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Preface

The first edition of Statistics in a Nutshell was a resounding success, but all books
can be improved, and I'm grateful to have the opportunity to revise this one. My
basic approach to the material hasn't changed: this is much more a book for people
who want to think about and understand statistics than it is a book showing you
how to use a particular computing package or delving into the mathematical theory
behind statistics formulas. This book is also a little different from many titles in the
O’Reilly Nutshell series—it’s really somewhere between a handbook for people who
already know statistics and an introductory textbook for people learning statistics
for the first time.

Despite the continued infiltration of statistics into many realms of life, one thing
hasn't changed: telling people I work as a statistician is still the best way to derail a
promising conversation at a party. For some reason, this seems to prompt people to
tell me about how much they hated the required statistics class they needed for their
college major or to prompt them to quote that old chestnut popularized by Mark
Twain that there are three kinds of lies: lies, damned lies, and statistics.

Personally, I find statistics fascinating, and I love working in this field. I like teaching
statistics as well, and I like to believe that I communicate this enthusiasm to others.
It’s often an uphill battle, however; many people seem to believe that statistics is no
more than a set of tricks and manipulations whose purpose is to twist reality to
mislead other people. Others take the opposite view, believing that statistics is a
collection of magical procedures that will do their thinking for them.

0K, Just What Is Statistics?

Before you jump into the technical details of learning and using statistics, step back
for a minute and consider what can be meant by the word “statistics.” Don’t worry
if you don’t understand all the vocabulary immediately; it will become clear over the
course of reading this book.



When people speak of statistics, they usually mean one or more of the following:

1. Numerical data, such as the unemployment rate, the number of persons who
die annually from bee stings, or the population of New York City in 2006 as
compared to 1906.

2. Numbers used to describe samples of data as opposed to parameters (numbers
used to describe populations). For instance, an advertising firm might be inter-
ested in the average age of people who subscribe to Sports Illustrated. To answer
this question, it could draw a random sample of subscribers, calculate the mean
of that sample (a statistic), and use that as an estimate of the mean of the entire
population of subscribers (a parameter).

3. Particular procedures used to analyze data, and the results of those procedures,
such as the ¢ statistic or the chi-square statistic.

4. A field of study that develops and uses mathematical procedures to describe
data and make decisions regarding it.

The type of statistics referred to in definition number 1 is not the primary concern
of this book. If you simply want to find the latest figures on unemployment, health,
or any of the myriad other topics on which governments and other organizations
regularly release statistical data, your best bet is to consult a reference librarian or
subject matter expert. If, however, you want to know how to interpret those figures
(to understand why the mean is often misleading as a statement of average value,
for instance, or the difference between crude and standardized mortality rates),
Statistics in a Nutshell can definitely help you.

The concepts included in definition number 2 will be discussed in Chapter 3, which
introduces inferential statistics, but these concepts also permeate the entire book. It
is partly a question of vocabulary (statistics are numbers that describe samples,
whereas parameters are numbers that describe populations) but underscores a fun-
damental point about the practice of statistics. The concept of using information
gained from studying a sample to make statements about a population is the basis
of inferential statistics, and inferential statistics is the primary focus of this book (as
it is of most books about statistics).

Definition number 3 is also fundamental to most chapters of this book. The process
of learning statistics is to some extent the process of learning particular statistical
procedures, including how to calculate and interpret them, how to choose the ap-
propriate statistic for a given situation, and so on. In fact, many new students of
statistics subscribe primarily to this definition; learning statistics to them means
learning to execute a set of statistical procedures. This is not so much an invalid
approach to statistics as it is incomplete; learning to execute statistical procedures
is a necessary part of the practice of statistics, but it is far from being the entire story.
What's more, since computer software has made it increasingly easy for anyone,
regardless of mathematical background, to produce statistical analyses, the need to
understand and interpret statistics has far outstripped the need to learn how to do
the calculations themselves.
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Definition number 4 is nearest to my heart because I chose statistics as my profes-
sional field. If you are a secondary or post-secondary student, you are probably aware
of this definition of statistics because many universities and colleges today either
have a separate department of statistics or include statistics as a field of specialization
within the department of mathematics. Statistics is increasingly taught in high school
as well, and in the United States, enrollment in advanced placement (AP) statistics
classes is increasing rapidly.

Statistics is not only a specialist subject at the university level. Many university de-
partments require students to take one or more statistics courses alongside subjects
in their major. In addition, it’s worth knowing that many important techniques in
modern statistics have been developed by people who learned and used statistics as
part of their work in another field. Stephen Raudenbush, a pioneer in the develop-
ment of hierarchical linear modeling, studied Policy Analysis and Evaluation Re-
search at Harvard, and Edward Tufte, perhaps the world’s leading expert on statis-
tical graphics, began his career as a political scientist: he wrote his PhD dissertation
at Yale on the American Civil Rights movement.

Because the use of statistics in many professions and at all levels from management
to line workers is increasing, acquiring a basic knowledge of statistics has become a
necessity for many people who have been out of school for years. Such individuals
are often ill served by textbooks aimed at introductory college courses, which are
too specialized, too focused on calculation, and too expensive.

Finally, statistics cannot be left to the statisticians because it’s also a necessity to
take part in modern civic life, in particular to understand much of what you read in
the newspaper and hear on the television and radio. A working knowledge of sta-
tistics is the best check against the proliferation of misleading or outright false nu-
merical claims (whether by politicians, advertisers, or social reformers), which seem
to occupy an ever-increasing portion of our daily news diet. There’s a reason that
Darryl Huff’s 1954 classic How to Lie with Statistics remains in print: statistics are
easy to misuse, the common techniques of statistical distortion have been around
for decades, and the best defense against those who would lie with statistics is to
educate yourself so you can spot the lies and stop the liars in their tracks.

The Focus of This Book

There are so many statistics books already on the market that you might well wonder
why I feel the need to add another to the pile. The primary reason is that I haven’t
found any statistics books that answer the needs I have addressed in Statistics in a
Nutshell. In fact, if I may wax poetic for a moment, the situation is, to paraphrase
the plight of Coleridge’s Ancient Mariner, “books, books, everywhere, nor any with
which to learn.” The issues I have tried to address with this book are the following:

* The need for a book that focuses on using and understanding statistics in a
research or applications context, not as a discrete set of mathematical techni-
ques but as part of the process of reasoning with numbers.
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* The need to integrate discussion of issues such as measurement and data man-
agement into an introductory statistics text.

* The need for a statistics book that isn’t focused on a particular subject area.
Elementary statistics is largely the same across subjects (a ¢-test is pretty much
the same whether the data comes from medicine, finance, or criminal justice),
so there’s no need for a proliferation of texts presenting the same information
with a slightly different spin.

* The need for an introductory statistics book that is compact, inexpensive, and
easy for beginners to understand without being condescending or overly
simplistic.

So who is the intended audience of Statistics in a Nutshell? I see three groups whose
needs it particularly addresses:

* Students taking introductory statistics classes in high schools, colleges, and
universities

* Adults who need to learn statistics as part of their current jobs or to be eligible
for a promotion

* People who are interested in learning about statistics out of intellectual curiosity

My focus throughout Statistics in a Nutshell is not on particular techniques, although
many are taught within this work, but on statistical reasoning. You might say that
the focus in this book is less on doing statistics and more on thinking statistically.
What does that mean? Several things are necessary to be able in the process of
thinking with numbers. More particularly, I focus on thinking about data and using
statistics to aid in that process. Most chapters include some practice exercises, but
these are meant to provide an opportunity to review the material presented and think
about the important concepts covered in the chapter; they are not meant to be
mindless calculation.

All the material in Statistics in a Nutshell has been revised, and most of the chapters
beefed up with new examples and exercises. In particular, more examples working
with proportions have been added, as have additional examples using real data sets,
from sources such as the United Nations Human Development Project and the Be-
havioral Risk Factor Surveillance System; both data sets are available for free down-
load from the Internet, so students can experiment with them as well as replicate
the analyses in this book. One new chapter has been added to this edition: Chap-
ter 19. I added this chapter because of my observation that, particularly for people
learning statistics for vocational reasons, the ability to communicate statistical in-
formation is at least as important as the ability to perform statistical computations.
Several new appendixes have also been added, mainly to make the book more self-
sufficient and user-friendly. These include probability tables for the most common
distributions, a bibliography of online sources of information, and a glossary and
table of statistical notation.
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Statistics in the Age of Information

It’s become fashionable to say that we’re living in the Age of Information, when so
many facts are collected and disseminated that no one could possibly keep up with
them. This is one cliché based in truth; as a society, we are drowning in data, and
the problem seems likely to increase. There are both positive and negative sides to
this circumstance. On the positive side, wide access to computing technology and
electronic means of data storage and dissemination have made information easier
to access, so researchers have less need to travel to a particular library or archive to
peruse printed copies of records.

However, data has no meaning in and of itself. It has to be organized and interpreted
by human beings before it becomes meaningful, so participating fully in the Infor-
mation Age requires becoming fluent in understanding data, including the ways it
is collected, analyzed, and interpreted. And because the same data can often be
interpreted in many ways to support radically different conclusions, even people
who don’t engage in statistical work themselves need to understand how statistics
work and how to identify invalid claims and arguments based on the misuse of data.

Organization of This Book

Statistics in a Nutshell is organized in three parts: introductory material (Chapters
1-4) that lays the necessary foundation for the chapters that follow; inferential stat-
istical techniques (Chapters 5-13), specialized techniques used in different profes-
sional fields (Chapters 14-16); and ancillary topics that are often part of the statis-
tician’s job, even if they are not strictly statistical (Chapters 17-20).

Here’s a more detailed breakdown of the chapters:

Chapter 1, Basic Concepts of Measurement
Discusses foundational issues for statistics, including levels of measurement,
operationalization, proxy measurement, random and systematic error, reliabil-
ity and validity, and types of bias.

Chapter 2, Probability
Introduces the basics of probability, including trials, events, independence,
mutual exclusivity, the addition and multiplication laws, combinations and
permutations, conditional probability, and Bayes’ theorem.

Chapter 3, Inferential Statistics
Introduces some basic concepts of inferential statistics, including probability
distributions, independent and dependent variables, populations and samples,
common types of sampling, the central limit theorem, hypothesis testing, Type
Iand Type Il errors, confidence intervals and p-values, and data transformation.

Chapter 4, Descriptive Statistics and Graphic Displays
Introduces common measures of central tendency and dispersion, including
mean, median, mode, range, interquartile range, variance, and standard devi-
ation, and discusses outliers. Some of the most commonly used graphical tech-
niques for presenting statistical information are also covered in this chapter,
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including frequency tables, bar charts, pie charts, Pareto charts, stem and leaf
plots, boxplots, histograms, scatterplots, and line graphs.

Chapter 5, Categorical Data
Reviews the concepts of categorical and interval data and introduces the RxC
table. Statistics covered in this chapter include the chi-squared tests for inde-
pendence, equality of proportions, and goodness of fit, Fisher’s exact test,
McNemar’s test, large-sample tests for proportions, and measures of associa-
tion for categorical and ordinal data.

Chapter 6, The t-Test
Discusses the t-distribution and the theory and use of the one-sample ¢-test, the
two independent samples t-test, the repeated measures t-test, and the unequal
variance ¢-test.

Chapter 7, The Pearson Correlation Coefficient
Introduces the concept of association with graphics displaying different
strengths of association between two variables and discusses the Pearson Cor-
relation Coefficient and the Coefficient of Determination.

Chapter 8, Introduction to Regression and ANOVA
Relates linear regression and ANOVA to the concept of the General Linear
Model and discusses assumptions made when using these designs. Simple (bi-
variate) regression, one-way ANOVA, and post hoc testing are discussed and
demonstrated.

Chapter 9, Factorial ANOVA and ANCOVA
Discusses more-complex ANOVA designs, including two-way and three-way
ANOVA and ANCOVA, and presents the topic of interaction.

Chapter 10, Multiple Linear Regression
Extends the multiple regression model to include multiple predictors. Topics
covered include relationships among predictor variables, standardized and un-
standardized coefficients, dummy variables, methods of model building, and
violations of assumptions of linear regression, including nonlinearity, autocor-
relation, and heteroscedasticity.

Chapter 11, Logistic, Multinomial, and Polynomial Regression
Expands the technique of regression to data with binary outcomes (logistic re-
gression), categorical outcomes (multinomial regression), and nonlinear mod-
els (polynomial regression) and discusses the problem of overfitting a model.

Chapter 12, Factor Analysis, Cluster Analysis, and Discriminant Function Analysis
Demonstrates three advanced statistical procedures, factor analysis, cluster
analysis, and discriminant function analysis, and discusses the types of prob-
lems for which each technique might be useful.

Chapter 13, Nonparametric Statistics
Discusses when to use nonparametric rather than parametric statistics and
presents nonparametric statistics for between-subjects and within-subjects de-
signs, including the Wilcoxon Rank Sum and Mann-Whitney U tests, the sign
test, the median test, the Kruskal-Wallis H test, the Wilcoxon signed rank test,
and the Friedman test.
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Chapter 14, Business and Quality Improvement Statistics
Demonstrates statistical procedures commonly used in business and quality
improvement contexts. Analytical and statistical procedures covered include
index numbers; time series; the minimax, maximax, and maximin decision cri-
teria; decision making under risk; decision trees; and control charts.

Chapter 15, Medical and Epidemiological Statistics
Introduces concepts and demonstrates statistical procedures particularly rele-
vant to medicine and epidemiology. Concepts and statistics presented include
the definition and use of ratios, proportions, and rates; measures of prevalence
and incidence; crude and standardized rates; direct and indirect standardiza-
tion; measures of risk; confounding; the simple and Mantel-Haenszel odds ra-
tio; and precision, power, and sample-size calculations.

Chapter 16, Educational and Psychological Statistics
Introduces concepts and statistical procedures commonly used in the fields of
education and psychology. Subjects covered include percentiles; standardized
scores; methods of test construction; classical test theory; the reliability of a
composite test; measures of internal consistency, including coefficient alpha;
and procedures for item analysis. An overview of item response theory is also
provided.

Chapter 17, Data Management
Discusses practical issues in data management, including codebooks, the unit
of analysis, procedures to troubleshoot an existing file, methods for storing data
electronically, string and numeric data, and missing data.

Chapter 18, Research Design
Discusses observational and experimental studies, common elements of good
research designs, the steps involved in data collection, types of validity, and
methods to limit or eliminate the influence of bias.

Chapter 19, Communicating with Statistics
Covers general issues about communicating statistical information to different
audiences and then provides more detail about writing for a professional jour-
nal, for the general public, and for the workplace.

Chapter 20, Critiquing Statistics Presented by Others
Offers guidelines for reviewing the use of statistics, including a checklist of
questions to ask of any statistical presentation and examples of when legitimate
statistical procedures may be manipulated to support questionable conclusions.

Six appendixes cover topics that are a necessary background to the material covered
in the main text and provide references to supplemental reading:

Appendix A, Review of Basic Mathematics
Provides a self-test and review of basic arithmetic and algebra for people whose
memory of their last math course is fast receding on the distant horizon. Topics
covered include the laws of arithmetic, exponents, roots and logs, methods to
solve equations and systems of equations, fractions, factorials, permutations,
and combinations.
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Appendix B, Introduction to Statistical Packages
Provides an introduction to some of the most common computer programs used
for statistical applications, demonstrates basic analyses in each program, and
discusses their relative strengths and weaknesses. Programs covered include
Minitab, SPSS, SAS, and R; the use of Microsoft Excel (not a statistical package)
for statistical analysis is also discussed.

Appendix C, References
An annotated bibliography organized by chapters that includes published
works and websites cited in the text and others that are good starting points for
people researching a particular topic.

Appendix D, Probability Tables for Common Distributions
Includes tables for the most commonly used statistical distributions—normal,
t, binomial, and chi-square—as well as directions for using the tables. Even in
the age of the computer and the Internet, it’s worth knowing how to read a
distribution table, and it’s convenient to have the tables available in printed
form.

Appendix E, Online Resources
A bibliography of some of the best sites on the Internet for people who are
learning, using, or teaching statistics. This appendix is organized into general
resources, glossaries, probability tables, online calculators, and online
textbooks.

Appendix F, Glossary of Statistical Terms
Includes a table of the Greek alphabet (the bane of many a beginning statisti-
cian), a table of statistical notation, and a brief glossary of the major statistical
terms used in this book.

This book is a tool that can be adapted according to the background and needs of
individual readers. Some of the chapters cover subjects that are often skipped in
introductory statistics books but that I think are important; these include data man-
agement, writing about statistics, and reading statistical articles written by others.
These chapters also serve as useful references for people who suddenly find them-
selves placed in charge of managing the data for a project or who have been ap-
pointed, more or less out of the blue, to create a statistical presentation about their
team’s work. Neither scenario, unfortunately, is particularly uncommon.

Classification of what is elementary and whatis advanced depends on an individual’s
background and purposes. I designed Statistics in a Nutshell to answer the needs of
many types of users. For this reason, there’s no perfect way to organize the material
to meet everyone’s needs, which brings us to an important point: there’s no reason
you should feel the need to read the chapters in the order they are presented here.
Statistics presents many chicken-and-egg dilemmas. For instance, you can’t design
experiments without knowing what statistics are available to you, but you can’t
understand how statistics are used without knowing something about research de-
sign. Similarly, it might seem logical that someone assigned to manage data should
already have experience in statistical analysis, but I’ve advised many research assis-
tants and project managers who are put in charge of large data sets before they’ve
completed a single course in statistics. So use the chapters in the way that best
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facilitates your specific purposes, and don’t be shy about skipping around and fo-
cusing on whatever meets your particular needs.

Not all the material in this book will be relevant to everyone; this is most obviously
the case with Chapters 14-16, which are written with particular subject areas in
mind (business and quality improvement, medicine and epidemiology, and educa-
tion and psychology, respectively). However, it’s wise to keep an open mind re-
garding what statistics you need to know. You might currently believe that you will
never need to conduct a nonparametric test or a logistic regression analysis, but you
never know what will come in handy in the future. It’s also a mistake to compart-
mentalize too much by subject field; because statistical techniques are ultimately
about numbers rather than content, techniques developed in one field often prove
to be useful in another. For instance, control charts (covered in Chapter 14) were
developed in a manufacturing context but are now used in many fields from medi-
cine to education, whereas the odds ratio (covered in Chapter 15) was developed in
epidemiology but is now applied to all sorts of data.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plaintext
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quot-
ing example code does not require permission. Incorporating a significant amount

Preface | xvii



of example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Statistics in a Nutshell by Sarah
Boslaugh (O’Reilly). Copyright 2013 Sarah Boslaugh, 978-1-449-31682-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

S f Safari Books Online (www.safaribooksonline.com) is an on-demand
a EOQ,,!:"! digital library that delivers expert content in both book and video form
from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for or-
ganizations, government agencies, and individuals. Subscribers have access to thou-
sands of books, training videos, and prepublication manuscripts in one fully search-
able database from publishers like O’Reilly Media, Prentice Hall Professional, Ad-
dison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones
& Bartlett, Course Technology, and dozens more. For more information about Safari
Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/stats-nutshell.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.
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Basic Concepts of Measurement

Before you can use statistics to analyze a problem, you must convert information
about the problem into data. That is, you must establish or adopt a system of as-
signing values, most often numbers, to the objects or concepts that are central to
the problem in question. This is not an esoteric process but something people do
every day. For instance, when you buy something at the store, the price you pay is
a measurement: it assigns a number signifying the amount of money that you must
pay to buy the item. Similarly, when you step on the bathroom scale in the morning,
the number you see is a measurement of your body weight. Depending on where
you live, this number may be expressed in either pounds or kilograms, but the prin-
ciple of assigning a number to a physical quantity (weight) holds true in either case.

Data need not be inherently numeric to be useful in an analysis. For instance, the
categories male and female are commonly used in both science and everyday life to
classify people, and there is nothing inherently numeric about these two categories.
Similarly, we often speak of the colors of objects in broad classes such as red and
blue, and there is nothing inherently numeric about these categories either. (Al-
though you could make an argument about different wavelengths of light, it’s not
necessary to have this knowledge to classify objects by color.)

This kind of thinking in categories is a completely ordinary, everyday experience,
and we are seldom bothered by the fact that different categories may be applied in
different situations. For instance, an artist might differentiate among colors such as
carmine, crimson, and garnet, whereas a layperson would be satisfied to refer to all
of them as red. Similarly, a social scientist might be interested in collecting infor-
mation about a person’s marital status in terms such as single—never married,
single—divorced, and single—widowed, whereas to someone else, a person in any of
those three categories could simply be considered single. The point is that the level
of detail used in a system of classification should be appropriate, based on the rea-
sons for making the classification and the uses to which the information will be put.



Measurement

Measurement is the process of systematically assigning numbers to objects and their
properties to facilitate the use of mathematics in studying and describing objects
and their relationships. Some types of measurement are fairly concrete: for instance,
measuring a person’s weight in pounds or kilograms or his height in feet and inches
orin meters. Note that the particular system of measurement used is not as important
as the fact that we apply a consistent set of rules: we can easily convert a weight
expressed in kilograms to the equivalent weight in pounds, for instance. Although
any system of units may seem arbitrary (try defending feet and inches to someone
who grew up with the metric system!), as long as the system has a consistent rela-
tionship with the property being measured, we can use the results in calculations.

Measurement is not limited to physical qualities such as height and weight. Tests to
measure abstract constructs such as intelligence or scholastic aptitude are commonly
used in education and psychology, and the field of psychometrics is largely con-
cerned with the development and refinement of methods to study these types of
constructs. Establishing that a particular measurement is accurate and meaningful
is more difficult when it can’t be observed directly. Although you can test the accu-
racy of one scale by comparing results with those obtained from another scale known
to be accurate, and you can see the obvious use of knowing the weight of an object,
the situation is more complex if you are interested in measuring a construct such as
intelligence. In this case, not only are there no universally accepted measures of
intelligence against which you can compare a new measure, there is not even com-
mon agreement about what “intelligence” means. To putit another way, it’s difficult
to say with confidence what someone’s actual intelligence is because there is no
certain way to measure it, and in fact, there might not even be common agreement
on what it is. These issues are particularly relevant to the social sciences and edu-
cation, where a great deal of research focuses on just such abstract concepts.

Levels of Measurement

Statisticians commonly distinguish four types or levels of measurement, and the
same terms can refer to data measured at each level. The levels of measurement differ
both in terms of the meaning of the numbers used in the measurement system and
in the types of statistical procedures that can be applied appropriately to data meas-
ured at each level.

Nominal Data

With nominal data, as the name implies, the numbers function as a name or label
and do not have numeric meaning. For instance, you might create a variable for
gender, which takes the value 1 if the person is male and 0 if the person is female.
The 0 and 1 have no numeric meaning but function simply as labels in the same way
that you might record the values as M or F. However, researchers often prefer nu-
meric coding systems for several reasons. First, it can simplify analyzing the data
because some statistical packages will not accept nonnumeric values for use in
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certain procedures. (Hence, any data coded nonnumerically would have to be re-
coded before analysis.) Second, coding with numbers bypasses some issues in data
entry, such as the conflict between upper- and lowercase letters (to a computer, M
is a different value than m, but a person doing data entry might treat the two char-
acters as equivalent).

Nominal data is not limited to two categories. For instance, if you were studying the
relationship between years of experience and salary in baseball players, you might
classify the players according to their primary position by using the traditional sys-
tem whereby 1 is assigned to the pitchers, 2 to the catchers, 3 to first basemen, and
so on.

If you can’t decide whether your data is nominal or some other level of measurement,
ask yourself this question: do the numbers assigned to this data represent some
quality such that a higher value indicates that the object has more of that quality
than a lower value? Consider the example of coding gender so 0 signifies a female
and 1 signifies a male. Is there some quality of gender-ness of which men have more
than women? Clearly not, and the coding scheme would work as well if women were
coded as 1 and men as 0. The same principle applies in the baseball example: there
is no quality of baseball-ness of which outfielders have more than pitchers. The
numbers are merely a convenient way to label subjects in the study, and the most
important point is that every position is assigned a distinct value. Another name for
nominal data is categorical data, referring to the fact that the measurements place
objects into categories (male or female, catcher or first baseman) rather than meas-
uring some intrinsic quality in them. Chapter 5 discusses methods of analysis ap-
propriate for this type of data, and some of the techniques covered in Chapter 13
on nonparametric statistics are also appropriate for categorical data.

When data can take on only two values, as in the male/female example, it can also
be called binary data. This type of data is so common that special techniques have
been developed to study it, including logistic regression (discussed in Chapter 11),
which has applications in many fields. Many medical statistics, such as the odds
ratio and the risk ratio (discussed in Chapter 15), were developed to describe the
relationship between two binary variables because binary variables occur so fre-
quently in medical research.

Ordinal Data

Ordinal data refers to data that has some meaningful order, so that higher values
represent more of some characteristic than lower values. For instance, in medical
practice, burns are commonly described by their degree, which describes the amount
of tissue damage caused by the burn. A first-degree burn is characterized by redness
of the skin, minor pain, and damage to the epidermis (outer layer of skin) only. A
second-degree burn includes blistering and involves the superficial layer of the der-
mis (the layer of skin between the epidermis and the subcutaneous tissues), and a
third-degree burn extends through the dermis and is characterized by charring of
the skin and possibly destruction of nerve endings. These categories may be ranked
in a logical order: first-degree burns are the least serious in terms of tissue damage,
second-degree burns more serious, and third-degree burns the most serious.
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However, there is no metric analogous to a ruler or scale to quantify how great the
distance between categories is, nor is it possible to determine whether the difference
between first- and second-degree burns is the same as the difference between second-
and third-degree burns.

Many ordinal scales involve ranks. For instance, candidates applying for a job may
be ranked by the personnel department in order of desirability as a new hire. This
ranking tells you who is the preferred candidate, the second most preferred, and so
on, but does not tell you whether the first and second candidates are in fact very
similar to each other or the first-ranked candidate is much more preferable than the
second. You could also rank countries of the world in order of their population,
creating a meaningful order without saying anything about whether, say, the differ-
ence between the 30th and 31st countries was similar to that between the 31st and
32nd countries. The numbers used for measurement with ordinal data carry more
meaning than those used in nominal data, and many statistical techniques have been
developed to make full use of the information carried in the ordering while not
assuming any further properties of the scales. For instance, it is appropriate to cal-
culate the median (central value) of ordinal data but not the mean because it assumes
equal intervals and requires division, which requires ratio-level data.

Interval Data

Interval data has a meaningful order and has the quality of equal intervals between
measurements, representing equal changes in the quantity of whatever is being
measured. The most common example of the interval level of measurement is the
Fahrenheit temperature scale. If you describe temperature using the Fahrenheit
scale, the difference between 10 degrees and 25 degrees (a difference of 15 degrees)
represents the same amount of temperature change as the difference between 60 and
75 degrees. Addition and subtraction are appropriate with interval scales because a
difference of 10 degrees represents the same amount of change in temperature over
the entire scale. However, the Fahrenheit scale has no natural zero point because 0
on the Fahrenheit scale does not represent an absence of temperature but simply a
location relative to other temperatures. Multiplication and division are not appro-
priate with interval data: there is no mathematical sense in the statement that 80
degrees is twice as hot as 40 degrees, for instance (although it is valid to say that 80
degrees is 40 degrees hotter than 40 degrees). Interval scales are a rarity, and it’s
difficult to think of a common example other than the Fahrenheit scale. For this
reason, the term “interval data” is sometimes used to describe both interval and ratio
data (discussed in the next section).

Ratio Data

Ratio data has all the qualities of interval data (meaningful order, equal intervals)
and a natural zero point. Many physical measurements are ratio data: for instance,
height, weight, and age all qualify. So does income: you can certainly earn 0 dollars
in a year or have 0 dollars in your bank account, and this signifies an absence of
money. With ratio-level data, it is appropriate to multiply and divide as well as add
and subtract; it makes sense to say that someone with $100 has twice as much money
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as someone with $50 or that a person who is 30 years old is 3 times as old as someone
who is 10.

It should be noted that although many physical measurements are interval-level,
most psychological measurements are ordinal. This is particularly true of measures
of value or preference, which are often measured by a Likert scale. For instance, a
person might be presented with a statement (e.g., “The federal government should
increase aid to education”) and asked to choose from an ordered set of responses
(e.g., strongly agree, agree, no opinion, disagree, strongly disagree). These choices
are sometimes assigned numbers (e.g., 1—strongly agree, 2—agree, etc.), and this
sometimes gives people the impression that it is appropriate to apply interval or ratio
techniques (e.g., computation of means, which involves division and is therefore a
ratio technique) to such data. Is this correct? Not from the point of view of a statis-
tician, but sometimes you do have to go with what the boss wants rather than what
you believe to be true in absolute terms.

Continuous and Discrete Data

Another important distinction is that between continuous and discrete data. Con-
tinuous data can take any value or any value within a range. Most data measured by
interval and ratio scales, other than that based on counting, is continuous: for in-
stance, weight, height, distance, and income are all continuous.

In the course of data analysis and model building, researchers sometimes recode
continuous data in categories or larger units. For instance, weight may be recorded
in pounds but analyzed in 10-pound increments, or age recorded in years but ana-
lyzed in terms of the categories of 017, 18-65, and over 65. From a statistical point
of view, there is no absolute point at which data becomes continuous or discrete for
the purposes of using particular analytic techniques (and it’s worth remembering
that if you record age in years, you are still imposing discrete categories on a con-
tinuous variable). Various rules of thumb have been proposed. For instance, some
researchers say that when a variable has 10 or more categories (or, alternatively, 16
or more categories), it can safely be analyzed as continuous. This is a decision to be
made based on the context, informed by the usual standards and practices of your
particular discipline and the type of analysis proposed.

Discrete variables can take on only particular values, and there are clear boundaries
between those values. As the old joke goes, you can have 2 children or 3 children
but not 2.37 children, so “number of children” is a discrete variable. In fact, any
variable based on counting is discrete, whether you are counting the number of
books purchased in a year or the number of prenatal care visits made during a preg-
nancy. Data measured on the nominal scale is always discrete, as is binary and rank-
ordered data.

Operationalization

People just starting out in a field of study often think that the difficulties of research
rest primarily in statistical analysis, so they focus their efforts on learning mathe-
matical formulas and computer programming techniques to carry out statistical
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calculations. However, one major problem in research has very little to do with either
mathematics or statistics and everything to do with knowing your field of study and
thinking carefully through practical problems of measurement. This is the problem
of operationalization, which means the process of specifying how a concept will be
defined and measured.

Operationalization is always necessary when a quality of interest cannot be meas-
ured directly. An obvious example is intelligence. There is no way to measure intel-
ligence directly, so in the place of such a direct measurement, we accept something
that we can measure, such as the score on an IQ test. Similarly, there is no direct
way to measure “disaster preparedness” for a city, but we can operationalize the
concept by creating a checklist of tasks that should be performed and giving each
city a disaster-preparedness score based on the number of tasks completed and the
quality or thoroughness of completion. For a third example, suppose you wish to
measure the amount of physical activity performed by individual subjects in a study.
If you do not have the capacity to monitor their exercise behavior directly, you can
operationalize “amount of physical activity” as the amount indicated on a self-re-
ported questionnaire or recorded in a diary.

Because many of the qualities studied in the social sciences are abstract, operation-
alization is a common topic of discussion in those fields. However, it is applicable
to many other fields as well. For instance, the ultimate goals of the medical profession
include reducing mortality (death) and reducing the burden of disease and suffering.
Mortality is easily verified and quantified but is frequently too blunt an instrument
to be useful since it is a thankfully rare outcome for most diseases. “Burden of dis-
ease” and “suffering,” on the other hand, are concepts that could be used to define
appropriate outcomes for many studies but that have no direct means of measure-
ment and must therefore be operationalized. Examples of operationalization of bur-
den of disease include measurement of viral levels in the bloodstream for patients
with AIDS and measurement of tumor size for people with cancer. Decreased levels
of suffering or improved quality of life may be operationalized as a higher self-
reported health state, a higher score on a survey instrument designed to measure
quality of life, an improved mood state as measured through a personal interview,
or reduction in the amount of morphine requested for pain relief.

Some argue that measurement of even physical quantities such as length require
operationalization because there are different ways to measure even concrete prop-
erties such as length. (A ruler might be the appropriate instrument in some circum-
stances, a micrometer in others.) Even if you concede this point, it seems clear that
the problem of operationalization is much greater in the human sciences, when the
objects or qualities of interest often cannot be measured directly.

Proxy Measurement

The term proxy measurement refers to the process of substituting one measurement
for another. Although deciding on proxy measurements can be considered as a sub-
class of operationalization, this book will consider it as a separate topic. The most
common use of proxy measurement is that of substituting a measurement that is
inexpensive and easily obtainable for a different measurement that would be more

6 | Chapter1: Basic Concepts of Measurement



difficult or costly, if not impossible, to collect. Another example is collecting infor-
mation about one person by asking another, for instance, by asking a parent to rate
her child’s mood state.

For a simple example of proxy measurement, consider some of the methods police
officers use to evaluate the sobriety of individuals while in the field. Lacking a
portable medical lab, an officer can’t measure a driver’s blood alcohol content di-
rectly to determine whether the driver is legally drunk. Instead, the officer might rely
on observable signs associated with drunkenness, simple field tests that are believed
to correlate well with blood alcohol content, a breath alcohol test, or all of these.
Observational signs of alcohol intoxication include breath smelling of alcohol, slur-
red speech, and flushed skin. Field tests used to evaluate alcohol intoxication quickly
generally require the subjects to perform tasks such as standing on one leg or tracking
a moving object with their eyes. A Breathalyzer test measures the amount of alcohol
in the breath. None of these evaluation methods provides a direct test of the amount
of alcohol in the blood, but they are accepted as reasonable approximations that are
quick and easy to administer in the field.

To look at another common use of proxy measurement, consider the various meth-
ods used in the United States to evaluate the quality of health care provided by
hospitals and physicians. It is difficult to think of a direct way to measure quality of
care, short of perhaps directly observing the care provided and evaluating it in rela-
tion to accepted standards (although you could also argue that the measurement
involved in such an evaluation process would still be an operationalization of the
abstract concept of “quality of care”). Implementing such an evaluation method
would be prohibitively expensive, would rely on training a large crew of evaluators
and relying on their consistency, and would be an invasion of patients’ right to
privacy. A solution commonly adopted instead is to measure processes that are as-
sumed to reflect higher quality of care: for instance, whether anti-tobacco counseling
was appropriately provided in an office visit or whether appropriate medications
were administered promptly after a patient was admitted to the hospital.

Proxy measurements are most useful if, in addition to being relatively easy to obtain,
they are good indicators of the true focus of interest. For instance, if correct execution
of prescribed processes of medical care for a particular treatment is closely related
to good patient outcomes for that condition, and if poor or nonexistent execution
of those processes is closely related to poor patient outcomes, then execution of
these processes may be a useful proxy for quality. If that close relationship does not
exist, then the usefulness of the proxy measurements is less certain. No mathematical
test will tell you whether one measure is a good proxy for another, although com-
puting statistics such as correlations or chi-squares between the measures might help
evaluate this issue. In addition, proxy measurements can pose their own difficulties.
To take the example of evaluating medical care in terms of procedures performed,
this method assumes that it is possible to determine, without knowledge of indi-
vidual cases, what constitutes appropriate treatment and that records are available
that contain the information needed to determine what procedures were performed.
Like many measurement issues, choosing good proxy measurements is a matter of
judgment informed by knowledge of the subject area, usual practices in the field in
question, and common sense.
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Surrogate Endpoints

A surrogate endpoint is a type of proxy measurement sometimes used in clinical
trials as a substitute for a true clinical endpoint. For instance, a treatment might
be intended to prevent death (a true clinical endpoint), but because death from
the condition being treated might be rare, a surrogate endpoint may be used to
accrue evidence more quickly about the treatment’s effectiveness. A surrogate
endpoint is usually a biomarker that is correlated with a true clinical endpoint.
For instance, if a drug is intended to prevent death from prostate cancer, a surro-
gate endpoint might be tumor shrinkage or reduction in levels of prostate-specific
antigens.

The problem with using surrogate endpoints is that although a treatment might
be effective in producing improvement in these endpoints, it does not necessarily
mean that it will be successful in achieving the clinical outcome of interest. For
instance, a meta-analysis by Stefan Michiels and colleagues (listed in Appen-
dix C) found that for locally advanced head and neck squamous-cell carcinoma,
the correlation between locoregional control (a surrogate endpoint) and overall
survival (the true clinical endpoint) ranged from 0.65 to 0.76 (if results had been
identical for both endpoints, the correlation would have been 1.00), whereas the
correlation between event-free survival (a surrogate endpoint) and overall survival
ranged from 0.82 to 0.90.

Surrogate endpoints are sometimes misused by being added after the fact to a
clinical trial, being used as substitutes for outcomes defined before the trial begins,
or both. Because a surrogate endpoint might be easier to achieve (e.g., improve-
ment in progression-free survival in the trial for an anti-cancer drug rather than
improvement in overall survival), this can lead to a new drug being approved on
the basis of effectiveness when it might have little effect on the true endpoint or
even have a deleterious effect. For further general discussion of issues relating to
surrogate endpoints, see the article by Thomas R. Fleming cited in Appendix C.

True and Error Scores

We can safely assume that few, if any, measurements are completely accurate. This
is true not only because measurements are made and recorded by human beings but
also because the process of measurement often involves assigning discrete numbers
to a continuous world. One concern of measurement theory is conceptualizing and
quantifying the degree of error present in a particular set of measurements and eval-
uating the sources and consequences of that error.

Classical measurement theory conceives of any measurement or observed score as
consisting of two parts: true score (T) and error (E). This is expressed in the following
formula:

X=T+E

where X is the observed measurement, T is the true score, and E is the error. For
instance, a bathroom scale might measure someone’s weight as 120 pounds when
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that person’s true weight is 118 pounds, and the error of 2 pounds is due to the
inaccuracy of the scale. This would be expressed, using the preceding formula, as:

120=118+2

which is simply a mathematical equality expressing the relationship among the three
components. However, both T and E are hypothetical constructs. In the real world,
we seldom know the precise value of the true score and therefore cannot know the
exact value of the error score either. Much of the process of measurement involves
estimating both quantities and maximizing the true component while minimizing
error. For instance, if you took a number of measurements of one person’s body
weight in a short period (so that his true weight could be assumed to have remained
constant), using a recently calibrated scale, you might accept the average of all those
measurements as a good estimate of that individual’s true weight. You could then
consider the variance between this average and each individual measurement as the
error due to the measurement process, such as slight malfunctioning in the scale or
the technician’s imprecision in reading and recording the results.

Random and Systematic Error

Because we live in the real world rather than a Platonic universe, we assume that all
measurements contain some error. However, not all error is created equal, and we
can learn to live with random error while doing whatever we can to avoid systematic
error. Random error is error due to chance: it has no particular pattern and is as-
sumed to cancel itself out over repeated measurements. For instance, the error scores
over a number of measurements of the same object are assumed to have a mean of
zero. Therefore, if someone is weighed 10 times in succession on the same scale, you
may observe slight differences in the number returned to you: some will be higher
than the true value, and some will be lower. Assuming the true weight is 120 pounds,
perhaps the first measurement will return an observed weight of 119 pounds (in-
cluding an error of -1 pound), the second an observed weight of 122 pounds (for an
error of +2 pounds), the third an observed weight of 118.5 pounds (an error of -1.5
pounds), and so on. If the scale is accurate and the only error is random, the average
error over many trials will be 0, and the average observed weight will be 120 pounds.
You can strive to reduce the amount of random error by using more accurate in-
struments, training your technicians to use them correctly, and so on, but you cannot
expect to eliminate random error entirely.

Two other conditions are assumed to apply to random error: it is unrelated to the
true score, and the error component of one measurement is unrelated to the error
component of any other measurement. The first condition means that the value of
the error component of any measurement is not related to the value of the true score
for that measurement. For instance, if you measure the weights of a number of in-
dividuals whose true weights differ, you would not expect the error component of
each measurement to have any relationship to each individual’s true weight. This
means that, for example, the error component should not systematically be larger
when the true score (the individual’s actual weight) is larger. The second condition
means that the error component of each score is independent and unrelated to the
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error component for any other score. For instance, in a series of measurements, a
pattern of the size of the error component should not be increasing over time so that
later measurements have larger errors, or errors in a consistent direction, relative to
earlier measurements. The first requirement is sometimes expressed by saying that
the correlation of true and error scores is 0, whereas the second is sometimes ex-
pressed by saying that the correlation of the error components is 0 (correlation is
discussed in more detail in Chapter 7).

In contrast, systematic error has an observable pattern, is not due to chance, and
often has a cause or causes that can be identified and remedied. For instance, a scale
might be incorrectly calibrated to show a result that is 5 pounds over the true weight,
so the average of multiple measurements of a person whose true weight is 120
pounds would be 125 pounds, not 120. Systematic error can also be due to human
factors: perhaps the technician is reading the scale’s display at an angle so that she
sees the needle as registering higher than it is truly indicating. If a pattern is detected
with systematic error, for instance, measurements drifting higher over time (so the
error components are random at the beginning of the experiment, but later on are
consistently high), this is useful information because we can intervene and recali-
brate the scale. A great deal of effort has been expended to identify sources of sys-
tematic error and devise methods to identify and eliminate them: this is discussed
further in the upcoming section “Measurement Bias” on page 14.

Reliability and Validity

There are many ways to assign numbers or categories to data, and not all are equally
useful. Two standards we commonly use to evaluate methods of measurement (for
instance, a survey or a test) are reliability and validity. 1deally, we would like every
method we use to be both reliable and valid. In reality, these qualities are not abso-
lutes but are matters of degree and often specific to circumstance. For instance, a
survey that is highly reliable when used with demographic groups might be unreli-
able when used with a different group. For this reason, rather than discussing reli-
ability and validity as absolutes, it is often more useful to evaluate how valid and
reliable a method of measurement is for a particular purpose and whether particular
levels of reliability and validity are acceptable in a specific context. Reliability and
validity are also discussed in Chapter 18 in the context of research design, and in
Chapter 16 in the context of educational and psychological testing.

Reliability

Reliability refers to how consistent or repeatable measurements are. For instance, if
we give the same person the same test on two occasions, will the scores be similar
on both occasions? If we train three people to use a rating scale designed to measure
the quality of social interaction among individuals, then show each of them the same
film of a group of people interacting and ask them to evaluate the social interaction
exhibited, will their ratings be similar? If we have a technician weigh the same part
10 times using the same instrument, will the measurements be similar each time? In
each case, if the answer is yes, we can say the test, scale, or rater is reliable.
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Much of the theory of reliability was developed in the field of educational psychol-
ogy, and for this reason, measures of reliability are often described in terms of eval-
uating the reliability of tests. However, considerations of reliability are not limited
to educational testing; the same concepts apply to many other types of measure-
ments, including polling, surveys, and behavioral ratings.

The discussion in this chapter will remain at a basic level. Information about calcu-
lating specific measures of reliability is discussed in more detail in Chapter 16 in the
context of test theory. Many of the measures of reliability draw on the correlation
coefficient (also called simply the correlation), which is discussed in detail in Chap-
ter 7, so beginning statisticians might want to concentrate on the logic of reliability
and validity and leave the details of evaluating them until after they have mastered
the concept of the correlation coefficient.

There are three primary approaches to measuring reliability, each useful in particular
contexts and each having particular advantages and disadvantages:

* Multiple-occasions reliability
*  Multiple-forms reliability

* Internal consistency reliability

Multiple-occasions reliability, sometimes called test-retest reliability, refers to how
similarly a test or scale performs over repeated administration. For this reason, it is
sometimes referred to as an index of temporal stability, meaning stability over time.
For instance, you might have the same person do two psychological assessments of
a patient based on a videotaped interview, with the assessments performed two
weeks apart, and compare the results. For this type of reliability to make sense, you
must assume that the quantity being measured has not changed, hence the use of
the same videotaped interview rather than separate live interviews with a patient
whose psychological state might have changed over the two-week period. Multiple-
occasions reliability is not a suitable measure for volatile qualities, such as mood
state, or if the quality or quantity being measured could have changed in the time
between the two measurements (for instance, a student’s knowledge of a subject she
is actively studying). A common technique for assessing multiple-occasions relia-
bility is to compute the correlation coefficient between the scores from each occasion
of testing; this is called the coefficient of stability.

Multiple-forms reliability (also called parallel-forms reliability) refers to howsimilarly
different versions of a test or questionnaire perform in measuring the same entity.
A common type of multiple-forms reliability is split-half reliability in which a pool
of items believed to be homogeneous is created, then half the items are allocated to
form A and half to form B. If the two (or more) forms of the test are administered
to the same people on the same occasion, the correlation between the scores received
on each form is an estimate of multiple-forms reliability. This correlation is some-
times called the coefficient of equivalence. Multiple-forms reliability is particularly
important for standardized tests that exist in multiple versions. For instance, differ-
ent forms of the SAT (Scholastic Aptitude Test, used to measure academic ability
among students applying to American colleges and universities) are calibrated so
the scores achieved are equivalent no matter which form a particular student takes.

Reliability and Validity | 11

=
=2

~
&f‘\
£8
3
]
= wn
~* o
-




Internal consistency reliability refers to how well the items that make up an instru-
ment (for instance, a test or survey) reflect the same construct. To put it another
way, internal consistency reliability measures how much the items on an instrument
are measuring the same thing. Unlike multiple-forms and multiple-occasions relia-
bility, internal consistency reliability can be assessed by administering a single in-
strument on a single occasion. Internal consistency reliability is a more complex
quantity to measure than multiple-occasions or parallel-forms reliability, and several
methods have been developed to evaluate it; these are further discussed in Chap-
ter 16. However, all these techniques depend primarily on the inter-item correlation,
that is, the correlation of each item on a scale or a test with each other item. If such
correlations are high, that is interpreted as evidence that the items are measuring the
same thing, and the various statistics used to measure internal consistency reliability
will all be high. If the inter-item correlations are low or inconsistent, the internal
consistency reliability statistics will be lower, and this is interpreted as evidence that
the items are not measuring the same thing.

Two simple measures of internal consistency are most useful for tests made up of
multiple items covering the same topic, of similar difficulty, and that will be scored
as a composite: the average inter-item correlation and the average item-total corre-
lation. To calculate the average inter-item correlation, you find the correlation be-
tween each pair of items and take the average of all these correlations. To calculate
the average item-total correlation, you create a total score by adding up scores on
each individual item on the scale and then compute the correlation of each item with
the total. The average item-total correlation is the average of those individual item-
total correlations.

Split-half reliability, described previously, is another method of determining internal
consistency. This method has the disadvantage that, if the items are not truly ho-
mogeneous, different splits will create forms of disparate difficulty, and the reliability
coefficient will be different for each pair of forms. A method that overcomes this
difficulty is Cronbach’s alpha (also called coefficient alpha), which is equivalent to
the average of all possible split-half estimates. For more about Cronbach’s alpha,
including a demonstration of how to compute it, see Chapter 16.

Validity

Validity refers to how well a test or rating scale measures what it is supposed to
measure. Some researchers describe validation as the process of gathering evidence
to support the types of inferences intended to be drawn from the measurements in
question. Researchers disagree about how many types of validity there are, and
scholarly consensus has varied over the years as different types of validity are sub-
sumed under a single heading one year and then separated and treated as distinct
the next. To keep things simple, this book will adhere to a commonly accepted
categorization of validity that recognizes four types: content validity, construct val-
idity, concurrent validity, and predictive validity. The face validity, which is closely
related to content validity, will also be discussed. These types of validity are dis-
cussed further in the context of research design in Chapter 18.
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Content validity refers to how well the process of measurement reflects the important
content of the domain of interest and is of particular concern when the purpose of
the measurement is to draw inferences about a larger domain of interest. For in-
stance, potential employees seeking jobs as computer programmers might be asked
to complete an examination that requires them to write or interpret programs in the
languages they would use on the job if hired. Due to time restrictions, only limited
content and programming competencies may be included on such an examination,
relative to what might actually be required for a professional programming job.
However, if the subset of content and competencies is well chosen, the score on such
an exam can be a good indication of the individual’s ability on all the important
types of programming required by the job. If this is the case, we may say the exami-
nation has content validity.

A closely related concept to content validity is known as face validity. A measure
with good face validity appears (to a member of the general public or a typical person
who may be evaluated by the measure) to be a fair assessment of the qualities under
study. For instance, if a high school geometry test is judged by parents of the students
taking the test to be a fair test of algebra, the test has good face validity. Face validity
is important in establishing credibility; if you claim to be measuring students’
geometry achievement but the parents of your students do not agree, they might be
inclined to ignore your statements about their children’s levels of achievement in
this subject. In addition, if students are told they are taking a geometry test that
appears to them to be something else entirely, they might not be motivated to co-
operate and put forth their best efforts, so their answers might not be a true reflection
of their abilities.

Concurrent validity refers to how well inferences drawn from a measurement can be
used to predict some other behavior or performance that is measured at approxi-
mately the same time. For instance, if an achievement test score is highly related to
contemporaneous school performance or to scores on similar tests, it has high con-
current validity. Predictive validity is similar but concerns the ability to draw infer-
ences about some event in the future. To continue with the previous example, if the
score on an achievement test is highly related to school performance the following
year or to success on a job undertaken in the future, it has high predictive validity.

Triangulation

Because every system of measurement has its flaws, researchers often use several
approaches to measure the same thing. For instance, American universities often
use multiple types of information to evaluate high school seniors’ scholastic ability
and the likelihood that they will do well in university studies. Measurements used
for this purpose can include scores on standardized exams such as the SAT, high
school grades, a personal statement or essay, and recommendations from teachers.
In a similar vein, hiring decisions in a company are usually made after consideration
of several types of information, including an evaluation of each applicant’s work
experience, his education, the impression he makes during an interview, and pos-
sibly a work sample and one or more competency or personality tests.
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This process of combining information from multiple sources to arrive at a true or
at least more accurate value is called triangulation, a loose analogy to the process in
geometry of determining the location of a point in terms of its relationship to two
other known points. The key idea behind triangulation is that, although a single
measurement of a concept might contain too much error (of either known or un-
known types) to be either reliable or valid by itself, by combining information from
several types of measurements, at least some of whose characteristics are already
known, we can arrive at an acceptable measurement of the unknown quantity. We
expect that each measurement contains error, but we hope it does not include the
same type of error, so that through multiple types of measurement, we can get a
reasonable estimate of the quantity or quality of interest.

Establishing a method for triangulation is not a simple matter. One historical at-
tempt to do this is the multitrait, multimethod matrix (MTMM) developed by
Campbell and Fiske (1959). Their particular concern was to separate the part of a
measurement due to the quality of interest from that part due to the method of
measurement used. Although their specific methodology is used less today and full
discussion of the MTMM technique is beyond the scope of a beginning text, the
concept remains useful as an example of one way to think about measurement error
and validity.

The MTMM is a matrix of correlations among measures of several concepts (the
traits), each measured in several ways (the methods). Ideally, the same several meth-
ods will be used for each trait. Within this matrix, we expect different measures of
the same trait to be highly related; for instance, scores of intelligence measured by
several methods, such as a pencil-and-paper test, practical problem solving, and a
structured interview, should all be highly correlated. By the same logic, scores re-
flecting different constructs that are measured in the same way should not be highly
related; for instance, scores on intelligence, deportment, and sociability as measured
by pencil-and-paper questionnaires should not be highly correlated.

Measurement Bias

Consideration of measurement bias is important in almost every field, but it is a
particular concern in the human sciences. Many specific types of bias have been
identified and defined. They won’t all be named here, but a few common types will
be discussed. Most research design textbooks treat measurement bias in great detail
and can be consulted for further discussion of this topic. The most important point
is that the researcher must always be alert to the possibility of bias because failure
to consider and deal with issues related to bias can invalidate the results of an other-
wise exemplary study.

Bias can enter studies in two primary ways: during the selection and retention of the
subjects of study or in the way information is collected about the subjects. In either
case, the defining feature of bias is that it is a source of systematic rather than ran-
dom error. The result of bias is that the data analyzed in a study is incorrect in a
systematic fashion, which can lead to false conclusions despite the application of
correct statistical procedures and techniques. The next two sections discuss some
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of the more common types of bias, organized into two major categories: bias in
sample selection and retention and bias resulting from information collection and
recording.

Bias in Sample Selection and Retention

Most studies take place on samples of subjects, whether patients with leukemia or
widgets produced by a factory, because it would be prohibitively expensive if not
entirely impossible to study the entire population of interest. The sample needs to
be a good representation of the study population (the population to which the results
are meant to apply) for the researcher to be comfortable using the results from the
sample to describe the population. If the sample is biased, meaning it is not repre-
sentative of the study population, conclusions drawn from the study sample might
not apply to the study population.

Selection bias exists if some potential subjects are more likely than others to be se-
lected for the study sample. This term is usually reserved for bias that occurs due to
the process of sampling. For instance, telephone surveys conducted using numbers
from published directories by design remove from the pool of potential respondents
people with unpublished numbers or those who have changed phone numbers since
the directory was published. Random-digit-dialing (RDD) techniques overcome
these problems but still fail to include people living in households without tele-
phones or who have only a cell (mobile) phone. This is a problem for a research
study because if the people excluded differ systematically on a characteristic of in-
terest (and this is a very common occurrence), the results of the survey will be biased.
Forinstance, people living in households with no telephone service tend to be poorer
than those who have a telephone, and people who have only a cell phone (i.e., no
land line) tend to be younger than those who have residential phone service. If pov-
erty or youth are related to the subject being studied, excluding these individuals
from the sample will introduce bias into the study.

Volunteer bias refers to the fact that people who volunteer to be in studies are usually
not representative of the population as a whole. For this reason, results from entirely
volunteer samples, such as the phone-in polls featured on some television programs,
are not useful for scientific purposes (unless, of course, the population of interest is
people who volunteer to participate in such polls). Multiple layers of nonrandom
selection might be at work in this example. For instance, to respond, the person
needs to be watching the television program in question. This means she is probably
at home; hence, responses to polls conducted during the normal workday might
draw an audience largely of retired people, housewives, and the unemployed. To
respond, a person also needs to have ready access to a telephone and to have what-
ever personality traits would influence him to pick up the telephone and call a num-
ber he sees on the television screen. The problems with telephone polls have already
been discussed, and the probability that personality traits are related to other qual-
ities being studied is too high to ignore.

Nonresponse bias refers to the other side of volunteer bias. Just as people who vol-
unteer to take part in a study are likely to differ systematically from those who do
not, so people who decline to participate in a study when invited to do so very likely
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differ from those who consent to participate. You probably know people who refuse
to participate in any type of telephone survey. (I'm such a person myself.) Do they
seem to be a random selection from the general population? Probably not; for in-
stance, the Joint Canada/U.S. Survey of Health found not only different response
rates for Canadians versus Americans but found nonresponse bias for nearly all
major health status and health care access measures [results are summarized here].

Informative censoring can create bias in any longitudinal study (a study in which
subjects are followed over a period of time). Losing subjects during a long-term study
is a common occurrence, but the real problem comes when subjects do not drop out
at random but for reasons related to the study’s purpose. Suppose we are comparing
two medical treatments for a chronic disease by conducting a clinical trial in which
subjects are randomly assigned to one of several treatment groups and followed for
five years to see how their disease progresses. Thanks to our use of a randomized
design, we begin with a perfectly balanced pool of subjects. However, over time,
subjects for whom the assigned treatment is not proving effective will be more likely
to drop out of the study, possibly to seek treatment elsewhere, leading to bias. If the
final sample of subjects we analyze consists only of those who remain in the trial
until its conclusion, and if those who drop out of the study are not a random selection
of those who began it, the sample we analyze will no longer be the nicely randomized
sample we began with. Instead, if dropping out was related to treatment ineffec-
tiveness, the final subject pool will be biased in favor of those who responded ef-
fectively to their assigned treatment.

Information Bias

Even if the perfect sample is selected and retained, bias can enter a study through
the methods used to collect and record data. This type of bias is often called infor-
mation bias because it affects the validity of the information upon which the study
is based, which can in turn invalidate the results of the study.

When data is collected using in-person or telephone interviews, a social relationship
exists between the interviewer and the subject for the course of the interview. This
relationship can adversely affect the quality of the data collected. When bias is
introduced into the data collected because of the attitudes or behavior of the inter-
viewer, this is known as interviewer bias. This type of bias might be created unin-
tentionally when the interviewer knows the purpose of the study or the status of the
individuals being interviewed. For instance, interviewers might ask more probing
questions to encourage the subject to recall chemical exposures if they know the
subject is suffering from a rare type of cancer related to chemical exposure. Inter-
viewer bias might also be created if the interviewer displays personal attitudes or
opinions that signal to the subject that she disapproves of the behaviors being stud-
ied, such as promiscuity or drug use, making the subject less likely to report those
behaviors.

Recall bias refers to the fact that people with a life experience such as suffering from
a serious disease or injury are more likely to remember events that they believe are
related to that experience. For instance, women who suffered a miscarriage are likely
to have spent a great deal of time probing their memories for exposures or incidents
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that they believe could have caused the miscarriage. Women who had a normal birth
may have had similar exposures but have not given them as much thought and thus
will not recall them when asked on a survey.

Detection bias refers to the fact that certain characteristics may be more likely to be
detected or reported in some people than in others. For instance, athletes in some
sports are subject to regular testing for performance-enhancing drugs, and test re-
sults are publicly reported. World-class swimmers are regularly tested for anabolic
steroids, for instance, and positive tests are officially recorded and often released to
the news media as well. Athletes competing at a lower level or in other sports may
be using the same drugs but because they are not tested as regularly, or because the
test results are not publicly reported, there is no record of their drug use. It would
be incorrect to assume, for instance, that because reported anabolic steroid use is
higher in swimming than in baseball, the actual rate of steroid use is higher in swim-
ming than in baseball. The observed difference in steroid use could be due to more
aggressive testing on the part of swimming officials and more public disclosure of
the test results.

Social desirability bias is caused by people’s desire to present themselves in a favor-
able light. This often motivates them to give responses that they believe will please
the person asking the question. Note that this type of bias can operate even if the
questioner is not actually present, for instance when subjects complete a pencil-and-
paper survey. Social desirability bias is a particular problem in surveys that ask about
behaviors or attitudes that are subject to societal disapproval, such as criminal be-
havior, or that are considered embarrassing, such as incontinence. Social desirability
bias can also influence responses in surveys if questions are asked in a way that
signals what the “right,” that is, socially desirable, answer is.

Exercises

Here’s a review of the topics covered in this chapter.
Problem

What potential types of bias should you be aware of in each of the following sce-
narios, and what is the likely effect on the results?

1. A university reports the average annual salary of its graduates as $120,000,
based on responses to a survey of contributors to the alumni fund.

2. A program intended to improve scholastic achievement in high school students
reports success because the 40 students who completed the year-long program
(of the 100 who began it) all showed significant improvement in their grades
and scores on standardized tests of achievement.

3. A manager is concerned about the health of his employees, so he institutes a
series of lunchtime lectures on topics such as healthy eating, the importance of
exercise, and the deleterious health effects of smoking and drinking. He con-
ducts an anonymous survey (using a paper-and-pencil questionnaire) of
employees before and after the lecture series and finds that the series has been
effective in increasing healthy behaviors and decreasing unhealthy behaviors.
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Solution

1. Selection bias and nonresponse bias, both of which affect the quality of the
sample analyzed. The reported average annual salary is probably an overesti-
mate of the true value because subscribers to the alumni magazine were prob-
ably among the more successful graduates, and people who felt embarrassed
about their low salary were less likely to respond. One could also argue a type
of social desirability bias that would result in calculating an overly high average
annual salary because graduates might be tempted to report higher salaries than
they really earn because it is desirable to have a high income.

. Informative censoring, which affects the quality of the sample analyzed. The
estimate of the program’s effect on high school students is probably overesti-
mated. The program certainly seems to have been successful for those who
completed it, but because more than half the original participants dropped out,
we can’t say how successful it would be for the average student. It might be that
the students who completed the program were more intelligent or motivated
than those who dropped out or that those who dropped out were not being
helped by the program.

. Social desirability bias, which affects the quality of information collected. This
will probably result in an overestimate of the effectiveness of the lecture pro-
gram. Because the manager has made it clear that he cares about the health
habits of his employees, they are likely to report making more improvements
in their health behaviors than they have actually made to please the boss.

The Likert Scale

The Likert scale might be the most common type of rating scale used in human-
subject research. This type of scale was first described in 1932 by Rensis Likert
(1903-1981), an organizational psychologist who served as director of the Uni-
versity of Michigan Institute for Social Research from 1946 to 1970. Questions
using the Likert scale typically present a statement, and subjects are invited to
choose their response to it from an ordered, odd-numbered set of choices (most
often five but sometimes seven or nine). An example follows.

The United States should adopt a national system of health insurance.
. Strongly agree

. Agree

. Neither agree nor disagree

. Disagree

| e N O R S

. Strongly disagree

Sometimes an even number of responses is provided, so that there is no neutral
middle choice: this is called the forced choice method because the respondent is
forced to make the choice to agree or disagree with the statement. Often the order
of responses is changed one or more times within a questionnaire so that
sometimes 1 = Strongly disagree and sometimes 1 = Strongly agree to detect
whether people are automatically selecting the first or last choices without reading
the items.
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Data gathered by Likert scale is ordinal because although the choices are ordered,
there is no reason to believe that there are equal intervals between them. For in-
stance, we have no way of knowing whether the distance between “Strongly agree”
and “Agree” is the same as the distance between “Agree” and “Neither agree nor
disagree.”
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Dewey Defeats Truman

Several United States presidential elections have featured inaccurate predictions
based on biased samples. It’s always humorous to see a respected publication or
organization get it completely wrong, but these incidents also serve as a cautionary
tale of what can happen when statistics conducted on a biased sample are assumed
to apply to the general population.

In 1936, the Literary Digest magazine, which had correctly predicted the winner
of the U.S. presidential elections of 1916, 1920, 1924, 1928, and 1932, predicted
that Republican Alf Landon would defeat Democrat Franklin Roosevelt by a land-
slide. However, history shows that Roosevelt won the 1936 election in a landslide.
The problem with the Literary Digest prediction was that although it was based
on a large sample (over 2.3 million respondents out of 10 million invited to take
part), the sample was biased because it consisted of people who owned automo-
biles or telephones or who subscribed to the Literary Digest. In 1936, such indi-
viduals tended to be wealthier than the general population and more likely to be
Republican. Because it was necessary to return a postcard to participate in the
poll, the Literary Digest sample was subject to volunteer bias as well.

In 1948, every major poll predicted that the Republican Thomas Dewey would
defeat the Democrat Harry S. Truman for president. The Chicago Tribune even
printed papers with the front-page headline, “Dewey Defeats Truman.” Although
polling techniques had improved since 1936, several sources of bias were still
present in the polls, which led to this inaccurate prediction. One problem was that
telephone surveys were used without statistical correction for the fact that tele-
phone ownership was far more common among the affluent, who were also more
likely to support Dewey. Another factor was that there were large numbers of
undecided voters in the days leading up to the election, and none of the polls had
a good method for predicting for whom these individuals would ultimately vote
and how. A third problem was that Dewey’s support was stronger in the eastern
U.S. than in the western states. Due to the different time zones, the results from
eastern states were reported first, and the Tribune decided to print papers an-
nouncing the result based on those early returns. What the Tribune did not an-
ticipate was that Truman would carry many western states, including California,
and thus amass sufficient electoral votes to win the election.
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Probability

Probability theory is fundamental to statistics. Some people find probability to be
an intimidating topic, but there’s no reason anyone willing to put in the time can’t
come to understand it at the level necessary to succeed in statistics. As is the case in
many fields of study, advanced probability theory can become very complex and
difficult to understand, but the basic principles of probability are intuitive and easy
to comprehend. What’s more, most people are already familiar with probabilistic
statements, from the weather report that tells you there is a 30% chance of rain this
afternoon to the warning on cigarette packages that smoking increases your risk of
developing lung cancer.

I, like most adults, you hold one or more insurance policies, you are already engaged
in an enterprise based on probabilistic reasoning. If you drive or own an automobile,
for instance, you probably have an automobile insurance policy, which should really
be called an automobile expenses insurance policy because it protects the policy-
holder against the extreme expenses that can be incurred due to an accident. People
don’t purchase insurance policies because they are planning to get into a crash;
rather, they acknowledge that there is a nonzero probability of such an event oc-
curring in the future.

Governments often require automobile owners to have insurance policies for the
same reason; this requirement is not a judgment that you are a bad driver, just an
acknowledgment that accidents do happen and few individuals would be able to
cover the costs of a major accident out of their own pocket. The insurance industry
employs a cadre of statisticians to calculate how much you should be charged for a
policy, taking into consideration (among other things) the probability that you will
be in an accident or file a claim for any other reason, and the amount that such a
claim would cost the company.

You need no more mathematical expertise than that usually covered in high school
to understand the basics of probability as presented in this chapter, and under-
standing these concepts provides the basis for understanding the statistical techni-
ques presented in subsequent chapters. Mastering the content of this chapter will
also enable you to understand a large proportion of the statistics you are ever likely
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to encounter unless you are doing advanced work or have decided to make statistics
your field of study. In addition, you will be able to understand probabilistic state-
ments as used in everyday speech and to recognize when they are used incorrectly.

About Formulas

People who haven’t done well in math classes in the past often dislike formulas,
feeling they are an arcane system of communication invented by mathematicians as
a barrier to keep the uninitiated away and reserve all the good jobs for themselves.
Although 1 would never argue that math and statistics are easy subjects, the as-
sumption that formulas are a barrier to understanding is wrong. In fact, formulas
are a condensed and unambiguous way of communicating important information
and can be considered as a set of instructions written in the language of mathematics.
As one of my calculus professors used to say, “Look at the formula, then do what
the formula tells you to do.”

Mathematical formulas have the advantage of not depending on language, so math-
ematics can be communicated and understood among people regardless of their
native language or national origin. It doesn’t matter if you grew up speaking English
or Russian or Farsi; as long as you understand the language of mathematics, you can
communicate with your colleagues about mathematical topics somewhat independ-
ently of the barriers imposed by human languages.

Consider the example of the formula for calculating the arithmetic mean, known in
common language as the average of a set of numbers, presented in Figure 2-1.

Figure 2-1. Formula for calculating the mean

It may look like Greek to you (in fact, some of it is!), but it’s really just a set of
directions telling you how to do the necessary calculations. Let’s break it down into
parts:

* xis the number whose mean we are calculating.

* The symbol X (read as “x-bar”) means the mean of x, which is what we are
calculating.

* The symbol x; (read as “x sub i”) means a particular value of x.

* n means the number of values of x being used to compute the mean.

* The summation symbol, X, means to add together a number of cases, in this
case all values of x. The notations above and below the summation symbol mean
to add together all values of x, starting with the first value (x;) and going to the
last value (xn).
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The formula tells you to calculate the mean by adding together all the values of x,
then dividing by the number of cases that you just added together. Note that mul-
tiplying by 1/n is the same as dividing by n.

Suppose we want to calculate the mean of three numbers: 1, 3, and 5. In terms of
variable notation, we would call them x1, x5, and x3. In this example, n = 3 because
we have three numbers, so to execute the formula, we add the numbers from x; to
x3 and multiply by 1/3, as presented in Figure 2-2.

f—li —l(1+3+5)—
3 3

Figure 2-2. Calculating the mean of three numbers

You will encounter more complicated formulas as you progress in your statistical
studies, but the process for using them is the same:

1. Identify the meaning of each symbol used and the operation required.
2. Identify the values to be substituted for each symbol.

3. Substitute the values into the equation, perform the specified operations, and
you have your result.

Basic Definitions

Here are some basic concepts to know for a discussion of probability.

Trials

Probability is concerned with the outcome of trials, which are also called experi-
ments or observations. The crucial fact, whichever term is used, is that they refer to
an event whose outcome is unknown. If the outcome of a trial were known, after
all, there would be no need to consider its probability. A trial can be as simple as
flipping a coin or drawing a card from a deck, or as complex as observing whether
a person diagnosed with breast cancer is still alive five years after the diagnosis. We
will reserve the term “trial” for a single observation, such as one coin flip, and the
term “experiment” for multiple trials, such as the results from flipping one coin five
times.

Sample Space

The sample space, signified by S, is the set of all possible elementary outcomes of a
trial. If the trial is flipping a coin once, then the sample space is S = {heads, tails}
(often abbreviated S = {h, t}) because those two alternatives represent all the possible
outcomes for the experiment. The flip may come up either heads (h) or tails (¢). If
the experiment is rolling a single six-faced die (the plural is dice), the sample space
is S={1, 2,3, 4,5, 6}, representing the six faces of the die that may turn up in a
single roll. These elementary outcomes are also referred to as sample points. If the
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experiment consists of multiple trials, all possible combinations of outcomes of the
trials must be specified as part of the sample space. For instance, if the trial consists
of flipping a coin twice, the sample space is S = {(h, h), (h, t), (t, h), (¢, t)} because
the results could be heads on both flips, heads on the first and tails on the second,
tails on the first and heads on the second, or tails on both flips.

Events

An event, usually signified by E or any capital letter other than S, is the specification
of the outcome of a trial and can consist of a single outcome or a set of outcomes.
If the outcome or set of outcomes occurs, we say “the outcome satisfied the event”
or “the event occurred.” For instance, the event of “heads in flipping one coin” could
be specified as E = {heads}, whereas the event of “odd number in rolling one die”
could be specified as E = {1, 3, 5}. A simple event is the outcome of a single experi-
ment or observation, such as a single coin flip. Simple events can be combined into
compound events, as in the union and intersection examples below. Events can be
defined by listing the outcomes or by defining them logically. For instance, if the
trial is rolling two dice, and we are interested in how often the sum is less than 6,
we could specify this as either E = {2, 3, 4, 5} or E = {sum is less than 6}.

A common way to portray the probability of events and combinations of events
graphically is through Venn diagrams in which a rectangle represents the sample
space and circles represent particular events. Venn diagrams are used in Figures
2-3 through 2-6.

Venn Diagrams

Anyone who was brought up on the new math probably remembers Venn dia-
grams from elementary school math textbooks. Although the wisdom of intro-
ducing set theory to grade schoolers might be debatable, that is surely no fault of
the British mathematician John Venn (1834-1923) or his diagrams. Venn dia-
grams are widely used in mathematics and related fields to display the logical
relationship between sets of objects, and they have been adapted by other disci-
plines, such as literature, as well. Venn spent most of his adult life teaching at
Caius College, Cambridge University, where his primary interest was logic, and
he published three textbooks, including Symbolic Logic (1881), which introduced
Venn diagrams. Caius students and faculty today have a daily reminder of Venn'’s
accomplishments: he has been immortalized by stained glass windows in the col-
lege dining hall, which portray a Venn diagram with three overlapping sets signi-
fied by three circles of different colors.

Union

The union of several simple events creates a compound event that occurs if one or
more of the events occur. The union of E and F is written E U F and means “either
E or F or both E and F.” Note that the Union symbol is similar to a capital letter U.
The union of E and F is the shaded area in the Venn diagram in Figure 2-3. Note
that this figure portrays two complete circles that partially overlap; the meaning of
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this diagram is that any point in the shaded area (any point in E, F, or both E and
F) satisfies the condition E U F. To take an example, suppose the event is rolling a
six-sided die and that E = {1, 3} and F = {1, 2}. The event E U F is satisfied with an
outcome of 1, 2, or 3; we can also say that EU F = {1, 2, 3}.

Figure 2-3. The union of E and F (shaded area)

Intersection

The intersection of two or more simple events creates a compound event that occurs
only if all the simple events occur. The intersection of E and F is written E n F and
means “both E and F.” The intersection of E and F is the shaded area in the Venn
diagram in Figure 2-4; note that only points that belong to both E and F satisfy the
condition. To continue with our example, if the event is rolling a six-sided die, and
E={1,3} and F = {1, 2}, the event E n F is satisfied only with the outcome of 1
because 1 is a member of both sets, so ENn F= {1}.

Figure 2-4. The intersection of E and F (shaded area)

Complement

The complement of an event means everything in the sample space that is not that
event. The complement of event E is written variously as ~E, E°, or E, and is read
as “not E” or “E complement.” For instance, if E = (numbers > 0), ~E = (numbers
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<0). Continuing with our example, if the event is rolling a six-sided die and E = {1,
3}, ~E=1{2,4, 5, 6}. The complement of F is the shaded area in the Venn diagram
in Figure 2-5.

Figure 2-5. The complement of F (shaded area)

Mutual Exclusivity

If events cannot occur together, they are mutually exclusive. To put it another way,
if two sets have no events in common, they are mutually exclusive. For instance, the
event A = (salary is greater than $100K) and event B = (salary is less than or equal
to $100K) are mutually exclusive, as are the sets A = (even integers) and B = (odd
integers). The mutually exclusive sets E and F are presented in the Venn diagram in
Figure 2-6; note that they have no points in common.
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Figure 2-6. E and F are mutually exclusive; they have no points in common

Independence

If two trials are independent, the outcome of one trial does not influence the outcome
of another. To put itanother wayj, if the trials are independent, knowing the outcome
of one trial gives you no information about the outcome of the other. The classic
example of independence is flipping an ordinary coin; if you flip the coin twice, the
outcome of the first trial has no influence on the outcome of the second trial.

Permutations

In probability theory, permutations are all the possible ways elements in a set can be
arranged. For instance, if a set consists of the elements (a, b, ¢), then the permutations
of this set are (a, b, ¢), (a, ¢, b), (b, a, ), (b, ¢, a), (c, a, b), and (¢, b, a). Note that the
order of elements is important in permutations: (a, b, ¢) is a different permutation

than (a, ¢, b).

You can calculate the number of permutations of any set of distinct elements (mean-
ing that none of the elements repeats within the set) by using factorials, which are
signified by a number followed by an exclamation point. Many calculators have an
x! key to calculate factorials, but factorials can also be calculated by multiplying the
number by all lower integers down to 1. Here’s an example:

3'=3x2x1=6

3!is read as “3 factorial.” For a set of three nonrepeated elements, there are 3! or 6
permutations, which agrees with the result we found by listing the preceding dif-
ferent permutations. This makes logical sense because if you have three elements,
you have three choices for the first element (a, b, ¢ in our example), two choices for
the second element (minus whatever was chosen for the first element), and one
choice for the third element (whatever element remains after the first two are
chosen). Therefore, you have 3 x 2 x 1 = 6 different ways of arranging the elements.
Permutations become large very quickly. For instance, 5! = 120 and 10! = 3,628,800.
20! is so large that it cannot be displayed on most calculators except through scien-
tific notation: 20! = 2.432902008E18.
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Scientific Notation

Scientific notation is used to indicate the value of numbers that are very large or
very small. Using scientific notation not only saves space (because you don’t have
to write out lots of zeros) but improves accuracy in communication because it is
easy to misread a number including a lot of zeros. The concept behind scientific
notation is that any number can be written as a number greater than or equal to
1 and less than 10 (called the coefficient) multiplied by a power of 10 (called the
base). So the number 1234 can be written as 1.234E3 (the E stands for exponent),
which means 1.234 x 103, that is, 1.234 x 1000. Similarly, 1.234E - 4 means 1.234
x 10~*or 1.234 x 0.0001, which is 0.0001234. Another way to interpret E is as an
indication of how many places to the left or right to move the decimal point.
Therefore, 1.234E3 tells you to move it three places to the right, producing 1,234,
whereas 1.234E - 4 tells you to move it four places to the left for 0.0001234.

Combinations

Combinations are similar to permutations with the difference that the order of ele-
ments is not significant in combinations. Therefore, (a, b, ¢) is the same combination
as (b, a, ¢). For this reason, there is only one combination of the set (a, b, ¢).

One use of combinations and permutations in statistics is to calculate the number
of ways a subset of specified size can be drawn from a set, which allows the calcu-
lation of the probability of drawing any particular subset from a set. The general
case is that the set in question contains no duplicates, and you will use this assump-
tion in the following discussion. There are several ways to denote permutations and
combinations; these are demonstrated in Appendix A along with a few problems.
This section will stick to a simple system of notation, using P for permutations and
C for combinations. Using this notation, the number of permutations possible when
drawing 2 elements from a set of 3 is written 3P2, and the number of combinations
of 2 elements from a set of 3 is as 3C2. Continuing with the preceding example, for
the set (a, b, ¢), 3P2 = 6 because there are 6 permutations of 2 elements drawn from
asetof 3: (a, b), (a, ¢), (b, ¢), (b, a), (c, a), and (c, b). Three combinations of 2 are
possible from this set, so 3C2 = 3: (a, b), (a, ¢), and (b, ¢).

The number of permutations of subsets of size k drawn from a set of size n is calcu-
lated as shown in Figure 2-7.

n

P - "
Ly

Figure 2-7. The formula for calculating a permutation

Using this formula, the number of permutations of size 2 that can be drawn from a
set of size 8 is shown in Figure 2-8.
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Figure 2-8. Calculating the permutation 8P2

If you have to calculate a permutation by hand, it helps to remember the principle
of canceling factors: if you express the numerator and denominator as the product
of factors, you can cancel those that appear in both the numerator and denominator.
For instance:

-l
-
(=)
=
o
(=n
-
~<

12/6=2x2x3)/(2x3)=2

because you can cancel (2 x 3) from both the numerator and denominator.

In the case of the 8P2 permutation, it’s not necessary to multiply out each factorial
before dividing because you can cancel many of the terms. In this example:

81=8x7x6x5x4x3x2x1

and
6!=6x5x4x3x2x1

so you can cancel most of the numerator, leaving you with:
8P2=8x7=56

Given the same values for n and k, there will always be fewer combinations than
permutations because a different order of the same elements counts as a different
permutation but not as a different combination. This is clear in the formula for a
combination, which is the formula for the permutation divided by the factorial of
the number of objects selected, as shown in Figure 2-9.

B n! B nPk
T K(n-k)! &

nCk

Figure 2-9. The formula for calculating a combination

Using this formula, you calculate the number of combinations of size 2 that can be
drawn from a set of size 8, as shown in Figure 2-10.

8! 8P2 56

8C2 = = =
218-2)! 2! 2

Figure 2-10. Calculating the combination 8C2
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Defining Probability

There are several technical ways to define probability, but a definition useful for
statistics is that probability tells us how often something is likely to occur when an
experiment is repeated. For instance, the probability that a coin will come up heads
can be estimated by executing a number of coin flips and observing how many times
itis heads rather than tails. Perhaps the most important single fact about probability
is this:

The probability of an event is always between 0 and 1.

If the probability of an event is 0, that means there is no chance that it will occur,
whereas if the probability of an event is 1, that means it is certain to occur. It is
conventional in mathematics to specify probability using decimals, so we say that
the probability of an event is between 0 and 1, but it is equally acceptable (and more
common in everyday speech) to speak in terms of percentages, so it is equally correct
to say that the probability of an event is always between 0% and 100%. To move
from decimals to percent, multiply by 100 (per cent = per 100), so a probability of
0.4 is also a probability of 40% (0.4 x 100 = 40), and a probability of 0.85 may also
be stated as 85% probability.

Negative probability and probabilities greater than 100% are logical impossibilities
that exist only as figures of speech. The fact that probability is bounded by 0 and 1
has mathematical implications that are explored further when considering logistic
regression in Chapter 11. This fact also provides a useful check on your calculations.
If you come up with a probability lower than 0 or greater than 1, you have certainly
made a mistake somewhere along the way. Furthermore, if someone tells you there
is a 200% chance that you will make a killing in the stock market if you follow his
system, you should probably look for a new investment advisor.

Another useful fact about probability is that:
The probability of the sample space is always 1.

Because the sample space represents all possible outcomes of a trial, the total prob-
ability of the sample space must add up to 1. This is a useful fact because although
we may know the probability of some events in a sample space, there can be others
about which we have no information. However, because we know that the proba-
bility of the total sample space equals 1, we can assign a probability to those events
about which we have no information based on what probability remains after the
known probabilities are considered.

A third useful fact that follows from the first two is that:
The probability of an event and its complement is always 1.

This fact follows from the definition of a complement: everything in the sample space
that is not the event E is the complement of E. Therefore, E and ~E together must
make up the entire sample space, and the probability of E and ~E together must
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equal 1. This should be clear from Figure 2-5: the rectangular box represents the
sample space, the circle the event E, and the shaded area within the box but outside
the circle ~E. Together, E and ~E comprise the entire sample space, and their union
(E U ~E) has a probability of 1.

Expressing the Probability of an Event

It is typical to write probability statements as follows:
P(E) =0.5

This is read as “the probability of event E is 0.5” or “there is a 50% probability of
event E” (or just “the probability of E is 0.5” or “there is a 50% probability of E”).
Using this format, you can write your first fact about probability, that the probability
of an event is always between 0 and 1, as:

0<PE)<1

The second fact about probability, which follows from the definition of the sample
space S as including all possible outcomes of a trial, may be written as:

P©S) =1

The third fact about probability, that the probability of an event and its complement
is always equal to 1, can be written as:

P(E)+P(~E)=1
which provides us with the important corollary:
P(~E)=1-P(E)

This will prove very handy in later calculations. If we know the probability of E, we
automatically know the probability of ~E, which is 1 - P(E). So, if P(E) = 0.4,
P(~E)=1-0.4=0.6.

Conditional Probabilities

Often we want to know the probability of some event, given that another event has
occurred. This is expressed symbolically as P(E|F) and read as “the probability of
E given F.” The second event is known as the condition, and the process is sometimes
referred to as “conditioning on F.” Conditional probability is an important concept
in statistics because often we are trying to establish that a factor has a relationship
with an outcome, for instance that people who smoke cigarettes are more likely to
develop lung cancer. Another way to say that a factor has a relationship with an
outcome is to say that the probability of the outcomes differs depending on the
presence or absence of the factor. To express symbolically that the probability of
developing lung cancer (the outcome) is higher for those who smoke (the factor)
than for those who do not, we can write:
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P(lung cancer|smoker) > P(lung cancer|nonsmoker)

Conditional probabilities can also be used to define independence. Two variables
are said to be independent if the following relationship holds:

P(E|F) = P(E)

This equation states that the probability of E is the same whether or not variable F
is present. To continue with the same example, the equation to state that the prob-
ability of having lung cancer is unrelated to smoking would be:

P(lung cancer|smoker) = P(lung cancer)

This equation states that the probability of lung cancer for a person who smokes is
the same as the probability for the population in general, smokers and nonsmokers
alike. This is just an example, and I'm not implying that it is true; many studies have
shown that the probability of lung cancer for a smoker is much higher than the rate
in the general population.

Calculating the Probability of Multiple Events

To calculate the probability of any of several events occurring (the union of several
events), add the probabilities of the individual events. The specific equation used
will depend on whether the events are mutually exclusive (meaning both cannot
occur).

Union of mutually exclusive events

If the events are mutually exclusive, as in Figure 2-6, the equation is simply:
P(EUF) =P(E) + P(F)

For a practical example, imagine a college that does not allow double majors. Define
the event E = (English major) as having a probability of 0.2 and F = (French major)
as having a probability of 0.1. These events are mutually exclusive because students
are allowed only one major, so you would calculate the probability of the event
(either English or French major) as:

P(EUF)=0.2+0.1=03

Union of events that are not mutually exclusive

Often, events are not mutually exclusive. For instance, at a college that does allow
double majors, the events (English major) and (French major) are not mutually ex-
clusive because conceivably one person could be both an English major and a French
major. In this situation, the equation calculating P(English major or French major)
must include a term correcting for this overlap. Looking at Figure 2-4, the overlap
is the area contained in both circles E and F (their intersection, represented by the
shaded area). If you fail to take into consideration that a college that allows students
to elect more than one major could have people majoring in both English and French,
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you risk counting some people twice. (Those with double majors in French and
English would be counted both as French majors and as English majors.)

To correct for this potential overlap, use the following equation to calculate the
probability of the occurrence of either of two events that are not mutually exclusive:

P(EUF)=P(E) +P(F)-P(ENF)

Suppose that P(English major) = 0.2, P(French major) = 0.1, and P(double major in
French and English) = 0.05. The probability of a student being either an English or
a French major is therefore:

PEUF)=02+0.1-0.05=0.25

Intersection of independent events

To calculate the probability of all of several events occurring (the intersection of
several events), multiply their individual probabilities. The specific formula used
depends on whether the events are independent.

If the two events E and F are independent, the probability of both E and F occurring
is calculated as simply:

P(ENF) =P(E) x P(F).

Suppose you are flipping a fair coin (one whose probability of heads is 0.5, whose
probability of tails is 0.5, and whose results on each flip is independent). Label the
trials so that E = (heads on first flip) and F = (heads on second flip). You have already
specified that the probability of heads on either flip is 0.5, and the two trials are
independent, so you can compute the probability (heads on both flips) as:

PENF)=05x%x0.5=0.25

Intersection of nonindependent events

If two events are not independent, you have to know their conditional probability
to calculate the probability of both occurring. The formula to use is:

P(ENF) =P(E) x P(FIE)

Suppose you are drawing two cards without replacement from a standard deck of
52, meaning that you do not put the cards back in the deck after you draw them.
Half of all cards in a standard deck are red and half are black. These events (your
first and second draws) are not independent because the probability for the second
draw depends on the result of the first draw. If you are interested in the probability
of drawing two black cards in these two trials, you can calculate this as follows:

P(E) = P (black card drawn on first trial) = 26/52 = 0.5
P(F|E) = P(black card drawn on second trial|black card drawn on first trial) =
25/51=0.49
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Note that because you are drawing without replacement, there are only 51 cards in
the deck for the second draw, and only 25 black cards because you removed 1 black
card in the first draw. Using this information, you can calculate the probability that
you will draw black cards on both trials as (the intersection of E and F):

PEENF)=0.50x0.49=0.245

Bayes’ Theorem

Bayes’ theorem, also known as Bayes’ formula, is one of the most common appli-
cations of conditional probabilities. A typical use of Bayes’ theorem in the medical
field is to calculate the probability that a person who tests positive on a screening
test for a particular disease actually has the disease. Bayes’ theorem also uses several
of the basic concepts of probability previously introduced, so careful study of Bayes’
formula is a good review for the entire chapter as well. Bayes’ theorem for any two
events A and B is presented in Figure 2-11.

P(ANB) _ P(B1A)P(A)

P(A1B) - P(B) P(BIA)P(A)+ P(Bl~ A)P(~ A)

Figure 2-11. Bayes’ theorem

You would use this formula if you know P(A), P(B), and P(B|A) but want to know
P(A|B). The numerator of Bayes’ theorem uses the fact that the probability of the
intersection of two events is the probability of the first event multiplied by the
conditional probability of the second event given the first. In this example, the con-
ditional probability of B given A is multiplied by the probability of A, giving the
probability of the intersection of A and B, that is, of both A and B occurring.

The denominator uses this same fact plus the fact that any event plus its complement
comprises the entire sample space, and together an event and its complement have
a probability of 1, so the sum of the conditional probabilities of (B given A) times
the probability of A, and (B given ~A) times the probability of ~A, equals the prob-
ability of B.

Suppose you have a screening test that is 95% effective in detecting disease in those
who have the disease and 99% effective in not falsely diagnosing disease in those
who are free of it. Clinicians would say that this test has 95% sensitivity and 99%
specificity. Suppose also that the rate of disease in the population is 1%. Using the
symbols D for disease, ~D for absence of disease, T for a positive test, and ~T for
a negative test, these probabilities can be stated as:

Sensitivity = P(T|D) = 0.95

Specificity = P(~T|~D) = 0.99

Probability of disease in the population = P(D) = 0.01
These are very high values for sensitivity and specificity. Many commonly used tests
and procedures are less accurate. However, these tests are not perfect, and it is
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possible that a person who tests positive will not in fact have the disease (a false
positive) and that a person who tests negative can in fact have the disease (a false
negative). Often what you really want to know is, for an individual who has tested
positive, what is the probability that he actually has the disease? Using conditional
probability notation, you want to know P(D|T). You can calculate this probability
by using Bayes’ theorem plus the information about sensitivity, specificity, and dis-
ease rate in the population previously given, as shown in Figure 2-12.

P(DNT) _ P(T | D)P(D)
P(T)  P(T|D)P(D)+ P(T |~ D)P(~ D)

P(DIT) =

Figure 2-12. Bayes’ theorem, expressed in terms of disease and test results

Looking at this formula, it is clear that the probability of having the disease, given
a positive test, is simply the probability of having both a positive test and the disease
divided by the probability of having a positive test (whether or not the person has
the disease).

Using the fact that an event plus its complement constitutes the entire sample space,
and together they have a probability of 1, you know that the false positive rate is
1 - specificity:

P(T|~D)=1-0.99=0.01.

For the same reason, you know that the probability in the population of not having
the disease is 1 - the probability of having the disease:

P(~D)=1-PD)=1-0.01=0.99.

Using these facts plus the information previously supplied, we can calculate
P(D | T), as shown in Figure 2-13.

(0.95)(0.01) 00095
[(0.95)(0.01)]+(0.01)(0.99)]  0.0095 + 00099

P(DIT) = =0.4897

Figure 2-13. Using Bayes’ theorem to calculate the possibility of having a disease, given a
positive test

This example demonstrates an important and underappreciated (at least by the
public) fact about screening tests. Even with a highly specific and sensitive screening
test, if the disease is rare, the false positive rate will be high relative to the true positive
rate. In this example, you expect that about half the people who test positive will be
false positives, that is that they won’t have the disease. This is not necessarily a reason
not to use the test, particularly if the disease has serious consequences and there is
an accurate follow-up test to separate the true and false positives. However, any
proposal to institute universal screening (whether for a disease or in some other
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context such as luggage screening at the airport) should always consider the false
positive rate and its potential consequences.

It should be noted that the false positive rate depends on the rate of disease in the
population as well as the sensitivity and specificity of the screening test. If the disease
rate were 0.005 instead of 0.01, fewer of the positives would be true positives and
more would be false positives, as shown in the calculations in Figure 2-14.

(0.95)(0.005) 0.00475

= =0.3231
[(0.95)(0.005)]+(0.01)(0.995)]  0.00475 + .00995

P(DIT) =

Figure 2-14. Another example of using Bayes’ theorem to calculate the probability of disease,
given a positive test; note the lower rate of true positives, due to a lower rate of disease in the
population

In this example, less than one third of the positives are true positives.

The Reverend Thomas Bayes

Bayes’ theorem was developed by a British Nonconformist minister, the Reverend
Thomas Bayes (1702—1761). Bayes studied logic and theology at the University of
Edinburgh and earned his livelihood as a minister in Holborn and Tunbridge
Wells, England. However, his fame today rests on his theory of probability, which
was developed in his essay, published after his death by the Royal Society of Lon-
don. There is an entire field of study today known as Bayesian statistics, which is
based on the notion of probability as a statement of strength of belief rather than
as a frequency of occurrence. However, it is uncertain whether Bayes himself
would have embraced this definition because he published relatively little on
mathematics during his lifetime.

Enough Exposition, Let’s Do Some Statistics!

Statistics is something you do, not something you read about, so the real purpose
of the preceding theoretical presentation is to give you the information you need to
perform calculations about the probability of events and to use the concepts intro-
duced to be able to reason using your knowledge of statistics. This chapter also
introduced concepts, such as independence and mutual exclusivity, which you will
need to understand to use more advanced statistical procedures.

The purpose of the problems that follow is to give you some experience in working
with the concepts of basic probability. If you are a person who likes to work through
many problems to understand a topic, many excellent textbooks focus on proba-
bility; several are suggested in Appendix C.

If you are new to solving problems in elementary probability, it may help to follow
this procedure:
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1. Define the trial, experiment, or both.
2. Define the sample space.
3. Define the event.
4. Specify the relevant probabilities, and do the calculations.
At some point, you might not feel it is necessary to go through all these steps, but

they may help you get started working with the exercises. In some cases, an alter-
native solution, using a different approach to the problem, is provided.

Dice, Coins, and Playing Cards
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Because many of the examples in this chapter use dice, coins, and playing cards, this
section starts by describing their characteristics.

Dice

The standard die (the singular of dice) used in the Western world is a cube with
six sides, each displaying a different number of dots from 1 to 6. A standard
assumption in probability calculations is that all sides of the die are equally
likely to land facing up when the die is rolled or thrown, so one roll of the die
has six equally likely outcomes: 1, 2, 3, 4, 5, and 6. In technical terms, the set
of outcomes from rolling one die has a discrete uniform distribution because
the possible outcomes can be enumerated, and each outcome is equally likely.
The results of two or more dice thrown at once (or multiple throws of the same
die) are assumed to be independent of each other, so the probabilities of each
combination of numbers are calculated by multiplying the probability of each
result.

In the interests of precision, remember that the “equal probability for all sides”
holds only for casino dice, in which the pips (circles used to mark the numbers
on each side) are painted on. You might be more familiar with dice in which
the pips are drilled into the cube face rather than painted on, resulting in un-
equal weight and, thus, unequal probabilities for the different sides. However,
in theoretical discussions of probability, this distinction is usually ignored, and
you assume that all sides of the dice are equally probable.

Coins
The standard coin used in probability experiments has two sides, heads and
tails. Often, a fair coin is assumed, meaning it is equally likely to come up heads
or tails on any toss or flip. For any coin, fair or not, the probability of heads and
tails is assumed to be constant on each flip so that the results of previous flips
have no influence on later flips, and the results of multiple flips are independent
of each other. As with dice, the probability of an actual coin landing heads or
tails is seldom exactly 50-50 for a number of physical reasons, including coin
design and wear and off-center technique on the part of the person performing
the flip, but for the sake of probability exercises, ignore these details unless they
are specified in the problem. Sometimes, in the interests of safety, experiments
are conducted by spinning coins rather than flipping them (resulting in fewer
projectiles flying through the air in a crowded classroom). However, the 50-50
assumption applies even less here, although for the purposes of doing
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calculations (as opposed to actually spinning coins and recording the results),
assume that it applies equally. For more on these issues, see this website.
Playing cards

The standard pack or deck of playing cards today has 52 cards in four suits:
spades, clubs, diamonds, and hearts. Spades and clubs are black cards, and
diamonds and hearts are red cards. There are 13 cards in each suit: an ace,
numbered cards from 2 through 10, and 3 face cards—the jack, queen, and
king. In experiments involving drawing cards from the deck, it is assumed that
the cards have been shuffled so any card in the deck is equally likely on a given
draw.

Exercises

Problem

If I draw one card from an ordinary deck of 52 playing cards, what is the probability
that it will be a red card?

Solution

1. The trial is a single draw of one card from a deck of 52.

2. Thesample spaceisall the possible cards, each of which has an equal probability
of being drawn.

3. The eventis E = {red card}.

4. Because there are 52 cards in the deck and half (26) are red, the probability of
drawingared cardis 26/52 or 0.5. The answer is that you have a 50% probability
of drawing a red card on a single draw from a full deck of cards.

Problem
If I roll a die once, what is the probability of getting a number lower than 5?
Solution

1. The trial is a single roll of a six-sided die.
2. The sample space is the numbers (1, 2, 3, 4, 5, 6), all of which are equally likely.

3. The event is E = (any of 1, 2, 3, 4), which can also be considered the union of
four simple events, thatis, E = (E=1) U(E = 2U(E = 3) U(E = 4).

4. Four of the six simple events or possible outcomes that constitute the sample
space satisfy the event E, so the probability of E is 4/6 or 0.67 (rounded).

Alternative solution

Another way to look at this is to calculate the probability of each simple event that
satisfies the event E and then add them together because the events are mutually
exclusive. Using this approach, the probability of each simple event in E is 1/6; that
is, there is a 1 in 6 chance that the number will be 1, 1 in 6 that the number will be
2, and so on. Using this approach, the probability of E is 1/6 + 1/6 + 1/6 + 1/6 or
4/6, which is the same answer as the preceding one.
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Problem

If I flip a fair coin twice, what is the probability that I will get at least one head?

Solution

1.

2. The sample space is {(h, h), (h, t), (t, h), (¢, )}, all of which are equally likely.

3. The event is E = (at least one head). Three of the events in the sample space

. Each of the outcomes is equally likely, and three of the four satisfy the event

The experiment is two flips of a fair (P = 0.5 for either heads or tails) coin, that
is, two independent trials, each with a probability of 0.5.

satisfy this condition: (h, h), (h, t), and (¢, h).

-l
-
(=)
=
o
(=n
-
~<

E, so the probability of E is 3/4 or 0.75.

Alternative solution

You can also find this result mathematically by calculating the probability of the
complement of this event and then subtracting it from 1 to get the probability of the
event. If the event E is (at least one head), its complement is ~E = (no heads, that
is, two tails). You know that the probability of getting a tail on any flip of a fair coin
is 0.5, and the flips are independent, so the probability of (¢, t) is 0.5 x 0.5 or 0.25.
Using the definition of a complement, 1 - P(~E) = P(E), so 1 - 0.25 = 0.75, or
P(E). The probability of at least one head from two flips is 0.75, the same answer as
the previous solution.

Problem

If1

draw one card from a standard 52-card deck, what is the probability that it will

be a black (clubs or spades) face card (king, queen, or jack)?

Solution

1.
2.

4.

The trial is drawing one card from a 52-card deck.

The sample space is all 52 cards, each of which has equal probability of being
drawn.

. The event is E = (black face card); six cards satisfy this condition, the jack,

queen, or king of either spades or clubs.
The probability is 6/52 or 0.115.

Mathematical solution

P(face card) = 12/52 or 0.231 P(black card) = 26/52 or 0.5 P(black face card) =
P(face card) x P(black card) =0.231x 0.5=0.116

W

Note that this mathematical solution is possible because the
probability of drawing a black card and the probability of draw-

%+ ing a face card are independent.
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Problem

If I draw one card from a standard 52-card deck, what is the probability that it will
be either black (clubs or spades) or a face card (king, queen, or jack)?

Solution

1. The trial is drawing one card from a 52-card deck.

2. Thesample spaceis all 52 cards, each of which has an equal probability of being
drawn.

3. The event is E = (either black card or face card), meaning any of the 26 black
cards or any of the 12 face cards will satisfy the event.

4. The two types of cards that will satisfy the condition are not mutually exclusive;
some black cards are also face cards and vice versa. There are 26 black cards:
ace through king of spades (13) and ace through king of clubs (13). There are
12 face cards: jack, king, and queen for each of hearts, diamonds, clubs, and
spades. There are six cards that are members of both categories: the jack, king,
and queen of spades, and the jack, king, and queen of clubs, so 26 + 12 - 6 =
32 cards satisfy this event, and the probability is 32/52 or 0.615.

Mathematical solution
P(black card) =26/52 or 0.500 P(face card) = 12/52 or 0.231 P (black face card)
=6/52 or 0.115 P(black card or face card) = 0.500 + 0.231 - 0.115=0.616
The slight difference in solutions (0.615 versus 0.616) is due to rounding error.
Problem:

If I draw a single card from a 52-card deck and it is black, what is the probability
that its suit is clubs?

Solution

1. The trial is drawing one card from a 52-card deck.

2. The sample space is all black cards because we are interested in the conditional
probability of a card being a club, given thatitis a black card. Our sample space
is therefore the 26 black cards.

3. The event is E = (club|black card).
4. The probability of the card being a club, given that it is a black card, is 13/26
or 0.5.

B
)

Note that in this example we are calculating a conditional prob-
ability (the probability of clubs, conditioned on the fact that the
sy card is black). The unconditional probability of the card being
* aclub, if we had no information about its color, is 13/52 or 0.25.
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Mathematical solution
P(clubs|black card) = P(clubs and a black card)/ P(black card) = 0.25/0.5=0.5

Note that clubs are by definition black cards.
Problem

If order is not significant, how many ways are there to select a subset of 5 students
from a classroom of 20?

Solution

This is a combinatorial problem that is too lengthy to solve by listing all possible
subsets. Instead, use the combinational formula nCk. In this case, n =20 and k = 5;
apply the formula shown in Figure 2-15.

20!
nCk = ————— =15,504
5!(20 -5)!

Figure 2-15. Using the combination formula to determine the number of ways to choose a
subset of 5 individuals from a set of 20

Problem

Eighty students are attending a conference: 40 boys and 40 girls. Thirty of the boys
are majoring in math, as are 20 of the girls. You know that if you pick a boy at
random, there is a 75% chance that he is a math major. You want to know, however,
if you pick a math major at random, the probability that the student is male? Hint:
use Bayes’ theorem.

Solution

P (male) = 40/80 = 0.5

P (~male) = 40/80 = 0.5

P (math|male) = 30/40 = 0.75
P (math|~male) = 20/40 = 0.5

The calculations are shown in Figure 2-16.
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P(male | math)
P(math | male)P(male)
- P(math | male) P(male) + P(math | female) P( female)
(0.75)(0.5)
[(0.75)(0.5)] +[(0.5)(0.5)]
0.375

=——=0.600
0.625

Figure 2-16. Using Bayes’ theorem to find the probability that a math major, selected at
random, will be male

The probability is 60% that a math major, chosen at random, is male.

Closing Note: The Connection between Statistics and Gambling

Statisticians like to illustrate probability by using dice, coin flips, and playing cards
as examples, objects that are also used in gambling (or gaming, in the industry’s
preferred terminology). One reason is that these objects are familiar to most people.
Another is that probabilities of the different outcomes are known and unchanging
and, thus, can be used to create simple examples to illustrate the basic concepts of
probability, including independence and mutual exclusivity. Their advantage also
is that problems can be solved using the concrete objects in question (for instance,
by selecting from a standard deck of cards), as well as through mathematical
equations.

However, there is also a historical connection because many of the laws of proba-
bility were discovered in connection with games of chance and skill involving dice
and playing cards. In fact, gambling has been the motivation for many inquiries into
the probabilities of different events and combinations of events because the ability
of a gambler to win rather than lose money depends in large part on her under-
standing the probability of different events within the chosen game.

Many historians trace the beginning of modern probability theory to the Chevalier
de Mere, a gentleman gambler in seventeenth-century France. He was fond of betting
that he would roll at least one six in four rolls of a single die: the wisdom of this bet
will be demonstrated in the following paragraphs. However, he also believed that it
was a good bet to propose that he would roll one or more double sixes in 24 rolls of
a pair of dice: this turned out to be a losing proposition. Fortunately for future
statisticians, the Chevalier took this problem to his friend, the philosopher Blaise
Pascal, who discussed it with his friend, the mathematician Pierre de Fermat. Con-
sideration of this type of question led to the development of, among other things,
Pascal’s triangle, the binomial distribution, and the modern concept of probability.

In an even bet among friends, when there is no “house” taking a percentage of the
proceeds, a good bet is one you are likely to win more than 50% of the time. To put
itanother way, a good bet is one in which your likelihood of winning is 0.5 or greater.
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The Chevalier’s first bet met this standard: the probability of rolling at least one six
in four rolls of a die is 0.518. This is easily calculated by considering the probability
of rolling no sixes in four trials, which is (5/6)*. Rolling at least one six is the com-
plement of rolling no sixes, so the P(at least one six in four trials) is 1 - (5/6)* or
1 - 0.482, which is 0.518. This means that about 52% of the time, the Chevalier
won this bet.

However, betting that you will roll at least one double six in 24 rolls of a pair of dice
is not a wise bet. There are 36 combinations of numbers in each of 2 rolls of a pair
of dice, and only one combination is double sixes; therefore, on each roll, the prob-
ability is 35/36 that double sixes will not come up. Because each roll of the dice is
independent, you can multiply the probabilities for each roll together. Because the
probabilities do not change, this means multiplying (35/36) by itself 24 times, which
is the same as raising (35/36) to the power of 24. The probability of rolling at least
one double six is 1 - P(no double sixes) or 1 - 0.509, which is 0.491. Because this
probability is less than 0.5, this is a losing bet.

If you are interested in learning more about how probability theory applies to games
of chance and skill such as roulette, craps, blackjack, horse racing, and poker, take
a look at Edward Packel’s The Mathematics of Games and Gambling, published by
the Mathematical Association of America and listed in Appendix C.
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Inferential Statistics

Statistical inference is the science of characterizing or making decisions about a
population by using information from a sample drawn from that population. Most
of the practice of statistics is concerned with inferential statistics, and many sophis-
ticated techniques have been developed to facilitate this type of inference. The con-
cept of inferential statistics can be a bit tricky, so it’s worth taking a few minutes to
think about what it means to use statistics for inferential reasoning.

The term “inference” is given two definitions by the Merriam-Webster online dic-
tionary:

a) The act of passing from one proposition, statement, or judgment considered
as true to another whose truth is believed to follow from that of the former

b) The act of passing from statistical sample data to generalizations (as of the
value of population parameters) usually with calculated degrees of certainty

The second meaning, which is specific to statistics, is closely related to the first.
Inference in general is a method of making judgments about an unknown, drawing
on what is already known to be true. Statistical inference is a specific kind of infer-
ence in which you make judgments about a population, as stated earlier.

People are sometimes confused about the difference between descriptive statistics
(discussed in Chapter 4) and inferential statistics, in part because some statistical
procedures are used in both types of statistics, although there can be subtle differ-
ences in the formulas as well as in the interpretation of the results. For instance, the
same basic procedure is used for calculating the mean of a set of data, whether the
data represent a population or a sample: add up all the data values and divide by the
number of values. However, there are differences in the way the formula to calculate
the mean is written. For a population, you use the Greek letter pu (mu) to represent
the mean (which is properly called a parameter because it is a number that describes
a population), whereas for a sample, you use the Latin letter x with a bar over it, X
(pronounced “x-bar”), to represent the mean (properly called a statistic because it
is a number that describes a sample).
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In other cases, there are more important differences between the formulas used for
populations and samples. One well-known example is the formula for the variance.
When dealing with a population, you divide by # (the number of cases), but if dealing
with a sample, you divide by n-1 (one less than the number of cases). These two
formulas are explained in detail in Chapter 4 (in the “Measures of Disper-
sion” on page 90), and if you are new to the study of statistics, read that entire
chapter before tackling this one because descriptive statistics are conceptually sim-
pler than inferential statistics.

You might use both kinds of statistics within the same project (for example, de-
scriptive statistics to describe your study sample and then inferential statistics to
address the primary questions of your study), but you need to be clear about which
type you are using in any particular analysis. It can help to think about the purpose
of your analysis: is it merely to describe the data set upon which you are performing
the calculations? Or is it to generalize to a larger group that you can’t study directly?
In the first case, you should be doing descriptive statistics, and in the second,
inferential statistics. Here are two rules that state the same information slightly
differently:

If the cases you are studying represent the entire population of interest, and you
do not wish to generalize beyond those cases, you should be using descriptive
statistics.

If the cases you are studying do not represent the entire population of interest,
and you do wish to generalize beyond those cases, you should be doing infer-
ential statistics.

Probability Distributions

The practice of statistical inference frequently relies on making assumptions about
the way data is distributed, so much so that it is common in statistical work to
transform data to make it fit some known distribution better. For this reason, this
topic of statistical inference begins with a presentation of the concept of a theoretical
probability distribution and a review of two commonly used distributions.

A theoretical probability distribution is defined by a formula that specifies what
values can be taken by data points within the distribution and how common each
value will be (or, in the case of continuous distributions, how common a given range
of values will be). Theoretical probability distributions are often presented in graph-
ical form as well; the familiar bell curve of the normal distribution is one example.

Theoretical probability distributions are useful in inferential statistics because their
properties and characteristics are known. If the actual distribution of a given data
set is reasonably close to that of a theoretical probability distribution, many calcu-
lations can be performed on the actual data by using assumptions drawn from the
theoretical distribution. In addition, thanks to the central limit theorem (discussed
later in this chapter), under certain circumstances you can assume that the distri-
bution of sample means is normal even if the population from which the samples
were drawn is not normally distributed.
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Probability distributions are commonly classified as continuous, meaning the data
can take any value within a specified range, or discrete, meaning the data can take
only certain values. This chapter examines the normal distribution as an example
of a continuous distribution and the binomial distribution as an example of a discrete
distribution.

The Normal Distribution

The normal distribution is arguably the most commonly used distribution in statis-
tics. This is partly because the normal distribution is a reasonable description of how
many continuous variables are distributed in reality, from industrial process varia-
tion to intelligence test scores. A second reason for the widespread use of the normal
distribution is that under specified conditions, we may assume that sampling dis-
tributions of statistics such as the sample mean are normally distributed, even if the
samples are drawn from populations that are not normally distributed. This is dis-
cussed further in the section on the central limit theorem later in this chapter. The
normal distribution is also referred to as the bell curve due to its characteristic shape,
and as the Gaussian distribution in honor of the eighteenth-century physicist and
mathematician Karl Gauss, who used this distribution to analyze astronomical data.

There is an infinite number of normal distributions, all of which have the same basic
shape but differ according to their mean g (the Greek letter mu) and standard devi-
ation ¢ (the Greek letter sigma). Examples of three normal distributions with dif-
ferent means and standard deviations are displayed in Figure 3-1.

1 T T T T T T T T T

09
0.8
0.7
0.6
0.5

p=0,0 = 045—
= 0,0 =224~
B =20 = 0.71

T

T

0.4
03
0.2
0.1

r— I 1 '
-5 -4 -3 -2 -1 0 1 2 3 4 5

T

Figure 3-1. Three normal distributions

The normal distribution with a mean of 0 and standard deviation of 1 is known as
the standard normal distribution or Z distribution. Any normal distribution can be
transformed to the standard normal distribution by converting the original values
to standardized scores (a process discussed later in this chapter and further in
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Chapter 16), a procedure that facilitates comparison among populations with dif-
ferent means and standard deviations.

All normal distributions, regardless of their mean and standard deviation, share
certain characteristics. These include:
¢ Symmetry
* Unimodality (a single most common value)
* A continuous range from -0 to +eo (from negative infinity to positive infinity)
¢ A total area under the curve of 1
¢ A common value for the mean, median, and mode
As noted earlier, there is an infinite number of normal distributions, but they all
share certain properties. For the sake of convenience, we often describe normal dis-

tributions in terms of units of standard deviation rather than raw numbers because
that allows us to apply the same description to any normal distribution.

Because all normal distributions have the same basic shape, we can make some
assumptions about how data is distributed within any normal distribution. The em-
pirical rule states that for any normal distribution:

¢ About 68% of the data will fall within one standard deviation of the mean.

¢ About 95% of the data will fall within two standard deviations of the mean.

¢ About 99% of the data will fall within three standard deviations of the mean.

Thisisillustrated in Figure 3-2, which expresses values in units of standard deviation.

=
S

0.3

341%  341%

0.2

0.1

0.1% : 13.6% ’ 0.1%

T T T
o 2o o 18 lo 2o Jor

0.0

Figure 3-2. Percent of data falling into specified ranges of the normal distribution

Knowledge of these properties of the normal distribution offers a way to judge
whether a particular value is typical or atypical compared to other values in the
population. The process of making such comparisons is facilitated by converting
raw scores (scores in their natural metric, for instance, weight measured in pounds
or kilograms) into Z-scores, which express the value of the score in terms of units
of the standard deviation. Converting all the values in a data set to Z-scores is anal-
ogous to transforming a normally distributed population to the standard normal
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distribution. For this reason, Z-scores are sometimes referred to as normalized
scores, the process of converting raw scores to Z-scores as normalizing the scores,
and the standard normal distribution as the Z distribution.

AZ-scoreis the distance of a data point from the mean, expressed in units of standard
deviation. The formula to calculate a Z-score for a value from a population with a
known mean and standard deviation is shown in Figure 3-3.

Figure 3-3. The formula for calculating a Z-score

If the variable x is distributed normally with a mean of 100 and standard deviation
of 5, thatis, x ~ N (100, 5), a value of 105 has a Z-score of 1, as shown in Figure 3-4.

_105-100
-5

Z =1.00

Figure 3-4. The Z-score for a value of 105 from a population ~N(100, 5)

This tells us that the value of 105 is located one standard deviation above the pop-
ulation mean. Similarly, a value of 110 from this population has a Z-score of 2.00,
and a value of 85 has a Z-score of -3. Using the empirical rule previously cited, we
classify the value of 105 as above average but not remarkable among the population
(about 15.9% of the population would be expected to have higher Z-scores). A score
of 110 is more unusual (about 2.5% of the population would be expected to have
higher Z-scores), and a score of 85 is below average and quite unusual (less than half
of 1% of the population would be expected to have scores this low or lower).

One great advantage of Z-scores is that they facilitate comparison of scores from
populations with different means and standard deviations. For instance, looking at
one population x ~ N (100, 5) and another population y ~ N (50, 10), we can’t
immediately say whether a score of 95 from the first population is more or less
unusual than a score of 35 from the second population. However, this comparison
is easily made using Z-scores, as shown in Figures 3-5 and 3-6.

Z=95—100
5

=-1.00

Figure 3-5. The Z-score for a value of 95 from a population ~N(100, 5)
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_35-50
10

Z =-1.50

Figure 3-6. The Z-score for a value of 35 from a population ~N(50, 10)

Conversion to Z-scores places both populations on the same metric, and we can see
that although both scores are below average for their populations, the second score
is more extreme because -1.5 is further from 0, the mean of the standard normal
distribution, than -1.0.

The Binomial Distribution

We will use the binomial distribution as an example of a discrete distribution, that
is, a distribution for a variable for which only certain values are possible. Consider
the case of flipping a coin five times: the number of times the coin comes up heads
can take integer values such as 0, 1, 2, 3, 4, or 5 but not values such as 3.2 or 4.6.
The variable “number of heads in five coin flips” is therefore a discrete variable. The
binomial distribution applies to many types of real-life data with dichotomous out-
comes (outcomes that can take only two values), from machine parts that are either
defective or acceptable to students who either pass or fail a class.

Events in a binomial distribution are generated by a Bernoulli process. A single trial
within a Bernoulli process is called a Bernoulli trial. The binomial distribution de-
scribes the number of successes in n trials of a Bernoulli process. “Success” in this
case doesn’t necessarily mean something good, just that the outcome we are looking
for has occurred. For instance, if we were describing how many machine parts out
of a sample of 10 were defective, each part would be considered a separate trial, and
the trial would be classified as a success if the part were defective. The binomial
distribution describes how likely it is that a particular number of parts from the
sample of 10 will be defective, given some estimate of the overall rate of defective
parts.

Data represented by the binomial distribution must meet four requirements:

1. The outcome of each trial is one of two mutually exclusive outcomes.

2. Each trial is independent, so the result of one trial has no influence on the result
of any other trial.

3. The probability of success, denoted as p, is constant for every trial.

4. There is a fixed number of trials, denoted as n.

Examples of the type of data that could be described by the binomial distribution
include the number of heads in 10 flips of a coin, where the probability of heads on
any toss is known to be 50%; the number of males in a sample of 5 drawn from a
large population known to be 65% male (the population must be large enough for
the proportion of males not to change appreciably by the removal of 5 people from
the total); and the number of defective items in a sample of 20, drawn from a large
population whose defect rate is known to be 1%.

50 | Chapter3: Inferential Statistics



The formula to calculate the probability of a particular number of successes on a
particular number of trials is shown in Figure 3-7.

n L
( ]p*(l -p)"*

k

Figure 3-7. The formula for the binomial distribution

The formula for a combination is shown in Figure 3-8.

n n!
=nCk=——"—
(k) k!(n - k)!

Figure 3-8. The formula for calculating a combination

A combination, as discussed in Chapter 2, expresses the number of ways k items
can be chosen from a set of n objects, ignoring order. Note that when the binomial
formula is written, the parentheses form specifies the combination to make the entire
formula easier to read, but the meaning is the same as the nCk notation we used in
Chapter 2.

The symbol ! in this equation means factorial: n! = (n)(n - 1)(n - 2) . . . (1). For
instance, 5! =5 x 4 x 3 x 2 x 1 = 120. n is the number of trials. If we are flipping a
coin 10 times, n=10. k is the number of successes. If we want to know the probability
of 5 successes in 10 trials, k = 5. p, a number between 0 and 1, is the probability of
success. If we are flipping a fair coin and the event is heads, p = 0.5 (meaning the
probability of heads on each flip is 0.50 or 50%).

The binomial formula can be used to calculate the probability of getting a particular
number of successes given a fixed probability of success per trial and a fixed number
of trials. The abbreviated way to specify a binomial probability is b(k;n,p) or P(k =
k;n,p), where k is the number of successes in n trials, each of which has probability
p of success. If we wanted to calculate the probability of 2 successes in 20 trials, with
p = 0.4, we could write b(2;20,0.4) or P(k = 2;20,0.4).

Figure 3-9 shows the graph for three binomial distributions. (Note that each com-
bination of p and n will produce a different distribution.)
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Figure 3-9. Three binomial distributions

As n increases, holding p constant, the binomial distribution more closely resembles
the normal distribution. A common rule of thumb is that if both np and n(1 - p) are
greater than or equal to 5, the binomial distribution may be approximated by the
normal distribution. In Figure 3-9, the distribution (p = 0.5, n = 40) qualifies for the
normal approximation according to this rule because:

np =40(0.5) =20 n (1 - p) = 40(1 - 0.5) = 20

However, a distribution with p = 0.1 and n = 40 does not qualify for use of the normal
approximation to the binomial because:

np =40(0.1) =4

Complex calculations based on the binomial distribution are usually done using
computer software, but a simple example will demonstrate how the formula works.
Suppose we are flipping a fair coin five times; what is the probability that we will
get exactly one head? We will define “heads” as a success and use the binomial
formula to solve this problem. In this example:

p = 0.5 (the definition of a fair coin is that heads and tails are equally likely)
n =5 (because we are conducting five trials)
k =1 (because we are calculating the probability of exactly one success)

The probability of exactly one success in five trials, given a probability of success on
each trial as 0.5, is calculated in Figure 3-10.
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5
P(k=15,0.5) = (l ]0.5'(1 -0.5)" =0.16

Figure 3-10. Calculating b(1;5,0.5)

Breaking down the steps, Figure 3-11 shows how to calculate the combination.

5 ~ 5! _5><4x3><2x1_
1) UG- Ix@x3x2x1)

Figure 3-11. Calculating 5C1

And Figure 3-12 shows the entire calculation.

5
P(k=15,0.) = (l JO.SI(I -0.50°" =5%(0.5)" x(0.5)* =0.16

Figure 3-12. Detailed calculation of b(1;5,0.5)

We can also get this result by using the binomial table in Figure D-8, Appendix D.

Independent and Dependent Variables

There are many ways to characterize variables: one of the most common is by the
roles they play in a research design or data analysis. Using these criteria, a simple
way to describe variables is as either dependent, if they represent an outcome of the
study, or independent, if they are presumed to influence the value of the dependent
variable(s). Many study designs include a third category, control variables, which
might influence the dependent variable but are not the main focus of interest.

»

Note that the labels “independent,” “dependent,” and “control” relate to the roles
played by the variables in a given design or experiment. This means that a given
variable (for instance, weight) could be an independent variable in one study, a
dependent variable in another, and a control variable in a third. In addition, other
labels are used to describe dependent and independent variables, with some authors
preferring to reserve specific labels for particular types of studies. Control variables
are particularly problematic because many types of control variables have been de-
fined, depending on their relationship to the independent and dependent variables
of interest and the type of study design employed. Control variables are discussed
further in Chapter 18, but this discussion will concentrate on independent and de-
pendent variables.
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We will use the example of a regression equation to illustrate the concept of inde-
pendent and dependent variables. This is just a brief introduction; the topic of re-
gression is covered in detail in Chapters 8, 10, and 11.

In a standard linear model such as an OLS regression equation, the outcome or
dependent variable is customarily indicated by the letter Y, whereas the independent
variables are indicated by X. Subscripts identify each individual X variable: X1, X5,
and so on. (OLS means Ordinary Least Squares, the most common type of regres-
sion; if not otherwise specified, in this book “regression equation” means “OLS
regression equation.”)

This should be clear from the conventional way of notating a regression equation,
as shown in Figure 3-13.

Y=8+BX +BX,+BX;+..+¢

Figure 3-13. A regression equation

The e in this equation means “error” and reflects the fact that we don’t assume any
regression equation will perfectly predict Y; instead, we expect that there will always
be some error of prediction. Note that each X in the equation is preceded by a f,
which is called its regression coefficient: f31 is the regression coefficient for Xy, B, is
the regression coefficient for X5, and so on. The values for these regression coeffi-
cients are determined through a mathematical process to create the best possible
equation for predicting the value of Y from the values of the Xs in a given data set.

Because of this notational convention, the dependent variable is also referred to as
the “Y variable” and the independent variables as the “X variables.” Other terms
used for the dependent variable include the outcome variable, the response vari-
able, and the explained variable. Other names for independent variables include
regressors, predictor variables, and explanatory variables.

Some researchers believe that the terms “independent” and “dependent” should be
reserved for experimental studies (for instance, a randomized controlled drug trial).
In this interpretation, the terms “independent” and “dependent” imply causality,
that is, that the value of the dependent variable depends at least in part on the values
of the independent variables, a statement that is difficult if not impossible to estab-
lish in a nonexperimental study. (The distinction between experimental and non-
experimental studies is discussed in detail in Chapter 18.) This book does not
embrace this rule because questions of causality are far more complex than the dis-
tinction between experimental and nonexperimental studies; thus, we will use
“independent variable” to identify the variables that reflect the outcome of a study
and “dependent variable” to mean the variables believed to influence the outcome.

Populations and Samples

The concept of populations and samples, which is also discussed in Chapter 4, is
crucial to understanding inferential statistics. The process of defining the population
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and selecting an appropriate sampling method can be quite complex (in fact, many
doctoral-level statisticians specialize in this type of work) and requires more study
than can be covered here. Instead, the basic issues and concepts will be discussed,
and the reader interested in further information on the subject should consult a
specialized textbook (several are listed in Appendix C) or take an advanced course
in sampling theory.

The population of interest (often called simply “the population”) consists of all the
people or other entities (for instance, airplane parts or Atlantic salmon) that the
researchers would like to study if they had infinite resources. To look at it another
way, the population of interest is all the entities about which the researchers would
like to generalize their results. Defining the population of interest is the first step in
drawing a sample. It might be, for instance, everyone living in the United States in
2007 or men aged 65—75 with a diagnosis of congestive heart failure.

Samples and Censuses

Almost all statistical research is based on a study sample drawn from a population
rather than the population itself. The rare exceptions are studies based on data
collected from entire populations. When data is systematically collected from an
entire population, the result is a census. Many national governments conduct a
regular census of their population. For instance, the United States conducts a
census every 10 years, and the results are used for a variety of purposes, including
allocating seats in the House of Representatives. Even though a census intends to
collect information from every individual in a population, in practice this is rarely
achieved; some people are never counted, and some are counted more than once.
For these reasons, some statisticians argue that a well-chosen sample can yield a
more accurate estimate of population characteristics than that produced by census
data, or that the census data should be supplemented by sample data. For a read-
able discussion of these issues and a good list of references to more detailed in-
formation, see the article by Ivars Peterson listed in Appendix C.

Nonprobability Sampling

There are many ways to draw a sample. Unfortunately, some of the most convenient
are based on nonprobability sampling, which leaves them subject to sampling bias.
This means there is a high probability that the sample drawn using a nonprobability
method will not be representative of the population of interest, and there is no way
to correct the sample statistically, so any conclusions about the population based
on sample calculations will be questionable. Nonprobability sampling methods are
popular because the researcher can bypass the more cumbersome process of drawing
a probability sample, but a price is paid for this convenience. Conclusions based on
data using nonprobability sampling methods are of limited usefulness in generalizing
to a larger population (the usual reason for drawing a sample in the first place)
because there is no way to know how the sample relates to the population of interest,
and, thus, little faith may be had in conclusions about that population based on
results from the sample.
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Volunteer samples are a common type of nonprobability sample. Here’s an example:
a researcher advertises in the newspaper for study subjects and accepts those who
answer the ad and volunteer to take part in the study. This is a convenient way to
get subjects, but unfortunately people who volunteer for studies can’t be assumed
to be representative of any general population. Use of volunteer samples is best
reserved for circumstances in which it would be difficult to select a sample randomly
from a population, for instance in a study about people who use illegal drugs. Even
with limited ability to generalize, useful information can be gained from volunteer
samples, particularly in the early stages of a project. For instance, you might use
volunteer subjects to gather information about drug use within a community, in-
formation that you could then use to construct a questionnaire that would be ad-
ministered to a random sample from the community. Still, results from volunteer
samples have limited usefulness if the goal is to generalize beyond the sample.

Convenience samples are another common type of nonprobability sample. Like vol-
unteer samples, convenience samples can be used to collect information in the early
stages of a study but have limited usefulness if the goal is to generalize beyond the
sample. Here’s an example of a convenience sample: you collect information about
the shopping habits of people in a particular geographical area by interviewing 50
people shopping at a mall within that area. The problem with this type of sampling
is that because those 50 people are not a random selection of area residents, it would
not be valid to conclude that their opinions reflect those of the area as a whole.
However, you might use the information gained from a survey administered to a
convenience sample to construct a questionnaire for a more scientific sample of the
area’s population.

Quota sampling is a nonprobability sampling method in which the data collector is
instructed to get responses from a certain number or proportion of subjects within
broad classifications. For instance, in the shopping mall example, the data collector
might be instructed to collect data from a sample of 25 men and 25 women or to
include at least 20 nonwhite individuals in the sample. Quota sampling is a slight
improvement over convenience sampling because it can ensure representation of
different demographic groups within the sample. For instance, without the quota
requirements, the shopping mall sample might consist of 45 women and 5 men, and
no nonwhite individuals at all. However, because quota sampling is a nonprobability
sampling method, you still have no way of knowing whether the people in the sample
are representative of the population of interest. You might have an even represen-
tation of men and women in a quota sample, for instance, but are those in the sample
representative of all the men and women who shop at the mall, let alone who live
in the area? Quota sampling can also be subject to a particular type of selection bias,
which is also a risk in convenience sampling. The data collector might approach
people who seem most like himself (for instance in age) or who seem the friendliest
or most approachable, rendering the sample even less useful as a means to acquire
information about a larger population.
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Probability Sampling

In probability sampling, every member of the population has a known probability
to be selected for the sample. Although more complex to execute than nonproba-
bility sampling, probability sampling is preferred because the researcher can gener-
alize the results obtained from the sample to the population of interest.

Drawing a probability sample from a population requires devising some type of
sampling frame so the researcher can identify and sample members of the popula-
tion. Sometimes an obvious sampling frame exists. If the population is students
enrolled at a particular school, a list of all enrolled students could serve as the sam-
pling frame. Other times, a less optimal sampling frame must be used. For instance,
a telephone directory or block of phone numbers in use can be employed for a survey
carried out by telephone. A problem with either type of telephone sampling frame
is that people without phone service are not included in the population from which
the sample is drawn although they might be included in the population of interest.
People with unlisted telephone numbers or only callphone service, can also be ex-
cluded from a telephone sample drawn using these methods although they might be
part of the population of interest. Weighting and other procedures can be used dur-
ing analysis to make results from the study sample more applicable to the population
of interest.

The most basic type of probability sampling is simple random sampling (SRS). In
SRS, all samples of a given size have an equal probability of being selected. Suppose
you wanted to draw a random sample of 50 students attending a particular school.
You obtain alist of the students and select 50 at random from the list, using a random
number table or random number generator. Because the list represents an enumer-
ation of the entire population and the choice of whom to include in the sample is
completely random, every student has an equal probability of being selected for the
sample, as does every combination of students. (In this example, all samples of size
50 are equally likely.)

In most cases, SRS has the most desirable statistical properties of any kind of sam-
pling, including the smallest confidence intervals around parameter estimates, and
requires the least complex procedures to analyze. However, SRS can be impossible
or prohibitively expensive to execute in some contexts, so other methods of proba-
bility sampling have been developed when SRS is not possible or practical.

Systematic sampling is similar to SRS. To draw a systematic sample, you need a list
or other enumeration of your population. You decide the size of the sample you wish
to draw and then compute the number 7, which dictates how you will select the
sample. You calculate n by dividing the size of the population by the number of
subjects you want in your sample. Suppose you have a population of 500 and want
to draw a sample of 25; in this case, n = 20 because 500/25 = 20.

You then choose a start number at random between 1 and 7 and include in your
sample the object representing the start number and every nth object following.
Suppose you want to draw a random sample of 100 objects from a population of
1,000. The steps to draw a systematic sample are the following:
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1. Set n = 10 because 1,000/100 = 10.
2. Choose a number at random between 1 and 10.

3. Select the object with that number and every 10th object thereafter.

If the number chosen at random was 7, your sample would include the 7th object,
the 17th, the 27th, and so on up to the 997th object.

Systematic sampling technique is particularly useful when the population accrues
over time and there is no predetermined list of population members. For instance,
suppose you want to survey people making court appearances in the upcoming year.
At the start of your study, you don’t know who those people will be, so you make
an estimate of the population of interest based on the court caseload in the previous
year, decide on your sample size, and calculate n as previously described. You then
keep an ordered list of people making court appearances, select your random starting
point, and then survey the person corresponding to your random starting point and
every nth person afterward who appears in court. If you determine that n is 14 and
your random starting point is 10, you would then survey the 10th person, the 24th
person, 38th person, and so on until you have your desired sample size.

One caution when using systematic sampling is that you must ensure that the data
is not cyclic in a way that corresponds with your random starting point and value
of n. For instance, if particular hours or days in court are reserved for particular types
of cases, and if your combination of starting point and # means that people whose
court dates were scheduled for those times have no possibility of being selected, your
sample will not be a random selection of everyone making court appearances.

There are many types of complex random samples, an umbrella term for probability
sampling methods that impose one or more layers of complexity beyond that of SRS.
In a stratified sample, the population of interest is divided into nonoverlapping
groups or strata based on common characteristics. For people, these characteristics
might be gender or age; for cities, they might be population size or type of govern-
ment; and for hospitals, they might be type of governance or number of beds. If
comparing different strata or making estimates of the characteristics of subgroups
is a primary goal of the study, stratified sampling is a good choice because it can be
designed to ensure adequate sampling from each stratum of interest. For instance,
a sample drawn using SRS might not include sufficient older adults to estimate their
characteristics accurately or compare them with middle-aged people. A stratified
sample, in contrast, can be designed to oversample the older adults, and the sample
can then be statistically adjusted to correct for the oversampling.

In a cluster sample, the population is sampled by using preexisting groups. This
technique is often used in national surveys that require in-person interviews or the
collection of physical specimens (e.g., blood samples) because sending survey per-
sonnel to interview one person in Ruckersville, Virginia, one in Chadron, Nebraska,
one in Barrow, Alaska, and so on would be prohibitively expensive. A more eco-
nomical procedure is to create a sampling plan that incorporates several levels of
random selection. On a national level, a cluster sampling plan could be devised that
selects geographic regions, then states within regions, cities within states, and so on
down to individual households and individuals within households. Precision is
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decreased with cluster sampling because objects that are clustered within units (for
instance, households within cites and cities within states) tend to be more similar
than objects selected through SRS. Offsetting this loss of precision is that a larger
sample can be collected because the cost savings of cluster sampling are usually
substantial.

Cluster sampling can be combined with the technique of sampling proportional to
size. For instance, you might wish to draw a sample of elementary school students.
There is no national list of all elementary school students (at least, not in the United
States), but you could compile a list of all elementary schools, and each school would
have a list of its students. Therefore, you could select schools at random, possibly
in a multistage process, and then draw a random sample from the selected schools.
Because schools enroll different numbers of students, you might want to incorporate
this information into your sampling plan so that you don’t have a disproportionate
number of students from small schools (which are more numerous but contain fewer
students as compared to large schools). Then you would select a different number
of students from each sampled school, based on the number enrolled in the school.
This means that you would select twice as many students from a school with an
enrollment of 400 as from a school with an enrollment of 200. In this way, your final
sample will have a representative proportion of students from both large and small
schools.

The Central Limit Theorem

The central limit theorem states that the sampling distribution of the sample mean
approximates the normal distribution, regardless of the distribution of the popula-
tion from which the samples are drawn if the sample size is sufficiently large. This
fact enables us to make statistical inferences based on the properties of the normal
distribution, even if the sample is drawn from a population that is not normally
distributed.

The central limit theorem can be stated as follows with regard to the sample mean:

Let Xy, . . . Xn be a random sample from some population with mean p and
variance 6%, Then for large 1,

2

- o
X~ N(H,;)

even if the underlying distribution of individual observations in the population
is not normal.

The A symbol represents “approximately distributed,” and the formula can be
read as “the mean of X is approximately normally distributed with mean p and
variance 0%/n”.1

1. Rosner, Bernard. 2000. Fundamentals of Biostatistics, 5th ed.; Brooks/Cole, Pacific
Grove, CA, 174.
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The application of the central limit theorem in practice can be seen through com-
puter simulations that repeatedly draw samples of specified size from a nonnormal
population. Figure 3-14 displays a histogram for a population of randomly generated
data (100 cases) with a uniform distribution of values ranging from 0 to 100.

204

0.00 20.00 40.00 60.00 80.00 100.00

Figure 3-14. Histogram of a uniformly distributed population (N = 100) with range 0—100

The distribution in Figure 3-14 is decidedly not normal. However, the central limit
theorem says that when samples of sufficient size are drawn from a nonnormal pop-
ulation, the means of those samples tend to assume a normal distribution. Note that
the theorem does not define what constitutes a sufficient size. Analysts have devel-
oped rules of thumb regarding this issue, such as the often-repeated rule that the
sample size should be 30 or larger, but no absolute rule applies in all cases. For
samples drawn from a population that is approximately normal, the sampling dis-
tribution of the sample mean might be approximately normal with a sample size as
small as 10 or 15, whereas with highly skewed distribution, the sample size required
can be 40 or more.

The phrase “sampling distribution of the sample mean” is a mouthful, but its mean-
ing is straightforward. We have already looked at two theoretical distributions (the
normal and the binomial), but the fact is that random variables also have distribu-
tions. In this case, we are interested in the distribution of means calculated from
samples of a given size drawn from a particular population. If we repeatedly draw
samples of a given size, calculate the mean of each sample, and plot the distribution
of those means, the result is the sampling distribution of the sample mean. We expect
that the samples will differ somewhat from each other and thus will have different
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means, producing a distribution of means. We can predict the general shape that
this distribution of sample means will take based on factors such as the population
distribution and the sample size.

You can see the influence of sample size on the sampling distribution of the sample
mean by comparing Figure 3-15 and Figure 3-16. Figure 3-15 displays the distribu-
tion of the means of 100 samples of size n = 2 drawn from the population shown in
Figure 3-14; Figure 3-16 displays the distribution of the means of 100 samples of
size n = 25 drawn from the same population. Figure 3-15 still looks much like a
uniform distribution, indicating that a sample size of 2 is not sufficient to invoke the
central limit theorem for this population.
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Figure 3-15. Histogram of the means of 100 samples of size n = 2 drawn from a uniform
distribution

Figure 3-16 displays the distribution of 100 means calculated from samples of size
n =25 drawn from the uniform distribution displayed in Figure 3-14. This distri-
bution is much closer to a normal distribution, so a sample size of 25 appears to be
sufficient to invoke the central limit theorem for this population.
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Figure 3-16. Histogram of the means of 100 samples of size n = 25 drawn from a population
with uniform distribution

Figures 3-17 to 3-19 demonstrate the same principle by using samples drawn from
a skewed (nonsymmetric) population. Figure 3-17 shows the distribution of values
for a data set of size 100 with a strongly skewed distribution.

Figures 3-18 and 3-19 demonstrate how the distribution of sample means drawn
from this skewed population changes with the size of the samples. Figure 3-18 shows
the distribution of means calculated from 100 samples of size n = 2, whereas Fig-
ure 3-19 shows the distribution of means from 100 samples of size n = 25. As with
the previous uniform data example, a sample of size n = 2 is not sufficient to invoke
the central limit theorem for this data, although a sample of 25 seems to be sufficient.
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Figure 3-17. Histogram of skewed population (N = 100)
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Figure 3-18. Histogram of the means of 100 samples of size n = 2, drawn from a population
with skewed distribution
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Figure 3-19. Distribution of the means of 100 samples of size n =25, drawn from a population
with skewed distribution

Hypothesis Testing

Hypothesis testing is fundamental to inferential statistics because it allows us to use
statistical methods to make decisions about real-life problems. Several conceptual
steps are involved in hypothesis testing:

1. Develop a research hypothesis that can be tested mathematically.
2. Formally state the null and alternative hypotheses.
3. Decide on an appropriate statistical test, gather data, and do the calculations.

4. Make your decision based on the results.

Take the example of evaluating a new medication to treat high blood pressure (hy-
pertension). The manufacturer wants to establish that it works better than currently
available treatments for the same condition, so the research hypothesis might be
something like, “Hypertensive patients treated with the new drug X will show greater
lowering of their blood pressure than hypertensive patients treated with the currently
available drug Y.” If we use p; to signify the mean lowering of blood pressure in the
group treated with drug X and y, to signify the mean lowering of blood pressure in
the group receiving drug Y, we can state our null and alternative hypotheses as
follows:

Ho:p1 <o
Hprp > 1
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Hy is called the null hypothesis. In this example, the null hypothesis states that drug
X is no improvement over drug Y because the lowering of blood pressure achieved
by drug X is less than or equal to that achieved by drug Y. Ha, sometimes written
as Hy, is called the alternative hypothesis. In this example, the alternative hypothesis
states that drug X is more effective than standard treatment because patients treated
with drug X show more lowering of their blood pressure than patients treated with
drug Y. Note that the null and alternative hypotheses must be both mutually exclu-
sive (no result could satisfy both conditions) and exhaustive (all possible results will
satisfy one of the two conditions).

In this example, the alternative hypothesis is single-tailed: we state that the group
treated with drug X must achieve greater lowering of blood pressure than the group
treated with drug Y for the null hypothesis to be rejected. We could also state a two-
tailed alternative hypothesis if that were more appropriate to our research question.
For instance, if we were interested in whether the blood pressure of patients treated
with drug X was different, either higher or lower, than that of patients receiving drug
Y, we would state this using a two-tailed alternative hypothesis:

Ho: gy =

Hp:py # 12
Two-tailed hypotheses are more common in statistical testing because usually you
want to retain the ability to find a difference in either direction.

After the data is collected and the statistics calculated, we can make one of two
decisions:

* Reject the null hypothesis.
* Fail to reject the null hypothesis.

Note that if we fail to reject the null hypothesis, this does not mean that we have
proven the null hypothesis to be true, only that our study did not find sufficient
evidence to reject it.

Rejecting the null hypothesis is sometimes called “finding significance” or “finding
significant results” because our statistical analysis must show not only that there
are, say, differences in the group means but that those differences are statistically
significant. The informal meaning of statistically significant is “probably not due to
chance,” and the process of determining whether results are significant involves not
only statistical calculations but the application of customary rules that might vary
based on the field of study or other factors.

The process of statistical testing involves choosing a probability level or p-value (a
topic treated in greater detail later) that defines when sample results will be consid-
ered strong enough to support rejection of the null hypothesis. In practice, the p-
value is most commonly set at 0.05. Why this particular value? It’s a somewhat
arbitrary cutoff point and dates back to the early twentieth century, when statistics
were computed by hand and the results compared to published tables used to de-
termine whether a result was significant. The use of p < 0.05 as the standard for
significant results has been challenged (see the next sidebar, “Controversies Re-
garding Hypothesis Testing”) but remains a common standard for research in many
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fields. Alternative lower p-values are sometimes used, such as p < 0.01 or p < 0.001,
but no one has been successful in legitimizing the general use of a larger value, such
as p <0.10.

Inferential statistics is a powerful tool that allows us to make probabilistic statements
about data. However, because those statements are probabilistic rather than abso-
lute, the possibility of error is inherent in the process. Statisticians have defined two
types of error possible when making decisions using inferential statistics and have
established levels for error rates that are commonly considered acceptable. The two
types of error are displayed in Table 3-1.

Controversies Regarding Hypothesis Testing

Despite the ubiquity of hypothesis testing in modern statistical practice and the
canonical place that the a = 0.05 significance level has achieved, neither practice
has gone unchallenged. One of the chief critics is Jacob Cohen, whose arguments
are presented in, among other places, his 1994 article, “The Earth Is Round (p <
0.05)”.2 There are valid criticisms of both hypothesis testing in general and the
0.05 value in particular, but neither seems likely to be going away any time soon.
On the one hand, we need to establish some standard for statistical significance
to minimize the possibility of attributing significance to differences due to sam-
pling error or other chance factors. On the other hand, there’s nothing magical
about the 0.05 level, even if it is sometimes treated as such. In addition, the sig-
nificance level of results calculated on a sample is affected by many factors, in-
cluding the size of the sample involved, and overemphasis on the p-value of a result
ignores the many reasons a particular study may or may not have found signifi-
cance. It’s a common saying among statisticians that if you have a large enough
sample, even a tiny effect will be statistically significant. The take-home message
is that statistical methods are powerful tools, but they don’t relieve researchers of
the need to use their common sense as well.

Table 3-1. Type I and Type II errors

True state of population

Hy true Hy true
Decision based on FailtorejectH,  Correct decision: Hy true and Hy not Type Il error or
sample statistic rejected
Reject H, Typel errorora Correct decision: Hy false and
Hy rejected

The diagonal boxes represent correct decisions: Hy is true and is not rejected in the
study, or Hy s false and is rejected in the study. The other two boxes (the off-diagonal
boxes) represent Type I and Type Il errors. A Type I error, also known as alpha or
a, represents the error made when the null hypothesis is true but is rejected in a
study. A Type II error, also called beta or B, represents the error made when H, is
false but is not rejected in a study.

2. American Psychologist, December 1994, 997-1003.
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L have set up this matrix to compare the true state of the population (which, of course,
is generally unknown to the researcher) with a decision made about the population,
based on analysis of a sample. Another way to look at it is to consider a trial in which
the null hypothesis is that the defendant is innocent. In a trial situation, there is a
true state of affairs (did the defendant commit the crime as charged?), and then there
is the jury members’ decision based on the information presented to them (did they
find the client guilty or not guilty?). The jury doesn’t know the true state of affairs
any more than a statistician knows the true state of the population, so it might make
a correct decision, or it might commit a Type I or Type Il error. If the jury finds an
innocent client guilty, thatis equivalent to a Type L error (it rejects the null hypothesis
of innocence when it should not), whereas if it finds a guilty client not guilty, it
commits a Type II error (failing to reject the null hypothesis of innocence when it
should have rejected it).

The level of acceptability for Type I error is conventionally set at 0.05, as noted
previously. Setting alpha at 0.05 means that we accept a 5% probability of Type 1
error. To put it another way, we understand when setting the alpha level at 0.05 that
in our study we have a 5% chance of rejecting the null hypothesis when we should
fail to reject it.

Type 11 error has received less attention in statistical theory because historically it
has been considered a less serious error to fail to make an inference that s true (Type
II error) than to make an inference that is false (Type I error). Conventional levels
of acceptability for Type II error are $ = 0.1 or $ = 0.2. If 8 = 0.1, that means the
study has a 10% probability of a Type Il error; that is, there is a 10% chance that
the null hypothesis will be false but will fail to be rejected in the study. To put it
another way, it means that in a study that should return significant results based on
the true state of the population, there is a 10% chance that the results of the study
will not be significant.

The reciprocal of Type Il error is power, defined as 1 - 8. The importance of setting
an appropriate power level has become more appreciated in recent years, particularly
in the medical field. Researchers and funding agencies have become concerned with
power and, thus, with Type Il error, in part because they don’t want to invest time,
effort, and expense in a study unless it has a reasonable probability of finding sig-
nificant results if it should find them. Power calculations play an important role in
planning studies, particularly in determining the sample size required for adequate
power; these issues are discussed in more detail in Chapter 15.

Confidence Intervals

When we calculate a single statistic, such as the mean, to describe a sample, that is
referred to as calculating a point estimate because the number represents a single
point on the number line. Although the sample mean is the best unbiased estimate
of the population mean, we know that if we drew a different sample, the mean
calculated from that sample would probably be different. We certainly don’t expect
that every sample we draw will have exactly the same mean. It is reasonable to ask
how much a point estimate is likely to vary by chance, and for this reason, it has
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become a common practice in many professional fields to report both point esti-
mates and interval estimates. In contrast to a point estimate, which is a single num-
ber, an interval estimate is a range of numbers.

One common interval estimate is the confidence interval, which is the interval be-
tween two values that represent the upper and lower confidence limits or confidence
bounds for a statistic. The formula used to calculate the confidence interval depends
on the statistic being used and will be included in the relevant chapters. In this
section, our purpose is to convey the concept of the confidence interval. It is calcu-
lated using a predetermined significance level, often called « (the Greek letter
alpha), which is most often set at 0.05, as discussed previously. The confidence co-
efficient is calculated as (1 - «) or, as a percentage, 100(1 - «)%. Thus, if & = 0.05,
the confidence coefficient is 0.95 or 95%. The latter usage is more common; for
instance, people often speak of 95% confidence intervals, and professional journals
often require you to report the 95% confidence interval along with point estimate
statistics.

Confidence intervals are based on the idea that if a study were repeated an infinite
number of times, each time drawing a different sample of the same size from the
same population, and a confidence interval based on each sample were constructed,
x% of the time the confidence interval would contain the true parameter value that
the study seeks to estimate, where x is the size of the confidence interval. For in-
stance, if our test statistic is the mean and we are using a 95% confidence interval,
over an infinite number of repetitions of drawing a sample and computing its mean,
95% of the time the confidence interval thus constructed would contain the true
mean of the population.

The confidence interval conveys important information about the precision of a
point estimate. For instance, suppose we have two samples of students, and in both
cases, the mean IQ score for the group is 100 (average intelligence). In one case,
however, the 95% confidence interval is (95, 105), whereas in the other case, the
95% confidence interval is (80, 120). Because the first confidence interval is much
narrower than the second, the estimate of the mean is more precise for the first
sample. In addition, the wider confidence interval for the second sample suggests
that those students are drawn from a population with greater variability in IQ than
the students in the first sample (although further analysis would be necessary to
confirm or reject this hypothesis).

p-values

It is a fact of life when working with inferential statistics that we are generally trying
to estimate something that we can’t measure directly. For instance, we can’t collect
data from every hypertensive adult in the world, but we can collect data from a
sample of hypertensive adults and make inferences based on that sample. We know
that there is always some probability of error in this type of reasoning, including the
possibility that significant results can be due to chance factors such as sampling error
rather than to the factors of interest in our study.
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A p-value expresses the probability that results at least as extreme as those obtained
in an analysis of sample data are due to chance. The phrase “at least as extreme” is
included in the definition because many statistical tests involve comparing the test
statistic to some hypothetical distribution, and often (as is the case with the normal
distribution), scores closer to the center of the distribution are the most common,
whereas scores further from the center of the distribution (the more extreme scores)
are less likely. Even if a distribution is not symmetrical (as is the case with the chi-
squared distribution, for instance), more extreme results are usually less probable
results, so the principle of determining the probability of results at least as extreme
as those found in a study remains useful.

This might become clearer by considering a simple illustration. Suppose we are en-
gaged in an experiment involving flipping a coin that we believe to be fair, that is, a
coin for which heads (h) or tails (¢) are equally likely outcomes for any single flip.
We can express this formally as:

P(h)=P@) =0.5.

We will call each flip a trial. Because the probability of heads on any flip is 0.5, our
best guess is that we will get 5 heads on 10 trials, although we also know that on
any particular set of 10 trials, we might get a different number of heads. Suppose we
flip the coin 10 times, and 8 times it comes up heads. We want to know the p-value
of this result, that is, how likely is it that a coin with a probability of 0.5 for heads
on any single trial would produce 8 heads in 10 trials?

Using a binomial table, computer software, or the binomial formula, we find that
the probability of this exact result (8 heads in 10 trials) is 0.0439, meaning that less
than 5% of the time would we expect to get exactly 8 heads in 10 flips with a fair
coin. The probability for 9 heads in 10 trials is 0.0098, and for 10 heads in 10 trials
is 0.0010. This demonstrates that as results move further away from the expected
result of 5 heads in 10 trials, they become less likely.

If we are evaluating the probability that the coin is fair, results that are far from our
expectation (5 heads in 10 trials) give us strong evidence that it is fair. With this type
of question, we usually calculate the probability not just of the result we obtained
in our experiment but of results at least as extreme as those we obtained. In this case,
the probability of getting 8, 9, or 10 heads in 10 flips of a fair coin is 0.0439 + 0.0098
+0.0010, or 0.0547. This is the p-value for the result of at least 8 heads in 10 trials,
using a coin where P(heads) = 0.5.

p-values are commonly reported for most research results involving statistical cal-
culations, in part because intuition is a poor guide to how unusual a particular result
is. For instance, many people might think it is unusual to get 8 or more heads on 10
trials using a fair coin. There is no statistical definition of what constitutes “unusual”
results, so we will use the common standard that the p-value for our results must be
less than 0.05 for us to reject the null hypothesis (which is, in this case, that the coin
is fair). In this example, somewhat surprisingly, this standard is not met. The p-value
for our result (8 heads in 10 trials) does not allow us to reject the null hypothesis
that the coin is fair, that is, that P(heads) = 0.5, because 0.0547 is greater than 0.05.
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The Z-Statistic

The Z-statistic is analogous to the Z-score discussed earlier, with one important
difference: instead of asking what the probability of a particular score is, we are now
interested in the probability of a particular sample mean. The Z-statistic is an im-
portant example of the application of the central limit theorem, which allows us to
compute the probability of a sample result by using the normal distribution, even if
we don’t know the distribution of the population from which the sample was drawn.

The formula for calculating the Z-statistic (Figure 3-20) is similar to that for calcu-
lating a Z-score (Figure 3-3).

Figure 3-20. Formula for the Z-statistic

In this formula, X is the mean of our sample,
u is the population mean,

o is the population standard deviation, and
n is the sample size.

The big difference between the Z-score and the Z-statistic formulas is in the de-
nominator: for a Z-score we divide by o, whereas for the Z-statistic we divide by o/
Vn. Note that to calculate the Z-statistic, we must know the population mean and
standard deviation; if we know the mean but not the standard deviation, we can
calculate the ¢-statistic instead (discussed in Chapter 6). It might help to think of the
Z-score as a Z-statistic for a sample of 1, so the denominator is o/V1, which is the
same as o and gives us the familiar Z-score formula.

The denominator of the Z-statistic is called the standard error of the mean, some-
times abbreviated SEM or written as 0;. The standard error of the mean is the stan-
dard deviation of the sampling distribution of the sample mean. Because the de-
nominator of the standard error of the mean is divided by Vn, larger samples will
tend to produce larger Z-statistics, all else held equal. This will be clear if we calculate
the Z-statistic for several samples that differ only in sample size. Suppose we draw
three samples from a population with a mean of 50 and a standard deviation of 10:

Sample 1: X =52, n =30

Sample 2: X =52, n =60

Sample 3: X =52, n =100
The calculations for the Z-statistic for each sample are presented in Figures 3-21,
3-22, and 3-23.
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52-50
Z="95

V30

Figure 3-21. Z-statistic for a sample (X = 52, n = 30) from a population ~N(50, 10)

=1.10

52-50
=710

/60

Figure 3-22. Z-statistic for a sample (X = 52, n = 60) from a population ~N(50, 10)

Z =1.55

52-50
Z="75

V100

Figure 3-23. Z-statistic for a sample (X = 52, n = 100) from a population ~N(50, 10)

=2.00

It is clear from these examples that sample size has an important influence on our
results and that, all else held equal, a larger sample will result in a more extreme
Z-score. This topic is taken up in greater detail in the section on sample size and
power in Chapter 15, but we will note here that this result makes intuitive sense.
The Z-statistic is calculated by dividing a numerator by a denominator, and a larger
sample size (larger n) will result in dividing by a smaller denominator, thus a more
extreme Z-score (assuming the numerator does not change). We say “more extreme”
because if the numerator is negative, the Z-score will be smaller with a larger » (all
else held equal) but also further from 0. For instance, in this example, if our sample
mean were 48 instead of 52, the Z-values would be -1.10, -1.55, and -2.00.

Suppose we are testing a two-tailed hypothesis with an alpha level of 0.05. In this
case, we would also want the p-values for each result, which are:

Sample 1: p =0.2713
Sample 2: p =0.1211
Sample 3: p = 0.0455

Only the third sample gives us significant results; that is, only the p-value from the
third sample is less than our alpha level of 0.05 and thus allows us to reject the null
hypothesis. This underlines the importance of having adequate sample size when
conducting a study.

You can find the p-value for a given Z value in several ways: by using statistical
software, by using one of the many online calculators, or by using probability tables.
Probability tables for several of the most common distributions, including the
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http://graphpad.com/quickcalcs/PValue1.cfm

standard normal distribution, are included in Appendix D, along with instructions
for using the tables.

Data Transformations

Many of the most common statistical procedures are known as parametric statistics,
meaning that they make certain assumptions about the distribution of the popula-
tion from which the sample was drawn. If the sample data indicate that these as-
sumptions have not been met, the researcher has several options for analyzing the
data. Oneis to use alternate, nonparametric statistical procedures, which make fewer
or no assumptions about the data distribution. Nonparametric statistics are dis-
cussed in Chapter 13. Another possibility is to transform the data in some way so
that the assumptions of the desired parametric statistical procedure are met. There
are many ways to transform data, depending on the distribution involved and the
assumptions violated. We will examine one case, the transformation of a data set to
make it close to a normal distribution, but the principles we discuss apply to other
data transformation problems as well. For further information about data transfor-
mations, consult a more advanced textbook such as that by Mosteller and Tukey
(listed in Appendix C).

The first step in data transformation is to evaluate the data set and decide which, if
any, transformations might be appropriate. Two approaches are recommended to
evaluate a data set for this purpose. One is to graph the data, for instance, by creating
a histogram with a superimposed normal curve. This allows a visual evaluation of
the general shape of the data as well as the opportunity to identify outliers (extreme
orunusual data values). Observing the general shape of the data can also help suggest
which transformations to try. The second approach is to compute one of the statistics
designed to test whether the data fits a particular distribution. Two statistics com-
monly used for this purpose are the Anderson—Darling and the Kolmogorov—
Smirnov. Routines to calculate these statistics are included in many statistical
packages, and various statistical calculators available on the Internet will also cal-
culate one or both of them. For instance, a statistical calculator to compute the
Kolmogorov—Smirnov test is available here.

Data thatis right skewed (assuming a shape in which lower values are more common,
and a tail of higher values with lower frequencies extends some distance to the right)
may be made more normal by application of the square-root or log transformations.
The square-root transformation computes the square root of each value. If the raw
data value is 4, the transformed value is 2 because V4 = 2. The log transformation
computes the natural log of each value, so if the raw data value is 4, the transformed
value is 1.386 because In(4) = 1.386. Either transformation can be accomplished
easily with statistical software, a pocket calculator, or a spreadsheet program.

Figure 3-24 displays a right-skewed data set. Figure 3-25 shows the same data after
a square-root transformation (the values graphed are the square roots of the data in
Figure 3-24), and Figure 3-26 shows the same data after a log transformation (the
values graphed are the natural logs of the data displayed in Figure 3-24).
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Figure 3-24. Histogram of right-skewed data set (raw values)
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Figure 3-25. Histogram of right-skewed data after square-root transformation
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Figure 3-26. Histogram of right-skewed data after natural log transformation

Comparing the three graphs visually, Figure 3-24 is definitely right skewed and does
not fit the superimposed normal distribution curve. Figure 3-25 seems to be a much
better fit to the normal distribution, and Figure 3-26 seems to have replaced the right
skew with a left skew, so it is also nonnormal.

We can also compute statistical tests to see whether either of the transformations
has resulted in an acceptably distributed data set. For this purpose, we will calculate
the one-sample Kolmogorov—Smirnov (K-S) statistic (using SPSS software, although
it is available in other statistical programs as well) to evaluate how closely each data
set corresponds to a perfect normal distribution. Results for the three data sets are
shown in Table 3-2.

Table 3-2. The Kolmogorov-Smirnov Z statistics and p-values for three data sets

Rawdata  Square-root transformation  Natural log transformation
Kolmogorov—SmirnovZ  1.46 0.66 141
p 0.029 0.78 0.04

The null hypothesis for the one-sample K-S test is that the data follow the specified
distribution, in this case the normal distribution; the alternative hypothesis is that
the data do not follow that distribution. SPSS returns both a K-S statistic (the K-S
Z) and a p-value for this statistic, and we will apply the rule that we will reject the
null hypothesis if p < 0.05. For the results in Table 3-2, we reject the null hypothesis
for the raw data and the natural log transformed data but fail to reject it for the
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square-root transformation. Therefore, if we want to use this data in a procedure
that calls for normally distributed data, we should use the square-root-transformed
data.

If a variable has a left or negative skew, that is, a concentration of high values with
a tail of less-frequent lower values to the left, you can reflect the data and then apply
the square-root or log transformation. To reflect a variable, add 1 to the largest value
in the data set and then subtract each value of the variable from the new number.
For instance, if the largest value in the data set is 35, subtract each value from 36
(i.e., 35 + 1) to get the reflected values. This means that the raw value of 1 becomes
the reflected value 35 (36 - 1), the raw value of 2 becomes the reflected value of 34
(36 - 2), and so on, up to the raw value of 35, which becomes the reflected value of
1 (36 - 35). Reflection changes a left-skewed distribution to a distribution with a
right skew, and then the square root and log transformations can be applied to see
whether they improve normality.

Data transformation is not a guaranteed solution to a distribution problem; some-
times it makes the problem worse or introduces a new problem! For this reason, the
transformed data should always be evaluated for normality, as we did previously, to
see whether the transformation resulted in data with the desired distribution. Note
also that a transformation changes the unit of the data. For instance, if you apply
the log transformation to a population of blood pressure scores, your unit of meas-
urement becomes the log of blood pressure scores. If you reflect a variable, this
reverses the values (what was the highest score is now the lowest), so the interpre-
tation of any statistic based on those values is also reversed. For these reasons, the
effects of any data transformations must be kept in mind when reporting and inter-
preting the statistical results.

Exercises

Problem

In each of the following sets of variables, which are likely candidates to be treated
as independent and which as dependent within a research study?
1. Gender, alcohol consumption, and driving record

2. High school GPA (grade point average), university freshman year GPA, choice
of university major (selected before enrollment), race/ethnicity, and gender

3. Age, race/ethnicity, smoking habits, and occurrence of breast cancer
4. Accuracy on a coding task, type of instructions given, practice time, and anxiety
level

Solution

Note that there is more than one possible answer to these questions. The following
answers are simply the most likely research designs.

1. Gender is an independent variable (neither alcohol consumption nor driving
record could influence gender). Alcohol consumption would most likely be an
independent variable and driving record a dependent variable, so the study
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would examine the influence of gender and alcohol consumption on driving
record. However, one could conceivably design an experiment in which the
roles of alcohol consumption and driving record were reversed, perhaps to test
the hypothesis that people are inclined to lower their alcohol consumption after
being in a serious accident.

2. University freshman-year GPA is the most likely dependent variable. For tem-
poral reasons, high school GPA would be an independent variable (because high
school occurs before university). Race/ethnicity and gender are also independ-
ent variables because they are characteristics of a person. For temporal reasons,
choice of university major would be an independent variable, if freshman-year
GPA is the dependent variable, because the variable description states that the
major is chosen before enrolling in university, whereas the freshman-year GPA
is calculated after one year of enrollment.

3. Breast cancer is the most likely dependent variable, with age, race/ethnicity,
and smoking habits being independent variables.

4. Accuracy is the most likely dependent variable, with type of instructions given,
practice time, and anxiety level all independent variables.

Problem

Why is the central limit theorem of primary importance to the practice of inferential
statistics?

Solution

The central limit theorem states that the sampling distribution of the sample mean
approximates the normal distribution, regardless of the distribution of the popula-
tion from which the samples are drawn if the sample size is sufficiently large. This
is important because if sample size is sufficient, we can use the normal distribution
to calculate the probability of results calculated on a sample, even if we don’t know
the distribution of the population from which the sample was drawn.

Problem
Which type of sampling is described by each of the following scenarios?

1. The goal is to collect information on iron deficiency, obtained through blood
tests, on the U.S. population. A sampling plan is devised so that units are se-
lected from successively smaller regions of the country. Regions are selected at
random, then states within regions, and so on down to individual households
within census block groups.

2. The goalis to find out how elementary school students are reacting to a recently
appointed principal. The researcher wants to include equal numbers of male
and female students in the sample, so the interviewer is sent to the school with
instructions to interview 10 male and 10 female students from among those on
the playground after school one day.

3. The goal is to learn more about the domestic life of police officers working in a
major city, including how home life is affected when the police officer’s spouse
is employed outside the home. A complete list of all men and women working
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as police officers in this city is available, and a computer draws a random sample
of 200 from this list. Members of the sample are then interviewed by telephone.

4. A factory supervisor is concerned that the quality of parts produced might not
be equal on all shifts or at all times within a shift. (The factory operates 24 hours
per day.) A sampling plan is devised to collect samples of 30 parts at 9 times
during the work day, with the times of collection selected randomly within time
blocks for each of the three daily shifts. Within each shift, one sample will be
drawn within the first 2 hours, one within the middle 6 hours, one within the
last 2 hours.

Solution

1. Cluster sampling
2. Quota sampling (and convenience sampling)
3. Simple random sampling

4. Stratified sampling
Problem

You are taking a multiple-choice test with 10 items, in which there is no penalty for
wrong answers. There are 5 possible answers for each question, so just by guessing,
you have a 20% chance of getting the right answer on each question. Assuming that
you simply guess at the right answers, what is the probability that you will get
exactly 3 answers right?

Solution

This question can be answered by using the binomial distribution with n = 10, k =
3,and p = 0.2, as shown in Figure 3-27.

10
P(k =3;10,0.20) = (3 )0.23(1 -0.2)" =0.20

Figure 3-27. Calculating b(3; 10, 0.2)

Therefore, the probability is 0.20 or 20 percent that you will get exactly 3 questions
right, under these conditions.

Using Figure D-8 (the binomial probability table in Appendix D), the table proba-
bility is 0.20133, which rounds to 0.20.

Problem

Given the same conditions as in the previous question, what is the probability of
getting 3 or more questions right?

Solution

This question can also be answered by using the binomial distribution with n = 10,
k =3, and p = 0.20. It is easier to calculate the probability of getting no more than
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2 questions right and then subtracting it from 1, so that is the approach we will use.
We can do this because total probability always equals 1, and “at least 3 questions
right” and “no more than 2 questions right” together account for all possible out-
comes. Applying the binomial formula, we find these probabilities:

P(k=0)=0.11
P(k=1)=0.27
P(k=2)=0.30

P(k>=3)=1-P(k<=2)=1-(0.11+0.27+0.30) =0.32
Therefore, the probability of getting 3 or more answers right, under these conditions,

is 0.32 or 32 percent.

Using Figure D-9 (the cumulative binomial probability table in Appendix D), the
table probability for b(2; 10, 0.5) is 0.67780; 1 - 0.67780 = 0.3222, which rounds
to 0.32.

Problem

Calculate the Z-scores of the following data values, assuming they came from a
normal population with gy = 100 and ¢ = 2, and use the standard normal table
(Figure D-3 in Appendix D) to find the probability of a score this large or larger for
each. Instructions about how to use the probability table are included in Appen-
dix D, along with detailed solutions for each of these problems.

a. 108

b. 95

c. 98
Solution

a. Z=4;P(Z=4.00) =1 - (0.50000 + 0.49997) = 0.00003

_ 108 -100
2

Z =400

Figure 3-28. Z-score for value of 108 from population ~N(100, 2)

b. Z=-2.5;P(Z 2 -2.50) = 0.50000 + 0.49379 = 0.99379

z=2"19_ 550

Figure 3-29. Z-score for value of 95 from population ~N(100, 2)
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c. Z=-1.0; P(Z=-1.00) = 0.50000 + 0.34134 = 0.84134

~98-100
2

Z =-1.00

Figure 3-30. Z-score for value of 98 from population ~N(100, 2)

Problem
Which of the following raw scores has a more extreme Z-score, that is, has a Z-score
further (in either a positive or negative direction) from 0?

a. A score of 190, from a population with 4 = 180 and 6 = 4

b. A score of 175, from a population with 4 =200 and 0= 5
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Solution

The second score is more extreme because -5.0 is further from 0 than 2.5 (Figures
3-31 and 3-32).

190180

Z =2.50

Figure 3-31. Z-score for value of 190 from population ~N(180, 4)

175-200

Z ==5.00

Figure 3-32. Z-score for value of 175 from population ~N(200, 5)

Problem

Compute the Z-statistic for each of the following samples, which were drawn from
a population with a mean of 40 and a standard deviation of 5. Use the standard
normal table (Figure D-3 in Appendix D) to find the probability of a result at least
as low as each result.

a. Xx=42,n=35
b. Xx=42,n=50
c. Xx=39,n=40
d. x=39,n=80
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Solution

a. Z=2.37;P(Z<2.37) =0.50000 + 0.49111 = 0.99889

_42-40
5

/35

Figure 3-33. Z-statistic for a sample (X = 42, n = 35) from a population ~N(40, 5)

Zz =237

b. Z =2.83; P(Z <£2.83) = 0.50000 + 0.49767 = 0.99767

_42-40
E

J50

Figure 3-34. Z-statistic for a sample (X = 42, n = 50) from a population ~N(40, 5)

Z =2.83

c. Z=-1.26;P(Z<-1.26)=1-P(Z2-1.26)=1-(0.50000 + 0.39617) = 0.10383

~39-40
5

420

Figure 3-35. Z-statistic for a sample (X = 39, n = 40) from a population ~N(40, 5)

Z =-1.26

d. Z=-179;P(Z<-1.79)=1-P(Z>2-1.79) =1 - (0.50000 + 0.46327) = 0.03673

39-40
B

/80

Figure 3-36. Z-statistic for a sample (X = 39, n = 80) from a population ~N(40,5)

Zz =-1.79

Problem

You are a principal in an elementary school. As part of a comprehensive evaluation,
one of your students was given an IQ (intelligence) test and received a score of 80.
You know that for this student’s age group in the population at large, scores on this
test are distributed normally (u = 100, o = 15). What statistic will help you interpret
this student’s score?
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Solution

A Z-score will place this student’s score of 80 in the context of the distribution of
scores for other students of his age. As shown in Figure 3-37, this student scored
1.33 standard deviations below the average for her age group. Although many factors
can affect the score on an IQ test (hence, the need for a comprehensive evaluation),
a below-average score does suggest that this student might have more difficulty in
school than pupils who test higher on IQ tests.

80 -100
A
15

=-1.33

Figure 3-37. Z-score for a value of 80 from a population ~N(100, 15)

Using the standard normal distribution table (Figure D-3 in Appendix D), you see
that only about 9% of students (p = 0.09176) would be expected to have an IQ score
this low or lower.

P(Z<-133)=1-P(Z2-1.33)=1-(0.50000 + 0.40824) = 0.09176

Problem

You are a medical researcher studying the effects of a vegetarian diet on cholesterol
levels. Assume the cholesterol level for U.S. men ages 20-65 is distributed normally,
with a mean of 210 mg/dL (mg = milligrams, dL = deciliter) and a standard deviation
of 45 mg/dL. You are studying a sample of 40 men from this age group who have
followed a vegetarian diet for at least one year and find that their mean cholesterol
level is 190mg/dL. Which statistic can help you place this result in context?

Solution

You compute the Z-statistic, which places the mean cholesterol level for your veg-
etarian sample in the context of the total U.S. male population for their age group.
As shown in Figure 3-38, the average cholesterol for the vegetarian group is 2.81
standard deviations below the mean for the total population of men in their age
group, suggesting that consuming a vegetarian diet is associated with lower choles-
terol. As with the IQ example, many factors can affect cholesterol level, and a medical
study designed to address this question would normally include more variables; this
is a simplified example to illustrate the use of the Z-statistic.

_190-210
45

W)

Z =-2.81

Figure 3-38. (X = 190, n = 40) from a population ~N(210, 45)
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Using the standard normal distribution table (Figure D-3 in Appendix D), you find
that the probability of a result at least this extreme, using a two-tailed test, is 0.00496,
so if your alpha value is 0.05, this result is sufficient to reject the null hypothesis (in
this case, that a vegetarian diet has no effect on cholesterol).

(Z<-281)=1-P(Z=-2.81)=1-(0.50000 + 0.49752) = 0.00248
P(Z 22.81) = 0.00248 (because the Z-distribution is symmetric)
P[(Z<-2.81) OR (Z=2.81)] =2 x (0.00248) = 0.00496
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Descriptive Statistics and
Graphic Displays

Most of this book, as is the case with most statistics books, is concerned with stat-
istical inference, meaning the practice of drawing conclusions about a population by
using statistics calculated on a sample. However, another type of statistics is the
concern of this chapter: descriptive statistics, meaning the use of statistical and
graphic techniques to present information about the data set being studied. Nearly
everyone involved in statistical work works with both types of statistics, and often,
computing descriptive statistics is a preliminary step in what will ultimately be an
inferential statistical analysis. In particular, it is a common practice to begin an
analysis by examining graphical displays of a data set and to compute some basic
descriptive statistics to get a better sense of the data to be analyzed. You can never
be too familiar with your data, and time spent examining it is nearly always time
well spent. Descriptive statistics and graphic displays can also be the final product
of a statistical analysis. For instance, a business might want to monitor sales volumes
for different locations or different sales personnel and wish to present that informa-
tion using graphics, without any desire to use that information to make inferences
(for instance, about other locations or other years) using the data collected.

Populations and Samples

The same data set may be considered as either a population or a sample, depending
on the reason for its collection and analysis. For instance, the final exam grades of
the students in a class are a population if the purpose of the analysis is to describe
the distribution of scores in that class, but they are a sample if the purpose of the
analysis is to make some inference from those scores to the scores of other students
(perhaps students in different classes or different schools). Analyzing a population
means your data set is the complete population of interest, so you are performing
your calculations on all members of the group of interest to you and can make direct
statements about the characteristics of that group. In contrast, analyzing a sample
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means you are working with a subset drawn from a larger population, and any
statements made about the larger group from which your sample was drawn are
probabilistic rather than absolute. (The reasoning behind inferential statistics is
discussed further in Chapter 3.) Samples rather than populations are often analyzed
for practical reasons because it might be impossible or prohibitively expensive to
study all members of a population directly.

The distinction between descriptive and inferential statistics is fundamental, and a
set of notational conventions and terminology has been developed to distinguish
between the two. Although these conventions differ somewhat from one author to
the next, as a general rule, numbers that describe a population are referred to as
parameters and are signified by Greek letters such as y (for the population mean)
and o (for the population standard deviation); numbers that describe a sample are
referred to as statistics and are signified by Latin letters such as X (the sample mean)
and s (the sample standard deviation).

Measures of Central Tendency

Measures of central tendency, also known as measures of location, are typically
among the first statistics computed for the continuous variables in a new data set.
The main purpose of computing measures of central tendency is to give you an idea
of what a typical or common value for a given variable is. The three most common
measures of central tendency are the arithmetic mean, the median, and the mode.

The Mean

The arithmetic mean, or simply the mean, is often referred to in ordinary speech as
the average of a set of values. Calculating the mean as a measure of central tendency
is appropriate for interval and ratio data, and the mean of dichotomous variables
coded as 0 or 1 provides the proportion of subjects whose value on the variable is
1. For continuous data, for instance measures of height or scores on an IQ test, the
mean is simply calculated by adding up all the values and then dividing by the num-
ber of values. The mean of a population is denoted by the Greek letter mu (i) whereas
the mean of a sample is typically denoted by a bar over the variable symbol: for
instance, the mean of x would be written X and pronounced “x-bar.” Some authors
adapt the bar notation for the names of variables also. For instance, some authors
denote “the mean of the variable age” by @ge, which would be pronounced
“age-bar.”

Suppose we have a population with only five cases, and these are the values for
members of that population for the variable x:

100, 115, 93, 102, 97

We can calculate the mean of x by adding these values and dividing by 5 (the number
of values):

= (100 + 115+ 93 + 102 + 97)/5 = 507/5=101.4
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Statisticians often use a convention called summation notation, introduced in Chap-
ter 1, which defines a statistic by describing how it is calculated. The computation
of the mean is the same whether the numbers are considered to represent a
population or a sample; the only difference is the symbol for the mean itself. The
mean of a population, as expressed in summation notation, is shown in Figure 4-1.

-
i3

Figure 4-1. Formula to calculate the mean

In this formula, p (the Greek letter mu) is the population mean for x,  is the number
of cases (the number of values for x), and x; is the value of x for a particular case.
The Greek letter sigma (Z) means summation (adding together), and the figures
above and below the sigma define the range over which the operation should be
performed. In this case, the notation says to sum all the values of x from 1 to n. The
symbol i designates the position in the data set, so x1 is the first value in the data set,
X, the second value, and x,, the last value in the data set. The summation symbol
means to add together or sum the values of x from the first (x;) to the last (x,). The
population mean is therefore calculated by summing all the values for the variable
in question and then dividing by the number of values, remembering that dividing
by # is the same thing as multiplying by 1/n.

The mean is an intuitive measure of central tendency that is easy for most people to
understand. However, the mean is not an appropriate summary measure for every
data set because it is sensitive to extreme values, also known as outliers (discussed
further later) and can also be misleading for skewed (nonsymmetrical) data.

Consider one simple example. Suppose the last value in our tiny data set was 297
instead of 97. In this case, the mean would be:

p=(100+ 115+ 93 + 102 +297)/5 =707/5 = 141.4

The mean of 141.4 is not a typical value for this data, In fact, 80% of the data (four
of the five values) are below the mean, which is distorted by the presence of one
extremely high value.

The problem here is not simply theoretical; many large data sets also have a distri-
bution for which the mean is not a good measure of central tendency. This is often
true of measures of income, such as household income data in the United States. A
few very rich households make the mean household income in the United States a
larger value than is truly representative of the average or typical household, and for
this reason, the median household income is often reported instead (more about
medians later).

The mean can also be calculated using data from a frequency table, that is, a table
displaying data values and how often each occurs. Consider the following simple
example in Table 4-1.
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Table 4-1. Simple frequency table

Value  Frequency

1 7
2 5
3 12
4 2

To find the mean of these numbers, treat the frequency column as a weighting vari-
able. That is, multiply each value by its frequency. For the denominator, add the
frequencies to get the total n. The mean is then calculated as shown in Figure 4-2.

”=(1x?)+(2x5)+(3x12)+(4x2)

=235
(7T+5+12+2)

Figure 4-2. Calculating the mean from a frequency table

This is the same result as you would reach by adding each score (1+1+1+1+ . . .)
and dividing by 26.

The mean for grouped data, in which data has been tabulated by range and exact
values are not known, is calculated in a similar manner. Because we don’t know the
exact values for each case (we know, for instance, that 5 values fell into the range of
1-20 but not the specific values for those five cases), for the purposes of calculation
we use the midpoint of the range as a stand-in for the specific values. Therefore, to
calculate the mean, we first calculate this midpoint for each range and then multiply
it by the frequency of values in the range. To calculate the midpoint for a range, add
the first and last values in the range and divide by 2. For instance, for the 1-20 range,
the midpoint is:

(1+20)/2=10.5

A mean calculated in this way is called a grouped mean. A grouped mean is not as
precise as the mean calculated from the original data points, but it is often your only
option if the original values are not available. Consider the following grouped data
set in Table 4-2.

Table 4-2. Grouped data

Range Frequency  Midpoint

1-20 5 10.5
21-40 25 30.5
41-60 37 50.5
61-80 23 70.5
81-100 8 90.5
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The mean is calculated by multiplying the midpoint of each interval by the number
of values in the interval (the frequency) and dividing by the total frequency, as shown
in Figure 4-3.

=51.32

_(10.5%5) +(30.5 x 25) +(50.5 x 37) + (70.5 x 23) + (90.5 x 8)
= (5+25+37+23+8)

Figure 4-3. Calculating the mean for grouped data

One way to lessen the influence of outliers is by calculating a trimmed mean, also
known as a Winsorized mean. As the name implies, a trimmed mean is calculated
by trimming or discarding a certain percentage of the extreme values in a distribution
and then calculating the mean of the remaining values. The purpose is to calculate
a mean that represents most of the values well and is not unduly influenced by
extreme values. Consider the example of the second population with five members
previously cited, with values 100, 115, 93, 102, and 297. The mean of this population
is distorted by the influence of one very large value, so we calculate a trimmed mean
by dropping the highest and lowest values (equivalent to dropping the lowest and
highest 20% of values). The trimmed mean is calculated as:

(100 + 115 + 102)/3 =317/3 = 105.7

The value of 105.7 is much closer to the typical values in the distribution than 141.4,
the value of the mean including all the data values. Of course, we seldom would be
working with a population with only five members, but the principle applies to large
populations as well. Usually, a specific percentage of the data values are trimmed
from the extremes of the distribution, and this decision would have to be reported
to make it clear what the calculated mean actually represents.

The mean can also be calculated for dichotomous data by using 0—1 coding, in which
case the mean is equivalent to the percentage of values with the number 1. Suppose
we have a population of 10 subjects, 6 of whom are male and 4 of whom are female,
and we have coded males as 1 and females as 0. Computing the mean will give us
the percentage of males in the population:

p= (1+1+1+1+1+1+0+0+0+0)/10 = 6/10 = 0.6 or 60% males

The Median

The median of a data set is the middle value when the values are ranked in ascending
or descending order. If there are n values, the median is formally defined as the (n
+1)/2th value, so if n = 7, the middle value is the (7+1)/2th or fourth value. If there
is an even number of values, the median is the average of the two middle values.
This is formally defined as the average of the (n/2)th and ((n /2)+1)th value. If there
are six values, the median is the average of the (6/2)th and ((6/2)+1)th value, or the
third and fourth values. Both techniques are demonstrated here:
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Odd number (5) of values: 1, 4, 6, 6, 10; Median = 6 because (5+1)/2 = 3, and
6 is the third value in the ordered list.

Even number (6) of values: 1, 3, 5, 6, 10, 15; Median = (5+6)/2 = 5.5 because
6/2 =3 and [(6/2) +1] =4, and 5 and 6 are the third and fourth values in the
ordered list.

The median is a better measure of central tendency than the mean for data that is
asymmetrical or contains outliers. This is because the median is based on the ranks
of data points rather than their actual values, and by definition, half of the data values
in a distribution lie below the median and half above the median, without regard to
the actual values in question. Therefore, it does not matter whether the data set
contains some extremely large or small values because they will not affect the median
more than less extreme values. For instance, the median of all three of the following
distributions is 4:

Distribution A: 1, 1, 3,4, 5,6, 7
Distribution B: 0.01, 3, 3,4, 5,5, 5
1

Distribution C: 1, 1, 2, 4, 5, 100, 2000

Of course, the median is not always an appropriate measure to describe a population
or a sample. This is partly a judgment call; in this example, the median seems rea-
sonably representative of the data values in Distributions A and B, but perhaps not
for Distribution C, whose values are so disparate that any single summary measure
can be misleading.

The Mode

A third common measure of central tendency is the mode, which refers to the most
frequently occurring value. The mode is most often useful in describing ordinal or
categorical data. For instance, imagine that the following numbers reflect the favored
news sources of a group of college students, where 1 = newspapers, 2 = television,
and 3 = Internet:

1,1,2,2,2,2,3,3,3,3,3,3,3

We can see that the Internet is the most popular source because 3 is the modal (most
common) value in this data set.

When modes are cited for continuous data, usually a range of values is referred to
as the mode (because with many values, as is typical of continuous data, there might
be no single value that occurs substantially more often than any other). If you intend
to do this, you should decide on the categories in advance and use standard ranges
if they exist. For instance, age for adults is often collected in ranges of 5 or 10 years,
so it might be the case that in a given data set, divided into ranges of 10 years, the
modal range was ages 40—49 years.

Comparing the Mean, Median, and Mode

In a perfectly symmetrical distribution (such as the normal distribution, discussed
in Chapter 3), the mean, median, and mode are identical. In an asymmetrical or
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skewed distribution, these three measures will differ, as illustrated in the data sets
graphed as histograms in Figures 4-4, 4-5, and 4-6. To facilitate calculating the mode,
we have also divided each data set into ranges of 5 (35-39.99, 40—44.99, etc.).
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Figure 4-4. Symmetric data
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Figure 4-5. Right-skewed data
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Figure 4-6. Left-skewed data

The data in Figure 4-4 is approximately normal and symmetrical with a mean of
50.88 and a median of 51.02; the most common range is 50.00-54.99 (37 cases),
followed by 45.00-49.99 (34 cases). In this distribution, the mean and median are
very close to each other, and the two most common ranges also cluster around the
mean.

The data in Figure 4-5 is right skewed; the mean is 58.18, and the median is 56.91;
a mean higher than a median is common for right-skewed data because the extreme
higher values pull the mean up but do not have the same effect on the median. The
modal range is 45.00-49.99 with 16 cases; however, several other ranges have 14
cases, making them very close in terms of frequency to the modal range and making
the mode less useful in describing this data set.

The data in Figure 4-6 is left skewed; the mean is 44.86, and the median is 47.43. A
mean lower than the median is typical of left-skewed data because the extreme lower
values pull the mean down, whereas they do not have the same effect on the median.
The skew in Figure 4-6 is greater than that in Figure 4-5, and this is reflected in the
greater difference between the mean and median in Figure 4-6 as compared to Fig-
ure 4-5. The modal range for Figure 4-6 is 45.00-49.99.

Measures of Dispersion

Dispersion refers to how variable or spread out data values are. For this reason,
measures of dispersions are sometimes called measures of variability or measures of
spread. Knowing the dispersion of data can be as important as knowing its central
tendency. For instance, two populations of children may both have mean 1Qs of
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100, but one could have a range of 70 to 130 (from mild retardation to very superior
intelligence) whereas the other has a range of 90 to 110 (all within the normal range).
The distinction could be important, for instance, to educators, because despite hav-
ing the same average intelligence, the range of 1Q scores for these two groups sug-
gests that they might have different educational and social needs.

The Range and Interquartile Range

The simplest measure of dispersion is the range, which is simply the difference be-
tween the highest and lowest values. Often the minimum (smallest) and maximum
(largest) values are reported as well as the range. For the data set (95, 98, 101, 105),
the minimum is 95, the maximum is 105, and the range is 10 (105-95). If there are
one or a few outliers in the data set, the range might not be a useful summary meas-
ure. For instance, in the data set (95, 98, 101, 105, 210), the range is 115, but most
of the numbers lie within a range of 10 (95-105). Inspection of the range for any
variable is a good data screening technique; an unusually wide range or extreme
minimum or maximum values might warrant further investigation. Extremely high
or low values or an unusually wide range of values might be due to reasons such as
data entry error or to inclusion of a case that does not belong to the population under
study. (Information from an adult might have been included mistakenly in a data
set concerned with children.)

The interquartile range is an alternative measure of dispersion that is less influenced
than the range by extreme values. The interquartile range is the range of the middle
50% of the values in a data set, which is calculated as the difference between the
75th and 25th percentile values. The interquartile range is easily obtained from most
statistical computer programs but can also be calculated by hand, using the follow-
ing rules (n = the number of observations, k the percentile you wish to find):

1. Rank the observations from smallest to largest.

2. If (nk)/100 is an integer (a round number with no decimal or fractional part),
the kth percentile of the observations is the average of the ((rnk)/100)th and
((nk)/100 + 1)th largest observations.

3. If (nk)/100 is not an integer, the kth percentile of the observation is the (j + 1)th
largest measurement, where j is the largest integer less than (nk)/100.
4. Calculate the interquartile range as the difference between the 75th and 25th

percentile measurements.

Consider the following data set with 13 observations (1, 2, 3, 5,7, 8,11, 12, 15, 15,
18, 18, 20):

1. First, we want to find the 25th percentile, so k = 25.

2. We have 13 observations, so n = 13.

3. (nk)/100 = (25 x 13)/100 = 3.25, which is not an integer, so we will use the
second method (#3 in the preceding list).

4. j =3 (the largest integer less than (nk)/100, that is, less than 3.25).
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5. Therefore, the 25th percentile is the (j + 1)th or 4th observation, which has the
value 5.

We can follow the same steps to find the 75th percentile:

* (nk)/100 = (75*13)/100 = 9.75, not an integer.
e j=9, the smallest integer less than 9.75.

* Therefore, the 75th percentile is the 9 + 1 or 10th observation, which has the
value 15.

* Therefore, the interquartile range is (15 - 5) or 10.

The resistance of the interquartile range to outliers should be clear. This data set has
arange of 19 (20 - 1) and an interquartile range of 10; however, if the last value was
200 instead of 20, the range would be 199 (200 - 1), but the interquartile range
would still be 10, and that number would better represent most of the values in the
data set.

The Variance and Standard Deviation

The most common measures of dispersion for continuous data are the variance and
standard deviation. Both describe how much the individual values in a data set vary
from the mean or average value. The variance and standard deviation are calculated
slightly differently depending on whether a population or a sample is being studied,
but basically the variance is the average of the squared deviations from the mean,
and the standard deviation is the square root of the variance. The variance of a
population is signified by ¢ (pronounced “sigma-squared”; o is the Greek letter
sigma) and the standard deviation as o, whereas the sample variance and standard
deviation are signified by s? and s, respectively.

The deviation from the mean for one value in a data set is calculated as (x; ,ﬂ) where
x;is valuei from the data set and p is the mean of the data set. If working with sample
data, the principle is the same, except that you subtract the mean of the sample
(X) from the individual data values rather than the mean of the population. Written
in summation notation, the formula to calculate the sum of all deviations from the
mean for the variable x for a population with n members is shown in Figure 4-7.

i(xf -

Figure 4-7. Formula for the sum of the deviations from the mean

Unfortunately, this quantity is not useful because it will always equal zero, a result
that is not surprising if you consider that the mean is computed as the average of all
the values in the data set. This may be demonstrated with the tiny data set (1, 2, 3,
4, 5). First, we calculate the mean:

p=1+2+3+4+5)/5=3
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Then we calculate the sum of the deviations from the mean, as shown in Figure 4-8.

i(x,.—u)=(1—3)+(2—3)+(3—3)+(4—3)+(5—3)

i=|

=(-2)+(-D)+0+1+2=0

Figure 4-8. Calculating the sum of the deviations from the mean

To get around this problem, we work with squared deviations, which by definition
are always positive. To get the average deviation or variance for a population, we
square each deviation, add them up, and divide by the number of cases, as shown
in Figure 4-9.

o’ =%§(xf -w?

Figure 4-9. Calculating the sum of the squared deviations from the mean
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The sample formula for the variance requires dividing by n - 1 rather than n; the
reasons are technical and have to do with degrees of freedom and unbiased estima-
tion. (For a detailed discussion, see the Wilkins article listed in Appendix C.) The
formula for the variance of a sample, notated as s, is shown in Figure 4-10.

l n
S _—2
s e .-; (x; - X)

Figure 4-10. The formula for a sample variance

Continuing with our tiny data set with values (1, 2, 3, 4, 5), with a mean value of 3,
we can calculate the variance for this population as shown in Figure 4-11.
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[1-3)+2-32+3-3)+4-32+(5-3)%]

B = |-

[(=2) + (=D +(0)* + (1)’ +(2)*]
+1+0+1+4 10

Figure 4-11. Calculating the variance for a population

If we consider these numbers to be a sample rather than a population, the variance
would be computed as shown in Figure 4-12.

2 _ 1 X —\2
s _—n—lz(xi x)

i=]

2

1[(1—3)2+(2—3)2+(3—3)2+(4—3)2+(5—3)2]

[(=2)* +(=1)? +(0)* +(1)* +(2)*]

5
1
4
4+1+0+1+4 10

_4+140+1+4 10

Figure 4-12. Calculating the variance for a sample

Note that because of the different divisor, the sample formula for the variance will
always return a larger result than the population formula, although if the sample
size is close to the population size, this difference will be slight.

Because squared numbers are always positive (outside the realm of imaginary num-
bers), the variance will always be equal to or greater than 0. (The variance would be
zero only if all values of a variable were the same, in which case the variable would
really be a constant.) However, in calculating the variance, we have changed from
our original units to squared units, which might not be convenient to interpret. For
instance, if we were measuring weight in pounds, we would probably want measures
of central tendency and dispersion expressed in the same units rather than having
the mean expressed in pounds and variance in squared pounds. To get back to the
original units, we take the square root of the variance; this is called the standard
deviation and is signified by o for a population and s for a sample.

For a population, the formula for the standard deviation is shown in Figure 4-13.

94 | Chapter4: Descriptive Statistics and Graphic Displays



Figure 4-13. Formula for the standard deviation for a population

Note that this is simply the square root of the formula for variance. In the preceding
example, the standard deviation can be found as shown in Figure 4-14.

o=A0? =2=141

Figure 4-14. The relationship between the standard deviation and the variance

The formula for the sample standard deviation is shown in Figure 4-15.

s = L i(x;-—f)z
i=l

n-14

Figure 4-15. Formula for the standard deviation of a sample

As with the population standard deviation, the sample standard deviation is the
square root of the sample variance (Figure 4-16).

s=vs* =25 =158

Figure 4-16. The relationship between the standard deviation and the variance

In general, for two groups of the same size and measured with the same units (e.g.,
two groups of people, each of size n = 30 and both weighed in pounds), we can say
that the group with the larger variance and standard deviation has more variability
among their scores. However, the unit of measure affects the size of the variance,
which can make it tricky to compare the variability of factors measured in different
units. To take an obvious example, a set of weights expressed in ounces would have
alarger variance and standard deviation than the same weights measured in pounds.
When comparing completely different units, such as height in inches and weight in
pounds, it is even more difficult to compare variability. The coefficient of variation
(CV), a measure of relative variability, gets around this difficulty and makes it pos-
sible to compare variability across variables measured in different units. The CV is
shown here using sample notation but could be calculated for a population by sub-
stituting o for s. The CV is calculated by dividing the standard deviation by the mean
and then multiplying by 100, as shown in Figure 4-17.
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CV =—x100

=] | e

Figure 4-17. The formula for the coefficient of variation (CV)

For the previous example, this would be calculated as shown in Figure 4-18.

cv =%x100=52.'}'

Figure 4-18. Calculating the coefficient of variation (CV)

The CV cannot be calculated if the mean of the data is 0 (because you cannot divide
by 0) and is most useful when the variable in question has only positive values. If a
variable has both positive and negative values, the mean can be close to zero although
the data actually has quite a broad range, and this can produce a misleading CV
value because the denominator will be a small number, potentially producing a large
CV value even if the standard deviation is fairly moderate.

The usefulness of the CV should be clear by considering the same data set as ex-
pressed in feet and inches; for instance, 60 inches is the same as 5 feet. The data as
expressed in feet has a mean of 5.5566 and a standard deviation of 0.2288; the same
data as expressed in inches has a mean of 66.6790 and a standard deviation of
2.7453. However, the CV is not affected by the change in units and produces the
same result either way, except for rounding error:

5.5566/0.2288 = 24.2858 (data in feet)
66.6790/2.7453 = 24.2884 (data in inches)

Outliers

There is no absolute agreement among statisticians about how to define outliers, but
nearly everyone agrees that it is important that they be identified and that appro-
priate analytical techniques be used for data sets that contain outliers. An outlier is
a data point or observation whose value is quite different from the others in the data
set being analyzed. This is sometimes described as a data point that seems to come
from a different population or is outside the typical pattern of the other data points.
Suppose you are studying educational achievement in a sample or population, and
most of your subjects have completed from 12 to 16 years of schooling (12 years =
high school graduation, 16 years = university graduation). However, one of your
subjects has a value of 0 for this variable (implying that he has no formal education
at all) and another has a value of 26 (implying many years of post-graduate educa-
tion). You will probably consider these two cases to be outliers because they have
values far removed from the other data in your sample of population. Identification
and analysis of outliers is an important preliminary step in many types of data
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analysis because the presence of just one or two outliers can completely distort the
value of some common statistics, such as the mean.

It’s also important to identify outliers because sometimes they represent data entry
errors. In the preceding example, the first thing to do is check whether the data was
entered correctly; perhaps the correct values are 10 and 16, respectively. The second
thing to do is investigate whether the cases in question actually belong to the same
population as the other cases. For instance, does the 0 refer to the years of education
of an infant when the data set was supposed to contain only information about
adults?

If neither of these simple fixes solves the problem, it is necessary to make a judgment
call (possibly in consultation with others involved in the research) about what to do
with the outliers. It is possible to delete cases with outliers from the data set before
analysis, but the acceptability of this practice varies from field to field. Sometimes a
statistical fix already exists, such as the trimmed mean previously described, al-
though the acceptability of such fixes also varies from one field to the next. Other
possibilities are to transform the data (discussed in Chapter 3) or use nonparametric
statistical techniques (discussed in Chapter 13), which are less influenced by
outliers.

Various rules of thumb have been developed to make the identification of outliers
more consistent. One common definition of an outlier, which uses the concept of
the interquartile range (IQR), is that mild outliers are those lower than the 25th
quartile minus 1.5 x IQR or greater than the 75th quartile plus 1.5 x IQR. Cases this
extreme are expected in about 1 in 150 observations in normally distributed data.
Extreme outliers are similarly defined with the substitution of 3 x IQR for 1.5 x IQR;
values this extreme are expected about once per 425,000 observations in normally
distributed data.

Graphic Methods

There are innumerable graphic methods to present data, from the basic techniques
included with spreadsheet software such as Microsoft Excel to the extremely specific
and complex methods available in computer languages such as R. Entire books have
been written on the use and misuse of graphics in presenting data, and the leading
(if also controversial) expert in this field is Edward Tufte, a Yale professor (with a
Master’s degree in statistics and a PhD in political science). His most famous work
is The Visual Display of Quantitative Information (listed in Appendix C), but all of
Tufte’s books are worthwhile reading for anyone seriously interested in the graphic
display of data. It would be impossible to cover even a fraction of the available
methods to display data in this section, so instead, a few of the most common meth-
ods are presented, including a discussion of issues concerning each.

It’s easy to get carried away with fancy graphical presentations, particularly because
spreadsheets and statistical programs have built-in routines to create many types of
graphs and charts. Tufte’s term for graphic material that does not convey informa-
tion is “chartjunk,” which concisely conveys his opinion of such presentations. The
standards for what is considered junk vary from one field of endeavor to another,
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but as a general rule, it is wise to use the simplest type of chart that clearly presents
your information while remaining aware of the expectations and standards within
your chosen profession or field of study.

Frequency Tables

The first question to ask when considering how best to display data is whether a
graphical method is needed at all. It’s true that in some circumstances a picture may
be worth a thousand words, but at other times, frequency tables do a better job than
graphs at presenting information. This is particularly true when the actual values of
the numbers in different categories, rather than the general pattern among the cat-
egories, are of primary interest. Frequency tables are often an efficient way to present
large quantities of data and represent a middle ground between text (paragraphs
describing the data values) and pure graphics (such as a histogram).

Suppose a university is interested in collecting data on the general health of their
entering classes of freshmen. Because obesity is a matter of growing concern in the
United States, one of the statistics they collect is the Body Mass Index (BMI), cal-
culated as weight in kilograms divided by squared height in meters. The BMI is not
an infallible measure. For instance, athletes often measure as either underweight
(distance runners, gymnasts) or overweight or obese (football players, weight throw-
ers), butit’s an easily calculated measurement that is a reliable indicator of a healthy
or unhealthy body weight for many people.

The BMI is a continuous measure, but it is often interpreted in terms of categories,
using commonly accepted ranges. The ranges for the BMI shown in Table 4-3, es-
tablished by the Centers for Disease Control and Prevention (CDC) and the World
Health Organization (WHO), are generally accepted as useful and valid.

Table 4-3. CDC/WHO categories for BMI

BMI range Category
<185 Underweight
18.5-24.9 Normal weight
25.0-29.9 Overweight

30.0andabove  Obese

Now consider Table 4-4, an entirely fictitious list of BMI classifications for entering
freshmen.

Table 4-4. Distribution of BMI in the freshman class of 2005

BMI range Number
<185 25
18.5-24.9 500
25.0-29.9 175

30.0and above 50
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This simple table tells us at a glance that most of the freshman are of normal body
weight or are moderately overweight, with a few who are underweight or obese.
Note that this table presents raw numbers or counts for each category, which are
sometimes referred to as absolute frequencies; these numbers tell you how often each
value appears, which can be useful if you are interested in, for instance, how many
students might require obesity counseling. However, absolute frequencies don’t
place the number of cases in each category into any kind of context. We can make
this table more useful by adding a column for relative frequency, which displays the
percent of the total represented by each category. The relative frequency is calculated
by dividing the number of cases in each category by the total number of cases (750)
and multiplying by 100. Table 4-5 shows the both the absolute and the relative
frequencies for this data.

Table 4-5. Absolute and relative frequency of BMI categories for the freshmen class of 2005

BMI range Number  Relative frequency
<185 25 3.3%

18.5-24.9 500 66.7%

25.0-29.9 175 23.3%

30.0and above 50 6.7%
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Note that relative frequencies should add up to approximately 100%, although the
total might be slightly higher or lower due to rounding error.

We can also add a column for cumulative frequency, which shows the relative fre-
quency for each category and those below it, as in Table 4-6. The cumulative fre-
quency for the final category should always be 100% except for rounding error.

Table 4-6. Cumulative frequency of BMI in the freshman class of 2005

BMI range Number  Relative frequency  Cumulative frequency
<185 25 3.3% 3.3%

18.5-24.9 500 66.7% 70.0%

25.0-29.9 175 23.3% 93.3%

30.0and above 50 6.7% 100%

Cumulative frequency tells us at a glance, for instance, that 70% of the entering class
is normal weight or underweight. This is particularly useful in tables with many
categories because it allows the reader to ascertain specific points in the distribution
quickly, such as the lowest 10%, the median (50% of the cumulative frequency), or
the top 5%.

You can also construct frequency tables to make comparisons between groups. You
might be interested, for instance, in comparing the distribution of BMI in male and
female freshmen or for the class that entered in 2005 versus the entering classes of
2000 and 1995. When making comparisons of this type, raw numbers are less useful
(because the size of the classes can differ) and relative and cumulative frequencies

Graphic Methods | 99



more useful. Another possibility is to create graphic presentations such as the charts
described in the next section, which can make such comparisons clearer.

Bar Charts

The bar chart is particularly appropriate for displaying discrete data with only a few
categories, as in our example of BMI among the freshman class. The bars in a bar
chart are customarily separated from each other so they do not suggest continuity;
although in this case, our categories are based on categorizing a continuous variable,
they could equally well be completely nominal categories such as favorite sport or
major field of study. Figure 4-19 shows the freshman BMI information presented in
a bar chart. (Unless otherwise noted, the charts presented in this chapter were cre-
ated using Microsoft Excel.)

BMI categories for Freshman

Class, 2005
600
=
S
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0_
= o = = w
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oo ey @ A~ L
B % 5 h £ £
v ? T u
= e 2 858

BMI category

Figure 4-19. Absolute frequency of BMI categories in freshman class

Absolute frequencies are useful when you need to know the number of people in a
particular category, whereas relative frequencies are more useful when you need to
know the relationship of the numbers in each category. Relative frequencies are
particularly useful, as we will see, when comparing multiple groups, for instance
whether the proportion of obese students is rising or falling over the years. For a
simple bar chart, the absolute versus relative frequencies question is less critical, as
can be seen by comparing a bar chart of the student BMI data, presented as relative
frequencies in Figure 4-20 with the same data presented as absolute frequencies in
Figure 4-19. Note that the two charts are identical except for the y-axis (vertical axis)
labels, which are frequencies in Figure 4-19 and percentages in Figure 4-20.
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Figure 4-20. Relative frequency of BMI categories in freshman class

The concept of relative frequencies becomes even more useful if we compare the
distribution of BMI categories over several years. Consider the fictitious frequency
information in Table 4-7.

Table 4-7. Absolute and relative frequencies of BMI for three entering classes

BMI range 1995 2000 2005
Underweight < 18.5 50 8.9% 45 6.8% 25 3.3%
Normal 18.5-24.9 400 71.4% 450  67.7% 500  66.7%
Overweight 100 17.9% 130 195% 175 233%
25.0-29.9

Obese 30.0 and above 10 1.8% 40 6.0% 50 6.7%
Total 560  100.0% 665  100.0% 750  100.0%

Because the class size is different in each year, the relative frequencies (percentages)
are most useful in observing trends in weight category distribution. In this case, there
has been a clear decrease in the proportion of underweight students and an increase
in the number of overweight and obese students. This information can also be dis-
played using a bar chart, as in Figure 4-21.

This is a grouped bar chart, which shows that there is a small but definite trend over
10 years toward fewer underweight and normal weight students and more over-
weight and obese students (reflecting changes in the American population at large).
Bear in mind that creating a chart is not the same thing as conducting a statistical
test, so we can’t tell from this chart alone whether these differences are statistically
significant.
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BMI distribution in three entering

classes
80%
60% 1995
40% 2000

002005

25.0-29.9
and above

Normal
18.5-24.9
Obese 30.0

23
Underweight
<185

Overweight

Figure 4-21. Bar chart of BMI distribution in three entering classes

Another type of bar chart, which emphasizes the relative distribution of values within
each group (in this case, the relative distribution of BMI categories in three entering
classes), is the stacked bar chart, illustrated in Figure 4-22.

100%
80%- O Obese 30.0
and above

O Overweight

o0%; 25.0-299
@ Normal

40%- 18.5-24.9
O Underweight

0% <185

0% T T
1995 2000 2005

Figure 4-22. Stacked bar chart of BMI distribution in three entering classes

In this type of chart, each bar represents one year of data, and each bar totals to
100%. The relative proportion of students in each category can be seen at a glance
by comparing the proportion of area within each bar allocated to each category. This
arrangement facilitates comparison in multiple data series (in this case, the three
years). It is immediately clear that the proportion of underweight students has de-
clined, and the proportion of overweight and obese students has increased over time.

Pie Charts

The familiar pie chart presents data in a manner similar to the stacked bar chart: it
shows graphically what proportion each part occupies of the whole. Pie charts, like
stacked bar charts, are most useful when there are only a few categories of informa-
tion and the differences among those categories are fairly large. Many people have
particularly strong opinions about pie charts, and although pie charts are still com-
monly used in some fields, they have also been aggressively denounced in others as
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uninformative at best and potentially misleading at worst. So you must make your
own decision based on context and convention; I will present the same BMI infor-
mation in pie chart form (Figure 4-23), and you may be the judge of whether this is
a useful way to present the data. Note that this is a single pie chart, showing one
year of data, but other options are available, including side-by-side charts (to facil-
itate comparison of the proportions of different groups) and exploded sections (to
show a more detailed breakdown of categories within a segment).

2% 9%

O Underweight
<185

M Normal
18.5-24.9

O Overweight
25.0-29.9

[ Obese 30.0
and above

7%

Figure 4-23. Pie chart showing BMI distribution for freshmen entering in 2005

Florence Nightingale and Statistical Graphics

Most people are at least vaguely familiar with Florence Nightingale’s role in es-
tablishing nursing as a profession and with her heroic efforts to improve hygiene
and the quality of nursing provided to British soldiers during the Crimean War.
Fewer are aware of her contributions to statistical graphics, including her effective
use of graphs and charts to communicate medical information. Nightingale also
developed a new type of graph, the polar area diagram (which she called a coxcomb
chart and others have termed a Nightingale rose diagram), to display comparative
information such as the causes of death (from wounds received in battle, disease,
and other causes) each month for British soldiers. Nightingale’s charts brought
attention to the high proportion of soldiers’ deaths caused by disease and enabled
her to make her case for the importance of improved sanitation and hygiene to the
military authorities. Many of Nightingale’s graphics are available for viewing on
the Internet along with a discussion of her accomplishments in this field. One
example is Julie Rehmeyer’s Science News article from November 26, 2008, “Flor-
ence Nightingale: The Passionate Statistician”.

Pareto Charts

The Pareto chart or Pareto diagram combines the properties of a bar chart and a line
chart; the bars display frequency and relative frequency, whereas the line displays
cumulative frequency. The great advantage of a Pareto chart is that it is easy to see
which factors are most important in a situation and, therefore, to which factors most
attention should be directed. For instance, Pareto charts are often used in industrial
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http://bit.ly/PvLvSS
http://bit.ly/PvLvSS

contexts to identify factors that are responsible for the preponderance of delays or
defects in the manufacturing process. In a Pareto chart, the bars are ordered in de-
scending frequency from left to right (so the most common cause is the furthest to
the left and the least common the furthest to the right), and a cumulative frequency
line is superimposed over the bars (so you see, for instance, how many factors are
involved in 80% of production delays). Consider the hypothetical data set shown in
Table 4-8, which displays the number of defects traceable to different aspects of the
manufacturing process in an automobile factory.

Table 4-8. Manufacturing defects by department

Department  Number of defects

Accessory 350

Body 500
Electrical 120
Engine 150

Transmission 80

Although we can see that the Accessory and Body departments are responsible for
the greatest number of defects, it is not immediately obvious what proportion of
defects can be traced to them. Figure 4-24, which displays the same information
presented in a Pareto chart (produced using SPSS), makes this clearer.

1,200+ F100%
1,000{ |
8004
- - 60% -
5 ]
S 6001 8
-40%
4004
500 F20%
150 120 ’_‘
[} T T T T alu [}%
Body Access Engine Elect Trans

Figure 4-24. Major causes of manufacturing defects

This chart tells us not only that the most common causes of defects are in the Body
and Accessory manufacturing processes but also that together they account for
about 75% of defects. We can see this by drawing a straight line from the bend in
the cumulative frequency line (which represents the cumulative number of defects
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from the two largest sources, Body and Accessory) to the right-hand y-axis. This is
a simplified example and violates the 80:20 rule (discussed in the next sidebar about
Vilfredo Pareto) because only a few major causes of defects are shown. In a more
realistic example, there might be 30 or more competing causes, and the Pareto chart
is a simple way to sort them out and decide which processes should be the focus of
improvement efforts. This simple example does serve to display the typical charac-
teristics of a Pareto chart. The bars are sorted from highest to lowest, the frequency
is displayed on the left-hand y-axis and the percent on the right, and the actual
number of cases for each cause are displayed within each bar.

Vilfredo Pareto

Vilfredo Pareto (1843—1923) was an Italian economist who discovered what is
now called the Pareto principle, also known as the principle of “the vital few and
the trivial many” or “the 80:20 rule.” The Pareto principle states that in many
circumstances, 80% of the activity or outcomes stem from 20% of the causes. For
instance, in many countries, approximately 80% of the wealth is owned by ap-
proximately 20% of the people; it is often the case in industrial production that
20% of production errors are responsible for 80% of the defects in manufactured
products; and in health services usage, 20% of the patients typically use 80% of
medical services. The vital few in the Pareto principle are the 20% of people, errors,
and so on that account for most of the activity, and the trivial many are the other
80% that collectively account for only 20% of the activity. Pareto is best known
today for the Pareto chart, which is commonly used in quality control to help
identify which processes are causing most of the difficulties, whether customer
complaints or defective products.

The Stem-and-Leaf Plot

The types of charts discussed so far are most appropriate for displaying categorical
data. Continuous data has its own set of graphic display methods. One of the sim-
plest ways to display continuous data graphically is the stem-and-leaf plot, which
can easily be created by hand and presents a quick snapshot of a data distribution.
To make a stem-and-leaf plot, divide your data into intervals (using your common
sense and the level of detail appropriate to your purpose) and display each data point
by using two columns. The stem is the leftmost column and contains one value per
row, and the leaf is the rightmost column and contains one digit for each case be-
longing to that row. This creates a plot that displays the actual values of the data set
but also assumes a shape indicating which ranges of values are most common. The
numbers can represent multiples of other numbers (for instance, units of 10,000 or
of 0.01) if appropriate, given the data values in question.
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Here’s a simple example. Suppose we have the final exam grades for 26 students and
want to present them graphically. These are the grades:

61, 64, 68, 70,70,71,73,74,74,76, 79, 80, 80, 83, 84, 84, 87, 89, 89, 89, 90
92,95, 95,98, 100

The logical division is units of 10 points, for example, 6069, 70-79, and so on, so
we construct the stem of the digits 6, 7, 8, 9 (the tens place for those of you who
remember your grade school math) and create the leaf for each number with the
digit in the ones place, ordered left to right from smallest to largest. Figure 4-25
shows the final plot.

Stem | Leaf
6148
71 00134469
8 | 003447999
9 | 02558
10(0

Figure 4-25. Stem-and-leaf plot of final exam grades

This display not only tells us the actual values of the scores and their range (61-100)
but the basic shape of their distribution as well. In this case, most scores are in the
70s and 80s, with a few in the 60s and 90s, and one is 100. The shape of the leaf side
is in fact a crude sort of histogram (discussed later) rotated 90 degrees, with the bars
being units of 10.

The Boxplot

The boxplot, also known as the hinge plot or the box-and-whiskers plot, was devised
by the statistician John Tukey as a compact way to summarize and display the dis-
tribution of a set of continuous data. Although boxplots can be drawn by hand (as
can many other graphics, including bar charts and histograms), in practice they are
usually created using software. Interestingly, the exact methods used to construct
boxplots vary from one software package to another, but they are always constructed
to highlight five important characteristics of a data set: the median, the first and
third quartiles (and hence the interquartile range as well), and the minimum and
maximum. The central tendency, range, symmetry, and presence of outliers in a data
set are visible at a glance from a boxplot, whereas side-by-side boxplots make it easy
to make comparisons among different distributions of data. Figure 4-26 is a boxplot
of the final exam grades used in the preceding stem-and-leaf plot.

The dark line represents the median value, in this case, 81.5. The shaded box enc-
loses the interquartile range, so the lower boundary is the first quartile (25th per-
centile) of 72.5, and the upper boundary is the third quartile (75th percentile) of
87.75. Tukey called these quartiles hinges, hence the name hinge plot. The short
horizontal lines at 61 and 100 represent the minimum and maximum values, and
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Figure 4-26. Boxplot of exam data (created in SPSS)

together with the lines connecting them to the interquartile range box, they are called
whiskers, hence the name box-and-whiskers plot. We can see at a glance that this
data set is symmetrical because the median is approximately centered within the
interquartile range, and the interquartile range is located approximately centrally
within the complete range of the data.

This data set contains no outliers, that is, no numbers that are far outside the range
of the other data points. To demonstrate a boxplot that contains outliers, I have
changed the score of 100 in this data set to 10. Figure 4-27 shows the boxplots of
the two data sets side by side. (The boxplot for the correct data is labeled “final,”
whereas the boxplot with the changed value is labeled “error.”)
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Figure 4-27. Boxplot with outlier (created in SPSS)
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Note that except for the single outlier value, the two data sets look very similar; this
is because the median and interquartile range are resistant to influence by extreme
values. The outlying value is designated with an asterisk and labeled with its case
number (26); the latter feature is not included in every statistical package.

Boxplots are often used to compare two or more real data sets side by side. Fig-
ure 4-28 shows a comparison of two years of final exam grades from 2007 and 2008,
labeled “final2007” and “final2008,” respectively.

Without looking at any of the actual grades, I can see several differences between
the two years:

* The highest scores are the same in both years.
* The lowest score is much lower in 2008 than in 2007.

* Thereisagreater range of scores in 2008, both in the interquartile range (middle
50% of the scores) and overall.

* The median is slightly lower in 2008.

That the highest score was the same in both years is not surprising because this exam
had a range of 0-100, and at least one student achieved the highest score in both
years. This is an example of a ceiling effect, which exists when scores or measure-
ments can be no higher than a particular number and people actually achieve that
score. The analogous condition, if a score can be no lower than a specified number,
is called a floor effect. In this case, the exam had a floor of 0 (the lowest possible
score), but because no one achieved that score, no floor effect is present in the data.

100 T

9

80

70

5t

final 2007 final 2008

Figure 4-28. Boxplot comparing final exam scores from 2007 and 2008 (created in SPSS)
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The Histogram

The histogram is another popular choice for displaying continuous data. A histogram
looks similar to a bar chart, but in a histogram, the bars (also known as bins because
you can think of them as bins into which values from a continuous distribution are
sorted) touch each other, unlike the bars in a bar chart. Histograms also tend to have
a larger number of bars than do bar charts. Bars in a histogram do not have to be
the same width, although frequently they are. The x-axis (vertical axis) in a histogram
represents a scale rather than simply a series of labels, and the area of each bar
represents the proportion of values that are contained in that range.

Figure 4-29 shows the final exam data presented as a histogram created in SPSS with
four bars of width ten and with a normal distribution superimposed. Note that the
shape of this histogram looks quite similar to the shape of the stem-and-leaf plot of
the same data (Figure 4-25), but rotated 90 degrees.

H

Frequency

60 70 80 90 100
Final exam

Figure 4-29. Histogram with a bin width of 10

The normal distribution is discussed in detail in Chapter 3; for now, it isa commonly
used theoretical distribution that has the familiar bell shape shown here. The normal
distribution is often superimposed on histograms as a visual reference so we can
judge how similar the values in a data set are to a normal distribution.
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For better or for worse, the choice of the number and width of bars can drastically
affect the appearance of the histogram. Usually, histograms have more than four
bars; Figure 4-30 shows the same data with eight bars, each with a width of five.

TN

Frequency

60 70 80 90 100
Final exam

Figure 4-30. Histogram with a bin width of 5

It’s the same data, but it doesn’t look nearly as normal, does it? Figure 4-31 shows
the same data with a bin width of two.

It’s clear that the selection of bin width is important to the histogram’s appearance,
but how do you decide how many bins to use? This question has been explored in
mathematical detail without producing any absolute answers. (If you’re up for a very
technical discussion, see the Wand article listed in Appendix C.). There is no abso-
lute answer to this question, but there are some rules of thumb. First, the bins need
to encompass the full range of data values. Beyond that, one common rule of thumb
is that the number of bins should equal the square root of the number of points in
the data set. Another is that the number of bins should never be fewer than about
six. These rules clearly conflict in our data set because V26 = 5.1, which is less than
6, so common sense also comes into play, as does trying different numbers of bins
and bin widths. If the choice drastically changes the appearance of the data, further
investigation is in order.
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Figure 4-31. Histogram with a bin width of two

Bivariate Charts

Charts that display information about the relationship between two variables are
called bivariate charts: the most common example is the scatterplot. Scatterplots
define each point in a data set by two values, commonly referred to as x and y, and
plot each point on a pair of axes; this method should be familiar if you ever worked
with Cartesian coordinates in math class. Conventionally the vertical axis is called
the y-axis and represents the y-value for each point. The horizontal axis is called the
x-axis and represents the x-value. Scatterplots are a very important tool for exam-
ining bivariate relationships among variables, a topic further discussed in Chapter 7.

Univariate, Bivariate, Multivariate

People sometimes get confused about the meaning of terms such as univariate and
bivariate. However, it’s easy to keep them straight if you recall that uni- means
one and bi- means two. Think of a unicycle, which has one wheel, and a bicycle,
which has two. Multi- means many and in statistics, it often means more than two.
Univariate statistics such as the mean therefore describe characteristics of one
variable, and the bar chart and histogram are examples of univariate graphic dis-

plays. Bivariate statistics such as Pearson’s correlation coefficient describe the
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relationship between two variables, and bivariate graphs such as the scatterplot
display the relationship between two variables. Multivariate statistics such as the
multiple correlation and multivariate regression describe the relationship between
more than two variables.

Scatterplots

Consider the data set shown in Table 4-9, which consists of the verbal and math
SAT (Scholastic Aptitude Test) scores for a hypothetical group of 15 students.

Table 4-9. SAT scores for 15 students

Math  Verbal
750 750
700 710
720 700
790 780
700 680
750 700
620 610
640 630
700 710
710 680
540 550
570 600
580 600
790 750
710 720

Other than the fact that most of these scores are fairly high (the SAT is calibrated so
that the median score is 500, and most of these scores are well above that), it’s
difficult to discern much of a pattern between the math and verbal scores from the
raw data. Sometimes the math score is higher, sometimes the verbal score is higher,
and often both are similar. However, creating a scatterplot of the two variables, as
in Figure 4-32, with math SAT score on the y-axis (vertical axis) and verbal SAT
score on the x-axis (horizontal axis), makes the relationship between scores much
clearer.
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Figure 4-32. Scatterplot of verbal and math SAT scores

Despite some small inconsistencies, verbal and math scores have a strong linear
relationship. People with high verbal scores tend to have high math scores and vice
versa, and those with lower scores in one area tend to have lower scores in the other.

Not all strong relationships between two variables are linear, however. Fig-
ure 4-33 shows a scatterplot of variables that are highly related but for which the
relationship is quadratic rather than linear.
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Figure 4-33. Quadratic relationship among variables

In the data presented in this scatterplot, the x-values in each pair are the integers
from -10 to 10, and the y-values are the squares of the x-values, producing the
familiar quadratic plot. Many statistical techniques assume a linear relationship
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between variables, and it’s hard to see if this is true or not simply by looking at the
raw data, so making a scatterplot of all important data pairs is a simple way to check
this assumption.

Line Graphs

Line graphs are also often used to display the relationship between two variables,
usually between time on the x-axis and some other variable on the y-axis. One re-
quirement for a line graph is that there can only be one y-value for each x-value, so
it would not be an appropriate choice for data such as the SAT data presented above.
Consider the data in Table 4-10 from the U.S. Centers for Disease Control and
Prevention (CDC), showing the percentage of obesity among U.S. adults, measured
annually over a 13-year period.

Table 4-10. Percentage of obesity among U.S. adults, 1990-2002 (CDC)

Year  Percent obese
1990  11.6%
1991 12.6%
1992 12.6%
1993 13.7%
1994 14.4%
1995 15.8%
1996  16.8%
1997 16.6%
1998  18.3%
1999 19.7%
2000 20.1%
2001 21.0%
2002 22.1%

We can see from this table that obesity has been increasing at a steady pace; occa-
sionally, there is a decrease from one year to the next, but more often there is a small
increase in the range of 1% to 2%. This information can also be presented as a line
chart, as in Figure 4-34, which makes this pattern of steady increase over the years
even clearer.

Although this graph represents a straightforward presentation of the data, the visual
impact depends partially on the scale and range used for the y-axis (which in this
case shows percentage of obesity). Figure 4-34 is a sensible representation of the
data, but if we wanted to increase the effect, we could choose a larger scale and
smaller range for the y-axis (vertical axis), as in Figure 4-35.
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Figure 4-34. Obesity among U.S. adults, 1990-2002 (CDC)
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Figure 4-35. Obesity among U.S. adults, 1990-2002 (CDC), using a restricted range to inflate
the visual impact of the trend

Figure 4-35 presents exactly the same data as Figure 4-34, but a smaller range was
chosen for the y-axis (10%—22.5% versus 0%—30%), and the narrower range makes
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the differences between years look larger. Figure 4-35 is not necessarily an incorrect
way to present the data (although many argue that you should also include the 0
pointinagraph displaying percent), butit does point out how easy it is to manipulate
the appearance of an entirely valid data set. In fact, choosing a misleading range is
one of the time-honored ways to “lie with statistics.” (See the sidebar “How to Lie
with Statistics” on page 117 for more on this topic.)

The same trick works in reverse; if we graph the same data by using a wide range
for the vertical axis, the changes over the entire period seem much smaller, as in
Figure 4-36.
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Figure 4-36. Obesity among U.S. adults, 1990-2002 (CDC), using a wide range on the y-axis
to decrease the visual impact of the trend

Figure 4-36 presents the same obesity data as Figure 4-34 and Figure 4-35, with a
large range on the vertical axis (0%—100%) to decrease the visual impact of the trend.

So which scale should be chosen? There is no perfect answer to this question; all
present the same information, and none, strictly speaking, are incorrect. In this case,
if I were presenting this chart without reference to any other graphics, the scale
would be 7-34 because it shows the true floor for the data (0%, which is the lowest
possible value) and includes a reasonable range above the highest data point. Inde-
pendent of the issues involved with choosing the range for an individual chart, one
principle that should be observed if multiple charts are compared to each other (for
instance, charts showing the percent obesity in different countries over the same
time period or charts of different health risks for the same period), they should all
use the same scale to avoid misleading the reader.
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How to Lie with Statistics

Darrell Huff was a freelance writer who also worked as an editor at Look magazine,
Better Homes and Gardens, and Liberty, among other publications. His greatest
claim to fame, however, is the classic book How to Lie with Statistics, first pub-
lished in 1954. Some say it is the most widely read statistics book in the world.
Huff was not a trained statistician, his presentation of the topic can be charitably
described as informal, and some of the illustrations in How to Lie with Statistics
would be quite offensive if they were included in a contemporary book. Yet this
slim volume has retained its popularity over the years; it is still in print and has
been translated into many languages.

Huff draws many of his examples of “lies,” by which he means the misleading
presentation of information, from the contemporary media and political and com-
mercial discourse. Some of his most insightful examples are in his chapters on
graphic presentation, from the use of a graph with a deliberately misleading scale
to another that lacks any axis labels. One reason for the continuing popularity of
How to Lie with Statistics, unfortunately, is that many of the misleading techniques
he identified in 1954 are still in use today.

Exercises

Like any other aspect of statistics, learning the techniques of descriptive statistics
requires practice. The data sets provided are deliberately simple because if you can
apply a technique correctly with 10 cases, you can also apply it with 1,000.

My advice is to try solving the problems several ways, for instance, by hand, using
a calculator, and using whatever software is available to you. Even spreadsheet pro-
grams such as Microsoft Excel offer many simple mathematical and statistical func-
tions. (Although the usefulness of such functions for serious statistical research is
questionable, they might be adequate for initial exploratory work; see the references
on Excel in Appendix C for more on this.) In addition, by solving a problem several
ways, you will have more confidence that you are using the hardware and software
correctly.

Most graphic presentations are created using software, and although each package
has good and bad points, most can produce most, if not all, of the graphics presented
in this chapter and quite a few other types of graphs as well. The best way to become
familiar with graphics is to investigate whatever software you have access to and
practice graphing data you currently work with. (If you don’t currently work with
data, plenty that you can experiment with is available for free download from the
Internet.) Remember that graphic displays are a form of communication, and keep
in mind the point you are trying to make with any graphic.

Problem

When is each of the following an appropriate measure of central tendency? Think
of some examples for each from your work or studies.
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* Mean
* Median
* Mode
Solution
* The mean is appropriate for interval or ratio data that is continuous, symmet-
rical, and lacks significant outliers.

* The median is appropriate for continuous data that might be skewed (asym-
metrical), based on ranks, or contain extreme values.

* The mode is most appropriate for categorical variables or for continuous data
sets where one value dominates the others.

Problem

Find some examples of the misleading use of statistical graphics, and explain what
the problem is with each.

Solution

This shouldn’t be a difficult task for anyone who follows the news media, but if you
get stuck, try searching on the Internet for phrases like “misleading graphics.”

Problem

One of the following data sets could be appropriately displayed as a bar chart and
one as a histogram; decide which method is appropriate for each and explain why.

a. A data set of the heights (in centimeters) of 10,000 entering freshmen at a
university
b. A data set of the majors elected by 10,000 entering freshmen at a university
Solution
a. The height data would be best displayed as a histogram because these meas-
urements are continuous and have a large number of possible values.

b. The majors data would be more appropriately displayed as a bar chart because
this type of information is categorical and has a restricted set of possible values
(although if there is a large number of majors, the less frequent majors might
be combined for the sake of clarity).

Problem

One of the following data sets is appropriate for a pie chart, and one is not. Identify
which is which, and explain why.

a. Influenza cases for the past two years, broken down by month

b. The number of days missed due to the five leading causes for absenteeism at a
hospital (the fifth category is “all other,” including all absences attributed to
causes other than the first four)

118 | Chapter4: Descriptive Statistics and Graphic Displays



Solution

a. A pie chart would not be a good choice for the influenza data set because it
would have too many categories (24), many of the categories are probably sim-
ilar in size (because influenza cases are rare in the summer months), and the
data doesn’t really reflect parts making up a whole. A better choice might be a
bar chart or line chart showing the number of cases by month or season.

b. The absenteeism data would be a good candidate for a pie chart because there
are only five categories, and the parts do add up to 100% of a whole. One
question that can’t be answered from this description is whether the different
categories (or slices of the pie) are clearly of different size; if so, that would be
a further argument in favor of the use of a pie chart.

Problem

What is the median of this data set?
832769121

Solution

3. The data set has 9 values, which is an odd number; the median is therefore the
middle value when the values are arranged in order. To look at this question more
mathematically, because there are n = 9 values, the median is the (n + 1)/2th value;
thus, the median is the (9 + 1)/2th or fifth value.
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Problem

What is the median of this data set?
71526120

Solution

6.5. The data set has 6 values, which is an even number; the median is therefore the
average of the middle two values when the values are arranged in order, in this case,
6 and 7. To look at this question more mathematically, the median for an even-
numbered set of values is the average of the (n /2)th and (n /2)th + 1 value; n =6 in
this case, so the median is the average of the (6/2)th and (6/2)th + 1 values, that is,
the third and fourth values.

Problem

What are the mean and median of the following (admittedly bizarre) data set?
1,7,21,3,-17
Solution

The meanis (1+7+21+3+ (-17))/5=15/5=3.

The median, because there is an odd number of values, is the (n + 1)/2th value, that
is, the third value. The data values in order are (-17, 1, 3, 7, 21), so the median is
the third value, or 3.
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Problem

What are the variance and standard deviation of the following data set? Calculate
this by using both the population and sample formulas. Assume p = 3.

135

Solution

The population formula to calculate variance is shown in Figure 4-37.

1 n
oF ==Y (x, - W’
n i=1

Figure 4-37. Formula for population variance

The sample formula is shown in Figure 4-38.

l n
2 =42
§'=— E X, —X
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Figure 4-38. Formula for sample variance

In this case, n = 3, X = 3, and the sum of the squared deviation scores = (-2)2 + 02
+ 2% = 8. The population variance is 8/3, or 2.67, and the population standard de-
viation is the square root of the variance, or 1.63. The sample variance is 8/2, or 4,
and the sample standard deviation is the square root of the variance, or 2.
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Categorical Data

A categorical variable is a variable in which the possible responses consist of a set of
categories rather than numbers that measure an amount or quantity of something
on a continuous scale. For instance, a person might describe his or her gender in
terms of male or female, or a machine part might be classified as acceptable or de-
fective. More than two categories are also possible. For instance, a person in the
United States might describe his political affiliation as Republican, Democrat, or
independent.

Categorical variables may be inherently categorical (such as political party affilia-
tion), with no numeric scale underlying their measurement, or they may be created
by categorizing a continuous or discrete variable. Blood pressure is a measure of the
pressure exerted on the walls of the blood vessels, measured in millimeters of mer-
cury (Hg). Blood pressure is usually measured continuously and recorded with spe-
cific measurements such as 120/80 mmHg, but it is often analyzed using categories
such as low, normal, prehypertensive, and hypertensive. Discrete variables (those
that can be taken only on specific values within a range) may also be grouped into
categorical variables. A researcher might collect exact information on the number
of children per household (0 children, 1 child, 2 children, 3 children, etc.) but choose
to group this data into categories for the purpose of analysis, such as 0 children, 1—-
2 children, and 3 or more children. This type of grouping is often used if there are
large numbers of categories and some of them contain sparse data. In the case of the
number of children in a household, for instance, a data set might include a relatively
few households with large numbers of children, and the low frequencies in those
categories can adversely affect the power of the study or make it impossible to use
certain analytical techniques.

Although the wisdom of classifying continuous or discrete measurements into
categories is sometimes debatable (some researchers refer to it as throwing away
information because it discards all the information about variability within the cat-
egories), it is a common practice in many fields. Categorizing continuous data is
done for many reasons, including custom (if certain categorizations may have
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become accepted in a professional field), and as a means to solve distribution prob-
lems within a data set.

Categorical data techniques can also be applied to ordinal variables, meaning those
measured on a scale in which the categories might be ranked in order but do not
meet the requirement of equal distance between each category. (Ordinal variables
are discussed at more length in Chapter 1.) The well-known Likert scale, in which
people choose their responses to questions from a set of ordered categories (such as
Strongly Agree, Agree, Neutral, Disagree, and Strongly Disagree) is a classic example
of an ordinal variable. A special set of analytic techniques, discussed later in this
chapter, has been developed for ordinal data that retain the information about the
order of the categories. Given a choice, specific ordinal techniques are preferred over
categorical techniques for the analysis of ordinal data because they are generally
more powerful.

A host of specific techniques has been developed to analyze categorical and ordinal
data. This chapter discusses the most common techniques used for categorical and
ordinal data, and a few techniques for these types of data are included in other
chapters as well. The odds ratio, risk ratio, and the Mantel-Haenszel test are covered
in Chapter 15, and some of the nonparametric methods covered in Chapter 13 are
applicable to ordinal or categorical data.

The Rx(CTable

When an analysis concerns the relationship of two categorical variables, their dis-
tribution in the data set is often displayed in an RxC table, also referred to as a
contingency table. The R in RxC refers to row and the C to column, and a specific
table can be described by the number of rows and columns it contains. Rows and
columns are always named in this order, a convention also followed in describing
matrixes and in subscript notation. Sometimes, a distinction is made between 2x2
tables, which display the joint distribution of two binary variables, and tables of
larger dimensions. Although a 2x2 table can be thought of as an RxC table where
R and C both equal 2, the separate classification can be useful when discussing
techniques developed specifically for 2x2 tables. The phrase “RxC” is read as “R by
C,” and the same convention applies to specific table sizes, so “3x2” is read as “3
by 2.”

Suppose we are interested in studying the relationship between broad categories of
age and health, the latter defined by the familiar five-category general health scale.
We decide on the categories to be used for age and collect data from a sample of
individuals, classifying them according to age (using our predefined categories) and
health status (using the five-point scale). We then display this information in a con-
tingency table, arranged like Table 5-1.

This would be described as a 4x5 table because it contains four rows and five col-
umns. Each cell would contain the count of people from the sample with the pair of
characteristics described: the number of people under 18 years in excellent health,
the number aged 18-39 years in excellent health, and so on.
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Table 5-1. Contingency table displaying health status by age category

Excellent | Verygood | Good | Fair | Poor
<18 Years
18-35 Years
40-64 Years
> 65 Years
Measures of Agreement

The types of reliability described here are useful primarily for continuous measure-
ments. When a measurement problem concerns categorical judgments, for instance
classifying machine parts as acceptable or defective, measurements of agreement are
more appropriate. For instance, we might want to evaluate the consistency of results
from two diagnostic tests for the presence or absence of disease, or we might want
to evaluate the consistency of results from three raters who are classifying the class-
room behavior of particular students as acceptable or unacceptable. In each case, a
rater assigns a single score from a limited set of choices, and we are interested in
how well these scores agree across the tests or raters.

Percent agreement is the simplest measure of agreement; it is calculated by dividing
the number of cases in which the raters agreed by the total number of ratings. For
instance, if 100 ratings are made and the raters agree 80% of the time, the percent
agreement is 80/100 or 0.80. A major disadvantage of simple percent agreement is
that a high degree of agreement can be obtained simply by chance; thus, it is difficult
to compare percent agreement across different situations when agreement due to
chance can vary.

This shortcoming can be overcome by using another common measure of agreement
called Cohen’s kappa, the kappa coefficient, or simply kappa. This measure was orig-
inally devised to compare two raters or tests and has since been extended for use
with larger numbers of raters. Kappa is preferable to percent agreement because it
is corrected for agreement due to chance (although statisticians argue about how
successful this correction really is; see the following sidebar for a brief introduction
to the issues). Kappa is easily computed by sorting the responses into a symmetrical
grid and performing calculations as indicated in Table 5-2. This hypothetical ex-
ample concerns the agreement of two tests for the presence (D+) or absence (D-) of
disease.

Table 5-2. Agreement of two tests on a dichotomous outcome

Test 2
+ -
Test1 + 50 10 60
- 10 30 40
60 40 100
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The four cells containing data are commonly identified as follows:

+ —
+ a b
- ¢ d

Cells a and d represent agreement (a contains the cases classified as having the dis-
ease by both tests, d contains the cases classified as not having the disease by both
tests), whereas cells b and ¢ represent disagreement.

The formula for kappa is:
P-P

met =
1-P,

where P, = observed agreement, and P, = expected agreement.
Po=(a+d)/(a+b+c+d)
that is, the number of cases in agreement divided by the total number of cases. In

this case,

P, =80/100 = 0.80
P,=[la+c)a+b)/(a+b+c+d)?+[b+d)(c+d]/(a+b+c+d?

and is the number of cases in agreement expected by chance. Expected agreement
in this example is:

(6060)/(100*100) + (40*40)/(100*100) = 0.36 + 0.16 = 0.52

Kappa, in this case, is therefore calculated as:

_0.80-0.52
1-052

=0.58

Kappa has a range of -1 to +1; the value would be 0 if observed agreement were the
same as chance agreement and 1 if all cases were in agreement. There are no absolute
standards by which to judge a particular kappa value as high or low; however, some
researchers use the guidelines published by Landis and Koch (1977):

< 0 Poor

0-0.20 Slight

0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.81 Substantial
0.81-1.0 Almost perfect

By this standard, our two tests exhibit moderate agreement. Note that the percent
agreement in this example is 0.80, but kappa is 0.58. Kappa is always less than or
equal to the percent agreement because kappa is corrected for chance agreement.
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For an alternative view of kappa (intended for more advanced statisticians), see the
following sidebar.

Controversies over Kappa

Cohen’s kappa is a commonly taught and widely used statistic, but its application
is not without controversy. Kappa is usually defined as representing agreement
beyond that expected by chance or, simply, agreement corrected for chance. It has
two uses: as a test statistic to determine whether two sets of ratings agree more
often than would be expected by chance (which is a dichotomous, yes/no decision)
and as a measure of the level of agreement (which is expressed as a number between
0and 1).

Although most researchers have no problem with the first use of kappa, some
object to the second. The problem is that calculating agreement expected by
chance between any two entities, such as raters, is based on the assumption that
the ratings are independent, a condition not usually met in practice. Because kappa
is often used to quantify agreement for multiple individuals rating the same case,
whetheritis a child’s classroom behavior or a chest X-ray from a person who might
have tuberculosis, we would tend to expect more than chance agreement. In these
cases, kappa overestimates the agreement among tests, raters, and so on by un-
derestimating the amount of observed agreement that is in fact due to chance.

Criticisms of kappa, including a lengthy bibliography of relevant articles, can be
found on the website of John Uebersax, PhD.

The Chi-Square Distribution

When we do hypothesis testing with categorical variables, we need some way to
evaluate whether our results are significant. With RxC tables, the statistic of choice
is often one of the chi-square tests, which draw on the known properties of the
chi-square distribution. The chi-square distribution is a continuous theoretical prob-
ability distribution that is widely used in significance testing because many test sta-
tistics follow this distribution when the null hypothesis is true. The ability to relate
a computed statistic to a known distribution makes it easy to determine the proba-
bility of a particular test result.

The chi-square distribution is a special case of the gamma distribution and has only
one parameter, k, which specifies the degrees of freedom. The chi-square distribu-
tion has only positive values because it is based on the sum of squared quantities,
as you will see, and is right-skewed. Its shape varies according to the value of k, most
radically when k is a low value, as appears in the four chi-square distributions pre-
sented in Figure 5-1. As k approaches infinity, the chi-square distribution ap-
proaches (becomes very similar to) a normal distribution.
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Figure 5-1. Chi-square probability distributions with different degrees of freedom

Figure D-11 contains a list of critical values for the chi-square distribution, which
can be used to determine whether the results of a study are significant. For instance,
the critical value, assuming « = 0.05, for the chi-square distribution with one degree
of freedom is 3.84. Any test result above this value will be considered significant for
a chi-square test of independence for a 2x2 table (described next).

Note that 3.84 = 1.962 and that 1.96 is the critical value for the Z-distribution (stan-
dard normal distribution) for a two-tailed test when a = 0.05. This result is not
coincidental but is due to a mathematical relationship between the Z and chi-square
distributions.

Stated formally: if X; are independent, standard normally distributed variables with
p=0and o= 1, and the random variable Q is defined as:

Q =2X;'2

Q will follow a chi-square distribution with k degrees of freedom.

Two important points to remember are that you must know the degrees of freedom
to evaluate a chi-square value and that the critical values generally increase with the
number of degrees of freedom. If a = 0.05, the critical value for a one-tailed chi-
square test with one degree of freedom is 3.84, whereas for 10 degrees of freedom,
itis 18.31.
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The Chi-Square Test

The chi-square test is one of the most common ways to examine relationships be-
tween two or more categorical variables. Performing the chi-square test involves
calculating the chi-square statistic and then comparing the value with that of the
chi-square distribution to find the probability of the test results. There are several
types of chi-square test; unless otherwise indicated, in this chapter “chi-square test”
means the Pearson’s chi-square test, which is the most common type.

There are three versions of the chi-square test. The first is called the chi-square test
for independence. For a study with two variables, the chi-square test for independ-
ence tests the null hypothesis that the variables are independent of each other, that
is, that there is no relationship between them. The alternative hypothesis is that the
variables are related, so they are dependent rather than independent.

Forinstance, we might collect data on smoking status and diagnosis with lung cancer
from a random sample of adults. Each of these variables is dichotomous: a person
currently smokes or does not and has a lung cancer diagnosis or does not. We arrange
our data in a frequency table as shown in Table 5-3.

Table 5-3. Smoking status and lung cancer diagnosis

Lung cancer diagnosis  No lung cancer diagnosis
Currently smoke 60 300

Do not currently smoke 10 390

Just looking at this data, it seems plausible that there is a relationship between
smoking and lung cancer: 20% of the smokers have been diagnosed with lung cancer
versus only about 2.5% of the nonsmokers. Appearances can be deceiving, however,
so we will conduct a chi-square test for independence. Our hypotheses are:

Hy: smoking status and lung cancer diagnosis are independent.
Hy: smoking status and lung cancer diagnosis are not independent.

Although chi-square tests are usually performed using a computer, particularly for
larger tables, it is worthwhile to go through the steps of calculation for a simple
example by hand. The chi-square test relies on the difference between observed and
expected values in each of the cells of the 2x2 table. The observed values are simply
what you found (observed) in your sample or data set, whereas the expected values
are what you would expect to find if the two variables were independent. To calcu-
late the expected value for a given cell, use the formula shown in Figure 5-2.

_ ith row total x jth row total

ij

grand total

Figure 5-2. Calculating the expected value for a cell
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In this formula, Ej; is the expected value for cell ij, and i and j designate the rows and
columns of the cell. This subscript notation is used throughout statistics, so it’s
worth reviewing here. Table 5-4 shows how subscript notation is used to identify
the parts of a 2x2 table.

Table 5-4. Subscript notation for a 2x2 table
Celly Celly, Row 1(i=1)
Celly; Celly; Row 2 (i=2)
Column1(j=1)  Column2(j=2)

Table 5-5 adds row and column totals to our smoking/lung cancer example.

Table 5-5. Smoking and lung cancer data with row and column totals

Lung cancer diagnosis  No lung cancer diagnosis  Total

Currently smoke 60 300 360
Do not currently smoke 10 390 400
Total 70 690 760

The frequency for celly; is 60, the value for celly; is 300, the total for row 1 is 360,
the total for column 1 is 70, and so on. Using dot notation, the total for row 1 is
designated as 1., the total for row 2 is 2., the total for column 1 is .1, and .2 is the
total for column 2. The logic of this notation is that, for instance, the total for row
1 includes the values for both columns 1 and 2, so the column place is replaced with
a dot. Similarly, a column total includes the values for both rows, so the row place
is replaced by a dot. In this example, 1. = 360, 2. = 400, .1 = 70, and .2 = 690.

The values for column and row totals are called marginals because they are on the
margin of the table. They reflect the frequency of one variable in the study without
regard to its relationship with the other variable, so the marginal frequency for lung
cancer diagnosis in this table is 70, and the marginal frequency for smoking is 360.
The numbers within the table (60, 300, 10, and 390 in this example) are called joint
frequencies because they reflect the number of cases having specified values on both
variables. For instance, the joint frequency for smokers with a lung cancer diagnosis
is 60 in this table.

If the two variables are not related, we would expect that the frequency of each cell
would be the product of its marginals divided by the sample size. To put it another
way, we would expect the joint frequencies to be affected only by the distribution
of the marginals. This means that if smoking and lung cancer were unrelated, we
would expect the number of people who smoke and have lung cancer to be deter-
mined only by the number of smokers and the number of people with lung cancer
in the sample. By this logic, the probability of lung cancer should be about the same
in smokers and nonsmokers if it is true that smoking is not related to the develop-
ment of lung cancer.
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Using the preceding formula, we can calculate the expected values for each of the
cells as shown in Figure 5-3.

B =20X70 _ 4316
760
B, ~20%00 o684
760
§ =4OOXTO=36.84
760
7= il il = 36316
. 760

Figure 5-3. Computing the expected cell frequencies

The observed and expected values for the lung cancer data are presented in Ta-
ble 5-6; expected values for each cell are in parentheses. We need some way to
determine whether the discrepancies can be attributed to chance or represent a sig-
nificant result. We can make this determination using the chi-square test.

Table 5-6. Observed and expected values for the smoking and lung cancer data

m

Lung cancer diagnosis  No lung cancer diagnosis  Total E'

Currently smoke 60 (33.16) 300 (326.84) 360 %
Do not currently smoke 10 (36.84) 390 (363.16) 400 §_,
Total 70 690 760 =

The chi-square test is based on the squared difference between observed and ex-
pected values in each cell, using the formula shown in Figure 5-4.

, i=R,j=C O, - Er‘j)z
E,

i=l,j=1 ij

Figure 5-4. The formula for calculating a chi-square value

The steps for using this formula are:

1. Calculate the observed/expected values for celly;
2. Square the difference, and divide by the expected value.
3. Do the same for the remaining cells.

4. Add the numbers calculated in steps 1-3.
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Continuing with our example, for cellyy, this quantity is:

(0,-E;)’ (60-33.16)°
E, 3316

U

=21.72

Continuing with the other cells, we find values of 2.2 for celly,, 19.6 for cell,;, and
2.0 for celly,. The total is 45.5, which is within rounding error for the value we found
using the SPSS statistical analysis program, (45.474).

To interpret a chi-square statistic, you need to know its degrees of freedom. Each
chi-square distribution has a different number of degrees of freedom and thus has
different critical values. For a simple chi-square test, the degrees of freedom are
(r - 1)(c - 1), that is, (the number of rows minus 1) times (the number of columns
minus 1). For a 2x2 table, the degrees of freedom are (2 - 1)(2 - 1), or 1; for a 3x5
table, they are 3 - 1)(5 - 1), or 8.

Having calculated the chi-square value and degrees of freedom by hand, we can
consult a chi-square table to see whether the chi-squared value calculated from our
data exceeds the critical value for the relevant distribution. According to Fig-
ure D-11 in Appendix D, the critical value for a = 0.05 is 3.841, whereas our value
of 45.5 is much larger, so if we are working with a = 0.05, we have sufficient evidence
to reject the null hypothesis that the variables are independent. If you are not familiar
with the process of hypothesis testing, you might want to review that section of
Chapter 3 before continuing with this chapter. Computer programs usually return
a p-value along with the chi-square value and degrees of freedom, and if the p-value
is less than our alpha level, we can reject the null hypothesis. In this example, assume
we are using an alpha value of 0.05. According to SPSS, the p-value for our result of
45.474is less than 0.0001, which is much less than 0.05 and indicates that we should
reject the null hypothesis that there is no relationship between smoking and lung
cancer.

The chi-square test for equality of proportions is computed exactly the same way as
the chi-square test for independence, but it tests a different kind of hypothesis. The
test for equality of proportions is used for data that has been drawn from multiple
independent populations, and the null hypothesis is that the distribution of some
variable is the same in all the populations. For instance, we could draw random
samples from different ethnic groups and test whether the rates of lung cancer di-
agnosis are the same or different across the populations; our null hypothesis would
be that they are the same. The calculations would proceed as in the preceding ex-
ample: people would be classified by ethnic group and lung cancer status, expected
values would be computed, the value of the chi-square statistic and degrees of free-
dom computed, and the statistic compared to a table of chi-square values for the
appropriate degrees of freedom, or the exact p-value obtained from a statistical soft-
ware package.

The chi-square test of goodness of fit is used to test the hypothesis that the distribution
ofa categorical variable within a population follows a specific pattern of proportions,
whereas the alternative hypothesis is that the distribution of the variable follows
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some other pattern. This test is calculated using expected values based on hypothe-
sized proportions, and the different categories or groups are designated with the
subscript i, from 1 to g (as shown in Figure 5-5).

5:(0 -E)

Figure 5-5. Formula for the chi-square test of goodness of fit

Note that in this formula, there are only single subscripts, for instance E; rather than
Ej;. This is because data for a chi-square goodness of fit is usually arranged into a
single row, hence the need for only one subscript. The degrees of freedom for a chi-
square test of goodness of fitis (g - 1).

Suppose we believe that 10% of a particular population has low blood pressure
(hypotension), 40% normal blood pressure, 30% prehypertension, and 20% hyper-
tension. We can test this hypothesis by drawing a sample and comparing the ob-
served proportions to those of our hypothesis (which are the expected values); we
will use alpha = 0.05. Table 5-7 shows an example using hypothetical data.

Table 5-7. Expected and observed values for the distribution of blood pressure levels

Hypotension ~ Normal  Prehypertension  Hypertension  Total

Expected proportion  0.10 0.40 0.30 0.20 1.00
Expected count 10 40 30 20 100
Observed count 12 25 50 13 100

The computed chi-square value for this data is 21.8 with 3 degrees of freedom and
is significant. (The critical value for a = 0.05 is 7.815, as can be seen from the chi-
square table in Figure D-11 in Appendix D.) Because the value calculated on our
data exceeds the critical value, we should reject the null hypothesis that the blood
pressure levels in the population follow this hypothesized distribution.

The Pearson’s chi-square test is suitable for data in which all observations are inde-
pendent (the same person is not measured twice, for instance) and the categories
are mutually exclusive and exhaustive (so that no case may be classified into more
than one cell, and all potential cases can be classified into one of the cells). It is also
assumed that no cell has an expected value less than 1, and no more than 20% of
the cells have an expected value less than 5. The reason for the last two requirements
is that the chi-square is an asymptotic test and might not be valid for sparse data
(data in which one or more cells have a low expected frequency).

Yates’s correction for continuity is a procedure developed by the British statistician
Frank Yates for the chi-square test of independence when applied to 2x2 tables. The
chi-square distribution is continuous, whereas the data used in a chi-square test is
discrete, and Yates’s correction is meant to correct for this discrepancy. Yates’s
correction is easy to apply. You simply subtract 0.5 from the absolute value of
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(observed — expected) in the formula for the chi-square statistic before squaring; this
has the effect of slightly reducing the value of the chi-square statistic. The chi-square
formula, with Yates’s correction for continuity, is shown in Figure 5-6.

i=R,j=C 2
(10, -E,1-0.5)
x= E E.

i=1,j=1 ij

Figure 5-6. The chi-square formula with Yates’s correction for continuity

The idea behind Yates’s correction is that the smaller chi-square value reduces the
probability of Type I error (wrongly rejecting the null hypothesis). Use of Yates’s
correction is not universally endorsed, however; some researchers feel that it might
be an overcorrection leading to a loss of power and increased probability of a Type
IT error (wrongly failing to reject the null hypothesis). Some statisticians reject the
use of Yates’s correction entirely, although some find it useful with sparse data,
particularly when at least one cell in the table has an expected cell frequency of less
than 5. A less controversial remedy for sparse categorical data is to use Fisher’s exact
test, discussed later, instead of the chi-square test, when the distributional assump-
tions previously named (no more than 20% of cells with an expected value less than
5 and no cell with an expected value of less than 1) are not met.

The chi-square test is often computed for tables larger than 2x2, although computer
software is usually used for those analyses because as the number of cells increases,
the calculations required quickly become lengthy. There is no theoretical limit on
the number of columns and rows that may be included, but two factors impose
practical limits: the possibility of making a coherent interpretation of the results (try
this with a 30x30 table!) and the necessity to avoid sparse cells, as noted earlier.
Sometimes, data is collected in a large number of categories but collapsed into a
smaller number to get around the sparse cell problem. For instance, information
about marital status may be collected using many categories (married, single never
married, divorced, living with partner, widowed, etc.), but for a particular analysis,
the statistician may choose to reduce the categories (e.g., to married and unmarried)
because of insufficient data in the smaller categories.

Fisher's Exact Test

Fisher’s Exact Test (often called simply Fisher’s) is a nonparametric test similar to
the chi-square test, but it can be used with small or sparsely distributed data sets
that do not meet the distributional requirements of the chi-square test. Fisher’s is
based on the hypergeometric distribution and calculates the exact probability of
observing the distribution seen in the table or a more extreme distribution, hence
the word “exact” in the title. It is not an asymptotic test and therefore is not subject
to the sparseness rules that apply to the chi-square tests. Computer software is usu-
ally used to calculate Fisher’s, particularly for tables larger than 2x2, because of the
repetitious nature of the calculations. A simple example with a 2x2 table follows.
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Suppose we are interested in the relationship between use of a particular street drug
and sudden cardiac failure in young adults. Because the drug is both illegal and new
to our area, and because sudden cardiac death is rare in young adults, we were not
able to collect enough data to conduct a chi-square test. Table 5-8 shows the data
for analysis.

Table 5-8. Fisher’s Exact Test: calculating the relationship between the use of a novel street
drug and sudden cardiac death in young adults

Cardiacdeath  No cardiacdeath  Total

Used drug 7 2 9

Didn'tusedrug 5 6 n

Total 12 8 20
Our hypotheses are:

Hy: risk of sudden cardiac death is no more common among users of the new
drug than in nonusers. Hy: risk of sudden cardiac death is greater in people
using the new drug.

Fisher’s Exact Test calculates the probability of results at least as extreme as those
found in the study. A more extreme result in this study would be one in which the
difference in proportion of drug users versus nondrug users suffering sudden cardiac
death was even greater than in the actual data (keeping the same sample size). One
more extreme result is shown in Table 5-9.

Table 5-9. More extreme data distribution for drug use/cardiac death example

Cardiacdeath  No cardiacdeath  Total

Used drug 8 1 9
Didn'tusedrug 4 7 n
Total 12 8 20

The formula to calculate the exact probability for a 2x2 table is shown in Figure 5-7.

_ nnlclc,!
nla!blc!d!

Figure 5-7. Formula for Fisher’s Exact Test

In this formula, ! means factorial (4! = 4x3x2x1), and cells and marginals are iden-
tified using the notation shown in Table 5-10.
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Table 5-10. Table notation

a b n
C d n
Q O n

Inthiscase,a=8,b=1,c=4,d=7,r1=9,r,=11,¢1 =12, ¢, =8, and n = 20. Why
is this table more extreme than our observed results? Because if there were no rela-
tionship between use of the drug and sudden cardiac death, we would expect to see
the distribution in Table 5-11.

Table 5-11. Expected data, assuming independence

(ardiacdeath  No cardiacdeath  Total

Used drug 54 3.6 9
Didn'tusedrug 6.6 44 n
Total 12 8 20

In our observed data, there is a stronger relationship between using the drug and
cardiac death (more deaths than the expected value for drug users), so any table in
which that relationship is even stronger than in our observed data is more extreme
and hence less probable if drug use and cardiac death are independent.

To find the p-value for Fisher’s Exact Test by hand, we would have to find the
probability of all the more extreme tables and add them up. Fortunately, algorithms
to calculate Fisher’s are included in most statistical software packages, and many
online calculators also can calculate this statistic for you. Using the calculator avail-
able on a page maintained by John C. Pezzullo, a retired professor of pharmacology
and biostatistics, we find that the one-tailed p-value for Fisher’s Exact Test for the
data in Table 5-7 is 0.157. We use a one-tailed test because our hypothesis is one-
tailed; our interest is in whether use of the new drug increases the risk for cardiac
death. Using an alpha level of 0.05, this result is not significant, so we do not reject
our null hypothesis that the new drug does not increase the risk of cardiac death.

McNemar’s Test for Matched Pairs

McNemar’s test is a type of chi-square test used when the data comes from paired
samples, also known as matched samples or related samples. For instance, we might
use McNemar’s to examine the results of an opinion poll on some issue before and
after a group of individuals viewed a political advertisement. In this example, each
person would contribute two opinions, one before and one after viewing the adver-
tisement. We cannot treat two opinions on the same issue as independent, so we
can’t use a Pearson’s chi-square; instead, we assume that two opinions collected
from the same person will be more closely related than two opinions collected from
two people. The McNemar’s test would also be appropriate if we collected opinions
from pairs of siblings or husband—wife pairs on some issue. In siblings and husband—
wife examples, although information is collected from different individuals, the
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individuals in each pair are so closely related or affiliated that we would expect them
to be more similar than two people chosen at random from the population. McNe-
mar’s can also be used to analyze data collected from groups of individuals who have
been so closely matched on important characteristics that they can no longer be
considered independent. For instance, medical studies sometimes look at the oc-
currence of a particular disease related to a risk factor among groups of individuals
matched on multiple characteristics such as age, gender, and race/ethnicity, and use
paired data techniques such as McNemar’s because the individuals are so closely
matched that they are considered related rather than independent samples.

Suppose we want to measure the effectiveness of a political advertisement in chang-
ing people’s opinions about capital punishment. One way to do this would be to
ask people whether they are for or against capital punishment, collecting their opin-
ions both before and after they view a 30-second commercial advocating the aboli-
tion of capital punishment. Consider the hypothetical data set in Table 5-12.

Table 5-12. McNemar’s test of opinions on capital punishment before and after viewing a
television commercial

After viewing the commercial

For capital Against capital Total
punishment punishment
Beforeviewingthe  For capital 15 25 40
commercial punishment
Against capital 10 20 30
punishment
25 45 70

More people were against capital punishment after viewing the commercial as com-
pared to the same people before viewing the commercial, but is this difference sig-
nificant? We can test this using McNemar’s chi-square test, calculated using the
formula in Figure 5-8.

4 (b—c)2

b+c

Figure 5-8. Formula for McNemar’s chi-square test

This formula uses a method of referring to cells by letters, using the plan shown in
Table 5-13.

Table 5-13. Method of referring to cells in a 2x2 table by letters
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Note that this formula is based exclusively on the distribution of discordant pairs
(band ¢), in this case those in which a person changed his or her opinion after viewing
the commercial. McNemar’s has a chi-squared distribution with one degree of free-
dom. The calculations are shown in Figure 5-9.

){2_(25-10)2 _25 .
25+10 35

Figure 5-9. Computing McNemar’s chi-square test

As you can see from the chi-square table (Figure D-11 in Appendix D), when alpha
= (.05, the critical value for a chi-square distribution is 3.84, so this result provides
evidence that we should reject the null hypothesis that viewing the commercial has
no effect on people’s opinions about capital punishment. I also determined from a
computer analysis that the exact probability of getting a chi-square statistic with one
degree of freedom at least as extreme as 6.43 is 0.017 if people’s opinions did not
change before and after viewing the commercial, reinforcing the fact that the result
from this study is significant, and we should reject the null hypothesis.

Proportions: The Large Sample Case

A proportion is a fraction in which all the cases in the numerator are also in the
denominator. For instance, we could speak of the proportion of female students in
a particular university. The numerator would be the number of female students, and
the denominator would be all students (both male and female) at the university. Or
we could speak of the number of students majoring in chemistry at a particular
university. The numerator would be the number of chemistry majors, and the de-
nominator all students at the university (of whatever major). Proportions are
discussed in more detail in Chapter 15. Data that can be described in terms of pro-
portions is a special case of categorical data in which there are only two categories:
male and female in the first example, chemistry major and non-chemistry major in
the second.

Many of the statistics discussed in this chapter, such as Fisher’s Exact Test and the
chi-square tests, can be used to test hypotheses about proportions. However, if
the data sample is sufficiently large, additional types of tests can be performed using
the normal approximation to the binomial distribution; this is possible because, as
discussed in Chapter 3, the binomial distribution comes to resemble the normal
distribution as n (the sample size) increases. How large a sample is large enough?
One rule of thumb is that both np and n(1 - p) must be greater than or equal to 5.

Suppose you are a factory manager, and you claim that 95% of a particular type of
screw produced by your plant has a diameter between 0.50 and 0.52 centimeters. A
customer complains that a recent shipment of screws contains too many outside the
specified dimensions, so you draw a sample of 100 screws and measure them to see
how many meet the standard. You will conduct a one-sample Z-test to see whether

136 | Chapter5: Categorical Data



your hypothesized proportion of 95% of screws meeting the specified standard is
correct with the following hypotheses:

Hy: 7> 0.95, Hy: 1< 0.95

where 1t is the proportion of screws in the population meeting the standard (diameter
between 0.50 and 0.52 centimeters). Note that this is a one-tailed test; you will be
happy if at least 95% of the screws meet the standard and happy if more than 95%
meet it. (You would be happiest, of course, if 100% met the standard, but no man-
ufacturing process is perfectly precise.) In your sample of 100 screws, 91 were within
the specified dimensions. Is this result sufficient, using the standard of alpha = 0.05,
to reject the null hypothesis that at least 95% of the screws of this type manufactured
in our plant meet the standard?

The formula to calculate the one-sample Z-test for a proportion is given in Fig-
ure 5-10.

P—7,

W

Figure 5-10. Formula for the one-sample Z statistic for a proportion

In this formula, 1t is the hypothesized population proportion,
p is the sample proportion, and
n is the sample size.

Plugging the numbers into this formula gives us a Z-score of -1.835, as shown in
Figure 5-11.

091-095  -0.0400
z=- - =-1.835

[(0.95)(0.05) 0.0218
100

Figure 5-11. Calculating the one-sample Z statistic for a proportion

The critical value for a one-tailed Z-test, given our hypotheses and alpha-level, is
-1.645. Our value of -1.835 is more extreme than this value, so we will reject our
null hypothesis and conclude that less than 95% of this type of screw, as manufac-
tured in our plant, meet the specified standard.

We can also test for differences in population proportions in the large-sample case.
Suppose we are interested in the proportion of high school students who are current
tobacco smokers and want to compare this proportion across two countries. Our
null hypothesis is that the proportion is the same in both countries, so this will be
a two-sided test with the hypotheses:
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Assuming that our assumptions about sample size are met (np = 5, n(1 —p) = 5 for
both samples), we can use the formula in Figure 5-12 to compute a Z-statistic for
the differences in proportions between two populations.

P-D
\/ﬁ(l—ﬁ)j(l—ﬁ)

n, n,

Figure 5-12. Formula for the Z-statistic for the difference in two proportions

In this formula, p; is the proportion in sample 1,

p> is the proportion in sample 2,

ny is the size of sample 1,

n, is the size of sample 2, and

X is the pooled proportion, calculated as the sum of successes in both samples
(in this case, the number of smokers), divided by the sum of the sample sizes.

Suppose we drew a sample of 500 high school students from each of two countries;
in country 1, the sample included 90 current smokers; in country 2, it included 70
current smokers. Given this data, do we have sufficient information to reject our
null hypotheses that the same proportion of high school students smoke in each
country? We can test this by calculating the two-sample Z test, as shown in Fig-
ure 5-13.

0.18-0.14 0.04

T -
\/0.16(]—0.]6)+0.l6(1—0.16) 023
500 500

=1.74

Figure 5-13. Calculating the Z-statistic for the difference in two proportions

Note that our pooled proportion is:
(90 +70)/(500 + 500) = 160/1000 = 0.16

This Z-value is less extreme than 1.96 (the value needed to reject the null hypothesis
at alpha = 0.05; you can confirm this using the normal table [Figure D-3 in Appen-
dix D]), so we fail to reject the null hypothesis that the proportion of smokers among
high school students in the two countries is the same.

Correlation Statistics for Categorical Data

The most common measure of association for two variables, Pearson’s correlation
coefficient (discussed in Chapter 7) requires variables measured on at least the

138 | Chapter5: Categorical Data



interval level. However, several measures of association have been developed for
categorical and ordinal data, and they are interpreted similarly to the Pearson cor-
relation coefficient. These measures are often produced using a statistical software
package or an online calculator, although they can also be calculated by hand.

As with Pearson’s correlation coefficient, the correlation statistics discussed in this
section are measures of association only, and statements about causality cannot be
supported by a correlation coefficient alone. There is a plethora of these measures,
some of which are known under several names; a few of the most common are
discussed here. A good approach if you’re using a new statistical software package
is to see which measures are supported by that package and then investigate which
of those measures are appropriate for your data because there are so many correla-
tion statistics.

Binary Variables

Phi is a measure of the degree of association between two binary variables (two
categorical variables, each of which can have only one of two values). Phi is calcu-
lated for 2x2 tables; Cramer’s V is analogous to phi for tables larger than 2x2. Using
the method of cell identification described in Table 5-10, the formula to calculate
phi is shown in Figure 5-14.

6= ad - bc
" Ja+b)c+d)a+c)b+d)

Figure 5-14. Formula for the phi statistic

We can calculate phi for the smoking/lung cancer data in Table 5-3 as shown in
Figure 5-15.

~(60)(390) - (300)(10)
T A/360+400+70+690

0.24

Figure 5-15. Calculating the phi statistic

Phi can also be calculated by dividing the chi-square statistic by n and then taking
the square root of the result as shown in Figure 5-16.

g 2

n

Figure 5-16. An alternative formula for the phi statistic

Note that in the first method of calculation, the result can be either positive or neg-
ative, whereas in the second, it can only be positive because the chi-square statistic
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is always positive. The value of phi using the chi-square statistic found using the
second formula can be thought of as the absolute value of the value found using the
first formula. This is clear from considering the data in Table 5-14.

Table 5-14. Phi example

0 20
20 10

Calculating phi by the first method, we get -0.33, and by the second method, 0.33.
You can confirm this using a statistical computer package or an online calculator,
or by performing the calculations by hand. Of course, if we changed the order of the
two columns, we would get a positive result using either method. If the columns
have no natural order (e.g., if they represent nonordered categories such as color),
we might not care about the direction of the association but only its absolute value.
In other cases, we might, for instance if the columns represent the presence or ab-
sence of disease. In the latter case, we need to be careful about how we arrange the
data in the table to avoid producing a misleading result.

Interpreting phi is less straightforward than interpreting the Pearson’s correlation
coefficient because the range of phi depends on the marginal distribution of the data.
If both variables have a 50-50 split (half one value, half the other), the range of phi
is (-1, +1), using the first method, or (0, 1), using the second method. If the variables
have any other distribution, the potential range of phiisless. This is discussed further
in the article by Davenport and El-Sanhurry listed in Appendix C. Keeping this lim-
itation in mind, the interpretation of phi is similar to that of the Pearson correlation
coefficient, so a value of -0.33 would indicate a moderate negative relationship (also
keeping in mind that there is no absolute definition of “a moderate relationship”
and that this result might be considered large in one field of study and rather small
in another).

Cramer’s Vis an extension of phi for tables larger than 2x2. The formula for Cramer’s
V is similar to the second method for calculating phi, as shown in Figure 5-17.

V= —2%
nminr-1,c-1)

Figure 5-17. The formula for Cramer’s V

where the denominator is n (sample size) times the minimum of (r - 1) and (¢ - 1),
that is, the minimum of two values: the number of rows minus 1, and the number
of columns minus 1. For a 4x3 table, this number would be 2, thatis, 3 - 1. For a
2x2 table, the formula for Cramer’s V is identical to the formula for the second way
of calculating phi.

Suppose the chi-square value for a 3x4 table with an #n of 200 is 16.70. Cramer’s V
for this data is shown in Figure 5-18.
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V= 6.0 =0.20
200(2)

Figure 5-18. Calculating Cramer’s V

The Point-Biserial Correlation Coefficient

The point-biserial correlation coefficient is a measure of association between a di-
chotomous variable and a continuous variable. Mathematically, it is equivalent to
the Pearson correlation coefficient (discussed in detail in Chapter 7), but because
one of the variables is dichotomous, a different formula can be used to calculate it.

Suppose we are interested in the strength of association between gender (dichoto-
mous) and adult height (continuous). The point-biserial correlation is symmetric,
like the Pearson correlation coefficient, but for ease of notation we designate height
as X and gender as Y and code Y so 0 = males and 1 = females. We draw a sample
of men and women and calculate the point-biserial correlation by using the formula
shown in Figure 5-19.

_ )71 —Xuqi’p(l -p)

pb )
b.l‘

Figure 5-19. Formula for the point-biserial correlation coefficient

In this formula, X; = the mean height for females and X =the mean height for
males

p = the proportion of females

s, = the standard deviation of X

Suppose in our sample, the mean height for males is 69.0 inches, for females 64.0
inches, the standard deviation for heightis 3.0 inches, and the sample is 55% female.
We calculate the correlation between gender and adult height as shown in Fig-
ure 5-20.

L X -Xp(-p) _(64-69)055045) _ oo
ph - = 3 =-0.

X

Figure 5-20. The point-biserial correlation of gender and height

A correlation of -0.829 is a strong relationship, indicating that there is a close rela-
tionship between gender and adult height in the U.S. population. The correlation is
negative because we coded females (who are on average shorter) as 1 and males as
0; had we coded our cases the other way around, our correlation would have been
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0.829. Note that the means and standard deviation used in this equation are close
to the actual values for the U.S. population, so a strong relationship between gender
and height exists in reality as well as in this exercise.

Ordinal Variables

The most common correlation statistic for ordinal data (in which data is ordered
but cannot be assumed to have equal distance between values) is Spearman’s rank-
order coefficient, also called Spearman’s rho or Spearman’s r, and also designated by
75. Spearman’s rho is based on the ranks of data points (first, second, third, and so
on) rather than on their values. Class rank in a school is an example of ratio-level
data; the person with the highest GPA (grade point average) is ranked first, the
person with the next-highest GPA is ranked second, and so on, but you don’t know
whether the difference between the 1st and 2nd students is the same as the difference
between the 2nd and 3rd. Even if you have data measured on a ratio scale, such as
GPA in high school, class ranks are sometimes used in college admissions and schol-
arship decisions because of the difficulty of comparing grading systems across dif-
ferent classes and different schools.

To calculate Spearman’s rho, rank the values of each variable separately, averaging
the ranks of any tied values. Then calculate the difference in ranks for each pair of
values, and calculate Spearman’s rho by using the formula shown in Figure 5-21.

6 ) d’
’ n(n” -1

Figure 5-21. Formula for Spearman’s rho

Suppose we are interested in the relationship between weekly hours of study and
score on a final exam. We collect data for both variables as shown in Table 5-15 (a
data set for illustrative purposes to minimize the hand-calculations needed):

Table 5-15. Weekly hours of study and final exam score

Student  Hoursofstudy Rank  Finalexamscore Rank d; d; squared

1 10 7 93 7 0 0
2 12 9 98 8 1 1
3 8 5 99 9 -4 16
4 15 10 100 10 0 0
5 4 1 92 6 =5 25
6 n 8 90 5 3 9
7 6 3 80 2 1 1
8 7 4 82 3 1 1
9 9 6 84 4 2 4
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Student  Hoursofstudy Rank  Finalexamscore Rank d; d; squared
10 5 2 75 1 1 1

It looks like more studying is associated with a higher grade, although the relation-
ship is not perfect. (Student #3 got a high grade with only an average amount of
studying, and student #5 got a good grade with a relatively low amount of studying.)
We will calculate Spearman’s rho to get a more precise estimate of this relationship.
Note that because we square the rank difference, it doesn’t matter whether you
subtract study rank from exam rank (as we did) or the other way around. The sum
of d# is 58, and Spearman’s rho for this data is shown in Figure 5-22.

| (©)8)

r, = =1-0.35=0.65
: 10(99)

Figure 5-22. Calculating Spearman’s rho

This confirms what we guessed from just looking at the data: there is a strong but
imperfect relationship between the amount of time spent studying and the outcome
on a test.

Goodman and Kruskal’s gamma, often called simply gamma, is a measure of asso-
ciation for ordinal variables that is based on the number of concordant and
discordant pairs between two variables. It is sometimes called a measure of monot-
onicity because it tells you how often the variables have values in the order expected.
If T tell you that two variables in a data set have a positive relationship and that case
2 has a higher value on the first variable than does case 1, you would expect that
case 2 also has a higher value on the second variable. This would be a concordant
pair. If case 2 had a lower value on the second variable, it would be a discordant
pair. To calculate gamma by hand, we would first create a frequency distribution
for the two variables, retaining their natural order.

Consider a hypothetical data set relating BMI (body mass index, a measure of weight
relative to height) and blood pressure levels. In general, high BMI is associated with
high blood pressure, but this is not the case for every individual. Some overweight
people have normal blood pressure, and some normal-weight people have high
blood pressure. Is there a strong relationship between weight and blood pressure in
the data set shown in Table 5-16?

Table 5-16. Example data to calculate gamma

Blood pressure
Normal  Prehypertensive  Hypertensive
BMI  Normal 25 15 5
Overweight 10 10 25

The equations to calculate gamma rely on the cell designations shown in Table 5-17.
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Table 5-17. Cell designations to compute gamma

First, we have to find the number of concordant pairs (P) and discordant pairs (Q),
as follows:

P=a(e+f)+bf=25(10+25) + 15(25) =875 + 375 = 1250,
Q=c(d+e)+bd=5(10+10)+ 15(10) = 100 + 150 = 250

Gamma is then calculated as shown in Figure 5-23.

~P-Q 1250-250
T P+Q 1250+250

y 0.67

Figure 5-23. Calculating Goodman and Kruskal’s gamma

The reasoning behind gamma is clear: if there is a strong relationship between the
two variables, there should be a higher proportion of concordant pairs; thus, gamma
will have a larger value than if the relationship were weaker. Gamma is a symmetrical
measure because it does not matter which variable is considered the predictor and
which the outcome; the value of gamma will be the same in either case. Gamma does
not correct for tied ranks within the data.

Maurice Kendall developed three slightly different types of ordinal correlation as
alternatives to gamma. Statistical computer packages sometimes use more complex
formulas to calculate these statistics, so the exact formula any particular program
uses should be confirmed with the software manual. All Kendall’s tau statistics, like
gamma, are symmetrical measures.

Kendall’s tau-a is based on the number of concordant versus discordant pairs, divi-
ded by a measure based on the total number of pairs (n = the sample size), as shown
in Figure 5-24.

T a4

Ta (n(n -1))
2

Figure 5-24. Formula for Kendall’s tau-a

Kendall’s tau-b is a similar measure of association based on concordant and dis-
cordant pairs, adjusted for the number of ties in ranks. Assuming our two variables
are X and Y, tau-b is calculated as (P - Q) divided by the geometric mean of the
number of pairs not tied on X (X() and the number of pairs not tied on Y (Yy). Tau-
b can approach 1.0 or -1.0 only for square tables (tables with the same number of
rows and columns). The formula for Kendall’s tau-b is shown in Figure 5-25.
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P-Q
T, =
JP+Q+ X)) (P+0Q+Y,)

Figure 5-25. Formula for Kendall’s tau-b

In this formula, X = the number of pairs not tied on X, and Y, = the number of pairs
not tied on Y.

Kendall’s tau-c is used for nonsquare tables and is calculated as shown in Figure 5-26.

T =(P—Q)[2—m]

n*(m-1)

Figure 5-26. Formula for Kendall’s tau-c

In this formula, m is the number of rows or columns, whichever is smaller, and 7 is
the sample size.

Somers’s d is an asymmetrical version of gamma, so calculation of the statistic varies
depending on which variable is considered the predictor and which the outcome.
Somers’s d also differs from gamma because it is corrected for the number of pairs
tied on the predictor variable. If the study is set up with the hypothesis involving
X predicting Y, Somers’s d is corrected for the number of pairs tied on X. If the
hypothesis is that Y predicts X, it is corrected for the number of pairs tied on Y. As
in tau-b, in Somers’s d, tied pairs are removed from the denominator. Using the
notation that X, = the number of pairs not tied on X and Yy = the number of pairs
not tied on Y, Somers’s d is calculated as shown in Figure 5-27.

P-Q

d(predicting Y f X
(predicting Y from X) P+Q+X,

_F-Q
P+Q+Y,

d(predicting X from Y)

Figure 5-27. Formulas for Somers’s d

A symmetric value of Somers’s d can be calculated by averaging the two asymmetric
values calculated with these formulas.

The Likert and Semantic Differential Scales

Several types of scales have been developed to measure qualities that have no natural
metric, such as opinions, attitudes, and perceptions. The best known of these scales
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is the Likert scale, introduced by Rensis Likert in 1932 and widely used today in
fields ranging from education to health care to business management. In a typical
Likert scale question, a statement is presented and the respondent is asked to choose
from an ordered list of responses. For instance:

My classes at Lincoln East High School prepared me for university studies.

1. Strongly agree

2. Agree

3. Neutral

4. Disagree

5. Strongly disagree

This is a classic ordinal scale; we can be reasonably sure that “strongly agree” rep-
resents more agreement than “agree,” and “agree” represents more agreement than
“neutral,” but we can’t be sure whether the increment of agreement between “agree”
and “strongly agree” is the same as the increment between “neutral” and “agree” or
if these increments are the same for each respondent.

Categorical and ordinal methods, as described in this chapter, are appropriate for
the analysis of Likert scale data, and so are some of the nonparametric methods
described in Chapter 13. The fact that Likert scale responses are often identified
with numbers has sometimes led researchers to analyze the data as if it were collected
on an interval scale. For instance, you can find published articles that report the
mean and variance for data collected using a Likert scale. A researcher choosing to
follow this path (treating Likert data as interval) should be aware that this is a con-
troversial approach that will be rejected by many editors and that the burden is on
the researcher to justify any departure from ordinal or categorical methods of anal-
ysis for Likert scale data.

Five levels of response are commonly used with Likert scales because three is thought
not to allow sufficient variation of response, whereas seven is believed to offer too
many choices. There is also some evidence that people are reluctant to select the
extreme values of a scale when a large number of choices is offered. However, some
researchers prefer to use an even number of responses, usually four or six, to avoid
a middle category that might be chosen by default by some respondents.

The semantic differential scale is similar to the Likert scale except that individual
data points are notlabeled, merely the extreme values. The preceding Likert question
could be rewritten as a semantic differential question as follows:

Please rate your academic preparation at Lincoln East High School in relation to
the demands of university study.

Excellent preparation 1 2 3 4 5 Inadequate preparation

Because individual data points do not have to be labeled, semantic differential items
often offer more data points to the respondent. Ten data points is a popular choice
because people are familiar with a 10-point judging scale (hence the popular phrase
“a perfect 10”). Like Likert scales, semantic differential scales are by nature ordinal,
although when a larger number of data points is offered, some researchers argue that
they can be analyzed as interval data.
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Rensis Likert (1903—1981)

Rensis Likert (pronounced Lick-urt, with the accent on the first syllable) was an
American social scientist who specialized in research on organizational behavior
and management theory. Likert received his BA in sociology from the University
of Michigan in 1926 and his PhD in psychology from Columbia University in 1932;
he developed the Likert scale as part of his dissertation research. Likert was a
founder of the University of Michigan Institute for Social Research and served as
its director from 1946 to 1970; he spent his later years consulting for corporations
and writing books on management theory. A central aspect of his work will endear
him to self-motivated students and employees around the world: Likert intro-
duced the concepts of participation management and the human-centered orga-
nization, based on his findings that there was an inverse relationship between
coercive management supervision and employee productivity.

Exercises

Here are some review questions on the topics covered in this chapter.
Problem

What are the dimensions of Tables 5-18 and 5-19? What would be the degrees of
freedom for an independent-samples chi-square test calculated from data of these
dimensions?

Table 5-18. RxC table a

Table 5-19. RxC table b

Solution

The table dimensions are 3x4 (table a) and 4x3 (table b). Remember, tables are
described as RxC, that is, (number of rows) by (number of columns). The degrees
of freedom are 6 for the first table [(3 - 1)(4 - 1)] and 6 for the second [(4 - 1)(3 -
1)] because degrees of freedom for chi-square is calculated as [(r - 1)(c - 1)].

Problem

Given the distribution of data in the following table, calculate percent agreement
and kappa.
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Table 5-20. Agreement between two raters

Rater 2
+ -
Rater1 + 70 15 85
- 30 25 55

100 40 140

Solution
Percent agreement = 95/140 = 0.68,
Kappa = 0.30,

P, = (70 +25)/140 = 0.68,
P, =(85"100)/(1407140) + (40*55)/(140140) = 0.54

_0.68-0.54
"~ 1-054

=0.30

Figure 5-28. Calculating kappa

Problem
What is the null hypothesis for the chi-square test of independence?
Solution

The variables are independent, which also means that the joint probabilities may be
predicted using only the marginal probabilities.

Problem
What is the null hypothesis for the chi-square test for equality of proportions?
Solution

The null hypothesis is that two or more samples drawn from different populations
have the same distribution on the variable(s) of interest.

Problem

What is an appropriate statistic to measure the relationship between the two inde-
pendent variables displayed in Table 5-21? What is the value of that statistic, and
what conclusion would you draw from it?

Table 5-21. Two independent variables

D+ D-
H 25 10
- 2 5
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Solution

Because this is a 2x2 table and two of the cells have expected values of less than five
(cells cand d), Fisher’s Exact Test should be used. The value is 0.077 (obtained using
computer software), which does not provide sufficient evidence to reject the null
hypothesis of no relationship between E and D.

Problem

What are the expected values for the cells in Table 5-22? What is the value of the
chi-square statistic? What conclusion would you draw about the relationship be-
tween exposure and disease, given this data?

Table 5-22. Calculating expected values

D+ D-
B+ 25 30
- 15 5
Solution

The expected values are given in Table 5-23.

Table 5-23. Expected values: solution

D+ D—
E+ 293 257
B~ 107 93

Chi-square (1) = 5.144, p = 0.023. This is sufficient evidence to reject the null hy-
pothesis that exposure and disease are unrelated. We draw the same conclusion by
using the chi-square table (Figure D-11) in Appendix D: 5.144 exceeds the 0.025
critical value (5.024) for a single-tailed chi-square test with one degree of freedom,
indicating that we should reject the null hypothesis if « = 0.05.

Problem

Table 5-24 represents political affiliations of married couples. Compute the appro-
priate statistic to see whether the affiliations of husbands and wives are independent
of those of their spouses.

Table 5-24. Political affiliations of husbands and wives

Wife
Republican  Democrat
Husband  Republican 20 30
Democrat 20 20
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Solution

McNemar’s test is appropriate because the data comes from related pairs. The cal-
culations are shown in Figure 5-29. The value of McNemar’s chi-square is 2.00,
which is not above the critical value for chi-square with one degree of freedom, at
alpha = 0.05, so we do not have evidence sufficient to reject the null hypothesis that
the political affiliations of spouses are independent of the affiliation of the other
spouse.

Figure 5-29. Calculating McNemar’s test

Problem

Which of Kendall’s tau statistics would be appropriate for the data in Table 5-25?

Table 5-25. Educational level and job satisfaction

Satisfaction with job
Dissatisfied  Neutral  Satisfied

Educational Level  <HS 45 20 10
HS grad 15 15 20
Some college 30 10 25
College grad or higher 10 15 30
Solution

Kendall’s tau-c should be used because the table is not square (it has four rows and
three columns).

Problem

What is the argument against analyzing Likert and similar attitude scales as interval
data?

Solution

There is no natural metric for constructs such as attitudes and opinions. We can
devise scales that are ordinal (the responses can be ranked in order of strength of
agreement, for instance) to measure such constructs, but it is impossible to deter-
mine whether the intervals among points on such scales are equally spaced. There-
fore, data collected using Likert and similar types of scales should be analyzed at the
ordinal or categorical level rather than at the interval or ratio level.

Problem

In what circumstance would you compute the Cramer’s V statistic?
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Solution

Cramer’s V is an extension of the phi statistic and should be calculated to determine
the strength of association between two categorical variables that have more than
two levels. For binary variables, Cramer’s V is equivalent to phi.

Problem

You read about a national poll stating that 30% of university students are dissatisfied
with their appearance. You wonder whether the proportion at your local university
(enrollment 20,000 students) is the same, so you draw a random sample of 150
students and find that 30 report being dissatisfied with their appearance. Conduct
the appropriate test to see whether the proportion of students at your university
differs significantly from the national result.

Solution

This question calls for a one-sample Z-statistic with a two-tailed test (because you
are interested in whether the proportion at your school differs from the national
figure in either direction). The test statistic is shown in Figure 5-30.

_030-020  0.10

~ [030(1-030) 0037
150

Figure 5-30. Calculating the one-sample Z-statistic for a proportion

Using the standard of alpha = 0.05 and a two-tailed test, the critical Z-value is 1.96
(as you can find using Figure D-3 in Appendix D). The Z-value from your sample is
more extreme than this, so you reject the null hypothesis that the proportion of
students dissatisfied with their appearance at your school is the same as at the na-
tional level.

Simpson’s Paradox

Simpson’s paradox is a circumstance in which the direction of an association re-
verses when data from several groups is combined. This paradox is well known
among baseball fans. For instance, it is possible for player A to have a higher batting
average (proportion of hits) than player B in each of two years, yet player A may
have a lower batting average than player B when data from the two years are
combined. Consider the example in Table 5-26.

Player B had a higher batting average each year yet, over both years combined, a
lower average. This phenomenon occurs due to the different number of cases ob-
served for each player in each year.
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Table 5-26. Simpson’s paradox in baseball

2000 2001 Combined
Player  Hits  At-bats Average Hits At-bats Average Hits At-bats  Average
A 10 50 0.200 200 600 0.333 210 650 0323
B 85 400 0.213 50 145 0.345 135 545 0.248

Simpson’s paradox was at the root of a controversy about gender discrimination
in university admissions a few years ago. A lawsuit filed against the University of
California was denied when it was shown that apparent gender discrimination (a
lower percentage of women than men admitted overall to the university) could
be explained by the fact that admissions were determined on a department-by-
department basis and that most women applied to departments in which the per-
centage of applicants accepted was low, whereas most men applied to departments
in which the percentage of applicants accepted was higher. In fact, in most de-
partments, a slightly lower percentage of men than women were accepted, but this
distinction was reversed when admissions data from all departments was
combined.

Simpson’s paradox is also apparent in the evaluation of medical treatments when
treatment A might be superior to treatment B in each of two samples yet inferior
when the samples are combined. Some statisticians argue that circumstances such
as this should not be called a paradox at all because to do so implies that there is
a causal relationship between the two variables.

Table 5-27. Summary of tests covered in this chapter

Name of test Type of data What is being tested
Percent agreement One categorical variable, two How well do the raters agree?
raters
Cohen’s kappa One categorical variable, two How well do the raters agree after correction for

Chi-square test of
independence

Chi-square test of equality
of proportions

Chi-square test for good-
ness of fit
Fisher's Exact Test

McNemar's test

Large-sample Z test for a
proportion

raters

Two or more categorical vari-
ables

One categorical variable, sam-
ples from two or more popula-
tions

One categorical variable, a hy-
pothesized distribution for it

Two categorical variables; data
may be sparse

One dichotomous variable,
measured on matched pairs

Dichotomous variable, one sam-
ple, large sample (np > 5, n(1 —
p)=5)

chance?

Are the variables independent?

Does the variable have the same distribution in the
populations from which the samples were drawn?

Does the variable have the hypothesized distribution
inthe population from which the sample was drawn?

Are the variables independent?

Are there changes in proportions among the
matched pairs?

Does a population proportion differ from a specified
proportion?
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Name of test

Large-sample Z test for the
difference in two propor-
tions

Phi
Cramer'sV

Point-biserial correlation
Spearman’s tho
Goodman and Kruskal's
gamma

Kendall’s tau-a

Kendall's tau-b

Kendall's tau-c

Type of data

Dichotomous variable, two sam-
ples, both large samples (np > 5,
n(1—p)=5)

Two binary variables
Two categorical variables

One dichotomous and one con-
tinuous variable

Two ranked variables

Two ordinal variables

Two ordinal variables

Two ordinal variables

Two ordinal variables

What is being tested

Does the proportion of some variable differ in the
populations from which the samples were drawn?

How strongly are the variables associated?
How strongly are the variables associated?

How strongly are the variables associated?

How strongly are the variables associated?

How strongly are the variables associated (based on
concordant and discordant pairs)?

How strongly are the variables associated (based on
concordant and discordant pairs)?

How strongly are the variables associated (based on
concordant and discordant pairs; corrected for ties)?

How strongly are the variables associated (based on
concordant and discordant pairs; may be used for
nonsquare tables)?
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The t-Test

The ¢ distribution was introduced by a chemist working in quality control for the
Guinness brewery in Ireland, William Sealy Gosset. Gosset described the ¢ distri-
bution in an article under the pseudonym Student; hence, the ¢ distribution is some-
times called the Student’s ¢ distribution and the #-test the Student’s ¢-test. There are
three major types of t-test, all of which are concerned with testing the difference
between means and involve comparing a test statistic to the ¢ distribution to deter-
mine the probability of that statistic if the study’s null hypothesis is true. The one-
way analysis of variance (ANOVA) procedure with two groups is mathematically
equivalent to the t-test, but the t-test is used so commonly that it deserves its own
chapter. In addition, understanding the logic of the t-test should make it easier to
follow the logic of more complex ANOVA designs.

The t Distribution

If you’re not familiar with inferential statistics, it might be wise to review Chap-
ter 3 before continuing with this chapter. One basis for inferential statistics is the
use of known probability distributions to make inferences about real data sets. In
Chapter 3, we discussed the normal and binomial distributions; in this chapter, we
discuss the t distribution. Like the normal distribution, the ¢ distribution is contin-
uous and symmetrical. Unlike the normal distribution, the shape of the ¢ distribution
depends on the degrees of freedom for a sample, meaning the number of values that
are allowed to vary. For the ¢ distribution, the main influence on degrees of freedom
is the sample size, and tests on larger sample sizes generally have more degrees of
freedom than smaller sample sizes. Calculation of the degree of freedom for the
different types of t-test will be discussed in the section covering each test.

Asnoted, Gosset developed the ¢ distribution for practical reasons. While employed
in quality assurance for the Guinness brewery, he was trying to solve the problem
of making inferences from samples of limited size. Gosset’s key observation was the
influence of sample size in determining the probability that the mean of the popu-
lation lies within a given distance of the mean of the sample. There are two main
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reasons for using the ¢ distribution to test differences in means: when we are working
with small samples from a population we believe has an approximately normal dis-
tribution and when we do not know the standard deviation of a population and need
to use the standard deviation of the sample as a substitute for the population stan-
dard deviation. If we are working with a sample size too small to invoke the central
limit theorem and we do not believe that the population from which our sample was
drawn has an approximately normal distribution, we need to use a nonparametric
method (discussed in Chapter 13) instead.

As Figure 6-1 shows, the t distribution looks quite similar to the normal, the main
difference being the thicker tails that mean extreme values are more probable in the
t distribution than in the normal. As sample size (hence degrees of freedom) increa-
ses, the t distribution comes to look more like the normal distribution.
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Figure 6-1. Four t distributions

Gosset found that when samples are drawn from a normally distributed population
and the sample standard deviation is used to estimate the population variance, the
distribution of sample means for some variable x drawn from this population can
be described by the formula in Figure 6-2.

Figure 6-2. Formula for the t distribution
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In this formula, X is the sample mean,

u is the population mean,

s is the population standard deviation, and
n is the sample size.

This formula is similar to the formula for the Z-statistic presented in Chapter 3; the
only difference is that for the t-statistic, we use the sample standard deviation,
whereas for the Z-statistic, we use the population standard deviation.

Appendix D includes a table (Figure D-7) with the upper critical values of the ¢
distribution for different degrees of freedom; we say “upper critical values” because
the ¢ distribution is symmetric, so there is no need to print the lower critical values.
(They would be the negatives of the numbers in this table.) Because only positive
values are included in the table, to find the critical value for a two-tailed t-test, we
use the column for the « value, which is half of what we want. For a two-tailed test
with & =0.05, we use the column for 0.25. Not surprisingly, as sample size increases,
the critical values for the ¢ distribution approach those for the standard normal dis-
tribution. For instance, we know (from Figure D-7 in Appendix D as well as the
discussion in Chapter 3) that the upper critical value in the standard normal distri-
bution for a two-tailed test with alpha = 0.05 is 1.96. For a two-tailed test using the
t distribution, with alpha = 0.05, the upper critical value depends on the degrees of
freedom (df). For 1 df, the upper critical value is 12.706; for 10 df, the upper critical
value is 2.228; for 30 df, 2.042; for 50 df, 2.009; for 100 df, 1.984; and for infinite
degrees of freedom, 1.96.

William Sealy Gosset

William Sealy Gosset is often considered the first industrial statistician of modern
times. Although his work was motivated by the pragmatic concerns of his em-
ployer (Arthur Guinness, Son & Co, the brewers), his applied work gave rise to a
set of major inferential statistical tests based on the distribution that he identified.
After systematically working through related techniques such as correlation to
solve problems at his workplace, he identified the fundamental constraint of small
samples and the limitation of techniques that assume large numbers of observa-
tions and/or experiments to determine reliability. Later techniques, such as the
analysis of variance developed by R. A. Fisher, relied heavily on Gosset’s exposi-
tion of the t distribution. Gosset’s life and work provide excellent examples of the
interaction between applied science and theoretical development.

The One-Sample t-Test

One way the t-test is used is to compare the mean of a sample to a population with
a known mean. The null hypothesis is usually that there is no significant difference
between the mean in the population from which your sample was drawn and the
mean of the known population. For instance, you might be interested in the effects
of lead exposure on intelligence in children. You know that for 5-year-old children
in the United States as a whole, the average score on a particular intelligence test is
100. You have a sample of 15 5-year-old children who have been exposed to lead,
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and you want to know whether this exposure has affected their intelligence as meas-
ured by this particular test. You also know that intelligence scores generally assume
a normal distribution in this population. Your null hypothesis is that there is no
difference in the intelligence scores of the lead-exposed group and the population
as a whole, and you will conduct a two-tailed test with alpha = 0.05.

The formula for the one-sample t-test is shown in Figure 6-3.

X -y
=
vn

Figure 6-3. Formula for the one-sample t-test

{=

In this formula, X is the mean of your sample,

Uo is the reference mean (in this case, the average intelligence score for all 5-
year-olds in the United States),

s is the standard deviation of your sample, and

n is the sample size.

The formulas to calculate the mean and standard deviation of a sample are shown
in Figures 6-4 and 6-5.

Figure 6-4. Calculating the sample mean

Figure 6-5. Calculating the sample standard deviation

In this formula, x; is a single x value,

X is the sample mean,

s is the sample standard deviation, and
n is the sample size.

There is also a computational formula for the sample standard deviation, which is
mathematically identical to the formula in Figure 6-4 but less laborious to calculate
if you must do the computations by hand, as shown in Figure 6-6.
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Figure 6-6. Computational formula for the sample standard deviation

If you want to practice using these formulas, a fully solved example is included at
the end of this chapter. For this example, assume the sample mean is 90, the standard
deviation is 10, and the sample size is 15, and use this information to calculate the
t-statistic, as shown in Figure 6-7.

90 -100
I=T =-3.87

NH

Figure 6-7. Calculating the one-sample t-test

The degrees of freedom for the one sample t-test is n—1; in this example, df = 15 - 1
= 14. From the table of upper critical values for the ¢ distribution (Figure D-7 in
Appendix D), we see that the upper critical value for a two-tailed t-test with 14
degrees and alpha = 0.05 is 2.145. Because the absolute value of the t-statistic for
our data exceeds the upper critical value (|-3.87| > 2.145), we reject the null hy-
pothesis that the lead-exposed children have the same average intelligence test scores
as children their age in the entire population. Because the difference in means and
the t-statistic are negative, we can also say that the mean intelligence score is lower
for children exposed to lead as compared to the average for children of the same age
in the population as a whole.

Confidence Interval for the One-Sample t-Test

We often want to report a confidence interval as well as a test statistic and signifi-
cance test. The confidence interval is a range of values around the mean, with the
following meaning: if we drew an infinite number of samples of the same size from
the same population, x% of the time the true population mean would be included
in the confidence interval calculated from the samples. If we compute a 95% confi-
dence interval (the most common type), x = 95, so we can say that 95% of the
confidence intervals calculated from an infinite number of samples of the same size,
drawn from the same population, can be expected to contain the true population
mean. More generally, a confidence interval gives us information about the precision
of a point estimate such as the sample mean. A wide confidence interval tells us that
if we had drawn a different sample, we might get a quite different sample mean,
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whereas a narrow confidence interval suggests that if we drew a different sample,
the sample mean would probably be fairly close to that from the sample we did draw.

The formula to compute a two-tailed confidence interval (CI) for the mean for the
one-sample ¢-test is shown in Figure 6-8.

A
Cl _=Xx=x|t —=
1-a %JU (_\/;]

Figure 6-8. Confidence interval formula for a one-sample t-test

In our example, a = 0.05,

X =90,
df=n-1=14,
s=10,

£0.025.14 = 2.145 (from the table in Figure D-7 in Appendix D), and
n=15.

Putting these values in the formula gives us the result shown in Figure 6-9.

Cl,os =90 = (2.145)(%) =90 +5.54 = (84.46,95.54)

Figure 6-9. Calculating the confidence interval formula for a one-sample t-test

The 95%, two-tailed confidence interval for our estimate of the population mean is
(84.46, 95.54). Note that these numbers are sometimes called the lower boundary
and upper boundary of the confidence interval; in this example, the lower boundary
is 84.46, and the upper boundary is 95.54.

If you want to calculate a one-sided confidence interval, change the + to either plus
or minus, as appropriate, and use the upper critical value from the t table for a rather
than «/2. To calculate a confidence interval for a different size, use the appropriate
upper critical value from the ¢ table. For instance, for a one-sided, 90% confidence
interval with 20 df, the upper critical value for ¢ is 1.325.

The Independent Samples t-Test

The t-test for independent samples, also known as the two-sample t-test, compares
the means of two samples. The purpose of this test is to determine whether the means
of the populations from which the samples were drawn are the same. The subjects
in the two samples are assumed to be unrelated (no one is tested twice, no sibling
pairs, etc.) and to have been independently selected from their populations. In ad-
dition, we assume that the populations from which the samples were selected have
an approximately normal distribution, unless the samples are large enough to invoke
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the central limit theorem, and that the populations have approximately equal var-
iance. The independent samples ¢-test is commonly used in many professional fields
and is usually calculated using computer software that can include both a test of the
assumption of equal variance in the populations (e.g., Levene’s test, the Brown-
Forsythe test, or Bartlett’s test) and a statistical fix if this assumption is not met.

The formula to calculate the independent samples ¢-test is shown in Figure 6-10.

{= (J_C! _fz)_(ﬁﬁ _P‘z)
2L, 1
n.n,
where
2 (nl "I)-f"l2 "'("z ‘1)S§
a n+n,-2

Figure 6-10. Formula for the independent samples t-test

In this formula, X; and X, are the means of the two samples,
g1 and y, are the means of the two populations,

szp is the pooled variance,

n; and n, are the two sample sizes, and

s21 and s%; are the variances of the two samples.

Note that often the null hypothesis for an independent samples ¢-test is that the
difference between the population means is 0, in which case the (u; - y,) term can
be dropped from the equation.

The degrees of freedom for the two-sample ¢-test is (n; + 1, - 2), that is, 2 fewer than
the number of cases when both samples are combined.

This is a complex formula, but it’s worth stepping back and looking at the general
form of the equation before getting caught up in the details. The formula for the
independent samples t-test is similar to the one-sample ¢-test formula in that the
numerator is a difference between means, and the denominator is a measure of var-
iability incorporating both the variability observed within the samples and the size
of the samples. The test-statistic for the paired t-test will also follow this basic form,
although differing in some details.

Let’s look at an example. An age-old physical performance question is whether male
football players (soccer players, for American readers) are fitter than male ballet
dancers, so a sports physiologist organizes a study in partnership with a local hospital
research team to answer the question. The two groups are independent populations
because no football player is also a ballet dancer. Two lists of ballet dancers and
football players that are maintained by their respective professional associations are
also located all over the country, and study members are randomly selected from
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each group. Because ballet dancers and football players are very busy, only 10 study
members from each group can be recruited. All participants are tested on a range of
human performance tasks, including walking, running, and stepping, and corre-
sponding physiological measures associated with fitness, including heart-rate vari-
ability, pulse-wave velocity, and so on. These measures are then combined to form
a single fitness score ranging from 0 to 100. Experience using this method of eval-
uation has demonstrated that fitness scores calculated using the algorithm used in
this study are approximately normally distributed in the population.

The participants are all tested in the same facility at the same time of day, and their
responses are assessed and combined using the same clinicians. The results for the
two groups are shown in Table 6-1.

Table 6-1. Fitness results for football players and ballet dancers

Balletdancers  Football players

89.2 793
78.2 783
89.3 853
88.3 793
873 88.9
90.1 91.2
95.2 87.2
94.3 89.2
783 933
89.3 79.9

We will use an alpha value of 0.05 for this study. You can calculate the ¢-statistic
entirely by hand, using the formulas for calculating the standard deviation presented
earlier in this chapter (and remembering that variance is the square of standard
deviation). To speed things along, we calculated the necessary quantities for you,
calling the ballet dancers sample 1 and the football players sample 2:

X, =87.95
X, =85.19
512 =32.38
s,2=31.18

If we were using a software program, we would check the assumption of equal var-
iance using Levene’s test (or one of the alternatives; this is discussed more in the
section on the unequal means t-test that follows), which tests the null hypothesis
that the two populations do have equal variance. (If we fail to reject the null hy-
pothesis of equal, we can continue with the t-test.)

The pooled sample variance is calculated as shown in Figure 6-11.
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S§=Uo—¢n38+00—0m48=31jg
10+10 -2

Figure 6-11. Calculating the pooled variance

The degrees of freedom are df = ny + n; - 2 = 18. Our null hypothesis is that the
mean fitness for the two groups is equal, that is, py - , = 0. To test this null hy-
pothesis, we compute the ¢-statistic, as shown in Figure 6-12.

(87.95-85.19)-(0) 2.76

(1 1] “273
3718 ==
10" 10

Figure 6-12. Calculating the t-statistic

1.01

From Figure D-7 in Appendix D, we see that the upper critical value for a two-tailed ¢-
test with alpha = 0.05 and 18 df is 2.101. The absolute value of our ¢-value is below
that value (i.e., it is closer to 0), so we fail to reject the null hypothesis and conclude
that this study did not provide any evidence of a difference in fitness between foot-
ballers and ballet dancers.

Confidence Interval for the Independent Samples t-Test

To calculate the two-sided confidence interval for the independent samples ¢-test,
we use the formula shown in Figure 6-13.

where
E =(n,-1)s,2+(n2—l)s§
P

n+n,—2

Figure 6-13. Formula for the confidence interval for the independent samples t-test

There are several points worth noting about this formula:

* It is actually a confidence interval for the difference in the means of the two
populations.

¢ For the value of:
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o

L2 df

we use the upper critical t-value for the df, and half the specified alpha level,
from a t-table such as the one in Figure D-7 in Appendix D.
* If this were a one-sided confidence interval, we would use the upper critical ¢-

value for a rather than a/2 and would use either plus or minus rather than #,
depending on the direction of the confidence interval.

* The formula includes the denominator of the independent samples ¢-test as
previously calculated.

For our data, we will use alpha = 0.05 and calculate a 95%, two-tailed confidence
interval; the result is shown in Figure 6-14.

CI,_, =2.76 =(2.10)(2.73) = (-2.97,8.49)

Figure 6-14. Calculating a 95%, two-sided confidence interval for the independent samples
t-test

Note that this confidence interval includes 0, which is our null value (the value we
posited for the difference in means in our null hypothesis); this result is expected
because for this data set, we did not find significant results and thus did not reject
the null hypothesis.

Repeated Measures t-Test

With the repeated measures t-test, also known as the related samples t-test, the
matched samples t-test, or the dependent samples t-test, the units that make up the
two samples are not independent but are related in some way. Sometimes, the data
in the samples are measurements taken twice from the same people, such as blood
pressure before and after taking a prescription drug. Sometimes, the data is collected
from people related by affiliation or genetics, such as husbands and wives or siblings.
Sometimes, the data is collected from samples of different people who have been
closely matched on key characteristics so that they are considered too similar to be
treated as independent samples. The measurements are considered as pairs, so the
two samples must be of the same size.

The formula to calculate the t-statistic for the repeated measures t-test is based on
the difference scores as calculated from each pair of samples. The test statistic is
shown in Figure 6-15.

. d - (-,
S

\/n

Figure 6-15. Formula for the repeated measures t-test
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In this formula, d = the mean of the difference scores,
g1 and y, are the means of the two populations,

s4 1s the standard deviation of the difference scores, and
n is the number of pairs.

The null hypothesis for the repeated measures t-test is usually that the mean of the
difference scores (@) is 0, whereas the alternative hypothesis is that this mean is not
0. As with the two-sample t-test, often the quantity (y; - y,) is hypothesized to be
0 and, in that case, may be dropped from the equation.

A difference score is simply the difference between the two values in a pair of
measurements, such as the blood pressure after treatment for one person minus the
blood pressure before treatment. We calculate a difference score for every pair and
then calculate the mean and standard deviation of the difference scores to calculate
the t-statistic. Note that n in the context of the repeated measures t-test refers to the
number of pairs, not the number of measurements. The degrees of freedom is df =
n-1.

This might be clearer after working through an example. Suppose we want to test
the efficacy of a diet and exercise program in lowering total cholesterol levels in
middle-aged men. We decide on a matched pairs t-test because we will test the
cholesterol of each subject twice, before they begin the program and again after they
complete it. This is sometimes referred to as “using subjects as their own controls”
because by measuring the same subjects twice, we hope to remove or minimize the
influence of all individual differences other than the one we are interested in, which
is how the subject’s cholesterol levels respond to the diet and exercise program. We
believe that changes in the response to a program such as ours have an approximately
normal distribution in the population, and we have only 10 subjects, so the matched
pairs t-test is an appropriate measure. Data from this experiment is shown in Ta-
ble 6-2.

Table 6-2. Cholesterol before and after an exercise and diet program

Before  After  Difference (d) (after-before)

220 200 =20
240 210 -30
225 210 =15
180 170 -10
210 220 10
190 180 -10
195 190 -5
200 190 -10
210 220 10
240 210 -30

Repeated Measures t-Test | 165

=
=
o
i
—
™
wv
—




Clearly, most subjects had lower cholesterol after completing this program, but was
the difference statistically significant? To find out, we compute the repeated meas-
ures t-statistic, using the following values calculated from the sample:

d=-11
sq=13.9

We will conduct a two-tailed, repeated measures t-test with alpha = 0.05. Our null
hypothesis is that the population means are equal, that is, that their difference is O,
so the t-statistic for our data is shown in Figure 6-16.

-11-0
I=W=—2.50

10

Figure 6-16. Calculating the repeated measures t-test

Because we have 10 pairs, we have 9 degrees of freedom (df =n - 1). Using the table
of upper critical values for the t distribution (Figure D-7 in Appendix D), we deter-
mine that the critical value for a two-tailed ¢-test with 9 df and alpha = 0.05 is 2.262.
The absolute value of our ¢-statistic exceeds this value, so we reject the null hypoth-
esis and conclude that the exercise and diet program has an effect on total choles-
terol. Because the mean difference and the t-statistic are negative, we can also say
that the program lowered the total cholesterol of the participants.

You might wonder what the two populations are in this example. The sample meas-
urements drawn before the program began are considered to have been drawn from
the general population of middle-aged men, and the sample measurements after
completion of the program are considered to have been drawn from the population
of middle-aged men who have completed the exercise and diet program. Granted,
the second population is theoretical because this is a new program, so what we are
really doing is hypothesizing about the changes that would occur in the total cho-
lesterol levels of the first population if it followed the diet and exercise program.

Confidence Interval for the Repeated Measures t-Test

To calculate the confidence interval for the repeated measures ¢-test, use the formula
shown in Figure 6-17.

Sq

Cl_, =d=|t, |-+
1-ax * [;.-.df (‘\/;]

Figure 6-17. Formula for the confidence interval for the repeated measures t-test

For the data in our example, the calculation is shown in Figure 6-18.
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Clygs =-11= (2-262) % =(-20.94,-1.06)

Figure 6-18. Calculating the two-sided, 95% confidence interval for the repeated measures t-
test

Note that this confidence interval does not include the null value of 0; this is to be
expected because we found significant results with the t-test, that is, we rejected the
null hypothesis that the mean difference was 0.

Unequal Variance t-Test

One of the assumptions of the independent samples ¢-test is that the two populations
from which the samples were drawn have approximately equal variance; this is also
known as the assumption of homogeneity of variance or, simply, the assumption of
homogeneity. If this assumption is not met and the population variances are in fact
heterogeneous, the risk of both TypeIand Type Il errors is increased. This is because
the sample variances are pooled in the independent samples ¢-test, and the results
of the test would be seriously distorted if they were not drawn from populations
with approximately equal variance. The problem of hypothesis testing between two
independent samples in which variances are known to be unequal is the Behrens-
Fisher problem, and there have been several proposed solutions.

If you are using statistical software to calculate an independent samples ¢-test, chan-
ces are it includes algorithms to calculate one or more tests of the homogeneity of
variance. Examples of this type of test include Levene’s test, the Brown-Forsythe
test, and the Bartlett test. Levene’s test is based on the mean, whereas the Brown-
Forsythe test is an extension of Levene’s test, which uses a trimmed mean or the
median. The Bartlett test is the most sensitive to departures from normality (which
is not the same thing as unequal variances), so it should be used only if you feel
secure that the populations from which your samples were drawn are approximately
normally distributed. The important point, however, is to use one of these tests if it
is available to you to check whether the assumption of homogeneity is met. The
technical details of the different tests, with references to the professional literature
regarding them, are available from the Engineering Statistics Handbook of the Na-
tional Institute for Standards and Testing, a public domain document available
online.

If the homogeneity assumption is not met, you can use one of the nonparametric
substitutes for the independent samples t-test (discussed in Chapter 13) or use the
unequal variance t-test, also known as Welch’s t-test. Choosing one of these alter-
natives is particularly wise when you are working with small sample sizes or when
you wish to be conservative in drawing inferences. Welch’s t-test uses a slightly
different formula to calculate the t-statistic and a complex formula to calculate the
degrees of freedom.

Welch’s t-test uses the formula shown in Figure 6-19 to calculate the ¢-statistic.
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http://itl.nist.gov/div898/handbook/index.htm

Figure 6-19. Formula for Welch’s t-test

In this formula, X; and X, are the sample means,
512 and s,? are the sample variances, and
ny and n, are the sample sizes.

Note that the formula for Welch’s t-test does not use pooled variance. The real work
comes when calculating the degrees of freedom for Welch’s t-test, as shown in
Figure 6-20.

2
2 2
5 8
n n
1 2
df = 4 4
5, S,

i 2
nl(n=1) ni(n,=1)

Figure 6-20. Formula for the degrees of freedom for Welch’s t-test

Having calculated the t-statistic and degrees of freedom, you proceed as you would
with any other t-statistic, comparing your result with a table of critical values for
the t-distribution (such as Figure D-7 in Appendix D) and making your decision
accordingly.

Exercises

Although you can use a statistical package such as Minitab, SPSS, STATA, or SAS
to compute ¢-tests and their significance levels, working through some examples by
hand will make the underlying concepts easier to understand. Furthermore, if you
consider scenarios from work or school that involve small samples, you might begin
to develop a sense of how to approach them inferentially by using t-tests. If you
understand the details of computing a t-test by hand, then using a statistical package
will be much easier for you. Also, the output generated by many statistical packages
is confusing if you don’t understand what you should be looking for, so having
worked through some examples by hand can make it easier to spot the information
you need in a sea of output.
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Problem

A factory manager is disturbed by the number of accidents in the plant she manages,
so she institutes a safety program that includes worker education, better lighting in
the plant, and incentives for units who improve their safety record. The average
number of accidents per week before instituting the safety program was 5, and the
distribution was approximately normal. She wants to know whether this has
changed since the program began. She draws a sample of 15 post-program weeks
and uses administrative records to determine the number of accidents that occurred
during each sample week. This data is displayed in Table 6-3. What test should she
use to determine whether the average number of accidents per week has changed
since the safety program began? What is the test statistic, and what can you conclude
from it about the effectiveness of the program?

Table 6-3. Number of accidents per week

Week ID 12 3 4 5 6 7 8 9 10 1M 122 13 14 15
Numberofaccidents 5 6 6 4 5 3 2 7 5 4 1 0 3 2 5

Solution

She should compute the one-sample t-test, comparing the mean accidents per week
as calculated from her sample of 15 post-safety-program weeks, with the population
mean before the program. She should use a two-tailed test because it is possible that
the accident rate increased after the safety program began, and she would surely
want to detect this if it happened. She will therefore conduct a two-tailed, one-
sample ¢-test with the null hypothesis that there is no difference in the means of the
sample or the population, and she will use the alpha = 0.05 standard.

Here is the information needed to calculate this statistic:

Uo=5 (given)
n =15 (given)

— -
X=3.87 z
s=2.00 o

First, we calculate the sample mean and sample standard deviation as shown in
Figures 6-21 and 6-22.

n

Y sg
Fabdl—a w387
n 15

Figure 6-21. Calculating the sample mean
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Figure 6-22. Calculating the sample standard deviation

Then we plug these numbers into the formula for the one-sample t-statistic, as shown
in Figure 6-23.

_X-p, 387-500 -1.13
s 200 o0s2
Vn V15

Figure 6-23. Calculating the one-sample t-test

t =-2.17

We have 14 degrees of freedom (df = n - 1). According to Figure D-7 in Appen-
dix D, the upper critical value for a two-tailed test with 14 df if alpha = 0.05 is 2.145.
The absolute value of our t-statistic exceeds the critical value, so we reject the null
hypothesis that there was no difference in the number of accidents per week after
the safety program began. Because the difference between the sample mean and
population mean is negative, as is the ¢-statistic, we can also conclude that the pro-
gram lowered the accident rate.

Problem

What is the 95%, two-tailed confidence interval for our estimate of the population
mean, given these sample results?

Solution

We calculate the 95%, two-tailed confidence as shown in Figure 6-24.

T 200
e T e \n V15

Figure 6-24. Calculating a 95%, two-sided confidence interval for the one-sample t-test

) =387+ (2.145)( ) =(2.76,4.98)

Note that the upper critical value, 4.97, is very close to the population mean. This
is to be expected because our sample ¢-statistic barely exceeded the critical value for
alpha=0.05; that is, we barely achieved the standard for rejecting the null hypothesis
that the difference between the sample and population means is 0.
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Problem

What is the 90%, two-tailed confidence interval for our estimate of the population
mean, given these sample results?

Solution

To calculate a 90% confidence interval, all we need to change from the formula used
for the previous question is the upper critical t-value. Using the table in Fig-
ure D-7 in Appendix D, we see that the value for alpha = 0.10, two-tailed, with df =
14 is 1.761. Plugging this into the formula, we get the result shown in Figure 6-25.

s 2.00
Cl =Xx=|t — =387+ (1.76])|—|=(2.96,4.78
loa =% _(;“5( '\/; ( ) '\/E ( )

Figure 6-25. Calculating a 90%, two-sided confidence interval for the one-sample t-test

Note that the 90% confidence interval is narrower than the 95% confidence interval
for the same sample data. This is to be expected because of the smaller critical ¢-
value used for the 90% confidence interval. To put it another way, the 90% confi-
dence interval includes less of the total probability than the 95% confidence interval,
so it’s not surprising that it is narrower.

Table 6-4. The different t-tests and their uses

t-test Data type Question being answered
One-sample t-test One sample, continuous data, approximate Does the sample come from a
normality population with a specified mean?
Two-sample t-test Two independent samples, continuous data, approx- Do the two samples come from
imate normality, approximately equal variance populations with equal means?
Repeated measures  Two related samples, equal sample sizes, continuous Do the two samples come from
t-test data, approximate normality of difference scores populations with equal means?
Unequal variance Two independent samples, continuous data, Do the two samples come from
t-test approximate normality populations with equal means?
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The Pearson Correlation
Coefficient

The Pearson correlation coefficient is a measure of linear association between two
interval- or ratio-level variables. Although there are other types of correlation (sev-
eral are discussed in Chapter 5, including the Spearman rank-order correlation co-
efficient), the Pearson correlation coefficient is the most common, and often the
label “Pearson” is dropped, and we simply speak of “correlation” or “the correlation
coefficient.” Unless otherwise specified in this book, “correlation” means the Pear-
son correlation coefficient. Correlations are often computed during the exploratory
stage of a research project to see what kinds of relationships the different continuous
variables have with each other, and often scatterplots (discussed in Chapter 4) are
created to examine these relationships graphically. However, sometimes correla-
tions are statistics of interest in their own right, and they can be tested for significance
and reported as inferential statistics as well. Understanding the Pearson correlation
coefficient is fundamental to understanding linear regression, so it’s worth taking
the time to learn this statistic and understand well what it tells you about the rela-
tionship between two variables. A key point about correlation is that it is a measure
of an observed relationship but cannot by itself prove causation. Many variables in
the real world have a strong correlation with each other, yet these relationships can
be due to chance, to the influence of other variables, or to other causes not yet
identified. Even if there is a causal relationship, the causality might be in the opposite
direction of what we assume. For these reasons, even the strongest correlation is not
in itself evidence of causality; instead, claims of causation must be established
through experimental design (discussed in Chapter 18). In this chapter, we discuss
the general meaning of association in the context of statistics and then examine the
Pearson correlation coefficient in detail.
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Association

Ordinary life is full of variables that appear to be associated with or related to each
other, and explicating these relationships is a chief task of the sciences. There’s
nothing obscure or arcane about thinking about how variables relate to each other,
however; people think in terms of associations all the time and often attribute cau-
sality to those associations. Parents who order their children to eat more vegetables
and less junk food probably do so because they believe there is a relationship between
diet and health, and athletes who put in long hours of practice at their sport are most
likely doing so because they believe diligent training will lead to success. Sometimes
these types of commonsense notions are supported by empirical research, sometimes
not, but it seems to be a normal human tendency to take note when things seem to
occur together and, often, to believe as well that one is causing the other. As scientists
(or just people who understand statistics), we need to be in the habit of questioning
whether an apparent association actually exists and, if it does exist, if it is truly causal.

Here are a few examples of conclusions that, although based in some way on ob-
servable data, are obviously false:

* There is a strong association between sales of ice cream and the number of
deaths by drowning, so the reason must be that people are going in the water
too soon after eating ice cream, thus getting cramps and drowning.

* There is a strong association between score on a vocabulary test and shoe size,
so the explanation must be that tall people have bigger brains and hence can
remember more words.

* There is a strong association between the number of storks in an area and the
human birth rate in that area, so obviously storks really do deliver babies.

* A town mayor notes a strong correlation between local sports teams winning
championships and ticker-tape parades and decides to hold more parades to
improve the performance of the local teams.

Here are the real explanations:

* Both ice cream consumption and swimming are more common in the hotter
months of the year, so the apparent relationship is due to the influence of a third
variable, that of temperature (or season).

* The data was gathered on schoolchildren and was not controlled for age. We
expect that older children will be taller (and have bigger feet) and have acquired
larger vocabularies than younger children; hence, the observed association is
due to the influence of a third variable, age.

* Storks are more common in rural areas, and birth rates are also higher in rural
areas, so the association is due to the influence of a third variable, location.

* This is reversed causality—the parades are held after the championships are
won, so the teams’ successful seasons are the cause of the parades rather than
the parades causing the teams to have good seasons.
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It’s worth noting that even if two variables have no logical reason at all to be asso-
ciated, simply by chance they may show some association. This is particularly true
in studies with large sample sizes in which a very slight association can be statistically
significant, yet have no practical meaning. It’s also worth noting that even among
variables that are strongly related, such as smoking and lung cancer, there can be
significant variation in that relationship among individuals. Some people smoke for
years and never get sick, whereas some unfortunate individuals come down with
lung cancer despite never having smoked in their lives.

Scatterplots

The scatterplot is a useful tool with which to explore the relationships between vari-
ables, and usually, creating scatterplots for pairs of continuous variables is part of
the exploratory phase of working with a data set. A scatterplot is a graph of two
continuous variables. If the research design specifies that one variable is independent
and the other is dependent, the explanatory variable is graphed on the x-axis (hor-
izontal) and the dependent variable on the y-axis (vertical); if no such relationship
is specified, it doesn’t matter which variable is graphed on which axis. Each member
of a sample corresponds to one data point on the graph, described by a set of coor-
dinates (x, y); if you ever plotted Cartesian coordinates in school, you are already
familiar with this process. Scatterplots give you a sense of the overall relationship
between the two variables, including direction (positive or negative), strength
(strong or weak), and shape (linear, quadratic, etc.). Scatterplots are also a good way
to get a general sense of the range of the data and to see whether there are any
outliers, cases that don’t seem to belong with the others.

One important reason for inspecting bivariate relationships (relationships between
two variables) is that many common procedures assume that these relationships are
linear, an assumption that might not be met with any particular pair of variables in
any particular data set. Linear in this context means “arranged as a straight line,”
whereas any other relationship is considered nonlinear, although we can also apply
a more specific description to nonlinear relationships, such as quadratic or expo-
nential. We don’t expect a real data set to perfectly fit any mathematically defined
pattern, of course; if the data seems to cluster around a straight line, that’s what we
mean by a linear relationship.

We can also create a scatterplot matrix, which is a display of multiple scatterplots
arranged so we can easily see the relationships among pairs of variables. Fig-
ure 7-1 displays a scatter plot matrix created by Lloyd Currie of the National Institute
of Standards and Technology to inspect the relationships among four pollutants in
a data sample: potassium, lead, iron, and sulfur oxide. The scatterplot for each pair
of variables is located where the corresponding row and column intersect, so cell (1,
2) (first row, second column) shows the relationship between potassium and lead,
cell (1, 3), the relationship between potassium and iron, and so on.
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Figure 7-1. Scatterplot matrix of four pollutants

Relationships Between Continuous Variables

In linear algebra, we often describe the relationship between two variables with an
equation of the form:

y=ax+b

In this formula, y is the dependent variable,
x is the independent variable,

a is the slope, and

b is the intercept.

Note that m is sometimes used in place of a in this equation; this is just a different
notational convention and does not change the meaning of the equation. Both a and
b can be positive, negative, or 0. To find the value of y for a given value of x, you
multiply x by a and then add b. An equation such as this expresses a perfect rela-
tionship (given the values of x, a, and b, we can find the exact value of y), whereas
equations describing real data generally include an error term, signifying our un-
derstanding that the equation gives us a predicted value of y that might not be the
same as the actual value. It’s worth looking at some graphs of data defined by equa-
tions, however, to get a sense of what perfect relationships look like when graphed,;
this should make it easier to spot similar patterns in real data.

Figure 7-2 shows the association between two variables, x and y, that have a perfect
positive association: x = y. In this equation, b =0, a = 1, and for every case, the values
of x and y are the same. This equation expresses a positive relationship because as
the value of x increases, so does the value of y; in a graph of a positive relationship,
the points run from the lower left to the upper right.
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Figure 7-2. Graph of the model y = x

Figure 7-3 shows a negative relationship between x and y: these points are described
by the equation y = - x. In this equation, a = -1, b = 0. Note that in a negative
relationship such as this one, as the value of x increases, the value of y decreases,
and the points in the graph run from the upper left to the lower right.
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Figure 7-3. Graph of the model y = -x

Figure 7-4 shows a positive relationship between x and y as specified by the model
y = 3x + 2. Note that this relationship is still perfect (meaning that given the model
and a value for x, we can compute the exact value for y) and is represented by a
straight line. Unlike the previous two graphs, however, the line no longer runs
through the origin (0, 0) because the value for b (the intercept) is 2 rather than 0.
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Figure 7-4. Graph of the model y = 3x + 2

In the previous three graphs, the equation of a straight line indicated a strong rela-
tionship between the variables. This is not always the case, however; it’s possible
for the equation of a straight line to indicate no relationship between the variables.
When one variable is a constant (meaning it always has the same value) while the
value of the other variable varies, this relationship can still be expressed through the
equation (and graph) of a straight line, but the variables have no association. Con-
sider the equation x = -3, displayed in Figure 7-5; no matter what the value of y, x
always has the same value, so there is no association or relationship between the
values of x and y. The slope of this equation is undefined because the equation used
to calculate the slope has a denominator of 0.
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Figure 7-5. Graph of the model x = -3
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The equation for calculating the slope of a line is given in Figure 7-6.

Yo~y
a =22 1
Xy, — X

Figure 7-6. Equation for calculating the slope of a straight line

where x; and x; are any two x-values in the data, and y; and y, are the corresponding
y-values. If xjand x, have the same value, this fraction has a denominator of 0, so
the equation and the slope are undefined.

The equation y = -3 also expresses no relationship between x and y, in this case
because the slope is 0. In this equation, it doesn’t matter what the value of x is, the
value of y is always -3. The graph of this equation is a horizontal line, as shown in
Figure 7-7.

* & ¢ o+ o ® & ¢ ¢ o

Figure 7-7. Graph of the model y = -3

In real data sets, we don’t expect that an equation will perfectly describe the rela-
tionships among the variables, and we don’t expect the graph to be a perfect straight
line, even if the linear relationship is quite strong. Consider the graph in Fig-
ure 7-8, which displays almost the same data as shown in Figure 7-4; the difference
is that we added some random error to the data so the data no longer form a perfect
line. The relationship between x and y is still strongly linear and positive, but we
can no longer predict the exact value of y, given the value of x, from an equation.
To put it slightly differently, knowing the value of x helps us predict the value of y
(versus predicting the value of y without any knowledge of the value of x), but we
realize that our predicted value for y might be somewhat different than the actual
value in the data set.
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Figure 7-8. Graph of a strong positive relationship

It’s unusual to find as close a relationship between x and y in a real data set as is
displayed in Figure 7-8. The data in Figure 7-9 is more typical of what we usually
find. Note that even though the points are more scattered than in previous examples,
the relationship between x and y still seems to be positive and linear.
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Figure 7-9. Graph of a weaker positive relationship

Two variables may have a strong relationship that is not linear. To take a familiar
example, the equation y = x2 expresses a perfect relationship because, given the value
of x, we know exactly what the value of y is. However, this relationship is quadratic
rather than linear, as can be seen in Figure 7-10. Spotting this type of strong but
nonlinear relationship is one of the best reasons for graphing your data.
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Figure 7-10. Graph of a perfect quadratic relationship

Figure 7-11 shows another common type of nonlinear relationship, a logarithmic
relationship defined by the equation y = LN(x), where LN means “the natural log-

arithm of.”
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Figure 7-11. Graph of a perfect logarithmic relationship

If your data shows a nonlinear relationship, it might be possible to transform the
data to make the relationship more linear; this is discussed further in Chapter 3.
Recognizing these nonlinear patterns and knowing different ways to fix them, is an
important task for anyone who works with data. For the data in Figure 7-10, if we
transformed y by taking its square root and then graphed x and Vy, we would see
that the variables now have a linear relationship. Similarly, for the data graphed in
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Figure 7-11, if we transformed y to ¢” and then graphed it against x, we would see
a linear relationship between the variables.

The Pearson Correlation Coefficient

Scatterplots are an important visual tool for examining the relationships between
pairs of variables. However, we might also want a statistical estimate of these rela-
tionships and a test of significance for them. For two variables measured on the
interval or ratio level, the most common measure of association is the Pearson cor-
relation coefficient, also called the product-moment correlation coefficient, written as
p (the Greek letter rho) for a population and r for a sample.

Pearson’s r has a range of (-1, 1), with 0 indicating no relationship between the
variables and the larger absolute values indicating a stronger relationship between
the variables (assuming neither variable is a constant, as in the data displayed in
Figure 7-5 and Figure 7-7). The value of Pearson’s r can be misleading if the data
have a nonlinear relationship, which is why you should always graph your data. The
labels “strong” and “weak” do not have strict numerical definitions, but a relation-
ship described as strong will have a more linear relationship, with points clustered
more closely around a line drawn through the data, than will data with a weak
relationship. Some of the definition of strong and weak depends on the field of study
or practice, so you will need to learn the conventions for your own field. A few
examples of scatterplots of data with different r values are given in Figures 7-12,
7-13,and 7-14 to give you an idea of what different strengths of relationship look like.
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Figure 7-12. Scatterplot (r = 0.84)
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Figure 7-13. Scatterplot (r = 0.55)
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Figure 7-14. Scatterplot (r = 0.09)

Although correlation coefficients are often calculated using computer software, they
can also be calculated by hand. The formula for the Pearson correlation coefficient

is given in Figure 7-15.
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Figure 7-15. Formula for the Pearson correlation coefficient
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In this formula, SS, is the sum of squares of x,
SS, is the sum of squares of y, and
SS,y is the sum of squares of x and y.

None of the steps in this calculation is difficult, but the process can be laborious,
particularly with a large data set. The steps to calculate the sum of squares for x are
as follows:

1. For each x score, subtract the mean of x as calculated from the sample. This is
called the deviation score.
2. Square each deviation score.

3. Add the deviation scores together (hence the name sum of squares).

Figure 7-16 shows this written as a formula.

SS, = i(x,. =)
i=l

Figure 7-16. Formula for the sum of squares of x

In this formula, x; is an individual x score,
X is the sample mean for x, and
n is the sample size.

This formula makes the meaning of SS, clear, but it can be time-consuming to cal-
culate. The sum of squares can also be calculated using a computational formula
that is mathematically identical but less laborious if the calculations must be carried
out by hand, as shown in Figure 7-17.

Figure 7-17. Computational formula for the sum of squares of x

The first part of the computational formula tells you to square each x and then add
up the squares. The second part tells you to add up all the x scores, square that total,
and then divide by the sample size. Then, to get SS,, subtract the second quantity
from the first.

To calculate the sum of squares for y, follow the same process but with the y scores
and mean of y.

The process to compute the covariance is similar, but instead of squaring the devi-
ation scores for x or y for each case, you multiply the deviation score for x by the
deviation score for y. Written as a formula, it appears as shown in Figure 7-18.
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Figure 7-18. Calculating the sum of squares of x and y

There is also a computational formula for the sum of squares of x and y, as shown
in Figure 7-19.

n

" zxi i}’f
88,y = z(xf)); ) -~ e

i=1

Figure 7-19. Computational formula for the sum of squares of x and y

The use of these formulas might become clearer after working through an example.
Suppose we drew a sample of 10 American high school seniors and recorded their
scores on the verbal and mathematics portions of the Scholastic Aptitude Test (SAT),
as shown in Table 7-1. (Each section of the SAT has a range of 200-800.) To make
the data easier to read, we have arranged the scores by verbal score in ascending
order, but this is not necessary to perform the calculations.

Table 7-1. Verbal and mathematics scores on the SAT

Student  Verbal  Mathematics

1 490 560
2 500 500
3 530 510
4 550 600
5 580 600
6 590 620
7 600 550
8 600 630
9 650 650
10 700 750

Here is the information you need to use the computational formulas (or to check
yourself if you calculated these quantities by hand):

n=10
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n
2
2 X; =3,390,500

i=1

n
2}?‘- = 5,790
i=1
n
2
E‘yi = 3,612,500
i=1

n

E(xfyf. ): 3,494,000

i=1

Next, we plug this information into the computational formulas, as shown in Fig-
ure 7-20.

2
SS. = 3,390,500 - bt

= 38,090

5,970?

SS, =3,612,500 - =48,410

(5,790)(5,970)

SS., = 3,494,000 -
? 10

= 37,370

37,370
r= =
«\/(38,090)(48,410)

Figure 7-20. Calculating v for the SAT verbal and math scores

The correlation between the verbal and math SAT scores is 0.87, a strong positive
relationship, indicating that students who score highly on one aspect of the test also
tend to score highly on the other. Note that correlation is a symmetrical relationship,
so we do not need to posit that one variable causes the other, only that we have
observed a relationship between them.

Testing Statistical Significance for the Pearson Correlation

We also want to determine whether this correlation is significant. The null hypoth-
esis for designs involving correlation is usually that the variables are unrelated, that
is, ¥ = 0, and that is the hypothesis we will test for this example; the alternative
hypothesis is that r # 0. We will use an alpha level of 0.05 and compute the statistic
in Figure 7-21 to test whether our results are significantly different from 0. This
statistic has a t distribution with (n - 2) degrees of freedom; degrees of freedom is a
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statistical concept referring to how many things can vary in a given design. It is also
a number we need to know to use the correct t-distribution to evaluate our results.

rin-2

t = ——
V1 -r?

Figure 7-21. Formula for the significance test for the Pearson correlation coefficient

In Figure 7-21, r is the Pearson correlation for the sample, and 7 is the sample size.

For our data, the calculations are shown in Figure 7-22.

0.87V10-2 246

{ = =
J1-087> 049

=502

Figure 7-22. Calculating the significance test for the correlation between SAT math and verbal
scores

According to the t-table (Figure D-7 in Appendix D), the critical value for a two-
tailed ¢-test with 8 degrees of freedom at a = 0.05 is 2.306. Because our computed
value of 5.02 exceeds this critical value, we will reject the null hypothesis that the
SAT math and verbal scores are unrelated. We also calculated the exact p-value for
this data by using an online calculator and found the two-tailed p-value to be 0.0011,
also indicating that our result is highly improbable if the verbal and math scores are
truly unrelated in the population from which our sample was drawn.

The Coefficient of Determination

The correlation coefficient indicates the strength and direction of the linear rela-
tionship between two variables. You might also want to know how much of the
variation in one variable can be accounted for by the other variable. To find this,
you can calculate the coefficient of determination, which is simply 72, In our SAT
example, r>=0.87%=0.76. This means that 76% of the variation in SAT verbal scores
can be accounted for by SAT math scores and vice versa. We will expand further on
the concept of the coefficient of determination in the chapters on regression because
very often one of the purposes in building a regression model is to find a set of
predictor variables that can account for a high proportion of the variation in our
outcome variable.
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Exercises

Problem

Which of the following scatterplots (Figures 7-23, 7-24, and 7-25) suggest that the
two graphed variables have a linear relationship? For those that do, identify the
direction of the relationship and guess its strength, that is, the Pearson’s correlation
coefficient for the data. Note that no one expects you to be able to guess an exact
correlation coefficient by eye, but it is useful to be able to make a plausible estimate.
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Figure 7-24. Scatterplot b
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Figure 7-25. Scatterplot ¢

Solution

a. Strong positive linear relationship (r = 0.84).
b. Weak relationship (r = 0.11).
c. Nonlinear, quadratic relationship. Note that r = —0.28 for this data, a respect-

able correlation coefficient, so that without the scatterplot, we could easily have
missed the nonlinear nature of the relationship between these two variables.

Problem

Find the coefficient of determination for each of the data sets from the previous
problem, if appropriate, and interpret them.

Solution

a. r2=0.842=0.71; 71% of the variability in one variable can be explained by the
other variable.

b. ¥2=0.112=0.01; 1% of the variability in one variable can be explained by the
other variable. This result points out how weak a correlation of 0.11 really is.

c. r and r* are not appropriate measures for variables whose relationship is not
linear.

Problem

Several studies have found a weak positive correlation between height and intelli-
gence (the latter as measured by the score on an IQ test), meaning that people who
are taller are also on average slightly more intelligent. Using the formulas presented
in this chapter, compute the Pearson correlation coefficient for the data presented
in Table 7-2, which represent height (in inches) and scores on an IQ test for 10 adult
women. Then test the correlation for significance (do a two-tailed test with alpha =
0.05), compute the coefficient of determination, and interpret the results. For the
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sake of convenience, we will designate height as the x variable and IQ score as the
y variable.

Table 7-2. Height and IQ

Student  Height (inches)  1Q score

1 60 103
2 62 100
3 63 98
4 65 95
5 65 110
6 67 108
7 68 104
8 70 110
9 70 97
10 7 100
Solution

The calculations are shown in Figures 7-26 and 7-27.
n=10

n

2;’&7‘-:661

i=1

n
2
zxi = 43817
i=1
n

2}‘,-: 1,02

i=1

n
2

Ey;- = 105,327

i=1

n

E(xiyi)z 67,777

i=1

W
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SS. =43817 —% =1249

58, =105,327 - o2 - 264.5
§S,, = 67,777 - (66”](% =245
24 0.135

"= 124.9)2645)

Figure 7-26. Calculating the correlation between height and 1Q

Coefficient of determination = ¥ = 0.018

. 0.135/10-2 _ 0.382
\1-0.1352 0991

Figure 7-27. Calculating the t-statistic for the correlation between height and 1Q

=0.385

In this data, we observe a weak (r = 0.135, #* = 0.018) positive relationship between
height and 1Q score; however, this relationship is not significant (t =0.385, p > 0.05),
so we do not reject our null hypothesis of no relationship between the variables.

If you are interested in this issue, see the paper by Case and Pearson in Appen-
dix C; although primarily concerned with the relationship between height and in-
come, it also summarizes research about height and intelligence.
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Introduction to Regression and
ANOVA

Regression and analysis of variance (ANOVA) are two techniques within the general
linear model (GLM). If you’re not comfortable with the concept of a linear function,
you should review the discussion of the Pearson correlation coefficient in Chap-
ter 7. In Chapters 8 through 11, we cover a number of statistical techniques, some
of them fairly complex but all built on this basic principle of the linear relationship
among two or more variables. This chapter presents the most basic linear models,
simple regression and one-way ANOVA; Chapters 9 through 11 present more com-
plex techniques within the GLM family. The types of analysis presented in these
chapters are nearly always performed using computer software; fortunately, most
of them are common enough to be included in any statistical computing package.
Also fortunately, it’s usually not difficult to figure out how to use a given package if
you understand the theory underlying the model. For this reason, we concentrate
on explaining how these models work and keep our advice sufficiently broad that it
should apply to most systems.

The General Linear Model

Underlying all techniques within the GLM family is the assumption that a dependent
variable is the function of one or more independent variables. We often speak in
terms of predicting or explaining a dependent variable, using a set of independent
variables, but step back for a minute to consider what it means for one variable to
be a function of another variable (or set of variables—to keep it simple for now we’ll
stick to the simplest case of one dependent and one independent variable). You
probably remember functions of the type y = f(x) from studying algebra; this equa-
tion says thatif you know the value of x, you can compute the value of y by following
the procedure specified by the f(x) function. Here are a few examples of functions:
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* y=x means that the value of y is the same as the value of x, so (x, y) = (1, 1),
(2, 2), (3, 3). The notation (x, y) = (1, 1), (2, 2), and so on, is just a compact
way of saying, “if x =1,y =1;ifx =2,y =2;" and so on.

* y=ax means that the value of y is the product of the value of x and the constant
a.lfa=3,(x,y) =(1,3),(2,6),(3,9), and so on; the value of y is always 3 times
the value of x. If a= 0.5, (x, y) = (1, 0.5), (2, 1), (3, 1.5), and so on. In this type
of model, a is often called the slope of the equation.

* y =ax + b means that the value of y is the product of the value of x and the
constant a plus the value of the constant b. Note that x is multiplied by a, and
then the value of b is added to this product. If a=1and b = 5, (x, y) = (1, 6),
(2,7), (3, 8), and so on. In this type of model, b is often called the constant of
the equation because its value does not change; whatever the value of x, the
value of b is always the same, so the value of b is constant.

* y=x?means that the value of y is the square of the value of x, that is, the value
of x multiplied by itself. Therefore, (x, y) = (1, 1), (2, 4), (3, 9), and so on.

In this chapter, we discuss the bivariate case, equations with only two variables; this
type of equation can always be described by y = ax + b (remembering that b is a
constant, not a variable).

Writing Linear Equations

There are several ways to write a linear equation, but the important parts of the
equation remain the same. For describing a simple linear equation with one pre-
dictor and a constant, the y = ax + b method is sufficient. In this equation, y is the
dependent variable or outcome, a is the slope or coefficient, and b is the constant or
intercept. The term intercept refers to the value at which the line described by the
equation crosses the y-axis; it’s the value of y when x = 0. Slope refers to the
relationship between x and y: how much change in y is predicted for 1 unit change
in x? You might remember your algebra textbook referring to slope as rise over
run; rise in this case refers to change in the y variable, run to change in the x
variable. If you feel you need a review of the algebra of linear equations, you should
review “Relationships Between Continuous Variables” on page 176 in Chapter 7
and try a few of the relevant practice problems in Appendix A.

Another type of notation is used more commonly in statistics when writing linear
equations, particularly for equations with multiple predictors. In this notation, a
simple linear equation is written in the format of y = B + f1x; + ¢, where 8 is the
intercept, f8; the slope or coefficient, and e the residual or error term, which is
included because when working with real data (as opposed to manipulating alge-
braic equations), we don’t expect to be able to predict the value of y perfectly from
an equation. The residual or error term represents the difference between the value
of y as observed and the value of y as predicted from the equation.

In statistics, the term “coefficient” is more often used than slope when referring
to the 81 term because we often work with equations with many predictor variables
(multiple linear regression), in which case, no one predictor variable entirely de-
termines the line’s slope. The meaning of the coefficient in a multiple linear equa-
tion is the predicted change in y for a one-unit change in x, holding the value of all
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other x variables constant. So, in the equation y = 8y + Bix; + Box, + B3x3 + e,
there are three predictor variables (x1, x5, and x3), and the coefficient By expresses
the predicted change in y for a one-unit change in x1, holding x, and x3 constant.

Linear Regression

Suppose the model y = ax + b describes the relationship between two variables, x
and y. In algebra, we can have perfect relationships so that the value of y is always
perfectly predicted by the value of x. The examples we gave previously are this type
of model. If we say, for instance, that y = 2x + 7, we know that if the value of x is 0,
the value of y will be 7. In this type of case, the correlation coefficient between x and
y will always be 1.00, indicating a perfect relationship—we can always predict the
value of y from the value of x without error.

In statistics, however, we are often trying to fit an equation to a real set of data. In
this case, we don’t expect a perfect relationship between x and y. That is, we don’t
assume that we will always be able to predict the value of y, given the value of x,
withouterror. Real life is much more variable than the closed system of mathematics,
and even the strongest relationships observed in the real world are seldom perfect
in the mathematical sense.

Consider the relationship between height and weight in adults. It makes intuitive
sense that these two variables should have a strong positive relationship; in general,
tall people weigh more than short people. However, this relationship is not perfect;
we can all think of short people who are quite heavy and tall people who are quite
thin. Similarly, we expect to see a positive relationship between years of education
and income among people of working age; in general, people with more years of
education earn more money. However, this relationship is not perfect either; one of
the richest men in the world, Bill Gates, did not graduate from college, and many
university towns are full of people with advanced degrees working at low-paying
jobs. When working with real data, we don’t expect to find perfect relationships,
but we do try to find useful ones. For instance, we don’t expect to be able to develop
an equation to predict someone’s weight perfectly from his height (or even from a
much more complex equation including many other predictor variables). Instead,
we want to build an equation that is useful for our purposes and that improves our
predictive ability, meaning that if we know a person’s height, we can use the equation
to make a better prediction of his weight than we could if we didn’t know his height.

We could explore the relationship between height and weight by using scatterplots
and the correlation coefficient, but linear regression takes us a step further. When
doing a regression analysis, we imagine drawing a straight line (the regression line)
representing the relationship between two variables; such a line is often superim-
posed over a scatterplot to clarify the relationship between the variables further.
Consider the scatterplot in Figure 8-1.
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Figure 8-1. Scatterplot of height in meters and weight in kilograms for 436 American adults

This is a scatterplot of the height (in meters) and weight (in kilograms) for 436
American adults; the data comes from a random subsample of data collected for the
2010 BRFSS (Behavioral Risk Factor Surveillance System), a health survey conducted
annually in the United States. [You can read more about the BRFSS and download
data for your own analyses from this website.] As expected, the relationship is pos-
itive and somewhat linear (the data somewhat cluster around a line) but is far from
perfect: most data points do not lie on the regression line (the line superimposed
over the scatterplot), and some are quite far from it. This is typical of the kind of
results you get with real-world data; relationships are not perfect, but if your model
is good, they might be strong enough to be useful.

In this case, the correlation (r) between height and weight is 0.47, and the coefficient
of determination (r2) is 0.22. This means that about 22% of the variation in weight
can be accounted for by height, not exactly a perfect prediction or explanation but
much better than 0. The regression equation for this data is:

y=91x-74

The slope is 91, the constant -74. To find the predicted weight for a person, you
replace x with her height in meters and do the math. This equation predicts that a
person who is 1.8 meters tall would weigh 89.8 kilograms because:

y=91(1.8) - 74 =89.8.
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Of course, if we were really interested in predicting weight, we would develop a more
complex model including factors such as gender and age, but this example serves
well enough to illustrate the basic concepts of simple regression. You might have
noticed that although correlation does not require you to specify which variable is
the predictor and which is the outcome, you do have to make that choice when
working with regression. I designated weight as the outcome and height as the pre-
dictor, which makes logical sense because height is fixed in adulthood and could
logically be considered a causal factor for weight. (All else being equal, including
build, tall people do tend to weight more than short people.) I don’t think I could
make an argument that weight has a causal relationship with height.

It is possible to calculate a regression line by hand (I did it in graduate school, and
before computers came into wide use, everyone did it that way), but it is much more
common to use a statistical computing package to do this calculation. Regression is
an extremely common procedure, and almost any statistical package you might be
using will probably include the routines to do regression calculations. For those who
wish to go through the process of calculating regression parameters by hand, a solved
example is included at the end of this chapter.

Even if you are never planning to calculate a regression equation by hand, it is worth
considering the logic behind the process. When a statistical package produces a
regression line for a set of data, it calculates the equation that will produce the line
that is as close as possible to all the data points considered together. This is some-
times described as minimizing the squared deviations, where the squared deviations
are the sum of the squared deviations between each data point and the regression
line. This is easy to visualize with simple regression because only two dimensions
are involved (the predictor and outcome variables); the same principle applies for
more complex models (with more variables), but it is more difficult to illustrate
because of the greater number of dimensions involved.

Consider Figure 8-2. It’s a scatterplot for a small data set, with a superimposed
regression line. Note that although the regression line is fairly close to all the points,
none of them actually lie on the line; this is not unusual, particularly with small data
sets, because the goal is to produce the line that is the closest to all the points, even
if it contains none of them. In Figure 8-2, you could draw vertical lines from each
point to the regression line; the length of each vertical line represents the error of
prediction, or deviation, for each individual point. If you squared the length of each
line and added them up, that would be the sum of the squared deviations for this
data set. The regression line is drawn so as to minimize all those squared deviations
soitis as close as a straight line can be to all the points in this data set. The difference
between each point and the regression line is also called the residual because it rep-
resents the variability in the actual data points not accounted for by the equation
generating the line. “Minimizing the squared deviations” can also be expressed as
“minimizing the errors of prediction” or “minimizing the residuals.”
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Figure 8-2. Errors of prediction in a small data set

Assumptions

As with most statistical procedures, linear regression makes certain assumptions
about the data used in an analysis; if these assumptions are violated, the results of
the analysis might not be valid. Key assumptions for simple linear regression include:

Data appropriateness
The outcome variable should be continuous, measured at the interval or ratio
level, and be unbounded (or at least cover a wide range); the predictor variables
should be continuous or dichotomous. Categorical predictors with more than
two categories can be recoded into a series of dichotomous dummy variables;
this is covered in Chapter 10.

Independence

Each value of the outcome variable is independent of each other value. This
would be violated if there were some pattern of time dependency, for instance,
or if some of the dependent variables were measured from subjects clustered
into larger units (such as members of the same family or children studying in
the same classroom) in some way that affected their value on the dependent
variable. This assumption is checked by your knowledge of the data and how
it was collected.
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Linearity
The relationship between the predictor and outcome variable resembles a
straight line. This assumption is checked by graphing the data; if it resembles
a shape other than a straight line, you might need to transform one or both
variables or choose another procedure.

Distribution

The continuous variables are approximately normally distributed and do not
have extreme outliers. The distribution of continuous variables may be checked
by creating a histogram (eyeballing the data) and by a statistical test for nor-
mality such as the Kolmogorov-Smirnov. An outlier is defined as a data value
that is far from the other values for the same variable in a data set; sometimes
itis described as a data value that doesn’t seem to belong with the others. Outlier
detection is partly a matter of judgment, is further discussed in Chapter 17, and
can be a multistep process. (An unusual data value can be the result of an error
in data entry, for instance, or it might be an apparently valid value.)

Homoscedasticity

The errors of prediction are constant over the entire data range. This means that
the errors are not, for instance, smaller when the y value is small and larger
when the y value is large. This assumption is checked by graphing the stand-
ardized residuals against the standardized predicted values; the data should
resemble a cloud without any indication that the errors of prediction are not
constant over the whole range of the data. Figure 8-3 shows homoscedastic data
and Figure 8-4 heteroscedastic data.

Independence and normality of the errors
The error of prediction for each data point should be independent of the error
of prediction for each other data point, and the errors should be normally dis-
tributed. The independence assumption is checked by the Durbin-Watson test
(discussed later), and the normality assumption is checked by graphing the re-
siduals (error terms).

Suppose we are interested in adolescent fertility (the rate of childbirth to women age
15-19 years) and in what factors at the country level are associated with adolescent
fertility. Our first idea is that gender inequality might be related to adolescent fer-
tility, and we hypothesize that adolescent fertility is lower in countries where women
are treated more equally. We will do a regression analysis to test this hypothesis,
using data downloaded from the United Nations Human Development Project. We
will use the Gender Inequality Index as our predictor variable; this index is composed
of five variables measuring aspects of women'’s reproductive health, empowerment,
and labor force participation, and has a range of approximately 0—100 (in our data
set, from 6.5 to 79.1), with lower numbers signifying greater equality.

Note that this is what is known as ecological or aggregated data; the value for each
variable relates to a measurement on a country rather than on an individual. There’s
nothing wrong with using ecological data, but you must be careful to draw conclu-
sions only for data at the same level of aggregation as the data you analyzed; in this
case, our results will apply at the country level, not at the level of the individual.
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Figure 8-4. Heteroscedasticity
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We start by running through our assumptions. A frequency table confirms that both
variables are continuous and have substantial ranges, and we have 135 cases with
values on both variables, which is more than enough for a simple regression analysis.
Our data is also independent because data for each country was collected separately.
Our third assumption, linearity, can be examined with a scatterplot. Here, as shown
in Figure 8-5, we encounter a problem: the relationship is curvilinear rather than
linear.
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Figure 8-5. Scatterplot of adolescent fertility and the Gender Inequality Index

We perform a natural log transformation (discussed in Chapter 3) of the adolescent
fertility rate and find that the relationship between these two variables is much more
linear. The scatterplot for the transformed variable and the Gender Inequality Index
is presented in Figure 8-6.

We will check the normality of our variables with histograms and the Kolmogorov-
Smirnov (K-S) statistic. The K-S statistic compares the distribution of a variable with
a reference distribution. (In this case, the reference distribution is the normal dis-
tribution.) The null hypothesis for the K-S statistic is that the variable was drawn
from the reference distribution, so in this example, if we fail to reject this null hy-
pothesis, we can proceed on the assumption that the variables were drawn from
normally distributed populations. Both histograms (not shown) look acceptably
normal, and the Kolmogorov-Smirnov statistics are not significant (K-S = 1.139, p
=0.149 for the natural log of adolescent fertility rate; K-S = 1.223, p = 0.101 for the
Gender Inequality Index).

We will examine assumptions 5 and 6 after running our regression analysis. We
believe that gender inequality influences adolescent fertility, and we have
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Figure 8-6. Scatterplot of the natural log-transform of adolescent fertility and the Gender
Inequality Index

transformed the adolescent fertility rate by taking its natural log (LN), so our re-
gression model is:

LN(adolescent fertility) = By + 81(GII) + e

This is a different style of notation than we used earlier in this chapter, but this style
is more commonly used when discussing regression, so now is a good time to make
a switch. Our Y variable or outcome in this case is LN(adolescent fertility); our
intercept or constant, formerly written as b, is now written as fy; and our slope,
formerly written as a, is now written as 8. This notation will be particularly handy
when we discuss regression with multiple predictors because they can be designated
as f1, 2, and so on; these terms are called coefficients.

Different statistical packages produce different output, but there is enough com-
monality among them that you should be able to produce the basic regression output
produced by any of the major systems if you understand how to read the output
from any one of them. We will present the most important information from our
analyses in simple tables to avoid favoring one system over another.

The first thing we want to do is evaluate the overall fit of our model. Overall model
fit is usually expressed in terms of an F statistic and probability value, and evaluates
whether the entire model is better than no model. Another way to look at this is that
the F statistic and probability evaluates our model against a model in which all the
predictor variables have a weight of 0 (the null model). We are also interested in
how much variance in the outcome variable is explained by our model; particularly
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with a large data set, it is possible to have a model that has significant predictors yet
explains very little of the variance in the outcome.

This model has an F statistic of 190.964 with 1 and 185 degrees of freedom and a p-
value of <0.001; we therefore conclude that it is better than the null model. The
R-value or correlation is 0.714 and a coefficient of determination or R? value of
0.509; this means that the Gender Inequality Index can explain more than 50% of
the variation in adolescent fertility rates among the countries in our data set. Note
that although in this case we are working with only two variables, correlations in
regression are conventionally denoted with a capital R, and we have followed that
convention here. The Durbin-Watson statistic for this data is 2.076, signifying that
the error terms in our data are independent (good). The Durbin-Watson statistic
ranges from O to 4, and a value of 2 indicates complete independence; our value is
very close to 2, so we can consider the assumption of the independence of error
terms met.

The regression coefficients for this analysis are displayed in Table 8-1.

Table 8-1. Coefficients table for a regression analysis of the Gender Inequality Index and the
natural log of the adolescent fertility rate

Unstandardized coefficients  Standardized coefficients

B Std. error Beta t Sig.
Constant  1.798 0.112 16.118  <0.001
Gll 4.446 0.244 0.845 18221  <0.001

The column labeled B under Unstandardized Coefficients gives us the coefficients
to write our regression equation. In this case, that equation would be:

LN(adolescent fertility) = 1.798 + 4.446(GII) + ¢

This tells us that the natural log of the adolescent fertility rate increases about 4.4
units for every 1 unit increase in the Gender Inequality Index; the relationship is
positive, confirming our hunch that greater gender inequality was associated with
higher adolescent fertility. The Std. Error column presents the standard errors for
the coefficient estimates. The Beta column under Standardized Coefficients
presents, as the name suggests, the standardized regression coefficient; this can be
useful in regression analyses with multiple predictors measured on different scales.
The t column shows the t-statistic for each coefficient and is calculated by dividing
B by its standard error. For instance, for GII:

t=4.446/0.244 = 18.221

The final column is the significance of the t-statistic. We usually aren’t concerned
with the significance of the constant (all that tells us is whether it is significantly
different from 0, which is not ordinarily a question of interest), but we are interested
in the significance of the coefficients for our predictors. In this case, Gl is a highly
significant predictor (p < 0.001) of adolescent fertility.
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It might be helpful to think about what we are testing with this analysis. Our main
interest is whether gender inequality predicts the adolescent fertility rate; if the t-
statistic for gender inequality in the coefficients table is not significant, this means
that we could drop the term for gender inequality from our equation. To put it
another way, a nonsignificant result for gender inequality would mean that the co-
efficient for that term was not significantly different from 0, so it could be dropped
from our equation without harming the equation’s ability to predict or explain the
outcome variable.

Our final steps are to finish checking our assumptions to be sure that our results are
valid. We can check homoscedasticity (assumption 5) by graphing the standardized
residuals against the standardized predicted values; results are shown in Figure 8-7.
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Figure 8-7. Scatterplot of the standardized residuals and standardized predicted values

This is a classic data cloud, providing no evidence that the error of prediction is not
constant, so the assumption of homoscedasticity is met. Finally, we will check the
normality of our residuals by creating a histogram (not pictured) of them and cal-
culating the Kolmogorov-Smirnov statistic; the value of the Kolmogorov-Smirnov
statistic is 1.355 (p = 0.51), so our analysis barely passes the test of normality.

Not all statistical analyses produce significant results. In Table 8-2, we present the
results of a regression analysis using the size of the female population in a country
(measured in 1,000s) to predict the country’s Gender Inequality Index score.
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Table 8-2. Coefficients table for a regression analysis predicting a country’s Gender Inequality
Index by the size of its female population (measured in 1,000s)

Unstandardized coefficients  Standardized coefficients

B Std. error Beta t Sig.
Constant 0.282 0.074 3.806  0.002
Female population (1,000s)  0.000 0.000 0.306 1.285  0.217

We can see from the t-value (1.285) and significance (0.217) that the size of the
female population is not a significant predictor of gender equality; another clue of
this result is the unstandardized coefficient of 0.000 for this predictor, meaning that
the value of this coefficient, carried to three decimal places, is essentially zero. A
scatterplot of the two variables (Figure 8-8) indicates a basically random relationship
between them, and logically speaking, there’s no reason countries with large female
populations (which means a country with large populations, period) should have a
consistently higher or lower level of gender equality than countries with small female
populations, so we will not pursue this analysis further.
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Figure 8-8. Scatterplot of female population (measured in 1000s) and Gender Inequality Index
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Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) is a statistical procedure used to compare the mean
values on some variable between two or more independent groups. It’s called anal-
ysis of variance because the procedure involves partitioning variance, attributing the
variance observed in a data set to different causes or factors, including group mem-
bership. However, because it is usually used to compare the means between groups,
many a student has privately thought that the real name should be A-MEAN-A.
Nevertheless, ANOVA is a useful technique, particularly when analyzing data from
designed experiments (such as the differences between the control and experimental
groups in a clinical trial).

The major test statistic foran ANOVA is the F ratio, which can be used to determine
whether statistically significant differences exist between the groups. For example,
we might be interested in testing the efficacy of three drugs intended to lower blood
pressure; we could form four groups of hypertensive patients and give each group
one of the drugs (plus one group to act as a control, meaning they receive either no
medication or standard care). After a period, we would measure the blood pressure
on the patients in this study to see whether any of the drugs in the experiment had
produced significant reductions in their blood pressure and whether there were dif-
ferences among the drugs in this result. An ANOVA would produce an F ratio com-
paring the group means, which we would test for significance using a predetermined
standard such as p < 0.01 or p < 0.05.

The simplest type of ANOVA includes only one group or predictor variable and one
outcome variable; for this reason, it is called one-way ANOVA. Chapter 9 covers
more complex types of ANOVA, including two-way and three-way ANOVA (fac-
torial ANOVA), and designs that include a continuous covariate (ANCOVA).

One-Way ANOVA

The simplest form of ANOVA is one-way ANOVA, in which only one variable is
used to form the groups to be compared. This variable is often called a factor, and
that terminology is even more often used with more complex ANOVA designs.
Suppose we are interested in the efficacy of a new drug intended to lower blood sugar
in Type II diabetics; we could test this with an ANOVA, comparing the new drug
to another drug already in use. The factor in this design is the drug administered,
and it has two levels: the new drug and the drug already in use. The factor used in
a one-way ANOVA can have more than two levels: in the previous example of com-
paring three hypertension drugs and a control group, we had one factor with four
levels.

A one-way ANOVA with two levels is equivalent to performing a t-test. Our null
hypothesis in this type of design is usually that the two groups have the same mean,
whereas the alternative is either that they have different means (a two-sided test) or
differ in one direction only (a one-sided test). Even if there is a significant difference
in group means, we don’t expect that there will be no overlap among members of
the groups; in fact, it would be unusual if there were no overlap. We also expect that
there will be variability within each group, and the calculations for one-way ANOVA
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are concerned with comparing the variability within groups (for instance, the vari-
ability observed in blood sugar among the patients receiving the new drug) and the
variability between groups (the difference between the patients taking the experi-
mental drug and the patients taking the standard drug).

ANOVA also has assumptions that must be met for the technique to be used
appropriately. Because linear regression and ANOVA are really just two ways of
looking at data using the general linear model, it is not surprising that some of the
assumptions of ANOVA are also assumptions of regression.

Data appropriateness
The outcome variable should be continuous, measured at the interval or ratio
level, and be unbounded (or at least cover a wide range); the factors (group
variables) should be dichotomous or categorical.

Independence

Each value of the outcome variable is independent of each other value. This
would be violated if there was some pattern of time dependency, for instance,
or if some of the dependent variables were measured from subjects clustered
into larger units (such as members of the same family or children studying in
the same classroom) in some way that affected their value on the dependent
variable. This assumption is checked by your knowledge of the data and how
it was collected.

Distribution
The continuous variable is approximately normally distributed within each
group. The distribution of the continuous variable can be checked by creating
a histogram (eyeballing the data) and by a statistical test for normality such as
the Kolmogorov-Smirnov.

Homogeneity of variance
The variance of each of the groups should be approximately equal. This is
checked by a procedure such as the Levene statistic; the null hypothesis is that
the variance is homogeneous, so if the results of the Levene statistic are not
statistically significant (normally, the criterion of & < 0.05 is used), that means
the variances are sufficiently homogeneous to proceed.

ANOVA is considered a robust procedure, meaning that it can produce good results
even when some assumptions are violated; for instance, when group sizes are equal,
the F-statistic produced by ANOVA is reliable even if the distribution of the con-
tinuous variable is nonnormal. Similarly, when group sizes are equal, the F-statistic
is robust to violations of the assumption of homogeneity. If you want to read more
about the debates surrounding these issues, a relevant article by Glass is listed in
Appendix C. However, violations of the assumption of independence can seriously
distort your results, so you need to be sure that this assumption is met before using
ANOVA with your data.

Suppose we are comparing two methods of weight training, and our measurement
is how much improvement we have observed in the total lifted in a full squat after
three months of training with one method or the other. Our null hypothesis is that
the means are the same in both groups after the training; in other words, that on
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average neither method of training produces better results than the other. We ran-
domly assigned our subjects at the start of the experiment and measured their max-
imum squat; it was approximately equal in both groups. The box plots in Fig-
ure 8-9 show the improvement in weight lifted after three months; it is clear that
people training with the first method made, on average, more improvement because
group 1 has a higher median, represented by the black line in the center of the box,
and the range is higher. However, it is also clear that there was variability between
the two groups and that there were also considerable overlaps between the two
groups. It is not the case that everyone in group 1 improved more than everyone in
group 2, simply that on average, group 1 showed more improvement.
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Figure 8-9. Improvement in weight lifted after three months of training with one of two
methods

In fact, group 1 improved by an average of 34.21 pounds and group 2 by an average
of 26.42 pounds. Is this difference statistically significant? To answer this, we will
conduct a one-way ANOVA. First, we compute some basic statistics on this data,
as presented in Table 8-3.

Table 8-3. Descriptive statistics for weightlifting data (two methods of training)

Group N  Mean Std.dev. 95%Cllowerbound  95% Cl upper bound

1 15 3421 738 30.13 38.31
2 15 2642  6.16 23.01 29.83
Total 30 3032 776 21.41 33.22
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We note that we have equal numbers of subjects in each group, approximately equal
variance, and that the 95% confidence intervals for the mean between the two groups
do not overlap (although they come very close). We also computed the Levene sta-
tistic to see whether our two groups had homogeneous variance; our results (0.626,
p = 0.435) tell us not to reject the assumption of homogeneity, so we can proceed
to interpret our ANOVA results.

The statistical results for an ANOVA are customarily presented in a table similar to
Table 8-4.

Table 8-4. One-way ANOVA results for the weightlifting data (two methods of training)

Sumofsquares df Meansquare F Sig.
Between groups 455.86 1 45586  9.86  0.004
Within groups 129452 28 46.23
Total 175038 29

By the standard of & < 0.03, these are significant results, so we can reject the null
hypothesis that the means of the two groups are equal; in fact, method 1 produced
significantly better results than method 2. This is a simple ANOVA table because
we have only one factor and two levels, but it’s worth taking some time to look at
the different parts of it because that will help you understand more complex ANOVA
tables.

The table has three rows: one presents the data for between groups variance, one
for within groups variance, and one for total variance. Adding up the sums of squares
and the degrees of freedom (df) for between and within groups gives us the value for
the total data set. Between groups variance refers to that attributed to group mem-
bership, that s, the variation in individual scores attributed to the method of training
used. Within groups variance refers to the variance within each training group; as
we saw in the box plot in Figure 8-9, there was substantial variation within each
group as well as between the two groups. The degrees of freedom refers to how
many things can vary when computing each part of the statistics; total degrees of
freedom is n - 1 (1 less than the total number of subjects), between groups degrees
of freedom is k - 1 (one less than the number of groups), and within groups degrees
of freedom is n - k. The sum of squares (SS) is the sum of the squared deviation
scores for between groups, within groups, and the total, whereas the mean square
(MS) is the sum of squares divided by the degrees of freedom, so in this example:

SS(between) = 455.86/1 = 455.86
SS(within) = 1294.52/28 = 46.23

The F-statistic is the ratio of the sum of squares between and within groups, so in
this example:

F=455.86/46.23 = 9.86

Our statistical package calculated the significance of the F-statistic automatically,
but we could have also compared it to the values on an F table (similar to the normal
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distribution table and other tables included in Appendix D). Because F tables have
two degrees of freedom (for the numerator and denominator), they are quite bulky,
so we have not included one in this book; however, you can find a public domain F
table here.

Post Hoc Tests

If you have only two groups, a significant F-test means that the two groups differ
from each other. However, with more than two groups, your ANOVA analysis might
have returned a significant F-test (called an omnibus test), meaning that the group
means are not identical, yet you might still be left wondering which groups differ
from which others. To answer this question, it is possible to conduct a post hoc
test; as the name implies, post hoc tests are conducted after the fact, after you have
found a significant omnibus F-test. There are a number of post hoc tests, and some
are more typically used in some fields, others in other fields. One good choice is the
Scheffe test, which tests all comparisons among the groups for significance and is
adjusted statistically to control for conducting multiple tests on the same data. (Us-
ing the Scheffe test controls the experiment-wise error rate and does not increase the
probability of a Type I error.)

Suppose we were comparing three methods of weight training instead of two. The
descriptive statistics for this data are presented in Table 8-5.

Table 8-5. Descriptive statistics for weightlifting data (three methods of training)
Group N Mean  Std.dev.  95% Cllowerbound  95% Cl upper bound

1 15 3421 738 30.13 38.31
2 15 2642 6.16 23.01 29.83
3 15 3004 922 24.94 35.15
Total 45 3032 776 274 33.22

We have the same sample size for all three groups, which is the optimal setup for an
ANOVA. Looking at the group means, method 3 seems to produce results lower
than group 1 but higher than group 2. The 95% confidence interval for group 3 does
overlap with both groups, so it will be interesting to see what our post hoc results
tell us about these three methods of training.

The Levene test has a value of 1.447 (p = 0.247), so the homogeneity of variance
assumption is met. The results of the ANOVA are presented in Table 8-6.

Table 8-6. ANOVA results for the weightlifting data (three methods of training)

Sumofsquares df Meansquare F Sig.
Between groups 456.04 2 22830 3.86 0.029
Within groups 2483.76 42 59.14
Total 294036 44
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The F-statistic is significant, meaning that the means of the three groups differ.
However, we want to know more—are the results from the group using method 1
significantly better than both the groups using methods 2 and 3, for instance? Are
the results produced by method 3 significantly better than those produced by
method 2? To answer these questions, we conduct a Scheffe post hoc test, producing
the results presented in Tables 8-7 and 8-8.

Table 8-7. Results from the Scheffe post hoc test for the weightlifting data (three methods of
training)

Mean difference 95% Cl upper

IGroup  JGroup (I-)) Std.error  Sig. 95% Cl lower bound  bound

1 2 7.80 281 0.029 0.67 14.92
1 3 417 281 0341 —-2.95 11.30
2 1 —7.80 281 0.029 -14.92 —0.67
2 3 —-3.62 281 0442 -10.75 3.50
3 1 —4.17 281 0341 -11.30 295
3 2 3.62 281 0442 —3.50 10.75

Table 8-8. Homogeneous subsets from the Scheffe post hoc test (three methods of training)
Subset for a = 0.05

Group N 1 2

2 15 2642

3 15 30.04 30.04
1 15 34.22
Sig. 0.442 0.341

Tables 8-7 and 8-8 present the same conclusion, but the information is arranged
differently. Looking at either table, we can see that the mean of group 1 differs from
the mean of group 2 but that the mean of group 1 does not differ from the mean of
group 3, nor does the mean of group 2 differ from the mean of group 3.

Table 8-7 presents all possible pairwise comparisons between the groups; half the
table is redundant because both the comparison of group 1 with group 2 and group
2 with group 1 are presented. For instance, the first row presents the comparison of
group 1 with group 2 (the notations “I group” and “J group” are conventional). The
mean difference in the means of these two groups is 7.80, and the difference is sig-
nificant (p = 0.029). The 95% confidence interval for this difference in means is
(0.67, 14.92); note that it does not cross zero. The second row of Table 8-7 presents
the comparison between group 1 and group 3; the mean difference is 4.17, and it is
not significant (p = 0.341). Note for comparison that the confidence interval does
cross zero (-2.95, 11.30). The third row compares group 2 with group 1; the results
are the same as in row 1, except that the signs are reversed (because in row 3, the
mean of group 1 is subtracted from the mean of group 2, whereas in row 1, the mean
of group 2 was subtracted from the mean of group 1). Row 4 compares the means
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for groups 2 and 3; the mean difference is -3.62, and this is not significant (p =
0.442). Rows 5 and 6 are redundant with rows 2 and 4.

Table 8-8 presents a column for each set of groups that form a homogeneous subset;
in a homogeneous subset, the means of the groups included do not differ signifi-
cantly from each other. In this case, groups 2 and 3 form a homogeneous subset
(column 1); groups 1 and 3 also form a homogeneous subset (column 2).

Calculating Simple Regression by Hand

Regression coefficients can be calculated by hand, using the sums of squares, var-
iances of X and Y, and a few other quantities that can all be calculated without the
use of a computer. The problem with hand calculations is not that any particular
step of the process is difficult but that with a data set of any size, the work involved
quickly becomes tedious and prone to error. However, going through a modified
version of this process can be useful in understanding the meaning of the regression
coefficients, and it is in that spirit that the following section is provided.

We noted earlier that, when dealing with real data, we don’t expect the predictions
made by a regression equation to be perfect. In fact, we assume that there will be
some differences between the observed values in a data set and the predicted values
as computed using the regression equation. We also discussed the squared devia-
tions, which are the square of the difference between each observed data point and
its predicted value according to the regression equation. The sum of these squared
deviations is the sum of squares of errors, or SSE, and is computed as shown in
Figure 8-10.

SSE = i()’; -3’

i=1

Figure 8-10. The sum of squares of errors

In this formula, y; is an observed data value, and 3; is the predicted value (according
to the regression equation) for that value. Because the value of §; is determined by
the regression equation (ax; + b), the sum of squares of errors can also be written as
shown in Figure 8-11.

SSE = Y. (y, ~(ax, +b))*

i=1

Figure 8-11. Another way to write the sum of squares of errors
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The purpose of the regression equations is to minimize the SSE, that is, to make the
predicted values as close as possible to the observed values. The computational for-
mulas for the elements necessary to compute a simple regression equation are given
in Figures 8-12 to 8-15. Note that Sy, is the variance of x, and S, is the covariance
of x and y.

SM=EX“&ZAZ

n

Figure 8-12. Computing the variance of x

%=EW_Q&¥&1

Figure 8-13. Computing the covariance of x and y

Figure 8-14. Computing the slope of a simple regression equation

b2 2
n n

Figure 8-15. Computing the intercept of a simple regression equation

Suppose you have been given the values in Figure 8-16 computed from a data set
relating IQ (y) to height in meters (x); you can use this information to calculate the
regression line for that data set. You could also compute these quantities by hand,
but that process is extremely laborious with even a moderately sized data set—so
laborious, in fact, that you are apt to forget why you were doing the calculations in
the first place.
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Y x=3325
Yy =2,486

Y x* =5301

Y y* =299,676

Y xy =3,973.04
n=21

Figure 8-16. Data needed to compute a simple regression equation

Using the equations plus the values presented in Figure 8-16, we calculate the re-
gression equation as follows:

Sx/n=133.25/21=1.58

Ty/n=2,486/21 = 118.38

S =53.01-(33.25)2/21=0.36

Sey =3,973.04 - (33.25)(2,486)/21 = 36.87
a=236.87/0.36 = 102.42

b=118.38 - [(102.42)(1.58)] = -43.44

The regression equation is:
y=102.42x -43.44 + e

or
IQ = 102.42(height) - 43.44 + ¢

For a person of 2 meters in height, the equation predicts an IQ of 161.40 (genius
level!) because:

102.42(2) - 43.44 =161.40

Needless to say, this is a fictitious example that demonstrates the technique of re-
gression; no slur is intended toward the intelligence of anyone, regardless of stature.

Exercises

Regression

The first set of questions uses data from the United Nations Development Project
to examine variables related to adolescent fertility (the birth rate for women aged
15-19 in a given country, expressed as the number of births per 1,000 women in
this age group). You decided to look at the level of education in the country, using
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the “mean years of adult schooling” variable, thinking that countries in which the
average years of school completed is higher might have a lower adolescent fertility
rate.

Problem

Figure 8-17 presents the scatterplot of the two variables (using the natural log of
adolescent fertility as discussed in this chapter). What does it suggest about their
relationship, and does it seem to support a simple regression analysis with these two
variables?
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Figure 8-17. Scatterplot of the natural log-transform of adolescent fertility and the mean years
of adult schooling

Solution

The scatterplot indicates a moderately strong negative relationship. (Higher levels
of education are associated with lower levels of adolescent fertility.) Both variables
appear continuous and have a reasonable range to support a regression analysis.

Problem

The regression analysis produced the information in Table 8-9; fill in the missing
value for R square and interpret the information provided in Table 8-9.

Table 8-9. Model information

R R square Durbin-Watson
0.663 2.199
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Solution

The R? value is 0.440 (found by squaring 0.663). This is the coefficient of determi-
nation for the model and means that 44.0% of the variation in this data set in the
log-transtormed adolescent fertility rate can be explained by variation in the mean
years of adult schooling. The Durbin-Watson statistic tests the assumption that the
error terms are independent; a value of 2 signifies absolute independence, and be-
cause our value (2.199) is close to 2, we can conclude that this assumption has been
met.

Problem

Table 8-10 presents the coefficients table from this same regression analysis. Fill in
the values for the missing t-statistics, write the regression equation for this analysis,
and interpret the information provided in the table.

Table 8-10. Coefficients table for a regression analysis predicting the natural log of the
adolescent fertility rate from the mean years of adult schooling in a country

Unstandardized coefficients  Standardized coefficients

B Std. error Beta t Sig.
Constant 5.248 0.146 <0.001
Meanyearsof schooling (adults) —0.217 0.019 —0.663 <0.001

Solution

The t-statistics are 35.945 for the constant and -11.421 for the mean years of school-
ing; they are found by dividing the B for each term by its standard error. For the
constant, this is:

5.248/0.146 = 35.945
The regression equation for this analysis is:
Log_adoles_fertility = 5.248 - 0.217(mean years adult schooling)

This equation says that the predicted log of adolescent fertility decreases by 0.217
units for every year’s increase in mean years of adult schooling in a country. The ¢-
statistics and their significance tests tell us that both coefficients are significantly
different from zero. The Beta coefficient (-0.663) for mean years of schooling is the
standardized value of the regression coefficient for this term (-0.217); it is not par-
ticularly useful for a simple regression equation, but for an equation with multiple
predictors measured on different scales, it can be used to compare the importance
of the different predictors.

This analysis supports the assertion that there is a significant negative relationship
between the level of education in a country and the adolescent fertility rate: on aver-
age, the adolescent fertility rate is lower in countries where adults have completed
more years of schooling.
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ANOVA

These questions use data from the 2010 BRESS (Behavioral Risk Factors Surveillance
System, an annual survey of health-related information for the United States). Al-
though you can download data from the BRFSS, the analysis in this section is based
on a random sample from the 2010 data, so you shouldn’t expect to find exactly the
same results if you do the analysis yourself.

You are interested in whether there is a relationship between asthma and body
weight. You will use an ANOVA to examine whether there is a significant difference
in body weight between people who have ever received a diagnosis of asthma (life-
time asthma diagnosis) and those who have not. Your group variable, asthma
diagnosis, is dichotomous, and your outcome variable, body weight, is continuous.
Because your audience is U.S. officials, you will use weight in pounds rather than
kilograms. (Both measurements are provided in the data set.)

Problem

Figure 8-18 presents the box plot for lifetime asthma diagnosis and body weight in
pounds. What information can you glean about the data from this box plot? If you
are unfamiliar with box plots, you can review the relevant section in Chapter 3.
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Figure 8-18. Box plots for current asthma diagnosis and body weight in pounds
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Solution

All sorts of alarms should be going off in your head from looking at this box plot,
which presents a fine example of why data screening is important. First of all, there
are three groups for lifetime asthma diagnosis rather than 2; a quick perusal of the
code book [also available here] tells us that 7 is a missing value, so we should exclude
cases with that value from this analysis. Both valid groups (with and without an
asthma diagnosis) have outliers; those are the data points identified by circles, and
the number next to each is the case number that has that particular value. This makes
us question whether body weight is normally distributed, so we will examine that
before continuing. Finally, the median weights for those with and without an asthma
diagnosis are almost the same, suggesting that this variable might not be the most
promising if our interest is identifying factors strongly related to asthma. Nonethe-
less, we will continue with our analysis because a finding of nonsignificance can also
provide us with useful information.

Problem

We created a histogram for weight and computed the Kolmogorov-Smirnov statistic
for this variable; the histogram is presented in Figure 8-19, and the Kolmogorov-
Smirnov statistic was 1.898 (p - .001). Together, what do they tell us about the
distribution of weight in this data set?
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Figure 8-19. Histogram for weight in pounds
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Solution

The histogram has a positive skew (high values are more common than would be
expected by the normal distribution); this is clear when comparing the distribution
of the actual data (the histogram bars) to the superimposed normal curve (repre-
senting a perfect normal distribution). The Kolmogorov-Smirnov statistic is highly
significant, indicating that the null hypothesis that the variable has a normal distri-
bution should be rejected.

Problem

We did a natural log transformation of weight and checked normality again; in this
case, the histogram (not shown) looked approximately normal, and the
Kolmogorov-Smirnov statistic was 0.961 (p = 0.314), indicating acceptable normal-
ity. We also computed the Kolmogorov-Smirnov statistic for each group separately;
neither was significant, so we are confident that the distribution within each group
is normal. The box plots for the transformed variable are shown in Figure 8-20; what
do they suggest about this data?
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Figure 8-20. Box plots with transformed weight variables

Solution

The group without an asthma diagnosis still has a cluster of outliers, but because
the data is acceptably normal, we will continue with our analysis. The group with
an asthma diagnosis has a slightly higher median than the group without the
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diagnosis, but there is considerable overlap between the two groups as well. We will
proceed with our ANOVA for this data.

Problem

The Levene statistic for this ANOVA is < 0.001 (p = 0.983). Why did we compute
the Levene statistic, and what do these results tell us?

Solution

The Levene statistic tests whether the assumption of homogeneity of variance has
been met. The null hypothesis is that the variances of the different groups are ho-
mogeneous; in this case, we do not have a significant value for this statistic, so we
can consider the homogeneity of variance assumption upheld.

Problem

Table 8-11 presents some descriptive data about the transformed weight variable in
this data set. What do you notice in this table, and what are the implications for the
analysis?

Table 8-11. Descriptive statistics for the transformed weight variable for people with and
without a lifetime asthma diagnosis

Group N Mean  Std.dev.  95% Cllowerbound  95% Cl upper bound
Asthma diagnosis 44 5.19 0.24 5.12 5.27
No asthma diagnosis 390  5.13 0.24 5.10 5.15
Total 434 516 0.24 51 5.16
Solution

The first thing to notice is that the sample sizes are highly unequal, suggesting that
this data set might not be the optimal candidate for an ANOVA analysis to answer
this question (because ANOVA works best with a balanced design). The second is
that the means of both groups are quite similar, and the 95% confidence intervals
overlap quite a bit, suggesting that there is not a strong relationship between lifetime
asthma diagnosis and body weight. It’s still worth completing the analysis, however;
nonsignificant results can also provide useful information.

Problem

The ANOVA results are presented in Table 8-12; what do they tell you about the
relationship between lifetime asthma diagnosis and body weight? Use the standard
of alpha = 0.05 for significance testing.

Table 8-12. One-way ANOVA results for lifetime asthma diagnosis and body weight

Sumofsquares df Meansquare F Sig.
Between groups 456.04 2 22830 3.86  0.029
Within groups 248376 42 59.14
Total 294036 44

220 | Chapter8: Introduction to Regression and ANOVA



Solution

This analysis found a significant relationship (F = 3.86, p = 0.029) between lifetime
asthma diagnosis and body weight. Referring to Table 8-11, people who have ever
been diagnosed as having asthma have on average a higher body weight than those
who have never been diagnosed with asthma.

W N
oS Because we transformed weight to its natural log, our means
.“:‘ table (Table 8-11) reports the natural logs of weight. To make
N 8 . . .
' Qs these figures more meaningful to our audience, we need to

* transform these results back into their original units (pounds).
We can do this by taking the antilog of the means in Table 8-11:

e>19=179.5
13 =169.0

We can then add this information to the second sentence of our answer so it reads,
“People who have ever been diagnosed as having asthma have on average a higher
body weight (mean = 179.5 lbs) than those who have never been diagnosed with
asthma (mean = 169.0 lbs). Converting back to the original units also points up a
danger when working with transformed units: a difference that might look small in
the transformed units (5.19 versus 5.13) can be much more impressive in the original
units (179.5 versus 169.0).

W

Because the BRESS data is a survey collected at a single point in
time, it cannot answer questions of causality regarding body
3% weight and obesity. It might be that asthma leads to increased
body weight (perhaps by making it more difficult to exercise),
or it might be that increased body weight leads to asthma (per-
haps by stressing the lungs more). It’s also possible that one or
more additional factors can explain this observed relationship,
for instance, both increased body weight and asthma might be
associated with poverty.
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Factorial ANOVA and ANCOVA

Chapter 8 introduced simple regression and ANOVA. In this chapter, we present
more complex types of ANOVA: factorial ANOVA (ANOVA with more than one
grouping variable, or factor) and ANCOVA, which is an ANOVA design that in-
cludes a continuous covariate. Chapter 10 presents similar extensions of the simple
regression model introduced in Chapter 8.

In research, most ANOVA designs include at least two grouping variables or factors;
these models rely on the same basic principles as one-way ANOVA, but the addi-
tional complexity introduces additional concerns, including the evaluation of inter-
actions between the factors. These types of analyses are nearly always done with a
computer statistical package, but fortunately, there is enough commonality among
those packages that generally if you can read the output from one, you can easily
learn to read the output from another. We present information from the analyses as
generically as possible to make it understandable no matter what computer program
you are using.

Factorial ANOVA

It’s relatively rare in real-life studies that we are interested in the influence of a single
factor. Instead, we are often interested in the influence of several factors and, pos-
sibly, how they interact as well. Factorial designs (ANOVAs including several fac-
tors) help us understand the combined effect of multiple factors on a dependent
variable. We might be interested in both main effects—the effect of each factor
considered alone—and interaction effects—the effects of the different factors in
combination. As with one-way ANOVA, factorial ANOVA is most suited for de-
signed experiments and equal cell sizes, i.e., approximately equal numbers of sub-
jects in each subgroup or cell created by any combination of the factors. The major
assumptions for factorial ANOVA are the same as for one-way ANOVA, as presented
in Chapter 8. Independence of observations and the homogeneity of variance are
particularly important; fortunately, statistical packages generally provide statistical
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tests of homogeneity of variance, such as Levene’s test, whereas independence of
observations is generally dealt with at the experimental design stage.

The most common factorial designs are a x b (two-way, two factors) and a x b x ¢
(three-way, three factors). It’s possible to have more complex designs, but the results
become increasingly difficult to interpret, and higher levels of complexity may be
more easily accommodated in a linear regression design. As with one-way ANOVA,
each factor is a categorical variable with at least two levels, whereas the outcome or
dependent variable is a continuous variable measured at the interval or ratio level.

Interaction

With more than one factor, you need to be concerned with interaction among the
factors. The definition of interaction is that the effect of one variable depends on the
level of another variable; in other words, the effect of one variable is different, de-
pending on the value of the other variable. This might be easier to understand by
looking at some graphs showing extreme examples of interaction and lack of inter-
action; you will seldom find cases this obvious using real data, but the graphs are
useful to illustrate the concept.

Let’s consider some hypothetical data on the relationship among grip strength (the
outcome, measured in PSI, pounds per square inch) and two factors, gender and
alcohol consumption. If we graph the data and there is no interaction between the
factors, the graph might look something like Figure 9-1.

gender

— male
female

20.004

18.00

16.004
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12.004
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10.004
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6.004
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alcohol_consumption

Figure 9-1. Data without interaction
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This graph shows no interaction between alcohol consumption and gender; grip
strength (the y axis) decreases for both men and women as alcohol consumption
increases (the x axis). The rate of decrease is the same for both genders, so the lines

are parallel, and men have a stronger grip strength at every level of alcohol con-
sumption.

Figure 9-2 displays data that does contain an interaction; alcohol consumption in-
fluences grip strength differently for men than for women. In fact, the effect is op-

posite: alcohol consumption increases grip strength for women while diminishing
it for men.
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Figure 9-2. Data with an interaction

Lines do not have to cross for there to be an interaction; Figure 9-3 shows an inter-
action characterized by lines that are not parallel but diverge, showing that the effect
of alcohol on grip strength is greater for women than for men.

In both Figure 9-2 and Figure 9-3, we see that the effect of alcohol on grip strength
depends on the level or value of a third variable, gender; the relationship between
alcohol and grip strength is different for men than for women. Of course, we can’t
tell by looking at a graph whether an interaction is significant; for that, we need
statistical testing.
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Figure 9-3. Data with an interaction

Two-Way ANOVA

Physical performance measures often vary in populations, and declines in grip
strength, for instance, might be correlated with a number of clinical conditions. Your
research team is interested in studying how two factors, gender and alcohol con-
sumption, are related to grip strength and in how these factors interact. You have
three primary research questions:

1. Does gender influence grip strength?

2. Does alcohol consumption influence grip strength?

3. Do gender and alcohol consumption interact to influence grip strength?

We will treat alcohol consumption as a dichotomous variable, contrasting those that
consume alcohol at least weekly with those who do not.

Our hypotheses can be stated verbally as:
Main effect for gender

Hy: there is no difference in grip strength between men and women.
H;: there is a difference in grip strength between men and women.

226 | Chapter9: Factorial ANOVA and ANCOVA



Main effect for alcohol

Hy: there is no difference in grip strength between men and women.
Hj: there is a difference in grip strength between men and women.

Interaction of gender and alcohol

Hy: the influence of alcohol consumption on grip strength is the same for men
and women.

H;: the influence of alcohol consumption on grip strength is not the same for
men and women.

Table 9-1 shows sample data for the first 12 cases collected in the grip strength lab
(total n = 50). Six women and six men had their grip strength measured, and each
gender group had three drinkers and three nondrinkers (defined as drinking at least
weekly or never drinking).

Table 9-1. Relationship between grip strength (DV) and gender and alcohol consumption (IVs)
Gender  Alcohol  Grip strength (psi)

Female  Yes 19
Female  Yes 20
Female  Yes 21
Female  No 30
Female  No 25
Female  No 28
Male Yes 31
Male Yes 30
Male Yes 35
Male No 32
Male No 35
Male No 32

The two main effects are testing mean population differences based on the null
hypotheses:

Hmales = Hfemales = 0
Halcohol = Bnoalcohol = 0

Note that the null hypotheses for the main effects are stated in terms of difference
scores; stating that two quantities are the same is equivalent to stating that their
difference is 0. Interaction hypotheses are usually expressed in terms of differences
of differences. In this example, saying that there is no difference in the influence of
alcohol on grip strength for men and women can be expressed as:

Hmen/alcohol = Bmen/noalcohol = Bwomen/alcohol = Bwomen/moalcohol
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This study was very close to balanced, with 24 females and 26 males and 24 alcohol
drinkers versus 26 abstainers. The R? for the model (coefficient of determination)
was 0.566, meaning that the two factors plus their interaction accounted for 56.6%
of the variation in grip strength observed in this data set. Levene’s test (F = 0.410,
p = 0.746) indicated that the assumption of homogeneity was met. The sample
means are:

¢ Gender main effect: female (25.25), male (31.65)
¢ Alcohol main effect: alcohol (26.71), no alcohol (30.31)

The means by gender and alcohol consumption are presented in Figure 9-4.
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Figure 9-4. Means plot for the effects of gender and alcohol consumption on grip strength

There appear to be both main effects and an interaction effect: in our sample, men
have greater grip strength than women, those who do not consume alcohol have
greater grip strength than those who do, and the effect of alcohol consumption on
grip strength is greater for men than for women. To see whether these differences
are statistically significant, we need to perform a two-way ANOVA.

Some statistical packages produce many tables, but a few are particularly useful. In
our case, we are interested in testing the significance of the main effects and inter-
action effect in this model. The key data from the ANOVA is presented in Table 9-2.
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Table 9-2. ANOVA testing differences in grip strength (DV) for gender and alcohol
consumption (IVs)

Source Sumofsquares df Meansquare F Sig.
Corrected model 733.085 3 244362 20.033  <0.001
Intercept 40426436 1 40426.436  3299.504  <0.001
Gender 504.806 1 504.806 41385 <0.001
Alcohol 148325 1 148.325 12.160 0.001
Gender* alcohol 80.769 1 80.769 6.622 0.013
Error 561.095 46 12.198

Total 42135.000 50

Corrected total 1294180 49

Using the standard of alpha = 0.05, the rows for gender (main effect), alcohol (main
effect), and gender*alcohol (interaction effect) tell us that, as we guessed from the
means plot, all three effects are significant. A summary of the results of this analysis
follow.

Both main effects and the interaction tested in the design are significant:

Gender main effect: F(1, 46) = 41.385, p < 0.001
The direction of the effect shows that women generally have lower grip strength
than men.

Alcohol main effect: F(1, 46) = 12.160, p = 0.001
The direction of the effect shows that those who consume alcohol generally
have a lower grip strength than those who do not consume alcohol.

Gender x alcohol interaction: F(1, 46) = 6.622, p = 0.013
The interaction shows that gender and alcohol interact, with alcohol consump-
tion associated with a greater loss of grip strength in women as compared with
men.

Note that we must be wary of presenting causal statements (alcohol consumption
harms grip strength) because this is an observational study—we asked people
whether they drank and measured their grip strength, but we did not administer
alcohol to them and record the changes in their grip strength. The association be-
tween alcohol consumption and grip strength could be due to any number of factors.
For instance, athletes might forgo alcohol consumption as part of their training rules
and might also have increased grip strength because of their training.

Three-Way ANOVA

The two-way factorial model can easily be extended to three factors. After demon-
strating significant main effects for gender and alcohol consumption on grip
strength, your research team investigates other possible factors that might influence
grip strength. In the literature, there appears to be a lot of discussion about the
influence of age on grip strength, with a marked decline appearing after the age of
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40. You decide to add an age category (below 40 or above 40) to determine whether
age has any influence or as much influence on grip strength as the other factors.

Table 9-3 shows the first 12 cases for this study.

Table 9-3. Relationship among grip strength (DV) and gender, alcohol consumption, and age
(IVs)

Gender  Alcohol  Grip strength (psi)  Age

Female  Yes 19 Below 40
Female  Yes 20 Above 40
Female  Yes 21 Below 40
Female  No 30 Above 40
Female  No 25 Below 40
Female  No 28 Above 40
Male Yes 31 Below 40
Male Yes 30 Above 40
Male Yes 35 Below 40
Male No 32 Above 40
Male No 35 Below 40
Male No 32 Above 40

Hypothesis testing becomes more complicated with three factors because we have
potentially seven hypotheses: main effects for gender, alcohol, and age; two-way
interactions of gender*alcohol, gender*age, and alcohol*age; and a three-way inter-
action, gender*alcohol*age. We’ve already demonstrated how to verbalize two-way
interactions. The null hypothesis we are testing with our three-way interaction can
be stated as “the difference in the influence of alcohol consumption on grip strength
between men and women does not vary with age category.”

To produce a means plot with three factors, we actually have to produce two plots:
one for subjects below 40, the other for subjects above 40. The means plots are
displayed in Figure 9-5.

The means plot suggests that age will be an important factor in clarifying the rela-
tionships of interest because it appears to interact with both gender and alcohol use.
The key results of this analysis are presented in Table 9-4. We will use the standard
of alpha = 0.05 to evaluate the significance of the effects in this model.
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Figure 9-5. Means plot for a three-way ANOVA

Table 9-4. Three-way ANOVA testing differences in grip strength by gender, alcohol
consumption, and age

Source Sumofsquares df Meansquare F Sig.
Corrected model 864.583 7 123512 12075  <0.001
Intercept 35902.885 1 35902.885  3510.081  <0.001
Gender 548630 1 548.630 53.637  <0.001
Alcohol 128214 1 128.214 12.535 0.001
Age 0003 1 0.003 0.000 0.986
Gender*alcohol 33446 1 33.446 2370 0.078
Gender*age 75758 1 75.758 7.407 0.009
Alcohol*age 0226 1 0.226 0.022 0.883
Gender*alcohol*age 49491 1 49.491 4.839 0.033
Error 429.597 4 10.229

Total 42135.000 50

Corrected total 1294.180 49
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Two of the three main effects in this model are significant:

Gender main effect: F(1, 42) = 53.637, p < 0.001
The direction of the effect shows that women generally have lower grip strength
than men.

Alcohol main effect: F(1, 42) = 12.535, p = 0.001
The direction of the effect shows that those who consume alcohol generally
have a lower grip strength than those who do not consume alcohol.

Age main effect: F(1,42) = 0.000, p = 0.986 (not significant)
One of the two-way interactions is significant:

Gender x alcohol interaction: F(1, 42) = 2.370, p = 0.078 (not significant)

Gender x age interaction: F(1, 42) = 7.407, p = 0.009
The difference in grip strength for those who do and do not use alcohol is much
different for men in the two age groups, whereas for women, the pattern does
not change much. Grip strength for men age 40 and older is little affected by
whether they use alcohol; for men younger than age 40, alcohol use is associated
with a decline in grip strength. The decline in grip strength with alcohol use is
somewhat greater for women age 40 and older as compared with younger
women, but this difference by age category is not as extreme as the difference
for men.

Alcohol x age interaction: F(1, 42) = 0.022, p = 0.883 (not significant)
The three-way interaction is significant:
Gender x alcohol x age interaction: F(1, 42) = 4.839, p = 0.033

These results are interesting because although the main effect of age is not signifi-
cant, one two-way interaction including age is significant (gender*age), as is the
three-way interaction gender*alcohol*age. It’s also interesting that the gender*alco-
hol interaction was not significant in the three-way model but was significant in the
two-way model. This demonstrates a point, which applies to regression as well:
when you add or remove terms from a model, often the significance of other variables
in the model will change as well. When reporting results from a complex model, it
is always necessary to specify exactly what model was tested because, very often,
predictors interact with each other; in a different analysis, perhaps age would be a
significant predictor of grip strength.

Even though age does not have a significant main effect in this model, we should
keep it in the analysis because it is usual to include any variable that is significant as
an interaction as a main effect also. The results of this analysis are both interesting
enough and intriguing enough to suggest that we should investigate further. One
option that might be helpful would be to switch to a regression equation and include
age as a continuous predictor (use age in years as a predictor rather than dichoto-
mizing it to under/over 40). Another possibility is that two categories for age are not
sufficient, and perhaps 40 is not the ideal dividing line; we could investigate this
with further analyses as well.
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ANCOVA

Analysis of covariance (ANCOVA) is a variation of factorial ANOVA that allows a
continuous covariate to be included in the model. The most common reason for
using this model is to control for a potentially confounding effect of a covariate. For
instance, you might be interested in the earnings of college graduates according to
their field of study (science, humanities, business, etc.). This could be addressed
with a one-way ANOVA with salary as the dependent variable and field of study as
the categorical factor. However, if your data set includes not just recent graduates
but people who have been in the working world for substantially different lengths
of time, you realize this might affect their salaries because, in general, people’s sal-
aries increase with age and/or with the number of years they have been working in
afield. You could control for years on the job, or age, by adding one of those variables
as a continuous covariate to your ANOVA design, giving you an ANCOVA. You
can use more than one covariate in an ANCOVA. Although adding covariates to
control for confounders is not a perfect solution, it’s better than ignoring the po-
tential confounders altogether. One way to think of this use of ANCOVA is that by
controlling for the effect of the continuous covariate(s), you are examining what the
relationship between the factors and the continuous outcome would be if all cases
had the same value for the covariate(s). For instance, in the field of study and salary
example, by using age as a continuous covariate, you are examining what the rela-
tionship between those two factors would be if all the subjects in your study were
the same age.

Another typical use of ANCOVA is to reduce the residual or error variance in a
design. We know that one goal of statistical modeling is to explain variance in a data
set and that we generally prefer models that can explain more variance, and have
lower residual variance, than models that explain less. If we can reduce the residual
variance by including one or more continuous covariates in our design, it might be
easier to see the relationships between the factors of interest and the dependent
variable.

The assumptions of ANOVA apply to ANCOVA, and there are two additional as-
sumptions (numbers 5 and 6) as well for ANCOVA:

Data appropriateness
The outcome variable should be continuous, measured at the interval or ratio
level, and be unbounded (or at least cover a wide range); the factors (group
variables) should be dichotomous or categorical; the covariate(s) should be
continuous, measured at the interval or ratio level, and be unbounded or cover
a wide range. This assumption is checked by inspecting the data through fre-
quency tables, histograms, and so on.

Independence
Each value of the outcome variable should be independent of each other value.
This would be violated if there were some pattern of time dependency, for in-
stance, or if some of the dependent variables were measured from subjects
clustered into larger units (e.g., members of the same family or children studying
in the same classroom) in some way that affected their value on the dependent
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variable. This assumption is checked by your knowledge of the data and how
it was collected.

Distribution
The outcome variable should be approximately normally distributed within
each group. The distribution of outcome variable may be checked by creating a
histogram (eyeballing the data) and by a statistical test for normality such as
the Kolmogorov-Smirnov.

Homogeneity of variance
The variance of each of the groups should be approximately equal. This is
checked by a procedure such as the Levene statistic; the null hypothesis is that
the variance is homogeneous, so if the results of the Levene statistic are not
statistically significant (normally, the criterion of a < 0.05), that means the var-
iances are sufficiently homogeneous to proceed.

Independence of the covariates and the effect of the factors

The variance explained by the covariate should be unique and not overlap with
the variance explained by the factors. This is most often a problem in observa-
tional studies in which random assignment is not used; if the two groups vary
on the covariate and it explains some of the variance of the outcome variable,
there is no way to separate the variance explained by the factors from that ex-
plained by the covariates. If random assignment is not possible, the next best
approach is to determine whether the levels of the covariate differ significantly
among your groups; if they do, don’t use the covariate. Common sense also
plays a role here: can you make a reasonable case that the variance explained
by your covariate will explain unique variance in the outcome variable? If not,
don’t use the covariate.

Homogeneity of regression slopes
The relationship between the covariate and the dependent variable should be
the same for all groups. This can be checked by creating and plotting regression
lines for the covariate and dependent variable, separately for each group, and
by creating interaction terms and testing them for significance. The regression
lines should be approximately parallel; their slopes should be approximately
equal. The interaction terms should not be significant.

Continuing with the grip strength example, the research team becomes concerned
that they’ve left an important variable out of the model: whether a person exercises.
It makes intuitive sense that working out could improve grip strength, so they decide
to add one more variable to the model: the minutes each week the individual spends
in physical activity. This is a continuous variable with a broad range, so it can be
added as a continuous covariate to the gender and alcohol consumption (IVs) and
grip strength (DV).

The first assumption we have to check is whether our covariate explains unique
variance (assumption 5). We can make a logical case that time spent exercising could
explain unique variance in grip strength, and we can compute the means of this
covariate in the groups; if these means are not significantly different, we will proceed
with the analysis. For the purposes of demonstration, we’re dropping back to our
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two-way model with the gender and alcohol consumption factors and adding the
covariate exercise, operationalized as the minutes exercised per week.

We did two one-way ANOVAs (analogous to t-tests) for the mean of minutes exer-
cised by gender and alcohol consumption; the key results are presented in Table 9-5.

Table 9-5. Results of one-way ANOVAs weekly minutes of exercise by gender and alcohol
consumption

Variable Subgroup Mean  F Sig.

Gender Males 100.74  1.069  0.306
Females 87.64

Alcohol consumption  Yes 106.01 3209  0.080
No 83.78

As you can see, although there are differences in the average minutes exercised per
week between men and women and between those who do and do not consume
alcohol, these differences are not significant at the & = 0.05 standard.

We also need to check the homogeneity of the regression slopes (assumption 6). As
with evaluating normality, we will do both a graphical and a statistical test of this
assumption. For the graphical test, we will create scatterplots with regression lines
for the relationship between grip strength (the outcome) and exercise (the covariate)
for males versus females and for alcohol versus no alcohol. For each of the pairs, the
slopes should be approximately equal. The scatterplots and regression lines for gen-
der are presented in Figure 9-6 and the scatterplots and regression lines for alcohol
in Figure 9-7.

There’s nothing too alarming in either figure; the slopes appear to be approximately
equal, and that’s good news for the assumption of homogeneity of slopes. We will
also conduct a statistical test of this assumption by creating a model including an
interaction term of the covariate and the factor. (We will do separate models for
each factor.) If this interaction term is not significant, we will consider the assump-
tion of homogeneity of slopes to be upheld for this data. The data from these analyses
is presented in Tables 9-6 and 9-7.

Table 9-6. Testing the homogeneity of slopes assumption for gender and exercise

Source Sumofsquares df Meansquare F Sig.
Corrected model 560.053 3 186.684 11.698  <0.001
Intercept 7807.479 1 7807.479  489.212  <0.001
Gender 69.358 1 69.358 4.346 0.043
Exercise 40.686 1 40.686 2.549 0.117
Gender*exercise 2363 1 2.363 0.148 0.702
Error 734127 46 15.959

Total 42135.000 50

Corrected total 1294180 49
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Figure 9-6. The relationship between weekly minutes of exercise and grip strength for men
and women
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Figure 9-7. The relationship between weekly minutes of exercise and grip strength for those
who do and do not consume alcohol
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Table 9-7. Testing the homogeneity of slopes assumption for alcohol and exercise

Source Sumofsquares df Meansquare F Sig.
Corrected model 161.863 3 53.954 2192 0.012
Intercept 6619.891 1 6619.891  268.931  <0.001
Alcohol 29.800 1 29.800 121 0.277
Exercise 0.019 1 0.019 0.001 0.978
Alcohol*exercise 0146 1 0.146 0.006 0.939
Error 1132317 46 24616

Total 42135.000 50

Corrected total 1294.180 49

Note that the only reason we are running these models is to check on the significance
of the interaction terms; we’re not testing a theory, so we don’t care about model
fit, significance of other terms, and so on. As you can see in Tables 9-6 and 9-7,
neither of the interaction terms is significant; for gender*exercise, the p-value is
0.702, and for alcohol*exercise, the p-value is 0.939. These results tell us that, using
the standard of alpha = 0.05, the homogeneity of slopes assumption is upheld for
this analysis (and this data set), so we can continue with our ANCOVA.

The Levene’s test for our ANCOVA for grip strength including the factors alcohol
consumption and gender and the covariate exercise has a value of 0.292 (p = 0.381);
this is not significant, so the assumption of equal variance is upheld. The R2 for this
model is 0.576, so these factors explain about 57.6% of the variance in grip strength
in this data. This is a small improvement on the R% of 0.566 for the two-way ANOVA
(factors = gender, alcohol) discussed earlier in this chapter. The ANCOVA results
are presented in Table 9-8.

Table 9-8. ANCOVA for grip strength, with factors gender and alcohol consumption, and
covariate weekly minutes of exercise

Source Sumofsquares df Meansquare F Sig.
Corrected model 74559 4 186.399 15290  <0.001
Intercept 7289.554 1 7289.554  597.957  <0.001
Exercise 12511 1 1251 1.026 0.316
Gender 517299 1 517299 42434  <0.001
Alcohol 117498 1 117.498 9.638 0.003
Gender*alcohol 78573 1 78.573 6.445 0.015
Error 548.584 45 12191

Total 42135.000 50

Corrected total 1294.180 49
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Both our factors and their interaction are significant, but the covariate is not.

* For gender, F(1, 45) = 42.434, p = <0.001

* For alcohol, F(1, 45) = 9.638, p = 0.003

* For gender*alcohol, F(1, 45) = 6.445, p = 0.015

* For exercise F(1, 45) = 1.026, p = 0.316 (not significant)

Because we didn’t improve model fit much by adding this covariate, we might con-
sider whether there is a better way to measure exercise. The type of exercise could
be important: those who engage in weightlifting probably improve their grip strength
more than those who do distance running, for instance. Perhaps exercise would be
more useful as a dichotomous or categorical variable; maybe the difference between
doing any exercise and none is more important than the time spent in exercise (in
which case, exercise would become a factor rather than a covariate). This illustrates
why any research project is usually an ongoing concern: you begin with an idea, test
it, and then refine your idea and test it again. Lather, rinse, and repeat, as they say
in the advertising world—don’t expect to create the perfect model the first time
around.

Exercises

Problem

You are planning to conduct a two-way ANOVA; as part of the process, you conduct
Levene’s test, which has a p-value of 0.045. What does this mean for your analysis?

Solution

Levene’s test is a test of the homogeneity assumption for ANOVA, that each group
has approximately the same variance. The null hypothesis is that the variances are
equal, so if Levene’s test is not significant, the assumption of equal variance is up-
held, and you can proceed with the ANOVA. In this case, using the conventional
standard of a = 0.05, Levene’s test is significant, meaning that you should reject the
assumption of homogeneity and should not proceed with the ANOVA without
transforming your data or otherwise remedying the problem.

Problem

You are working on a two-way ANOVA; one of your factors has two levels, the other,
three levels. As part of the process of working through this analysis, you create the
means plot displayed in Figure 9-8. Interpret this graphic and its significance for
your analysis.

Solution

There may be an interaction between your factors. In general, levels 1 and 3 of factor
1 are associated with lower levels of the outcome and level 2 of factor 1 with a higher
level of the outcome. However, this effect is greater for cases with level 1 of factor
2, so it seems that the effect of factor 1 might partly depend on the level of factor 2.
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Figure 9-8. Means plots for an ANOVA
Problem

Table 9-9 presents the results from the two-way ANOVA whose means plot was
presented in the previous problem. What can you conclude from the table and the
means plot together about the relationship between the factors and the outcome in
this analysis? Use the standard of alpha = 0.05 for significance testing.

Table 9-9. ANOVA with two factors

Source Sumofsquares df Meansquare F Sig.
Corrected model 145392 5 29.078 0172 097
Intercept 198801.665 1 298801.665  1766.133  0.000
Factor1 103.782 2 51.891 0.307  0.739
Factor2 17.849 1 17.849 0.105  0.748
Factor1*factor2 23762 2 11.881 0.070  0.932
Error 4060418 24 169.184

Total 303007.475 30

Corrected total 4205.810 29
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Solution

Neither of the factors is significantly related to the outcome, and their interaction is
not significantly related to the outcome. The results are:

Factorl: F(2,24) = 0.307, p = 0.739 (not significant)
Factor2: F(1, 24) = 0.105, p = 0.748 (not significant)
Factor1*Factor2: F(2, 24) = 0.070, p = 0.932 (not significant)

This is an illustration of the fact that not all analyses produce significant results and
that you shouldn’t get too excited about reading means plots. In this case, the means
plot suggested there might be an interaction in the data, but the ANOVA demon-
strates that this interaction is not significantly different from 0 and neither are the
main effects of either factor, so it’s back to the drawing board for this research team.
The R? for this model was 0.035, meaning that the model explained less than 4% of
the variability in the outcome.

Problem

You are planning an ANCOVA with one continuous covariate and one factor with
three levels. As part of checking the assumptions for ANCOVA, you created the
graphs in Figure 9-9. What do these graphs represent, what assumption are they
checking, and what can you conclude from them?
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Figure 9-9. Graphs checking an ANCOVA assumption
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Solution

These graphs are scatterplots with superimposed regression lines for the outcome
variable (y-axis) and the covariate (x-axis); each level of the factor is represented by
adifferent graph. This type of graph is created to test the assumption of homogeneity
of slopes, which states that the relationship of the covariate and outcome should be
the same for all levels of the factor. If this is true, the slope of the regression line for
the covariate and outcome should be approximately the same for all levels of the
factor. In this case, the slope for level 2 of the factor is steeper than for level 1 and
level 3, but it’s hard to tell whether the difference is significant without performing
a statistical test.

Problem

Continuing with testing the assumptions for the ANCOVA described in the previous

problem, we conducted an analysis that produced the data presented in Ta-
ble 9-10. Use the standard of alpha = 0.05.

Table 9-10. Data from an analysis testing an assumption of ANCOVA

Source Sumofsquares df Meansquare F Sig.
Corrected model 742689 5 148.538 1.029 0453
Intercept 19233.663 1 19233.663  133.292  0.000
Factor 93367 2 46.683 0324 0727
Covariate 487.758 1 487.758 3380 0.078
Factor*covariate 129.749 2 64.875 0.450  0.643
Error 3463121 24 144.297
Total 303007.475 30
Corrected total 4205.810 29

Solution

This is a statistical test of the assumption of homogeneity of slopes; if the slopes are
homogeneous, the interaction term factor*covariate should not be significant. In
these results, the interaction term is not significant (F = 0.450, p = 0.643), so the
difference in slopes is not significant, and we can continue with the ANCOVA.

Problem

Continuing with the problem of trying to predict grip strength discussed throughout
this chapter, the research team decides that strength training, rather than exercise
in general, might be a better predictor of grip strength than exercise in general. They
add a continuous covariate, minutes per week spent in strength training, to the two-
way model with the dichotomous factors gender (male/female) and alcohol con-
sumption (yes/no). After checking the ANCOVA assumptions for this model, they
proceeded with testing it, producing the results presented in Table 9-11. The R? for
this ANCOVA was 0.628. Interpret this R? and the information in Table 9-11 and
these results with those of the ANCOVA with exercise as a covariate, presented in
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Table 9-8. Use the standard of alpha = 0.05 to evaluate the significance of the effect
in this model.

Table 9-11. ANCOVA for grip strength with factors gender and alcohol consumption and
covariate weekly minutes of strength training

Source Sumofsquares df Meansquare F Sig.
Corrected model 813327 4 203.332 19.029  <0.001
Intercept 6622.003 1 6622.003  619.711  <0.001
Strength train 80.242 1 80.242 7.509 0.009
Gender 388.763 1 388.763 36.382  <0.001
Alcohol 63.086 1 63.086 5.904 0.019
Gender*alcohol 34597 1 34597 3.238 0.079
Error 480.853 45 10.686
Total 42135.000 50
Corrected total 1294180 49

Solution

This model explains somewhat more variance (62.8%) than the model including
exercise as a covariate (57.6%). In this model, both factors and the covariate are
significantly related to the outcome, grip strength; the interaction of the factors is
not significant. The key results are:

* For gender, F(1, 45) = 36.382, p = <0.001

* For alcohol, F(1, 45) = 5.094, p = 0.019

* For gender*alcohol, F(1, 45) = 3.238, p = 0.079 (not significant)

* For strength training F(1, 45) = 7.509, p = 0.009
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10

Multiple Linear Regression

In Chapter 8, we introduced simple linear regression, in which one independent
variable is used to predict or explain the value of one dependent variable. This model
is useful for introducing the principles of linear regression, but in real-world situa-
tions, simple regression is rarely used. Multiple linear regression, in which two or
more independent variables are related to a single dependent variable, is much more
common. Multiple regression is a common research technique used in many fields,
including the sciences, medicine, the social sciences, and education. One attraction
of multiple regression is flexibility; predictor variables can be continuous, categori-
cal, or dichotomous, and any combination of these variable types can be used in a
single equation. If a categorical variable is used, it must be recoded into dichotomous
dummy variables. We cover this technique also in this chapter. With the additional
complication of multiple predictor variables, additional assumptions must be met,
and these are discussed in this chapter as well. Finally, the ability to use multiple
predictors means that model-building strategies are useful to build the best model
for a particular purpose; these strategies are also discussed in this chapter.

Multiple Regression Models

The study of simple linear regression models and the bivariate correlation coefficient
and its square (the coefficient of determination) are useful as an introduction to the
concepts of regression analysis; in reality, very few fields of study spend much time
working with regression equations involving only two variables. Consider models
used to study climate change, such as General Circulation Models (GCMs) and even
more sophisticated Atmosphere-Ocean General Circulation Models (AOGCMs).
These models have been developed over the past 30 years to facilitate the increasingly
accurate forecast of weather patterns. The models involve understanding and quan-
tifying relationships between potentially hundreds and thousands of variables in
many qualitative categories. For example, in the mid-1970s, models focused on
variables derived from atmospheric conditions, whereas in the near future, models
will be available that are based on atmospheric data combined with land surface,
ocean and sea ice, sulphate and nonsulphate aerosol, carbon cycle, dynamic
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vegetation, and atmospheric chemistry data. By combining these additional sources
of variation into a large-scale statistical model, predictions of weather activity of
qualitatively different types have been made possible at different spatial and tem-
poral scales.

In this chapter, we will be working with multiple regression on a much smaller scale.
This is not unrealistic from a real-world point of view; in fact, useful regression
models may be built using a relatively small number of predictor variables (say, from
2 to 10), although the people building the model might consider far more predictors
for inclusion before selecting those to keep in the final model. There are many ways
to build a regression model and many purposes; there is not one best way to build
a model, but there might be a best way to build a particular model for a particular
purpose. The advice offered in this chapter will be general, so it’s up to you to learn
about the conventions and expectations of the particular professional field in which
you work. To take a simple example, a regression model can be built on the guiding
principle of parsimony (including a relatively small number of variables, each of
which explains a large proportion of variance) or on the principle of explaining the
maximum amount of variance (in which case more variables will probably be in-
cluded in the model, each explaining some additional but perhaps small proportion
of variance). Neither approach is best in all circumstances, so it’s best to know what
the expectations are in your field of study or work.

Another difference among fields and places of employment is the extent to which
theory is expected to guide statistical work. In academia, theory is highly valued,
and building a model based only on the relationships found in a particular data set
is greatly frowned on. In the business world, however, building models using auto-
mated methods (e.g., forward and backward entry, discussed later in this chapter)
can be completely acceptable. I tend toward the theory-driven side of the issue be-
cause I've spent most of my career in academia, but there are specific situations in
which a less theoretical approach may be called for. The point, once again, is to
know the customs and expectations of your field and to be clear about what you are
doing and why.

Two general principles apply to regression modeling. First, each variable included
in the model should carry its own weight, meaning it should explain unique variance
in the outcome variable. Often, the rule applied is that each variable must explain a
statistically significant amount of variation. It’s a fact that you can’t make a regres-
sion model worse, in the sense of making it explain less variance, by adding a new
variable, but even models built on the principle of maximizing the variance explained
generally have some rules to determine whether a particular variable improves the
model sufficiently to keep it in the model. Second, when you deal with multiple
predictors, you have to expect that some of them will be correlated with one another
as well as with the dependent variable; this means that adding or subtracting one
will probably change the coefficients of all the other variables in the model. This is
very important when interpreting your results because it’s not enough to say that
variable A is or is not a significant predictor of outcome E; you have to say that
variable A is or is not a significant predictor in a model that also includes variables
B, C, and D.

244 | Chapter10: Multiple Linear Regression



Formally, multiple linear regression models take the form:
Y:/30+ﬁ1X1+ﬁ2X2+. ..ﬁan+€

where Y is the dependent variable, fj is the intercept, Xi, X5, . . . X, are the inde-
pendent variables, 81, 85, . . . B, are the coefficients, and e is the residual or error
term. We introduced this model in Chapter 8, but it’s worth reviewing its main
features here. The dependent variable (Y) and independent variables (X;, X5, . . .
X,,) are observed data, whereas the intercept (f3y) and coefficients (81, f,, . . . B,,) are
values computed by the multiple linear regression algorithm to minimize the residual
or error (e) in the model. For a given case (i), the predicted Y value Y; is calculated
by multiplying the observed values for that case (X;, X5, etc.) with their correspond-
ing coefficients (1, f,, etc.) and adding the intercept f3y. The difference between the
observed value of Y; and the predicted value ¥; is the error of prediction or residual
e; for that case. The coefficients are determined to minimize the total squared re-
sidual. (The residuals have to be squared because some are positive, some are neg-
ative, and they sum to 0 if not squared.)

The assumptions of simple regression (discussed in Chapter 8) also hold for multiple
regression. In addition, as soon as we use more than one predictor, we have to worry
about multicollinearity. This means that none of our predictor variables should
correlate highly with any other predictor. In particular, no variable can be a linear
combination of other variables; this means that you can’t include as predictors the
variables A, B, and A + B. You may laugh, but it’s easy to create a new variable and
forget to remove its component parts from the predictors list. Predictor variables
that are highly correlated tend to explain much the same as variance in an outcome
variable, obscuring the relationship of each individual predictor with the outcome.
In addition, models containing predictors that are highly correlated tend to be un-
stable, so adding or removing one variable from the model can radically change the
coefficients and significance of the other predictors. (We expect a little change when
adding or subtracting a variable, but not major change.) Fortunately, most statistical
computing packages have a built-in function to check multicollinearity in regression
models, so this can be assessed after the model has been run

We will build a regression model to predict adolescent fertility (the birth rate for
girls ages 15-19, expressed as births per 1,000) from a number of other demographic
variables. We’ll use data from the United Nations Development Project; you can
download the same data here and try the analysis yourself on whatever statistical
system you use, or see whether you can build a better model. We will be working
with only a few variables here to keep our demonstration simple, but there’s no
reason to limit your own analyses to just those variables. One other important note:
this is ecological data, measured at the country level; therefore, any relationships we
see should only be generalized to the country level (not, for instance, to individual
people).

Our first step is to look at our candidate variables. As discussed in Chapter 8, the
adolescent fertility rate is not normally distributed, but the natural log transforma-
tion is, so we will use the transformed variable as our outcome. Figure 10-1 shows
a histogram of the natural log transformation of adolescent fertility; it looks fairly
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normal, and the Kolmogorov-Smirnov statistic (evaluating the probability of the
variable coming from a population with a normal distribution, as discussed in
Chapter 8) for this variable is 1.139 (p = 0.149), so it is acceptably normal.
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Figure 10-1. Histogram of the natural log transform of the adolescent fertility rate

One variable we think might make a good predictor is life expectancy at birth, which
can be interpreted as an indicator of the general level of health in a country. However,
the histogram of life expectancy, displayed in Figure 10-2, is definitely not normal.
In fact, there seem to be two groups of countries, one with fairly low life expectancy
and an almost uniform distribution across a range from the mid-40s to the mid-60s,
and another group with high life expectancy with the values approximately normally
distributed with a central value in the mid-70s. We believe that the important dis-
tinction is between countries with low versus high life expectancy (versus between
high and very high life expectancy), so we will dichotomize the cases to reflect this
belief. About one-third of cases have values of 66 years or fewer, and this is in the
range of where the break seems to occur between a smaller group of low-life-
expectancy countries and a larger group of high-life-expectancy countries, so we
will use the value of 66.0 years to dichotomize life expectancy into low and high
categories.

Another variable that might help our model is GNI (gross national income) per
capita, expressed in international dollars in PPP (purchasing power parity) terms;
this figure allows us to compare the relative wealth or poverty of different countries.
In general, higher-income countries have lower adolescent fertility, so this should
be a good predictor for our model. The advantage of using GNI in PPP terms is that
it is expressed in terms that express the ability to purchase equivalent goods in the
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Figure 10-2. Histogram of life expectancy at birth

different countries and, thus, includes information about the different price levels
in each country while avoiding issues of fluctuating international exchange rates.
The latter would be a problem if a particular currency, such as the U.S. dollar, were
used to express income in other countries. A histogram of GNI per capita is presented
in Figure 10-3; it has a strong right skew. We compute a natural log transformation
of GNI, as presented in Figure 10-4; this looks much closer to a normal distribution,
and the Kolmogorov-Smirnov statistic also indicates acceptable normality (K-S =
0.737, p = 0.649), so we will use the log-transformed GNI in our model.

Another variable that might be useful to us is expected years of schooling; it’s logical
to hypothesize that countries willing and able to invest in the education of their
children might also have lower rates of adolescent fertility. This variable expresses
how many years of school children currently entering primary school are expected
to complete based on current age-specific enrollment figures. Figure 10-5 shows the
distribution of expected years of school; the gap at the upper right is because this
statistic is capped at 18 years. Nevertheless, the Kolmogorov-Smirnov statistic in-
dicates acceptable normality (K-S = 0.975, p = 0.298), so we can include it in our
model without transformation.
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Figure 10-5. Histogram of expected years of schooling

Finally, we consider including the percent urbanized, meaning the percent of the
population of a given country that lives in an urban area. This variable is acceptably
normal, as shown by its histogram (Figure 10-6) and the Kolmogorov-Smirnov test
(K-$ =0.893, p =0.403).

The next thing we need to check is linearity; the relationship between our continuous
predictor variables and the outcome should resemble a straight line. The scatterplots
(not shown) all indicate linear relationships, so we consider this assumption upheld.

Although our regression analysis will produce multicollinearity statistics, we will
also look at the relationships among our predictor variables by creating a correlation
matrix; among other things, this will show us whether two of our predictors are
closely related. The correlation matrix (upper triangle) for our three continuous
predictors is displayed in Table 10-1.

Table 10-1. Correlation matrix for the natural log of GNI, percent urban, and expected years
of schooling

Log_gni  Pct.urban  Exp. yrs schooling

Log_gni 1.000 0.723 0.805
Pct. urban 1.000 0.644
Exp. yrs schooling 1.000

Not surprisingly, all three are highly correlated. We will keep this in mind while
building our model. We can also look at the relationship between our dichotomous
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Figure 10-6. Histogram of the percent of the population living in urban areas

variable and the other three by doing one-way ANOVAS for the mean differences in
the continuous variables for the two groups. Not surprisingly, all three tests are
highly significant, as shown in Table 10-2; countries with higher life expectancy are
more urbanized, have higher per capita incomes, and have more expected years of
schooling for children.

Table 10-2. Means and one-way ANOVA results in countries with high and low life
expectancies on the natural log of GNI, percent urban, and expected years of schooling

Variable Lifeexp. Mean  Std.dev. F Sig.

Pct urban <66yrs 355 158 89.158 <0.001
> 66 yrs 63.8 210

Log_gni <66 yrs 73 09 188.163 < 0.001
> 66yrs 92 10

Exp. yrsschooling < 66yrs 86 25 206.874 < 0.001

>66ys 133 20

Theory suggests that all the variables we are considering are closely related to ado-
lescent fertility, so we begin with a model that includes all of them as predictors.
This model is a significant improvement on the null model (F (4, 182) = 53.500, p
<0.001) and has an R of 0.735 and an R? of 0.540, meaning that it explains 54% of
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the variation in the adolescent fertility rate. The key statistics from the regression
analysis are presented in Table 10-3.

Table 10-3. Coefficients table for model 1

Unstandardized coefficients  Standardized coefficients

B Std. error Beta t Sig.
Constant 7.706 0.377 20949  <0.001
Log_gni —0.360 0.072 —0.487 —4993  <0.001
Pct. urban 0.002 0.003 0.059 0.794 0.428
Exp. yrs. schooling —0.073 0.029 —0.233 2513 0.013
Life_exp_dichot —0.234 0.159 -0.114 1474 0.142

As with simple regression, each line of this table presents the information about one
of the predictors in the model; the difference from simple regression is that the in-
fluence of each predictor is evaluated in the context of the entire model. Because we
know our predictors are highly related to each other, we assume that they overlap
in terms of the variance they explain in the outcome variable. In a regression model,
when all predictors are entered at the same time (as we did here), each predictor
only gets credit for the unique variance it explains; this could explain why variables
that seem as though they should be good predictors of adolescent fertility (percent
urbanized and life expectancy) are not significant in this model.

The key results for the individual predictors are:

Log_gni: f=-0.360, t = -4.993, p < 0.001
Per capita income is a significant predictor of the adolescent fertility rate in a
model also including the percent urban, expected years of schooling, and di-
chotomized life expectancy. The coefficient is negative, indicating that coun-
tries with higher per capita incomes have on average lower rates of adolescent
fertility.

Pct. urban: f=-0.002, t = 0.794, p = 0.428
Percent of population living in an urban area is not a significant predictor of the
adolescent fertility rate in a model also including the log of GNI, expected years
of schooling, and dichotomized life expectancy.

Expected years of schooling: = -0.073,t=-2.153, p=0.013
Expected years of schooling is a significant predictor of the adolescent fertility
rate in a model also including the percent urban, log of GNI, and dichotomized
life expectancy. The coefficient is negative, indicating that countries with more
years of expected schooling have on average lower rates of adolescent fertility.
Dichotomized life expectancy: = -0.234, t = -1.474, p = 0.142
Life expectancy at birth (dichotomized into < 66 yrs and > 66 yrs) is not a
significant predictor of the adolescent fertility rate in a model including the
percent urban, expected years of schooling, and log of GNI.

Because we have multiple predictors in this model, it’s worth taking a look at the
standardized coefficients (Beta) in this table. The absolute values of these coefficients
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tell us which predictors are explaining the most variance in the model (something
we can’t determine directly by the coefficients because they are measured on
different scales). By this standard, log_gni is explaining the most variance (Beta =
-0.487), followed by expected years of schooling (Beta = -0.233), dichotomized life
expectancy (-0.114), and percent urban (Beta = 0.059); not surprisingly, the two
significant predictors have the highest absolute Beta coefficients.

We will rerun this model with only the significant predictors, but one other thing is
worth noting. In factorial ANOVA (Chapter 9), interactions among variables are
automatically tested. This is not the case with regression; if you want an interaction
tested, you have to specify it in the model. We deal with this issue after we have
decided which predictors we want to include in our model.

We ran a second model, including only log_gni and expected years of schooling.
This model is significantly better than the null model (F (2, 184) = 105.21,p < 0.001)
and has an R of 0.685 and an R? of 0.470, so omitting two variables from the model
resulted in a decrease of only 7% in the explained variance for the model. This
suggests, as we expected, that because our predictors are closely related, they were
explaining much of the same variance in the adolescent fertility rate. The key sta-
tistics from the regression analysis are presented in Table 10-4.

Table 10-4. Coefficients table for model 2

Unstandardized coefficients  Standardized coefficients

B Std. error Beta t Sig.
Constant 7.837 0.345 22730 <0.001
Log_gni —0.366 0.063 —0.495 5827 <0.001
Exp. yrs. schooling —0.085 0.027 -0271  -3.190 0.002

Both predictors are significant, and the absolute values of their coefficients and t-
statistics have increased (particularly for expected years of schooling), further sug-
gesting that they overlapped with the two variables we have omitted from this model.
The key results for the individual predictors are:

Log gni: f=-0.366,t=-5.827, p <0.001
Per capita income is a significant predictor of the adolescent fertility rate in a
model including expected years of schooling. The coefficient is negative, indi-
cating that countries with higher per capita incomes have on average lower rates
of adolescent fertility.

Expected years of schooling: § = -0.085, t = -3.190, p = 0.002
Expected years of schooling is a significant predictor of the adolescent fertility
rate in a model including per capita income. The coefficient is negative, indi-
cating that countries with more years of expected schooling have on average
lower rates of adolescent fertility.
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The next thing we want to do is test for an interaction between per capita income
and expected years of schooling. We do this by adding an interaction term,
log_gni*exp_schooling, to the model and seeing whether it is significant. This model
explains more variance (R*= 0.546) and produces an interesting result in terms of
our predictor variables, as shown in Table 10-5.

Table 10-5. Coefficients table for model 3

Unstandardized

coefficients Standardized coefficients

B Std.error  Beta t Sig.
Constant 5.039 1.280 3936  <0.000
Log_gni —0.019 0.165 0026 —0.118 0.906
Exp. yrs. schooling 0.159 0.1M 0.507 1436 0.153
Log_gni*expected_schooling —0.029 0.013 -1.193 2267 0.025

Adding the interaction term changes everything. Per capita income and expected
years of schooling are no longer significant predictors in a model including the in-
teraction term, and the direction of influence of expected years of schooling has
reversed. The interaction term is the only significant predictor in the model, but we
will keep all three terms because the interaction is only meaningful in the context of
the main effects. A significant interaction term means that the effect of one variable
is modified by the level of the other variable; in this case, the effect of per capita
national income on adolescent fertility is modified by expected years of schooling,
and the influence of expected years of schooling is modified by per capita national
income. Explaining interactions when using continuous variables is particularly
tricky, but the picture might become clearer by looking at a graphic of this
relationship.

Figure 10-7 presents the means plot for the log of adolescent fertility rate (the y-axis)
at low, medium, and high levels of expected years of schooling (the separate lines)
and log of per capita national income (the x-axis). The low level is defined as the
bottom third of values for the given variable, the middle level as the central third of
values, and the high level as the upper third of values.

What Figure 10-7 makes clear is that although increased per capita national income
and increased expected years of schooling are both associated with lowered levels
of adolescent fertility, the amount of decrease does depend on the interaction of the
two variables. Note also that for the highest level of schooling, there were no coun-
tries in the lowest third of national per capita income, which is why that line only
has two data points.
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Figure 10-7. Means for the natural log of the adolescent fertility rate for low, medium, and
high levels of the log of per capita national income and expected years of schooling

For countries with a low level of expected years of schooling, there is an almost linear
decrease in the adolescent fertility rate among the three levels of per capita income.
For countries with a medium level of schooling, the decrease from low to medium
per capita income is relatively small, whereas the decrease from medium to high per
capita income is much greater. For countries with a high level of schooling, the
decrease in adolescent fertility from a medium to a high level of per capita income
is much greater than the decrease for countries with either a low or a medium level
of schooling.

Figure 10-8 shows another way to look at this interaction. In this figure, we have
created scatterplots of the expected years of schooling and the natural log of ado-
lescent fertility at low, medium, and high levels of per capita national income. The
slope of the regression line (indicating the relationship between the natural log of
adolescent fertility and years of expected schooling) is noticeably steeper for the
highest level of the natural log of per capita national income, again indicating an
interaction between the two predictor variables. Also interesting is the fact that al-
though over the whole range of data the relationship between the natural log of
adolescent fertility and expected years of schooling is fairly strong (R? = 0.44), within
any one of the three categories of national income, this relationship is much weaker
(0.118 for the lowest income countries, 0.052 for the middle income countries, and
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Figure 10-8. The relationship between the natural log of adolescent fertility and expected years
of schooling for low, middle, and high income countries

0.168 for the high income countries), indicating the strong relationship between our
predictor variables.

Clearly, we haven’t exhausted the possibilities for exploring the relationship among
per capita national income, expected years of schooling, and adolescent fertility
rates. Equally clearly, we won’t explain adolescent fertility rates with just two vari-
ables, but for the purposes of this demonstration, we have a model we can work
with. The Durbin-Watson statistic for this model is 0.195, very close to the null value
of 2, so we can assume the assumption of independence of errors is upheld. The
Kolmogorov-Smirnov statistic for the standardized residuals for this model is 0.663
(p = 0.772), and the histogram presented in Figure 10-9 looks close to normal, so
we can consider the assumption of normality of residuals upheld.

We will evaluate the assumption of homoscedasticity by plotting the standardized
residuals against the standardized predicted values, as shown in Figure 10-10.

This graph is pretty much a cloud of points with no indications of heteroscedasticity,
so we will assume the assumption of homoscedasticity upheld.

We also need to look at multicollinearity among our predictor variables. We do this
by calculating the tolerance and VIF (variance inflation factor) for the predictors in
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Figure 10-9. Histogram of standardized residuals for model 3

our model; this is an option provided with many regression algorithms. Note that
VIF is just the reciprocal of tolerance (VIF = 1/tolerance), so interpreting either
statistic will provide the same result. There are various rules of thumb for
interpreting tolerance and VIF; one popular rule is that tolerance should not be
greater than 10 or VIF lower than 0.10. By that standard, we have a problem with
this data, as shown in Table 10-6.

Table 10-6. Multicollinearity diagnostics for model 3

Predictor Tolerance  VIF

Log_gni 0.50 20.04
Expected years of schooling 0.20 50.35
Log_gni*expected years of schooling  0.01 1n.73

However, other scholars believe that the conventional values of VIF and tolerance
do notindicate an invalid regression model; see for instance the O’Brien article listed
in Appendix C. We know that our predictor variables are highly correlated, so if we
were to continue with this analysis, we would consider more variables for inclusion
in the model, might drop one or both of these, and might combine these two vari-
ables (possibly along with some others) into an index term for inclusion in the model.
For the purposes of this example, we will continue to interpret this model.
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Figure 10-10. Histogram of standardized residuals for model 3
The regression equation for our data is:

Log_fert =5.039 - 0.019(log_gni) + 0.159(exp_schooling) -
0.029(log_gni*exp_schooling) + e

Although the coefficients of log_gni and exp_schooling are not significantly different
from 0 in this analysis, we keep them in the equation because the interaction term
only has meaning in the context of the equation including the variables that make
up the interaction. Note also that it would be a mistake to interpret the coefficients
of log_gni or exp_schooling without reference to their interaction; instead, each
coefficient has to be interpreted in the context of the entire equation.

We can use this equation to predict values for the adolescent fertility rate for a
country, given its values of per capita national income and years of expected school-
ing. Note that both our fertility and national income variables are natural log trans-
formations, so if we are given these variables in their raw form, we must transform
them before putting them into the equation. Our results from this equation will be
in terms of the log of the rate of adolescent fertility; because this might not be a
meaningful value for most people, we can convert it to the rate of adolescent fertility,
which is more easily understood. Note also that we want to keep the input for our
predictions within the range of values included in this data set; to do otherwise
would be reasoning beyond the range of the values, and we don’t want to do that
because we can’t assume that our regression equation is valid outside the range of
values used to create it.
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Suppose we want to calculate the predicted adolescent fertility rate for a country
with a gross national per capita income of 12,000 (in PPP international dollars, as
previously defined) and 12 years of expected schooling. We first need to covert the
income statistic to its natural log:

LN(12,000) = 9.393

We can then plug these values into the equation and do the math:

Predicted(Log_fert) = 5.039 - 0.019(9.393) + 0.159(12) - 0.029(9.393*12)
=3.500

Note that we removed the error term (e) because we are now calculating predicted
log_fert; we know that there may be an error of prediction between this predicted
value and the actual, measured value for a country with these values on the X vari-
ables. We now convert our predicted value for log_fert by taking the antilog:

3990 =33.12

This tells us that, according to our regression model, a country with 12 years of
expected schooling and a per capita income of 12,000 PPP international dollars has
a predicted adolescent fertility rate of 33.12 per 1,000.

Dummy Variables

Multiple linear regression can accommodate predictor variables that are either con-
tinuous or dichotomous. However, sometimes we need to work with a variable with
more than two categories. In this case, we need to recode the categorical variable
into a number of dichotomous or dummy variables. Suppose a college wants to do
some research into the initial annual salaries for its graduates from the class of 2010;
the data is also coded to indicate the student’s GPA and general field of study (hu-
manities, sciences, social sciences, or education). GPA is recorded to two decimal
places with a defined ceiling of 4.0 (a perfect or straight-A average) and a floor of
0.0 (failure to pass any courses), although the actual range of the data is from 2.5 to
4.0; these are graduates, so we would expect higher than average grades compared
to all college students. Salary is expressed in thousands of dollars and has a range of
19.6 to 58.6.

We would like to include field of study in a model predicting initial salary, but first
we must recode it into dummy (dichotomous) variables. We can’t simply include it
in the model because the statistical package will interpret the numbers used to code
this variable as having numerical importance (e.g., 2 is greater than 1) when in fact
they are simply labels that indicate categories. There are several ways to code dummy
variables; we present one of the most common methods here.

We have a categorical variable with four categories; therefore, we need to create
three dummy variables to code the information contained in this variable. Speaking
more generally, if a variable has k categories, you need k - 1 dummy variables to
replace it. We need to choose one category to serve as our reference category; the
other categories will be compared to this one.
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For this analysis, we choose humanities as our reference category because it has the
lowest average salary among the four groups, as shown in Table 10-7; choosing the
group with the lowest salary will give us positive coefficients for the other categories,
which might be easier to explain to general audiences (for instance, the parents of
prospective students).

Table 10-7. Average annual starting salaries for college graduates from four general fields of
study

Field Average salary (thousands of dollars)  Standard deviation of salary
Humanities 22.7 1.4

Sciences 56.3 9.3

Social sciences 289 10.1

Education 280 8.1

Our dummy coding scheme is presented in Table 10-8.

Table 10-8. Dummy coding for field of study

Field X1 XZ X3
Humanities 0 0 0
Sciences 1 0 0

Social sciences 0 1 0
Education 0 0 1

We create three new dummy variables, X;, X5, and X3, and give them a value of 0
or 1, depending on the value of the field of study. For our reference category, hu-
manities, all three dummy variables have a value of 0. For each of the other three
fields, one of the dummy variables has a value of 1, and the others have a value of
0. This combination of three dummy variables uniquely identifies each field of study;
if a case has values X; =0, X; = 1, and X5 = 0, we know the field of study is the social
sciences.

The regression equation predicting salary from field of study is:
Y=Bo+ piXy+ BoXs + BsX3 +e

In this equation, o will be the mean salary for humanities majors, and the other
coefficients will be the difference in mean salary between that field of study and the
mean salaries for humanities majors. For instance, ;will represent the difference
between science majors and humanities majors. The regression coefficients table for
this data is presented in Table 10-9.
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Table 10-9. Regression results for regression equation prediction including dummy variables

Unstandardized coefficients  Standardized coefficients

B Std. error Beta t Sig.
Constant 22.682 3.102 7313 <0.000
X 33611 4386 0.905 7.662  <0.000
X, 6.247 4.386 0.168  1.434 0.163
X3 5.288 4.386 0.142  1.206 0.236

The equation for this data is:
Average_salary = 22.682 + 33.611(X7) + 6.247(X5) + 5.288(X3) + ¢

To calculate the average salary for any of our four fields of study, we simply plug
the values for the X variables into this equation and solve it. For instance, for some-
one from the field of education, the relevant values are X; =0, X, =0, and X5 = 1.
Putting these values in the equation gives us:

Predicted_Average_salary (education) = 22.682 + 33.611(0) + 6.247(0) +
5.288(1) =27.97

This is the average salary for graduates from the education field and matches the
figure in Table 10-7 (within rounding error). If you go through the same exercise for
the other three fields, you will find that the values calculated using the regression
equation for these fields also match the values presented in Table 10-7. The ¢-tests
for each coefficient are testing whether they are different from 0. Because they are
dummy variables, and because we coded them using the humanities field as our
reference group, the t-test tells us whether starting salaries for students from a par-
ticular field are significantly different from the starting salaries in the humanities
field. We can see from Table 10-9 that there is a significant difference between initial
salaries in the sciences and in the humanities because X is significantly different
from 0 (t=7.662, p < 0.001), whereas the other two comparisons are not significant.
This brings up an important point about dummy coding—if you have particular
comparisons in mind, be sure to code your dummy variables to facilitate those
comparisons.

Methods for Building Regression Models

We’ve been looking at fairly simple regression models, but often the model-building
process begins with 10, 20, or even more predictor variables under consideration
for inclusion, and even with a smaller number of predictors, you might want to use
a formal model-building process. Many statistical packages include several choices
of algorithms for model-building, and in some systems, you can combine different
methods or algorithms within the same model.

There are two categories of model building: stepwise methods for considering pre-
dictors for inclusion and exclusion and blocking methods to designate which pre-
dictors should be considered for inclusion in a given step. The term “block” refers
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to a group of predictor variables that are entered as a group into a model or that are
under consideration for inclusion as a group; in the models in this chapter, we’ve
entered all our predictors in a single block, but other choices are available, as we
will see. The term “stepwise” refers to how predictor variables are selected for in-
clusion within a block; stepwise methods are generally automated and select which
variables within a block to add to or retain within a model, using criteria you specify.

Automated methods of model building are not accepted in all fields of study, mainly
because these methods build a model based on the data in your sample rather than
according to theory. Because we often build models with the intent of generalizing
beyond our sample, this raises obvious concerns. Another criticism of automated
methods is that they amount to conducting many significance tests on the same data
without any correction for the inflation of the experiment-wise error rate, increasing
the probability of committing a Type I error. However, automated models are con-
sidered to be acceptable in some fields of study and work, and if they are acceptable
within your specific area of application, there’s no reason you shouldn’t use them.
One thing you should keep in mind, however, is that the three stepwise methods
can result in three regression models, so you should have a reason for choosing
whichever method you decide to use.

Automated methods of model building rely in part on a measurement called partial
correlation; this means the correlation between two variables with the effects of one
or more other variables removed from the correlation. In automated regression al-
gorithms, partial correlation is used to identify the unique variance explained by a
predictor variable to choose the predictor that has the strongest relationship with
the outcome when evaluated in the presence of other predictors. Even in a model in
which you decide which predictors to include and their order of entry, examining
the partial correlations (which can be automatically generated by many statistical
packages) can be useful in evaluating the importance of particular predictors in the
presence of other predictors.

There are three basic stepwise methods of model building:

Backward removal

All predictors in a block are added to the model at once and then removed one
by one until the removal of a variable significantly damages the fit of the model.
This algorithm considers variables for removal according to the amount of
unique variance they explain in the full model. The variable that explains the
least unique variance (that has the smallest partial correlation) is the first to be
considered for removal, and then the variable explaining the least variance in
the model that remains after the first variable is removed, and so on. The user
specifies the criteria for removal of a variable and for evaluating model fit.

Forward entry
Predictor variables are added one at a time to the model, beginning with the
predictor that has the largest absolute correlation with the dependent variable;
for the second and subsequent predictors, the variable is chosen that has the
largest partial correlation with the predictor, that is, the variable that explains
the most unique variance in the dependent variable. Each variable must meet
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user-specified criteria for entering the model, generally based on improving
model fit or the individual significance of the predictor.

Stepwise
The stepwise method is a combination of forward entry and backward removal.
Predictors are entered in the regression model one at a time based on how much
they will improve model fit. Each time a new predictor is added, the predictors
already in the model are evaluated and may be removed if they no longer sig-
nificantly improve the fit of the model.

Blocking methods are not automated but are a way you can enter or test variables
in groups. In this chapter, we have been entering all variables in one block, but there
are times when you might want to enter variables in separate blocks. One example
is when you want to see how much a set of variables can improve model fit after
another set of variables is already in the model. For instance, you might have devel-
oped an intervention to encourage people to improve their health through exercise.
You know that many demographic factors (gender, race or ethnicity, income, etc.)
are also related to exercise and health, and you want to separate the variance in
people’s exercise habits and health that can be attributed to your intervention from
the variance that can be attributed to demographic factors. To accomplish this, you
would enter the demographic variables into the equation as a block and then enter
the variables related to your intervention in a second block; that way, any variance
in outcomes explained by your study will be variance above and beyond that ex-
plained by the demographic variables. This type of model is particularly useful in
observational studies in which you can’t use random assignment to attempt to con-
trol the influence of variables (such as demographics) that might be related to your
outcome.

Blocking can also be combined with automated model building because it is possible
to use one automated method in one block and another (or no automated method)
in another block. Continuing with the preceding example, you might have meas-
urements of a number of demographic characteristics and not be sure which are
most useful in explaining variance in your model. If it is acceptable in your field to
use automated processes of model building, you could enter all the demographics
in a single block and let the algorithm decide which are most useful in explaining
the variance in your outcome variable. You could then enter the variables for your
own study in a second block to see how much variance they explain after that ex-
plained by the demographic variables; in the second block, you do not need to use
any automated model-building method but can simply enter all your variables at
once in this block.

Let’s look at a simple example to examine the effect of using different stepwise
techniques. Imagine you are an educator interested in the relationship between 1Q
and traditional measures of general ability such as performance on numerical, read-
ing, verbal, and reasoning skills as well as nontraditional measures such as musical
and physical performance. A subset of the sample data is shown in Table 10-10.
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Table 10-10. Data showing the relationship between traditional measures and nontraditional
measures of general ability and I1Q

=

1Q Numerical  Reading  Verbal  Physical  Musical  Reasoning g _%

85.0 3.0 50 7.0 10.0 6.0 10.0 % g

e =

90.0 3.0 6.0 7.0 10.0 6.0 10.0 = §
950 40 6.0 7.0 9.0 7.0 8.0
1000 40 7.0 8.0 9.0 7.0 5.0
1000 5.0 7.0 8.0 8.0 8.0 6.0
1000 5.0 8.0 8.0 7.0 9.0 5.0
1050 6.0 8.0 8.0 6.0 8.0 40
1050 6.0 8.0 8.0 5.0 7.0 5.0
1100 7.0 9.0 8.0 4.0 6.0 6.0
100 7.0 9.0 8.0 3.0 6.0 9.0
150 80 10.0 9.0 3.0 5.0 10.0
1200 9.0 10.0 9.0 1.0 4.0 9.0

You decide to explore the relationships between the variables, calculating all pair-
wise correlations and their statistical significance, as shown in Table 10-11 (upper
triangle only). Unsurprisingly, the most traditional measures (numerical, reading,
and verbal) are highly positively correlated with IQ (** = p < 0.01). Also not sur-
prisingly, many of these measures of ability are highly correlated with each other,
meaning that any regression model including several of them will probably have a
high degree of collinearity. However, reasoning does not show a strong relationship
with most of the other variables (except musical performance), and physical per-
formance has a strong negative relationship to IQ and several of the other measure-
ments of ability. The lack of a significant bivariate relationship between 1Q and
musical performance is also surprising.

Table 10-11. Pairwise relationships between traditional measures and nontraditional
measures of general ability and I1Q

1Q Numerical ~ Reading  Verbal Physical Musical  Reasoning
1Q 1.000  0.978** 0.976**  0.914**  —0955**  —0.427 —0.073
Numerical 1.000 0.963** 887%*  —0.986**  —0.481 0.026
Reading 1.000 912%% 0954  —0.381 —0.055
Verbal 1.000 —0.836*  —0337 —0.103
Physical 1.000 0.503 —0.062
Musical 1.000 —0.738**
Reasoning 1.000

If you are more interested in exploring relationships among the variables in this data
set than in testing a particular model based on theory, you might decide to use an
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automated method to build your model. You decide to build two models, using two
methods (forward entry and backward removal), and then compare these models.
For forward entry, you set the criteria for entry at p <= 0.05 (the coefficient for any
predictor must meet that standard to be included in the model); for backward entry,
you set the criteria for removal at F >= 0.100 (variables will be removed if the level
of change in the probability of the F-statistic is not below 0.100).

Forward entry

In the forward entry method, the predictor with the strongest pairwise correlation
with IQ (r = 0.978), numerical skills, is entered first into the model. For this model,
R% =0.956, and the overall model is significant, with F(1, 10) = 217.36, p = 0.000.
None of the other predictors makes a significant improvement in model fit, so this
is also our final model, with coefficients as shown in Table 10-12. This result is both
surprising (because other researchers have found variables such as verbal skills to
be closely related to IQ) and not surprising (because most of our predictors are so
highly correlated that we would expect a large amount of overlap in any variance
they can explain in 1Q).

Table 10-12. Final regression model built using the automated forward entry method

Unstandardized coefficients  Standardized coefficients

B Std. error Beta t Sig.
Constant 74318 2.043 36.374  0.000
Numerical 5122 0347 0.978 14.743  0.000

Table 10-13 displays information about the variables excluded from the final model.
You can see from looking at the ¢-statistics and significance columns that some of
them came very close to inclusion, particularly Reading (¢t = 2.239, p = 0.052), so
it’s easy to imagine that if you had drawn a different sample of subjects, Reading
might have been included in the model and Numerical excluded. The regression
model arrived at through forward entry regression is:

IQ =74.318 + 5.122(Numerical) + e

Table 10-13. Variables excluded from the final regression model built using the automated
forward entry method

Model Betain Sig. Partial correlation  Tolerance
Reading 467 2239 0.052 0.598  0.072
Verbal 219 1.648  0.134 0482 0213
Physical .288 J16 0492 0232 0.029
Musical .057 737 0.480 0.239  0.768
Reasoning —098 1594 0.146 —0.469  0.999

One great advantage of using the forward method of model building is that you
quickly arrive at the smallest model that explains the greatest amount of variance
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given your data set. This is particularly useful if you have a large number of predic-
tors, no particular theory about how they relate to each other or to the outcome,
and just want the best model for this data. This approach is similar to data mining
in that you simply want to know what your data can tell you without any intent to
treat it as a sample from a larger population or to generalize from your results to
other data. The problem with this approach is that a model built using automated
methods can be highly dependent on the specific data set used to build the model;
thisis a problem if you intend to generalize from your data set to a larger population.
When many of your predictors have high correlations with each other and with the
outcome variable, as in our example, small differences in those correlations can
result in highly unstable models; if you drew a different sample, the model generated
using the same automated methods could look quite different from the model gen-
erated from your first sample.

Backward removal

Backward removal models begin by putting all the designated predictor variables in
the model and then removing them one by one, beginning with the variable that
makes the least contribution to prediction; the model is rerun each time a variable
is removed, so the contributions made by each variable are calculated for each new
model.

Table 10-14 shows the five models produced en route to the final model; after each
iteration, one IV is removed, starting with Verbal and proceeding through Physical,
Musical, and Reasoning. Table 10-15 shows the coefficients for each model iteration
as well as the corresponding t values and their significance.

Recall that the forward method resulted in only one IV—Numerical skills—being
included in the model; it’s interesting that by using the backward method, we arrive
at a final model including two predictors, Numerical skills and Reading skills. It’s
also instructive to observe how the coefficients change as variables are removed from
the model; this emphasizes that usually adding or subtracting a variable from a
model will change the coefficients for most or all the other variables.

Table 10-14. Backward stepwise model for linear regression

Variables

Model  Variables entered removed Method
1 Reasoning, numerical, . Enter

musical, verbal, read-

ing, physical
2 Verbal Backward (criterion: probability of F-to-remove > 0.100).
3 Physical Backward (criterion: probability of F-to-remove > 0.100).
4 Musical Backward (criterion: probability of F-to-remove > 0.100).
5 Reasoning Backward (criterion: probability of F-to-remove > 0.100).
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Table 10-15. Standardized coefficients for each model iteration

Model

1 Constant
Numerical
Reading
Verbal
Physical
Musical
Reasoning

2 Constant
Numerical
Reading
Physical
Musical
Reasoning

3 Constant
Numerical
Reading
Musical
Reasoning

4 Constant
Numerical
Reading
Reasoning

5 Constant
Numerical

Reading

Unstandardized coefficients

B

64.480
3.827
3.070

.048
1.01
—-1.222
—.742

64.514
3.851
3.088
1.026

—1.224
—.743

80.511
2.449
2.863

=1.179
—0.785

68.274
3.149
2.476

—0.294

64.655
2.765
2.945

Std. Error
20.702
2369
1.749
2.628
1423
0.864
0.445
18.819
1.822
1.301
1.040
0.777
0.402
9.530
1.137
1.279
0.775
0.399
5.524
1122
1.352
0.253
4.649
1.093
1316

Standardized coefficients
Beta

0.731
0.487
0.003
0.305
—0.167
—0.169

0.735
0.490
0.310
—0.167
—0.169

0.467
0.454
—0.161
—0.179

0.601
0.393
—0.067

0.528
0.467

t
3015
1.616
1.755
0.018
0.710
—1.414
—1.668
3.428
2114
2373
0.986
—-1.575
—1.848
8.448
2153
2.239
—-1.522
—1.968
12.360
2.806
1.831
-1.161
13.908
2.529
2.239

Sig.

0.026
0.167
0.140
0.986
0.509
0.216
0.156
0.014
0.079
0.055
0.362
0.166
0.114
0.000
0.068
0.060
0.172
0.090
0.000
0.023
0.105
0.279
0.000
0.030
0.050

The final regression model produced by the backward elimination method (model
#5 in Table 10-14) is:

1Q = 64.655 + 2.765(Numerical) + 2.945(Reading) + e

This model explains 97.2% of the variance in IQ slightly more than the model created
by the forward method (95.6%). Although both models explain almost the same
amount of variance, it’s interesting to note how the coefficients differ. The model
produced using the forward method has a larger intercept and a larger coefficient
for Numerical. These differences are probably explained by the fact that some of the
variance explained by Numerical in the first model is explained by Reading in the
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second and that the inclusion of a second predictor naturally lowers the intercept
because each IQ score is now explained by two aptitude scores rather than one.

Exercises

Multiple linear regression can be used to investigate a number of types of research
questions, as shown in the following examples.

Example 1

As a human resources specialist, you are interested in the motivational factors that
are associated with productivity (the outcome) in IT teams, based on the KLOC
metric (thousands of lines of code written per week). There are four motivational
factors believed to influence productivity; these may be based on either intrinsic or
extrinsic motivation and may be either self-reported or observed. Four scales are
developed to measure these types of factors and are used as predictor variables in
the model:

* Intrinsic self-report (IS)
¢ Intrinsic observed (I0)
* Extrinsic self-report (ES)
e Extrinsic observed (EO)
KLOC is expressed as thousands of lines of code; the four predictors are measured

on a scale from 0 to 100. Descriptive statistics for these variables are presented in
Table 10-16.

Table 10-16. Descriptive statistics for four types of motivational factors and KLOC

Variable n Mean  Std. dev.
Productivity (KLOC) 50 35 23
Intrinsic self-report (IS) 50 413 14.8
Intrinsic observed (10) 50 54.7 19.4
Extrinsic self-report (ES) 50 27.1 16.5
Extrinsic observed (E0) 50 40.7 255

The upper triangle of the correlation matrix for these variables is shown in Ta-
ble 10-17; correlations with a p-value of 0.05 or less are marked with an asterisk (*).
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Table 10-17. Correlation matrix for four types of motivational factor and KLOC

KLoc IS 10 ES EO
KLOC  1.00 0.25 012  043*  0.67*
IS 1.00 -3.70* -170  0.35*
10 1.00 018 —0.18
ES 1.00 0.61*
1] 1.00
Problem

What do you notice in the correlation matrix that can help guide your creation of a
regression model using this data?

Solution

First, two of the four predictors have a significant bivariate correlation with the
outcome: extrinsic self-report (r = 0.43, p = 0.002) and extrinsic observed (r = 0.67,
p < 0.001); the specific p-values were not included in Table 10-17, but are from the
computer printout. Second, some of our predictors have significant correlations with
each other, something we should keep in mind while building our model; these pairs
of closely related predictors are intrinsic self-report and intrinsic observed (r = -0.
37, p =0.008), intrinsic self-report and extrinsic observed (r = 0.35, p = 0.013), and
extrinsic self-report and extrinsic observed (r = 0.612, p < 0.001).

You decide to include all four predictors in your regression model; this model ex-
plains 51.5% of the variance in KLOC and produces the coefficients and significance
tests presented in Table 10-18. The overall test of fit for this model produces the
result F(4, 45) = 11.927, p < 0.001.

Table 10-18. Coefficients table for a regression analysis predicting KLOC from four types of
psychological factor

Unstandardized coefficients  Standardized coefficients

B Std. error Beta t Sig.
Constant —0.989 1.253 —0.790 0.434
IS 0.022 0023  0.129 0.970 0.337
10 0.023 0.009  0.280 2370 0.017
ES 0.003 0023 0.019 0.124 0.902
EO 0.062 0.015  0.660 4044  <0.001

Problem

Interpret the information in Table 10-18, write the regression equation, and suggest
what the next step might be in your effort to understand the relationship among
these variables.
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Solution

The regression equation for this data is:
KLOC =-0.989 + 0.022(1IS) + 0.023(10) +0.003(ES) + 0.062(EO) + ¢

This model is significantly better than the null model, but only two of the four pre-
dictor variables are significantly different from 0: 10 (¢ = 2.370, p = .017) and EO
(t =4.044, p < 0.001). Depending on the purpose for your analysis, you could stop
here or continue exploring the data. You know from the correlations table that IS is
significantly correlated to both 10 and EO in this data set; that might explain its lack
of significance in this model, so you might try running a model with just IS as a
predictor to see how much variance it explains by itself. You also might add more
variables to the model, such as gender; it’s possible that men and women have dif-
ferent structures of motivation.

Example 2

You are a management consultant working in the retail sector, conducting a time-
in-motion study to determine which of two predictors (barcode scanner size and
operator accuracy) has the greatest effect on the outcome of throughput at the
checkout counter, measured in items per second. The question is difficult to answer
because the units of measurement in each case are different; the scanner size is
measured in square centimeters, whereas operator accuracy is measured as the pro-
portion of times the operator scans an item successfully on the first try. Your client
wants to increase throughput because customers have complained that queues in
the store are long. However, larger scanners are more expensive than smaller ones,
and training courses for staff require expenditure while not necessarily increasing
accuracy. The manager wants to know whether to spend money on more training
(or hiring better staff) or purchasing larger scanners, so you decide to conduct a
study see which variable contributes more to throughput: scanner size or operator
accuracy.

Throughput and accuracy are continuous variables; although size is theoretically a
continuous variable, in this data set it has only three values (2 sq cm, 4 sq cm, and
6 sq cm), so you decide to treat it as a categorical value. There are three scanners of
each size in the study; descriptive information about the continuous variables is
presented in Table 10-19.

Table 10-19. Descriptive information for throughput and operator accuracy

Variable N Mean  Std.dev. Minimum  Maximum
Throughput 30 076 0.36 0.20 1.50
Accuracy 30 8131 438 73.62 91.13

Exercises | 269

=
™
(=1
=
I
wv
2,
o
S

sedur ayduniy




Problem

Your first task is to create a dummy coding scheme for scanner size. Treat the small-
est scanner size as the reference category, and assign values to as many X variables
as are needed to code the values for scanner size uniquely.

Solution

The most obvious coding scheme is presented in Table 10-20; note that variables
maintain the order of values for the variable. The 2 sq cm value must be coded with
the value of 0 for both X; and X,, whereas the codes for the 4 sq cm and 6 sq cm
sizes could be exchanged, and the coding would still meet the specification of 2 sq
cm as the reference category.

Table 10-20. A dummy coding scheme

Size ) (R %
2sqem 0 0
4sqem 1 0
6sqem 0 1

Assume you have checked all the necessary assumptions and run the regression
analysis, using the dummy coding scheme previously presented. This model is sig-
nificantly better than the null model (F(3, 26) = 21.805, p < 0.001) and explains
68.3% of the variance in throughput. The coefficients table for this analysis is pre-
sented in Table 10-19.

Problem

Write the regression equation based on the information in Table 10-21, and make
a recommendation to the manager, backed up with information from this analysis.

Table 10-21. Descriptive information for throughput and operator accuracy

Unstandardized coefficients  Standardized coefficients

B Std. error Beta t Sig.
Constant 0.737 0.917 0.803 0.429
Accuracy —0.003 0.01 —0.034  —0.246 0.808
X 0.071 0.094 0.094 0.756 0.456
X, 0.685 0.015 0.909 6.491  <0.001

Solution

The regression equation is:
Throughput = 0.737 - 0.003(Accuracy) +0.071(X;) + 0.685(X,) + e

A regression analysis (n = 30) examined the effects of operator accuracy (the pro-
portion of times the operator scans an item successfully on the first try) and scanner
size (measured in square centimeters) on throughput (measured in items scanned)
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per second. The practical context of this study is a retail environment in which the
goal is to increase throughput. Three sizes of scanner were included in the study (2
sq cm, 4 sq cm, and 6 sq cm). Throughput and accuracy were both approximately
normally distributed; throughput had a range of 0.20 to 1.50, a mean of 0.76, and
a standard deviation of 0.36; accuracy had a range of 73.62 to 91.13 with a mean of
81.31 and a standard deviation of 4.38.

The regression model explained 68.3% of the variance in throughput. Operator ac-
curacy was not related to throughput (¢ = -0.246, p = 0.808), but scanner size was;
the largest scanner (6 sq cm) was a significant improvement over the smallest (2 sq
cm) (¢t = 6.491, p = 0.000). The medium-sized scanner (4 cm) showed no improve-
ment in accuracy over the smallest (¢ = 0.756, p = 0.456). My recommendation is to
purchase a 6 sq cm scanner because that size of scanner is the variable most strongly
related to increased throughput.
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11

Logistic, Multinomial, and
Polynomial Regression

Multiple linear regression is a powerful and flexible technique that can handle many
types of data. However, there are many other of types of regression that are more
appropriate for particular types of data or to express particular relationships among
the data. We discuss a few of these regression techniques in this chapter. Logistic
regression is appropriate when the dependent variable is dichotomous rather than
continuous, multinomial regression when the outcome variable is categorical (with
more than two categories), and polynomial regression is appropriate when the re-
lationship between the predictors and the outcome variable is best expressed
through an equation including polynomial terms (such as x? or x3). If you are un-
familiar with odds ratios, it would be good to read the section of Chapter 15 covering
them before reading this chapter because the odds ratio plays a key role in inter-
preting the output of logistic regression.

Logistic Regression

Multiple linear regression may be used to find the relationship between a single,
continuous outcome variable and a set of predictor variables that might be contin-
uous, dichotomous, or categorical; if categorical, the predictors must be recoded
into a set of dichotomous dummy variables.

Logistic regression is in many ways similar to multiple linear regression, butit’s used
when the outcome variable is dichotomous (when it can take only two values). The
outcome might be dichotomous by nature (a person is either a high school graduate
or she is not) or represent a dichotomization of a continuous or categorical variable.
(Blood pressure is measured on a continuous scale, but for the purposes of analysis,
people might simply be classified as having high blood pressure or not.) Outcome
variables in logistic regression are conventionally coded as 0—1, with 0 representing
the absence of a characteristic and 1 its presence. The outcome variable in linear
regression is a logit, which is a transformation of the probability of a case having the
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characteristic in question; you can easily convert logits to probabilities and back, as
will be demonstrated.

You might be wondering why you can’t use multiple linear regression with a cate-
gorical outcome. There are two reasons:

1. The assumption of homoscedasticity (common variance) is not met with cate-
gorical variables.

2. Multiple linear regression can return values outside the permissible range of 0—
1 (presence or absence).

The logit is also called the log odds for reasons that are clear from its definition. If
p is the probability of a case having some characteristic, then the logit for this case
is defined as in Figure 11-1.

p

e log(p)—log(1-p)
-D

logit(p) = log

Figure 11-1. Definition of a logit

The natural log (base e) is used to convert probabilities to logits.

Apart from having an outcome expressed as a logit, the form of a logistic regression
equation with n predictor variables looks very similar to that of a linear regression
equation, as can be seen in Figure 11-2.

logit(p) = B, +B X, +B.X,..+B,X, +e

Figure 11-2. The logistic regression equation

As with linear regression, we have measures of model fit for the entire equation
(evaluating it against the null model with no predictor variables) and tests for each
coefficient (evaluating each against the null hypothesis that the coefficient is not
significantly different from 0). The interpretation of the coefficients is different,
however; instead of interpreting them in terms of linear changes in the outcome, we
interpret them in terms of odds ratios (discussed in this chapter and in Chapter 15;
note that odds ratios are used frequently in medical and epidemiological statistics).

As with linear regression, logistic regression makes several assumptions about the
data:

Independence of cases
As with multiple linear regression, each case should be independent of other
cases, so you should not have multiple measurements on the same person,
members of the same family, and so on (if family membership is likely to make
cases more related than two cases chosen at random).
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Linearity
There is a linear relationship between the logit of the outcome variable and any
continuous predictor. This is tested by creating a model with the logit as out-
come and as predictors, each continuous predictor, its own natural logs, and
an interaction term of each predictor and its natural log. If the interaction terms
are not significant, we can assume the linearity criterion has been met.

No multicollinearity

As with multiple linear regression, no predictor should be a linear function of
other predictors, and predictors should not be too closely related to each other.
The first part of this definition is absolute (usually violated only due to the
researcher’s absentmindedness, as when including the predictors a, b, and a +
b in an equation); the latter is open to interpretation and is assessed through
multicollinearity statistics produced during the regression analysis. As dis-
cussed in Chapter 10, statisticians disagree on how much of a threat less than
absolute multicollinearity presents to a regression model.

No complete separation
The value of one variable cannot be perfectly predicted by the value(s) of an-
other variable or set of variables. This is a problem that most frequently arises
when you have several dichotomous or categorical variables in your model; you
can test for it by doing cross-tabulation tables on these variables and checking
that there are no empty cells.

Suppose you are interested in factors to health insurance coverage in the United
States. You decide to use a random sample of 500 cases from the 2010 BRFSS data
set, an annual survey of U.S. adults. (For more on the BRFSS, see Chapter 8.) In-
surance coverage is dichotomous; after examining several potential predictors, you
decide to use gender (dichotomous) and age (continuous) as predictors. In this data
set, 87.4% of the respondents have health insurance, their mean age is 56.4 years
(standard deviation 17.1 years), and the respondents are 61.7% female.

Looking at the assumptions for logistic regression, the first is met because we know
the BRFSS data is collected by trained researchers following a national sampling
plan. To evaluate linearity between the logit and age, we construct a regression
model including age, the natural log of age, and the interaction of those two terms.
The results are shown in Table 11-1.

Table 11-1. Testing age for linearity with the logit

B Std.error Wald df Sig. Exp(B)
