. Freely available
source probably won’t be optimized for your hardware platform
and will require some tweaking for best results, but even so the
benefit of having the sourcecode is very significant.

I should pause here to point out that if you are using the Intel
x86 family for your platform, there are at least two other viable
free compiler options for you. Borland has released the com-
mand-line version of Borland C++ 5.5 as a free download, and
the Watcom C++ compiler (now owned by Sybase®) is in the
process of being released as an open-source product named
OpenWatcom (www.openwatcom.org). OpenWatcom is not avail-
able for general download at the time of writing, but when it
does finally make it to the outside world, it should be a very
exciting product. Watcom C++ supports numerous Intel targets—
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Win32, Win16, OS/2®, Novell® NLMs, and both 16-bit and 32-
bit DOS. With a little external massaging, it can be used to develop
almost any x86 code for embedded platforms, especially when
combined with a free operating system like FreeDOS
(www.freedos.org). In the heyday of DOS, Watcom C++ was
also famous for generating highly speed-optimized object code
for DOS-based games, which may be an interesting advantage
for your application.

The GNU suite is a software-only toolchain, meaning that
we need to establish our own link to the target hardware for code
uploading and debugging. Most of the 32-bit parts we mention in
this book, and certainly virtually all ARM-cored parts (including
ASICs), include on-chip JTAG hardware debugging support. For
those who haven’t used it, this is a simple serial interface that
allows external hardware to halt the processor core and inspect
and manipulate its state6. Through this mechanism, it is possible
to generate read/write cycles that appear to originate from the
core, and thereby operate and examine on-chip peripherals and
external hardware. In order to make use of this interface, you
need a JTAG pod; these range in complexity from fully autono-
mous standalone units that connect to your computer via Ethernet
to simple devices that level-match and buffer your PC’s parallel
port signals onto the target’s JTAG port pins. The only readily

6 The JTAG interface can, of course, be used to manipulate other on-chip hardware
directly. However, doing so would require device-specific knowledge of the on-chip
peripherals. By taking control of the core, we can generate read and write cycles to
access other system hardware without proprietary knowledge of each different
microcontroller.

Figure 2-1. Macraigor JTAG Wiggler



36 Chapter 2

available JTAG pod I have found that lies within a shoestring
budget is the Macraigor Wiggler, illustrated in Figure 2-1.

The Wiggler belongs to the category of simple parallel port
devices; however, it is an extremely powerful tool. With it, you
can halt the processor and inspect its state, as well as being able
to read and write hardware registers and other memory locations.
This capability will save you a lot of time when you’re working
out how to bring up a new system; instead of having to recompile,
upload and test your bootstrap code iteratively, you can simply
connect the debugger and tinker with the hardware registers di-
rectly until the peripherals are behaving the way you want them
to. Moreover, because the JTAG interface is entirely hardware-
based (on the microcontroller end), you can use it to breathe the
“kiss of life” into a board with blank flash memory.

There are a few hardware projects that duplicate the Wiggler’s
functionality (it’s a very simple device), but the really tricky part
is not the hardware, but learning the scan chain codes for the
chips you intend to debug. This information is usually closely
guarded by the chip manufacturers, and you really need to be a
large corporate entity in order to have access to it. For this rea-
son, I recommend sticking with a hardware vendor like Macraigor
who has good relationships with the chip vendors, to ensure on-
going support for new parts.

Free Embedded Operating Systems
Having introduced the common choices for free development tools
above, let us explore some of the operating system choices avail-
able to us. Fortunately, the open source movement has generated
a plethora of free, or nearly free operating systems, probably the
best-known of which is Linux. One great advantage of Linux is
that not only has it been ported to a great many architectures, but
the install process for many reference platforms is relatively well-
documented. Being able to download a working, precompiled
kernel and fairly precise installation instructions will save you an
enormous amount of frustration at the start of a new project. In
the last year or two, Linux has also attracted quite a lot of atten-
tion from the embedded world, and as a result we are starting to
see some embedded-specific features emerging in the mainstream
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Linux code. For example, current kernel versions directly sup-
port ROM-based filesystems (including compressed filesystems)
as well as several forms of flash technology including NAND
flash (SmartMedia et al), M-Systems DiskOnChip, et al.

For some applications, it may be valuable to note that “pure”
Linux has three important limitations:

1. It requires a hardware memory-management unit (MMU) in
the target processor.

2. It is not, strictly speaking, a realtime operating system.

3. It is licensed under the GNU General Public License (dis-
cussed in the next section of this book), which may have
privacy implications for your own code.

The reason I qualified the second point above is because off-
the-shelf Linux can often be thought of as “realtime, for small
values of realtime”. In other words, stock Linux may be quite
realtime enough for your needs, especially if you are willing to
massage the kernel a little. Developers who are accustomed to
working with actual real-time operating systems will doubtless
cringe at my cavalier treatment of this issue, but for many non-
critical applications, simply using a fast enough processor and
removing unnecessary background tasks will be sufficient to en-
sure that your application gets enough processor time to appear
to be working in realtime. The difference between this and a true
RTOS is that the RTOS will have APIs to guarantee that, for
example, a level 0 interrupt will be serviced within 2ms of the
hardware receiving the interrupt request, or that a given process
will always get at least 25ms out of every 100ms of processor
time. Whether or not you can get away with a non-realtime oper-
ating system depends on your application; principally, if physical
or financial safety depends on your appliance being truly realtime,
then you must either use a true RTOS or modify your existing OS
so that you can guarantee that any critical code will be allowed to
run when it needs to.

If you need a truly realtime version of Linux, there are a few
options open to you, but probably the best-known is a commer-
cial distribution called Hard Hat Linux from Monta Vista Software
(www.hardhatlinux.com). Monta Vista also makes a specialized
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version of Hard Hat Linux for the telecommunications industry.
Another option, and one that you can download freely, is RTLinux
(available at www.fsmlabs.com). Despite what you might be told,
the “realtime” versions of Linux are not really fundamentally
different operating systems; they essentially consist of a small
realtime subsystem melded to a normal Linux system. If your
realtime needs are modest, you may be able simply to add your
own minor patches to the Linux kernel to run your own critical
tasks when necessary, rather than inheriting any idiosyncrasies
of someone else’s “two-pronged-kernel” realtime Linux design.

If you need a version of Linux that will run on microcontrollers
lacking a memory-management unit, there is also a version to
accommodate you: ucLinux (www.uclinux.org). ucLinux is a
public project with a strong leaning towards projects that involve
repurposing existing appliances such as Palm PDAs. The ucLinux
website also features links to some interesting, moderately priced
hobbyist 32-bit development boards based on processors such as
the Motorola Dragonball series.

Without a doubt, Linux is the operating system de rigeur in
the hobbyist arena. Partly because of the percolation of hobby-
ists into the commercial world, and partly simply because of the
operating system’s own merits, there is large and growing com-
mercial use of and support for Linux-based embedded solutions.
For some examples of this support, you should visit
www.linuxdevices.com, which is probably the most comprehen-
sive portal site for news of the embedded Linux world. There are
a surprising number of product announcements from major ven-
dors aiming at the consumer electronics market. Linux’s position
as the server operating system of choice on the Internet seems to
have helped to make it the top contender to run the next genera-
tion of networked home entertainment and other appliances. (It’s
also well worth visiting linuxdevices.com when you’re search-
ing for a ready-built hardware platform for some embedded
application or even just for prototyping purposes. The site con-
tains numerous interesting articles and product lists for various
embedded computing platforms that can run Linux, and of course
there is no reason why you couldn’t load your own operating
system onto one of those boards. Some reviewers of this text
have pointed out to me that there’s almost nothing at this portal
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site that you can’t find by some reasonably diligent Web search-
ing, but after all the primary purpose of a portal is to collect
audience-targeted information into one convenient location so
you don’t have to do the searching legwork yourself.)

Another popular free UNIX variant is NetBSD
(www.netbsd.org). This operating system has one major advan-
tage over Linux: it is unconditionally free7. Like Linux, NetBSD
has been ported to a huge variety of platforms, and supports a
wide range of miscellaneous hardware. The main disadvantage
to NetBSD is that it has not attracted very much attention from
hardware OEMs, at least compared with Linux. The Linux com-
munity is sufficiently large and vocal that hardware vendors
generally provide at least token support, whereas NetBSD is a
poor cousin, relatively speaking. There is a fair amount of code
interchange (within licensing limits) between NetBSD and Linux,
and a large number of Linux projects can be rebuilt on a NetBSD
base, but overall if you are looking for sheer breadth of ready-
made hardware drivers and availability of peer support, Linux is
probably a better choice. However, if it is important to you to
keep every line of code you write secret, then you should look
more closely at NetBSD. Although, with due care and attention
to licensing details, you can build a Linux system that doesn’t
require much (if any) disclosure, you may find it easier to get
NetBSD past a reluctant management team who has been fright-
ened by or is otherwise doubtful about the legal status of
open-source projects. You can simply tell your managers that
NetBSD is unambiguously free, there is no disclosure of
sourcecode required, and that will (hopefully) be the end of those
managerial objections.

Linux and NetBSD are both very “heavy” operating systems;
they require a relatively large amount of RAM and nonvolatile
storage space (either ROM, flash memory, or another device such
as a hard disk). This can be mitigated to a certain degree by very
carefully pruning the kernel and deleting unnecessary binaries
and libraries, and by using special slimmed-down system librar-

7 Although the NetBSD operating system kernel is covered by a virtually unrestricted
free license, individual components of a distribution may be covered by different
licenses such as GPL.
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ies, but neither product was originally designed for embedded
systems. Both products are also very flexible general-purpose
operating systems, and of course this flexibility comes at a price.

A slightly lesser-known free operating system, but one with
growing popularity, is eCos from Red Hat (sources.redhat.com/
ecos). The great advantage of eCos is that it was purpose-built
from the ground up as an embedded operating system, unlike
Linux and NetBSD. Although it is monolithic in the sense that it
compiles into a single library that you link with your own pro-
gram (as opposed to being a heterogeneous collection of
executables, configuration files and libraries that need to be stored
in some kind of filesystem), eCos is a very well-designed modu-
lar operating system. The presence or absence of drivers for
various hardware, and all configuration options, are controlled
easily with conditional compile macros. RedHat even includes
the unaccustomed luxury of a graphical configuration editor that
lets you set all the build options with checkboxes, drop-down
lists and so forth, and build the operating system library with a
single keystroke.

eCos can also be compiled for operation from RAM (ex-
tremely useful for debugging; you leave the ROM monitor in
control of the board and simply upload new versions of your
application as you debug it), ROM (useful when you go to burn
the firmware into your device!) or a combination of RAM/ROM
startup, where the code is initially located in ROM, but relocates
itself to RAM for performance reasons. The operating system is
supported by a highly flexible bootloader called RedBoot; this
bootloader is a very interesting product in its own right, since it
offers a simple command-line loader accessible over serial or
Ethernet (where supported), flash rewriting commands, and other
useful functionality.

At the time of writing, there are basically two publicly avail-
able versions of eCos and its support tools—an ancient “official
release,” and the current CVS version. (CVS is a version-control
tool commonly used in the free software world.) If you intend to
play with eCos, download the current CVS version. Instructions
for doing this can be found at the eCos web site,
sources.redhat.com/ecos. The “official release” version is ancient;
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the CVS version, though it is something of a moving target (since
it is not a frozen version, it changes frequently) supports many
more hardware platforms and has many more features than the
old release. If you’re using Windows, however, I do suggest you
download and install the official eCos release and then update it
with the latest CVS version. By doing this, all the necessary de-
fault configuration information, registry values and so on can be
initialized by the automated installer. Be sure to read all the down-
load pages carefully, however—all of the old utilities supplied
with the release version of eCos must be updated manually with
newer versions if you are using the CVS version of the operating
system sourcecode.

Another operating system which isn’t truly free, but is effec-
tively free, is the Palm OS. The reason I describe it as “effectively”
free is that the only way you’re likely to be using this operating
system in a shoestring-budget project is if you’re implementing
your project as an application running on a dedicated Palm de-
vice (or third-party compatible; Sony Clié, Visor, IBM WorkPad,
etc). Since the operating system comes bundled with the hard-
ware platform, and free development tools and documentation
are available, shipping applications based on this OS is basically
free. In fact, quite a few niche market  products work precisely
this way; you pay for an off-the-shelf Palm device preloaded with
custom application software, and possibly some special external
hardware such as a GPS receiver, barcode reader or digital cam-
era. An obvious advantage of implementing your project in this
way is that as new and more powerful hardware platforms be-
come available, you can upgrade to them quite painlessly; Palm
will handle all the work of porting their operating system to the
new hardware and you can reap the benefits. (A similar situation
applies to Windows CE. At least at the time of writing, you can
download free Windows CE compilers at Microsoft’s web site).
This technique, however, barely falls under the heading of em-
bedded systems development, and so I will not discuss it further
in this text.

Of course, depending on what functionality you require, it
might not be necessary to port and bring up an entire operating
system just in order to acquire some ready-rolled functionality.
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Some vendors provide modular packages for specific functions
(these are usually supplied as precompiled libraries, so make sure
that they can be linked with your toolchain of choice). For ex-
ample, US Software (now owned by Lantronix) sells standalone
modules for TCP/IP networking (USNet®) and DOS/Windows-
compatible VFAT filesystems (USFiles®), in addition to several
embedded operating systems.

It might also be feasible for you to “mine” small fragments of
code out of an existing operating system and create your own li-
braries. If you are thinking this latter is the best route for your own
project, remember that as the size of the code piece you’re extract-
ing increases, so do the number of structural assumptions you’re
inheriting. For example, if you want to borrow a filesystem driver
out of an operating system, you will either have to modify it heavily
to fit your own code, or you will have to duplicate the file descrip-
tor semantics at the top end, and the low level disk-access device
driver semantics at the bottom end, not to mention task synchroni-
zation primitives and so on. Effectively, you may find yourself
emulating or rewriting large segments of the operating system from
which you borrowed your “single” piece of code.

Remember also that even if you start out building a prototype
around a ready-made OS, it is entirely possible to “wean” your
code off that OS at a future date—though it will be much easier
if you start out by designing your code with this intention in
mind (see the section headed “Reliability and Portability Con-
siderations” later in this book for more information on this topic).
When you start a new project from scratch, it is very helpful to
have some piece of code around, even if only for reference pur-
poses, that you can trust to work properly. This is especially
valuable if that piece of code can teach you the correct method
and order of initializing the components of a complex system.
For example, I once worked on a project based around an ill-
documented Super-VGA controller IC. The chip vendor actually
supplied free reference sourcecode to bring up the SVGA chip,
but it wasn’t complete and didn’t work. Fortunately, they also
provided a working RTOS preloaded on the evaluation board. I
obtained the necessary magic register values to get my own code
working by booting up the vendor’s proprietary RTOS, letting it
initialize the display control registers, and then dumping the en-
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tire chip state (including, as it transpired, many undocumented
registers!) to a serial port for inspection.

Because of the possibility of issues like this, you might want
to use a ready-made operating system (on your real hardware) to
get your application up and running quickly, and gradually re-
place parts of that operating system with code of your own until
eventually you have duplicated all the desired external function-
ality in your own application. This is an exceptionally valuable
method of doing things when the only operating system that ex-
plicitly supports your reference platform has expensive royalty
fees, but is free for in-house research use. You can simultaneously
cut your per-unit costs and your development time by starting
your program out as an application on top of the expensive OS.
Once you’ve determined what services you actually need out of
the operating system, you can go through your code replacing all
the operating system calls with your own hand-written versions
of the same functionality. Once you’re done, you have a ship-
pable proprietary application that doesn’t use any of the expensive
third-party code. Obviously, this is a lot more work than simply
writing your program around a ready-made operating system,
but on the other hand it does save you a lot of debugging work in
the initial bring-up stage, and it avoids potentially large operat-
ing system license fees.

Note that this technique is subtly different from the technique
of prototyping your application code on some arbitrary hardware
platform, with the intention of porting it to real hardware once
the algorithms have been verified on the demonstration hardware.
Using the method above, we are developing on our real hardware
(or at least the reference platform we are using to develop the
real hardware). At any point, we could bundle together the cur-
rent codebase, load it onto a piece of real hardware and call it a
shippable product (at least from a functional perspective); the
only delay is caused by the need to remove expensive licensed
code. By contrast, the in-vitro code prototyping system doesn’t
result in a shippable product until the very end of the prototyping
and porting process.

In the simplest case, you might not need to use an operating
system or third-party libraries at all; you can roll your own entirely
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proprietary code. The toolchain you will be building later in this
book works well in this type of scenario; it has a reasonably pow-
erful C run-time to save you from the drudgery of writing functions
such as memcpy() and sprintf(), but it is entirely OS-agnostic.

GNU and You—How Using “Free” Software
Affects Your Product

In the modern era, almost any nontrivial embedded project of the
type we are discussing will require an enormous volume of es-
sentially boilerplate code; TCP/IP networking, data compression,
filesystems (particularly MS-DOS-compatible FAT filesystems -
“Where can I get code to read a FAT-formatted hard disk?” is a
frequently asked question in embedded newsgroups), audio/video
codecs and GUI libraries are common examples. Of necessity,
therefore, implementing such a project from the ground up in-
volves reinventing many wheels. At the very least, this is an
inefficient use of your expert time. At the worst, it can mean a
project that never gets off the ground because you don’t have the
manpower needed to get the pedestrian code finished so you can
move on to building the value-added magic that makes your prod-
uct something special and saleable.

In the past, these unpleasant facts could be worked around
only by purchasing expensive commercial RTOS packages. How-
ever, in recent years, many free alternatives have become available
and viable, and the use of open-source8  “free” software in com-
mercial ventures has been greatly legitimized. Despite this, there
is still a state of confusion in the minds of many embedded engi-
neers and entrepreneurs alike as to just what it means to use
open-source software; what rights and benefits it confers, and
what obligations it entails. This situation is not ameliorated by
the fact that most of the outspoken experts in this field are vigor-
ously pursuing commercial or political agendas and in many cases
intentionally obscuring the facts. In order to fully understand the
implications of using some of this free software, it is therefore

8 “Open source software” is a politically loaded term with multiple more or less widely
accepted meanings. In this context, I am using the phrase to mean “royalty-free software
for which the complete sourcecode is readily available without payment of fees.”
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necessary to be armed with at least small amount of background
information about this political situation. Please note that this is
intentionally only a brief description, and of course it constitutes
neither formal legal advice nor a complete analysis of the social
and legal issues surrounding any particular software license.

The reason you need to read this chapter is that when you’re
implementing a complex project, sooner or later you will be forced
to choose between a proprietary operating system or a free prod-
uct covered by some kind of “open source” license. Chances are
good that you will be facing one or more salespersons and free
software advocates, each of whom will not necessarily present
you with complete information to make your decision. Depend-
ing on your organization’s structure and history, you may also be
combating misconceptions in management about the implications
of using “free” software in your product. Free software, used
properly, can be part of any totally reliable, legally sound, high-
performance product; this approach to software development can
no longer be considered trailblazing, and it remains only to se-
lect which type of free software you should be using.

The most popular free software license (in terms of lines of
code freely available on the Internet, at any rate) is unquestion-
ably the GNU General Public License, commonly abbreviated
“GPL”. Most Linux software, for instance, including the Linux
kernel itself, is released under this license, and most free soft-
ware controversy in the public press centers around GPL. The
rationale behind GPL, simply stated, is to force all derivative
works of open-source products to remain open-source. (The ac-
tual rationale goes somewhat deeper than this; it is based on the
idea that all software should be free, in the philosophical sense of
the word; a true free software purist abhors the concept of closed-
source applications.) The two aspects of the GPL that will affect
you most are:

1. You can experiment with GPLed software as much as you
want in private. You only “accept” the license and therefore
become bound by its provisions once you “distribute” prod-
ucts derived from GPL code.

2. If you distribute a product that is derived from or closely
linked to GPL code, your code must also be released under
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the GPL. This means that you must release sourcecode (or
disclose a means of obtaining the sourcecode) to anyone who
requests it. There is an important exception to this rule for
the Linux kernel: You do not need to GPL a piece of software
whose only link to the Linux kernel is that it calls kernel
services using documented interfaces. The original intent of
this rule was to allow people to develop Linux device drivers
for products whose hardware documentation is covered by
nondisclosure agreements (an intent largely nullified by later
philosophical changes in the license), but it also provides a
very useful way of allowing profit-making use of the large
amount of engineering in the Linux kernel.

For in-house prototypes and private experimental research of
all kinds, the first rule above is a largely unrestricted free ride.
You can take an existing mostly-GPL project (like a Linux distri-
bution) and use it as the foundation for your prototype without
restrictions. Once you’re satisfied that your code and/or hard-
ware are working nicely, you can decide exactly how to bring the
product as a whole to market and remain license-compliant. How-
ever, you should plan now for what you intend to do when you
commercialize your product. Otherwise, you’ll demonstrate a
fantastic but legally unsaleable prototype at a trade show, people
will come to you ready to write orders, and you’ll have a huge
auditing and rewriting job before you can cash their checks. Your
options are as follows, in ascending order of person-hours typi-
cally required:

■ Release your entire product under GPL. This option can make
a lot of sense, particularly when your product is largely spe-
cial hardware that just happens to require control software
(as opposed to general-purpose hardware running special
software, where all the value lies in the bundled software). If
you take this route, you can also ride a certain amount of
bonus publicity from the free software movement, who will
be only too happy to promote your product as an example of
embedded engineering done right. This extra goodwill can
be very useful in some markets. However, sometimes there
can be other issues—typically, nondisclosure agreements re-
quired by other product vendors you work with, patents and
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various other trade secret problems—that preclude this op-
tion, even if you are personally willing to try it.

■ Establish a clear separation between GPL and non-GPL code
in your product, and open-source only the GPL components
of your software bundle. This technique is exceedingly use-
ful when your product is based around Linux, because the
Linux kernel exception to rule (b) mentioned above gives
you a convenient place to draw the “GPL vs. non-GPL” line
in your software bundle. The Linux-based TiVo digital video
recorder appliance and Sharp’s range of Linux-based PDAs
(such as the Zaurus SL-5600) are excellent contemporary
examples of this technique. All you are required to release
are the special device drivers and other kernel modifications
you may have written to get Linux up and running on your
hardware; your application code remains secret.

■ Determine exactly what GPLed functionality you’re using, write
your own implementation of all that functionality (or buy some-
one else’s proprietary implementation), and remove all GPLed
code from your software bundle prior to release. This is obvi-
ously the brute-force approach. I’ve listed this option last
because it is usually the most labor-intensive, but this isn’t nec-
essarily true for all applications. If you’re very careful to
maintain an abstraction layer between your application and
external libraries and operating system calls, or your applica-
tion is of such a nature that it doesn’t require many external
services, this option might be the best for you. However, the
applications that are easy to “de-GPL” in this way are pre-
cisely those applications that probably wouldn’t have required
importing a whole operating system in the first place.

Besides the special rules for the Linux kernel, there are some
other varieties of GPL. One of the most useful is the “LGPL,”
which originally stood for Library GPL but is now referred to
as the Lesser GPL. The LGPL is very similar to the Linux ker-
nel license, except that it refers to a single library rather than
the kernel itself. Libraries that are licensed under the LGPL
can be used by your program without triggering a requirement
to GPL your own code, as long as you only use documented
calling mechanisms.
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One of the most common licensing cases that people ask about
in embedded discussion forums is exactly how they can build Linux
into their system without having to release all their sourcecode.
The answer to this is that the code you write will fall into three
categories, with different licensing implications for each:

1. Kernel modifications. This includes patches you have made
to the public sources as well as additional loadable kernel
modules you may have written. Source code for these must
be disclosed.

2. Modifications to LGPL libraries. You will need to disclose
all your sourcecode for these.

3. Your own application. As long as you only use the kernel’s
documented interfaces, and documented interfaces to any
LGPL libraries you use, your application code can remain
secret. You must not make use of any libraries or other mod-
ules that carry a full GPL license, or you trigger a full GPL
disclosure requirement on your own code. You must also
avoid any undocumented interfaces to LGPL libraries or
the kernel itself.

In practice, a large majority of embedded Linux projects will
use exactly one library—glibc, or a cut-down variant of it such
as uclibc—without ever needing to modify it, so the caveats in
cases 2 and 3 above are never encountered.

At the opposite end of the spectrum from GPL, you will find
the NetBSD license. This is a refreshingly simple license, which
allows you to download the free sourcecode, experiment with it,
use it and release derivative products, with or without sourcecode
disclosure as you see fit. The only real limitation is that your
product and its advertising materials must acknowledge the origi-
nal author, typically with a phrase such as “This product includes
software developed by X”. (Some variants of the NetBSD li-
cense have dropped this last requirement.) There are also some
common-sense requirements which are in no way onerous: you
agree not to use the original author’s name to promote your de-
rivative product, and you agree that the code you received has no
warranty. The NetBSD license is literally something for nothing;
you get the sourcecode for free, you can distribute your binaries
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and charge money for them if you wish, and there is no require-
ment for sourcecode disclosure (though of course it is encouraged
to release as much as you can). A splendid example of NetBSD
in widespread commercial use is Apple’s latest generation of
Macintosh operating systems.

There are innumerable other open-source licenses, many of
which are associated with just one specific product. For example,
the Red Hat eCos operating system described in the previous
chapter is released under the “RHEPL” license similar in phi-
losophy to the NetBSD license. All of these miscellaneous licenses
lie in a spectrum roughly bounded by GPL at one end and NetBSD
at the other (in terms of sourcecode disclosure requirements vs.
recognition of proprietary trade secret rights), with special con-
ditions in some cases. However, you will find that the majority of
the interesting open-source projects in the world are GPL-licensed.

One incidental pitfall does bear mentioning: There is a sur-
prisingly large amount of open-source material which implements
patented algorithms. For whatever reason—be it a love of aca-
demic freedom of speech, a desire to avoid expensive legal action,
or simple lassitude—the owners of these patents often don’t see
fit to enforce them for free products. Even if you comply with
the license agreement for the freeware product, that does not imply
that you have somehow inherited a right to use the patented intel-
lectual property in your project. For instance, there are freeware
DVD playback programs readily available on the Internet. (For
the benefit of those who know about such things, let’s leave the
thorny issue of DeCSS and the evil MPAA out of the equation
and consider only an unambiguously legal freeware MPEG-2
player capable of playing unencrypted, legal DVD content such
as you might produce if you use a consumer DVD recorder to
convert your home movies from VHS to DVD format.) Notwith-
standing the free nature of the code license, if you use one of
these players as the core of your own consumer electronics DVD
player project, you’ll find the DVD consortium knocking on your
door very quickly indeed looking for monies related to use of the
DVD video trademark. You’ll also be facing litigation on a raft
of patent issues surrounding the MPEG-2 decoder. Several juris-
dictions are currently evaluating possible changes to the way
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software patents are granted, with the abolition of such patents
(or at least limiting them to a few years) being one of the options
under consideration. Until such an enlightened, forward-think-
ing step occurs, however, you need to be willing to research
possible patent protection of the the algorithms used in your
project, regardless of what the licensing conditions might be on
any particular implementation that you have referenced in your
code.

Whatever third-party intellectual property you wind up us-
ing—even if you don’t include third-party code in your final
product release—it is absolutely essential to maintain an audit
document for your software. This need not be a particularly oner-
ous task; at its simplest, it can be a document listing each item
you have included in your product (operating system kernel, third-
party libraries, example sourcecode, clip art, fonts and so on)
along with a copy of the license agreement that accompanied
each of these items when you obtained them. This latter is par-
ticularly important because some licenses evolve over time (GPL
is an example)—the license you obtain today may not be the
same license that you would obtain by downloading the software
tomorrow. With this document in hand, you have a documented
legal defense against any accusations of license violations.

One last note: With the plethora of useful open-source code
floating around the Internet, free for the downloading, there might
be a temptation simply to download and use whatever you please
and assume that nobody will ever know because nobody will ever
see your sourcecode. Even ignoring the moral issues, this is sui-
cidal folly. Anything from a disgruntled (or simply talkative) staff
member to an interested hacker to a competitor reverse-engineer-
ing your product will destroy your company; discovery is inevitable,
particularly if your project turns out to be a success. At the time of
writing, several major American corporations are writhing in the
throes of government investigations into accounting fraud; if your
major product contains plagiarized code, discovery will lead to
similar consequences. Worse—and this also applies to privately
held companies, because it’s not just a stock price issue—you may
be unable to ship any more units without an expensive major re-
write of your operating system. Don’t take this kind of risk. If you
use free code, honor the license.
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Choices of Development Operating System
Most hardware tools—PROM burners, programmable logic in-
terfaces, debugger modules and so on—have proprietary hardware
interfaces and are usually only supported under Windows and/or
commercial UNIX variants such as Solaris. Many programmers,
particularly those without much experience on high-end embed-
ded systems, are also more experienced with working inside
Windows. In addition, you may have other tools—CAD soft-
ware, for example—which is only available for commercial
operating systems like Windows, and to which you will be refer-
ring frequently.

Unfortunately, the open-source movement, or at least the GNU
project (which provides us with high-quality free development
tools) is focused more on supporting free UNIX variants such as
Linux and NetBSD. Although of course you can have a dual-
boot system, or multiple PCs on your desktop, this can be
irksome—particularly the dual-boot system.

The simplest answer to this problem, at least for Windows
users, is to use the Cygwin environment from Red Hat. A recent
version of Cygwin is included for your convenience on the CD-
ROM with this book. This piece of software allows you to run a
simulated UNIX environment within Windows with minimal per-
formance overhead. Detailed instructions for installing Cygwin
are included later in this book. Cygwin is probably the easiest
way to get up and running with GNU tools inside Windows; it is
certainly the most popular. This description would, however, be
incomplete if I failed to point out that Cygwin is a class of prod-
uct sometimes referred to pejoratively as a “butterbox”9 ; in other
words, it’s something of a hack. Cygwin is probably the best
solution if you must run Windows for other reasons, but it can be
quirky. (However, if you are using the Macraigor Wiggler JTAG
debugging pod mentioned earlier, remember that the software
for this device is only supported under Windows. Linux support
for the product has been rumored to exist because a third-party

9 This phrase refers to a feature found in some refrigerators; a heated box inside the cooled
compartment, designed to keep your butter soft and spreadable. Generically, it refers to
software with seemingly useless or contradictory functions, e.g., a DOS emulator for DOS.
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developer at one time obtained the control specification from
Macraigor, and rolled it into the gdb sources. This code is not
part of the publicly-available gdb source tree.)

Note in particular that Cygwin works best inside NT-class
versions of Windows (NT, 2000 and XP). Due to differences in
the executable loading behavior of DOS-based Windows vari-
ants (95, 98 and Me), build performance is significantly slower
under these operating systems. Some extremely complicated
projects, such as gcc, may not build correctly at all inside Win-
dows 95/98/Me.

There is another project with similar goals to Cygwin, called
MinGW (Minimalist GNU for Windows). The main technical
difference between MinGW and Cygwin is that MinGW
executables are standalone; they use Windows system services
directly, rather than going through an abstraction/emulation layer
like Cygwin. In other words, the translation from UNIX to Win-
dows APIs occurs at compile-time with MinGW, rather than at
runtime as with Cygwin. It’s certainly possible to build cross-
compiling versions of the GNU toolchain that operate with
MinGW, but for the moment Cygwin is the mainstream route for
people who prefer to work in Windows.

It’s even possible to build GNU toolchains hosted on DOS
(with the DJGPP 32-bit extender), but there are few good rea-
sons for attempting this.

Yet another way of approaching the problem is to run an alien
development operating system inside a complete hardware emu-
lation of a PC, using software such as VMWare, or Connectix
Virtual PC. For example, you might choose to run Windows XP
as your primary desktop OS, but develop inside Linux running
within such a software emulator. There are some minor advan-
tages to this—for instance, it makes backups easy (since you only
have to back up a virtual hard disk file), but there is a substantial
performance impact and this approach is not recommended.

Overall, I recommend using Linux, if possible, as your host
operating system when developing embedded projects with the
GNU toolchain. By developing under Linux, you will simulta-
neously avoid the quirkiness of Cygwin, the performance issues



     53Before You Start—Fundamental Decisions

of full virtual-machine emulators like VMWare, and any issues
you might encounter using a less-popular system such as MinGW
or DJGPP. As a side benefit, you will be using an entirely free
development environment, which if nothing else is consistent with
the goals of this book.

Special PCB Layout and Initial Bring-Up Rules
for the Shoestring Prototype

Perhaps ten years ago, most parts of interest were available in
through-hole package variants and it was usually possible to as-
semble most prototypes on simple off-the-shelf 100mil perforated
PCB material, Veroboard® or wire-wrap boards. These materi-
als are quite cheap, and it is easy to build such devices with only
reasonable care and manual dexterity. For this reason, many in-
troductory engineering courses and most hobbyist projects still
deal exclusively with large through-hole parts. However, the high
pin count of most 32-bit parts (and their support chips; SDRAM,
high-density flash memories, display controllers, Ethernet con-
trollers and so on) means that they are usually only offered in
surface-mount packages such as TSSOP, QFP and BGA. This
makes prototyping (especially by hand) much more difficult and
rather more expensive, but it is still within the capabilities of a
hobbyist workbench as long as you follow some fairly simple
rules. Even if you are basing your development around a pre-
built platform such as an evaluation board, you will almost
certainly have to make your own PCBs to mount your peripheral
components, and the rules below are equally applicable to pe-
ripheral boards as to complete systems.

The first and most important rule is that all programmable
components containing nonvolatile memory (microcontrollers
with internal flash memory, EPROMs, flash memory, CPLDs,
etc.) should be socketed. The only exception to this rule is if you
have a means of loading new firmware onto the device that will
work while it is in-circuit and the rest of the board is nonfunc-
tional. Although you can rely on the microcontroller to perform
flash reloading operations once the board and at least part of the
firmware are known good, that doesn’t help you debug the hard-
ware and develop the first version of your bootloader!
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This may be a problem if your design uses large or wide flash
memory devices. These parts are only available in TSOP/SSOP
and similar surface-mount packages, and sockets for those pack-
ages are extremely expensive. The easiest route around this
particular issue is to put a JTAG header on the board and solder
in the flash memory, but if this option isn’t available to you (if
your processor doesn’t support JTAG, or if you don’t own the
requisite interface module), probably the easiest thing to do is
put a proprietary header on the board, wired in parallel with the
footprint for the real surface-mount part. You can then build an
external flash memory bank using through-hole parts and con-
nect it to the proprietary header. For example, if your design
calls for a 1Mx16 flash part, you can build an off-board module
containing four socketed 512K x 8 parts (which are readily avail-
able in DIP packaging and can cheaply be socketed) and some
address decoding logic. Although this will obviously not be com-
patible with write algorithms for the 1Mx16 part, you will be
able to use it to develop your bootloader, and possibly most of
your application.

The tricky part will come when you need to develop the code
that writes back to that flash memory. It’s hard to offer a truly
universal generic suggestion for overcoming this problem, but
the way I normally achieve this is by routing the chip select lines
of the “special memory module” header and the surface-mount
footprint to two different chip select outputs of the microcontroller
or address decoding logic, via a pattern of jumper pads that acts
like a DPDT switch: The center poles of this “switch” are wired
to the chip select lines of the on-board flash device and the pro-
prietary flash socket; the outer poles are wired in a crossover
fashion to the “boot” chip select output from the microcontroller
(i.e., the chip select line that is asserted when the part is fetching
its power-on initialization code or vector table) and to some sec-
ondary chip select output. With the “switch” in one position, the
on-board flash is selected as the boot device; in the other posi-
tion, the proprietary module is selected.

With a system like this, you can use the code in your propri-
etary memory module to write an image to the soldered-down
surface-mount flash part. Switch the chip select lines over and
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you can boot off the surface-mount part and check your code. If
it isn’t working correctly, you’re not locked out of the system
and you don’t have to desolder the surface-mounted flash part—
you can switch the chip selects back over and boot off your
proprietary module until you get the final code working.

A similar but considerably more complicated technique with
less general applicability is to put a standard header (say, 100 mil
DIP) on your board, wired in parallel with the surface-mount
pads for the actual chip you intend to use. You can then turn one
of the real chips you intend to use into a “cartridge” to fit this
header, either by making a small PCB to mount the surface-mount
chip, or by using a wire-wrap IC socket as a body to hold the
chip (in which case you would wire the chip onto the socket’s
pins by hand, using wire-wrap wire; this is really only feasible
for SOP parts). When you need to reprogram the chip, you sim-
ply drop the entire module into the DIP socket of your EPROM
burner. The feasibility of this option depends greatly on the ca-
pabilities of your EPROM programmer, and your ability to fool
it into thinking that the hybrid device you stuck in the DIP socket
is in fact the flash chip you have specified, in a surface-mount
personality module.

While I’m on the topic of memory, I would like to mention
another important rule: Whenever feasible, try to superimpose
footprints for different package styles and pinouts on your board,
so that you can make running changes to the parts being used.
This rule is particularly important for memory devices because
for any particular density and technology, there may be several
“standard” pinouts. Moreover, if you are a hobbyist, you may
find it close to impossible to buy small quantities of specific
memory chips, SDRAM in particular. The easiest source for these
chips is to buy suitable PC memory modules (SIMMs or DIMMs
depending on the vintage of the chips you’re trying to find) and
scavenge parts off them. Unfortunately, it’s usually not possible
to know in advance what chips will be on a specific memory
module. PC hardware vendors specify their products on density
and speed, and they can and do vary PCB layouts and exact chip
selections without notice. For this reason alone, it’s prudent to
design for several different RAM footprints in case you have
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The person who designed the board above has placed two
large surface-mount components very close to each other. You
would encounter some difficulty in hand-assembling this board;
no matter which part you fit first, when you come to fit the sec-
ond part you will have trouble soldering it down because there is
not much maneuvering room for a soldering iron. Moreover, the
short trace runs between these parts could make probing, patch-
ing and otherwise debugging the circuit difficult. Contrast this
with the board below:

trouble sourcing a particular chip. However, even without these
considerations, it’s good practice to lay out for a variety of dif-
ferent RAM and flash pinouts where possible, because prices
and availability of these parts can be very volatile.

Another vital rule, particularly relevant to hobbyists and stu-
dents who will assemble their devices at home, is that you should
always be mindful of  the assembly process when laying out your
board. Compare the two photos shown in Figures 2-2 and 2-3.

Figure 2-2. Cramped layout makes assembly difficult.

Figure 2-3. Ample space facilitates hand-assembly.
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This board has a generous amount of space between the major
components and it would be relatively easy to assemble by hand.
(Note that the small passive components don’t cause a problem,
because we can easily fit those last without needing a lot of room).
There is also sufficient room to scratch off solder mask from the
traces between the parts and probe, cut or patch them if necessary.

If your board’s outline is constrained by an external housing
or a need to mate with some other hardware whose size is fixed,
consider placing components on both sides so that you can leave
sufficient space between them to ease assembly and probing. This
is normally something you would avoid at all costs for automated
production, since it means the board has to go through the sol-
dering process twice10, but when constructing by hand it makes
no difference to the number of assembly steps.

Speaking of board outlines, it’s very valuable to have a PCB
vendor who can provide realtime online quotations based on board
parameters you enter. The reason for this is that your particular
board house will have its own rules about panelization (duplicat-
ing your board and fitting it alongside other boards on a single
standard-sized plate of blank PCB material) and its own propri-
etary costing algorithms. The pricing is also usually different for
varying tolerances in the production process; for example, a mini-
mum trace/space width of 10 mil will be more expensive than a
minimum trace/space width of 25 mil.

I use a PCB manufacturing house called Advanced Circuits
(www.4pcb.com) for my prototypes, because, among other de-
sirable qualities, they have a very powerful online quotation
system. Once I’ve finished drawing my schematic, I draw a rough
board outline to determine approximately how much area I need
to physically fit all the parts. I can then input those parameters to
the online quote system and nudge them around to minimize the
per-PCB cost. For example, I might modify the board dimen-
sions slightly, or I might decide that I can live without a silkscreen
legend on one or both sides of the board if the project is running
over budget. I don’t sit down and route the board until I’ve ob-

10 The exact details of this are dependent on the soldering process used by your factory. In
general, however, it is cheaper to have components on one side of the board only.



58 Chapter 2

tained at least rough costing and determined the board size, num-
ber of layers, trace/hole spacing and other design rules that affect
the unit cost.

Also note that if your project contains several small PCBs, it
will probably be much cheaper for you to prototype if you can
draw up an entire set of boards as a single large “master board”,
with score marks or rows of holes so you can cut apart the sub-
boards once you receive them. The same is true if your design
requires any board that is non-rectangular in shape; it will be
cheaper for you to design a rectangular board and cut it down to
size yourself than to have the PCB house put your board on a
CNC router to cut it to some arbitrary shape. Some vendors also
have special restrictions on particular shapes; for instance, many
companies will charge extra for boards that are extremely long
and narrow, because these have a tendency to break while being
drilled and separated.

The break-even point here depends on several factors, the most
important of which is whether your board house charges you extra
for large numbers of holes. If you put perforations on your board,
you’ve probably added several hundred drill operations to the pro-
duction process, which means more time on the CNC drill machine
and more wear and tear on the drill bits. Many PCB houses (but not
all) will charge for this. Practically all PCB houses will also charge
extra to “tab-route” boards (cutting a continuous notch around the
parts to be broken away, with small perforated sections holding the
parts together during shipping). It so happens that Advanced Cir-
cuits charges for tab-routing, but not for drill holes, so I minimize
my “master board” costs by demarcating the sub-boards with rows
of perforations. I then use shears to separate the sub-boards, and
clean up the edges with sandpaper.

Along the same lines, if your project has any surface-mount
parts in it at all, you should never be tempted to cut costs by
ordering your PCBs without solder mask. It is absolutely essen-
tial to the assembly process that the board have a mask layer on
both component-bearing sides, otherwise you will never be able
to clear up all the solder bridges created while populating the
board. Similarly, if plated-through holes are optional at your PCB
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vendor, you should always use them for any non-trivial design,
otherwise you will waste far too much time debugging simple
continuity issues. It’s because of problems like this that I don’t
recommend that you etch your own PCBs for complex 32-bit
projects. Although it can be done, it is practically always a false
economy. These high-end projects almost universally require at
least two layers (sometimes more—and hand-producing four- or
six-layer boards is extremely difficult!), and they usually have
huge numbers of vias. Hand-drilling these, ensuring continuity
and testing such boards is a waste of your time.

As you can see, there are a large number of variables in the
design process that will directly affect the per-PCB cost, and if
you’re on a constrained budget, it would be extremely unwise to
commit to a PCB layout without first consulting with the com-
pany that will be manufacturing your boards to verify that your
design can be made as cheaply as possible.

The final item I’d like to bring to your attention is a reminder
that the PCB you’re designing is probably based on a largely
untested circuit, so you want all the debugging help you can get.
If at all possible, try to confine your design to two layers (this
will also reduce your prototype PCB costs considerably), or if
that’s not possible, two layers and two power planes; make every
effort to avoid running signals in interior layers where you can’t
easily probe or patch them11. Your life will also be simplified if
you run as few signals as possible beneath surface-mount chips
and other large parts—keep these traces in the open where you
can cut and patch them if you need to. Finally, you may find it
very useful to place standard 100 mil or 2mm headers around
some of the more complex parts so that you have easy access to
all the signals; you don’t have to fit the actual headers for pro-
duction, and they can be very handy for debugging. An excellent
example of this is shown in the photograph in Figure 2-4 (this
image shows part of the Cirrus Logic EDB7212 evaluation board).

11 This is another good reason to eschew devices in BGA packages. BGA, and especially
MBGA, practically demands a six-layer board to achieve easy signal fanout while
maintaining solid ground and power planes.
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Of course, space constraints on your board may make this
kind of luxury impossible, but it is a good feature to include if
you can afford the real estate.

When you finally come to order your prototype PCBs, buy at
least three so that you can make one fully-populated board and
have two spare unpopulated boards. You are likely to find that
buying three is not much more expensive than buying one; for
small production runs, the one-time setup costs of your board
dominate the unit price, so while a single board might cost you
$100, two boards definitely won’t cost $200—they might only
cost you $120. (If your product is being laid out and/or manufac-
tured in an outside factory, then you should ask your factory to
send you two fully populated boards, in case of accidents, and
two unpopulated ones.) Keep one unpopulated board on hand as
a reference to use when trying to work out the destination of a
trace that disappears under a component. It’s much more useful
to have a real board for this than just a printout, because you can
use a multimeter to do a continuity check and establish beyond
any doubt what is connected to what. This technique can also
reveal shorts or open circuits that might be hard to locate by look-
ing at a printout or even the Gerber files; it can also reveal errors
that are only expressed in the production process—traces that
don’t quite meet up with pads because of issues with your aper-
ture files, boards that have been flexed and have “popped” their
inter-layer connections, pads that have been drilled out too far,
and so on.

Figure 2-4. Cirrus EP7212 evaluation board headers.
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Always start your debugging of an unproven PCB by bringing
up one of the fully populated boards slowly. Put it on a laboratory
power supply with the voltage set to 0 and the current limited to a
safe value, and gradually turn up the voltage while observing for
overheating or overcurrent conditions. This will protect you against
obvious problems like power rail shorts, diodes placed on the board
backwards, etc. Because you’re almost certainly violating rail rise-
time specifications for numerous devices on the board, it probably
won’t start up spontaneously, so once you’ve brought the input
rail(s) up to their nominal supply values without incident, you should
apply a hardware reset to the board. You can now verify that the
main microcontroller is running; probe the least-significant ad-
dress bits with your oscilloscope to see that they are toggling (this
behavior might be visible only immediately after a reset—if the
address bus seems to be frozen, keep watching the least significant
few bits while applying a hard reset). Also check that you are see-
ing activity on the chip select signal for the flash or ROM chip off
which your device should be booting—this verifies that any ad-
dress selection logic between the CPU and the ROM is functional.
Once you’re sure the microcontroller is getting power and a clock
signal and is attempting to fetch code from ROM, you can try to
load some firmware onto the board and begin testing the remain-
ing hardware.

The reason I suggested that you should order two unpopulated
boards is in case you can’t get the fully populated board to boot
up at all. In such cases, a useful technique is to build up one of
the boards yourself by hand, testing continuously. Start by add-
ing power regulation and conditioning components; check the
rails to ensure that these regulators are providing the correct out-
put voltages. Then fit only the main microcontroller and any
external passive components (crystal or ceramic resonator, RC
network, oscillator module, etc.) it requires to start operating.
Bring up the board again and observe the address bus and chip
select lines. If you see activity on these immediately after a reset,
you should add the bare minimum of hardware required to be
able to load firmware onto the board. Once you are able to run
your own code on the board, you can add peripherals one by one
until you find the problem that was originally preventing the board
from starting correctly.
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If all the above sounds like a flippant summary of a painstak-
ing, days-long process—well, unfortunately it sometimes is. My
experience, however, has been that first-round boards which are
a total “no-go” on delivery are usually suffering from a gross
problem that can be identified early on in the debugging process.
The subtle problems generally arrive much later in the develop-
ment process, when your firmware is largely complete and you
are giving the hardware a more thorough workout. Basing your
circuit on an existing reference design will also shorten the de-
bugging process considerably.

Hints for Surface-Mounting by Hand
If you choose to develop on your own custom board, you will
probably need to assemble at least one or two units by hand.
Fortunately, prototype construction with surface-mount parts is
not as difficult as you might think, even if your funds don’t stretch
to professional hot-air rework equipment. Provided you don’t
intend to assemble more than a couple of units, you can fairly
easily mount parts all the way down to fine-pitch QFP (quad flat
pack) using nothing more exotic than a normal temperature-con-
trolled soldering iron, tweezers and desoldering braid. In all cases,
you should be working under excellent light, preferably with
magnification. A bench-mounted illuminated magnifier with a
toroidal fluorescent lamp and jointed, swiveling arm is ideal.

The techniques you will use for surface-mount assembly are
very different from those used with through-hole parts. The most
obvious difference is that you usually do not first place the com-
ponent then solder it. Because most surface-mount parts have no
way of remaining in alignment until soldered down, and because
you have only two hands, you need to apply solder to at least one
pad and place the component on the wet solder bead to stick it
down. There are three major methods you will use, depending on
the type of component being mounted:

■ For parts with two pads or leads, such as surface-mount ca-
pacitors and resistors, begin by putting a solder bead on one
pad of the PCB. Keep your soldering iron on the pad so the
solder stays melted, and use tweezers to place the part on the
board as accurately as possible. Remove the soldering iron,
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and continue to hold down the part until the solder has cooled.
Remove the tweezers carefully; the component will be held
in position by the end you soldered. Now solder down the
other end.

■ For parts with a few leads, such as voltage regulators and
transistors, or ICs with relatively coarse-pitch leads (regular
“gull-wing” SOIC packages, SOJ and so on), use a similar
technique to that described above. Put solder on one pad on
the PCB, stick the component down on that one pad while
the joint is still hot, and use fine solder to solder down the
remaining leads.

■ For parts with many, fine-pitched leads (QFP, TSOP and
similar packages), first ensure that you have the PCB lying
flat on a solid surface. Place the component down onto the
PCB; orient it over its lands as accurately as you can. Press
down firmly to keep the component oriented correctly while
you tack down the corner pins. Don’t worry if you create
bridges between pins; just dab enough solder onto pins around
the device so that it will hold itself down in alignment with
its pads. Once you have the device secured, go all around it
wetting all the joints with a liberal amount of solder. Work
as quickly as you can on this step, and allow the device
time to cool during the process. (Avoid the use of spray-on
component coolers though, especially on ceramic devices, or
you may crack the package). Once every joint is liberally
covered in solder, use desoldering braid to remove all the
bridges. Don’t worry that you are “desoldering” the compo-
nent—enough solder will remain to keep the pins bonded
down firmly. Again, you should avoid applying heat to the
device for extended periods of time; do a few pins, then al-
low the device to cool down before attempting more pins.

There are several different grades of desoldering braid, and
most of the types I have tried have not been very good for this type
of work. The specific product I use, with excellent results, is “One-
Step Braid” from Easy Braid, Minneapolis, MN, catalog #OS-A-25;
readily available from major online component dealers like Digi-
Key. This is a very thin braid composed of fine copper filaments
impregnated with resin-type flux. When you apply it to a hot joint,



64 Chapter 2

it wicks the solder away very quickly. Unfluxed braids don’t draw
away the wet solder quickly enough. Wider braids are hard to use
accurately; they also act as splendid heatsinks, so with a normal
soldering iron of moderate power it can be hard to remove the
wick once the joint has been adequately cleaned. In attempting to
reheat the used braid to remove it, you can easily create more sol-
der bridges; very frustrating, to say the least.

Note that all of these soldering techniques carry an inherent
danger of overheating the components and PCBs. They are very
much in violation of manufacturer-recommended soldering
stresses and are suitable for prototype work only. It’s also es-
sential that you practice before attempting to work on a real
project. You can obtain prebuilt PCBs with several surface-mount
land patterns etched on them from most electronics supply houses,
but these PCBs are rather costly. (They are sold for use by repair
technicians being trained in surface mount rework techniques.)

A much cheaper way to acquire sacrificial practice boards is
to rescue some elderly computer hardware or consumer electronics
from your junkpile, but if you choose this route you will first
have to remove the chips before you can try to solder them back
on. To achieve this, I normally preheat the board using a hair-
dryer, then use a small handheld butane torch—about the size of
a disposable cigarette lighter, and readily available at electronics
parts stores and mail-order houses—applied in a rapid circular
motion around the part to be removed. Once the joints on all
sides of the part are melted, quickly flip the board upside-down
and give it a sharp tap to break the surface tension and remove
the part. I recommend using a shoebox full of crumpled tissue
paper to catch the falling components. By the way, never
attempt to remove parts from phenolic PCBs this way; the
board will catch fire and emit poisonous, evil-smelling smoke.
In the present day, you are most unlikely to receive phenolic
material from a commercial board vendor, but there is still a lot
of coppered phenol board in the hobbyist market, so it is a warn-
ing worth noting if you etch your own boards.

These simple techniques will work surprisingly well for al-
most every common IC package short of BGA (and a few other
completely leadless packages such as MLF and TCP). There isn’t
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any truly reliable, inexpensive way to hand-prototype BGA parts
with common workshop equipment; even on a real production line
with industrial-grade assembly tools and side-looking X-ray equip-
ment for diagnostics, there can be problems. I have attempted to
hand-assemble these devices on a few occasions, and my final ver-
dict is that the failure rate for hand-assembly is too high to make it
cost-effective. Sockets do exist for adapting BGA to PGA, which
you can use on a prototype easily enough – but these sockets are
astonishingly expensive (hundreds of dollars apiece). If you abso-
lutely have to use a BGA device, you may be able to inveigle your
chip vendor into supplying one or two chips mounted on PGA adapter
boards for prototyping. If not, the simplest route is to use a contract
assembler to place the BGA devices on your board for you.

Choosing PCB Layout Software
Regardless of how you intend to prototype your device, unless
you are using an off-the-shelf single-board computer you will
almost certainly need to lay out your own PCBs. Even if you do
use an off-the-shelf computer, your life will be made easier if
you can make a PCB to hold any “glue” circuits that need to be
attached to that computer.

CAD software for creating PCBs is likely to be the single
largest tool expenditure you will need to make, depending on
your needs, and the tool you select can make a huge difference in
development time, particularly if you are working with an exter-
nal factory. Roughly speaking, PCB CAD packages can be divided
into three categories:

■ “Mainstream” products such as Easytrax, PADS, OrCAD et al.

■ Less widely-known commercial packages such as Cadsoft
EAGLE, shareware packages, etc. These packages are con-
siderably cheaper than mainstream products, but may have
limitations. These packages can generate industry-standard
artwork and CNC drill control files that can be sent to any
PCB fabrication house.

■ Completely proprietary packages geared to a single PCB fab-
ricator. These are distinguished from the preceding category
by the fact that they cannot generate industry-standard out-
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put file formats such as RS-274X Gerbers or Excellon drill
control files. These packages are usually free.

There are times when it is unambiguously a sound invest-
ment to use a mainstream package. If you intend to commercialize
your product, and you don’t intend to handle every aspect of the
actual manufacturing, it makes good sense to use the same tools
your factory will be using. Even in large corporations, it’s quite
common for the circuit to be designed by head office in the U.S.
or Europe but the final PCB layout to be developed by a contract
manufacturer, typically in Asia. This arrangement allows the
people on the front line in the factory to tweak the layout for
housing mold changes, airflow, ease of final assembly, compat-
ibility with factory test fixtures and other minutiae, easing the
workload on you.

Of course it’s entirely possible for you to design the circuit and
prototype PCBs in your preferred software package, then give
printed schematics and Gerbers for your prototype to the factory
for transliteration into their favored package. However, I strongly
discourage you from this approach, because it introduces a high
probability of errors. Although there have been some promising
interoperability noises made by a few of the major CAD vendors,
at the moment there is no standard data format for schematics and
PCB metadata (keepouts, track width and restring constraints,
autorouter parameters, part autoplacement rules and so on). Third-
party conversion utilities for some formats do exist, but they don’t
always do a perfect job, and not all formats are supported. In the
worst case, a PCB layout engineer in your factory will sit down
with a printout of your schematic and enter it by hand into their
software; for any non-trivial circuit, this process is guaranteed to
result in some errors which you have to find. Furthermore, unless
the factory spends a lot of extra time generating additional metadata,
it won’t be possible for them to do any automated electrical testing
on the boards they produce. Delays from the factory, its vendors,
shipping and customs clearance are often three to four weeks; al-
low a similar amount of time to test the board and locate any layout
bugs, and your project could easily be delayed for as much as two
months for every board respin. If you absolutely HAVE to do things
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this way, then please refer to the board bring-up techniques dis-
cussed in a later chapter.

If format translation problems aren’t a consideration for you
(for example if you intend to build the product yourself without
involving an external factory who might need to alter the lay-
out), or you’re working on a budget and don’t want to pay the
price of one of the big-name packages, then your best option is
one of the less expensive commercial packages. There are a large
number of low-cost commercial, shareware and even freeware
PCB CAD packages, but my personal budget-conscious recom-
mendation for CAD software is EAGLE from Cadsoft; the
freeware versions of this package for both Windows and Linux
are included on the CD-ROM in the /eagle directory. This ver-
sion is free for non-commercial use (please refer to the license
agreement for more information), and it has all the libraries and
features of the full version—including autorouter support—but
it is limited to two PCB layers and a maximum board size of
100x80mm. The full product supports arbitrary size multilayer
boards. EAGLE has numerous advantages which lead me to use
and recommend it:

■ It’s reasonably priced (at the time of writing, licenses start at
$49—unconstrained commercial licenses are about a quarter
of the price of similar mainstream packages).

■ The free demonstration version is fully usable for moder-
ately complex projects.

■ It offers side-by-side schematic capture and PCB design. I
consider this feature essential in a PCB CAD package; enter-
ing schematics in one piece of software and generating PCBs
in another is a fast route to expensive transcription errors.

■ An autorouter and fairly comprehensive starter libraries (in-
cluding numerous surface-mount parts, and pre-drawn
footprints that you can re-use for your own parts) are included.

■ It is available for both Windows and Linux, which is helpful
if you have only one PC and you are developing your firm-
ware under Linux; you don’t have to restart your PC every
time you want to modify the schematic.
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■ EAGLE has a sufficiently large userbase to have reached the
“critical mass” for peer support. Cadsoft runs a publicly-ac-
cessible NNTP server carrying several categories of
discussions; this userbase is active and very helpful. Being
able to converse with fellow users of a complex piece of soft-
ware is invaluable, especially when first getting up and running
with the product.

■ The product doesn’t employ infuriating hardware-based copy-
protection schemes.

There are obviously some downsides to using non-mainstream
PCB CAD software, besides the interoperability issues mentioned
above, and you should be aware of these. Firstly, component ven-
dors and third-party CAD librarians will mostly not support your
particular CAD package; this will involve you in some additional
maintenance work building footprint libraries for your parts. Sec-
ondly, and perhaps more importantly, complex features like
autorouting and autoplacement are not provided in most of these
packages. (EAGLE does include an autorouter, but it lacks
autoplacement, and at the time of writing it does not support blind
vias, meaning that it cannot easily be used to develop PCBs con-
taining large BGA-package devices. The autorouter is also rather
primitive; on complex boards it is not unusual have to run several
route operations, nudging components this way and that, before
the board will route fully). Finally, none of the low-end CAD pack-
ages I have evaluated directly support linkage to external programs
for product casing codesign, thermal/airflow simulations, SPICE
simulations, generation of 3D mechanical models, etc. Keeping
these facts in mind, you need to analyze your requirements care-
fully before deciding where to direct your money.

As far as the third category of PCB CAD software goes, I
won’t mention any of these by name, because I see few or no
benefits, and huge disadvantages, in using this type of software.
Briefly, certain online PCB fabrication houses supply PCB lay-
out programs for free download. The problem is that these
programs use their own proprietary storage format, and usually
can’t directly generate industry-standard Gerber and drill con-
trol files. The idea is that you use the free software to lay out
your board and send it to the fabrication house that supplied the
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software; they use another tool (which they don’t make generally
available) to convert the proprietary file into something their CAM
systems can use. Besides the obvious fact that using this software
locks you into using that particular fabrication house (which may
not be the best-priced, or may have delivery problems), it also
means that your precious PCB data is hidden inside data files
that can’t readily be exported or converted. When your needs
change (e.g. once you start mass-production) or if your chosen
fabrication house goes out of business, you might be stuck with
re-engineering the board all over again.
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Chapter 3

The GNU Toolchain

Building the Toolchain
In this section, we’ll go over the steps required to build the various
components of the GNU toolchain for C, C++ and assembly-lan-
guage programming on one specific embedded target (in this case,
ARM). This is all strictly utilitarian “how-to” information, more
of an installation guide than descriptive text. For details about what
the parts of this toolchain do, please refer to the next section.

If you intend to run the tools under Windows, your first step
will be to install Cygwin (If you’re using Linux, skip this step).
Cygwin version 1.3.16-1 is included on the CD-ROM in the
“cygwin” directory. Double-click setup.exe, click “Next”, choose
“Install from Local Directory”, click Next twice, and you will be
shown the Select Packages dialog.

Figure 3-1. Cygwin package selection dialog.
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An important note applies here: The default setup configura-
tion for current versions of Cygwin will not download or install
native development tools. These tools—Cygwin-hosted, Cygwin-
targeted versions of gcc, gas, ld et al – are required in order to
build your cross-compiling tools. In the Select Packages dialog
shown above, you must click on the word “Default” on the line
headed “Devel”. There will be a long pause, and the word “De-
fault” will change to “Install.” This enables installation of the
required packages. If you would like to have native text editor
support in Cygwin, then perform the same step on the line headed
“Editors.”

Once you have made these install change(s), click Next and
wait for the product installation to complete. Click “Finish” in
the final dialog and you’re done.

Tip: The CD-ROM with this book contains a complete set of
install files for all possible setup options, so you should not need to
download any additional modules from the Internet. However, if
you go to the Cygwin web site for a newer version of the product,
you are likely to run into an irritating bug in the online setup pro-
gram. This bug appears when you are installing off the Internet,
and you need to enable or disable a large number of items in the
“Select Packages” dialog shown above. If you spend too long in
this dialog—and selecting or deselecting a complicated option can
take a couple of minutes—the FTP connection opened by Setup
will expire. The install process will appear to complete very quickly,
but nothing will actually be downloaded and you will get an error
message asking if you want to retry. Select “Yes”, and you will be
returned to the dialog that allows you to select an FTP download
server. Select a different server from the one you selected when
you first ran the setup program, and a new FTP connection will be
established and the install will proceed normally.

The core of Cygwin—and the component to which the
“Cygwin version number” refers—is a Windows DLL that pro-
vides a sort of UNIX emulation layer; a pseudo-operating system
that translates many standard UNIX APIs into Windows APIs.
Many UNIX programs can be cross-compiled to run on Cygwin,
and the distribution that is on the CD-ROM actually consists of a
large number of separate utilities, precompiled for Cygwin. For
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example, the icon that appears on your desktop for Cygwin is
actually a link to the “ash” shell, not Cygwin per se.

You can check the installed Cygwin DLL version at any time
by opening a Cygwin shell prompt and entering the command:

uname -r

With Cygwin installed, for those users that need it, we’re ready
to start building the actual cross-compiler and other tools (en-
sure that you have about 550Mb of free space on the hard drive
that holds your /tmp directory; the temporary files can be large).
Start by copying the .tar.gz files into your /tmp directory.
If you’re running Linux, simply mount the CD-ROM and
cp /mnt/cdrom/gcctools/* /tmp to achieve this.

If you’re using Cygwin, the easiest way to “import” the files is
simply to drag and drop them using Windows Explorer; if you in-
stalled cygwin to the default directory of c:\cygwin, then this will be
c:\cygwin\tmp. Once you’ve copied the files over, double-click the
Cygwin icon on your desktop to open a Cygwin session. From here
on, build instructions are identical for both Windows and Linux.

We begin by uncompressing the various modules:

cd /tmp

tar zxvf binutils-2.13.1.tar.gz

tar zxvf gcc-3.2.tar.gz

tar zxvf gdb-5.2.tar.gz

tar zxvf newlib-1.10.0.tar.gz

At this point you can delete the tarballs (rm -f /tmp/*.gz).
Now we configure and build binutils, which is a simple process
that rarely causes problems:

cd /tmp/binutils-2.13.1

./configure --target=arm-elf --prefix=/tools/arm-elf

make all install

The --prefix switch sets the location for all our binaries to be
installed; the --target switch sets the type of processor we’re build-
ing for, the build environment, and the type of executable. arm-elf
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is a generic ARM target, without OS-specific modifications, that
generates object files in the ELF file format. Some other targets
that may be of interest are as follows (descriptions are suggested
applications only):

■ arm-linux – Linux ARM targets.

■ i386-pe – Generic Intel x86 code for embedded PC platforms.

■ m68k-elf – Motorola 680x0 embedded targets.

■ m68k-coff – Similar to m68k-unknown-elf, but you might
use this configuration if you need to link against COFF for-
matted libraries. COFF is older than ELF and its use is
deprecated. Some code, for instance eCos, cannot be built
using COFF object file formats.

■ mips-elf – MIPS embedded targets.

■ sh-elf – 32-bit Hitachi SuperH embedded targets.

■ xscale-elf – Intel XScale embedded targets.

There is currently no official master list of the target names
that are supported, but you can glean some information about
supported targets by referring to the configure.in file in the binutils
source directory; look for the case statement at line 271.

Before continuing, we need to add our ARM tools to the
PATH, because subsequent build steps require them12.

PATH=/tools/arm-elf/bin:$PATH

Now we’re ready to build gcc. This is unfortunately not a
one-step operation13.

12 Unless you want to set the path manually every time you open Cygwin or reboot your
Linux machine, you’ll need to add these tools to your path permanently. This is accom-
plished by editing the startup script for your shell. For example, on a Linux system
running bash, adding the PATH= line to the file ~/.bashrc will ensure that the path is set
correctly every time you open a shell.

13 The install instructions for eCos describe a single-step build process for gcc. The com-
piler that results from this process is incomplete, and cannot be used to build general-
purpose programs. The instructions given in this book build a complete compiler that can
be used to build eCos or standalone programs equally well.
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cd /tmp/gcc-3.2

./configure --target=arm-elf --prefix=/tools/
arm-elf --enable-languages=c,c++ --without-
headers --with-newlib

make all-gcc install-gcc

At this point, we have a partially usable cross-compiler for
ARM code; it’s functional enough only to enable us to build our
selected run-time library and bootstrap our way to building the
rest of the compiler. In order to build a fully-functional compiler,
we need to build and install a standard library such as newlib or
glibc. We are using newlib:

mkdir /tmp/newlib-build

cd /tmp/newlib-build

../newlib-1.10.0/configure --target=arm-elf
--prefix=/tools/arm-elf

make all install

Important: Some references on the Internet will direct you to
simply unpack and configure newlib without making a separate
temporary build directory. I suspect that these instructions are
either cut and pasted from some very old original source (written
at a time when this method actually worked), or the authors have
assumed that it “ought to work” without actually testing it. With
current versions of newlib, at least under all the host operating
systems I have tested, it is impossible to build the library cor-
rectly in the sources directory; you MUST create a temporary
build directory as shown above.

We now have all the components required to build a fully
working C/C++ compiler.

cd /tmp/gcc-3.2

./configure --target=arm-elf --prefix=/tools/
arm-elf --enable-languages=c,c++ --with-newlib

make all-gcc install-gcc

The last item we need to build is gdb, the GNU debugger.
This is accomplished easily enough:
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cd /tmp/gdb-5.2

./configure --target=arm-elf --prefix=/tools/
arm-elf

make all install

Note that gdb 5.0 was the current, recommended version for
a comparatively long period of time, so many references still
mention it; for example, the install instructions for eCos still
specify this version. There are some annoying issues with gdb
5.0 when using the ARM remote debugging protocol (for instance,
when communicating with ARM’s Angel ROM monitor), so I
recommend using the more recent version, unless there is a spe-
cific reason why you must use some other version.

One final note: If you are using the Macraigor Wiggler JTAG
debugging pod mentioned earlier (or another of Macraigor’s
debugger modules), Macraigor Systems makes your life easy by
providing precompiled versions of binutils, gcc and gdb (for
Cygwin, Linux and Solaris hosts) for various microcontroller
cores supported by their hardware. To obtain this software, visit
their homepage at www.ocdemon.com. (You don’t actually need
to own Macgraigor’s hardware to use these precompiled tools;
they are generic.) Even so, it is important that you know how to
build the components of your toolchain, because it might be ex-
pedient or necessary for you to use a different combination of
tool versions, or to choose customized build options for your
particular circumstances.

Overview of the GNU Build Environment
The GNU toolchain referenced in this book, when used for em-
bedded development, consists of three major modules, each of
which is composed of several sub-components. The major mod-
ules are binutils (a collection of miscellaneous underlying utilities
including an assembler, a linker and so on), gcc (the GNU
C/C++ compiler14), and gdb, the GNU debugger. The CD-ROM

14 Gcc is actually much more than just a C/C++ compiler; it has support for other languages
(at the time of writing, Objective-C, Fortran, Java and Ada). We will only discuss C and
C++ in this book, partly for expediency, but mostly because these languages are most
frequently used for embedded applications.
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included with this book includes binutils version X, gcc version
3.2, and gdb version 5.2.

In addition to the modules mentioned above, you will almost
certainly want a C run-time library. The run-time library you
choose depends on your underlying operating system; it provides
a variety of OS-independent functions such as string manipula-
tion, memory copy and compare functions, and so forth, as well
as standardized interfaces between your code and operating sys-
tem features such as filesystems. If you are developing for Linux,
you will probably use the GNU C library, glibc. If you’re devel-
oping for eCos, you don’t need a separate standard library, because
all the functions you need are part of the eCos operating system
library against which you link your application. For systems that
don’t have an operating system, probably the most popular choice
is newlib, which is small and OS-agnostic. It provides a large set
of handy functions at a relatively low memory cost. Since our
example project is a standalone device, we’re going to use newlib,
and so I have included a recent version on the CD-ROM.

Note that all these component versions are not necessarily
the latest available, although they happen to be the latest release
versions at the time of writing. The reason I selected these spe-
cific versions is that I know they work well for ARM7 targets,
which is the platform I’m principally discussing, and that they
build under Linux and Cygwin with approximately equal steps
and no special caveats. This neatly leads me to an important warn-
ing about using this kind of extremely general-purpose tool: the
GNU toolchain is a very large project maintained by a large num-
ber of independent developers, and it is constantly evolving. Since
not all developers are interested in the same enhancements, and
due to the ENORMOUS resources required to perform full test-
ing of all the possible host and target options this toolchain
supports, it is not uncommon for incremental changes in various
parts of the toolchain to break (temporarily) support for particu-
lar targets and/or hosts. The problems that will result range from
obvious and catastrophic (e.g., you can’t compile the toolchain
at all) to subtle (e.g., a change in stack handling that makes code
from the new toolchain partially incompatible with code gener-
ated by older versions). The subtle problems are by far the worst,
because they don’t necessarily cause any errors or warnings when
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you’re compiling either the toolchain or your own code; they
silently insert problems that lurk in your object code waiting for
inopportune moments to make themselves visible.

Besides these unintentional issues, from time to time certain
unpopular targets or hosts simply lose momentum and their branch
is either cut, or eventually atrophies off the source tree. For ex-
ample, the Hewlett-Packard PA-RISC core found in several
low-cost microcontrollers (intended for Internet appliances) is
no longer supported by the GNU toolchain. Support for these
parts hasn’t been actively removed, though; it’s just not being
updated alongside the more popular code. In practical terms, this
means that the current versions of binutils, gdb and newlib will
build properly for PA-RISC targets (but won’t necessarily work
properly!), but the current version of gcc will not build at all
when configured for the PA-RISC microcontroller parts for which
I have tested it.

In order to avoid all these sorts of problems, the best policy is
to pick a specific set of GNU tools that are known to work on
your chosen host and generate known-good code for your target
platform. If your chip or OS vendor supplies or recommends a
specific version, then use that version unless you have an ines-
capable need for a feature that is only found in newer versions. If
you need to research this yourself, one excellent way of estab-
lishing which versions to use is to look at a large, well-established
project (e.g., a Linux or NetBSD port for your processor core)
and determine what versions the maintainers of that project cur-
rently recommend. Failing that, you should pick the most recent
official release, as opposed to pre-release, and work with that.

The object of the discussion above is by no means to cause
alarm, but simply to dissuade you from downloading the latest
version of everything and expecting it to work perfectly under all
circumstances. In particular, I want to discourage you from “up-
grading” components of your toolchain to the latest version just
because a new version becomes available. The GNU toolchain is
almost certainly the fastest-evolving piece of development soft-
ware on the planet, which is fantastic news for people working
with new CPUs, because it means they can expect free tools to be
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available shortly after the part hits the market. The flipside of
that fact is that the “latest” version of these tools is usually a
work-in-progress intermediate build. From time to time, there is
a “stable” release, which then becomes the latest “official” ver-
sion of gcc. This is comparable to the point at which a commercial
compiler would issue a new version.

In any case, whether you followed the instructions in the pre-
vious section or obtained a ready-made toolchain from an outside
source, you now have a working set of GNU tools for your target
processor. Let’s discuss some of the utilities that comprise this
toolchain. Note that the versions you have installed on your sys-
tem all have the “arm-elf-” target name prepended to their names.
For instance, to run as, you would use the command arm-elf-as.
(The only exception to this rule is make, which is invoked simply
as “make”.) For information beyond the descriptions below, you
should refer to the on-line documentation, which can be found in
three primary locations:

1. Command-line help, which can be viewed with the --help
switch—for example, arm-elf-gcc —help. This help is
extremely brief and is mostly limited to a description of com-
mand-line switches.

2. Info pages, accessible with the info utility—for example,
info gcc. This documentation is detailed, and is presented
in an easily-browsed hypertext format.

3. HTML conversions of the info pages, available at the GNU
web site (www.gnu.org). There is nothing here that you
haven’t already got in the info pages, but some people prefer
to browse the documentation online with their web browser.

By the way, there are no pages missing from your book: it’s
true that one major program I’m not explicitly documenting here
is gcc itself. The reason for this is that gcc is a standards-based
compiler, and all you really need to know in order to use it is how
to program in C. The bulk of what you absolutely need to learn
in order to use gcc is not really about the compiler itself, but
rather the infrastructure that supports it (newlib, gas, ld, and so
on), and this information is presented below in some detail.
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There is a small amount of additional help you might need on
a project-by-project basis, such as gcc-specific #pragma infor-
mation, command-line switches, and so forth. There is nothing
here that really requires elucidation over and above the gcc on-
line documentation, so rather than simply cutting and pasting
that documentation into this book, I encourage you to refer to the
info page for gcc.

GNU Make and an Introduction to Makefiles
Make is the puppetmaster of your build environment; it checks
source file dependencies, compiles only those files that require
recompilation, and executes whatever other commands are re-
quired to build your application. Although it is possible to build
programs without learning to use make, you will find that this
utility makes your life much easier and development consider-
ably more efficient. If you’re used to programming in an integrated
development environment (IDE) like Microsoft Visual C++, you
can think of the makefile as your project file.

If you run make with no command-line arguments, it will
look for a file named Makefile in the current directory. (Actu-
ally, it will search for several different possible default makefiles
by name, and you can override this behavior to choose some other
file as your makefile, but consistency and aesthetic reasons make
it a good idea to call your makefile, Makefile). This is a simple
text file, with the following general format:

target : prerequisites
commands
{... possibly more than one command}

Important: The command line(s) must start with a hard tab
character! This requirement frequently trips up programmers new
to makefile syntax; if you use spaces (soft tabs) instead, make
will report errors that don’t directly seem to relate to the prob-
lem. Ensure that you use a text editor that preserves hard tabs
when it saves files to disk.

When you run make, if you don’t specify a specific target to
build, it will look for the first target whose name doesn’t begin
with a period, and attempt to build it. Make looks at the list of
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prerequisite files, checks their dates and determines what, if any-
thing, needs to be rebuilt in order to build the target. The remainder
of the makefile may contain instructions for building these pre-
requisite files, and their sub-dependencies (if any).

For example, let’s consider a simple program that consists of
two C files (main.c and functions.c) and a single header file
(mydefs.h) that is included by both C source files. A simplistic
makefile for this program might look like this:

myprog: main.o functions.o
arm-elf-gcc -o myprog main.o functions.o

main.o: main.c mydefs.h
arm-elf-gcc -c main.c

functions.o: functions.c mydefs.h
arm-elf-gcc -c functions.c

When you invoke make for the first time, it will first encoun-
ter the target you’re trying to build—myprog—and begin
examining its prerequisite list. Since this is the first time you’ve
tried to build the program, the two .o (object) files will not yet
exist, and so make will look further in the file for instructions on
how to build them.

In its quest to build myprog, make will first try to build main.o.
It sees that the files main.c and mydefs.h exist on the hard disk,
and they are newer than the (nonexistent) file main.o. It there-
fore executes the command arm-elf-gcc -c main.c to
build the object file. Likewise, functions.o is built. Note that the
prerequisites to a target are built in the order they appear on the
prerequisite list, not the order in which their target rules appear
in the makefile. Also note that if there is some kind of error in the
source file, arm-elf-gcc will return an error status to make, and
the entire build operation will stop.

Tip: Often, a lot of output can be generated before the build pro-
cess stops, and you may want to capture that output for debugging
purposes. You can redirect the output of make using the redirect
operator >, for example make > make.out. However, this
will only redirect the stdout (standard output) channel, not stderr
(the error channel), and some programs always emit their error
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messages to stderr; furthermore, it suppresses output to the screen,
so you can’t see what’s going on during the build process. For
this reason, you will often see people invoke make with a com-
mand like this: make 2>&1 | tee make.out. This directs
both stdout and stderr to both the screen and a log file.

So much for the first run building our simple program; you
may be thinking that the same functionality could easily be
achieved by writing a shell script that compiles main.c, functions.c
and links them. (In fact, this would be a single command.) How-
ever, let’s consider what happens when you change just a few
files out of a (hypothetically large) project. Suppose, for instance,
that you make a change to main.c. When you next run make, it
checks the dependencies for main.o and sees that main.c is newer
than main.o. Therefore, make calls gcc to build an updated ver-
sion of main.o. Functions.o, on the other hand, is still up to date,
and doesn’t need to be built. On the other hand, if you change
mydefs.h, make will see that both main.o and functions.o need to
be rebuilt. All this automatic functionality makes your life as a
programmer much easier.

If you wanted to, you could also build just part of our pro-
gram by invoking make with the name of the target you want
built - for example make main.o. This functionality isn’t
terribly useful for our simple example, but for more complex
projects that contain numerous sub-targets, it’s very useful to be
able to confine your build attempt to a single target. This is par-
ticularly useful when you’re porting code from one operating
system or processor to another; restricting yourself to a single
target cuts down the number of error messages you have to see
and analyze. Once you’ve got that single target building correctly,
you can move on to the next target.

Having said all this, note that make is a “dumb” tool—it works
by looking at the timestamps on files and the error exit codes
reported by the programs you ask it to invoke. As a result, there
are dependencies it will not catch, such as a line in your program
like this:

printf(“This program was built on ” __DATE__ “\n”);
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__DATE__ is an internal macro built into gcc, which evaluates
to a string describing the current date (when you built the pro-
gram); sometimes it’s useful to show this information to the user.
However, since make doesn’t know that your sourcefile refer-
ences this volatile piece of information, it won’t rebuild that source
file automatically. You can easily force make to consider certain
files as infinitely new (i.e., always need to be rebuilt) using the
--assume-new switch, e.g. --assume-new=main.c, but this
might mean that substantial portions of your program need to be
built every time you change anything, thereby negating much of
the benefit of incremental compilation and linking. It’s usually
easier, at least for cosmetic items like a build date string, simply
to allow that one module to become inconsistent.

In order to make sure that we resolve all these kinds of issues
before making a final shippable build of our program, it would
be nice to clean up all temporary output files and let make do a
complete build from scratch. That way we can be sure that the
resulting binary file contains the latest revisions of everything
and all dates and other such information are consistent. We can
achieve this simply by deleting all the output files that can possi-
bly be generated by a make run, and then invoking make to rebuild
our target again. In the case of our simple program, we generate
three files: myprog, main.o and functions.o, so we can clean up
with one simple command:

rm -f myprog main.o functions.o

(The -f switch tells rm not to report an error if called upon to
delete a nonexistent file. Make also has a general-purpose syntax
for ignoring errors on specific build steps—you simply prepend
a minus sign to the command line in the makefile—but adding
the -f switch also keeps the make output tidy by preventing rm
from putting an error message onscreen.)

It would be more useful, though, to be able to embed this
behavior into our makefile, so that we don’t have to remember
the cleanup steps for a particular project. We can achieve this
easily by adding the following stanza to our makefile:

clean:
rm -f myprog main.o functions.o
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Invoking make clean will remove our object files and
ready the build environment for a from-scratch build. As you can
see from this example, a target doesn’t have to be the name of a
file that needs to be built; it can simply be a label you give to a
specific sequence of commands.

Even in the above simple makefile example, there is some du-
plicated typing of filenames in essentially identical stanzas. Make
has several features that allow you to cut down on this typing. The
first of these is the ability to set and read string variables:

OBJS = main.o \
functions.o

OBJS is one of several commonly used names for the list of
object files required to build a project. (Other common names
are objects, OBJECTS, obj and OBJ.) Note the backslash at the
end of the first line above; similar to C syntax, this conjoins the
first line syntactically to the line below. Putting each object file
on its own line allows for easier cutting and pasting.

Our model makefile now becomes:

OBJS = main.o \
functions.o

myprog: $(OBJS)
arm-elf-gcc -o myprog $(OBJS)

main.o: main.c mydefs.h
arm-elf-gcc -c main.c

functions.o: functions.c mydefs.h
arm-elf-gcc -c functions.c

clean:
rm -f myprog $(OBJS)

At every place in this makefile where $(OBJS) appears, make
will substitute the value of OBJS; i.e. “main.o functions.o”.

We still have quite a bit of redundant typing, though, and it
will get much worse as our program grows more and more mod-
ules. Fortunately, make supports a number of  rules for common
functions such as turning a .c file into an .o file (the default be-
havior is usually “cc -c file.c -o file.o”; these built-in rules are
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termed implicit rules in make jargon). You can learn about the
hardcoded implicit rules from the info page for make. These rules
are, however, not usually correct for embedded targets, because
we want to run the cross-compiling versions of utilities such as
gcc, and make will by default try to run the native versions15. We
will build our own set of rules as necessary using pattern rules.

Pattern rules are general instructions for building a file of
type x from a file of type y.  For example, we can use the follow-
ing rule for compiling our C source files:

%.o : %.c
arm-elf-gcc -c $(CFLAGS) $< -o $@

This rule says “In order to build a something.o file from a
corresponding something.c file,  perform the command specified
on the second line.” $< and $@ are special placeholders for the
name of the source (.c) and target (.o) files, respectively. These
special strings are called automatic variables. There are quite a
few other automatic variables provided for you by make, but they
aren’t necessary for building the example code in this book. For
more information, refer to the make info page.

Note that CFLAGS, which you see mentioned above, is an-
other commonly found variable used to represent whatever
command-line switches are required to build our code. For ex-
ample, we might want to specify the gcc optimization switch
-O3. By putting these switches in a variable, we can define them
once at the start of the makefile and easily make global changes.

If we’re using pattern rules, we no longer need to list the C
sourcefile as a prerequisite for each module; we only need to list
the dependency files that make can’t infer by looking at direc-
tory information. This slims down our makefile somewhat:

15 It is possible to get make’s hardcoded implicit rules to work for cross-compilation by
tinkering with aliases or by using different settings  for environment variables. However,
to my mind this makes the development environment more complicated, especially if you
routinely work with more than one target processor and/or different host operating
systems. The fewer assumptions you make about the build environment, the easier it will
be to write a portable makefile. This is particularly important if for some reason you need
to use a non-GNU version of make.
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CFLAGS =
OBJS = main.o \

functions.o

myprog: $(OBJS)
arm-elf-gcc -o myprog $(OBJS)

%.o : %.c
arm-elf-gcc -c $(CFLAGS) $< -o $@

main.o: mydefs.h
functions.o: mydefs.h

(If you don’t care about checking dependencies against the header
files—and it can be something of a chore to maintain this informa-
tion by hand—you could omit the last two lines. Just remember
that if you take this shortcut, then change a header file, you will
have to make clean and then make to be sure that your changes
are propagated through the entire program. Since I find that most
of the incremental changes I make and test are alterations to the
sourcecode rather than header files, I personally tend to use totally
generic makefiles that don’t check header dependencies.)

Now let’s suppose that we need to add a small assembly-
language file called boot.s to our program. Although one doesn’t
often need to do this when writing a general-purpose program,
it’s normal in embedded applications to need a little assembly-
language glue to handle power-on startup, interrupt vectors and
so on. To do this, we’ll add a new implicit rule to handle .s files16,
and a new variable, $(ASFLAGS), to store any command-line
switches we might want to pass to the assembler. We’ll also add
boot.o to the list of prerequisites for myprog. The new makefile
looks like this:

CFLAGS =
ASFLAGS =

OBJS = boot.o \
main.o \
functions.o

16 The default extension for assembler source files on non-Intel platforms tends to be .s.
If you’re more comfortable with it, you can use .asm instead, of course.
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myprog: $(OBJS)
arm-elf-gcc -o myprog $(OBJS)

%.o : %.c
arm-elf-gcc -c $(CFLAGS) $< -o $@

%.o : %.s
arm-elf-as $(ASFLAGS) $< -o $@

main.o: mydefs.h
functions.o: mydefs.h

Tip: ld (which is invoked by gcc to link the executable; ld is
discussed in detail below) will link files in the order they’re pro-
vided on the command line. This piece of information can be
important, because it affects where your code winds up in the
final image. There are frequently special reasons why you might
want particular pieces of code to be close to each other in
memory—for example, so that you can use short-form relative
addressing modes for time-critical interrupt handlers. In this case,
I’ve put boot.o at the start of the link list (i.e., the lowest memory
address) because in the ARM architecture, power-on reset and
interrupt conditions cause jumps into a table at location
0x00000000 in memory, and this part of our code will need to be
hand-crafted in assembly language.

Gas—The GNU Assembler
As, or rather gas, is the GNU assembler. In general, the GNU au-
thors keep their assembler syntax fairly close to the manufacturer’s
published mnemonic conventions. Nevertheless, there are some
differences between gas and the assemblers built into other
toolchains that will cause you issues when porting code (for ex-
ample, from a chip vendor’s application notes). In most cases, these
problems arise because the GNU arm-elf assembler intentionally
matches syntax with other targets for the assembler; in some cases,
there are simply vendor-specific features in other assemblers which
the GNU authors have chosen not to emulate.

One specific example (a cause of frequent questions) in the
case of ARM is caused by the processor’s lack of an opcode for
“load 32-bit immediate into a register.” There is an excellent tech-
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nical reason for this: the ARM instruction word, in non-Thumb
mode, is 32 bits long, and that simply doesn’t leave room for an
opcode and a 32-bit operand. However, the ARM assembler tries
to hide this from you by directly assembling code like this with-
out warnings:

ldr r1,=0x12345678

Of course, the ARM assembler doesn’t make up a nonexist-
ent opcode for this; it simply emulates the desired functionality
by declaring a local constant. In contrast, some versions of gas
will generate an error for the above code; you will have to re-
place it with something like this:

ldr r1,myconstant

{ ... more code ... }

myconstant: .word 0x12345678

In addition to specialized porting-related issues like this, in
order to use gas effectively you will need at least a brief intro-
duction to the assembler’s syntax.

Comments
Gas supports two classes of comment; C-style comments delim-
ited by /* and */, and single-line comments. The character that
indicates a single-line comment is target-dependent; some of the
currently recognized comment characters are:

@ ARM

; AMD 29K, ARC, PA-RISC, picoJava, PowerPC, M880x0

! Hitachi (H8 and SuperH), SPARC, Z8000

| Motorola 680x0

# Intel x86, i960, VAX, V850

Symbols and Labels
The rules for symbols (labels are just a special case of symbols)
in gas are simple, but may be slightly different from the rules
you’re accustomed to with other assemblers. You can define a
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symbol either using the syntax symbolname=value, or as a
label using the usual syntax label: - where label must begin
with either a letter, a period or an underscore. ($ and ? are also
allowable symbol characters on some platforms, but I’d advise
against using them, because of the possibility for confusion.) For
example,

mysymbol=1234
mysymbol2=5678

label: @ This is my label
@ (code goes here)

label2: .word mysymbol + 10

There is a special predefined symbol ‘.’ (period) which rep-
resents the current value of the location counter. (In fact,
the label: syntax is functionally identical to saying label=.).
You can achieve various effects by manipulating this symbol; for
instance, the line . = . + 16 leaves a 16-byte “hole” in the
object file, exactly the same as the .space directive. Similarly, the
line . = 0x2000 is the same as .org 0x2000.

Gas also implements some special constructs for local labels,
useful for things such as loop points and other labels that are of
no interest outside the scope of a larger function. These labels
are of the form x:, where x is any positive integer (e.g. 3:, 19:,
and so on). To refer to a local symbol, use the syntax xf to refer to
the next (forward) reference of label x, or xb to refer to the most
recent (backward) reference of label x. For example:

7:    b 5f
10:   b 7f
5:    b 10b
7:    b 5b

is exactly equivalent to:

a:    b c
b:    b d
c:    b b
d:    b c
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I tend to avoid using local labels because of the possibility of
inadvertently reusing the same symbol inside the middle of a
long and complicated subroutine, with consequent undesirable
results (and usually quite a lot of head-scratching before the prob-
lem is solved). I find that local labels are difficult to keep in mind
in any function that spans more than a couple of screens’ worth
of code, and so I prefer to use unique and descriptive labels such
as inner_copy_loop, find_string_loop, string_end_found, and so
on. This is purely a matter of personal taste; if you feel confident
in the use of local labels, by all means use them.

Note that if you define the same symbol twice in a single
source file, the first definition overrides all subsequent defini-
tions. Conversely, if you make reference to a symbol not defined
in the current sourcefile, gas assumes that the symbol is defined
elsewhere; it leaves ld to determine the value of the symbol at
link time (if it isn’t, you’ll get an unresolved external error).

By the way, the HP PA-RISC target version of gas has slightly
odd whitespace-dependent rules about labels and symbols. If
you’re using this highly idiosyncratic core, refer to the info page
for gas for more details.

Code Sections and Section Directives
All GNU projects are divided into sections, even if some of those
sections contain nothing17. Different sections contain different
classes of code or data. Keeping your project divided into sec-
tions also makes it simple to ensure that specific pieces of code
go into the right area of memory, which is particularly important
in embedded systems where different memory areas have differ-
ent characteristics (ROM, flash, RAM, fast on-chip SRAM, etc.).
We’ll go into much more detail about this later when discussing
linker scripts. For the moment, we’ll just cover general informa-
tion about how sections work.

17 Sections have nothing directly to do with segmented memory addressing models such as
those found in the Intel x86 series. A section is simply a named section of memory to
which code, data (or nothing at all) is emitted by the assembler.
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The gas documentation defines and describes a section suc-
cinctly as “a range of addresses with no gaps; all data in those
addresses is treated the same for some particular purpose. [...]
‘ld’ moves blocks of bytes of your program to their run-time
addresses18.  These blocks slide to their run-time addresses as rigid
units; their length does not change and neither does the order of
bytes within them. Such a rigid unit is called a section.”

The three sections that gas always generates are named .text
(typically containing code and read-only data; often stored in
read-only memory or write-protected with a memory-manage-
ment unit), .data (read/write variables), and .bss (uninitialized
variables—i.e., RAM that is zeroed before starting the program).
You tell gas where to emit any given piece of code or data using
the section directive. For example, consider the following code
fragment:

.section .text
constant1: .word 0x12345678

.section .data
variable1: .word 0xabcdef01

.section .bss
variable2: .word 0

When assembled, this will emit one word to each of the three
major sections. The word at label constant1 will be stored in the
.text section, which is frequently in ROM or other write-pro-
tected memory. The word at variable1 will be in the .data section,
which is in RAM.

The word at variable2 is guaranteed to contain zero at pro-
gram start, regardless of whether or not you declare some value
there. That’s because you can’t really emit anything to the .bss
section—you can only reserve space in it. Anything stored in
.bss is uninitialized (apart from being zeroed) at program start.

18 Actually, it would probably be more accurate to say that ld moves blocks of your pro-
gram to their load addresses. The loader or startup code in your system is where run-time
addresses are handled.
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When gas is assembling code, it maintains a “location counter”
within each section. This location counter starts at zero19 within
each module (i.e., within each source file that is being assembled)
and is incremented as code and data are emitted to the section.
You can switch to a different output section to output some data,
then switch back to the section you started in and continue at the
same location you were before the first section switch. At link
time, the various sections are gathered together (all the .text sec-
tions are merged, all the .data sections are merged, and all the
.bss sections are merged) and relocation fixups are added as nec-
essary for items whose addresses have changed, based on rules
provided in the linker script.

Let’s illustrate this with a more complicated program example
composed of two modules. Here’s partial source code for the
relevant parts of module #1:

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ Module #1
.section .text
.code 32
.globl mysub1

@ This subroutine sets bss2 = 0x12345678.
mysub1: ldr r1, text1

ldr r2, bss1
str r1,[r0]
bx lr

text1: .word 0x12345678
addr_bss1: .word bss1

.section .data
data1: .word 0x89abcdef

19 Purists should note that this is not the whole story. However, pretty nearly all embedded
projects have to override the default placement of text, data and bss segments, so all we
really need to think about is the location counter’s offset from the segment’s starting
point. Because of this, it’s much simpler to think of the location counter always starting
at 0, and add in any relocation constants later.
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.section .bss
bss1: .word 0

end

When assembled, this first module will generate the follow-
ing “snippets” of memory:

.text 6 x 4 = 24 bytes

.data 4 bytes

.bss 4 bytes

We can represent this as: TTTTTTDB, where ‘T’, ‘D’ and
‘B’ refer to one word of data in the .text, .data and .bss sections,
respectively.

Now, here’s sourcecode for the second module:

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ Module #2
.section .text
.code 32
.globl mysub2

@ This subroutine sets bss2 = 0x789ABCDE.
mysub2: ldr r1, text2

ldr r2, bss2
str r1,[r0]
bx lr

text2: .word 0x789ABCDE
addr_bss2: .word bss2

.section .bss
bss2: .word 0

end

This second module will generate the following memory snippets

.text 6 x 4 = 24 bytes

.data 0 bytes

.bss 4 bytes
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We will represent this as ‘ttttttdb’, where ‘t’, ‘d’ and ‘b’ again
represent one word of data in the .text, .data and .bss sections
respectively.

Assembling these two modules, assuming that they’re called
module1.s and module2.s, will yield the following object files:

module1.o TTTTTT [...] D [...] B
module2.o tttttt [...] b

In each object file, the .text, .data and .bss sections start at
location 0.

Now, let’s further assume that our linker script links module1
before module2, and that it places the .text section at some spe-
cific memory address (say, 0x02000000), the .data section
immediately after it, and .bss immediately after that. (This would
be a common sort of memory layout for a program that’s being
loaded into RAM, either by a bootloader or by a debugger). Thus,
our final layout when the program is linked will be:

program.elf TTTTTTttttttDBb

All references to items in the .text section of module2 will be
fixed up (by the linker) by adding the size of module1’s text
section. Likewise, all references to the .bss section of module2
will be fixed up by adding the size of module1’s .bss section.

The topic of link-time memory allocation is covered much
more thoroughly in the section on ld, and you should read this
section in detail before experimenting with the .section directive.

In the interest of completeness, I should add that the .section
directive actually has a significantly more complex syntax, the
details of which depend on the target executable file format (not
necessarily the target processor type). For ELF, the target format
we’re using in this book, the generalized form of the .section
directive is:

.section name, “flags”, type, @entsize

flags is an optional string containing one or more of the fol-
lowing characters:



     95The GNU Toolchain

a section is allocatable

w section is writable

x section is executable

M section is mergeable

S section contains zero-terminated strings

If no flags are specified, the default behavior depends on the
section name; if the name is unrecognized, the section is created
with none of the above flags set, so the linker will do nothing
with the section.

The optional type parameter can be one of “@progbits” (sec-
tion contains data), or “@nobits” (section contains no data—i.e.,
it only occupies space in memory).

If the section flags specify M (mergeable) then the entsize
parameter must be specified. The meaning of this parameter is
different depending on whether or not the S (strings) flag is speci-
fied: If the S flag is specified, then the section must contain
ASCIIZ strings composed of characters that are entsize bytes long.
If the S flag is not specified, then the section must contain fixed-
size constants, each of which is entsize bytes long.

When assembling for ELF targets, the .section directive actu-
ally pushes the current section and location counter onto a stack;
you can retrieve the former context with the .popsection directive.
You can exchange the current context with the context on top of
the stack using the .previous directive (in much the same way as
the LAST button on a television remote will switch between the
current channel and the previous channel, then back again).

Arm-elf gas also supports a different syntax of the .section
directive, for Solaris compatibility; this is not directly of interest
to embedded developers.

Correctly handling totally custom sections with the linker is
a frequent source of severe puzzlement when new programmers
begin experimenting with custom section directives. Unless there
are special reasons for doing otherwise, I suggest you keep to the
standard section names and avoid creating totally customized
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sections. Most of the extended syntax around the .section direc-
tive is intended to communicate special information to
scatter-loading code in an operating system. Executable loading
on embedded systems is almost always implicit (the application
being executed directly from ROM) or at least extremely simple
(such as an application that is copied from ROM to RAM and run
from RAM for improved performance).

Pseudo-Operations
Gas supports a large number of pseudo-operations for features
such as reserving memory space, selecting processor-specific
options, emitting text strings into your code, and affecting how
the linker operates on your program. If you are coming to gas
from some other assembler, most likely the gas pseudo-ops will
not be the same as the ones you’re used to. Here is a summary of
the most commonly used such pseudo-ops, which should suffice
when converting, inspecting or writing the majority of assem-
bly-language code. Note that this list does not contain directives
mentioned in the other parts of this chapter; directives related to
macros, for instance, are discussed in depth in the section headed
“Macros, Assembler Loops and Synthetic Instructions.”

.align boundary, fill, max-skip

Aligns the location counter to a 2boundary-byte boundary. If you
wish, you can also specify an optional fill pattern fill and a maxi-
mum number of bytes max-skip to be skipped in the alignment
process; if the alignment would require more than max-skip bytes
of padding, no alignment is performed.

Be warned that this alignment is not absolute—it is relative
to the current code or data subsection, so it might not always
generate exactly the final result you expect. In particular, you
should be extremely careful about how you align and link items
such as MMU page tables, complex structures that will be fetched
by DMA, and other data that has to be aligned on very coarse
boundaries (MMU page tables, for instance, usually have to be
aligned on boundaries as coarse as 4K or 8K). To illustrate what
I mean by this, consider the following code fragment, which we
will call module1.s:
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.section .text
entry_point:

@ Perform some initialization functions

@ Jump to rest of program
b main_program

@ Memory-management unit page table
@ Our CPU requires this to be aligned on an
@ 8K boundary.
.align 13

mmu: .word 0x12341234
.word 0x56785678
@ (more MMU data follows...)

Let’s further assume that your linker script emits the .text
segment to 0x00200000. Assembling and linking just this one
module will yield what you would expect: at the start of the ob-
ject file you’ll have the entry_point code, followed by some
amount of padding, then the MMU table at an 8192-byte bound-
ary; in the example above, the table will appear at address
0x00202000. However, this is all assuming that you were linking
this code to a starting address that is already aligned properly. If
your linker script emits module1’s code to a starting address of
say 0x00200100, then although the MMU table will still be aligned
at an 8192-byte boundary relative to the start of the .text segment
in module1, it will physically appear at address 0x00202100,
which is obviously not on a physical 8K boundary.

A second subtlety of this process is fraught with even more
hidden danger for the unwary. Suppose we add a second module
to our project, module2.s, containing the following tiny code
snippet:

.section .text

@ This is a placeholder for some future
subroutine

dummy_subroutine:

@ Return to caller
bx lr
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Furthermore, suppose we link these modules with a starting
.text segment address of 0x00200000, in the order module2 mod-
ule1 (remember that the GNU linker links object modules in the
order they appear on the command line, so this module ordering
is something you would control in your makefile). Module2 con-
tains a single four-byte branch instruction, so the physical starting
address of module1 will be 0x00200004. The MMU table will
therefore wind up at a physical address of 0x00202004, and again
it’s no longer properly aligned.

As I’ve just illustrated, relying on the .align directive to pro-
vide guaranteed physical alignment is risky, particularly for any
alignment value larger than the processor’s instruction word size.
You won’t get any warnings about the “dealignment” that’s oc-
curring in a case like that above, and your code will probably
malfunction catastrophically. I recommend that you use this di-
rective for coarse alignment only inside a module that has a
guaranteed physical starting address. A typical example of this
would be your power-on initialization code.

One final note: On most platforms supported by gas, the first
alignment parameter is the actual alignment byte boundary re-
quested (i.e. .align 8192 would align to an 8K boundary). ARM,
StrongARM, and i386 (a.out format) code use the syntax de-
scribed above for compatibility with other, non-GNU assemblers
for these platforms.

.ascii string(s)

Emits one or more strings to the current code or data section. A
string in this context is a snippet of text enclosed by double-
quote marks (“). Gas recognizes the following escape codes within
strings:

\b Backspace (ASCII octal code 010)

\f Formfeed (ASCII octal code 014)

\n Newline (ASCII octal code 012)

\r Carriage return (ASCII octal code 015)

\t Tab (ASCII octal code 011)
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\nnn ASCII character nnn, where nnn is a number in
octal.

\xnn ASCII character nn, where nn is a number in
hexadecimal.

\\ Backslash character

\” Double-quote character

Strings generated using this directive are not automatically
zero-terminated. If you need ASCIIZ strings, you need to achieve
this manually with a \000 code at the end of each string, or use
the .asciz directive instead.

.asciz string(s)

Exactly the same as the .ascii directive, but automatically adds a
zero terminator to each string.

.balign a b c

This directive has the same function as the .align directive, but
parameter a is always an actual byte value, regardless of the tar-
get platform. This directive has consistent behavior across
different gas-supported platforms, but it is GNU-specific.

.byte b1, ... bn

Emits constant data b1 ... bn bytewise into the current output
section. Each bx expression is evaluated to a single byte. For
example:

my_structure:.byte 0x01, 0x47, 0x03, 0x03, 0x12

.comm symbol, length, alignment

Declares a common symbol named symbol, of size length bytes.
This is a symbol that is allocated space only once in the entire
program, no matter how many modules define it. If no module
actually reserves space for this symbol, the linker will allocate
length bytes of uninitialized space.

The alignment parameter is an optional ELF-only parameter
that specifies the desired structure alignment in bytes.
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You might want to use a common symbol to communicate
amongst several modules, any of which might not be included in
a particular build configuration of your program. By declaring
this intermodule symbol as common, including any of those
modules will reserve space for the symbol without causing a du-
plicate symbol error at link time.

.data subsection

Tells the assembler to emit all subsequent code or data to the data
subsection subsection. The subsection parameter may be omit-
ted, in which case output defaults to subsection 0.

.end

Marks the end of the assembly-language program. Gas ignores
any additional text after the .end directive.

.endfunc

See the entry for .func.

.endr

See the entry for .rept.

.equ symbol, expression

Defines symbol to have value expression. This is the same as
writing simply symbol = expression, or .set symbol, expression.
It is legal to redefine a given symbol many times; at any given
time, the symbol has the value that was last assigned to it.

.equiv symbol, expression

Identical to the .equ and .set directives, except that .equiv will
report an assemble-time error if symbol is already defined.

.err

This directive is used to signal configuration errors in conditional
assembly structures.
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.fail expression

This directive causes gas to emit either an error (if expression is
less than 500) or a warning message (if expression is 500 or
greater).

.float f1, ... fn

Emits constant data f1 ... fn into the current output section. Each
fx expression is evaluated as a floating-point number. The stor-
age format is machine-dependent; when assembling ARM code,
IEEE formatting is used.

.fill repeat, size, value

The .fill directive has very specialized and slightly odd behav-
ior, and appears to be of most use when porting code from some
other assembler that uses this directive. The directive causes
gas to emit repeat copies of a size-byte structure, starting at the
current assembly location. The size parameter is optional (if
not specified, 1 is the default value) and may be in the range 1
to 8. Any value larger than 8 is rounded down to 8. Each emit-
ted structure is filled with data from an 8-byte internal structure,
the highest-order four bytes of which are zero and the lowest-
order four bytes of which are filled with value in the target
processor’s normal byte order. For example, if we are assem-
bling for a big-endian ARM platform, the directive .fill 2,
6, 0x12345678 would emit the byte sequence 00 00 12
34 56 78 00 00 12 34 56 78.

Especially on little-endian architectures like x86 I find that a
clearer, though GNU-specific and non-portable syntax, is to use
the .rept directive along with the absolute data directives such as
.byte and .word. Using this method, the above example can be
rewritten like this:

.rept 2

  .byte 0x00, 0x00, 0x12, 0x34, 0x56, 0x78

.endr
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.func name, label

Emits function call debugging information, if the file is being
assembled with debugging support. The function name name is
what you will see in the debugger as the current function if you
hit a breakpoint or otherwise halt program execution. The op-
tional label parameter specifies the entry-point of the function.
If you don’t specify a label, gas will use name prepended with a
target-specific leading character. For most targets, this leading
character is the underscore ‘_’.

For example, you might have the following assembly-lan-
guage snippet:

.func myfunction

_myfunction:
@ Code goes here
bx lr

.endfunc

Note that all assembly-language functions are defined to have
a void return type (in current versions of gas).

This directive has no effect unless debugging support has been
specified on the gas command line. Current versions of gas only
support stabs debugging information, with the —gstabs command-
line switch.

.global symbol

Makes symbol visible to the linker, so that it can be referenced by
external modules. By itself, this will not generate debugging in-
formation for the symbol; use the .func directive as well if you
need to debug the application. For example:

.globl _myfunc

.func myfunc, _myfunc

_myfunc: @ Code goes here
bx lr

.globl symbol

Synonymous with .global symbol; see above.
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.hword h1, ... hn

Emits “halfwords” of constant data h1 ... hn into the current out-
put section. Each hx expression is evaluated to a 16-bit value
(regardless of the target processor’s nominal word size; hence
the term “halfwords” is something of an inconsistency) and is
stored in the target processor’s default byte order. For example:

my_structure: .hword 0x0147, 0x0303, 0x1234

.incbin “filename”,skip,count

Includes the specified file filename at the current assembly loca-
tion. Gas will look for the file in the search directories specified
by use of the -I command-line switch.

The optional skip and count arguments are used if you only
want to include a portion of the file. A typical example of this
would be when embedding graphics or sound in your program;
usually, you want to be able to edit these resources directly with
normal image and audio editing tools. However, you often don’t
want to waste ROM space including header, copyright and other
extraneous information from these files, and so gas gives you a
way to include only a specified byte range within the file.

If skip and count are both specified, gas will seek to position
skip bytes from the start of the file, and will read count bytes into
your object file.

If count is not specified, gas will seek to position skip and
read to the end of the file.

When using this directive, be particularly cautious about
memory alignment issues after the included file, especially on
architectures that cannot fetch code and/or multibyte data values
from unaligned addresses. It is a prudent engineering practice to
have a .align directive immediately after every .incbin directive.

.include “filename”

Includes the specified file filename at the current point in the
sourcecode; the contents of filename will be assembled as if it
occupied the file currently being assembled. The most common
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use for this directive is to import include files that define sym-
bols and macros to be used in several different program modules.

Gas will look for the specified file in the search directories
specified by use of the -I command-line switch.

.int i1, ... in

Emits constant data i1 ... in into the current output section. Each
ix item is evaluated as an integer of target-specific size (in the
case of ARM, the default integer size is 32 bits).

.lcomm symbol,length

This directive reserves length bytes of storage in the .bss section
of the executable, and assigns it a module-local name of symbol.
(If you want this space to be visible to the linker, and hence to
external modules, you must also declare it as global using the
.global or .globl directive).

By definition, this storage space will contain all zero bytes
on program entry.

.list

Controls listing output. Gas maintains an internal counter that
indicates whether or not a listing is to be produced. This counter
is zero by default. Turning listings on using the -a command-line
option increments the counter; the .list directive also increments
the counter. The complementary .nolist directive decrements the
counter. Listings are generated when the counter is greater than
zero.

.long l1, ... ln

Synonymous with .int.

.nolist

See .list.
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name .req reg

This directive assigns a named alias name to refer to the CPU
register reg. For example, the line heapptr .req r7 assigns
the alias “heapptr” to register r7. This is an ARM-specific directive.

.octa o1, ... on

Emits constant data o1 ... on into the current output section. Each
ox expression is evaluated as a 16-byte octaword (the term was
coined on machines with a 16-bit word size).

.org newposition, fill

This directive moves the location counter to newposition. The
new location counter position can be specified as an absolute
expression (e.g. 0x20000000) or an expression that evaluates to
a value within the current section (e.g., mylabel+0x20). If you’re
using the second method, be aware that since as is a one-pass
assembler, you cannot .org to a currently undefined symbol.
(There is a wry note in the gas documentation to the effect that if
this is a serious limitation for you, you’re welcome to rewrite the
assembler yourself and share the result.)

.org’s behavior is much more complicated than the simple
ORG directive you might have used on small 8-bit assemblers,
which simply sets the current output address to some specific
memory location. In particular, note that the new location counter
is not an absolute memory address; it is actually an offset from
the start of the current section (not subsection). The actual final
effect of the .org directive depends on where this particular mod-
ule is linked (as the first or last module in the program), and
whether this section’s VMA is the same as its LMA (see the sec-
tion on ld for more information on this).

Also note that .org cannot move the location counter back-
wards; it can only cause the assembler to skip bytes, not to
“backfill” over a location already assembled.

The fill parameter, if specified, is the byte which will be used
to pad space between the current and new location counter. If not
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specified, fill defaults to 0. For flash- and EPROM-based appli-
cations, it’s normal to specify 0xFF as the fill pattern.

.p2align boundary, fill, max-skip

Aligns the location counter to a 2boundary-byte boundary. If you
wish, you can also specify an optional fill pattern fill and a maxi-
mum number of bytes max-skip to be skipped in the alignment
process; if the alignment would require more than max-skip bytes
of padding, no alignment is performed.

.p2align is a GNU-specific, target-independent version of the
.align directive, and you should carefully read the notes and in-
structions for that directive to appreciate more fully the subtleties
of alignment requests in gas. The difference between .p2align
and .align is that .align has different interpretations of the bound-
ary parameter according to the target processor, whereas .p2align
always interprets it in the “power of two” meaning described
above. For ARM targets, the directives are functionally identical.

.p2alignl boundary, fill, max-skip

Functionally identical to .p2align, except that fill is interpreted
as a four-byte longword value.

.p2alignw boundary, fill, max-skip

Functionally identical to .p2align, except that fill is interpreted
as a two-byte word value.

.print “string”

Outputs string to standard output during the assembly process,
for logging or special warning purposes.

.quad q1, ... qn

Emits constant data q1 ... qn into the current output section. Each
qx expression is evaluated as an 8-byte quadword (like octaword,
this term was coined on machines with a 16-bit word size).
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.rept count

Repeats the following code block (terminated by an .endr direc-
tive) count times. This is extremely useful for generating tables
of structures that are too complicated to implement with the .fill
directive. For example, the following code:

.rept 4

.asciz “Empty table entry”

.long 0x44321234

.endr

is equivalent to writing:

.asciz “Empty table entry”

.long 0x44321234

.asciz “Empty table entry”

.long 0x44321234

.asciz “Empty table entry”

.long 0x44321234

.asciz “Empty table entry”

.long 0x44321234

.short s1, ... sn

Emits constant data s1 ... sn into the current output section. Each
sx expression is evaluated as a 16-bit word and stored in the tar-
get processor’s default byte order.

.word w1, ... wn

Emits constant data w1 ... wn into the current output section.
Each wx expression is evaluated as a word of target-specific size
(32 bits, in the case of ARM) and stored in the target processor’s
default byte order.

Because gas is the usual back-end for high-level language
compilers, it has some very special handling for the .word direc-
tive (in order to work around some issues that arise when
generating jump tables). For this reason, I suggest that you avoid
declarations of the form .word symbol1-symbol2—if you
use this construct, then you risk triggering gas’s special jump-
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table code, which will yield very unexpected results if you’re
assembling anything other than a jump table.

Conditional Assembly Directives
Gas supports a fairly rich set of conditional assembly directives.
These operate in exactly the way you’d expect, by dividing your
code into blocks that will or will not be assembled depending on
the state of certain build-time conditions. Each block is opened
with a conditional assembly directive that either allows assembly
of the block, or causes the assembler to skip to the end-of-block
marker. This marker can be one of .endif, .else or .elseif. Based
on which of these end-of-block markers you use, there are three
general forms of conditional assembly block. These are illus-
trated below:

Form 1:

.if condition
(code that will assemble if condition is
true)

.endif

Form 2:

.if condition
(code that will assemble if condition is
true)

.else
(code that will assemble is condition is
false)

.endif

Form 3:

.if condition1
(code that will assemble if condition1 is
true)

.elseif condition2
(code that will assemble if condition1 is
false and condition2 is true)

.endif
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(Of course, in Form 3 above, you can have as many separate
.elseif conditionn stanzas as you want).

There are a variety of possible forms that the .if condition
line can take (depending on what criteria you need to use in or-
der to allow or disallow assembly of the code block in question),
and these are described below:

.if expression

The following code will be assembled if expression evaluates to
a nonzero value.

.ifdef symbol

The following code will be assembled if symbol is defined. This
form of conditional assembly is most commonly used in con-
junction with the --defsym command-line switch when using
different makefiles to build specialized versions of a particular
piece of code. For example, consider the following code:

.ifdef DEBUGGING
@ Output debugging messages

.endif

The debugging messages will be assembled into the program if
gas is given the command-line option --defsym DEBUGGING=1.

.ifc string1,string2

The following code will be assembled if string1 and string2 are
identical (this is a case-sensitive comparison). Single quotation
marks around the strings are optional; if no quotation marks are
used, then string1 ends at the first comma, and string2 ends at the
end of the line.

.ifeq expression

The following code will be assembled if expression evaluates to
zero.
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.ifeqs string1,string2

Similar to .ifc, except that string1 and string2 must be enclosed
in double quote marks.

.ifge expression

The following code will be assembled if expression is greater
than or equal to zero.

.ifgt expression

The following code will be assembled if expression is greater
than zero.

.ifle expression

The following code will be assembled if expression is less than
or equal to zero.

.iflt expression

The following code will be assembled if expression is less than
zero.

.ifnc string1,string2

Follows the same rules as .ifc, but the result of the string com-
parison is inverted; the following code will be assembled only if
string1 and string2 do not match.

.ifndef symbol

The following code will be assembled if symbol is not defined.

.ifnotdef symbol

Synonymous with .ifndef.

.ifne expression

The following code will be assembled if the expression evaluates
to value other than zero. This is functionally identical to the .if
directive.
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.ifnes string1,string2

.ifnes is to .ifeqs what .ifnc is to .ifc; it will assemble the follow-
ing code only if string1 and string2 do not match.

Macros, Assembler Loops and Synthetic Instructions
In addition to the directives explained above, gas supports a macro
system in order to reduce your typing and debugging workload.
Macros are declared using the .macro directive, and end with the
.endm directive. The general form of a macro definition is as
follows:

.macro macro-name macro-arguments
     (code and/or assembler directives)
.endm

(Although all macros must end with a .endm directive, you can
bale out of any macro early using the .exitm directive; note that
this only exits the innermost layer of a recursive macro like the
one illustrated below.)

The second argument is optional; if your macro needs to take
parameters, you should specify their names here, separated by
commas. If a parameter needs to have a default value when the
caller supplies none, you can achieve this by appending =value
to the desired parameter name. For example:

.macro mymac param1=0,param2,param3

specifies a macro named “mymac”, with three parameters. If the
caller supplies no value for param1, a default value of 0 will be
used within the macro.

Within the macro, you refer to parameters with the code \pa-
rameter-name. For example, here is a simple macro, taken directly
from the gas documentation, that emits an increasing series of
32-bit numbers (within specified boundaries):

.macro storenums from=0, to=5

@ Store the current value of from at the
@ current location
.long \from
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@ If to != from, then call down recursively
.if \to-\from

storenums “(\from+1)”,\to
.endif

.endm

You invoke a macro simply with its name, followed by its argu-
ments if applicable.  For instance, invoking the macro above:

@ Invoke storenums macro with default settings
storenums

will yield the following code:

.long 0

.long 1

.long 2

.long 3

.long 4

.long 5

(Because we didn’t specify any parameters, default values were
used).

When invoking a macro, arguments can be specified by posi-
tion (using a comma-delimited list in the same order as the
parameters in the macro definition) or by name. For example,
given the macro definition above, the following two invocations
are identical:

storenums 1,6

and

storenums to=6, from=1

You can “undefine” a macro using the .purgem directive:

.purgem macro-name

Any reference to macro-name after the .purgem directive will
not be expanded.

As well as the user-defined macro system described above, there
are also a couple of directives that are, to all intents and pur-
poses, predefined macros. These are detailed below:
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.irp symbol, value-list

This directive assembles a block of code one or more times, as-
signing a different value from value-list to symbol on each pass.
The code block must be terminated by a .endr directive. Inside
the code block, you can retrieve the value of symbol for the cur-
rent assembly pass using the syntax \symbol. Values within the
list are comma-separated.

For example, the following code will load 0x00000000 into
registers r0 through r6:

.irp regnum,0,1,2,3,4,5,6
ldr r\regnum, =0

.endr

It decomposes to the following:

ldr r0, =0
ldr r1, =0
ldr r2, =0
ldr r3, =0
ldr r4, =0
ldr r5, =0
ldr r6, =0

This pseudo-instruction is designed to simplify tasks such as
fetching several function arguments from the stack. It is not a
vital feature on cores such as ARM, which have hardware in-
structions to load multiple registers automatically with
auto-increment/decrement of a source pointer register, but it can
be useful.

Note that if you don’t specify any values, the .irp-encapsu-
lated code block will be assembled once, with \symbol evaluating
to an empty string. This will usually cause assembly errors.

.irpc symbol, character-list

This is a special cut-down version of the .irp directive. It works
the same way as .irp, except that on each pass, the symbol is
assigned a single character value from character-list. (The .irp
directive, in contrast, assigns an arbitrary-length string value to
symbol). Character-list is a simple string of characters, not sepa-
rated by commas or other punctuation.
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The example above could be rewritten using the .irpc direc-
tive thus:

.irpc regnum,0123456

    ldr r\regnum, =0

.endr

Again, if you don’t specify anything in character-list, the code
block will be assembled once, with \symbol evaluating to an empty
string.

Ld—GNU Linker

Introduction
Ld is the GNU linker. It is an immensely powerful tool which
allows you to control the positioning and attributes of object code
in the final output file, and the virtual memory map of the result
(these are not always the same thing, as we will see later). You can
control these details using a plain-text file called a linker script,
typically given an extension of .ld. Because of the sheer flexibility
of this tool, and the numerous interacting options, it is extremely
difficult to choose a logical order in which to describe the linker’s
features. Ld has an astonishingly simple syntax, but an equally
astonishingly large number of interacting, equivalent or comple-
mentary syntactic constructions. Some of these are due to the
unavoidable fact that it is rather an old program with a correspond-
ing degree of design cruft, but mostly these constructs are present
either to ease porting code from some other developme toolchain,
or in order to support special executable file generation needs in
various operating systems. The same basic linker constructs are
expected to be able to generate Win32 Portable Executable files,
ELF executables, COFF executables, old a.out executables and raw
binary ROM dumps for embedded systems (among many other
formats), so you can see why the syntax is complex.

Thus, I strongly suggest you read this section in its entirety to
obtain a reasonably good overview of how to control ld. Frankly, it
is rather difficult to discuss this tool unless you have specific goals
in mind, which is why it will probably be most useful to you to
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pick a linker script that does something similar to what you need
already, and modify it to suit your requirements. You can then re-
fer to this chapter and the on-line documentation for help when
you encounter a problem. When I was initially learning how to use
the GNU toolchain, almost all of my learning curve was spent
learning how to use ld effectively, and I found that by far the easi-
est way to get familiar with the concepts (after initially reading up
on the basic script syntax) was to look at example scripts along
with simple projects, change the scripts, relink the program and
inspect the resulting changes using objdump.

In order to understand why it’s important for us to have such
an awesomely flexible linker, let us first consider the types of
information that are typically combined into a single bootable
ROM image:

■ Startup (hardware and C run-time initialization) code. This
code is practically always written in assembly language and
must be located at a specific place in ROM.

■ Application code. This is quite distinct from startup code and
usually doesn’t have to reside at any specific area in the
memory map.

■ Constant data (e.g., a C constant declared as const char
mystring[] = “My string”, binary files included in
your ROM image, and so on) This type of information can
safely be stored in ROM and used in situ.

■ Initialized variables (e.g., a C global variable declared as
int myint = 1234). Although this data must physically
reside in RAM, the initial values to be loaded at boot time
must be in ROM.

■ Uninitialized variables (e.g., a C global variable declared sim-
ply as “int myint”). These don’t need to occupy any space in
ROM at all; the startup code simply needs to allocate suffi-
cient RAM space for them, and the linker needs to know how
to resolve references to these variables.

The situation is further complicated by the fact that in em-
bedded systems, the memory map usually changes drastically
during execution of the startup code; this power-on initialization
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code often remaps chip select lines, enables a memory-manage-
ment unit or otherwise changes the system layout.

For this reason, one of the first important concepts you should
understand is the difference between “load memory address”
(LMA) and “virtual memory address” (VMA). The VMA acro-
nym has nothing directly to do with the idea of virtual (vs.
physical) memory and complex demand-paging virtual memory
systems. It simply refers to the difference between the location
of a piece of code or data in the executable file (LMA) vs. the
location in memory where references to this code or data should
be directed (VMA).

For example, consider the .data section of a piece of code
that runs out of ROM. Before running the main program, the
bootstrap code needs to initialize the .data section by copying
information out of ROM into the RAM space intended to hold it.
Obviously, though, all coded references to symbols in the .data
section need to refer to the RAM copies, because the ROM cop-
ies are just preload data and can’t be modified. In ld parlance, the
.data section is linked with the LMA in ROM and the VMA point-
ing to the real RAM versions.

There are basically two ways of informing ld where to load the
various parts of your program. The first is to assign names to the
various regions of memory in your device, and then direct each
code or data section to the appropriate memory region. The sec-
ond method, which is less “friendly” but potentially slightly less
ambiguous, is to start the linker’s current memory location counter
at a known address (the start address of the first section of memory
to be populated) and emit sections one by one to the current loca-
tion, manually incrementing this location counter as appropriate
in order to skip unpopulated “holes” in the memory map.

Let’s discuss the latter method first, since it is conceptually
slightly easier to digest. Here is a very simple linker script that
you might use for a program for the Atmel EB40.
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/* Example minimalist linker script for
Atmel EB40 */

SECTIONS
{

. = 0x02000000;

.text : { *(.text) }

.data : { *(.data) }

.bss : { *(.bss) }
}

Let’s deconstruct this linker script in order to get a basic intro-
duction to ld’s commands.

First, observe that C-style comments delimited by /* and */
can be included in linker scripts to improve comprehensibility.

Next we have the SECTIONS command. SECTIONS (fol-
lowed by a list of output sections enclosed in curly braces) is
the command that tells ld how to output the destination file.
The first line in this stanza sets the value of the location counter.
Just as in gas, the location counter is a special variable with the
name ‘.’, and you can update it or calculate with it if you need
to. By default, the location counter starts at 0. It is incremented
(and aligned, if necessary) each time you send some output to
the destination file. The first thing we need to do, therefore, is
set the location counter to point to the start of the EB40’s RAM,
as that is where we intend to load our program. The line
. = 0x02000000; achieves this.

Having done this much, we need to tell ld which sections to
include in the output file, where to emit them into memory, and
which sections of the input file(s) should be mapped. The next
three lines of the script perform this task. Basically, these lines say
“collect all .text sections from the input files and emit them to a
section called .text in the output file. Then collect all .data sections
from the input files and emit them to a section called .data in the
output file. Finally, collect all .bss sections from the input files and
emit them to a section called .bss in the output file”.

Let’s go into more detail for each of the commands and sub-
commands used in the above example.
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The SECTIONS command
The SECTIONS command has a much more general application
than the above example. The general format is:

SECTIONS
{

sections-command #1
sections-command #2
...
sections-command #n

}

Each sections-command line can be an ENTRY command, a sym-
bol assignment, an output section description or an overlay
description. Symbol assignments, output sections and overlay
descriptions are described in their own separate sections below.

The ENTRY command is used to inform whatever loads your
program—gdb, in our case—what the entry point for your pro-
gram is. Ld sets the entry point to be one of the following (in
decreasing priority order):

■ A value supplied on the command-line with the “-e SYM-
BOL” switch.

■ The value set with an ENTRY(SYMBOL) command in the
linker script.

■ The value of the symbol “start”, if defined.

■ The address of the first byte of the .text section, if there is
one, or

■ Zero.

So, if we want our program to have the entry-point “vec-
tors”, we would add the line:

ENTRY(vectors)

to the linker script. However, the ENTRY command doesn’t have
to reside within a SECTIONS stanza (the examples given in this
book, in fact, have it in the main script body towards the start of
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the file). The reason ld allows you to put this command inside the
SECTION definitions is so that you can assign the entry-point a
value based on some calculation with an intermediate value of
the location counter, such as ENTRY(. + 0x100).

As a matter of largely academic interest, you can write a very
minimalist linker script containing no SECTIONS stanza at all. In
this case, the output file will have a starting address of 0, and the
segments in it will be collected, and ordered in the same way they
are first encountered. For instance, if the first object module linked
contains all of your program’s sections, the output file will have its
sections ordered the same way as that module. If the first module
has, say, only .text and .data sections (in that order), and some
subsequent module has a .bss section, then the output module will
have .text and .data sections followed by a .bss section. The output
format is further affected by the attributes of any named memory
regions you have defined in the linker script (see “Named Memory
Regions” below). As you can imagine, this ill-specified output for-
mat is not terribly useful, at least in embedded applications that
lack a complex loader/relocator module.

Symbol Assignments, Expressions and Functions
Symbol assignments are of the form symbolname = value; (the
trailing semicolon is mandatory). Any symbol you define in the
linker script is automatically global. You can refer to these sym-
bols in your program, and indeed it is very useful to be able to do
so. For example, it is common to see a SECTIONS statement
something like this:

SECTIONS
{

. = 0x02000000;

.text : { *(.text) }

.data : { *(.data) }
_bss_start = . ;
.bss : { *(.bss) }
_bss_end = . ;

}
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In your power-on initialization code, when you want to zero out
the contents of the .bss section, you could have code like this:

.globl _bss

.globl _ebss

@ Clear .bss section
ldr r1, bss_start
ldr r2, bss_end
ldr r3, =0

clrbss:
cmp r1,r2
strne r3,[r1],#+4
bne clrbss

{ ... other initialization code ... }

@ Jump to main C program
bl main

@ Hang system if main program returns
b .

bss_start:
.word _bss

bss_endptr:
.word _ebss

This way, as you change your program and the size of the
.bss section shrinks and grows, your startup code doesn’t need to
rely on any hardcoded constants—it’s automatically kept up to
date by the linker.

Note that you can do a lot more than simply give a symbol a
numerical value; ld supports a rich variety of arithmetic opera-
tors and C-style assignments. The following assignment operators
are available (these work exactly like their C counterparts):

Assignment: expression1 = expression2 ;

Addition: expression1 += expression2 ;

Subtraction: expression1 -= expression2 ;

Multiplication: expression1 *= expression2 ;

Division: expression1 /= expression2 ;



     121The GNU Toolchain

Left shift: expression1 <<= expression2 ;

Right shift: expression1 >>= expression2 ;

Logical-AND expression1 &= expression2 ;

Inclusive-OR expression1 |= expression2 ;

In addition to these assignments, you can use the equivalent
arithmetic operators +, -, *, /, <<, >>, & and | in arithmetic ex-
pressions. Ld evaluates expressions following C syntax rules, and
as 32-bit values (on 32-bit platforms; 64-bit values on 64-bit plat-
forms).

As well as the above, ld features an alternate way to define
symbols using the PROVIDE command. The need for and us-
age of this keyword are somewhat esoteric but you might
encounter it in other peoples’ linker scripts, so you need to un-
derstand what it does. The general syntax for this command is
PROVIDE (symbol = expression);. Symbol will be set
to the value of expression only if symbol is referenced in your
program but not defined in any module. So for instance, con-
sider that you have a script fragment like this:

SECTIONS
{

.data :
{

*(.data)
_edata = .;
PROVIDE(edata = .);

}
}

If your program defines a symbol called _edata, the link op-
eration will fail with a duplicate symbol error. If your program
defines a symbol called edata, the linker will use the definition in
your program. If your program references but does not define the
symbol edata, the linker will use its internally generated definition.

The symbol ‘.’ is always defined; as discussed earlier, it con-
tains the current value of the location counter. You can perform
any kind of arithmetic with this, just as with any other symbol;
you can assign the location counter a new value, or use the cur-
rent value to calculate some other result. The only restriction, as
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in gas, is that you can only move the location counter forwards.
If you need to overwrite the same memory area with different
sets of data for some reason, you should look at ld’s syntax for
handling overlay sections, described below.

Very important note: The location counter retrieved when you
reference the ‘.’ symbol is relative to the start address of the cur-
rent enclosing object; it is not an absolute address. For example,
look at the following script fragment:

SECTIONS
{

. = 0x1000;

.text :
{

*(.text)
. = 0x2000;

}
.data :
{

*(.data)
}

}

This fragment will generate an output file containing the .text
section at a starting address of 0x1000. This section will be pad-
ded to a size of 0x2000 bytes (not 0x1000 bytes, which is what
you would expect if ‘.’ referred to an absolute location counter).
The .data section starts at address 0x3000.

This is actually a specific case of a more general rule—all
expressions in ld generate either relative or absolute results. Ex-
pressions within an output section definition generate relative
results (relative, that is, to the start of the output section). Rela-
tive results have a “sectionness”; they are associated with their
parent section. Expressions that are not within an output section
definition generate absolute results that have no dependency on
any section. Relative symbols can be made relocatable by speci-
fying the -r option on the ld command line; absolute symbols can
never be relocated.
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If you need to make a specific symbol absolute, you can use
the ABSOLUTE keyword.  For example, the line mysymbol =
ABSOLUTE (.); will assign the current absolute  value of the
location counter to mysymbol, even if this assignment appears
within an output section description.

ABSOLUTE is one of ld’s assorted built-in functions. The
remainder of these functions are listed below (less a couple of
functions that have limited relevance to embedded applications):

ADDR(section-name)

Returns the absolute VMA of the starting address of section section-
name. This function can only return the address of a section that has
previously been defined; it cannot resolve forward references.

ALIGN(expression)

Returns the value of the location counter aligned to the byte bound-
ary specified by expression. Note that expression must be a power
of two. In order to actually use this result, you will most often
see ALIGN used in a statement like this:

. = ALIGN(4);

BLOCK(expression)

This is a synonym for ALIGN(expression).

DEFINED(symbol)

Returns 1 if symbol is a defined global, or 0 otherwise. The ca-
nonical example where you might want to use this function is to
define a symbol only if it is not already defined, as in the following
example:

SECTIONS
{

.text :
{

entry_point = DEFINED(entry_point) ?
entry_point : . ;

}
}
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This assigns the value of the location counter to the entry_point
symbol, as long as this symbol was not already defined. If the
symbol was already defined, it is assigned to itself, meaning that
it is effectively left unchanged. (Note the C-style syntax there,
by the way).

LOADADDR(section-name)

Returns the absolute LMA of the starting address of section section-
name.

MAX(expression1, expression2)

Returns the larger of expression1 or expression2.

MIN(expression1, expression2)

Returns the smaller of expression1 or expression2.

NEXT(expression)

Returns the next unallocated memory address that is an integral
multiple of expression. The only difference between NEXT and
ALIGN is that if you have defined named memory regions using
the MEMORY command, ALIGN will simply perform some
address arithmetic (which may yield a result outside the bound-
aries of any memory region), whereas NEXT will skip to the
next defined region, if necessary.

SIZEOF(section-name)

Returns the size, in bytes, of section section-name.

Output Section Descriptions
We have been making frequent use of output section descriptions
above without really defining their syntax or how they work, and
now it’s time for some more detail. The general format for an
output section description is:
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output-section address (type) : AT (lma)
{

output-section-command #1
output-section-command #2
...
output-section-command #n

} >region AT>lma-region :phdr =fillexp

output-section is the name of the desired output section within the
output file; for example, .text. The optional address parameter is
the starting value for the location counter (VMA) in this section. If
no value is specified, the last value of the location counter is used,
with some padding bytes for alignment if the output section type
requires a specific alignment value. (The default value at the start
of the script is 0, as you recall from above). If you provide a spe-
cific value for address, this overrides the section’s alignment
requirements. Note that address can be any arbitrary expression;
for example, .text ALIGN(0x40) : { *(.text) } is a
perfectly valid output section description.

Similarly, the optional lma parameter is the desired starting
LMA for the section. If this parameter is not specified, the LMA
is assumed to be the same as the VMA.

The type parameter, which again is optional, specifies the
output section’s characteristics. In current versions of ld, there
are only two different types:

NOLOAD

Specifies that the section should be marked as not loadable, so
that it will not be loaded into memory when the program is
executed.

DSECT, COPY, INFO, OVERLAY

All of these keywords are synonyms for backward compatibility.
They all specify that the section should not have any space allo-
cated for it at load time.

You probably won’t use the type parameter in an embedded
program.
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Moving on, the first two parameters (region and lma-region)
after the closing curly bracket are equivalent to the address and
lma parameters, except that they refer to named memory regions
rather than specific addresses. If you specify an output region
and/or LMA region at the end of the stanza, you do not need to
specify output addresses or LMA at the beginning of the stanza,
and vice versa. We’ll discuss regions in more detail a little later
(refer to the section  headed “Named Memory Regions” below).
For the moment, just note that the address and lma parameters
take precedence over any region output instructions specified with
the region and lma-region parameters.

The phdr parameter is used to manipulate ELF program header
information; it assigns a section to a program segment. This op-
tion is an example of ELF esoterica that you are unlikely to need
to explore in an embedded system.

Finally, the fillexp parameter specifies the value to use when
filling memory areas not explicitly occupied by code or data. If
you specify fillexp as a simple hexadecimal number (the letters
0x followed by valid hexadecimal digits) then you can specify a
fill pattern of arbitrary length. If you enclose the fillexp param-
eter in parentheses or add a unary plus sign, the parameter will
be interpreted as a 32-bit constant. Regardless of how you specify
fillexp, the fill pattern is stored in big-endian format (in other
words, the same order as you specified it).

Note that if our input files contain some sections for which
we haven’t specified any particular handling—for example, sym-
bol table debugging information in a .stabs section—these would
be included in the output executable with default names and out-
put addresses. If you explicitly want to discard data from the
input files at link time, you can achieve this by including an out-
put section directive that places all the unwanted data in a special
section named /DISCARD/—for example, the following instructs
ld to throw away debugging information during the link process:

/DISCARD/ { * (.stab .stabstr) }
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Overlay Section Descriptions
An overlay section is used when you want to have several items of
code or data located on top of each other in the same memory area.
The assumption is that you have some external overlay manager
code that will copy the required data section from its LMA to the
area of RAM reserved for overlays as necessary.

Overlays have a couple of uses in embedded systems. One
example is if you have a rather large program and you have nei-
ther ROM nor RAM space to store it all in uncompressed form.
Another example is if your program is stored in a slow, cheap
type of memory and you want to execute it out of faster RAM.
As long as you can modularize your code sufficiently, you can
keep most of it compressed in ROM and only uncompress to
RAM the specific module you need at the moment.

An example of either of these scenarios might be a simple
PDA type of project containing, say, a word processor and a
spreadsheet application. The application code might be stored in
a slow memory type, such as NAND flash memory. When the
user wants to edit a memo, your overlay manager copies the word
processor code from flash to RAM and runs it. If the user then
wants to edit a spreadsheet, the overlay manager can tell the word
processor code to save the current state of its document, then it
can kill the word processor task, copy the spreadsheet program
from flash memory to RAM (overwriting the word processor
code) and run the spreadsheet.

Overlays are specified using the OVERLAY command. This
command is used in the same context as an output section direc-
tive; i.e., within a SECTIONS command. To put it in C terms,
you can think of an output section directive as a struct (every
member occupies its own space) and an OVERLAY command as
a union (several different structures are defined to occupy the
same space). The general format of the OVERLAY command is
as follows:
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OVERLAY start-address : NOCROSSREFS AT (lma)
{

section_name_1
{

output section command #1
[...]
output section command #n

} :phdr =fillexp

[ ... arbitrary number of sections ... ]

section_name_n
{

output section command #1
[...]
output section command #n

} :phdr =fillexp

} >region :phdr =fillexp

The optional phdr and fillexp parameters, if specified, have the
same meaning as they do for output section directives (see above).

Each section declared inside the overlay definition is given
the same starting VMA. The sections are emitted to increasing
LMAs, one after the other. You can specify the starting LMA for
the overlay section as a whole using the optional AT (lma) pa-
rameter; if you do not provide this parameter, ld will assume that
you want the LMA to be the same as the VMA of the start of the
structure. You can specify the starting VMA for the structure with
either the optional start-address parameter, or by specifying a
named output memory region with the optional region param-
eter. In exactly the same way as for normal output sections, if
you don’t explicitly provide a start-address or output region, ld
will by default use the current location counter. You cannot specify
LMAs or VMAs for the individual sections within the overlay
description, nor direct them to named memory regions.

If you add the optional NOCROSSREFS keyword, ld will check
for references between the code and data included in each section
within the overlay definition. Any cross-references of this type
almost always indicate a programming error, because by defini-
tion, all the sections in an overlay are loaded to and executed from
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the same memory space. There are, however, scenarios when you
might conceivably want to refer to something that’s in a swapped-
out overlay “underneath” your code. For example, you might want
to generate a pointer to some piece of code inside a different over-
lay, so that you can tell the overlay manager “swap me out, swap in
overlay #2, and jump to this specific address”. Being able to sup-
press cross-referencing errors allows you to do this without the
manual tedium of having to create external pointer tables in memory
that is never swapped out.

When you define an overlay section, ld will automatically
generate some symbols that will be needed by your overlay man-
ager. These symbols are of the form __load_start_sectionname
and __load_stop_sectionname, and they contain the starting and
ending address, respectively, of the LMA of the named section
within the overlay description. This can be illustrated best by use
of an example; let’s consider the PDA application mentioned
above. We’ll assume that this PDA has a small amount of fast
RAM at address 0x00100000, and that we have 128K of very
slow flash memory or ROM at address 0x00000000. (It’s not
unknown for very low-end microcontroller type applications to
use excruciatingly slow serial ROM for cost reasons, so this is a
fairly realistic project.) Let’s further assume that we are going to
reserve the first 64K of ROM for the bootstrap code, overlay
manager and other operating system intricacies, and use the sec-
ond 64K for our overlays. We could define the overlay with
something like this (assuming that the object files for our word
processor are all in the wordpro/ directory, and the object files
for our spreadsheet are in the spreadsheet/ directory):

_OVERLAY_AREA = 0x00100000;

OVERLAY 0x00100000 : AT (0x00010000)
{

.text0 { wordpro/*.o (.text) }

.text1 { spreadsheet/*.o (.text) }
}

The word processor code and constant data will be stored at ad-
dress 0x00010000 in ROM, and the code for the spreadsheet will
be emitted immediately after it. Both pieces of code, however,



130 Chapter 3

expect to be relocated to 0x01000000 before they are executed.
In order to run the word processor, we could write a subroutine
in ARM code something like this:

_run_wordprocessor:
@ Copy word processor code overlay to RAM
ldr r0,overlaystart
ldr r1,overlaydest
ldr r2,overlayend

copy_overlay:
cmp r0,r2
ldrne r3, [r0], #+4
strne r3, [r1], #+4
bne copy_overlay

@ Call the code just copied
bl _OVERLAY_AREA

@ Return to our caller
bx lr

overlaystart:
.word __load_start_text0

overlayend:
.word __load_end_text0

overlaydest:
.word _OVERLAY_AREA

(Note that you might need to do a little more work than this for a
real application, since you probably want to swap out the data
sections for the program as well.)

By the way, there’s no technical reason why you would have
to do this in assembly language; you could do it just as easily in,
say, C by defining a global function pointer to the start of the
overlay region, referencing the __load_start_* and __load_end_*
symbols as external pointers to type const char (e.g. extern
const char * __load_start_text0;) and using
memcpy to copy the overlay from ROM to RAM.
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Emitting Data Directly into the Executable
Within an output section description (only!), you can directly
emit constant data to the output file using the following five
commands:

BYTE (expression)

Emit a byte (the result of evaluating expression) to the output file.

SHORT (expression)

Emit a 16-bit word (the result of evaluating expression) to the
output file.

LONG (expression)

Emit a 32-bit longword (the result of evaluating expression) to
the output file.

QUAD (expression)

On 64-bit platforms, emit a 64-bit quadword (the result of evalu-
ating expression) to the output file. On 32-bit platforms, emit a
64-bit quadword, the result of evaluating expression as a 32-bit
value and zero-padding it to 64 bits.

SQUAD (expression)

On 64-bit platforms, emit a 64-bit quadword (the result of evalu-
ating expression) to the output file; this is identical to the behavior
of QUAD (expression). On 32-bit platforms, emit a 64-bit
quadword, the result of evaluating expression as a 32-bit value
and sign-extending it to 64 bits.

FILL (expression)

This command sets the fill pattern for unused memory areas. The
difference between FILL(xxxx) and using the =fillexp parameter
on the output section description is that the =fillexp parameter
applies to the entire section from start to end, whereas the FILL
command takes effect only from the point in the file where you
specify the command.



132 Chapter 3

Note: If the output file format has a specific endianness (e.g.,
ELF), the data emitted by the above commands will be stored
with that endianness. A few supported output file formats, such
as Motorola S-records, do not have an explicit endianness; in
which case, ld will store data declared this way with the same
endianness as the first object file linked into the executable.

These directives are useful for assembling special structures
such as jump tables, interrupt vector tables, and so on. With
appropriate use of these directives, you can elegantly automate
the generation of all such tables, so that as your code and data
change in size, you never have to manually calculate the con-
tents of these tables.

Input Section Descriptions
An input section description is a filename (e.g. module1.o) op-
tionally followed by a list of section names in parentheses. Both
file name and section name may be wildcarded if desired. The
examples we used above, without explanation, are far and away
the most common usage of the input section command. The gen-
eral form we were using is:

* (input-section-name)

where input-section-name is the same as the name of the sur-
rounding output section description, and the * wildcard means
“process all input files”. For example, the command * (.text)
means “now emit the .text sections of all input files”.

This is all you need for the vast majority of cases. However,
there are specific instances where you’ll want to output code from
a particular module into a different area. For instance, you might
want to ensure that power-on startup code goes at the very start
or very end of a ROM image (according to your processor’s re-
quirements). If this module is called boot.o, you might have a
linker script something like this:
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SECTIONS
{

.init : { boot.o (.text) }

.text : { *(EXCLUDE_FILE (*boot.o) .text) }

.data : { *(.data) }

.bss : { *(.bss) }
}

Note the EXCLUDE_FILE syntax. This prevents ld from trying
to include the boot.o code in the main .text section.

Ld supports more complex wildcards than simply the catch-
all asterisk; it supports a subset of normal UNIX shell wildcards:

* matches anything

? matches any single character

[ABCD] matches any character specified within
the square brackets.

A range of characters can be specified
with the - character, e.g. [A-Z] matches
any alphabetic character.

Wildcards will not match the UNIX path separator, ‘/’. Also
note that ld does not search directories for wildcarded filenames;
it only searches, and will only match, filenames that it has been
“told about” on the command line or using the INPUT directive.

Alternatively, you might want to collect two input sections
together for some reason. For instance, suppose you wanted to
emit both the .data and .bss sections of the input files to the .data
section of the output file. (There doesn’t appear to be an obvious
application for  this, but it’s perfectly legal. The easiest way to
work with such a configuration would probably be to zero the
entire RAM area and then copy the initialized data across from
its LMA to its VMA in the data segment.)

Whatever your reasons, you could specify this either as:

.data : { *(.data) *(.bss) }

or

.data : { *(.data .bss) }
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The difference between these two definitions is that in the
first case, ld will collect all the .data sections from the input files
together and emit them to the output file, followed by all the .bss
sections. In the second case, ld will merge items from the .data
and .bss sections in the order it encounters them in the input files.

Named Memory Regions
One downside to the above technique for writing linker scripts is
that ld knows absolutely nothing about the system’s actual memory
map and hence you get no feedback if you accidentally over-
reach the physical boundary of some memory area. For example,
if you add a large uninitialized data structure to your program,
the end of the .bss section might now protrude beyond the end of
physical RAM. When the power-up code attempts to zero this
memory, because of incomplete address decoding, the end of the
write operation will wrap around to the bottom of RAM and de-
stroy part or all of the program.

You can avoid this problem, and get ld to work a little harder
for you, by defining the memory map of your target using the
MEMORY command to assign names to specific regions. For
instance, we can define the relevant section of the EB40’s memory
map using this stanza:

MEMORY
{

sram : org = 0x02000000, len = 0x00080000
}

This assigns the name “sram” to the memory range from
0x02000000 to 0x0207FFFF, which corresponds to the 512K of
off-chip SRAM on the EB40. If we include the above definition,
our simple minimalist linker script for the EB40 becomes:

SECTIONS
{

.text : { *.(text) } >sram

.data : { *.(data) } >sram

.bss : { *.(bss) } >sram
}
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This is the syntax used in the linker scripts for the examples
in the next chapter. The generalized format of the MEMORY
directive is:

MEMORY
{

name attributes : ORIGIN = origin, LENGTH
= len

[ ... an arbitrary number of additional
named regions may follow ... ]

}

The name parameter is an arbitrary, user-chosen friendly name
that describes the region, such as “rom”, “static_ram”,
“dram_bank_1” and so on. Origin is the starting address of the
memory region; this must evaluate to a constant before any
memory allocation is performed, so it cannot use any symbols
that depend on section lengths. Likewise, length is the size of the
memory region, in bytes. This can be specified using standard
abbreviations such as “64K” or “8M”. (Note also that the key-
word ORIGIN can be abbreviated to org or o, and the keyword
LENGTH can be abbreviated to len or l.)

The optional attributes parameter is only used if you do not
specify a SECTIONS directive in your linker script. It consists
of a string of attribute characters with the following meanings:

A Allocatable section

I Initialized section

L Loadable section (synonymous with I)

R Read-only section

W Read/write section

X Executable section

! Inversion operator
(e.g. “!R” means “not read-only”)

If one of the input files contains a section that is not explicitly
directed using an input section directive in the linker script, and
the attributes of that section match those of a defined memory
region, ld will direct the unmapped section to that memory region.
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Special Considerations for C++
If you’re writing in C++, you should be aware that GNU C++
generates some extra sections and requires special handling for
global constructors and destructors. Gcc places a table of con-
structor call pointers into the .ctors and .dtors sections in your
input object files, respectively. You need to collect this informa-
tion into a structure in your executable so that the run-time
initialization code can run all the constructors at program start-
up and all the destructors when the program exits. This structure
is slightly more complicated than just a raw list; the first word in
the table is the number of entries, and the last word is zero. In
order to emit this table automatically into the executable, you
need a construct like that below in your .text output section:

__CTOR_LIST__ = . ;
LONG((__CTOR_END__ - __CTOR_LIST__) / 4 - 2)
*(SORT(.ctors))
LONG(0)
__CTOR_END__ = . ;

__DTOR_LIST__ = . ;
LONG((__DTOR_END__ - __DTOR_LIST__) / 4 - 2)
*(SORT(.dtors))
LONG(0)
__DTOR_END__ = . ;

(By the way, the reason we subtract two from the table-length
value is because the calculation above includes the table-length
word and the zero terminator word.)

This book does not discuss GNU C++ programming in de-
tail, partly because C++ adds (often unnecessary) complexity to
almost any project, and partly because I personally belong to the
school of thought that believes C++ is usually not a good choice
for embedded systems programming; using C++ (as opposed to
procedural C) requires significantly more rigor in design to
achieve equally reliable and functional results as an equivalent C
program. Programs that absolutely require C++ also tend to be
those projects that will always be built around a pre-existing op-
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erating system. This operating will have its own rules about ex-
ecutable layout, and the cross-development toolchain for the
operating system will certainly include all the linker control magic
you need to generate correctly formatted executables. As a re-
sult, I won’t go into a lot of detail on this topic.

Further ld Information
Almost every option that can be specified on the command line for
ld can be coded into the linker script itself, and vice versa. This
allows you to balance where your settings are coded; either into
the makefile for the project, or into the linker script. My personal
preference is to specify board-specific material in the linker script,
as far as possible, and project-specific material in the makefile.
Whatever you decide to do, it’s best to pick a set of general rules
and stick with them rigidly, otherwise when you come to reuse a
linker script, you may find that having specialized defaults coded
into it causes subtle problems with other projects.

For more information on the ld script format, you should re-
fer to the info page for ld. The information given in this chapter
is a fairly complete introduction to the syntax and capabilities,
but the on-line documentation includes more illustrations and
describes a lot of directives that I don’t feel are absolutely neces-
sary reading for the first-time embedded GNU developer.
Basically, if you can think of a need to order specific sections of
your code in a particular way, there is almost certainly a linker
script syntax to achieve what you want to do—actually, there are
probably at least three easy ways of doing it, and several more
circumlocutive ways of achieving the same thing.

By the way—purely as a matter of interest—contrast ld’s vast
smorgasbord of options with the capabilities of linkers built into
operating-system-specific compilers. Such linkers are hardwired
to generate code with load and run addresses specific to the prop-
erties of the target operating system’s memory manager and
load-and-execute code. This is one reason why general-purpose
compilers—or at least the linkers that ship with them—aren’t
easily retargetable to generate embedded code.
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Converting Files with Objcopy
The function of objcopy is to manipulate binary files, usually struc-
tured files such as ELF executables. You will use it most frequently
when converting from one file format (such as ELF) to another
(such as a raw binary dump to be written into ROM). A pass through
objcopy is usually the last stage in most embedded compilation
jobs. You can also use objcopy to shuffle segment load addresses
and add or remove sections if necessary, but there should rarely be
a need for this. If you need to tweak the load address of a section in
your program, the best place to do this is in the linker script.

The syntax you will see used most often for objcopy is simply:

objcopy -I input-format -O output-format infile
  outfile

where input-format is the input filetype (this can usually be omit-
ted; objcopy can autodetect the format of the input files you will
generally be working with, in the main), output-format is the
output filetype (see below), infile is the name of the input file,
and outfile is the name of the desired output file.

Like most other GNU utilities that work on executable file
formats, objcopy uses the BFD (Binary File Descriptor) libraries
to perform input and output formatting. If you invoke objcopy
-?, the last line of on-line help will be a list of supported input
and output filetypes. For example, the version of arm-elf-objcopy
you compiled earlier will report:

arm-elf-objcopy: supported targets: elf32-
littlearm elf32-bigarm elf32-little elf32-big
srec symbolsrec tekhex binary ihex

Of these filetypes, probably the three that will interest you
the most are:

■ srec (Motorola S-record, a text file format commonly used
for flash upgrade files and recognized by most PROM burn-
ing software),

■ ihex (Intel HEX format, again recognized by most PROM
burning software), and

■ binary (raw binary format).
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So (for example), to convert your program myprog.elf to a
raw binary dump suitable for loading into flash memory, you can
use the command line:

arm-elf-objcopy -O binary myprog.elf myprog.bin

objcopy also supports a large number of options (some of
which are specific to particular input and output formats) for
stripping particular information from the file, or for providing
special instructions about how to convert information that is not
represented unambiguously. It’s fairly rare to use these options
in an embedded project, particularly since many of these options
control details that you should have set up correctly at link time.
However, if you find that you need something more than simple
“dumb” file conversion, you should refer to the on-line docu-
mentation for objcopy. For instance, you can take an ELF
executable and (in two passes) copy the .text section to one out-
put file and the .data section to a different file. This could be
useful, for instance, if these two sections are to be loaded into
separate memory devices.

Objdump—Check Your Executable’s Layout
Objdump is an invaluable utility for “sanity-checking” your code.
You will use it in particular when debugging issues related to
linker scripts and memory maps. The general syntax is objdump
[options] executable, where executable is the name of
the file you want to inspect, and options specifies the informa-
tion you want to receive. You can view a list of supported options
using objdump —help, but I will describe some of the more
useful options here. Most of the options have a short, single-
character form and a longer “friendly” name; you can use these
interchangeably.

--debugging

Dumps debugging information out of the specified file. This is
mostly information that associates specific line numbers of
sourcecode files with particular VMAs in the executable, and it
isn’t often going to be very useful to you. When run over the first
code example below, arm-elf-objdump —debugging
yields the following output:
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example1.elf:     file format elf32-littlearm

boot.s:

/* file boot.s line 17 addr 0x2000000 */
/* file boot.s line 18 addr 0x2000004 */
/* file boot.s line 19 addr 0x2000008 */
/* file boot.s line 20 addr 0x200000c */
/* file boot.s line 21 addr 0x2000010 */
/* file boot.s line 22 addr 0x2000014 */
/* file boot.s line 23 addr 0x2000018 */
/* file boot.s line 24 addr 0x200001c */
/* file boot.s line 29 addr 0x2000020 */
/* file boot.s line 30 addr 0x2000024 */
/* file boot.s line 32 addr 0x2000028 */
/* file boot.s line 33 addr 0x200002c */
/* file boot.s line 36 addr 0x2000030 */
/* file boot.s line 37 addr 0x2000034 */
/* file boot.s line 38 addr 0x2000038 */
/* file boot.s line 39 addr 0x200003c */
/* file boot.s line 40 addr 0x2000040 */
/* file boot.s line 42 addr 0x2000044 */
/* file boot.s line 45 addr 0x2000048 */
/* file boot.s line 46 addr 0x200004c */
/* file boot.s line 47 addr 0x2000050 */
/* file boot.s line 48 addr 0x2000054 */
/* file boot.s line 51 addr 0x2000058 */

--demangle=style

If you specify the --demangle option, objdump will attempt to
demangle symbol names; particularly useful when inspecting C++
code. The optional style parameter specifies what demangling
style to use.

-d or --disassemble
-D or --disassemble-all

All four of these directives generate a disassembly of the speci-
fied input file. The -d and --disassemble directives only
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disassemble sections that are believed to contain code; the -D
and --disassemble-all directives generate disassembly for every-
thing in the file, regardless of whether or not it normally contains
code bytes.

You can modify the disassembly output format using the op-
tions --prefix-addresses (which prints the complete address on
each disassembled line) and/or --disassemble-zeroes, which forces
objdump to disassemble blocks of zero-filled memory as code. If
the file you are inspecting contains debugging information, you
can also add filename and sourcecode line numbers using the
--line-numbers option.

-h, --header or --section-header

Dumps all section headers. When debugging linker scripts, you
will make frequent use of this option. For example, arm-elf-
objdump -h yields the following output when run on the first
example program in the next chapter:

example1.elf:     file format elf32-little

Sections:
Idx Name    Size VMA LMA File off Algn
  0 .text 00000068 02000000 02000000 00008000 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE
  1 .data 00000000 02000068 02000068 00008068 2**0

CONTENTS, ALLOC, LOAD, DATA
  2 .bss 00000000 02000068 02000068 00008068 2**0

ALLOC
  3 .stab 0000012c 00000000 00000000 00008068 2**2

CONTENTS, READONLY, DEBUGGING
  4 .stabstr 00000008 00000000 00000000 00008194 2**0

CONTENTS, READONLY, DEBUGGING

As you can see, the .text segment contains the entire program
and data. It is loaded at address 0x02000000, and is not relo-
cated. (By the way, the legend underneath each line indicates the
section flags. Refer to the section headed “Code Sections and
Section Directives” above for more information on this topic.)
The Algn (alignment) field indicates how the segment is to be
aligned in memory, as a power of two.
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-r or --reloc

Display relocation information for the executable. Unless you
are developing for a specific operating system, your program will
probably not contain relocation entries. You can, however, see
relocation entries in the constituent object modules (.o files) of
your projects. This information is not particularly valuable for
the embedded developer.

--section=section_name

Only output information for the specified section named
section_name.

--start-address=address and --stop-address=address

These two options allow you to specify a range of addresses for
the -d, -r or -s options.

-t or --syms

Dump symbol table. This is another function of objdump which
can help you sniff out and rectify problems with your linker script.
Arm-elf-objdump -t example1.elf yields the follow-
ing information from the first code example:

example1.elf:     file format elf32-littlearm

SYMBOL TABLE:
02000000 l d .text 00000000
02000068 l d .data 00000000
02000068 l d .bss 00000000
00000000 l d .stab 00000000
00000000 l d .stabstr 00000000
00000000 l d *ABS* 00000000
00000000 l d *ABS* 00000000
00000000 l d *ABS* 00000000
02000020 l .text 00000000 reset
0200005c l .text 00000000 PIO_SODR
02000060 l .text 00000000 PIO_CODR
0200002c l .text 00000000 blink_loop
02000064 l .text 00000000 delay_constant
02000038 l .text 00000000 pause_loop1
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0200004c l .text 00000000 pause_loop2
02000068 g .data 00000000 __data_start__
02000068 g .data 00000000 edata
02000068 g .bss 00000000 __bss_start__
02000068 g .data 00000000 datastart
02000068 g *ABS* 00000000 end
02000068 g .data 00000000 __data_end__
02000068 g .text 00000000 etext
02000068 g .bss 00000000 __bss_end__
02000068 g *ABS* 00000000 __end__
02000068 g .data 00000000 _edata
02000068 g *ABS* 00000000 _end
02000000 g .text 00000000 vectors

-x or --all-header

Displays all header information, including symbol table and and
relocation entries. This is equivalent to specifying -a -f -h -r -t.

Size—Check the Load Size of Your Executable
Size is a simple little utility that totals up the size of the text, data
and bss sections of your program. You invoke it simply as size
myprogram. For example, the output given by arm-elf-size for
the first example program in the next chapter is:

text    data     bss     dec     hex filename
 104       0       0     104     68 example1.elf

One main use for this utility is to determine quickly how
much of your executable file is actual code and data, and how
much is extraneous (such as debugger-related information). An-
other use is  to check how much space is being occupied by the
various sections, for the purpose of RAM or flash memory bud-
geting. There’s nothing size will tell you that objdump won’t, but
size is simpler to use and provides a quick, easy-to-read result.

Gdb—The GNU Debugger
Gdb is your porthole into the target processor’s environment. It
is a software-only product on the host end that, for embedded
targets, communicates with a back-end over serial, Ethernet or
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some other communications channel. This back-end is usually a
snippet of software called “gdb stubs” (sourcecode for which
can be found included in the standard gdb source distribution
you have on the included CD-ROM). However, gdb isn’t limited
to talking its own language; it also supports various standardized
debugger protocols used by other manufacturers, such as the Angel
ROM monitor provided by ARM. If your board has no ROM
monitor or debugger at all, then you can use an external piece of
hardware that connects to a hardware debugging port and trans-
lates the hardware debugging protocol into a format understood
by gdb. An example of such hardware is the Macraigor Systems
Raven, which connects a JTAG/ICE interface on your target board
to an Ethernet network for very high-speed, gdb-compatible de-
bugging. If you don’t have the budget for such hardware, or if
your target doesn’t have a supported hardware debugging inter-
face, then your best route to connect it to gdb is to port the gdb
stubs to run on your hardware.

Note that the use of bare gdb stubs is in some instances gradu-
ally being supplanted by the use of Red Hat’s RedBoot loader/
debugger back-end module. If you have to port one or the other,
it’s worth investigating the extra effort to get RedBoot up and
running, because it provides many more services than simple
debugging stubs.

Gdb also allows you to debug a program that is running on
your own system. You are only likely to use this capability if
your end project runs on a desktop version of Linux or NetBSD,
and you are developing directly on the target hardware.

By the way, you will observe that the version of gdb we’re
using is a text-based application. There does exist a more attrac-
tive graphical version of gdb called Insight, developed by Red
Hat. The reason we’re using the text version here is that Insight
has historically had serious problems running under Cygwin on
Windows 95 and 98, and I wanted this text to be as general-
purpose as possible. There’s nothing you can do with Insight that
you can’t do with gdb, in any case; the graphical version is just
more pleasing to the eye, and protects you (to a slight degree)
from having to learn all of gdb’s commands. If you want to ex-
periment with Insight, you can obtain it from sources.redhat.com/
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insight—the build process is exactly the same as for gdb. All of
the example sourcecode and gdb techniques mentioned in this
book will work with Insight without requiring any special modi-
fications—Insight is in fact just a graphical wrapper around the
same debugger code.

Invoking and Quitting gdb and Loading Your Program
To invoke the version of gdb or Insight you built using the in-
structions earlier in this book, assuming that the /tools/arm-elf/
bin directory is already in your PATH, simply use the command:

arm-elf-gdb options executable

where executable is the name of the ELF program file to be de-
bugged, and options specifies zero or more additional
command-line options (described below).

On startup, unless you have suppressed initialization scripts
with the -nx parameter, gdb will first look in your home direc-
tory for a file called .gdbinit20. If this is found, it will be read and
executed just as if you had typed its contents on the gdb com-
mand line. Gdb will then process any command-line parameters.
Finally, it will look in the current directory for a .gdbinit file.
Note how any settings that are altered during any of these steps
may be overridden by a later step.

There are many additional command-line options you can
specify, but most of them are not relevant to debugging embed-
ded systems. Here is a brief summary of the options that are likely
to be of interest to you:

-b baudrate or -baud baudrate

Use baudrate as the communications speed when using a serial
debugging link.

20 Some special versions of gdb use a different name for the initialization file. The informa-
tion presented here is correct for the gdb version you built following the instructions in
this book.
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-command filename or -c filename

Execute filename as a command script.

-d dirname or -directory dirname

Add dirname to the path searched when looking for sourcecode
files. This is useful when your project involves several assorted
modules (such as third-party libraries). Specifying a complete
set of search paths allows gdb to provide line-by-line symbolic
debugging of the library code as well as your own.

-n or -nx

Do not process the default initialization files.

-symbols filename or -s filename

Read symbol-table information from filename instead of the main
executable.

-t device or -tty device

Use device as the I/O device for serial-based debugging. For ex-
ample, -t /dev/ttyS0.

When gdb has finished starting up, it will present you with a
(gdb) command prompt and await your instructions. At this point,
unless you specified some options on the command line or in
some initialization script, gdb is not connected to the target. Your
next steps would usually be in this order:

1. Configure any link parameters required to communicate suc-
cessfully with the target. For example, for serial targets you
would issue a command like set remotebaud 9600 to
set up the debugger link baud rate.

2. Tell gdb where to find the target hardware, with a command
like target rdi /dev/ttyS0. This step also opens the
debugging connection to the target board. In most cases, this
will halt any code that is already executing on the target.

3. Tell gdb to send your program file to the target, with the
load command.
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4. Optionally set some breakpoints or watchpoints, if you want
execution to halt at some particular event.

5. Commence program execution.

At some later moment, you might want to inspect the
program’s state. You can do this by pressing Ctrl-C to halt execu-
tion and return to a (gdb) prompt.

Whether program execution stops because of an exception,
because of hitting a breakpoint or watchpoint, or because of your
explicit intervention, gdb offers you a rich and varied set of com-
mands to inspect and modify the target environment. A subset of
these commands are documented in the remainder of this section.

When you Ctrl-C or otherwise halt a program, you can re-
build it without leaving gdb simply by typing make (followed
by any required build parameters, such as make mytarget2)
at the gdb prompt. If you need to run any command other than
make, you should use the gdb command shell commandline,
which simply runs whatever is in commandline as if you had
opened a shell and typed it.

You can close the connection to your target device without
quitting gdb by using the detach command. This can be useful
if you have two target systems attached to the same host PC and
you want to switch rapidly between them.

When you have finished with your gdb session altogether,
issue the quit command (which can be abbreviated simply ‘q’).
gdb will detach from the target and exit, perhaps warning you in
the process that the target program is still running.

Note: A variety of conditions can cause gdb to hang, particularly
when debugging an RDI (Angel) target over a serial link. If this
occurs, resetting the target may clear the hang condition. You
may, however, end up in a situation where pressing reset on the
target causes gdb to show the ROM monitor sign-on text, but gdb
itself is unresponsive to your input. If this happens, you will need
to use your host operating system’s method for terminating
crashed processes (in Linux, for instance, killall arm-elf-
gdb will do the job).
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Examining Target Memory
Using gdb, you can inspect arbitrary memory areas on the target
using the x (eXamine) command. The general format of this com-
mand is:

x/REPEATformatSIZE start-address

(The reason I have mixed the case of the parameters above is
simply for editorial clarity. There is no spacing between these
parameters on the gdb command line, and I needed to make it
clear that there are three distinct parameters immediately follow-
ing the slash character.)

The optional REPEAT parameter is the number of items to
be displayed. If this parameter is not specified, then 1 is assumed.

Format is a letter that specifies the way to format displayed
data in the selected memory region. It can be any one of the
following:

a address

c character

d decimal

f floating-point number

i machine-language instruction

o octal

s string

t binary

u unsigned decimal

x hexadecimal

Size is another optional single-letter parameter specifying to
gdb the unit size of the item being dumped. It can be any of the
following:

b byte

h 16-bit halfword

w 32-bit word

g 64-bit giant
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If format or size are not specified, then the last values sup-
plied for these parameters are used. You can see some example
usage of the x command in the chapter on worked firmware
examples.

Breakpoints and Other Conditional Breaks
Gdb supports three ways of automatically breaking into your pro-
gram when certain events occur; breakpoints, watchpoints and
catchpoints. Catchpoints are not of quite so much interest to the
embedded developer; they are triggered when a C++ exception is
thrown, or when certain other events such as dynamic library
loading occur. On the other hand, breakpoints and watchpoints
are of great interest. A breakpoint is triggered when the program
execution reaches some specified point, usually a function entry
point or code label. A watchpoint is triggered when the value of
some expression changes.

You set a breakpoint using the break command (this can
be abbreviated ‘b’). There are several variants of this command:

break function-name

Set a breakpoint on the start of function function-name. (You can
also specify the name of an assembly-language symbol, though
this is not strictly a function name).

break +offset or break -offset

Set a breakpoint at a given offset (in sourcecode lines) from the
current program location.

break line-number

Set a breakpoint at the given line number line-number in the cur-
rent sourcecode file.

break filename:line-number

Set a breakpoint at the given line number of sourcecode file
filename.
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break *memory-address

Set a breakpoint at an arbitrary memory location (even if this
location is not occupied by your code).

break

Set a breakpoint at the address of the next instruction to be executed.

break breakpoint-location if condition

Set a breakpoint at breakpoint-location (using one of the syn-
taxes above) that will be triggered only if condition is true. For
example, break myfunc if counter=0.

tbreak breakpoint-location

Set a one-time breakpoint at breakpoint-location (using one of
the syntaxes above). This breakpoint is automatically removed
after the first hit.

An exactly similar syntax can be used to set hardware-based
breakpoints (using hbreak and thbreak commands), but many
target platforms do not have hardware support for such
breakpoints.

Watchpoints can be set in a similar manner, using the follow-
ing commands:

watch expression

Gdb will break when expression is written with a new value. It
will not break if expression is written but the contents are un-
changed.

rwatch expression

Gdb will break when the program reads expression.

awatch expression

Gdb will break when the program reads or writes expression,
regardless of whether the value is changed or not (note the subtle
difference between this and the watch command).
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Each time you assign a breakpoint, watchpoint or catchpoint,
gdb assigns it a number. You use this number to refer to the
breakpoint (etc.) when enabling, disabling or removing it. You
can get information about currently set breakpoints, watchpoints
and catchpoints, including status information and statistics on
the number of hits, by using the commands info breakpoints
and info watchpoints.

You can delete a breakpoint or range of breakpoints (or
watchpoints and catchpoints) with the delete n command,
where n is a specific breakpoint number or range of numbers,
e.g., delete 1-8. If you do not specify a parameter, gdb will
ask for confirmation and then remove all breakpoints, watchpoints
and catchpoints.

Getting Further Help
The above descriptions and command definitions are a useful
minimum introduction to gdb’s capabilities, and in my experi-
ence embedded programmers often go no further than the above
functionality. For further information on more advanced func-
tions, you need look no further than the program itself: gdb has
an extremely large on-line help database. Typing help by itself
will show you some top-level categories; help command will
give you detailed help on a specific command, or a specific cat-
egory of commands (e.g., help breakpoints). Gdb also
has an info page, of course, and I encourage you to refer to it if
you are curious about the other capabilities of this utility.
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Chapter 4

Example Firmware Walkthroughs
and Debugging Techniques

A Quick Introduction to ARM and the Atmel EB40
Although I promised at the start of this book that you wouldn’t
need specific experience with the ARM architecture, in order for
the code examples in this chapter to be fully comprehensible, it
is useful to have a grasp of the the ARM architecture in general,
and the Atmel EB40 in particular. If you’re already familiar with
this board, or if you simply want to peruse the code in module-
functionality terms and don’t need a detailed explanation of the
board’s workings, feel free to skip this section.

If you intend to compile the examples and test them on a real
board, you should make sure that you have the following hard-
ware items:

■ Atmel EB40 board.

■ Two available serial ports on your computer (or two computers).

■ One straight-through serial cable with a male DB9 connector
on one end and a suitable connector (female DB9 or DB25)
to fit your computer on the other end.

■ One nullmodem cable with a female DB9 connector on one
end and a suitable connector (female DB9 or DB25) to fit
your computer on the other end.

■ Simple ASCII terminal emulation software. Hyperterminal
under Windows, or minicom under Linux are both suitable;
no special features are required.
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■ GNU tools built for your operating system and the ARM tar-
get, as described in an earlier chapter.

Please note that the information in this section is a very light
introduction to the ARM core, and I am intentionally not going
into great detail about the ARM programming model and instruc-
tion set; I am only discussing features to which I make specific
later reference in code examples. The definitive guide and essen-
tial reading on this topic is the ARM7TDMI datasheet (document
number ARM DDI 0029E). This is part of the documentation
portfolio for the AT91R40807 microcontroller, and can be down-
loaded from Atmel’s web site. At the same time, you should
download the AT91M40800/AT91R40807/AT91M40807/
AT91R40008 datasheet, of which the current version at the time
of writing is Rev. 1354D-ATARM-05/02. This latter document
provides a detailed description of the microcontroller’s peripher-
als and other important features.

The EB40 and the AT91R40807 microcontroller it contains
are relatively simple devices in the spectrum of ARM parts. The
core is a typical von Neumann architecture, with a single address
space (all I/O is memory-mapped). The first 32 bytes of memory
are reserved for the exception vector table:

Location Function

0x00000000 Power-on reset

0x00000004 Undefined instruction

0x00000008 Software interrupt

0x0000000C Prefetch abort

0x00000010 Data abort

0x00000014 Reserved

0x00000018 IRQ (interrupt request)

0x0000001C FIQ (fast interrupt request)

Note that these locations do not store jump target addresses,
as in architectures like the MC680x0; the table stores actual jump
instructions. The processor performs an absolute jump to the
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appropriate location when the relevant exception occurs. Because
of this, the ARM needs to have valid boot code at 0x00000000
on power-up and hence this location needs to be mapped to ROM,
at least initially. However, it is advantageous for software to be
able to modify the exception vector table. Partly for this reason,
almost all ARM variants either have a memory-management unit
(MMU) that can be used to remap RAM to logical address
0x00000000, or some internal chip selection logic that can be
used to alter the mapping of physical addresses to external chip
select lines sometime after initial boot. The Atmel AT91R40807
has the latter scheme; a simple programmable address selection
scheme accessed via special function registers. Like most other
ARM parts, it has built-in address decoding logic that generates
external chip select signals during external bus read/write opera-
tions. These signals are named NCS0 through NCS3 and CS4
through CS7 (the latter four are multiplexed with address lines,
and are active-high).

Thus, there are several different memory maps you will need
to consider for the EB40. Firstly, let’s look at the memory layout
of the board at power-on21:

Start End Contents

0x00000000 0x0001FFFF 128K flash (NCS0)

0x00100000 0x0011FFFF 128K on-chip SRAM

0x00300000 0x00301FFF 8K on-chip SRAM

0xFFC00000 0xFFFFFFFF Peripherals

The flash memory is divided by external hardware into two
sections: The lower 64K contains the Atmel bootloader and An-
gel debugger software, and it is write-protected (although it can
be write-enabled by fitting a jumper to the board). The upper
half of the chip is available for user programs, and it is factory-
loaded with a small demo program. This upper 64K area can be
moved to location 0x00000000 by means of a switch that ties A16
either to the A16 line from the CPU (in which case the memory

21 Because of address decoding limitations, all of the items in the EB40’s memory map are
mirrored at several locations. For clarity, the mirrored copies are not shown.
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map is as above), or directly to Vcc (in which case the upper 64K
half of the flash memory appears mirrored in the address space at
locations 0x00000000 and 0x00010000). Using this system, you
can boot the board using Angel, load a flash-loader into RAM,
and burn your own program into the upper half of flash memory.
You can then flip the switch, reset the board, and your own pro-
gram will run directly out of flash.

Note: Due to a bug (or rather an omission) in the EB40’s hard-
ware design, it is not possible to enter flash programming mode
when the write-protect jumper is open (i.e., in the protected mode).
In order to write the user area of the flash chip, you have to
unprotect the entire device by fitting a shorting block on jumper
J7, contrary to what the Atmel documentation tells you. Be very
cautious about writing to flash memory on this board. If, for
instance, your flash-writer routine has a bug that accidentally
writes too much data to the user area, the address pointer will
wrap around to the bottom of the flash device (due to partial
address decoding on the EB40) and you will obliterate the
bootloader and Angel. Once this happens, your only route to get
code back into the board is with a JTAG-based debugger module.
It would have been vastly preferable if the write-protect jumper
worked the way Atmel had intended it to work, but there doesn’t
seem to be a way to achieve this original design goal that doesn’t
require quite complicated external logic.

For insatiably curious readers, the details of the EB40’s hard-
ware design bug are as follows: The EB40 gates the write enable
signal running to the flash chip with the CPU’s A16 output line
and jumper J7. If J7 is open-circuit, the write enable signal to the
AT29LV1024 flash chip will only be asserted if the A16 output
from the CPU is high. In other words, the chip is effectively write-
protected for addresses in the lower 64K of flash memory. This
sounds more or less exactly like the design goal Atmel had in
mind. However, in order to perform a sector write operation on
the AT29LV1024, you need to issue a special unlocking sequence
of write cycles. This mechanism protects the chip against acci-
dental corruption due to transient signals (especially during
powerup and powerdown.) The unlocking sequence is: Write
0xAAAA to flash address 0x5555, then write 0x5555 to address
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0x2AAA, then write 0xA0A0 to address 0x5555. (Note that these
are word addresses; i.e., they are the binary pattern the flash chip
expects to see on its address bus. Because of the way the part is
wired on the EB40, the actual addresses to be written, from the
CPU’s perspective, are shifted left one bit). Unfortunately, these
special unlock addresses are in the lower 64K of flash. The EB40
has no way of knowing that these write cycles are simply unlock-
ing cycles, so they are blocked unless J7 is shorted. The net effect
is that the entire flash chip is write-protected by J7.

Assuming that you have the switch in its “LOWER MEM”
position, with A16 under CPU control, Angel will set up the fol-
lowing memory map:

Start End Contents

0x00000000 0x00001FFF 8K on-chip SRAM

0x00100000 0x0011FFFF 128K on-chip SRAM

0x01000000 0x0101FFFF 128K flash (NCS0)

0x02000000 0x0203FFFF 512K SRAM (NCS1)

0xFFC00000 0xFFFFFFFF Peripherals

The third memory map you need to consider is the arrange-
ment that will be in place when running your own code directly
out of flash memory; and to a certain degree, this is under your
control. The AT91R40807 has two modes of operation; a simple
power-on boot mode where all external memory accesses are
pointed to the memory device on chip select NCS0 (the memory
map for this is illustrated above), and a more complex mode where
the 8K block of internal SRAM is mapped at 0x00000000, the
internal 128K SRAM block is mapped at 0x00100000. In this
mode, NCS0-3 (and, optionally, CS4-7) are all asserted in differ-
ent blocks of the memory map. The idea is that you set up the
chip select mode registers at boot time, copy your exception vec-
tor table to the 8K SRAM block, and probably also move your
main code to the 128K on-chip SRAM (in some other variants of
this processor family, that 128K area is occupied by ROM). You
then jump to the code’s new location and execute a “remap” com-
mand to enable the external chip selects.
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First Step—the LED Flasher (in Assembler)
The day has finally come—after weeks of poring over datasheets
and drawing schematics, you finally have the first run of proto-
type PCBs on your bench, and it’s time to get them working and
port your firmware. Of course, we know the Atmel EB40 works,
but for educational purposes we will treat it as if it were our own,
largely unverified hardware platform.

The first thing we’re going to do is write a very small assem-
bly-language program to check that the processor is running, and
that the interconnects to RAM and ROM are correct. This program
will blink one of the EB40’s LEDs rapidly; the embedded systems
equivalent of “Hello, world!”. (When I’m writing this kind of quick
and dirty test code, I usually just put an oscilloscope on one of the
output pins, so I don’t have to spend any time thinking about drive
current capabilities or timing constants for the flash loop. How-
ever, the EB40 has a convenient set of LEDs ready-wired to
appropriate GPIO pins, so we may as well use them.)

The sourcecode for this program can be found on the CD-
ROM in the directory sourcecode/blink. To build it, copy it to a
temporary directory on your hard drive, change to that directory,
and run make22.

Note that the EB40 gives us at least five ways to load and
execute this code. We can use gdb to load the code into RAM
using the Angel loader, we can use the EB40’s proprietary
bootloader to achieve the same thing, we can poke it directly into
RAM using a JTAG module, or we could use either the JTAG
interface or our own custom flash-writer code to write our pro-
gram into the unoccupied 64K of flash memory on the board.

For the time being, however, we will use gdb. One reason for
choosing gdb over the EB40’s bootloader, even for trivial appli-
cations like this, is that the Atmel BINCOM utility, required to
load code directly to RAM using the bootloader, is only provided

22 If you use Windows to copy the files from a CD-ROM, the copies on your hard drive will
have their read-only flag set; remember to make the files writable using ATTRIB or by
right-clicking each file in Explorer and unchecking “Read-only”.
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for Windows, whereas everything else I am discussing in this
chapter is equally valid for Linux or Windows.

Ensure that you have a straight-through serial cable connected
from the SERIAL A port on the EB40 to your PC, and that the
EB40’s memory switch SW1 is set to “LOWER MEM”. Con-
nect power to the EB40, press the red reset button and you should
see the yellow LED (LED2) illuminate, indicating that Angel is
running. Now open a shell prompt, change to the directory con-
taining your local copy of the example1 sourcecode, run make to
build the executable, then type the following commands23:

arm-elf-gdb example1.elf

set remotebaud 9600

target rdi /dev/ttyS0

load

(I’ve assumed above that the EB40 board is connected to the
PC via the first serial port, which is normally /dev/ttyS0. If your
EB40 is connected to a different port, make the appropriate sub-
stitution. Also note that although Angel does support higher
transfer speeds, it’s much more reliable when you run at 9600bps.
Feel free to experiment with speeds as high as 115200bps, but be
prepared for the debugger to hang at any speed other than 9600bps.
The typical symptom is that you will see the Angel sign-on mes-
sage, then gdb will be hung hard; you’ll need to kill the process.)

The RDI target specified in the third command line stands
for Remote Debug Interface; it is ARM’s name for the serial pro-
tocol used by Angel. If you were connecting to a target that has
gdb stubs running on it, you would use the command target
remote /dev/ttyS0 instead.

To start the program, type continue and press Enter. The
red LED on the board will start blinking at a rate of about 2Hz.

Let’s leave the hardware for the time being and examine the
program in detail. First, we’ll look at the Makefile:

23 Remember to make sure that your ARM tools are in the current PATH, as detailed in the
chapter on installing the toolchain.
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# Embedded Systems Development on a Shoestring
# Example project 1 - EB40 LED Flasher
#
# Lewin A.R.W. Edwards (sysadm@zws.com), Jun-2002.

ASFLAGS = -mcpu=arm7tdmi -gstabs
LDFLAGS = -Teb40-ram.ld -nostartfiles -Lgcc -L.
OBJS    = boot.o
EXE     = example1.elf

$(EXE): $(OBJS)
arm-elf-gcc $(LDFLAGS) -o $(EXE) $(OBJS)

%.o:%.s

arm-elf-as $(ASFLAGS) $< -o $@

clean:
rm -f $(OBJS)
rm -f $(EXE)

There isn’t a lot of complexity here. We are generating an execut-
able file called example1.elf, which is composed of a single object
file, boot.o. We also provide a simple rule to generate this object file
from an assembly sourcecode file. You could use this makefile as a
generic template for writing all-assembly-language programs.

The -gstabs parameter given to gas tells it to generate and
include symbol table information in .stabs and .stabstr sections.
This will be helpful in later debugging (though the structure of
this first ultra-simple example program is such that it doesn’t
actually generate any debugging information in this section).

We can now inspect the actual sourcecode to the program:

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Embedded Systems Development on a Shoestring
@
@ Example project 1 - EB40 LED Flasher
@
@ Lewin A.R.W. Edwards (sysadm@zws.com), Jun-2002.

.section .text

.code 32

.globl vectors
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@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ In a ROM-startup program, this would be the interrupt
@ vector area. As this program is intended for RAM
@ startup, we simply have our init code at the “reset
@ handler” (entry point).

vectors:
b reset @ Reset
b . @ Undefined instruction
b . @ SWI
b . @ Prefetch abort
b . @ Data abort
b . @ reserved vector
b . @ irqs
b . @ fast irqs

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Entry-point code
reset:

ldr r4,PIO_SODR
ldr r5,PIO_CODR

@ Bit 1 is the red LED on the EB40
ldr r6,=0x02

blink_loop:
str r6,[r4] @ Turn on LED

@ Brief pause
ldr r0,delay_constant
ldr r1,=0

pause_loop1:
sub r0,r0,#1
cmp r0,r1
bne pause_loop1

str r6,[r5] @ Turn off LED

@ Brief pause
ldr r0,delay_constant

pause_loop2:
sub r0,r0,#1
cmp r0,r1
bne pause_loop2
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@ Loop forever
b blink_loop

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Miscellaneous constants

@ Set Output Data Register
PIO_SODR: .word 0xffff0030

@ Clear Output Data Register
PIO_CODR: .word 0xffff0034

@ Provides a decent delay period
delay_constant: .word 0x00040000

Since this code uses only registers to store its loop variables
and other temporary data, everything lives in the .text section,
hence we have a single .section directive at the start of the file to
indicate this fact.

What’s this “.code 32” directive, though? This directive is
specific to the ARM targeted version of as. Many variants of the
ARM core have two modes; normal ARM mode, with a 32-bit
instruction word, and a cut-down mode called Thumb mode. In
Thumb mode, the processor operates with a limited instruction
set, fewer directly accessible registers, and a 16-bit instruction
word. Thumb code has two main uses—firstly, it’s more space-
efficient, and secondly, it is more bandwidth-efficient on systems
with a narrow code memory bus. In fact, the AT91R40807 is just
such a processor, because it has a 16-bit external data bus; it’s
significantly more efficient to program this device using the
Thumb extension.

For simplicity, however, I want to work through the code ex-
amples in this book with the full 32-bit ARM instruction set,
hence I use the .code 32 directive to inform gas to assemble
32-bit opcodes. This is really the native instruction set of the
ARM core—not all ARM cores support Thumb, and once you
start mixing Thumb and ARM code in your program, you are
forced to consider various processor mode switching and context
saving tasks that aren’t necessary in a pure-ARM program. (It’s
not possible to write a pure Thumb program, because different
events—power on reset and various exception conditions—can
force the processor back into ARM mode.)
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If you want to experiment with Thumb code for yourself,
you can coerce gcc to generate Thumb opcodes by supplying the
-mthumb switch on its command line. You’ll probably want to
add the -mthumb-interwork switch also, which includes extra
preamble code allowing Thumb functions to call ARM functions
and vice versa (this is referred to as “Thumb interwork code”).
Please note that you’ll also need to rebuild newlib, because the
version we compiled earlier is built for 32-bit ARM only, with-
out interworking support.

Note that I have called the entry-point “vectors” and the start
of this code is a fully-populated ARM exception vector table. Al-
though this is in no way necessary for a program that will be loaded
into an arbitrary RAM location, it does pave the way for a future
step of migrating the code to boot directly out of flash memory.

The functional part of the code is fairly self-explanatory. We
know that the Atmel bootloader has already set up the necessary
data direction registers in the processor, so all we need to do in
order to turn an LED on and off is set and clear the appropriate
bit in the GPIO port register. On the AT91R40807, this is achieved
by means of two registers; PIO_SODR and PIO_CODR. When
you write to PIO_SODR, any ‘1’ bit in the word you write is
SET in the GPIO output data latch—other bits are undisturbed.
When you write to PIO_CODR, any ‘1’ bit in the word you write
is CLEARED in the GPIO output data latch. If you wanted to
load some specific word gpioword into the data latch, you could
use code something like this:

PIO_SODR = gpioword;
PIO_CODR = gpioword ^ 0xffffffff;

We use the following simple linker script to link the application:

/*
Linker script for Atmel EB40

This script is intended for C programs
that will be loaded with BINCOM and the
Atmel bootloader, or via Angel. All
segments are emitted to the SRAM block
at 0x02000000.
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Lewin A.R.W. Edwards (sysadm@zws.com),
Feb-2002

*/

/*
For standardization, the entry-point is
called “vectors”, although for these programs,
this is not actually the interrupt vector
table.

*/

ENTRY(vectors)

SEARCH_DIR(.)

/*
There is a single memory segment, representing
the 512K on-board SRAM.

*/

MEMORY

{
sram : org = 0x02000000, len = 0x00080000
/* 512KBytes of SRAM */

}

SECTIONS

{
.text :
{

*(.text);
. = ALIGN(4);
*(.glue_7t);
. = ALIGN(4);
*(.glue_7);
. = ALIGN(4);
etext  =  .;

} > sram

.data ADDR(.text) + SIZEOF(.text) :
{

datastart = .;



     165Example Firmware Walkthroughs and Debugging Techniques

__data_start__ = . ;
*(.data)
. = ALIGN(4);
__data_end__ = . ;
edata  =  .;
_edata  =  .;

}

.bss ADDR(.data) + SIZEOF(.data) :
{

__bss_start__ = . ;
*(.bss); *(COMMON)
__bss_end__ = . ;

}

end = .;
_end = .;
__end__ = .;

/* Symbols */
.stab 0 (NOLOAD) :
{

[ .stab ]
}

.stabstr 0 (NOLOAD) :
{

[ .stabstr ]
}

}

You’ll observe that this script is much more complicated than
you might expect; this is because it’s intended to be more gen-
eral-purpose than this example program absolutely requires.

Note that the last two stanzas in this script refer to debugging
symbol table information. We want this to be emitted to the ELF
executable so that when we break the running program, gdb can
provide us with useful information about the current program
counter, cross-referenced to the relevant line in the appropriate
sourcecode file. Including this debugging information often makes
the ELF file much larger than the actual code contained in it, but
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this isn’t important; none of the extraneous information would
be emitted to a ROM dump.

Speaking of debugging, it’s time to see what gdb, in conjunc-
tion with Angel, can do for us. Press Control-C to quit the program
running on the target board. Gdb will produce output something
like this:

RDI_execute: you pressed Escape
Program received signal SIGINT, Interrupt.
pause_loop1 () at boot.s:40
40                             bne pause_loop1
Current language:  auto; currently asm
(gdb)

The exact output you see depends on just where the program
was when you interrupted it. At this point, the program is frozen
(you’ll observe that the LED is no longer blinking). Since we
don’t know exactly where we are in the program when we stopped
it, let’s begin by setting a breakpoint at the start of the program’s
main loop. Type break blink_loop and press Enter, and gdb
will report:

Breakpoint 1 at 0x200002c: file boot.s, line 33.

Resume program execution with the continue command, and
almost immediately you will see the following output:

Continuing.

Breakpoint 1, blink_loop () at boot.s:33
33      blink_loop: str r6,[r4]   @ Turn on LED
(gdb)

Now the program on the target board is at a known location,
we can delete the breakpoint we set earlier, by issuing a clear
blink_loop command. We can now single-step through the
program by issuing a step command.

Gdb supports a wide variety of breakpoint options. You can
set a breakpoint on a label, using the syntax break
labelname. You can also set a breakpoint to be triggered when
execution reaches a specific line in a particular sourcecode file,
using the syntax break sourcefile:linenumber. For
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more information, you can refer to gdb’s comprehensive built-in
help system; for example help break or help clear.

Bringing Up a Simple C Program—
The LED Flasher (in C)

Now that we’ve verified that our board is fetching code and ex-
ecuting it correctly, we can start to bring up the C run-time library
and hoist ourselves into a high-level application. Since we’re load-
ing our code into RAM and executing it directly from the load
address, this is quite simple. (The situation gets much more com-
plicated once we need to start up out of ROM.) All we need to do
in order to pass control to the C program is to zero the BSS sec-
tion, set up a stack pointer, and jump to the main program.

In this project, we’ll use a variant of the linker script from the
previous example. (All the sourcecode for this project can be
found in sourcecode/blink_c on the included CD-ROM.) The only
change we make to the linker script is to reserve some extra space
(two kilobytes) in the .bss output section for the application’s
stack, and define a couple of symbols to let the main program
know where the stack starts and finishes. The new .bss output
section definition reads:

.bss ADDR(.data) + SIZEOF(.data) :
{

__bss_start__ = . ;
*(.bss); *(COMMON)
__bss_end__ = . ;
_stack_bottom = . ;
. += 0x800 ;
_stack_top = . ;

}

Notice, by the way, that I haven’t initialized the stack area
with any specific fill value. A more usual practice would be to
fill the stack area with a distinctive magic value (0xDEADBEEF
is one historically significant example of distinctive fill patterns).
This can help you determine if you’re over-allocating or under-
allocating stack space; you can allow your program to run for a
while (hopefully, putting it through some worst-case stack usage



168 Chapter 4

operations), and then inspect the stack area. The portion that still
contains your magic value wasn’t used and can be reclaimed. If
the magic value no longer appears anywhere within the stack
area, then your program almost certainly blew out its stack and
overwrote some of whatever lay below the stack in memory.

In addition to updating the linker script, we also need to make
a minor change to the Makefile; we add a new variable called
CFLAGS that holds command-line switches to be passed to gcc,
and we also need to add a new rule to compile .c sourcecode
files. We also change the executable’s name to example2.elf. Fi-
nally, we need to add a new module to the OBJS list; main.o,
corresponding to our C sourcecode file main.c. Rather than re-
produce the entire makefile, I’ll just illustrate those changes here:

CFLAGS = -g -I. -mcpu=arm7tdmi

OBJS   = boot.o main.o
EXE    = example2.elf
%.o:%.c

arm-elf-gcc -c $(CFLAGS) $< -o $@

The options on the gcc command line deserve a little expla-
nation. The -g option tells gcc to generate debugging information
in a gdb-friendly manner. -I tells gcc to search the current direc-
tory for include files. -mcpu=arm7tdmi tells gcc which particular
variant of the ARM core we’re using - the current version of gcc
supports about thirty different ARM core variants from ARM2 to
XScale. Note that the -c option (compile single file only; do not
invoke the linker) is specified in the gcc rule, rather than in
CFLAGS, because it is always going to be required in any project.

Now let’s look at the assembly-language stub that prepares
the C environment and loads the main program. Please note that
I have omitted some of the comments in this sourcecode, be-
cause they duplicate information that is described completely in
the previous example.

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Embedded Systems Development on a Shoestring
@
@ Example project 2 - EB40 LED Flasher in C
@
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@ Lewin A.R.W. Edwards (sysadm@zws.com), Jun-2002.

.section .text

.code 32

.globl vectors

vectors:
b reset @ Reset
b . @ Undefined instruction
b . @ SWI
b . @ Prefetch abort
b . @ Data abort
b . @ reserved vector
b . @ irqs
b . @ fast irqs

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Entry-point code
reset:

@ Begin by clearing out the .bss section
ldr r1, bss_start
ldr r2, bss_end
ldr r3, =0

clear_bss:
cmp r1,r2
strne r3,[r1],#+4
bne clear_bss

@ Initialize the stack pointer
ldr r13,stack_pointer

@ Call main function
bl main

@ Loop forever if main() exits
b vectors

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Miscellaneous constants
stack_pointer: .word _stack_top
bss_start: .word __bss_start__
bss_end: .word __bss_end__

.end
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This is the simplest possible case of C run-time initialization.
For instance, we don’t provide any support for run-time library
functions that may require extra board-specific code or symbol
definitions. More importantly, our code has the rare quality of
not requiring any special fixups or data relocation; it is loaded by
gdb (or rather by Angel) directly to the area from which it needs
to run. (In fact, the point is rather moot since we don’t use any
data or BSS space in this program, because the only variable we
create is allocated on the stack. But even if we did create some
initialized global variables, there’s no data we would need to re-
locate—the initialized data segment is already in RAM at the
correct VMA, and it is preloaded with its required initial values
while the executable is being transferred onto the target board.)

By the way, note that register r13 is defined (as an ARM con-
vention) to be the stack pointer, and gas assigns it an alias of
“sp”. Likewise, r14 is reserved for the link register used when
returning from a subroutine, and gas allows you to refer to this
register via the alias “lr”, as in the oft-used “bx lr” return-from-
subroutine code. Finally, r15 is the program counter, referred to
by the alias “pc”.

You won’t often be able to use startup code this simple in an
embedded application, because your program will almost always
be running out of ROM; at the very least, you’ll have to copy the
initialized data segment from its LMA in ROM to its VMA in
RAM. The one common scenario where you might be able to
write your main application like this is if you have a bootloader
on your board that performs all the loader functionality for you.
For example, in order to reduce overall materials cost in a project,
I once developed a system that had a very small bootloader in
masked ROM (very cheap) and the application code in
SmartMedia®-compatible NAND flash memory (again, very
cheap—but not directly bootable, and very slow). The bootloader
simply copied the NAND flash contents to the start of RAM and
jumped into the main program thus loaded.

In that project, the application code in NAND flash used a
linker script and initialization code much like the configuration
in this little example program.
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One important note applies here: Because we can, in general,
assume that programs are going to make changes to their initial-
ized variables (items in the .data section), programs that are linked
and loaded using the above method way can’t simply be restarted,
because all variables in their initialized data sections will be cor-
rupted with whatever the last information written by the program
might have been. If you terminate execution of a program writ-
ten this way, you need to reload the entire thing from the source
media. In the case of a program being debugged using gdb, you
need to execute the load command; simply issuing a run com-
mand to restart the target program will not necessarily work
correctly.

Since we’ve now got the C run-time ready to roll, let’s look
at the C sourcecode for the meat of the program (this is the main.c
sourcecode file):

/*
Embedded Systems Development on a Shoestring
Example project 2 - EB40 LED Flasher in C
Lewin A.R.W. Edwards (sysadm@zws.com), Jun-2002.

*/

/* GPIO set and reset registers */
#define PIO_SODR 0xffff0030
#define PIO_CODR 0xffff0034

/* Bits to be set/reset on the GPIO port in
order to toggle the LED */

#define RED_LED 0x00000002

/* Quick and dirty macros to write a register
or memory location word, halfword or byte */

#define WRITEREGW(addr,value) *((volatile
unsigned int *) (addr)) = (value)

#define WRITEREGH(addr,value) *((volatile
unsigned short *) (addr)) = (value)

#define WRITEREGB(addr,value) *((volatile
unsigned char *) (addr)) = (value)
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int main(void)
{

register int i;

while (1) {
for (i=0x40000;i>0;i--) {}
WRITEREGW(PIO_SODR,RED_LED);
for (i=0x40000;i>0;i--) {}
WRITEREGW(PIO_CODR,RED_LED);

}
}

This is fairly close to being a direct port of the assembly-
language version. Once built with make, this program can be
loaded and run on the board using the same method as we used
for the first example, except that the filename for this second
example is example2.elf.

If you load and run this second example the same way as the
first, you will observe that even though I used the same nominal
timing constant (0x40000) and algorithm in this project as in the
previous project, the LED blink rate is much slower than it was
in the pure-assembly language version; about 0.75Hz. As a mat-
ter of interest, you can improve the performance of this little
application quite a lot by enabling gcc’s optimization features.
Simply edit the CFLAGS line and add the option -O3 (maximum
optimization), rebuild the project with make clean ; make,
load it onto the board and you’ll see that the blink rate is about
35% faster.

Writing a Simple Flash-Loader
(and Inspecting Memory with gdb)

The programs we’ve written so far all require an external entity—
in our case, Angel—to load them into RAM ready for execution.
It’s time to demonstrate how we can remove our dependency on
Angel by writing a program that can initialize itself from power-
on. This is also the only way we can illustrate how to initialize
more complex programs with relocated data segments, different
VMA/LMA scenarios, and other exotica.



     173Example Firmware Walkthroughs and Debugging Techniques

Before we can develop any such programs, however, we need
to engineer a way to get them into the on-board memory. That is
what we will do in this section. (In the next section, we’ll de-
velop a simple ROM-bootable program that can be used as a
starting point for more complex and exciting programs.)

This example flash-loader program is unavoidably less gen-
eralizable than the previous examples; it’s highly specific to the
Atmel board. However, it serves as a useful illustration of an
intermediate step you might take in developing your own board.
You can find the sourcecode to this loader program in the
sourcecode/flash directory on the included CD-ROM.

This program was developed with the sourcecode/blink_c
code as a basis. Firstly, we add the following snippet to boot.s at
the end (immediately before the .end directive):

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Data to be loaded into flash memory
.globl flash_contents
flash_contents: .incbin “flash.bin”

. = flash_contents + 0x10000

This specifies that we want to include the external file
“flash.bin”, which will contain the raw binary data to be written
into the user section of the EB40’s flash memory. Explicitly chang-
ing the location counter after including the external binary file
serves a couple of principally housekeeping purposes: Firstly, if
your external program exceeds 64K in size (the limit of available
flash memory, as you’ll recall from our description of the EB40
hardware above), you’ll be alerted to this fact by a fatal error
when gas tries to move the location counter backwards. Secondly,
although this isn’t important on the EB40, if you were loading
the flash-loader into a RAM area too large for it, you would get
an error either at link time or at load time. It’s always wise, where
possible. to structure things so that your tools work as hard as
possible at reporting errors of this nature—it can prevent a lot of
fruitless debugging later. The one major downside to padding the
program in this way is that the flash-loader module itself is auto-
matically blown out to slightly more than 64K in size. That makes
it somewhat slow to load over the 9600bps Angel serial link, but
it’s an acceptable compromise.
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Next, we tweak the makefile a little. We change the output
filename to flash.elf by altering the EXE variable:

EXE    = flash.elf

We also need to change the first rule to indicate that this project
is now dependent on the flash.bin file:

$(EXE): $(OBJS) flash.bin

All of the major changes to the code are in the C section of
the program, main.c, which you can read below:

/*
Embedded Systems Development on a Shoestring
EB40 Flash Programmer
Lewin A.R.W. Edwards (sysadm@zws.com), Jun-2002.

*/

#include <string.h>

/* GPIO set and reset registers */
#define PIO_SODR 0xffff0030
#define PIO_CODR 0xffff0034

/* Bits to be set/reset on the GPIO port in
order to toggle the LEDs */

#define RED_LED 0x00000002
#define YELLOW_LED 0x00000010
#define GREEN_LED 0x00000004

/* Angel-defined starting address of bottom of
flash memory */

#define FLASH_BASE 0x01000000

/* Angel-defined starting address of writable
area of flash memory */

#define FLASH_START FLASH_BASE + 0x10000

/* Number of words per sector in the AT29LV1024
flash chip */

#define FLASH_PAGE_SIZE 128

/* Number of programmable bytes in the user-
writable area of the flash chip */

#define FLASH_SIZE 0x00010000
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/* Quick and dirty macros to write a register
or memory location word, halfword or byte */

#define WRITEREGW(addr,value) *((volatile
unsigned int *) (addr)) = (value)
#define WRITEREGH(addr,value) *((volatile
unsigned short *) (addr)) = (value)
#define WRITEREGB(addr,value) *((volatile
unsigned char *) (addr)) = (value)

/* Quick and dirty macros to read a register or
memory location word, halfword or byte */

#define READREGW(addr) (*((volatile unsigned
int *) (addr)))
#define READREGH(addr) (*((volatile unsigned
short *) (addr)))
#define READREGB(addr) (*((volatile unsigned
char *) (addr)))

/* Import the flash-programming buffer from
boot.s */
extern unsigned short flash_contents[FLASH_SIZE / 2];

/*
    This subroutine loads the upper 64K of the

flash chip. The red LED is on during the
program operation. The yellow LED is on
while waiting for the flash chip to finish
a sector write. The green LED is turned on
and the other LEDs turned off when the
write is complete.

*/

void LoadFlash(unsigned short *contents)
{
    register int i,j;

    /* Turn off yellow and green LEDs */
    WRITEREGW(PIO_CODR, YELLOW_LED | GREEN_LED);

    /* Turn on red LED to indicate burn in
progress */
WRITEREGW(PIO_SODR, RED_LED);



176 Chapter 4

for (i=0; i<FLASH_SIZE; i+=FLASH_PAGE_SIZE * 2)
{

/* Unlock chip for sector programming */
WRITEREGH(FLASH_BASE + (0x5555 << 1),
  0xaaaa);
WRITEREGH(FLASH_BASE + (0x2aaa << 1),
  0x5555);
WRITEREGH(FLASH_BASE + (0x5555 << 1),
  0xa0a0);

for (j=0;j<FLASH_PAGE_SIZE;j++) {
WRITEREGH(FLASH_START + i + (j * 2),
 contents[(i/2)+j]);

}

        /* Turn on yellow LED to indicate
  waiting for program finish */

        WRITEREGW(PIO_SODR, YELLOW_LED);

        /* Wait for sector to finish programming */
while (READREGH(FLASH_START) !=
  READREGH(FLASH_START)) { }

/* Turn off yellow LED */
WRITEREGW(PIO_CODR, YELLOW_LED);

}

/* Burn complete - turn off red LED */
WRITEREGW(PIO_CODR, RED_LED);

/* Turn on green LED to indicate burn
  complete */
WRITEREGW(PIO_SODR, GREEN_LED);

}

/*
Entry-point routine

*/
int main(void)
{

/* Burn the user area of flash */



     177Example Firmware Walkthroughs and Debugging Techniques

LoadFlash(flash_contents);

/* Verify the flash contents. If it didn’t
   verify OK, then turn on the red LED. */
if (memcmp(flash_contents, (unsigned char *)
 FLASH_START, FLASH_SIZE))

WRITEREGW(PIO_SODR, RED_LED);

/* Our work is done; halt. */
while (1);

}

The AT29LV1024 flash chip is programmed in 128-word sec-
tors. For each sector write operation, the unlocking sequence is
first sent to the chip (see the discussion on the EB40 hardware at
the start of this chapter). The program then writes 128 words to the
chip. This 128-word sector is temporarily stored in an internal RAM
programming buffer within the flash chip. Each high-to-low tran-
sition of the write enable pin on the flash chip resets and starts the
internal programming timer. If more than 150 microseconds goes
by without the timer being reset, the auto-programmer is triggered,
and it erases and reprograms the target sector. (If fewer than 128
words were loaded into the programming buffer, the uninitialized
words will be erased to their default value of 0xFFFF.) While the
auto-programmer is operating, reading any location in the device
will show toggling values on the I/O

6
 and I/O

14
 data lines of the

device. Thus, your flash-loader code can poll for the end of the
programming operation by simply reading any single flash loca-
tion twice and comparing the results. If the two read operations
yield the same result, then the programming operation is complete
and you can proceed to the next sector.

You should note from the above explanation that the method
the chip uses to signal that a programming operation is in pro-
cess precludes you from running the flash-loader program out of
the flash chip that is being burned. While not all flash memory
devices have this restriction, most of them do—so if you intend
your system to be self-reprogrammable you must generally en-
sure that it has enough RAM to entirely contain a flash-loader
stub. For some mystifying reason, this issue frequently causes
long threads of questions from novice programmers asking how
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they can circumvent the restriction and run the flash-loader di-
rectly out of the device being programmed. Presumably there are
a terrifyingly large number of designs out there where someone
built the hardware without considering that additional code RAM
would be required in order to run a flash-loader. You can’t work
around this restriction, at least for the AT29LV1024 device and
indeed the vast majority of flash devices in use today. If you need
to run code out of flash and simultaneously write back to that
same flash device (for instance, if you have a filesystem as well
as directly executable code in the device), you need to look at
multilayer flash devices. Sharp and Intel, among other manufac-
turers, have parts that satisfy this design need.

Our small program above erases and writes the entire user-
accessible portion of the flash chip from the data included at compile
time in boot.s, and then verifies the result. If the write and verify
operations were successful, the green LED will come on at the end
of this process. If the write completed, but the verify operation
failed, the red and green LEDs will be illuminated. Any other com-
bination of LEDs indicates that the code is stuck in the programming
loop somewhere, or some other problem occurred.

By the way, this program is also important for another reason
besides its basic functionality—it’s the first example we have
discussed so far that has explicitly used a function out of the
standard libraries—memcmp().

The sourcecode/flash directory includes, along with the flash-
loader sourcecode, an example flash.bin file for testing purposes;
this file simply contains a text string. To verify the operation of
the flash-loader, you should make, load and continue the
program, exactly as in the previous examples. Once the green
LED comes on to signal the end of the programming operation,
press Ctrl-C to return to the gdb prompt. We’ll now use gdb to
peek around in memory and satisfy ourselves that the flash de-
vice was programmed successfully.

We’ll use the x command (described in the gdb reference
section earlier) to look at the user area of flash memory. Since I
told you that the sample data we just loaded into flash memory
was a text string, we should inspect it using the command x/s
0x01010000. This yields the following output:



     179Example Firmware Walkthroughs and Debugging Techniques

0x1010000: “This is an example file to be
burned into flash memory.\n\n”

By comparison, we can also dump the same data to the de-
bugging terminal in character format with the command x/58c
0x01010000:

0x1010000: 84 ‘T’  104 ‘h’ 105 ‘i’ 115 ‘s’ 32 ‘ ‘  105 ‘i’ 115 ‘s’ 32 ‘ ‘

0x1010008: 97 ‘a’  110 ‘n’ 32 ‘ ‘  101 ‘e’ 120 ‘x’ 97 ‘a’  109 ‘m’ 112 ‘p’

0x1010010: 108 ‘l’ 101 ‘e’ 32 ‘ ‘  102 ‘f’ 105 ‘i’ 108 ‘l’ 101 ‘e’ 32 ‘ ‘

0x1010018: 116 ‘t’ 111 ‘o’ 32 ‘ ‘  98 ‘b’  101 ‘e’ 32 ‘ ‘  98 ‘b’  117 ‘u’

0x1010020: 114 ‘r’ 110 ‘n’ 101 ‘e’ 100 ‘d’ 32 ‘ ‘  105 ‘i’ 110 ‘n’ 116 ‘t’

0x1010028: 111 ‘o’ 32 ‘ ‘  102 ‘f’ 108 ‘l’ 97 ‘a’  115 ‘s’ 104 ‘h’ 32 ‘ ‘

0x1010030: 109 ‘m’ 101 ‘e’ 109 ‘m’ 111 ‘o’ 114 ‘r’ 121 ‘y’ 46 ‘.’  10 ‘\n’

0x1010038: 10 ‘\n’ 0 ‘\0’

You can experiment with the other formatting options to see
what kind of output they produce.

While we’re inspecting memory, let’s also introduce another
very useful command—disassemble start-address
end-address. This command provides a symbolic disassem-
bly of the specified memory region, pausing on page boundaries
if necessary. For example, we can disassemble the vector area at
the bottom of memory using the command disassemble 0
0x20, which will show something like this:

Dump of assembler code from 0x0 to 0x20:

0x0: ldr pc, [pc, #24]    ; 0x20
0x4: ldr pc, [pc, #24]    ; 0x24
0x8: ldr pc, [pc, #24]    ; 0x28
0xc: ldr pc, [pc, #24]    ; 0x2c
0x10: ldr pc, [pc, #24]    ; 0x30
0x14: ldr pc, [pc, #24]    ; 0x34
0x18: ldr pc, [pc, #-3872] ; 0xfffff100
0x1c: ldr pc, [pc, #24]    ; 0x3c
End of assembler dump.

As you can see, Angel initialized all the entries in the vector
area to use a secondary jump table immediately after the real
table. The only exception is the IRQ vector, which is directed via
an Atmel-specific interrupt controller register named AIC_IVR.
For more information on how this interrupt mechanism works,
consult the AT91R40807 datasheet’s description of the Standard
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Interrupt Sequence (this information is found on p.71 of the cur-
rent version at the time of writing).

One excellent reason for using a secondary vector table is so
that the interrupt handler code can be at any arbitrary location in
memory, without needing to be within the boundaries of a single-
word relative branch instruction. A second possible reason is that
it’s easier to hook interrupts in realtime if you can simply write a
pointer rather than having to synthesize a machine code instruc-
tion. A third good reason for using this technique is that it’s much
easier simply to write an absolute function pointer than to try and
calculate a relative offset and synthesize a branch instruction.
Let’s just inspect the secondary table to satisfy our curiosity as to
where those exceptions are being vectored, with the command
x/8xw 0x20:

0x20:   0x02073748  0x020735e4  0x02073768  0x02073754

0x30:   0x02073758  0x0207375c  0x02068268  0x02073764

As you can see, these vectors are all in the upper half of the
EB40’s SRAM, inside the area reserved for Angel’s use.

A Simple ROM-Startup Program
Now that we have the technology to burn our programs into ROM,
let’s develop our first self-sufficient application and load it onto
our board. The first thing we need to do is write a new linker
script that directs the code and data appropriately. A suitable linker
script is provided below:

/*
Linker script for Atmel EB40

This is an introductory linker script for
programs that use ROM-based startup

Lewin A.R.W. Edwards (sysadm@zws.com), Feb-2002
*/

/*
The entry-point is the power-on reset
vector at the start of the vector table.

*/
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ENTRY(vectors)

SEARCH_DIR(.)

/*
This simple partial example only shows the
boot configuration of the device, without
remapping. It also does not show the off-
chip SRAM (since this is inaccessible
before remapping).

*/

MEMORY

{
/* 64KBytes of user flash */

flash  : org = 0x00000000, len = 0x00010000

/* 128K on-chip SRAM */
sram128k : org = 0x00100000, len = 0x00020000

/* 8K on-chip SRAM */
sram8k : org = 0x00300000, len = 0x00002000

}

SECTIONS
{

.text :
{

*(.text);
. = ALIGN(4);
*(.glue_7t);
. = ALIGN(4);
*(.glue_7);
. = ALIGN(4);
etext  =  .;

} > flash

.data :

{
datastart = .;
__data_start__ = . ;
*(.data)
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. = ALIGN(4);
__data_end__ = . ;
edata  =  .;
_edata  =  .;

} > sram128k

.bss :
{

__bss_start__ = . ;
*(.bss); *(COMMON)
__bss_end__ = . ;

} > sram128k
}

This linker script is not a complete general solution for writing
ROM-startup applications, but it suffices for simple assembly-
language programs like ours, and we will improve on it later.

Since we’ll be loading this program onto the board via the
simple flash-loader described in the previous section, we need to
convert the ELF output we’ve been using in all the previous ex-
amples into a raw binary format suitable for burning into flash
memory. We accomplish this by adding an arm-elf-objcopy com-
mand to the makefile. The final makefile is shown below:

# Embedded Systems Development on a Shoestring
# Example ROM startup program
#
# Lewin A.R.W. Edwards (sysadm@zws.com), Jun-2002.

ASFLAGS = -mcpu=arm7tdmi -gstabs
LDFLAGS = -Teb40-rom.ld -nostartfiles -Lgcc -L.
OBJS    = boot.o
EXE     = blink_rom.elf

$(EXE): $(OBJS)
arm-elf-gcc $(LDFLAGS) -o $(EXE) $(OBJS)
arm-elf-objcopy -O binary $(EXE) flash.bin

%.o:%.s
arm-elf-as $(ASFLAGS) $< -o $@

clean:
rm -f $(OBJS)
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rm -f $(EXE)
rm -f flash.bin

Now, you could simply use the boot.s file from the original
RAM-based LED blinking application, compile and link it using
the above makefile and linker script, and the resulting binary will
run directly out of flash without modification. However, you
wouldn’t be able to tell it’s doing anything, because it won’t ac-
tually blink the LED. This is because the RAM-based program
ran in an environment that had been set up by the Atmel bootloader
and Angel; among other things, the bootloader mapped GPIO
ports P1, P2 and P4  (the red, green and yellow LEDs, respec-
tively) to the control of the PIO Controller, and set these port bits
into output mode. In order for our program to yield the expected
results, we need to add a little more power-on initialization code
to boot.s in order to set up the environment:

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Embedded Systems Development on a Shoestring
@
@ EB40 LED Flasher (ROM-startup version)
@
@ Lewin A.R.W. Edwards (sysadm@zws.com), Jun-2002.

.section .text

.code 32

.globl vectors

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ This is the ARM interrupt vector table. Our program
@ only implements the power-on reset vector; any other
@ exception will hang the system.
vectors:

b reset @ Reset
b . @ Undefined instruction
b . @ SWI
b . @ Prefetch abort
b . @ Data abort
b . @ reserved vector
b . @ irqs
b . @ fast irqs
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@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Entry-point code
reset:

ldr r6,=0x02
@ Bit 1 is the red LED on the EB40

@ Direct red LED output bit (P1) for PIO controller
ldr r4,PIO_PER
str r6,[r4]

@ Enable output on GPIO bit P1
ldr r4,PIO_OER
str r6,[r4]

ldr r4,PIO_SODR
ldr r5,PIO_CODR

blink_loop:
str r6,[r4] @ Turn on LED

@ Brief pause
ldr r0,delay_constant
ldr r1,=0

pause_loop1:
sub r0,r0,#1
cmp r0,r1
bne pause_loop1

str r6,[r5] @ Turn off LED

@ Brief pause
ldr r0,delay_constant

pause_loop2:
sub r0,r0,#1
cmp r0,r1
bne pause_loop2

@ Loop forever
b blink_loop

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Miscellaneous constants
PIO_PER: .word 0xffff0000

@ PIO Enable Register
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PIO_OER: .word 0xffff0010
@ PIO Output Enable Register

PIO_SODR: .word 0xffff0030
@ Set Output Data Register

PIO_CODR: .word 0xffff0034
@ Clear Output Data Register

delay_constant:  .word 0x00040000
@ Provides a decent delay period

Once you’ve built this project with make, you need to com-
bine it with the flash-loader from the previous section in order to
get it onto the board. If you haven’t already done so, copy the
sourcecode/flash directory to your hard drive. Copy the flash.bin
file you just generated above into this directory, overwriting the
demonstration flash.bin file.

Now change to the flash-loader directory, run make clean
; make all and use arm-elf-gdb flash.elf followed
by the usual set remotebaud 9600, target rdi /
dev/ttyS0, and load commands to load your custom flash-
loader code into the EB40’s RAM. Finally, use the continue
command to start the burn operation. Wait for the red LED to go
out, and your board is ready to boot!

To run the code you just flashed onto the board, move switch
SW1 to the UPPER MEM position and press the reset button or
cycle power; the LED should start blinking immediately. Notice,
by the way, that the blink rate is approximately 0.5Hz; almost
exactly a quarter the speed of the exact same code running out of
RAM. This is because of wait states set on the flash chip slowing
down the processor. In order to get the absolute best performance
out of your code, you should copy it to the internal 32-bit, zero-
wait-state SRAM and run it from there.

Before proceeding, make sure you move SW1 back to the
LOWER MEM position and press the reset button, so that Angel
is back in control.

A Complete ROM-Startup Application in C
The ROM-based LED blinking program above demonstrates the
bare minimum infrastructure you need in order to get a simple
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assembly-language program loaded into and started up out of
on-board ROM. However, it lacks a lot of functionality that we’ll
require for developing more complex applications. The example
we’re going to build in this section is almost a complete frame-
work for a fully-featured ROM-based application written in C.
(There are a few other things you would probably want to do in a
real application, such as setting up the flash memory wait states
to make more efficient use of memory bandwidth and so on, but
these are mostly cosmetic details.)

The first step in achieving this goal is to modify the linker
script somewhat:

/*
Linker script for Atmel EB40 ROM-startup
  applications

Lewin A.R.W. Edwards (sysadm@zws.com),
  Feb-2002

*/

ENTRY(vectors)

SEARCH_DIR(.)

SECTIONS
{

.text 0x00000000 :
{

*(.text);
. = ALIGN(4);
*(.glue_7t);
. = ALIGN(4);

*(.glue_7);
. = ALIGN(4);
*(.rodata);
. = ALIGN(4);
etext  =  .;

}

.data 0x00300000 : AT (ADDR(.text) +
SIZEOF(.text))
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{
. = ALIGN(4);
datastart = .;
__data_start__ = . ;
*(.data)
. = ALIGN(4);
__data_end__ = . ;
edata  =  .;
_edata  =  .;

}

.bss 0x00300000 + SIZEOF(.data) :
{

__bss_start__ = . ;
*(.bss); *(COMMON)
__bss_end__ = . ;
. = ALIGN(4);
. += 0x800 ;
_stack_top = . ;

}

__data_rom_start__ = LOADADDR(.data) ;
}

There are two major changes you’ll see in this script com-
pared to the other scripts we’ve examined so far. By far the more
important change you will observe is that the .data section is
relocated to a VMA in the 8K of on-chip SRAM, even though its
information is still emitted into the executable at an LMA imme-
diately after the .text section.

Note that since the .data segment is being emitted to a different
LMA than VMA, we now need to define three symbols to keep
track of it. The symbols __data_start__ and __data_end__ define
the starting and ending VMA, respectively, of the initialized data
segment (and by inference, its size). The symbol
__data_rom_start__ points to the physical load address (LMA) of
the information that needs to be copied to the .data section’s VMA.

The second big change in the linker script is a largely cos-
metic difference—instead of using named memory regions, I have
written the above script to work entirely with absolute addresses.
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This is a personal preference; in situations where the VMA and
LMA are not the same, I find it improves clarity for me to work
directly with absolute memory addresses. If you feel more com-
fortable using the >vma-region AT>lma-region syntax on the
output section directive, then by all means do so; there’s no ma-
jor functional difference between the two methods.

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Embedded Systems Development on a Shoestring
@
@ EB40 General-Purpose ROM Application Startup
@
@ Lewin A.R.W. Edwards (sysadm@zws.com), Jun-2002.

.section .text

.code 32

.globl vectors

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ This is the ARM interrupt vector table. Our program
@ only implements the power-on reset vector; any other
@ exception will hang the system.
vectors:

b reset @ Reset
b exception @ Undefined instruction
b exception @ SWI
b exception @ Prefetch abort
b exception @ Data abort
b exception @ reserved vector
b exception @ irqs
b exception @ fast irqs

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Exception error
exception:

ldr r4,PIO_SODR
ldr r5,PIO_CODR

ldr r6,=0x16 @ All three LEDs
blink_loop:

str r6,[r4] @ Turn on LEDs
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@ Brief pause
ldr r0,delay_constant
ldr r1,=0

pause_loop1:
sub r0,r0,#1
cmp r0,r1
bne pause_loop1

str r6,[r5] @ Turn off LED

@ Brief pause
ldr r0,delay_constant

pause_loop2:
sub r0,r0,#1
cmp r0,r1
bne pause_loop2

@ Loop forever
b blink_loop

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Entry-point code
reset:

@ First, set up the PIO controller to
map P1,2,4,5
ldr r6,=0x36  @ Our desired GPIO bits

@ Map relevant bits to GPIO controller
ldr r4,PIO_PER
str r6,[r4]

@ Enable output on GPIO bits associated
  with LEDs
ldr r6,=0x16
ldr r4,PIO_OER
str r6,[r4]

ldr r5,PIO_SODR
ldr r7,PIO_CODR

@ Turn off all LEDs
str r6,[r7]
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@ Turn on red LED
ldr r6,=0x02
str r6,[r5]

@ Copy the initialized data section
  from LMA to VMA
ldr r1, data_start
ldr r2, data_end
ldr r3, data_source

initialize_data:
cmp r1, r2
bge init_data_done
ldrb r4, [r3],#+1
strb r4, [r1],#+1

b initialize_data

init_data_done:

@ Turn off red LED
str r6,[r7]

@ Turn on yellow LED
ldr r6,=0x10
str r6,[r5]

@ Zero out the .bss section
ldr r1, bss_start
ldr r2, bss_end
ldr r3, =0

clear_bss:
cmp r1, r2
strne r3, [r1],#+4
bne clear_bss

@ Turn off yellow LED
str r6,[r7]

@ Turn on green LED
ldr r6,=0x04
str r6,[r5]
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init_main:
@ Initialize the stack pointer
ldr r13,stack_pointer

@ Call main function
bl main

@ Hang if main() exits
b .

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ Miscellaneous constants
delay_constant: .word 0x20000
stack_pointer: .word _stack_top
bss_start: .word __bss_start__
bss_end: .word __bss_end__
data_start: .word __data_start__
data_end: .word __data_end__
data_source: .word __data_rom_start__
PIO_PER: .word 0xffff0000

@ PIO Enable Register
PIO_OER: .word 0xffff0010

@ PIO Output Enable Register
PIO_SODR: .word 0xffff0030

@ Set Output Data Register
PIO_CODR: .word 0xffff0034

@ Clear Output Data Register
.end

As you can see, this startup code builds on the earlier ex-
ample principally in that it copies the data section across from
ROM to RAM before passing control to the main C program.
This means, among other things, that this piece of code is “pure”24

—it can be restarted without needing to reload the entire program.

Another feature that has been added to this code is a little
subroutine to inform you if the processor hits an exception. Any
exception will cause all three LEDs to flash on and off forever,

24 This isn’t necessarily correct for all programs written like this (since the hardware state
won’t necessarily be the same on a subsequent run unless there is a hardware reset), but it
happens to be true for our simple program.
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rather than simply hanging the board silently as in previous
examples.

In order to demonstrate that the .data section is in fact being
initialized correctly, I’ve written a simple C program to go along
with this startup code. This program is listed below.

/*
Embedded Systems Development on a Shoestring
A more complex ROM-based program
Lewin A.R.W. Edwards (sysadm@zws.com), Jun-2002.

*/

/* GPIO control registers */
#define PIO_PER 0xffff0000
#define PIO_OER 0xffff0010
#define PIO_SODR 0xffff0030
#define PIO_CODR 0xffff0034
#define PIO_PDSR 0xffff003c

/* Bits to be set/reset on the GPIO port in
 order to toggle the LEDs */

#define RED_LED    0x00000002
#define YELLOW_LED 0x00000010
#define GREEN_LED  0x00000004

/* Input bit definitions */
#define BUTTON_SW4 0x00000020

/* Quick and dirty macros to write a register or
 memory location word, halfword or byte */

#define WRITEREGW(addr,value) *((volatile
unsigned int *)
(addr)) = (value)
#define WRITEREGH(addr,value) *((volatile
unsigned short *)
(addr)) = (value)
#define WRITEREGB(addr,value) *((volatile
unsigned char *)
(addr)) = (value)

/* Quick and dirty macros to read a register or
 memory location word, halfword or byte */
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#define READREGW(addr) (*((volatile unsigned int *)
(addr)))
#define READREGH(addr) (*((volatile unsigned short *)
(addr)))
#define READREGB(addr) (*((volatile unsigned char *)
(addr)))

/* This variable identifies the current LED
 being displayed */

int lednum = 2;

/*
Main function

*/
int main(void)
{

while (1) {
/* Turn on one LED corresponding to the

 lednum variable */
switch (lednum) {

case 0 :
WRITEREGW(PIO_CODR, YELLOW_LED |
 GREEN_LED);
WRITEREGW(PIO_SODR, RED_LED);
break;

case 1 :
WRITEREGW(PIO_CODR, RED_LED |
 GREEN_LED);
WRITEREGW(PIO_SODR, YELLOW_LED);
break;

case 2 :
WRITEREGW(PIO_CODR, RED_LED |
 YELLOW_LED);
WRITEREGW(PIO_SODR, GREEN_LED);
break;

default:
WRITEREGW(PIO_CODR, RED_LED |
YELLOW_LED | GREEN_LED);
break;

}
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/* Wait for user to press and release SW4 */
while (READREGW(PIO_PDSR) & BUTTON_SW4) { }
while (!(READREGW(PIO_PDSR) & BUTTON_SW4)) { }
lednum++;
if (lednum > 2)

lednum = 0;
}

}

You can load this example onto your EB40 using the same
method as I described for the previous ROM-startup program;
compile this program to generate a flash.bin file, merge it with
the flash-loader project, and run the result in order to write the
new code to flash memory. Flip SW1 to UPPER MEM and reset
the board to run this program.

This example illuminates one of the LEDs; pressing the SW4
button cycles the currently illuminated LED from red to yellow
to green, then back to red. By default, the program starts with the
green LED illuminated. To satisfy yourself that everything is
working as it should, you can change the line int lednum=2;
to int lednum=1; then recompile and reload the code. The
default LED on powerup or hardware reset will now be yellow.

Blind-Debugging Your Program
Let’s digress for a moment and think in detail about debugging.
Most of your debugging will be performed “blind” because it
will be running on the real hardware, probably without debugger
support. For example, all the ROM-startup programs mentioned
in this book have to be debugged without the help of gdb. You’ll
see that in the preceding firmware example, I indicate progress
through the startup code by cycling LEDs on the board (the ini-
tialization operations are so fast that you can’t see this happening).
In fact, the reason I added this code is because I initially struck a
seemingly strange problem—I wrote the entire program (with
no progress indicator code) assuming it to be trivial, only to find
that it didn’t work at all. I didn’t want to break out a hardware
debugger for such a simple program, so I added the progress
indicator and found that the program was halting sometime after
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setting the red LED on, but before getting as far as turning on the
yellow LED. It’s at this point that I added the code that shows
you if the processor encounters an exception. This code revealed
that the reason the program was halting was indeed that it was
hitting an exception.

Further testing (basically just moving a “b .” instruction down
the program and recompiling) narrowed the crash down to the
strb r4, [r1],#+1 instruction. On close inspection, it tran-
spired that I had a typographical error in the linker script. This
error was causing my program to write to an unimplemented
memory area, thereby causing a data abort exception.

These sorts of manual debugging techniques were used very
commonly in the days of older 8-bit and even 16-bit home com-
puters, where the hardware had little or no special debugging
support and it was almost universal practice to develop a pro-
gram in vivo within the actual system that was intended to run
the final version. These methods have an even longer and more
honorable history on earlier platforms, such as minicomputers,
that had handy front panel lamps to assist with the task. Unfortu-
nately, these skills seem to have fallen by the wayside, at least
from the perspective of software engineers; when I discuss this
debugging style with people who work exclusively in software,
they express puzzlement. The modern software engineer is ap-
parently trained to rely on symbolic debuggers. The reason the
loss of the older debugging art is so regrettable is that it’s a low-
est common denominator method that is practically always
available, no matter what your budget for development hardware
or the idiosyncrasies of your target platform. In my experience,
engineers with a hardware bent understand and take to this method
of debugging easily. This may simply be because these engineers
have more and longer familiarity with working on systems where
much of the state cannot directly be examined, but must be in-
ferred by inspecting externally visible signals that are affected
by the items of interest and working backwards to an understand-
ing of the machine’s internal state. Whatever the underlying
reasons, the skill of debugging through the smallest of viewports
is absolutely essential to the funds-constrained developer who
cannot afford exotic hardware-based debugging tools.
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Thus, if you don’t have a JTAG ICE debugging module, or
the software for your debugger module doesn’t support symbolic
debugging of the executables generated by the GNU toolchain,
you have a few options. The most powerful process is to port a
debugger back-end to your hardware, so that you can include it
in the device’s real firmware right up until the final build. Gdb
stubs have been ported to the Atmel EB40 already; you can find
information on how to install them as part of the Red Hat RedBoot
documentation.

For some targets, however, it will be impractical to do this,
and you have to rely on implicit debugging techniques like that
described above. There’s a limit to exactly how much you can
debug with just a few LEDs to let you know your program’s
status—at least, if you want to keep your sanity and ship your
code inside a reasonable timeframe. For this reason, you’ll want
to find a more flexible channel for communicating program sta-
tus information. The method I prefer to use is to implement a
serial port (even if the final device won’t have one) and use that
to dump trace information, memory contents and so forth manu-
ally. This is rather less convenient than using a debugger, since
we can only change what we’re looking at by recompiling and
reloading the program, but it is still an extremely powerful tool.

In the sourcecode/serial_demo directory on the CD-ROM,
you’ll find a small example collection of routines to dump memory
and trace information on a serial console attached to the second
serial port (SERIAL B) of the EB40. Note that this port is wired
differently from SERIAL A; you’ll have to connect this to your
PC via a nullmodem cable, not a straight-through cable. You can
modify this program to output on SERIAL A by editing serial.h
and changing the USART_BASE macro to 0xFFFD0000.

This particular example is built for RAM startup, so that you
can load and test it easily and quickly without bothering to burn
it into flash. Although it’s not a comprehensive library of every
conceivable routine you will need, it is illustrative of the kind of
routines you’ll find useful. A module like this is one of the first
things I try to get running on any new hardware platform, be-
cause it simplifies debugging enormously.
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Below is a listing of these serial routines. The only restriction
on these routines is that you must call SER_Init(baudrate) be-
fore using any of the other code.

/*
Embedded Systems Development on a Shoestring
Serial port output code for Atmel EB40
Lewin A.R.W. Edwards (sysadm@zws.com), Jun-2002.

*/

#include <stdlib.h>

#include “serial.h”

/*
Initialize USART to desired baud rate

*/
void SER_Init(int baudrate)
{

/* Disable USART interrupts */
WRITEREGW(USART_IDR, 0x000003ff);

/* Reset the USART and enable transmitter and
       receiver */

    WRITEREGW(USART_CR, 0x0000015c);

/* Set the mode register. This sets the USART
 to asynchronous mode, 8N1, clock source
 MCK, normal mode */

WRITEREGW(USART_MR, 0x000008c0);

    /* Set the baud rate generator */
WRITEREGW(USART_BRGR, (32768000 / (16 *
 baudrate)));

}

/*
Write character to serial port

*/
void SER_WriteChar(char thechar)
{

/* Wait for the transmit holding buffer to
 be empty */
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while (!(READREGW(USART_CSR) & 0x00000002)) {}

    /* Send character to the host */
WRITEREGW(USART_THR, (int) thechar);

}

/*
Write an ASCIIZ string to the serial port

*/
void SER_WriteString(char *thestring)
{

char *p = thestring;

while(*p)
        SER_WriteChar(*(p++));
}

/*
Dump a section of memory to the serial port

*/
void SER_DumpMemory(char *memory, int length)
{

int i,j;
char tmps[16];
for (i=0;i<length;i+=16) {

sprintf(tmps,”%-08.8lX: “, ((int)
 memory) + i);
SER_WriteString(tmps);
for (j=0;j<16 && (j+i < length);j++) {

sprintf(tmps,”%-02.2hX”,
 memory[i+j]);
SER_WriteString(tmps);
if (j<15 && (j+i < length - 1))

SER_WriteString(“, “);
}
SER_WriteString(“\n\r”);

}
}

(By the way, if you look at the linker script you’ll notice one
new thing—an input section definition that loads .rodata* sec-
tions into the .text output section. This is because constant strings
declared in gcc are emitted into .rodata sections.)



     199Example Firmware Walkthroughs and Debugging Techniques

Miscellaneous Glue—Handling Hardware Exceptions
in C with gcc

You may have had some experience with another embedded C
compiler that provides an “interrupt” keyword and some kind of
API that allows you to vector a hardware exception directly to
your C code. For example, most compilers that target MS-DOS
support an interrupt keyword to qualify function prototypes, and
they allow you to use either DOS int 21h services or direct vector
read/write operations to vector hardware and software exceptions
to your own code.

However, gcc lacks this sort of feature by design. The stated
rationale for this is that the main reason for writing in a high-
level language is in order to generate portable code; anything
that relies on some specific type of hardware exception being
available is inherently non-portable and therefore there is no place
in a high-level language for such a low-level construct.

Working around this deficiency is extremely easy. We simply
write a tiny assembly-language stub that saves the processor con-
text on the stack and calls a C function to handle the actual
interrupt condition. Here’s a small piece of example code to
achieve this on an ARM platform:

fiq_handler:
stmdb r13!, {r0-r7, r12}
ldr r12,irqvector
bx r12
ldmia r13!, {r0-r7, r12}

@ return to interrupted code
subs pc, r14, #4

fiqvector:
.word c_fiq_handler

To use this code, simply vector the desired exception to
fiq_handler, and provide an external C function named
c_fiq_handler that performs the actual interrupt handling. Ob-
serve that we do not need to save the entire processor register set,
because the ARM architecture contains a set of banked (shadow)
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registers r8-13 dedicated to use in FIQ mode. For more informa-
tion on this topic, you should refer to the ARM7TDMI core
datasheet I mentioned earlier.

There’s slightly more to this story than the simple explana-
tion above, however. To begin with, in all the programs we’ve
illustrated so far we have only set up a single stack. The ARM
processor actually maintains four stacks; one for normal user
mode, one for SVC mode, one for IRQ mode, and one for FIQ
mode. If we’re going to allow our processor to handle excep-
tions, we have to set up some or all of these stacks. This is
something you would normally do in the assembly-language
startup stub, before initializing the main program. An example
code snippet is presented below:

@ Put CPU into IRQ mode and set up IRQ stack
mrs r0,cpsr
bic r0,r0,#0x1f
orr r0,r0,#0x12
msr cpsr,r0 @_cf
ldr r13,irqstack

@ put CPU into SVC mode and enable the IRQ
@ interrupt
mrs r0,cpsr
bic r0,r0,#0x9f
orr r0,r0,#0x13
msr cpsr,r0 @_cf

@ setup SVC stack
ldr r13,svcstack

@ put CPU into FIQ mode and set up FIQ
@ registers and stack
ldr r0,const_d1
msr cpsr,r0 @_cf
ldr r8,=0
ldr r9,=0
ldr r10,=0
ldr r11,=0
ldr r12,=0
ldr r13,fiqstack
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[ ... remainder of initialization code ... ]

@ Jump to main C program
bl main

fiqstack: .word _fiq_stack_top
irqstack: .word _irq_stack_top
svcstack: .word _svc_stack_top

(You would then define the locations _fiq_stack_top,
_irq_stack_top and _svc_stack top in your linker script).

Note that the ARM core only directly supports two external
interrupt sources—IRQ and FIQ. Almost all ARM implementa-
tions, therefore, have an off-core interrupt controller that extends
this simple model to support prioritized interrupts from various
on-chip peripherals. The AT91 series’ interrupt controller is quite
powerful, and allows you to have up to 32 separate interrupt vec-
tors. Unlike many other implementations, the Atmel interrupt
controller even handles the vectoring process for you. (Usually
on ARM platforms, you vector the IRQ handler to a piece of
code that inspects a register in the interrupt controller to deter-
mine what is the highest-priority pending interrupt. This code
then services the interrupt, clears the pending flag, and inspects
the interrupt register again to see if a lower-priority interrupt is
pending. This process is repeated until all pending interrupts have
been serviced). For more information on the interrupt controller
module in the AT91R40807, refer to the product datasheet. Us-
ing this peripheral is extremely simple by comparison with the
interrupt controllers found in many other 32-bit parts, and over-
all it’s a most impressive piece of design.
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Chapter 5

Portability and Reliability
Considerations

Throughout this text, I have frequently made mention of tempo-
rary solutions, such as prototyping around an embedded PC with
the intention of porting your code to real hardware later (e.g., after
securing investment capital). Approaches like this can save you a
lot of time in creating your first working prototype, and in many
cases there is absolutely no other way that the small one-person
engineering “team” will be able to bring a project to completion in
time to generate enough income to stay in business.

Your task of migrating from demonstration hardware to the
real circuit will be facilitated greatly if you keep the migration
goal in mind at all times while designing the firmware. Some of
the factors you should consider are described below. Mostly, these
are simply good design practices to follow in embedded systems
development, but they bear spelling out here because the initial
version of your application will be running in a (relatively) un-
constrained environment. On the demonstration hardware, the
temptation will be strong to cut corners and to exploit the lax
restrictions of the platform; you will have ample RAM, fast pro-
cessors, possibly a hard disk for local storage of temporary files,
probably a multitasking environment, and so on. The less disci-
pline you use here, the more time and effort it will take to port
your code to the final real hardware, and the harder it will be for
you to be able to guarantee your code’s reliability in its new en-
vironment. People working on tiny 8-bit embedded platforms
are used to rigorous design and memory tracking; people work-
ing on 32-bit embedded platforms (especially if they come from
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a nonembedded programming background) aren’t accustomed to
these issues, but they are just as important on these larger platforms.

Anecdotes about this sort of issue are tragically common in
the embedded world, but I will give you a single short story here
to illustrate the evils of incomplete planning. In 2001, I was asked
to build a special one-off demonstration version of a complicated
multimedia appliance. This was a rush job, and the only stated
goal was to provide a couple of demonstration pieces to ship to a
customer. The theory was that we would get an order from the
customer and use it to fund development of a real product. (The
customer was informed about this process, of course.) The pro-
totypes were built around an off-the-shelf Intel SBC running
Linux, and the code was pulled together with the bare minimum
of functionality, because it was stated from the first day of this
project that all the old code would need to be replaced if the
device went into production. (We intended to build our own hard-
ware platform around a different CPU on a custom board, also.)

Everything would have been fine if we had only ever shipped
those two prototypes, but other customers found out about this
product, and since it had a healthy profit margin, we sold a few
hundred units. So, although it was clearly understood at all times
that the existing software was a hack and far from ideal, once the
product “escaped” our doors in this way, it immediately began to
generate a snowball of unavoidable maintenance work. Since we
couldn’t leave the existing customers waiting for six months for
the real product (and real firmware) to become available, we had
to divert development resources towards maintaining the old
codebase, fixing bugs, working around undesirable behaviors, and
adding new features at customer request. It was almost a year be-
fore we reached a point with the old codebase where we could
realistically tell all existing customers that they should live with
their current firmware version, and that there would be no more
running updates until the all-new “real” firmware became available.

The original prototype took approximately two months to build.
The new code took about three and a half months to get to a point
equivalent to the old prototype, plus about one and a half months’
engineering time on the hardware. Even allowing for the fact that
we were more familiar with the hardware platform on this second
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attempt, we would probably have only been two or three months
later in delivering the original prototypes if we had done them
“properly”—i.e., with forward-looking, maintainable code.

Realistically, there are occasions when that extra couple of
months’ development time is going to mean the difference be-
tween being able to maintain a positive cash flow or going out of
business, and in fact the story I just related was close to being
such a scenario. However, hopefully tales like the one above will
encourage you to spend as much effort as possible at the outset
of a project to avoid wasted work that will need to be repeated
with more rigor later. The rules below are a good starting point.

Avoid dynamic memory allocation wherever possible. Your
evaluation platform probably has significantly more RAM than
the final product will boast. It may well also have a demand-pag-
ing virtual memory manager that makes it appear to have practically
unlimited available memory. However, no matter how intelligent
your OS’s memory manager might be, random allocation and
deallocation of memory chunks inevitably results in memory frag-
mentation25. You need to have a reasonable idea of how much RAM
the final system is going to require anyway (in order to build the
hardware!) so, as far as possible, work it out beforehand and allo-
cate buffers, stacks and other structures statically.

Some types of variables don’t lend themselves directly to com-
pile-time static memory allocation. For instance, many
applications need to maintain arbitrarily-sized, dynamically
resizable arrays of structures, each of which describes a file, event,
network connection or other logical entity. The number of en-
tries required in these arrays is impossible to predict at
compile-time and is expected to vary during a single run of the
program. One common way of implementing such structures on
a “real” desktop system would be with a linked list, but this relies
on a dynamic memory allocation manager. The technique of al-
locating and deallocating tiny chunks of memory like this
practically guarantees that the application will eventually frag-

25 There are some last-ditch ways of dealing with this, such as always referring to memory
through double-indirected pointers a la MacOS (thereby allowing the memory manager to
shuffle allocated blocks around behind your back), but these techniques are excruciating,
time-wasteful and don’t address the underlying logical problem adequately.
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ment all available memory and will need to be shut down and
restarted. This limitation appears to be quite reasonable to most
programmers who write off-the-shelf application software, but
is totally unacceptable in a high-availability embedded system.

One possible solution to this is simply to declare a flat array of
structures, e.g. struct mystruct[MAX_NUMBER_RECORDS]
and populate them as necessary. Although computer science lec-
turers would deplore it, this is an adequate solution when the records
in your data structure will always be a fixed size. In many cases,
however, the data records will be variable in length, and if you’re
storing them in a flat array, you need to size each element for the
largest possible item to be contained. In such cases, it’s much more
efficient to reserve a simple memory array of whatever size you
can spare, and pack the data elements as close as possible together
in this space, with a special marker value to indicate where the list
ends. It does mean slightly more effort, since you have to write
functions to insert, remove and query from this packed list, but
those functions are simple to write and quite fast.

Consider a list of fully qualified filenames that refer to an
MS-DOS compatible filesystem (on a floppy disk, for the sake of
argument) where the maximum possible path length is 128 char-
acters, with the usual 8.3 character limit on filenames. For
convenience, you would probably want to store these in memory
in ASCIIZ format, so that means that a worst-case path length is 129
bytes. Suppose you’ve decided to allocate 8Kbytes of space for your
filename list. If we follow the flat array method, we will create an
array like this, which only gives us 63 spaces for pathnames:

#define MAX_FILENAME_LENGTH 129
#define FILENAME_SPACE 8192

struct
{
    char filename[MAX_FILENAME_LENGTH];
} file_list[FILENAME_SPACE / MAX_FILENAME_LENGTH];

However, stop and consider that few or no filenames are likely
to reach the 128-character limit. Since users aren’t likely to cre-
ate more than one or two levels of nested directories on a floppy
disk, and each directory and filename is inherently limited to
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twelve characters, most of the file paths we’ll be working with
are likely to be between thirteen to forty characters long. What a
waste the underpopulated array is in this case! It’s vastly more
efficient to store the filenames in memory one after the other in a
simple array of characters, and indicate the end of the list with a
double NULL byte:

#define FILENAME_SPACE 8192

char file_list [FILENAME_SPACE];

Depending on the individual filename lengths, we could be
able to store more than 2,000 entries using this method, with no
additional RAM requirement. All we need to do is implement a
few simple functions, such as the example below, which fetches
a string from the structure, given a pointer to the start of the
structure and an index number.

/*
    Retrieve entry #stringnum from ASCIIZ string
    list. Returns pointer to desired string, or
    empty string if there are fewer than
    stringnum items in the list.
*/
char *GetString(char *list, int stringnum)
{
    while (stringnum && *list) {
        while (*(list++));
        list++;
        stringnum—;
    }
    return list;
}

Similar techniques can be used for more complicated data
structures. (Purely as an aside, the code above is very useful for
internationalizing your product. If you store all the strings used
by your user interface in a structure of the type illustrated above,
you can easily change your display into another language by
changing a single global pointer reference. You can also use ex-
ternal translation personnel to create foreign-language versions
of your application without needing to reveal any sourcecode to
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these outside parties. Simply send them the text resource for trans-
lation, along with any special rules about maximum string length
or spacing that your user interface requires.)

In other instances, you may have a piece of code that will allo-
cate memory in different ways according to the input data it receives.
You should be able to determine a “high water mark” indicating
the total amount of memory a worst-case set of inputs will require
(essentially by adding up all the malloc() calls made during such a
worst-case run), but simply allocating a worst-case size for each of
the possible buffers in the code snippet would require much more
RAM than the “high water mark”. For example, your code might
require three different memory buffers to read in special param-
eters. The maximum size of any one of these parameters might be
4K, so a per-item-total worst-case requirement would be 12K.
However, you know because of the nature of the function being
implemented that it is impossible for all three of these buffers to be
maximally allocated. Perhaps if buffer one receives a 4K struc-
ture, you can be sure that buffer three will only require a few bytes.
You need a system that will give you the flexibility of being able to
prevent collisions between numerous separate memory areas, with-
out the long-term stability dangers inherent in a systemwide
dynamic memory manager.

In the same vein, embedded systems quite commonly have
sections of code that you know will never be running concur-
rently. Clearly, in a resource-constrained environment it is
desirable to allocate enough memory only for the code path that
requires the most space, and not reserve separate storage for two
modules that will never need to share the system. It’s much more
efficient to allocate a single buffer and give each code segment
exclusive access to that area when it’s in control.

Both these latter issues can be addressed by implementing
one or more private memory managers. Below is a simple ex-
ample of such a memory manager, implemented in C.

#define DMEM_HEAP_SIZE 131072

/*
These variables store the current state of the
memory manager.
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*/
unsigned char *heapstart;
unsigned char *heapend;
unsigned char *heapnext;

/*
    This is the actual heap.
*/
unsigned char heap[DMEM_HEAP_SIZE];

/*

Power-on initialization for the memory manager.
This should only be called once.

*/
void mmgr_Initialize(void)
{

heapstart = heap;
heapnext = heapstart;
heapend = heapstart + sizeof(heap);

}

/*
Allocate some “permanent” storage space.
Memory allocated this way is allocated at
the bottom of the heap and the heap start
point is adjusted so that this memory will
never be returned to the free pool. Re
turns pointer to memory area or NULL if
there is insufficient space.

*/
void *mmgr_PermAlloc(size_t allocsize)
{

void *result;

    // Check that there is enough space to do this
    if (heapstart + allocsize > heapend)
        return NULL;

    heapstart = (unsigned char *)
      (((unsigned int) heapstart + 3) & 0xfffffffc);
    result = heapstart;
    heapstart += allocsize;
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    heapnext = (unsigned char *)

      (((unsigned int) heapstart + 3) &
0xfffffffc);

    return result;

}

/*
Reset our quick and dirty memory manager.
This function deallocates all non-perma
nent arenas.

*/
void mmgr_Reset(void)
{
     heapnext  = (unsigned char *)

(((unsigned int) heapstart + 3) &
   0xfffffffc);

}
/*

Allocate a memory block. Returns pointer
or NULL if there isn’t enough heap left.

*/
void *mmgr_Alloc(size_t allocsize)
{

void *p = (void *) heapnext;

heapnext += (unsigned int) allocsize;
heapnext = (unsigned char *)

(((unsigned int) heapnext + 3) &
   0xfffffffc);

if (heapnext > heapend)
return NULL;

    return p;
}

At the start of your program, you would call
mmgr_Initialize(). Each time you enter a piece of code that re-
quires a temporary heap, you would call mmgr_Reset(). The
mmgr_Alloc() function is designed to resemble malloc; you can
convert existing code to use this basic memory manager simply
by defining a macro like this:
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#define malloc(x) mmgr_Alloc(x)

The mmgr_PermAlloc() call allocates a space in the heap,
and reduces the heap size to make the allocated area off-limits
and unaffected by mmgr_Reset(). Only space left unused in the
heap after calling mmgr_PermAlloc() is available for transitory
allocation via mmgr_Alloc().

This function is provided as a convenience feature, allowing
you to perform runtime balancing of memory usage between dif-
ferent functions. For example, if your application involves storing
a list of username/password pairs and a list of filenames, you
could use mmgr_PermAlloc() (at boot time) to allocate space for
the username/password list and the filename list. If the user runs
out of space in either list, you can provide a user interface ele-
ment that allows him or her to adjust the space allocated to each
of these functions, and store this preference in some non-volatile
device attached to your system. This is at least slightly more el-
egant than having hardcoded size limits on each list.

Note that the code above always aligns allocation requests on
a 4-byte boundary, since some 32-bit platforms have restrictions
on dealing with non-aligned data. Also be aware that this par-
ticular example is non-reentrant. Unlike a more general-purpose
memory manager, the function of this code is not to arbitrate
between multiple users of the heap and cater to them all as far as
possible. Rather, it allows a single user to keep track of arbi-
trarily sized blocks of memory, typically during a single call to a
complex function.

All of the above types of data storage issues and conflicting
requirements are illustrated rather nicely in a consumer electron-
ics product I designed for my employer in 1999. This project
was a digital picture frame with a color LCD screen and slots for
CompactFlash and SmartMedia flash memory cards. The nor-
mal usage pattern for this device is that the owner will take some
photos with his or her digital camera, then put the card in the
picture frame to browse the pictures. It’s necessary for the pic-
ture frame to build (in memory) a list of all the files on the inserted
card(s), along with information about rotation, color adjustment
and other special effects the user might want to apply to each
image. Because the user wants to be able to control which pic-
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tures he or she will see in the slideshow, we need to be able to
add and subtract individual items from the list in memory. We
want to be able to store the longest possible slideshow in memory;
perhaps several thousand entries, since modern removable flash
media are dense enough to store a large number of images. For
this purpose, I implemented a packed string list as described pre-
viously. (In fact, it was slightly more complicated than the example
above, because I had to store a little binary data along with the
string—but the principle is the same.)

The picture frame also had to contain codecs for various im-
age formats, and most of these codecs have varying memory
requirements depending on the type of input data. (For example,
memory requirements are very different for decoding sequential
versus progressive JPEG files, even though both types are handled
by the same codec. An even better example is TIFF, which has
many different sub-formats that need to be handled differently.)
Since the device I was building is single-tasking, there is no situa-
tion where we could simultaneously need to be decoding (say) a
JPEG and a TIFF. Thus, I could safely reserve a single RAM area
for image decoding scratch space and allow each codec to assume
it had unlimited access to that area. To achieve this, I implemented
a simple memory manager of the type described above.

Rigorously avoid writing recursive functions. On your su-
per-powered demonstration platform, blowing the stack out to
300K might not be a problem, but on your real hardware you
probably won’t be able to afford so much space. Worse still, the
nature of recursive functions is that you probably don’t know at
compile time just how deep the recursion is going to get. The
archetypical example of such a function is scanning directories
on a filesystem; you have no idea how deeply someone might
have nested directories on the storage medium, and you must
have some checking to avoid runaway conditions. It is usually
very difficult to accurately estimate worst-case resource usage
(taking into account asynchronous events such as interrupts, and
contention for resources such as drivers for storage media). It’s
much easier to design your code intentionally to minimize the
effects of these issues.
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If it’s absolutely necessary to write recursive functions, then
you should explicitly check stack usage each time you descend a
layer of recursion. You should provide a failure mechanism
whereby attempting to go too deep will either fail the entire par-
ent call with an error, or otherwise communicate to the user that
the input data structure is too complex. To stave off this error
condition as long as possible, make sure that your function allo-
cates the barest minimum of local variables. You should be even
more careful not to overuse any system-global resource (such as
file descriptors or network sockets) in your recursive function. If
possible, you should save the state of such resources internally
and deallocate the real handle, socket or other structure before
calling down to a deeper level of recursion.

Keep in mind that it’s much better to have a function that
“bottoms out” with an error message when presented with cer-
tain inputs, than to have a function that will randomly corrupt
some memory areas if someone gives it unexpected input. Un-
less you put in the extra effort to include sanity-checking, recursive
code is liable to be deceptively robust on your demonstration
platform, but unreliable on the real hardware. It’s considerably
easier to add the requisite checks and robust design methodolo-
gies when you’re first writing the code than while you’re porting
it to a more constrained system.

If feasible, avoid the use of multitasking features such as
threads and subprocesses. There are a multitude of reasons for
this. The first is simply that by using threads, you are assuming
that your final operating system will have some kind of preemp-
tive multitasking capability. Although many embedded operating
systems do have this feature, there are plenty of occasions where
the additional system overhead is unnecessary. Additionally, there
are several different “standard” threading APIs, as well as many
proprietary systems, and even a single operating system may have
more than one way of starting a secondary task from a main pro-
gram, with correspondingly different limitations and features
according to the method chosen.

Secondly, having multiple pieces of code running “concur-
rently” (from a logical standpoint, at any rate) opens up a new
dimension of complexity in debugging, to say the least. It’s much
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easier to serialize access to resources if the program flows in a
linear fashion. Not all debuggers can properly handle multithreaded
code, and even if yours can, running multiple tasks can open you
up to a variety of interesting and hard-to-debug synchronization
problems. Race conditions and similar problems might not be ob-
vious on your demonstration platform, and can be exceedingly
difficult to debug once you move to the real hardware.

Note that I’m certainly not saying that threaded code is in-
herently evil; if your program can be simplified by using threads
while still remaining robust, by all means go ahead and use them.
I am simply advising that you first make a conservative assess-
ment of the downsides, and preferably don’t start developing
multitasking code until you’ve chosen an operating system for
the final product.

There is one very useful application of threads (or other
multitasking technology) on a demonstration platform, and that
is to emulate asynchronous interrupt-based events that can occur
on the real hardware. For example, the PC-based prototype sys-
tem I mentioned in my horror story at the beginning of this chapter
had a set of pushbuttons and indicators driven from the PC’s par-
allel port. Our real hardware design ran these buttons to I/O ports
with interrupt capability so that we could read these controls
asychronously. However, most of the lines on the PC parallel
port can’t generate interrupts, so it was necessary to poll these
controls on the prototype. In order to make the program flow
work similarly to the way it would work on the real hardware,
we ran a separate process to poll and debounce the controls at a
moderate rate (approximately 50Hz). This process updated a
shared memory area representing the control state. In the real
program, we simply replaced the slave process with an interrupt
handler and the overall behavior of the ported program was ex-
actly the same as on the demonstration hardware.

If you are writing a proprietary function to accomplish a task
that would normally be provided by an operating system, try to
make this function’s top-level interfaces similar to those normally
found in other operating systems. For instance, if you are writing
a filesystem, your life will be simplified if you emulate the stan-
dard streams calls such as fopen(filename, access-mode),
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fclose(file-pointer), and so on. It is usually not much work to
dummy out unused parameters or return default (or error) values
for unsupported functionality, and it makes excellent sense to
use a well-known interface layer to insulate your program’s main
functionality as far as possible from operating-system-specific code.

If you’re not sure of what best to emulate at the top layer,
then consider POSIX compatibility, at least in terms of the pa-
rameters and function names, and you won’t go far wrong.

Maintain a division between platform-dependent and
platform-independent code. This is simply sound firmware en-
gineering practice. One good starting point, assuming that you’re
developing with gcc and newlib, is to make sure that your pro-
gram accesses resources (devices, files and so on) only via
industry-standard APIs provided within newlib. That way, all you
have to do in order to move to a new hardware platform is to port
the required portions of newlib and relink your application against
the new library. (You will also be able to run your application on
top of many different operating systems with relatively little plat-
form-specific handling, since the APIs in newlib are a subset of
those provided on almost every major desktop operating system.)

There are, however, a lot of functions that aren’t provided by
newlib and hence can’t be abstracted through this method. One
of the most common sets of such functions that 32-bit system
developers tend to want is a graphical user interface library. De-
pending on your application, you might just want simple functions
to output text onto a bitmapped display device, all the way up to
a massively complicated windowed operating environment with
exotic 3D graphics primitives, YUV overlays for motion video
playback, and so on.

Exactly how you choose to solve your GUI needs involves
trading off simplicity of design, easy portability and total devel-
opment effort. There are a large number of ready-made projects
intended to help the embedded developer with this potentially
large development task—probably the two most popular of which
are wxWindows and nano-X. At the extreme high end are fully-
functional GUI environments like Xwindows, which were not
originally intended for embedded applications but are finding
increasing use in “quasi-embedded” devices built around PC-com-
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patible single-board computers and other relatively powerful hard-
ware platforms.

In general, attempting to write your own GUI from scratch
means reinventing many wheels; it’s almost always a much better
cost/performance plan to adapt someone else’s free code than to
develop your own. (It might not seem like that when you first ap-
proach the task, though, because you’ll be at the bottom of the
learning curve for the library you’ve chosen to work with.) If you’re
determined to write your own system, then first be sure that you
can really justify this amount of work. This involves working out
exactly what your requirements are, and sketching out a hardware
abstraction model before you start writing a line of code.

For example, I regularly work on the firmware and hardware
for a family of digital imaging devices. These devices range from
simple low-end consumer units with quarter-VGA sized, 12bpp
color LCD screens up to very large devices (intended for the
commercial market) with enormous SXGA-resolution 24bpp
color screens, among many other features. It’s obviously desir-
able for us to maintain as much code commonality as possible
amongst the various models.

Because we have very specialized, well-understood needs that
aren’t completely addressed by any of the common GUI options,
I felt it was worthwhile to develop our own GUI. Despite the
varying color depths of our various products, I chose to have as
much as possible of our code work in an RGB 8:8:8 colorspace,
because this allows almost all of the program to be hardware-
independent—all the code knows is that it’s manipulating a 24bpp
internal virtual image buffer of known dimensions, and the pro-
cess that translates this buffer into the framebuffer hardware’s
native format is invisible to almost all of the program. Obvi-
ously, this has some performance drawbacks, because on most
hardware platforms, a fair amount of redundant data is being
manipulated, but it is an acceptable tradeoff for our purposes.
(12bpp is a particularly annoying color format to handle, because
a single pixel does not occupy an integral number of bytes. De-
spite being the lowest-bandwidth direct color format we support,
it is also far and away the lowest-performance because of this
issue.) Moreover, having a single format for internal image rep-
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resentation has allowed us to spend a lot more time developing a
rich set of top-level APIs and optimizing these APIs. Each time
we develop a new hardware platform, all that requires porting is
a single call that renders a logical framebuffer (at 24bpp) onto
the physical framebuffer at its native color depth and format.
Because the high-level APIs are code-identical across platforms,
we can be more confident that they will exhibit consistent behav-
ior; and because of the relatively small code volume, debugging
and optimization is facilitated.

For Web-downloadable demonstration purposes, we have even
written DirectX “wrappers” that allow our real embedded appli-
cation code to run directly as a Windows application. This has
obvious benefits as a sales demonstration tool. One further step
we have discussed without implementing, though it is certainly
technically possible, is to port our GUI layer down to work as an
ActiveX control so that we can demonstrate our embedded ap-
plication live on a web site.

Contrast this happy scenario to the alternative: If we had de-
cided to put the hardware abstraction cut-off point a little higher,
we could have implemented the same standard set of APIs for
functions such as opening a window, printing text, anti-aliasing,
etc. However, these APIs would all work directly in the native
framebuffer format. While it would undoubtedly result in faster
code (at least on those platforms that operate at color depths less
than 24bpp), it would mean that each time we build some new
piece of hardware that has its framebuffer memory laid out slightly
differently, we have to rewrite every API rather than a single ren-
dering API. Moreover, each time we want to add a single feature
or optimization, there is a huge amount of work involved to back-
port the new code to all possible target variants.

The above is one possible illustration of the type of abstrac-
tion that it is useful to consider in your application. Another
subsystem that benefits greatly from careful layering is a
filesystem. I have maintained several independent projects that
implemented their own DOS-compatible filesystem (already ex-
tant at the time I inherited the projects in question). None of
these filesystem modules was adequately abstracted, and I am
quite sure that the initial debugging process for all of them was



218 Chapter 5

unnecessarily painful. Porting them to any new platform would
have been even more painful.

At its upper, application-interface layer, even a minimal
filesystem consists of APIs that work with filenames and streams
of data bytes provided by the application, and that return logical
file descriptors and streams of data bytes off the underlying stor-
age medium. If we consider a desktop PC as a maximal example,
it is clear that a single conventional hierarchy for filenames and
path specifications can refer to files stored and retrieved in widely
disparate ways. There are network filesystems referring to remote
files, ISO9660 or UDF filesystems referring to CD-ROM and DVD-
ROM media, and various filesystems typically used on random-
access media, such as the ubiquitous FAT, Linux ext2, and so on.

Therefore, the first natural layering zone in the hierarchy of a
well-designed filesystem is at the point where filenames are
handed off to specific filesystems. Above this point, all code can
be generic. A file descriptor, for instance, is just a pointer to some
data structure. This structure presumably identifies which
filesystem driver handles requests for the file in question, but
manipulating those structures doesn’t directly require knowledge
of the underlying filesystems.

Continuing to use the PC as an illustrative example, it’s clear
that we can also have a single filesystem in use across different
storage media types. For instance, we can use the same FAT16
code on an IDE hard drive, a floppy disk, a PCMCIA card, a
SmartMedia® flash memory card, a SCSI-connected Iomega
Zip® drive, and so on. All the FAT16 filesystem code cares about
is reading and writing 512-byte sectors; it doesn’t need to know
anything about the minutiae of how bytes are sent to and from
the storage media. Clearly, therefore, the next level in the ab-
straction layer should be to separate the filesystems from the
low-level device drivers that perform sector-level I/O and other
hardware-specific tasks such as verifying the presence of a stor-
age medium in drives that support removable media.

By doing this, we can break the debugging effort into easily
manageable chunks—the FAT16 code, for instance, can be de-
bugged by dumping a small known-good FAT filesystem from a
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hard drive partition into a file, and testing our FAT16 filesystem
over a dummy storage device that reads and writes the disk im-
age file, using code similar to that below:

/*
Code to read a single physical sector
number from a disk image

*/
int ReadImageSector(char *buffer, int
sector_number)
{

FILE *image_file = fopen(“disk.image”, “r”);
int result;

if (!image_file)
return 0;

fseek(image_file, sector_number*512,
SEEK_SET);
result = fread(buffer, 512, 1, image_file);
return result;

}

/*
Code to write a single physical sector
number to a disk image

*/
int WriteImageSector(char *buffer, int
sector_number)
{

FILE *image_file = fopen(“disk.image”, “w”);
int result;

if (!image_file)
return 0;

fseek(image_file, sector_number*512,
SEEK_SET);
result = fwrite(buffer, 512, 1, image_file);
return result;

}
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Similarly, we can develop our low-level device drivers very
quickly because there is no interdependency with an overlying
filesystem driver. All we need to do is write sector read and write
functions, along with whatever additional functionality might be
required to enumerate sub-devices, check media state, operate an
eject mechanism, and so on. Given that our filesystem code has
proven itself in vitro while running on top of dummy image-
based functions like those above, we can have a high degree of
confidence that the entire filesystem hierarchy will work cor-
rectly when the various modules are brought together. Conversely,
we can be reasonably confident (hardware interactions aside) that
when we need to add support for some hitherto unknown storage
device, we will be able to do so simply by adding a new low-
level device driver.

You should notice that the recurring theme in my text above
is to develop code that can be debugged anywhere, even if it
can’t truly be said to “run” everywhere, and that can be divided
into modules that can be reliably debugged in an incomplete
system. If you make these goals your mantra, you will be able to
get the bulk of your program debugged on your desktop PC, where
loading a new version takes no more effort than compiling it and
hitting a “run” button. You can confine the tedious iterative com-
pile-upload-flash-test process to debugging a very small volume
of platform-dependent code, thereby speeding you towards a re-
liable, efficient final product.
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Chapter 6

Useful Vendors and
Other Web Resources

This section contains a short directory of vendors and products I
have found helpful in my efforts to develop products within a
constrained budget.

Advantech (www.advantech.com)

Advantech is a manufacturer of (among other things) x86-based
PC-compatible single-board computers. Although there are many
other such manufacturers, Advantech has two advantages; firstly,
they target non-industrial applications with a range of reason-
ably priced SBCs, and secondly you can buy many of their
products online directly. Most of Advantech’s competitors con-
centrate on boards with extended temperature tolerance, ESD
hardness or other specialized industrial requirements, which make
those boards far too expensive for the average reader of this book.

Atmel (www.atmel.com)

At the time of writing, Atmel’s AT91 series of ARM-based
microcontrollers is one of the cheapest routes to a new ARM-
based design. The microcontrollers themselves are cheap, and
the evaluation boards are an order of magnitude cheaper than the
boards from most other ARM vendors.

The ARM Linux Project (www.arm.linux.org.uk)

Your central starting point for resources related to running Linux
on ARM-cored microcontrollers.
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Note: If you intend to run Linux on a microcontroller with no
memory-management unit, you should visit the ucLinux site
(www.uclinux.org) instead.

The GNU Project (www.gnu.org)

This site is your jumping-off point for documentation and the
latest versions of the GNU development tools. Note that newlib,
though integrated with the GNU toolchain we discuss in this book,
is not a GNU project; it is maintained by Red Hat (see below).

Linux Devices (www.linuxdevices.com)

This is a useful portal to news and vendor directories of Linux-
based embedded systems, particularly off-the-shelf consumer
devices and development tools.

Macraigor Systems LLC (www.macraigor.com)

Macraigor sells a range of JTAG/ICE debugger modules for vari-
ous processors including ARM, Motorola CPU32, MIPS,
PowerPC and XScale. Their entry-level product, Wiggler, is one
of the lowest-cost commercial hardware debugging products avail-
able for these high-end microcontrollers.

Monta Vista Software, Inc (www.hardhatlinux.com)

These people are the developers of Hard Hat Linux, one of the
best-known realtime adaptations of Linux. This is commercial
software, not available for unrestricted download.

Opencores (www.opencores.org)

Opencores is the central reference on the web for free open-source
HDL core IP to integrate into your FPGA-based project. Free
cores available at the time of writing include LCD/VGA control-
lers, memory controllers, microcontrollers, communications
devices and cryptographic functions.
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Red Hat, Inc (www.redhat.com)

In addition to their well-known Linux distribution, Red Hat is
the maintainer of the free eCos embedded operating system. You
can find the eCos homepage at sources.redhat.com/ecos. Red Hat
also maintains the newlib project at sources.redhat.com/newlib
and the Cygwin project at sources.redhat.com/cygwin.

Trenz electronic GmbH (www.trenz-electronic.de)

Trenz electronic sells, among other things, low-cost FPGA evalu-
ation boards based around Xilinx parts. If you are considering a
design built around an FPGA, Trenz’s boards are well worth con-
sidering.

Xeltek, Inc. (www.xeltek.com)

Xeltek sells a wide range of device programmers, at compara-
tively inexpensive prices. In particular, their SuperPro® Z
programmer is one of the best such devices I have seen (on a
price vs. supported devices basis).

Index of CD-ROM Contents
The CD-ROM included with this book contains various useful
pieces of software referenced in the text. Below is a brief index
of these software items, with their locations on the CD-ROM and
installation instructions. This disk was mastered with Microsoft’s
Joliet extensions for long file names; if your operating system
does not support Joliet, then you may see truncated ISO9660
filenames in some cases. In the case of the example sourcecode
files, you will usually have to translate any mutilated filenames
back to their original “long,” lower-case name before the build
process will work properly.

Cygwin (Version 1.3.16-1)

Location: cygwin\setup.exe

Download From: http://sources.redhat.com/cygwin/

To install, double-click the setup.exe file
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EAGLE (Windows version 4.09r2, English)

Location: eagle\eagle-4.09r2e.exe

Download From: http://www.cadsoftusa.com/

This is a single-file installer; simply run the executable to install
the product. If you are using Windows NT, 2000 or XP, after
installing the software you should go to the Options menu, select
“User interface”, and in the dialog that appears, ensure that the
“Always vector font” box is checked.

EAGLE (Linux version 4.09r2, English)

Location: eagle/eagle-4.09r2e.tgz

Download From: http://www.cadsoftusa.com/

To install, decompress the tarball with tar zxvf eagle-4.09r2e.tgz.
Change to the eagle-4.09r2 directory thus produced, and run the
script ./install to begin an automated install process.

Example sourcecode files

Location: sourcecode/

Download From: http://www.zws.com/

Instructions on how to compile and load these sample programs
are provided in the chapter headed “Example Firmware
Walkthroughs and Debugging Techniques”.

GNU binutils (Version 2.13.1)

Location: gcctools/binutils-2.13.1.tar.gz

Download From: ftp://ftp.gnu.org/gnu/binutils/

Installation instructions for this product are provided in the chapter
headed “The GNU Toolchain”.

GNU gcc (Version 3.2)

Location: gcctools/gcc-3.2.tar.gz

Download From: ftp://ftp.gnu.org/gnu/gcc/

Installation instructions for this product are provided in the chapter
headed “The GNU Toolchain”.
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GNU gdb (Version 5.2)

Location: gcctools/gdb-5.2.tar.gz

Download From: ftp://ftp.gnu.org/gnu/gdb/

Installation instructions for this product are provided in the chapter
headed “The GNU Toolchain”.

Newlib (Version 1.10.0)

Location: gcctools/newlib-1.10.0.tar.gz

Download From: http://sources.redhat.com/newlib/

Installation instructions for this product are provided in the chapter
headed “The GNU Toolchain”.
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LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

[[NEWNES.]] AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION OR
PRODUCTION OF THE ACCOMPANYING CODE (“THE PRODUCT”) CANNOT AND DO
NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY US-
ING THE PRODUCT. THE PRODUCT IS SOLD “AS IS” WITHOUT WARRANTY OF ANY
KIND (EXCEPT AS HEREAFTER DESCRIBED), EITHER EXPRESSED OR IMPLIED, IN-
CLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF PERFORMANCE OR ANY
IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE. [[NEWNES.]] WARRANTS ONLY THAT THE MAGNETIC CD-ROM(S) ON
WHICH THE CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND FAULTY
WORKMANSHIP UNDER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY
(90) DAYS FROM THE DATE THE PRODUCT IS DELIVERED. THE PURCHASER’S SOLE
AND EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS EXPRESSLY LIMITED TO
EITHER REPLACEMENT OF THE CD-ROM(S) OR REFUND OF THE PURCHASE PRICE,
AT [[NEWNES.]]’S SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY OR
TORT (INCLUDING NEGLIGENCE), WILL [[NEWNES.]] OR ANYONE WHO HAS BEEN
INVOLVED IN THE CREATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO
PURCHASER FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS
OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PRODUCT OR ANY MODIFICATIONS THEREOF, OR DUE
TO THE CONTENTS OF THE CODE, EVEN IF [[NEWNES.]] HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

ANY REQUEST FOR REPLACEMENT OF A DEFECTIVE CD-ROM MUST BE POSTAGE
PREPAID AND MUST BE ACCOMPANIED BY THE ORIGINAL DEFECTIVE CD-ROM,
YOUR MAILING ADDRESS AND TELEPHONE NUMBER, AND PROOF OF DATE OF
PURCHASE AND PURCHASE PRICE.  SEND SUCH REQUESTS, STATING THE NATURE
OF THE PROBLEM, TO ELSEVIER SCIENCE CUSTOMER SERVICE, 6277 SEA HARBOR
DRIVE, ORLANDO, FL 32887, 1-800-321-5068.  [[NEWNES.]] SHALL HAVE NO OBLI-
GATION TO REFUND THE PURCHASE PRICE OR TO REPLACE A CD-ROM BASED ON
CLAIMS OF DEFECTS IN THE NATURE OR OPERATION OF THE PRODUCT.

SOME STATES DO NOT ALLOW LIMITATION ON HOW LONG AN IMPLIED WARRANTY
LASTS, NOR EXCLUSIONS OR LIMITATIONS OF INCIDENTAL OR CONSEQUENTIAL
DAMAGE, SO THE ABOVE LIMITATIONS AND EXCLUSIONS MAY NOT [[NEWNES.]]
APPLY TO YOU.  THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU
MAY ALSO HAVE OTHER RIGHTS THAT VARY FROM JURISDICTION TO JURISDICTION.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE IS SUBJECT TO THE UNITED
STATES LAWS UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED.
ANY FURTHER SALE OF THE PRODUCT SHALL BE IN COMPLIANCE WITH THE
UNITED STATES DEPARTMENT OF COMMERCE ADMINISTRATION REGULATIONS.
COMPLIANCE WITH SUCH REGULATIONS IS YOUR RESPONSIBILITY AND NOT THE
RESPONSIBILITY OF [[NEWNES.]].


	Title Page
	Copyright Page
	Contents (hyperlinked)
	Acknowledgments
	Chapter 1: Introduction
	Chapter 2: Before You Start— Fundamental Decisions
	General Microcontroller Selection Considerations
	Choosing the Right Core
	Building Custom Peripherals with FPGAs
	Whose Development Hardware to Use—Chicken or Egg?
	Our Hardware Choice—The Atmel EB40
	Recommended Laboratory Equipment
	Free Development Toolchains
	Free Embedded Operating Systems
	GNU and You—How Using “Free” Software Affects Your Product
	Choices of Development Operating System
	Special PCB Layout and Initial Bring-Up Rules for the Shoestring Prototype
	Hints for Surface-Mounting by Hand
	Choosing PCB Layout Software

	Chapter 3: The GNU Toolchain
	Building the Toolchain
	Overview of the GNU Build Environment
	GNU Make and an Introduction to Makefiles
	Gas—The GNU Assembler
	Ld—GNU Linker
	Converting Files with Objcopy

	Chapter 4: Example Firmware Walkthroughs and Debugging Techniques
	A Quick Introduction to ARM and the Atmel EB40
	First Step—the LED Flasher (in Assembler)
	Bringing Up a Simple C Program— The LED Flasher (in C)
	Writing a Simple Flash-Loader (and Inspecting Memory with gdb)
	A Simple ROM-Startup Program
	A Complete ROM-Startup Application in C
	Blind-Debugging Your Program
	Miscellaneous Glue—Handling Hardware Exceptions in C with gcc

	Chapter 5: Portability and Reliability Considerations
	Chapter 6: Useful Vendors and Other Web Resources
	Index of CD-ROM Contents

	About the Author
	Index


Enbed Syt besgn

3 Shestig



