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Preface

In the current economical climate, the automotive, aviation, aerospace,

defense, etc., industries have established the following priority: improve the

quality and the reliability of products while reducing production costs. To

achieve this goal, the industry strives to modernize its work tools in order to

minimize the duration of design cycles and improve manufacturing processes.

The field of metal forming (stamping, thin sheet metal deep-drawing,

tubes and plates hydroforming, forging of solid materials, cutting, composite

draping, foundry, etc.) is the subject of much research and of different courses

destined to engineers and academics (as part of masters and doctoral schools).

This interest is due to the increasing demands from different industrial sectors

for graduates with experience in these disciplines.

In different industries (automotive, aeronautics, etc.), metal forming

constitutes, in the course of the entire manufacturing processes, a decisive

phase in the overall quality and cost of the final product. A vehicle is first

judged on its design.

Currently, numerical simulations of forming processes are being used

almost systematically in the development of industrial products. The studies,

based on the modeling of physical phenomena involved in the manufacturing

or the utilization of industrial products or infrastructures, answer the growing

need to:

– decrease the duration of the product development cycle;

– optimize product development procedures;

– improve the productivity in design and manufacturing phases;



xii Material Forming Processes

– improve product quality and process reliability;

– optimize testing and reducing its costs;

– simulate non-reproducible complex phenomena by means of trials.

The use of digital educational tools maintains a strong relationship with the

training and research strategy (http://mediamef.insa-rouen.fr/).

This book presents the various methods for forming used in the industry:

stamping, hydroforming and additive manufacturing and proposes a modeling

of the latter by providing the theoretical and numerical advances for each

process involving large deformation mechanics on the basis of large

transformations. It presents the various techniques relative to the optimization

and calculation of the reliability of different processes.

Acknowledgments
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1

Forming Processes

1.1. Introduction

The field of metal forming comprises a wide range of semifinished and

finished products. Each requirement of the acquisition criteria is defined,

justifying the use of various forming processes. A number of recurring

characteristics can be observed in the desired shapes. The latter should

respond with the best dimensional precision possible and the most suitable

surface condition for its usage. The final product must meet material health

conditions for usage properties with the least possible continuity defects.

There is, therefore, an interest in what the most appropriate macro- and

microstructures are.

1.2. Different processes

Metallic materials offer a rich range of independent or combined forming

methods. Among the large families, the following processes are identified:

– smelting;

– machining;

– powder metallurgy;

– hot or cold plastic strain forming.

Each of these processes present characteristics of optimal quality, variable

depending on the material being used, on the dimensions and on the desired

accuracy, on the metallurgical quality, on the final cost and on the quantity. The

choice is oriented according to specific criteria:

Material Forming Processes: Simulation, Drawing, Hydroforming and Additive Manufacturing, 
First Edition. Bouchaib Radi and Abdelkhalak El Hami. 
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc. 



2 Material Forming Processes

– the abilities of the material in relation to the different processes

(particular attention should be given to the difference between a foundry alloy

and alloys deemed “wrought”) regarding the form and the dimension of the

product;

– the defined metallurgical health (limitation of defects such as cracks,

porosities and chemical segregations);

– the usage properties of the product in the mechanical field;

– the desired surface condition (in terms of cleanliness, roughness, of

residual stresses, etc.).

1.2.1. Smelting

The metal or the alloy is melted inside a crucible and then it is poured

into a specific mold inside which it will solidify when cooled down. Complex

forms can be obtained often linked with a minimum of induced thickness.

Large variations of the latter involve consequences on the development of the

final properties. Casting workpieces are produced from simple and often fairly

cheap traditional techniques. This results in obtaining monobloc parts whose

quality and mechanical properties are lower than those of wrought products

(products having undergone hot hammering in order to obtain the desired

properties often in a compulsory direction). There are numerous and very

varied molding techniques depending on shape, quantities and on the quality

requirements:

– The mold is made up of sand and inside it a cavity can be found that

will represent the resulting piece. The first operation consists of building a

pattern generating the shape of the desired casting by integrating the machining

allowances and the useful drafts. The pattern represents the mold cavity left in

the sand when the mold is closed. The mold is opened to extract the pattern

therefrom and closed to the molten metal. When solidification is achieved after

slow cooling, the mold is broken in order to retrieve the final product. One

casting is thus obtained per mold.

– The mold is in metal and thus is reusable. The cooling proves to be much

faster than the sand casting process. The pattern is obtained by machining the

mass and with respect to the hollow parts, they can be achieved with eventually

destructible cores.

– Die-casting integrates a metal mold but the filling of the pattern is ensured

by means of a piston that pushes the liquid at high speed in a short period of

time (a few 1/10 of a second). A slight overpressure can be maintained in the
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mold, which has the effect of properly feeding the pattern, while avoiding the

design of a hot-top to perform this function. The mechanization of the process

is total. On the other hand, the tools undergo very significant repeated efforts,

which reduces their life expectancy (20, 000–50, 000 parts depending on the

nature of the cast alloy).

– Centrifugal casting concerns all so-called revolution parts. The

fundamental difference lies at the level of the introduction of liquid material,

which is carried out along an axis around which the mold revolves. The

centrifugal force promotes uniform filling. The structural composition is finer

and full.

Figure 1.1. Gravity die casting accompanied by the obtained casting

1.2.2. Machining

Machining is a material removal operation making use of a cutting tool.

This process allows for highly accurate complex forms and a controlled

surface finishing. Different processes are identified and classified into two large

categories. The first involves chip formation, which mainly includes turning,

milling, grinding and drilling. The second does not involve chip formation and

designates flow-turning, electrical discharge machining, shearing and waterjet

cutting. From a structural point of view, machining only alters a superficial

layer of the material, which therefore causes a hardening of the surface. As a

result, we can observe the creation of a residual sublayer stress field, causing

significant heating in the superficial layer. Ease of machining is linked to the
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physical contact of the tool-workpiece pair during machining. It depends not

only on the mechanical behavior of the material (resistance, consolidation and

malleability of the machined material) but also on its thermal behavior. A low

resistance is recommended, which means a sufficient malleability, however this

facilitates chip breaking. It can also be noted that a good thermal conductivity

most often facilitates the machining. As a result of adding cold or hot particles,

the cutting conditions can be improved (controlled inclusions of low melting

point lead or even sulfides, etc.). These latter facilitate the fragmentation of the

chip:

– Chip formation: Machining takes place following optimized cutting

conditions, which consider the geometry of the cutting tool, the cutting fluid

and the dimension of the non-deformed chip. It is formed following primary

shearing of the metal when making contact with the cutting edge of the tool

and following a secondary shear when in contact with the external edge of the

tool. This effort zone undergoes superficial strain hardening and heating. In

addition, the chip is subjected to the same efforts coupled to the tool on its

external edge. Futhermore, the cutting speed Vc plays a paramount role and is

thus expressed:

Vc =
n.π.d

1000

with Vc expressed in m/min, rotational speed in rpm and tool diameter for

milling.

– The machined surface: It is defined by a heated and hard-tempered

underlying superficial area. The microstructure can therefore be modified

(constituents or phase change) or even undergo local strain hardening by

cold working. Often, there remains a significant local residual stress field.

Moreover, microcracks can be observed.

– The chip: When the material is fragile, it quickly becomes fragmented

into lemels (for example some smeltings). In the event that it is ductile and

slightly consolidates. However, when this consolidation occurs as a result of

the hardening phenomenon, it easily fragments. On the other hand, a few

obstacles to chip formation may surge notably due to heating and pressure. A

galling phenomenon can be observed between tool and chip forming a build-up

edge. It is defined by lemel stuck to the tool. Thus, the maximal temperature is

variable according to the cutting speed and the hardness of the tool. The stress

and strain field induced by the cutting enforces an increase in the temperature

of the metal.
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As a result to the cutting conditions, the tool is subjected to the following

observations:

– adhesive wear;

– abrasive wear;

– damage due to atomic diffusion or to oxidation;

– damage due to thermal fatigue;

– irreversible deformation (creeping).

1.2.3. Powder metallurgy

This process consists of obtaining a final piece adapted to special needs

by means of compression and sintering. From the agglomeration of very fine

powders, a compacted object is produced with a form very close to that

desired. Then, we control the cohesion of the powder with a thermal sintering

process. Different applications can be identified, used in specific categories of

workpieces:

– in cases where the production of controlled fine-porosity metal products

with complicated forms is sought after;

– in pieces composed of refractory metals presenting a good resistance to

heat;

– in alloys that cannot be obtained by smelting, notably tungsten or

some magnetic materials such as soft magnetic metal ferrite composites. As

an example, we can therefore cite cermets composed of “coarse” ceramics

particles distributed in a metal matrix. In the field of cutting tools, we come

accross cobalt matrix-based indexable lathe tools;

– in friction materials of which brake pads or clutch discs are made of;

– in electrical contact materials of which we can cite as an example silver-

or copper-based contacts.

This technique is often used when some materials are hardly fusible or

seldom deformable by plastic deformation. We then obtain products with

improved microstructure, finer and more homogeneous than that observed by

smelting as some nickel-based superalloys. It is also popular as an alternative

with other forming processes to reduce production costs. As a matter of fact,

metal losses and machining operations can be significantly optimized because

it allows engineers to manufacture complexly shaped pieces with precise
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dimensions using a single method. The latter is a very common method in the

development of multiple products in mineral materials such as oxides, carbides

and refractory products. It mainly enables the control of the porosity of the

developed products. Two categories can be contrasted:

– weak microporous parts;

– massive parts with almost no porosity providing good mechanical

properties as well as good ductility.

The process is defined as follows:

– Powder production: The shape and the grain size can vary between 1 and

1, 000 μm and are obtained by means of mechanical techniques involving the

grinding of hard metals such as molybdenum (Mo) and chromium (Cr). The

production can originate from a liquid phase by atomization of aluminum or

copper. In addition, the process of atomization is defined by a drying operation

that consists of transforming a liquid pulverized in the form of droplets in

reaction with a hot gas into powder. It is operational in all processing industries

of the material, particularly in the agrifood and the chemistry sectors. Its

design is dependent on the properties of the product to be obtained and the

characteristics of the drying gas as well as on the specifications of the powder.

– Powder compaction: This operation is compulsory to reduce the porosity.

The latter is measured by the ratio δ = (Va−Vr)
Va

where Va is the apparent

volume of the powder and Vr its actual material volume. The compaction

is given by the following relation γ = Vr

Va
and the expansion is 1

γ . Powder

forming is achieved by cold, hot and isostatic compression.

– Powder sintering: This step consists of forming while respecting the

continuity of the solid. It is a process activated by solid-state atomic diffusion

at a temperature ranging from 60 to 80% of that of fusion for a variable period

according to the material under study. This energy is activated between the

contact surfaces of the grains of powder and the shape of the pores is deformed

until it is completely reduced.

As a whole, the process must be highly controlled due to the permanent

risk of oxidation.

1.3. Hot and cold forming

Liquid casting, hot open-die forging and cold sheet metal forming have

been documented as early as 5, 000 B.C. These are often relatively simple

methods based on the use of molds, a hammering tool and a base. During the
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first centuries of the Christian era, wire drawing by means of perforated plates

and primitive machining using chisels were discovered. During the

Renaissance, rolling dominated the industry because of its high productivity

and its great versatility. Over the last century, the sector has been in full

expansion, with an acceleration in the development of processes since 1940.
As a matter of fact, the Germans invented cold forging (extrusion) of steels

for the manufacture of weapons. Since 1945, machining has improved

considerably and other processes such as electrical discharge machining or

waterjet cutting have been invented. We would like to point out the discovery

of hot melt spinning of copper alloys by the Frenchman Séjournet.

Forming ability is intrinsically linked to structural evolution, whether under

the effect of thermomechanical processing or not, according to its three-

dimensional plastic behavior. The latter is subjected to deformation speeds and

imposed temperatures. It can be observed that compression efforts associated

with the reduction of gradients of strain rate facilitate deformation without

necking nor rupture. The literature discusses three major phenomena that have

to be avoided:

– ductility generalized to fracture in mismatch with the targeted

deformation amplitude. Deformation involving several steps separated by

annealing is thus advocated;

– incompatible necking ductility with respect to localized deformation;

– sensitivity to strain rate inconsistent with the field of practiced speeds.

Under optimal forming conditions, it is possible to take action on this field

by decreasing the average rate or by lubricating the solicited surfaces with the

aim to reduce the rate gradients between the edges and the center of the desired

shape. Among these methods, we cite the following:

- forming by plastic deformation: this operation relies on hot or cold

work in the plastic region of the metal. It allows that the product be obtained

without metal loss in large productivity. There is a certain interest for very

long parts or with a very small thickness. Plasticity is therefore an important

property. Following a stress state, the plasticity criterion whose critical value

is defined by the plastic flow constraint is verified. It is assumed at first that the

volume remains invariant. It is applicable on the majority of metal alloys and

implements numerous processes. In the case of massive products, the work

is carried out by means of direct action of the pressure (open-die forging,

discharge, stamping, forging, sheet rolling, wiring or extrusion). Through the

indirect action of the pressure, we obtain traction-type processes such as wire-

drawing and cold-drawing;
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- typical operational chain for the forming of steel: it is particularly

long and complex for the manufacture of steel for common use. It begins

by obtaining a semifinished product by continuous casting at a relatively

low speed and a relatively large section. These conditions are required by

the exhaust speed of heat and the productivity rate. Then, a decrease in the

transversal dimensions can be observed that is caused by rolling. It is defined

as a continuous cycle of strong productivity. A first hot pass is necessary, then

a cold one aiming for thinner products;

- hot forming: the recognized high quality of hot forming lies surely in

its ability to endure very large deformations as a result of reduced efforts. On

the other hand, it should be noted that the final dimensions remain inaccurate

and the state of the surface is often altered (oxidation, decarburization, etc.). It

is advised to carry out blasting as a finalizing solution. Overall, the metal does

not present a good mechanical resistance with hot casting but this gives it a very

significant malleability. We refer to hot forming when the temperature rises

above 0.5 Tf (melting point). We are interested in the behavior of the material

during and between the stages of plastic deformation by recrystallization or

restoration. These individual or conjugate phenomena strongly decrease the

hardening and the yield stress value decreasing according to the temperature.

On the other hand, the yield stress becomes an increasing function with the

plastic strain rate;

- cold forming: we refer to cold forming when the ambient working

temperature is comprised between 0.15 Tf (melting temperature) and 0.3 Tf.

We retain a structure that only works in the field of plastic deformation. This

phenomenon is characterized by hardening by increasing the material yield

stress. On the other hand, a decrease in ductility can be seen that is defined by

its ability to endure plastic deformation without damage;

- warm deformation: an intermediate area is observable that is called

warm deformation. In theory, this relates to taking advantage of hot forming

(lower yield stress) and those of cold forming in order to harden the product

by strain hardening. The method commonly used is by forging. This method

is seldom used due to the big problems in formulating the necessary tools

and lubricants, notably for all fairly ductile materials, but it is suitable for

high-speed steels. It is possible to obtain forms and thicknesses for very

varied products making use of forming techniques that often result in different

characteristics. They differ by the tools being used and the strain and the

rate fields associated with the operated directions as well as their amplitude

(compression, traction, etc.). They are also limited each in their respective

fields of productivity. Some examples include:
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- rolling: this process is characterized by passing between the rolling

mill cylinders in reverse rotation of the production of the flat (sheet) or long

product (profiled). Rolling is qualified as discontinuous when it is effected

through a single cage at a time or continuous through a number of several

cages. The result is a product in the form of more or less thick sheets or of strips

packaged in coils. The desired deformation is obtained after several passes and

intermediate annealings (beams, rails, etc.);

- forging: this process is defined from a billet that is compressed by the

pilon hammer or by hydraulic or mechanical presses. The forging is known

as “open-die” when the deformation slopes are not subjected to any pressure.

Forging can be done by dieing or stamping. A blank is compressed in a mold.

In addition, die forging is recognized for the family of light alloys;

- spinning and extrusion: these two operating procedures, consisting of

slow compression through a die, allow for reducing the cross-section of long

products and giving them the desired final shape. In the case of high speeds, it

is referred to as wire drawing since the aim is to obtain a calibrated wire in the

coil form. This is the result of a pass through a suite of lubricated dies;

- stamping: it is advisable for complex workpieces with non-

developable surfaces. The principle consists of a shaping punch penetrating

a blank held in position, which will give the final form with the counter

form called forming die. The efforts are often very important and can alter

the structure; it is the reason why intermediate annealings are common

practice. There are several forming areas determined by the orientation of

the deformations, that is the expansion, the restraint or the extension. We can

also observe the limits of the process according to the material used that can

lead to necking (a phenomenon observed before the fracturing of a structure at

the point where the value of the yield strength permissible by the material is

reached) or fracture [CHE 08b].

1.3.1. Influence of the static parameters

1.3.1.1. Stress level

At least one stress level is imposed by the yield strength of the material

under consideration. The latter evolves according to the hardening by means

of work hardening directly linked with the deformation. There is a strain

hardening exponent determined by tensile testing for each material. It follows

a behavioral law for the generalized stress (Pa) that appears as a significant
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factor notably for cold forming. We thus obtain, in three-dimensional

plasticity without necking nor rupture at a given temperature:

σ̄ = kε̄n ¯̇ε
m

[1.1]

where ε̄ is the generalized strain, ¯̇ε is the generalized strain rate (in s−1), m is

the strain rate sensitivity coefficient and n is the work hardening coefficient.

1.3.1.2. Stress triaxiality

Stress triaxiality conditions the “confinement” of the material and delays

the appearance and the multiplication of internal or surface microruptures.

It is identifiable by means of the ratio σm

σeq
of the hydrostatic component

σm = (σ1+σ2+σ3)
3 (directly interfering on the elastic change of the volume) to

the equivalent Von Mises stress (σeq) responsible for the change in shape.
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Figure 1.2. Space of the principal stresses in the Von Mises cylinder
with the state decomposition of depressive (σD) and compressive

stress (σC ) accompanied by its deviatoric (σS) and spherical
components (σTD and σTC )

In the case of massive or long products, the formability limit increases

with decreasing positive values as those of the uniaxial tension to the negative

values of those spinning or forging. These latter, respectively, characterize the

depressive mechanical state and the compressive mechanical state.

Concerning the deformations, triaxiality can be estimated by a tensile test in

which the two dimensions of the cross-section of a flat test piece are

measured. The observed deformations are therefore inferred as well as the

anisotropy coefficient r(ε1, α) =
ε2
ε3

for a longitudinal stress ε1 observing an
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angle with the rolling direction. An average anisotropy coefficient r∗ is

specified for the flat products containing all of the directions α. The sheets are

usually anisotropic, and we thus estimate the average coefficient by:

r∗ =
r(0◦) + 2r(45◦) + r(90◦)

4
[1.2]

We obtain the following consequences:

– consequences in rolling: a single phase of plane strain is observed

because the width of a sheet is not modified with this manufacturing process.

The work hardening coefficient n plays an important role since it drives the

effort of cold rolling. This may result in a deformation of the rolling mills. In

contrast, in hot rolling the coefficient n is small;

– consequences in stamping: in this specific case, we are considering the

field of planar stresses outside folding. The charges and the strains have very

complex trajectories:

- it is possible to form in the region “in expansion”, that is ε2 comprised

between 0 and ε1 and σ2 is located between σ1 and σ1

2 ,

- in “extension”, the region spreads for ε2 comprised between 0 and

− ε1
2 for the strains and concerning that of the stresses, it positions itself for ε2

comprised between σ1/2 and 0,

- in the “restraint” area, ε2 can be observed ranging between −ε1/2 and

−ε1 and so as σ2 be located between 0 and −σ1,

- testing can be performed to determine the restraint with a limit deep-

drawing ratio, increasing with n. Also, there is a biaxial test (ε1 = ε2)

characterizing the expansion.

This coefficient n varies mostly according to the microstructure but little

with the texture. It is observed that a high value of n improves the deformations

by expansion. A high coefficient r∗ depending on the texture for most metallic

materials helps toward restraint deformations. Thus, when a high value of the

two previous regions is combined, we can speak of optimum conditions for

expansion forming.

– consequences of strain rate: local plastic strain rates are in direct relation

to the strain modes and the usual operating parameters of machines. The strain

is expressed by the following relation: dε
dt in s−1. When the rate is high, it

can be seen that the thermodynamic and the inertial efforts must be taken into
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account. The yield stress varies according to the plastic strain rate following a

power relation:

σ = C(
dε

dt
)m [1.3]

where C is the plastic flow stress (Pa.s−1).

1.3.2. Hydroforming

The signatory countries of the Kyoto protocol for the reduction of

greenhouse gas emissions and the agreements of the COP(21) in Paris in 2015

have prompted the automotive industry to review their methods and their

production technologies with the objective of meeting these new

environmental standards. A decrease in fuel consumption can immediately

lead to a reduction in the emission of gaseous pollutants. It is estimated that

there is a 15% gain in consumption when the mass of the vehicle is reduced

by 25%. The appearance of these new requirements has resulted in the

development of new lighter grades in motor structures. As such aluminum

alloys already make up the structural parts of several vehicles. Moreover, new

grades of steel with high elastic yields offer a better specific weight resistance

ratio than that of conventional steel.

In the spirit of reducing weight, an idea is being developed concerning a

method which consists of the reduction of the number of elementary parts. As

a result, we can note a decrease in primary material being used, of welding

seam, or even of blank. Concretely, deep drawing finds its limitations in the

production of complex forms in one single part. As a result, the hydroforming

process proves to be indispensable with regard to quality as an alternative

technology. This relatively new method makes both use of diverse and varied

technologies. However, these are based on the same principle, that is to say that

a liquid under pressure is injected for the forming of a primary piece that can

be a tube, a blank or a preform. The hydroforming process is characterized by

pressurizing a liquid that pushes the material, with a homogeneous distribution,

called tool or die. This equipment is mounted on a hydraulic press specifically

equipped with an injection system to ensure the closing in order to avoid

any risks of leakage from the liquid. The tubes or the sheets are plastically

deformed until obtaining the final piece. When comparing with deep drawing

or die forging processes, there is no use of punches or intermediate forms. Four

main variants can be noted in the implementation:
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– fixed-die hydroforming: in this case, the pressurization of the fluid itself

enables obtaining the final form;

– mobile-die hydroforming: this is the most commonly employed and the

most technical process. The strain is assisted by the action of cylinders at the

ends of the workpiece in constant relation with the internal pressure that acts

simultaneously. There is therefore interest in this process and we will describe

the main stages of the full forming cycle;

– low-pressure hydroforming: we refer to low-pressure expansion when it

does not exceed 1, 000 bars;

– high-pressure hydroforming: we refer to high-pressure expansion when

it does exceed 1, 000 bars. A thinning phenomenon can be observed in the

thickness of the wall enduring the tension. High-tonnage presses are used for

shutdown forces that can reach more than 10, 000 tonnes according to the

surface projected of the workpiece to obtain.

Positioning

Sealing

Axial feed

Final part

Figure 1.3. Hydroforming principle

1.3.3. The limitations of the process

We can identify two disadvantages in this process:

– pleating effect known as “wrinkle”: it occurs when the axial force is too

high relative to the internal pressure. It can be eliminated by increasing the

internal pressure;
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– buckling: occurs when the axial force is too high for the length of

the tube that is not supported or when changes in the geometry of parts are

not symmetrical after the tube have reached plastic deformation or when the

variations in friction states result in unbalanced deformation.

1.3.4. Deep drawing

Deep drawing is a sheet metal forming process in which a sheet metal blank

is radially drawn in a forming mold by the mechanical action of a punch. This is

therefore a form transformation process with retention material. The process is

considered to be “deep” when the depth of the drawn part exceeds its diameter.

This is achieved by redrawing the piece through a series of dies.

The flange region (sheet metal in the shoulder region of the die) undergoes

a radial drawing stress and a tangential compression stress due to the material

retention property. These compressive stresses cause flange wrinkles

(first-order wrinkles). Wrinkles can be avoided by using a blank holder,

whose function is to facilitate the controlled material flow within the radius of

the sheet metal [MOR 10].

The total tensile load is composed of the ideal load and forming an

additional component to compensate for frictions in the contact regions of the

flange area and the bending forces as well as the inflexible forces at the level

of the die radius. The forming load is transferred from the punch radius

through the wall of the workpiece drawn in the deformation region.

In the wall of the drawn workpiece, in contact with the punch, the

circumferential deformation is equal to zero by which the plane strain state is

reached. In fact, most of the time the stress condition is only brought forward.

Due to the tensile forces acting in the wall of the part, the thinning of the wall

is important and results in an uneven thickness such that the wall thickness is

the lowest where the wall of the part loses contact with the punch.

1.4. Experimental characterization

The most widespread development process of sheet metal is rolling. Due

to its nature, this process provides a strong orientation according to the rolling

direction to the grains constituting the material. The end results are rolled

sheets characterized by fiber patterns at the microscopic scale and a texture,

that is to say preferential crystallographic orientations.
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The study of the behavior of these sheets is most often addressed within

the context of an elastic–plastic approach for most of the processes of

sheet-metal forming. The elastic–plastic theory itself comprises two different

approaches describing each on a physical scale of the behavior: the first is

called phenomenological approach (or macroscopic) and the second is called

microscopic approach (or micro–macro model). The two approaches have the

objective of describing the evolution of the stress and the strain state during a

succession of deformations.

Within a phenomenological approach, the elastic–plastic behavior of the

material is described by an envelope called initial charge surface. Defined in

the stress space, this closed surface defines the elastic limit and the beginning

of the plastic flow of the material for the different configurations of possible

loading, it is a generalization of the uniaxial elastic limit. We introduce in the

phenomenological approach the concept of the plasticity criterion that is

nothing more than a mathematical description of the form of the initial charge

surface. This criterion can be isotropic (von Mises, Tresca, Hosford criterion)

or anisotropic. In addition, the Hill48 criterion [HIL 50] describes both

general anisotropy and orthotropic anisotropy particular to rolled sheet metal.

There are other anisotropic criteria [HOS 79, BAR 05] that contribute to the

description of the orthotropic anisotropy and that differ among themselves by

their form (quadratic or non-quadratic functional), the stress hypothesis in use

(plane stress, 3D stress), the shear stress being taken into account or not, as

well as by the number of parameters utilized in these criteria.

Once the shape of the initial charge surface is described by the plasticity

criterion, the phenomenological approach introduces a work-hardening model

for describing the evolution of the shape, size and position of the initial

charge surface during the deformation. Although isotropic work hardening

results in the expansion of the charge surface without any distortion of its

form, anisotropic work hardening, such as kinematic hardening, describes the

displacement of the charge surface without distortion, in the stress space

[KOS 94]. Since the strain-hardening model is supposed to describe the

update of the initial charge surface during charging, and that the latter is

formed by a number of different stress states, this update thus has to be

carried out for each of the stress states to a same value of an internal variable;

this variable can be either work hardening [KOS 94], or the equivalent plastic

work-hardening strain [KUR 00].

After the definition of the charge surface and the type of work hardening,

the third hypothesis upon which the phenomenological approach relies is

relative to the description of the plastic flow, which is the description of the
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relationship, on the one hand, between the strain rate tensor, the stress rate

tensor and the stress tensor. This is then referred to as the associated plastic

flow rule when the plasticity criterion is considered as being the plastic

potential, and to the non-associated flow rule if a second function other than

the plasticity criterion is considered (most often the chosen function is of the

same mathematical form as the plasticity criterion).

In contrast, within a microscopic approach, the macroscopic quantities

such as the stress tensor and the strain tensor are typically deducted from the

numerical modeling of the behavior of the grains constituting the material.

Although this approach is becoming more consistent and is getting closer to

the physics of plastic strains, it has a limited utilization due to the need for

storage and the significant memory size as well as a prohibitive computational

time. The phenomenological approach is more widespread because of its

convenience, its relative ease of implementation, its speed but also often

because of the sufficient accuracy of its results. Futhermore, the two

approaches can be complementary to the extent where the microscopic study

enables for understanding the mechanisms of plastic deformation and

validating phenomenological models.

1.5. Forming criteria

The function of these criteria is to judge the capacity of a sheet to endure

the different possible strains during forming:

– Conventional criteria: These are the fastest and the cheapest to

implement because they mainly consist of simple tests on the blank that tend

to reproduce as much as possible the strains occurring in pressing. We mainly

use the following tests:

– Rockwell hardness (HRB index);

– stress–strain (yield point Re);

– tensile strength Rm;

– elongation at break A (%);

– Erichsen’s deep-drawing (index IE).

This type of criterion provides only a single element and therefore only

provides a low accuracy in the study of the blank. Nevertheless, by only

considering these tests, it is possible to bring forward a number of essential

characteristics of the metal. The metal has to exhibit a very high fracture
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toughness in order to resist uniaxial tensile strength, a low yield point

(because in the plastic field, despite being the lowest possible to avoid

fractures, the exercised strains have nonetheless to be above the yield point),

significant elongations and low resistance to the tangential compression in the

blank holder (that is a good capacity to restraint).

– Combined criteria: They are not merely accepting separate parameters

but make use of combinations of conventional factors. We thus find criteria

such as Re/Rm, Rm-Re, (Rm-Re)*A, etc. They contribute with higher

accuracy to the characterization of forming but require a larger number of

experiments and materials.

– Rational criteria: These are the most difficult and the most expensive to

determine but they are the ones that offer the best judgment to the forming of

sheet metal. Two can be found: the strain-hardening n and the anisotropy r
coefficients.

The strain-hardening coefficient n is linked to the consolidation of the

material. Note that strain-hardening increases fracture toughness as well as

the yield strength that gets closer to fracture toughness. If two sheets having

the same value of n but different elasticity coefficient k are formed, they will

behave in a similar manner despite of the different forming forces. Thus, this

criterion can determine the capacity of a sheet to be implemented. It is

obtained from the rational stress–strain curve connecting the relation σ = F
S

to the rational strain ε = ln( S
S0

) (where σ is the stress, F is the applied force

and S is the actual cross-section).

In the general case, it uses two successive formulas of the form:

σ = σ0 + k.ε0 or σ = k(ε0 + ε)n [1.4]

In the simplest case, the work-hardening coefficient n is also equal to the

rational elongation at the end of the uniform distributed elongation εu at the

maximum of the charge elongation curve. When dF
dl = 0, the derivation of

σ = kε0 leads to εu = n.

It is therefore shown that this criterion is justified to characterize sheet

metal forming, but it should be accompanied by a criterion characterizing the

biaxial stress instability, that is to say the appearance of necking.

The plastic strain anisotropy r of sheet metal plays an important role in

characterizing a sheet. The extent of this criterion has been highlighted by
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means of the strain analysis of the blank on the blank holder (restraint) in the

walls of a cup or at the poles of the drawn (expansion).

Due to the preferential orientation of the crystals, the plate does not have

the same mechanical properties according to the direction under consideration.

It also results in a loss in the equilibrium of the strains between the width and

the thickness during a uniaxial strain–stress test. It is on this point that we have

decided to base the second deep-drawing criterion:

r =
ln(ω/ω0)

ln(e/e0)
[1.5]

with (ω) the width and (e) the thickness.

Figure 1.4 shows the variation of the anisotropy coefficient r in the sheet-

metal blank with a value of the angle between the tensile test direction and the

rolling direction. These curves represent the three possible cases in the case of

low-carbon steel for forming:

– curve (1) in Figure 1.4 corresponds to the general case, that is to say,

where r reaches a minimum. This is characterized by a drawn with 4 ears at 0◦

and 90◦;

– curve (2) in Figure 1.4 represents the case in which r reaches a maximum,

that is to say, where the sheet presents two 45◦ ears;

– curve (3) in Figure 1.4 represents the case in which r increases between

0◦ and 90◦. In the latter case, the sheet presents two ears at 90◦.

This criterion, if high, would therefore indicate a strong resistance to

thinning from the sheet metal and a large ability to deform before necking.

1.5.1. Influence of the structure of sheet metal

Thin sheets are polycrystalline aggregates. Their forming, as well as all of

their characteristics, depends to a large extent on these aggregates:

– Influence of the grain size: Grain size is one of the most important

parameters. Actually, it has an effect on the yield point and on the tensile

strength which are (conventional) criteria of drawability. It should be added

that, in the case of low-carbon steel, it is possible to relate the drawing

coefficient to the size of the grains as follows and it should be recalled that if d
(average grain size) increases, a change in structure occurs causing an increase
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in r. It is however necessary to note that if the grains are too significant, a

surface defect appears. It is called “orange peel” and it is characterized rise by

a blurred and undulating surface.

Figure 1.4. Variation of r according to the rolling direction

– Influence of the crystallographic structure: As mentioned previously, the

crystallographic orientation is a non-negligible parameter. It occurs not only at

the work-hardening level but also on the characteristics Re, Rm, A, etc. Work

hardening of sheet metal occurring during annealing or rolling is responsible

for the crystallographic direction of the grains and therefore for the preferential

tensile directions or other similar tests.

– Springback: When the punch withdraws after forming, the piecework

thus formed part is no longer subject to the retention force. A shrinkage

of the material then occurs due to the elastic deformation of the primitive

blank and resulting from residual stress after forming. This is then referred

to as springback. It manifests itself in bent workpieces, cylindrical workpieces

(inner diameter of the piece greater than the diameter of the punch) and in

slightly deformed large dimension workpieces. This phenomenon is easily
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verifiable by means of a controlled stress–strain test. Indeed, if the test is

stopped before the fracturing of the test piece and the stress is sufficient to

exceed the yield point, the length of the test piece will be greater than its

initial length but less than that obtained at the end of the test. The test piece

undergoes a springback corresponding to the strain it suffered prior to its yield.

In order to obtain a piece of dimensions corresponding to the expectations, it

is thus important to take this phenomenon into consideration. To mitigate this

phenomenon, it is common use to resort to some artifacts such as coining,

bottom bending or extended maintaining of the punch. This phenomenon is

so significant that the yield point of the material is itself increased (case of

stainless steels compared to mild steels);

– Other influential elements: The presence of alloy elements in solid

solution in ferrite increases the yield, tensile strength and reduces the

elongation. These elements may have a significant indirect influence by

modifying the conditions of the recrystallization and grain growth, in the

texture, during annealing. Similarly, the second phase particles are of great

importance in the ability of a sheet to be deep-drawn. This influence depends

on their size and distribution. Thus, fine particles will likely impair the

drawability (an increase in Re and Rm and a decrease in A and n) and clusters

of non-negligible size may result in tearing or fractures.

1.5.2. Physical strain mechanisms

The observed macroscopic behavior is actually the result of local

deformations on a microscopic scale. This microscopic aspect is fundamental

for the physical understanding of phenomena:

– elastic strains: correspond to variations of interatomic spaces and

reversible movements of dislocations. These strains are essentially instantly

reversible; the initial configuration is recovered after discharge;

– viscous deformations: correspond to the undergoing deformation while

the charge is constant; there is no more equilibrium. Time and strain rates play

an important role in the laws of behavior of a viscous material. When this

phenomenon is favored by thermal activation, it is referred to as creep flow;

– permanent strains: correspond to irreversible movements of dislocations.

These displacements occur when the crystallographic planes slip (plane of

greater atoms density). In practice, these movements do not alter the crystal

structure and the volume remains unchanged; it is referred to as plastic

incompressibility;
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– strain hardening: this phenomenon corresponds to an increase in the

number of bottlenecks in the dislocations motion. It counteracts the increase

in the number of dislocations and modifies the threshold beyond which the

deformations are no longer reversible;

– restoration: this phenomenon corresponds to a recrystallization by

regrouping opposite sign dislocations. It occurs over time and is favored by

thermal activation;

– conventional yield strength: unlike the yield strength Re, the

conventional yield strength is defined as the yield obtained when the strain

reaches 0.2% of the initial length. However, the yield strength is the stress

delimiting the elastic limits of the other limit regions and defines the range of

validity of Hooke’s law.

1.5.3. Different criteria

The determination of a criterion is particularly delicate. There is

unfortunately no universal criterion that integrates all the experimental

results. Even if it was possible to determine such a criterion, it is feared that

the cost of preparation and the utilization costs would not be admissible at the

industrial level. Indeed, the determination of the various yield points

associated with the different tests makes use of more or less sophisticated

testing machines that can prove expensive. Moreover, it is preferable to use

criteria that only involve one or two trials and that are simpler to implement.

We are then fully aware that we are losing some accuracy, but this loss has to

be relativized with regard to the uncertainties of the experimental

measurements of the yield points, or when determining the characteristic

quantities of the law of behavior:

– Von Mises criterion: This criterion is based on the last observation

regarding the isotropic compression and the strain energy. As there is no limit,

it is necessary that this criterion allows quantifying the strain energy that is not

depending on the isotropic compression. Based on the results obtained by the

experiment, namely that we modify the volume without modifying the form,

it can be shown that the stress tensor as the strain tensor is purely spherical.

The deviatoric parts are non-existing. The idea associated with the Von Mises

criterion is therefore to limit the deviatoric elastic strain energy, that is to say

that obtained from deviatoric tensors. According to the principal stresses, we

obtain:

(σ1 − σ2)
2 + (σ1 − σ3)

2 + (σ3 − σ1)
2 ≤ 2σ2

e [1.6]
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Depending of the form of the stress tensor, the Von Mises criterion will

assume different notations. In the general case, it is written in the following

manner:

σeq =√
1

2

[
(σ11 − σ22)

2
+ (σ22 − σ33)

2
+ (σ33 − σ11)

2
+ 6 (σ2

12 + σ2
13 + σ2

23)
]

[1.7]

The equivalent strain must naturally be smaller than the plastic flow stress

to remain in the elastic limits of the material.

– Tresca’s criterion: This criterion is based on a limitation of shear at one

point. It amounts in fact to limiting the radius of the largest of Mohr’s circles

and due to this fact it is particularly well suited to shear stresses such as beam

torsion. Its expression is simply given in main stresses ordered by the formula:

σ1 − σ3

2
≤ τe [1.8]

Such as for the Von Mises criterion, we are confronted with a simple

criterion to define and to implement but that does not consider taking into

account the complexity of the different test results. In particular, as for the

previous criterion, it can be observed that there is no limitation to isotropic

tensile stress, which contradicts the experimental results.



2

Contact and Large
Deformation Mechanics

2.1. Introduction

Generally, the problems with forming consist of large transformation

problems. In this chapter, we present the formulations adopted. A formulation

in convective coordinates is used to denote the mechanical equations of the

problem. It is shown that this type of formalism facilitates the notation of

large transformation and large deformation equations.

Based on the basic notions of continuum kinematics in large

transformations, the solution of behavioral and structural equilibrium

problems can be obtained with an incremental notation.

In the concept of large transformations, both configurations, actual and

“reference”, are not confused. This chapter discusses the choice of the strain

tensors and the deformations to be used in order to have a coherent

formulation that respects the principles of physics, such as material

indifference. We present a rigorous notation of the expression of the stress

tensor defined from the current configuration according to the stress tensor

defined from the reference configuration and the increment of the stresses.

2.2. Large transformation kinematics

There are two different ways to describe the kinematics of a solid

subjected to large transformations. This solid occupies at the instant t0, before

Material Forming Processes: Simulation, Drawing, Hydroforming and Additive Manufacturing, 
First Edition. Bouchaib Radi and Abdelkhalak El Hami. 
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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transformation, a configuration C0, and at the current instant t it occupies a

configuration Ct.

The first method, which is also the most widely used, consists of

providing each of these configurations with a system of spatial coordinates.

These systems are chosen to be Cartesian, and both configurations can be

represented in the same reference frame, which is usually orthonormal. The

coordinates defined in C0 are called Lagrangian coordinates and those defined

in Ct Eulerian coordinates. The equations and the problem variables can be

denoted in one or the other configuration. This is thus referred to as

Lagrangian or Eulerian formalism.

The second method considers that all the quantities are expressed, relative

to a material referential system that evolves in time, in a curvilinear

coordinate system called material or convective coordinates. This formalism

is well adapted to the kinematics of large transformations.

2.2.1. Kinematics of the problem in spatial coordinates

To describe the motion of a solid that occupies a domain Ω0 at instant t0
and a domain Ω at instant t, X denotes the Lagrangian coordinate system,

x the Eulerian coordinate system and an application denoted φ is introduced

such that φ( �X) = �x, which is assumed to be differentiable with respect to X.
This application connects the Lagrangian coordinate system X to the Eulerian

system x. The vector �x position of a point M at instant t is the image (or the

transform) of the vector �X position of M at instant t0.

Figure 2.1. Deformation of a solid, spatial coordinates
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Let �x be the position vector of a point M at instant t. �x = ϕ( �X, t) is also

written as: xi = ϕi(Xj , t) with Xj the Lagrangian variables. If we write the

equations of the problem in C0, this is referred to as a Lagrangian description

and xi are the Eulerian variables. When writing the equations of the problem

in Ct, this is referred to as a Eulerian description.

2.3. Transformation gradient

It is the tangent linear application that allows moving from C0 to Ct; it is

defined by:

�dx = F(X, t) �dX [2.1]

F is the gradient tensor of the transformation: X → x = ϕ(X, t)

(2.1) ⇐⇒ dxi =
∂ϕi(X, t)

∂Xj
dXj [2.2]

We denote Fij(X, t) =
∂ϕj(X,t)

∂Xj
.

This application allows the transformation laws of volume and surface to

be established. In effect, if we denote J = detF, dV and dS the volume and

surface elements at instant t, dV0 and dS0 the volume and surface elements

at instant t0, �n0 the unit normal of dS0, we get: dV = JdV0 and �ndS =
JF−1 �n0dS0.

Let �u be the displacement vector between C0 and Ct, defined by:

�x = ϕ( �X) = �X + �u(X) [2.3]

the tensor F is expressed with respect to �u in the following manner:

F = I+H(X, t) [2.4]

with Hij =
∂ui

∂Xj
and I the identity tensor.
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2.4. Strain measurements

The variation of the scalar product of two elementary vectors between C0

and Ct makes it possible to calculate the variations of the angles and the lengths

and therefore to characterize the change in form of the solid.

Let �dX and �δX be two material vectors defined in C0, �dx and �δx two

material vectors defined in Ct. We obtain:

( �dx, �δx) = dxiδxi = FijdXjFikδXk = (
−→
dX,C

−→
δX) [2.5]

with Cik = FijFik, or even C = FTF, where F denotes the transpose of F.

C is called the expansion tensor or the right Cauchy–Green tensor. It allows

the deformations to be described in the reference configuration C0:

(
−→
dX,

−→
δX) = (

−→
dx,B−1−→δx) [2.6]

where B = FFT is the left Cauchy–Green tensor. It is used to describe the

strains in the configuration Ct.

To measure the strains suffered by the solid between C0 and Ct, we

introduce:

– the Green–Lagrange strain tensor defined on C0 and denoted E;

– the Euler–Almansi strain tensor defined on Ct and denoted A, these two

tensors are defined by:

(
−→
dx,

−→
δx)− (

−→
dX,

−→
δX) = 2(

−→
dX,E

−→
δX) = 2(

−→
dx,A

−→
δx) [2.7]

It can be derived that: E = 1
2 (C− I); A = 1

2 (I− B−1)

NOTE 2.1.– A = F−1TEF−1 and if F = I, we obtain E = A = O

2.4.1. Polar decomposition of F

Given a tensor F defined as positive, there exists V, U, R, which are unique

such that:

F = VR = RU. [2.8]
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R is an orthogonal tensor called the rotation tensor. V and U are the pure

left and right strain tensors, respectively. They are both symmetric positive

definite. It can be observed that C = FTF = U2 and B = FFT = V2.

Tensors C and U describe the strain in C0, B and V in Ct. They also make

it possible to define a more general family of strain tensors, denoted eα and

êα, by:

eα =
1

α
(Uα − I), êα = 1

α (V
α − I), for α �= 0, [2.9]

e0 = log(U), ê0 = log(V), for α = 0 [2.10]

Tensors E and A are, respectively, e2 and ê2.

NOTE 2.2.– With the small perturbation hypothesis (S.P.H.), we obtain:

eα = êα = I, B = C = I+ 2ε [2.11]

with ε = 1
2 (H+HT ), and R = I+W = 1 + 1

2 (H−HT ).

2.4.2. Strain rate tensor

We introduce the rate vector
−→
V , derived with respect to the time of �x =

ϕ( �X, t). That is, �V = ∂	x
∂t = ∂ϕ( 	X,t)

∂t .

If we define the tensor L by:

−̇→
dx = Ḟ �dX = ḞF−1 �dx = L �dx, [2.12]

with Ḟ = ∂F( 	X,t)
∂t , we obtain:

∇X
�V =

∂�V

∂X
= Ḟ and ∇X

�V =
∂�V

∂X
= ∇X

�V F−1 = ḞF−1 ⇒ L = ∇X
�V .

L is called the strain rate tensor.
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2.4.3. Canonical decomposition of F

The tensor L is written as:

L = LS + LA [2.13]

where

LS =
1

2
(L+ LT ), [2.14]

and

LA =
1

2
(L− LT ) [2.15]

D is the strain rate tensor, it is a Eulerian measure of the strain rate. W is

the rotation rate tensor, it is a Eulerian measure of the rotation rate.

NOTE 2.3.– By definition of D and E, it yields:

∂E

∂t
= Ė = FTDF [2.16]

Ė is a Lagrangian measure of the strain rate.

2.4.4. Kinematics of the problem in convective coordinates

DEFINITION 2.1 (Material basis).– We call the natural basis in M the vector
system:

gα =
∂OM

∂Xi
[2.17]

Let M0 be the position of a point at instant t0, and M that at instant t. Let

α = 1, 2, 3. At instant t0, we have:

−−→
dM0 =

∂
−−→
OM0

∂Xα
dXα = g0αdX

α [2.18]
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We denote its dual gα0 defined by:

(gβ0 , g
0
α) = δβα (δji represents the Kroenecker symbol) [2.19]

At instant t, we have:

−−→
dM =

∂
−−→
OM

∂Xα
dXα = gαdX

α [2.20]

2.4.5. Transformation tensor

DEFINITION 2.2.– The bijective application that associates with any point M0

of Ω0 the point Mt of Ωt is called the transformation and it is denoted as f0,t:

f0,t : Ω0 → Ωt

M0 �→ f0,t (M0) = Mt

Let
−−→
dM0 be a material vector defined at instant t0, which is transformed

into
−−→
dM at instant t. The gradient tensor of the transformation denoted as F is

verified by definition:
−−→
dM = F

−−→
dM0.

NOTE 2.4.– If a system of Cartesian coordinates xi is defined relative to a

basis �ei such that a material vector
−→
dX is written,

−→
dX = dxi�ei, it yields:

−→
dX = dxi�ei = dXαgα =

∂xi

∂Xα
dXα�ei = F i

αdX
α�ei ⇔ gα = F i

α�ei [2.21]

F i
α is the transition matrix from �ei to gα; it is also the representative of F

in the basis �ei ⊗ gα0 . It then yields: F = F i
α�ei ⊗ gα0 .

On the other hand, we have δδα = F i
α�eig

δ; by multiplying this expression

by �ej (with �ej�ei =)δji ), we obtain:

δδα�e
j = F i

αg
δδji = F j

αg
δ = F j

αg
αδδα, [2.22]

Then, �ej = F j
αg

α.
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These equations allow moving from a notation in convective coordinates

to a notation in spatial coordinates. It is obvious that the two notations are

equivalent.

2.4.5.1. Convective transport

Convective transport expresses the correspondence between the initial and

current positions of the material elements.

DEFINITION 2.3 (Contravariant convective transport).– We say that
V ′ = V αgα is obtained by contravariant convective transport of V if
V = V αg0α.

Similarly, a tensor M′ = M ij−→ei ⊗ −→ej is obtained by contravariant

convective transport of a tensor of M if M = M ijg0α ⊗ g0β .

The contravariant convective transport is denoted Φc such that Φc(M) =
M′. The inverse transport is noted Ψc, and we have Ψc (M′) = M.

DEFINITION 2.4 (Covariant convective transport).– A tensor M′ = Mαβg
α ⊗

gβ is obtained by covariant convective transport of a tensor M if the latter is
written as: M = Mαβg

α
0 ⊗ gβ0 .

The covariant convective transport is denoted Φ∗
c such that: Φ∗

c(M) = M′.
The inverse transport is noted Ψ∗

c , and we have Ψ∗
c(M

′) = M.

2.4.5.2. Convective derivatives

The convective derivative is obtained by simple derivation with respect to

time. It consists of considering a Lagrangian description and then of returning

to a Eulerian description to obtain the desired Eulerian form, using a particular

derivative, within a Eulerian description.

DEFINITION 2.5 (Contravariant convective derivative).–

– The contravariant convective derivative of a tensor M = Mαβgα ⊗ gβ
is written as:

DcM = Φc

(
dΨc (M)

dt

)
=

dMαβ

dt
gα ⊗ gβ [2.23]

– The contravariant convective derivative of a vector V = V αgα is written
as:

DcV =
dV α

dt
gα [2.24]
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DEFINITION 2.6 (Covariant convective derivative).– The covariant convective
derivative of a tensor M = Mαβg

α ⊗ gβ is defined by:

DcM = Φ∗
c

(
dΨ∗

c (M)

dt

)
=

dMαβ

dt
gα ⊗ gβ

2.4.5.3. Strain tensor

Let
−−→
dM0 a material vector defined in the initial configuration and

−→
dX its

transformed in the current configuration (at instant t); as a result, we get:

−→
dX2 −−−→

dX02 =
(
gαβ − g0αβ

)
dXαdXβ [2.25]

with: gαβ = gα.gβ and g0αβ = g0α.g
0
β .

We thus obtain the definition of the strain material tensor:

eαβ =
1

2

(
gαβ − g0αβ

)
in the case where g0α coincides with the Cartesian basis e0α, we obtain: eαβ =
1
2 (gαβ − δαβ).

Based on eαβ , we write all the strain measures that have already been

previously introduced. In effect, it can be shown that:

– the Green–Lagrange tensor is written as:

E = eαβg
α
0 ⊗ gβ0

– and the Euler–Almansi tensor is written as:

A = eαβg
α ⊗ gβ .

A is therefore obtained by covariant convective transport E. We write: A =
Φ∗

c(E). Similarly, we have: E = Ψ∗
c(A) and it can be easily verified that:

E = FTAF, A = (F−1)TAF−1.
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Reconsidering the case where the initial frame of reference is orthonormal

(g0α coincides with a Cartesian coordinate system), we obtain g0α = gα0 = e0i =
ei0,

E =
1

2
gαβg

α
0 ⊗ gβ0 − 1

2
δαβg

0
α ⊗ g0β , [2.26]

δαβg
0
α ⊗ g0β = I, the identity tensor, and it has been previously shown that

gαβg
α
0 ⊗ gβ0 = FTF, then:

E =
1

2
(FTF− I). [2.27]

We thus recover the expression of the Green–Lagrange tensor.

2.4.6. Strain rate measures

The rate of the material strain tensor, expressed in the current configuration,

is:

ėαβg
α ⊗ gβ =

1

2
ġαβg

α ⊗ gβ [2.28]

The covariant convective derivative of A is written as:

DcA = Φ∗
c

(
dΨ∗

c (A)

dt

)
=

deαβ
dt

gα ⊗ gβ = Φ∗
c

(
dE

dt

)
[2.29]

The covariant convective derivative of A is thus obtained by covariant

convective transport of dE
dt .

2.4.6.1. Convective derivation and Cristoffel symbols

The objective of the Cristoffel symbols is to establish the link between two

natural coordinate systems that are infinitely close.
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Convective derivative of a vector

Given that u = uβgβ is a vector, we have:

du =
∂u

∂Xα
dXα =

∂uβ

∂Xα
dXαgβ + uβ ∂gβ

∂Xα
dXα [2.30]

= u,α dXα = uβ ,α dXαgβ + uβgβαdX
α

= uβ ,α dXαgβ + uβΓγ
αβdX

αgγ [2.31]

with: gβ,α = Γγ
αβgγ where Γγ

αβ are the Cristoffel coefficients and u,α
represents the partial derivative of u with respect to α.

[2.30] ⇔du =
(
u,βα +uγΓγ

αβ

)
dXαgβ

⇔ u,α = uβ |α gβ .

with: uβ |α= uβ ,α +uγΓγ
αβ , the convective derivative of u is the mixed

representative (once covariant and once contravariant) of the tensor ∇u.

Similarly, we obtain:

uβ |α= uβ ,α −uγΓβ
αγ .

which is the twice-covariant representative of ∇u.

Convective derivative of a tensor

Following a similar method, we can calculate the convective derivative

denoted by σαβ |γ of a tensor σ that is written as:

σ = σαβgα ⊗ gβ [2.32]

It yields:

σαβ |γ= σαβ
,γ + σδβΓα

δγ + σαδΓβ
δγ [2.33]
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2.4.6.2. Calculation of the strain rate

Let −→v = V αgα be the rate vector of the displacement defined by −→v =
−→
dX
dt .

It is shown that for any material vector
−→
dX:

∇−→v −→
dX = ḞF−1−→dX = L

−→
dX. [2.34]

The tensor Ls, the symmetric part of L, verifies:

ġαβ = 2(Lsgα, gβ),

and denoting: D = Ls = ∇−→
vs, we obtain the Eulerian tensor expression of the

strain rates:

D =
1

2
ġαβg

α ⊗ gβ . [2.35]

It can be verified that:

D = DcA = Φ∗
c

(
dE

dt

)
.

The strain rate Euler tensor D is obtained by covariant convective transport
dE

dt
.

2.4.6.3. Calculation of the strain tensor according to the displacement

Let −→u = uigi be the displacement vector between C0 and Ct, it yields:

−→
X =

−→
X0 +−→u ⇔ −→

dX = F
−−→
dX0 =

−−→
dX0 +

−→
du. [2.36]

The strain tensor according to the displacement is:

eil =
1

2

(
uk |i uk |l +ui |l +ul |i

)
i, k, l = 1, 2, 3
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2.4.7. Strain tensor

If dS0 denotes the area element defined in the reference configuration C0,−→
n0dS0 is the corresponding elementary area vector

−→
n0 representing the unit

normal to dS0. Let �ndS be the transform of
−→
n0dS0 in the current configuration,

�n being the unit normal to dS, we obtain:

�ndS = J(F−1)
−→
n0dS0 ⇔ −→

n0dS0 = J−1FT�ndS, J = detF

Given that df is the force exerted on an element of area �ndS, it is written

in the configuration Ct.

DEFINITION 2.7 (Cauchy stress tensor).– The Cauchy stress tensor U is
defined by:

−→
df = σ−→n dS

If df is expressed relative to the reference configuration, the first Piola–

Kirchhoff tensor is obtained:

df = T
−→
n0dS0

hence: σ = J−1TFT .

Given that df0 is the stress exerted on an element of area
−→
n0dS0, it is

written in the current configuration C0. The second Piola–Kirchhoff tensor S

is defined by:

df0 = S
−→
n0dS0

= F−1df = F−1σ−→n dS

= F−1σJF−1
−→
n0dS0

hence:

S = JF−1σ(F−1)T

σ = J−1FSFT

The Kirchhoff tensor is defined by:

τ = Jσ = FSFT = TFT [2.37]
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If the reference configuration coincides with the current configuration, we

obtain:

F = 1, J = 1 ⇒ τ = σ = S = T.

2.5. Constitutive relations

The notation of a large strain elastic–plastic behavior model is based, on

the one hand, on the kinematic decomposition of the transformation (partly

elastic reversible and partly plastic irreversible) and, on the other hand, on the

independence of the plastic behavior and the velocity of the motion.

We designate by kinematic decomposition the decomposition of the strain

into a reversible elastic part and an irreversible plastic part. This

decomposition, trivial in S.P.H., becomes complicated when taking the large

strains into account.

In general, to write an elastic–plastic behavior law, the following approach

is followed:

1) Choose a decomposition of the total deformation, in S.P.H.:

ε = εe + εp

where εe is the elastic strain and εp is the plastic strain (see Figure 2.2).

2) Define a plasticity criterion, in S.P.H.: f(σ, α) = 0 where σ is the stress

and α is the internal variable and f is the plasticity threshold function.

3) Define a relation between the stresses and the elastic strains or between

the stress rate and the elastic strain rate,

in S.P.H.: σ = Aεe

or even: σ̇ = Aε̇e

A is a fourth-order tensor that depends or not on σ and α.

4) Write an evolution (or flow) law for the plastic part of the strain,

ε̇P = λ̇h(σ, α)

5) Write an evolution law for α,

α̇P = λ̇l(σ, α)
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A, f, h and l define the model material, and λ̇ is a plastic multiplier.

Figure 2.2. Illustration of the strain decompositions

In the following, we will mention a few model materials, beginning with

the simplest case:

1) Isotropic linear elastic case

The behavior of the material is defined by:

σ = Aεe

A is Hooke’s stiffness tensor.

2) Von Mises perfect plasticity

Let σs be the yield strength of the material (constant), if the stress deviator

is denoted by σD, the equivalent stress σ is written as:

σ =

√
3

2
σD : σD

Futhermore, the equivalent cumulated strain is given by:

εp =

∫ t

0

ε̇pdt
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with

ε̇p =

√
3

2
ε̇p : ε̇p.

The plasticity threshold function is:

f(σ) = σ − σs ≤ 0 [2.38]

ε̇p = λ̇ ∂f
∂σ = λ̇ 3

2
σD

σ [2.39]

This corresponds to a case of associated plasticity, f and h are identical.

3) Case of isotropic strain hardening

The model is of the same type as previously except that the threshold

surface is no longer assumed to be constant, σs = σs(ε
p).

Other models can be cited, kinematic strain hardening, whether isotropic or

not, etc. We are only going to consider isotropic strain hardening in this study.

2.5.1. Large elastoplastic transformations

Similarly to the kinematic study, the definition of two different

configurations is necessary to describe the large transformations. The stresses

and the strains can be defined on one or the other of the configurations; this is

no longer referred to as a stress or strain tensor, but as a multitude of tensors

following the notation and the configuration of the chosen reference. Two types

of formalism can then be distinguished:

– Lagrangian, relative to a fixed initial configuration (before

transformation);

– Eulerian, relative to a deformed configuration (after deformation).

The choice between the two notations constitutes the first difficulty of the

large strains. The second point that has to be solved is that of the

decomposition of the partly elastic and plastic transformation. The third point

concerns the concept of objectivity in the behavior law, which should be

absolutely independent of the coordinate system of observation.

Before discussing the notation problem of the behavior laws, we begin by

studying the notion of objectivity and its consequences on the notation of such

laws.
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2.5.1.1. Objectivity and objective derivatives

The objectivity of the quantities can be used to distinguish between the

quantities that are basically the same for all observers (the density, for

example) and others have different values according to the observer (rate

vector, for example).

The objectivity principle expresses the fact that the behavior of the

material does not depend on the chosen reference frame. As a result, any

quantity involved in the notation of such a law must obey the rules of

changing reference frames.

Let X be a coordinate system defined in a frame R and
−→
X a given vector,−→

C (t) a vector and Q(t) any orthogonal tensor. A new referential R′ is defined

in which the new coordinate system is denoted X ′. The vector
−→
X ′, the image

of
−→
X in R′, is written as:

−→
X ′ = Q(t)

−→
X +

−→
C (t)

It is easy to verify that any vector
−→
V in R is transformed into a vector

−→
V ′

in R′ according to the relation:

−→
V ′ = Q

−→
V

The tensor F is transformed into F′ such that:

−−→
dX ′ = F′−→dX0 ⇒ −−→

dX ′ = Q
−→
dX = QF

−→
dX0 = F′−→dX0

⇒ QF = F′

Any tensor variable M expressed in R must therefore be transformed in R′

into M′ by the relation:

M′ = QMQT [2.40]

It can be verified that any strain or stress Lagrangian measure is invariant

when changing frames of reference.

C = F′TF′

= FTF ⇒ U ′ = U

E′ = E ; S′ = S
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which is not the case when considering Eulerian tensors, in effect,

B′ = QBQT ; V′ = QVQT A′ = QAQT

With regard to the stress tensors, we have:

g′α = F′gα

which gives:

σ′ = QσQT and τ ′ = QτQT .

The tensor R obtained by polar decomposition of F is transformed into

R′ = QR.

To summarize, a tensor is objective if it is:

– either defined on the initial configuration (Lagrangian tensor);

– or transformed according to [2.40] by a change in coordinate system.

The tensor L is written L = ḞF−1 when changing the frame of reference,

it is transformed into:

L′ = QLQT +Ω with Ω = Q̇QT

which gives:

D′ = QDQT and W′ = QWQT +Ω

similarly:

σ′ = QσQT ⇔ σ = Qσ′QT

A constitutive law must connect the objective quantities, which eliminates

the conventional time derivatives of tensors. We have already introduced a type

of derivative known as a convective that verifies:

Dcσ
′ = QDcσQ

T .

This is the type of derivative that we are going to utilize. There are other

types of objective derivatives that all rely on the notion of differentiating the

tensor in a reference frame related, one way or another, to the material.
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2.5.2. Kinematic decomposition of the transformation

Kinematic decomposition of the transformation designates a multiplicative

decomposition of F, which allows writing the strain rate tensor D in the form:

D = De + Dp [2.41]

The decompositions found in the literature are of the type:

– material with relaxed configuration, obtained by elastic charging, which

gives:

F = FeFp ⇒ L = ḞeFe−1

+ FeḞpFpFe−1

.

Under the hypothesis of small elastic deformations, we obtain a a notation

of the type of [2.41];

– material with relaxed intermediary configuration:

L = F
p
Ve

Ve being the pure elastic strain,

F
p
= FpRp

Under the hypothesis of small elastic deformations, Fe = � + εe where

‖εe‖ � 1, a notation of the type of [3.15] is used, with De = εeJ , the Jauman

derivative of the plastic deformation;

– Gelin [GEL 92] proposes the following type of decomposition:

A = Ae + AP

which makes it possible to have

DcA = A = D = DcA
e +DcA

p = De + Dp.

with this notation, the case where Fp = I gives D = De = DcA
e without any

confusion.
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2.6. Incremental behavioral problem

In an incremental process (see Figure 2.3); starting from an initial

configuration C0, it is assumed that the configuration at instant t denoted Ct

is known, we are looking for the configuration Ct′ at instant t′ = t+Δt.

Figure 2.3. Decomposition of the transformation

F denotes the gradient of the transformation between C0 and Ct, F
′ that

between C0 and Ct and FT between C0 and C ′
t. The corresponding

determinants are denoted: J = det(F); J ′ = det(F′) and JT = det(FT ).

2.6.1. Stress incrementation

A few useful relations:

S = Sαβg0α ⊗−→
g0β ⇒ Dc

τ = τ c = Ṡαβgα ⊗ gβ

Ṡ = Ṡαβg0α ⊗ g0β

= F−1τ cF−1T

τ̇ = τ c + Lτ + τLT

σc = −J−1τtrD+ J−1τ c, [2.42]

It can be noted that gα = Fg0β and g′α = F′gβ = FT g
0
β . We start by writing,

at any instant and in any configuration, the corresponding stress tensor:
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at instant t: at instant t′:
S = Sαβg0α ⊗ g0β S′ = S′

αβ

g0α ⊗ g0β
τ = S

αβ

gα ⊗ gβ τ ′ = S′αβg′α ⊗ g′β
τ c = Ṡαβgα ⊗−→gβ τ ′c = Ṡ′αβg′α ⊗ g′β

If it is assumed that t′ − t = Δt � 1, Ṡ′αβ can be approximated by:

Ṡ′αβ ≈ S′αβ − S
αβ

Δt
=

ΔS′αβ

Δt

Thus, it can be written as:

S′ = S′αβg0α ⊗ g0β = (Sαβ +ΔS′αβ

)g0α ⊗ g0β = S+ΔS′ [2.43]

with ΔS′ = ΔS′αβ

g0α ⊗ g0β .

It gives:

τ ′ = (Sαβ +ΔS′αβ

)g
′
α ⊗ g

′
β

and

τ ′c = Ṡαβg
′
α ⊗ g

′
β =

ΔS′αβ

Δt
e
′
α ⊗ e

′
β [2.44]

It yields:

τ ′ = FTSFT
T +Δtτ ′c = F′τF′T +Δt.τ ′c [2.45]

or even

τ ′αβ = Sαβ +Δt.τ ′cαβ [2.46]

in the following Δt.τ ′c will be denoted Δτ ′.
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The principle of virtual work (P.V.W.) is expressed according to the

Kirchhoff stress tensor. We define and we show that:

σ′ =
1

C
(J ′−1F′σF′T +Δt.σ′c) [2.47]

Still under the hypothesis: Δt �1, it can be written as:

Δtσ′c ≈ (σ′αβ − σαβ)g′α ⊗ g′β = Δσ′αβg′α ⊗ g′β [2.48]

It gives:

σ′αβ =
1

C
(J ′−1σαβ +Δσ′αβ). [2.49]

It is assumed that C ≈ 1 and J ′ ≈ 1, which amounts to assuming that the

variation of the volume is infinitesimal. At this time, we have:

σ′αβ = σαβ +Δσ′αβ . [2.50]

The use of σ in an incremental formulation in this form must be considered

with caution since it constitutes as a matter of fact another source of error that

comes to add up to the rest of the approximations.

However, if we only ignore the term Δt trD′ in front of 1 (under the

plastic incompressibility hypothesis and given that Δt � 1) while keeping

J ′, it yields:

σ′αβ = (J ′−1
σαβ +Δσ′αβ) [2.51]

2.6.2. Strain incrementation

Similarly, we have:

at instant t at instant t′

A = eαβg
α ⊗ gβ , A′ = e′αβg

′α ⊗ g′β

E = eαβg
α
0 ⊗ gβ0 E′ = e′αβg

α
0 ⊗ gβ0



Contact and Large Deformation Mechanics 45

Ac = ėαβg
α ⊗ gβ = D A′

c = ė′αβg′
α ⊗ g′β = D′

Ė = ėαβg
α
0 ⊗ gβ0 Ė′ = ė′αβgα0 ⊗ gβ0

ėαβ = ġαβ ė′αβ = ġ′αβ

We further note that:

gα = F−1T gα0

g′α = F′−1T gα

= F−1T
T gα0

The derivative of e′αβ with respect to time is approximated by:

ė′αβ ≈ e′αβ − eαβ

Δt
=

Δe′αβ
Δt

[2.52]

with Δe′αβ = g′αβ − gαβ .

Δe′αβ can be expressed according to Δu, the displacement increment

between t and t′. With this approximation, we obtain:

ΔtD′ = ΔtA′
c = Δe′αβg

′α ⊗ g′β [2.53]

or also: ΔtD′
αβ = Δe′αβ .

NOTE 2.5.– If a behavior law is available such as τ ′c = HepD′, where Hep is

an elastoplastic operator, multiplying each member by Δt we have:

Δtτ ′c = Hepδt.D′,

which gives in index-based notation:

ΔS′αβ

= HepΔe′αβ

Δe′αβ is calculated with respect to u, the displacement increment between

t and t′. Once ΔSαβ is obtained, knowing τ and A, it is possible using [2.46]

and [2.52] to calculate τ ′ and A′.

The equations that have just been developed allow us to have either a total

Lagrangian formulation using the strain (E,E′ . . .) and the stress Lagrangian
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measures (S, S′ . . .), that is to say a Eulerian formulation using the strain

(A′,D′ . . .) and stress Eulerian measures (τ, σ . . .).

NOTE 2.6.–

1) The kinematic decomposition valid in S.P.H. is only valid in large

deformations if a number of precautions is taken. The definition of the elastic

and plastic strain rates is not as clear as in the S.P.H.. The classical stress

derivative with respect to time, if we choose a velocity notation, must be

replaced by an objective derivative in order to guarantee the principle of

material indifference. The convective derivative that has been introduced

answers this last question.

2) The convective derivative is used instead of the classical stress derivative

with respect to time, if we choose a notation in velocity.

A rigid body motion does not generate any strain since D′ = O.

3) It is assumed that e′αβ(t̃) is a continuous differentiable function and a

continuous derivative of the time variable t̃, and we define e′αβ(t̃ = t) = eαβ

and e′αβ(t̃ = t′) = e′αβ . Because it is assumed that Δt � 1, it gives:

ėαβ = ė′αβ = ġ′αβ . [2.54]

In effect:

ė′αβ(t
′) = lim

t→t′

e′αβ(t
′)− e′αβ(t)
t− t′

≈ eαβ − e′αβ
−Δt

=
e′αβ − eαβ

Δt
[2.55]

and

ė′αβ(t) = lim
t′→t

e′αβ(t
′)− e′αβ(t)
t′ − t

≈ e′αβ − eαβ

Δt
[2.56]

2.6.3. Solution of the behavior problem

2.6.3.1. Elastic case

The behavior law in terms of velocity is written as:

τ
′c = HeD′

with He being the Hooke operator and D′ = D′e; this is equivalent to

Δt.τ
′c = HeΔtD

′e [2.57]
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which gives in index-based notation:

ΔS
′αβ = (He)αβγδΔe′γδ. [2.58]

Therefore, knowing the displacement increment between t and t′, we

obtain Δe′γδ and this notation makes it possible to obtain the corresponding

stress increment.

2.6.3.2. Elastoplastic case

In order to solve this problem, we consider the configuration Ct′ . We are

thus working on the basis of g′α and all quantities being used are defined on

this basis.

To make the notation more understandable, each tensor representative in

the basis g′α is replaced by the tensor itself. Thus, the matrix S′αβ is denoted

τ ′, ΔS′αβ is denoted Δτ ′, and by abuse of notation Sαβ is written τ ( Sαβ are

the components of τ in the base gα ⊗ gβ and not in g′α ⊗ g′β). Finally, Δe′γδ
will be denoted Δe′ = D′Δt = (D′e + D′p)Δt = Δe′e +Δe′p.

The elastoplastic model that is adopted is Von Mises’s with isotropic strain

hardening; it is written as:

Δe′ = Δe′e +Δe′p [2.59]

f(τ ′, ε′
p
) =

1

2
[τ ′Mτ ′ − σ2

s(ε
′p)] [2.60]

where:

– f is the Von Mises threshold function at instant t′ in quadratic form,

– ε′
p

is the equivalent plastic deformation at instant t′ defined by:

ε̇′
p
=

√
2

3
ė′p : ė′

p
= −λ̇

∂f

∂σs
[2.61]

– M is a fourth-order tensor,

– σs is the yield strength according to εp.

Considering a flow law of the following type:

ė′p = λ̇
∂f(τ, εp)

∂τ
. [2.62]
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Knowing that:∫ t′

t

ė′
p
(τ)dτ = e′p(t′)− e′p(t) = Δe′p [2.63]

if we intend to integrate [2.62], according to the following numerical scheme:∫ t′

t

ė′
p
(τ)dτ = Δλ

[
(1− η)

∂f

∂τ
(τ) + η

∂f

∂τ
(τ ′)
]

[2.64]

Solving the behavior problem amounts to solving the following system of

equations:⎧⎪⎪⎨⎪⎪⎩
Δe′ = (He)−1Δτ ′ +Δe′p

Δe′p = Δλ
[
(1− η)∂f∂τ (τ) + η ∂f

∂τ (τ
′)
]

τ ′Mτ ′ − σ2
s(ε

′p) = 0

[2.65]

If we replace f by its expression and if, to show the stress increment, τ ′ is

replaced by (τ +Δτ ′), the system becomes:⎧⎪⎨⎪⎩
Δe′ − (He)−1Δτ ′ −Δe′p = 0

Δe′p −ΔλM(τ + ηΔτ ′) = 0

(τ +Δτ ′)M(τ +Δτ ′)− σ2
s(ε

′p) = 0

[2.66]

We thus get three equations and four unknowns: Δe′p, Δτ ′, Δλ and ε′
p
.

To solve this problem, we must either add another equation to bring forward

ε′
p

explicitly according to the other variables, or linearize the third equation to

eliminate the fourth unknown.

One method to obtain the fourth equation would be by means of integrating

ε̇′
p

with the numerical scheme already used to integrate ė′p:

ε̇′
p
= λ̇σs(ε

p) ⇒ Δε′
p
= Δλ[(1− η)σs(ε

p) + ησs(ε′
p
)]

with ε′
p
= εp +Δε′

p
.

The system used to solve this becomes:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δe′ −He−1Δτ ′ −Δe′p = 0

Δe′p −ΔλM(τ + ηΔτ ′) = 0

(τ +Δτ ′)M(τ +Δτ ′)− σ2
s(ε

′p) = 0

Δε′
p −Δλ[(1− η)σs(ε

p) + ησs(ε
p +Δε′

p
)] = 0

[2.67]
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This system is solved with an iterative Newton-based method.

The second method that consists of linearizing σ2
s(ε

′p) makes it possible to

solve the first system of three equations with a Newton-type method. It yields

an expression of the term
∂σ2

s(ε
′p)

∂εp
, linear of Δe′p, which allows us to obtain

the expression of the tangent Newton matrix.

2.7. Definition of the P.V.W. in major transformations

2.7.1. Equilibrium equations

The definition of the equilibrium equations of the continuum occupying at

instant t a domain Ω (respectively, at instant t0 a domain Ω0) requires the use

of a stress tensor having a physical meaning. Only σ and T meet this

condition. The expression of the equilibrium according to S or to τ is

obtained using the transformation formulas of section 2.4.7. Using the

Cauchy tensor σ, the fundamental principle of mechanics, reflected by the

conservation of the quantity of motion, is written as:

d

dt

∫
Ω

ρυdΩ =

∫
∂Ω

σ−→n Γ +

∫
Ω

ρfdΩ [2.68]

where v is the velocity vector du of the motion of the solid; ρ is its density, f
is the volume stresses and �n is normal to the surface ∂Ω.

The mass conservation and Green’s formula allow us to obtain:

d

dt

∫
Ω

ρυdΩ =

∫
Ω

ρ
dν

dt
dΩ [2.69]

d

dt

∫
∂Ω

σ−→n dΓ =

∫
Ω

divσdΩ [2.70]

Without density stress and ignoring the stress of the accelerations, we

obtain:∫
Ω

divσdΩ = 0 [2.71]

which yields the equilibrium equations of the continuum:

divσ = 0 [2.72]
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that is also written as:

σij |j= 0 [2.73]

with σijnj = T i, where T i is the density of the surface stress.

2.7.2. Definition of the P.V.W.

Let V ad be the set of the virtual velocity vectors kinematically admissible.

By multiplying [2.72] by a vector v ∈ V ad and integrating over the whole of

Ω, we obtain:∫
Ω

divσ.vdΩ = 0 ∀v ∈ V ad [2.74]

⇔
∫
Ω

σ∇vdΩ−
∫
Ω

div(σv)dΩ = 0 ∀v ∈ V ad [2.75]

⇔
∫
Ω

σ∇vdΩ =

∫
∂Ω

σ−→n vdΓ ∀v ∈ V ad [2.76]

which is written according to the components relative to a basis gi and its dual

basis gi:

∫
Ω

σijvi |j dΩ =

∫
∂ΩF

σijnjvidΓ [2.77]

It is assumed that ∂Ω = ∂ΩU ∪ΩF and σijnj = 0 sure ∂ΩU , σ
ijnj = T i

over ∂ΩF . We then obtain:∫
Ω

σijvi|j dΩ =

∫
∂ΩF

T ividΓ ∀v ∈ V ad [2.78]

⇔
∫
Ω

σijDij dΩ =

∫
∂ΩF

T ivi dΓ ∀v ∈ V ad [2.79]

⇔
∫
Ω

σ : D dΩ =

∫
∂ΩF

Tv dΓ ∀v ∈ V ad [2.80]

NOTE 2.7.– Knowing that J = det(F), where F is the transformation gradient

between t0 and t, and according to [2.87] the transformation laws of volume
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and surface, the P.V.W. expressed according to the Kirchhoff tensor is denoted

as: ∫
Ω0

ν : DdΩ0 =

∫
∂ΩF

TνdΓ =

∫
∂Ω0F

T0νdΓ0 ∀ν ∈ V ad [2.81]

and knowing that σ = J−1FSFT , we obtain a Lagrangian notation of the

P.V.W. making use of S and E.

2.7.3. Incremental formulation

The equilibrium problem will not be solved in terms of stress and strain

rate, but in terms of increment or increase in the strains and stresses.

As has already been detailed in the previous section, at instant t0 there

is a configuration C0 and it is supposed that we have reached, at instant t, a

configuration Ct where the equilibrium is satisfied (equation [2.80] is verified).

We are looking for a configuration Ct with t′ = t + Δt (Δt � 1) that is at

equilibrium. This is expressed as:∫
Ω′

σ′ : D′ dΩ′ =
∫
∂Ω′

F

T ′ν′ dΓ′ ∀v′ ∈ V ad

∫
Ω′

σ′ijν′i |j dΩ′ =
∫
∂Ω′

F

T ′iν′i dΓ
′ ∀v′ ∈ V ad [2.82]

When resorting to a discretization of this equation, the use of an iterative

algorithm such as Newton–Raphson’s to solve it allows at each iteration that

an estimate of the displacement increment be available. With this

displacement increment, the problem of the behavior is solved, which

provides the corresponding stress and strain increment.

NOTE 2.8.– The notion of incremental formulation states that: knowing σij

are the components of σ at instant t and knowing Δu is the displacement

increment, Δσij is calculated, which is the necessary stress increment to obtain

σ′. It is recalled that in the case of the Cauchy tensor the calculation of σ
′ij

based on σij is carried out according to two methods:

– either we solve the problem making use of the Kirchhoff tensor τ, and at

this time the calculation of the components of τ ′ is given by:

τ ′ij = τ ij +Δτ ′ij [2.83]
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we can deduce thereof:

σ′ij = J−1
T (τ ij +Δτ ′ij) [2.84]

where JT = detFT and FT = F′F represents the gradient of the total

transformation between t0 and t′;

– or a behavior law is employed that connects the Cauchy tensor to the

strain rate; τ has to be replaced by σ in the solution of the behavioral problem

and once Δσ′ij is obtained, σ′ij is calculated by:

σ′ij = J ′−1
σij +Δσ′ij . [2.85]

2.8. Contact kinematics

One of the major problems in the forming simulation is the contact between

sheet metal and the deep-drawing tools, for example. In effect, many technical

problems involve contact between two or more components. In these problems,

a normal force on the contact surfaces is exerted on both bodies when they

touch each other. If there is friction between the surfaces, the shear forces can

be created resisting the tangential motion (sliding) of the bodies.

2.8.1. Definition of the problem and notations

Let us take two solids that may come into contact by friction.

Figure 2.4. Two solids in contact

Let �n be the outbound normal to the surface of one of the solids in contact,

�un = u.�n the displacement following this normal, g the backlash between two
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solids and p = σn.�n.�n the pressure (contact strain density) exerted by one of

the surfaces on the other and −→σt = σ.�n− p.�n the shear.

More precisely, for two solids (S1) and (S2) in contact, the contact area is

either a point, a line or even a surface. The direction of the shear force is then,

in the contact area, a vector t located in the tangent plane (t1, t2) indicated in

Figure 2.4.

2.8.2. Contact formulation

During the process of forming, the boundary conditions relative to the

contact and the friction change. From a geometrical point of view, this implies

that the nodes of the sheet metal move according to the movement of the

punch: whether in contact or not. In the contact area, a local orthonormal

reference frame (n, t1, t2) is defined in each node, where n is the normal

external to the surface and (t1, t2) represents the tangent plane to the surface.

The displacement and the reaction are written in accordance with the local

reference configuration as follows:

{
un

ut

=

=

u.n

u− (un.n)

{
rn

rt

=

=

r.n

r − (rn.n)
[2.86]

and the unilateral conditions written in the Γc part of the boundary are:

un ≤ 0, rn ≤ 0 un.rn = 0 [2.87]

2.8.3. Formulation of the friction problem

Depending on whether these solids slide against each other, this is referred

to as sliding (dynamic friction) or adherence, as long as there is no motion

(static friction or striction). In both cases, the reciprocal actions exerted

between these solids comprise:

– a normal component σn that presses one against the other;

– a tangential component T which opposes, or tends to oppose, the sliding.

The ratio between the strain T and the reaction of the solid (S2) defines the

adherence coefficient.
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2.8.4. Friction laws

The chosen friction criteria are of the form: g(r) ≤ 0 where g(r) is a

convex function. The non-slip domain is defined by the interior of the convex.

Two friction criteria of the g(r) ≤ 0 form are particularly used: the Tresca

criterion and the Coulomb criterion.

The first works on friction were carried out by Leonard da Vinci at the

beginning of the 16th Century. The first value of the proportionality coefficient

between the friction force and the weight of the body. Amontons and then

Coulomb would continue the studies of Leonard of Vinci and develop them.

Coulomb is mainly responsible for presenting the first laws of friction.

The law of friction derived from Coulomb’s model is the oldest and the

most utilized in contact problems with friction. This law integrates the concept

of threshold and is characterized by the contact pressure.

2.8.5. Coulomb’s law

The reaction
−→
R at the contact point can be divided into a normal force Fn

and a tangential force (or friction force) F t:

�R = Fn.�n+ F t.�t. [2.88]

Historically, Amontons proposed a proportionality law between the normal

force Fn and the friction force Ft. Any law respecting this proportionality is

called Coulomb’s friction law.

Coulomb’s law is exposed in the following manner:

If Un = 0 and Fn < 0 (contact condition), then the tangential force F t is

equal to the product of the normal force Fn by the friction coefficient νf .

|F t| ≤ νf‖Fn‖ [2.89]

with:

– if |F t| < νf ||Fn||, then Vslid = 0 (adherence region);

– if|F t| = νf ||Fn||, then A ≥ 0 such that Vslip = −AF t (slip region);
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with νf the Coulomb friction coefficient and Vslip the relative slip velocity

between the two bodies in contact.

Coulomb’s law can be represented graphically in the form of a cone

commonly called Coulomb’s cone (see Figure 2.5).

Figure 2.5. Representation of Coulomb’s cone

Figure 2.6. Coulomb’s law

In the literature, numerous experimental results and empirical formulae

involve the variation of the friction coefficient according to the slip velocity.

2.8.6. Tresca’s law

Another model employed in modeling the friction, utilized when the

normal forces are significant (for example for the simulation of material

forming), is called Tresca’s law. Unlike Coulomb’s law, which is expressed in
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terms of forces (or stresses), Tresca’s law is expressed in stresses only in the

following manner:

if Un = 0 and Fn < 0 (contact condition), then:

‖σt‖ ≤ ‖σmax‖ [2.90]

with:

– if ||σt|| < ||σmax||, then Vslip = 0 (adherence);

– if ||σt|| = ||σmax||, there is then A ≥ 0 such that: Vslip = −Aσt (slip);

with σmax Tresca’s threshold, σt the tangential stress and Vslip the relative

tangential velocity between the two bodies in contact.

Figure 2.7 corresponds to the graphical representation of this law.

Tresca’s domain

σmax

–σmax

σ2

σ2

Figure 2.7. Graphical representation of Tresca’s law
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Stamping

3.1. Introduction

In the current economical context, the motor industry community have

established as their priority the following objectives: improve product quality,

minimize production costs and time to market.

To achieve these goals, the industry strives to modernize their working tools

in order to minimize the duration of design cycles and improve manufacturing

processes.

In the industry, deep-drawing of metal sheet constitutes, during the

manufacturing process, a crucial phase with respect to the quality and the cost

of the final product. A vehicle is first judged according to its external

appearance.

Figure 3.1 presents the two main deformation modes encountered in

deep-drawing. Case (a) corresponds to expansion deep-drawing using a

punch, where the sheet metal is fixed in a blank holder. Case (b) corresponds

to deep-drawing with shrinkage of the metal sliding under the blank-holder

and without expansion on the head of the punch.

When faced with a difficult piece to shape, the stamper is always faced with

the dilemma:

– utilization of a high blank-holder force (BHF) to avoid wrinkles at the

risk of fracture (example (3.1a));

– choice of a lower BHF incurring the possibility of the presence of

wrinkles (example (3.1b)).

Material Forming Processes: Simulation, Drawing, Hydroforming and Additive Manufacturing, 
First Edition. Bouchaib Radi and Abdelkhalak El Hami. 
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Figure 3.1. Main deformation modes by deep-drawing, blank thickness
at the initial state, ef , blank thickness. a) Stretching, and b) shrinkage

For a given die and circular punch, the larger the blank, the more metal

there is to swage. This naturally increases the forces at the level of the blank-

holder the risks of fracture, the circumferential compression, and the risks of

wrinkling.

There are two limits for adjusting the BHF [COL 02]. To determine them,

the severity of deep-drawing a flat-bottom bowl is experimentally studied, the

objective being to study the ability of the metal to shrink and not its ability

to expand (Figure 3.1(b)). The test is analyzed using the deep-drawing ratio

defined as: β is equal to the diameter of the blank/diameter of the punch.

The test begins with small diameters blanks and a low BHF. Wrinkles

appear on the flange. The force is gradually increased until the wrinkles

disappear. On the following blanks, the BHF increases until the moment

where, under the effect of the increasingly high resistance forces, the drawn

part breaks or undergoes a process of necking. The gap existing between

BHFfol and BHFfra is called adjustment latitude of the BHF. The larger the

latitude for a given tooling and a given blank size, the better the ability of the

metal to undergo shrinkage. The acceptable range of BHF decreases and may

eventually become equal to zero. This state is reached when the force

necessary to remove wrinkles becomes equal to the force necessary to break

the workpiece. The deep-drawing limit ratio is then reached.

Due to the decrease in the thicknesses, drawn parts often reach the limit

defining the success of the operation, compared to risks such as necking

followed by fracture. The next section focuses on the forming limit curves

(FLCs) that make it possible to predict the success of deep-drawing.
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3.2. Forming limit curve

Regarding the quantitative prediction of the success of deep-drawing in

thin sheet metal, we rely on the concept of FLC, which came into existence

in 1965 through the works of Keeler [KEE 65] and was completed in 1968 by

Goodwin [GOO 68].

Based on the FLC, the deep-drawing industrialist can understand the nature

of the deformation modes in different areas of the workpiece. The FLCs are

plotted in ε1
ε2

diagrams where:

– ε1 is the maximal principal strain (with greater algebraic value, it then

determines the main strain direction) in the y-axis;

– ε2 is the minimal principal strain in the x-axis.

FLC have great interest for deep-drawers, because the plane (ε1, ε2) is split

into two domains:

– the domain located above the curve, which corresponds to the fracturing

of the drawn parts;

– the area located underneath, which corresponds to the success of the

deep-drawing.

Theoretically, four conditions must be satisfied to plot a FLC:

1) plane stresses state (no stresses in the thickness);

2) negligible thickness shear;

3) direct trajectories;

4) no bending.

The FLCs do not systematically give perfectly relevant indications. In

fact, their shape and their level, for a given material, depend greatly on the

conditions of their acquisition. These occur on at least four levels: the

thickness of the sheet, the means used to deform it, the tools used to measure

the deformations and the method employed to estimate the appearance of

localized necking.

To build an FLC, it is therefore necessary to carry out tests allowing

different deformation modes to be obtained from direct trajectory. In addition,

it is essential for each test to be able to measure the deformations, in order to

represent each test in the forming limit diagram (ε1, ε2).
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The purpose of evaluating the values of the strains for the FLCs is to be

able to follow the changes in the value of components of the plane tensor of

the deformation of material points over time. In the case where the area of

interest would have undergone multiple deformations (several-pass

deep-drawing, for example), the measure must be performed continuously

during testing, and not only at the final state. To this end, a marking related to

the sheet is applied before forming and its deformations are then measured.

For this, it is necessary to first ensure that the properties of the material are

not modified when marking. It is also necessary that the marking entirely

covers the area under study [LAC 69].

In addition, the marking on the blank must withstand a minimum level of

aggression due to the manipulations when in contact with the tool, it should not

disrupt the friction conditions too much and it should not be a source of local

damage to the metal. The solutions currently in use for marking the networks

are classified in two large families that depend on the method of measure being

employed [ARR 81, COL 02]: grid marking or random marking. Figure 3.2

gives an example of an FLC.

Figure 3.2. Example of a forming limit curve

3.3. Stamping modeling: incremental problem

Although the description of the stamping process is an easy task, its

implementation remains a delicate operation and difficult to control. During

the development of a finished workpiece, the dialog between consultancy

firms, planning and manufacturing departments is somewhat prolonged. After
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having been defined, a piece undergoes several modifications, before

becoming feasible while respecting the requirements of the consultants.

During this dialogue, numerical modelling constitutes an alternative that

can meet the objectives mentioned above. In effect, it can be used as a tool to

assist in the design, further reducing the number of expensive feasibility tests.

The fast-paced development in the field of modeling is linked to the

progress of information technology. The latter has allowed the development

of very sophisticated numerical methods, such as the finite element method

that requires, especially in nonlinear applications, fast computers with a

sufficiently large memory capacity.

The numerical simulation of sheet metal stamping comprises several

difficulties:

– representation of the tools, due to the complexity of the geometric shapes;

– formulation of the problem that leads to equations requiring high-

performance approximation and resolution methods. If the modeling of sheet

metal by the method of the finite element seems obvious, the choice of the

finite element is much less;

– modeling the behavior of sheet metal that undergoes large

transformations and large elastic–plastic deformation during deep-drawing;

– modeling friction contact between the sheet metal and the tools;

– the size of the numerical problems to solve requires the use of high

performance methods and numerical algorithms in order to reduce the

calculation time to a reasonable level.

Therefore, different skills are required to achieve a satisfactory result. This

is the perspective that this chapter follows.

3.3.1. Modeling of sheet metal

Being a thin product, sheet metal is represented by its average

parameterized surface and by Xα, a convective coordinate system. It is

likened to a membrane in which the mechanical quantities of thickness do not

vary. Flexural stress is ignored and we assume the plane stress hypothesis,

σi3 = 0 for i = 1, 2, 3.
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Let M0(Xα) be the position of any point of the membrane at the initial

instant t0 and M(Xα) that at instant t. The material basis was defined at instant

t0 by:

g0α =
∂M0

∂Xα

and at instant t by:

gα =
∂M

∂Xα

gα0 and gα being the respective dual basis. The vector g3 is chosen as being

normalized and orthogonal to the tangent plane M :

g3 =
e1 ∧ e2

‖ g1 ∧ g2 ‖ = g3

which gives

g33 = g33 = 1, gα3 = g3α = g3α = gα3 = 0.

and taking into account the previous assumptions, equation [2.82] becomes:

∫
Ω′

σ′αβν′α |β dΩ′ =
∫
∂Ω′

F

T ′iν′idΓ
′ ∀ν′ ∈ V ad [3.1]

with dΩ = h(Xα)dΓ.

The kinematics of the problem, as it has been presented, do not allow

calculating Δe′33. It is thus not yet possible to mention the variation of

thickness. However, it can be shown that the plane stress hypothesis and the

plastic incompressibility make it possible to obtain the expression Δe′33, and

therefore to calculate the thickness variation h.

3.3.2. Spatial discretization: finite elements method

Equation [3.1] is discretized by the finite element method. It uses two

isoparametric membrane elements, a quadrangle Q4 and a triangle T3.

Ψn denotes the interpolation functions, the convective coordinates in each

element are interpolated by:

Xα = Xα
nΨ

n(X1, X2)
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with Ψn(X1, X2) = Ψn(F(ζ1, ζ2)) where ζα are the local coordinates of

the element and F is the transformation that enables shifting from the basic

element to the real element.

This notation allows the expression of the displacement field u (or velocity

field v) and its derivative, with respect to the displacement in each node, of

the functions Ψ and their derivatives with respect to Xα. Following a similar

method, we can calculate the gα.

Equation [3.1] is calculated in each finite element; vα |β is replaced by its

interpolated form. By integrating over the whole domain Ω, we have to solve

a problem that is represented in the form:

Res(δu) = 0 = Fint(Δu)− Fest(Δu) [3.2]

where Res(δu) is a vector of dimension, N is the total number of degrees

of freedoms (D.O.F), Fint(Δu) represents the internal stresses and Fext(Δu)
represents the external stresses.

NOTE 3.1.–

1) For reasons of numerical processing, it is further assumed than the

vector Res(δu) constitutes the gradient of a functional energy of the structure,

whose expression is not necessarily known.

2) The vector Res(δu) constitutes the gradient of a functional energy of the

structure. In deep-drawing modeling, the conditions of unilateral contact with

friction will be the ones that will generate external stresses.

3.3.3. Choice of sheet metal and finite element approximation

As in all numerical approximation methods, the hypotheses assumed

during the modeling of a problem and the chosen discretization determine the

accuracy of the solution and the allocated calculation time. In the finite

element method, such hypotheses influence the choice of the basic functions

of the element. The more these assumptions are simplified, the less rich the

element, which limits the size of the problem regarding the accuracy of the

solution.

The approximation of sheet metal using an adopted membrane is not

necessarily the best choice. However, having three D.O.F. per node allows for

the reduction of the size of the problem to solve. On the other hand,
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neglecting the flexural stiffness, numerical problems emerge whenever the

sheet is locally flat. This is expressed either by a singular tangent stiffness

matrix or a strongly ill-conditioned matrix.

We can modelize sheet metal with a shell, using discrete Kirchhoff theory

(D.K.T) elements. These are sufficiently rich and performing elements, and

have only 6 D.O.F. per node.

3.4. Modeling tools

The process of deep-drawing consists of deforming sheet metal (called

blank in the deep-drawing industry) by means of tools including:

– a punch that has the shape of the desired part, which constitutes the male

tool;

– a die cavity of the same shape as the tool, which constitutes the female

tool;

– a blank-holder that allows specific boundary conditions to be imposed to

the sheet;

– a casing that connects the die cavity and the blank-holder.

Tooling modeling, assumed to be perfectly rigid, constitutes a delicate and

important task in the numerical modeling of deep-drawing; there are three

methods for modeling a tool, which will obviously be represented by its

active surface. We present the advantages and the limitations of each method.

3.4.1. Tool surface meshing into simple geometry elements

To overcome the difficulty that exists in the complexity of the modelled

surfaces, one approach consists of meshing these surfaces by triangular or

quadrangular finite elements. Furthermore, finite element designates a purely

geometrical surface element.

This model presents two disadvantages:

– the modeling of complicated surfaces is a delicate task, which is difficult

to achieve;

– the non-regularity of the meshed surface generates numerical issues in

solving the contact problem, in particular the cycling problems state that

sometimes the algorithm cannot convergence.
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3.4.2. Analytical representation of tools

This method is used in the simulation of academic deep-drawing cases. The

validation of calculation software has required that simple geometry examples

be processed. This allows the analysis of the experimental results, knowing that

this operation is virtually impossible to achieve when it comes to an industrial

case. The examples of the tooling under consideration consist of an o-ring

forming die, a crown-shaped blank-holder and a punch that is either spherical

or conical with a flat base. With this type of tooling, in which the first method

is easy to use, an analytical representation of the surfaces has been chosen.

This is a very easy task to perform.

This method has the following advantages:

– the surfaces obtained are regular;

– the method requires an insignificant memory size. In fact, only a few

parameters have to be stored (rays, etc.), unlike the first method that requires

that the coordinates of all vertices of the elements be stored, as well as their

connectivity;

– the tooling is very easy to manage.

The limitation of this method lies in the fact that an industrial surface does

not admit any analytical representation.

3.4.3. Bezier patches

The geometry of the tooling for deep-drawing is very complicated. Since

there is no accurate or approximated analytical representation (a map) of the

surfaces of tools, approximation methods for surfaces have imposed

themselves. Inspired by the deep-drawer’s profession, which uses a very

unique method to manage curves (which are only sections of surfaces), Bezier

has implemented an approximation method well suited to this profession.

This method has been extended to the case of surfaces.
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3.4.3.1. Curve polynomial approximation

Given a curve C, it is possible to approach the coordinates of a point

belonging to this curve by:

x(υ) = αiυ
i

y(υ) = βiυ
i i = 0, . . . , N

z(υ) = γiυ
i

where a parameter υ ∈ [0, 1] has been introduced.

υi denotes υ to the power i, N is the polynomial degree, αi, βi and γi its

coefficients verifying:

x(0) = α0 ; y(0) = β0 ; z(0) = γ0, the coordinates of the origin of the curve,

x(1) = α1 ; y(1) = β1 ; z(1) = γ1, the coordinates of the end of the curve,

and if P (υ) denotes the coordinate vector from any point of the curve, we get:

P (υ) =

⎡⎢⎣x(υ)y(υ)

z(υ)

⎤⎥⎦
which can be expressed in the form:

P (υ) = biυ
i i = 1, . . . , N, bi = [αi, βi,γi]

This equation perfectly defines the curve parametrized by υ.

3.4.3.2. Surface polynomial approximation

Starting from the fact that a surface can be obtained by varying the points

of a curve in a well-defined domain, each point of this curve will describe a

curve belonging to the surface. The first curve is the so-called generatrix curve

that may be approximated by a polynomial of degree N ; each curve is created

by the motion of the generatrix and can be approximated by a polynomial

of degree M. Both curves described by the extreme points of the generatrix

are called directrix curves. These curves are parameterized by a variable � ∈
[0, 1] . For � = 0, we find the initial generatrix, and for � = 1, we get the

final generatrix.
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The generated surface S is parametrized by υ and �. A point belonging to

the surface is denoted P (υ, �), it is expressed by:

P (υ, �) = Bijυ
(i)�(j) i = 1, . . . , N, and j = 1, . . . ,M [3.3]

This representation allows, from a given set of points, the definition of

any surface that approximates the actual surfaces of the tool. The coefficients

bi and Bij are calculated from the coordinates of the points collected on the

actual surface. This allows all relevant information at each point of the surface

to be obtained (the tangent plane and the normal to the surface at a point, etc.).

However, such a representation cannot be of any help to deep-drawing

technicians who are accustomed to their own working methods. This has

resulted in creating an approximation method called polygonal

approximation, which is more similar to a graphical concept than to a

mathematical concept.

3.4.3.3. Curve polygonal approximation

Given a curve S and a set of points Pi; i = 1, . . . , N + 1 where P1 and

PN+1 belong to the curve (see Figure 3.3). If Gi = OPi = Pi denotes a vector

set, for all υ ∈ [0, 1], a point P (υ) can be written:

P (υ) = γiGi, [3.4]

the coefficients must verify the Cauchy condition:

N+1∑
i=1

γi = 1 [3.5]

(in order to see the necessity of this condition, it is sufficient to take all

components following x of Gi equal to 1).

One way to obtain these coefficients consists of developing the Bernstein

polynomial:

((1− υ) + υ)N = 1 = (1− υ)N + · · ·+ υN , [3.6]



68 Material Forming Processes

which gives:

P (υ) = (1− υ)NG1 + · · ·+ υNGN+1

= Bi

Figure 3.3. N + 1 class curve

For N = 3,

P (υ) = (1− υ)3P1 + 3υ(1− υ)2P2 + 3υ2(1− υ)P3 + υ3P4. [3.7]

Developing this equation, by factorizing the υ with equal powers, yields:

P (υ) = P1υ
0 + 3(P2 − P1)υ

1 + (3P1 − 6P2 + 3P3)υ
2

+ (−P1 + 3P2 − 3P3 + P4)υ
3 [3.8]

= biυ
i,

NOTE 3.2.–

1) The reasoning taken for N = 3 is generalized for any N .

2) If we denote ai = Pi+1 − Pi, and if ‖ai‖ = 1, the fundamental Bezier

curve is found again.

3) The points Pi are called the control points of the polygon.
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4) A curve represented by a polynomial of degree N will be represented

by a polygon with N + 1 control points, called a N + 1-class curve.

5) The polynomial and the polygonal notations are equivalent, therefore

knowing Pi is tantamount to knowing the bis, and vice versa.

Highlighting such equivalence allows the computational scientist to

manipulate the polynomial form and to manage the information on the

geometric entity that he needs, as it allows the technician to manipulate the

control points to modify the geometry of its curve.

3.4.3.4. Polygonal approximation of a curve

The reasoning followed in the case of curves is generalized to the surfaces

and a point P (υ, �) ∈ S is written:

P (υ, �) = [�]
T
[M2] [P ] [M1] [υ] ,

with

– [υ]
T
=
[
1υ . . .υM

]
;

– [�]
T
=
[
1� �N

]
;

– [P ] is the ((M + 1) × (N + 1)) matrix that contains the coordinates of

the control points, Pij is the jth control point of the curve i;

– [M1] and [M2] are two transition matrices;

– M + 1 the number of control points of the generatrix curve;

– N + 1 the number of control points of the directrix curves.

Taking the case of a curve and considering only one 4-class curve (N = 3),
in polynomial notation, we get:

P (υ) = biυ
i i = 0, . . . , 3

In order to bring the expression of [M1], forward, equation [3.8] is put in

matrix form:

P (υ) =
[
P1 P2 P3 P4

]⎡⎢⎢⎢⎣
1 −3 3 −1

0 3 −6 3

0 0 3 −3

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1

υ

υ2

υ3

⎤⎥⎥⎥⎦



70 Material Forming Processes

=
[
b0 b1 b2 b3

]⎡⎢⎢⎢⎣
1

υ

υ2

υ3

⎤⎥⎥⎥⎦
= [Pi] [M1] [υ]

[Pi] is a row of matrix [P ].

This notation is generalized to curves of class N. If a surface is described

by M N -class directrix curves (or alternatively N M -class generatrix curve),

the ith generatrix curve is represented by a polynomial Pi(υ) such that (see

Figure 3.4):

Pi(υ) = [Pi] [M1] [υ] [3.9]

with: [Pi] =
[
Pi1 Pi2 . . . PiM

]
, [Υ]

T
=
[
1 υ . . . υM

]
and [M1]

is a M ×M matrix.

Pi(υ) is the point that describes the generatrix i when υ describes the

interval [0, 1]. It is possible to write N equations of this type, which represent

the N generatrixes curves. After assembling the N equations, the following

condensed notation is obtained:

[P (υ)] = [P ] [M1] [υ] [3.10]

with: [P (υ)]
T
=
[
P1 (υ) P2 (υ) . . . PN (ν)

]
and

[P ] =

⎡⎢⎢⎢⎢⎣
P11 P12 · · · P1M

P21 P22 · · · P2M

...
...

...
...

PN1 PN2 · · · PNM

⎤⎥⎥⎥⎥⎦ [3.11]

For a given υ, points Pi(υ), i = 1 . . . N, which belong to the generatrixes

i, may constitute the poles of a directrix curve belonging to the surface S. It

is possible to choose υ in such a manner that Pi(υ) be the poles of the given

directrix j.



Stamping 71

Figure 3.4. Surface with N M -class generatrixes

Thus for a given (any) υ = υ0, all generatrixes can be described with a

parameter � describing the interval [0, 1]. This is written in polynomial form

as:

P (υ = υ0, �) = b′i�
1, i = 0, . . . , N

In polygonal form, a point describing a generatrix takes the form:

P (υ = υ0, �) = [ω]
T
[M2] [P (ν)]

where [�]
T
=
[
1 � . . . �N

]
and [M2] is an N ×N matrix.

By replacing [P (υ)] =
[
P1(υ) . . . PN (υ)

]
with its expression [3.9] for

the case of any υ (the value of υ0 has been taken randomly at the beginning),

we get:

P (υ, �) = [�]
T
[M2] [P ] [M1] [υ] .
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Thus, when the two parameters (υ, �) describes [0, 1] × [0, 1], the point

P (υ, �) describes the entire surface S.

According to [3.11], the matrix B components [Bij] can be identified (the

formulae for shifting from one notation to another) by:

[B] = [M2] [P ] [M1] ,

[Bij ] = [M2]ik [P ]kl [M1]lj

It is possible to derive that the two polynomial and the polygonal

approximations are equivalent. The above equations constitute the formulae

for changing from one notation to the other.

NOTE 3.3.–

1) The approximate surface S, represented in polygonal form, is called a

Bezier patch.

2) A deep-drawing tool is represented by several patches.

3) In CAD, a patch is defined by its control points. A shift from polygon to

polynomial is therefore necessary in order to manage the patch in calculation

software.

4) Some techniques such as the computation of the intersection of a

straight line or a plane with a patch, and the computation of the orthogonal

projection of a point on a patch, are necessary for processing the contact

problem. Without going into details, it should be noted that the calculation

of the orthogonal projection of a point on a patch requires the application of

successive approximations.

3.5. Stamping numerical processing

The problem of the contact between different solids is quasi-existent in

several industrial applications. It may be the cause of certain peculiarities in

the design of the product and sometimes in the structure. In fact, the

phenomenon of contact can be a frequent cause of the fracture of the

structure. The implementation of the material is an industrial example where

unilateral contact with friction is present throughout the process. The study of

this contact determines the geometrical form of the deformed metal and

provides the stresses on the contact surface. Several methods have been

proposed in recent years for the solution of the problem of contact between

thin sheet metal and a punch. The majority of these methods are based on the
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finite element approximation [CHA 98, LI 97, RAD 98, REF 98, BAB 00]. In

reality, the validity of the solution found depends on the choice of the design

parameters. Nonetheless, several tests show that the latter are known only in

an approximate manner, while they must follow a statistical distribution.

The modeling of forming processes (rolling, forging, deep drawing, etc.) of

mechanical parts presents numerous difficulties. These originate from multiple

mechanical nonlinearities such as:

– material nonlinearities due to the law of the material’s behavior. Most

often, this law can be expressed in the form of first-order nonlinear differential

equations;

– geometric nonlinearities that emerge when large displacements, large

rotations and large deformations appear;

– the nonlinearities in the development of the boundary conditions. This

type of nonlinearity appears particularly in problems of contact and friction

between solids. These phenomena are described by inequalities and projection

operators.

It should be noted that these three nonlinearities are often intrinsically

linked to one another. For instance, the nonlinear behavior of metals such

as plasticity is due to large deformations. Naturally, if one of these three

linearities appears in a mechanical problem, a nonlinear processing procedure

must be employed. As a result, numerical difficulties occur at several levels, in

particular when:

– solving the nonlinear equations of equilibrium (global level);

– integrating the laws of behavior (local level);

– solving the nonlinear equations of contact and friction coupled with the

equilibrium equations (global or local level).

There are numerous laws of friction occurring during forming processes;

however, Coulomb’s friction law remains the most used due to the simplicity

of its implementation and to the fact that it is generally suitable for metal/metal

friction. Consequently, we make use of this law in this chapter.

3.5.1. Problem statement

It is assumed that a deformable solid (thin sheet metal) occupies an open

bounded subset Ωt of R3 with a regular border Γt at instant t and the open
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and bounded subset Ω0 at instant t0. Furthermore, it is subject to the volume

force f, to the surface stress g applied to the portion Γg, a displacement is

imposed on the portion Γu and the contact reaction tc on the portion Γc (Γc is

an unknown of the problem). It is assumed that Γg ∩ Γu ∩ Γc = ∅.

Let M be a point in the domain, it has coordinates (x, t) in the current

configuration Ct and (X, t) in the initial configuration C0. In the context of a

quasi-static evolutive formulation, the equation of motion in the local

coordinate system of point M in the current configuration is given by:

(E)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
divσ + f = 0 on

u =
−
u on

σ.n = g on

σ.n = tc on

Ωt

Γt
u

Γt
g

Γt
c

[3.12]

where σ is the Cauchy stress tensor and Γt
c is the candidate contact area. In our

working context, the displacement imposed is equal to zero.

However, in the initial configuration C0, the equation of motion item M is:

(E0)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
divT + f = 0 in

u =
−
u0 on

T.n = g on

T.n = tc on

Ω0

Γ0
u

Γ0
g

Γ0
c

[3.13]

where T is the first Piola–Kirchhoff stress tensor and f0 is the external volume

force applied to the initial configuration.

To solve the mechanical problem under large elastoplastic deformations,

the equations relative to the behavior of the material must be integrated during

loading generated by the deformation of the structure. The numerical method

used to solve this problem must respect the indifference of the material [10].

By taking conditions [2.87] into account, the principle of virtual work

provides the weak form of the problem (E):

∫
Ωt

σ : ∇svdΩ−
∫
Ωt

fvdΩ−
∫
Γt
g

gvdΓ−
∫
Γt
c

tcvdΓ = 0 [3.14]
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which is valid for any v with v = u on Γt
u satisfying the condition v.n ≤ 0 on

Γt
c. Similarly, a weak formulation of the problem can be obtained (E0).

Despite its elementary form, we use the classic Coulomb’s law as the

friction law. According to Duvaut [DUV 72], this law of friction can be

written in the form:

⎧⎪⎨⎪⎩
‖rt‖
‖rt‖
‖rt‖

≤
<

=

νf |rn|
νf |rn|
νf |rn|

⇒
⇒

.
ut

∃α ≥ 0

= 0
.
ut = −αrt

[3.15]

where νf is the Coulomb friction coefficient.

NOTE 3.4.– Other laws of friction can be used such as that proposed by Oden

and Pires [ODE 83]. Our numerical experiences have shown that similar results

are obtained by making use of a local [3.15] or non-local [RAD 94] law. In

[BUC 99], we can find a stochastic model relative to the non-local law.

Within the context of the approximation by finite elements, the

Ahmed-type shell finite element (3D degenerate) is employed, taking into

account the transverse distortion by means of joint interpolation. This type of

finite element has been developed by Garner and Lochegnies [GEL 92] in the

case of quadrilateral elements and by Boisse et al. [BOI 94] for triangular

elements. These elements are isoparametric with linear interpolation. To avoid

the locking problem associated with plastic incompressibility, we use mixed

interpolation.

3.5.2. The augmented Lagrangian method

The deep-drawing process introduces various nonlinearities: geometric

with large kinematic behavior and elastoplastic deformation. Taking the

contact friction into consideration introduces more nonlinearities: the contact

area is a priori unknown, the nonlinear term introduced in the weak form of

the problem(E):
∫
Γt
c
tcvdΓ and the nature of Coulomb’s friction law.

Without the term relative to the contact condition, equation [3.14] is

nonlinear and can be solved by means of the Newton–Raphson method. The

presence of the new term resulting from the frictional contact makes the direct

utilization of this method impossible (discontinuity and non-differentiability)

without prior processing.
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To show the implicit form of this problem, the next variational formulation

is given by:

∫
Ωt

σ : ∇svdΩ−
∫
Ωt

fvdΩ−
∫
Γt
g

gvdΓ−
∫
Γt
c

(σnN + σt)vdΓ [3.16]

{
σn ≥ 0, un(sn − σn) ≥ 0, ∀sn ≥ 0

σt ∈ C(σn), ut(st − σt) ≥ 0, ∀st ∈ C(σn),
[3.17]

where C(σn) = {st, st.n = 0, ‖st‖ ≤ νf |σn|}.

The dependency between the Coulomb cone C(rn) (st ∈ C(σn)) and the

solution of the problem can be clearly seen. Incidentally, unilateral contact is

a special case of stress problems and can be solved:

– either with a direct method; in this case, it is necessary to build a

complicated projection operator and eliminate the possibility of using certain

known algorithms such as the Newton algorithm;

– or with one of the penalty methods;

– or even by reducing the problem for finding saddle points using a dual

method. This approach makes it possible to solve the problem by employing

a very simple projection operator, while retaining the possibility of using

Newton-based algorithms.

To solve the friction problem, it is shown that it can be reduced to a problem

of finding saddle points. The approach proposed by Simo and Larsen (2D)

[SIM 92] is extended to solve the problem of metal forming: contact between

thin sheet metal and a punch (3D with elastoplastic behavior). The augmented

Lagrangian approach relative to the contact problem with friction is based on

the following weak form of the equilibrium equation:

G∗(u, δu) = G(u, δu) +

∫
Γc

(rnδu+ rt.δut)dΓ
c [3.18]

Taking into account the contact condition [2.87], the permissible

displacement must satisfy the condition δu.n ≥ 0 along the contact zone Γc.
The nonlinear equation [3.18] must be solved at each time step, but it cannot

be directly solved, therefore the reactions rt and rn are considered as known

through an iterative process and the Newton–Raphson method is employed.



Stamping 77

With the purpose of using a prediction-correction scheme, Coulomb’s

friction law is introduced in the form:

Φ(rn, rt) = ‖rt‖ − νf |rn| ≤ 0 [3.19]

u̇t = −ς
∂Φ

∂rt
[3.20]

ς ≥ 0 [3.21]

ςΦ = 0 [3.22]

It can be clearly seen that [3.19–3.22] is equivalent to the expression [3.15].

The quantities rn and rt are computed as the sum of a penalty and a Lagrange

multiplier:

rn = λn + εnun. [3.23]

Equation [3.20] is regularized taking this sum into account as follows:

u̇t − ς
∂Φ

∂rt
=

1

εt
(rt − λt) [3.24]

The computation of contact and friction is carried out within the iterative

process of the solution of the equilibrium equation. They are integrated

between the instant tk and tk+1. By utilizing an Euler implicit method

combined with a prediction-correction method, we get the following

algorithm:

For the contact:

rk+1
n = λold

n + εnu
k
n [3.25]

where λold
n is the Lagrange multiplier obtained during the previous equilibrium

state.
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For the friction:

The analogy with the plasticity model is used to calculate the tangential

reaction. During the current iteration, the tangential reaction is calculated as

follows:

rk+1
t = λk

t + (r0t )
k [3.26]

where (r0t )
k is the penalized part, it is given in this form:

(r0t )
k = rkt +Δλk

t + εtΔuk
t [3.27]

At this level, the verification of the Coulomb model is carried out:

– if Φ(rk+1
n , rk+1

t ) ≤ 0 then the friction law is verified and λk+1
t = rk+1

t ,

– otherwise, the correction of the reaction rk+1
t is achieved as follows:

rk+1
t = νfr

k+1
n

(r0t )
k∥∥∥(r0t )k∥∥∥ [3.28]

and the equilibrium equation is solved by using the reactions rk+1
t and rk+1

t .

The updated value of Δλk+1
t is given by:

Δλk+1
t = Δλt + εt

⎛⎝Δut −Δς
(r0t )

k∥∥∥(r0t )k∥∥∥
⎞⎠ [3.29]

where:

Δλt = λk+1
t − λk

t , [3.30]

Δut = uk+1
t − uk

t , [3.31]

r0t = rkt +Δλt + εtΔut, [3.32]

and Δς is relative to the consistency condition, which is written in the form:

Δς =

⎧⎨⎩0, if Φ0 ≤ 0
Φ0

εt
, otherwise

[3.33]
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with Φ0 = Φ(r0t , rn).

When the equilibrium state is obtained, the test relative to the contact

condition is performed. If this condition is true, then the iterative process is

stopped and the algorithm skips to the following increment.

– otherwise, the Lagrange multiplier λn is reupdated as follows:

λnew
n = λold

n + εnu
equi
n [3.34]

The iterative process continues until the contact condition is verified.

The equilibrium equation is completely solved before reupdating the

Lagrange multipliers (λn and λt). With this strategy, the contact condition is

respected and the global system obtained is symmetrical.

NOTE 3.5.–

1) The convergence test only takes the contact condition into account,

whereas the tangential reaction is built on the basis of Coulomb’s law.

2) The advantage of this method is that it does not need large penalty

parameters εn and εt to verify the condition of contact with friction. Such

parameters must increase the problem of conditioning of the system.

3) It is difficult to find the slipping direction in the three-dimensional case

when the slip direction is unknown. Despite this, good results can be achieved

by employing regularization [3.24].

3.6. Numerical simulations

The method of the augmented Lagrangian proposed in the previous section

is applied to solve a reference test proposed by Lee et al. [LEE 90]. The punch

is hemispheric, the mesh is imposed and the deformable solid closed on the

external part, as illustrated in Figure 3.5. The friction coefficient is equal to 0.3
and the behavior of the material is supposed to be elastoplastic with isotropic

hardening.

Figure 3.5 compares the results of our approach and the results given by

Lee et al. [LEE 90]. This figure shows the strong agreement between the two

results. A comparison has been carried out between the exposed approach and

other conventional approaches such as the penalty method and the Lagrangian

method; Figure 3.6 gives the results of the comparison of the different methods

used [BAB 00].
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Figure 3.5. Deformed structure

Figure 3.6. Results of the different methods
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3.6.1. Sollac test

This test, proposed by the company Solace’s method, is given here. This

method is compared with [RAD 98], a comparison of this method can be

related with the car manufacturers Renault & PSA to validate the model of

behavior of steel sheet [PSA 89]. The sheet is spherical and fixed at the

external part, and the punch is hemispheric. A quarter of the sheet is

discretized by 331 nodes and 600 triangular elements. The descent of the

punch is 50 mm.

The friction coefficient is equal to 0.25. The characteristics of the thin sheet

and the results of the finding by the augmented Lagrangian method are given

in Figure 3.7.

Figure 3.7. Displacement of the punch (Sollac test)

Figure 3.8 shows the results of the comparison between the augmented

Lagrangian method, the penalty method [KIK 88] and Sollac’s experimental

results. This figure shows that the augmented Lagrangian method yields results

relatively close to the Sollac experimental result at the end of the download.

The penalization parameter of the augmented Lagrangian method is equal to

104, but it is equal to 1011 in the penalty method.

This approach has been applied to the forming of composite materials and

the results are satisfactory. We refer to [CHE 09] for more information.
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Figure 3.8. Results of the different methods



4

Hydroforming

4.1. Introduction

The methods and the technologies of production in the industrial sector

have undergone a major review in order to meet new environmental standards

and to respond to the increasingly demanding expectations of customers. The

hydroforming process, mainly found in advanced industries and in particular

in the automotive and the aeronautics sectors, falls within the scope of this

concept. Resorting to this process is justified by all of the benefits that it

presents relative to conventional processes such as deep-drawing, bending and

welding. In effect, the process offers a wider field of formability compared

with the conventional forming methods. It presents a less significant residual

stress field and better manages the problems of contact and friction due to the

use of the pressure exerted by the fluid. The latter also ensures better

dimensional accuracy, consequently less springback and less problems in the

assembly phase. Figure 4.1 shows a few workpieces manufactured by

hydroforming in the automotive industry. Several works have focused on

modeling and on optimizing the process in this sector

[ASN 03b, OH 06, YUA 06b, LEE 02]. Based on these studies, the authors

state that with hydroforming processes the total weight of the car is reduced

and as a result so is fuel consumption. The use of the process is becoming

widespread in several industrial sectors. Currently, there is interest in

hydroforming of composite materials that can make a tremendous

contribution to the aviation industry.

Hydroforming is mainly divided into two large families: tube

hydroforming and blanks or plates hydroforming. The major difficulty of this

process remains in determining the load paths, which depend on the material

Material Forming Processes: Simulation, Drawing, Hydroforming and Additive Manufacturing, 
First Edition. Bouchaib Radi and Abdelkhalak El Hami. 
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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properties and the geometry, as well as on other parameters. Numerical

simulation only remains insufficient for the development of the process. It is

often the case that coupling with an optimization technique is necessary for a

good estimation of the operating parameters. The finite element method

coupled with a deterministic optimization technique is the approach

commonly used in the literature to optimize the process and to obtain a

workpiece without defects. This also involves the choice of adequate criteria

allowing for the detection of potential plastic instabilities.

Generally, this approach does not take into account the variabilities that

may bias certain operating parameters such as material properties, loads and

other parameters. A good prediction of the final state of the workpiece

essentially depends on the accuracy of these parameters, which often present

risks. This begins as soon as the characterization phase of the material, of

which several techniques referring thereto have been proposed in the

literature. Throughout this chapter, we present the main techniques for the

characterization of tubes.

This chapter also highlights the totality of forming techniques by

hydroforming, the limitations of the process or the failure modes and also the

plasticity criteria that make them possible to detect.

Figure 4.1. Examples of workpieces obtained by
hydroforming [MAK 07]
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4.2. Hydroforming

The first works on hydroforming date back to the 1940s. This method

mainly consists of making use of the motive force of a fluid, usually oil or

water, to plastically deform sheet metal so that it properly takes the shape of

the forming die. The control of the method requires the implementation of

criteria for the prediction of the potential plastic instabilities. Among the first

works that have contributed to the study and the analytical modeling of the

process and notably in tube hydroforming, we cite [ASN 03a], [KIM 02].

In effect, this process is used to manufacture simple or complex tubular

shapes and in sheet metal forming as a substitute for deep-drawing

technologies. In comparison with the conventional forming processes, the

fluid replaces the force exerted by the punch, subsequently resulting in a

better management of the contact problems between rigid and deformable

bodies. This enables that the piece has good mechanical properties. Among

hydroforming processes, we can mainly distinguish tube hydroforming and

sheet or plate metal hydroforming.

4.2.1. Tube hydroforming

Tube hydroforming has broad applications in the industrial sector, and is

particularly encountered in the automotive industry. Among the pieces

manufactured by this process, we can find rails, engine exhausts, tailgates,

etc. Figure 4.2 summarizes the various stages of the process. In general, this

type of process involves two types of loads: an internal pressure generated by

a fluid, enabling the tube to be plastically deformed by expansion, and an

axial compressive stress, generated by two cylinders that bring material to the

expanded area in order to compensate for the thinning of the tube and

improve its formability. An appropriate choice of these two types of loads

helps to avoid the premature necking of the tube and to ensure a better

formability of the piece. The complexity of the method lies in determining the

paths of the optimal loads.

This problem intensifies in the case of complex tubular forms and

preformed tubes. The choice of loads depends strongly on the geometrical

characteristics of the workpiece to manufacture and also on the material being

used. The success of the process requires a synchronization between the

internal pressure and the axial displacement. A large number of works have

focused on the optimization of load paths for simple and complex geometries

[AUE 04, IMA 05, FAN 03, MOH 09].



86 Material Forming Processes

4.2.2. Sheet metal hydroforming

Hydroforming of sheet metal is similar to conventional stamping

techniques. In effect, the fluid can have the same role as the punch or as the

forming die. The use of a fluid under pressure instead of the force exerted by

the punch results in a better management of the contact problems between

rigid and deformable bodies. This makes it possible to expand the formability

domain of the material and to obtain workpieces with a better distribution of

the final thickness.

Figure 4.2. Tube hydroforming

Blank hydroforming represents a new alternative to the conventional

method of stamping, in which the punch or the forming die are replaced by a

system that is capable of generating a pressure, which will in turn allow the

piece to be formed. The blank hydroforming process is classified into two

categories: the first is known as hydromechanical stamping (see Figure 4.3) in

which the fluid is replaced by the die while in the second category the fluid

plays the role of the punch. The absence of a forming die or punch in the

forming of blanks is accompanied by a reduction in costs. However,

hydromechanical stamping is characterized by a slow cycle compared to the

conventional stamping process. In the case of mass production, this can be a

severe handicap.

Kang et al. [KAN 04] have conducted a comparative study between a

conventional stamping operation and blank hydroforming for the
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manufacturing of a gas tank of a car. They conclude that with the

hydroforming process the tank presents a better distribution of the thickness

due to the use of a hydrostatic pressure. They have found that the thinning

rate is equal to 31.6% in the case of hydroforming, whereas it is equal to

41.6% for the same workpiece obtained by deep-drawing, which justifies the

interest in the process.

The hydroforming of blanks in its various forms has a large number of

applications in the automotive industry. The American constructor “General

Motors” uses this process for the manufacturing of several pieces that are part

of the bodywork. Unlike the conventional stamping technology,

hydromechanical stamping makes use of pressure underneath the sheet metal.

This generates compressive stresses that may delay the plastic stress

instabilities and decrease the formation of wrinkles due to the friction

stresses.

Punch

Blank-holder

Sheet metal

Internal pressure

Back pressure

FBH FBH

FBH + Fp

Fp

Figure 4.3. Hydroforming of blanks: hydromechanical stamping

4.3. Plastic instabilities in hydroforming

During a tube hydroforming operation, we can mainly distinguish three

potential failure modes due to strain locations: buckling, wrinkling and

necking [KOÇ 02]. The detection of these plastic instabilities requires the use

of criteria for the strain localization. These plastic instabilities appear when

the stresses and the strains reach critical values and when the steady state is
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no longer verified between the external stresses applied and the internal

resistance of the material. In order to obtain a workpiece with no defects, a

good synchronization is required between the axial displacement and the

internal pressure in the case of tubes. Following a similar process as in blank

hydroforming, this requires that the force of the punch, back pressure and/or

pressure be effectively determined. This compromise is often difficult to find

and resorting to the finite-element method coupled with various optimization

techniques is inevitable to solve this type of problem and to obtain a

workpiece without defects. The following sections detail the different modes

of failure that might occur. Subsequently, we present the main criteria for

predicting and localizing these instabilities.

Pressure

Fluid

Sheet metal Forming-die

Blank-holder

Figure 4.4. Blank hydroforming

4.3.1. Tube buckling

This type of instability is specific to tube hydroforming. It is generally

observed in long tubes with low thickness (i.e. low D
t ratio, where D is the

tube diameter and t its thickness). Buckling is the result of excessive axial

displacement and appears at the scale of the structure. It occurs most often at

the beginning of the process when a strong axial displacement is applied.

Geometrically, this type of plastic instability manifests as shown in Figure

4.5. This tendency to buckling increases with the increase in the free length of

the tube in the forming die. When this failure mode appears, it is no longer

possible to control the process, and the correction of this instability by a

variation of the pressure or the axial displacement is no longer possible. A

detailed study of this phenomenon has been made by Asnafi [ASN 03a] and

shows that it essentially depends on the geometrical parameters of tubes.
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Figure 4.5. Tube buckling

Figure 4.6. Tube wrinkling
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4.3.2. Wrinkling

Wrinkling is a special case of buckling or a localized buckling. This mode

of failure usually occurs at the beginning of the process. Geometrically, it is

manifested as ripples or blisters on the membrane of the surface. Figures 4.6

and 4.7 illustrate this plastic instability in the case of tubes and plates forming.

Figure 4.7. Blank wrinkling [ABD 05]

This forming defect is mainly due to a strong compressive stress. Unlike

buckling, if this mode of failure is detected early in the process it can be

corrected by a slight increase in the internal pressure. Wrinkling appears for

low- and medium-length tubes (that is with a significant D
t ratio). This type of

plastic unstability strongly depends on the geometric characteristics of the

forming die. This phenomenon becomes difficult to study in the case of

complex tubular shapes, for instance. Ansafi [ASN 03a] has demonstrated the

interest of properly controlling the progress of the punch in tube

hydroforming, because it is the driving of the piston that has a significant

influence on the appearance of wrinkling.

[YUA 06a] carried out a more detailed study on the phenomenon of

wrinkling, and have distinguished three kinds of wrinkling in tubes: beneficial

wrinkles that improve the formability of the material, dead wrinkles and

wrinkles that leads to tube bursting where necking occurs at the level of the

ripple.

In blank hydroforming, wrinkling is due to a back pressure or to an

insufficient clamping force. In effect, the wrinkling is more significant when
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the clamping force is low. Wrinkling emerges at the beginning of the course

of the punch when the blank holder stresses are low. Some authors have

studied the prediction of the plastic instabilities in the case of blank

hydroforming. Abderrabbo et al. [ABD 05] were interested in optimizing the

pressure and the back pressure paths in blank hydroforming in order to

control wrinkling in sheet metal.

4.3.3. Necking

Tube bursting or plate fracturing is the result of localized necking. When

necking begins, the strains become non-uniform in the workpiece. The strains

are subsequently concentrated in a localized area immediately followed by the

tube or the plate breaking. This occurs when a strong pressure is applied. The

optimal pressure is an important step in the hydroforming process that

depends on the material being used as well as on the geometry of the piece to

hydroform.

For simple geometries, certain equations have been proposed in the

literature allowing the estimation of the level of necessary pressure. These

formulations are in general based on the material and the geometrical

characteristics of the piece. Altan et al. [ALT 01] propose the adequate

pressure levels for the forming of an axisymmetric tube based on the

geometrical characteristics of the tube and the material properties. In the case

of complex geometries, these equations are no longer valid and the use of

numerical simulations is essential in order to determine the pressure levels.

Necking is a complex phenomenon to predict in the case of hydroforming

since the process is new. The criteria that are based on thinning are also often

used by tolerating a thinning of 15%, 25% and 30% for aluminum alloys, low

carbon steels and stainless steels, respectively.

For localized necking, the Hill criterion is not accurate for short tubes due

to biaxial stresses. To overcome this problem, Boumaiza et al. [BOU 06]

developed a criterion in which they take the geometrical characteristics of

tubes into account. For plates, necking occurs at the end of the process when

the stresses generated by the blank holder are significant and also in the case

of a strong pressure. The study of necking in the case of hydroforming and

particularly in the case of sheet metal hydroforming with internal pressure is a

sensitive issue for industries; the prediction of necking presents a real

problem for the expansion of sheet metal because as there is no privileged

direction for the formation of a localization band, the crack often follows any

direction. Figures 4.8 and 4.9 show tubes and sheet metal necking.
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4.3.4. Springback

In hydroforming of complex tubular shapes, we have often to make use

of preforming operations with the objective to facilitate tube forming. Figure

4.10 shows the springback in a preforming operation of a tube. It is primarily

due to a relaxation of the stresses after removal of the tools. In effect, the

material tends to relax and to return to a previous state. Springback poses a

serious problem during the assembly operation. Several studies are focusing

on the study of the phenomenon of springback in the case of hydroforming

technologies. Some have shown that this problem is less significant for this

type of process compared, for example, to a conventional process of deep-

drawing, notably in plate hydroforming, and which combines the force of the

punch and that of back pressure.

Figure 4.8. Tube necking

Various works show that springback is sensitive to several parameters that

may be related to the process or to the sheet metal. The parameters of the

process are, for example, the synchronization between the internal pressure

and the clamping force, the displacement velocity of the punch in the case

of sheet metal hydroforming, the type of contact between the sheet and the

tools as well as the geometrical parameters, such as the radii of curvature of

the tools. The sheet metal parameters are the material that it is made up of, in

particular its chemical composition, as well as its thickness. Springback is also

dependent on the material; materials with very high resistance often present a

higher springback in comparison with ductile materials.

4.4. Forming limit curve

The forming limit curve (FLC) has been introduced by Keeler [KEE 63]

and Goodwin [GOO 68] to define the upper formability limits of the material

before necking. There are four primary approaches that allow the analytic
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construction of FLCs: localized necking by Hill [HIL 52], diffuse necking by

Swift [SWI 52], bifurcation in [STO 75] and that in [MAR 67] that introduces

the non-homogeneity of sheet metal. This curve can be obtained either in an

experimental manner or by numerical simulations. Several approaches have

been proposed in the literature in order to determine this curve.

Figure 4.9. Blank necking

α1 = Angle under load 

∆α = α2 = α1

α2 = Angle after unloading

α2

α1

Figure 4.10. Springback

The FLC is used in several works as a criterion capable of predicting

necking. The use of the FLC in particular in forming is often criticized
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because it is valid for proportional load paths, which is not the case for this

type of problem. This curve is obtained experimentally and as the operating

process is often biased by different types of uncertainties associated with the

material, with the machine and with the environment in general. This can

affect the prediction of the position of the FLC, which makes it unreliable for

a good prediction. Despite these flaws, the FLC is often used as a criterion for

the localization of strains. Some authors have also based their works on the

FLC in order to define objective functions for the optimization of their

forming processes. According to [ASN 00], the tube’s FLC should be

determined by free expansion trials so that it be usable for the prediction of

the necking in the case of metal hydroforming.

In effect, several studies have experimentally shown the dependence of the

FLC on the strain path. A nonlinear strain path can change the shape and the

position of the FLC in the space of the principal strains. To compensate for

this problem, Arrieux [ARR 95] proposes the equivalent of the FLC but in the

stress space (forming limit stress diagram) because it is independent of the

load path being applied. Shifting from one curve to the other is possible by a

formulation of the stresses based on the strains.

4.5. Material characterization for hydroforming

The characterization of the material is a crucial stage in metal forming.

This is because the accuracy of a numerical simulation strongly depends on

the input parameters. The choice of the most appropriate technique depends

on the types of stresses. Several authors have addressed this subject; some cut

out their samples in sheet metal to characterize the material destined to

hydroform tubular workpieces. This presents a number of major

disadvantages since the stress modes are not the same. Song et al. [SON 07]

have carried out an experimental study for characterizing a material with

numerical tensile and inflation tests. They estimate that to obtain a good

prediction of the final characteristics, a good characterization is necessary.

Through the numerical simulations of an inflation test, they show that the

material data originating from an inflation test provide a good prediction

compared to the material data obtained from a tensile test. The reliability of

the numerical simulations necessarily involves an appropriate choice of the

characterization technique, which strongly depends on the types of stresses.
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4.5.1. Tensile testing

Several tests have been proposed in the literature to characterize the

material used in hydroforming of tubes. The simplest is the tensile test: the

test pieces are cut according to the longitudinal and the circumferential

directions of a tube following the different rolling directions as shown in

Figure 4.11. Xing and Makinouchi [XIN 01] compare through an analytical

and numerical study the behavior of blanks and tubes, and show that the

formability area for a tube is less limited compared to that of the blank. They

also demonstrate that the plastic instability for a tube is less important

compared to the blank because the anisotropy coefficient is much lower where

the value of using samples cut from a tube.

Figure 4.11. Samples for tensile testing

4.5.2. Bulge testing

The bulge test is designed to determine the behavior of tubes in the

longitudinal and circumferential direction. It allows the evaluation of the

formability of the tube and also establishing pressure/expansion curves.

Others also use it to evaluate the integrity of the welding seam. Several

studies have focused on the experimental techniques best adapted to

characterize sheet metal, which will be used for hydroforming. Some authors

use the information generated from uniaxial tensile testing to simulate their

hydroforming processes despite the types of stresses not being the same. To

elucidate this issue, some even compare the stress–strain hardening curve for
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the same material during a simple tensile test and inflation testing. They

clearly highlight the significant difference that may exist between the

distributions originating from these two types of characterization. They show

that an inflation test is more appropriate in the case of hydroforming. Many

researchers [CHE 04, KOÇ 01] consider that bulge testing is more

representative when compared to a simple stress–strain test. Figure 4.12

represents the procedure that has to be followed to characterize a material by

bulge testing. The burst pressure mainly depends on the material properties

and initial thickness. This test can be used to determine the burst pressure and

the maximal displacement in the expanded region before the bursting.

Other tests combine internal pressure and axial displacement; this allows

going further into radial displacement by changing the axial displacement and

the internal pressure ratios. The strain mode may vary from plane strain and

approximately into uniaxial tensile stress. The main stresses can be

determined based on the axial force, the internal pressure and the geometry of

the expanded area. We evaluate the flow stress taking the anisotropy into

account [HWA 02]; this approach is based on Hill’s theory with orthogonal

anisotropy. The internal pressure and the thinning rate are measured during

the inflation test. The flow curve obtained with this test can provide reliable

and accurate numerical results.
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hi = expansion height

Pi

σ = K (ε0 + ε)n

Figure 4.12. Bulge test



Hydroforming 97

4.6. Analytical modeling of a inflation test

In the following section, we propose to analyze the circular inflation test

while adopting the Hill48 anisotropic plasticity criterion for the description of

the behavior of sheet metal.

4.6.1. Hill48 criterion in planar stresses

Before starting to analyze the test, we first define an expression of the

Hill48 criterion under the plane stress hypothesis, assuming that the main

stress reference frame is coinciding with the orthotropic frame. The

equivalent stress is then defined in the main reference frame by:

−
σ =

√
r90(1 + r0)− 2r0r90Ω+ r0(1 + r90)Ω2√

r90(1 + r0)
σ1 [4.1]

with Ω defined by

Ω =
σ2

σ1
[4.2]

For an associated flow law, the equivalent strain is written as:

dε̄ =

√
1 + r0

√
r0(1 + r90) + 2r0r90β + r90(1 + r0)β2√

r0 + r0r90 + r20
dε1 [4.3]

with β defined by:

β =
dεp2
dεp1

[4.4]

On the other hand, it is possible to demonstrate, by using the equation and

the normality distribution, that the stresses ratio is connected to the strains ratio

by the following relation:

β =
r0(1 + r90)Ω− r0r90
r90(1 + r0)− r0r90Ω

[4.5]
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The equilibrium equation is defined by:

σ1

Rθ
+

σ2

Rφ
=

P

e
[4.6]

where σ1, σ2 are the principal stresses (superposed to the axes of the material),

Rθ and Rφ are the radii of curvature, respectively, following the two main

directions, P is the inflation pressure and e is the current thickness at the pole

of the plate. By introducing the stress ratio Ω and assuming that Rθ = Rφ, the

equilibrium equation is reduced to:

σ1 =
P.ρ

(1 + Ω).e
[4.7]
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Figure 4.13. Circular inflation test
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Assuming that the geometry of the deformed sheet metal is of spherical

shape, the radius of curvature ρ can be derived from the height of the dome h
on a radius a according to the relationship of the spherometer [HIL 50] :

ρ =
a2 + h2

2h
[4.8]

It can also been shown that the principal strain is defined by:

ε1 = ln

(
1 +

h2

a2

)
[4.9]

At this stage, we know the stress and the principal strain according to the

measurable variables (h, a, e, P ). It thus remains to determine the strain ratio

W in order to be able to establish a direct relationship between the forces and

the strains.

To this end, a state of normal anisotropy is assumed as a first

approximation. This reduces the number of anisotropy parameters to the sole

parameter r. In this case, the behavior is isotropic in the plate plane, an

equi-biaxial stress–strain state is thus derived (β = Ω = 1). The equivalent

stress and the equivalent strain are then defined by:

σ̄ = k

(√
2

(1 + r̄)
σ1

)
, dε̄ =

√
2(1 + r̄)dε1 [4.10]

Using a strain-hardening distribution of the Hollomon type and taking the

expression of the equivalent strain into account, the equivalent stress is then

defined by:

σ̄ = k

(√
2(1 + r̄) ln(1 +

h2

a2
)

)n

[4.11]

Based on the hypothesis of plastic incompressibility, the current thickness

at the pole is defined based on the initial thickness e0 by:

e = e0 exp

(
2 ln

(
1 +

h2

a2

))
[4.12]
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The final equation connecting the inflation pressure to the height of the

dome is derived from the equations, and considering the equivalent strain

expression:

P = 2
√
2(1 + r̄)K

e0h

a2
1

((1 + h2

a2 ))3

(√
2(1 + r̄) ln

(
1 +

h2

a2

))n

[4.13]

NOTE 4.1.–

1) The inflation pressure gradually increases until reaching the maximum

pressure, called the burst pressure, beyond which begins a strain phase, known

as unstable, reflected by a decrease in the pressure, although the sheet metal

continues to inflate.

2) According to the prediction of the model, the burst pressure Pmax is very

sensitive to the anisotropy coefficient; Pmax increases with r̄. At the same time,

the model shows that the height reached by the material at the burst pressure is

independent of the anisotropy coefficient.

4.7. Numerical simulation

This section presents the hydroforming of a homogeneous circular plate

under pressure. The mechanical behavior of the material has been simulated

at ambient temperature and at low strain rate by the software. The elastic

properties of the material, as well as its density, are presented in Tables 4.1

and 4.2.

The finite element method is used to explore the stress and the

displacement as well as the influence of strain hardening, anisotropy, and

sensitivity of these parameters on the response of sheet metal. A

three-dimensional model discretized in finite-elements (3D) is then built with

100811 nodes and 57295 C3D4-type elements, and then solved with Ansys

v13©. This is a sheet metal and die assembly of initial dimensions and

parameters (see Figure 4.14).

A surface pressure profile of 5 MPa over time is applied on the sheet metal

surface. It is inflated under this load by releasing only its ends in the direction

of the axis of symmetry of the plate. The behavior is formulated in the context

of anisotropic elastoplastic models and with isotropic hardening.
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Designation Density (kgm−3 ) E (GPa) Poisson coefficient

DC04 7, 800 210 0.3

Table 4.1. Elastic characteristics and density of the DC04 under study

Diameter SM (mm) SM thickness (mm) Die diameter (mm) Die radius (mm)

150 1 110 6

Table 4.2. Geometrical characteristics of sheet metal (SM) and die

Figure 4.14. Considered mesh

4.8. Mechanical characteristic of tube behavior

Taking into account the thickness/diameter ratio of the tube, the radial

stress is considerably low compared to the circumferential stresses σθ and

longitudinal σz. In addition, the main axes of the stress tensor and the

orthotropic axes are considered to be coaxial. The hypothesis of transversal

anisotropy represented by the efficiency criterion can be written as:

σ̄2 = F (σz − σθ)
2
+Gσ2

z +Hσ2
θ [4.14]
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with (F,G,H), which are the parameters characterizing the current anisotropy

state.

Static structure

Type: Total displacement

Unit: mm

Time: 1

Total displacement

Figure 4.15. Hydroformed metal sheet. For a color version of this
figure, see www.iste.co.uk/radi/material.zip

When the circumferential direction is considered to be a reference material,

the effect of anisotropy can be characterized by a unique coefficient R and

equation [4.14] becomes:

σ̄2 =
1

1 +R

[
R(σz − σθ)

2
+ σ2

z + σ2
θ

]
[4.15]

The normality and consistency assumptions lead to the following

equations:

⎧⎪⎨⎪⎩
dεθ =

dε̄

σ̄

(
σθ − R

1+Rσz

)
dεz =

dε̄

σ̄

(
σz − R

1+Rσθ

) [4.16]
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where ε̄ is the efficient plastic strain and (εθ, εz) are the peripheral strains and

the axial directions.

The anisotropic material can be derived from an equivalent definition into

working plastic, the incompressibility condition and the normality condition:

dε̄ =

√
1 +R√
1 + 2R

√
dε2z + dε2θ +R(dεz − dεθ)

2

=

(√
γ2 +

2R

1 +R
γ + 1

)
1 +R√
1 + 2R

dεθ [4.17]

with γ = dεz
dεθ

.

Considering the relations expressing strain tensor increments, the

equivalent stress (equation [4.15]) becomes:

σ̄ =

(√
1 + γ2 +

2R

1 +R
γ

) √
1 + 2R

1 +R+Rγ
σθ [4.18]

In the studied case, the ends of the tubes are fixed. As a result, the

longitudinal strain of the increment dεz = 0 and the relations [4.17] and

[4.18] become:

σ̄ =

(√
2R2 + 3R+ 1

(1 +R)
3

)
σθ dε̄ =

(
1 +R√
1 + 2R

)
dεθ [4.19]

Knowing the two unknown strains εθ and the stress σθ requires the

implementation of the final geometric data related to the tube (diameter and

wall thickness):

εθ = ln

(
d

d0

)
σθ =

Pd

2t
[4.20]

where P is the internal pressure, (d, d0) are, respectively, the average values

of the current and initial diameter of the sample and (t) is the current wall

thickness based on the following relation:

t = t0e
−(1+γ)εθ [4.21]
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Finally, the physical characteristics of the tube (base metal) are expressed

by the effective stress and with efficient strain according to the following

equation (Swift’s model):

σ̄ = K(ε0 + ε̄)n [4.22]

The values of the resistance coefficient at K, the strain hardening n, the

initial strain ε0, and the anisotropic coefficient R in equations [4.15] and [4.22]

are numerically identified.

Figure 4.16. Stress state in the inflated region
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Additive Manufacturing

5.1. Introduction

In the current highly competitive environment, manufacturing companies

face several problems:

1) a reduction of the time to market of new products;

2) lower production costs;

3) the optimization of their quality.

The use of the tools from computer-based development processes, taking

into account simulation and rapid prototyping (RP), allows the optimization

of the design, industrialization and production cycles of products by

facilitating, systematizing and accelerating the validation of each of the

development phases.

Direct manufacturing is a major challenge when moving from the prototype

phase to the production phase. The speedup can be considerable if tooling is no

longer necessary. This starts with the production of small and medium series;

the larger series are discussed for parts of small dimensions. For production,

tooling can be partially achieved by additive manufacturing.

The development of new machines, the reliability of existing machinery

and the improvement of devices and environments makes possible what was

unthinkable in the past. The quality of the parts obtained by additive

manufacturing and finishing allows that homologations are made in sectors as

demanding as the aeronautics, spatial and medical sectors.

Material Forming Processes: Simulation, Drawing, Hydroforming and Additive Manufacturing, 
First Edition. Bouchaib Radi and Abdelkhalak El Hami. 
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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A great novelty is the ultra rapid manufacturing of tooling for the proof

of concept. For example, in plastic injection molding the transition from the

computer-aided design (CAD) model of the part to be injected to the injection

molded piece can be achieved in a few hours, which enables making “real-

process” functional prototypes. A large number of research projects are being

developed. The piece is designed, tested and optimized in its real configuration

and real usage environment. Risks are minimized for the manufacturing of

production tooling and when it is put into operation.

In fact, additive manufacturing has a number of environmental

advantages:

1) a lower consumption of raw materials;

2) the reduction of energy needs (additive manufacturing would help

saving more than 50% of the current energy spent in “subtractive”

manufacturing, according to the U.S. Department of Energy);

3) the limited use of hazardous chemicals;

4) the reduction of transport requirements (relocation, production close to

the consumer);

5) the possible maintenance of the objects to avoid the accumulation of

waste.

The design and manufacturing phases are crucial because during these

stages, different requirements (functional, environmental, cost, etc.) must be

validated. The conventional mechanical manufacturing methods are facing

numerous challenges due, in particular, to the complexity of the parts to be

achieved, timing and the cost of production, not to mention the environmental

impacts that they generate.

Additive manufacturing constitutes a reliable alternative to address these

challenges. Rapid product development is an approach for developing

innovations while considering traditional criteria: technical performance,

quality, cost and time. The concept of rapid product development has the

advantage of a uninterrupted implementation of the tools of computer-based

development processes: CAD and digital simulation, prototyping, tooling and

rapid manufacturing.

The main five loop iterations are:

1) the loop for the decryption of the specifications of the product from the

functional analysis for the elaboration of the requirements chart;
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2) the first shift from a virtual concept to a real environment in the form of

first-level models;

3) the validation loop with the real characteristics. From this stage,

collaborative work is essential for optimizing the technological solutions

in regard to stress methods, both of productions and design and tooling

manufacture. As in every validation stage, physical prototyping is achieved

after all the numerical simulations have been tested. As a result, the errors

found after these physical validations are a proof of success. They allow

filtering by minimizing the risks and hazards;

4) validation with true processes and true materials. This very important

step has the objective of validating the choice of processes and procedures to

test them as close as possible to the future production by means of tooling and

advanced solutions. This step is the last before the major investments that must

be made to initiate the production. Collaborative work plays a predominant

role here. At the end of this step, the specifications of the production must be

established. Some clarifications will be made later in the study;

5) fabrication with additive manufacturing for production tooling or

tooling components.

The use of additive manufacturing techniques allows the substantial

reduction of the manufacturing time and therefore the time to market of new

products by increasing both their complexity and the number of their

functions. Having recourse to rapid manufacturing is a major asset in a market

where the lifecycle of products decreases and where the manufacturer has to

adapt his products to the new expectations of customers.

5.2. RP and stratoconception

In a conventional IT-based development process relying on RP, the digital

model of a part can be generated in different ways: starting from a purely

CAD-based digital design or a virtual sculpture, following the digitization of

a physical model of the part or even by mixed digitization and digital

retouching techniques. The digital model upon which it is common to work is

the stereolithography (STL) model (format used in stereolithography software

programs), which is provided by a meshing operation of the digital model of

the piece. Based on this model, the slicing operations and the generation of

manufacturing routes are calculated. These are then translated into a language

that enables the controlling of the manufacturing machine (Figure 5.1).



108 Material Forming Processes

Digital model

(CAD, digitization)

Meshing

Slicing

Manufacture

Creation of

manufacturing

paths

Control file

for the

manufacturing

machine

Post

process

STL

STL slice

Physical model

Digitization

Manufacturing

process

Figure 5.1. Rapid IT-based prototyping process [LAU 05]

The physical models produced by RP are used at different times in the

development process of a product. At the beginning of the design cycle, RP

is used in the validation of the esthetic and ergonomic aspects of the product;

this is referred to as a design model. When emphasis is given to the accuracy

of the model geometry, a geometric prototype is obtained allowing its use as a

model for tooling, for example. If we add the good material characteristics to

the obtained prototype, it becomes representative of the basic functions of the

product and contributes to their possible optimization. A functional prototype
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of the product is then obtained. It is even possible to make use of this kind of

prototype in tooling design.

Currently, prototyping processes provide a means to reduce the product

development process by the direct creation of tooling elements. This is

expected to continue in the years to come due to the direct rapid

manufacturing of the final finished product material as a replacement for the

conventional sequential manufacturing processes (casting, stamping,

injection, etc.) [DOR 03, FEE 03] without tooling.

Stratoconception is a solid/solid RP process initiated in the late 1980s by

Professor Barlier [BAR 15], which consists of the automatic decomposition

of the object into a series of additional elementary layers called strata, into

which positioning inserts are introduced. The conventional creation mode of

slices in stratoconception is made by 2.5 axis machining. The tool creates the

model according to the opposite direction of the slicing direction. Thus, the

so-called draft surfaces are surfaces accessible to the cutting tool and the

undercut surfaces are inaccessible to the tool. In stratoconception, the creation

of a slice can be achieved in two phases, this is then referred to as turnaround.

First of all, the draft areas are worked upon, then after turning the plaque

around, the originally undercut areas are machined. For more details on this

topic, see [LAU 05].

5.3. Additive manufacturing definitions

Currently, additive manufacturing is the subject of a proposal for a

standard, in particular all that relates to the main definitions. We can refer to

the French standard NF E 67-001, which gives all definitions necessary to

define, characterize and represent the elements that are needed in the whole of

the IT-based and technological production chain integrating additive

manufacturing. This then referred to as additive manufacturing and as direct

additive manufacturing [BAR 15].

At the end of the 1980s and early 1990s, RP started to be adopted whose

general principle made it possible to produce a three-dimensional object from

an STL file.

Additive manufacturing means a set of forming processes by the addition

of material, stacking up layers and contrasting with the forming process by

removing material, such as machining. This technique is also commonly called

3D printing (Figure 5.2) according to the standard NF E 67-001 [AFN 11].

These processes are distinguished by:



110 Material Forming Processes

– how the different layers of materials are layered down (fusion, sintering,

polymerization, etc.);

– the materials used in the solid form (metal powders or polymer powders),

liquid form (photosensitive resin), or even in the form of semifinished strips or

yarn products.

Figure 5.2. 3D printer

In the 1980s, additive manufacturing, called RP, was supposed to reduce

the creation timings of the prototype parts. The technology at the time

allowed the manufacture of plastic parts of small dimensions and with limited

mechanical properties. These prototypes were non-functional and were only

intended to illustrate or validate a concept. However, the technology has

advanced very quickly, the dimensions of the machines have increased, the

processes have improved and diversified, thereby resulting in a wider choice

of materials and improving the mechanical properties of the manufactured
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part. Additive techniques currently allow functional prototypes to be

achieved, as well as finished or semifinished pieces in small series (rapid

manufacturing) or even further the manufacture of molds and tooling for

large-scale production (rapid tooling) (see Figure 5.3).

Figure 5.3. Additive manufacturing machine (INSA Rouen)

The potential of the additive manufacturing technologies, in terms of

customizing the produced objects and reducing the environmental impact (the

right amount of material used), is considerable (Figure 5.4):

– at the technology level: we have direct production of small series of

complex shaped parts with fast manufacturing, a reduction in the design time,

the possibility of implementing geometries that are impossible to achieve with

conventional processes and with a lighter structure;
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– at the IT level: we have direct manufacturing from a 3D model and a

topology optimization can be performed with the objective to lighten, to spend

less material and to promote exchanges within the network of enterprises;

– at the economical level: we have direct insertion of means of

authentication in the product and a complete customization of “just in time“

deliverable products.

Figure 5.4. Products from additive manufacturing (CESI Rouen)
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Georges Taillandier [GOE 08], President of the Association Française de
Prototypage Rapide (AFPR), states that the aim is first to improve the design

reactivity with regard to the market fluctuations and the evolution of the

needs. It also aims to promote the creativity and the development of new

concepts in the ideas and in the design while simplifying the communication

between client and provider. The integration of the product is optimized in its

environment, the manufacturing, maintenance, control or packaging problems

are anticipated, and tests are carried out on the product to verify certain

characteristics (ergonomics, aerodynamics, etc.). Finally, sometimes a piece

has to be formed that will be used as a model for the fabrication of tooling in

a short time or to directly develop a mold for plastic molding injection or

casting.

The materials used in additive manufacturing machines can be of different

forms (liquid, pastes, powders, granules, yarns), the types and shades of

materials available are very limited. It is an area undergoing intense

development for metallurgists and chemists. The extent of the dimensions of

the parts that can be obtained by additive manufacturing is very broad. This

ranges from less than 1 mm to several tens of meters. Some machines allow

continuous manufacturing. The characteristics of the parts obtained are

improving on a daily basis. Some machines allow the manufacture of parts

whose material characteristics vary depending on certain regions chosen by

the designer.

Resorting to fused deposition modeling (FDM) technology for the

production of pieces, instead of injection molding, enables the design to be

modified with a simple update of the file, and therefore leaves more freedom

in terms of design and shape. The parts are immediately ready for the

production.

The FDM process has been developed by Stratasys (USA). It uses the

motion of a three-axis machine to lay down a melted metal filament on the

piece during the fabrication. The solidification is instantaneous when the wire

comes into contact with the previous section. The materials used for the

filament are wax, polyamide, polypropylene, ABS, etc. This method is fast

and inexpensive since the emergence of 3D printers. In melting processes, the

powder is coaxially melted by a laser beam and amalgamates on the piece to

be built.

5.4. Principle

The concept at the basis of the principle of additive manufacturing is layer

upon layer manufacturing. It allows a greater freedom to design than traditional
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processes. It is in effect possible to create shapes impossible to reproduce in

casting or by machining. There are several additive manufacturing processes

(stereolithography, melting filament deposition, stratoconception, 3D printing

from metallic or non-metallic powders, laser recharging, selective melting by

laser electron beam, etc.). They offer several possibilities to designers. The

foundation is based on two technologies [BRE 15]:

– laser melting/sintering on a layer of powder (selective laser

melting/selective laser sintering) (SLM/SLS) that consists of an electron

beam or a laser that melts or sinters a thin layer of powdery material. A

second layer is then deposited and then melted/sintered. The materials used

are metals, polymers and ceramics in the form of powder;

– laser melting/sintering with projection of powder (laser metal deposition)

that consists of a laser that melts the metal surface of the piece upon which a

powder spray is simultaneously projected. This powder melts and forms a layer

that merges with the substrate. The materials used are powdered metals.

5.4.1. Principle of powder bed laser sintering/melting

The principle of powder bed laser melting/sintering consists of melting a

thin layer of powder (metal, plastic, ceramic, etc.) using a high-energy laser.

These techniques are based on the same steps summarized here below:

1) a thin layer of powder is spread by a roller on a manufacturing piston;

2) this layer is sintered/melted by a high-power laser that traces a 2D

section on the surface of the powder. The solidification takes place after the

laser is stopped;

3) the piston supporting the 3D model under construction descends from

the thickness of the layer carried out while the powder supplying cartridges

adjust their level with that of the plateau;

4) a new powder bed is spread out and the process is repeated until the 3D

model is completed.

In fact, there is a significant difference between laser melting (SLM) and

laser sintering (SLS). Sintering is a process consisting of heating powder

without melting it. The only difference between laser sintering and melting is

therefore the power of the laser being used. Sintering enables certain

properties to be obtained that can be interesting for well-defined applications

(for instance high yield strength).
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There is another technology very close to laser melting and sintering with

powder: laser melting by electron beam (or electron beam melting) (Figure

5.5). The main difference with the processes previously mentioned is the use

of a beam of electrons instead of the laser. This electron beam is obtained by

heating a tungsten filament in a vacuum. The latter thus releases electrons,

which are then accelerated and directed by electromagnets in order to be

projected at high-speed on the surface of the powder. The powder is therefore

brought to the melting point. The powders used with this technology must be

based on conductive materials otherwise no interaction with the electron

beam is possible. As a result, metal powders are thus preferred. One of the

strengths of this technology is the speed of manufacture; in fact, some

manufacturers argue that the electron beam can be separated to heat several

places simultaneously.

Figure 5.5. Explanatory diagram of the laser sintering 3D printing
process (source: IFTS from the University of Reims)

Technologies based on laser melting/sintering of a powder bed present the

main advantage of enabling the fabrication of parts with extremely complex

geometries. In fact, the powder not melted/sintered by the laser can serve as

a support for the following layers of material spread by the roller. Thus, this

facilitates obtaining undercut forms.
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5.4.2. Principle of laser sintering/melting by projecting powder

This technique consists of melting the surface of a metal piece with a

laser. Simultaneously, a powder spray is projected onto the melting area. This

powder melts on the molten area and thus come to form a layer that merges

with the substrate (Figure 5.6). Several passes may be necessary to obtain the

desired thickness [TRU 12].

Powder

spreading

Intermediary

stage

Last printing

layer

Final piece

Progress of

the piston

Cycle repetition

Powder

printing

Figure 5.6. Laser sintering by powder projection

This technology is also used to create 3D parts. It presents the advantage

of getting a good metallurgical cohesion between the coating applied and the

substrate. This technique can also be used for applying special surface

treatments with the objective to improve the resistance to corrosion or to wear.

The process of projecting powder relies on laser melting (or sintering)

based on overlay welding. The powder is injected through a nozzle mounted

on a 5-axe machine that when moving, creates weld seams. This offers a great

geometric flexibility [HAR 11].

Each process suffers still from the limitation imposing new design

constraints. For example [MEU 14], in the case of selective laser melting, the

piece will be manufactured on a mounting plate and the first fabrications

strata are mounts enabling that heat be removed and that the piece be

separated from the plate. This has a negative influence on the time and the

cost of manufacturing, in addition the size and the positioning of these

mounts require some experience from the end user.
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The choice of orientation of the workpiece at the time of manufacture also

necessitates a good knowledge of the process and results from a compromise

between the size of the tray and the need to limit to the maximum the

dimension of the molten pool for each layer. It is also necessary to also

provide one or more evacuation path for the residual powders. After

production of the piece, a relaxation heat treatment or postmachining

operations should eventually be anticipated in order to improve the surface

condition of the functional areas.

The lack of knowledge and hindsight regarding the opportunities and the

limitations of these new manufacture methods as well as their still significant

cost currently limit their industrial development. In fact, design consultants

are accustomed to designing parts with geometries that should be simple to

manufacture by conventional processes; these are the bases of “design for

manufacturing (DFM)”. In order to benefit from the full potential of additive

manufacturing, it is necessary to develop design supporting tools adapted to

these new manufacturing processes (“design for additive manufacturing”).

There is at the present time still little methodology of this type

[PON 13, ROD 11] and often they do not allow ensuring the

manufacturability of the part or do not benefit from the advantages of additive

manufacturing.

5.5. Additive manufacturing in the IT-based development process

Additive manufacturing can differentiate and complexify the objects

manufactured without significant additional costs during the simultaneous

manufacturing of different objects with the same manufacturing machine.

These possibilities are related to the principles of modeling and information

computer processing that enable rapid and controlled iterations between the

real world of physical parts and that of virtual objects that can be derived and

customized with no limitations and at the lowest costs.

5.5.1. Concept “from the object to the object”

This concept is based on the fact that the dynamics of product

development rely on a process located between IT, allowing the definition and

the referencing of the models of the products desirable to be obtained, and the

real shape of their physical realization (Figure 5.7).
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Figure 5.7. Process from the object to the object

5.5.2. Key element of the IT development process

Additive manufacturing is located at the heart of the IT development

process. There is the rapid manufacturing and completion of objects by

additive manufacturing. It is possible to advance either by a direct redefinition

in CAD, or by an optimization and a validation through simulation or by the

digitization of the physical modifications brought to the manufactured object.

This possibility of iteration is one of the key performance factors of this
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manufacture. Figures 5.8–5.10 show typical computer-aided processes

concerning the manufacture of objects.
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Figure 5.8. Direct computer-based creation sequence of objects
(source: InSIC)
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Figure 5.9. Direct sequence and reverse engineering (source: InSIC)

The RP industry is maturing; future developments are essentially connected

to the available materials and reliability of equipment. The areas of application

and the expected impacts are significant, a large number of things remain to

be consolidated and to be experimented in a forward-looking and collaborative

context.

The existence of numerical models is invariant and constitutes the entry

point to the implementation of additive manufacturing processes. This
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constraint is also to be regarded as an element of primary importance in the

context of the conservation of perennial models and the integration of the

various models necessary to the usages of the product during its lifecycle. The

robustness of the models and that of the IT development process are therefore

paramount in order to streamline the flow of the necessary information to

obtain new products.
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Figure 5.10. Additive manufacturing and machining computer-based
development sequence (source: InSIC)
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Optimization and Reliability in Forming

6.1. Introduction

The process of metal forming by hydroforming involves several complex

phenomena and presents several types of nonlinearities (geometric, material,

etc.). The development of a hydroforming process requires a large number of

tests to accurately determine the optimum loads paths and to obtain a

workpiece without defects. The progress achieved at the level of the

numerical tools has helped industrialists to simulate and optimize their means

of production before starting the manufacture with the objective to minimize

as much as possible the rate of defective parts. This is justified by the

multitude of parameters that have to be controlled and also by the exorbitant

cost of real testing. Several techniques or deterministic optimization methods

have been proposed over the past decade in order to correctly perform

forming operations.

The majority of these techniques combine the finite elements method and

optimization techniques. With these resources, companies can simulate their

processes virtually, allowing them to provide answers to certain questions,

mainly on the feasibility of the workpiece and also on the ability of the load

path to properly form the piece. This coupling often allows for noticeable

improvement. However, it does not provide any guarantee about the stability

of the process and does not exclude that certain types of plastic instabilities

may occur during the manufacturing process because there are several sources

of uncertainty related to the material, loads, press and also to the operator.

Material Forming Processes: Simulation, Drawing, Hydroforming and Additive Manufacturing, 
First Edition. Bouchaib Radi and Abdelkhalak El Hami. 
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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6.2. Different approaches to optimization process

In this section, we establish the state of the art of the main deterministic

optimization techniques proposed in the literature that provide solutions to

optimize simple and complex tubular shapes and also in the case of blank

hydroforming. It brings forward the most interesting works. In [AYD 05], these

techniques are classified into four major families:

– Conventional approach: in the conventional approaches, the load paths

are determined on the basis of certain equations governing material flow. These

analytical models are only valid in the case of simple tubular shapes. The

limitations of this method are that the equations cannot account for some

physical phenomena. Among the first studies that were based on analytical

models, we can cite the works of Ansafi [ASN 03a]. He has validated the

effectiveness of this approach with finite elements simulations and also by

comparing these results to the experimental measurements. However, this

approach becomes complicated in the case of complex geometries.

– “Self-feeding” approach: this approach is proposed by Starno et al.
[STR 10]. It consists of performing numerical simulations without taking into

account the axial or the friction efforts until the desired shape is obtained. In

the second stage, we measure the displacement of the node that is encountered

on the edge of the tube and the thinning rate in the expanded area, and we

adjust the load path by including the adequate axial displacement. This allows

the prevention of the localization of the visualized thinning and subsequently

the phenomenon of necking. This approach presents several disadvantages; it

consists of performing several simulations in order for the different parameters

to properly adjust and consequently results in a significant computational time

and high costs. Figure 6.1 illustrates this approach, and as a matter of fact the

measured displacement does not take into consideration the friction effects

between the die and tube. This value is proportionately increased, after a

new simulation is launched including the contact effects between the die and

the tube. This approach seems inappropriate in the case of non-symmetrical

workpieces such as T or Y shapes since the displacement rate is no longer the

same on both sides.

– Adaptive approach: the principle of this approach consists of

implementing a control algorithm allowing the detection of the types of the

potential instabilities and to progressively react in order to refit the input

parameters. This approach has the advantage of converging toward the optimal

solution in a single simulation. It presents a gain in computational time

compared to the other techniques previously mentioned. This technique has

been adapted by several authors to optimize simple and complex tubular
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forms. The adaptive approach is based on its ability to detect the beginning

of adverse situations that appear such as buckling, wrinkling and necking

followed by bursting. According to the type of plastic instability detected, the

algorithm reacts by an increase or a decrease in the internal pressure or in the

axial displacement. Shu-hui et al. [SHU 07] have used an adaptive approach

combining the latter with a technique based on fuzzy logic in order to predict

the optimal load paths. The criteria for each type of plastic instability are

implemented for detecting wrinkling and necking. During each increment, the

wrinkling and necking values are evaluated and according to the values found

they adjust the new pressure and axial displacement parameters. In [AYD 05],

an adaptive approach is also used: they are based on other types of criteria

for the detection of wrinkling and necking. Regarding wrinkling, they use

an energy criterion based on the bifurcation theory, whereas for necking they

use the FLC. Based on these two criteria, the parameters are adjusted during

the simulation by means of a technique based on fuzzy logic. In [JAN 08],

an adaptive optimization method is proposed based on the response surface

method. The adaptive approach can be summarized in Figure 6.2.

No boundary stresses

No friction

No friction

Free expansion

With axial displacement

Figure 6.1. Principle of the “self-feeding” approach

– Approach based on an optimization technique: this consists of defining

an objective function to be minimized or maximized with or without stresses.

The criterion to be optimized can involve, for example, the distribution of the

final thickness, the damage rate or, for example, the level of compliance of the

piece with respect to the die. An objective function is defined [IMA 05], that

involves the thickness variation by imposing stresses on the final aspect of the

piece and also on the equivalent maximal plastic stress permissible. Several

authors have adapted the same philosophy through an objective function

and the stresses. In [LOU 07], the main focus is about T-shape tubes, they

optimize the load path by imposing two objective functions. The first involves

a minimization between the volume of the die and the final volume of the

tube while the second ensures a uniform distribution of the final thickness.

In their problem, they impose a stress that controls the equivalent stress in
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each element that must not exceed the ultimate stress of the material. The

conjugate gradient method is used to optimize a T-shaped tube [FAN 03].

Other techniques have been proposed such as the one from [ABE 08], which

couples the finite element method with an intelligent optimization technique

combining a local search technique (response surface or quadratic method) and

an overall search technique (genetic algorithm). In recent years, the response

surface method has been widely used for forming optimization. This allows

the problem of the computation time to be addressed while ensuring the good

accuracy of the final result.
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Figure 6.2. Principle of the adaptive approach

6.2.1. Limitations of the deterministic approaches

Deterministic optimization techniques (see Appendix 1) present a few

disadvantages given that they do not take account of the variabilities involved

in the process. These variabilities may have their origin in the material

parameters, the geometry of the piece, the load parameters, the lubrication

conditions, as well as external factors such as temperature or humidity and

tool wear and tear effects. Not accounting for these variabilities may cause
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some types of plastic instabilities to appear. The deterministic approach does

not, therefore, guarantee the stability or the robustness of the process with

regard to the modes of failures likely to show up, as it does not include the

uncertainties of some of the parameters. Their integration into the

optimization process proves to be indispensable in order to ensure an

acceptable level of reliability. This makes it possible to considerably decrease

the rate of defective parts. In order to take these variabilities into account, new

approaches have been proposed that enable the integration of these

uncertainties such as the reliability and the robust approaches [ELH 13b].

These approaches appear as promising alternatives that can at the same

time optimize the process and also guarantee a level of acceptable reliability.

However, the accuracy and the reliability of the finite element method

depends on the accuracy on the input parameters. In reality, these parameters

must be defined by their statistical moments and their probabilistic

distributions. Access to this information is costly and requires a series of tests

for characterizing the material or on the variability of the machine. For this

reason, our probability distributions as well as the variation coefficients are

defined in the form of hypotheses.

6.3. Characterization of forming processes by objective functions

The optimization of forming processes is usually carried out by defining the

objective functions and the stress functions. These functions provide control

over the process and ensure the good quality of the final product during the

process. They also make it possible to avoid the appearance of different modes

of failure that might occur. Several works featured in the literature are inspired

from the limit forming curve whether it be at the level of the stresses or of the

principal strains to define their functions. Some define functions that involve

the level of compliance with respect to the die such that the workpiece takes

the shape of the die. Other types of functions can be defined that consist of

minimizing the damage rate in the piece.

The optimization of forming processes by means of some objective

functions with or without deterministic stresses is a widely used approach.

Nonetheless, it is often criticized because it does not involve the uncertainties

about the parameters despite these hazards being present. Throughout this

chapter, we optimize the hydroforming process with different types of

objective functions by replacing the deterministic stresses with probabilistic

stresses. The coupling between the mechanical and the probabilistic aspects is

also presented.
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6.4. Deterministic and probabilistic optimization of a T-shaped
tube

6.4.1. Problem description

This example has been extensively studied in the literature but in a

deterministic optimization context. The problem is solved in a deterministic

manner and then again with a probabilistic approach in order to compare the

two and bring forward the contribution of the probabilistic approach. The

same methodology has been presented in [BEN 14] and [BEN 13] for tube

hydroforming. The formulation of the optimization problem can be expressed

in different ways according to the objectives sought.

A finite element model is defined to perform all of the necessary numerical

simulations. This model is composed of a die that is used to give shape to the

tube, and of a punch whose function is to bring material to the expanded area

so as to avoid the premature necking of the tube. These two bodies are modeled

by rigid bodies. The tube has a length of 121 mm, a diameter equal to 45.4 mm

and an initial thickness of 1.2 mm. The finite element model and the mesh are

given in Figures 6.3 and 6.4. Given the symmetry of the problem, and in order

to reduce the computation time, one-fourth of the model is modeled.

Die

Punch 1

Punch 2

Tube

Figure 6.3. Finite element model: exploded view

The material used for forming this tube is DC06 steel. A Swift

strain-hardening model is chosen whose mechanical properties are presented

in Table 6.1.

k (MPa) n ε0
527 0.24 0.0024

Table 6.1. Hardening model coefficients
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Figure 6.4. Mesh adapted from the model

6.4.2. Choice of the objective function and definition of the
stresses

Solving this type of problem can be formulated in a different manners.

We can establish an objective so as to ensure uniformity at the level of the

distribution of the final thickness, a minimization of the damage rate or others.

Here, we are interested in maximizing the height of the dome, umax denotes

the maximal height reached during the process. The stresses of the problem are

defined to avoid the probable failure modes during the process.

Tube hydroforming often presents two types of plastic instabilities to be

controlled: wrinkling and necking. To prevent these two modes of failures

occurring, two criteria are defined. The evaluation and the control of these

two plastic instabilities make it possible to obtain a workpiece without defects.

These two criteria are illustrated as follows:
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– Wrinkling criterion: for the detection of wrinkling, we base ourselves

on the critical out-of-plane strain. In fact, the maximal value of this strain is

localized at the level of the transition area as shown in Figure 6.5. A high

value of this strain is synonymous with wrinkling. This critical strain value

is equivalent to ε̃hp = 0.65 determined by means of a few deterministic

simulations.

PE, Out-of-Plane Principal

SPOS, (fraction = 1.0)

(Aug: 75%)
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+5.153e – 01
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+3.072e – 01

+1.684e – 01

+9.906e – 01

+2.969e – 02

–3.969e – 02

–1.091e – 01

–1.784e – 01

Figure 6.5. Localization and limit value of the out-of-plane strain. For a
color version of this figure, see www.iste.co.uk/radi/material.zip

– Necking criterion: with regard to necking, a simple criterion serves as

the basis, which consists of defining a critical thinning rate that must not be

exceeded. Here we tolerate a thinning rate of the order of 25%.

6.4.3. Choice of the uncertain parameters

The choice of the load parameters as uncertain parameters is justified by

the fact that the process presents a certain sensitivity with respect to these

parameters. In fact, a slight variation in these parameters around their mean

values can result in the failure of the process and plastic instabilities

occurring. The success of this type of process requires proper synchronization

between the internal pressure and the applied axial displacement. Taking
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these uncertainties into account in an optimization context makes it possible

to better determine the load paths that cause the process to become

unresponsive to the different variations. The material parameters as well as

friction coefficient between the forming die and the tube are considered

non-deterministic and defined by their nominal values.

The load paths giving the variation of pressure and of the axial

displacement with respect to time are shown in Figure 6.6. These load

parameters are given according to their mean values. The probabilistic

characteristics of these parameters are presented in Table 6.2.
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Figure 6.6. Load paths. For a color version of this figure, see
www.iste.co.uk/radi/material.zip

R. var. Mean Std (%) Distribution

P1 25 5 Normal

P2 45 5 Normal

D1 10 5 Normal

D2 20 5 Normal

Table 6.2. Probabilistic characteristics of the load parameters
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6.4.4. Choice of the objective function and the stresses

The solution of the optimization problem is based on the construction of

metamodels giving the objective function and the stresses according to the

uncertain parameters. An experimental design centered of the composite type

is chosen to perform all of the necessary numerical simulations. In view of the

nonlinearities existing in the problem, one chooses a quadratic model given

by equation [7.3] to represent the totality of these responses. Figures 6.7–6.9,

respectively, represent the maximal displacement from the dome, the maximal

out-of-plane strain and the final thinning at the level of the dome. A statistical

analysis on the metamodels correctly shows that the latter ensure a level of

accuracy that is quite acceptable to predict the responses. The determination

coefficients are presented in Table 6.3.

Response umax εhp Thinning

R2 0.997 0.9393 0.9954
R2

adj 0.9856 0.7175 0.978

Table 6.3. Statistical indicators
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6.4.5. Deterministic formulation of the optimization problem

The problem is first solved in a deterministic manner. Two types of

nonlinear optimization algorithms are used in order to determine the

deterministic optimum: a gradient-based algorithm and a directional search

algorithm “Pattern Search (PS)”, which is based on a grid technique for

searching the optimum.

Mathematically, the deterministic optimization problem can be formulated

as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
max umax(xi)

g1(xi) = ε̃hp − 0, 65 ≤ 0

g2(xi) = 0, 95− h̃min ≤ 0

xi = {D1, D2, P1, P2}

[6.1]

The optimization problem consists of maximizing the height of the dome

while ensuring that neither necking or wrinkling will appear during forming.

In order to control the necking, we tolerate a thinning of the order of 25%.

The solution of the problem with a sequential quadratic programming

(SQP) algorithm allows the deterministic optimum to be reached after 19
iterations. The optimum load paths obtained in the deterministic case are

compared with the initial paths in Figure 6.10. The maximum height of the

dome is also presented in the deterministic case, it reaches a maximum value

of 19.457 mm (see Figure 6.11).

With the PS algorithm, the algorithm converges after five iterations and

643 evaluations of the objective function. The convergence path of these two

algorithms are given in Figure 6.12.

The optimum load paths obtained with this algorithm are compared with

those obtained by the SQP algorithm. The maximal height of the dome

obtained with the PS algorithm is smaller than that obtained with the SQP

algorithm, it is equal to 19.3227 mm. Figure 6.14 shows the distribution of

the displacement for the second case. The use of these two types of

algorithms shows that the SQP algorithm converges to a smaller value, which

proves its effectiveness compared to PS algorithm. On the other hand, the

latter converges more quickly toward the optimal solution.
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6.4.6. Probabilistic formulation of the optimization problem

In the following, the problem is solved in a reliabilist manner. The

deterministic stresses formulated in equation [6.1] are now transformed into

probabilistic stresses pertaining to the evaluation of the probability that one of

these stresses is not satisfied. It should also be noted that these two modes of

failures are assumed to be independent, which means that the occurrence of

one does not depend on the other. In a reliability context, the stress is defined

by a limit state function or performance function. The two limit state

functions are expressed according to the deterministic stresses and they are

given by the following system of equations:{
G1 = −g1

G2 = −g2
[6.2]
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Figure 6.14. Maximum height at the dome. For a color version of this
figure, see www.iste.co.uk/radi/material.zip

The reliability problem consists of maximizing the average values of the

optimization variables given by the vector μ = (μD1 , μD2 , μP1 , μP2).

The optimization-based reliability problem is formulated as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
max umax(μi)

P [G1(x) ≤ 0] ≤ Padmissible
P [G2(x) ≤ 0] ≤ Padmissible
μi = {μD1 , μD2 , μP1 , μP2}

[6.3]

The optimum load paths are sought for different levels of admissible

reliability: Pf = 2.28%, Pf = 0.62%, Pf = 0.13%, and

Pf = 3.1686× 10−3%, which correspond to the following reliability indices:

2, 2.5, 3 and 4.

The SQP algorithm is used to solve problem [6.3]. The algorithm

converges for the different levels of reliability. The convergence of the

objective function based on the number of iterations for these different cases

is presented in Figure 6.15.

The load paths obtained for the different levels of reliability are compared

with the initial paths and the deterministic optimal paths given in Figures 6.16

and 6.17.

The maximal displacement at the level of the dome for the different levels

of reliability is given in Figures 6.18–6.21. The more significant the reliability

level, the smaller the height of the dome compared to the deterministic case.

The distribution of the thickness for the deterministic optimum and the

reliability optima are presented in Figure 6.22.
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Figure 6.18. Maximal displacement: β = 2

Figure 6.19. Maximal displacement: β = 2.5



138 Material Forming Processes

Figure 6.20. Maximal displacement: β = 3

Figure 6.21. Maximal displacement: β = 4
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Figure 6.23 shows the height at the level of the dome. Comparing with the

thickness distribution given by Figure 6.22, it can be observed that the more

significant the height of the dome is, the more significant the thinning is.
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Figure 6.23. Height at the dome for several optima. For a color version
of this figure, see www.iste.co.uk/radi/material.zip

The localization of the optima is given in the space of the parameters that

have a great influence, namely (P2, D2) determined with sensitivity analysis.

The outline of the objective function and the stresses are plotted in Figure 6.24.

The interest of the optimization-based reliability lies in the search for the

optimum that satisfies a target level of reliability. In fact, as shown in

Figure 6.24, the deterministic optimum always tends toward the limits of the

stresses. Taking into account the uncertainties affecting certain parameters

can foster the emergence of plastic instabilities. The interest of

optimization-based reliability becomes more obvious in this example as one

increases the target reliability index. It should be noted, for instance, that the

optimum that guarantees a level of reliability equivalent to a reliability index

β = 4 is clearly further away from the deterministic optimum and from the

limits of the stresses. Therefore, with this level of reliability, we are moving

away from the risk area that enables ensuring the stability of the process.

In order to make additional investigations about the influence of the initial

point on the convergence toward the reliabilistic optimum, we look for
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different initial points. There is only interest in the case where the reliability

index is established at β = 3.

Objective function outline
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Figure 6.24. Localization of optima in the search space. For a color
version of this figure, see www.iste.co.uk/radi/material.zip

Table 6.4 summarizes the optima found for six different starting points and

also provides the number of iterations as well as the value of the objective

function. As a point of fact, the forming problems are strongly nonlinear and

converge to various local optima by changing the initial point. In this type of

problem, we often try several initial points and from among all these optima,

the one that presents the lowest value of the objective function is chosen.

Initial point Reliabilistic optimum Number of iterations Value of fobj
[10 20 25 45] [8.09 24.95 25.45 47.13] 27 -18.41

[11 18 23 47] [8.85 24.88 24.04 48.28] 10 -18.29

[ 9 22 27 43] [8.18 24.97 27.95 46.20] 20 -18.38

[11 22 24 49] [8.34 24.97 22.55 48.53] 26 -18.46

[12 20 21 46] [8.34 24.97 26.33 47.93] 34 -18.58

[ 9 19 21 47] [9.46 24.97 22.39 49.85] 20 -18.37

Table 6.4. Influence of the starting point on the reliabilistic optimum

6.4.7. Optima sensitivity to uncertainties

With the aim to examine the sensitivity of the deterministic and

reliabilistic optimum to the uncertainties, these two optima are perturbated so



Optimization and Reliability in Forming 141

as to see their variation ranges. With regard to the reliabilistic optimum, the

one that corresponds to a reliability index β = 4 is chosen. In Figure 6.25, it

can be seen that the reliability optimum does not exceed the limits imposed

by the two stresses denoted in Figure 6.25 by (G1, G2) and that, respectively,

represent the stress related to the out-of-plane strain and the final thinning. On

the contrary, a variation of the deterministic optimum pushes it toward the

non-feasibility domain which affects the stability of the process and does not

exclude that certain plastic instabilities may occur during the process due to

the instant uncertainties. In effect, the mechanical properties, the applied load

paths as well as the lubrication conditions can change from one tube to

another, which makes the prediction of the final state of the workpiece

unpredictable; this fact leaves the deterministic optimum often at risk and

does not guarantee the stability of the process. The variation region occupied

by the reliability optimum is much more stable compared to that occupied by

the deterministic optimum.
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Figure 6.25. Optima sensitivity to uncertainties. For a color version of
this figure, see www.iste.co.uk/radi/material.zip

For the same purpose, the deterministic and reliabilistic optima are

perturbated with a defined variation rate and we observe their variations in the

feasibility space. With two different variation levels corresponding to

(δ = 2% and δ = 5%), 1, 000 random realizations are generated with a

Monte Carlo method and their distributions are analyzed. Figures 6.26 and

6.27 illustrate the distribution of these realizations in the space (D2, P2) and

delimiting the feasibility domain denoted by Ωs of the failure domains
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denoted by Ωf . Concerning the first level of uncertainty, we note that only the

realizations originating from a perturbation of the deterministic optimum

exceed the boundaries of the feasibilities. An increase in the level of

perturbation affects the deterministic optimum much more than the

reliabilistic optimum. Most of the realizations originating from a perturbation

of the reliabilistic optimum are in the admissible domain.
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Figure 6.26. Effect of the perturbation of the optima with a rate δ = 2%.
For a color version of this figure, see www.iste.co.uk/radi/material.zip

6.5. Deterministic and optimization-based reliability of a tube with
two expansion regions

6.5.1. Problem description

The second example addressed in this chapter consists of hydroforming a

tube with two growing areas of different heights. The problem is solved with

a conventional deterministic and probabilistic approach in order to compare

them. To simplify the problem, only the load parameters are considered as

uncertain.

The finite element model consists of a die with two expansion areas and

punches that ensure that material be added to the expanded area modeled by

rigid bodies. The tube has a diameter of 45 mm and an initial thickness of

1.5 mm. The finite element model is presented in Figure 6.28.
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Die

Punch 1

Punch 2

Tube

Figure 6.28. Finite element model

The dimensions of the die are shown in Figure 6.29, the tube has the same

length as the die. The material being used is DC04 steel whose elastoplastic

properties are presented in Table 6.1.

The load paths being used are presented in Figures 6.30 and 6.31. The

goal of the problem is to optimize load paths in a deterministic and also in a
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reliabilist manner. The main objective is to control the displacements of the

two punches and the internal pressure. In this problem, the axial displacement

is modeled by points D1 for punch 1 and D2 for punch 2. The internal pressure

is controlled by three levels of pressure denoted by (P1, P2, P3).

Figure 6.29. Die dimensions (in meters)
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Figure 6.30. Load path: displacement (mm) - time (s)

Table 6.5 represents these variables with their probabilistic characteristics.

These variables are assumed to be statistically independent.
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The defined objective function involves the minimization of the variation

of the final thickness (equation [6.4]). It makes it possible to ensure a

homogeneous distribution of the final thickness. The first term accounts for

the excessive thinning that favors the formation of necking while the second

enables one to control the thickening of the tube, which provides a means to

control the tendency to wrinkle. In other words, it makes sure that neither

thinning nor thickening would assume excessive values. The objective

function is formulated in the following manner:

f(x) =
1

N

(
N∑
i=1

(
h0 − hi

h0

)2
)2

+
1

N

(
N∑
i=1

(
hi − h0

h0

)2
)2

[6.4]

where f(�) is the objective function, x is the optimization parameters vector,

hi is the thickness of the element i, h0 is the initial thickness and N is the total

number of elements.
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Figure 6.31. Load path: internal pressure (MPa) - time (s)

The definition of stresses will focus on the potential plastic instabilities.

The wrinkling is taken into account by means of the objective function that

enables the control of the tube thickening and also by means of geometric

stress. With regard to necking, the CFL of the material serves as a basis in order

to define a stress that prevents this instability from occurring. For necking, we

rely on the principal critical strains as shown in Figure 6.32.



146 Material Forming Processes

R. var. Mean Std. (%) Distribution

D1 20 5 Normal

D2 16 5 Normal

P1 15 5 Normal

P2 20 5 Normal

P3 35 5 Normal

Table 6.5. Probabilistic characteristics of the load parameters
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Figure 6.32. Forming limit curve: necking criterion

Geometric stresses are also defined that allow the tube to properly assume

the shape of the die. These three stresses imply that the distance of the nodes

at the level of the three radii is minimal. Figure 6.33 details these types of

stresses.

Figure 6.33. Geometric stresses
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6.5.2. Deterministic and reliabilist formulation of the optimization
problem

The deterministic optimization problem is written as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min f(x)

g1(x) = εc1 − η(εc2)

gi = di − dm; i = {2, 3, 4}
x = {D1, D2, P1, P2, P3}

[6.5]

in which f represents the objective function, x is the vector of the optimization

variables, g1 is the deterministic stress pertaining to the tube necking, gi are the

geometric stresses, with i = {1, 2, 3} and η(ε2) is the equation of the forming

limit curve.

Concerning the reliabilist formulation of the problem, the stress linked to

the tube necking is transformed into a probabilistic stress. The geometric

stresses are maintained as deterministic.

The optimization-based reliability problem is defined as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min f(μx)

P [G1(μx) ≤ 0] ≤ Padmissible
gi = di − dmi ; i = {2, 3, 4}
μx = {μD1 , μD2 , μP1 , μP2 , μP3}

[6.6]

where G1 = −g1 ; P [�] is the likelihood of occurrence of the plastic instability

and μx is the mean of the uncertain parameters.

The problem is solved with the same approach exposed in the previous

example. The convergence for the deterministic and reliabilistic optimum for

a β = 3 is summarized in Figure 6.34.

The optimum load paths are summarized in Figures 6.35–6.36 giving the

variation of the pressure and of the axial displacement with respect to time.

The distribution of the final thickness obtained by the conventional

deterministic approach and the probabilistic approach are given in

Figure 6.37. It can be observed that the reliabilist approach allows a better

distribution of the thickness and present less thinning, which minimizes the

formation of necking.



148 Material Forming Processes

O
b

je
c

ti
v

e
 f

u
n

c
ti

o
n

Deterministic optimum SQP

0 5 10 15 20 25
18

18.5

19

19.5

20

20.5

21

Number of iterations

Reliabilistic optima β=3

Figure 6.34. Convergence of the objective function

Time (s)

A
x

ia
l 

d
is

p
la

c
e

m
e

n
t 

(m
m

)

Deterministic optima

Reliabilistic optima

25

20

15

10

5

0
0 0.5 1 1.5 2

D1

D1

D2

D2

Figure 6.35. Optimum paths: axial displacement (mm) - time (s)



Optimization and Reliability in Forming 149

Time (s)

P
re

s
s
u

re
 (

M
P

a
)

Deterministic optima

Reliabilistic optima

35

30

25

20

15

10

5

0
0 0.5 1 1.5 2

Figure 6.36. Optimum paths: pressure (MPa) - time (s)

Element number 

T
h

ic
k

n
e

s
s
 v

a
ri

a
ti

o
n

Initial thickness

Deterministic Optimum

Reliabilistic optimum β=3

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8
0 10 20 30 40 50 60 70 80 90 100

Figure 6.37. Distribution of the thickness according to the axial position



150 Material Forming Processes

6.6. Optimization-based reliability of circular sheet metal
hydroforming

6.6.1. Problem description

The study of this example has for an objective the deterministic and the

optimization-based reliability of circular sheet metal hydroforming. The finite

element model representing the die and the plate is given in Figure 6.38.

Figure 6.38. Finite element model

In this example, we consider the variabilities that may affect the applied

pressure, the material parameters as well as the friction coefficient between the

die and the plate. It is assumed that the material is isotropic and modeled by

Swift law. The friction between the sheet and the die is modeled by Coulomb’s

law with a coefficient μ = 0.15 that represents its mean value. It is assumed

that all of these parameters follow a uniform type of distribution whose upper

and lower bounds are summarized in Table 6.6. The vector of the uncertainty

parameters is given by X = {P, k, n, μ}.

Variable Lower bound Upper bound Distribution

P 4 6 Uniform

k 1, 280 1, 732 Uniform

n 0.4965 0.6718 Uniform

μ 0.1 0.2 Uniform

Table 6.6. Probabilistic characteristics of the optimization parameters
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6.6.2. Construction of the objective function and of the stresses

The deterministic- and optimization-based reliability of the process is

achieved using metamodels. Quadratic models are used to represent all of

these functions. The construction of the objective function and the stress is

carried out by means of a numerical experimental design based on Latin

hypercubes. Figure 6.39 shows the distribution of these parameters in the

variation space.

Figure 6.39. Distribution of the parameters in the search space

The approximations providing the form of the objective function of the

displacement from the axis and the stress on the equivalent plastic strain are

presented in Figures 6.40 and 6.41 according to the internal pressure P and the

strain-hardening modulus k.

6.6.3. Effects diagram

In order to see the influence of each parameter on the process, we plot the

diagram of the effects by varying the parameters between the bound values (see

Figure 6.45). The main interest is to see the impact on the objective function

and the stress.

According to the effects plot, the friction coefficient does not really

impact on the objective function nor on the stress. A variation of this

coefficient between its two bound values does not produce a significant

change in the displacement from the axis or on the equivalent plastic strain. In
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the following, this parameter is considered to be deterministic and is

represented by its value. The vector of the uncertainty parameters is reduced

to X = {P, k, n}.
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The optimization-based reliability with metamodels always requires

performing statistical tests in order to ensure their robustness and to observe

their ability to accurately predict the levels of responses. Figures 6.46 and

6.47 demonstrate a good correlation between the approximated values and the

predicted values. The statistical indicators giving the determination

coefficients and the fitted determination coefficients are given in Table 6.7.
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Figure 6.46. Predicted values–approximate values:
displacement from the axis

Response R2 R2
adj

umax 0.9911 0.9573

εeq 0.9797 0.9035

Table 6.7. Statistic indicators

6.6.4. Deterministic solution of the optimization problem

In the industrial applications of plate hydroforming, the main concern is

often to maximize the height at the level of the axis. The stress often consists

of ensuring that the plastic strain, the maximal stress or the maximal thinning

do not exceed a critical value. In this application, our optimization problem

consists of the definition of an objective function that allows maximizing the

displacement from the axis and a stress that ensures that the equivalent plastic
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strain does not exceed a critical value set to εeqmax = 0.5. The deterministic

optimization problem can be defined as follows:

⎧⎪⎨⎪⎩
max u(P, k, n)

g = εeq(P, k, n)− εeqmax

x = (P, k, n); xi
min ≤ x ≤ xi

max

[6.7]
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Figure 6.47. Predicted values–approximate values: equivalent strain

The problem is solved using the SQP algorithm. The algorithm converges

after 44 iterations and the objective function is evaluated 176 times. The non-

deterministic optimal variables are given in Table 6.8.

P (MPa) k (MPa) n

5.49 1499 0.6674

Table 6.8. Deterministic optimal variables

The convergence of the objective function is given in Figure 6.48. The

maximal displacement from the axis is 70.0067 mm. The isovalues of the

axial displacement and of the equivalent plastic strain are given in Figures

6.49–6.50.
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Figure 6.48. Convergence of the objective function

Figure 6.49. Isovalues of the displacement from the axis. For a color
version of this figure, see www.iste.co.uk/radi/material.zip

6.6.5. Reliabilist solution of the optimization problem

The solution of the optimization-based reliability problem consists of

converting the deterministic stress into a probabilistic stress. The boundary

state function separating the failure domain from the safety domain is given

by:

G1(P, k, n) = 0, 5− ε̃eqmax [6.8]
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Figure 6.50. Isovalues of the equivalent plastic strain. For a color
version of this figure, see www.iste.co.uk/radi/material.zip

Taking this boundary state equation into account, the reliability problem

can be formulated as follows:

⎧⎪⎨⎪⎩
max u(P, k, n)

P [G1(μ(x)) ≤ 0] ≤ Padmissible
μ(x) = [μ(P ), μ(k), μ(n)]

[6.9]

The optimization-based reliability problem is solved for two likelihood

levels of admissible failure, and Pf = 2.28× 10−0,13%, which correspond to

the reliability indices: β = 2 and β = 3.

For β = 2, the algorithm converges after 12 iterations to the variables of

Table 6.9. For β = 3, the algorithm diverges.

Reliability index P (MPa) k (MPa) n

β = 2 5.4758 1605.487 0.667

Table 6.9. Reliability optimal variables

The isovalues giving the displacement from the axis as well as the

equivalent plastic strain are presented by Figures 6.51 and 6.52. The

convergence of the objective function in the reliability case is given in

Figure 6.53.

The reliabilistic optimum is reached after six iterations, whereas the

deterministic optimum is reached after 44 iterations. However, the number of

evaluations of the objective function is much more significant in the reliability
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case, as for the computational time. For higher reliability levels, the algorithm

does not converge toward a feasible solution. The outline of the objective

function, the stress and the two optimal variables are plotted in Figure 6.54.

Figure 6.51. Isovalues of the displacement from the axis. For a color
version of this figure, see www.iste.co.uk/radi/material.zip

Figure 6.52. Isovalues of the equivalent plastic strain. For a color
version of this figure, see www.iste.co.uk/radi/material.zip

6.6.6. Effect of uncertainties on the optimal variables

The topic of this section is to highlight the deterministic and reliability

optimum sensitivity with respect to the uncertainties. By perturbating these

optimal variables with two different levels defined as δ = 5% and δ = 8%,

then generating with Monte Carlo simulations with 1, 000 realizations, we

can observe a clear difference in the percentage of failing realizations
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between these two optimal variables. Reliability optimization presents a

major interest to ensure the reliability and the stability of the process.

Figures 6.55 and 6.56 underline this difference and show the contribution of

the optimization-based reliability by comparing it with a conventional

deterministic optimization approach. The reliability optimum is considerably

less sensitive to the variations that may affect the parameters [RAD 10].
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Figure 6.53. Convergence of the objective function:
optimization-based reliability. For a color version of this figure, see

www.iste.co.uk/radi/material.zip

The path giving the displacement with respect to the pressure is illustrated

in Figure 6.57 for the deterministic and the reliability optima. It should be

noted that these two paths are very similar except that at the end the

deterministic optimum allows going further at the level of the final amplitude.

The work-hardening curve obtained for the two optimal variables is given

in Figure 6.58.

Distribution of the thickness according to the axial position of the sheet

metal is given in Figure 6.59.

6.7. Deterministic and robust optimization of a square plate

In this last example, we solve the optimization problem of forming a square

plate with two different methods: a conventional deterministic optimization

and a robust optimization in order to compare the two.
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The practical aspects of the process consist of applying an internal

pressure denoted by P and of applying a back pressure that actually

represents the clamping force to prevent sheet metal wrinkling. This back

pressure is set to 9 MPa and is assumed to be deterministic. This process

remains sensitive to the fluctuations affecting the pressure and also to the

variations of the material parameters. It is also sensitive to the geometrical

parameters of the plate and notably its initial thickness. Taking these

variabilities into account during the optimization phase can bring more

robustness to the implementation of the process.

These parameters present fairly significant hazards and variations, which

affect the stability of the process and create significant differences at the level

of the final mechanical characteristics. These can also be at the origin of the

rise of plastic instabilities. Controlling the process involves an adjustment of

the variation levels of the different parameters that allows the reduction of the

spatial and temporal variabilities at the level of the responses be global or local.

The dimensions of the plate are 30 × 30 mm with an initial thickness of

1 mm. The finite element model of the plate is given by Figure 6.60. The plate

is meshed with 1, 600 S4R-type quadrangular elements and 1, 608 triangular

elements of the S3R-type from the Abaqus/Explicit© library.

Figure 6.60. Finite element model of the plate

The hydroforming process for this plate consists of applying an internal

pressure enabling the expansion of the workpiece. The boundary conditions of

this problem involve fixing the edges of the plate and applying a back pressure
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on the section meshed by triangular elements compelling the plate to remain

fixed.

During the forming, an internal pressure is applied to the plate represented

by its amplitude D. The localization of the strain is often concentrated at the

level of the axis. The second optimization variable is the initial thickness of

the plate, the necking phenomenon is directly related to the thickness. The pair

(P, h) represents the optimization variables. The probabilistic characteristics

of these parameters are summarized in Table 6.10. In addition, it is assumed

that the material parameters are uncertain and follow normal distributions (see

Table 6.11).

R. var. Mean Std. (%) Distribution

P (MPa) 6 15 Normal

h (mm) 1 10 Normal

Table 6.10. Probabilistic characteristics of the optimization variables

Parameters Mean Std. (%) Distribution

k (MPa) 988 5 Normal

n 0.182 5 Normal

σy (MPa) 200 5 Normal

Table 6.11. Probabilistic characteristics of the uncertain parameters

The objective function used for solving this problem involves a

minimization of the variance of the equivalent plastic strain. For this type of

problem, three deterministic stresses are defined. The first two make it

possible to ensure that the final thinning does not exceed 20% and that the

principal maximal stress does not exceed the Von Mises stress. The third is an

equality stress to ensure that the amplitude at the axis be equal to 55 mm.

Solving the robust optimization problem requires a large number of

evaluations of the objective function and stresses. This seems impractical

because the numerical simulations require a significant computation time.

Having recourse to metamodels is inevitable in order to solve the problem.

The construction of these metamodels requires the selection of a numerical

design of experiments and also the collection of the various responses. An

experimental design based on Latin hypercubes is chosen with 50
computations by finite element. A quadratic polynomial model is used to

represent the different responses given by equation [4.22].
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The statistical analysis consists of estimating the determination coefficients

for all of the models; it presents an acceptable level of accuracy allowing us to

determine with accuracy the deterministic and robust optima.

For the deterministic case, the material parameters are defined by their

average values given in Table 6.11. Therefore, the formulation of the

deterministic optimization problem can be defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min V ar(ε̄eq) = f(x)

g1(x) = h̃min − 0.8 ≤ 0

g2(x) = σmax − σVon Mises ≤ 0

h(x) = ũmax − 55 ≈ 0

x = [P, h]

[6.10]

The SQP algorithm is used to solve this problem. In the deterministic case,

the uncertain parameters are fixed to their mean values. The solution of the

deterministic problem has converged toward the optimum given in Table 6.12

after 13 iterations.

P (MPa) h(mm)

6.212 0.978

Table 6.12. Deterministic optimal variables

6.7.1. Robust resolution of the optimization problem

The formulation of a robust optimization problem resembles that of a

optimization-based reliability problem, except that the objective function

consists of minimizing either the variance or the mean of a mechanical

quantity. Similarly to optimization-based reliability problems, the

deterministic stresses are transformed into probabilistic stresses. The

formulation of the robust optimization problem is written as follow:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min V ar(ε̄eq) = f(μ(x))

P [G1(μ(x)) ≤ 0] ≤ Padmissible

P [G2(μ(x)) ≤ 0] ≤ Padmissible

h(μ(x)) = ũmax − ũ ≈ 0

μ(x) = [P, h]

[6.11]

The estimation of the reliability is carried out with Monte Carlo

simulations based on metamodels. In reality, this approach is feasible for a
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small number of probabilistic stresses. It presents convergence problems and

memory problems when the number of probabilistic stresses increases. In this

application, the admissible probability of failure, equal to 2.28%, is

equivalent to a reliability index of β = 2. Table 6.13 recapitulates the best

optimal values in the reliabilist case.

P (MPa) h(mm)

7 1.1082

Table 6.13. Deterministic optimal variables

Figure 6.61 shows the variation of the objective function according to the

number of iterations. Concerning the robust optimization, the objective

function presents a more significant value than the deterministic case, which

means that it moves away from the bounds and consequently that it is less

sensitive than the deterministic optimum.
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Figure 6.61. Convergence of the objective function

The distribution of the equivalent plastic strain for the deterministic case

and the robust case is presented in Figures 6.62 and 6.63.

Table 6.14 summarizes the number of iterations, the number of evaluations

of the objective function and its final value.

The adapted approach to solve the problem in a probabilistic manner

strongly depends on the initial point. For some points, the problem does not
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converge and for a more significant level of reliability, β = 3 for example, the

algorithm does not converge.

Figure 6.62. Distribution of the equivalent
plastic strain: deterministic case. For a color version of this figure, see

www.iste.co.uk/radi/material.zip

Figure 6.63. Distribution of the equivalent plastic strain: reliability case.
For a color version of this figure, see www.iste.co.uk/radi/material.zip

Iteration number Evaluation of fobj Value of fobj

Deterministic case 17 63 0.0048

Robust case 28 93 0.0052

Table 6.14. Characteristic of the convergence

6.8. Optimization of thin sheet metal

Optimization is the action of obtaining the preferable results during the

design of the workpiece. In the application of the computer-aided design based

optimization of the finite elements computational software program Abaqus©,

several situations can give rise to numerical noise (wrinkling). When there is

numerical noise in the design analysis loop, it will create many local artificial
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minima. In this case, the minimization of the local thinning state in the sheet

metal blank has been tested with a cost function of the optimization system

that has been chosen to minimize the thinning rate by 20%:

f(t) =
n∑

i=1

∥∥∥∥ t− t0
t0

∥∥∥∥2 [6.12]

In this case, a design variable significant for the formability of the blank

during the hydroforming process and the design (D and d) and the stresses

have been defined: 50 ≤ D ≤ 250 mm and 20 ≤ d ≤ 100 mm.

a) Experimental Tests

b) Counter-displacement force (optimized and non-optimized cases)

optimized
optimized case

Figure 6.64. Optimized and non-optimized case

The final form is experimental as shown in Figure 6.64(a). The

comparison of the force with respect to the maximal displacement with the
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initial and optimized blank form is shown in Figure 6.64(b). Good agreement

between the shape and the optimization of the experimental values. Figures

6.65(a) and (b) compare the first and the optimal blank shape. We achieve a

reduction of the cost function (dilution ratio) from 50 to 20%, which is

obtained without wrinkling (Figure 6.65(c) and (d)) [AYA 11].

Optimized

Figure 6.65. Thin sheet before and after optimization



7

Application of Metamodels
to Hydroforming

7.1. Introduction

The conventional reliability methods (Monte Carlo, first-order reliability

method, second-order reliability method, etc.) provide a means for estimating

with good accuracy the level of reliability as soon as a probabilistic

characterization of the uncertain parameters and the identification of the limit

states are provided. The field of application of these methods is restricted

when the problem presents nonlinearities (materials, geometric, etc.) and also

in the case where the limit state function is implicitly defined according to

uncertain parameters. These two problems are present in the case of forming,

which makes it complex and requires a reflection on the methods that can be

applied and that can evaluate in an accurate manner the probability of failure.

For this type of problem, approximation techniques have often been used to

replace the actual model by an approximated model or metamodel that allows

the quick evaluation of the response. Several approximation techniques have

been used for reliability problems, the most commonly used being the

response surface method. Other techniques such as kriging or neural networks

have also been successfully utilized.

This chapter presents an approach for accurately evaluating the failure

probability in a hydroforming operation applied to the case of a simple tube.

Some approaches have been proposed in the literature for the evaluation of

reliability in sheet forming [BEN 14, ELH 12, KLE 02, RAD 07].

The approach consists of determining the probability of spatial failure for

each element of the critical region. The latter is defined by identifying the

Material Forming Processes: Simulation, Drawing, Hydroforming and Additive Manufacturing, 
First Edition. Bouchaib Radi and Abdelkhalak El Hami. 
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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critical element, then a path around this element is proposed that represents

the most likely failure region. The identification of the critical element for

each failure mode is achieved by plotting the deformation state on the material

forming limit curve (FLC). The access to the probability of spatial failures can

provide insight on the stability of the process and also enables the effective

prediction of the area where the plastic instability can most likely appear.

The estimation of the failure’s probability is based on a probabilistic

characterization of the principal strains (major and minor) for each mode of

failure and each element. Access to this likelihood of failures in a direct

manner is impossible given the complexity of the problem and the huge

number of necessary finite elements computations. To compensate for this

problem, we can rely on Monte Carlo simulations coupled with response

surfaces. The evaluation of the likelihood of failure allows us to have an idea

about the stability of the process. This approach presents several advantages

compared to the techniques found in the literature: it can be applied to any

forming process, can be integrated with any finite element code and the

calculation time remains within reasonable limits. It also provides access to

the failure’s probability since sometimes the localization of the plastic

instability can be random in the region of the likely failure.

7.2. Sources of uncertainty in forming

Several parameters are involved in forming [RAD 07]. Often, these

parameters are affected by uncertainties that may affect the stability of the

process if they are not taken into account as early as the design phase. These

fluctuations may originate from material parameters, from geometric

parameters and also the parameters related to the process as the loads, the

contact and friction problems [BAB 00, ELH 08, RAD 98]. Other types of

variability may also exist; they are relative to the environment such as

temperature and humidity, and also the errors induced by the operator.

Several studies have highlighted the random character of a forming

operation. According to [COL 03], these uncertainties may originate from the

variabilities associated with the material, the roughness of the surface and the

initial thickness of the sheet. They can also originate from the tools likely to

undergo geometric changes due to wear phenomena, and changes in

mechanical properties and in the variation of the temperature. All these

phenomena affect the final quality of the workpiece, not to mention the

changes that may affect the loads, such as the blank-holder force or the

progress of the punch as well as the applied pressure. Lubrication also plays a
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significant part in metal forming. This phenomenon is difficult to control; as a

matter of fact, the lubrication conditions may change in a global or local

manner because of the roughness of the surface or of the distribution of

temperature. For this reason, taking these condition into account and

modeling them are often addressed in a comprehensive manner at the scale of

the structure. Other types of variability may also exist such as an incorrect

setting of the machine or an incorrect positioning of the workpiece or the

tools.

Some authors have carried out real tests to quantify the level of variation

in certain parameters. In [KAR 02], more than 45 samples of the same

material have been taken and show that the variability at the level of

strain-hardening coefficient has reached 14%. This can greatly affect the final

thinning rate, and also the final springback, after forming. It is shown that in a

forming operation, there are 12 parameters for which the process can present

high sensitivity [GAN 02]. These parameters include the strain-hardening

coefficients, the flow stress, the anisotropy coefficients, the initial thickness of

the blank and the friction coefficients. In [CAO 03], it is shown that during a

bending operation, the strain-hardening modulus k can vary by more than

20%. This is a variation of 16% for the strain-hardening coefficient n and

reaches up to 65% in the case of the friction coefficient. In a single

manufacturing process (that is the same forming die and the same modeling

parameter), the rate of change in the geometric properties from one piece to

the other can reach 21% [MAJ 03]. This is especially manifested in the case

of complex parts and thin plates.

Taking into account the random aspects or the spatial variability of the

parameters, we are able to better give an opinion on the probability of failure

of the process and its stability. A probability study of the process can be used to

validate the input parameters and obtain an idea about its stability. In general, a

forming process is considered stable when, even in the presence of the different

fluctuations, the variance remains low at the level of the final characteristics of

the piece, either, for example, on the distribution of the final thickness, the

damage rate or even on the final form of the piece. Some consider the forming

process as stable when the rate of faulty parts does not exceed 1%.

7.3. Failure criteria

Various defects can appear during the forming of tubes or plates. The

prediction of these defects requires the implementation of adequate criteria

for each plastic unstability. Despite the progress made at the level of software
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for the computation of finite elements, the process remains poorly controlled

due to the instabilities that can emerge. The majority of the current codes for

finite elements do not integrate adequate criteria to faithfully detect or predict

the occurrence of these types of instabilities. The success of a forming

operation by hydroforming requires the implementation of the appropriate

criteria allowing the detection of these plastic instabilities. This makes it

possible to react and correct the loading trajectory either by an increase or by

a decrease in pressure or in the axial displacement. The two following

sections illustrate the main criteria employed for the detection of these modes

of failures in the case of tubes and plates.

7.3.1. Failure criteria for necking

Some works have focused on the prediction of necking in the case of

hydroforming based on the criteria used for plates. This seems unreliable

because deformation modes or stresses are not the same. In [BOU 06], the

Swift criterion, used in the case of sheets, is adapted in order to make it usable

in the case of tubes. The prediction of the location of thinning can be carried

out with several techniques. Among these criteria and as an example,

Considère’s or Swift’s can be distinguished. Some have used the FLC in the

strains or the stresses space to detect the location. Particular attention is given

to the FLCs. Besides the methods previously presented, other approaches

based on damage mechanics [CHE 02] or fracture mechanics have also been

used in the literature.

7.3.2. Failure criteria for wrinkling

Several criteria have been developed in the literature allowing the detection

of wrinkling. There are mainly geometric criteria, energy criteria and criteria

based on the bifurcation theory. The estimation of stresses in the bifurcation

theory involves boundary conditions as well as imposed displacements that

may induce wrinkling. This type of criterion presents some limitations due to

its complexity at the formulation level and also sometimes requires access to

the source code.

Several authors [CAO 03, THO 99, SHE 04, JIR 04] have successfully

made use of geometric criteria in detecting wrinkling in the case of stamping

or hydroforming of tube and blanks. Concerning the geometric criteria, the

evaluation of wrinkling is measured by comparing the present state of the

workpiece with respect to the position of the supposedly rigid tools. The

geometric criteria are often used because of their simplicity at the formulation
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level and also in the implementation that is based on the measurement of

ripple with respect to the reference level of the metal sheet. Several works

cited in the literature impose in their optimization problems that the

difference in terms of strain does not undergo an abrupt change, because this

is synonymous with the presence of wrinkling. Other criteria that are based on

energy approaches are used in the literature, the major drawback of these

criteria is the complexity in their formulation and their implementation.

The FLC also allows detection if there is or no wrinkling in the plate. By

superimposing the levels of the principal strains at the end of the process on

the FLC, the presence of the strains under the pure shear line (in the plane of

the principal strains) is representative of a significant tendency for wrinkling

or thickening in the forming process. Several authors have used this criteria in

their optimization problems.

7.4. Evaluation strategy of the probability of failure

The estimation of the probability of failure of the hydroforming process

remains a difficult task. In effect, the problem presents several types of

nonlinearities, a large number of uncertain parameters, no explicit limit states

and also a prohibitive computational time associated with finite element

computations. All these elements sum up and delegate the estimation of the

probability of failures as a difficult task to solve with conventional reliability

methods. To overcome this problem, a strategy is implemented allowing the

estimation of precision of the likelihood of failures. The example studied in

this chapter focuses on the hydroforming of a tube with a simple geometrical

shape. This approach has been presented by Ben Abdessalem and El Hami

[BEN 15] for the evaluation of the probability of failures in a tube.

The estimation of the probability of failures requires the identification of

uncertain parameters and their probabilistic characteristics, which describe

their variations (statistical moments, probability density, etc.) and also a

failure criterion. In this work, we make use of the FLC of the provided

material in the space of the principal strains. By using the FLC, we have been

able to identify the critical regions for each failure mode, namely necking and

wrinkling, based on the critical element. This approach consists of

subsequently determining the probability densities of the main critical strains

associated with each mode of failure and for each element. The quantification

of uncertainties in the main strains subsequently allows us to easily access the

probability of failure with Monte Carlo simulations. The accuracy of the
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result depends strongly on the analysis of the metamodels and their ability to

accurately predict the responses. Statistical analyses are made to validate all

these metamodels.

The advantage of this approach lies in its accessibility, its simplicity of

implementation and also in its application that can be generalized to any

forming operation. In addition, the routine can be implemented independently

of the finite element code. The choice of this approach will facilitate the

problem and presents an effective tool for the evaluation of the reliability of

the process.

This strategy is summarized through the following steps:

– identification and selection of the uncertainty parameters;

– identification of the critical elements for potential failure modes through

deterministic calculations;

– definition of the size of the region;

– parsing of the search space and choice of the numerical experience plan;

– evaluation of the output indicators or failure criteria;

– construction of the local approximations;

– evaluation of the robustness of the metamodels and their accuracy;

– evaluation of the probability of failure.

7.4.1. Finite element model and choice of uncertainty parameters

The geometric model as well as the dimensions of the tube are given by

Figures 7.1 and 7.2. This model is composed of a matrix presenting the desired

final shape, a punch that allows adding material to the expanded area and a tube

with the initial thickness of 1.5 mm.

The die and the punch are modeled by rigid bodies and are meshed with

R3D4-type elements. The tube is modeled by a deformable body meshed with

shell elements of the S4R-type with five integration points in the thickness.

With regard to the symmetry of the problem, a quarter of the model is studied.

The tube is meshed with 2, 480 elements. The Abaqus finite element code is

used with the aim of carrying the full numerical simulations. The dimensions

of the die and the tube are given in Table 7.1.
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Die

Tube

Punch

Figure 7.1. Finite elements model

Figure 7.2. Tube and die dimensions

L Lu D Dm

80 mm 35 mm 20 mm 33 mm

Table 7.1. Tube and die dimensions

During a forming operation, several parameters become involved. Most

of these parameters have an uncertain character. In this chapter, we will only

address the parameters that relate to the properties of materials, the loads and
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the friction coefficient between the die and the tube. The material is modeled

by a Swift law given by the following expression:

σ = k × (ε+ ε0)
n [7.1]

The strain-hardening parameters (k, n) are considered as being random.

They are obtained from a free bulging test [BEN 05]. It is assumed that these

parameters present a variation coefficient of 10% and that they follow normal

laws. The probabilistic characteristics of these parameters are given in

Table 7.2.

Random variable Mean Std. (%) Distribution type

k(MPa) 494 10 Normal

n 0.234 10 Normal

Table 7.2. Probabilistic characteristics of the hardening parameters

The other material parameters of DC04 steel are given in Table 7.3. Young’s

modulus, Poisson’s ratio and the density are considered to be deterministic.

Material E(MPa) ν ρ(kg/m3)

DC04 210, 000 0.3 7, 800

Table 7.3. Material parameters for DC04 steel

Regarding the geometric parameters, we only consider the initial thickness

of the tube, assumed to be uncertain. The contact and friction problem also

play a significant role in the implementation of hydroforming. In this study,

the friction is modeled by a Coulomb’s law. The latter depends strongly on

temperature as well as on the contact pressure and its variability must be taken

into account.

Table 7.4 includes all of these parameters with their means, their variation

coefficients as well as their respective probabilistic laws. Tube hydroforming

involves in general two types of loads: an internal pressure and an axial

displacement. Several studies have shown the sensitivity of the method with

regard to load parameters. A variation of these parameters can affect the

stability of the process and cause some plastic instabilities to appear. Taking

these variabilities into account enables us to better evaluate the reliability of

the process.
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Random variable Average value Var. coef. (%) Distribution type

h (mm) 1.5 8 Normal

μ 0.1 15 Normal

Table 7.4. Probabilistic characteristics of the
thickness and the friction coefficient

The load trajectory giving the axial displacement according to time is

modeled by a linear line (Figure 7.3). The variation on the axial displacement

is taken into account through the amplitude D. The load trajectory giving the

variation of the internal pressure according to time is modeled by three points

P1, P2 and P3. The uncertainty in the loading trajectory is taken into account

by considering these three parameters as uncertain.
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Figure 7.3. Loading trajectory: displacement (mm) - time (s)

The probabilistic characteristics of these parameters are summarized in

Table 7.5.

Random variable Average value Var. coef. (%) Distribution type

D 16 10 Normal

P1 10 10 Normal

P2 20 10 Normal

P3 35 10 Normal

Table 7.5. Probabilistic characteristics of the loading parameters
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7.4.2. Identification of failure modes and definition of boundary
states

Two types of plastic instabilities are likely to occur in a tube hydroforming

operation. An excessive displacement can cause tube wrinkling, whereas a

significant pressure may cause the tube to burst. In order for a workpiece to be

obtained without defects, these parameters have to be controlled. The

evaluation and the control of these instabilities require the implementation of

adequate criteria allowing their prediction and evaluation.

The FLC (strain) in the main strain plane is chosen as the failure criterion

for the evaluation of the likelihood of failures for both failure modes. The

choice of the FLC is also justified by its simplicity and its generalization

regardless of the method and the type of stress with regard to other criteria

that require additional development. Although it can be argued, its usage is

very widespread in industrial circles and even in research works as a criterion

allowing for the control of forming operations and especially in

hydroforming.

In reality, despite its recurring utilization in the optimization and the

development of certain forming processes, this curve mainly presents two

major drawbacks: the first is its dependence with regard to the trajectories of

the strains. In effect, it is effective for proportional trajectories, which is not
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the case in forming where there are several types of nonlinearities (material

and geometric nonlinearities). The second disadvantage originates from the

nature of the FLC, this curve is determined experimentally, which justifies its

uncertain character. In our study, the variability that the FLC may present is

taken into consideration assuming that it follows a probability distribution.

In the forming limit diagram (FLD), two curves or limit state functions are

defined: the first represents the limit curve of the necking and the second the

wrinkling limit curve (see Figure 7.5).

Necking limit curve

Wrinkling limit curve
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Figure 7.5. Failure criteria: forming limit curves

7.4.3. Identification of elements and critical areas

The estimation of the probability of failure requires in reality the estimation

of the probability of failure for each structure element. For complex problems

such as forming this seems impractical and requires enormous computation

resources. In order to overcome this problem, we propose an approach that is

based on the most critical element of the structure when all the parameters are

set to their nominal values.

The identification of the critical element allows us to subsequently define

a critical region around this element and represents a localization area where

the principal strains can reach critical values. Subsequently, this region

presents a significant risk of potential failure that means that the probability of

failure reaches its maximal values in this area. This technique allows a drastic

simplification of the problem by focusing only on the critical area and at the
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same time makes it possible to get an idea about the spatial distribution of the

probability of failure.

By plotting the strains state predicted at the end of the simulation on the

FLC (Figure 7.6), we can identify the critical elements that are the nearest with

respect to these limit curves for each failure mode. The main major and minor

strains are shown in Figures 7.7 and 7.9, respectively.

Strains states

Wrinkling critical element

Necking critical element

Minor strain

M
a

jo
r 

s
tr

a
in

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 7.6. Identification of the critical elements

Figure 7.7. Distribution of the main major strain. For a color version of
this figure, see www.iste.co.uk/radi/material.zip
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Figure 7.8. Strain trajectory of the critical elements. For a color version
of this figure, see www.iste.co.uk/radi/material.zip

Figure 7.9. Distribution of the main minor strain

Figure 7.10 shows the location of these two elements on the structure. The

wrinkling is located at the level of the element 696, whereas the necking is

localized at the level of the element 2, 242. The critical region where the

probability of failure is maximal is defined by all of the elements that

surround the critical element for each failure mode. The extent of this area

covers the 25 elements, closest to the critical element. The designer has to
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make this choice. The spatial determination of the failure probability around

the critical element is a more rational criterion for the evaluation of the failure

probability in forming and allows us to have an idea on the level of reliability

in a local manner.

Wrinkling critical region

Necking critical region

Figure 7.10. Location of the critical elements

The strain trajectories of the critical elements are represented in Figure 7.8.

The proposed approach is based on the probabilistic characterization of the

major and minor critical strains for necking and wrinkling in order to access the

probability of failure. These critical elements are characterized by their major

strains and their minor strains denoted by (εs1, ε
s
2) for necking and (εw1 , ε

w
2 ) for

wrinkling.

By superimposing the minor and the major strains of each element on the

FLC, it can be seen that the strains are on the left side of the FLC. Thus, these

two limit curves will be modeled by first-order linear equations. Analytically,

the limit state functions are expressed according to the critical strains and are

given by the following equations:

{
Gw = εw1 + εw2 − s

Gs = Gs
1 + αεs2 − γ

[7.2]

where εw1 , ε
w
2 , respectively, represent the main major strain and minor

wrinkling; (εs1, ε
s
2), respectively, represent the main major and minor strain of

the necking; γ is the value at the origin of the necking FLC; α is the slope of

the limit curve of necking and s is the factor of safety for the wrinkling curve

boundary.
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The variability related to the FLC is taken into account by means of the

parameter α. It is assumed that this parameter follows a normal distribution

whose statistical parameters are given in Table 7.6.

Random variable Average value Var. coef. (%) Distribution type

α 0.8241 10 Normal

Table 7.6. Variabilities associated with the FLC

In the case in which it is assumed that the parameter α randomly varies, the

impact of these fluctuations on the position and on the shape of the FLC with

respect to the reference FLC can be observed in Figure 7.11, hence the interest

in introducing a term that takes this variability into account.
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Figure 7.11. Effect of the uncertainties on the FLC

7.5. Critical strains probabilistic characterization

The probabilistic characterization of the principal major and minor strains

allows us to decide about the probability of failure, taking into account the

previously defined limit states. The objective of the next step is to determine

the probability distributions that these strains can follow. At the basis of these

probabilistic characteristics, the access to the probability of failures becomes

direct when using Monte Carlo simulations.
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7.5.1. Choice of numerical experimental design

Acknowledging the large number of uncertain parameters, the choice of

adequate experimental design requires an in-depth study allowing for the

choice of a plan that allows an optimal distribution of the different

achievements in the variation space. The Latin hypercube planes seem to be

very effective in the case where multiple parameters are involved. Three

properties are often desirable during the construction of a Latin hypercube

plane: the space must be filled up that amounts to covering the maximum

definition space, the second points consists of securing the independence of

the factors, and the last point consists of ensuring an uniform distribution of

the different points. In the end, the choice of an optimal plan is tantamount to

solving an optimization problem following a criterion that has to be

minimized or maximized. The approach adapted in this study consists of

generating several Latin hypercube planes and choosing the best according to

the chosen optimality criterion defined by the first point. For this type of

plane, the number of achievements is set to 100. After 5, 000 iterations, the

algorithm converges to the experimental design given in Figure 7.12.

Figure 7.12. Variation levels of the uncertain parameters

7.5.2. Construction of metamodels

The choice of the model is a crucial step for modeling the responses,

especially for strongly nonlinear problems. This step requires additional

investigations in order to determine the model that can predict the responses

with an acceptable confidence level. Keeping in mind the nonlinearities

associated with this problem, we opt for a quadratic polynomial giving the
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responses according to the uncertainty parameters. This model is given by

equation [7.3]:

y = β +
n∑

i=1

βixi +
n∑

i=1,j≥1

βijxixj + ε [7.3]

where y represents the principal critical strains, β is the model coefficient, n is

the number of parameters, ε is the error associated with the model and x is the

parameters of the model [ELH 15].

7.5.3. Validation and statistical analysis of metamodels

In this section, we strive to ensure the robustness of metamodels by means

of statistical indicators, which enable the evaluation of the robustness of these

approximations. This step is crucial because the accuracy of the probability of

failure depends on the accuracy of the metamodels and on their ability to

faithfully predict the level of responses. The first test consists of pointing out

the trend of the exact values calculated by finite element and the predicted

values. This allows us to accept or reject the metamodels. In the event that the

latter fails to be accurate, a first alternative is to increase the number of points

in the variation space. This proposal does not guarantee the best prediction,

but minimizes the error. An analysis of variance is made from all of the

predicted metamodels. This makes the robustness of these approximations

meet the expectations to predict with an acceptable level of confidence the

level of the critical strains.

7.5.4. Fitting of distributions

The fitting of the distributions is a rather delicate stage in the probabilistic

approaches, especially in the case of low failure probabilities. The objective

behind this step is to approximate the usual probability distributions (normal,

lognormal, Weibull, etc.) to all of the principal strains by specifying their

statistical moments (mean, standard deviation, etc.). Figures 7.13–7.16

represent the histograms of the critical wrinkling and necking strains. Here,

we will just detail the fitting step solely for two critical elements. The same

approach is applied to all of the elements. According to the obtained

histograms, it should be noted that even if the initially defined uncertainty

parameters follow normal distributions, the outputs involving the principal

strains are all of probability densities differing from these input distributions;

this is due to the nonlinearity of the problem.
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Figure 7.13. Histogram of the major necking strain

Figure 7.14. Histogram of the minor necking strain

Based on these histograms, the first thing to do is a visual comparison

with the usual probability laws. This must be subsequently confirmed by

statistical tools. The main methods that make it possible to test whether a

probability density correctly describes the data set include the chi-square test,

the Kolmogorov–Smirnoff (K–S) test and the estimation of the maximum

likelihood. The estimation of low probabilities of failures requires a proper fit
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of the probability densities, mainly at the level of the distribution tails in order

to make a rather accurate opinion on the probability of failure.

Figure 7.15. Histogram of the major wrinkling strain

7.5.4.1. Distribution fitting of the major necking strain

A maximum likelihood test shows that the major necking strain can be

adequately approximated by a Weibull distribution generally characterized by

three parameters. In our case, this distribution is characterized by two

parameters (k, λ). The first term is a shape parameter and the second is a

scale parameter. The probability density as well as the distribution function

are given by equations [7.4] and [7.5]:

f(x, k, λ) =
k

λ

x

λ
exp

(
−xk

λ

)
[7.4]

F (x, k, λ) = 1− exp

(
−xk

λ

)
[7.5]

An estimation of the parameters (k, λ) by maximum likelihood is made.

Figure 7.17, giving the probability density, shows that a Weibull distribution

with these parameters properly describes the major necking strain. The

parameters of this distribution are given in Table 7.7.
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Figure 7.16. Histogram of the minor wrinkling strain
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Figure 7.17. Histogram and probability density
of the major necking strain

Distribution type k λ

Weibull 0.5255 18.2584

Table 7.7. Weibull distribution parameters
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Distribution type μ σ ν

Student −0.274294 0.0038 4.01315

Table 7.8. Student’s distribution parameters

7.5.4.2. Distribution fitting of the minor necking strain

A maximum likelihood test proves that the minor necking strains originate

from a Student’s distribution. This distribution is characterized by three

parameters: a localization parameter where the distribution is centered, a

scaling parameter and a forming parameter. The values of these parameters

are shown in Table 7.9.

Figure 7.18 shows that a Student’s distribution with the parameters given

above correctly describes the data obtained by the Monte Carlo simulations.
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Figure 7.18. Histogram and probability density
of the minor necking strain

7.5.4.3. Distribution fitting of the major wrinkling strain

Statistical analyses have showed that the major wrinkling strain follows a

three-parameter gamma distribution. This distribution is tested for two and

three parameters; the probability density with three parameters better

approximates the strains histogram. The parameters characterizing this

distribution are given in Table 7.9. The histogram and the probability density

of the major wrinkling strain are represented in Figure 7.19. It should be
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noted that this distribution allows an acceptable approximation when

comparing with the data obtained by Monte Carlo simulations, especially at

the level of the distribution tails.

Distribution type a b c

Gamma 40.1444 0.0038 −0.0904

Table 7.9. Gamma distribution parameters
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Figure 7.19. Histogram and probability density
of the major wrinkling strain

7.5.4.4. Distribution fitting of the minor wrinkling strain

Based on the histogram drawn for these strains, the first two moments of

the distribution are estimated by the likelihood method. An approximation

with a Gumbel distribution properly describes the data obtained with Monte

Carlo simulations based on the metamodel. The characteristics of the Gumbel

distribution are provided in Table 7.10. These parameters (a, b), respectively,

represent the scaling parameter and shape parameter.

Distribution type a b

Gumbel −0.089 0.0321

Table 7.10. Gumbel distribution parameters
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Figure 7.20. Histogram and probability density distribution
of the minor wrinkling strain

7.6. Necking and wrinkling probabilistic study

The limit state function that separates the failure region from the safety

region is given by the following equation:

G(εs2, ε
s
1) = εs1 + α× εs2 − γ [7.6]

where εs1 is the major necking strain, εs1 is the minor necking strain, α is the

slope of the necking limit curve and γ is the value at the origin of the necking

limit curve.

The estimation of the probability of failure is actually tantamount to

numerically estimating the integral given by equation [7.7]. This is now

possible since the principal strains are characterized with probability

distributions:

Pf (G > 0) = Pf (ε
c
1 + αεc1 > γ) = 1− Pf (ε

c
1 + αεc1 ≤ 0) [7.7]

the major and minor strains being characterized in a probabilistic manner. It is

now possible to determine the failure probability of necking and wrinkling in

a direct manner. It is assumed that the principal strains are statistically

independent.



194 Material Forming Processes

The limit state function that separates the failure region from the eligible

or feasibility region is given by equation [7.6]. Monte Carlo simulations have

allowed us to determine the probability density of the first limit state function.

The probability density actually seems to follow a Student’s distribution whose

parameters are summarized in Table 7.11.

Figure 7.21. Limit state function: necking

Distribution type Mean μ Standard deviation σ ν

Student −0.143291 0.03554 8.16939

Table 7.11. Probabilistic characteristics of the first limit state function

Access to the probability of failure now becomes direct. Firstly, it is

considered that the FLC is deterministic, which is not true. Also, we often

define, both in the industry and in works published in the literature, a safety

region that consists of offsetting the FLC with respect to its reference

position. Known as the FLD, this curve is most of the positioned from 5 to

10% with respect to the reference curve. Then, it is assumed that the FLC

varies according to a normal distribution that can give us an idea about the

variation of this probability in the case where the location and the shape of the

FLC are affected.

Based on the results in Table 7.12, a clear difference can be observed in the

failure probabilities for each case. If these probabilities are translated in terms

of numbers of faulty workpieces in a production cycle, this gives us a rate of

1, 000 pieces: 0.849 pieces for the deterministic case, 1.7 workpieces for a

FLC offset by 5%, 4.2 defective pieces for a FLC offset by 10% and 0.961



Application of Metamodels to Hydroforming 195

pieces in the case where the FLC follows a normal distribution. The definition

of a safety margin does not rely on any basis and is not justified.

Failure mode: necking Pf β

Deterministic FLC 8.49× 10−4 3.1388

FLC (s = 5%) 0.0017 2.9329

FLC (s = 10%) 0.0042 2.6387

FLC (random) 9.61× 10−4 3.1023

Table 7.12. Probability of failure and associated reliability index

It can be observed that the difference in the failure probability between the

deterministic case and the case where the FLC is random is only of 1.16%. We

can conclude that the definition of the FLDs does not actually make it possible

to affect the probability of failure and that minimizing the extent of the eligible

formability area has no reliabilistic meaning. With this approach, it has been

possible to decide on the reliability of the process, but also on the reliability of

the reference FLC to ensure an acceptable reliability level, which allows us to

improve the admissible or feasibility area. Figure 7.22 presents the distribution

of the principal strains generated according to their probability distributions in

the case where the limit curve is considered deterministic.
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The estimation of the wrinkling probability of failures is based on the

wrinkling-limit curve offset from the pure shear curve [BEN 14]. This latter is

analytically expressed according to the following equation:

G(εw2 , ε
w
1 ) = εw1 + tan(45 + θ)× εw2 − ζ [7.8]

where εw1 is the major wrinkling strain, εw2 is the minor wrinkling strain, θ is

the angle of inclination with respect to the limit wrinkling curve and ζ is the

safety factor.

In the case where θ is zero, this equation is reduced to:

G(εw2 , ε
w
1 ) = εw1 + εw2 − ζ [7.9]

Based on the probabilistic characteristics of the previously determined

main strains, we can plot the probability density of this limit state. The

probability of failure is also calculated for certain values of the angle θ. In

fact, the angle θ is to be determined by the user, its value is defined on the

basis of the level of quality desired by the end user. This can be reflected by

the quality of the surface. The more θ increases, the better the quality of the

final piecework becomes and the less ripples can be seen on the membrane.

The reliability levels for a number of values of θ are given in Table 7.13.

Failure mode: wrinkling Pf β

θ = 0 0.0012 3.029

θ = 5 0.0060 2.5152

θ = 10 0.0272 1.9233

Table 7.13. Probability of failure and reliability index

7.7. Effects of the correlations on the probability of failure

In this section, we are studying the case where it is assumed that the

principal critical necking and wrinkling strains are correlated. Table 7.14

presents the evolution of the probability of failure for various values of the

correlation coefficient. Based on these results, we note that the correlation

coefficient considerably affects the probability of failures, which increases

correlation coefficient between the principal strains.
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Figure 7.23. Limit state function: wrinkling

Correlation coefficient Pf β

ρ = 0 8.49× 10−4 3.1388

ρ = 0.2 1.4× 10−3 2.9859

ρ = 0.4 2.1× 10−3 2.8558

ρ = 0.6 3.1× 10−3 2.7415

ρ = 0.8 4.2× 10−3 2.6325

ρ = 1 6.2× 10−3 2.5018

Table 7.14. Effect of a correlation between the strains on the probability
of failure of necking

Similarly for wrinkling, the correlation coefficient is varied between the

principal strains and the probabilities of failure are reevaluated. Table 7.15

summarizes the evolution of the probability of failures.

7.7.1. Spatial estimation of the probability of failures

In this section, we are interested in the spatial variation of the probability of

failure for the two modes of failure. In effect, due to the uncertainties that may

affect certain parameters, the localization of the strain or the stress may change

from one element to another. This is confirmed by visualizing the variation of

the reliability index in all the elements. Figures 7.24 and 7.25 correctly show

that the reliability index randomly varies for both failure modes. This variation
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is more significant in wrinkling than in necking. This can be explained by the

fact that the wrinkling phenomenon is more sensitive to variations that may

affect the course of a hydroforming operation. It appears that tube necking is

less sensitive to the variations of these parameters, given that the index does

not vary significantly.

Correlation coefficient ρ Pf β

ρ = 0 1.2× 10−3 3.029

ρ = 0.2 1.8× 10−3 2.9144

ρ = 0.4 2.6× 10−3 2.8009

ρ = 0.6 3.3× 10−3 2.7216

ρ = 0.8 3.8× 10−3 2.6681

ρ = 1 3.9× 10−3 2.66

Table 7.15. Effect of a correlation between the strains on the probability
of failures in wrinkling
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Figure 7.24. Spatial evolution of the reliability index in wrinkling

Figure 7.25. Spatial evolution of the reliability index in necking
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Parameters Identification
in Metal Forming

8.1. Introduction

This chapter first presents a calculation approach on the basis of a

numerical and experimental methodology to adequately study and simulate

the formability of hydroforming in welded tubes and sheet metal. The

experimental study is dedicated to the identification of the strain-hardening

parameters of the concerned material with an optimization approach based on

the use of a software platform (Abaqus, Matlab, etc.) based on the overall

displacement expansion and pressure measures.

Secondly, the analysis of the reliability of the hydroforming process of the

tube is presented and the numerical results are given to validate the approach

and show the significance of this analysis.

8.2. Identification methods

Assuming a purely isotropic sheet metal hardening, only one scalar

parameter is required to describe the evolution of the surface flow. This is the

equivalent plastic strain that has been calculated as being the integral time of

the equivalent plastic strain rate:

ε =

∫ T

0

ε̇dt [8.1]
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The evolution at the level of the surface of the pair (σy, ε̄
p) is taken into

account by means of the swift hardening distribution:

σy = k(ε0 + ε̄p)n

where k is the strain-hardening coefficient, ε0 is the plastic reference strain and

n is the hardening coefficient.

These three parameters are the characteristics of the material. Three other

parameters are not represented by the strain-hardening model, but affecting the

characteristics of the strain. They are the anisotropy parameters of the material,

the friction coefficient between the tools and the sheet metal and the thickness

t of the sheet.

The parameters (k, ε0, n) are calculated such that the constitutive

equations associated with the plastification surface best reproduce the forming

characteristics of the material. The problem that remains to be resolved

consists of finding the best damage combination from parameters that

minimize the difference between the numerical predictions and the

experimental results.

This minimization is related to differences between the experimental

measurements of the tensions and their numerical prediction performed on

stress specimens. Due to the complexity of the formulas, a numerical

minimization strategy has been developed based on the Nelder–Mead simplex

method [FLE 87].

The technique for the identification of the material parameters is based on

the coupling between the Nelder–Mead simplex method (Matlab code) and

the numerical simulation according to the finite elements method via

Abaqus/Explicit of hydroforming [RAD 11]. In order to obtain information

from the output file of Abaqus/Explicit, we use advanced Python code (see

Figure 8.1).

8.2.1. Validation test

A three-dimensional finite element analysis has been made, using the finite

element code from Abaqus/Explicit to study the hydroforming process.

Rectangular samples with the following geometrical characteristics:

thickness = 1.0 mm, width = 12.52 mm and initial length = 100 mm, have

been made using stainless steel (Figure 8.2).
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Initial parameters

Numerical simulation of

the stress by ABAQUS

ODB file processing

with Python code

Optimization program

using Matlab

Convergence

test

Optimization parameters

Experimental

stress curve

Proposal of new

parameters

Figure 8.1. Identification process

All numerical simulations have been carried out in controlled displacement

conditions with constant velocity v = 0.1 mm/s. The predicted force with

respect to the displacement curves compared with the experimental results for

the three orientations under study are indicated in Figure 8.2. With a small

ductility (step 1), the maximal stress is about 360 MPa and reaches 25% of the

plastic strain and the final fracture is obtained for 45% of plastic strain. With

the moderate ductility (step 3), the maximal stress is approximately 394 MPa

and reaches 37.2% of the plastic strain and the final fracture is obtained for

53% of plastic strain.

The best values of the parameters of the material using the optimization

process are summarized in Table 8.1. Within these coefficients of the response

(stress versus plastic strain), there is a nonlinear isotropic hardening with a

maximal stress reached for the plastic strains and the final fracture is obtained

for 22% of plastic strain. The map of the plastic strain of the optimal case is

presented in Figure 8.2.
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Phase Critical plastic strain (%) k [MPa] ε0 n

1 25.8 381.3 0.0100 0.2400

2 29.8 395.5 0.0120 0.2415

3 37.2 415.2 0.0150 0.2450

Optimal 36.8 416.1 0.0198 0.2498

Table 8.1. Used material properties

Figure 8.2. Force/stretching for different optimization
stages and plastic strain map. For a color version of this figure, see

www.iste.co.uk/radi/material.zip
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8.3. Welded tube hydroforming

In this case, the strain with geometric singularities found in the welded tube

is assumed as transversely orthotropic, while its behavior is represented by the

Swift model. The observation with the optical microscope on the cross-section

of the wall is used to construct the geometric profile of the notch produced by

the welded junction [AYA 11].

Taking into account hypotheses relative to isotropic thin shells (R = 1)

with uniform thickness, the previously established relations, [4.19], [4.20]

and [4.22], allow us to build the first experimental model of hardening

making use of the measures of the radial displacements/internal pressure. This

model is then proposed as an initial solution to solve the inverse problem of

the necessary hardening distribution that minimizes the following objective

function:

ξF =
1

mp

√√√√mp∑
i=1

(
F i
exp − F i

num

F i
exp

)2

[8.2]

where F i
exp is the experimental value of the thrust force corresponding to its

nth nanoindentation depth; F i
num is the corresponding simulated thrust force

and mp is the total number of experimental points.

Various evolutions of the flow stress of the isotropic hardening (initial,

intermediate and optimal) are proposed in order to estimate the best behavior

of the strain with geometrical singularities encountered in tube hydroforming.

Figures 8.3 and 8.4 represent the effective stress according to the plastic

strain curves and the associated radial displacement/pressure for these three

cases. As can be seen, there is a good correlation between the optimal

hardening evolution and the experimental results. Table 8.2 summarizes the

parameters of these models.

The anisotropic factor R is determined only for the optimal hardening

evolution. In the problem to be solved, there is only a single parameter that

exists in the initial solution, which corresponds to the case of an isotropic

material (R = 1). The numerical iterations have been carried out on the tube

hydroforming with a non-uniform thickness, and the results obtained are

presented in Figure 8.5. A good improvement of the quality of the predicted

results can be noted when R corresponds to the value 0.976.
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Figure 8.3. Evolution of the stress–strain for
the various hardening distributions

Figure 8.4. Internal pressure according to the radial displacement
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Model ε0 k (MPa) n

Initial 0.025 1, 124.6 0.2941

Intermediate 0.055 692.30 0.2101

Optimal 0.080 742.50 0.2359

Table 8.2. Swift parameters of the various evolutions of the hardening

Figure 8.5. Radial displacement for different values
of the anisotropy coefficient R

8.3.1. Thin sheet metal hydroforming

Examples of sheet metal will be presented in order to test the ability of the

proposed methodology to simulate the operation of thin plate hydroforming

using the entirely isotropic model concerning the elasticity and the plasticity

[CHE 02]. These results are obtained from a circular area with a diameter of

300 mm and a thickness of 0.6 mm.

During the hydroforming of the blank, the forming die continues in contact

with empty space, which prevents the deformed area of additional deformation

and makes the strain area moving outward. The shutter flange is sucked into

the female die, which decreases the thinning strain of the deformed area and

facilitates the deformation of the contact with the female forming die and the

uniformity of the strain.
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Compared to experiments performed previously, the limit deep-drawing

ratio of the blank is remarkably improved. Taking into account hypotheses

relative to isotropic thin shells with uniform thickness, the relations

previously established allow for building the first experimental hardening

model using force/dislocation measures. This model is then proposed as an

initial solution to solve the inverse problem of the necessary hardening

distribution that minimizes the following objective function:

Eerror =
i = 1

m

√√√√ m∑
1

(
P i
exp − P i

num

P i
exp

)2

[8.3]

where P i
exp is the experimental value of the thrust pressure corresponding to

the ith displacement, P i
numδi is the corresponding predicted pressure and m is

the total number of experimental points.

The process parameters are controlled at the internal fluid pressure applied

to the sheet as a uniformly distributed load on the inner surface of the sheet

and is introduced as an increasing linear function of time with a constant flow

of about 10 mL/min. A comparator is used to measure the axial displacement.

The effect of three industrial cavities (D1, D2 and D3, see Figure 8.6) on the

localization of the flows and of the plastic damages is studied during the

hydroforming of the sheet metal. These forming die cavities consist of a

succession revolution surfaces (conical, plane, concave, convex and

spherical). The evolution of the pole’s displacement as a function of the

internal pressure during the test and the sheet’s thicknesses are studied

experimentally. The displacement profiles are obtained from the deformations

of the sheet before bursting.

These are restored by using the 3D Dr. PICZA Roland-type scanner with a

precision of 5 μm with a contact stage regulated at 5 mm. In addition, both

measurement techniques have been used to evaluate sheet thinning after

forming, namely a non-destructive technique using an ultrasound source of

the brand Sofranel (model 26 MG) and a destructive technique using a digital

caliper micrometer from the brand Mitiyuta with a precision of 10 μm

(Figure 8.7).

Experimental results with circular sheet hydroforming are represented in

Figure 8.8 (Die D1), Figure 8.9 (Die D2) and Figure 8.10 (Die D3). For the

cavities of the dies D1 and D3, fracturing has appeared in the round corner

(near the border areas between the conical and the hemispherical die surfaces).
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Figure 8.6. Geometry of the cavities (D1, D2 and D3)

Figure 8.7. 3D scanner G scan for reconstitution
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Regarding the cavity of the die D2, a fracture occurs at the center of the

blank when the pressure is excessive. This shows that the critical strain occurs

in these regions. It should be noted that the fracture area depends on the fluid

under pressure overflowing the die from the cavity under pressure, and the

effect of inverse curvature at the shoulder of the die is not observed in the

experiment. In this section, we are interested in the comparison between the

experimental observations of the regions where the damages occur and the

numerical predictions of the domains covered by the plastic instability and

the damages. Figures 8.8–8.10 present the main results of the simulations of

all applications addressed in this study. The predicted results with the cavity

dies show that the equivalent von Mises stress has reached high critical values

and then suffered a significant decrease in the damaged areas. This decrease is

estimated for the three cavities of the dies D1, D2 and D3, respectively, at29,

14 and 36%.

Figure 8.8. Hydroforming experimental and numerical results
using the cavity of die D1. For a color version of this figure,

see www.iste.co.uk/radi/material.zip
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Figure 8.9. Hydroforming experimental and numerical results using the
cavity of die D2. For a color version of this figure, see

www.iste.co.uk/radi/material.zip

The comparisons between the numerical predictions of the damaged

regions and the experimental observations of the fracture zones have led us

to the following conclusions:

1) The numerical computations show that by increasing the pressure, the

regions increasingly more pronounced by an increase in the equivalent stress

followed by a sudden decrease can be correlated with the experimentally

observed damaged areas. In this context, the results of the first cavity of die D1

show that the instabilities are located in the central area of the blank, delimited

by a circular contour with a 72 mm radius. The largest decrease in stress is

located within the area bounded by two edges with radii of 51 and 64 mm,

respectively, whereas the fracture took place on the boundary of the flat surface

with a spherical surface located on a circle with 60 mm of radius. With the
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cavity of die D2, the highest decrease is located between two contours of radii

equal to 10 and 19 mm, the break is observed at a distance of 17 mm from the

axis of rotation of the deformed blank. Finally, with the cavity of die D3, the

computations show that the damaged area is located in a region delimited by

two edges of radii equal to 54 and 73 mm, respectively; the fracture occurred

at the junction of the flat surface with a spherical surface.

Figure 8.10. Hydroforming experimental and numerical
results using the cavity of die D3. For a color version of this figure,

see www.iste.co.uk/radi/material.zip

2) The pressures that characterize the beginning of the instabilities are,

respectively, in the order of 4.90 (for D1), 2.85 (for D2) and 5.1 MPa (D3).

For the applications with cavities of dies D1 and D3, the regions where the

instability starts have been identified (see Table 8.3).

The results presented in Figure 8.11 show that the relative differences

between the expected results and the experiments of the displacement axis are
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within the 7% limits while the pressure levels are below a threshold

characterizing the type of application.

Cavity of die Instability start (MPa) Critical (MPa) Experimental (MPa)

D1 4.90 6.74 5.2

D2 2.85 2.85 3.0

D3 5.10 6.86 5.3

Table 8.3. Pressure levels for various cavities

Figure 8.11. Displacement of the axis according
to the internal pressure
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Appendix 1

Optimization in Mechanics

A1.1. Introduction

Optimal design of structures has raised interest for more than 20 years.

Still rarely applied to conventional engineering techniques, it is being

gradually integrated as its reliability increases. Started in response to the

simplest problems, the field of application of structural optimization now

reaches more interesting new challenges [ELH 11].

Numerical simulation in the field of computational structural mechanics

has seen many changes during the past years due to the progress of scientific

computation in the development of computers, and their improvement both in

processing speed and quality of the managed information. The engineer thus

has access to a wide range of methods supported by computer-based tools,

notably the finite element method and optimization methods, which constitute

valuable tools for optimal structure design while abiding to certain rules or

standards [ELH 10].

The finite element method has appeared with the need to solve complex

and general computational problems, in a context where the massive

development of computers has allowed the automation of processes for

solving large systems of equations. Numerous industrial software programs

for computer-aided design based on the finite elements method have therefore

been developed, including Ansys, Abaqus and Nastran. Today, the numerical

methods used for solving PDFs have reached a maturity that allows them to

participate in processes supporting engineering design. At the same time, the

field of optimization has considerably developed alongside computing

infrastructures. Currently, a number of algorithms are available for solving

Material Forming Processes: Simulation, Drawing, Hydroforming and Additive Manufacturing, 
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nonlinear programming, deterministic (descent methods, simplex) or

stochastic approaches (simulated annealing, evolutionary algorithms, particle

swarm algorithms, etc.). It thus seems natural to combine these two areas in

order to provide automatic strategies to aid design based on optimization.

A1.2. Classification of structural optimization problems

Determining the appropriate form of structural components is a problem

of primary importance for engineers. In all fields of structural mechanics, the

impact of good design of a part is significant for its resistance, its life duration

and its use in operation. Optimization appears as paramount in increasing the

performance and in minimizing the mass of the structures, therefore resulting

in substantial material savings. This research area has been so intensely the

focus of attention for researchers that a resurgence of publications in this area

can be observed. Among the optimization problems of structures, three major

categories can be distinguished according to the nature of the design variables:

– design optimization: the variables are the cross-sections, thicknesses, all

quantities that can evolve without requiring modification of the finite element

mesh, and the form is fixed;

– shape optimization: admits modifications in shape compatible with a

topology fixed in advance;

– topological optimization: allows for more fundamental modifications of

the nature of the structure.

A1.2.1. Design optimization

Design optimization (also known as sizing optimization) does allow the

modification of the cross-section or the transversal thickness only of the

components of a structure whose shape and topology are fixed. No

modification of the geometry model is possible, which severely limits the

variety of the possible shapes. This is referred to as homeomorphic

transformation. In mathematics, the objective of design optimization is to find

the design parameters that minimize an objective function. The general

formulation is written as:

mind GI(d)

u.c.

{
Gi(d,X) ≥ 0 i = 1, . . . ,m

hj ≥ 0 j = m+ 1, . . . , nh

[A1.1]
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where d is the vector of the variables to be optimized, also called decision

variables, X is the deterministic parameters vector, Gi is the performance

functions, hj is the geometric and physical feasibility function and GI is the

objective function.

EXAMPLE A.1.– Given a homogeneous beam P1 with a circular cross-section

having a diameter 2a. The beam is a cantilever, with a load on the free end.

We are looking to obtain the dimensions of a beam P2 with rectangular cross-

section (by slicing the circular cross-section of the beam P1) to support the

maximal load at its free end.

Let M the bending moment, I the moment of inertia and σ the stress at a

distance y. It is assumed that the width of the beam P2 is 2x and its length is

2y. We get σ
y = M

I , then σmax = M
I y = 3M

4xy2 . The problem is tantamount to

minimizing the quantity k
xy2 under the stress x2 + y2 = a2, which we write in

the form:

min f(x, y) = kx−1y−2

u.c. g(x, y) = x2 + y2 − a2 = 0
[A1.2]

The computation of the various gradients gives:

∂f

∂x
= −kx−2y−2 ∂f

∂y
= −kx−1y−3

∂g

∂x
= 2x

∂g

∂y
= 2y

We then find:(
∂f

∂x
.
∂g

∂y
− ∂f

∂y
.
∂g

∂x

)
x∗,y∗

= 0

where −2x−2y−2(2y) + 2kx−1y−3(2x) = 0. Consequently, it yields: y∗ =√
2x∗, which results in:

{
x∗ = a√

3

y∗ = b√
3
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A1.2.2. Shape optimization

This approach optimizes the value of the fitness function by changing the

contours of the object while the topology remains the same. In other words,

the unknown is a contour (2D) or a surface (3D). The border is parameterized

by control nodes and the gradient of the fitness function is calculated relatively

to the position of these nodes, which is displaced repeatedly in the direction of

the gradient.

Shape optimization consists of searching for the best possible shape for a

given problem. Shape optimization problems often originate in industry (for

example to find the best aircraft wing or the best design for a vehicle). The

general approach to a shape optimization problem is the following:

– search for an existing optimal solution, especially the uniqueness of this

optimal solution (but this is a very difficult question in general);

– study the optimality conditions that characterize the optimal shapes;

– calculate the optimal solution or, at least satisfactory approximated

solutions.

Regarding problems of an industrial nature, the approach is often rather

different. Industrialists have before them an initial form that they wish to

improve. The scientist must then propose a method for modifying the shape

of the initial shape according to the specifications.

A1.2.3. Topology optimization

Finally, topological optimization allows more fundamental modification

of the nature of the structure. This time, the geometry of the piece is

considered without any a priori knowledge about the connectivity of the areas

or of the structural members present in the solution. We search for, without

any explicit or implicit restriction, the best shape possible even if it implies

changing the topology. Optimizing the topology naturally leads to

determining in a certain manner the shape or the optimal cross-sectional

dimensions of the structure, such that some authors also refer to it by the

name of generalized shape optimization [MAK 08].

It is obvious that the gains in performance are an increasing freedom

function that is available to perform the optimization. Thus, the flexibility

available with a variable topology allows very significant performance gains

which are significantly higher than those obtained by a shape or a dimension

optimization method.
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A1.2.4. Multiobjective structural optimization

This is a multiobjective optimization problem proposed by [STA 92] (see

Figure A1.1). The objective is to find an optimal structure for the wire frame

by simultaneously minimizing the total mass and the static displacement at

point C. The minimization of the weight of a mechanical structure always

remains practically an indispensable objective in mechanical technology. Both

criteria are in conflict because minimizing the mass of a structure results in a

tendency for the displacement to increase. Therefore, the best solution is to

find a compromise between the two criteria. To do this, we consider two cost

functions to minimize the total volume f1(cm3) and the displacement f2(cm).

Figure A1.1. 4-bar wire-frame

Analytically, the problem can be presented by the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min (f1(x), f2(x)) such that

f1(x) = L
(
2x1 +

√
2x2 +

√
x3 + x4

)
f2(x) =

FL
E

(
2
x1

+ 2
√
2

x2
− 2

√
2

x3
+ 2

x4

)
s.t. (F/σ) ≤ x1, x4 ≤ 3(F/σ)√

2(F/σ) ≤ x2, x3 ≤ 3(F/σ)

[A1.3]

With regard to the design parameters, four variables are selected for the

optimization, namely the four cross-sections of the wire-frame bars, such that:

F = 10 kN, E = 2× 105 kN/cm2, L = 200 cm and σ = 10 kN/cm2.
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The overall Pareto border for this problem can be obtained by

enumeration. The process consists of a reiteration phase on the four design

variables (with a reasonable step) to obtain a set of points representing the

space of the objectives functions (Figure A1.2(a)). The result of this process

is a Pareto front consisting of 200 solutions, whereas the NSGA Pareto front

is composed of 750 solutions (Figure A1.2(b)).

(a) (b)

(c) (d)

Figure A1.2. Comparison of the optimal Pareto
borders in the objective space

The optimal Pareto border obtained by a variant of the first method is

given by the graph (Figure A1.2(d)). This example clearly shows the great

potential of this method; it can be observed that the optimal solutions are

uniformly distributed over the Pareto frontier with a very small number of

points compared with the NSGA method. We have intentionally chosen a

small number of points but that is at the same time representative to precisely

point out the effectiveness of this method. It is shown that the NSGA method

uses 750 points to plot the Pareto border, whereas this method uses 21 points

only to reduce the number of solutions on the Pareto border; one can use a

Datamining tool. The basic concepts upon which this method relies make it

flexible and effective (see Figure A1.2(c)). It should also be noted that there

are portions on the optimal Pareto border obtained by NSGA that do not give
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a good approximation of the border. Namely, the left side where

1200 ≤ f2 ≤ 1400 and the right side where 2600 ≤ f2 ≤ 2900; on these

sections the NSGA has failed to find the optimal solutions.

A1.2.5. Robust optimization

Robust optimization has the same characteristics as deterministic

optimization at the data processing level but with uncertainties in the design

variables and in the objective functions as well as in manipulating the stresses.

In mechanical engineering, these uncertainties are inherent to modeling

defects, the mechanical properties of the materials (Young’s modulus, density,

etc.) and the manufacturing and assembly processes (sheet metal thickness,

junction, etc.). In a preliminary design phase, these uncertainties are introduced

to take into account the lack of knowledge of some design variables. We

introduce the following definitions:

– uncertain parameter: a non-deterministic parameter characterized by a

nominal value and by uncertainty;

– nominal model: the model in which the parameters are set to their

nominal values;

– random model: the model in which the values of the parameters are

randomly chosen.



Appendix 2

Reliability in Mechanics

A2.1. Introduction

The reliability of mechanical and mechatronic systems is based on the

competitiveness of French and global companies in the automotive,

aeronautics, space, civil engineering and defense fields, among others. For

example, in the field of mechatronic systems, which combines mechanics and

electronics, failure phenomena have emerged that have not been addressed in

depth and that are thereby not sufficiently well understood.

In aeronautical and automotive applications in particular, the reliability of

embedded systems depends on several parameters. In the case of electronic

circuit boards, excessive stresses can lead to failures such as weld or terminal

block fracturing or even to signal and information loss. These can significantly

impact the functioning and the security of the systems.

Systems reliability is therefore, more than ever, a major challenge for

industrial factories. They must respond to the increasingly growing demands

of contractors, and non-compliance with them results in penalties or warranty

extensions, and in significant costs due to poor quality when defects have to

be corrected. Furthermore, it can even lead to the dissatisfaction of the

customers that can reach international notoriety, thus compromising future

markets. This is an indicator that the significance of embedded electronics in

vehicles and in systems is becoming increasingly predominant in the industry

[ELH 13a].
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A2.2. Structural reliability

A structure is built to respond to a clearly identified set of requirements.

Structural reliability aims to evaluate the probability that a structure subjected

to hazards (temperature, vibrations, shock and fatigue, etc.) is able to address

the totality of these needs for a given lifetime. However, the calculation of this

probability imposes a rigorous study methodology of four steps:

– define a deterministic mechanical model adapted to the problem being

addressed;

– identify the random parameters of this model and model them with

adequate probabilistic tools;

– define the modes and the scenarios of failure of the problem;

– evaluate the probability of occurrence of these failure modes.

The precision, the accuracy of the result and the probability of failure of

the structure are thus conditioned by a number of expert, experimental,

mathematical, numerical and practical factors intervening at each stage of the

reliability study.

A2.3. Modeling a structural reliability problem

A2.3.1. Deterministic mechanical model

The first step of a reliability study is to identify the mechanical problem

being addressed. An adapted deterministic mechanical model is then defined.

It integrates the geometry of the structure, the mechanical properties of the

materials and the boundary conditions.

A2.3.2. Uncertainty and probabilistic modeling

Among the various parameters involved in this model, some are known

only in a random manner. The uncertainties involving the physical properties

of materials and the geometric characteristics of the workpieces of the structure

are called internal uncertainties. These uncertainties depend on the quality and

on the accuracy of manufacturing, the characterization of materials and the

structural elements. The uncertainties relating to the actions exerted on the

structure are called external uncertainties. The origin of these uncertainties is

often found in the difficulty of precisely evaluating the value of uncontrolled

stresses, the action of the swell, the wind or car traffic on a bridge, for example.
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An identification of the parameters is carried out and statistical adequacy

tests validate the hypotheses formulated. When the problem has m random

variables Xi, the random vector is defined as:

X = (X1, X2, . . . , Xm)T [A2.1]

Note that certain actions, notably accidental or catastrophic ones, hardly

pertain to a probabilistic model. A ship colliding with a bridge pier or a plane

crashing into a building do not occur by mere coincidence. Nevertheless, this

type of extremely rare events cannot be taken into account in a realistic manner

in the design of a structure.

A2.3.3. Structural modes of failure

To ensure the integrity of the structure in the face of potential risks, rules

of good functioning are established. Non-compliance with one of these

criteria can cause the elementary mode of failure of the structure. The

succession of events originating failure represents a scenario of failure. The

modes or failure scenarios are established according to the potential risks: the

presence of stresses or excessive strain in a structural element, the fracture of

a workpiece, etc.

Several physical phenomena may be at the origin of a failure: lamination,

fatigue, creep, the presence of cracks, large strains, etc. Each phenomenon or

the combination of these results in a scenario or a mode of failure. To simplify

the notation, we are considering now the case of a structure having only one

single mode of failure. The probabilistic modeling of a mode of failure is

carried out through the definition of a function G(X) called the limit state

function or performance function. It can be noted that the construction of the

function G(X) itself is a random variable. Thus:

– G(X) > 0 defines the structural safety domain;

– G(X) < 0 defines the structural failure domain;

– G(X) = 0 defines the limit state surface.

The structure therefore has two possible states: a good functioning state

and a failure state, separated by a border known as limit state. Nevertheless, it

should be noted that the reality is often more complex than this binary

modeling.
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A2.3.4. Structural failure probability

DEFINITION A2.1.– The probability of failure of the structure is then equal
to:

Pf = P (G(X) ≤ 0) [A2.2]

Let

Pf =

∫
G(X)≤0

fX(x)dx [A2.3]

where fX is the joint probability density of the random vector X .

DEFINITION A2.2.– The reliability of the structure is defined by:

Ps = 1− Pf [A2.4]

Although the formulation of Pf is simple, its calculation can prove to be

extremely complex. The difficulty in explicitly knowing fX and the often

nonlinear expression of the border of Df in general make this analytical

computation impossible.

A2.3.5. Computation of the structural failure probability

Currently, there are two major categories of methods for the evaluation of

the probability of failure of a structure. The objective of the first is to evaluate

Pf over the entire domain of failure Df and resorts to simulations based on

the Monte Carlo method. The second consists of an idealization of domain

Df allowing the calculation of an approximate value of Pf from a reliability

index β.

A2.3.6. Computation of the failure probability based on a reliability
index

Several authors have proposed indices or reliability indexes. The best

known are Rjanitzyne–Cornell’s and Hasofer–Lind’s.
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A2.3.6.1. Rjanitzyne–Cornell’s index

The Rjanitzyne–Cornell index βc is obtained from the mean μG, and the

standard deviation σG of the performance function G:

βc =
μG

σG
[A2.5]

Figure A2.1. Graphical representation of the Rjanitzyne–Cornell index

It can be seen in Figure A2.1 that this index multiplied by the standard

deviation σG represents the difference between the mean point μG and the

limit state (G = 0). The major drawback of this index is that it gives different

values for various expressions of the limit state function.

EXAMPLE A2.1.– Given the following limit state function G(r, s) = r− s ≤
0, we have:

β =
mr −ms√
σ2
s + σ2

r

If we rewrite the limit state function in a different manner, that is in the

form G(r, s) = r
s − 1 ≤ 0, then in this case, after linearization it yields:

G(r, s) = G(mr,ms) +
∂G

∂r
|mr,ms(r −ms) +

∂G

∂s
|mr,ms(s−ms)

=
mr

ms
− 1 +

1

ms
(r −ms) +

1

mr
(s−ms)
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where

β =
mG

σG
=

ms√
σ2
r

m2
s
+ σ2

s
m2

r

m2
s

Two different indices for the same limit state function are therefore

obtained. To overcome this difficulty, we introduce the Hasofer and Lind

reliability index.

A2.3.6.2. Hasofer and Lind index

To remove the risk of dependence of the reliability index on the limit state,

Hasofer and Lind have proposed to perform the calculation of β in the space

of the standard normal random and statistically independent variables. To do

this, the random vector X is transformed into a random vector U, with:

Ui = T (Xi) [A2.6]

The random variables follow a standard normal distribution and ∀i �= j,
Ui and Uj are mutually independent variables. This probabilistic processing T
requires knowing the statistical distributions of each of the random variables.

The limit state function becomes after transformation:

H(U) = G[X(U)] [A2.7]

The probability of failure is then equal to:

Pf = P (H(U) ≤ 0) [A2.8]

that is

Pf =

∫
H(u)≤0

Φm(u)du [A2.9]

Φm is the density function of the multivariate normal distribution. The

reliability index βHL is defined as being the Euclidean distance from the

origin of the normal standard space to the limit state surface H(u) = 0
(Figure A2.2). u is a realization of the random vector U, that is

u = (u1, u2, . . . , um)T . H(u) is a realization of the random variable H(U).



Appendix 2 229

It is therefore necessary to solve the following constrained minimization

problem:

⎧⎪⎨⎪⎩
βHL = min

√
uT .u

u ∈ Rm, verifying:

H(u) = 0

[A2.10]

This problem is equivalent to:

⎧⎪⎨⎪⎩
βHL = min f(u)

u ∈ Rm, verifying:

H(u) = 0

[A2.11]

with

f(u) =
1

2
uT .u [A2.12]

The reliability index is therefore the minimum of the function f under the

stress H(u) = 0. The analytical calculation of βHL is achievable only in a

limited number of special cases and a numerical solution is usually necessary.

The objective function f is a quadratic, and convex form, twice continuously

differentiable with respect to the variables ui. On the other hand, the stress

function H(u) is rarely convex. In addition, the function H(u) is sometimes

complex, implicit and non-continuously differentiable with respect to the

variables ui.

Let u∗ the solution vector of problem (A2.11) and P ∗ the point on the limit

state such that OP ∗ = u∗. P ∗ is called design point or the most probable point

(MPP) of failure (see Figure A2.3). In addition:

u∗ = −βHLα [A2.13]

α is the vector normal to the surface H(u) = 0 at point u∗, that is its

normalized gradient. The objective is then to link βHL to the probability of

failure of the structure. Several methods exist and provide a more or less finer

value of Pf .
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State surface

Figure A2.2. Geometric representation of βHL for a bivariate problem

Figure A2.3. The most probable point (MPP) in the physical space

A2.3.7. First order reliability method

The first order reliability method (FORM) consists of replacing the limit-

state surface by the hyperplane tangent at the MPP P ∗, Z(u) = 0, linear

approximation of H(u) = 0. The general principle of the FORM is as follows:

– Step 1: definition of the probabilistic transformation T between the initial

physical space and the standard Gaussian space;
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– Step 2: transformation of the surface of failure G(u) = 0 in the initial

space into the failure surface H(u) = 0 in the standard Gaussian space;

– Step 3: computation of the reliability index βHL the solution of problem

(A2.11);

– Step 4: calculation of P ∗
f , approximate value of Pf , defined by:

P ∗
f =

∫
Z(u)≤0

Φm(u)du [A2.14]

that is

P ∗
f = Φ(−βHL) [A2.15]

Φ is the distribution function of the standard normal distribution and D∗
f is

the domain of Rm such that Z(u) ≤ 0 with:

Z(u) = αT .u+ βHL [A2.16]

If the limit-state surface is convex, then P ∗
f > Pf ; concave, then P ∗

f < Pf ;

and a hyperplane, then P ∗
f = Pf .

The accuracy of the FORM approximation strongly depends on the

curvature of the limit-state surface at the MPP and therefore the nonlinearity

of the function H(u) = 0. One of the major disadvantages of the FORM is

the difficulty in estimating the computational error of the probability of

failure. A validation solution is then to make use of Monte Carlo simulations.

The number of computations directly depends on the number of random

variables in the problem.

A2.3.8. Second-order reliability method

If the limit-state function is strongly nonlinear, the approximation of the

limit-state surface by a hyperplane can lead to a wrong probability of failures.

Second-order reliability method (SORM) consists of replacing the limit-state

surface at the MPP of failure by a quadratic surface. Therefore, the limit-state

function is approximated at the point u∗ by an order-two Taylor expansion.

Under the hypotheses that the point u∗ is unique, the limit-state function

admits second derivatives at the point u∗ and the principal curvatures κi,
i = 1 at m − 1, of the limit-state surface at point u∗ verify
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κiβHL ≥ −1, withβHL → +∞, the probability of failure of the structure is

equal to:

Pf = Φ(−βHL)

m−1∏
i=1

1√
1 + κiβHL

[A2.17]

Figure A2.4. Principle of the SORM for a bivariate problem

The principal curvatures κi, i = 1, . . . ,m − 1 at the point u∗ are the

eigenvalues of matrix A of dimensions (m − 1) × (m − 1) whose

components are defined by:

aij = − (Q.∇2
uH(u∗).QT )ij

‖∇uH(u∗)‖ , i, j = 1, . . . ,m− 1 [A2.18]

Q is the orthogonal rotation matrix in the Gaussian space such that in the

new reference frame, the point u∗ belongs to the first coordinate axis and

∇2
uH(u∗) is the Hessian matrix of the limit-state function H(u) at the point

u∗.
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Metamodels

A3.1. Introduction

In the design of complex products such as aircrafts, detailed simulation

models are needed to evaluate and improve design during development. These

detailed simulation models often take a long time to execute. In addition, it

may happen that information originating from the simulation models may be

unavailable or wrong. In these cases, metamodel-based design optimization

can be seen as an alternative. Metamodels are simplified models of detailed

simulation models with smooth gradients. The evaluations based on

metamodels are fast compared to the evaluations using detailed models.

Metamodels are developed according to a comprehensive set of principles

concerning simulation models. One of the advantages of using metamodels in

multidisciplinary optimization is that the people responsible for the different

disciplines can work in parallel during the development of metamodels and

verify their accuracy before the process of optimization begins. Since

metamodels are approximations of detailed simulation models, an additional

source of error is introduced and the challenge is to keep this error at an

acceptable level for the problem to be addressed.

A3.2. Definition

A metamodel is a mathematical approximation of a detailed and generally

large-sized model. Metamodels can be used when a large number of

evaluations are needed, as in optimization, and in the evaluation of the

reliability of structures.

Material Forming Processes: Simulation, Drawing, Hydroforming and Additive Manufacturing, 
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Let x be an input vector (values of design variables), transformed into an

output vector y (response values). The detailed model can be considered as a

function f : R → R, meaning that the function f transforms the set of real

numbers of k (design variables) into another set of real numbers of l
(responses):

y = f(x) [A3.1]

For each scalar response y, a metamodel can be constructed to approximate

the real response as:

ŷ = s(x) [A3.2]

where s(x) is the mathematical function defining the metamodel and that

combines the design variables x to the expected answer ŷ. In general, this

approximation is not accurate and the predicted response ŷ will differ from y
the reaction observed with the detailed model, that is:

y = ŷ + ε = s(x) + ε [A3.3]

where ε represents the approximation error.

A metamodel for a unique response is built from an input xi and an output

data set yi corresponding to yi = f(xi), where i = 1, . . . , n and n are the

number of models used to fit the model. Consequently, n evaluations of the

detailed model with various variable parameters x = (x1, x2, . . . , xk)
T design

variables k necessary to assemble the metamodel.

Several mathematical formulas can be used for metamodels. Some of them

are suitable for global approximations, that is to say that they can be used to

represent the complete design space, while others are rather suited for local

approximations of part of the design space. Metamodels can interpolate the

responses of the detailed simulations or those approximating the responses

according to the formulation. In the case of deterministic simulations,

interpolation metamodels can be considered, if the numerical noise is

negligible. However, an interpolation metamodel is not necessarily better than

an approximation to the prediction of the reaction between the fixation points.
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Different approaches are used to build the metamodels:

– parametric techniques rely on a relation between design variables and

the response of the system under study. The metamodel is constructed from

the design variables data set, and the corresponding responses from the initial

model by determining the coefficients of the selected function. Polynomial and

Kriging models are examples of metamodels built this way;

– non-parametric techniques are used to create different types of neural

network models. These techniques do not have an a priori functional form;

instead, they make use of an a priori method for the construction of an

approximation function based on the available data. This is done by using

different types of simple models in different areas, which are then combined

to build a global model.

In the following sections, we present a number of different metamodels,

known and often used, and their main characteristics as well as the basic idea

behind their derivations.

A3.3. Main metamodels

The objective is to replace the uncertainty loop inside the optimization

loop by the construction of a metamodel. Thus, at each optimization step xi, a

metamodel was built for the functions:

u �→ f(xi, u) [A3.4]

u �→ gj(xi, u) j = 1, . . . , q [A3.5]

The cost of this approach is still N × n, where n is the number of points

required for the estimation of metamodels. However, n is much smaller than

for the Monte Carlo methods.

A3.3.1. Experimental design and response surfaces

To create a metamodel, a matrix X containing a set of experimental points

and the vector of outputs Y corresponding are necessary. The matrix X
constitutes the experimental design. The n observations are sufficiently well

distributed over the definition set of the variables in order to create a good

metamodel.

The principle of response surface methods (RSM) is to construct

a mathematical function, a simplified modeling of the response of the
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mechanical system, based on a limited number of experiments. This function

or response surface (RS) is said to be:

– global when it simulates the mechanical phenomenon over the whole of

the variation space of the parameters involved in the process; these are called

factors;

– local if it is constructed in a particular subspace.

In general, the iterative generation of several local surfaces in the

experimental space provides a faithful representation of the mechanical

problem. Nonetheless, as with any approximation method, the validity of the

RSs must be carefully studied. The RSM also give an answer to the following

questions:

– what is the influence of one or more factors on the response of the system

in a given subdomain?

– what is the geometry of the RS in the neighborhood of certain points?

In mechanical reliability, the response of the structure is the value of the

limit-state function. The random variables of the problem assume the role of

factors. An experiment is a numerical finite elements computation. The finite

element computational code allows for the construction of the RS of the

structure. This simple mathematical function replaces the limit-state surface

as the border between the safety and the failure domains and then serves as a

basis to the conventional reliability methods. The decoupling term of the

mechanical calculations and the RSs reliability calculations is thus commonly

used to describe these methods.

RS coupling is decomposed into four fundamental stages that ensure

the good fit of the approximation model and the mechanical phenomenon

[MOR 02]:

– the first step consists of choosing a sensible approximation function. It

must have the simplest mathematical form possible. The Monte Carlo method

imposes any continuity and differentiability constraints on the approximation

function. However, the RS must be global to simulate the behavior of the

system in the whole experimental domain. The FORM method is based on the

calculation of the index, the solution of the minimization problem under stress

(see Appendix 2). Global optimality conditions impose a twice-differentiable

stress function in the neighborhood of the solution. The RS is therefore a

simple function, twice-differentiable and whose gradient computation is easily

achievable;
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– the second step defines the set of points of the experimental domain

necessary to the approximation. The theory of the design of experiments

(DOE) offers several solutions depending on the chosen RS. Advanced

mathematical studies allow the definition of D-optimal experimental designs,

ensuring a maximal fit of the approximation function and the actual response.

However, these designs are often difficult to implement and simpler approaches

are preferred at the cost of lower accuracy. In the following, m represents the

number of variables of the problem:

- axial or star polytope design comprises (2m+1) points distributed on

the axes of the space (see Figure A3.1). Each variable takes three values −a,
0 and a if the central point is the point of origin. The quadratic behavior along

the axes can be studied. On the other hand, the interaction between variables is

not taken into account. The distance between the central point and the farthest

point of a DOE is equal to a,

Figure A3.1. Representation of a three-variable axial polytope design

- two-level factorial-based designs or 2m is composed of a set of points

of the form (±d,±d, . . . ,±d) (see Figure A3.2). The number of generated

points is 2m, a number that quickly becomes prohibitive if the problem has

several factors. The quadratic behavior of the variables along the axes and

their interaction can be accessed here. The distance between the focal point

and the furthest point of a factorial experimental design 2m is equal to
√
md.

In practice, fractional factorial designs are used to limit the number of points,

- centered composite experimental designs are among the most

representative designs of an experimental space. By the combination of a star

experimental design and a factorial DOE 2m, they comprise (2m + 2m + 1)
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points (see Figure A3.3). Nonetheless, the greater m is, the higher the number

of generated points, which proves the use of a central composite experimental

design ill-advised. The distance between the central point and the furthest in a

central composite experimental design is generally of a (if a >
√
md).

Figure A3.2. Representation of a three-variable factorial design 2m

These three types of designs are the most common in structural reliability;

– the third step consists of choosing the approximation method. This choice

is dictated by the available number of points in the domain. If the number

of points is exactly equal to the number of polynomial coefficients, a direct

polynomial interpolation is used. When a higher number of points is available,

the least-squares method is preferred [LEM 09]. In fact, the accuracy of the

approximation is in this case much better than that obtained through direct

interpolation but the number of calls to the limit-state function and therefore

of finite elements calculations grows significantly.

At the end of these first three steps, the RS is constructed and then

substitutes the actual limit-state function of the problem for the reliability

analysis of the structure;

– the fourth step of RSs coupling is designed to calculate the structural

probability of failure. To evaluate this probability, some authors propose a

coupling of the RSM and advanced Monte Carlo methods [MOR 02].
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Figure A3.3. Representation of a three-variable
central composite design

Note that in a reliability analysis, two options are available to the mechanic:

– build the DOE and the RS inside the physical space;

– build the DOE and the RS in the standard normal space.

The first solution ensures a certain physical reality to the RS. The basic

variables appear explicitly in the approximated limit-state function. The

relation input variables/response variables of the system thus provide an expert

judgment on the validity of the generated surface. Furthermore, the experiment

shows that the limit-state function is much less perturbated in the physical

space than in the Gaussian space, therefore enforcing a better fit between the

real response and the RS [ELM 10]. The construction of the experimental

design and the response in the standard normal space surface offers the main

advantage of obtaining stress functions directly usable for calculating βHL.
However, the mechanical calculations are, on their part, performed in the

physical space, using a computational finite-element code. Moreover, the

probabilistic transformation between these two spaces is in general nonlinear

and the following issues appear:

– is the structure of the DOE built in the standard space kept in the physical

space after an inverse probabilistic transformation of the points?
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– do the points obtained after inverse probabilistic transformation have a

physical significance in the mechanical problem?

– a necessary condition to obtain a good representation of the space is that

two points are sufficiently distant in the standard space: are they not equal or

too close in the physical space?

A3.3.2. Global metamodel

This approach is quite similar to the previous since it consists of building

a comprehensive DOE on the space of points (x, u), a design from which one

(or more) metamodels are estimated. However, it differs in how to build the

experimental design and the metamodel:

– the DOE is no longer crossed but simple:

P = (xi, ui)i=1,...,n [A3.6]

– metamodels do not directly model the criteria to be optimized, but

functions:

u �→ f(xi, u) [A3.7]

u �→ gj(xi, u) j = 1, . . . , q [A3.8]

The optimization is then achieved by replacing the function f and gj by

the estimated metamodels. The probabilistic criteria (mean, variance, etc.) are

estimated from the metamodel either by Monte Carlo methods [LEE 01] or

analytically [CHE 08a]. Metamodels will improve if they are reestimated

throughout the optimization with adaptive planning techniques.

A3.3.3. Kriging model

The term Kriging comes from the name of the South African geologist

C.D. Krige. This method has been used to create metamodels in numerous

engineering applications. Computer-based design and analysis of experiments

is a statistical framework to process Kriging approximations of complex or

costly computational models, presented in [KHO 11, KLE 09]. A function

y(x) sought to be modeled is considered.
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A3.3.4. Polynomial regression

Polynomials-based metamodels are often called RS models and are used

in external response methodology (RSM). RSM [MYE 11] is a set of

statistical and mathematical methods for developing, improving and

optimizing processes and products. The models are developed based on

regression, which is the process of fitting a regression model y = s(x, β) + ε
for a database of x, n variable parameters and y corresponding response.

The least-squares method chooses the regression coefficient β allowing the

quadratic error to be minimized, that is solving the regression of the problem:

min
n∑

i=1

ε2i = min
β

n∑
i=1

(yi − s(xi, β))
2 [A3.9]

A3.3.5. Least squares

Polynomial metamodels can generate errors when the response of the

system is highly nonlinear, but may yield good approximations in small

regions where the response is less complex. According to [HAM 14], the

mathematical description of a metamodel MLS can be formulated as:

ŷ(x) =

p∑
i=1

fi(x)bi(x) = fT (x)b(x) [A3.10]

where f is a vector of the basic functions (polynomials) for the metamodel and

b is a coefficients vector. The number of coefficients p depends on the order of

the approximation.
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