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Preface 

Statistics is the science that deals with the collection, analysis, and interpretation of 
numerical information. Having a basic understanding of this science is of importance not 
only to every research scientist, but also to anyone in modem society who must deal with 
such information: the doctor evaluating conflicting medical research reports, the lawyer 
trying to convince a jury of the validity of quantitative evidence, the manufacturer working 
to improve quality-control procedures, the economist interpreting market trends, and so 
on. 

The theoretical base of the science of statistics is a field within mathematics called 
mathematical statistics. Here, statistics is presented as an abstract, tightly integrated 
structure of axioms, theorems, and rigorous proofs. To ,make this theoretical structure 
available to the nonmathematician, an interpretative discipline has been developed called 
general statistics in which the presentation is greatly simplified and often nonmathema­
tical. From this simplified version, each specialized field (e.g., agriculture, anthropology, 
biology, economics, engineering, psychology, sociology) takes material that is appropriate 
for its own numerical data. Thus, for example, there is a version of general statistics called 
biostatistics that is specifically tailored to the numerical data of biology. 

All introductory courses in general statistics or one of its specialized offshoots share 
the same core of material: the elements of statistics. The authors of this book have learned 
these elements in courses, used them in research projects, and taught them, for many years, 
in general statistics and biostatistics courses. This book, developed from our experience, is 
a self-help guide to these elements that can be read on its own, used as a supplement to a 
course textbook, or, as it is sufficiently complete, actually used as the course textbook. All 
the mathematics required for understanding this book (aspects of high-school algebra) are 
reviewed in Chapter 1. 

The science of statistics can be divided into two areas: descriptive statistics and 
inferential statistics. In descriptive statistics, techniques are provided for processing raw 
numerical data into usable forms. These techniques include methods for collecting, 
organizing, summarizing, describing, and presenting numerical information. If entire 
groups (populations) were always available for study, then descriptive statistics would 
be all that is required. However, typically only a small segment of the group (a sample) is 
available, and thus techniques are required for making generalizations and decisions about 
the entire population from limited and uncertain sample information. This is the domain of 
inferential statistics. 

All courses in introductory general statistics present both areas of statistics in a 
standard sequence. This book follows this sequence, but separates these areas into two 
volumes. Volume I (Chapters 1-10) deals with descriptive statistics and also with the main 
theoretical base of inferential statistics: probability theory. Volume II (Chapters 11-20) 
deals with the concepts and techniques of inferential statistics. Each chapter of the book 
has the same format: first a section of text in outline form with fully solved problem­
examples for every new concept and procedure; next a section of solved problems that both 
reviews the same material and also makes you look at the material from a different 

perspective; and finally a section of supplementary problems thattests your mastery of the 
material by providing answers without the step-by-step solutions. Because this is a book on 
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iv PREFACE 

general statistics, an attempt has been made throughout to have a diverse selection of 
problems representing many specialized fields. Also, we have tried in these problems to 

show how decisions are made from numerical information in actual problem-solving 
situations. 

To master statistics you must both read the text and do the problems. We suggest that 
you first read the text and follow the examples, and then go back to re-read the text before 
going on to the solved and supplementary problems. Also, the book is cross-referenced 
throughout, so that you can quickly review earlier material that is required to understand 
later material. 

If you go on to work with statistics, you will likely use a computer and one of the 
many available packages of statistical programs. This book does not deal with how to use 
such computer programs, but instead gives you the mastery required to understand which 
aspects of the programs to use and, as importantly, to interpret the output-results that the 
computer provides. A computer is not required for doing the problems in this book; all 
problems are solvable with an electronic calculator. 

We would like to thank the following people at the McGraw-Hill Corporation who 

have contributed significantly to the development of this book: Barbara Gilson, Elizabeth 
Zayatz, John Aliano, Arthur Biderman, Mary Loebig Giles, and Meaghan McGovern. We 
would also like to thank the anonymous reviewers of the chapters and the individuals and 
organizations that gave us permission to use their published materials (specific credit is 
given where the material is presented). 
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Chapter 1 

Mathematics Required for Statistics 

1.1 WHAT IS STATISTICS? 
Statistics is the science that deals with the collection, analysis, and interpretation of numerical 

information. This science can be divided into two areas: descriptive statistics and inferential statistics. In 
descriptive statistics, techniques are provided for processing raw numerical data into usable forms. These 
techniques include methods for collecting, organizing, summarizing, describing, and presenting numerical 
information. If entire groups (populations) were always available for study, then descriptive statistics would 
be all that is required. However, typically only a small segment of the group (a sample) is available , and 
thus techniques are required for making generalizations and decisions about the entire population from 
limited and uncertain sample information. This is the domain of inferential statistics. 

The theoretical base of the science of statistics is a field within mathematics called mathematical 
statistics. Here, statistics is presented as an abstract, tightly integrated structure of axioms, theorems, and 
rigorous proofs, involving many other areas of mathematics such as calculus, probability theory, and higher 
algebra. To make this theoretical structure available to the nonmathematician, an interpretative discipline 
has been developed called general statistics in which the presentation is greatly simplified and often 
nonmathematical. From this simplified version, each specialized field (e.g., agriculture, anthropology, 
biology, economics, and so on) takes material that is appropriate for its own numerical data. Thus, for 
example, there is a limited and appropriate version of general statistics called biostatistics (or biometry) 
that is specifically tailored for the numerical data of biology. 

This book, which consists of two volumes, is an introduction to general statistICS with an attempt made 
to use examples and problems taken from a wide variety of specialized fields. It follows the typical outline 
of an introductory course in general statistics: first descriptive statistics-the collecting (Chapters 2 and 3), 
organizing (Chapter 4), graphing (Chapter 5), and describing (Chapters 6 and 7) of numerical data; then 
probability theory (Chapters 8 through 12) and sampling theory (Chapter 13); and finally, the estimation 
and hypothesis-testing techniques of inferential statistics (Chapters 14 through 20). 

In this introduction to general statistics, all the mathematics that will be required is at the level of high­
school algebra, and this first chapter will review all the elements of algebra you will need. We will also 
assume that you have an electronic calculator for do'ing the calculations. 

1.2 OPERATIONS WITH FRACTIONS 
If we let m and n represent two numbers, then the multiplication of m times n is indicated by these 

equivalent symbols: m x n, (m)(n), and m . n. Similarly, the division of m by n is indicated by these 

. equivalent symbols: m -;- n, min, and 
m

. 

EXAMPLE 1 .1 

Solution 

n 

m 
Given that m = 4 and n = 2, perform the following operations: m x n, m -;- n, min, (m)(n), m . n, -. n 

4 x 2 = (4)(2) = 4·2 = 8 
4 

4 -;- 2 = 4/2 = 2 = 2 

1 



2 MATHEMATICS REQUIRED FOR STATISTICS [CHAP. 1 

The value of a fraction remains the same (equivalent) if its numerator and denominator are multiplied 
or divided by the same number. However, adding or subtracting the same number from the numerator and 
denominator will typically change the value of the fraction. 

" 6 8 12 2 3 16 1 
EXAMPLE 1 .2 Which of the followmg are equivalent fractions to 8: 9' 1 6' 4" 4' 18' or 2" ? 

Solution 

while 

6 (2)(6) 12 = = 8 (2)(8) 16 

and 

where =I- is the symbol for "not equal to." 

6/2 
8/2 

3 -
4 

To add or subtract fractions they must first be transformed to have a common denominator. Fractions 
are multiplied by separately multiplying their numerators and denominators. Fractions are divided by first 
inverting the divisor and then multiplying. 

EXAMPLE 1 .3 Perform the indicated operations: 

Solution 

4 5 
(a) -+-5 6 '  

4 5 4 x 6 5 x 5 24 25 49 19 (a) "5 + 6 = 5 x 6 + 6 x 5 = 30 + 30 = 30 = 1 30 
5 1 2 5 x l x 2 10 5 

(b) '7 x 4 x 3' = 7 x 4 x 3 84 = 42 
f m i n In (c) --;--= - x - =-g n g m gm 

1.3 OPERATIONS WITH SIGNED NUMBERS 

f m (c) - -;--. 
g n 

When adding numbers with the same signs, simply add the numbers and give the total the common 
sign. When adding numbers with different signs, add the (+ ) and the (- ) numbers separately, subtract the 
smaller total from the larger, and then give the difference the sign of the larger. When subtracting signed 
numbers, change the signs of the numbers being subtracted. 

EXAMPLE 1 .4 Perform the following additions and subtractions with signed numbers: (a) 5 + 7 + 9 + 2, 
(b) 5+(-7) + 9+ (-2), (c) (- 5) - (+7) +9 - (-2). 

Solution 

(a) 5+ 7+9 +2 =23 
(b) 5 + (-7) + 9  + (-2)= 14 - 9= 5 
(c) (-5) - (+7) + 9 - (-2)= -5 -7 + 9+ 2= - 1 

Multiplying numbers with the same sign gives a positive product, while multiplying numbers with 
different signs gives a negative product. The division of numbers with the same signs gives a positive 
quotient, while the division of numbers with different signs gives a negative quotient. 
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EXAMPLE 1.5 Perfonn the following multiplications and divisions: (a) (-4)(- 2), (b) (-4)(2), (c) (-4)--;­
(-2), (d) (-4)/(2). 

Solution 

(a) (-4)(-2)=8 

(b) (-4)(2)=- 8 

(c) (-4)--;-(-2)=2 

(d) (-4)/(2)=- 2 

When division or multiplication is combined with addition or subtraction, the division or multi­
plication is done first. Numbers within parentheses or brackets should be treated as single numbers, so that 
all operations within parentheses and brackets should be done first. 

EXAMPLE 1.6 Detennine the order of operations and then calculate: (a) 2 x 1 0  - 9, (b) [(-2) +(3)]--;­
[(-2) + (-3)]. 

Solution 

(a) 2 x 1 0  - 9=20 - 9=1 1 

(b) [(-2) + (3)]--;- [(-2) + (-3)] = [ 1 ]--;- [-5] = -0.2 

1.4 ROUNDING OFF 
In rounding off to the nearest whole number, if the decimal fraction is less than 0.5; then it is dropped 

and the number to the left of the decimal point remains the same. If the decimal fraction is greater than 0.5, 
then the fraction is dropped and the number to the left of the decimal point is increased by one. Where the 
decimal fraction is exactly 0.5 , it is common practice to follow this rule: If the first number to the left of the 
decimal place is odd, then increase it by one; if it is even, then leave it the same. 

EXAMPLE 1.7 Round off the following to the nearest whole number: (a) 2.2, (b) 1 . 89, (c) 2 .5, (d) 1 . 50. 

Solution 

(a) 2.2 rounds off to 2 

(b) 1 .89 rounds off to 2 

(c) 2.5 rounds off to 2 

(d) 1 .50 rounds off to 2 

Essentially the same rounding-off rules apply if rounding off to a decimal place, except now they apply 
to the decimal fraction beyond that decimal place. 

EXAMPLE 1.8 Round off: (a) 1 .933 to two decimal places, (b) 0.01 79 1  to two decimal places, (c) 1 .239 1 5  
to three decimal places, (d) 0.00 1 5  to three decimal places. 

Solution 

(a) 1 .933 rounds off to 1 .93 

(b) 0.01791 rounds off to 0.02 

(c) 1 .239 1 5  rounds off to 1 .239 

(d) 0.0015  rounds off to 0.002 
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1.5 ABSOLUTE VALUES 
The absolute value of the number n (indicated by the symbollnl) is the numerical value of the number 

regardless of sign. 

EXAMPLE 1.9. Give the absolute values of : 43 - 52 
(a) -5, (b) 10/2, (c) 

9 

Solution 

(a) 1 - 51= 5  
(b) 1 1 0/2 1 = 5  

(c) 1 43 � 52 1 = 1 
1.6 FACTORIALS 

The symbol n !  (which is read n factorial) represents the product of all positive integers from n to 1 

n!  = n x (n - 1 )  x (n - 2) x (n - 3) x .. . x 1 

where the symbol ... indicates that not all of the multiplications are shown. 

EXAMPLE 1 .1 0  Calculate the following factorials: (a) 2!, (b) 4!, (c) 91. 

Solution 

(a) 2! = 2 x 1 = 2 
(b) 4! = 4 x 3 x (2!) =24 
(c) 9! = 9 x 8 x 7 x 6 x 5 x (4!) = 362,880 

1.7 RADICALS AND ROOTS 
In the expression a = ,:fij, the symbol -.r is called a radical sign, ,:fij is called a radical (or radical 

expression), a is called the nth root of b, b is called the radicand, and n is called the index. 

EXAMPLE 1 .1 1  Solve the following radical: �. 
Solution 

� = A = the second root (or square root) of 4. The second root of 4 could be either + 2 or -2, but 
by convention the symbol A = +2 and the symbol -A = -2. 

The principal nth root of a number is its one real root, or if there is a choice between a positive and a 
negative root, it is the positive root. 

EXAMPLE 1 .12 Give the principal nth root of: (a)..jj6. (b) -..jj6. 
Solution 

(a) ..jj6 = 4. This is true both by convention (see Example 1 . 1 1) and by selecting the positive root. 
(b) -..jj6 = -4. Here the convention indicates the minus number. 
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1.8 OPERATIONS WITH SQUARE ROOTS 
Two square roots are multiplied by multiplying their radicands under one radical sign. In dividing one 

square root by another, the two radicands are divided under one radical sign. 

EXAMPLE 1 .1 3  Perform the indicated operations: (a) ..;s..;s, (b) JJs5. 

Solution 

(a) ..;s..;s = ..;'5X5 = .ff5 = 5 
(b) JJs5 = JI�5 = v'25 = 5 

To multiply a square root by a number, multiply the radicand by the square of the number. To divide a 
square root by a number, divide the radicand by the square of the number. 

EXAMPLE 1 .1 4  Perform the indicated operations: (a) 2J20.25, 

Solution 

(a) 2J20.25 = J22J20.25 = )4(20.25) = J8T = 9 

(b) .ff5 = .ff5 = fi5 = 1 5 .ff5 YZ:S 
1.9 OPERATIONS WITH POWERS 

(b) .ff5 5 . 

bn is the nth power of b; it is the product obtained from multiplying b times itself n times. Thus, for 
example, b2 = b x b is the second power of b (b squared); and b3 = b x b x b is the third power of b (b 
cubed). In the expression bn, n is called the exponent, and b is called the base. 

EXAMPLE 1 .1 5  Give the following powers: (a) bO, (b) 12°, (c) 122, (d) 55. 

Solution 

(a) For any nonzero number that has a zero exponent, the power is always one: bO = 1 
(b) 12°= 1 
(c) 1 22 = 12 x 12 = 144 
(d) 55 = 5 x 5 x 5 x 5 x 5= 3,125 

EXAMPLE 1 .1 6  As appropriate, express the following as a fraction, a root, or both: (a) b-n, (b) bl/n, (c) 
b-I/n. 

Solution 

(a) For any nonzero number that has a negative exponent, the following inverse relationship is true: 

b-n =� � 

(b) bl/n = .v'b 
(c) b-I/n = _1_ 

::/b 
Numbers can be stated either as a power of 10  or as the product of a power of 10 with another number. 
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EXAMPLE 1 .17 Using one digit to the left of the decimal point, state each of the following as the product of a 
power of ten: (a) 237, (b) 0.000237, (e) 116,270,000. 

Solution 

(a) 237 = 2.37 x 102 
(b) 0.000237 = 2.37 x 10- 4 
(e) 116,270,000 = 1.1627 x 108 

When multiplying powers, if the bases are identical the exponents are added. When dividing powers, if 
the bases are identical the exponent of the denominator is subtracted from the exponent of the numerator. 

107 
EXAMPLE 1.18  Perform the following: (a) 10 x 103 , (b) 103' 

Solution 

(a) 10 x 103 = 101+3 = 104=10,000 
107 (b) -= 107-3 = 104 = 10,000 
103 

1.10 OPERATIONS WITH LOGARITHMS 
The logarithm of a number n to the base c (where c =1= 1, and c > 0) is the exponent for c needed to 

obtain n. Thus, if n = cb, then loge n = b. 

EXAMPLE 1 .1 9  Solve the following: (a) If 4 = 2b, what is log2 4? (b) If IOg10 n = 2, what is n? 

Solution 

(a) If 4 = 2b, then b = 2 and log2 4 = 2 
(b) If loglo n = 2, then n = 102 = 100 

In general, if loge n = b, then the antilogarithm (or antilog) of b is n. 

EXAMPLE 1 .20 Give the antilogs of: (a) log216 =4, (b) 10glO 10 = 1. 

Solution 

(a) antilog of 4= 16 
(b) antilog of 1 = 10 

When numbers are multiplied together, the logarithm of their product is the sum of their separate 
logarithms. The logarithm of a fraction is the logarithm of the· numerator minus the logarithm of the 
denominator. The logarithm of a number with an exponent is the exponent times the logarithm of the 
number. 

EXAMPLE 1 .21 What is the logarithm of (a) be, (b) ble, (e) ab? 

Solution 

(a) log(be) = log b + log e 
(b) log (blc) = log b - log c 
(a) log(ab) = b(log a) 



CHAP. 1 ] MATHEMATICS REQUIRED FOR STATISTICS 7 

1.11 ALGEBRAIC EXPRESSIONS 
An algebraic expression is any mixture of arithmetic numbers (having specific numerical values) and 

general numbers (symbols that represent numerical values), linked by the four fundamental processes of 
algebra [( + ), (- ), (x), and ( 7 )]. The terms of an algebraic expression are single numbers (arithmetic or 
general) separated from other numbers by (+) or (- ) signs, or groups of numbers connected by 
multiplication or division and separated from other numbers by (+ ) or (- ) signs. Algebraic expressions 
are called monomial if they have one term, binomial if they have two terms, and, in general, multinomial if 
they have two or more terms. 

EXAMPLE 1.22 Which are the tenns in the following algebraic expression: 14a2 + lOb - 3c4? 

Solution 

The tenus are (14a2), (lOb), (3c4) 

1.12 EQUATIONS AND FORMULAS 
An equation is a statement that two algebraic expressions are equal. The following are examples of 

equations: a - b = c; I; = 3; Y + 3 = 4; log x + y = 2. Each equation consists of an equal sign (=) and 

expressions to its left (left member or left side of the equation) and right (right member or right side of the 
equation). Aformula is an equation that states a principle or rule in algebraic terms. A familiar formula is 
c=nd [the circumference of a circle c = its diameterd x the constant n (n = 3 . 14 1 59 .. . ); here the symbol 
... indicates that the decimal fraction continues indefinitely and only the first part is shown]. An equivalent 
equation results when the same operations are applied to the left and right sides of an equation. This is true 
for all operations except divisions by zero. 

EXAMPLE 1.23 Produce equivalent equations by applying the indicated operations on both sides of these 
equations: (a) a + b = c, add b to both sides, (b) a + b = c, square both sides. 

Solution 

(a) a+ 2b=c+b 
(b) (a+bi=c2,ora2 +2ab+b2=c2 

In an identical equation, both sides can be made exactly the same by performing the indicated 
operations. Thus, (y - 3)(y - 1)  = l- 4y + 3 and 7 + 2 = 9 are identical equations. Such equations, also 
called identities, are often indicated by using the symbol (=) in place of the equal sign. It can be seen that 
if an identity contains general numbers, it remains true for any numerical values given to the general 
numbers. 

EXAMPLE 1 .24 Show that the equation (y - 3)(y - I) = l - 4y + 3, is an identity by letting y = 5. 

Solution 

(5 - 3)(5 - I) = (5)2 - 4(5) + 3 

8=8 
While identities are true for any numerical value assigned to the general numbers, conditional 

equations are true only for certain numerical values. 
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EXAMPLE 1 .25 Detennine the value of y for which the conditional equation 2y + 4 = lOis true. 

Solution 
2y + 4 = 10 is true only for y = 3 

[CHAP. 1 

To solve an equation means to find a value (or values) for general numbers in the equation which when 
substituted for them produces an identity. Such values, also called the roots of an equation, are said to 
satisfy the equation. For an identity such as (y - 3)(y - 1) = / - 4y + 3 ,  any value of y solves or satisfies 
the equation. For the conditional equation 2y + 4 = 10, there is only one solution, or root: y = 3 .  

EXAMPLE 1 .26 Solve this equation to + 18 = x. 

Solution 

1.13 VARIABLES 

x 
10 + 18 = x 

�- x = -18 10 

xGo- l) = -1 8 

x(-0.9) = -18 

X= 20 

A general number (see Section 1 . 1 1 )  in an equation or a formula that can assume different values 
(vary) in the context of a problem or discussion is called a variable. Thus, for the formula c = nd (see 
Section 1 . 1 2), if the problem being worked on requests that the circumference should be calculated for 
three circles having diameters of 1 ,  2, and 3 inches, then both c and d vary in this problem and thus both 
are variables in this context. 

If, on the other hand, in the context of such a problem a number i� an equation or a 'formula can 
assume only one value, then it is called a constant. There are two types of constants: absolute constants 
and arbitrary constants. Absolute constants always have the same values. They are arithmetic numbers 
(e.g., 5 ,  t, 1 00) or general numbers that always have the same fixed values [e.g., e (base of the natural 
logarithm, see Problem 1 .23); n (see Section 1 . 1 2)] . Arbitrary constants are general numbers that remain 
fixed in the context of one problem but can vary from problem to problem. 

While up to now in this book we have used lower-case letters to represent general numbers in 
equations and formulas, from this point on, unless otherwise indicated, if the general number represents a 
variable it will be denoted by a capital letter from the end afthe alphabet (Z, Y, X etc.), and if the general 
number repre-sents a constant it will be denoted by a lower-case letter from the beginning of the alphabet 
(a, b, c, etc.}. 

1.14 SINGLE-VARIABLE EQUATIONS AND THE QUADRATIC FORMULA 
Single-variable linear equations (also known as equations of the first degree) have only constants and 

the first power (exponent = 1) of a single variable. Examples of single-variable linear equations are: 
2X - 3 = 2 and aY - b = cY. Single-variable quadratic equations (also known as equations of the second 
degree) can have constants and both the first and second powers (exponent =2) of a single variable. 
Examples of such equations are: aX2 + bX = c; aX2 = c and 3X2 - 5X = O. If the equation has both the 
first and second powers (e.g., aX2 + bX = c) it is called a complete quadratic equation, and if it only has 
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the second power (e.g., aJ(2 = c) it is called an incomplete quadratic equation. If the complete quadratic 
equation aJ(2 + bX + c = 0 is solved for X, the solution is 

-b ± Jb2 - 4ac 
X = ------

2a 
(Ll) 

This equation is called the quadratic formula, and it can be used to find the roots of any single-variable 
quadratic equation where a # 0 (See Problem 1.31  for the derivation of this formula.) 

EXAMPLE 1 .27 Use the quadratic formula to solve this equation: 2X2 = -3X + 9. 

Solution 

To solve, first put the equation in the general quadratic form: aX2 + bX + c = O. Thus, 2X2 + 3X - 9 = 0, 
and so c = - 9, b=3, a = 2  

Therefore 

-b ± ..jb2 - 4ac X = ----=----2 a  
-3 ± )32 - [4  x (-9) x 2] 

2 x2 
-3 ±)9 - (-72) -3 ±,J8T -3 ± 9 = = 4 4 4 

X=�=� 4 2 and -12 X=-=-3 4 

1.15 VARIABLES IN STATISTICS 
In statistics, variables are measurable characteristics of things (persons, objects, places, etc.) that vary 

within a group of such things. Thus, for example, if you are studying a group of children, then a variable 
might be the weight of each child; it is measurable (in pounds or kilograms) and it varies from child to 
child. Or, if you are studying a group of tomato plants, then you might consider measuring these variables 
for each plant: height, width, number of leaves, and number of tomatoes. Such variables are represented in 
the equations and formulas of statistics by the mathematical variables defined in Section 1.13. How 
variables are measured will be discussed in Chapter 2. 

Each individual measurement of a variable (e.g., each weight of a child) is called a variate (or value or 
observation). In this book a variable and its variates will typically be represented by upper-case and lower­
case versions of the same end-of-alphabet letter (e.g., X for the variable and x for its variates). 

A quantitative variable in statistics is a characteristic whose variates can be ordered in terms of the 
magnitude of the characteristic (heavier, taller, richer, etc.). Thus, weight of a child is a quantitative 
variable, with one child weighing 45.2 lb and a heavier child weighing 50.9 lb. Similarly, number of 
tomatoes on a plant is a quantitative variable, with one plant having 20 and another 26. 

A qualitative variable, on the other hand, is a characteristic with variates that are different categories 
which cannot be ordered by magnitude. For example, type of tree is a qualitative variable, with variates 
such as pine, maple, aspen, and hickory. 

1.16 OBSERVABLE VARIABLES, HYPOTHETICAL VARIABLES, AND MEASUREMENT 
VARIABLES 

Variables in statistics can be classified as being directly measurable or indirectly measurable. To 
understand these classifications consider the following example: 
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You are a geneticist studying inherited differences between male athletes who are Olympic 
champions in short-distance or long-distance running events. To do this you measure such 
variables as height, leg length, calf and thigh circumference, etc. 

In this example, you are directly measuring anatomical variables in order to indirectly measure genetic 
variables (differences in specific genes or groups of genes). Directly measurable variables are called 
observable variables, and indirectly measurable variables are called hypothetical variables (or intervening 
variables). 

Measurement variables are observable variables; directly measurable characteristics of the things being 
measured, expressed as the values on specific measurement scales. As seen in Section 1 . 15, measurement 
variables can be quantitative or qualitative. Some examples of measurement variables are: height in inches, 
weight in grams, number of leaves on a plant, and type of flower. 

1.17 FUNCTIONS AND RELATIONS 

To discuss functions and relations, we must first define two concepts: a set and the real number system. 

A set is a collection of things (objects, symbols, numbers, words, etc.), and every item in the set is 
called an element (or member) of the set. 

The real number system includes the set of rational numbers (all ratios of integers � where b #- 0) 
and the set of irrational numbers (numbers that can not be written as the ratios of two integers, such as 
-J2 and n). 
If two variables X and Yare so related that for every permissible specific value x of X there is associated 

one and only one specific value y of Y, then it is said that Y is a jUnction of X. Such a function always has: a 
domain, which is the set of all specific x values that X can assume; a range, which is the set of all specific y 
values associated with the x values; and a rule of association, the function itself, which associates with 
every permissible x value one and only one y value. 

EXAMPLE 1 .28 For the function Y =X2, what are its domain, range, and rule of association? 

Solution 

For the function Y = X2, it is permissible to let Xbe any real number, and so the domain of the function is 
the real number system. Then, for every x value selected there is an associated y value which must be zero or 
positive. Therefore, the range of this function is the set of all nonnegative real numbers. The rule of 
association for this function is the equation Y =X2. These concepts are illustrated for this function in Fig. 1 - 1 ,  
for x = -2, - I, !, I, ..j2, and 2. It can be seen that for every x value from the domain, the function associates 
one and only one y value in the range. 

Domain 
(x-values) 

Function 
(Y=X2) 

Range 
(y-values) 

�------ ---- ------------ --- -----� C2:t---- - ---------------- ------
CD-®::_-_-::::����- :_-_-::�������_ - -J-----------.(D. 
�--------------- -- ------------- -- ----� <2Cr----- ---- ------------ ---- ---

Fig. 1-1 
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For a function such as Y =X2, once a specific x value has been selected the associated y value is 
automatically determined. Therefore, it can be said that the y value "depends" on the x value. This is why 
X is called the independent variable of the function and Y is called the dependent variable. 

A relation (or multiple-valued function) differs from a function (also called a single-valuedfunction) in 
its rule of association. Both have domains and ranges, but while the rule of association for a function 
always assigns one and only one value in the range to every value in the domain, the rule of association for 
a relation can assign more than one y value in the range to each x value in the domain. 

EXAMPLE 1 .29 For the relation Y=X± 3, what are its domain, range, and rule of association? 

Solution 
For Y =X ± 3, the domain and range are all the real numbers, and the rule assigns two y values for every x 

value. This relation is illustrated in Fig. 1-2 for x = 1 , 2, 3. 

Domain 
(x-values) 

Relation 
(Y=X± 3) 

Range 
(y-values) 

--� eJet----------- -- - - - - - - - - - - - - - �  :-----�- - -� 
�------ - ------------ - -�:��� /iJ------� , 

�-------------- --- - - - - - - - - - - - - ��- - - - - - - - - - - - - - �� 

Fig. 1-2 

1.18 FUNCTIONAL NOTATION 

Functions can be written either as associations between variables '(e.g., Y =X2) or in functional 
notation as the associations between specific values of the variables. Thus, Y =X2 would be stated in 
functional notation as 

y =f(x) = � 
where y = f(x) is read y equals a function of x; it does not read y equals f times x. f(x) is typical functional 
notation, but a function can be indicated by any other combination of letters: F(z), g(x), h(y), and so on. 

EXAMPLE 1 .30 Fory=f(x) =-3 + 2x+�, find (a) f(O), (b) f(1)· 

Solution 
(a) f(O) = -3 + 2(0) + 02= - 3 + 0+ 0 = - 3 
(b) f(I)= -3 + 2(1) + 12= -3 +2+ 1 =0 

1.19 FUNCTIONS IN STATISTICS 

A principal goal of any research effort is to study cause and effect; to discover the factors that cause 
something (the effect) to occur. For example, a botanist may want to know the soil characteristics (causes) 
that influence plant growth (effect); or an economist may want to determine the advertising factors (causes) 
that influence car s;lles (effect). 
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To study cause and effect the researcher uses statistical techniques to examine functional relationships 
between independent and dependent variables. Recall from Section 1 . 1 7  that in a mathematical function 
y = f(x) , Y is said to be the 'dependent variable and X the independent variable because the value of Y 
"depends" on the value of X In the research context, the dependent variable is a measurement variable (see 
Section 1 . 1 6) associated with the effect that has values that to some degree "depend" on the values of an 
independent variable (a measurement variable associated with the cause). Thus, in the plant example 
above, the botanist might try to show that plant height in inches (the dependent variable) is a function of 
%-nitrogen in the soil (the independent variable). And, in the car-sales example, the economist might 
investigate whether the number of cars sold by a car company in each of the last ten years (the dependent 
variable) is a function of the amount of money the company spent on advertising in each of the last ten 
years (the independent variable). 

EXAMPLE 1 .31 In the following experiment, which is the independent variable and which is the dependent 
variable? 

To determine the effects of water temperature on salmon growth, you raise two groups of salmon 
(10 in each group) under identical conditions from hatching, except that one group is kept in 200e 
:.vater and the other in 24°e water. Then, 200 days after hatching, you weigh (in grams) each of the 
20 salmon. 

Solution 
In an experiment an independent variable is changed (manipulated) to see the effect on the dependent 

variable. In this experiment, water temperature (the independent variable) is changed between groups to see 
the effect on body weight (the dependent variable). 

The definition of a function, given in Section 1 . 17, does not require an equation relating quantitative 
variables (see Section 1 . 1 5). All that is required is a domain, a range, and a rule that relates two variables in 
such a way that when a value from the domain is selected it automatically determines an associated value in 
the range. Thus, in a statistics class the domain of a function could be the name of each male student, the 
range could be their hair colors, and the rule of association could be: If a name is given, there is then one, 
and only one, associated hair color. 

1.20 THE REAL NUMBER LINE AND RECTANGULAR CARTESIAN COORDINATE 
SYSTEMS 

The real number line (or number line or real axis) is a straight line that graphically represents all of the 
real number system (see Section 1 . 1 7). 

EXAMPLE 1 .32 Plot the following numbers on the real number line: -4, -../2, -�, 0, ../2, 2�, 4. 
Solution 

Every number in the real number system can be represented by a point on the real number line. The 
numbers for this problem are plotted with exaggeratedly large dots in Fig. 1-3 . This line was constructed by 
first arbitrarily selecting a location for the origin (the zero value) and then marking off equal-length spaces to 

Origin ! 

. Fig. 1-3 
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the right and left of the origin. The positive integers increase outward to the right of the origin, and the 
negative integers increase outward to the left of the origin. All fractions and irrational numbers can be 
represented by points at appropriate distances between the integers. 

A rectangular Cartesian coordinate system (also known as a rectangular coordinate system) is 
constructed by making two real number lines perpendicular to each other, such that their point of 
intersection (the origin) is the zero point of both lines. Such a coordinate system is called Cartesian in 
honor of the French mathematician and philosopher Rene Descartes (1 596-1650), who was the first to 
propose its use (in 1 637). An example of a rectangular Cartesian coordinate system is shown in Fig. 1 -4. 
On the horizontal line (called the X axis) the numbers are positive and increasing to the right of the origin 
and negative and increasing to the left of the origin. On the vertical line (called the Y axis) the numbers are 
positive and increasing above the X axis and negative and increasing below the X axis. The two lines 
determine a plane (the XY plane) which they divide into four equal areas called the first (I), second (II), 
third (ll), andfourth (IV) quadrants. For each point on the XY plane defined by a rectangular coordinate 
system there is a pair of real numbers (x, y) that are the coordinates of that point. The first number (or x 
coordinate, or abscissa) is the horizontal distance of the point from the Yaxis and the second number (or y 
coordinate, or ordinate) is the vertical distance of the point from the X axis. 

4 

3 

II 2 

y 

� __ � __ ���+-� __ � __ �-L- X 
-4 -3 -2 -1 2 3 

- 1  

III -2 
IV 

-3 

-4 

Fig. 1-4 

EXAMPLE 1 .33 From their coordinates, plot the following points on a rectangular coordinate system: A (0, 0); B 
(- 1 , 3); C ( 1 ,  -3); D (2, 1); E (-4, -2). 

Solution 
The locations of these points in a rectangular system are shown in Fig. 1 -5, where the dotted lines show 

the distances from the points to the X and Yaxes. 

1.21 GRAPHING FUNCTIONS 

A graph is a pictorial representation of the relationship between the variables of a function. By 
convention, on a rectangular coordinate system the dependent variable of a function is the Yaxis topped by 
the symbolf(x) and the independent variable is the X axis with the variate symbol x to its right. Functions 
are classified like equations (see Section 1 . 1 4), so the function y = f(x) = c + bx is a linear or first-degree 
function, and its graph is a straight line. 

EXAMPLE 1 .34 Graph the function y = f(x) = 4 + 2x on a rectangular coordinate system. 
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4 

B t "'3 
I I 
: 2 I I 

y 

: .-----.D I I 
'f 

�---L--��--+-�--J-��-L- x 
-4 -3 -2 -I 0 1 2 3 4 

t A�I '" I I 
I I 
I : 

E ... ------------... -2 : I I 
-3 ..... C 

Fig. 1-5 
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Both the domain and range of this function include all of the real numbers, but a linear function like this 
one is typically graphed over a very limited range and domain, using only two points. The graph shown in Fig. 
1-6 was drawn using the x and y intercepts, the points where the graph crosses the X and faxes. To find the x 
intercept, set y = 0 in the equation and solve for x: 0 = 4 + 2x, so x = - 2. To find the y intercept, set x = 0 in 
the equation and solve for y: y = 4 + 2(0) = 4. 

fix) 

Fig. 1-6 

A two-variable function in the form y = f(x) = c + bx + ax2 (where a, b, and c are real numbers and 
a =f. 0) is called a quadratic function. The graph of a quadratic function is a parabola that is symmetric 
about a line parallel to the Y axis; this line is called the axis of symmetry. The parabola has: x and y 
intercepts, and either a maximum value (if it opens downward) or a minimum value (if it opens upward). 
(See Problem 1 .40 for how to graph quadratic functions.) 

1.22 SEQUENCES, SERIES, AND SUMMATION NOTATION 

In mathematics, a sequence is a function with a domain that consists of all, or some part of, the 
consecutive positive integers. If the domain is all positive integers, the sequence is called an infinite 
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sequence. If the domain is  only a part of the consecutive positive integers, the sequence is  called a finite 
sequence. 

An example of an infinite sequence is the function f(i) = i + I ,  for i = 1 ,  2, 3 ,  . . . , 00 ,  where 00 is the 
symbol for infinity. The first number in the sequence isf(1)  = 1 + 1 = 2; the second isf(2) = 2 + 1 = 3; the 
third isf(3) = 3 + 1 = 4; and so on. The sequence extends fromf(1) to/Coo): 2, 3 , 4, . . . , 00 . Each number 
in the sequence is called a term of the sequence. 

An example of a finite sequence is the function /(i) = Xi, for i = 1 ,  2, 3 ,  where the i in the Xi is called a 
subscript or an index, and Xi is read "

x sub i." There are three terms in this sequence: XI , X2, X3. 

EXAMPLE 1 .35 What are the tenns of this sequence: /(i) = F -3, for i = 2, 3, 4? 

Solution 
The three tenns are: /(2) = (2)2 - 3 = 1 ;  /(3) = (3)2 - 3 = 6; /(4) = (4)2 - 3 = 13 .  

In mathematics, a series is  the sum of the terms of a sequence. Thus, for the infinite sequence 
f(i) = i + 1 ,  for i = 1 ,  2, 3 ,  . . . , 00 ,  the series is the sum 

2 + 3 + 4 + · · · + 00 

For the finite sequence f(i) = Xi, for i =  1 , 2, 3 ,  the series is 

n 

The notation L Xi is called summation notation, and it is a symbolic representation of the series: 
i=1 

X I + x2 + x3 + . . .  + xn . The symbol L is the capital letter sigma in Greek, and it indicates that the 
sequence function to its right should be summed. The letter below the L is called the index of summation 
or the variable of summation and its numerical value indicates the' lower limit of the domain of the 

n 
sequence function. The numerical value above the L gives the upper limit. For L the limits indicate that 

i=1 

the sequence should be summed from i = 1 to i = n (from XI to xn). Typically the lower-case letters i,j, or k 
are used as indices of summation, but any letter can be used. 

4 
EXAMPLE 1 .36 Find the following sum: L P . 

i=1 

Solution 

4 
L P = (1)2 + (2l + (3)2 + (4)2 = 1 + 4 + 9 + 16 = 30 
i=1 

If Xi represents a measurement of variable X, then in statistics an entire set of n such measurements is 
n 

typically summed from XI to Xn. This series is indicated by L Xi. However, where it is clear that it is the 
i=1 

entire set being summed, the lower and upper limits of the summation are often omitted. When this is clear, 
n 

then L Xi = LXi = L X. 
i=1 
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EXAMPLE 1 .37 The heights of five boys in a third-grade class fonn the following sequence: Xl = 2 . 1 ft, X2 = 2.0 ft, 
X3 = 1 .9 ft, X4 = 2.0 ft,xs = � .8 ft. For this set of measurements, find L Xi' 

Solution 
n S 

LXi = LX; = LX; = XI + X2 + X3 + X4 + Xs i=1 i=1 

1.23 INEQUALITIES 

= 2 . 1  ft + 2.0 ft + 1 .9 ft + 2.0 ft + 1 .8 ft 
= 9.8 ft 

The symbols « ,  >, s, �) are called inequality symbols. Any mathematical statement that utilizes 
these symbols to show an inequality relationship (less than, greater than, less than or equal to, greater than 
or equal to) between two algebraic expressions is called an inequality. In an inequality, the pointed end of 
the inequality symbol always points to the smaller expression. 

, 
EXAMPLE 1 .38 Interpret in words the following mathematical statements: (a) 3 < 4, (b) 5 > 2, (c) b > a, 
(d) b ?:. a, (e) b � a. 

Solution 

(a) 3 < 4 means 3 is less than 4 
(b) 5 > 2 means 5 is greater than 2 
(c) b > a means b is greater than a 
(d) b ?:.  a means b is greater than or equal to a 
(e) b � a means b is less than or equal to a 

EXAMPLE 1 .39 Place the appropriate inequality symbol « or » between each of the following number 
pairs: (a) 1 2, (b) - 1 - 2, (c) - 1  2, (d) 1 -2. 

Solution 
To solve this problem we must refer back to the real number line (see Section 1 .20). For any two numbers 

on this line, ' the number to the right is always the larger number. Therefore: (a) 1 < 2, 
(b) - 1 > - 2, (c) - 1 < 2, (d) 1 > -2. 

If the same number is added to or subtracted from both sides of an inequality, the inequality remains 
valid. If both sides of an inequality are multiplied or divided by the same positive number, the inequality 
remains valid. If both sides of an inequality are multiplied or divided by the same negative number, the 
inequality relationship is reversed. 

EXAMPLE 1 .40 For the inequality 8 > 6: (a) add 5 to both sides, (b) multiply both sides by 3, (c) multiply 
both sides by - 3 .  

Solution 

(a) 8 + 5  > 6 + 5, or 1 3  > 1 1  
(b) 8 x 3 >  6 x 3, or 24 > 1 8  
(c) 8 x (- 3) < 6 x (- 3), or -24 < - 1 8 

For a single-variable inequality, a number is a solution to the inequality if, when the variable is 
replaced by that number, the inequality remains valid. All numbers that are solutions to such an inequality 
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fonn a solution set for that inequality. Such an inequality is solved by using the above algebraic rules for 
inequalities, to isolate the variable on one side of the inequality symbol. 

EXAMPLE 1 .41 Solve the inequality: X + 7 > -3. 

Solution 
Inequality 

X+ 7 > -3 
X> - 10 

Steps in solution 

subtract 7 from both sides 

Therefore, the solution set contains all real numbers greater than - 10. 

Solved Problems 

OPERATIONS WITH FRACTIONS 

1.1 

1.2 

a 
If we let a and b represent two numbers, then which of the following are equivalent fractions to -

b
: 

a2 2a 1 a - I 2 
2ab' 2b' (2b)j(a)' or 2b - 1 ? 

Solution 

while 

a (a)(a) a2 (a)j(a) 1 
2b = -(a)-(2-b) -2a-b = (2b)j(a) = =(2=b)-:-:j(-:-a) 

and 

Perfonn the indicated operations: 

Solution 

(a) g a b x g  a x h  bg - ah = -- --- = h b b x h  b x h  bh 
(b) 1 1 2 2 1 --:- I - = - x - = - = -

2 2 2 3 6 3 

OPERATIONS WITH SIGNED NUMBERS 

1.3 Perfonn the following additions and subtractions: (a) (- 1 2) + (-3) + (- 5) + (- 6), (b) 14 -
(- 5) + (+ 2) - (+3). 

Solution 
(a) (- 12) + (- 3) + (- 5) + (-6)= -26 
(b) 14 - (-5) + (+2) - (+3) = 21 - 3 = 18 
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1.4 Perform the following multiplications and divisions: (a) (0.4)(- 0.002), (b) (- 0.29) . (- 0.36), 
(c) (-0.009) -:- (-0.03), (d) (4.2) -:- (-'- 1 .2) . 

Solution 

(a) (0.4)(-0.002) = -0.0008 
(b) (- 0.29) · (- 0.36) = 0. 1 044 
(c) (- 0.009) -;- (- 0.03) = 0.300 
(d) (4.2) -;- (- 1 .2)= -3.5 

1.5 Determine the order of operations and then calculate: (a) 2 -:- 10 + 9, (b) (0.004/0.002) + 
(0.9/0.003). 

Solution 

(a) 2 -;- 10 + 9= 0.2+ 9= 9.2 
(b) (0.004/0.002) + (0.9/0.003) = (2) + (300) = 302 

1.6 Perform the following operations with zero: (a) 4 + 0 + 3, (b) 4 x 0 x 3, (c) 1 2/0. 

Solution 

(a) 4+ 0+ 3 = 7 
(b) 4 x 0 x 3 = 0  
(c) It is not pennitted to divide zero into a number. 

ROUNDING OFF 

1.7 Round off the following to the nearest whole number: (a) 13 .499990, (b) 1 3 .50000. 

Solution 

(a) 13 .499990 rounds off to 1 3 
(b) 13 .50000 rounds off to 14  

1.8 Round off: (a) 40. 195 to two decimal places, (b) 0.020936 to three decimal places. 

Solution 
(a) 40. 195 rounds off to 40.20 
(b) 0.020936 rounds off to 0.02 1 

ABSOLUTE VALUES 

1.9 Show that lei + Idl "# Ie + dl · 
Solution 

This can be done by using positive and negative values in the equation, say c = 5 and d = -4. 
15 1 + 1 - 41 "#  15 + (-4)1 

9 "# 1 
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FACTORIALS 

1.10 Calculate the following factorials: (a) O ! ,  (b) I ! . 

1.11 

Solution 

(a) By convention, this is defined: O! = 1 
(b) Again by convention: I !  = 1 

Perform the indicated operations: 
6! 

(a) (4 - 2)! ' 

Solution 

3 !  (b) 
(3 !)(2!) 

(a) 
6! 

= 
6 x 5 x 4 x 3 x 2 x 1 

= 
6 x 5 x 4 x 3 = 360 (4 - 2)! 2! 1 

3! 1 1 
. (b) (3 !)(2!) 2! 2 

RADICALS AND ROOTS 

1.12 Solve the following radical: 4'1 25. 

Solution 
--Y125 = the third root (or cube root) of 1 25 . Here +5 is the only possible answer. 

1.13 Give the principal nth root of H. 
Solution 

.,y=s = -2. Here there is only one real root. 

OPERATIONS WITH SQUARE ROOTS 

1.14 Perform the indicated operations: (a) .J28 +.J63, (b) 5.1(2 - 1 /25). 

Solution 

(a) v'28 + v'63 = (v'4v7) + (...19v7) = 2v7 + 3v7 = 5v7 
(b) 5)(2 - 1/25) = ../25)(2 - 1 /25) = )25(2 - 1 /25) = ..j5O-=1 = J49 = 7 

OPERATIONS WITH POWERS 

1.15 Express the following as roots: (a) 41/2, (b) 8 1/3• 

Solution 

(a) 41/2 = v'4 = 2 
(b) 81/3 = 4'8 = 2 

1.16 Express the following as fractions: (a) r 2, (b) 4- 1/2. 

1 9  
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Solution 

(a) 7-2 = � = �  72 49 

(b) 4-1/2 _ _  1 _ _ � - .j4 - 2 

Solution 

MATHEMATICS REQUIRED FOR STATISTICS [CHAP. I 

106 = 1 ,000,000; 104 = 10,000; 102 = 1 00; 1 0° = 1 ;  10-2 = 0.01 ;  10- 4 = 0.000 1 ;  1 0- 6 = 0.000001 

1.18 Perfonn the following: (a) 1 03 x 10-4, 

Solution 
(a) 1 03 x 1 0- 4 = 1 03- 4  = 1 0- 1 = 0. 1 
(b) � = 78-(-3) = 71 1  

7-3 

1.19 Perfonn the following: (a) ( l 02i, (b) ( l 0- 2r 2, (c) (abr. 

Solution 
(a) (l 02? = 1 02 x 2 =  1 04 =  1 0,000 
(b) (10- 2)-2 = 1 O{- 2){- 2) = 1 04 = 1 0,000 
(c) (abt = (an)W) 

1.20 Convert the following either from exponent to radical or from radical to exponent: (a) 1 04/5 ,  
(b) W. 
Solution 
(a) 1 04/5 = 0Q4 . 
(b) W = 56/3 = 52 = 25 

OPERATIONS WITH LOGARITHMS 

1.21 If loge 1 ,000 = 3 , what is c? 

Solution 

If loge 1 ,000 = 3 , then c3 = 1 , 000 and c = J1 ,000 = 1 0. 

1.22 Give the antilog of: (a) loga n = d, (b) 10g5 25 = 2. 

Solution 

(a) antilog of d = n  
(b) antilog of 2 = 25 
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1.23 Use an electronic calculator to find: (a) the common logarithm of 100, (b) the natural 
logarithm of 1 00. 

Solution 
(a) Most electronic calculators have two logarithm keys with the symbols [LOG] and [LN] . Pressing [LOG] 

will give the logarithm of a number to the base 10, which is also called the common logarithm of the 
number. Thus, if [LOG] is pressed when 100 is in the display, it will produce 2 in the display, which is 
10glO 100. The common logarithm is often written without the base 10, as in log 100 = 2. 

(b) Pressing [LN] will give the logarithm of a number to the base e, where e = 2.71 828 . . . .  Logarithms to 
the base e are called natural or Naperian logarithms. Thus, to five decimal places, (the natural logarithm 
of 100) = loge 100 =4.605 17 . 

1 .24 Use an electronic calculator to solve this problem: If 1 .69897 is the common logarithm of a number 
a (to five decimal places), what is its antilogarithm? 

Solution 
The relationship for the common logarithm is: If 10giO n=x, then n =  lOX. Therefore, the calculator 

antilog key for common logarithms will be [lOX]. Using this key here 

(antilog of 1 .69897) = 101 .69897 = 49.9999995, or 50 

1.25 Use an electronic calculator to solve this problem: If3 .9 1202 is the natural logarithm of a number b 
(to five decimal places), what is its antilogarithm? 

Solution 
The relationship for the natural logarithm is: If loge n =x, then n = eX. Therefore, the antilog key for 

natural logarithms will be [If]. Using this key here 

(antilog of 3.91202) = e3.91202 = 49.9998497, or 50 

1.26 Find the common logarithms of the following: (a) 4bc, (b) 7/5 , 
5 

(c) 1
27

, 

1.27 

Solution 
(a) log(4bc) = log 4 + log b + log c = 0.60206 + log b + log c 
(b) log(7/5) = log 7 - log 5 = 0.845 10 - 0.69897 = 0. 146 13 
(c) 10g( 1 f7) = log(32/27) = log 32 - log 27 = 1 .505 15 - 1 .43 136 = 0.07379 

4 (49)(27) 
Find the common logarithm of the following: 

(3 . 1  )3 
Solution 

10 ( 4 (49)(27» ) = 10 [( 49)(27»)i] = ! [(lo 49 + 10 27) - 3(10 3 . 1 )] g 
(3 . 1)3 

g 
(3 . 1 )3 4 g g g 

= � [(1 .69020 + 1 .43 1 36) - 3(0.49 136)] 

= � (3 . 12 1 56 - 1 .47408) 

= 0.41 1 87 
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ALGEBRAIC EXPRESSIONS 

1.28 Which are the terms in the following algebraic expression: 
2a - f1? a 

Solution 

The terms are: (2:) . (/1). 
EQUATIONS AND FORMULAS 

[CHAP. I 

1.29 Produce equivalent equations by applying the indicated operations on both sides of these equa­

tions: (a) a + b = c, subtract b from both sides; (b) ab = c, divide both sides by a; (c) � = c, 
multiply both sides by a. a 

Solution 
(a) a= c - b  

(b) b = � a 
(c) b=ca 

1.30 Solve these equations: (a) x + 5 = 1 0, (b) (x - 2i = 4. 

Solution 

(a) x + 5 = 10 

x = S  

(b) (x - 2)2 = 4 
(x - 2) = 2 

x = 4  

SINGLE-VARIABLE EQUATIONS AND THE QUADRATIC FORMULA 

1.31 Derive the quadratic formula [see equation ( 1 . 1 )] by solving this complete quadratic equation: 
aX2 + bX+ c = O. 

Solution 
To solve the equation and thus derive the quadratic formula, the following steps are required. 

(1) Multiply both sides of the equation by � : a 
1 1 _ (aX2 + bX + c) = -(0) a a 

b c X2 + -X+ - = 0  a a 
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(2) Add [- (�) + (:aY] to both sides: 
2 b e e ( b )2 C ( b ) 2 

(3) Rearrange the left side: 

X + -X + - - - +  - = - - +  -a a a 2a a 2a 

x2 + �X + (!:...)2 
= _ :: + � 

a 2a a 4a2 

(4) Sum the fractions on the right side: (X + !:...)2 
= _ 4a x C + � 

2a 4a x a  4a2 

4ac b2 
= - 4a2 + 4a2 

b2 - 4ac = -----:::--4a2 
(5) Take the square root of both sides: 

(6) Solve for X: 

!:... _ Ib2 - 4ac X + 2a - ± 4a2 

.Jb2 - 4ac = ±----2a 

b .Jb2 - 4ac X =  - - ± ---::---2a 2a 

= -b ± Ib2 - 4ac 
2a 2a 

1.32 Use the quadratic formula [equation ( 1 . 1 )] to solve: X2 = 12X - 36. 

Solution 

X2 - 12X + 36 = 0, and so a = 1 ,  b = -12 ,  c = 36 

VARIABLES IN STATISTICS 

12 ± J122 - (4 x 36 x 1 )  X = --'----::---'-:,----...:.. 
2 x 1 

12 ± .J144 - 144 12 = 
2 = 2 = 6 

1.33 Is color a quantitative or qualitative variable? 

Solution 

23 

The characteristic of color in an object can be measured to produce either quantitative or qualitative 
variates. The physical basis of color is the wavelength of light, which can be expressed as an arithmetic 
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number [e.g., deep red is roughly 8,000 x 10- 10 meters (or 8,000 angstroms»). If the measurements taken are 
in such wavelengths, then color is a quantitative variable. If the color variates are unordered categories, 
however, then the color variable is qualitative. Thus, for example, a group of people might be classified by hair 
color as having black, red, blond, brown, gray, or white hair. 

-

FUNCTIONS AND RELATIONS 

1.34 What are the domain and range of this function: Y = �? 
Solution 

For Y = �, both the domain and the range are all real numbers other than o. 

1.35 For y =f(x) = 2x, find: (a) f(O), (b) f(3), (c) f(6). 

Solution 
(a) /(0) = 20= 1 
(b) /(3) = 23 = 8  
(c) /(6) = 26 = 64 

1.36 From the following table giving three x values from the domain of a function and the y values 
associated with each x value, findf(x): 

3 4 

4 6 

Solution 

y =/(x) = -2 + 2x 

1.37 For the function y = f(x) = - 5 + 5x3, fill in the range in the following table: 

2 3 

Solution 

2 3 

35 130 

THE REAL NUMBER LINE AND RECTANGULAR CARTESIAN COORDINATE SYSTEMS 
1.38 Find the coordinates of the points shown in Fig. 1 -7. 

Solution 
To find the coordinates of a point on a rectangular coordinate system, draw lines from the point 

perpendicular to both the X axis and the Yaxis, and where these lines meet the axes are the coordinates of the 
point. Using this technique here, the coordinates are: A ( 1 , 2!); B (1 , - 1) ; C (- 2, - 3); D (- 2, 2). . 
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y 

e A  

25 

1.39 Graph the function y = f(x) = 4 + 2x on a rectangular coordinate system using its slope and y 
intercept. 

Solution 
For a linear function written in the form y = I(x) = c + bx where c and b are real numbers and c and b are 

not both zero, c is the y intercept of the straight line and b is its slope (the rise or drop over the run; the 
distance the line moves vertically for a given distance that it moves horizontally). For the function 
y = I(x) = 4 + 2x, the y intercept is (0, 4) (see Example 1 .34) and the slope is + 2. A slope of + 2 means 
that the line rises two units for each unit it moves horizontally in the positive direction. The graph of this 
function, using the y intercept and a second point determined by the slope [out one x unit from the y intercept 
and up two y units ( 1 , 6)], is shown in Fig. 1 -8 . 

fix) 

�--�--�----+---�--�--� x 

Fig. 1-8 
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1 .40 Graph the quadratic function y = f(x) = - 4 + 3x + x2 on a rectangular coordinate system. 

Solution 
To find the two x intercepts of this quadratic function, put y = 0 in the function: 0 = -4 + 3x + x2 The 

equation is now in a form that can be solved by the quadratic formula [equation (1 . 1)] . 

-b ± ,Jb2 - 4ac 
x = ------:----

2a 
Here, a = 1 ,  b = 3, and c = -4 

-3 ± J32 - [4 x (-4) x 1] -3 ±,J9 -[-16] -3 ± .J25 -3 ± 5  
x - - - - ---
- 2 x l - 2 - 2 - 2 ( -3 + 5 . ) ( -3 - 5 ) So the coordinates of the two x intercepts are x = --2- = l , y = 0 and x = --2- = -4,y = 0 . 

The x intercept of the axis of symmetry (where it crosses the X axis) can also be found using the 
quadratic formula written in the form 

-b ,Jb2 - 4ac 
x = - ± ----2a 2a 

The term ;: is the x intercept for the axis of symmetry, and here 

-b -3 -= -- = - 1 .5 2a 2 x 1 
Thus, the coordinates of this x intercept are (- 1 .5, 0). 

The y intercept for this parabola is found by setting x = 0 in the function: y = -4 + 3(0) + (0)2 = -4. 
Thus, the coordinates of the y intercept are (0, -4). 

Whether a parabola opens downward or upward is determined by whether the constant a in the function 
is positive or negative: If a is positive the parabola opens upward, and if a is negative it opens downward. Here 
a = 1 ,  so the parabola opens upward and has a minimum value. This minimum value is the only point on the 
parabola that is also on the axis of symmetry, and therefore it has an abscissa of - 1 .5. Then, to find the y 
coordinate for the minimum point, put - 1 .5 in the function and solve for y. 

y = -4 + 3(- 1 .5) + (_ 1 .5)2 = -6.25 

Thus, the coordinates for the minimum value are (- 1 .5, -6.25). 
The x and y intercepts, the axis of SYlllIlletry, and the minimum value are plotted on a rectangular 

coordinate system in Fig. 1-9, with a smooth curve drawn to represent all points of the parabola. 

SEQUENCES, SERIES, AND SUMMATION NOTATION 
6 

1.41 Find the following sums: (a) L P,  

Solution 
6 

i=3 

7 
(b) :ECi - 1) .  

i=4 

(a) L i2 = (3f + (4)2 + (5)2 + (6f = 9 + 16 + 25 + 36 = 86 
i=3 

7 • 
(b) L (i - l) = (4 - l ) + (5 - 1) + (6 - l) + (7 - l ) = 3 +4+ 5 + 6 = 18 

i=4 

5 
1 .42 Find: (a) L 6, 

i=l 

5 
(b) L 6. 

i=2 
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I I I I I 

fix) 

: 2 I I I I I 
X intercept I 

Fig. 1-9 

n 
(a) In general, if a is a constant, then L a = na. Therefore 

i=] 

5 
L 6 = 6 + 6 + 6 + 6 + 6 = 5 x 6 = 30 
i=] 

n 
(b) Here, the lower limit is 2 rather than 1 ,  so L a = (n - 1 )a. Therefore 

3 3 

i=2 

6 
L 6 = (5 - 1)6 = 24 
i=2 

1.43 Show that L 3xi = 3 L Xi' 

Solution 

i=1 i=1 

n n 
In general, if a is a constant, then L aXi = a LXi' Therefore 

1.44 Show that 

i=] i= ]  

3 3 
L 3Xi = 3x] + 3x2 + 3X3 = 3(x] +x2 + X3) = 3 L Xi 
�] � 

3 
3 L Xi L(�) = i=1 

i=1 2 2 

27 
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Solution n 
L X. 

In general, if a is a constant, then t (3.) = ;=1 
' . Therefore 

;=1 a a 
3 

3 L � 
,, (X;) _ XI X2 X3 _ XI + Xz + X3 _ ;=1 L..., - - - + - + - - - -
;=1 2 2 2 2 2 2 

1.45 Show that 
4 4 

L(4 + n + X;) = 1 6 + 4n + L X; 
�I �I 

Solution 
n n 

In general, if a and b are constants, then L(a + b + x;) = na + nb + L X;. Therefore 
;=1 ;=1 

4 4 4 
2)4 + n + x;) = (4 x 4) + (4 x n) + LX; = 16  + 4n + L X; 
;=1 ;=1 ;=1 

1.46 Show that 

Solution 

3 3 3 
L(3x; + 2y;) = 3 L X; + 2 LYi 
i=1 i=1 ;=! 

n n n 
In general, if a and b are constants, then L(ax; + by;) = a LX; + b Ly;. Therefore 

INEQUALITIES 

;=1 ;=1 ;=! 
3 3 3 

L(3x; + 2y;) = 3 L X; + 2 LY; 
;=1 ;=1 ;=1 

1.47 For the inequality 6 < 7: (a) add 8 to both sides, (b) subtract 8 from both sides. 

Solution 

(a) 6 + 8 < 7 + 8, or 14 < 15  
(b) 6 - 8 < 7 - 8, or -2 < - 1  

1.48 For the inequality 1 2 > 8:  (a) multiply both sides by 2, (b) divide both sides by 2. 

Solution 

(a) 12 x 2 >  8 x 2, or 24 > 16 
(b) 12/2 > 8/2, or 6 >  4 

[CHAP. 1 

1.49 For the inequality 2 >  1 :  (a) multiply both sides by - 1, (b) divide both sides by - l . 
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Solution 

(a) 2 x (- I) < 1 x (- I), or - 2 < - 1  
(b) 2j- l < lj- l , or -2 < - 1  

1.50 Solve this inequality: -3X - 2 < 2X + 5 .  

Solution 

Inequality 

-3X- 2 < 2X+ 5 
-2 < 5X+ 5 
-7 < 5X 
-7 - <x 5 

Steps in solution 

add 3X to both sides 
subtract 5 from both sides 
divide both sides by 5 

-7 Therefore, the solution set contains all real numbers greater than ""5 

1.51 Solve this inequalitiy: � + 1 :s X - I . 

Solution 
Inequality 

X -+ I <X - l  2 -
X 
2+ 2 ::S:X  

X 2 <X - -- 2 
X 2 < ­- 2 

4 ::s: X 

Steps in solution 

add 1 to both sides 

subtract � from both sides 
simplify 

multiply both sides by 2 

Therefore, the solution set contains all real numbers that are greater than or equal to 4. 

1.52 Interpret these single-variable inequalities: (a) - 9 :s X < 2, (b) - 2 < X :s  - 1 .  

Solution 

29 

(a) -9 ::s: X < 2 indicates that the variable X can assume values that are less than 2 and greater than or equal 
to -9. This means that the solution set for this inequality contains all real numbers between - 9 and 2, 
including - 9 but not 2. 

(b) -2 < X::s: - 1 indicates that the variable X can assume values that are less than or equal to - 1 and 
greater than -2. This means that the solution set for this inequality contains all real numbers between 
-2 and - 1 , including - 1  but not -2. 

1.53 What is wrong with this single-variable inequality: - 7 > X> 7? 

Solution 

This inequality is invalid because there is no solution; there is no number that is simultaneously greater 
than 7 and less than -7. 
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Supplementary Problems 

OPERATIONS WITH FRACTIONS 

1 .54 

1.55 

. . .  . 4 -;-. 3 2 4/2 (2)(2) 3 · 6  WhIch of the followmg are equIvalent fractlOns to 2 x 3 : 9 '  27 -;-. 3 '  36/2 ' or 61 ? 

Ans. 
4 -;-. 3 

= � = � = 
(2)(2) while 4 -;-. 3 =1= 3 

. 6 
2 x 3  9 27 -;-. 3 36/2 ' 2 x 3 61 

Perform the indicated operations: (a) 

43 
Ans. (a) 144

' (b) 56 
17 1 

8 +- 3 7/2 
(2)(3) - 6 x 4 ' (b) (14)(3) ...:... 18 x 4. 

1 9/2 . 16 -;-. 3  

OPERATIONS WITH SIGNED NUMBERS 

[CHAP. 1 

1.56 Perform the following additions and subtractions: (a) 1 .3 + (- 1 .7) - (- 2.3) - (+4.2) - (- 3 . 1), 
(b) (- 0.93) + (-0.26) - (- 3.9 1) + (-2. l ). 
Ans. (a) 0.8, (b) 0.62 

1.57 Perform the following multiplications and divisions: (a) (1 ,800) -;-. (-0.2), (b) (- 3.63)(- 0.0001), 
(c) (- 0.0004)/(- 0.002). 
Ans. (a) -9,000.0, (b) 0.000363, (c) 0.2000 

1 .58 Determine the order of operations and then calculate: [(-3) x (-4) + (2)] -;-. [(2) - (-0.5)]. 
Ans. 5.6 

1 .59 Perform the following operations with zero: (a) 4 x O+ 3, (b) 0/12 + 3 . 
Ans. (a) 3, (b) 3 

ROUNDING OFF 

1 .60 Round off the following to the nearest whole number: (a) 24.50 1 , (b) 24.50. 
Ans� (a) 25, (b) 24 

1.61 Round off: (a) 2. 125 to two decimal places, (b) 4.93250 to three decimal places . 
Ans. (a) 2. 12, (b) 4.932 

ABSOLUTE VALUES 

1.62 Give the absolute values of the following numbers: (a) 10/-2, (b) 0, (c) 7 - 10 . 
Ans. (a) 5, (b) 0, (c) 3 

FACTORIALS 

1.63 rfi h ·  d' d 
. 6! 

Pe onn t e III lcate operattons: -
( ,) ' 5 3 .  

Ans. 24 
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RADICALS AND ROOTS 

1.64 Solve the following radical: ..tr. 

3 1  

Ans. There are two possible answers, + 1 and - 1 , and again by convention ..tr = + 1 and -..tr = -1 . 

1.65 Give the principal nth root of -Y625. 
Ans. By convention, the principal 4th root is: -Y625 = 5. 

OPERATIONS WITH SQUARE ROOTS 

1.66 Perfonn the indicated operations: (a) ...fi7 - ,Jf2, 
Ans. (a) .../3, (b) 7 

(b) 3v'45 - .J2O. 
./125/5 

OPERATIONS WITH POWERS 

1.67 Express the following as fractions: (a) 8- 3, (b) 8- 1/3 • 

1.68 

1.69 

A ( ) 1 (b) ! ns. a 5 12 ' 2 

State the following as the product of a power of 10: (a) 0.0237, (b) 0 . 1 1627, (c) 1 1 ,627 . 

Ans. (a) 2.37 x 10-2, (b) 1 . 1627 x 1 0- 1 , (c) 1 . 1 627 X 104 

Perfonn the following: (a) (3 x 73) (2 x r2), (b) 6 x 1 0-3 . 3 X 1 0-1 

Ans. (a) 42, (b) 0.02 
1.70 Perfonn the following: (a) (3 x 5)3, (b) (3 x 5)-2. 

Ans. (a) 3,375, (b) 0.00444 

1 .71 Convert the following from exponent to radical or from radical to exponent: (a) 94/3 , (b) ,j9i. 

Ans. (a) 4'94, (b) 92/5 

OPERATIONS WITH LOGARITHMS 

1 .72 If loge 0.001 = - 3, what is c? 
Ans. 10 

1.73 If 3 . l7609 is the common logarithm of a number a (to five decimal places), what is its antilogarithm? 
Ans. 1 ,500 

1 .74 If - 1 .89712 is the natural logarithm of a number b (to five decimal places), what is its antilogarithm? 

1.75 

Ans. 0. 1 5 

5 
What are the common logarithms of: (a) "7 '  (b) 1 1 1 12? 

Ans. (a) -0. 14613 , (b) 24.54388 
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(( 15)3...fii) - 1/3 
1.76 Find the common logarithm of 1/3 ( 15) 

Ans. - l .269 1 5  

ALGEBRAIC EXPRESSIONS 

1 .77 Which are the tenns in the following algebraic expression: 1 4  + 2(a + b)? 
Ans. (14), (2a), (2b) 

EQUATIONS AND FORMULAS 

1.78 Detennine the value (values) for y for which the conditional equation 2/ = 8 is true. 
Ans. y=2 or y=-2 

1.79 Solve these equations for c: (a) a = b (1 + c), (b) c2a - b = 2b. 

Ans. (a) C = � - l , (b) c =� 
SINGLE-VARIABLE EQUATIONS AND THE QUADRATIC FORMULA 

1.80 Use the quadratic fonnula [equation ( 1 . 1 )] to solve 4X2 = 1 .  

Ans. X = 0 ±.JT6 = ±i = ±� 8 8 2 

FUNCTIONS AND RELATIONS 

1.81 What are the domain and range of this function: Y = .JX - 2? 

[CHAP. 1 

Ans. The domain is all real numbers greater than or equal to 2, and the range is the set of all nonnegative 
real numbers. 

1.82 For y=f(x)= 7, find: (a) f(O), (b) f(3), (c) f(6). 
Ans. No matter what the x value, y=f(x)= 7. 

THE REAL NUMBER LINE AND RECTANGULAR CARTESIAN COORDINATE SYSTEMS 

1 .83 What are the abscissas and ordinates of points A and B in Fig. 1 -7? 
Ans. A (1 is abscissa, 2! is ordinate); B (1 is abscissa, - I  is ordinate) 

GRAPHING FUNCTIONS 

1.84 Graph the linear function y = f (x) = 3 - O.5x on a rectangular coordinate system using its slope and y 
intercept. 
Ans. The graph in Fig. 1 - 1 0  was drawn using the y intercept (0,3) and, as the slope is negative (-0.5), a 
point that is out four x units and down two y units from the y intercept. 



CHAP. 1 ]  MATHEMATICS REQUIRED FOR STATISTICS 

j(x) 

4 

run -----------------� 

Fig. 1-10 

• • ' 0-' 0  
: 43  
y 

SEQUENCES, SERIES, AND SUMMATION NOTATION 

6 
1.85 Find the following sums: (a) L i - 1 ,  

i=3 

Ans. (a) 17,  (b) xT + � +� + � + � 

5 
(b) L X;. 

i=! 

1.86 For the heights in Example 1 .37, find: (a) I>f, (b) (I>i. 
Ans. (a) 1 9.26 if, (b) 96.04 ft2 

4 
1.87 Find L(5 + 3i + P). 

i=2 
ADS. 71  

1.88 Find E(� + 3i2) . 

ADS. 45.5 

INEQUALITIES 

1 .89 For the inequality b � a: (a) add 5 to both sides, (b) subtract 5 from both sides. 
ADS. (a) b + 5  � a + 5, (b) b - 5 � a - 5 

1 .90 For the inequality 3 < 4: (a) multiply both sides by 3, (b) divide both sides by 2.  
ADS. (a) 3 x 3 < 4 x 3 ,  or 9 <  12, (b) 3/2 < 4/2, or 1 ! < 2  

1.91 For the inequality 6 < 7 :  (a) multiply both sides by - 2, (b) divide both sides by - 7. 
6 

ADS. (a) 6 x (- 2» 7 x (-2), or - 12 > - 14, (b) 6/- 7 > 7/- 7, or - "7 > - 1 
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Chapter 2 

Characteristics of the Data 

2.1 MEASUREMENT SCALES 
A measurement scale is a tool that is applied to an observable variable to produce a measurement 

variable (see Section 1 . 1 6). Thus, a ruler marked off in inches is a measurement scale which, when placed 
against an object, can produce the measurement variable of length in inches. Using such a measurement 
scale, a specific value on the scale can be assigned to each thing being measured. 

Measurement scales that produce qualitative measurement variables (see Section 1 . 1 5) simply divide 
the observable variable into a set of unique, unordered categories. Thus, for the observable variable of hair 
color, the measurement scale might include these categories: black, red, blond, brown, gray, and white. 
Such scales should have sufficient categories to allow each thing being measured to be classified into one, 
and only one, category. 

Measurement scales that produce quantitative measurement variables (see Section 1 . 1 5) also consist of 
a set of unique categories, but now the categories can be ordered from small to large. Typically, the 
categories are serially increasing numerical values. Thus, for example, to measure the observable variable 
of height in a group of people, one could use an increasing scale graduated in 0. 1 centimeter steps which 
place each person in one, and only one, category on the scale (e.g., 1 70. 1 cm). 

2.2 OPERATIONAL DEFINITION OF A MEASUREMENT 
Measurement is the logic and procedures involved in applying a measurement scale to an observable 

variable to produce a measurement variable. It includes the rules used to assign each thing being measured 
to one category on a measurement scale. An operational definition of a measurement indicates the exact 
sequence of steps (or operations) that are followed in taking a measurement: applying a measurement scale 
to an observable variable. The definition should be sufficiently precise and detailed so that everyone who 
uses the procedure will achieve essentially the same measurement. 

EXAMPLE 2.1 You are asked to measure the height of each person in your statistics class to the nearest millimeter, 
using two meter sticks, masking tape, and a stepladder. Give an operational definition for the measurement. 

Solution 

The sequence of steps (operations) could be as follows: 
(1) Select a doorjamb and create a vertical two-meter scale on it  by taping the meter sticks against the jamb, 

one on top of the other, such that the bottom scale line ofthe upper stick coincides with the top scale line 
of the lower stick. 

(2) Have each member of the class, in turn, take off their shoes and stand straight with their backs against 
the doorjamb. 

(3) Standing on the stepladder with your eyes at the level of the top of each head, read the heights from the 
two-meter scale to the nearest millimeter. 

2.3 LEVELS AND UNITS OF MEASUREMENT 
The four levels of measurement are four types of measurement scales: nominal (see Section 2.4), 

ordinal (see Section 2.5), interval (see Section 2.6), and ratio (see Section 2.7). Nominal scales produce 
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qualitative measurement variables, while ordinal, interval, and ratio scales produce quantitative measure­
ment variables. 

With the exception of ordinal-level measurement, all measurement scales used to produce quantitative 
measurement variables have uniform and standard units of measurement. These units both identify the type 
of observable variable being measured (e.g., length, mass, time, temperature) and give a distance on the 
measurement scale as a standard reference for comparisons between measurements. The two basic systems 
of units used in this book are the English system (e.g., inch, pound, second) and the metric system (or 
International System of Units; e.g., meter, gram, second). 

2.4 NOMINAL-LEVEL MEASUREMENT 
Nominal-level measurement is the most basic level of measurement, in which the things being 

measured are simply classified into unique categories. These categories are mutually exclusive (no thing 
can be placed in more than one category) and totally inclusive (every thing ClUJ. be placed in at least one 
category). Mathematically, the property of being classifiable into one and only one category can be 
symbolized by the equal-to and not-equal-to symbols (= ,  =j:. ). Categories on nominal scales are not 
ordered in any way (e.g., from small to large), and numbers are used only as labels for categories. Thus, car 
license numbers are an example of a nominal scale. The minimum number of categories on a nominal scale 
is two (e.g., whether a coin lands heads or tails) and there can be as many categories as needed. Other 
examples of nominal scales are: type of fish (e.g., shark, flounder, trout); presence or absence of disease; 
and type of industrial injury. 

. 

2.5 ORDINAL-LEVEL MEASUREMENT 
Ordinal-level measurement is the next level above nominal. Its scales retain the nominal level property 

of classifying things into one and only one category ( = ,  =j:. ), but now the categories are ordered: ranked 
according to the magnitude of the characteristic being measured. Each category can now be said to be 
greater than (» or less than ( <) its neighbor, depending on the amount of the characteristic it represents. 
Some examples of ordinal scales are: ranking the size of a set of objects on a three-number scale . 
( I  = small, 2 = medium, 3 = large); ranking the quality of movies on a five-number scale (from 1 = very 
bad, to 5 = excellent); and ranking the aggressiveness of children at play on a ten-number scale (from 
1 = unaggressive, to 10 = very aggressive). 

While ordinal scales produce quantitative measurement variables, these variables are not isomorphic 
(identical) to the underlying observable variable because they do not have standard and uniform 
measurement units. Instead, intervals on ordinal scales are determined subjectively and thus may differ 
for all users of the scale. Ordinal measurement, therefore, can indicate only the relative amount of a 
characteristic in each thing being measured, but not exactly how much more of the characteristic one thing 
has versus another. 

2.6 INTERVAL-LEVEL MEASUREMENT 
Interval level is the next higher level of measurement above ordinal level. Its scales include the 

properties of nominal ( = ,  =j:. )  and ordinal « ,  » scales, and in addition have uniform and standard 
reference units. Such units eliminate subjectivity in quantitative measurements, producing scales with 
constant and equal intervals. With such interval scales it is possible to determine exact distances between 
two things with regard to the characteristic being measured, by addition or subtraction between the scale 
values (+ , - ). Interval scales always produce quantitative measurement variables that are isomorphic with 
the observable variable being measured, with the exception that interval scales have arbitrary and not 
absolute zero points. 

One example of an interval scale is the Celsius (or centigrade) scale for temperature. On this scale, 
zero temperature (O°C) is arbitrarily defined as the freezing point of water, and the unit COC) is then defined 
as l / lOOth of the distance on the scale to the boiling point of water ( l OO°C). Exact distances can be 
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determined on the Celsius scale through addition or subtraction; thus it can be said that an object that is 
40°C is l OoC hotter than an object that is 30°C (40°C - 30°C = lO°C). 

Another example of an interval scale is the Fahrenheit scale for temperature, which again uses the 
freezing and boiling points of water to determine the zero values and the scale units COF). On the Fahrenheit 
scale, however, the distance from the freezing point (32°F) to the boiling point (2 12°F) is 1 80°F, and zero 
(O°F) is 32°F below the freezing point. Other examples of interval scales are various time scales, such as 
the calendar year with its culturally determined zero point, and time of day on the 24-hour clock which 
arbitrarily has 1 2  midnight as its zero point. 

2.7 RATIO-LEVEL MEASUREMENT 
Ratio level is the highest level of measurement. Its scales include the properties of nominal ( = ,  =j: ), 

ordinal « ,  » ,  and interval (+ , - )  scales, and now in addition also have absolute zeros. This means that 
at the zero value on a ratio scale, the characteristic being measured has decreased to the point where it is 
not present or at least it is not observable. Because numbers on such scales now represent distances from an 
absolute zero, it is legitimate to calculate ratios between measurements on the scale: to express one 
measurement as a multiple of another. 

An example of a ratio scale is the Kelvin scale for temperature. Zero on the Kelvin scale is an absolute 
zero, defined as the temperature at which no pressure can be detected in an ideal gas: when the average 
kinetic energy per gas molecule is zero. The unit on the Kelvin scale [degree Kelvin (K); by convention a 
degree symbol CO) is not used with Kelvin temperature] is the same distance as the unit on the Celsius scale 
( 1/ 100 of the distance between the freezing and boiling points of water), but zero on the Kelvin scale is 
equivalent to - 273 . 1 5°C. While ratios are not legitimate between either Celsius or Fahrenheit measure­
ments, it is legitimate to calculate ratios between Kelvin measurements. Thus, for example, it can be said 
that 300 K is twice as hot as 1 50 K. 

Other examples of ratio scales are: weight in grams, length in centimeters, time in seconds, miles per 
hour, and many other scales in common use. 

EXAMPLE 2.2 Demonstrate, by converting the Kelvin measurements 300 K and 1 50 K into equivalent °C values, 
why ratios are not legitimate on the ordinal-level Celsius scale. 

Solution 

The absolute zero on the Kelvin scale allows legitimate ratios whereas the arbitrary zero on the Celsius 
does not. To demonstrate, we convert 300 K and 1 50 K to equivalent °c values, using the following 
relationship between the two scales: °c = K - 273 . 1 5 .  Therefore for 300 K 

°C = 300 - 273. 1 5 = 26.85 
and for 1 50 K 

°C = 150 - 273 . 1 5  = - 1 23. 1 5  
The resulting ratio, 26.85°Cj - 1 23 . l 5°C = - 0.218, leads to the meaningless statement that 26.85°C is 

- 0.21 8  times hotter than - 123. 1 5°C. 

2.8 CONTINUOUS AND DISCRETE MJj:ASUREMENT VARIABLES 
To understand how continuous measurement variables differ from discrete measurement variables, 

consider the following measurement variables you could acquire from your statistics class: the height of 
each student in centimeters, which is a continuous measurement variable; and the number of students 
attending each lecture, which is a discrete measurement variable. 

Height in centimeters is a continuous measurement variable because the characteristic of height (the 
observable variable) is a continuum without gaps. This means that, theoretically, there is an infinite number 
of possible intermediate measurements between any two height measurements. To see why this is true, 
consider the height of 1 65 .2 cm, which indicates that your measuring technique is sensitive to tenths of a 
centimeter. Say, however, you want a better measurement, and with considerable effort you increase the 
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sensitivity to thousandths of a centimeter, and get the value 1 65. 1 95 cm. Theoretically, because height is a 
continuum without gaps, you could continue this process of increasing the sensitivity until you achieved a 
measurement with an infinite number of decimal places: 1 65 . 195342 1 6239867 . . .  cm. For continuous 
measurement variables, there is theoretically (but not practically) an infinite number of possible values 
between any two values on the scale. 

The most common discrete measurement variables (also called discontinuous or meristic measurement 
variables) are obtained by counting the number of things in some set of things. Thus, the number of 
students attending each lecture is a discrete measurement variable because the characteristic of number of 
students (the observable variable) is not a continuum, there are gaps in this characteristic. If there are 52 
students enrolled in the course, then the number attending a lecture could be 52, or 37, or 25, but not 52. 1 
or 48.639. The measurements on a discrete measurement variable must be one of a fixed set of values, 
without the possibility of intermediate values. Counting is ratio-level measurement, because it has all the 
properties of nominal ( = ,  =1= ), ordinal « ,  » ,  and interval (+ , - ) measurement, a scale unit (the number 
one), and an absolute zero. It is called discrete ratio-level measurement to distinguish it from continuous 
ratio-level measurement (e.g., height of students in centimeters). 

EXAMPLE 2.3 The objects in Fig. 2-1 can be · measured on each of the four levels of measurement. Give 
a measurement scale that could be used on these objects for each of the following types of measurement: 
(a) nominal, (b) ordinal, (c) interval, (d) continuous ratio, and (e) discrete ratio. 

Fig. 2-1 

Solution 

(a) A possible nominal scale would be the three-category, object-shape scale: triangle, square, pentagon. 
This scale simply classifies the objects into unordered categories. 

(b) A possible ordinal scale would be ranking the size of the objects on this three-number scale: 1 = small, 
2 = medium, 3 = large. This scale classifies the objects into ordered categories that are separated by 
subjective intervals. 

(c) A possible interval scale would be the position of each object on a 3600 circular scale that shows 
compass direction. This scale has units, the 360 equal intervals called degrees, but an arbitrary zero. 

(d) A possible continuous ratio scale would be the length of the longest dimension of each object with a 
scale that has inch or centimeter units. 

(e) A possible discrete ratio scale would be a count of the number of objects in the figure. 

2.9 TYPES OF DATA 
In general, data is the term used to describe sets of factual information collected as part of some study. 

In statistics, the term refers to sets of measurements. Using the categories from Sections 2.3 through 2.8, 
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such measurement sets can be described as quantitative data or qualitative data, discrete data or 
continuous data, or by their level of measurement (e.g., interval-level data). 

Data can also be described as classificatory, categorical, or enumeration. These terms are different 
names for the same type of data: counts, for a group of things being measured, of how many of them can be 
placed in each category of a nominal measurement scale. An example of such data would be measuring 10 
flowers on a three-category color scale (red, blue, yellow), and finding that there were 3 red, 4 blue, and 3 
yellow. They are called classificatory or categorical data because on nominal scales things are simply 
classified into categories. They are called enumeration data because the number of things classified into 
each category is counted (enumerated). This use of counting is not the same as discrete ratio-level 
measurement (see Section 2. 8), where the possible count-numbers themselves are the categories on the 
measurement scale. 

2.10 THE APPROXIMATE NATURE OF MEASUREMENT 
All real-life continuous data (see Sections 2.8 and 2.9) only approximate the true measurements and 

are therefore called approximate measurements. If, for example, you followed the operational definition of 
height measurement in Example 2 . 1  and measured the heights of members of your statistics class, one 
height might be 1 72.7 cm. This result states that the height is 1 72 cm plus roughly 7/ 1 0  of the distance 
between 1 72 cm and 1 73 cm. While the true measurement is an exact distance somewhere within that 
interval, with an infinite number of decimal places, using a relatively crude instrument (meter stick) you 
can only estimate it to be 7/ 1 0  of the distance. By increasing the sensitivity of your measuring instrument 
you could add on more and more decimal places, getting closer and closer to the true measurement, but in 
reality there is a limit to even the most powerful measuring instruments. Therefore, all continuous data 
must be considered approximate measurements. 

For every approximate measurement, the last digit of the measurement (sometimes called the doubtful 
digit) is typically at the limit of sensitivity of the measuring instrument. Thus, for the height measurement 
172.7 cm, the first three digits were easily acquired from the meter stick and are fairly certain, but the 
fourth and last digit is an uncertain estimate: 7/ 1 0  of the distance between 1 72 cm and 173 cm. By 
convention, this estimated value, while stated as a single digit, is actually considered to be an interval 
called the implied range. This range has the estimated value as its midpoint and extends above and below 
the estimated value by one-half of the smallest scale unit. Here, the smallest scale unit is 0. 1 cm so the 
implied range is 172.65 cm to 1 72 .75 cm. This form is typical of how the implied range is stated, and the 
form that will be used in this book. It should be noted, however, that some statisticians, to avoid 
overlapping boundaries between adjacent intervals, would write this range as 1 72.65000 . . .  cm to 
1 72.74999 . . .  cm. 

EXAMPLE 2.4 What is the implied range of this approximate measurement: 1 .2965 mg? 

Solution 

A method for determining the implied range for any approximate measurement is: 
(1) Using the smallest measurement unit, set up a three-value scale that has the measurement as its midpoint 

and values one unit above and below this midpoint. 
(2) Determine the halfway points between the three values, which are the lower and upper boundaries of the 

implied range. 

Therefore here 

3-value scale halfway points implied range 
1 .2964 

1 .29645 
1 .2965 1 .29645 mg to 1 .29655 mg 

1 .29655 
1 .2966 
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Discrete ratio-level measurements (see Section 2.8) can produce exact measurements. Thus, if one 
counts the number of eggs in a bird's nest, there might be exactly 7 but not 6 ! or 7 t. It is often the case, 
however, that counts of very large numbers of things are estimated, and these estimates are approximate 
measurements. Thus, for example, a soil biologist might estimate the number of organisms in a cubic meter 
of soil to be 36,000 to the nearest 1 ,000, or an economist might estimate the number of new houses started 
in the United States in the month of June to be 230,000 to the nearest 1 0,000. 

2.11 SIGNIFICANT DIGITS 
The significant digits (also called significant figures) in a measurement are all the digits actually 

obtained from the measurement scale. The nonsignificant digits are those zeros in a measurement that are 
there only to indicate the position of the decimal point. For measurements that are larger than or equal to 
one: All nonzero digits are significant; zeros between significant digits are significant; and if there is a 
decimal point, then zeros to the right of the last nonzero digit are significant. For measurements that are 
between zero and one, the same rules apply with the exception that: All zeros between the decimal and the 
first nonzero digit to its right are nonsignificant. 

. 

EXAMPLE 2.5 How many significant digits are there in the following approximate measurements: (a) 1 . 12 mg, 
(b) 1 .02 g, (c) 920.02080 mi, (d) 0.0900 mg? 

Solution 

(a) 3, (b) 3, (c) 8, (d) 3 

EXAMPLE 2.6 Indicate the implied range and number of significant digits in the following measure­
ments: (a) 102 horses, (b) 10,100 insects to the nearest 100. 

Solution 

(a) 102 horses is an exact measurement, and therefore does not have an implied range. It has three 
significant digits. 

(b) 10, 100 insects to the nearest 100 is an estimated discrete ratio measurement (see Section 2 . 10) that has 
an implied range of 10,050 insects to 10, 1 50 insects, and has three significant digits. 

2.12 SCIENTIFIC NOTATION AND ORDER OF MAGNITUDE 
Scientific notation expresses any number as the product of two factors. The first factor is a number 

with only one nonzero digit to the left of the decimal point, and the second factor is the appropriate power 
of 1 0  (see Section 1 .9). Thus, for example, the number 1 00.0 in scientific notation would be 1 .000 x 102, 
and the number 0.36 would be 3 .6  x 10- 1 . When a number is written in scientific notation, its power of 1 0  
indicates its size, and is called the order of magnitude of the number. Numbers with the same power of 1 0  
are of the same order of magnitude. Therefore, for example, 1 .0 x 103, 4.2 13  X 103, and 9.237456 x 1 03 
are all of the same order of magnitude. 

EXAMPLE 2.7 For the following approximate measurement written in scientific notation, which are the significant 
digits and what is the implied range: 4.2 x 103 m? 

Solution 

By convention, all of the significant digits in a measurement written in scientific notation are placed in 
the first factor, and there are no nonsignificant digits in the first factor. Therefore, for this measurement the 
significant digits are: 4 and 2. 

To determine implied ranges for measurements written in scientific notation, use the technique given in 
Example 2.4 on the first factors, and then multiply each of the resulting values by the second factors. 
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4.1  
Therefore, for 4.2 x 103 m, the three-value scale would be 4.2 the halfway points would be 4. 1 5  to 

4.3 
4.25, and the implied range would be 4. 1 5  x 1 03 m to 4.25 x 1 03 m. 

2.13 SYSTEMATIC AND RANDOM ERRORS OF MEASUREMENT 
In Section 2 . 10  we indicated that all real-life continuous data only approximate the true measurements 

and are therefore called approximate measurements. One reason given for this was the sensitivity (or 
detection) limit for even the most powerful measuring instrument. Thus, no matter how many decimal 
places the instrument provides, it can only crudely approximate the infinite number of decimal places in the 
true measurement. Besides this sensitivity limit, another factor that separates any real-life measurement 
from its true value is error of measurement present in the real-life data. Such errors may be systematic or 
random. 

Systematic errors of measurement, also called bias, result from flaws in the measurement procedure 
that consistently produce distortions in one direction, making the measurements either always too large or 
always too small. If, for example, in following the operational definition in Example 2 . 1  the upper meter 
stick was accidentally taped one centimeter below the top of the lower stick, then all of the height 
measurements would consistently be one centimeter too large. Such bias is typically hard to detect, but it 
can be done if the measurement can be compared to some empirical or theoretical standard. 

The other type of error that can occur in any approximate measurement is random (or chance) error. 
Such errors are produced by random variations in the measurement procedures that create inconsistent, 
nonsystematic distortions from measurement to measurement; the measurements are sometimes too large 
and sometimes too small. If, for example, you measured the height of the same student ten times, you 
could get random errors produced by inconsistent changes in his posture against the scale or your viewing 
angle from the ladder. 

Because of the limits of sensitivity and these possibilities for error, each approximate measurement 
should be thought of as this equation. 

(Approximate measurement) = (True measurement to limit of sensitivity) 
+ (Systematic error) + (Random error) 

If a discrete ratio-level measurement (see Section 2.8) is a direct count of a limited set of things (e.g., 6 
eggs in a bird's nest, or 36  students at a lecture), then it is unlikely this count would include either 
systematic or random errors of measurement. If, however, the count is an estimate (see Section 2 . 10), then 
it may include such errors. 

2.14 ACCURACY AND PRECISION IN STATISTICS 
In statistics, the phrase accuracy of a measurement refers to how close the measurement is to the true 

measurement. From Section 2. 1 3  it can be seen that accuracy is determined by both the sensitivity of the 
measuring instrument and the presence of errors of measurement, particularly systematic errors. 

The precision of a measurement has quite a different meaning in statistics. It refers to the similarity of 
repeated "identical" measurements of the same things. Systematic errors typically remain the same from 
measurement to measurement, so precision, or the variability of repeated measurements, is determined 
primarily by the presence and amount of random errors . 

From these definitions you can see that a measurement can be accurate and precise (close to the true 
measurement and repeatable with minimum variation); inaccurate and imprecise (far from the true 
measurement with great variation in repeated measurements); accurate and imprecise; or inaccurate and 
precise. 

The significant digits reported in an approximate measurement are a statement about the accuracy 
(closeness to the true value) of the measurement. If, for example, you report the weight of an object to be 
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4.32 mg, then what you are saying is that you are reasonably certain that the object weighs 4.3 mg, and that 
the true value lies somewhere in an implied interval from 4.3 1 5  mg to 4.325 mg, a range of 0.01 mg. 
Because of what it says about accuracy, the implied interval is often called the implied range of accuracy. 
Assuming little or no bias, the accuracy available for the measurement is determined by the sensitivity limit 
of the measuring instrument as well as the presence and amount of precision-limiting random error. 

2.15 ACCURACY AND PRECISION IN THE PHYSICAL SCIENCES 

The statistical definitions of these concepts (see Section 2. 14) come from statistical estimation theory 
which is introduced in Chapter 14. The definitions for these measurement properties that are used in the 
physical sciences (chemistry, physics, etc.) are related but somewhat different. 

In the physical sciences the level of accuracy of a measurement is the number of significant digits in 
the measurement, while the level of precision of a measurement is the size of its smallest measuring unit. 
Thus, 4.32 mg, 43.2 mg, and 432 mg have all been measured at the same level of accuracy, which can be 
expressed in words as an accuracy of three significant digits. And 423.3 mg, 43.2 mg, and 4.3 mg have 
been measured at the same level of precision, which can be expressed in words as precise to the nearest 
0. 1 mg. 

EXAMPLE 2.8 The following is a set of measurements written in scientific notation: 2.53 1 x 102 cm, 
2.53 1 x 10 cm, 2.53 16 x 102 cm, and 2.53 167 x 103 cm. Using the physical-sciences definition, which of these 
measurements are at the same levels of: (a) accuracy, (b) precision, and (e) order of magnitude? 

Solution 

(a) 2.53 1 x 1 02 cm (or 253 . 1  cm) and 2.53 1 x 10 cm (or 25.3 1 cm) both have an accuracy of four 
significant digits. 

(b) 2.53 1 x 10 cm (or 25.3 1 cm), 2 .53 1 6  x 102 cm (or 253 . 1 6  cm), and 2.53 167 x 103 cm (or 
2,53 1 .67 cm) are all precise to the nearest 0.01 cm. 

(e) 2.531 x 1 02 cm and 2.53 1 6  x 1 02 cm both have 2 as their power of ten, so they are at the same order of 
magnitude. 

When adding or subtracting approximate measurements, the answer should be rounded off (see 
Section 1 .4) to the same level of precision (physical-sciences definition) as the least precise measurement 
in the problem. When multiplying or dividing with approximate measurements, the answer should be 
rounded off to the same level of accuracy (physical-sciences definition) as the least accurate measurement 
in the problem. 

EXAMPLE 2.9 Perform the indicated algebraic operations and then round off the answers to the correct number of 
digits: (a) 7 . 1 23 kg + 8.9 kg, (b) 72 kg x 0.01 kg. 

Solution 

(a) 7. 1 23 kg + 8.9 kg = 16.023 kg, which should be rounded off to 16.0 kg 
(b) 72 kg x 0.01 kg = O.72 kg2, which should be rounded off to 0.7 kg2 

2.16 UNIT CONVERSIONS 

The metric system, also called the International System of Units, or SI units, has the reference units 
meter (m), gram (g), and second (sec). Standard multiples and submultiples of these units have specific 
names and abbreviations. 

EXAMPLE 2.1 0 Give the names and abbreviations for the following quantities: (a) 1 0-2 m, (b) 10-3 sec, 
(e) 10-6 g, (d) 10-9 m, (e) 1 03 g, (j) 106 sec (g) 1 09 m. 
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Solution 

(a) 10-2 m is centimeter, abbreviated cm 
(b) 10-3 sec is millisecond, abbreviated msec 
(c) 10-6  g is micrograms, abbreviated Ilg 
(d) 10-9 m is nanometer, abbreviated urn 

(e) 1 03 g is kilogram, abbreviated kg 
(f) 1 06 sec is megasecond, abbreviated Msec 
(g) 109 m is gigameter, abbreviated Gm 

[CHAP. 2 

The standard method for converting metric system (Sl) units into English units, or vice versa, is to 
multiply the measurement by the appropriate conversion factor (see Table 2. 1 ). 

Table 2.1 

Conversion Factors 
English to SI 

I inch = 2.540 cm 
1 inch = 2.540 x 10-5  km 
1 ft = 0.3048 m 
1 mi = 1 .609 km 
1 I b = 0.4536 kg 
1 I b = 453.6 g 
1 gal = 3.785 liters (1) 

SI to English 

1 cm = 0.3937 in 
1 km = 3.937 x 104 in 
1 m = 3.281 ft 
1 = 0.6215  mi 
1 kg = 2.205 Ib 
1 g = 2.205 x 10 - 3 1 b 
1 1 = 0.2642 gal 

EXAMPLE 2.1 1 Using the appropriate conversion factor, determine: How far is 1 00 yards in centimeters? 

Solution 

100 yd x (3;) x ( 1 2:) x (2.540 c:) = 300 ft x (12�) x (2.540�:) 
= 3 ,600 in x (2.540 �:) 
= 9, 144 cm, or 9 . 144 x 1 03 cm 

This number is not rounded off because the only approximate number in the calculation, the conversion factor, 
is given to four significant digits. 

Solved Problems 

LEVELS AND UNITS OF MEASUREMENT 

2.1 Why do the physical sciences restrict the term "measurement" to interval- and ratio-level 
measurement? 

Solution 

In chemistry, physics, and other physical sciences, all measurements must include both a numerical value 
and a unit (e.g., 20 feet, or 1 5  pounds). In most of the social sciences (psychology, sociology, economics, etc.), 
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however, measurements are often taken at the two levels without units, below interval and ratio. Therefore, in 
this book we use the more general definition of measurement that includes nominal and ordinal levels. 

2.2 Detennine the actual set of enumeration data from the objects in Fig. 2-1 for the nominal scale 
proposed in Example 2 .3(a). 

Solution 

For the suggested three-category, object-shape scale, the enumeration data would be: 2 triangles, 3 
squares, and 4 pentagons. 

2.3 For each of the following, first indicate its level of measurement (nominal, ordinal, interval, 
continuous ratio, or discrete ratio) and then explain your choice: (a) the attitude of Americans 
toward immigrants as measured on a five-number scale from 1 ( = unfavorable) to 5 ( = highly 
favorable), (b) the gender of 40 clerks in a department store, (c) the types of birds that arrive at 
a feeder each day, (d) the day in the year when each of 50 students was born, (e) the time it 
takes for a woman runner to complete a 1 00-meter dash, (j) the body temperature in 0c. 

Solution 

(a) Ordinal; this five-number attitude scale has ordered categories but the intervals between categories are 
subjective. 

(b) Nominal; gender is an unordered, two-category scale: male, female. 
(c) Nominal; types of birds form an unordered scale with as many categories as needed. 
(d) Interval; calendar year has a unit of measurement (days) but an arbitrary zero. 
(e) Continuous ratio; this time dimension has a standard unit (seconds) and an absolute zero (the start of the 

race). 
(f) Interval; temperature measured on the Celsius scale has a standard unit eC) but an arbitrary zero . 

2.4 For each of the following, indicate the level of measurement (nominal, ordinal, interval, continuous 
ratio, or discrete ratio): (a) the price per gallon of gas in selected areas, (b) the type of vitamin 
(e.g., vitamin E), (c) the jersey number assigned to each member of a football team, (d) the 
sweetness of apples, judged on a four-number scale from 1 ( =  not sweet) to 4 ( =  very sweet), 
(e) the amount of sugar (in milligrams) in each of a set of apples. 

Solution 

(a) Discrete ratio 
(b) Nominal 
(c) Nominal 
(d) Ordinal 
(e) Continuous ratio 

THE APPROXIMATE NATURE OF MEASUREMENT 

2.5 What is the implied range of the approximate measurement 0. 19032 cm? 

Solution 

Using the technique from Example 2.4: 
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3-value scale halfway points implied range 
0. 1 903 1 

� 0 . 1903 1 5  
0. 19032 0 . 1903 1 5  cm to 0 . 190325 cm 

� 0 . 190325 
0. 19033 

2.6 What is the implied range of the approximate measurement 700.3 kg? 

Solution 

Using the technique from Example 2.4: 

3-value scale halfway points implied range 
700.2 

700.25 
700.3 700.25 kg to 700.35 kg 

700.35 
700.4 

2.7 What are the implied ranges for these approximate measurements: (a) 1 ,000,000.0 g, 
(b) 0.0001 m? 

Solution 

(a) 999,999.95 g to 1 ,000,000.05 g 
(b) 0.00005 m to 0.00015  m 

SIGNIFICANT DIGITS 

2.8 How many significant digits are there in the following approximate measurements: (a) 1 .20 kg, 

(b) 1 .00000 em, (c) 0.0056 mg, (d) 0.04003 mg? 

Solution 

(a) 3, (b) 6, (c) 2, (d) 4 

2.9 Indicate the implied range and the number of significant digits ill the following 
measurements: (a) 100,000 trees, (b) 1 00,001 trees, (c) 1 00,000 trees. 

Solution 

(a) For a number that does not have a decimal point, the significant digits can be indicated by placing a dot 
over the last significant digit. Therefore, for 100,000 trees, the implied range is 99,500 trees to 1 00,500 
trees, and there are three significant digits. 

(b) 1 00,00 I trees is an exact measurement, with no implied range and six significant digits. 
(c) Another way to indicate significant zeros in a number that does not have a decimal point is to make the 

nonsignificant zeros smaller than the significant zeros. Therefore, for 1 00,000 trees the implied range is 
again 99,500 trees to 1 00,500 trees, and again there are three significant digits . 

2.10 Indicate the implied range and number of significant digits in the following measure­
ments: (a) 1 0,000 workers, (b) 1 03 ,000.0 mi. 
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Solution 

(a) As given, this measurement does not provide sufficient infonnation to detennine implied range or 
number of significant digits. 

(b) The implied range is 1 02,999.95 mi to 1 03,000.05 mi, and there are seven significant digits. 

SCIENTIFIC NOTATION AND ORDER OF MAGNITUDE 

2.1 1 For the following measurement written in scientific notation, which are the significant digits and 
what is the implied range: 8 .796 1 x 10-2 m? 

Solution 

The significant digits are: 87961 .  
Using the technique from Example 2.4 for detennining the implied range: For 8.796 1 x 1 0 - 2 m, the 

8.7960 
three-value scale would be 8.7961 , the halfway points would be 8.79605 and 8.796 15 ,  and therefore the 

8.7962 
implied range would be 8.79605 x 10-2 m to 8 .79615  x 1 0- 2 m. 

2.12 For the following measurements written in scientific notation, which are the significant digits and 
what are the implied ranges: (a) 9.99 x 10- 6 kg, (b) 2.0 x 1 06 kg? 

Solution 

(a) The significant digits are 999, and the implied range is 9.985 x 1 0 -6 kg to 9.995 X 10-6 kg. 
(b) The significant digits are 20, and the implied range is 1 .95 x 106 kg to 2.05 X 106 kg. 

2.13 Express in scientific notation the following number written in decimal notation: 0.000000060 mm. 

Solution 

To convert a decimal number that is less than one to scientific notation, move the decimal point to the 
right until there is one nonzero digit to its left. For 0.000000060 mm, the decimal point has to be moved eight 
places 0,00000006+0. The first factor then, which includes all significant digits in the measurement, is 6.0. The 
second factor is the necessary power of 1 0, which here would have a negative exponent equal to the number of 
places that the decimal point was moved: 10- 8. Therefore, 0.000000060 mm expressed in scientific notation 
is 6.0 x 10- 8 mm. 

2.14 Express in scientific notation the following number written In decimal notation: 
4,000,000,000.0 kg. 

Solution 

To convert a decimal number that is 10  or larger to scientific notation, move the decimal to the left until 
only one nonzero digit is to its left. For 4,000,000,000.0 kg, the decimal has to be moved nine places 
4.0000000000. The first factor then, including all significant digits, is 4.0000000000. The second factor is a 

t , 
positive power of ten with an exponent equal to the number of places the decimal was moved: 109. Therefore, 
4,000,000,000.0 kg is written in scientific notation as 4.0000000000 x 109 kg. 
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2.15 Express in decimal notation the following measurement written In scientific notation: 
4.92 x 10- 7 m. 

Solution 

When the scientific notation includes a negative power of 1 0, it is converted to decimal notation by 
moving the decimal in the first factor to the left the number of places equal to the negative exponent. 
Therefore, 4.92 x 1 0 -7 m is 0.000000492 m . .  

2.16 Express in decimal notation the following measurement written in scientific notation: 6.0 x 1 07 kg. 

Solution 

When the scientific notation includes a positive power of 10, it is converted by moving the first-factor 
decimal point to the right the number of places equal to the exponent. Therefore, 6.0 x 107 kg is 
60,000,000 kg. 

ACCURACY AND PRECISION IN THE PHYSICAL SCIENCES 

2.17 Perform the indicated algebraic operations and then round off the answers to the correct number of 
digits: (a) 9.99623 kg - 8 . 12  kg, (b) 9.99 kg -7 8 kg, (c) 4.23 kg x 1 00.0039 kg. 

Solution 

(a) 9.99623 kg - 8.12 kg = 1 .87623 kg, which should be rounded off to 1 .88 kg 
(b) 9.99 kg -;- 8 kg = 1 .24875, which should be rounded off to 1 
(c) 4.23 kg x 100.0039 kg = 423 .016497 kg2, which should be rounded off to 423 kg2 

2.18 Perform the indicated algebraic operations and then round off the answers to the correct number of 
digits: (a) 9 1 .26 g x 1 . 1  g, (b) 452. 1 g - 2 1 .23 9  g. 

Solution 

(a) 9 1 .26 g x 1 . 1  g = 100.386 i, which should be rounded off to 100 g2 
(b) 452. 1 g - 21 .239 g = 430.861 g, which should be rounded off to 430.9 g 

2.19 Perform the indicated algebraic operations and then round off the answers to the correct number of 
digits: (4 mm + 2.92 mm) x 8.397 mm. 
Solution 

Using the order of operation rules (see Section 1 .3), the first step would be the addition within the 
parenthesis: 4 mm + 2.92 mm = 6.92 mm; which when rounded off to the level of the least precise 
measurement is 7 mm. This number is then multiplied by 8.397 mm: 7 rom x 8.397 mm = 58.779 mm2; 
which should then be rounded off to one significant digit: 60 mm2. 

2.20 Perform the indicated algebraic operations and then round off the answer to the correct number of 
digits: 72.916  mm x 4.2 1 mm - 6 mm2. 
Solution 

The order of operation rules indicate that in a sequence involving multiplication and subtraction, the 
multiplication should be done first. So: 72.916  rom x 4.21 rom = 306.97636 mm2 ; which should then be 
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rounded off to 307 mm2. Now, subtracting 6 mm2 from this gives 301  mm2, which should be left as is because 
it is at the proper level of precision. 

2.21 Perfonn the indicated algebraic operations and then round off the answer to the correct number of 
digits: (3 .926 x 102 kg) x (4.29 X 103 kg). 

Solution 

Using a hand calculator, two ways to perform multiplications and divisions with numbers written in 
scientific notation are: ( 1) directly on the calculator, using the scientific notation key; or (2) by doing the 
algebra on the component parts of the scientific notation. Solving it directly on the calculator: 

(3.926 x 1 02 kg) x (4.29 X 1 03 kg) = 1 , 684,254.00 kg2 

which should be rounded off to 1 ,680,000 kg2, or 1 .68 x 106 kg2. 
Doing the algebra on the component parts: 

(3 .926 x 1 02 kg) x (4.29 X 103 kg) = (3 .926 X 4.29)( 102 x 103)(kg x kg) = 16.84254 X 1 05 kg2 

= 1 .684254 X 106 kg2 

which should be rounded off to 1 .68 x 106 kg2. 

2.22 Perfonn the indicated algebraic operations and then round off the answers to the correct numbers of 
digits: (2.9 x 10-3 ft) + (4.26 X 10-4 ft). 

Solution 

Using a hand calculator, two ways to perform additions and subtractions on numbers written in scientific 
notation are: (1) directly on the calculator using the scientific notation key, or (2) by converting the numbers to 
decimal notation. Solving it directly on the calculator: 

(2.9 x 10-3 ft) + (4.26 X 1 0-4 ft) = 0.003326 ft 
which should be rounded off to 0.0033 ft, or 3.3 x 10-3  ft. 

Solving it by converting the numbers to decimal notation: 

(2.9 x 10-3 ft) + (4.26 X 10-4 ft) = 0.0029 ft + 0.000426 ft 

= 0.003326 ft 

which should be rounded off to 0.0033 ft, or 3 .3 x 10-3  ft. 

UNIT CONVERSIONS 

2.23 One side of a house is 9 meters long. Express this distance in: (a) centimeters, (b) millimeters. 

Solution 

(a) 9 m x CO
I
o�m) = 900 cm ( 1 , 000 mm) (b) 9 m x 1 m = 9.000 mm 

2.24 Using the appropriate conversion factors, detennine: How many feet are there in 350 kilometers? 
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Solution 

CHARACTERISTICS OF THE DATA 

350 km x (1 ,000 � x (3.281 �) = (3 .50000 X 105 m)(3 .281 :) 
= 1 . 1 48350 x 1 06 ft 

which should be rounded off to 1 . 148 x 1 06 ft 
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2.25 Using the appropriate conversion factor, determine: How many pounds are there in 1 2 .9 kilograms? 

Solution 

12.9 kg x (2.205 !�) = 28 .4445 lb 

which should be rounded off to 28.44 Ib 

2.26 Using the appropriate conversion factor, determine: How many kilograms are there m 9,920 
pounds? 

Solution 

(9.920 x 103 Ib) (4.536 x 10-1 �:) = 4.4997 1 x 103 kg 

which should be rounded off to 4.500 x 103 kg 

2.27 Using the appropriate conversion factor, determine: How many liters are there in 20 gallons? 

Solution 

( liter) . 20 gal x 3.785 
gal 

= 75.70 lIters 

Supplementary Problems 

LEVELS AND UNITS OF MEASUREMENT 

2.28 For each of the following, indicate its level of measurement: (a) the diameters, in millimeters, of a set 
of snail shells, (b) the grades of student essays on a six-number scale from I ( = very good) to 6 
( = bad), (c) the yearly sales of passenger cars from one manufacturer. 

Ans. (a) Continuous ratio, (b) ordinal, (c) discrete ratio 

2.29 For each of the following, indicate its level of measurement: (a) the number of words per minute in typing a 
sample section, (b) -273 . 1 5°C, (c) the handedness of a child (right- or left-handed). 

Ans. (a) Discrete ratio, (b) interval, (c) nominal 
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2.30 For each of the following, indicate its level of measurement: (a) the relative temperatures of pieces of iron, 
using a four-color scale (gray = cold = 1 ,  yellow = warm = 2, red = hot = 3, and white = very 
hot = 4), (b) the sales volume of a product in dollars per month, (c) the number of workers in a labor 
force who are unemployed. 

Ans. (a) Ordinal, (b) discrete ratio, (c) discrete ratio 

THE APPROXIMATE NATURE OF MEASUREMENT 

2.31 What are the implied ranges for these approximate measurements : (a) 4,926.22 cm, (b) 0. 1920 sec, 
(c) 4l .00001 in? 

Ans. (a) 4,926.2 15  cm to 4,926.225 em, (b) 0.19 195 sec to 0. 1 9205 sec, 
(c) 41 .000005 in to 41 .0000 1 5  in 

SIGNIFICANT DIGITS 

2.32 How many significant digits are there in the following approximate measurements: (a) 4,930,200.0 kro, 
(b) 0.8001 mg? 

Ans (a) 8, (b) 4 

2.33 How many significant digits are there in the following approximate measurements: (a) 0.0006000 mg, 
(b) 0.000047 mg? 

Ans (a) 4, (b) 2 

2.34 Indicate the implied range and the number of significant digits in the measurement 52,000 moths. 

Ans. The implied range is 5 1 ,500 moths to 52,500 moths, and there are two significant digits. 

2.35 Indicate the implied range and the number of significant digits in the measurement 94,000 mi to the nearest 
100. 

Ans. The implied range is 93,950 mi to 94,050 mi, and there are three significant digits. 

SCIENTIFIC NOTATION AND ORDER OF MAGNITUDE 

2.36 For the following measurement written in scientific notation, which are the significant digits and what is the 
implied range: 1 .0000 x 10-1  kg? 

Ans. The significant digits are 10000, and the implied range is 9.9995 x 10-2 kg to 1 .00005 X 10- 1 kg. 

2.37 Express this number in scientific notation: 80,888 m. 

Ans. 8.0888 x 104 m 

2.38 Express this number in scientific notation: 0.90009 lb. 

Ans. 9.0009 x 10- 1  Ib 

2.39 For the following measurements, express those written in scientific notation in decimal notation, and those 
written in decimal notation in scientific notation: (a) 2.000 x 10-2 rom, (b) 1 ,001 .00 kg. 

Ans. (a) 0.02000 rom, (b) 1 .00100 x 103 kg 

2.40 Express the following measurements in decimal notation: (a) 8 . 1 1  x 105 sec, (b) 5 . 1  x 10-9  in. 
Ans. (a) 81 i ,ooo sec, (b) 0.000000005 1 in 
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ACCURACY AND PRECISION IN THE PHYSICAL SCIENCES 

2.41 Perfonn the indicated algebraic operations and then round off the answers to the correct number of 
digits: (a) 0.39247 kg + 0.0000007 kg + 0.21 kg, (b) 2 . 1  kg ...;.- 0.000056. 

ADS. (a) 0.6024707 kg, which should be rounded off to 0.60 kg, 
(b) 37,500.0 kg, which should be rounded off to 38,000 kg 

2.42 Perfonn the indicated algebraic operations and then round off the answers to the correct number of 
digits: (a) 1 .26 g ...;.- 3 12.92, (b) 892 g + 2.263 g. 

ADS. (a) 0.00402659 g, which should be rounded off to 0.00403 g, 
(b) 894.263 g, which should be rounded off to 894 g 

2.43 . Perfonn the indicated algebraic operations and then round off the answer to the correct number of digits: 
(6 . 1  in x 2.936 in) ...;.- 1 8.239 14 in2 . 

ADS. 1 8  in2 ...;.- 1 8.239 14 in2 = 0.99 

2.44 Perfonn the indicated algebraic operations and then round off the answer to the correct number of digits : 
3.2937 in2 - 22.3 in2 + 8.42 1  in x 39.21 3  in. 

ADS. - 1 9.0 in2 + 330.2 in2 = 3 1 1 .2 in2 

2.45 Perfonn the indicated algebraic operations and then round off the answer to the correct number of digits: 
( 1 .926 x 105 kg) ...;.- (9. 1 x 104). 

ADS. 2. 1 1648 kg, which should be rounded off to 2 . 1  kg 

2.46 Perfonn the indicated algebraic operations and then round off the answer to the correct number of digits : 
(5.27 x 1 03 ft) - (8.838 X 102 ft). 
ADS. 4,386.2 ft, which should be rounded off to 4,390 ft, or 4.39 x 103 ft 

UNIT CONVERSIONS 

2.47 For the house in Problem 2.23, express the 9 meter distance in: (a) micrometers, (b) kilometers. 

ADS. (a) 9,000,000 Jlm, (b) 0.009 km 

2.48 Using the appropriate conversion factor, detennine: How many kilometers are there in I I I miles? 

ADS. 178.599 km, which should be rounded off to 178.6 km 

2.49 Using the appropriate conversion factor, determine: How many pounds are there in 103 grams? 

ADS. 2.27 1 1 5  x 1 O - 1 Ib, which should be rounded off to 2.27 1 x 1 O - 1 1b 

2.50 Using the appropriate conversion factor, determine: How many gallons are there in 1 ,350 liters? 

ADS. 356.670 gal, which should be rounded off to 356.7 gal 



Chapter 3 

Populations, Samples, and Statistics 

3.1 PHYSICAL AND MEASUREMENT POPULATIONS 

The term population has many nonstatistical meanings. Thus, in biology the term denotes a group of 
individuals of the same species that live in the same geographic area and can or do interbreed. In the social 
sciences, it means all the people living in a country, region, or community. And in physics, it means all the 
particles at a particular energy level. 

In statistics, the term population (or universe) has a different and very specific meaning related to the 
fundamental task of statistics: the analysis of measurement data. You will recall that every specific 
measurement is defined by an operational definition (see Section 2.2). This definition must include an exact 
description of the items being measured: age, time, temperature, place, or whatever feature characterizes 
the items. The set (see Section 1 . 1 7) of all such items that satisfy the description, in the past, present, or 
future, is called the physical population for this measurement. The set of these measurements taken from 
every conceivable member of the physical population is called the measurement population .  Statistical 
techniques of data analysis focus on the measurement population, which is why after this chapter, when the 
term population is used without modifiers it will mean measurement population. 

To understand these concepts let us examine a specific measurement. Say you are a plant geneticist 
who has developed a new type of com plant, and one measurement you want to take is plant height at 
maturity in late summer. In your operational definition of this measurement, besides stating the specific 
measurement steps, you also exactly describe the plant to be measured: how the seed should be selected 
and prepared, growth conditions (soil preparation, planting technique, fertilizing and irrigating schedules, 
etc.), and that the height should be measured 4 months after planting. The set of all such plants grown 
under these conditions, in the past, present, and future, is the physical population for this measurement. 
The set of height measurements for all conceivable members of this physical population is the 
measurement population. 

3.2 FINITE, INFINITE, AND HYPOTHETICAL POPULATIONS 

Every item in a population is called an element of the population. If there is an upper limit to the 
number of elements in either a physical population or a measurement population, then the population is 
said to be finite (or fixed). If, on the other hand, there is no upper limit to the number of elements in a 
population, then the population is said to be infinite. 

An example of a finite physical population would be the eight men who make the finals of a 100-meter 
running race in an Olympic Games. A finite measurement population linked to this finite physical 
population would be the time it takes for each man to run the 100 meters. An example of an infinite 
physical population would be the 4 month-old com plants (past, present, and future) that satisfy the 
description in Section 3 . 1 ,  and the heights of all these plants would be an infinite measurement population 
linked to this infinite physical population. It is generally the case that infinite populations do not actually 
exist but are instead hypothetical (or imaginary, or conceptual). 

EXAMPLE 3.1 You roll a six-faced die and count the number of dots that appear on the upward face when the die 
stops rolling. From this information you can determine: (a) the item being measured, (b) the measurement 
taken, (c) the physical population for this measurement, (d) the linked measurement population, (e) whether 
these populations are finite or infinite. 

5 1  
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Solution 

(a) The item being measured is the upward face of the die at the end of the roll. 
(b) The measurement is the discrete ratio measurement (see Section 2.8) of the number of dots. 

[CHAP. 3 

(c) The physical population for this measurement is the hypothetical population that includes all such final 
upward faces conceivably possible in the past, present, or future. 

(d) The measurement population is all dot counts from this physical population. 
(e) Both the physical population and its linked measurement population are infinite. 

3.3 SAMPLES 

As with the concept of a population, the term sample in statistics also refers to two interlinked sets of 
items: a physical sample and a measurement sample. The physical sample is any subset of a physical 
population, and any measurement taken on all members of a physical sample will produce a measurement 
sample. As the term population in future chapters will refer to a measurement population, so also the term 
sample will refer to a measurement sample. 

Often whether a set of items is considered to be a physical population or a physical sample will depend 
on the context in which the items are examined. Thus, for example, the unemployed workers in the labor 
force of a large city could be a physical population if the interest is exclusively in the economic state of the 
specific city, or it could be a physical sample if there is a broader interest in the economic state of a region 
or country. 

EXAMPLE 3.2 For the following samples, indicate whether they are physical samples or measurement samples: 
(a) yearly family income for 1 5  of the families in a 500-farnily housing unit, (b) % fat in a batch of 10 sausages 
from the weekly output of a meat-processing plant, (c) 5 trucks from a factory's daily truck production, (d) 10 of 
the prisoners who have been executed in the United States since 1985. 

Solution 

(a) Measurement sample 
(b) Measurement sample 
(c) Physical sample 
(d) Physical sample 

3.4 PARAMETERS AND STATISTICS 

Sets of measurements have characteristics that can themselves be measured and described, such as: the 
distance between the smallest and largest values, whether the data are evenly spread across the distance or 
densely clustered at one or more locations, the most typical or representative value in the data set, and so 
on. Any numerical value calculated from an entire measurement population that describes some 
characteristic of this population is called a parameter (or population parameter). Similarly, any such 
numerical descriptive measure calculated from a measurement sample is called a statistic (or sample 
statistic, or statistical measure). 

The most familiar example of a numerical descriptive measure is the arithmetic mean, which measures 
the most representative or average value in a data set. This measure, which will be discussed in detail with 
other measures of central tendency, average value, and location in Chapter 6,  is calculated for a set of 
measurements by taking the sum of these measurements and then dividing this sum by the number of 
measurements in the set. If the set is a measurement sample, then the arithmetic mean is a statistic 
calculated with the formula 

n 

2:>i 
- i=) X = --

n 
(3 . 1 )  
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where x (x with a bar over it, read "x bar") is the symbol for the sample mean, n is the symbol for the 
n 

sample size (number of elements in the measurement sample), and L Xi is the familiar summation notation 
i=! 

(see Section 1 .22). 
If the set of measurements is the entire measurement population, then the arithmetic mean is a 

parameter calculated with this formula 

(3 .2) 

where J-l (the Greek lowercase letter mu) is the symbol for the population mean, and N is the symbol for 
population size (number of elements in the measurement population). 

Many such paired parameters and statistics are given throughout this book, and generally, as here with 
the arithmetic mean, the parameter will be symbolized by a Greek letter and the statistic will be symbolized 
by a Roman letter. For each pairing, the parameter ofthe measurement population will always have just one 
fixed value while the value of the statistic will vary from measurement sample to measurement sample. 

EXAMPLE 3.3 Calculate arithmetic means for the following: (a) measurement sample XI = 7, X2 = 5, X3 = 6, 
X4 = 6, (b) measurement population Xl = 0.2, X2 = 0.6, X3 = 004. 

Solution 

n 4 
LXi LXi 

(a) i = i=l = i=l = 7 + 5 + 6 + 6 = 6 n 4 4 

3.5 THE SCIENCE OF STATISTICS 

It should now be clear that the term statistics has several meanings. It can refer to more than one 
numerical descriptive measure from sample data (see Section 3 .4); it can refer to collections of facts; or it 
can refer to the science devoted to the analysis and interpretation of measurement data. It is this last 
meaning, the science of statistics, that is the subject of this book. 

Facts have been collected since early in recorded history. The term statistics is derived from the Latin 
word for state (status), and it originally referred to government-acquired facts from different regions in a 
country, such as the taxes collected or the crops grown. This meaning of statistics has now been broadened 
to include any collection of facts, such as labor statistics (e.g., the number of unemployed automobile 
workers) or sports statistics (e.g., the number of hits made by a baseball player in one season). 

The science of statistics deals with more than the accumulation offacts. In their pure and unprocessed 
form, masses of facts are overwhelming and essentially unusable. It is the science of statistics that provides 
the theories and techniques necessary to make factual information usable. As we indicated in Section 1 . 1 , 
the science has two divisions: descriptive statistics and inferential statistics. 

We deal with the component elements of descriptive statistics in Volume I: measuring things (see 
Chapter 2), organizing and presenting the data in tables (see Chapter 4) and graphs (see Chapter 5), and 
calculating descriptive statistics and parameters (see Chapters 6 and 7). We then go on in the remainder of 
Volume I and in Volume II to give an introduction to the component elements of inferential statistics. This 
area of the science of statistics provides the techniques and logical framework for making inferences 
(generalizations) about the characteristics of entire populations from the characteristics of available 
samples. Beyond this inferential leap into the unknown, from sample to population, inferential statistics 
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also provides procedures involving probability theory (see Chapters 8 to 1 2) and sampling theory (see 
Chapter 1 3) for determining the quality of the inferences-how close they probably are to the truth. 

3.6 ESTIMATION PROBLEMS AND HYPOTHESIS-TESTING PROBLEMS 

Inferential statistics is based on a theory called statistical decision theory (or decision theory). This 
theory can be divided into two major areas: estimation theory and hypothesis-testing theory. 

Estimation theory provides techniques for solving estimation problems. In these problems, unknown 
parameters of the measurement population are estimated by using sample statistics from linked measure­
ment samples (e.g., using x to estimate Ji.). Beyond this, a complete solution to an estimation problem also 
shows how good the estimate is-how certain one can be of it-by bracketing the estimate within an 
interval called a confidence interval. Estimation theory is introduced and discussed in Chapters 14 and 15.  

Hypothesis-testing theory provides techniques for determining whether statistical hypotheses should 
be accepted or rejected. A statistical hypothesis is an assumption (or guess) about unknown properties of 
one or more measurement populations, typically either about their parameters or about how they are spread 
(distributed) from smallest to largest values. Considering parameters, it could be hypothesized, for 
example, that the arithmetic mean of a measurement population is equal to some constant value a 
(Ji. = a). The test of such a hypothesis uses measurement-sample information to determine the probable 
truth of the hypothesis. Hypothesis-testing theory as applied to single measurement samples is discussed in 
Chapter 1 6. 

The sequence, for one sample from one population, by which estimation and hypothesis-testing 
problems are solved is diagrammed schematically in Fig. 3- 1 .  The arithmetic mean Ji. of a measurement 
population is unknown. In order to estimate it and to test hypotheses about it: a physical sample is taken 
from the linked physical population; the measurement of interest is taken from all elements in the physical 
sample, producing a measurement sample; x and other descriptive statistics are calculated from the 
measurement sample; and finally, using inferential statistics and the x estimate, Ji. is bracketed within a 
confidence interval (confidence: c.J:!:J and the probable truth of a statistical hypothesis (Ji. = a) is 
determined. 

Physical 
population 

Fig. 3-1 

Descriptive 
statistics 

Inferential 
statistics 

Measurement 
population 

3.7 STATISTICAL HYPOTHESES AND RESEARCH HYPOTHESES 

Statistical hypotheses (see Section 3 .6) and research hypotheses (also called scientific hypotheses or 
working hypotheses) are alike in certain ways and very different in others. They are alike in that both are 
assumptions about populations, but while statistical hypotheses are assumptions about measurement 
populations (e.g., Ji. = a), research hypotheses are assumptions about the physical population under study. 
And while statistical hypotheses are abstract assumptions about the characteristics of a set of measure­
ments, research hypotheses deal with real-world, cause-and-effect relations (see Section 1 .  1 9)-the factors 
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that cause some thing to occur. Thus, for example, from many studies of lung-cancer patients, medical 
researchers were able to state this cause-and-effect research hypothesis: Cigarette smoking can cause lung 
cancer. Similarly, sociologists who studied children in many contexts developed the hypothesis: Extensive 
television watching in young children can cause inappropriate aggression. 

Both statistical and research hypotheses are tested by using deductive reasoning (see Problem 3.6) to 
derive their consequences: what must also be true if the hypothesis is true. The mathematical, deductive 
reasoning for testing statistical hypotheses is part of hypothesis-testing theory, which is introduced in 
Chapter 1 6. The deductive reasoning for testing a research hypothesis is unfortunately not provided by a 
convenient theory; each investigator must develop the logical consequences of his or her own hypotheses. 
Thus, an obvious example of a deductive prediction is : If cigarette smoking can cause lung cancer, then it 
is logical to expect more cases of lung cancer in a population that smokes cigarettes than in a population 
that does not. 

Statistical hypotheses are abstract, mathematical tools used for making decisions about the character­
istics of measurement populations. Once established, these characteristics are then used for making 
decisions about research hypotheses. 

3.8 EXPLORATORY RESEARCH AND HYPOTHESIS-TESTING RESEARCH 

The development of understanding in any field is a process of forming and testing research hypotheses. 
Exploratory research (or descriptive research) is the hypothesis-formation stage in which research 
hypotheses are developed, through inductive reasoning (see Problem 3 .6), from observations, measure­
ments, and analyses of the data. By contrast, hypothesis-testing research, as the name implies, is the stage 
in which developed research hypotheses are tested by testing their predictions. 

3.9 EXPLORATORY EXPERIMENTS 

In Example 1 . 3 1  we indicated that in an experiment an independent variable is changed (manipulated) 
to see the effect on the dependent variable. We used a salmon-growth experiment as an example, in which 
two groups of salmon were raised under identical conditions except one was kept in 20°C water while the 
other was in 24°C water. The water temperature was the independent variable, and growth (as measured by 
weight at 200 days) was the dependent variable. 

The values of an independent variable, here 20°C and 24°C, are called the levels of the variable. They 
are also called treatments. Thus, in the salmon experiment it could be said either that two levels of the 
independent variable (water temperature) were applied to the fish to see the effect on the dependent 
variable (body weight) or that two water-temperature treatments were applied. 

An exploratory experiment is one form of exploratory research. The object of such an experiment is to 
develop research hypotheses from the results. Thus, for example, from the salmon-growth experiment, a 
biologist could develop hypotheses about the effects of water temperature on fish growth. 

The sequence by which descriptive and inferential statistics can be used to analyze data from the 
salmon-growth experiment is diagrammed schematically in Figure 3-2. Here, the researcher is interested in 
the mean population weight at 200 days for both levels of the independent variable (Jl.20 and Jl.24) , and 
whether these means differ between the conditions. 

The two fish groups are the physical samples from their infinite physical populations. Weighing every 
fish in the two groups produces two measurement samples, from which descriptive statistics produces two 
sample means, X20 and x24' as well as other sample information. Using inferential statistics, it is then 
possible to solve mean-estimation problems for each measurement population (confidence: � and 
confidence: �), to estimate the difference between the means (confidence: , �20 - �24 I)' and to test . 
such statistical hypotheses as Jl.20 = Jl.24. The theory and techniques for solving such two-sample estimation 
and hypothesis-testing problems will be discussed in Chapter 17.  
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The tenn controlled experiment has three meanings in statistics. It can refer to experiments that have: 
(1)  all extraneous variables controlled, (2) one or more control groups, or (3) treatment applications 
controlled by the experimenter. 

Extraneous variables are all potential independent variables, other than the one under study, that could 
influence the experiment. Thus, for example, the salmon-growth experiment (see Section 3 .9) could be 
affected by differing levels of food, human contact, living space, light, water chemistry, and so on. An 
extraneous variable becomes a confounding variable when it has different levels that correspond to 
different levels of the true independent variable (the one being manipulated by the experimenter). To avoid 
confounding variables, an attempt is made to exert control over extraneous variables, which means keeping 
them as near as possible to constant levels throughout the experiment. 

Complete control of all extraneous variables is an ideal that is rarely achieved even in the most 
precisely regulated laboratories. Recognizing this,  the effects of extraneous variables are offset by the use 
of experimental and control groups that are in some way randomly selected (see Section 3 . 1 7). The objects 
assigned to the various groups of an experiment are called subjects if they are human or animal and 
experimental units if they are neither. 

As entire populations are rarely available, most experiments are done on physical samples, and each 
sample that receives one of the treatment conditions of the experiment is called an experimental group. In 
the exploratory experiment in Section 3 .9  there were two such groups, the 20°C group and the 24°C group. 
By contrast, a control group typically receives no treatment; instead it provides normative or baseline data 
against which one or more experimental groups (or treatment groups) can be compared. Say, for example, 
an investigator wants to detennine whether a new vaccine against the common cold actually works. She 
might then, from adult volunteers, randomly select two groups of subjects, treating both groups identically 
except that one of the groups (the experimental group) is injected with the vaccine in a saline (salt water) 
solution while the other group (the control group) is injected with the saline solution without the vaccine. 
Then, by comparing numbers of colds in the two groups over a set time, she can detennine the 
effectiveness of the vaccine. While exploratory experiments are used in the hypothesis-fonnation stages 
of research, experiments comparing a control group (or groups) with an experimental group (or groups) are 
typically used in the hypothesis-testing stage (see Section 3 .8). 
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The third meaning of a controlled experiment is that treatment applications are controlled by the 
experimenter. The experimenter controls which subjects or experimental units receive which treatments. 
This is the principal difference between controlled experiments and observational studies (see Section 
3 . 1 1) .  

3.11 OBSERVATIONAL STUDIES 

As we have indicated, in an experiment the investigator manipulates an independent variable to see the 
effect on a dependent variable. This differs from an observational study where the investigator has no 
control over the independent variable but instead simply observes the existing phenomenon and tries to 
isolate relationships between independent and dependent variables. Observational studies can be done 
either in the exploratory (hypothesis-formation) stage of research or in the hypothesis-testing stage. 

An example of an exploratory observational study would be a study of the characteristics of successful 
students in an introductory course in statistics. If success is measured by the dependent variable, total 
points in the course, then to isolate possible performance-influencing independent variables the investi­
gator might measure for each student: time spent each week on homework, number of previous math 
courses, grade point for previous math courses, and so on. The statistical techniques most commonly used 
to analyze such data for possible relationships between variables are called regression and correlation (see 
Chapter 1 9). 

A hypothesis-testing observational study is done when, for ethical or practical reasons, it is not 
possible to test an existing research hypothesis with a true controlled experiment. What is sought for the 
test, then, is an existing natural experiment (or quasi-experiment) in which there are different levels of the 
hypothesized independent variable and measurable levels of the hypothesized dependent variable. Thus, 
for example, if the hypothesis is that a type of female birth-control pill leads to elevated blood-pressure 
levels, then the investigator might study blood-pressure levels (the dependent variable) in two existing 
popUlations that differ in the use of this pill (the independent variable), say users and nonusers of the pill. 

3.12 SURVEYS AND CENSUSES 

While in common usage a survey is any attempt to get information about the characteristics of a group 
of things, in statistics the term refers to getting information from a sample or popUlation by asking 
questions : market surveys, public-opinion surveys, telephone surveys, and so on. If all members of a 
popUlation are included in the survey, then it is called either a 100% survey or a census. While the survey 
and the census are methods used typically in observational studies, they can also be used in experiments 
(e.g., surveying an audience on attitudes before and after a movie). 

3.13 PARAMETRIC AND NONPARAMETRIC STATISTICAL TECHNIQUES 

The inferential techniques appropriate for analyzing a given set of data are determined by a complex 
set of factors. Some of these factors have been discussed: for experiments, the number of groups that 
receive treatments and the use of control groups (see Sections 3.9 and 3 . 1 0); for observational studies, 
whether the data are exploratory or hypothesis-testing (see Section 3 . 1 1 ). Now we consider two more 
factors: the required characteristics of the underlying measurement populations, and the data's level of 
measurement. 

Parametric statistical techniques (or parametric statistics) are based on very precise and restrictive 
assumptions about the characteristics of the measurement popUlations and the measurement samples being 
investigated. These assumptions, called parametric assumptions, state required features of the populations 
under study, such as the nature of their parameters and the shapes of their distributions, and they indicate 
the type of sample that must be taken. If these assumptions can be satisfied, and if the sample data are 
interval or ratio level (see Sections 2.6 and 2.7), then parametric techniques should be used in inferential 
analyses. Such techniques are always preferred because: (1)  they provide the most sensitive tests of 
statistical hypotheses, (2) they extract the most information from the data, and (3) they can analyze the 
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most sophisticated and complex research designs. Parametric techniques are so-named because both the 
statistical hypotheses being tested (e.g., Jl = a) and many of the assumptions deal with parameters. 

Parametric statistics were the first inferential techniques developed. It was soon realized, however, that 
there was a need for equivalent, more broadly applicable inferential techniques with weaker and less 
restrictive assumptions, and this led to the development of non parametric statistical techniques (or 
non parametric statistics). They are called nonparametric because their assumptions and statistical 
hypotheses do not deal with parameters; some nonparametric statistics are also called distribution-Jree 
statistics, because their assumptions do not require that the underlying population distribution have any 
specific shape. 

Broadly speaking, nonparametric techniques can be divided into techniques for nominal-level data and 
techniques for ordinal-level data (see Chapter 20). These techniques can also be used for interval-level and 
ratio-level data if the analysis is restricted to either the nominal ( = ,  =1= )  or ordinal « ,  » properties 
of the data (see Sections 2.4 and 2.5). Because parametric techniques are always preferable for interval­
level and ratio-level data, they should be used for that level of data unless there are severe deviations from 
the parametric assumptions. Even then, it is often possible to transform the data to allow parametric 
analysis. 

The flow chart in Fig. 3-3 summarizes how the appropriate technique should be chosen. Given 
interval-level or ratio-level data, if the parametric assumptions are satisfied, then the data should be 
analyzed with parametric techniques. If these assumptions are not satisfied, then a transformation should be 
attempted. If this works, do a parametric analysis; if not, then analyze the data with either ordinal-level or 
nominal-level nonparametric analyses. If the data are ordinal level or nominal level to begin with, then use 
the appropriate level of nonparametric analysis. Other decision factors (number of groups, presence of 
control groups, whether observational studies are exploratory or hypothesis testing) become important after 
these parametric/nonparametric decisions have been made. 

Level of measurement Assumptions Transformations Inferential statistics 

Interval SatisfY parametric 

and I Parametric I 
assumptions 

Parametric techniques I 
ratio 

Do not satisfY 
parametric 

Now satisfY assumptions 
parametric 
assumptions -

Still do not satisfy 
parametric assumptions Transformations to satisfy 

parametric assumptions 

------------- --- ------------------------------------------------------------------ ------------
Use ordinal Use nominal 

properties properties 
Satisfy ordinal-level I Ordinal 
assumptions 

Nonparametric: Nonparametric techniques: I ordinal-level data ordinal-level data 

----------------- ---------------------------- -------- ------------------------------------------

SatisfY nominal-level I Nominal Nonparametric :  
assumptions 

Nonparametric techniques: 
nominal-level data nominal-level data 

Fig. 3-3 
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All fonus of mathematics begin with sets of assumptions (axioms) from which theorems and whole 
integrated systems are derived by means of deductive reasoning (see Problem 3 .6). Mathematical statistics 
(see Section 1 . 1 ), which makes use of elements from many areas of mathematics (e.g., probability theory, 
calculus, advanced algebra), provides such an integrated system for statistics. While mathematical statistics 
is a mathematically sophisticated, tightly integrated system of axioms and theorems, general statistics (see 
Section 1 . 1 )  presents most of the same materials at a much simpler level. In general statistics, descriptive 
and inferential techniques are taken from mathematical statistics but little attempt is made to show how 
each technique is derived from the integrated mathematical system. Because general statistics deals 
primarily with nonmathematical discussions of statistical concepts and techniques, it is said to be at the 
intuitive level of presentation rather than at the mathematical level. This book is a general statistics book 
presented at the intuitive level, and all the mathematics required to understand the book are reviewed in 
Chapter 1 .  

While this book, or any presentation based on general statistics, has the advantage of not requiring 
mathematical derivations for every technique, it also has a disadvantage. Concepts and techniques are 
continually brought up from the mathematical level, and students are asked to accept each of them as true 
as they appear, without proof. Throughout this book, therefore, and throughout any other intuitive-level 
book or course, such phrases as "it must be accepted as true" or "this can be proven mathematically" are 
repeated. Only in a book or course in mathematical statistics is the entire integrated system presented. 

3.15 SAMPLING DESIGNS 

So far in this chapter we have introduced three theoretical components of inferential statistics: 
probability theory (discussed in Chapters 8-12); estimation theory (discussed in Chapters 14  and 15), and 
hypothesis-testing theory (discussed in Chapter 1 6). Now we introduce a fourth theoretical component: 
statistical sampling theory or sampling theory. This theory, which deals with theoretical relationships 
between measurement populations and the measurement samples taken from them, is discussed in Chapter 
1 3 .  

One aspect of sampling theory deals with required sampling procedures for inferential statistics-the 
sample-taking methods that yield data that can legitimately be analyzed for sample-to-population 
inferences (see Section 3 .5). These abstract, mathematical sampling procedures, called sampling designs, 
assume the existence of measurement populations (called simply populations) and specifY for a given 
inferential technique how measurement samples (called simply samples) must be taken from these 
populations. This theoretical sequence from population-to-sample-to-population is illustrated schemati­
cally in Fig. 3-4. 

Population 

Sampling design 

Descriptive & 
inferential statistics 

Fig. 3-4 

While sampling theory describes a pure, mathematical world, actual sampling problems are solved 
under the messy conditions of the real world. To solve such a problem, the physical population of interest 
is first defined. A physical sample is then taken from it, following an appropriate theoretical sampling 
design as closely as possible. Then measurements are taken from the physical sample to produce a 
measurement sample. Finally, the data are analyzed with descriptive and inferential statistics to make 
inferences about the measurement population. This real-world sequence is illustrated schematically in Figs. 
3-1 and 3-2. 

. 
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We now go on to an overview of important theoretical sampling designs and how they are used in 
practical situations. 

3.16 PROBABILITIES FOR SAMPLING: WITH AND WITHOUT REPLACEMENT 

All aspects of inferential statistics, including sampling designs, are based on the theory of probability. 
This theory will be presented in detail in Chapters 8 to 12,  but here we will briefly introduce some of its 
concepts in order to discuss sampling designs. 

In essence, the probability of an event is the likelihood or chance that the event will occur. It is stated 
as a number from (0) to (1), where a probability of (0) means that the event cannot possibly occur and a 
probability of (1)  means that the event is certain to occur. Thus, there is a probability of (0) that a man can 
give birth to a baby, and a probability of (1) that if the sun rises tomorrow it will rise in the east. A 
probability of (0.5) means there is a fifty-fifty chance the event will occur. 

As we will discuss in Chapter 8,  there are four different methods for interpreting and calculating such 
probabilities: the classical interpretation, the relative frequency interpretation,  the set theory interpreta­
tion, and the subjective interpretation. For this brief introduction we will only consider the classical 
interpretation, which is the oldest and most familiar. 

The classical interpretation was developed in the nineteenth century from studies of the games of 
chance used in gambling: throwing dice, flipping coins, picking cards, and so on. It applies to any "game" 
where on any trial ofthe game all possible outcomes are known, equally likely, and mutually exclusive (see 
Section 2.4). These outcomes can be classified into different categories called events and the probability on 
a given trial of any event A, denoted symbolically by PrAY, can be calculated with the equation 

P(A) = number of outcomes that produce A 
total number of possible outcomes 

(3 .3) 

To understand these concepts, let us consider the game of picking a card from a well-shuffled standard 
52-card deck of playing cards. Say we want to determine the probability on such a pick (trial) of the event 
of picking an ace, P(ace). We know the total number of possible outcomes for the pick is 52-any one of 
the 52 cards is a possible outcome--and we also know that the number of outcomes that can produce an 
ace is 4. Thus, using equation (3 .3) 

4 1 
P(ace) = - = -

52 1 3  

Let us say we picked an ace on this trial, and that we now want to determine the probability if we pick 
again from the deck of picking an ace. There are two possible ways in which this second trial can proceed: 
(1) replace the ace in the deck, reshuffle, and pick again; (2) do not replace the card, but do reshuffle, and 
Tlick again. The first way is an eXaffiTlle of what is called sampling with replacement, and the second is an 
example of what is called sampling without replacement. If the sampling is done with replacement, then 
the probability of an ace on the new pick is again 

1 
P(ace) = 13 

If, however, the sampling is without replacement, then the probability of an ace on the new pick is now 

3 1 
P(ace) = 

5 1  
= 

1 7  

If the population being sampled i s  infinitely large (N = (0), then the composition of the population is 
considered to remain constant during sampling, whether the sampling is with or without replacement. For 
practical purposes, this is also considered to be true when n (sample size) is very small compared to N 
(roughly when n is no more than 5% of N). Only for finite populations such as a deck of cards in which N 
is not much larger than n does the change in population over sampling need to be considered. 
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3.17 RANDOM SAMPLING 

The objective of most research efforts is to discover general truths about entire populations. As whole 
populations are rarely available, however, it is typically necessary to take a sample from the population and 
then use statistical techniques to make inferences from the sample back to the population. For these 
inferences to be legitimate, the samples must be taken under the precise conditions of theoretical sampling 
designs called random sampling designs or simply random sampling. 

A population can be sampled by taking elements from it one at a time or in groups. Either way, the 
basic unit taken is called the sampling unit. Random sampling, then, is any sampling method in which 
every sampling unit in the population has a known nonzero probability of being included in the sample. 
Because the probabilities of inclusion are specified before sampling, random sampling is also called 
probability sampling. It is called random sampling because in order to achieve these specified probabilities, 
it is necessary to introduce randomness or chance into the selection process. This is typically done by using 
randomly determined sequences of numbers from tables of random numbers (see Section 3 .23) or by using 
random-number generating functions available with computers and many calculators . 

In the theoretically ideal case, all of the sampling units in the population of interest, called the target 
population, are known and recorded on a list called the sampling frame orframe. Then a random sampling 
design is selected that specifies the probabilities of inclusion of all sampling units in the sampling frame. 
Finally, some random selection technique is used that selects sampling units according to the specified 
probabilities. 

We will now deal with four important random sampling designs: simple random sampling, stratified 
random sampling, systematic random sampling, and cluster random sampling. 

3.18 SIMPLE RANDOM SAMPLING 

Simple random sampling is a mathematical concept that we discuss in detail in Chapter 13 following 
our discussion of probability theory. At this point, as part of an overview of random sampling, we simply 
give this nonmathematical, intuitive-level (see Section 3 . 14) definition that can be found in many statistics 
books: 

Simple random sampling is a method of sampling in which at every selection from the popUlation 
all remaining sampling units in the population have the same probability of being included in the 
sample. A sample taken with this method is called a simple random sample. 

To understand this definition, consider taking a simple random sample of three people from a known 
target population of 35  that are listed in a sampling frame. If we define the sampling unit as individual 
members of the population, then we could write each ofthe 35 names on separate identical pieces of paper, 
place the papers in a bowl, and blindly select one-at-a-time and without replacement, three papers from the 
bowl. This would be a simple random sample because every name would have the same probability of 
inclusion on the first pick, 1 /35 ,  and on the second., 1 /34, and on the last, 1/33 .  

Most methods in elementary inferential statistics are based on the assumption that samples are taken 
by simple random sampling, and that they are therefore simple random samples. Because this assumption 
is so basic and common, in the rest of the book when the terms sample or random sample are used without 
modifiers it means simple random sample. 

3.19 STRATIFIED RANDOM SAMPLING 

For sample-to-population inferences to be valid., the sample must be representative of the population. 
Simple random sampling usually provides representative samples, but there are instances when a random 
sampling method called stratified random sampling provides a more representative sample. This is the case 
when the population contains several nonoverlapping, mutually exclusive groups called strata (plural of 
stratum), caused by such factors as age, gender, race, and geographic location. To use stratified random 
sampling, the strata should be relatively homogeneous, with greater differences between strata than within 



62 POPULATIONS, SAMPLES, AND STATISTICS [CHAP. 3 

each stratum. If such strata are present, then a stratified random sampling design takes a random sample 
[simple, systematic (see Section 3 .20), cluster (see Section 3 .21), or some other] from each stratum. In 
proportional stratijied random sampling, the size of the random sample taken from each stratum is made 
proportional to the relative size of the stratum in the population (stratum size/population size). In 
disproportional stratified random sampling, there is no attempt to make the random sample from each 
stratum proportional to the relative size of the stratum. 

To understand stratified random samplIng, consider the problem of determining the average income in 
a male social group where 5% of the men are high income, 65% are middle income, and 30% are low 
income. If we consider these income levels as three strata in the population, then a proportional stratified 
random sample would have 5% high, 65% middle, and 30% low income. A disproportional stratified 
random sample could have any distribution of percentages from the strata, say equal percentages (33t%). 

3.20 SYSTEMATIC RANDOM SAMPLING 

Systematic random sampling is often used when a random sample is to be taken from a very long 
sampling frame. In this type of sampling, every kth unit in the frame is taken, starting with a randomly 
selected list-position within the first k units, called the starting unit. If, for example, we decide to take 
every 50th unit, then the first step is to take a simple random sample of one from the numbers 1-50, to 
determine the starting unit. If, say, this number is 20, then the sample includes: the 20th number on the list, 
the 70th, the 120th, and so on through the list. This sample is a random sample because the nonzero 

probability of inclusion for each unit in the population was known in advance (� = 
5

1

0
) ' 

Systematic random sampling should be avoided if there are clear periodic or cyclic patterns in the 
sampling frame. Thus, for example, in taking a survey of houses it could be true that every 25th house on a 
block is the comer house that is the most expensive house on the block. 

3.21 CLUSTER RANDOM SAMPLING 

If a population is very large and widely dispersed, cluster random sampling can provide a relatively 
inexpensive random sample. In cluster random sampling the population is first divided into mutually 
exclusive groups (called clusters) that are each as heterogeneous as possible (unlike the homogeneous 
strata of stratified random sampling). Then, in single-stage cluster random sampling, some form of random 
sample of the clusters is taken and all the elements within the selected clusters are included in the sample. 
In two-stage cluster random sampling, after the random sample of clusters is taken, a second random 
sample is taken from each cluster. Multistage cluster random sampling is the term for such a sampling 
process with two or more sampling stages. 

Consider the problem of determining public opinion before a state-wide election in a large state like 
New York. The state is subdivided into counties that are relatively heterogeneous in population. A single­
stage cluster random sample might begin with a random sample of the counties, followed by an opinion 
poll of every registered voter within the selected counties. Much more likely would be a mUltistage cluster 
random sample, in which random samples of smaller subdivisions within the counties are taken before the 
polling is begun. 

3.22 NONRANDOM SAMPLING 

In Section 3 . 1 7  we said "Random sampling, then, is any sampling method in which every sampling 
unit in the population has a known nonzero probability of being included in the sample." Sampling designs 
that do not satisfy this definition are called nonrandom sampling designs or non probability sampling 
designs. They are also called judgment sampling designs because they typically involve personal, 
nonrandom judgments by the investigator with regard to which units to include in the sample. Another 
term for them is biased sampling designs, because they generally lead to some type of sampling bias 
(systematic sampling error), either a selection bias or a response bias. [Recall that systematic errors of 
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measurement are also called bias (see Section 2 . 1 3).] A selection bias occurs when sampling procedure 
tends to select certain units from the population and to exclude others. A response bias occurs when the 
design leads to a great deal of missing data. Thus, for example, in a mailed survey a response bias is 
produced by a low rate of return of the survey questionnaires. 

EXAMPLE 3.4 Why is the following true story an example of nonrandom sampling, with both selection bias and 
response bias? 

The 1936 presidential election in the United States had two major candidates: the Republican, 
Alfred M. Landon, and the Democrat, the incumbent president, Franklin D. Roosevelt. Several 
weeks before the election, Literary Digest magazine tried to predict the outcome by mailing 10 
million questionnaires to people selected from three sources: the subscription list for the 
magazine, telephone directories, and automobile registration records. The magazine received 
back approximately 2.3 'million answers, and of these some 57% favored Landon. From these 
results the magazine predicted a landslide victory for Landon. A few weeks later, however, in the 
actual election, it was Roosevelt who got the majority of the votes (62%). 

Solution 

This is an example of nonrandom sampling because by limiting the sample to magazine subscribers and 
to owners of telephones and automobiles, most of the voting population had a zero probability of being 
included in the sample. The time was 1 936, in the depths of the Depression, and the judgement-selection 
limited the sample to a relatively prosperous stratum of the population. Besides this severe selection bias, 
produced by a discrepancy between the target population and the sampling frame, there was also a response 
bias. This response bias, called self-selection bias, occurred because only about 25% of the selected sample 
returned their questionnaires. Thus even for this chosen stratum of the population, the probabilities for 
inclusion in the sample were unknown before sampling. 

. 

3.23 TABLES OF RANDOM NUMBERS 

The most commonly used inanimate device for introducing chance into the sampling process is a table 
of random numbers (or table of random digits). Such a table, which typically has been created with a 
computer random-number-generating function, consists of thousands of digits, each of which is any one of 
the ten numbers from 0 to 9. Every digit has, in essence, been selected by a simple random sample from the 
numbers 0 to 9. Consequently, the numbers 0 to 9 are equally likely to appear in any digit-position in the 
table, and there are no systematic connections between digits. Table A.I (Random Numbers) in the 
Appendix is such a table of random numbers; it consists of 6,000 digits arranged in two-digit pairs, in 40 
rows and 75 columns. 

EXAMPLE 3.5 A 64-student statistics class is shown, in their seats, in Fig. 3-5. Each bracket in the figure ([ ]) is 
an individual seat, containing the student's initials and whether the student is female (t) or male (m). There are 1 6  
females (25%) and 48 males (75%). Using Table A.I in the Appendix, select a simple random sample of 1 6  from this 
class. 

Solution 

To select such a sample, we must meet the conditions of random sampling (see Section 3 . 1 7) and simple 
random sampling (see Section 3 . 18). To do this here, we consider the class to be a population from which we 
create a sampling frame by giving each student a unique two-digit number from 0 1  to 64 (see Fig. 3-6). We 
then take student numbers from Table A. I ,  without replacement (see Section 3 . 1 6), in such a way that: all 
students have a -k probability of being the first selection; all remaining students have a i3 probability of being 
the second selection; and so on until all remaining students have a i9 probability of being the 16th selection. 
With Table A. I ,  this sampling can be accomplished by simply taking a sequence of 16  two-digit numbers 
between O l and 64 without accepting any repetitions. 
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2 3 4 5 6 7 8 

[CA-m] [FE-m] [LB-fj [HE-m] [LW-m] [OA-m] [PS-m] [OF-m] 
2 [AA-fj [HC-m] [EB-m] [MA-m] [ME-m] [HK-m] [AD-m] [RE-m] 

3 [AE-fj [FA-m] [CE-m] [BP-m] [EO-m] [RA-m] [DA-m] [GK-m] 
4 [JA-m] [GB-m] [MJ-fj [NO-fj [JW-m] [LT-fj [HO-m] [WA-m] 

5 [JD-fj [DD-fj [NA-m] [SM-m] [MQ-m] [JT-m] [TS-m] [MU-m] 

6 [GM-m] [BC-m] [CI-m] [EF-fj [JL-m] [JQ-m] [FV-m] [DW-m] 

7 [AC-fj [DM-m] [JH-fj [BF-m] [AH-fj [NP-m] [GT-m] [GY-fj 
8 [MZ-fj [BJ-fj [LR-m] [CR-m] [PB-m] [EJ-m] [AT-m] [TM-f] 

Fig. 3-5 

The first step in using Table A . I  is to randomly determine a starting place in the table for taking the 
sequence of two-digit numbers. There are many techniques for doing this, such as the following: first, blindly 
touch a sharp point to any place in the table and take the nearest two-digit number as the column number for 
the starting place; then, repeat the blind-touching process elsewhere in the table, now taking the nearest two­
digit number for the row of the starting place. When we actually did this, the first touch yielded 59 and the 
second 24, which gives a starting place at the intersection of column 59 and row 24: the number 68. 

From such a starting place, two-digit numbers can be collected in any direction: up, down, diagonally, 
sideways to the right or left. In this case we went downward from the starting place in column 59, taking all 
nomepeating numbers from 0 1  to 64. By the bottom of the column we had collected these numbers: 59, 64, 
17, 22, 07, 39, 44, 32, 26, 53, 45, 38, and 13 .  As these are only 1 3  of the required 1 6, we then went to the top 
of column 60 and proceded downward again, collecting these numbers: 63, 27, and 37. Therefore, our simple 
random sample of 1 6  from this class is: 

[CA-m] 
0 1  

2 [AA-fj 
09 

3 [AE-fj 
17  

4 [JA-m] 
25 

5 [JD-fj 
33 

6 [GM-m] 
41  

7 [AC-fj 
49 

8 [MZ-fj 
57 

[LR-m], [TM-f] ,  [AE-f] , [RA-m], [PS-m], [TS-m], [EF-f] ,  [WA-m], 

[GB-m], [AH-f] , [JL-m], [JT-m], [ME-m], [AT-m], [MJ-f], [MQ-m]. 

2 3 4 5 6 

[FE-m] [LB-fj [HE-m] [LW-m] [OA-m] 
02 03 04 05 06 

[HC-m] [EB-m] [MA-m] [ME-m] [HK-m] 
1 0  I I  1 2  1 3  1 4  

[FA-m] [CE-m] [BP-m] [EO-m] [RA-m] 
1 8  1 9  20 2 1  22 

[GB-m] [MJ-fj [NO-fj [JW-m] [LT-fj 
26 27 28 29 30 

[DD-fj [NA-m] [SM-m] [MQ-m] [JT-m] 
34 3 5  36 37 38 

[BC-m] [CI-m] [EF-fj [JL-m] [JQ-m] 
42 43 44 45 46 

[DM-m] [JH-fj [BF-m] [AH-fj [NP-m] 

50 5 1  52 53 54 

[BJ-fj [LR-m] [CR-m] [PB-m] [EJ-m] 

58 59 60 6 1  62 

Fig. 3-6 

7 8 

[PS-m] [OF-m] 
07 08 

[AD-m] [RE-m] 
1 5  1 6  

[DA-m] [GK-m] 
23 24 

[HO-m] [WA-m] 
3 1  32 

[TS-m] [MU-m] 
39 40 

[FV-m] [DW-m] 
47 48 

[GT-m] [GY-fj 
55 56 

[AT-m] [TM-fj 
63 64 
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Solved problems 

POPULATIONS 

3.1 For the following populations, indicate whether they are finite or infinite physical populations or 
measurement populations: (a) the current ages of all living women who have swum the English 
Channel, (b) the number of trials it takes in an experiment for a Norway rat to learn a specific 
maze under specific conditions, (c) all the body cells in a living 20-year old man, (d) all 
chocolate cakes baked from a specific recipe, (e) the body weights of all current and past citizens 
of the United States. 

Solution 

(a) Finite measurement population 

(b) The measurement results of an experiment that hypothetically could be repeated an infinite number of 
times is an infinite measurement population. 

(c) Finite physical population 

(d) Infinite physical population 

(e) Finite measurement population 

SAMPLES 

3.2 For the following samples, indicate whether they are physical samples or measurement 
samples: (a) the surface areas of four oil paintings by Rembrandt, (b) six living men who 
have run a mile in less than four minutes, (c) daily measurements for 20 days of the water 
temperature COC) of a lake. 

Solution 

(a) Measurement sample 

(b) Physical sample 

(c) Measurement sample 

3.3 For the following, indicate first whether they are a population, a sample, or whether they could be 
either, and then indicate whether they are physical or measurement: (a) current weights of all 
living former presidents of the United States, (b) attitudes of 50 Americans toward immigrants as 
measured on a five-point scale from 1 ( = unfavorable) to 5 ( = favorable), (c) number of new 
television sets purchased in one month in each store of a chain of stores, (d) all remaining 132 
butterflies in a species that is going extinct. 

Solution 

(a) Population, measurement 

(b) Sample, measurement 

(c) Could be either, measurement 

(d) Population, physical 

3.4 When is a physical sample measured instead of a physical population? 

Solution 

While the interest that motivates data collection and analysis in any field is almost always in the 
characteristics of an entire physical population, it is rarely practical or even possible to measure entire 
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populations. For example, it is impossible to measure an infinite physical population (see Section 3.2). Even a 
finite population cannot be entirely measured if it is very large or widely spread out in time or space. Finally, 
even if the physical population is finite and measurable, if the measurement process destroys the item being 
measured then, typically, the population will not be measured. Thus, for example, if an apple grower tests all 
of his apples for sugar content, then he will have no apples to sell. In most cases, physical samples of a 
population are taken and measured, and techniques from inferential statistics are used to generalize from the 
sample to the unavailable population. 

PARAMETERS AND STATISTICS 

3.5 Calculate arithmetic means for the following: (a) measurement sample XI = 4, x2 = 2, 
x3 = 3 ,  (b) measurement population Xl = 5, X2 = 5, X3 = 5 .  

Solution 

n 3 
LXi L Xi 

(a) x = i=1 = i=1 = 4 + 2 + 3 = 3 n 3 3 

(b) 

ESTIMATION PROBLEMS AND HYPOTHESIS-TESTING PROBLEMS 

3.6 Why is inferential statistics also called inductive statistics? 

Solution 

The field of logic divides forms of human reasoning into two broad categories: inductive reasoning (also 
called inductive logic), and deductive reasoning (also called deductive logic). Inductive reasoning is the 
process of forming generalizations. The following is an example of inductive reasoning: 

All cows are mammals and have brains. 

All humans are mammals and have brains. 

All dogs are mammals and have brains. 

Therefore, probably all mammals have brains. 

This argument, characteristic of inductive reasoning, goes from specific examples to a general (or universal) 
conclusion. But the word "probably" in the conclusion shows that it is an uncertain conclusion, really only a 
guess. In essence, what is concluded is : From what we know, it is probably true that all mammals have brains. 

Deductive reasoning goes in the opposite direction-from general conclusions to specific examples. The 
following is a comparable example of deductive reasoning: 

All mammals have brains. 

Humans are mammals. 

Therefore, humans have brains. 

The deductive argument goes from general statements (called premises) to a particular conclusion. If the 
premises are true, then the conclusion must also be true. A deductive conclusion is not an uncertain 
probability statement, but rather a clear declaration of what must be true. Deductive reasoning investigates 
what is implied by the premises; what must also be true if the premises are true. 

Inferential.statistics in both estimation and hypothesis-testing problems uses inductive reasoning. It draws 
conclusions (statistical inferences) about an entire measurement population from specific and limited sample 
information, and these conclusions are uncertain probability statements. However, unlike nonstatistical 
inductive conclusions, infererential statistics gives a quantitative estimate of the probable truth of its 
conclusions. 
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EXPERIMENTS AND OBSERVATIONAL STUDIES 

3.7 Indicate whether each of the following is an exploratory experiment, an experiment with a control 
group, or an observational study: (a) asking a sample of 1 ,500 registered voters across the U.S. 
which candidate they prefer in the next presidential election, (b) determi,ning by timing surgeons 
in two hospitals the average time it takes in each hospital to do an appendectomy, (c) testing 
whether vitamin C prevents colds by giving the vitamin to one group of women and not to another 
group of women and then counting the number of colds in each group over a subsequent time 
period. 

Solution 

(a) Observational study 

(b) Observational study 

(c) Experiment with a control group 

3.8 Indicate whether each of the following is an exploratory experiment, an experiment with a control 
group, or an observational study: (a) determining by weighing samples of babies in two 
countries, the average birth weights in the two countries, (b) growing samples of new hybrid 
flower in four different percentages (levels) of nitrogen in the soil to determine the optimal level for 
growth, (c) testing whether a new gasoline additive for increasing miles�per-gallon actually 
works, by comparing average mpg from samples of cars driven with the additive in the gasoline and 
without it. 

' 

Solution 

(a) Observational study 

(b) Exploratory experiment 

(c) Experiment with a control group 

PROBABILITIES FOR SAMPLING: WITH AND WITHOUT REPLACEMENT 

3.9 A coin has two surfaces, a head surface and a tail surface. Using equation (3 .3), what is the 
probability of the head surface landing upwards with: (a) the first flip of the coin, (b) the 
second flip of the coin? 

Solution 

(a) P(head) = � 
(b) P(head) = � 

3.10 There is a suit of 13 heart cards in a standard 52-card deck of playing cards. Using equation (3 .3), 
what is the probability in picking a card from the deck of: (a) picking the 10 of hearts, 
(b) picking any heart card? 

Solution 

1 (a) P(10  of hearts) = 52 

1 3  1 
(b) P(heart card) = 52 = 4 
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3.11 If in Problem 3 . 1 0  you picked a heart card, then, using equation (3 .3), what is the probability of 
picking a heart card on a second pick if you use: (a) sampling with replacement, (b) sampling 
without replacement? 

Solution 

1 3  1 
(a) P(heart card) = 

52 
= 4" 

12 4 
(b) P(heart card) = 51 = 17 

RANDOM AND NONRANDOM SAMPLING 

3.12 There are two gender strata in the statistics class shown in Fig. 3-6: females (25%) and males 
(75%). For these strata, use Table A. l and simple random sampling to take a proportional stratified 
random sample (see Section 3 . 1 9) of 1 6  from this class. 

Solution 

With regard to gender, a proportional stratified random sample of 1 6  from the class would have four 
females (25%) and 12  males (75%). We can get such a sample by taking separate simple random samples from 
each strata. Doing this for the females, we first use the technique from Example 3 .5  to get a starting place (the 
intersection of column 37 and row 40: the number 42), and then go upward from there in column 37, 
collecting these nonrepeating female numbers: 49, 17, 27, and 5 1 .  Then, for the 12 males, we first get a 
starting place (the intersection of column 30 and row 29: the number 34), and then go downward from there in 
column 30 and, if necessary, upward from the bottom of column 3 1 .  In this way, we collect the following 
nonrepeating male numbers: 06, 48, 42, 29, 41 ,  55, 46, 52, 43, 07, 47, and 01 . Therefore, our proportional 
stratified random sample of 16 from this class is: 

[AC-f], [AE-f], [MJ-f], [JH-f] , [OA-m], [DW-m], [BC-m], [JW-m], 

[GM-m], [GT-m], [JQ-m], [BF-m], [CI-m], [PS-m], [FV-m], [CA-m]. 

3.13 In Fig. 3-7, the class in Fig. 3-5 has been arbitrarily subdivided into 1 6  clusters of four students 
each. Using Table A. l and simple random sampling, take a single-stage cluster random sample (see 
Section 3 .21)  of 1 6  students from these 16 clusters. 

Solution 

To get this single-stage cluster random sample, we first take a simple random sample offour from the 1 6  
clusters, and then take all students from each selected cluster. Using the technique from Section 3 .5, we first 
get a starting place (the intersection of column 3 and row 6: the number 57), and then go across row 6 to the 
right, collecting the first four nonrepeating numbers between Ol and 1 6. We get 07 and 1 1 . Needing two more, 
we then go down to row 7, and go to the right from column 1 ,  collecting 06 and 0 1 .  Taking all students from 
clusters 1 ,  6, 7, and 1 1 , we get this single-stage cluster random sample: 

[CA-m], [FE-m], [AA-f], [HC-m], [CE-m], [BP-m], [MJ-f], [NO-f], 

[EO-m], [RA-m] , [JW-m] , [LT-f], [MQ-m], [JT-rq.] , [JL-m], [JQ-m] . 

3.14 You are a psychologist who wants to do a maze-learning experiment with rats. You purchase 20 
male rats of the same species from an animal dealer. Is this a simple random sample of these rats? 

Solution 

In the pure and abstract world of mathematical statistics, this would not be a simple random sample. In 
that world, as we indicated in Sections 3 . 17  and 3 . 1 8, to be a simple random sample: ( 1 )  every sampling unit 
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2 3 4 5 6 7 8 

[CA-m] [FE-m] [LB-t] [HE-m] [LW-m] [OA-m] [PS-m] [OF-m] 
0 1  02 03 04 

2 [AA-t] [HC-m] [EB-m] [MA-m] [ME-m] [HK-m] [AD-m] [RE-m] 

3 [AE-t] [FA-m] [CE-m] [BP-m] [EO-m] [RA-m] [DA-m] [GK-m] 

05 06 07 08 
4 [JA-m] [GB-m] [MJ-t] [NO-t] [JW-m] [LT-t] [HO-m] [WA-m] 

5 [JD-t] [DD-t] [NA-m] [SM-m] [MQ-m] [JT-m] [TS-m] [MU-m] 

09 10  1 1  1 2  

6 [GM-m] [BC-m] [CI-m] [EF-t] [JL-m] [JQ-m] [FV-m] [DW-m] 

7 [AC-t] [DM-m] [JH-t] [BF-m] [AH-fj [NP-m] [GT-m] [GY-t] 

13  14 15 16  

[MZ-t] [BJ-t] [LR-m] [CR-m] [PB-m] [EJ-m] [AT-m] [TM-fj 

Fig. 3-7 

(here individual male rat) must have a known nonzero probability of inclusion, and (2) at every selection, all 
remaining sampling units must have the same probability of inclusion. Clearly for this rat population, and for 
that matter for any other large, widely dispersed, or hypothetical population, these conditions carulOt be met. 
Yet it is common practice in applied statistics to take such samples from such populations and to accept them 
as satisfying the simple-random-sampling requirements of inferential statistics. Why? 

This is one example of many that we will present in the book of the conflict between the rigid, abstract 
properties of mathematical models and the practical necessities of doing statistical analyses on messy real­
world data. Here, unless there is some reason to believe the sample is unrepresentative of the popUlation [large 
discrepancy between sampling frame and target population as in Example 3 .4; presence of some form of 
systematic bias (e.g., the dealer has provided only very old rats); etc.] ,  the sample is accepted as a simple 
random sample. In essence, you do the best you can to meet the requirements of the mathematical models. 
Fortunately, most statistical models are "robust," which means that even if assumptions have been violated, 
inferential techniques will give valid results if the violations are within certain limits. 

Supplementary Problems 

POPULATIONS 

3.15 For the following populations, indicate whether they are finite or infinite physical populations or measurement 
populations: (a) all men who have stood on the surface of the moon, (b) blood-sugar levels in all living 
women with diabetes. 

Ans. (a) Finite physical population, (b) finite measurement population 

3.16 For the following populations, indicate whether they are finite or infinite physical populations or measurement 
populations: (a) the diameters in inches of all circles, (b) the results (heads or tails) of flips of a coin. 

Ans. (a) Infinite measurement population, (b) infinite measurement population 
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SAMPLES 

3.17 For the following, indicate first whether they are a population, a sample, or whether they could be either, and 
then indicate whether they are physical or measurement: (a) classifying, as to type, all new cases of cancer 
that occur within a fifty-mile radius of a nuclear plant from the time the plant was built, (b) miles/ 
gallon/month calculated for one year for all of the taxis in one company's fleet of taxis. 

Ans. (a) Could be either, measurement, (b) could be either, measurement 

3.18 For the following, indicate first whether they are a population, a sample, or whether they could be either, and 
then indicate whether they are physical or measurement: (a) all the apples in an orchard, (b) 10 white rats 
being used in a psychology experiment. 

Ans. (a) Could be either, physical, (b) sample, physical 

PARAMETERS AND STATISTICS 

3.19 Calculate arithmetic means for the following: (a) measurement sample Xl = 0, X2 = 0, X3 = 3, 
X4 = 5,  (b) measurement population Xl = 1 0,000, X2 = 5,000. 

Ans. (a) 2, (b) 7,500 

EXPERIMENTS AND OBSERVATIONAL STUDIES 

3.20 Indicate whether each of the following is an exploratory experiment, an experiment with a control group, or an 
observational study: (a) determining the average number of vehicles that pass a potential site for a 
supermarket between 8 a.m. and 10  a.m. weekdays, (b) determining the effectiveness of a new 
"memory-improvement drug" by comparing the performances of two groups of rats learning to run a 
maze: each member of group (1)  is injected with the drug in a saline solution before starting the learning trials, 
each member of group (2) is injected with the saline solution without the drug before the trials, (c) de­
termining how many adults live in each U.S .  household. 

Ans. (a) Observational study, (b) experiment with a control group, (c) observational study 

3.21 Indicate whether each of the followil1g is an exploratory experiment, an experiment with a control group, or an 
observational study: (a) comparing the average maximum lung capacities of twenty-year-old males and 
females, (b) testing three new methods for teaching reading by using each with a different third-grade class 
and comparing subsequent scores, (c) determining how all the shareholders of a company feel about a 
proposed merger. 

Ans. (a) Observational study, (b) exploratory experiment, (c) observational study 

PROBABILITIES FOR SAMPLING: WITH AND WITHOUT REPLACEMENT 

3.22 Half of the cards in a standard 52-card deck of playing cards are red cards. Using equation (3 .3), what is the 
probability in picking a card from the deck of getting: (a) a red card, (b) a black card? 

A ( ) 26 (b) 26 = � 
ns. a 

52 
= '2 '  

52 2 

3.23 If in Problem 3 .22 you picked a red card, then, using equation (3.3), what is the probability of picking a black 
card on a new pick if you use: (a) sampling with replacement, (b) sampling without replacement? 

26 
Ans. (a) 

52 
-
2 

(b) 26 
5 1  
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RANDOM AND NONRANDOM SAMPLING 

3.24 Using Table A. I and simple random sampling to get the starting unit, take a systematic random sample (see 
Section 3.20) of 16  from the class in Figure 3-6 by taking every 4th student from the starting unit. 

Ans. We first use the technique from Example 3 .5 to get a starting place in the table (the intersection of 
column 1 6  and row 26: the number 65), and then go downward in column 16, taking the first two-digit number 
we find that is between 01 and 04-Q3. This is the starting unit. This means that in the sampling frame in Fig. 
3-6 we take assigned numbers: 03, 07, 1 1 , 15 ,  19 , 23, 27, 3 1 , 35, 39, 43, 47, 5 1 ,  55 ,  59, and 63 . Therefore, our 
systematic random sample of 1 6  is: 

[LB-f], [PS-m], [EB-m], [AD-m], [CE-m], [DA-m], [MJ-f], [HO-mJ , 

[NA-m], [TS-m], [CI-m], [FV-m], [JH-f], [GT-m], [LR-m], [AT-m] 

3.25 A radio talk-show host in a large city runs a pre-election call-in survey to determine voter preference between 
two candidates for mayor. Of the 800 listeners who call the radio station, 500 prefer candidate A, 250 prefer 
candidate E, and 50 have no preference. Is this a random sample? 

Ans. Phone-in surveys such as this one cannot be accepted as random sampling because the sample is too 
unrepresentative of the target population (see Example 3 .4 and Problem 3 . 14). It was judgment-selected in that 
the talk-show host invited only his listeners to participate, which produced a selection bias by excluding most 
potential voters. There is also a self-selection response bias as only the most motivated listeners made the call. 
There are telephone-survey techniques that can produce' random samples, such as the technique called 
random-digit dialing. In this technique a random sample is taken from a population list of telephone numbers 
(the sampling frame) and the selected numbers are then called repeatedly until there is a response. 



Chapter 4 

Descriptive Statistics : Organizing the Data into 
Summary Tables 

4.1 ARRAYS ·AND RANGES 

An array (or data array) is an arrangement of a set of measurements into either an ascending or a 
descending order. In an ascending array, the measurements go from smallest value to largest value; in a 
descending array, they go from largest to smallest. 

The range of a set of measurements is the difference (or distance on the measurement scale) between 
the largest and smallest measurements. If these measurements are of some variable X, then 

Range = Xl - Xs (4. 1 ) 

where Xl is the symbol for the largest value, and Xs is the symbol for the smallest. If the measurements have 
been placed in an ascending array, then Xs and Xl are, respectively, the first and last measurements in the 
array. If the measurements have been placed in a descending array, the ordering of Xs and Xl is reversed. 

EXAMPLE 4.1 This is a sample of length measurements :  5. 1 mm, 2.9 mm, 6.4 mm, 9.2 mm, 7.7 mm. (a) Place 
the sample into an ascending array. (b) Find the range of the sample. 

Solution 

(a) 2.9 mm, 5 . l mm, 6.4 mm, 7.7 mm, 9.2 mm 

(b) Range = XI - Xs 
= 9.2 mm - 2.9 mm = 6.3 mm 

EXAMPLE 4.2 Table A.2 in the Appendix (Statistics Class Data) is a summary of a variety of measurements taken 
from the statistics class introduced in Example 3 .5 .  Place the height measurements (column 4) for the 16 females in a 
descending array, and then find the range for this data. 

Solution 

Taken directly from the table, the female heights (measured to the nearest t inch) are: 67.75, 60.25, 63.75, 
65 .25, 62.00, 63.50, 65 .25, 65 .50, 65.25, 64.75, 67.00, 64.25, 69.25, 66.25, 63 .00, 64.75. The descending 
array for these measurements is: 69.25, 67 .75, 67.00, 66.25, 65 .50, 65.25, 65.25, 65.25, 64.75, 64.75, 64.25, 
63.75, 63 .50, 63.00, 62.00, 60.25. The range for these measurements is: 69.25 in - 60.25 in = 9.00 in. 

4.2 FREQUENCY DISTRIBUTIONS 

A frequency distribution is a summary of how many times (how frequently) each category on a 
measurement scale occurs within a set of measurements. It shows how the measurements are distributed 
(or spread) across the used part of the measurement scale. Frequency distributions are presented either in 
summary tables, called frequency tables, or in various types of graphs (see Chapter 5). 

72 



CHAP 4] DESCRIPTIVE STATISTICS :  ORGANIZING THE DATA INTO SUMMARY TABLES 73 

EXAMPLE 4.3 Place the following sample of 20 weight measurements (in kilograms) into an ascending array and 
then into a frequency distribution: 1 .0, 1 .5 , 1 .3,  1 .3,  1 .3,  l A, lA, 1 .0, 1 .2, 1 .2, 1 .3 ,  1 .2, 1 . 3 ,  1 .3,  l A, 1 .3 ,  1 .5, 1 .2, l A, 
1 .3 .  

Solution 

The ascending array is: 1 .0, 1 .0, 1 .2, 1 .2, 1 .2, 1 .2, 1 .3 ,  1 .3,  1 .3 ,  1 .3 ,  1 .3,  1 .3 ,  1 .3 ,  1 . 3,  lA, 1 .4, l A, l A, 
1 . 5, 1 . 5 .  The frequency distribution for this data is presented in a frequency table in Table 4. 1 .  

There are three columns in the table: weight, tally, andfrequency. The weight column shows all categories 
(unit steps) in the part of the measurement scale that was used, with the symbol Xi representing the ith category 
of variable X (weight). There are k= 6 categories, from Xi =Xj = 1 .0 to Xk = X6 = 1 .5 .  

The tally column shows a tallying (or counting) of the number of measurements in each category. This is. 
done by placing a mark, called a tally mark, next to the appropriate category each time that category appears 
in a set of measurements. There are several types of tally marks, but the most common (shown in Table 4. 1 )  
are single vertical lines to represent individual measurements and four vertical lines crossed by a diagonal to 
represent a unit of five measurements. 

The frequency column is simply a numerical representation of the tally count for each category. The 
symbol /; represents the frequency in each of the k categories on this part of the scale. 

The symbol L at the bottom-left of Table 4. 1 indicates that the boxed-value 20 in the row to its right is a 
summation of the frequency values in the column above it, from the first to the kth category. This is stated 
symbolically 

k 6 
L /; = L /; = n = 20 
i=l i=l 

Note that as the set of measurements represents a sample, the sum of the values equals the sample size n 
(number of measurements in the sample). If the set of measurements had represented an entire population, 
then 

k 
L /; = N 
i=l 

where N is the population size (the number of measurements in the population). 

4.3 RELATIVE FREQUENCY DISTRIBUTIONS AND PERCENTAGE DISTRIBUTIONS 

The relative frequency (or proportion) of each measurement category in a sample is the frequency of 
that category divided by the sample size. It is symbolized by fJn. For a population, it is the frequency in 
each category divided by the population size: j;; N. The percentage for each category is the percent of the 
total frequency (n or N) that is found in that category. This percentage is achieved by multiplying the 
relative frequency by 100, which is symbolized for a sample by [(Ji/n) x (100)]% and for a population by 
[(.fi/N) x (1 00)]%. 

Relativefrequency distributions and percentage distributions are summaries of how relative frequency 
and percentage are distributed across the used part of the measurement scale. As with frequency 
distributions, they are presented either in a summary table or in various types of graphs (see Chapter 5). 

EXAMPLE 4.4 Add columns that show relative frequency and percentage to Table 4. 1 .  

Solution 

Table 4. 1 is shown, with relative frequency and percentage columns added, in Table 4.2. 
Note: The tally column from Table 4. 1 has not been included in Table 4.2. This column is only useful in 

the development of a frequency distribution, and is rarely seen in summaries of statistical information. 

-_._-----
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Weight (kg) 
Xi 
1 .0 
1 . 1  
1 .2 
1 .3 
1 .4 
l . 5 

I: 

Table 4.1 

Weight (kg) 
Xi 
1 .0 
1 . 1  
1 .2 
1 .3  
1 .4 
1 .5 . 
I: 

Frequency 
fi 

2 
0 
4 

8 
4 
2 

20 

Tally 

1 1 1 1 
1Ht III 
1 1 1 1  
I I  

Table 4.2 

fi 

2 
0 
4 
8 
4 
2 

20 

Relative frequency 
Jiln 

2120 = 0. 1  
0120 = 0.0 
4120 = 0.2 
8/20 = 0.4 
4120 = 0.2 
2120 = 0. 1  

Percentage 
[( fi ln) x (100)]% 

1 0  
0 

20 
40 
20 
1 0  

EXAMPLE 4.5 The following ascending array shows the finishing times (in minutes; continuous ratio measure­
ment) for the first 30 male runners in a Boston Marathon: 129, 1 30, 130, 1 33 , 1 34, 1 35, 1 36, 1 36, 1 38, 138, 1 38, 141 ,  
141 ,  141 ,  142, 142, 142, 142, 143, 143, 143, 143, 143,  144, 144, 145, 145, 145, 145,  145 . Put this array into a 
summary table with columns for time, frequency, relative frequency, and percentage. 

Solution 

The completed summary table is shown in Table 4.3. The symbol fi/N is used for relative frequency 
because here we are considering these first 30 times to be a population: the first 30  finishing times for males in 
this specific running of the Boston Marathon. They could just as legitimately have been considered a sample 
of world-class marathon times. 

4.4 GROUPED FREQUENCY DISTRIBUTIONS 

In Table 4.4, the frequency distribution in Table 4.3 (Boston-Marathon times) has been converted into 
a grouped frequency distribution by condensing the steps on the time scale into six groups of three-unit 
steps each. The first group, 1 28-130, starts one step below the fastest time and extends across the next two 
steps; the next group extends from 1 3 1  minutes to 1 33 minutes; and so on to the last group that extends 
from 143 minutes to the slowest time-145 minutes-for the first 30 male finishers. In such a grouped 
frequency distribution, each group is called a class and the symbol used to represent the class (e.g., 128-
130) is called the class interval. In Table 4.4, there are six columns: class intervals [here labeled time 
(min)], class limits, class boundaries, class mark, tally, and frequency. 

The class limits (also called stated class limits) are the smallest (lower class limit) and largest (upper 
class limit) measurements in the class. They define the class interval. 
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Table 4.3 

Time (min) Frequency Relative frequency 
Xi 

129 
130 
1 3 1  
1 32 
1 33 
1 34 
135 
1 36 
137 
1 38  
139 
140 
141  
142 
143 
144 
145 

Time (min) 

128--130 
1 3 1-133 
1 34-136 
137-139 
140-142 
143-145 

L 

Class limits 
lower-upper 

128-130 
1 3 1-133 
134-1 36 
137-139 
140-142 
143-145 

j; 

2 
o 
o 

2 
o 
3 
o 
o 
3 
4 
5 
2 
5 

30 

/;In 

0.033 
0.067 
0.000 
0.000 
0.033 
0.033 
0.033 
0.067 
0.000 
0. 100 
0.000 
0.000 
0. 100 
0. 133 
0. 167 
0.067 
0. 167 

Table 4.4 

Class boundaries Class mark 
lower-upper mi (min) 

127.5-130.5 129 
1 30.5-133.5 132 
133 .5-136.5 135 
1 36.5-139.5 138  
139.5-142.5 141 
142.5-145.5 144 

Percentage 
[( /;In) x (1 00)]% 

3 .3 
6.7 
0.0 
0.0 
3 .3  
3 .3 
3 .3 
6.7 
0.0 

10.0 
0.0 
0.0 

10.0 
13 .3  
1 6.7 
6.7 

16.7 

Frequency 
Tally j; 

I I I 3 

I 
I I I I  4 

I I I  3 

1m I I  7 

1m 1m I I 12 

30 

The class boundaries (also called true class limits) represent the implied class interval. Recall from 
Section 2 . 10  that the last digit of an approximate measurement is actually considered to be an interval 
called the implied range. Therefore, 1 28 minutes is actually somewhere between 1 27.5 and 1 28.5 minutes, 
and 130 minutes is somewhere between 1 29.5 and 1 30.5 minutes. As these two measurements define the 
first class interval (1 28-130), this class has a lower class boundary of 1 27.5 minutes and an upper class 
boundary of 130.5 minutes. Similarly, the next class ( 13 1-1 33) has a lower class boundary of 1 30.5 
minutes (also the upper class boundary of the first class) and an upper class boundary of 13 3 .5 minutes, 
and so on to the sixth class (143-145) which has class boundaries of 142.5 minutes and 145.5 minutes. 

The class marks are the exact middles (midpoints) of the classes, which can be determined by adding 
the lower and upper class limits and dividing by two. As here the variable i represents the ith class, we 
denote the class mark by mi ' Thus, for this first class, the class mark is 

ml = 1 28 + 130 = 1 29 
2 
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The tally and frequency columns are essentially the same as they were for ungrouped frequency 
distributions, but now they show the number of measurements in each class rather than each category. 

Not shown but easily calculated from Table 4.4 are the class widths (also called between-class widths). 
These are calculated by finding the distances between successive class limits, either between successive 
lower limits or successive upper limits. Thus in this table, calculating for successive lower limits, the first 
class width is: 13 1 - 128 = 3 .  Actually, for this table it turns out that all the class widths are 3 ;  the table 
has equal class widths. Such equal widths can also be calculated by finding the distance between 
successive class marks. Here, using the first two marks, all widths are: 132 - 129 = 3 .  

4.5 GROUPED RELATIVE FREQUENCY AND PERCENTAGE DISTRIBUTIONS 

For each class in a grouped distribution, relative frequencies are calculated as they were for ungrouped 
distributions: fJn or fJN Also as before, to find percentage for each class, relative frequencies are 
multiplied by 1 00. 

. 

EXAMPLE 4.6 After first removing the class boundaries, class mark, and tally columns from Table 4.4, add 
columns for relative frequency and percentage. 

Solution 

The requested summary table is presented in Table 4.5 .  

Table 4.5 

Class limits Frequency Relative frequency 
Time (min) lower-upper fi filN 

128-130 128-130 3 0. 1000 
1 3 1-133 1 3 1-133 1 0.0333 
1 34-136 1 34-136 4 0.1 333 
1 37-139 1 37-139 3 0. 1000 
140-142 140-142 7 0.2333 
143-145 143-145 12  0.4000 

L 30 

Percentage 
[(fi/N) x (100)]% 

10.00 
3 .33 

1 3 .33 
10.00 
23.33 
40.00 

4.6 GUIDELINES FOR TRANSFORMING UNGROUPED DISTRIBUTIONS INTO GROUPED 
DISTRIBUTIONS 

In transforming an ungrouped distribution into a grouped distribution, the challenge is to group the 
data in such a way that the most significant trends become sharply visible. There is no single best solution 
to this problem, as so much of it involves personal insights and judgments, but statistics does offer some 
guidelines. 

(1)  Use no fewer than five classes and no more than 20. 

(2) If possible, use the same class width for all classes. 

(3) Class widths can be odd or even numbers, but an odd number is preferable as then the class marks 
will be one of the unit steps on the measurement scale. 

(4) Class widths can be any number, but for ease of comprehension it is recommended that they be some 
multiple of 5,  10, 50, 100, 500, and so on. 

(5) If the class widths are equal, make sure that 

(range = Xl - xs) < [(number of classes used) x (class width)] 
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(6) Make sure that the class with the smallest lower class limit includes Xs and the class with the largest 
upper class limit includes Xl. 

(7) To avoid emphasizing measurement categories below Xs and above Xl, Xs should be as near to the 
lower limit of its class as possible, and Xl should be as near to the upper limit of its class as possible. 

(8) In general, the larger the amount of data (n or N) the larger the number of classes that should be used. 

EXAMPLE 4.7 Use the above transformation guidelines to show how the frequency distribution in Table 4.3 was 
transform� into the grouped frequency distribution in Table 4.4. 

Solution 

The first step in using these guidelines was to determine the range of the 30 marathon times 

Range = Xl - Xs = 145 min - 129 min = 1 6  min 

Next, several factors had to be considered simultaneously. 

(a) We want equal class widths (guideline 2) and would prefer that the width be an odd number (guideline 
3), possibly a multiple of 5 (guideline 4). 

(b) There must be at least five classes (guideline 1 )  and it must be true (guideline 5) that 

16  < [(number of classes used) x (class width)] 

(c) The class with the smallest lower class limit must include 129 min and the class with the largest upper 
class limit must include 145 min (guideline 6). 

(d) 129 min should be near to its lower class limit and 145 min should be near to its upper class limit 
(guideline 7). 

(e) The subjective factor: Select the arrangement that most clearly shows the important trends in the data. 

Only the following combinations of (number of classes used) and (class width) satisfied most of these 
specifications: 

Number of Class 
classes used width 

16  < [20 = 5 x 4] 
16  < [1 8 =  6 x 3] 
16 < [21 = 7 x 3] 
16  < [1 8 =  9 x 2] 

After investigating the grouping possibilities using these combinations, we decided that the best choice 
was the grouped distribution used in Table 4.4. This distribution (six classes, each of width 3)  was selected 
because it: has odd-numbered class widths and thus class marks identical to scale units (e.g., 129, l32), 
extends from 128 min (one unit below the fastest time) to 145 min (the slowest time for the first 30 males), and 
gives a clear impression of increasing frequency with increasing times. 

4.7 OPEN-ENDED GROUPED DISTRIBUTIONS AND UNEQUAL CLASS WIDTHS 

An open-ended class has only one class limit, an upper class limit or a lower class limit. Any grouped 
distribution that has an open-ended class at either or both extremes is called an open-ended grouped 
distribution. 

Open-ended classes are typically used when there are a few extremely large or small measurements, far 
from where most of the data are concentrated. Another reason for open-ended classes is to keep 
information confidential. Thus, for example, in presenting the results of the second examination to the 
statistics class [see Table A.2, column (3)], to avoid humiliating the students who did badly you may want 
to use an open-ended distribution with a lower open-ended class of, say, 64 or less. 
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A variety of class widths are often used between the open-ended classes. Such unequal widths are used 
either to isolate and give emphasis to certain groupings that have political or economical significance, or to 
join areas within the distribution that have relatively few measurements. 

It is generally advised that open-ended classes should be avoided if possible. Without defined 
properties (limits, boundaries, widths, marks), such classes make it difficult to graph the data (see Chapter 
5) and impossible to calculate most descriptive statistical measurements from the data (see Chapters 6 and 7). 

EXAMPLE 4.8 The grouped frequency distribution shown in Table 4.6 was taken from page 74 of the Statistical 
Abstract of the United States: 1995 (published by the U.S. Bureau ofthe Census). It shows, for the physical population 
of babies born alive in the United States in 1992, the ages of their mothers in that year, grouped into six age groups. 
The number of babies (column labeled 1992) ,is given in units of 1 ,000, which means that the actual number of babies 
can be obtained by mUltiplying the given frequency by 1 ,000. Using the information given, add the following columns 
to the table: class limits, class boundaries, class width, and class mark. 

Solution 

Table 4.6 

Age of mother 

Under 20 years old 

20-24 years old 

25-29 years old 

30-34 years old 

35-39 years old 

40 years old or more 

1 992 
(births in thousands) 

5 1 8  
1 ,070 
1 , 179 

895 
345 

58 

The distribution in Table 4.6 illustrates open-ended classes and open-ended grouped frequency 
distributions. The "Under 20 years old" class is an open-ended class because it has an upper class limit of 
19 but no lower class limit. Similarly, the "40 years old or more" class is open-ended because it has a lower 
class limit of 40 but no upper class limit. The completed summary table with all the information requested is 
shown in Table 4.7. A question mark has been used instead of a number where numerical values cannot be 
determined because of the nature of open-ended classes. 

Table 4.7 

1 992 
Class Class Class Class mark (births in thousands) 

Age of mother limits boundaries width mi (years) fi 

Under 20 years old ?-1 9  ?-19.5 ? ? 5 1 8  
20-24 years old 20-24 1 9.5-24.5 5 22 1 ,070 
25-29 years old 25-29 24.5-29.5 5 27 1 , 179 
30-34 years old 30-34 29.5-34.5 5 32 895 
35-39 years old 35-39 34.5-39.5 5 37 345 
40 years old or more 40-? 39 .5-? ? ? 58 

L 4,065 

EXAMPLE 4.9 The open-ended grouped frequency distribution shown in Table 4.8 was taken from USA Statistics 
in Brief 1992, a supplement to the Statistical Abstract of the United States: 1992. It shows the age-group frequency 
distribution for the resident population of the United States for the year 199 1 .  The frequency for each age 
group (column labeled 1991) is given in units of 1 ,000,000. Therefore, the actual number of people in each 
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Table 4.8 

Population 

Under 5 years old 
5-17 years old 
1 8-24 years old 
25-34 years old 
35-44 years old 
45-64 years old 
65 years old and over 

1 991  
(people in millions) 

19.2 
45.9 
26.4 
42.9 
39.3 
46.7 
3 1 .8 

age group is obtained by multiplying the given frequency by 1 ,000,000. Using the information provided, 
add the following completed columns to the summary table: class limits, class boundaries, class width, and 
class mark. 

Solution 

The completed summary table is given in Table 4.9, where a (?) symbol is again used to indicate that 
numerical values cannot be determined. This distribution illustrates that open-ended grouped frequency 
distributions can be constructed with unequal class widths. Here, there are two open-ended classes and four 
different class widths between the open ends. 

Table 4.9 

Class Class Class 
Population limits boundaries width 

Under 5 years old ?-4 ?-4.5 ? 
5-17  years old 5-17  4.5-1 7.5 1 3  
1 8-24 years old 18-24 1 7.5-24.5 7 
25-34 years old 25-34 24.5-34.5 10  
35-44 years old 35-44 34.5-44.5 10  
45-64 years old 45-64 44.5-64.5 20 
65 years old or more 65-? 64.5-? ? 

L 

4.8 "LESS THAN" CUMULATIVE DISTRIBUTIONS 

Class 1 991  
mark (births in thousands) 

mi (years) fi 

? 1 9.2 

1 1  45.9 
21 26.4 
29.5 42.9 
39.5 39.3 
54.5 46.7 

? 3 1 . 8  

252.2 

"Less than" cumulative frequency distributions show how many values in a data set are less than any 
given value. To produce such a distribution from a nongrouped frequency distribution, the frequencies are 
cumulated (added to the total) as one goes across the us

'
ed part of the measurement scale from the smallest 

category (xs) to the largest (Xl)' 
Where the sample data consist of continuous and therefore approximate measurements, the "less than" 

cumulation is to the upper boundary of the implied range of a measurement category (see Section 2. l0). At 
each upper boundary the cumulation is the total number of measurements in the sample that are less than 
that boundary value. 

If the sample data is discrete ratio and therefore exact measurement (see Section 2. 10), its values do 
not have implied ranges, and thus "less than" cumulation of frequencies must be obtained differently. 
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Again cumulation is from category�to-category from Xs to x" but now the cumulation indicates for each 
category how many values are less than the category value itself. 

EXAMPLE 4.1 0 Convert the frequency distribution in Table 4. 1 into a "less than" cumulative frequency 
distribution. 

Solution 

The requested distribution is shown in Table 4. 10, in a summary table called a "less than" cumulative 
frequency table. The top value in Table 4. 1  (xs) is 1 .0 kg, an approximate measurement, which has an implied 
range of 0.95 kg to 1 .05 kg. Therefore the cumulation in Table 4. 10 starts at the upper boundary of the 
category below xs, 0.95 kg, and indicates there are no numbers less than 0.95 kg. Next, as there are two 
numbers in the 1 .0 kg category lying somewhere between 0.95 kg and 1 .05 kg, the cumulation indicates that 
there are two numbers less than 1 .05 kg. As there are no values in the 1 . 1  kg category (1 .05 kg to 1 . 15 kg), the 
cumulation states that there are two values less than 1 . 1 5  kg. As there are four values in the next category, 
1 .2 kg (I . 1 5  kg to 1 .25 kg), the cumulation indicates there are now six values less than 1 .25 kg. Continuing the 
process to its completion at 1 .5 kg (X" 1 .45 kg to 1 .55 kg), the cumulation indicates that all 20 values in the 
sample are less than 1 .55 kg. 

Table 4.10 

. Weight (kg) ' Cumulative frequency 

Less than 0.95 
Less than 1 .05 
Less than 1 . 1 5  
Less than 1 .25 
Less than 1 .35 
Less than 1 .45 
Less than 1 . 55 

4.9 "OR MORE" CUMULATIVE DISTRIBUTIONS 

o 
2 
2 
6 

14 
18 
20 

In the "or more" cumulative frequency distribution, the questions that can be answered are of the 
form: How many values in a data set are equal to or more than a given value? Working with approximate 
measurements, the cumulation now goes from Xl to xs, asking for each measurement category: How many 
values are equal to or greater than the lower boundary of the implied range for the category? Working with 
exact measurements, the cumulation determines how many values are equal to or greater than a given 
category. 

"Less than" and "or more" distributions are the most common versions of cumulative frequency 
distributions, but it is also legitimate to construct an "or less" cumulative frequency distribution (for 
approximate measurements, all values are equal to or less than the upper boundary of a category's implied 
range; for exact measurements, all values are equal to or less than the category itself) or a "more than" 
cumulative frequency distribution (for approximate measurements, all values are more than the lower 
boundary of a category's implied range; for exact measurements, all values are more than the category 
itself). 

EXAMPLE 4.1 1 Convert the frequency distribution in Table 4. 1 into an "or more" cumulative frequency 
distribution. 

Solution 

The requested "or more" distribution is shown in Table 4. 1 1 , in a summary table called an "or more" 
cumulative frequency table. In converting the distribution in Table 4.1  to the distribution in Table 4.1 1 ,  the 
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cumulation starts at the lower boundary of the next larger category to Xl. Since XI equals 1 . 5  kg, the lower 
boundary of the next larger category (1 .6 kg) equals 1 .55 kg. This start indicates that no values in the sample 
are equal to or more than 1 .5 5  kg. As there are then two values in XI, lying between 1 .45 kg and 1 .55 kg, the 
cumulation indicates there are two values equal to or more than 1 .45 kg. As there are four values in the next 
category, 1 .4 kg (1 .35 kg to 1 .45 kg), the cumulation indicates that there are six values equal to or more than 
1 .35  kg. This process continues to completion at X" 1 .0 kg (0.95 kg to 1 .05 kg), where the cumulation 
indicates that all 20 values in the sample are equa1 to or more than 0.95 kg. 

Weight (kg) 

, 0.95 or more 
1 .05 or more 
1 . 15 or more 
1 .25 or more 
1 .35 or more 
1 .45 or more 
1 .55 or more 

Table 4.11 

Cumulative frequency 

20 
1 8  
1 8  
14 
6 
2 
o 

4.10 GROUPED CUMULATIVE DISTRIBUTIONS 

Grouped "less than" cumulative distributions are typically cumulated to an upper class boundary, but 
it is also legitimate to cumulate to a lower class limit. Similarly, for a grouped "or more" cumulative 
distribution, it is legitimate to cumulate from either a lower class boundary or a lower class limit. 

EXAMPLE 4.1 2 Convert the grouped frequency distribution of marathon times in Table 4.4 into a grouped "less 
than" cumulative frequency distribution, using the upper class boundary for the cumulation. 

Solution 

The requested grouped cumulative distribution is shown in Table 4. 12. It is seen that there are no values 
less than 127.5 min, the upper boundary for the class below the class containing Xs; and there are three values 
less than 1 30.5 min, the upper boundary of the class containing Xs; and so on until all 30 values are less than 
145.5 min, the upper boundary of the class containing Xl. 

. 

Time (min) 

Less than 127.5 

Less than 1 30.5 
Less than 1 33 .5 

Less than 1 36.5 
Less than 1 39.5 
Less than 142.5 
Less than 145.5 

Table 4.12 

Cumulative frequency 

o 
3 
4 

8 
1 1  
1 8  
30 
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Solved Problems 

ARRAYS AND RANGES 

4.1 From Table A.2, find ranges for the weights (in column 5) of the 1 6  females as well as the 16  
students (both males and females) in the simple random sample from Example 3 .5 (identified by the 
* symbol in column 9). Which of the two ranges is larger and why is this so? 

Solution 

For the 16  females 

Range = 136 1b - 1 05 1b = 3 1 lb 

For the simple random sample 

Range = 1 86 1b --:- 1 1 5 1b = 7 1 1b 

The range for the simple random sample is more than twice as large as the range for the females, because 
males tend to be heavier than females and this simple random sample happens to include both one of the four 
lightest females and one of the four heaviest males. 

4.2 For both the proportional stratified random sample from Problem 3 . 1 2  and the systematic random 
sample from Problem 3 .24 (identified in Table A.2 by the • in columns 10  and 1 1  respectively), put 
the term paper grades (column 8) into ascending arrays and find their ranges. 

Solution 

The assignment of letter grades (from A for excellent to B, C, D, and finally F for failure) to term papers is 
ordinal-level measurement (see Section 2.5). The measurements can be ordered (ranked) from smallest-to­
largest or from largest-to-smallest, but it is not legitimate to determine exact distances between measurements 
by addition or subtraction. Therefore, for these sets of ordinal measurements we can determine their ascending 
arrays but not their ranges. 

These are the grades for the proportional stratified random sample, taken in order of appearance from 
Table A.2: F, B, C, A, B, B, A, B, C, A, A, A, B, B, B, A, and this is their ascending array: F, C, C, B, B, B, B, B, 
� B, A, A, A, A, A, A. 

These are the grades for the systematic random sample, taken in order of appearance from Table A.2: B, 
B, A, A, B, C, B, C, D, B, C, A, B, A, F, B, and this is their ascending array: F, D, C, C, C, B, B, B, B, B, B, B, A, 
A, A, A .  

Note: While the statistical measure of a range (range =x, - xs) is not a legitimate . calculation for 
ordinal-level data, there is a nonstatistical meaning for the term range that could be applied here. In everyday 
English the term means the extent or scope of a group of things, and therefore it could be said here that "the 
grades range in both samples from Fs to As." 

4.3 For the single-stage cluster random sample (see Problem 3 . 13)  in Table A.2 (identified by the · 
in 

column 1 2), put the second lecture exam scores (column 3) into a descending array and then find 
the range. 

Solution 

The second lecture exam scores are the number of points each student earned out of a possible 1 00 
points. This is discrete ratio-level measurement (see Section 2.8), and at this level both arrays and ranges are 
legitimate. The scores for the single-stage cluster random sample taken directly from the table are : 88, 78, 97, 
82, 90, 94, 79, 90, 74, 88, 86, 8 1 ,  85,  64, 64, 92. The descending array for this sample is: 97, 94, 92, 90, 90, 
88,  88, 86, 85,  82, 8 1 ,  79, 78, 74, 64, 64; and the range is: 97 - 64 = 33. 

4.4 Why were the female heights in Table A.2 measured to the nearest * inch rather than to the nearest 
inch? 
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Solution 

In order to provide sufficient separation between measurements in a data set, the part of the measurement 
scale being used should have between 30 and 300 unit steps. If the heights had been taken to the nearest inch 
(i.e., with unit steps of one inch), then the scale would extend from 60 to 69, covering only ten unit steps .  By 
taking the measurements to the nearest i inch (i.e., unit steps of i inch), the number of usable steps increases to 
an acceptable 37. 

DISTRIBUTIONS: FREQUENCY, RELATIVE FREQUENCY, AND PERCENTAGE 

4.5 
k k 

For Table 4.2, what are: (a) 'LJJ;;n), (b) L:[U;!n) x ( 1 00)] %? 
i=l i= l  

Solution 

(a) Within the limits of rounding errors, the sum of the relative frequency column will always be l .0. 

k 
'L(f;/n) = 1 .0 i=1 

(b) Again, within the limits of rounding errors, the sum of the percentage colwnn will always be 100%. 

k 
L:[Ui/n) x ( 100)] % = 100% 
i=l 

4.6 You are studying the characteristics of a type of pig that has been imported from China because its 
sows are said to produce an unusually large litter (the number of offspring produced in a single 
birth; discrete ratio-level measurement). The typical American sow has 1 0  to 1 2  piglets in a litter, 
and you have been told that these Chinese pigs can have 1 6  to 20 piglets per litter. Your results for 
50 litters (n = 50) from these Chinese pigs are summarized in Table 4. 1 3 .  Complete this table by 
filling in the missing values. 

Solution 

Litter size 
Xi 
1 5  
1 6  
17 
1 8  
19  
20 
2 1  

Table 4.13 

Frequency 

fi 
Relative frequency 

Jiln 

0.02 
0.04 
0 . 10 
0.40 
0.24 
0. 12  

There is one missing value in the relative frequency colwnn, for a litter size of 2 1 .  To find this value we 
utilize two facts: the sum of the entire relative frequency colwnn is always 1 .00 [see Problem 4.5(a)], and the 
sum of the relative frequencies for all litter sizes but 21 is 0.92. Therefore, the relative frequency for a litter of 
21  is 1.00 - 0.92 = 0.08. 

With the relative frequency colwnn completed, we can now calculate the frequencies for each litter size 
using the relationship fi = (fi/n)(n). Thus, for a litter of 17 (i = 3 in the table), .h = (0. 10)(50) = S .  The 
completed table, with frequencies calculated for all litter sizes, is shown in Table 4. 14. 
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Table 4.14 

Litter size Frequency Relative frequency 
Xi fi filn 

1 5  0.02 
16  2 0.04 
17  5 0 . 10  
1 8  20 0.40 
1 9  12  0.24 
20 6 0. 12  
2 1  4 0.08 

L 50 l .00 

4.7 From Table A.2, place the term-paper grades (column 8) into separate female and male summary 
tables, each with columns for grade, frequency, relative frequency, and percentage. 

Solution 

The summary table for females is shown in Table 4. 15  and the summary table for males in Table 4.16 .  

Table 4.15 Females 

Grade Frequency Relative frequency Percentage 
Xi fi filn [(filn) x (100)]% 

F 0.0625 6.25 
D 0.0625 6.25 
C 3 0. l 875 1 8.75 
B 6 0.3750 37.50 
A 5 0.3 125 3 l .25 

L 1 6  1 .0000 100.00% 

4.8 From Table A.2, arrange the hair colors (column 7) into separate female and male tables, each with 
columns for color, frequency, relative frequency, and percentage. 

Solution 

The summary table for females is shown in Table 4. 17  and the summary table for males is shown in Table 
4. 1 8. 

GROUPED DISTRIBUTIONS 

4.9 When, for the same set of data, would a grouped distribution be preferred over an ungrouped 
distribution? 

Solution 

The function of a distribution, grouped or ungrouped, is to present summaries of quantitative 
information. Therefore, in deciding which type of distribution to use, the goal is to provide the most concise 
and immediately understandable summary-the one that most clearly shows what you want to emphasize. To 
achieve this goal, a grouped distribution is often preferable to an ungrouped distribution. 
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Table 4.16 Males 

Grade Frequency Relative frequency Percentage 
Xi fi filn [(filn) x (100)]% 

F 2 0.0417  4. 17  

D 4 0.0833 8.33 

C 1 0  0.2083 20.83 

B 20 0.4 167 4 1 .67 
A 12  0.2500 25.00 

L 48 1 .0000 1 00.00% 

Table 4.17 Females 

Color Frequency Relative frequency Percentage 
Xi fi Jiln [(filn) x (100)]% 

Black 3 0. 1 875 1 8.75 

Blonde 8 0.5000 50.00 

Brown 4 0.2500 25.00 

Red 0.0625 6.25 

L 1 6  1 .0000 1 00.00% 

Table 4.18 Males 

Color Frequency Relative frequency Percentage 
Xi fi Jiln [(filn) x (100)]% 

Black 10  0.2083 20.83 
Blonde 14  0.2917  29. 17  
Brown 20 0.4167 41 .67 
Red 4 0.0833 8.33 

L 48 1 .0000 100.00% 

The ungrouped distribution must include categories for all unit steps on the used part of the measurement 
scale, and recall (see Problem 4.4) that 30-300 unit steps are recommended. With so many unit steps, the data 
are often spread far apart, with many empty or low-frequency categories. The grouped distribution, by 
condensing these categories into a relatively few classes, provides a much clearer summary of the important 
information in the data. In the example given in Table 4.4, by condensing the 17 categories of the original 
frequency distribution (Table 4.3) into six classes, many empty and low-frequency categories were eliminated. 
This made the important trend in the data more visible: the rapid increase in frequency with longer finishing 
times. 

4.10 From the information given, fill in the empty spaces in Table 4. 1 9. 

Solution 

Table 4.20 is the completed table. Using the top row as an example of the calculations: the class limits are 
1 . 1-1 .2, which is the same as the class interval [column labeled Length (mm)]; the lower class boundary is 



86 DESCRIPTIVE STATISTICS: ORGANIZING THE DATA INTO SUMMARY TABLES [CHAP 4 

Length (mm) 

1 . 1-1 .2 
1 .3-1 .4 
l .5-1 .6 
1 .7-l .8  
1 .9-2.0 

Class 
limits 

Class 
boundaries 

Table 4.19 

Class 
mark 

mi (mm) 
Class 
width 

Frequency 
/; 
5 
6 
6 
8 

25 

50 

Relative 
frequency 

/;In 

1 .05, which is the lower end of the implied range for the approximate measurement l . 1  mm, and the upper 
class boundary is 1 .25, which is the upper end of the implied range for the approximate measurement 1 .2 mm; 

the class mark is m] = l . 1  ; 1 .2 = 1 . 15 ;  and the class width is 1 . 3 - l . 1  = 0.2. The relative frequency for 

this class is .fl/n = 5/50 = 0. 10. 

Table 4.20 

Class Relative 
Class Class mark Class Frequency frequency 

Length (mm) limits boundaries mi (mm) width /; /;In 

1 . 1"':'1 .2 1 . 1-1 .2 1 .05-1 .25 1 . 1 5  0.2 5 0. 10  
1 .3-1 .4 1 .3-1 .4 1 .25-1 .45 1 .35 0.2 6 0 . 12  
l .5-1 .6 l .5-1 .6 1 .45-l .65 1 . 55 0.2 6 0. l 2  
1 .  7-l . 8 1 .7-1 .8  1 .65-1 .85 1 .75 0.2 8 0. 1 6  
1 .9-2.0 1 .9-2.0 1 .85-2.05 1 .95 0.2 25 0.50 

L 50 l .00 

4.1 1  In Example 4 . 5  we gave the top 3 0  finishing times for male runners in a Boston Marathon. We now 
expand this set of data, giving, in an ascending array, the top 90 finishing times (in minutes) for 
males in this race: 

129, 130, 1 30, 1 33, 134, 1 35, 1 36, 136, 1 38, 1 38, 1 38, 141 ,  141 ,  14 1 ,  142, 142, 142, 142, 
143, 143 ,  143, 143, 143, 144, 144, 145, 145, 145, 145, 145, 146, 146, 146, 146, 147, 147, 147, 148, 
148, 148, 148, 148, 148, 149, 149, 149, 149, 149, 1 50, 1 50, 1 50, 1 50, 1 5 1 , 1 5 1 , 1 5 1 , 1 5 1 , 152, 1 52, 
1 52, 1 52, 1 52, 1 52, 1 52, 1 52, 1 52, 1 53 , 153 , 1 53 , 1 53 , 1 53, 153 ,  1 53, 1 53 ,  153, 1 53, 153, 1 54, 1 54, 
1 54, 1 54, 1 54, 1 54, 1 54, 1 54, 1 54, 155, 1 55 ,  155, 155, 1 55.  

Using the guidelines from Section 4.6, put the fastest 85 times into a grouped distribution with nine 
classes, and place it in a summary table with columns for class intervals, class boundaries, class 
mark, frequency, and percentage. 

Solution 

For these 85 times, the range = 154 min - 129 min = 25 min. Therefore, as we prefer equal and odd class 
widths, and as it must be true that 25 < [(9) x (class width)], the optimal class width is again 3 .  From these 
decisions and the other guidelines, we selected the grouped distribution in Table 4.21 as the best choice for the 
data. 
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Table 4.21 

Class Class mark Frequency Percentage 
Time (min) boundaries mi (min) fi [(filn) x (1 00)]% 

128-130 127.5-130.5 129 3 3 .53 
13 1-133 130.5-1 33.5 132 1 . 1 8  
134-136 133 .5-1 36.5 135 4 4.7 1 
137-139 136.5-1 39.5 138  3 3 .53 
140-142 139.5-142.5 141  7 8 .24 
143-145 . 142.5-145.5 144 12 14 . 12  
146-148 145 .5-148.5 147 1 3  1 5 .29 

149-1 5 1  148.5-1 5 1 .5 1 50 1 3  1 5 .29 
1 52-1 54 1 5 1 .5-154.5 1 53 29 34. 12  

L 85 100.01% 

4.12 From Table A.2, using the guidelines from Section 4.6 and making the class width a multiple of 5, 
put all 64 of the second lecture exam scores (column 3) into a grouped distribution in a summary 
table with columns for class intervals, class boundaries, class mark, tally, frequency, and percentage. 

Solution 

Calculated from Table A.2, the range = 99 - 49 = 50. Using a class width of 5, we want: 50 < [(number 
of classes used) x (5»). Therefore, the optimal number of classes is 1 1 .  Finally, with a class width of 5 and a 
highest score of 99 out of a possible 100, there are only two choices for the class with the largest upper class 
limit: (95-99) or (96-100). To emphasize the fact that no one in the statistics class achieved the maximum 
possible score, we have chosen (95-99). These decisions determined the eleven class intervals in the 
completed summary shown in Table 4.22 (column labeled "2d Exam"). Because the data is discrete ratio 
level, the class intervals, class limits, and class boundaries are all the same. The class mark for each class is the 
sum of the class limits divided by two. For the tally, a mark was placed next to the appropriate class mark for 
each of the 64 scores in Table A.2. Finally, tally was converted to frequency and percentage. 

Table 4.22 

Class Class mark Frequency Percentage 
2d Exam boundaries mi Tally fi [( filn) x (100)]% 

45-49 45-49 47 1 1 .5625 
50-54 50-54 52 0 0.0000 
55-59 55-59 57 1 1 1 1  4 6.2500 
60-64 60--64 62 I I I  3 4.6875 
65-69 65--69 67 1m 5 7.8 125 
70-74 70-74 72 I I I  3 4.6815 

75-79 75-79 77 1m 1  6 9.3750 

80-84 80-84 82 1m 1m I 1 1  17 . 1 875 

85-89 85-89 87 1m I I I I  9 14.0625 

90-94 90-94 92 1m 1m 1m I I  17 26.5625 

95-99 95-99 97 1m 5 7 .8 125 

L 64 100.0000% 
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4.13 From Table A.2, using the guidelines from Section 4.6, put the 64 weights (column 5) into a 
grouped frequency distribution. Use a summary table showing the usual columns for class intervals 
and class mark, but then use separate columns of tally and frequency for females, males, and totals. 

Solution 

From Table A.2, for the 64 weights: the range = 1941b - 1 05 lb = 89 lb. For this range, nine classes each 
of width 10 seem optimal. The only possible grouped frequency distribution for this combination is shown in 
Table 4.23 . 

Table 4.23 

Females Males 

Class mark Frequency Frequency 
Weight ( lb) mi ( lb) Tally fi Tally fi 

105- 1 1 4  109.5 I I I  3 0 
1 1 5-124 1 19.5 1tll 1 1 l  8 I I I  3 
125-134 129.5 1 1 1 1  4 I 1 
135-144 139.5 I 1 1tll 1 6 
145- 1 54 149.5 0 ml 11ll 1 I I  
1 55-164 159.5 0 11ll 1tll I 1 1  
165-174 1 69.5 0 ml lll 8 
175-1 84 1 79.5 0 1 1 1 1  4 
1 85-194 1 89.5 0 1 1 1 1 4 

I: 1 6  48 

4.14 Can grouped distributions be formed for nominal- and ordinal-level data? 

Solution 

Totals 

Frequency 
Tally fi 

I I I  3 

1tll 1tll 1 1 1  

11ll 5 

11ll I I  7 

ml 11ll I 1 1  

11ll ml l  1 1  

1111 1 1 1  8 

1 1 1 1  4 

1 1 1 1  4 

64 

No. The term grouped distribution is restricted to distributions of either interval- or ' ratio-level 
measurements. As defined (see Section 4.4), a grouped distribution is formed by grouping the unit steps of 
the original measurement scale into ordered classes with clearly defined and nonsubjective limits, boundaries, 
widths, and marks. Such grouping is not possible with nominal or ordinal data (see Sections 2.4 and 2.5). 

It is not uncommon, however, for nominal and ordinal data to be reorganized for presentation or analysis 
by forming larger and more comprehensive categories. Thus, for example, the frequency distributions of the 
term paper grades (see Tables 4 . 1 5  and 4. 1 6) may be reorganized to emphasize good and poor performance 
with these categories: (A), (B), and (C or below); or the hair color distributions (see Tables 4. 17 and 4 . 1 8) may 
be reorganized to emphasize one hair color, say blonde and nonblonde. Reorganized nominal- and ordinal­
level distributions, however, are not called grouped distributions .  

OPEN-ENDED GROUPED DISTRIBUTIONS AND UNEQUAL CLASS WIDTHS 

4.15 From examination of the open-ended grouped frequency distribution in Table 4.6, can you say 
whether the principles used in constructing this distribution are in agreement with the guidelines 
from Section 4.6? 

Solution 

It would seem that most of the guidelines were followed. Guideline 1 suggests 5-20 classes, and 6 were 
used. Guideline 2 says: "If possible, use the same class widths for all classes." The open-ended classes have 
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no known width, but the other four classes each have a width of 5. This width (odd and a multiple of 5) agrees 
with guidelines 3 and 4. With open-ended classes, guidelines 5 and 7 do not apply, but we can assume that 
guideline 6 was followed. 

4.16 The open-ended grouped frequency distribution shown in Table 4.24 was taken from page 47 1 of 
the Statistical Abstract of the United States: 1995. It shows the number of families in the United 
States that were in each of nine income groups in 1 993.  The number of families (column labeled 
Number) is in units of 1 ,000. Using the information provided, add the following completed columns 
to the summary table: class boundaries, class width, percentage. 

Solution 

Table 4.24 

Household income 

Under $5,000 
$5,000-$9,999 

$1 0,000-$ 14,999 
$ 15,000-$1 9,999 
$20,000-$24,999 
$25,000-$34,999 
$35,000-$49,999 
$50,000-$74,999 
$75,000 and over 

Number 
(families in thousands) 

4,407 
9,467 
8,956 
8,3 1 9  
8, 103 

14,3 1 8  
1 5,791 
1 5,632 
12, 1 14 

The completed table is shown in Table 4.25. While household income is discrete ratio-level measurement 
(see Section 2.8), the class boundaries are not identical to the class limits. It is discrete ratio because income in 
the United States cannot be subdivided further than the level of cents, but the boundaries and limits are not 
identical because the incomes used for the table were rounded off to the nearest dollar. Thus, it is legitimate to 
calculate a boundary halfway between adjacent limits. 

Table 4.25 

Number 
Class Class (families in thousands) Percentage 

Household income boundaries width fi [(filn) x (1 00)]% 

under $5,000 ?-4,999.5 ? 4,407 4.5383 
$5,000-$9,999 4,999.5-9,999.5 5,000 9,467 9.7490 

$ 10,000-$ 14,999 9,999.5-14,999.5 5,000 8,956 9.2228 
$ 1 5,000-$1 9,999 14,999.5-19,999.5 5,000 8,3 1 9  8.5668 
$20,000-$24,999 19,999.5-24,999.5 5,000 8 , 103 8.3444 
$25,000-$34,999 24,999.5-34,999.5 10,000 14,3 1 8  14.7446 

$35,000-$49,999 34,999.5-49,999.5 1 5,000 1 5,791 1 6.2614 

$50,000-$74,999 49,999.5-74,999.5 25,000 15,632 16 .0977 

$75,000 and over 74,999.5-? ? 12, 1 14 12.4749 

L 97, 107 100.0000% 
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4.17 The following descending array shows the money (in dollars) that was won by each of 70 golfers in 
a recent tournament [amount won followed by (number of golfers who won that amount)]: 

200,000 ( 1); 83,333 (3); 45,000 (1); 40,000 (1); 36,250 (2); 30,000 (3); 2 1 ,900 (5); 1 5,000 (7); 
1 0,000 (3); 7,535 (7); 5,750 (7); 4,260 (5); 3,220 (5); 2,750 (2); 2,490 (5); 2,380 (3); 2,330 (2); 
2,290 (2); 2,260 (1); 2,240 (1) ;  2,220 (2); 2, 180  (1); 2, 170 (1). 

You are a newspaper sportswriter doing a story about the tournament, and you want to use a 
grouped frequency distribution of the winnings to illustrate the following point: While a few golfers 
make an enormous amount of money from such a tournament, most make relatively little. After first 
rounding off the winnings to the nearest $ 1 ,000, illustrate this point with a grouped frequency 
distribution that has ten classes, none of which is open-ended. Use the following as the first of the 
ten classes: $2,000-$4,000. While in illustrating your story you would use only two columns for the 
distribution (class intervals and frequency), here, for your summary table, show: class intervals, 
class boundaries, class width, tally, and frequency. 

Solution 

The grouped frequency distribution shown in Table 4.26 is one possible solution to this 
. problem. It has the ten classes, none of which is open-ended. Seven different class widths are used 

to illustrate the rapid decline and spread of the frequencies as winnings increased, and also to 
clearly show the largest prizes that were won. 

Table 4.26 

Class Class Frequency 
Winnings ($) boundaries width Tally }; 

2,000-4,000 1 ,500-4,500 3,000 lHl lHl lHl mnl!! lHl 30 

5,000-10,000 4,500-10,500 6,000 lHl ill! lHl II 17 

1 1 ,000-20,000 1 0,500-20,500 1 0,000 lHl l l 7 

2 1 ,000-30,000 20,500-30,500 1 0,000 lHl I I I  8 

3 1 ,000-40,000 30,500-40,500 1 0,000 I I I  3 

4 1 ,000-45,000 40,500-45,500 5,000 I 1 

46,000-8 1 ,000 45,500-8 1 ,500 36,000 0 
82,000-83,000 8 1 ,500-83,500 2,000 I I I  3 
84,000-198,000 83,500-198,500 1 1 5,000 0 

199,000-200,000 198,500-200,500 2,000 

L 70 

CUMULATIVE DISTRIBUTIONS 

4.18 To the "less than" cumulative frequency table in Table 4. 1 0, add columns showing the "less than" 
cumulative relative frequency distribution and the " less than" cumulative percentage distribution. 

Solution 

The completed summary table with the requested columns is shown in Table 4.27. Again considering 
only approximate measurements in nongrouped frequency distributions, a "less than" cumulative relative 
frequency distribution shows the proportion of the values in the data set that are less than the implied upper 
boundary of a measurement category, and a "less than" cumulative percentage distribution shows the 
percentage of the values less than that boundary. 

All that was required to convert the "less than" cumulative frequency distribution in Table 4. 1 0  to the 
"less than" cumulative relative frequency distribution in Table 4.27 was to divide each cumulative frequency 
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Table 4.27 

Cumulative Cumulative Cumulative 
Weight (kg) frequency relative frequency percentage 

Less than 0.95 0 0.0 0 
Less than 1 .05 2 0 . 1  10  

Less than 1 . 1 5  2 0. 1 10 

Less than 1 .25 6 0.3 30 
Less than 1 .35 14 0.7 70 

Less than 1 .45 1 8  0.9 90 
Less than 1 .55 20 1 .0 100 

value by the sample size (n = 20). Thus, 0/20 = 0.0, 2/20 = 0. 1 ,  and so on to 20/20 = 1 .0. Next, to convert 
these relative frequency values to percentages and produce a "less than" cumulative percentage distribution, it 
is only necessary to multiply each "less than" cumulative relative frequency value by 100. Thus : 
0.0 x 1 00 = 0, 0 . 1  x 100 =  10, and so on to 1 .0 x 100 = 100. 

4.19 Convert the frequency and relative frequency distributions for litter size in Table 4.14 to "less than" 
cumulative frequency and relative frequency distributions. 

Solution 

Litter size is exact measurement (see Section 2. 10). Therefore, to obtain the "less than" cumulative 
frequency distribution, the cumulation from category-to-category from Xs to XI must now indicate for each 
category how many values are less than the category itself. 

Then, to obtain the "less than" cumulative relative frequency distribution, each cumulative frequency 
value is again divided by sample size. Using these techniques, the requested cumulative distributions for this 
problem are shown in Table 4.28. Thus, from Table 4. 14, Xs = 1 5  with a frequency of 1 ,  so the top row in Table 
4.28 indicates that there are no values less than 1 5, and that the proportion of values less than 1 5  is 0/50 = 0.0. 
Then, in the next row, the cumulation indicates there is one value less than 16 (proportion = 1/50 = 0.02). 
Continuing this process to xl = 2 1 ,  we find that 46 values are less than 21 (proportion = 46/50 = 0 .92). To 
complete the cumulation, we include the next category above Xl and say that there are 50 values less than 22 
(proportion = 50/50 = 1 .00). 

4.20 To the "or more" cumulative frequency table in Table 4.1 1 ,  add columns showing the "or more" 
cumulative relative frequency distribution and the "or more" cumulative percentage distribution. 

Table 4.28 

Cumulative Cumulative 
Litter size frequency relative frequency 

Less than 1 5  0 0.00 
Less than 16 0.02 

Less than 17  3 0.06 

Less than 1 8  8 0 . 16  

Less than 19  28 0.56 

Less than 20 40 0.80 

Less than 2 1  46 0.92 

Less than 22 50 1 .00 
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Solution 

The completed summary table with the requested columns is shown in Table 4.29. As with the conversion 
from frequency to relative frequency in Problem 4. 1 8, to convert the "or more" cumulative frequency in Table 
4. 1 1  to an "or more" cumulative relative frequency, it is simply a matter of dividing the cumulative frequency 
by the sample size (n = 20). Thus, as 20 values are 0.95 kg or more, the proportion of values that are 0.95 kg 
or more is 20/20 = 1 .0. And, at the other extreme, as 0 values are 1 .55  kg or more, the proportion of values 
that are 1 .55 kg or more is 0/20 = 0.0. Now to convert an "or more" cumulative relative frequency 
distribution to an "or more" cumulative percentage distribution, it is simply a matter of multiplying each 
cumulative relative frequency value by 100. Thus: 1 .0 x 100 = 1 00, 0.9 x 100 = 90, and so on to 
0.0 x 1 00 = 0. 

Table 4.29 

Cumulative Cumulative Cumulative 
Weight (kg) frequency relative frequency percentage 

0.95 or more 20 l .0 100 

1 .05 or more 1 8  0.9 90 

l . 1 5  or more 1 8  0.9 90 
1 .25 or more 14  0.7 70 

l .35 or more 6 0.3 30 

1 .45 or more 2 0. 1 1 0  
l .55  or more 0 0.0 0 

4.21 Convert the grouped frequency distribution of the second lecture exam scores in Table 4.22 into 
grouped "or more" cumulative frequency and percentage distributions. 

Solution 

The requested grouped cumulative distributions are shown in Table 4.30. In this problem, as the number 
of points is exact discrete ratio measurement (see Section 2.8), the class boundaries and limits are identical. 
Whichever is considered here, 100% of the scores are 45 or more; 98 .4% are 50 or more; and so on until 0.0% 
are equal to 100, the maximum possible score for the exam. 

4.22 Convert the grouped frequency distribution for golf winnings shown in Table 4.26 into a grouped 
"less than" cumulative percentage distribution. Use upper class boundaries in the "less than" 
cumulation. 

Solution 

The requested grouped cumulative distribution is shown in Table 4.3 1 .  
Note: This is an example of a cumulative distribution involving unequal class widths, and the same 

techniques used for equal-width distributions were applied without change. 

4.23 A test of reaction times was given to 50 people who want to join a police force. The results, 
measured to the nearest tenth of a second, are summarized in the "or more" cumulative percentage 
distribution shown in Table 4.32, where the lower implied boundary of a category was used in the 
cumulation. If the police department requires a reaction time of 0.5 seconds or less on this test, how 
many of the 50 candidates passed the test? How many were only 1 / 10  of a second too slow? 
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Table 4.30 

Cumulative Cumulative 
2d Exam frequency percentage 

45 or more 64 100.0 

50 or more 63 98.4 

55 or more 63 98.4 

60 or more 59 92.2 

65 or more 56 87.5 

70 or more 5 1  79.7 

75 or more 48 75.0 

80 or more 42 65.6 

85  or more 3 1  48.4 

90 or more 22 34.4 

95 or more 5 7.8 

100 0 0.0 

Table 4.31 

Cumulative 
Winnings ($) percentage 

Less than 1 ,500 0.0 
Less than 4,500 42.9 
Less than 10,500 67. 1  
Less than 20,500 77 . 1  
Less than 30,500 88 .6 

Less than 40,500 92.9 
Less than 45,500 94.3 
Less than 8 1 ,500 94.3 
Less than 83,500 98.6 
Less than 198,500 98.6 
Less than 200,500 100.0 

Table 4.32 

Cumulative 
Reaction time (sec) percentage 

0. 1 5  or more 100 
0.25 or more 98 

0.35 or more 94 

0.45 or more 86 

0.55 or more 76 

0.65 or more 50 

0.75 or more 30 

0.85 or more 1 8  

0.95 or more 8 

1 .05 or more 0 
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Solution 

We can see from Table 4.32 that 76% of the candidates had times of 0.55 seconds or more, so we know 
that (100% - 76% = 24%) of the candidates had times ofO.5 -seconds or less. Thus, (0.24 x 50 = 12) of the 
candidates passed the test. 

For the second question, we know that while 76% were 1 / 10  of a second or more slower than required 
(0.55 or more), 50% were 2/ 10 of a second slower or more. Therefore, (76% - 50% = 26%) of the 
candidates, or 1 3  people, were only 1/ 10  of a second too slow. 

4.24 A car dealership has 20 salespeople assigned to selling new cars. The grouped "or more" 
cumulative percentage distribution shown in Table 4.33 summarizes how many cars were sold 
by each of the salespeople during a three-month interval. Thus, 1 00% of them sold "0 or more," 
90% of them sold "3 or more," and so on. (a) If the numbers given in the "or more" column are 
the lower class boundaries, then for the class that has a lower boundary of 0, what are the class 
limits, class mark, and class width? (b) How many of the salespeople sold exactly 7 
cars? (c) How many of the salespeople sold 7 cars or less? (d) What proportion of the 
salespeople sold at least 9 cars? (e) What is the total number of new cars that were sold by 
the 20 salespeople during this three-month interval? 

Table 4.33 

Cars sold by each 
salesperson 

o or more 
3 or more 
6 or more 
9 or more 
12  or more 
1 5  or more 
1 8  or more 
2 1  or more 

Solution 

(a) Class limits: 0-2; class mark: 1 ;  class width: 3 

Cumulative 
percentage 

100 
90 
75 
75 
45 
20 

5 
0 

(b) We know that 75% of the salespeople sold "6 or more" cars, and that 75% also sold "9 or more." As this 
is an "or more" distribution, we are cumulating from large to small; and as there was no change in ' 
percentage from "9 or more" to "6 or more" we can deduce that no new sales were cumulated in the (6-
8) class. Therefore; none of the salespeople sold exactly 6, 7, or 8 cars. 

(c) We know that (100% - 75% = 25%) of the salespeople, or five of them, sold 5 cars or less, and that 
none sold 6 or 7 cars. Therefore, we can conclude that five salespeople sold 7 cars or less. 

(d) The phrase "at least 9" is the same as "9 or more." Therefore, to find the proportion of "at least 9" we 
divide the percentage for "9 or more" by 1 00: 75/ I 00 = 0.75. 

(e) Because the data have been grouped, it is not possible to calculate from Table 4.33 an exact answer to 
this question. Thus, for example, while we can say that 5% of the 20, or one person, sold between 1 8  and 
20 cars, we cannot say whether it was exactly 1 8, 19, or 20. While it is not possible to give an exact total 
from the information given in Table 4.33, we can calculate a reasonable approximation of the totals by 
assuming that all the values in the class are concentrated at the class mark. Then, after determining the 
frequency for each class, we can get the approximate total by taking the sum over all the classes of this 
product: [(class mark) x (class frequency)]. Therefore: 

Approximate total = (1 x 2) + (4 x 3) + (7 x 0) + ( 10  x 6) + ( 1 3  x 5) 

+ ( 16  x 3) + (l9 x 1)  

= 206 
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Note: You will see in Chapters 6 and 7 that this technique of assuming all values in a class are 
concentrated at the class mark is used to approximate other descriptive measures when exact calculations are 
not possible because only grouped data are available. 

Supplementary problems 

ARRAYS AND RANGES 

4.25 In a figure skating competition, a male skater received this set of marks for "artistic impression" from the 
eight judges: 6.0, 5.5, 5.6, 5.9, 6.0, 5.9, 5.7, 5 .7. Place these marks in an ascending array and calculate their 
range. 

ADS. Such "artistic impression" scores are ordinal-level measurement; the judges have rated a performance 
on a subjective scale of aesthetic quality ranging from absolutely terrible (0.0) to perfection (6.0). Therefore, 
while it is not legitimate to calculate their range (see Problem 4.2), they can be placed in this ascending array: 
5 .5, 5 .6, 5 .7, 5 .7, 5.9, 5 .9, 6.0, 6.0. 

4.26 For the females in Table A.2, place the hair color data (column 7) into a descending array and calculate the 
range. 

ADS. Hair color is nominal-level measurement, which means (see Section 2.4) that it is not legitimate to 
either order the measurements from large to small (place them in a descending array) or calculate distances 
between them (calculate their range). 

4.27 The map of the state of Colorado in Fig. 4-1 shows the maximum temperatures eF) recorded in 12 cities on a 
day in July. If it is legitimate, put these measurements into an ascending array and calculate their range. 

ADS. Temperature measurement on the Fahrenheit scale is an example of interval-level measurement (see 
Section 2.6), and at this level both arrays and ranges are legitimate. The ascending array is: 74, 76, 79, 80, 8 1 ,  
83, 84, 85, 85, 88, 92, 93, and the range is: 93°F - 74°F = 19°F. 

Craig 
• 84° Grandby 

• 76° 

Greeley 
• 83° 

Grand Junction 
• 93° 

Durango 
• 85° 

Aspen 
• 74° 

Denver 
• 8 1 °  

Colorado Springs 
• 79° 

Pueblo 

Alamosa 
• 80° 

Fig. 4-1 

• 88° 

Sterling 
• 85° 

Lamar 
• 92° 

4.28 For a men's downhill ski race, these are the times it took (minutes: seconds. hundredths of a second) for the 
ten fastest racers to cover the course, recorded in the order in which they raced: 1 :24.77, 1 :26.23, 1 :26.03, 
1 :26.82, 1 :25.61 ,  1 :24.91 ,  1 :23 .38, 1 :25.80, 1 :26.65, 1 :24.07. If it is legitimate, after first converting these 
times to the nearest second, place them in an ascending array and calculate their range. 

ADS. These times are an example of continuous ratio-level measurement (see Section 2.8), in which both 
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arrays and ranges are legitimate. The ascending array for the times converted to seconds is : 83, 84, 85, 85, 86, 
86, 86, 86, 87, 87; and the range is: 87 sec - 83 sec = 4 sec. 

DISTRIBUTIONS: FREQUENCY, RELATIVE FREQUENCY, AND PERCENTAGE 

4.29 
k 

For Table 4.3, what are: (a) 'E,Ui/N), 
i=1 

ADS. (a) 1 .0, (b) 100% 

k 
(b) 'E,[(};/N) x ( 100)]%? 

i=1 

4.30 An economist studying trends in gasoline prices within a city takes a simple random sample of 40 of the city's 
gas stations, determining for each station the price per gallon (in dollars; discrete ratio-level measurement) of 
unleaded regular gasoline. Here are the results, presented in an ascending array: 1 .05, 1 .07, 1 .07, 1 .07, 1 .08, 
1 . 10, 1 . 10, 1 . 1 0, 1 . 1 0, 1 . 1 0, 1 . 1 0, 1 . 1 0, 1 . 10, 1 . 10, 1 . 1 0, 1 . 1 0, 1 . 1 0, 1 . 1 1 , 1 . 1 1 ,  1 . 1 1 , 1 . 1 1 , 1 . 1 1 , 1 . 1 1 , 1 . 1 1 , 
1 . 1 1 ,  1 . 1 1 ,  1 . 1 1 ,  1 . 12, 1 . 12, 1 . 1 2, 1 . 1 2, 1 . 12, 1 . 1 3, 1 . 13, 1 . 13, 1 . 13 ,  1 . 14, 1 . 14, 1 . 14, 1 . 1 5 .  Put this array into a 
summary table with columns for price, tally, frequency, relative frequency, and percentage. 

ADS. The completed summary table is shown in Table 4.34. 

Price ($) 
Xi 
1 .05 

1 .06 

Tally 

1 .07 I I I  
1 .08 I 
1 .09 

1 . 1  0 1m lIl! II 
1 . 1 1 1m lIl! 
1 . 1 2  1m 
1 . 1 3  1 1 1 1  
1 . 1 4  I II 
1 . 1 5  I 

Table 4.34 

Frequency Relative frequency 
/; /;In 

I 0.Q25 

0 0.000 
3 0.075 
1 0.025 
0 0.000 

12  0.300 
10 0.250 

5 0 . 1 25 

4 0. 100 
3 0.075 

0.025 

40 1 .000 

Percentage 
[( /;In) x (100)]% 

2.5 

0.0 
7.5 
2 .5 
0.0 

30 .0 
25 .0 
12 . 5  

10.0 
7.5 
2.5 

100.0% 

4.31 You are an engineer studying the performance of a new air conditioning system in a 6O-story building. To 
evaluate the temperature in the building, set by the system at 72°F you take a simple random sample of 20 
rooms and measure their temperatures to the nearest oF. Here are the results presented in an ascending array: 
69, 69, 70, 70, 70, 70, 72, 72, 72, 72, 72, 72, 72, 12, 72, 72, 73, 73, 74, 74. Put this array into a summary table 
with columns for temperature, tally, frequency, relative frequency, and percentage. 

ADS. The completed summary table is shown in Table 4.35. 

GROUPED DISTRIBUTIONS 

4.32 In reading a journal article, you find the grouped frequency distribution presented in Table 4.36. The first 
column [Weight (kg)] gives the class mark for each of the five classes in the table, and the second column 

(Frequency) gives the frequency for each class. Using this information, add completed columns to the table for 
class limits, class boundaries, class width, and percentage. 

ADS. The completed summary table is shown in Table 4.37. 
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Table 4.35 

Temperature (OF) Frequency Relative frequency Percentage 
Xi Tally fi filn [(filn) x (100)]% 

69 I I  2 0 . 1  10 
70 1 1 1 1  4 0.2 20 
71  0 0.0 0 
72 mt mt  1 0  0.5 50 
73 II 2 0.1 10 
74 I I  2 0.1 10 

L 20 1 .0 100% 

Table 4.36 

Weight (kg) Frequency 
mj fi 

0.3 3 
0.8 13 
1 .3 42 
1 .8 15 
2.3 7 

L 80 

Table 4.37 

Weight (kg) Class Class Class Frequency Percentage 
mj limits boundaries width fi [(Ji/n) x (100)]% 

0.3 0. 1-0.5 0.05-0.55 0.5 3 3 .75 
0.8 0.6-1 .0 0.55-1 .05 0.5 13 16.25 
l .3 1 . 1- 1 .5 1 .05-1 .55 0.5 42 52.50 
1 .8 1 .6-2.0 1 .55-2.05 0.5 1 5  18 .75 
2.3 2 . 1-2.5 2.05-2.55 0.5 7 8.75 

L 80 100.00% 

4.33 The results ofthe second exam for the statistics class are summarized in Table 4.22. Before the exam, the class 
was given the following equivalents of letter grades for exam scores: (90-99) is an A, (80-89) is a B, (70-79) 
is a C, (60-69) is a D, and (below 60) is an F. What percentage of the class got each letter grade for the exam? 

ADS. As to (26.5625 + 7.8125 = 34.3750)%, Bs to (17. 1 875 + 14.0625 = 3 1 .2500)%, Cs to (4.6875 + 
9.3750 = 14.0625)%, Ds to (4.6875 + 7.8125 = 12.5000)%, and Fs to (1 .5625 + 6.2500 = 7.8 125)%. 

4.34 From Table A.2, using the guidelines from Section 4.6 and making the class width 1 .00 and the first class 
mark 60.00, put all 64 height measurements (column 4) into a grouped frequency distribution. In your 
summary table, show: class intervals, class boundaries, class mark, and separate columns for tally and 
frequency for females and males. 

ADS. The completed summary is shown in Table 4.38. 
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OPEN-ENDED GROUPED DISTRIBUTIONS AND UNEQUAL CLASS WIDTHS 

4.35 The open-ended grouped frequency distribution shown in Table 4.39 was taken from page 671 of the 
Statistical Abstract o/the United States: 1995. It shows the frequency distribution of fanus of different sizes 
(acreage) in the United States in 1992. The number of fanus in each size group (column labeled 1992) is in 
units of 1 ,000. Using the information given in the distribution, add the following completed columns to the 
summary table: class limits, class boundaries, class width, class mark. 

Ans. The completed summary table is shown in Table 4.40. 

4.36 From Table A.2, place all 64 household incomes (column 6) in the same nine classes used in Table 4.24. In the 
completed summary table, give: class intervals, tally, frequency, and percentage. 

Ans. The completed summary table is shown in Table 4.4 1 .  

Table 4.39 

1992 
Size of fanu (farms in thousands) 

Under 1 0  acres 1 66 

1 0-49 acres 388 

50-99 acres 283 

1 00-179 acres 301 

1 80-259 acres 1 72 

260-499 acres 255 

500-999 acres 1 86 

1 ,000-1 ,999 acres 102 

2,000 acres and over 71  
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Class 
Size of farm limits 

Under 10 acres ?-9 

1()....49 acres 1()....49 

50-99 acres 50-99 

1 00-179 acres 1 00-179 

1 80-259 acres 1 80'--259 

260-499 acres 26()....499 

500-999 acres 500-999 

1 ,000-1 ,999 acres 1 ,000-1 ,999 

2,000 acres and over 2,000-? 

L 

Household income 

Under $5,000 

$5,000 to $9,999 

$ 10,000 to $ 1 4,999 

$ 15,000 to $ 19,999 

$20,000 to $24,999 

$25,000 to $34,999 

$35,000 to $49,999 

$50,000 to $74,999 

$75,000 and over 

CUMULATIVE DISTRIBUTIONS 

Table 4.40 

Class Class 
boundaries width 

?-9.5 ? 

9.5-49.5 40 

49.5-99.5 50 

99.5-179.5 80 

179.5-259.5 80 

259.5-499.5 240 

499.5-999.5 500 

999.5-1,999.5 1 ,000 

1 ,999.5-? ? 

Table 4.41 

Frequency 
Tally Ji 

0 

0 

I I 2 

II I I 4 

lHl lHl  10 

lHl lHl lHl lHl 1 1 1 1  24 

lHl lHl I I I I 14 

lHl l  6 

1 1 1 1 4 

64 

Class 1992 
mark (farms in thousands) 

mj (acres) Ji 
? 166 

29.5 388 

74. 5 283 

139.5 301 

2 1 9.5 1 72 

379.5 255 

749.5 1 86 

1 ,499.5 1 02 

? 7 1  

1 ,924 

Percentage 
[(Jiln) x ( 100)]% 

0.000 

0.000 

3 . 1 25 

6.250 

1 5.625 

37 .500 

2 1 .875 

9.375 

6 .250 

1 00.000% 

4.37 Convert the frequency distribution of temperatures eF) in Table 4.35 into both a "less than" cumulative 
frequency distribution and a "less than" cumulative percentage distribution. 

ADS. The requested distributions are shown in Table 4.42. 

4.38 Convert the frequency and relative frequency distributions for litter size in Table 4 . 14  to "or more" cumulative 
frequency and percentage distributions. 

ADS. The completed table is shown in Table 4.43. 

4.39 Convert the grouped frequency distributions for students weights in Table 4.23 into grouped "less than" 
cumulative frequency distributions. 

ADS. The requested cumulative distributions are shown in Table 4.44. The cumulation was done to the upper 
class boundaries. 
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Table 4.42 

Cumulative Cumulative 
Temperature eF) frequency percentage 

Less than 68.5 0 0 

Less than 69.5 2 1 0  

Less than 70.5 6 30 

Less than 7 1 .5 6 30 

Less than 72.5 1 6  80 

Less than 73.5 1 8  90 

Less than 74.5 20 100 

Table 4.43 

Cumulative Cumulative 
Litter size frequency percentage 

1 5  or more 50 100 

1 6  or more 49 98 

17 or more 47 94 

18 or more 42 84 

19 or more 22 44 
20 or more 10  20 

21 or more 4 8 

22 or more 0 0 

Table 4.44 

Cumulative frequency 

Weight (lb) Females Males Totals 

Less than 104.5 0 0 

Less than 1 14.5 3 0 3 

Less than 124.5 1 1  3 14  

Less than 134.5 1 5  4 1 9  

Less than 144.5 1 6  10  26 

Less than 154.5 2 1  3 7  

Less than 1 64.5 32 48 

Less than 174.5 40 56 

Less than 1 84.5 44 60 

Less than 1 94.5 48 64 
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. 4.40 Convert the grouped frequency distributions for student weights in Table 4.23 into grouped "or more" relative 
frequency distributions. 

Ans. The requested cumulative distributions are shown in Table 4.45 . First the group cumulative frequencies 
were calculated from the lower class boundaries, and then to get cumulative relative frequencies these 
cumulative frequencies were divided by sample size (nf = 16, nm = 48,  and nt = 64). 

Table 4.45 

Cumulative relative frequency 

Weight (lb) Females Males Totals 

1 04.5 or more 1 .00 1 .00 

1 14.5 or more 0.81 1 .00 0.95 

124.5 or more 0.3 1 0.94 0.78 

1 34.5 or more 0.06 0.92 0.70 

144.5 or more 0.00 0.79 0.59 

1 54.5 or more 0.56 0.42 

1 64.5 or more 0.33 0.25 

1 74.5 or more 0 . 17  0. 1 2  

1 84.5 or more 0.08 0.06 

194.5 or more 0.00 0.00 

4.41 Convert the open-ended grouped frequency distribution of farm sizes shown in Table 4.40 into grouped "or 
. more" cumulative frequency and percentage distributions. Use lower class limits in the "or more" cumulation. 

Ans. A possible solution to this problem is given in Table 4.46. Note that because there are open-ended 
classes at both ends of the distribution, it is not possible to establish either the 0% or 1 00% boundaries. 
Therefore, the frequencies and percentages for the open-ended classes must in some way be identified 
separately. Because of these complexities, some statistics books recommend that cumulative distributions not 
be used for open-ended distributions. 

Table 4.46 

Size of farm Cumulative Cumulative 
(acres) frequency percentage 

(under 1 0) (1 66) (8.6 under 1 0) 

10 or more 1 ,758 9 1 .4 

50 or more 1 ,370 7 1 .2 

100 or more 1 ,087 56.5 

1 80 or more 786 40.9 

260 or more 6 14 3 1 .9 

500 or more 359 1 8.7 

1 ,000 or more 173 9.0 

(2,000 and over) (71) (3.7 2,000 and over) 



Chapter 5 

Descriptive Statistics : Graphing the Data 

5.1 BAR GRAPHS, LINE GRAPHS, AND PIE GRAPHS 

A graph is a diagram that shows relationships between variables: how changes in one variable are 
related to changes in another, how one variable (the dependent variable) is a function of another (the 
independent variable) (see Section 1 . 1 7). In this chapter we concentrate on graphs that show how changes 
in a measurement variable X are related to changes in either frequency, relative frequency, or percentage. 
Three types of graphs are used: bar graphs, line graphs, and pie graphs. 

A bar graph is constructed on a rectangular coordinate system (see Section 1 .20), where by tradition 
the X axis represents the independent variable, the Yaxis the dependent variable, and rectangles (or bars) 
show the relationship between the variables. An example of such a bar graph used to illustrate a frequency 
distribution is presented in Fig. 5-1(a). It shows how the frequency of occurrence of measurement values in 
a sample changes as one goes across the measurement scale, and thus how frequency (the Yaxis) could be a 
function of the measurement variable (the X axis). The frequency of each measurement value is 
proportional to the height of the vertical rectangle above that value. Note that, by convention, when 
presenting empirical distributions in graphs the axes are not identified with X and Y symbols. 

(a) (b) (c) 50 10 
.---.--

4 

3 
40 

0 ��)�0�2·0�3·0��40��50-L�60-
Measurement variable Measurement variable 

Fig. 5-1 

A line graph, also constructed on a rectangular coordinate system, shows the relationships between 
variables by means of dots connected by lines or by continuous lines. A line graph version of the frequency 
distribution in Fig. 5-1 (a) is shown in Fig. 5-1 (b). Now the frequency of each measurement value is 
represented by the height of a dot above the X axis, and the dots are connected by straight lines. 

Bar graphs and line graphs can also be used to display relative frequency or percentage distributions. 
All that is required is to convert the Yaxis of the coordinate system to relative frequency or percentage. 

Pie graphs, unlike bar graphs and line graphs, are not constructed on rectangular coordinate systems. 
They show the relationship between variables by dividing a circle (or pie) into appropriately sized sectors 
(or slices). In this chapter they are used to display relative frequency and percentage distributions. In the 
pie graph shown in Fig. 5-1(c), the frequency distribution from Figs. 5-I(a) and 5- 1 (b) has been converted 
to a percentage distribution, with the percentage for each measurement value proportional to the area of the 
sector for that value. 

102 
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5.2 BAR CHARTS 

A bar chart is a bar graph for nominal-level, ordinal-level, and discrete ratio-level data (see Sections 
2.4, 2.5, and 2.8) that shows frequency, relative frequency, or percentage by the height of the bar and not by 
the bar's area, and shows vagueness or discontinuities in the measurement scale by spaces between the 
bars. 

EXAMPLE 5.1 Construct a frequency bar chart for the frequency distribution of male hair color shown in 
Table 4. 1 8. 

Solution 

The frequency bar chart (also called a frequency bar graph or a frequency bar diagram) for this 
distribution is shown in Fig. 5-2. In this chart, the categories of the measurement variable (hair color) are 
evenly spaced along the X axis. If a measurement scale has an order (small to large, low to high, etc.), this 
order should be preserved on the X axis, with the smallest (or lowest) category placed near the Yaxis. Here, 
because the variable is nominal level, and thus unordered, the categories could have been arranged in any 
order on the X axis. The Yaxis has a frequency scale marked off in equal units of five. Above each category on 
the X axis, each measurement in the sample in that category is represented by a small rectangle that has a 
standard base width and a height equal to one on the frequency scale. The frequency of a category, therefore, 
is represented by the total number of small rectangles piled vertically above it. The ten measurements of black 
hair, for example, are represented by ten rectangles in the bar labeled "black." While piles of component 
rectangles are shown in Fig. 5-2 to illustrate how bar charts are constructed, they are rarely shown in finished 
presentations. Instead, the bars are left clear or are shaded in some fashion, and the frequency of the category 
is read by projecting the top line of the bar across to the vertical axis. 

20 f-

15  f-

f-

5 f-

o 
Black Blonde Brown Red 

Hair color 

Fig. 5-2 

The spacing between the bars-the fact that they are not touching-has significance. Such spacing 
indicates that the measurement variable is not continuous with uniform and standard reference units. The 
opposite also has meaning: When the bars are shown to be touching, in a form of bar graph called a histogram 
(see Section 5 .3), it generally indicates that the measurement variable is continuous interval-level or ratio-level 
measurement. 

There are no fixed rules for constructing the frequency scale on the Yaxis, but the following guidelines 
are suggested by statistics books. 

(l)  The length of the Yaxis should be roughly 600/,,-75% of the length of the X axis. 

(2) The frequency scale should start at the X axis at zero 'and extend slightly above the highest category 
frequency. 

(3) It is arbitrary how many numbers are used for the frequency scale and how it is subdivided, but generally 
there are anywhere from 2 to 20 equal-length subdivisions. 
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5.3 HISTOGRAMS: UNGROUPED DATA 

As indicated in Example 5 . 1 ,  a histogram is a bar graph for continuous interval-level and ratio-level 
data. (Its use for discrete ratio-level data is discussed in Problem 5 .9.) A histogram differs from a bar chart 
in that the histogram shows frequency, relative frequency, or percentage by the area of the bar and not 
always by its height, and shows the high level of measurement being graphed by bars that touch each other 
to form a continuous structure. All suggestions and guidelines from Example 5 . 1  for the construction of 
bar charts apply to the construction of histograms. 

EXAMPLE 5.2 Construct afrequency histogram for the data summarized in Table 5 . 1 .  

Table 5.1 

Length (cm) Frequency 
Xi fi 

1 .2 2 

1 .3 7 

1 .4 1 0  

1 .5 1 2  

1 .6 1 0  

1 .7 7 

1 .8 2 

L 50 

Solution 

The requested histogram is shown in Fig. 5-3. For such an ungrouped frequency distribution of 
continuous ratio-level data, each bar in the histogram represents a measurement category with a base width 
that extends from boundary to boundary across the implied range for that category. The number below the 
midpoint of each bar is the measurement value for the category. This construction assumes that all sample 
measurements in a category are evenly spread over its implied range. If equal base widths are used for each 
category, then the frequency for each category is proportional to both the height and area of its bar. 

If a vertical line were drawn through the middle of this histogram (above 1 . 5  on the X axis) it would 
divide the histogram into two identical, mirror-image parts. Because of this the histogram is said to be 
symmetrical. Also note that the histogram rises to only one peak (above 1 .5), and because of this it is said to 
be unimodal. (If it had two peaks it would be called bimodal, three peaks trimodal, and so on; there is further 
discussion of modes and modality in Chapter 6.) 

12 

10 

1 .3 1 .4 1 .5 1 .6 1 .7 1 .8 
Length (em) 

Fig. 5-3 
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5.4 IDSTOGRAMS: GROUPED DATA 

As grouped data, by definition (see Problem 4. 14), is interval or ratio level, histograms should be used 
for continuous measurement variables. There is the usual problem with discrete ratio-level data (see 
Problem 5.9), but because the data is grouped it is suggested that histograms be used. 

Each bar in a frequency histogram for grouped data represents frequency of a class. The base width of 
the bar, extending from the lower to upper boundaries of the class, represents class width, and if equal base 
widths (classes) are used, then the class frequency is proportional to both the area and the height of the bar. 
It is assumed that the values within a class are uniformly distributed across the bar width from boundary to 
boundary. 

EXAMPLE 5.3 Construct a frequency histogram for the grouped frequency distribution of weights presented in 
Table 4.36. Show class marks (m;) along the X axis. 

Solution . 

The requested histogram is shown in Fig. 5-4. The bars of the histogram are centered on class marks 
along the X axis, but it is equally appropriate for such grouped data to show along the X axis: class boundaries, 
class limits, or the used part of the measurement scale. 

40 

1 0  

5.5 POLYGONS: UNGROUPED DATA 

0.8 1 .3  1 .8 2.3 
Weight (kg) 

Fig. 5-4 

A polygon is simply a line graph (see Section 5 . 1) of a frequency, relative frequency, or percentage 
distribution. In constructing a polygon for ungrouped continuous data, it is assumed that all measurements 
in a category are at the midpoint of the implied range for that category. For a frequency polygon, for 
example, a dot representing frequency for each category is placed above the category midpoint at the 
heights indicated by the vertical frequency scale. The category dots are then connected by straight lines. It 
is customary to extend the polygon to the X axis at both ends, by connecting it to the category midpoints 
just below and above the used part of the measurement scale. Attaching the polygon in this fashion to the X 
axis produces a closed plane figure bounded by straight lines, which is the definition of a polygon. 

EXAMPLE 5.4 Construct a frequency polygon for the data presented in Table 5 . 1 .  In your graph, show how the 
frequency histogram for this data (Fig. 5-3) is related to the frequency polygon. 

Solution 

The requested combination of polygon and histogram is shown in Fig. 5-5. The polygon connects the 
midpoints of the tops of adjacent histogram bars. While these two figures are closely related, they are rarely 
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presented together. When the polygon is constructed independently, the coordinates of each dot 
(x = measurement value, y = frequency) are used to plot them directly onto the coordinate system (see 
Section l .20), and then the dots are connected by straight line segments. The same descriptions apply to 
polygons that are used for histograms, so this polygon is unimodal and symmetrical. 

1 2  

10  

r 
4 

2 

o 

Length (em) 

Fig. 5-5 

5.6 POLYGONS: GROUPED DATA 

It is assumed in the construction of a polygon for grouped data that all measurements within a class are 
at the class mark. Then, if all class widths are equal, a dot representing frequency, relative frequency, or 
percentage is placed above each class mark at the appropriate height on the vertical scale. The class dots 
are connected by straight lines, and thus as in Example 5.4 the polygon connects the midpoints of the tops 
of adjacent histogram bars. The polygon is completed by extending it to the X axis at both ends, assuming 
there are classes of the same width as in the distribution just below and above the histogram. 

EXAMPLE 5.5 Construct a frequency polygon and histogram for the grouped data presented in Table 4.2 1 .  Show 
class marks (m;) along the X axis. 

Solution 

The requested combination of polygon and histogram is shown in Fig. 5-6. 

30 

>. 20 

fi 
g. 
� 1 0  

Time (min) 

Fig. 5-6 
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5.7 FREQUENCY CURVES, RELATIVE FREQUENCY CURVES, AND PERCENTAGE 
CURVES 

107 

A frequency polygon for grouped data typically represents the frequency distribution of a sample that 
has been grouped into 5 to 20 classes. However, consider what would happen to the polygon if sample 
sizes were steadily increased, more and more classes were used in grouping the distribution, and class 
widths were steadily decreased. Under these conditions, as sample size n approached population size N the 
polygon would become a smooth curve called a frequency curve (or smooth-curve frequency polygon). 
Similarly, a relative frequency polygon would become a relative frequency curve and a percentage polygon 
would become a percentage curve. Such smooth curves for populations can be approximated (or fit) by 
theoretical mathematical curves. These theoretical curves, as you will see in later chapters, are the basic 
tools that allow probability decisions in inferential statistics. 

5.8 PICTOGRAPHS 

A pictograph (or pictogram) is a form of bar graph in which stylized, easily recognizable figures are 
used in place of rectangular bars. 

EXAMPLE 5.6 The open-ended grouped frequency distribution shown in Table 5.2 was taken from page 47 1 of 
the Statistical Abstract of the United States: 1995. It shows, for males and females separately, the number of single­
person households in the United States that were in each of nine income groups in 1 993. You want to present these 
data in a consecutive-parts relative frequency pictograph. To simplify the presentation, you first condense the nine 
income groups into three arbitarily selected groups: lower income (under $25,000), middle income ($25,000 to 
$49,999), and upper income ($50,000 and over). Convert the frequency distributions in Table 5 .2 into relative 
frequency distributions that have these three groups, and then graph the distributions with a consecutive-parts 
pictograph. 

Table 5.2 

Single-person households (in thousands) 

Male householder Female householder 
Household income fi fi 

Under $5,000 704 1 ,386 

$5,000-$9,999 1 ,257 4,0 13  

$ 1 0,000-$ 14,999 1 ,324 2,439 

$ 1 5,000-$ 1 9,999 1 , 1 06 1 ,678 

$20,000-$24,999 1 ,080 1 ,279 

$25,000-$34,999 1 ,639 1 ,578 

$35,000-$49,999 1 ,2 1 7  1 ,083 

$50,000-$74,999 698 520 

$75,000 and over 414 1 96 

L 9,439 14, 1 72 

Solution 

The requested relative frequency distributions are shown in Table 5 .3, and the requested pictograph is 
shown in Fig. 5-7. Each complete small figure in the pictograph, male or female, represents a relative 
frequency of 0. 1 .  
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Household income 

Lower income 

Middle income 

Upper income 
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Table 5.3 

Single-person households (in thousands) 

Male householder Female householder 

Frequency Relative frequency 

fi filN 

5,47 1 0.5796 

2,856 0.3026 

1 , 1 1 2  0. 1 178 

9,439 1 .0000 

0.76 

0 . 19 

Lower income Middle income 

Fig. 5-7 

Males 

Fig. 5-8 

Frequency 

fi 

10,795 

2,661 

7 1 6  

14, 172 

0. 12 

Upper income 

Upper 
income 
0.05 

Females 

Relative frequency 
filN 

0.7617  

0 . 1 878 

0.0505 

1 .0000 
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5.9 PIE GRAPHS 

As indicated in Section 5 . 1 ,  pie graphs (or pie charts, or circle diagrams) represent relative frequency 
or percentage distributions with circles divided into sectors that are proportional in areas to the relative 
frequency or percentage values. If there is an ordering to the categories (or classes) of the distribution, it is 
typically preserved in a clockwise sequence starting at the 12  o 'clock position. 

EXAMPLE 5.7 From the data in Table 5.3,  construct separate relative frequency pie graphs for males and females. 

Solution 

The requested pie graphs are shown in Fig. 5-8. 

5.10 STEM-AND-LEAF DISPLAYS 

Stem-and-Ieaf displays are techniques that allow rapid and informal exploration of the characteristics 
of a set of data. Among other things, they give a first view of symmetry and modality, and help determine 
the most appropriate class widths for grouping data in distributions. In a typical display there is a vertical 
line of numbers called starting parts, and for each starting part there is horizontal line of numbers called 
leaves. Each complete horizontal line (starting part plus leaves) is called a stem. Every number in the data 
set being displayed has both a starting part and a leaf. 

The stem width (or category interval) determines which numbers in the data set are recorded on a 
given stem. Similar to a class width, it is the distance between the lowest value that is recorded on the stem 
in question and the lowest value that is recorded on the stem just beneath it. 

A simple stem-and-Ieaf display has the following characteristics: ( 1 )  each stem has a different starting 
part, and (2) while each starting part can have more than one digit, each leaf of a stem must be only one 
digit. 

EXAMPLE 5.8 Arrange the following set of numbers in a simple stem-and-Ieaf display that has single-digit 
starting parts and leaves, and a stem width of 10 :  46, 35, 37, 20, 43, 1 5, 15 , 26, 45, 25, 29, 13 , 39, 44, 2 1 , 24, 16, 40, 
19, 45, 30, 34, 1 7, 39, .16, 40, 3 1 ,  2 1 ,  14, 42, 16, 43, 22, 1 1 , 24, 25, 3 1 , 27, 40, 33 .  

Solution 

The requested simple stem-and-leaf display is shown in Fig. 5-9. The starting parts are the vertical 
numbers (1 , 2, 3 ,  4) to the left of the vertical line, and the leaves are the numbers extending horizontally to the 
right. For starting-part 2, for example, the leaves are 0659 1 4 1 2457. As we are asked to use single-digit starting 
parts and leaves, the first value in the set of numbers, 46, has a starting part of 4 and a leaf of 6; the second 
value, 35, has a starting part of 3 and a leaf of 5; and so on. Each value in a set of numbers is recorded in the 
display as it is encountered in the raw data, by writing its leaf to the right of its starting part. Thus, for the first 
value in the set, 46, the 6 is written to the immediate right of its starting part 4; for the second value 
encountered, 35, the 5 is written to the immediate right of starting part 3 ;  then, for the next value, 37, the 7 is 
written to the right of starting part 3 but after leaf 5 ;  and so on. As we are asked to form a stem width of 10, 
the stem with starting part 1 includes the numbers 10 through 19,  and the next stem beneath it starts at the 
number 20. 

When all the data is in the display, a check count is made in which the number of leaves on each stem is 
recorded in parentheses at the right of the stem, and the stem counts are then totaled at the bottom. This serves 
as a quick check on whether all the data have been recorded in the display. 

1 553697646 1 ( 10) 

2 0659 1412457 (1 1 )  

3 579049 1 13  (9) 

4 6354050230 (10) 

(40) 

Fig 5-9 
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5.11 GRAPHS OF CUMULATIVE DISTRIBUTIONS 

An ogive' is a graphical representation of a continuous cumulative frequency, relative frequency, or 
percentage distribution (see Sections 4.8, 4.9, and 4. 10) .  Considering frequency as an example, a "less 
than" frequency ogive (or "less than" cumulative frequency polygon) is a line graph (see Section 5 . l )  
constructed on a rectangular coordinate system from continuous data organized into a grouped or 
nongrouped "less than" cumulative frequency distribution. 

For nongrouped data, where the "less than" cumulation is to the upper implied boundary of a 
measurement category (see Section 4.8), these upper boundaries are plotted along the X axis. The Yaxis is 
cumulative frequency, which goes from zero at the X axis to the completed cumulation. The "less than" 
cumulative frequencies at each upper boundary are plotted as dots directly onto the coordinate system 
using the coordinates: x = upper implied boundary of a category, y = "less than" cumulative frequency at 
that boundary. The dots are connected by straight lines, and the completed "less than" frequency ogive 
rises to the right, from zero at the upper boundary of the category below Xs to the completed sample size at 
the upper boundary of XI. 

An "or more" frequency ogive (or "or more" cumulative frequency polygon) is a line graph 
constructed on a rectangular coordinate system from continuous data organized into a grouped or 
nongrouped "or more" cumulative frequency distribution. For nongrouped data, where the cumulation 
is from the lower implied boundary of a measurement category (see Section 4.9), all lower implied 
boundaries are plotted along the X axis. The Yaxis is again cumulative frequency going from zero at the X 
axis to the completed cumulation. The "or more" cumulative frequencies at each lower boundary are 
plotted as dots directly onto the coordinate system using the coordinates: x = lower implied boundary of a 
category, y = "or more" cumulative frequency at that boundary. Again the dots are connected by straight 
lines, and the completed "or more" frequency ogive falls to the right from the complete sample size at the 
lower boundary of Xs to zero at the lower boundary of the category above XI. 

EXAMPLE 5.9 Construct a "less than" frequency ogive for the "less than" cumulative frequency distribution 
shown in Table 4. 10. 

Solution 

The requested ogive is shown in Fig. 5-10.  Reading from it, the height of the dot above 1 .25 kg, for 
example, tells you there are six measurements in the sample that are less than 1 .25 kg; and, from the dot above 
1 .55 kg, that all 20 measurements in the sample are less than 1 .55  kg. Also, the fact that there is no change in 
"less than" cumulative frequency from 1 .05 kg to 1 . 1 5  kg indicates that as there were two numbers less than 
both 1 .05 kg and 1 . 15 kg, none of the measurements was 1 . 1  kg. 

20 

16  » 
g 
g 0-., 1 2  <l:: 
., > 

.= OJ 
"3 8 8 8 

4 

0 1 .05 1 . 1 5  1 .25 1 .35 
Weight (kg) 

Fig. 5-10 

1 .45 1 .55 
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EXAMPLE 5.1 0  Construct an "or more" frequency ogive for the "or more" cumulative frequency distribution 
shown in Table 4.29. 

Solution 

The requested ogive is shown in Fig. 5-1 1 .  Reading from it, the height of the dot above 1 .25 kg tells us 
there are 14  measurements in the sample equal to or more than 1 .25 kg; and the dot on the X axis at 1 .55 kg 
indicates there are no measurements in the sample equal to or more than 1 .55  kg. Again, the lack of change in 
the "or more" cumulative frequency from 1 .05 kg to 1 . 1 5  kg indicates there were no 1 . 1  kg measurements in 
the sample. 

20 

16  >. u <= ., '" 
g- 12  <.!:: 
., 
.� 
� 8 
'" u 

4 

0 1 . 1 5  1 .25 1 .35 1 .45 1 .55 
Weight (kg) 

Fig. 5-11 

Solved Problems 

BAR CHARTS 

5.1 The frequency distribution for male term-paper grades presented in Table 4. 1 6  is shown in the bar 
chart in Fig. 5-12.  What mistakes in technique were made in constructing this bar chart? 

Solution 

There are five mistakes (see Example 5. 1): 

(I ) In Table 4. 1 6, the term-paper grades are ordered from low-to-high, and thus the categories should be 
arranged left-to-right: F; D, C, B, A. 

(2) As the measurement scale is ordinal and thus "not a continuous variable with uniform and standard 
reference units," there should be spaces between the vertical bars. 

(3) The vertical scale is improperly marked off to show the frequency for each category. It should be marked 
off in equal intervals. 

(4) The bars do not have equal base widths. Instead, each bar has a base width that is 1 /3 its height, and 
because of this the bar areas magnify and distort the frequency differences. 

(5) The recommendation that the vertical axis be 600/0-75% of the horizontal axis has not been followed. 
Instead, the two axes have the same length. 
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Fig. 5-12 
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5.2 Construct a bar chart for the male term-paper grades in which all the mistakes in Fig. 5-12 have 
been corrected, and which shows both frequency and relative frequency on the same graph. 

Solution 

The requested bar chart is presented in Fig. 5-13,  where relative frequency is shown by a second vertical 
axis that has been added to the right side, with a scale marked off in equal units of 0. 1 .  This relative frequency 
scale was coordinated with the frequency scale by first converting the desired relative frequency scale values 
to their equivalent frequencies; then finding the location of these frequencies on the frequency scale; and 
finally, marking off the relative frequency values at the same location (height above the X axis) on the right­
hand scale. Thus, for example, a relative frequency of 0 . 1  is equivalent to a frequency of (0. 1  x 48 = 4.8), and 
therefore the line marking 0. 1 on the relative frequency axis was drawn at the same height as 4.8 on the 
frequency axis. Bar charts can be constructed with only frequency, relative frequency, or percentage on the 
left-hand axis, or with some combination of these variables on two parallel vertical axes. 

20 0.4 

15  0.3 >-(,) <: 
>- ., '" (,) C' � ., 
'" <!:: 
C' 1 0  0.2 ., 
e > 

� ';:3 .. 
"0 � 

5 0 . 1  

o L-...L-_-L.....L-_-L.....J...._-L.....L-_--'-...L-_--'----J 0.0 
F D C B A 

Term-paper grades 

Fig. 5-13 
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5.3 From data for the female hair color in Table 4. 1 7, construct a horizontally oriented, percentage bar 
chart. 

Solution 

The requested bar chart is shown in Fig. 5-14. In a horizontally oriented version of a bar chart for 
nominal data, the categories on the measurement scale are typically arranged such that either the longest bar is 
on top with a smooth progression downward to the shortest bar (as here), or the longest bar is on the bottom 
with a smooth progression upward to the shortest bar. The amount represented by the length of the bar can be 
indicated (as here) by both a number to the right of the bar and a scale at the base of the graph, or by either of 
these techniques alone. Note that the spacing between the bars, indicating noncontinuity and vague category 
boundaries, is also used in the horizontal version. 

Blonde 

... Brown 0 
'0 <.) ... 
. ; Black ::c 

Red 

10  20 

25.00% 

1 8.75% 

30 
Percentage 

Fig. 5-14 

50.00% 

40 50 

5.4 Place the data for female (Table 4. 17) and male (Table 4. 1 8) hair color together in a component­
parts frequency bar chart and a consecutive-parts frequency bar chart. 

(a) D Male (b) 

• Female D Male 
25 • Female 

20 20 

>- >-<.) <.) c 15 c 15  " " :::l 6-0-
� " ... '" '" 

10  10  

5 5 

0 0 
Black Blonde Brown Red Black Blonde Brown Red 

Hair color Hair color 

Fig. 5-15 
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Solution 

The component-parts chart (also called a component bar graph) is shown in Fig. 5-15(a) and the 
consecutive-parts chart is shown in Fig. 5-15(b). It can be seen in the components-parts frequency bar chart 
that the total length of each bar represents the total frequency of a hair-color category, and that each bar has 
component lengths representing male and female contributions to the total frequency. In the consecutive-parts 
frequency bar chart, the male and female frequencies are shown as paired vertical bars for each category-two 
separate bar charts on the same axes. 

Table 5.4 

Weight (g) Frequency Relative frequency 
Xi fi filn 

14 2 0.0222 
15  2 0.0222 
16  4 0.0444 
17 1 8  0.2000 
18  24 0.2667 
19 35 0.3889 
20 5 0.0556 

L 90 1 .0000 

mSTOGRAMS: UNGROUPED DATA 

5.5 Construct a relative frequency histogram for the data summarized in Table 5.4. 

Solution 

The requested histogram is shown in Fig. 5-16. Again, as in Example 5.2, a histogram is used because the 
measurements are continuous ratio, but now, while the histogram is unimodal as in Fig. 5-3, it is no longer 
symmetrical. Instead it has a tail of low relative frequency values that extends to the left, in the negative 

� = ., & � 
.� � � 

0.4 

0.3 

0.2 

0.1 

0.0 L......J'v--'-.l--.l--.l--......... -'--'--'--'--'--'--'--'-.....L..-L-
14 15  16 17 

Weight (g) 

Fig, 5-16 

18 1 9  20 
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Table 5-5 

Temperature eF) Frequency Relative frequency 
Xi fi filn 

1 00 10 0. 1 0  

10 1  45 0.45 

1 02 25 0.25 

1 03 10 0. 1 0  

1 04 5 0.05 

1 05 0 0.00 

1 06 3 0.03 

1 07 2 0.02 

L 1 00 1 .00 

direction along the X axis. Because it is not symmetrical it is said to be skewed, and here it is said to be skewed 
to the left or negatively skewed. 

5.6 Construct a histogram for the data summarized in Table 5.5, showing both frequency and relative 
frequency. 

Solution 

The requested histogram is shown in Fig. 5-17.  As this data is continuous interval, a histogram is again 
appropriate. Note the gap in the histogram representing an absence of measurements for 105°F. This gap 
illustrates that while the histogram is for continuous measurements, it itself does not have to have a continuous 
structure. The techniques used to construct the coordinated frequency and relative frequency scales are those 
used for charts in Problem 5.2. This histogram is unimodal, and as it now has a tail extending to the right or in 
the positive direction, it is said to be skewed to the right or positively skewed. 

50 0.5 

40 0.4 
» u Q 

» 30 0.3 <> Q g 0" 
!:l <> <t: 
[ <> 
� 20 0.2 ·i 

0) � 
10  0. 1 

0 0.0 
100 1 0 1  1 02 1 03 104 l OS 1 06 107 

Temperature ("F) 

Fig. 5-17 

5.7 In Figs. 5-3 and 5-16 there are breaks in the X axis near the Yaxis that indicate a gap between zero 
and the first values on the used portion ofthe measurement scale. In Fig. 5-3 the symbol (-11-) is used 
to indicate the gap and in Fig. 5-1 6  the symbol (-'\r) is used. There is a comparable gap in Fig. 5-17, 
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for the lower range of temperatures, but no indication of it on the graph. Which of these techniques 
is the correct way to indicate such gaps? 

Solution 

Both types of symbols are commonly used to indicate such gaps as well as other symbols such as (ff). It 
is also common practice, as in Fig. 5-17, to have the histogram start near the Yaxis with no indication of a gap. 

5.8 In Fig. 5-3 the bars in the histogram have equal base widths and therefore for each bar both height 
and area are proportional to frequency. Similarly, in Fig. 5- 1 6  the equal base widths mean that for 
each bar both height and area are proportional to relative frequency. What are the total areas in the 
histograms (all the bar areas added together) proportional to in: (a) Fig. 5-3 ,  (b) Fig. 5-16, and 
(c) Fig. 5-17? 

Solution 

(a) The total area is proportional to the sum of the frequencies, or n (N if the data represent a population). 
(b) The total area is proportional to the sum of the relative frequencies, or 1 .000. 

(c) With both frequency and relative frequency scales, the total area can be considered to be proportional to 
either n or 1 .000. 

Table 5.6 

Number of trials to criterion Frequency 
Xi fi 

1 5  1 

1 6  3 

17 9 

1 8  1 5  

1 9  8 

20 2 

2 1  2 

L 40 

5.9 The data summarized in Table 5.6 show the number of trials (repetitions) it took each of 40 white 
rats to "learn" how to run a complex maze. Each rat was considered to have learned the maze when 
it achieved the criterion of zero maze-running errors (i.e., wrong turns) in a trial. Which type of bar 
graph is appropriate for this data: bar charts with spaces between the bars or histograms? 

Solution 

In Example 5 . 1  it was stated that spacing between the bars is used in bar charts to indicate that the 
measurement variable is not continuous with uniform and standard reference units. Here, the data in Table 5.6 
are discrete ratio-level measurements, and thus there is a dilemma in interpreting the rule. The measurement 
variable (trials to criterion) is indeed not continuous, but the measurements are at the highest level (ratio) and 
therefore the variable does have uniform and standard reference units (the number one). Because of this 
dilemma, both types of bar graph are used for discrete ratio data: bar charts to emphasize the discrete nature of 
the variable and histograms to emphasize that the data set is at a higher level than nominal-level or ordinal­
level data . 

. There is another important reason why histograms might be used for this sort of data, and it has to do 
with the assumptions of parametric statistics. You will recall (see Section 3 . 1 3) that parametric statistical 
techniques are the preferred techniques for interval-level and ratio-level data, but only if the parametric 
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Fig. 5-18 
asswnptions are satisfied. One of these assumptions, the so-called normal distribution assumption includes 
the requirement that the measurement variable be continuous. It would thus seem that parametric techniques 
cannot be used with discrete ratio-level measurements. Fortunately, however, statisticians have determined that 
this discontinuity is not a severe problem for ratio-level data, so they suggest that discrete ratio-level data be 
treated as if they were continuous for the purpose of using parametric statistics. This, then, is a main reason 
why histograms are often used to display such data. Many statistics books attempt to resolve this contradiction 
by stating that while the measurement variable may be discrete, there is an underlying hypothetical variable 
(see Section 1 . 1 6) that is continuous. Here, for example, the measurement variable (trials to criterion) is 
discrete, but the underlying hypothetical variable of "learning" is continuous. 

5.10 Construct a rod graph for the data summarized in Table 5.6 .  

Solution 

The requested rod graph is shown in Fig. 5-18 .  Such a graph for frequency is a form of bar graph in 
which the height of a thin line is proportional to the frequency, and the line is assumed to have no width or 
area. It is another way to graph discrete ratio data to emphasize the discontinuities in a measurement variable. 

mSTOGRAMS: GROUPED DATA 

5.11  Construct a relative frequency histogram for the grouped data presented in Table 4.2 1 .  Show class 
boundaries along the X axis. 

» u 0:: OJ ::l 0" OJ <l:I OJ 
.� "il � 
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Time (min) 

Fig. 5-19 
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The requested histogram is shown in Fig. 5-19 .  Having a maximum frequency at the right end, with a 
tapering downward of frequencies to the left, this negatively skewed distribution is described as J-shaped. If 
the characteristics were reversed (maximum at the left, tapering to the right), the positively skewed distribution 
would be described as reversed-J-shaped. 

5.12 What is wrong with the frequency histogram presented in Fig. 5-20, in which class boundaries are 
shown along the X axis and class frequencies are proportional to bar heights? 

Solution 

This is an example of grouped data with unequal class widths. Thus, while the first class to the left has 
boundaries from 10.5  kg to 25.5 kg, and therefore a width of 15 ,  the other six classes each have a width of 5.  
With such unequal class widths, if the bar heights are made proportional to frequency, then the bar areas will 
not be proportional to frequency, and area must always be proportional to frequency in a frequency histogram. 
It is this disproportionality that is wrong with the graph. Thus, for example, while the ratio of frequencies for 
the two classes having the boundaries ( 1 0.5 kg to 25.5 kg) and (30.5 kg to 35.5 kg) is 30/30 or 1/ 1 ,  their bar 
areas are in the ratio 3 / 1 .  There is an accepted technique for correcting this problem (see how it is used to 
correct this graph in Problem 5 . 13). 

(1) Pick a standard reference width ; typically the smallest class width in the grouped distribution. 

(2) Divide each class width by the reference width, and take the reciprocal of the resulting number. 

(3) Multiply each class frequency by the reciprocal for that class, achieving a product called the frequency 
per reference width (or the frequency density). 

(4) Construct a histogram that has a vertical scale marked off for frequency per reference width (or 
frequency density). 

5.13 Use the technique suggested in Problem 5 . l2 to make a corrected version of the histogram in 
Fig. 5-20. 

Solution 

(1)  The smallest class width in the figure is 5, so this is the reference width. 

(2) Dividing each class width by 5 gives 1 5/5 = 3, with a reciprocal of 1 /3, for the first class (10.5 kg to 
25.5 kg), and 5/5 = 1 ,  with a reciprocal of 1 ,  for each of the other six classes. 

(3) Multiplying each class frequency by the reciprocal for that class (see Table 5.7) gives the frequency per 
reference width; here, frequency per 5 kg. 

(4) The resulting histogram, with a vertical scale marked off in frequency per 5 kg, is shown in Fig. 5-2 1 .  
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5.14 

Class boundaries (Class frequency 

1 0.5-25.5 (30 

25.5-30.5 ( 15  

30.5-35.5 (30 

35.5-40.5 ( 15  

40.5-45.5 ( 10  

45.5-50.5 ( 10  

50.5-55.5 ( 10  

30 

co "" 
'" ... 20 " p., 
» 0 <: " ;:l 0-
e 1 0  � 

o 
10.5 

Table 5.7 

x Reciprocal for class) 

x 1/3) 

x 1 )  

x 1)  

x 1) 

x 1)  
x I )  
x 1 )  

r--

..- I--

25.5 30.5 35.5 40.5 45.5 50.5 55.5 
Weight (kg) 

Fig. 5-21 

Frequency per 5 kg 

10  

15  

30 

1 5  

1 0  

1 0  
1 0  

Now the area of each bar is proportional to class frequency, while the height is proportional to frequency 
per 5 kg. To see the relationship between area and frequency, consider again the two classes ( 10.5 kg to 
25.5 kg) and (30.5 kg to 35.5 kg), which have the ratio of frequencies of 30/30 or 1 / 1 .  In Fig. 5-2 1 the ratio 
of their bar areas is 1 / 1  instead of 3/J as in Fig. 5-20. Note further that while the original histogram is 
bimodal and positively skewed, the corrected version in Fig. 5-2 1 is unimodal and symmetrical. 

Construct a percentage histogram for the grouped household income data in Table 4.25, showing 
the used part of the measurement scale on the X axis. 

Table 5-8 

Household income (Class percentage x Reciprocal for class) Percentage per $5,000 

Under $5,000 (4.5383 x undefined) ? 

$5,000 -$9,999 (9.7490 x 111) 9.7490 

$ 1 0,000 -$14,999 (9.2228 x 111) = 9.2228 

$ 1 5,000 -$1 9,999 (8.5668 x 111)  8.5668 

$20,000 -$24,999 (8.3444 x 111) 8.3444 

$25,000 -$34,999 (14.7446 x 1 /2) 7.3723 

$35,000 -$49,999 (16.2614 x 1/3) 5.4 1 99 

$50,000 -$74,999 ( 16.0977 x 1/5) 3 .2 195 

$75,000 and over (12.4749 x undefined) ? 
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(12.4749% were 
$75,000 and over 
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10,000 20,000 30,000 40,000 50,000 60,000 70,000 

Household income ($) 

Fig. 5-22 
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This is an example of graphing grouped data that not ooly have unequal class widths but also open-ended 
classes. In constructing the correct histogram, it is necessary to convert percentage to percentage per standard 
reference width, but only for the classes that have defined boundaries. As the smallest defined class width is 
$5,000, we use this as the reference width, and calculate percentage per $5,000. These calculations are shown 
in Table 5.8, and the requested histogram is shown in Fig. 5-22. Note that the information for the open-ended 
classes is written above the histogram. 

POLYGONS: UNGROUPED DATA 

5.15 Showing the related polygon and histogram, construct a relative frequency polygon for the data 
presented in Table 5 .4. 

>. 
g ., 
g. <I:l 
., 
.� .!! � 

Solution 

0.4 

0.3 

0.2 

0. 1 

13 14 1 5  16 17 1 8  1 9  20 2 1  
Weight (g) 

Fig. 5-23 

The requested combination of polygon and histogram is shown in Fig. 5-23, where you can see that a 
relative frequency polygon is a line graph of a relative frequency distribution. Again all values for a category 
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are assumed to be at the midpoint of the implied range for that category, but now the height of the dot above 
the midpoint represents relative frequency. As before, the dots are connected by straight-line segments, and the 
polygon is extended to the X axis. As with the frequency polygon, the relative frequency polygon can be 
constructed from its histogram or by plotting the dots directly onto the coordinate system. This polygon, like 
its histogram, is unimodal and negatively skewed. 

6 

2 

o ---�--

Length (em) 

Fig. 5-24 

5.16 We know from Example 5 .2 and Problem 5.8 that the total area of the histogram in Fig. 5-5 is 
proportional to n = 50, and the total area of the histogram in Fig. 5-23 is proportional to 1 .000. 
What are the total areas enclosed by the polygons in these figures proportional to? 

Solution 

In Fig. 5-5 the histogram and the polygon have identical areas, and thus the area enclosed by the polygon 
is proportional to n = 50. This equality of areas between polygon and histogram is also true in Fig. 5-23, so 
the area enclosed by the polygon is proportional to 1 .000. In fact, it is always true that related histograms and 
polygons have identical areas if they are constructed from the same distribution onto the same coordinate 
system. To see why, we have magnified in Fig. 5-24 the first three categories in Fig. 5-5. 

It can be seen in Fig. 5-24 that constructing the left side of the polygon onto the left side of the histogram 
has produced pairs of identical triangles along the left walls of the histogram bars. Examining the first pair 
(light shading) shows that one of the pair is under the polygon but outside the histogram, while the other is 
under the histogram but above the polygon. This same relationship to the histogram and polygon is true for the 
second pair (dark shading), and in examining Fig. 5-5 you can see that it is true for all left-side pairs in the 
graph, and that the mirror image of this pattern is true for all right-side pairs. Thus, for each triangular area in 
the histogram that is lost to the polygon, an identical triangular area is added to the polygon. This is why the 
total areas of the histogram and the polygon are identical. You can also see why, to achieve these identical 
areas, it is always necessary to extend the polygon to the X axis at both ends. 

5.17 Can polygons be constructed for distributions of nominal, ordinal, or discrete ratio data? 

Solution 

Bar charts with spacings between the bars are used for nominal (Fig. 5-2) and ordinal (Fig. 5-13) data 
because their measurement variables are not continuous with uniform and standard reference units. For the 
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same reason, it is not legitimate to represent such data with a continuous line graph. For discrete ratio data, on 
the other hand, it is allowable to use continuous polygons by the same arguments that pennitted histograms for 
such data (see Problem 5 .9). 

1 6  

1 2  

4 

2d exam scores 

Fig. 5-25 

25 

20 

1 5  f � 
1 0  Po. 

5 

POLYGONS: GROUPED DATA 

5.18 Construct a polygon for the grouped discrete ratio data presented in Table 4.22, showing both 
frequency and percentage. Do not show the related histogram, but instead plot the dots directly onto 
the coordinate system. Show class marks (mj) along the X axis. 

Solution 

The requested polygon is shown in Fig. 5-25. 

30 

Jf 
V'l 
I> 20 Po 
� f lO 

8 1 8  28 33 38 43 48 53 58 
Weight (kg) 

Fig. 5-26 

5.19 Using information from Problem 5 . 1 2, convert the frequency per 5 kg histogram (Fig. 5-2 1 )  into a 
frequency per 5 kg polygon. Show the related histogram and polygon, and place class marks along 
the X axis. 
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Solution 

The requested combination of histogram and polygon is shown in Fig. 5-26. The problem in constructing 
this polygon is in making it identical in area to the histogram shown in Fig. 5-2 1 .  This is done in Fig. 5-26 by 
ignoring the fact that the first histogram bar is three times as wide as the others, and instead treating it as if it 
were composed of three bars, each 5 kg in width. Then, the same techniques used for constructing polygons 
from equal-width distributions are used to construct the frequency per 5 kg polygon. 

(b) (c) 

(e) (f) 

(g) (h) (i) 

Variable X Variable X Variable X 

Fig. 5-27 

5.20 Can the percentage per $5,000 histogram shown in Fig. 5-22 be converted to a percentage per 
$5,000 polygon? 

Solution 

No. A percentage polygon is a closed-plane figure. Thus, it is not legitimate to construct such a polygon 
for grouped data with open-ended classes. 

FREQUENCY CURVES, RELATIVE FREQUENCY CURVES, AND PERCENTAGE CURVES 

5.21 Theoretical frequency curves for a variety of distributions are shown in Fig. 5-27. For each curve, 
select from the following list the term (or terms) that describes the illustrated distribution: 
symmetrical, positively skewed, negatively skewed, J-shaped, reversed-J-shaped, unimodal, bi­
modal, trimodal. 
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Solution 

(a) Symmetrical, bimodal 

(b) Symmetrical, unimodal 

(c) Negatively skewed, unimodal 

(d) Symmetrical, bimodal (also called a U-shaped distribution) 
(e) Positively skewed, reversed-J-shaped 

(j) Positively skewed, bimodal 

(g) Symmetrical (also called a uniform distribution or a rectangular distribution) 
(h) Trimodal 

(i) Negatively skewed, J-shaped 

la 341 (3) 
Ib 5569766 (7) 
2a 014124 (6) 
2b 65957 (5) 
3a 041 13 (5) 
3b 5799 (4) 
4a 3400230 (7) 
4b 655 � 

(40) 

Fig. 5-28 
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STEM-AND-LEAF DISPLAYS 

5.22 Arrange the set of numbers in Example 5.8 in a stretched stem-and-leaf display that again has 
single-digit starting parts and leaves, but now has a stem width of 5. 

Solution 

The requested stretched stem-and-Ieaf display is shown in Fig. 5-28. While the simple display shown in 
Fig. 5-9 has a unique starting part for each stem and a stem width of 10, the stretched display shown in Fig. 
5-28 has a stem width that has been halved, "stretching" the stem into two stems each of width 5, and the 
same starting part is used for both stems. Thus while in Fig. 5-9 the first stem was 1 1 553697646 1 ,  this has now 
been stretched into two stems: lal341 and Ib 15569766. Note that the letters a and b to the right ofthe starting 
parts indicate the first and second stems for each starting part. Also note that while a simple stem-and-Ieaf 
display has stem widths such as 0. 1 ,  1 ,  1 0, 100, etc., the stretched stem-and-Ieaf display has stem widths such 
as 0.05, 0.5, 5, 50, etc. 

While in Fig. 5-9 the frequency distribution of the sample appears to be rectangular in shape [see Fig. 
5-27(g)], when "stretched" in Fig. 5-28 it becomes bimodal with peaks at starting parts I b  and 4a. This 
suggests that if we want to develop a grouped distribution for this data we should use class widths of 5 or less. 

5.23 Arrange the set of numbers shown in Example 5.8 in a squeezed stem-and-leaf display that again 
has single-digit starting parts and leaves, but now has a stem width of 2. 

Solution 

The requested squeezed stem-and-Ieaf display is shown in Fig. 5-29, where it can be seen that each 
original stem of width l O in Fig. 5-9 has now been subdivided ("squeezed") into five stems that each have a 
width of2. All five stems have the same starting part as the original stem but are differentiated by the letters a, 
b, c, d, and e. Thus, la  includes the values 10 and I I , I b  the values 12 and 13, Ie the values 14 and 1 5, Id the 
values 16 and 17, and 1 e the values 1 8  and 19. Squeezed stem-and-Ieaf displays always have stem widths such 
as 0.02, 0.2, 2, 20, etc. 
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l a  1 ( 1) 
Ib 3 ( 1 )  

Ie 554 (3) 
Id 6766 (4) 

I e  9 ( 1) 
2a 0 1 1 (3) 

2b 2 ( 1 )  

2e 5445 (4) 

2d 67 (2) 
2e 9 (1)  

3a 0 1 1 (3) 

3b 3 ( 1 )  

3e 54 (2) 
3d 7 ( 1 )  

3e 99 (2) 

4a 000 (3) 
4b 323 (3) 

4c 545 (3) 

4d 6 -.J!l 
(40) 

Fig. 5-29 

Females Males 

(2) 59 10  

(4) 1 597 1 1  9 .( 1 )  

(7) 1 143937 1 2  44 (2) 

(3) 1 64 13  881  (3) 
1 4  82707394 (8) 

1 5  2876220921 8 1  (12) 

1 6  34090065 1 (9) 

1 7  2052360 (7) 

1 8  046 (3) 

1 9  0 14  (3) 

( 16) (48) 

Fig. 5-30 

The stretched display in Fig. 5-28 is an improvement over the simple display in Fig. 5-9 in that it reveals 
the bimodality of the data and indicates that class widths for grouping the data should be restricted to 5 or less. 
But, in "squeezing" the stems we have spread the data too thin and lost sight of the bimodality. We have thus 
determined with three quick displays that class widths for grouping this data should be 5 or less, but greater 
than 2. 

5.24 Directly from Table A.2, arrange the weight data (column 5) for the entire class in a two-sided 
simple stem-and-Ieaf display (females to the left, males to the right) that has two-digit starting parts, 
single-digit leaves, and a stem width of 1 0 .  
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20 100 

g 
16  80 OJ i ., = OJ 

I 12 60 t 
p, 0 0 

.� .� 0:1 0:1 � 8 40 � 
4 20 

68.5 69.5 70.5 71 .5 72.5 73.5 74.5 

Fig. 5-31 

Solution 

The requested two-sided stem-and-leaf display is shown in Fig. 5-30. Such a display is used when it is 
known, or suspected, that two populations have been included in the same sample; it enables a rapid and 
informal comparison of the two distributions. The same starting parts are used for both distributions, with 
lines of leaves extending to the left and right of the starting parts. 

Table 5.9 

Number of spots Frequency 
Xi Ii 

2 

2 3 
3 4 
4 3 
5 2 

L 14 

GRAPHS OF CUMULATIVE DISTRIBUTIONS 

5.25 For the distribution shown in Table 4.42, construct on the same coordinate system both a "less 
than" frequency ogive and a "less than" percentage ogive (or "less than" cumulative percentage 
polygon). 

Solution 

The techniques used in Section 5 . 1 1  are used to produce the line graph in Fig. 5-3 1 .  Now for the same 
dot, "less than" cumulative frequency can be read from the left-side vertical axis and "less than" cumulative 
percentage can be read from the right-side vertical axis. 

5.26 As part of a genetics study, you count the number of body spots on each beetle in a sample of 14. 
The results are shown in the frequency distribution in Table 5.9. First, convert this frequency 
distribution into both a "less than" cumulative frequency distribution and an "or less" cumulative 
frequency distribution (see Section 4.9). Then, graph these two cumulative distributions on the 
same coordinate system. 
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Number of spots 

Less than 1 

Less than 2 

Less than 3 

Less than 4 

Less than 5 

Less than 6 

Number of spots 

o or less 

I or less 

2 or less 

3 or less 

4 or less 

5 or less 

Table 5.10 

Cumulative frequency 

Table 5.11 

o 

2 

5 

9 

1 2  

14  

Cumulative frequency 

o 

2 

5 

9 

1 2  

1 4  

0---0 "Less than" 

- "Or less" 

2 3 4 5 
Number of spots 

Fig. 5-32 
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The "less than" cumulative frequency distribution is shown in Table 5 . 10 .  Because these data are discrete 
ratio, cumulation indicates for each measurement category how many values are less than the category itself 
(see Problem 4. 19). To achieve the "or less" cumulative frequency distribution shown in Table 5 . 1 1 ,  the 
cumulation for each category was the number of values equal to or less than the category. 

As the data are discrete ratio, these cumulative distributions can be graphed in either of two ways. They 
can be graphed to emphasize the discrete nature of the data or they can be graphed "as if they were 
continuous" (see Problem 5.9). If we consider them to be continuous, they can be graphed with ogives. This 
has been done in Fig. 5-32, where the cumulative distributions in Tables 5 . 1 0  and 5 . 1  I have been graphed 
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Fig. 5-33 

Table 5.12 

Nwnber of spots Cumulative frequency 

1 or more 

2 or more 

3 or more 

4 or more 

5 or more 

6 or more 

14 

12 

9 

5 

2 

o 

[CHAP. 5 

0 

6 

with two ogives plotted on the same coordinate system. The dashed horizontal lines between the ogives show 
for two consecutive measurement categories that the "less than" cumulative frequency for the larger category 
is identical to the "or less" cwnulative frequency for the smaller category. Thus, for example, there are five 
measurements less than 3 and also five measurements equal to or less than 2. The horizontal lines also show 
that as there are no intermediate values for discrete data, there is no change in either "less than" or "or less" 
cumulative frequencies between two consecutive measurements. 

If we graph the data to emphasize their discrete nature, we plot only the horizontal lines in Fig. 5-32. This 
has been done in Fig. 5-33. There is no agreed upon name for this type of graph, so we will call them discrete­
data graphs for cumulative distributions. 

Nwnber of spots 

More than 0 
More than I 
More than 2 

More than 3 

More than 4 

More than 5 

Table 5.13 

Cwnulative . frequency 

14  

1 2  

9 

5 

2 

o 
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5.27 Convert the frequency distribution in Table 5.9 into both an "or more" cumulative frequency 
distribution and a "more than" cumulative frequency distribution (see Section 4.9). Then, graph 
these two cumulative distributions on the same coordinate system. 

Solution 

The "or more" cumulative frequency distribution is shown in Table 5 . 1 2. Because these data are discrete 
ratio, the cumulation indicates how many values are equal to or more than a given measurement category. To 
construct the "more than" cumulative frequency distribution shown in Table 5 . 13 ,  the cumulation for each 
category is the number of values that are more than the category. 

As these data are discrete ratio, we can again graph them either as ogives or as discrete-data graphs for 
cumulative distributions. The two distributions are graphed as two ogives on the same coordinate system in 
Fig. 5-34 and as a discrete-data graph in Fig. 5-35. The dashed horizontal lines between the ogives in Fig. 5-34 
show that for two consecutive measurement categories the "or more" cumulative frequency for the larger 
category is equal to the "more than" cumulative frequency for the smaller category, and also that there is no 
change in either "or more" or "more than" cumulative frequencies between the two consecutive categories. 
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Fig. 5-36 
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Again, as in Fig. 5-33, the discrete-data graph of the data (Fig. 5-35) is simply the plot of the horizontal lines 
between the ogives. 

5.28 Use a "less than" frequency ogive to graph the grouped "less than" cumulative frequency 
distribution of marathon times in Table 4. 12. 

Solution 
The requested frequency ogive is shown in Fig. 5-36. Again the ogive is constructed on a rectangular 

coordinate system with cumulative frequency on the Yaxis, but now the upper boundaries for the classes are 
marked off on the X axis. (For such grouped data, it is also acceptable to mark off class lower limits on the 
measurement scale.) The "less than" cumulative frequency dots are placed above the upper boundaries for 
their class and the dots are connected by straight lines. Reading from the graph, 8 runners had times less than 
136.5 min, and all runners had times less than 145.5 min. 

5.29 For the second exam scores in Table 4.22, convert the grouped percentage distribution into a 
grouped "less than" cumulative percentage distribution. Then, treating this discrete data "as if it 
were continuous," use a percentage ogive to graph the distribution, plotting the dots ov'er the lower 

Table 5.14 

2d Exam score Cumulative percentage 

Less than 45 0.0000 

Less than 50 1 . 5625 

Less than 55  1 .5625 

Less than 60 7.8 1 25 

Less than 65 12.5000 

Less than 70 20.3 1 25 

Less than 75 25.0000 

Less than 80 34.3750 

Less than 85 5 1 .5625 

Less than 90 65.6250 

Less than 95 92. 1 875 

Less than 1 00 1 00.0000 
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Fig. 5-37 

1 3 1  

limits for each class. Finally, using the graph, find the exam score below which are 50% of the 
scores. 

Solution 

The requested "less than" cumulative percentage distribution is shown in Table 5 . 1 4, and the requested 
percentage ogive is shown in Fig. 5-37. To use the graph to interpolate (or approximate) the requested score 
(the one that 50% of the scores are "less than"), the first step, as shown in Fig. 5-37, is to draw a horizontal 
line from the 50% mark on the Yaxis to the percentage ogive. The x coordinate (or abscissa) of the point E 
where the horizontal line intersects the ogive is the required score. The next step is to drop a vertical line from 
E to the X axis. An approximate version of the score can then be read directly from where the vertical line 
crosses the X axis. For the scale of this graph it would seem to be roughly 84.5 .  

A more exact version of the score can be calculated using the similar triangles ABC and ADE. The sides 
of these triangles have the following relationship: 

AD DE - = -
AB Be 

We know that: AB = class width = 5, BC= 5 1 .5625 - 34.3750 = 1 7. 1 875, and DE = 50 - 34.375 0 =  
1 5 .6250. S o  now we can solve for AD: 

AD 1 5.6250 = ---
5 17 . 1 875 

AD = 5 x 0.909 1 = 4.5455 

Therefore, the requested score is: 80.0 + 4.5455 = 84.5455, or 84.5 .  
This measurement, the one that 50% of the measurements in  a sample are "less than," is called the 

median of the sample. It and other measures 
'
of central tendency, average value, and location are discussed in 

detail in Chapter 6. 

5.30 Construct a "less than" percentage ogive for the "less than" cumulative percentage distribution of 
golf winnings shown in Table 4.3 1 .  Use the measurement scale on the X axis, and place the "less 
than" percentage dots over the upper boundaries of the classes. 
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Fig. 5-38 
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The requested percentage ogive is shown in Fig. 5-38. Note that essentially the same graphing techniques 
are used for this grouped distribution with unequal class widths as are used for grouped distributions with 
equal class widths. 

5.31 What is a smooth-curve frequency ogive? 

Solution 

In Section 5.7 we indicated that as sample .size n approaches population size N, a frequency polygon 
becomes a smooth curve called a frequency curve. Similarly, as sample size approaches population size, a 
sample frequency ogive becomes a smooth-curve frequency ogive (as does a relative frequency ogive become 
a smooth-curve relative frequency ogive and a percentage ogive become a smooth-curve percentage ogive). 

Supplementary Problems 

BAR CHARTS 

5.32 There will be three candidates (A, B, and G) for mayor in the next election. A poll is taken of 100 voters to 
determine which candidate each prefers. The results are shown in Fig. 5-39, in a frequency bar chart that is 
being distributed by candidate C. How many of the voters chose each of the candidates? Why is the chart a 
deceptive presentation of the results of this poll? 

Ans. The results of the poll were actually fairly close: 3 1  for A, 33 for B, and 36 for C. The chart, however, 
makes it seem a decisive victory for C by three forms of deception: magnifying the height differences between 
the bars by starting the Y axis at 30 rather than zero, making the horizontal axis 75% of the vertical, and 
making the bar area for C disproportionately large by giving C twice the base width. 

5.33 There are 200 balls in a jar; some are yellow (Y), some are red (R), some are blue (B), and the rest are white 
(W). The bar chart in Fig. 5-40 has a bar representing each color category and a relative frequency scale on the 



CHAP. 5] DESCRIPTIVE STATISTICS: GRAPHING THE DATA 133  

36 

35 

34 
» u 
Ii =:I 0"' 33 " .... f- ro--"" 

32 f-

3 1  f- ,---

30 
A B c 

Candidates 

Fig. 5-39 

f- - 0.5 

» 
- - 0.4 u 0: " =:I 0"' 

0.3 
" ,;:: " > 

0.2 � " � 

I I I I 0.1 

0.0 o 
y R B w 

Ball color 

Fig. 5-40 

right-hand axis. From the information given, determine the number of balls of each color in the jar and the 
numerical values for the five-line frequency scale marked off on the left-hand axis. 
Ans. 20 y, 20 R, 60 B, 100 W; the values are: 20, 40, 60, 80, and 1 00 

HISTOGRAMS 

5.34 For the following measurement variables, indicate first its level of measurement and then which form of bar 
graph is appropriate: (a) litter size (as in Table 4.13), (b) attitudes of Americans toward immigrants as 
measured on a five-point scale from I (unfavorable) to 5 (highly favorable), (c) body temperature 
eF), (d) diameter (in mm) of snail shells 
Ans. (a) Discrete ratio; bar charts, rod graphs, or histograms, (b) ordinal; bar charts, (c) interval; 
histograms, (d) continuous ratio; histograms 

5.35 For the following measurement variables, indicate first its level of measurement and then which form of bar 
graph is appropriate: (a) words per minute in typing a sample section, (b) price per gallon (in $) of 
gasoline in several areas, (c) type of vitamin, (d) miles driven per year by each truck in a fleet of trucks. 
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Ans. (a) Discrete ratio; bar charts, rod graphs, or histograms, (b) discrete ratio; bar charts, rod graphs, or 
histograms, (c) nominal; bar charts, (d) continuous ratio; histograms 

5.36 Construct a frequency histogram for the heights of the entire statistics class (males and females) shown in 
Table 4.38. Show the used part of the measurement scale along the X axis. 

Ans. The requested histogram is shown in Fig. 5-4 1 .  

1 5  

1 0  

75 

Height (in) 

Fig. 5-41 

5.37 Construct a components-parts frequency histogram, showing male and female components, for the data 
graphed in Fig. 5-41 .  Again show the used part of the measurement scale along the X axis. 

Ans. The requested histogram is shown in Fig. 5-42. The version of this data in Fig. 5-41 is bimodal (has 
two peaks), which often means that the sample contains measurements from two different populations. The 
component-parts version in Fig. 5-42 confirms this interpretation, showing the two populations were males 
and females. 

1 5  

i 10 

go 
� 

5 

POLYGONS 

Height (in) 

Fig. 5-42 

o Male 

III Female 

5.38 Construct a polygon for the data in Table 5 .5,  showing both frequency and relative frequency. Do not show the 
related histogram but instead plot the dots directly onto the coordinate system. 

Ans. The requested polygon is shown in Fig. 5-43. Note for this unimodal and positively skewed polygon 
that it drops to the X axis for the zero-frequency category of lO5°E 
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5.39 You are the manager of a videotape rental store, and an employee has prepared a graph (Fig. 5-44) that 
summarizes for all customers who rented videotapes last week how many tapes each customer rented. 
(a) How many customers rented videotapes last week? (b) What proportion of the customers rented two 
tapes? 

Ans. - (a) 1 00, (b) 0.5 

2 3 4 5 
Number of videotapes rented 

by each customer 

Fig. 5-44 

6 7 

50 

40 

30 f 
A� 20 _ 

1 0  

5.40 From the information in Fig. 5 -44, answer these questions. (a) What percentage of the customers rented 
four tapes or fewer? (b) How many customers rented three or more tapes? 

Ans. (a) 90%, (b) 40 

5.41 A fruit-importing company weighs a sample of melons for quality control. The results are shown in Fig. 5-45 
in a polygon for grouped continuous ratio data, where the grouping employs equal class widths. The 
measurement scale is shown along the X axis. (a) How many melons were weighed? (b) The data was 
grouped into how many classes? 

Ans. (a) 40, (b) 7 

5.42 From the information in Fig. 5-45, answer these questions. (a) What are the class marks for the seven 
classes? (b) What are the class boundaries for these classes? 

Ans. (a) The class marks are 1 .3 ,  1 .6, 1 .9, 2.2, 2.5, 2.8, 3 . 1 ,  (b) the class boundaries are: ( 1 . 1 5  to 1 .45), 
(1 .45 to 1 .75), (1 .75 to 2.05), (2.05 to 235), (2.35 to 2.65), (2.65 to 2.95), (2.95 to 3 .25) 
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STEM-AND-LEAF DISPLAYS 

5.43 Arrange the following set of numbers in a simple stem-and-leaf display that has single-digit starting parts and 
leaves, and a stem width of 1 : 

3.792, 7.300, 1 .4 19, 8.333, 3.2 1 2, 2.5 1 3, 2.937, 5.3 1 2, 4.82 1 ,  1 .694, 2. 1 00, 7.902, 9. 1 1 1 , 2.32 1 ,  
2. 1 1 9, 6. 1 99, 8.774, 2.572, 3.999, 3 . 1 92, 5 .988, 2.412, 4.9 1 1 ,  6.900, 7.297, 2.633, 4.43 1 ,  5 .255, 
6.59 1 , 4.497, 6.5 1 1 , 2.6 1 7. 

Ans. The requested simple stem-and-leaf display is shown in Fig. 5-46, where it can be seen that while each 
original value has three digits to the right of its decimal, in this simple display only the first digit to the right of 
the decimal is recorded. 

46 (2) 

2 591 3 1 5466 (9) 

3 729 1  (4) 

4 8944 (4) 

5 392 (3) 

6 1 95 5  (4) 

7 392 (3) 

8 37 (2) 

9 ( 1 )  

(32) 

Fig. 5-46 

5.44 Arrange the set of numbers in Problem 5 .43 in a stem-and-Ieaf display that has single-digit starting parts, 
three-digit leaves, and a stem width of 1 .  

Ans. The requested stem-and-Ieaf display is shown in Fig. 5-47, where it can b e  seen that all the digits in the 
data can be presented in the leaves. If, as here, more than one digit is used in the leaves, then successive leaves 
are separated by commas. 

GRAPHS OF CUMULATIVE DISTRIBUTIONS 

5.45 In an international track meet, two semifinal heats were run in the men's 200-meter dash to determine the eight 
fastest men for the final. The results for the two heats are summarized in the two ogives in Fig. 5-48: an "or 
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1 4 19,694 (2) 
2 5 1 3 ,937,100,321 , 1 19,572,4 12,633,6 1 7  (9) 

3 792,2 12,999, 1 92 (4) 
4 821 ,9 1 1 ,43 1 ,497 (4) 

5 3 12,988,255 (3) 

6 1 99,900,591 ,5 1 1  (4) 

7 300,902,297 (3) 

8 333,774 (2) 

9 1 1 1  (1)  

(32) 

Fig. 5-47 

more" frequency ogive for heat 1 ,  where cumulation is from the lower implied boundary of a category; and a 
"less than" frequency ogive for heat 2, where cumulation is from the upper implied boundary of a category. 
(a) How many men ran in the two heats? (b) How many men ran the 200 meters in 2 1 .0 seconds? 

ADS. (a) 8 in heat 1 ,  7 in heat 2, (b) 0 

8 

� 6 
i3 � o:r ., .::: ., 4 j � u 

2 

Q.. 0- -0 Heat 1 
" - Heat 2 O - -o - -q  

\ 
\ 

\ 
b. - ...... -

\ 
\ 
\ 
\ 
\ 
\ 
Q , , � , 

O �/��--�--�--�--�--�--�--�-'�-
20.75 20.85 20.95 2 1 .05 2 1 . 1 5  2 1 .25 2 1 .35 2 1 .45 2 1 .55 

Time (sec) 

Fig. 5-48 

5.46 From the information in Fig. 5-48, answer these questions. (a) What are the times of the eight fastest 
men? (b) What are the slowest times in both heats? 

ADS. (a) [(heat I )  20.8 sec], [(heat 2) 20.9 sec], [(heat 1) 2 1 . 1  sec, 2 1 . 1  sec], [(heat 2) 2 1 . 1  sec], [(heat 2) 
.2 1 .2 sec, 2 1 .2 sec, 2 1 .2 sec], (b) [(heat 1 )  2 1 . 5  sec], [(heat 2) 2 1 .4 sec] 

5.47 Use a discrete-data graph to show the "or more" cumulative percentage distribution of litter size in Table 4.43. 

ADS. The requested discrete-data graph is shown in Fig. 5-49. 

5.48 Construct separate female and male "less than" frequency ogives on the same coordinate system from the 
"less than" cumulative frequency distributions for weight in Table 4.44. Plot the upper boundaries on the X 
axis. 

ADS. The requested ogives are shown in Fig. 5-50. 
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Chapter 6 

Descriptive Statistics: Measures of Central 
Tendency, Average Value, and Location 

6.1 MEASURES OF CENTRAL TENDENCY, AVERAGE VALUE, AND LOCATION 

The last two chapters dealt with two fundamental aspects of descriptive statistics: the organization of 
data into summary tables (Chapter 4) and the graphing of the organized data (Chapter 5). In this chapter 
and the next we go on to another aspect of descriptive statistics, the calculation of descriptive measures 
from the data: numerical values that summarize characteristics of the data, typically with a single number. 
In this chapter, we deal with the measures that describe central tendency, average value, and location, and 
then in Chapter 7 we deal with the measures that describe dispersion (the spread of data in a distribution). 
Other descriptive measures are introduced as they are needed throughout the book. 

Descriptive statistical measures have two functions: they provide a mental image of a data distribution 
to someone with statistical training; and they are an essential component of inferential statistics, the basis 
of both estimation and hypothesis testing (see Section 3 .6). They have this role in inferential statistics 
because most descriptive measures of samples have been developed as estimates of comparable population 
measures. As indicated in Section 3 .4, the sample measure is called a statistic and the population measure 
that it is estimating is called a parameter. 

To introduce the descriptive measures of this chapter, let us examine some of the characteristics of the 
symmetrical, unimodal frequency curve in Fig. 6-1 .  In this curve, the highest frequencies are found near 
the middle of the distance from Xs to Xl. This clustering of the measurements near the center of a 
distribution, typical of many types of data, is called central tendency, and the statistical measures that 
describe aspects of the "center" of a distribution are called measures of central tendency. 

Measurement variable (X) 

Fig. 6-1 

The average value in a data set is the most typical, frequent, or representative measurement in the set. 
Because of the usual concentration of measurements in the center of a distribution, the various measures of 
central tendency are generally also called measures of average value (or averages). 

Measures of location show where the characteristics of a distribution are located in relation to the 
measurement scale. Three measures oflocation that have already been introduced are shown in Fig. 6- 1 :  xs, 
and Xl, the minimum and maximum values in the data set, and the median (see Problem 5.29), which is 

1 3 9  
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shown here as the boundary point on the X axis to the left of which (and to the right of which) are 50% of 
the data. Because measures of central tendency and average value "locate" these characteristics relative to 
the measurement scale, some statistics books refer to all the measures described in this chapter as measures 
of location. 

6.2 THE ARITHMETIC MEAN 

All of the following formulas define the arithmetic mean: 

n 
:�:>i - i=1 X = -­

n 

1 n 
x = - L xi n i=1 

- L Xi 
X = -­

n 

N 

L Xi 
i=1 Il = -N 

1 N 

Il = 
N L xi i=1 

(6 . 1 ) 

(6.2) 

(6.3)' 

(6.4) 

(6.5) 

(6.6) 

Equations (6. 1 )  and (6.4) were introduced in Section 3 .4. Equation (6. 1 )  for the sample-statistic x states 
that to calculate x for a sample of measurements Xl.  X2, " . ,  Xn : the measurements should first be summed 
from Xl to Xm and then this sum should be divided by the sample size n. Equation (6.4) for the population­
parameter Il instructs that the same operations be performed but now for the population x], X2, . . .  , XN of 
size N. Equations (6.2) and (6.5) are the same as (6. 1 )  and (6.4), respectively, except now instead of 
dividing the sum by n or N, the sum is multiplied by l in or l iN. (It is generally preferable to divide by an 
exact number rather than multiply by a rounded-off number.) 

When the index of summation (see Section 1 .22) is not specified, as in equations (6.3)  and (6.6), it 
means the entire set of numbers should be summed over all values of the index variable (see Example 
1 .37). Thus, equation (6.3) is equivalent to equations (6. 1 )  and (6.2), and equation (6.6) is equivalent to 
equations (6.4) and (6.5). 

The arithmetic mean is the most commonly used measure of central tendency, average, and location. It 
is what is generally understood when an "average" or "mean" is referred to: batting average, average 
price, mean annual rainfall, and so on. However, as you will see, this interpretation may not be correct, as 
there are other measures called means and averages. The arithmetic mean is certainly the most important of 
these measures in inferential statistics, where the sample-statistic x is considered to be the most reliable and 
efficient estimate of its popUlation-parameter Il. As to level of measurement, the arithemtic mean is really 
only legitimate for interval- and ratio-level measurements (continuous or discrete), but you will find it used 
for ordinal-level measurements as well. 

EXAMPLE 6.1 Using equation (6.3), calculate the arithmetic means for the following samples: (a) XI = 1 g, 
X2 = 3 g, X3 = 2 g, X4 = 7 g, X5 = 5 g, X6 = 4 g, X7 = 2 g, (b) 1 g, 3 g, 2 g, 7 g, 5 g, 4 g, 200 g. 
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Solution 

(a) 
i = L Xi = 1 g + 3 g + 2 g+ 7 g + 5 g + 4 g + 2 g  = 24 g 

= 3 .4 .g n 7 7 

(b) 
i = L Xi = 1 g + 3 g + 2 g + 7 g + 5 g + 4 g + 200 g = 222 g = 3 1 .7 g - n 7 7 

141 

Note: In (a) the values of Xi are identified: Xl = 1 g ,  X2 = 3 g,  and so on. This is  not done in part (b); 
instead it is assumed that the measurements are listed in the order Xl >  X2, . . •  , Xn- This ordering assumption 
holds true throughout this book wherever the specific values of the index of summation are not given. Note 
also in these calculations that the arithmetic means have the same units (g) as the measurements from which 
they were calculated. Also note how sensitive the arithmetic mean is to values that are quite different from the 
rest of their data set, values called extreme values or outliers. Thus, for example, between (a) and (b) when 
X7 is changed from 2 g to 200 g the mean changes from 3 .4 g to 3 1 .7 g. The presence of extreme values in a 
data set often indicates some sort of procedural error or equipment failure. They can, however, be real, 
indicating the influence of some extraneous variable (see Section 3 . 10). 

6.3 ROUNDING-OFF GUIDELINES FOR THE ARITHMETIC MEAN 

In calculating descriptive measures like the arithmetic mean, there are two related but different 
rounding-off problems: (I)  when and how to round off at the different steps in the calculations, and (2) how 
many digits are to be reported in the final answer. 

Most descriptive measures presented in this book are defined by a formula, and the measure is exactly 
equal to the end result of the sequence of calculations specified by the formula. Thus, for example, x is 
exactly equal to the specific fraction: (sum of data) -+- (sample size). While this is true in the abstract, in 
practice it is typically impossible to achieve the exact value-to do so may require that an infinite number 
of digits be retained throughout the steps of the calculations. While- this is not possible, in order to get as 
close as you can to the exact value, it is recommended that rounding off be kept to a minimum throughout 
the calculations. There are no agreed-upon rules as to how many digits should be retained throughout the 
calculations, but some books suggest at least six. 

Once the descriptive measure has been calculated, if it is to be used in further calculations then again 
many digits should be retained. If, instead, it is to be reported to an audience, then we have the second 
rounding-off question: How many digits should be reported in the final answer? 

In reporting a descriptive measure, we are no longer concerned with the multiple digits of the exact 
value, but instead with conveying information. There are also no absolute rules for this sort of rounding 
off, only a variety of guidelines. One of the most commonly accepted guidelines for reporting arithmetic 
means, the ones we used in rounding off the answers in Example 6. 1 ,  can be stated as follows: 

If the data are all at the same level of precision (see Section 2. 1 5), then the mean should be reported at 
the next level of precision. 

Thus, in Example 6. I (a) all of the original data are at the same level of precision, at the units digit, 
and therefore the arithmetic mean should be reported to the tenths digit. The calculated result for x, using a 
calculator with a 12-digit display, is: 3 .42857142857 g, and rounding this off to the tenths digit gives the 
reported answer: x = 3 .4 g. 

While this guideline for reporting the arithmetic mean is commonly stated in statistics books, there are 
other common guidelines: Report the arithmetic mean at either the next level of precision or at the same 
level as the data, coordinate the number of digits reported with the number reported for either the standard 
deviation (see Chapter 7) or the standard error o/the mean (see Chapter 13). We present other important 
guidelines where they are relevant, but when rounding-off guidelines are not given for a descriptive 
measure, you can assume we are using the most typical procedure. 

Finally, it should be mentioned that all of the calculations in this book were done with a calculator that 
allows a maximum display of 12  digits, of which 1 1  can be decimal places (digit positions to the right of 
the decimal point), and that this calculator is programmed to retain 15  digits during the steps of its 
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calculations. If you are putting fewer digits in your calculator and the calculator is carrying fewer digits in 
its calculations, then you may get an answer to a problem that differs somewhat from the given answer. 

EXAMPLE 6.2 Using equation (6.3), calculate the arithmetic means for the following samples: (a) - 3°C, 
+ 2°C, - 1°C, + 4°C, - 6°C, - 5°C, (b) 2.002 g, 3.7 g, 2.963 g, 3.S04I g, 2.737 g, 1 .99999 g. 

Solution 

The suggested rounding-off guideline is used on part (a) data because they are all at the same level of 
precision. The data in part (b), however, should be treated differently because they are not at a uniform level of 
precision. For such data, we have to go back to the basic rounding-off rules for algebraic operations (see 
Section 2. 1 5) . 

(a) x = LX; = 
(-3°C) + 2°C + (- 1°C) + 4°C + (-6°C) + (-5°C) = -9°C 

= -I SC 
n 6 6 

(b) x _ LX; _ 2.002 g + 3 .7 g + 2.963 g + 3 .5041 g + 2.737 g + 1 .99999 g 
- n - 6 

16.9 g . = -6- '  after roundmg off the numerator 

= 2.81666666667 g, or 2.82 g after rounding off the answer. 

6.4 DEVIATIONS FROM AN ARITHMETIC MEAN AND THE CENTER OF GRAVITY OF A 
DISTRIBUTION 

The difference (or distance) between any measurement in a population and the arithmetic mean of the 
population is called the measurement's deviation from the population s arithmetic mean (or simply 
deviation from the mean), and it is defined by the quantity Xi - fl. Similarly, for any measurement in a 
sample, its deviation from the sample s arithmetic mean (or again deviation from the mean) is defined by 
Xi - X. In a frequency histogram, deviations of measurements to the left of the mean (smaller than the 
mean) have negative signs and are called negative deviations, whereas deviations of measurements to the 
right of the mean (larger than the mean) have positive signs and are called positive deviations. It is a 
property ofthe arithmetic mean, for both populations and samples, that the negative and positive deviations 
exactly balance. This property is proven mathematically for a population by the following demonstration 

N 
that L(xi - fl) = O.  

i=1 
Given that the population mean fl is a constant for any given population, therefore (see Problem 1 .45) 

N 

N N N N N 

L (xi - fl) = L [Xi + (-fl)] = LXi + L -fl = LXi - Nfl 
i= 1 i=1 i=1 i=1 i= 1 

LXi 
Substituting i=� for fl, 

n 
An equivalent proof for samples can be used to show that L(xi - x) = O. 

i=1 
As it is thus true that the sum of the deviations from an arithmetic mean will always be zero, it follows 

that for any data set the sum of the positive deviations will always equal the sum of the negative deviations. 
If we consider frequency histograms of such data sets, and consider deviations to be distances, then the 
sum of the positive distances from the mean (of measurements to its right) will equal the sum of the · 
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negative distances. If a frequency histogram were constructed from this data using a solid material, it 
would balance along its horizontal axis (X axis) exactly at the arithmetic mean. This is why the arithmetic 
mean is called a measure of the center of gravity of a distribution. Because measurements tend to cluster 
near the center of a distribution, the measure of the center of gravity is also a measure of central tendency 
and of central location (see Section 6. 1). 

6.5 THE ARITHMETIC MEAN AS A MEASURE OF AVERAGE VALUE 

We stated in Section 6 . 1  that "the average value in a data set is the most typical, frequent, or 
representative measurement in the set." We can show how this statement describes the arithmetic mean, 
why it is called a measure of average value, by the following manipulation. 

We know that 

and that 

Therefore 

and 

n 
LX; 

- ;=1 x = --
n 

(6.7) 

(6.8) 

Thus, if all the measurements in a data set were replaced by the arithmetic mean of the data set, the 
sum of the measurements would remain the same. This is only true for the arithmetic mean, and therefore 
in this sense it is the most representative (or average) value for the data set. 

6.6 CALCULATING ARITHMETIC MEANS FROM NONGROUPED FREQUENCY 
DISTRIBUTIONS 

The arithmetic mean of the sample that is summarized in the frequency distribution in Table 5 . 1  could 
be calculated using equation (6. 1 ) 

n 
LX; 

x = ;=1 = 
( 1 .2 + 1 .2 + 1 .3 + . . .  + 1 .7 + 1 .8 + 1 . 8) cm 

= 1 50 cm 
n 50 

. 

Fortunately there is a simpler method that utilizes the frequency distribution and the following 
modification of the basic formula 

k 
L fix; 

- ;=1 x = -­k 
L fi  
;=1 

n 

(6.9) 

(6. 10) 

where now Xi represents the ith category of variable X and fi represents the frequency of this ith category 
(see Example 4.3). 



144 MEASURES OF CENTRAL TENDENCY, AVERAGE VALUE, AND LOCATION [CHAP. 6 

Similarly, this is the fonnula for calculating a population mean f.L from a nongrouped frequency 
distribution 

k 
L: fiXi i=1 

f.L = -­N 

EXAMPLE 6.3 Using equation (6. 10), calculate a mean of the sample in Table 5 . 1 . 

Solution 

(6. 1 1 ) 

To calculate this mean requires only the addition of a third column: j; Xi to Table 5 . 1 .  This column and the 
resulting calculation of the arithmetic mean are shown in Table 6 . 1 .  

Table 6.1 

Length (cm) Frequency 
Xi 

1 .2 
1 .3 
1 .4 
1 .5 
1 .6 
1 .7 
1 . 8  

L: 

j; j;Xi (cm) 

2 2.4 
7 9 . 1  

10 14.0 
12  18.0 
10  16.0 
7 1 1 .9 
2 3 .6 

50 75 .0 cm 

- L: hXi 75.0 cm 0 X = -- =  = 1 .5 cm 
n 50 

Note: From the frequency histogram of this data in Fig. 5-3, you can see that 1 .50 cm is the exact 
balance point of the center of gravity of this unimodal, symmetric distribution; that a vertical line above it 
would divide the histogram into equal areas on both sides. When we calculate the median for this data (see 
Example 6. 1 3), you will see that it is identical to the arithmetic mean. 

6.7 CALCULATING APPROXIMATE ARITHMETIC MEANS FROM GROUPED 
FREQUENCY DISTRIBUTIONS 

An arithmetic mean calculated from a grouped frequency distribution (see Section 4.4) only 
approximates the exact value calculated directly from the data, and therefore it is called an approximate 

arithmetic mean. To make this calculation from the grouped data requires an assumption that all values in a 
class are equal to the class mark, mi' Then, the approximate arithmetic mean is calculated with this fonnula 
for a population 

and this for a sample 

k 
L: fimi 
i=1 

f.L �
---

N 

k 
L:fimi 

x � �  
n 

where the symbol � means approximately equal to. 

(6. 12) 

(6. 1 3) 
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Using the assumption that all values in a class are equal to the class mark is not unreasonable, as the 
class mark is the arithmetic mean of the class limits (see Section 4.4). We have made use of the assumption 
twice before: in estimating total car sales in Problem 4.24(e), and in plotting polygons from grouped data 
in Section 5.6. 

EXAMPLE 6.4 Calculate the exact arithmetic mean of the 30 marathon times from the ungrouped frequency 
distribution in Table 4.3. Then, calculate the approximate arithmetic mean of the same data from the grouped 
frequency distribution in Table 4.4. 

Solution 

The modified version of Table 4.3 and the resulting calculation of the exact (or true) arithmetic mean 
using equation (6. 1 1) are shown in Table 6.2. The modified version of Table 4.4 and the resulting calculation 
of the approximate arithmetic mean using equation (6. 12) are shown in Table 6.3. 

Table 6.2 

Time (min) Frequency 
Xi fi fiXi (min) 

129 1 129 
1 30 2 260 
1 3 1  0 0 
1 32 0 0 
1 33 1 33 
134 1 34 
135 135 
136 2 272 
137 0 0 
138  3 414 
139 0 0 
140 0 0 
141 3 423 
142 4 568 
143 5 7 1 5  
144 2 288 
145 5 725 

L 30 4, 196 min 

L hx, 4, 196 min = 1 39.9 min /1 = __ '_' = 
30 N 

Note: Approximate descriptive measures are less accurate in the statistical sense (see Section 2 .14) than 
the exact measures, and should only be calculated when it is not possible to calculate the exact measures. In 
this problem you can see that the approximate population arithmetic mean (139.6 min) underestimates the 
exact population arithmetic mean (139.9 min) by 0.3 min, which could significantly distort further calculations 
involving the mean. We will later calculate exact and approximate medians for this data (see Example 6. 14) 
and, as you would expect for this negatively skewed distribution (see Fig. 5-6), the medians are to the right of 
the means. 
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Time (min) 

128-130 
13 1-133 
134-136 
137-139 
140-142 
143-145 

I: 

Table 6.3 

Class mark Frequency 
m; Ji 

129 3 
1 32 
135 4 
138  3 
141 7 
144 12  

30 

� I: /;m; _ 4, 1 88 min _ 139 6 . 
11 � � - 30 - . mm 

Jim; (min) 

387 
132 
540 
414 
987 

1 ,728 

4, 1 88 min 

6.8 CALCULATING ARITHMETIC MEANS WITH CODED DATA 

[CHAP. 6 

When a computer is not available and statistical measures such as the arithmetic mean must be 
calculated from data sets composed of either very large or very small numbers, then it is useful to 
transform the data into simpler numbers by using the coding formula 

ci = a + bxi (6. 14) 

where Xi is the ith measurement of the variable X; a and b are constants, and Ci is the transformed (or coded) 
value of the ith measurement. 

If a =I 0, and b = 1 ,  then if a is a positive number the variable X is being coded by adding the same 
constant a to every measurement value, and if a is negative then the coding is done by subtracting a from 
every measurement. When a constant is either added or subtracted, the origin of the measurement scale is 
shifted, and this process is called a translation of the data . 

If a = 0, b >  0, and b t= 1 ,  then the coding is being done by multiplying every measurement value by 
the constant b. If b > 1 ,  then there is an expansion of the measurement scale. If ° < b < 1 ,  then b is a 
fraction and there is a contraction of the measurement scale. All three forms of coding (expansion, 
contraction, and translation) are linear transformations of the data. 

If, after coding, the arithmetic mean of the Ci values is calculated with the formula 

n 
L Ci - i=1 c = --

n (6. 1 5) 

then this decodingformulafor the sample arithmetic mean can be used to find the mean of the original data 

_ 1 (_ ) x = - c - a  
b 

(6. 16) 

EXAMPLE 6.5 For the following sample of length measurements (in em), first calculate x directly from the data, 
and then calculate it by means of equations (6. 1 4), (6. 1 5), and (6. 1 6), using a =  -490 em and b =  1 as the coding 
constants: 492, 493, 495, 496, 498, 500. 

Solution 

The direct calculation of x and the calculation using the coding and decoding fonnulas are shown in 
Table 6.4. 
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Table 6.4 

Length (em) 
Xi Ci = - 490 cm +xi em 

492 
493 
495 
496 
498 
500 

L 2,974 em 

_ LXi 2,974 em 
x = -

n
- =  

6 
= 495.7 em 

c = 
L Ci = 34 em = 5.66667 em 

n 6 

2 
3 
5 
6 
8 

1 0  

34 em 

_ 1 _ 1 X = [; (c - a) = 1 [5.66667 em - (-490 em)] = 495 .7 em 

6.9 WEIGHTED MEANS 

147 

The formulas for the arithmetic mean in Section 6.2 state that first all values in a sample (or 
population) are summed, and then the sum is divided by the number of values in the sample (or 
population). These formulas thus assume that all the data values have equal importance and therefore 
should be given equal weight in the calculation of the mean. However, when several types of data make 
different contributions to the mean, then each type of data should be assigned a weight proportional to its 
importance prior to calculation of the mean. When this has been done for a sample, the mean is calculated 
with the following weighted mean (or weighted arithmetic mean) formula 

k 
L WiXi - i=1 Xw = -k--
L Wi i=1 

(6 . 1 7) 

where Xw is the sample weighted mean, Xi is the ith measurement ofthe variable X, Wi is the weight assigned 
to the ith measurement, and k is the number of measurement categories. For a population, the weighted 
mean (Ilw) formula is 

k 
L WiXi i=1 

Ilw = k 
L Wi 
i=1 

(6. 1 8) 

EXAMPLE 6.6 A toy manufacturer has 50 employees: 1 5  are paid $5.25 per hour, 25 are paid $5.75 per hour, and 
10  are paid $6.30 per hour. Use equation (6. 1 8) to find the average hourly wage for all 50 employees. 

Solution 

For this problem, Xi is the hourly wage, and th� relative importance (Wi) of each wage level to the 
calculation is the number of employees (Ji) who are paid that wage. Therefore, the weighted mean for this 
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population is 

k 3 
:L wx :L hX, ;= 1 I I ;= 1 I I (I5 x $5.25) + (25 x $5.75) + ( IO  x $6 .30) 

f.1W = -k- = -3- = 15 + 25 + 10 
:L w; :L h  
;=1 ;=1 

= $285.50 = $5.71 50 

[CHAP. 6 

Note: From this example, it can be seen that the fonnulas for calculating arithmetic means from 
nongrouped frequency distributions (see Section 6.6) are special cases of the weighted mean fonnula, where 
Wi = h .  Similarly, the basic fonnulas for calculating the arithmetic mean (see Section 6.2) are each a special 
case, where Wi = I ,  k= n for a sample or k=N for a population. Because Wi= I ,  these basic arithmetic means 
are also called un weighted arithmetic means or simple .arithmetic means. The fonnulas for the approximate 
arithmetic mean (see Section 6.7) are also special cases of the weighted mean, where Wi = h ,  Xi = mi , and k is 
the number of classes in the grouped distribution. 

6.10 THE OVERALL MEAN 

The overall mean (also called the grand mean, pooled mean, or common mean) is the appropriate way 
to combine arithmetic means from several samples. The fonnula for the overall mean is a version of the 
weighted mean [equation (6. 1 7)] 

k 
L nixi 
i-I Overall mean = Xw = T-
L n; 
;=\ 

(6. 1 9) 

where W; is the sample size n; , X; is the mean of the sample X; , and k is the number of samples being 
considered. You can. get an intuitive feeling for why it is the appropriate way to combine sample means 

k 
from the fact that the numerator of the fonnula is L n; x; , and from equation (6.8) we know that 

;=\ 
n 

ni = L X; .  Therefore, the numerator of the overall mean fonnula is the sum of all the data values in all the 
;=\ 

samples. As the denominator is the sum of the sample sizes, the overall mean is really the sum of all the 
data values divided by the number of values. 

EXAMPLE 6.7 The effects of a new blood-pressure drug are being studied in three different hospitals. One 
measurement taken from groups of female patients in each hospital before and after treatment is resting heart rate in 
beats per minute. The results for this measurement when taken before treatment are: Hospital I ,  nl = 30 patients, 
Xl = 76.2 beats/min; Hospital 2, n2 = 25 patients, X2 = 79.3 beats/min; Hospital 3, n3 = 16  patients, X3 = 80. 1  beats/ 
min. Combine these three arithmetic means to get an overall mean for this pretreatment measurement. 

Solution 

3 

E nix; [(30 x 76.2) + (25 x 79.3) + (16 x 80. 1)] beats/min 
Overall mean = -3 - = 30 25 16 

:L n; 
+ + 

;=1 
5 ,550. 1 beats/min 78 2 b / . = 71 = .  eats mm 
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6.11 THE GEOMETRIC MEAN 

For a set of positive numbers XI.  X2, " . , Xn ,  the geometric mean is the principal nth root (see Section 
1 .7) of the product of the n numbers. In symbolic form, the formula is 

Geometric mean � ::/X1 ' X,. · . .  x. � J IT X, 
;=1 

where fl, the capital form of the greek letter pi, means take the product of. 

(6.20) 

EXAMPLE 6.8 For the following sample, find both the arithmetic mean and the geometric mean: 1, 3, 5, 6, 8 .  

Solution 

5 
LX; 23 - z=1 4 6  

x = -s- = S = . 

Geometric mean = /lJXi = -Yl x 3 x 5 x 6 x 8 = -Yno = 3.n79 19, or 3.7 

Note: For calculating the geometric mean, remember that .:;(b = bl/n [see Section 1 . 16(b)] . 

6.12 THE HARMONIC MEAN 

The harmonic mean of a set of data XI.  X2, . . .  , Xn is the reciprocal of the arithmetic mean of the 
reciprocals of the data. In symbolic form 

H
. 1 

armomc mean = T"T 
- 2::: -n ;=l x; 

EXAMPLE 6.9 Calculate the harmonic mean for the sample in Example 6.8. 

Solution 

H . _ .  1 armomc mean - 1 (1 1 1 1 1) 
5 1 + 3 + 5 + 6+ 8 

1 
-:---:-----:-::--:------------,.. = 2.73973 , or 2.7 
0.2(1 + 0.333333 + 0.2 + 0.166667 + 0. 125) 

6.13 THE MEDIAN AND OTHER QUANTILES 

(6.21)  

For a set of data X I .  X2, . . •  , Xn organized into an array (see Section 4. 1), the median of the data is the 
value that divides the array into two equal parts; there are as many data values below the median as above 
it. The odd-even rules can be used to find the median of such an array. 

Ifthere is an odd number of values in an array, then the median is the middle value of the array; if there 
is an even number of values in an array, then the median is the arithmetic mean of the two middle 
values. 
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If a frequency histogram or a frequency curve is constructed from the data, and a vertical line is drawn 
above the median value on the X axis, then the line will divide the histogram or curve into two equal areas 
(see Fig. 6-1) .  There are no universally accepted symbols for the median, but we will use a pair of symbols 
that are now fairly common in statistics books: x (read x-tilde) for the sample median, and j1. (read mu-tilde) 
for the population median. 

The median is one of many possible quantiles that can be calculated from a data set organized into an 
ascending array. Each quantile in an array, designated by the symbol Qilm, is the x value below which are j 
mths of the data. Thus, for example, ! of the data are below Q2/4 and * of the data are below QI/4. For a 
frequency histogram or frequency curve, if a perpendicular line is drawn above Qjlm, then j mths of the area 
will be to the left of the line. In this chapter we consider three types of quantiles: quartiles, deciles, and 
percentiles. 

There are three quartiles: first quartile (QI/4 or QI), second quartile (Q2/4 or Q2) ,  and third quartile 
(Q3/4 or Q3). Together they divide arrays, frequency histograms, and frequency curves into four equal 
parts. There are nine deciles: first decile (Ql/ IO  or D1), second decile (Q2/1 0  or D2), and so on to the ninth 
decile (Q9/I O  or D9)' Together they divide arrays, frequency histograms, and frequency curves into ten 
equal parts . Finally, there are 99 percentiles (also known as centiles.):first percentile (QI/IOO or PI), second 
percentile (Q2/IOO or P2), and so on to the ninety-ninth percentile (Q99/ IOO or P99). Together they divide 
arrays, frequency histograms, and frequency curves into 100 equal parts. 

The median and other quantiles are measures of relative location-the location of Qilm relative to the 
boundaries of the array or distribution. The median is a measure of central tendency or central location in 
that it shows the location of the exact midpoint or center of gravity of an array or distribution. Like the 
arithmetic mean, the median is a measure of average value in that there is typically a clustering of values 
near the center. While the arithmetic mean is calculated from all data values, and is thus influenced by 
extreme values, the median only deals with the ranking of the values and is thus unaffected by extremes. 
This is why the median is often recommended as a measure of average value for skewed data. As to level of 
measurement, the median is legitimate for ordinal-, interval-, and ratio-level measurements. 

EXAMPLE 6.10 The median is equal to which quantiles? 

Solution 

x( or it) = Q2 = Ds = Pso 

6.14 THE QUANTILE-LOCATING FORMULA FOR ARRAYS 

Statistics books agree on the odd�ven rules for finding the median of an array, but they differ on 
techniques and formulas for finding other quantiles in an array. A general quantile-locating formula for 
arrays that we will use is this 

(6.22) 

where Xi is the value in an array of x values below which are j mths of the data, and i = the location in the 
U x nCor N)] I 

array = 
m +

2: '  

EXAMPLE 6.1 1 Using both the odd-even rules from Section 6. 13  and equation (6.22), find the median for the 
following samples: (a) 12, 13 , 14, (b) 12, 13, 14, 15 .  

Solution 

In Section 6 . 13 ,  it is stated that if there is an odd number of values in an array, then the median is the 
middle value of the array. Therefore: (a) n = 3, so x = 13 .  Where there is an even number of values in an 
array, then the median is the arithmetic mean of the two middle values. Therefore: (b) n = 4, so 
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_ 1 3  + 14 
x = 2 = 13 .5 .  If equation (6.22) is used to find the median, QI/2' of the samples, then these are the 

results: 

(a) i = C � 3) + � = 2; X=X2; therefore the median is the second value in the array: 13 .  

(b) i = C � 4) + � = 2.5; X=X2.S; therefore the median is midway between the second and third values in 

the array: 1 3 .5 .  

6.15 THE QUANTILE-LOCATING FORMULA FOR NONGROUPED FREQUENCY 
DISTRIBUTIONS 

Often using the odd-even rules of Section 6. 1 3  or equation (6.22), a quantile will be located among 
tied values (identical values). The solution for the median or any other quantile of accepting one of the tied 
values as the quantile is an acceptable solution found in many statistics books. However, it has obvious 
problems. Thus, it is likely that the definition of a quantile will be violated, and also many of the quantiles 
may be identical. 

To avoid such problems with ungrouped data, many statistics books recommend that when there are 
tied values at the quantile, the quantile should be calculated using the following quantile-locating formula 
for nongrouped frequency distributions: 

. 

[(j x n) _ Cf ] 
Qjfm = b + m 

f . (w) (6.23) 

where Qj/m is the x value below which are) mths of the data, b is the lower boundary of the implied range 
for the quantile category (the measurement category that contains the quantile), n is the sample size (or N 
is the population size), Cf is the cumulative frequency from all categories less than the quantile category, f 
is the frequency in the quantile category, and w is the width of the implied range of the qu�tile category. 

EXAMPLE 6.12 Use the odd--even rules (see Section 6.13) and equations (6.22) and (6.23) to find the median of 
the following sample of weight measurements (in Ib): 1 . 1 ,  1 .2, 1 .2, 1 .3, 1 .3, 1 .3, 1 . 3, 1 .3 ,  1 .4, 1 .5 . 

Solution 

. th - 1 .3 lb + 1 . 3  lb 
Usmg e odd-even rules, as n = 10, x = 

2 = 1 .3 lb. 

Using equation (6.22), i = C � 10) +� = 5.5, so again i is located midway betweenxs (1 .3 1b) and x6 

(1 .3 1b): 1 . 3  lb. 
To use equation (6.23), we have converted the sample into the frequency distribution shown in Table 6.5 

and the "less than" cumulative frequency distribution shown in Table 6.6. We want to use the formula with 
these distributions to calculate x = Qj/m = QI/2. By definition, � of the data values are less than QI/2' so, as 
n = 10, five values must be less than QI/2. From the "less than" cumulative frequency distribution in Table 6.6 
we see that three values are less than 1 .3 1b and eight values are less than 1 .4 1b, so 1 . 3 1b is the quantile 
category, in this case the median category (the category containing the median). Thus i must be somewhere 
within the implied range of that category (1 .25 1b to l .35 1b). Ifwe assume that values in the quantile category 
are evenly distributed across its implied range, then we can locate the median by defining the components of 
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Table 6.5 

Weight (lb) Frequency 
Xi 

1 . 1  
1 .2 
1 .3 
1 .4 
1 . 5 

Weight (lb) 

Less than 1 . 1  
Less than 1 .2 
Less than 1 .3 
Less than 1 .4 
Less than 1 .5 
Less than 1 .6 

Table 6.6 

;; 

2 
5 

10  

Cumulative frequency 

o 
1 
3 
8 
9 

10  

the formula as follows: 

Therefore 

Qj/m = x = QI/2 
b = lower boundary of the median category = 1 .25 lb 
n = sample size = 10 

Cf = cumulative frequency from categories less than median category = 3 
f = frequency in the median category = 5 
w = width of the median category = 1 .35 1b - 1 .25 1b = 0 . 1 0  lb 

[(1  x 10) ] 
x = QI/2 = 1 .25 Ib +  2

5 

- 3  
(0. 10  lb) 

= 1 .25 Ib + (0.4 x 0. 1 0 Ib) = 1 .29 lb 

[CHAP. 6 

Note: Putting what was done in words, we found that the median was 2/5 of the way across the implied 
range of the median category and so we multiplied the width of the median category by 0.4 and added this to 
the lower boundary of the implied range for the median category. In using this formula, it is always assumed 
that the values in the quantile category are evenly distributed across its implied range. 

EXAMPLE 6.1 3 For the length data (in cm) summarized in Table 6 . 1 ,  use equation (6.23) to find QI > Q2, and Q3' 

Solution 

In Table 6.7 we have converted the frequency distribution in Table 6. 1  into a "less than" cumulative 
frequency distribution. As Ql = Ql/4' * of the 50 values, or 12.5 values, must be less than QI.  Therefore, from 
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Table 6.7 

Length (cm) Cumulative frequency 

Less than 1 .2 0 
Less than 1 .3 2 
Less than 1 .4 9 
Less than 1 .5 19 
Less than 1 .6 3 1 
Less than l .  7 41 
Less than 1 .8 48 
Less than 1 .9 50 

the "less than" cumulative frequency distribution we can see that the QI category is 1 .4 cm. Thus 

[(IX n) _ Cf] 
Qj/m = b + m 

f . (w) 

[(1 X 50) - 9 ] 
QI = QI/4 = l .35 cm + 4

10 (O. lO cm) 

= 1 .35 cm + (0.35 x 0. 1 0 cm) = 1 .385 cm, or 1 .38 cm 

1 53 

As Q2 =x = QI/2, ! of the 50 values, or 25 values, must be less than Q2. Therefore, from the "less than" 
cumulative frequency distribution, 1 .5 em is the Q2 category (median category). Thus 

[(I x 50) - 19 ] 
Q2 = x = QI/2 = 1 .45 cm + 2 

12 (O. l O cm) 

= l .45 cm + (0.50 x 0. 1 0 cm) = l .50 cm 
This confirms what was said in Example 6.3, that for this unimodal, symmetric distribution the arithmetic 
mean (1 .50 cm) is identical to the median. 
Finally, as Q3 = Q3j4, i of the 50 values, or 37.5 values, must be less than Q3' Therefore, from the "less 

than" cumulative frequency distribution the Q3 category is 1 .6 cm. Thus 

[(3 x 50) _ 3 1 ] 
Q3 = Q3/4 = 1 .55 cm+ 4 

10 (O. l O cm) 

= 1.55 em + (0.65 x O. IO cm) = 1 .6 1 5 em, or 1 .62 em 
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6.16 THE QUANTILE-LOCATING FORMULA FOR GROUPED FREQUENCY 
DISTRIBUTIONS 

When all the measurement values in a sample or population are known, then the median found by 
using either the odd-even rules or the quantile-locating formulas is called the exact (or true) median. As 
with exact and approximate means (see Section 6.7), a median calculated from a grouped frequency 
distribution only approximates the exact median, and is therefore called an approximate median. The 
formula used to find such approximate medians, or any other approximate quantile, is the following 
quantile-locating formula for grouped frequency distributions: 

(6.24) 

where Q)/m is the quantile, be is the lower class boundary for the quantile class (the class containing the 
quantile), n is the sample size (or N is the population size), C!c is the cumulation of frequencies from all 
classes less than the quantile class,!c is the frequency in the quantile class, and We is the class width of the 
quantile class. 

EXAMPLE 6.14 First using equation (6.23), find the exact median for the 30 marathon times in Table 6.2. Then, 
using equation (6.24), find the approximate median for the grouped version of the same data in Table 6.3. 

Solution 

As & of the 30 values (or 15 values) must be less than it = Q2 (it because we have treated these 30 runners 
as a population), the Q2 category (from Table 6.2) is 142 min. Thus, the exact median is 

[U X N) _ Cf] 
Qj/m = b + m 

f (w) 

[( 1 x 30) _ 14 ] 
Qz = it = QI/z = I41 .5min + 2

4 (1 .0 min) 

= 141 .5 min + (0.25 x 1 .0min) 

= 141 .75min, or I41 .8 min 

To calculate any approximate quantile with equation (6.24), we must assume that the values in the 
quantile class are evenly distributed across its class width . Then to calculate the approximate median (here, 
it = QI/2), & of the 30 values (or 1 5 values) must be less than the median. Therefore, as 1 1  values are below the 
(140 to 142) min class (less than l39.5 min), and 18 values are below the (143 to 145) min class (less than 
142.5 min), the median class is (140 to 142) min. The components of the formula are then defined as follows : 

Qjfm = it = QI/Z 
be = lower boundary of median class = 139.5 min N = population size = 30 
Cfc = cumulative frequency from classes less than the median class = 1 1  
fc = frequency in the median class = 7 
we = class width of the median class = 3.0min 
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Therefore 

[( 1 x 30) _ 1 1  ] 
Q2 = J;, = QI/2 :::::; 1 39.5 min + 2 

7 (3.0 min) 

:::::; 139.5 min + (0.571429 x 3 .0 min) 
:::::; 141 .2 14287min, or 141 .2 min 

155 

Note: These results confirm what was said in Example 6.4, that the exact (14l .8 min) and approximate 
(141 .2 min) medians for this negatively skewed distribution are to the right of (larger than) the exact 
(139.9 min) and approximate (139.6min) arithmetic means. 

6.17 THE MIDRANGE, THE MIDQUARTILE, AND THE TRIMEAN 

The midrange (or range midpoint) is the arithmetic mean of the extreme values in a data set, Xs and Xl , 
or stated symbolically, 

M'dr Xs + X/ 
1 ange = -

2
-

The midquartile is the arithmetic mean of the first and third quartiles, or, stated symbolically, 

Midquartile = QI ; Q3 

(6.25) 

(6.26) 

The trimean is the arithmetic mean of the median Q2 and the midquartile, or, stated symbolically, 

(6.27) 

Multiplying both sides of the equation by � and rearranging components 

(6.28) 

EXAMPLE 6.1 5  For the length data summarized in Table 6. 1 and the quartiles calculated in Example 6.13 , 
determine the midrange, midquartile, and trimean. 

Solution 

M'dran 1 .2 cm + 1 . 8 cm 1 50 1 ge = 2 = . cm 

'd '1 1 .385 cm + 1 .6 1 5 cm 1 50 Ml quartt e = 2 
= . cm 

. 1 .385 cm+ 2(1 .50 cm) + 1 .6 15 cm 1 50 Tnmean = 4 
= . cm 

Note: It can be seen for this symmetrical, unimodal distribution that 

x = x = midrange = midquartile = trimean 
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6.18 THE MODE 

The basic definition of a mode is: The mode of a set of data is the measurement value in the set that 
occurs most frequently. When in an arrayed data set there are two consecutive values that have the same 
frequency, which is greater than the frequency of any other value in the set, then, generally, the mode is 
considered to be the arithmetic mean of the consecutive values. When there are two nonconsecutive values 
in an arrayed data set that have the same frequency, which is greater than the frequency of any other value 
in the set, then both values are called modes. Finally, when all values in a data set have the same frequency, 
the set does not have a mode. 

EXAMPLE 6.1 6  Determine the mode for each of the following samples: (a) 2, 3, 3, 3, 4, 5, 6, (b) 2, 3, 4, 5, 6, 
6, 6, (c) 2, 3, 3, 4, 4, 4, 5, 5, 6, (d) 2, 3 , 3, 3, 4, 4, 4, 5, (e) 2, 3, 3, 3, 4, 5, 6, 6, 6, 8, (f) 2, 2, 3, 3, 4, 4, 5, 5, 
6, 6. 

Solution 

(a) Mode = 3 
(b) Mode =6 
(c) Mode =4 

(d) 3 + 4 Mode =-2-= 3.5 

(e) Mode = 3, and mode = 6 
(f) There is no mode. 

6.19 MODE-LOCATING FORMULA FOR GROUPED FREQUENCY DISTRIBUTIONS 

There are two accepted techniques for determining the approximate mode from a grouped frequency 
distribution: ( 1 )  determining the modal class (the class with the highest frequency) and then using its class 
mark as the approximate mode, and (2) using the following mode-locating formula for grouped frequency 
distributions (which can be used only when the grouped distribution has equal class widths): 

(6.29) 

where be is the lower boundary of the modal class, dl is the difference between the modal-class frequency 
and the frequency in the class preceding it in the distribution, d2 is the difference between the modal-class 
frequency and the frequency in the class following it, and We is the class width of the modal class. 

EXAMPLE 6.1 7 The 64 second exam scores in Table A.2 were converted to a grouped distribution in Table 4.22, 
and now they have been converted in Fig. 6-2 to an ascending-array stem-and-leaJ display (see Problem 6. 1 8). From 
Fig. 6-2 determine the exact mode, and then from Table 4.22 determine the approximate mode. 

Solution 

From Fig. 6-2 it can be seen that the score with the highest frequency is 90. Therefore: exact mode = 90. 
Using technique (1) on the grouped distribution in Table 4.22, the modal class is 90 to 94, and the class mark 
for this class is 92. Therefore: mode ::::; 92. Using technique (2) on the distribution in Table 4.22, where the 
modal class is 90 to 94: be= 89.5, d1 = 17 - 9 = 8, d2 = 17 - 5 = 12, and Wc= 5 . Therefore 

Mode ::::; 89.5 + 
(
_8 -

)
(5) = 89.5 + (0.4 x 5) = 91 .5 . 8 +  12 
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4 9 (1) 
5 5799 (4) 
6 44457899 (8) 
7 124688999 (9) 
8 0001 2334444566777888 (20) 
9 00000001 1 1 123344456789 (22) 

(64) 
Fig. 6-2 

Solved Problems 

THE ARITHMETIC MEAN 

6.1 Using equation (6.6), calculate the arithmetic mean for the following population: 5 .47 x 10-4 
cm, 6.83 1 x 10-8 cm, 2 . 12 1 1 x 10-5 cm. 

Solution 

LX; 5.47 X 10-4 cm + 6.83 1 x 1 0-8 cm + 2. 1 2 1 1 x 1 0-5 cm 
I1 = N = 3 

Before proceeding with the division, the numerator values are converted to decimal notation (see 
Problem 2. 15). 

0.000547 cm + 0.0000000683 1 cm + 0.00002 12 1 1 cm 
11 = -----------------

3 
0.0005682793 1 cm 

3 
0.OO0568 cm = 3 ' after rounding off the numerator 

= 0.0001 8933333 cm, or 0.0001 89 cm (or 1 .89 x 10-4 cm) after rounding off the answer. 

n 
6.2 Show with the data from Example 6. 1 (a), and using six digits for the mean, that I:(Xi - x) = O. 

i=l 

Solution 

n 
Lex; - i) = ( 1 g - 3.42857 g) + (3 g - 3.42857 g) + (2 g - 3.42857 g) 
;=1 

+ (7 g - 3 .42857 g) + (5 g - 3.42857 g) + (4 g - 3.42857 g) + (2 g - 3.42857 g) 
= -2.42857 g - 0.42857 g - 1 .42857 g + 3.57143 g + 1 .57 143 g + 0.57 143 g - 1 .42857 g 
= 0.00001 g 

Thus, using a six-digit arithmetic mean in the calculations, the sum of the deviations is zero to the fourth 
decimal place. Had the calculations been done with the 12-digit mean, 3.42857142857 g, then 

n 
L(x; - i) = 0.00000000001 g 
;=1 
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6.3 A car dealership has set a goal for its 1 5  salespeople of selling 1 50 new cars in an eight-week 
period. In the first six weeks of this period, an average x = 1 9.5 cars were sold each week. How 
many cars must be sold in the remaining two weeks to achieve the I SO-car goal? 

Solution 
6 

If Xi is the total number of cars sold each week, and L Xi is the total number of cars sold over six weeks, ;=1 
then from equation (6.8) 

6 
LXi = ni = 6 x 19 .5 cars = 1 17 cars 
i=1 

Therefore, the number of cars that must be sold in the remaining two weeks is 150 cars - 1 17 cars = 33 cars 

6.4 Using equation (6. 1 0), find the arithmetic mean of the sample that is summarized in Table 5.4. 

Solution 

The modified table and resulting calculation of the arithmetic mean are shown in Table 6.8. 

Table 6.8 

Weight (g) Frequency 
Xi 
14 
15 
16 
17 
1 8 
1 9 
20 

L 

fi 
2 
2 
4 
1 8 
24 
35 
5 

90 

_ L fixi 1 , 625 g 
x = -- = n 90 

fixi (g) 

28 
30 
64 
306 
432 
665 
100 

1 ,625 g 

= 1 8 . 1 g 

Note: The relative-frequency histogram for this data (see Fig. 5-16) shows that the distribution is 
negatively skewed. While it is less apparent for this distribution than it was for the perfectly symmetric 
distribution in Fig. 5-3, again the mean is the center of gravity. This does not indicate, however, that in Fig. 
5-16 there are equal areas on both sides of the mean. It is the median that divides the distribution into two 
equal areas, and when we calculate the median for this distribution (see Problem 6.20) we will find it to be 
to the right of the mean, farther away from the skewed tail. 

6.5 Using equation (6. 1 0), find the arithmetic mean of the sample that is summarized in Table 5.5 .  

Solution 

The modified table and resulting calculation of the arithmetic mean are shown in Table 6.9. 
Note: For this positively skewed distribution (see Fig. 5-17) the arithmetic mean is, as always, the 

center of gravity, but now it is to the right of the median (see Problem 6.21) . It is always true for skewed 
distributions that the median is farther away from the skewed tail than is the mean. 
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Table 6.9 

Temperature COF) Frequency 
Xi fi fix; COF) 

1 00 10 1 ,000 
10 1 45 4,545 
102 25 2,550 
103 10 1 ,030 
104 5 520 
105 0 0 
106 3 3 1 8 
107 2 214 

L 1 00 10, 177°F 

x = L fi x; = 1 0, 177°F = 1 0 1 .80F 
n 100 
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CALCULATING APPROXIMATE ARITHMETIC MEANS FROM GROUPED FREQUENCY 
DISTRIBUTIONS 

6.6 First, directly from Table A.2, calculate the exact arithmetic mean of the 64 second lecture exam 
scores (column 3). Then, using equation (6. 1 3), calculate the approximate arithmetic mean of the 
same data from the grouped frequency distribution in Table 4.22. 

. 

Solution 

The exact arithmetic mean is 
n 
LX; - _ ;= 1  _ 5,221 _ 8 6 x - -- - -- - 1 . n 64 

The modified grouped frequency distribution and the resulting calculation of the approximate arithmetic mean 
using equation (6. 13) are shown in Table 6. 10. 

Note: The arithmetic-mean calculations were done by treating these discrete ratio data as if they were 
continuous ratio measurements presented at the units-digit level of precision. The answers were then rounded 
off to the tenths digit (see Section 6.3). Again, the approximate arithmetic mean (8 1 .4) underestimates the 
exact arithmetic mean (81 .6). It is not surprising for this negatively skewed distribution (see Fig. 5-25) that the 
exact and approximate medians for the data (see Problem 6.22) are to the right of the exact and approximate 
arithmetic means. This is also true for the graphic estimation of this median (84.5, see Problem 5.29). 

6.7 For the golf winnings in Problem 4. 1 7, first round off the amounts to the nearest $ 1 ,000, and then 
calculate the exact arithmetic mean of the winnings. Next, calculate the approximate arithmetic 
mean of the winnings from the grouped frequency distribution in Table 4.26. (In making the 
grouped distribution, the winnings were rounded off to the nearest $ 1 ,000.) 

Solution 

The data rounded off to the nearest $1 ,000 are presented in Table 6. 1 1 . (To save space, the zero-frequency 
categories are not included.) The calculation of the exact arithmetic mean 11 for the population of 70 golfers, 
using equation (6. 1 1), is shown at the bottom of the table. As the data was presented at the thousands digit, 11 
was rounded off to the hundreds digit. The modified grouped frequency distribution and the resulting 
calculation of the approximate arithmetic mean, using equation (6. 1 2), are shown in Table 6. 12. 
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2d Exam 

45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 
80-84 
85-89 
90-94 
95-99 

L 

Table 6.10 

Class mark Frequency 
mi j; 
47 
52 0 
57 4 
62 3 
67 5 
72 3 
77 6 
82 1 1  
87 9 
92 17 
97 5 

64 

i � L fi m; = 5 ,208 = 8 1 .4 n 64 

Jim; 

47 
0 
228 
186 
335 
216 
462 
902 
783 
1 ,564 
485 

5,208 

[CHAP. 6 

Note: The same approximation technique was used for this grouped distribution with unequal class 
widths as was used for the grouped distribution with equal widths. Also note that the approximate mean does 
not always underestimate the exact mean; here it overestimates. Finally, note that as class marks are required 
for all classes to do the approximation technique, approximate arithmetic means can not be calculated for 
open-ended grouped frequency distributions. As you will see (see Problem 6.23), exact and approximate 
medians calculated from this data are to the left of both arithmetic means. 

Table 6.11 

Winnings ($) Frequency 
Xi j; j;Xi ($) 

2,000 1 8 36,000 
3,000 7 21 ,000 
4,000 5 20,000 
6,000 7 42,000 
8,000 7 56,000 
10,000 3 30,000 
15,000 7 105,000 
22,000 5 1 10,000 
30,000 3 90,000 
36,000 2 72,000 
40,000 40,000 
45,000 1 45,000 
83,000 3 249,000 
200,000 200,000 

L 70 $1 , 1 16,000 

fJ. = L fix; = $ 1 , 1 1 6,000 = $15 ,900 
N 70 
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Table 6.12 

Class mark Frequency 
Winnings ($) mi ($) j; 

2,000-4,000 3 ,000 30 
5,000-10,000 7,500 17 

1 1 ,000-20,000 1 5,500 7 
2 1 ,000-30,000 25,500 8 
3 1,000-40,000 35,000 3 
41 ,000-45,000 43,000 
46,000-8 1 ,000 63,500 0 
82,000-83,000 82,500 3 
84,000-198,000 141 ,000 0 

199,000-200,000 199,500 

2: 70 

J.l 
� 2: hmi = $ 1 , 1 26, 500 = $16 100 

N 70 ' 

CALCULATING ARITHMETIC MEANS WITH CODED DATA 

j; mi ($) 

90,000 
127,500 
108,500 
204,000 
106,500 
43,000 

0 
247,500 

0 
1 99,500 

$ 1 , 126,500 

16 1  

6.8 For the following sample of weight measurements (in grams), first calculate x directly from the data, 

and then calculate it by means of equations (6. 14), (6. 1 5), and (6. 16), using a = O  g and b = 
1O ,�00 

as the coding constants: 22,000.0; 30,000.0; 29,000.0; 27,500.0; 25,500.0; 24,000.0. 

Solution 

The direct calculation of i and the calculation using the coding and decoding formulas are shown in 
Table 6 . 13 .  

6.9 Two clothing factories are paying their workers an average of x = $5.39 per hour. Factory A had a 
good year and their management decides to reward all workers with a 5% per hour raise. Factory B 
had an equally good year but their management decides to give all workers a raise of $0.05 per hour. 
Use equation (6. 14) to determine the new average hourly wage for both factories. Which factory is 
more generous? 

Solution 

For factory A, if Xi is the previous hourly wage, then each worker now receives Ci = $0.00 + 1 .05Xi. 
Therefore, the new average is 

c = 1 .05i = 1 .05($5.39) = $5.66 

For factory B, each worker now receives per hour Ci = $0.05 + Xi' Therefore, the new average is 

c = $0.05 +i = $0.05 + $5.39 = $5 .44 

Clearly factory A is more generous, now paying its workers an average of $0.22 more per hour. 
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Weight (g) 
Xi 

22,000.0 
24,000.0 
25,500.0 
27,500.0 
29,000.0 
30,000.0 

L 158,000.0 g 

Table 6.13 

Ci = O.OOOlxi g 

2.20000 
2.40000 
2.55000 
2.75000 
2.90000 
3.00000 

15 .80000 g 

x = LXi = 1 58,000.0 g = 26, 333.33 g n 6 

C = Lei = 1 5.80000 g = 2.633333 g n 6 

x = 
�
(C - a) = 0.0

�

01 (2,633333 g) 
= 26,333.33 g 

[CHAP. 6 

OTHER MEANS: WEIGHTED, OVERALL, GEOMETRIC, AND HARMONIC 

6.10 The final grade in a biology course is determined by a score from 0 to 100, which has three 
components: a laboratory component of 25%, two hour-exams that together contribute 25%, and a 
final exam that contributes 50%. There are 100 possible points for the laboratory, 50 possible points 
for each hour exam, and 100 possible points for the final. A student in the course got 75 points for 
the laboratory, 40 and 38 points for the two hour-exams, and 85 points for the final. Use equation 
(6. 17) to determine his overall score (from 0 to 100) for the course. 

Solution 

To detennine the score, we let Wi = the % contribution of the component, Xi = the points achieved in the 
component, and k= 4. Therefore 

4 

_ E WiXi 0.25(75) + 0.25(40 + 38) + 0.50(85) X = --= ---'--'----'----'----'---'-

t wi 0.25 + 0.25 + 0.50 
i=l 

80.75 h' b = -- = 80.75, w lch would e reported as 80.8 1 .0 

6.11 You develop a new hybrid com and want to determine its "days to maturity":  when the first ripe 
ears can be picked. To do this, you plant this com in four different fields and then measure days to 
maturity for a randomly selected sample of 100 plants in each field. Calculating the arithmetic mean 
for each sample, the results are: XI = 70. 1 days, X2 = 7 1 .3 days, X3 = 69.5 days, and X4 = 69.2 days. 
Combine these four means to get an overall mean. 
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Solution 

Using equation (6. 19) and the properties of summation notation (see Problems 1 .42 and 1 .43) 
4 4 L n/Xi 1 00 LXi i-I i=1 Overall mean = � = 400 L ni i=! 

28,0 10 days 
= 70 0 da 400 . ys 

1 63 

6.12 For the following samples, find the arithmetic mean and the geometric mean: (a) 1 ,  1 ,  1 , 2, 3 , 8, 
14, (b) 2, 2, 2, 2, 2, (c) 1 , 3, 5, 9, 9, 9, 9. 

Solution 

Using equations (6. 1 ) and (6.20) 
7 

LXi 
(a) x = i=1 = 

30 = 4.3 7 7 

Geometric mean = it] Xi = ..zI 1 x 1 x 1 x 2 x 3 x 8 x 14 

5 
LXi 

(b) x = i=1 = 
1 0 

= 2.0 5 5 

= ..zI672 = 6721/7 = 2.534603, or 2.5 

Geometric mean = j� Xi = ':;2 x 2 x 2 x 2 x 2 = .yn = 32°·2 = 2.0 

7 
LXi 

(c) X = i=1 = 
45 

= 6.4 7 7 

Geometric mean = /fJ xi = ..zIl x 3 x 5 x 9 x 9 x 9 x 9 

= �98,415 = 98, 415° 142857 = 5 . 1 67658, or 5.2 

Note: These problems demonstrate several things about the geometric mean: (1) when the data are 
positively skewed, as in part (a), the geometric mean (2.5) is less affected by the skewing than the arithmetic 
mean (4.3); (2) when all the data have the same value, as in part (b), x= geometric mean; and (3) when the 
data are not all the same value, x > geometric mean. 

6.13 Show that the geometric mean of a set of data is the antilogarithm of the arithmetic mean of the 
common logarithms of the data. (For a review of operations with logarithms, see Section 1 . 1 0.) 
Then use this technique to recalculate the geometric mean for the data in Example 6.8. 

Solution 

For a set of data Xj, X2, • . .  , Xm the common logarithms of the data are loglOXj , IOglOx2, . . .  , IOgIOXn• The 
arithmetic mean of these logarithms (X10g) is 

1 n Xlog = - L (log 10 Xl + lOglO X2 + . . . + IOgl OXn) n i=l 
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The geometric mean of the data is 

Taking the loglo  of both sides 

loglo (geometric mean) = loglO [(XIX2 " . xn)
l ln

] 

1 = -(logl O xI + loglOx2 + . . .  + 10glOxn) 
n 

= Xlog 

Therefore 

Geometric mean = antilog x)og 

[CHAP. 6 

The common logarithms of the data in Example 6.8 are: 10glO 1 = 0.0000, 10glO 3 = 0.4771 ,  
log 10 5 = 0.6990, log 10 6 = 0.7782, log 10 8 = 0.903 1 .  Therefore 

5 
L log 10 Xi 

Xlog = =i=..:...1 _
5
-_ = 0.0000 + 0.4771 + 0.6

:
90 + 0.7782 + 0.903 1 

= 0.57148 
Geometric mean = antilog Xlog 

= 3 .728039, or 3.7, which is the value found in Example 6.8 

6.14 You measure (in cm) the diameter D and length L of four cylinders. As these measures are ratio 
level, you can calculate for each cylinder these two ratios: DIL and LID. The results for DIL are: 
2/10, 5/10, 2/10, 5/1 0; and for LID are: 10/2, lOIS, 10/2, lOIS . Using these two sets of ratios, show 
why it is said that the geometric mean is a better way to average ratios than the arithmetic mean. 

Solution 

If we let Xi = DIL and Yi = liD, then the arithmetic means of the two sets of ratios are 

4 
LXi 

X = i=1 = 0.2 + 0.5 + 0.2 + 0.5 = 0.35 4 4 
4 

LY" - _ 1= 1 I _ 5 + 2 + 5 + 2 _ 3 5 Y - 4 - 4 - . 

The geometric means of the two sets are 

Geometric mean for Xi = lD Xi = 1<0.2)(0.5)(0.2)(0.5) = 0.3 1 6228 

Geometric mean for Yi = ln Yi = �5 x 2 x 5 x 2 = 3 . 1 6228 
1=1 

I 
The ratio DIL is the reciprocal of the ratio liD: DIL = 

Lj D
' Therefore, we want the average of the DILs to be 

the reciprocal of the average of the liDs. This is not true for the arithmetic means, where x = 0.3 5 is not the 
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reciprocal of5' = 3.5: 0.35 i= _1_ = 0.285714. It is true, however, for the geometric means where 3.5 
. 1 Geometnc mean for Xi = 0.3 1 6228 = . fi = 3 . 16228 geometnc mean or Yi 

This is why the geometric mean is recommended as the preferred average to use for ratios. 

6.15 Using equation (6.2 1 ), calculate the harmonic means for the three samples in Problem 6.12 .  

Solution 

(a) Harmonic mean = 1 ( 1 1 I I i 1 1 ) 
"7 1 + 1 + 1 + 2 + 3 + 8 + 14 

. 1 
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. 1 ---�--------:-::----:-.,...,--::,----�-:::-:-� = 1 .73708, or 1 .7 0 . 142857(1 + 1 + 1 + 0.5 + 0.333333 + 0 . 125 + 0.071429) 

(b) ' 
1 1 2 0  HarmOnIC mean = 1 ( 1 1 1 1 1) = 0.2(2.5) = . 

5 2 + 2 + 2 +2 + 2 
(c) Harmonic mean = 1 (1 1 1 \ 1 1 1) 

"7 1 + 3 + 5 + "9 + "9 + "9 + "9  

true: 

1 
0. 142857[1 + 0.333333 + 0.2 + 4(0. 1 1 1 1 1 1 )] = 3 .53933 , or 3 .5  

Note: Comparing the results of this problem with those in Problem 6. 12, we find the following to be 

If all data values are the same, then the 
(harmonic mean) = (geometric mean) = (arithmetic mean) 

If all data values are not the same, then the 
(harmonic mean) < (geometric mean) < (arithmetic mean) 

The harmonic mean is rarely used, but under some conditions it is recommended for time rates, such as miles 
per hour. . 

THE MEDIAN AND OTHER QUANTILES 

6.16 Using both the odd-even rules from Section 6. 1 3  and equation (6.22), find the median for this 
sample: 12, 1 2, 12, 14, 1 7, 19, 2 1 .  

Solution 

Using the rules, n = 7, so x =  14. 

Using the equation, i = (1 x 7) + � = 4; 
14. 2 2 x = X4; therefore the median is the fourth value in the array: 

6.17 For the following sample, use equation (6.22) to locate D3 and P67: 1 , 6,  7, 8, 9, 1 1 ,  13 ,  1 5 , 20, 2 1 ,  
28 . 

Solution 

. . (3 x 1 1) 1 
D3 = thrrd decIle = Q3jlO; therefore i = -1-0- + 2 = 3.8; D3 = x3.g ;  therefore D3 is 0 .8 of the way 

between the third and fourth values in the array: 7 + 0.8 (8 - 7) = 7.8. 
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P67 = sixty-seventh percentile = Q67/100; therefore i = (67
1�0

1 1) + � = 7.87; 

[CHAP. 6 

P67 =X7.87; therefore P67 is 0.87 of the way between the seventh and eighth values in the array: 13 + 0.87 
(15 - 13) = 14.74, or 14.7. 

6.18 For the following sample of weight measurements (in mg), arrange the sample into a simple stem­
and-leaf display that has single-digit starting parts and leaves, and a stem width of 1 mg (see 
Problem 5.43). Then transform the display into an ascending array, and finally use equation (6.22) 
to find D4 and Q2: . 

8. 1 , 4.9, 6.5, 6.3, 5.8, 3 .7, 2.2, 1 . 1 , 5.7, 7.4, 2.8, 3 .3 , 6.9, 3.9, 3 . 1 ,  2.0, 5 .3 ,  7.0, 1 .3 , 1 .9, 7.9, 6.2, 
5.0, 5 .2, 2.5, 2. 1 , 4.2, 3 .6, 7.6, 4.5. 

Solution 

The simple stem-and-leaf display allows a quick organization of the data for calculating quantiles. 
Scanning the units digits in the data, we find they go from 1 to 8, producing the display shown in Fig. 6-3(a). 
In Fig. 6-3(b), the display has been transformed into an ascending array by reorganizing the leaves on each 
stem to go from small-to-large. 

(a) (b) 
1 139 (3) 139 (3) 
2 2805 1 (5) 2 0 1258 (5) 
3 7391 6  (5) 3 13679 (5) 
4 925 (3) 4 259 (3) 
5 87302 (5) 5 02378 (5) 
6 5392 (4) 6 2359 (4) 
7 4096 (4) 7 0469 (4) 
8 (1) 8 ( 1 )  

(30) (30) 

Fig. 6-3 

D4 = fourth decile = Q4/10 ; 
f x n) 1 (4 X 30) 1 therefore i = -;;:;- +"2 = 10 + "2 = 12.5; 

D4 =XI2.5· D4 is midway between the 12th and 13th values in the array. These are found by counting down the 
check-count column in Fig. 6-3(b), where it is seen that values X9 to XI3 are in the third stem down, and that 
X12 = 3.7 mg and X13 = 3.9 mg. Therefore, 

D - 3.7 mg + 3 .9mg - 3 80 4 - 2 - . mg 

Q - Q h c. . (1 x 30) 1 . . h th 2 = X = 1/2 ; t erelore ! = -2- +"2 = 1 5.5; Q2 = XIS.S· Q2 IS mIdway between t e 1 5  and 
1 6th values in the array. Counting down the check-count column, we find that XI5 and XI6 are in the fourth 
stem, and that XI5 = 4.5 mg and XI6 = 4.9 mg. Therefore, 

Q _ 4.5 mg + 4.9 mg _ 4 70 2 - - . mg 2 .  

6.1 9  For the following sample of length measurements (in mm), first arrange the sample in a stem-and­
leaf display that has single-digit starting parts, two-digit leaves, and a stem width of 0. 1 mm (see 
Problem 5.44), then transform the display into an ascending array, and finally, use equation (6.22) to 
find D7 and P13: 



CHAP. 6] MEASURES OF CENTRAL TENDENCY, AVERAGE VALUE, AND LOCATION 

0.948, 0.5 13 ,  0.687, 0.23 1 ,  0.299, 0.71 7, 0.379, 0.3 1 0, 0.785, 0.542, 0.222, 0.593, 0.827, 0.309, 
0.784, 0.502, 0.272, 0.492, 0.256, 0.65 1 ,  0.329, 0.358, 0.447, 0.699, 0.589. 

Solution 

The requested stem-and-Ieaf displays are shown in Fig. 6-4. 

D7 = seventh decile = Q7/IO; therefore, i = t: n) + � = C 70
25) + � = 18 ;  

D7 =XI8. Therefore, D7 is  the 1 8th value in the array: 0.65 1 mm. (1 3  x 25) 1 
P13 = thirteenth percentile = QI3/ IOO ;  therefore, i = 100 + 2: = 3.75; 

1 67 

PI3 =X3.7S. Therefore, P13 is 0.75 of the way between X3 (0.256 mm) and X4 (0.272 mm): P13 = 0.256mm + 
0.75(0.272 mm - 0.256 mm) = 0.2680 mm. 

Original stem-and-Ieaf display Display transformed into array 

2 3 1 , 99, 22, 72, 56 2 22, 3 1 , 56, 72, 99 (5) 
3 79, 10, 09, 29, 58  3 09, 10, 29, 58, 79 (5) 
4 92, 47 4 47, 92 (2) 
5 13 ,  42, 93, 02, 89 5 02, 13, 42, 89, 93 (5) 
6 87, 5 1 , 99 6 5 1 ,  87, 99 (3) 
7 17, 85, 84 7 1 7, 84, 85 (3) 
8 27 8 27 (1)  
9 48 9 48 (1)  

(25) 

Fig. 6-4 

6.20 For the weight data summarized in Table 6.8 ,  use equation (6.23) to find Qb Q2' and Q3 . 

Solution 

In Table 6. 14, we have converted the frequency distribution in Table 6.8 into a "less than" cumulative 
frequency distribution. As t of the 90 values, or 22.5 values, must be less than Qj, the QI category is 17 g. 
Thus 

[(j x n) _ Cf] 
Qj/m = b + 

m f 
(w) 

Q, = Q,!, = 16.5 g +  [(I :::) - 8 J I .O g) 

= 16.5 g + (0.805556 x 1 .0 g) 
= 1 7.305556 g, or 17.3  g 

As ! of the 90 values, or 45 values, must be less then Q2, the Q2 category is 1 8  g. Thus [( 1  x 90) _ 26 ] 
Q2 = x = QI/2 = 1 7.5 g + 2 

24 (1 .0 g) 

= 18.29l667 g, or l 8.3 g 



168 MEASURES OF CENTRAL TENDENCY, AVERAGE VALUE, AND LOCATION [CHAP. 6 

Table 6.14 

Weight (g) Cumulative frequency 

Less than 14 0 
Less than 1 5 2 
Less than 16 4 
Less than 1 7 8 
Less than 1 8 26 
Less than 1 9 50 
Less than 20 85 
Less than 2 1 90 

This confirms what we said in Problem 6.4, that for this negatively skewed distribution the median will be to 
the right of (larger than) the arithmetic mean ( 18 . 1 g). 

As i of the 90 values, or 67.5 values, must be less than Q3, the Q3 category is 1 9 g. Thus 

[(3 x 90) _ 50 ] 
Q3 = Q3/4 = 18.5 g + 4 

35 (l .0 g) 

= 18.5 g + (0.5 x l .O g) = 19.0 g 

6.21 For the temperature data (in OF) summarized in Table 6.9, use equation (6.23) to find Q2 and PS7' 

Solution 

In Table 6 . 1 5 we have converted the frequency distribution in Table 6.9 into a "less than" cumulative 
frequency distribution. As ! of the 100 values, or 50 values, must be less than Q2, the Q2 category is also 
10 1aF. Thus 

[(j x n) _ Cf] 
Qj/m = b + m f (w) 

[(1 x 100) _ 1 0] 
Q2 = X = QI/2 = 100SF + 2 

45 (l .O°F) 

= 100SF + (0.888889 x l .oaF) 
= 101 .388889aF, or 1O l .4aF 

This confirms what we said in Problem 6.5, that for this positively skewed distribution the arithmetic mean 
( 1Ol .8aF) is to the right of (larger than) the median. 

As 87/ 1 00 of the 100 values, or 87 values, must be less than PS7, the PS7 category is 103°F. Thus 

[(87 x 1 00) _ 80 ] , 
P87 = Q87/IOO = 102SF + 100

10 (l .oaF) 

= 102SF + (0.7 x 1 .0aF) 
= 103 .2aF 
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Table 6.15 

Temperature eF) Cumulative frequency 

Less than 100 0 
Less than 101 10 
Less than 102 55 
Less than 103 80 
Less than 104 90 
Less than 105 95 
Less than 106 95 
Less than 107 98 
Less than 108 100 

CALCULATING QUANTILES FROM GROUPED FREQUENCY DISTRIBUTIONS 

6.22 The 64 second exam scores from Table A.2 (column 3) are shown organized into an ascending array 
in the simple stem-and-Ieaf display in Fig. 6-5. Treating this display as a nongrouped frequency 
distribution, use equation (6.23) to find the exact version of Q2. Then, using equation (6.24), find 
the approximate version of Q2 from the grouped distribution of this data in Table 6 . 10. 

4 9 (1) 
5 5799 (4) 
6 44457899 (8) 
7 124688999 (9) 
8 00012334444566777888 (20) 
9 00000001 1 1 123344456789 (22) 

(64) 
Fig. 6-5 

Solution 

As t of the 64 values, or 32 values, must be less than Q2, the Q2 category in the display is 84. Thus, the 
exact median value is 

[(j x n) _ Cf] Qj/m = b + 
m f 

(w) 

. [( 1 x 64) _ 29 ] Q2 = X = QI/2 = 83.5 + 2 
4 (1 .0) 

= 83.5 + (0.75 x 1 .0) 
= 84.25, or 84.2 

To use the quantile-locating formula for grouped frequency distributions, we have converted the grouped 
frequency distribution in Table 6 . 10 into the grouped "less than" cUmulative frequency distribution in Table 
6.16. To find the approximate version·of Q2, again 32 values must be less than Q2, so the Q2 class is 80 to 84. 
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Table 6.16 

2d Exam Cumulative frequency 

Less than 45 0 
Less than 50 I 
Less than 55 I 
Less than 60 5 
Less than 65 8 
Less than 70 13 
Less than 75 16  
Less than 80 22 
Less than 85 33 
Less than 90 42 
Less than 95 59 
Less than 1 00 1 00 

Thus, the approximate Q2 value is [U x n) _ etc ] 
Qj/m ::::J be + 

m tc (We) [( 1  X 64) _ 22 ] 
Q2 = X = Q\/2 ::::J 79.5 + 2 

1 1  (5.0) 

::::J 79.5 + (0.909091 X 5.0) 
::::J 84.045455, or 84.0 

[CHAP. 6 

Note: In Problem 6.6 we showed for this negatively skewed distribution that the median of 84.5 found 
by the graphic estimation technique is to the right of (larger than) either the exact (8 1 .6) or approximate (81 .4) 
arithmetic means. Now we have found that the exact (84.2) and approximate (84.0) medians are also to the 
right of these arithmetic means. 

6.23 First, using equation (6.23), find the exact versions of QJ and Q2 from the nongrouped distribution 
of golf winnings in Table 6 . 1 1 .  Then, using equation (6.24), find the approximate versions of Q\ 
and Q2 from the grouped distributions of this data in Table 6. 12 .  

Solution 

For the exact version of Q\ from Table 6. 1 1 , 1 14 of the 70 values, or 17 .5 values, must be less than Q! .  
Therefore, the Q\ category is $2,000. The exact Q\ value is [U x N) _ Cf] 

Qj/m = b + 
m f 

(w) 

Q, � Q" . � $ 1 , 500 + [ (1 : ::) - 0 J$ I ,Ooo) 

= $ 1 , 500 + (0.972222 x $1 , 000) 
= $2,472.222, or $2, 500 
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For the exact version of Q2, as 112 of the 70 values, or 35 values, must be less than Q2, the Q2 category is 
$6,000. Thus, the exact Q2 value is 

[(1 x 70) _ 30] 
Q2 = jJ. = QI/2 = $5 ,500 + 2 

7 ($ 1 ,000) 

= $5, 500 + (0.714286 x $1 ,000) 

= $6,2 14.286, or $6,200 
The fact that the grouped frequency distribution in Table 6. 1 2 has unequal class widths does not change 

the techniques used for calculating approximate quantiles. The quantile-locating formula for grouped 
frequency distributions is used on the grouped "less than" cumulative frequency distribution version of 
this distribution shown in Table 6. 1 7. To find the approximate version of QI. again 1 7.5 values must be less 
than QI. so the QI class is $2,000 to $4,000. Thus, the approximate QI value is 

[(1 x 70) - 0] 
QI = QI/4 � $ 1 , 500 + 4

30 ($3,000) 

� $ 1 ,500 + (0.583333 x $3, 000) 
� $3 ,249.999, or $3,200 

Table 6.17 

Winnings ($) Cumulative frequency 

Less than 1 ,500 0 
Less than 4,500 30 
Less than 10,500 47 
Less than 20,500 54 
Less than 30,500 62 
Less than 40,500 65 
Less than 45,500 66 
Less than 81 ,500 66 
Less than 83,500 69 
Less than 1 98,500 69 
Less than 200,500 70 

To find the approximate version of Q2, again 35 values must be less than Q2, so the Q2 class is $5 ,000 to 
$10,000. Thus, the approximate Q2 value is 

[(1 x 70) _ 30 ] 
Q2 = jJ. = QI/2 � $4,500 + 2 

17 ($6, 000) 

� $4,500 + (0.2941 1 8 x $6, 000) 
� $6,264.708, or $6, 300 
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Note: As you would expect for this positively skewed distribution, both versions of this median we 
have calculated (exact: $6,200; approximate : $6,300) are to the left of (smaller than) the arithmetic means 
from Problem 6.7 (exact: $ 1 5,900; approximate: $16,1 00). 

6.24 Use the graphic estimation technique on the "less than" percentage ogive for the golf winnings (see 
Fig. 5-38) to find QI and Q3. 

Solution 

The relevant portion of Fig. 5-38 has been expanded in Fig. 6-6. To estimate Qj ,  a horizontal line is 
drawn from the 25% point on the vertical axis to the ogive, which intersects it at E1 • A vertical line is then 
dropped from E1 to the X axis, which it intersects at Db or roughly $3,000, which is our first estimate of Q1 .  
For the more exact estimate we use the similar triangles A1B1C1 and A lDIE] , in  which the sides have the 
relationship 

80 

60 f Po. 
� 40 
.� 
] 8 

20 

Winnings ($; in thousands) 

Fig. 6-6 

We know that: A1B1 = QI class width = $3,000; BIC1 = 42.8571 - 0.0 = 42.857 1 ;  and D1E1 = 25.0 - 0.0 = 
25.0. So now, solving for A ,D, 

AjDj 25.0 = ---
$3,000 42.857 1 

AjDj = $3 , 000(0.583334) = $ 1 , 750.00 
Therefore 

QI = $ 1 , 500 + $1 ,750 = $3,250, or $3 ,200 
To estimate Q3, a horizontal line is drawn from the 75% point that intersects the ogive at E2, from which a 

vertical line is dropped to the X axis. The intersection with the X axis, at roughly $ 19,000, is our first estimate 
of Q3' For the more exact estimate, we use the similar triangles A2B2C2 and A2D2E2, where 

A2D2 D2E2 -- = --
A2B2 B2C2 
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We know that: A2B2 = Q3 class width = $1 0,000; B2C2 = 77. 1429 - 62 . 1429 = 15 .0; and D2E2 = 75.0 -
62 . 1429 = 12.857 1 . So now, solving for A2D2 

Therefore 

12.8571 
1 5 .0 

A2D2 = $ 1 0,000(0.857 140) = $8,571 .40 

Q3 = $ 1 0,500 + $8,571 .40 = $ 19,07 1 .40, or $ 1 9,000 

THE MIDRANGE, THE MIDQUARTlLE, AND THE TRIMEAN 

6.25 For the weight data summarized in Table 6.8 and the quartiles calculated in Problem 6.20, 
determine the midrange, midquartile, and trimean. 

Solution 

M'dran _ xs + x/ _ 1 4 g + 20 g _ 17 0 1 ge - 2 - 2 - . g 

M'd '
1 _ QI + Q3 _ 1 7.305556 g + 19.0 g _ 1 8 1 52778 1 8 2 1 quartl e - 2 - 2 - . g, or . g 

Trimean = QI + 2Q2 + Q3 = 
17 .305556 g + 2(1 8.29 1 667 g) + 19.0 g 

. 4 4 

= 1 8.222222 g, or 1 8 .2g  

It can be seen for this negatively skewed distribution that 

midrange < i < midquartile < trimean < i 

6.26 For the temperature data summarized in Table 6.9 and the quartiles calculated in Problems 6.21 and 
6.5 1 ,  determine the midrange, midquartile, and trimean. 

Solution 

Midrange = Xs + xz 
= 

100°F + 107°F 
= 103SF 

2 2 

Midquartile = QI + Q3 = 100.833333°F + 102.3°F 
= 101 .566666°F, o r  1 0 1 .6°F 

2 2 

Trimean = QI + 2Q2 + Q3 = 
1 00.833333°F + 2(10 1 .388889°F) + 102.3°F 

4 4 

= 101 .477778°F, or 10 1 SF 

It can be seen for this positively skewed distribution that 

x < trimean < midquartile < i < midrange 

6.27 For the golf-winnings data summarized in Table 6. 1 1  and the exact quartiles calculated in Problems 
6.23 and 6.53, determine the midrange, midquartile, and trimean. 
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Solution 

Midrange = Xs +x/ = $2,000 + $200,000 = $10 1 ,000 
2 2 

M'd '1 - Q\ + Q3 - $2,472.222 + $ 1 5,285.714 - $8 8 8 968 1 quartl e -
2 

-
2 - , 7 .  , or $8,900 

. Q\ + 2Q2 + Q3 $2,472.222 + 2($6,2 14.286) + $ 15 ,285 .714 Tnmean = = �------'--------'-------
4 4 

= $7,546.627, or $7, 500 

It can be seen for the exact values calculated for this positively skewed distribution that 
jJ. < trimean < midquartile < J1. < midrange 

[CHAP. 6 

6.28 For the grouped golf-winnings data summarized in Table 6. 1 2  and the approximate quartiles 
calculated from this data in Problems 6.23 and 6.53, determine the approximate versions of the 
midrange, midquartile, and trimean. 

Solution 

If only grouped data are available, such as the grouped frequency distribution in Table 6. 12, then there are 
two accepted techniques for approximating Xs and Xl :  ( 1 )  for X., use the class mark for the class with the 
smallest values; for Xl , use the class mark for the class with the largest values; (2) for xs ,  use the lower 
boundary of the class with the smallest values; for Xl ,  use the upper boundary of the class with the largest 
values. As rnidrange = Xs ;x/, therefore using technique ( 1 )  

Midrange � $3,000 + $ 1 99,500 = $10 1 ,250, or $ 1 01 ,200 
2 . 

and using technique (2) 

Midrange � $ 1 , 500 + $200,500 = $ 1 0 1 ,000 
2 

As midquartile = Q\ ; Q3, therefore using the approximate values from Problems 6.23 and 6.53 

Midquartile � $3 ,249.999 + $ 1 8,357. 140 = $ 10, 803 .5695 , or $ 1 0, 800 
2 

As trimean = Q\ + 2�2 + Q3, therefore using the approximate values from Problems 6.23 and 6.53 

Trimean � $3 ,249.999 + 2($6,264.708) + $1 8,357. 1 40 = $8 ,534. 1 39 , or S8,500 
4 

It can be seen that the size ordering for these approximate versions is the same as we found for the exact 
versions in Problem 6.27. 

il < trimean < midquartile < J1. < midrange 

THE MODE 

6.29 For the following ungrouped frequency distributions, first determine the mode and then the size 
order for X, X, and mode: (a) Table 6 . 1 ,  (b) Table 6.8, (c) Table 6.9. 

Solution 

(a) For the distribution in Table 6. 1 :  mode = 1 .5 cm. From Table 6. 1  and Example 6 . 13  we know for this 
unimodal, symmetric distribution that x =  1 .50 cm and x =  1 .50 cm. Therefore: x = x  = mode. 
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(b) For the distribution in Table 6 .8 :  mode = 1 9  g. From Table 6.8 and Problem 6.20 we know for this 
unimodal, negatively skewed distribution that x = 1 8 . 1  g and x = 1 8.3  g. Therefore: x < x < mode. 

(c) For the distribution in Table 6.9: mode = 1 01°F. From Table 6.9 and Problem 6.2 1 we know for this 
unimodal, positively skewed distribution that x =  1 0 1 .8°F and x =  1 0 1 .4°F. Therefore : mode < x < x. 

Note: This problem shows that while x = x = mode for a unimodal symmetric distribution, if the 
distribution is unimodal and skewed then these statistical measures are separated, with x closest to the exteme 
values in the skewed tail, the mode farthest from the skewed tail, and x between x and mode. 

6.30 For the following data, detennine X, X, and mode, and then their size order: 

Solution 

7 
LX; - ;= 1 - d x = -

7
- , x = x4. mo e = xI = X2 = X3 

From Problem 6.29(c) we know for a positively skewed distribution that: mode < x < .i  

6.31 It is stated in many statistics books that for a unimodal frequency distribution that is "moderately 
skewed," there is this relationship 

1 x - x  = 3 (x - mode) 

In words, this states that the distance between x and x is a third of the distance from x to the mode. 
This is called an empirical rule because it has been found through examining patterns in sets of 
numbers rather than by mathematical derivation. For the following samples, find x, x, and mode, and 
then see if this relationship is correct: (a) 1 .5, 3 .0, 3.0, 3 .0, 4.0, 5.0, 6.0, 7.0, 8.0, (b) 1 .5, 3 .0, 
3.0, 3.0, 4.0, 5.0, 7.0, 9.0, 10.0. 

Solution 

9 
LX; 

(a) i = ;
=� = 

4�.5 
= 4.5; by the odd-even rules, x = 4.0; and mode = 3 .0 

Therefore 

x - .i = 4.5 - 4.0 = 0.5 
.i - mode = 4.5 - 3.0 = 1 .5 

thus confirming for this unimodal "modemtely" positively skewed distribution that 

- - 1 
(
-

d ) X - X = - x - mo e 
3 

1 
0.5 = "3 (1 .5) 

(b) The mode and x remain the same as in (a), but now the positive skewing has been increased so i has 
become larger (moved in the positive direction) 

9 
L X; . 

.i = ;=1 = 
45.5 

= 5.055556 
9 9 
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Therefore 

x - x = 5.055556 - 4.0 = 1 .055556 

x - mode = 5.055556 - 3.0 = 2.055556 

Thus, with the increase in positive skewing, the 1 /3 relationship is no longer correct. Instead 

1 
x - x = (x - mode) 

1 .9473678 
Note: In general, this empirical 1 /3 rule is approximately correct for moderately skewed, unimodal 

frequency distributions, but as skewing increases and x moves farther from i and the mode, the rule breaks 
down. 

6.32 What is the mode of the distribution shown as a bimodal frequency histogram in Fig. 6-7? 

20 

1 5  

Time (sec) 

Fig. 6-7 

Solution 

According to the definition in Section 6. 18 ,  "the mode of a set of data is the measurement value in the set 
that occurs most frequently," there is one mode for the distribution in Fig. 6-7: 3 sec. However, according to 
what was said in Example 5.2, a frequency histogram with two peaks is called bimodal. How is this seeming 
contradiction resolved? 

If a distribution has two distinct peaks that have the same height (frequency) in a histogram, then (see 
Section 6 . 1 8) the distribution has two modes and there is no contradiction in calling it bimodal. The problem 
arises when, as in Fig. 6-7, there are two such distinct peaks but now they have different heights. By 
convention such distributions are also called bimodal, but many statistics books say they have only one true 
mode. Other books get around this problem by saying that the measurement value with the higher peak is the 
major mode and the value with the lower peak is the minor mode. The two modes are also called the global 
mode and the local mode. 

Similarly, if a distribution has three distinct peaks of equal height then there are three modes and the 
distribution is called trimodal. If there are three such prominent peaks of unequal heights, the distribution is 
still called trimodal but now it is said to have one true mode, or a major and two minor modes, or a global and 
two local modes. 

As we indicated in Problem 5.37, bimodal distributions often mean that the sample contains measure­
ments taken from two different populations. Trimodal distributions can also be symptomatic of problems in 
sampling or measurement. 
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6.33 Frequency histograms are shown for four distributions in Fig. 6-8. For each histogram, select from 
the following list of terms and relationships, which have been discussed throughout the chapter, 
those that are true for the illustrated distributions: symmetric, positively skewed, negatively skewed, 
unimodal, bimodal, no mode, L(xi - x) = 0, x = x, x = x = mode, mode < x < x, x < x < 
mode, x = trimean, x < trimean, trimean < x. 

(a) (b) 

Variable X 

Solution 

- r-

-

Variable X 

(c) 

n 
Variable X 

Fig. 6-8 

(a) Symmetric, unimodal, L (Xi - x) = 0, x = x = mode, x = trimean 
(b) Symmetric, bimodal, L (x; - x) = 0, x = x, x = trimean 
(c) Positively skewed, unimodal, L (x; - x) = 0, mode < x < x, trimean < x 
(d) Negatively skewed, unimodal, L (x; - x) = 0, x < x < mode, x < trimean 

6.34 For the frequency histogram illustrated in Fig. 6-9, find x, x, and mode. 

Solution 

s 

(d) 

-

-

Variable X 

_ ti hX; (5 x 2 sec) + (5 x 3 sec) + (5 x 4 sec) + (5 x 5 sec) + (5 x 6 sec) x = -s- = 
L h 

5 + 5 + 5 + 5 + 5  
;=1 

-
100 sec _ 

4 0 - 25 - . sec 

5 f-
4 f-

L r-
l-

I I I I 1 o 
2 3 5 4 

Time (sec) 

Fig. 6-9 

6 7 

-
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Using equation (6.23) [u x n) _ Cf] 
Qj/m = b + 

m f 
(w) 

[ ( 1  x 25) _ 1 0 ] 
Q2 = i = Ql/2 = 3 .5  see + 2 

5 
(1 .0 sec) 

= 3 .5  see + (0.5 x l .O see) = 4.0 sec 

[CHAP. 6 

Because all five measurement values have the same frequency, this distribution does not have a mode. 

6.35 The following are examples of descriptive measures discussed in this chapter. Identify the measure 
for: (a) mean daily temperature, (b) average family income, (c) batting average. 

Solution 

(a) A mean daily temperature is typically the arithmetic mean of the lowest (xs) and highest (XI) temperatures 
for that day. Therefore, it is an example of midrange. 

(b) Income data is usually positively skewed and for such data, while the arithmetic mean is greatly 
influenced by extreme values, the median is essentially unaffected. This is why average family income is 
typically an example of median. However, as the trimean is calculated from the median and two other 
quartiles, it is becoming increasingly popular as a measure of average value for skewed data. 

(c) Batting average is an example of arithmetic mean. 

CALCULATING MODES FROM GROUPED FREQUENCY DISTRIBUTIONS 
6.36 Using techniques ( 1 )  and (2) from Section 6. 19, determine the approximate mode for the grouped 

frequency distribution of male heights in Table 4.38 .  

Solution 

The modal class for male heights in Table 4.38 is (68.50 to 69.49) in, with a class mark of 69.00 in. 
Therefore, using technique (1): mode � 69.00 in. 

Using technique (2) 

THE ARITHMETIC MEAN 

mode � be + (d1 � dJ (We) 

� 68.495 in + (
6
! 

5
) (1 ·000 in) 

� 69.040455 in, or 69.040 in 

Supplementary Problems 

6.37 Using equation (6.3), calculate the arithmetic means for the following samples: (a) 0 sec, 0 sec, 0 sec, 0 sec, 
O see, (b) l O see, O see, O see, O see, O see, (c) 10. l27 km, 1 1 .963 km, 1 12.2 1 7 km, 9.777 km, 13 .833 km, 
14.542 km, (d) the same as (c) except now 1 12.217 km is replaced by 0.007 km. 

Ans. (a) 0.0 sec, (b) 2.0 sec, (c) 28.7432 km, (d) 1 0.04 1 5  km 
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6.38 Using equation (6.6), calculate the arithmetic mean for the following population: 100,000 pigs, 1 15 , i00 pigs, 
152,643 pigs. 

Ans. 123,000 pigs, or 1 .23 x 1 05 pigs, after rounding off the answer 

4 
6.39 Knowing that n = 5, x= 14.6, and LX; = 58, what is xs? 

1=1 

5 5 4 
Ans. L X; = 5 x 14.6 = 73, and thus Xs = LXI - L X; = 73 - 58 = 15  

x=1 1=1 1=1 

6.40 Using equation (6. 10), find the arithmetic mean of the sample presented in Table 5.6. 

ADS. 1 8 .0 

CALCULATING APPROXIMATE ARITHMETIC MEANS FROM GROUPED FREQUENCY 
DISTRIBUTIONS 

6.41 Using equation (6. 1 3), calculate the approximate arithmetic mean of the grouped frequency distribution of 
lengths in Table 4.20. 

ADS. � l .72 mm 

CALCULATING ARITHMETIC MEANS WITH CODED DATA 

6.42 For the following sample of weight measurements (in grams), first calculate x directly from the data and then 
calculate it by means of equations (6. 14), (6. 15), and (6. 1 6), using a = - 770 g and b = 108 (see Problems 
2.21 and 2.22 for calculation procedures involving numbers written in scientific notation): 7.77 x 1 0-6, 
7 .72 X 10-6 , 7 .74 x lO$"t-6} , 7 .73 x 10"t-6} , 7 .79 x lO"t-6} , 7 .75 x lO"t-6} .  
ADS. The direct calculation of x and the calculation using the coding and decoding formulas are shown in 
Table 6 . 18 . 

Weight (g) 

7.72 X 10-6 

7.73 X 10-6 

7.74 X 10-6 

7.75 X 10-6 

7.77 X 10-6 

7.79 X 10-6 

L 0.00004650 g 

Table 6.18 

2 
3 
4 
5 
7 
9 

30 g 

x = LX; = 
0.00004650 g 

= 0.000007750 g = 7.750 X 1 0-6 g 
n 6 

C = L ej = 
30 g = 5.0 g 

n 6 
1 1 775 .0 g 6 x = b(C - a) = 

1 08 [5 .0 g - (-770 g)] = 
108 = 7.750 x 1 0- g 
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OTHER MEANS: WEIGHTED, OVERALL, GEOMETRIC, AND HARMONIC 

6.43 At the University of Colorado, a student's overall grade point average (GPA) is detennined by the fonnula 

k 
L WiXi 

GPA = � 
k 
L Wi i=' 

where WI is credits, Xi is points per credit, and k is the number of courses being considered. The 
points per credit are determined by the following system: A = 4.0, A - = 3.7, B+  = 3 .3 ,  B = 3.0, 
B - = 2.7, C+ = 2.3, and so on. Determine the GPA for a freshman who has earned these grades in 
four courses: A in course 1 , 4 credits; B+ in course 2,  6 credits; C+ in course 3, 2 credits; and B- in 
course 4, 3 credits. 
Ans. 

4 
L WX. _ ;=1 I I _ (4 x 4.0) + (6 x 3 .3) + (2 x 2.3) + (3 x 2.7) _ 48.5 _ 3 23 GP A - 4 -

4 6 2 3 - 1 5  - . 

L Wi 
+ + + 

;=1 

6.44 You repeat an experiment three times, getting these results : x, = 1 9.2 cm, n, = 1 0; xz = 1 7.4 cm, n2 = 15 ;  
x3 = 1 8.5 em, n3  = 8 .  What is the overall mean of these results? 

ADS. 1 8.2 cm 

6.45 For the sample 9, 9, 1 1 , 7, find the: (a) arithmetic mean, (b) geometric mean, (c) hannoDic mean. 

ADS. (a) 9.0, (b) 8.0, (c) 8.8 

THE MEDIAN AND OTHER QUANTILES 

6.46 Using both the odd-even rules from Section 6. 1 3  and equation (6.22), find the median for this sample: 1 2, 12, 
1 2, 1 2, 13, 1 3, 1 3 ,  1 3 .  

ADS. Using the rules, x= 12.5; using the fonnula, x =  12.5 

6.47 For the sample in Problem 6 . 17, use equation (6.22) to locate QI and x. 

ADS. Q, = 7.25, or 7.2; x =  1 1  

6.48 For the sample in Problem 6. 1 8  and Fig. 6-3, use equation (6.22) to locate PS2. 

ADS. 6.91  mg 

6.49 For the sample in Problem 6 . 19  and Fig. 6-4, use equation (6.22) to locate Q3. 

ADS. 0.690 mm 

6.50 For the weight data in Tables 6.8 and 6. 14, use equation (6.23) to find D4. 

ADS. 17.91 6667 g, or 1 7.9 g 

6.51 For the temperature data in Tables 6.9 and 6 . 15, use equation (6.23) to find Q, and Q3. 

ADS. Q, = 1 00.833333°F, or 100.8°F; Q3 = 1 02.3°F 
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CALCULATING QUANTILES FROM GROUPED FREQUENCY DISTRIBUTIONS 

6.52 For the exam-score data in Fig. 6-5, use equation (6.23) to find the exact version of P70. For the version of this 
data in Tables 6 . 10  and 6. 16, use equation (6.24) to find the approximate version of P70. 

Ans. Exact is 89.9, approximate is 90.3 

6.53 For the golf-winnings data in Table 6. 1 1 , use equation (6.23) to find the exact version of Q3. From the versions 
of this data in Tables 6-12  and 6-17, use equation (6.24) to find the approximate version of Q3. 

ADS. Exact is $ 15,285 .714, or $ 15,300; approximate is $ 1 8,357. 1 40, or $ 18,400 

THE MIDRANGE, THE MIDQUARTILE, AND THE TRIMEAN 

6.54 For the weight measurements given in Problem 6. 1 8  and Fig. 6-3, we know that: Xs = 1 . 1  mg, XI = 8 . 1  mg, and 
Q2 =4.70 mg. After first determining Ql and Q3, find the midrange, midquartile, and trimean for this data. 

ADS. Ql = 2 .8 mg, Q3 = 6.3 mg, midrange = 4.60 mg, midquartile = 4.55 mg, trimean = 4.62 mg 

THE MODE 

6.55 For both the female and male hair-color samples summarized in Tables 4- 17 and 4- 1 8, determine i, i, and 
mode. 

Ans. While for this nominal-level data it is not possible to determine x or X, it is possible to determine the 
mode. Thus, for females: mode = blonde; and for males: mode = brown. Such modes are also called modal 
categories. 

6.56 For the following data determine x, x, and mode, and then the size order for these measures : 
Xl <X2 < X3 < X4 =XS· 

s 
L X; 

Ans. i = ;=� • X =X3, mode = X4 = Xs. From Problem 6.29(b) we know for a unimodal, negatively skewed 

distribution that x < x < mode. 



Chapter 7 

Descriptive Statistics : Measures of Dispersion 

7.1 WHY THE RANGE HAS LIMITED VALUE AS A MEASURE OF DISPERSION 
Chapter 6 dealt with descriptive measures of central tendency, average value, and location-numerical 

values that summarize these characteristics of a data set typically with a single number. In this chapter we 
deal with descriptive measures of another defining characteristic of a data set: how dispersed or spread out 
the data are, typically in relation to one of the measures from Chapter 6. The measures in this chapter are 
called measures of dispersion, or measures of variation, or measures of variability. 

To see the need for such measures of dispersion, consider the two frequency curves shown in Fig. 7-1 . 
They are both unimodal and symmetric with the same means and medians, but while one rises sharply on 
both sides of the mean the other shows less concentration of the data near the mean with more dispersion 
outward. 

� 
il 

Measurement variable (X) 

Fig. 7-1 

At this point in the book we have considered two measures of dispersion: the range (see Section 4 . 1 )  
and the deviation from the mean (see Section 6.4). While the deviation from the mean will play a critical 
role in the measures of dispersion presented in this chapter, it is clear from Fig. 7- 1 why the range has 
limited value as a measure of dispersion. While both curves differ markedly in dispersion, they have the 
same range, Xl - XS' Certainly the range is important in identifying the outer limits of a data distribution, 
but it gives no information on what is occuring between these limits. Also, the range is unreliable, being 
highly sensitive to extreme values that tend to vary from sample to sample. 

7.2 THE MEAN DEVIATION 
Of all the measures of central tendency presented in Chapter 6, the arithmetic mean is by far the most 

important and commonly used. Because of this it is necessary to have a measure of dispersion around the 
mean. (From this chapter on, unless otherwise specified, the term mean will refer to the arithmetic mean.) 
The ideal version ofthis measure should: ( 1)  be calculated from all the data, (2) show with a single number 
the typical or average dispersion from the mean, and (3) increase, from data set to data set, with increasing 
dispersion. 

1 82 
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For any sample the obvious measure would be the deviation from the mean X; - x (see Section 7. 1), 
and so it would seem that the obvious measure of typical or average dispersion around the mean would be 
the arithmetic mean of these deviations 

;=1 (7. 1) 
n 

This formula certainly satisfies the first two criteria, being calculated from all the data and showing average 
dispersion from the mean, but it does not satisfy the third criterion. Whatever the dispersion of the data, all 
calculations with this formula will always result in zero for an answer. This is because the numerator of the 

n 
formula is L(x; - x), and we showed in Section 6.4 that this sum will always equal zero. 

;=1 
The problem with equation (7. 1 )  lies in a fundamental property of the mean: It is the center of gravity 

of a distribution (see Section 6.4). Because of this the sum of the positive deviations from the mean is 
always equal to the sum of the negative deviations, and thus the sum of these two sums is always zero. 
There are two accepted ways to solve this problem, both of which eliminate the negative signs from the 
calculations. The first way is shown in this formula 

(7.2) 
n 

where the numerator is now the sum ofthe absolute values (see Section 1 .5) of the deviations, and absolute 
values are always positive in sign. The second way to solve this problem, which we consider when we deal 
with the variance and the standard deviation (see Sections 7.5 and 7.9), is to square each deviation and use 
the sum of the squared deviations in the calculations. 

The first of these solutions, equation (7.2), is called the mean deviation (or the average deviation or the 
mean absolute deviation). It shows the average size of the deviations from the mean without regard to 
direction of deviation. It is zero when all values in a sample are the same and increases across samples with 
increasing dispersion. While the mean deviation is a legitimate measure of dispersion from the mean, it is 
rarely used because it has limited value in theoretical statistics. 

There is a comparable mean deviation formula for populations 

;=1 
N 

(7.3) 

and both formulas are sometimes modified to show average deviations from the median 

n 

L lx; - xl 
;=1 (7 .4) 

n 

or 

N 

L Ix; - iii 
;=1 (7.5) 

N 
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EXAMPLE 7.1 Calculate the range and the mean deviation for the samples in Example 6 . 1 (a) and (b) (see 
Section 6.3 for a discussion of rounding oft). 

Solution 

(a) Range = x[ - xs = 7 g  - l g = 6 g  

7 

7 

L Xi _ i-l 24 g 
X = --- = - = 3.42857 g 

7 7 

L Ix; - xl = I I  - 3.428571 g + 13 - 3 .428571 g + 12 - 3 .428571 g + 17 - 3.428571 g i-I 
+ 1 5  - 3 .428571 g + 14 - 3.428571 g + 12 - 3 .428571  g 

= 1 1 .42857 g 

7 
L lxi - xl 

Mean deviation = i=1 
7 

1 1 .42857 g 
= 1 .63265 g, or 1 .6 g 

7 

(b) Range = x/ - xs = 200 g - 1 g = 199 g 

7 

7 
LXi 222 

. 
x = ;=1 = --g 

= 3 1 .7 143 g 
7 7 

L IXi - xl = 1 1  - 3 1 .71431 g + 1 3  - 3 1 .7143 1  g + 12 - 3 1 .7143 1  g + 17 - 3 1 .7143 1  g 
;=1 

+ 1 5  - 3 1 .7143 1  g + 1 4  - 3 1 .7143 1  g + 1200 - 3 1 .7 143 1 g 

= 336.571 5  g 

7 
L lx; - xl 

Mean deviation = ;=1 = 
336.571 5  g 

= 48.08 16  g, or 48. 1  g 
7 7 

7.3 FREQUENCY-DISTRIBUTION FORMULA FOR MEAN DEVIATION 
For calculating the mean deviation, just as there was a frequency-distribution formula for sample mean 

x (see Section 6.6) there is also a frequency-distribution formula for sample mean deviation (with a 
comparable formula for population mean deviation). 

k 
L: filxi - xl 

Mean deviation = _i=...;;..I--:-
k 

--

L: fi  i=1 
k 

L: filxi - xl 
= :...i=...;;..I __ _ 

n 

(7.6) 

(7.7) 
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EXAMPLE 7.2 Calculate the range and the mean deviation for the sample summarized in Table 6. 1 .  

Solution 

Range = 1 . 8 cm - 1 .2 cm = 0.6 cm 

1 85 

To calculate the mean deviation for this data requires only the addition to Table 6 . 1  of two columns: 
Xi - X and.li IXi - xl . The table with these columns and the resulting calculation of mean deviations are shown 
in Table 7 . 1 .  

Length (cm) 

1 .2 
1 .3 
1 .4 
1 .5 
1 .6 
1 .7 
1 .8 

Table 7.1 

Frequency 
fi fixi (cm) 

2 2.4 
7 9. 1 

10  1 4.0 
12  1 8.0 
1 0  1 6.0 
7 1 1 .9 
2 3.6 

50 75.0 cm 

- L .liXi 75.0 cm 
1 50 x = -n

- = 
50 

= .  cm 

(Xi - x)(cm) filxi - xl (cm) 

- 0.30 0.60 
- 0.20 1 .40 
-0 . 10  1 .00 

0.00 0.00 
0. 1 0  1 .00 
0.20 1 .40 
0.30 0.60 

6.00 cm 

_ L .li lxi - xl _ 6.00 cm _ 0 12 Mean deviation - - - . cm n 50 

7.4 THE APPROXIMATE MEAN DEVIATION 
A mean deviation calculated from a grouped frequency distribution only approximates the exact value 

calculated directly from the data, so it is called an approximate mean deviation. To make this calculation 
from grouped data we must assume, as we did for the approximate arithmetic mean (see Section 6.7), that 
all values in a class are equal to the class mark mi. Then, the approximate mean deviation can be calculated 
with this formula for a population 

or this formula for a sample 

k 
L .t;lm; - (� J-l) 1  

PopUlation mean deviation � _;=_1 ____ _ 
N 

k 

L .t; lm; - (�x) 1 
Sample mean deviation � ;....i=....;.I ____ _ 

n 
where the symbols (� J-l) and (� x) represent approximate means. 

(7 . 8) 

(7. 9) 

EXAMPLE 7.3 Calculate the approximate range and approximate mean deviation for the 30 marathon times in the 
grouped distribution in Table 6.3.  

Solution 

In Problem 6.28 we gave two accepted techniques for approximating Xs and XI for grouped data. 
Therefore, using technique (I) the approximate range is 

Range � 144 min - 129 min = 1 5  min 
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Using technique (2) it is 

Range � 145.5 min - 127.5 min = 1 8 .0 min 

To calculate an approximate population mean deviation for the data in Table 6.3 using equation (7.8) 
requires the addition oftwo new columns to the table: mj - (� fJ.) and/;Im; - (� fJ.)I .  The modified table with 
these columns and the resulting calculation of the approximate population mean deviation are shown in Table 
7.2. 

Time (min) 

128-1 30 
1 3 1-133 
1 34-1 36 
1 37-1 39 
140-142 
143-145 

L 

Class mark Frequency 
m; (min) /; 

129 3 
132  
135  4 
1 3 8  3 
141  7 
144 12  

30  

� L /;m; _ 4, 1 88 min _ 1 39 6 . fJ. � � - 30 
- . mm 

Table 7.2 

fim; (min) [m; - (� fJ.)] (min) film; - (� fJ.)1 (min) 

387 - 1 0.6 3 1 .8 
1 32 - 7.6 7.6 
540 -4.6 1 8.4 
414 - 1 .6 4.8 
987 1 .4 9.8 

1 ,728 4.4 52.8 

4, 188  min 125.2 min 

Population mean deviation � L /;Im, - (�fJ.)I _ 1 25 .2 min - 4 17333 min or 4.2 min � N - 30 - . 
, 

7.5 THE POPULATION VARIANCE: DEFINITIONAL FORMULA 
In Section 7.2 we indicated that a second technique for measuring the typical deviation from the mean 

of a data set involved squaring each deviation from the mean and then using the sum of the squared 
deviations in the calculations. This sum, called the sum of squares (and denoted by SS), is 

n 
L(x; _ X)2 (7. 1 0) 
;=1 

for the sample SS and 

(7 . 1 1 ) 

for the population Ss. 
The variance (or mean squared deviation, or mean sum of squares) of a population is the arithmetic 

mean of its squared deviations from the population mean. It is theref9re defined by this definitional 
formula for the population variance 

N 

L(xi - J.li 
(j2 = ;....i=....;..I __ _ 

N 
(7. 1 2) 

or 
SS 

(j2 = _ 
N 

(7 . 1 3) 
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where (] is the lowercase Greek letter sigma, and thus (]2, the symbol for the population variance, is read 
"sigma squared." (Recall from Section 1 .22 that L is the capital letter sigma in Greek.) 

EXAMPLE 7.4 Use equation (7. 1 2) to calculate the variance for this population of weights (in grams): 2, 3, 4, 5, 6. 

Solution 

Therefore 

N 
f1. - � Xi _ 2 g + 3 g + 4 g + 5 g + 6 g = 20 g = 4 g - N 

-
5 5 

N 
L(xi - f1.)2 

(J2 = _i=.c-I __ _ 
N 

(2 g - 4 g)2 + (3 g - 4 g)2 + (4 g _ 4 g)2 + (5 g - 4 g)2 + (6 g _ 4 g)2 = 
5 

Note: The units for the variance are the original measurement units squared. 

7.6 THE POPULATION VARIANCE: COMPUTATIONAL FORMULAS 
The definitional formula for the population variance has the disadvantage of requiring that the mean be 

subtracted from each data value. To eliminate this problem, so-called computational formulas have been 
derived from the definitional formula, which are algebraically equivalent to it. These are two of the derived 
formulas (see Problems 7.5 and 7.6 for derivations) 

and 

N (t Xi) 2 
L xT --=i=::.:.I---<._ 

2 i=1 N (] = ------
N 

N 

L xT  2 i=1 2 (] = -- - }.l  
N 

(7. 14) 

(7. 1 5) 

They are called computational formulas (or machine formulas, or working formulas) because they are 
simpler to use in computations. 

EXAMPLE 7.5 Use equation (7. 14) to calculate the variance for the population of weights in Example 7.4. 

Solution 

From Example 7.4 we know that N = 5 and L Xi = 20 g. Therefore all we need to calculate from the 
data is 

N 
LXi = 4 g2 + 9 g2 + 1 6 i + 25 g2 + 36 g2 = 90 g2 
i=1 
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N (f.Xi)' . I>f - .....>.'=·=.0....1 -L.- 90 g2 _ (20 d 
2 i=1 N 5 = 2 g2 (T = = -----

N 5 

[CHAP. 7 

7.7 THE SAMPLE VARIANCE: DEFINITIONAL FORMULA 
For a sample, the variance is defined by the formula 

n 
L(x; _ x)2 

Sample variance = ;. = 
,-i=-:.I __ _ 

n - 1 
(7. 1 6) 

The numerator is, as you would expect, the sample SS [see equation (7. 10)]. But while the denominator of 
the population variance is N, population size [see equation (7. 12)], here the denominator is n - 1 ,  sample 
size minus one. Why n - 1 rather than n? 

To understand this, we must go back to what was said in Section 3 . 14 .  There we indicated that there are 
two levels of statistics: the mathematical level, where the entire integrated system of mathematical statistics 
is derived and proven, and the intuitive level of general statistics, which is primarily a nonmathematical 
discussion of statistical concepts and techniques. We warned you that, throughout this book, concepts 
would be brought up from the mathematical level that would have to be accepted as true without proof. 
This is one of those instances. 

Sample descriptive measures (called statistics) have been developed to estimate population descriptive 
measures (called parameters) (see Section 3 .4). The estimator must have several properties, including being 
unbiased (not systematically overestimating or underestimating the parameter). While it can be proven 
mathematically that the sample mean x is an unbiased estimator of its population mean p., it can also be 

th th ·thm · f th d d . . L(xi � xi .  
b· d · f . proven at e an ebc mean 0 e square eVIatlOns, , IS a lase estimator 0 Its 

n 
population variance (1"2; it underestimates (T2. It can also be proven that the exact correction for this bias is 
to divide the sample SS by n - 1 .  

EXAMPLE 7.6 Use equation (7. 16) to calculate the variance for this sample of lengths (in cm): 3, 4, 5, 6, 7 .  

Solution 

Therefore 

2 L(Xi - X)2 
S = =-�--:-''--

n - l  

x = I:Xi = 
25 cm 

= 5 cm 
n 5 

(3 cm - 5 cm)2 + (4 cm - 5 cm)2 + (5 cm - 5 cm)2 + (6 cm - 5 cm)2 + (7 cm - 5 cm)2 
= 

10 cm2 2 = -
4
- = 2 .5 cm 

5 - 1 
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7.S THE SAMPLE VARIANCE: COMPUTATIONAL FORMULAS 

1 89 

As was true for the population variance (see Section 7.6), there are both a definitional formula [see 
equation (7. 16)] and algebraically equivalent derived computational formulas for the sample variance. Here 
are three of these derived formulas (see Problem 7.8 for derivations) 

(tX.) 2 tif - i=1 I 
2 i=1 n 

s = :........:.-----,---
n - 1 

n Lif - fZi2 
S2 = :....i=...:.I __ _ 

n - 1  

EXAMPLE 7.7 Use equation (7. l 7) to calculate the variance for the sample of lengths in Example 7.6. 

Solution 

From Example 7.6 we know that n = 5 and :E Xi = 25 cm. We need 

Therefore 

:Ext = 9 cm2 + 16 cm2 + 25 cm2 + 36 cm2 + 49 cm2 = 135 cm2 

:Er - (:Exif 135  cm2 _ .:;..(2_5
-::-
cm----'-)2 

2 I n 5 2 S = 
n _ 1 

= ---
5
-=--

-
-

1
:---- = 2.5 cm 

7.9 THE POPULATION STANDARD DEVIATION 

(7. 1 7) 

(7. 1 8) 

(7. 1 9) 

As a measure of dispersion from the mean, the variance satisfies the three criteria we gave in Section 
7.2: It is calculated from all the data, it shows with a single number the typical dispersion (in squared 
deviations) from the mean, and it increases with increasing dispersion. However, it has two important 
limitations: ( 1 )  While the units for the variance are the original measurement units squared, an ideal 
measure of dispersion from the mean would have the same original units as the mean, and (2) the variance 
is too sensitive to extreme values in the data, since it involves squared quantities. A solution to both of 
these limitations is to take the positive square root of the variance. This quantity, called the standard 
deviation (or root mean square deviation), has the original measurement units and responds less to extreme 
values. 

The population standard deviation,  then, is defined by these definitional formulas (see Section 7.5) 

(7.20) 

(1 =  
N 

(7.2 1) 
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And it has these computational formulas (see Section 7.6) 

(J =  

(J =  

N (t Xi) 2 

L xT - -,,--i=-=.I--"-_ 
i=1 N 

N 

N 

L xT 
i=1 2 -- - jl N 
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(7.22) 

(7.23) 

EXAMPLE 7.8 Using equation (7.20), calculate the standard deviation from the population variance in Example 
7.4. 

Solution 

(1 = ...fdi = N = 1 .4 142 1  g, or 1 .4 g 

7.10 THE SAMPLE STANDARD DEVIATION 
The sample standard deviation is defined by these definitional formulas (see Section 7.7) 

s = � 
n 

L(Xi - xi 
s =  i=1 

n - l 

And it has these computational formulas (see Section 7.8) 

s =  

s =  

s =  

(t X
.) 2 

tx2 _ i-I r 

i=1 r n 
n - l  

nExT - (Ex) 2 
n(n - 1) 

n - l  

(7 .24) 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

Both the population and the sample standard deviations are always positive values because they are 
defined as the positive square roots (or principal square roots, see Section 1 .7) of their variances. 

While the variance has many applications in inferential statistics, and we deal with it often throughout 
the book, it is rarely used as a descriptive measure because of its discussed limitations. The standard 
deviation, on the other hand, is the most important and commonly used measure of dispersion from the 
mean in both descriptive and inferential statistics. 
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EXAMPLE 7.9 Using equation (7.24), calculate the standard deviation from the sample variance in Example 7.6. 

Solution 

s = ...;;z = .J2.5 em2 = 1 .581 14 em, or 1 .6 em 

7.1 1 ROUNDING-OFF GUIDELINES FOR MEASURES OF DISPERSION 
In Section 6.3 we stated for the arithmetic mean that in calculating this measure or while using it in 

further calculations, rounding off should be kept to a minimum; retaining at least six digits throughout the 
calculations. This advice is also true for calculations involving measures of dispersion. 

We also stated in Section 6.3 that for the different problem of reporting the final answer, while there 
are no absolute rules, one commonly accepted guideline ' is 

If the data are all at the same level of precision (see Section 2. 15), then the mean should be 
reported at the next level of precision. 

An extension of this guideline for the measures of dispersion that we have discussed is 

If the data are all at the same level of precision, then the mean deviation and the standard deviation 
should also be presented at the next level of precision, but the variance should be presented at the 
next level beyond that. 

. 

This level-ol-precision guideline has been used to this point in this chapter for rounding off answers. 
Finally we indicated in Section 6.3 that there is another common guideline for reporting the mean that 

is coordinated with the standard deviation. This new guideline, the standard-deviation guideline, can be 
stated as follows: 

Report the standard deviation rounded off to two significant figures, and then report the mean 
rounded off to the last digit position of the standard deviation. The variance can be reported with 
as many as twice the decimal places as the standard deviation. The mean deviation should also be 
rounded off to two significant figures. 

As both of these guidelines are equally valid, both will be used for rounding off answers in the 
remainder of the book. In addition, a standard-error guideline will be presented in Chapter 13 .  

EXAMPLE 7.1 0  You collect this sample: 4.9, 5 .2, 6 . 1 ,  5.8, 7.3, 8.2, 6.5; for which x = 6.28571,  mean 
deviation = 0.89796, S2 = 1 .35 149, and s = 1 . 16254. Round off these values for reporting, using: (a) the level-of­
precision guideline, (b) the standard-deviation guideline. 

Solution 

(a) x = 6.29, mean deviation = 0.90, S2 = 1 .3 5 1 ,  s =  1 . 1 6  
(b) s =  1 .2, x = 6.3, S2 = 1 .35, mean deviation = 0.90 

7.12 CALCULATING STANDARD DEVIATIONS FROM NONGROUPED FREQUENCY 
DISTRIBUTIONS 

Converting the population formulas for standard deviations (see Section 7.9) for use with frequency 
distributions, the definitional frequency-distribution formula for population standard deviations is 

(1 =  

k 2 
L j;Cx; - J1.) 
;=1 

N 
(7.29) 
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and the computational frequency-distribution formulas for population standard deviations are 

(1 =  

(1 =  

k (tfiXi) 2 
LfixT - -",=i=:..!.I __ � 

i=1 N 
N 

k 
LfixT i=1 

N 

[CHAP. 7 

(7.30) 

(7.3 1) 

Converting the sample formulas for standard deviations (see Section 7 . 10) for use with frequency 
distributions, the definitional frequency-distribution formula for sample standard deviation is 

s = i=1 
n - l 

and the computational frequency-distribution formulas for sample standard deviations are 

s =  

s =  

s =  

k (tfiXi)
2 

L fix; - .....:.:.:i=�I'--�_ 
i=1 n 

n - l 

k 
LfixT - nX'l 
i=1 

n - l 

(7.32) 

(7.33) 

(7.34) 

(7.35) 

EXAMPLE 7.1 1  Using equation (7.29), calculate the standard deviation for the population of marathon times 
summarized in Table 6.2. 

Solution 

To use equation (7.29) requires the addition of these three columns to Table 6.2: Xi - J.l, (Xi - J.l)2, and 
!.{Xi - J.l)2. The modified table and the resulting calculation of the standard deviation are shown in Table 7.3. 

7.13 CALCULATING APPROXIMATE STANDARD DEVIATIONS FROM GROUPED 
FREQUENCY DISTRIBUTIONS 

A standard deviation calculated from a grouped frequency distribution will only approximate the exact 
value calculated directly from the data, and it is therefore called an approximate standard deviation. To 
make this calculation from grouped data requires the assumption that all values in a class are equal to the 
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Time (min) 
Xi 

129 
130  
1 3 1  
132 
133 
134 
1 35  
1 36  
137 
138 
1 39 
140 
14 1  
142 
143 
144 
145 
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Frequency 
fi 

1 
2 
o 
o 

1 
2 
o 
3 
o 
o 
3 
4 
5 
2 
5 

30 

fix; (min) 

129 
260 

0 
0 

1 33 
1 34 
1 35 
272 

0 
414  

0 
0 

423 
568 
7 1 5  
288 
725 

4, 196 min 

Table 7.3 

(x;-J.l) (min) (x; - J.l)2 (min2) 

- 1 0.8667 1 1 8.0852 
- 9.8667 97.35 1 8  
- 8.8667 78.61 84 
- 7.8667 6 1 .8850 
- 6.8667 47. 1 5 1 6  
- 5 .8667 34.4 182 
-4.8667 23 .6848 

- 3 .8667 14.95 14  
-2.8667 8.2 1 80 
- 1 .8667 3 .4846 
- 0.8667 0.751 2  

0 . 1333 0.0178 
1 . 1 333  1 .2844 
2.1333 4.55 1 0  
3 . 1 333 9.8 1 76 
4 . 1333 17 .0842 
5 . 1 33 3  26.3508 

= 'L fix; = 4, 196 min = 139 8667 
. or 1 39.9 min J.l N 30 

. nun, 

(J =  

193 

fi(x;- J.l)2 (min2) 

1 1 8.0852 
1 94.7036 

0 
0 

47. 15 16  
34.4 1 82 
23.6848 
29.9028 

0 
10.4538 
0 
0 
3 .8532 

1 8.2040 
49.0880 
34. 1 684 

1 3 1 .7540 

695 .4676 min2 

class mark mi' Then, the approximate standard deviation can be calculated with this computational formula 
for a population 

or this computational formula for a sample 

k (tJimi)2 
L Jim; - �i=::.!l_-.!.._ 
i=l N 

N 

k ( k )2 n � Jim; - �Jimi 

n(n - 1) 

(7.36) 

(7.37) 

EXAMPLE 7.1 2  Use equation (7.36) to calculate the approximate popUlation standard deviation from the grouped 
frequency distribution of the marathon times in Table 6.3 . 

Solution 

To use equation (7.36) requires the addition of two columns to Table 6.3 : mT andfimT, The modified table 
and the resulting calculation of the approximate population standard deviation are shown in Table 7.4. 



194 DESCRIPTIVE STATISTICS: MEASURES OF DISPERSION [CHAP. 7 

Table 7.4 

Class mark Frequency 
Time (min) mi (min) Ji Jimi (min) mT (min2) JimT (min2) 

128-130 129 3 387 16,641 49,923 
1 3 1-133 132 132 17,424 17,424 
1 34-1 36 135  4 540 1 8,225 72,900 
1 37-139 138  3 414 19,044 57, 1 32 
140-142 14 1  7 987 19,88 1 1 39, 167 
143-145 144 1 2  1 ,728 20,736 248,832 

l: 30 4, 1 88 min 585,378 min2 

l: Jim; - (l:Jimi 585. 378 min2 -
(4. 1 88 min)2 

(J � N = 30 
N 30 

= 4.94368 min, or 4.9 min 

7.14 CALCULATING VARIANCES AND STANDARD DEVIATIONS WITH CODED DATA 
In Section 6.8, we used the coding formula Cj = a + bXj [equation (6. 14)] to calculate sample arithmetic 

means with simplified numbers. Now we use the same coding formula to calculate sample variances and 
standard deviations. The definitions of terms in Section 6.8 will also apply here. 

If, after coding a sample, the variance of Ci is calculated with this version of equation (7. 1 6) 

or this version of equation (7. 1 8) 

n 
L(c; - c)2 i = ;....i=..:...1 __ _ 

C n - 1 
(7.38) 

(7.39) 

then the following decoding fonnula for the variance can be used to find the variance of the original data 
2 2 sc sx = b2 

Therefore the decoding formula for the standard deviation is 

(7 .40) 

(7.4 1) 

EXAMPLE 7.1 3  For the sample of length measurements (in cm) summarized in Table 6.4, first calculate s; and Sx 
directly from the data using equations (7. 1 8) and (7.24), and then recalculate s; and Sx using equations (6. 14), (7.39), 
(7.40), and (7.41 ). Use a =  - 490 cm and b =  1 as the coding constants in the coding formula. 

Solution 

The direct calculations of s; and s x and the calculations using the coding and decoding formulas are 
shown in Table 7.5. 



CHAP. 7] DESCRIPTIVE STATISTICS: MEASURES OF DISPERSION 

Table 7.5 

Length (cm) 
Xi if (cm2) (Ci = Xi - 490) (cm) cf (cm2) 

492 242,064 2 4 
493 243,049 3 9 
495 245,025 5 25 
496 246,016 6 36 
498 248,004 8 64 
500 250,000 1 0  1 00 

L 2,974 cm 1 ,474, 158  cm2 34 cm 238 cm2 

Direct calculations: 

s: = 
n I: xT - (I: xi = 6(1 .474. 158  cm2) - (2.974 cmi 

x n(n - 1 )  6(5) 
= 9.06667 cm2• or 9.07 cm2 

Sx = � = ./9.06667 cm2 = 3 .0 1 109 cm. or 3 .0 cm 

Calculations with coding and decoding formulas: 

2 = n I: c; - (I: cJ = 6(238 cm2) - (34 em)2 
= 9 06667 2 Sc n(n _ 1) 6(5) 

. em 

Sc = .,fif = ./9.06667 cm2 = 3.0 1 1 09 em 

2 2 � 9.06667 cm2 2 2 Decoding sc :  SX = 
b2 = 

1 2 = 9.06667 cm • or 9.07 em 

Decoding sc : Sx = t = 3 .0 1 1�9 cm 
= 3 .0 1 1 09 cm. or 3.0 cm 

7.15 CHEBYSHEV'S THEOREM 
Chebyshev s theorem can be stated as follows: 

. .J 

For any number k � 1 ,  and a set of data xI ' x2 • . . . •  xn (or XI . x2 ' . . . •  xN) ' the proportion 
of the measurements that lies within k standard deviations of their mean will be at least 

1 
1 - p '  

195 

What this theorem states can be understood with the aid of the frequency curve shown in Fig. 7-2. For the 
population illustrated, the theorem states that the proportion of the population lying in the interval from 

Il - ka to Il + ka (the shaded area under the curve) will be at least as large as 1 -;2 ' This is the lower 

limit (or lower bound) for this proportion; typically the proportion in the interval ll ± ka (or x ± ks) will 

be larger than 1 - ;2' The theorem is also called Chebyshev's inequality (see Section 1 .23) because what it 

1 
is really saying is that the proportion will be greater-than-or-equal-to ( � )  1 - p '  It can be proven 

mathematically that Chebyshev's theorem is true for any set of measurements, from symmetric distribu­
tions to skewed distributions to multimodal distributions. 
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Number of us 
from f.-l 
k 

Number of us 
from f.-l 
k 

11 2 
2 
21 2 
3 

Measurement variable 

Fig. 7-2 

Table 7.6 

At least this amount in interval f.-l ± ku 

Proportion 
I - We 

o 

Table 7.7 

Percentage 
[( 1  - 1I!c) x ( 100)] (%) 

00.0 

At least this amount in interval f.-l ± ku 

Proportion Percentage 
1 - We [(1 - 1I!c) x (100)] (%) 

0 00.0 
5/9 = 0.556 55.6 
3/4= 0.750 75 .0 

2 1125 = 0.840 84.0 
8/9 = 0.889 88.9 

EXAMPLE 7.1 4  Use Chebyshev's theorem to complete Table 7.6. 

Solution 

Table 7.7 is the completed table. 

[CHAP. 7 

Note: While Chebyshev's theorem is true for any k :::: 1 ,  it can be seen from the table that the theorem 
only gives meaningful information for k > 1 . 

7.16 THE EMPIRICAL RULE 
A normal distribution is a theoretical bell-shaped curve that is defined by a specific equation called the 

normal probability density junction (see Chapter 12). If for a given set of data its frequency polygon or 
relative frequency polygon can be precisely fitted by a normal distribution, then the data set is said to be 
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nonnally distributed. If this is true, then the exact percentages of the data lying within the interval mean± k 
standard deviations, can be detennined by applying techniques from integral calculus to the nonnal 
probability density function. Percentages detennined in this way for f.,l ± a, f.,l ± 2a, and f.,l ± 3a are shown 
for a nonnally distributed population in Fig. 7-3 . These percentages hold true for any data set with 
polygons that are nonnally distributed. 

J 
1i - 3a 1! - 2a Ii - a  Ii I! + a  1i + 2a 1! + 30' 

Measurement variable 

Fig. 7-3 

These percentages also hold approximately true for data sets that are only approximately nonnally 
distributed (unimodal, roughly mound-shaped, essentially symmetrical). Because this generalization was 
detennined empirically, it is called the empirical rule and can be stated for popUlations roughly as follows: 

For a population that is approximately nonnally distributed: � 68% of the data lies in the interval 
f.,l ± a, � 95% of the data lies in the interval f.,l ± 2a, and � 100% of the data lies in the interval 
f.,l ± 3a. 

Comparable generalizations hold true for samples that are approximately nonnally distributed. 
The empirical rule and Chebyshev's theorem are part of descriptive statistics because, given the nature 

of a distribution and its mean and standard deviation, they allow rapid calculations of the percentages of 
the data lying within specific distances from the mean. If the distribution is at least approximately nonnal, 
then the empirical rule gives the approximate percentages within one, two, or three standard deviations 
from the mean. If the nature of the distribution is not known or it is definitely not nonnal, then Chebyshev's 
theorem can be used to calculate the lower limit (lower bound) for the percentages lying within k standard 
deviations from the mean. 

While the rule given here is referred to in statistics books as the empirical rule, it is not the first 
empirically detennined rule that we have dealt with. You will recall that in Problem 6.3 1 we stated this 
"empirical rule" for moderately skewed distributions 

- - 1 (- d ) X - X = - x - mo e 
3 

EXAMPLE 7.1 5  If a population is normally distributed, what percentage of the population is less than /-l - (J? 

Solution 

You can see in Fig. 7-3 that a normal distribution is perfectly symmetrical about the mean; that the 
portion of the curve to the left of the mean is a perfect reverse image of the portion to the right of the mean. 
Therefore, if 68.3% of the data in the normal distribution is within 11± (J, then a total of 
(100% - 68.3% = 3 1 .7%) of the data is beyond that interval on both sides. Thus, because of the symmetry 
of the distribution, this percentage of a normally distributed population is less than J1. - (J 

�(3 1 .7%) = 1 5 .85% 
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7.17 · GRAPHING CENTRAL TENDENCY AND DISPERSION 

Three common techniques for illustrating central tendency and dispersion in a sample or population 
are shown in Fig. 7-4. There you can see the average height (in inches) ofa sample of 1 0  corn plants at two 
and four weeks after gennination. In Fig. 7-4(a) the heights are shown by a bar graph where the Yaxis is 
the measurement scale, the height of each bar represents average plant height on the day of measurement X, 
and the length of the vertical line above each bar, called an error bar, represents one standard deviation s. 
Such lines above bars can represent one or more standard deviations, as here, or they can represent one or 
more standard errors of the mean (see Chapter 1 3), or half a confidence interval (see Chapter 14). 

In Fig. 7-4(b), the same results are shown in a different type of graph: the horizontal line through the 
vertical rectangle is the sample mean X, the distance from the line to either the top or bottom of the 
rectangle is the sample standard deviation, and the vertical line is the sample range. (When such a line 
represents a range it is not called an error bar.) 

Finally, in Fig. 7-4(c), the same results are presented in a line graph where the Yaxis is again the 
measurement scale, the X axis is time in weeks, the height above the X axis of each black circle is the mean 
height x for the sample for the day of measurement, the vertical lines (error bars) above and below each 
circle represent one standard deviation in both directions x ± s, and consecutive circles are joined by 
straight-line segments to show that the phenomena are interlinked by events that are occurring over a 
continuous time period. 

(a) (b) 

10 10 

,-. g 2-
in 5 in 5 ·0 '0 
:c :c 

o �--�----�--�----�--- o �-----------------------
2 4 2 4 

Weeks Weeks 

(c) 
10  

O �---L----L---�--��---
2 4 

Weeks 

Fig. 7-4 
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EXAMPLE 7.1 6  From Fig. 7-4, what, to the nearest inch, are the mean heights, standard deviations, and ranges for 
weeks two and four? 

Solution 

Week two: i = 4 in, s = 1 in, range = 4 in; week four: i = 8 in, s = 1 in, range = 5 in 

7.18 THE COEFFICIENT OF VARIATION 

The coefficient of variation (also called the coefficient of variability, the coefficient of dispersion, or the 
relative standard deviation) is defined for a population by both 

and 

(J V = - (7.42) 
IJ. 

V = � (100%) 
IJ. 

(7.43) 

Equation (7.42) expresses the standard deviation as a proportion of its mean, and equation (7.43), which is 
more common, expresses it as a percentage of its mean. For a sample, the formulas are 

(7.44) 

and 

V = � (100%) (7.45) 
x 

The measures of dispersion we have dealt with previously in this chapter (range, mean deviation, 
variance, standard deviation) are called measures of absolute dispersion because they are calculated 
directly from the data and have the units of the original measurements or those units squared. The 
coefficient of variation, on the other hand, is called a measure of relative dispersion because it expresses a 
measure of absolute dispersion as a proportion ( or percentage) of some measure of average value that is in 
the same units as the measure of dispersion. Because the numerator and denominator of the ratios in the 
measure have the same units, the resulting measure of relative dispersion has no units. 

EXAMPLE 7.1 7  You are a biologist studying genetic variation within different species of rodents. One measure 
you take for each rodent is body weight in grams. For a sample of 10 males of the white-footed mouse, you get these 
results: i = 12.9 g, s = 1 .6 g; and for 8 males from the plains pocket gopher you get these: i = 545 .0 g, S = 32.8 g. 
Compare the relative dispersions of these two species using equation (7.45). 

Solution 

For the white-footed mouse, 

v = ;(100%) = �(100%) = 12 .4% 
x 12.9 g 

For the plains pocket gopher, 
s 32.8 g V = - (100%) = -- ( 100%) = 6.0% x 545.0 g 

These results show that there is twice as much relative dispersion of body weight among the mice as there 
is among the pocket gophers. This greater variation relative to the mean is not apparent from the standard 
deviations, which show twenty times more absolute variation among the pocket gophers . 

Note: It is generally true, as here, that as means increase across samples (or populations) there is an 
increase in standard deviations. Therefore, when the distributions being compared have very different means, 
the larger forms will almost always show the larger absolute dispersions. For such distributions the coefficient 
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of variation can be used to meaningfully compare relative dispersions. Here, the pocket gophers had a mean 
that was forty times larger than the mean for the mice, but this same technique could have been used to 
compare relative dispersions between the mice and much larger mammals, say elephants that have a mean 
weight of roughly 7,000,000 g (� 540,000 times larger than the mean for mice). 

7.19 THE STANDARD SCORE AND THE STANDARDIZED VARIABLE 

For a population, the standard score (also called the normal deviate, or z score) is defined as 

and for a sample it is defined as 

Xi - J.I. z· = --, (J 
(7.46) 

(7.47) 

For any data distribution, the standard score shows how far any given data value Xi is from the mean of the 
distribution in standard deviation units; how many standard deviations the value is from the mean. A 
positive z value indicates that Xi is larger than the mean (to its right in a histogram or polygon) and a 
negative z value indicates that Xi is smaller than the mean (to its left). Like the coefficient of variation, the 
standard score is a relative measure; while the coefficient shows absolute dispersions relative to their 
means, the standard score shows deviations from the mean relative to the standard deviation. Because its 
units are numbers of standard deviations, the standard score allows comparisons of relative positions 
within distributions that have very different means or different measurement units. 

When for any variable X each measurement value in a sample or population is transformed into a Z 
value, this process is known as standardizing (or normalizing) the variable, and the resulting variable Z is 
called a standardized variable. 

EXAMPLE 7.1 8  For the following sample, first calculate i and s, and then standardize the sample: 3, 5, 7, 9, 1 1 . 

Solution 

_ LXi 35  x = -- = - = 7 
n 5 

5(285) - (35)2 = 3 1 6228 5(4) . 

To standardize the sample is to calculate a standard score Zi for each Xi' These scores are typically reported, as 
shown here, rounded to the nearest hundredth. 

Xl - i 3 - 7 Zl = -- = = -1 .26491 , or - 1 .26 s 3 . 1 6228 
X2 - i  5 - 7 0 63246 -0.63 z2 = -s- = 3 . 16228 = - . , or 

x3 - i 7 - 7 
z3 = -s- = 3 . 16228 = 0.00 

X4 - i 9 - 7  Z4 = -- = = 0.63246, or 0.63 
s 3 . 1 6228 

Xs - i 1 1  - 7 1 2649 1 or 1 .26 Zs = -s- = 3 . 1 6228 = . , 
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7.20 THE INTERQUARTILE RANGE AND THE QUARTILE DEVIATION 

The interquartile range is the difference between the first and third quartiles and is thus defined as 

Interquartile range = Q3 - QJ (7.48) 

This interval contains the middle 50% of the distribution. 
The quartile deviation (or semiinterquartile range) is a measure of dispersion that is defined as 

Quartile deviation = Q3 ; QJ (7.49) 

It is thus one-half the interquartile range, and therefore one-half the interval that contains the middle 50% 
of the data. 

EXAMPLE 7.19 For the quartiles calculated in Example 6. 13  (QI = 1 .385 cm, Q3 = 1 .6 1 5  cm), calculate: (a) the 
interquartile range, (b) the quartile deviation. 

Solution 

(a) Interquartile range = Q3 - QI = 1 .6 1 5 cm - 1 .385 cm = 0.230 cm, or 0.23 cm 

(b) Quartile deviation = Q3 ; QI = 0.23� cm = 0. 1 1 5  cm, or 0. 1 2  cm 

7.21 BOX PLOTS AND FIVE-NUMBER SUMMARIES 

If a distribution is unimodal and perfectly symmetrical, then it would best be described statistically by 
its mean·and standard deviation, allowing interpretation with either Chebyshev's theorem or the empirical 
rule. When, however, 'a distribution is extremely skewed or multi modal, then instead of mean and standard 
deviation the distribution is often described with what is called the five-number summary: QJ , Q2, Q3, xS, 
X l .  The five-number summary can be shown graphically in what is called a box plot (or box-and-whisker 
plot). 

To illustrate this graph, we show in Fig. 7-5 a box plot that was constructed from the length data in 
Table 6. 1 and the quartiles calculated in Example 6 . 1 3 .  Such plots can be constructed horizontally with the 
measurement scale along the X axis, or, as here, vertically with the measurement scale along the Yaxis. The 
construction of the box plot is similar to the construction of the floating-rectangle graph in Fig. 7-4(b) , but 

1 .8  

1 .6 

1 .4 

1 .2 

Fig. 7-5 
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where that graph displayed x ± s and the range, the version of the box plot shown here displays the five­
number summary. The rectangle, called the box, extends from QI to Q3 along the measurement scale, and 
thus its height is the interquartile range. The width of the box is arbitrary and thus provides no information. 
The horizontal line through the box is Q2 =x. As in Fig. 7-4(b), the lines extending above and below the 
box show the range for the distribution. In a box plot these lines are called whiskers, and in the version of 
the box plot shown here the lower whisker extends from Xs to QI and the upper whisker extends from Q3 to 
Xl (where Xs is the smallest value and Xl is the largest value) . 

While all versions of box plots show Qj, Q2, and Q3, there are different versions of the whiskers. For 
example, in another common version the lower whisker extends from PIO to Qb and the upper whisker 
extends from Q3 to P90. The difference, P90 - PIO, is called the 1 0-90 percentile range. It is not called a 
five-number summary when the 10-90 percentile range is displayed instead of the range. 

Solved Problems 

THE MEAN DEVIATION 

7.1 Calculate the range and the mean deviation for the samples in Problem 6.37(a) to (d). 

Solution 

(a) Range =x/ - xs= O sec - O sec = O sec 

5 

5 
L Xi _ i= 1  0 sec X = -. - = -- = 0.0 sec 

5 5 

L IXi - xl = 10 - 0.01 sec + 10 - 0.01 sec + 10 - 0.01 sec + 10 - 0.01 sec + 1 (0 - 0.0)1 sec i=1 
= 0.0 sec 

5 
L lxi - xl 

M d " H 0.0 sec 0 0 ean eVIation = -
5 

= -
5
- = . sec 

(b) Range = x/ - Xs = 10 sec - 0 sec = 10 sec 
5 

L Xi - i=1 1 0  sec 2 0 x = -- = -- = sec 5 5 
. 

5 . 
L IXi - xl = 1 10 - 2.01 sec + 1 0  - 2.01 sec + 10 - 2.0 1  sec + 10 - 2.01 sec + 10 - 2.0 1  sec i=/ 

= 1 6.0 sec 

5 
L lxi - xl . .  i-I 16.0 sec Mean deVIatIon = -

5 
= 

5 
= 3.2 sec 
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(c) Range =xt - Xs = 1 12.2 17km - 9.777 km = 102.440km 
6 

6 

L X; 
x = ;=1 = 172.459 km = 28.7432 km 6 6 

L IXi - xl = 1 10. 1 27 - 28.74321 km +  1 1 1 .963 - 28.74321 km + 1 1 12.2 1 7  - 28.74321 km 
i=1 

+ 19.777 - 28.74321 km + 1 1 3 .833 - 28.74321 km + 1 14.542 - 28.74321 km 
= 166.9478 km 

6 
L IXi - xl 166 9478 km Mean deviation = 1=1 6 = . 

6 = 27.8246 km 

(d) Range = xt - Xs = 14.542km - 0.007 km= 14.535 km 

6 

6 
L Xi 

x = ;=1 = 60.249 km = 10.0415  km 6 6 

L Ix; - xl = 1 10 . 127 - 1 0.0415 1  km + 1 1 1 .963 - 10.0415 1  km + 10.007 - 0.007 - 10.04 15 1  km 
;=1 

+ 19.777 - 10.0415 1  km + 1 1 3 .833 - 10.0415 1  km + 1 14.542 - 10.04 151 km 

= 20.5980 km 
6 

L Ix; - xl 
Mean deviation = ;=1 6 = 20.59:0 km = 3.4330 km 

203 

7.2 For the sample summarized in Table 6.8, calculate the range and then, using equation (7.7), 
calculate the mean deviation. 

Solution 

Range = 20 g - 14g = 6 g  
Table 7.8 

Weight (g) Frequency 
X; 
14 
15 
16 
17 
18 
19 
20 

L 

fi fix; (g) 
2 28 
2 30 
4 64 

1 8  306 
24 432 
35 665 
5 100 
90 1 ,625 g 

x = L fix; = 1 ,625 g = 1 8.0556 g 
n 90 

(x; - x)(g) filx; - xl (g) 
- 4.0556 8. 1 1 12 
- 3.0556 6 . 1 1 12 
- 2.0556 8 .2224 
- 1 .0556 1 9.0008 
- 0.0556 1 .3344 

0.9444 33.0540 
1 .9444 9.7220 

85.5560 g 

. .  L fi lx, - xl 85.5560 g Mean deVIatIOn = I I = = 0.950622 g, or 1 .0 g 
n 90 
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The appropriately modified table and the resulting calculation of the mean deviation are shown in Table 
7.8. 

7.3 Using equation (7.9), calculate the approximate mean deviation for the grouped data in Table 6. 10 .  

Solution 

The modified table and the resulting calculations are shown in Table 7.9. 

2d Exam 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 
80-84 
85-89 
90-94 
95-99 

L 

Table 7.9 

Class mark Frequency 
m; fi fim; [m; - (�i)] 
47 I 47 - 34.375 
52 0 0 - 29.375 
57 4 228 - 24.375 
62 3 1 86 - 19.375 
67 5 335 - 14.375 
72 3 2 16  - 9.375 
77 6 462 - 4.375 
82 1 1  902 0.625 
87 9 783 5 .625 
92 17  1 ,564 1 0.625 
97 5 485 15 .625 

64 5,208 

i � L�mi = 5,:�8 = 8 1 .375, or 8 1 .4 

Sample mean deviation � Lfilmi
n
- (� i) 1  = 63�.:00 = 9.8828 1 ,  

THE POPULATION VARIANCE 

film; - (� i)1 
34.375 
0 

97.500 
58. 125 
7 1 . 875 
28. 125 
26.250 
6.875 

50.625 
1 80.625 
78. 125 

632.500 

or 9.9 

7.4 For the population of weights in Example 7.4, use equation (7. 1 5) to calculate the population 
variance. 

Solution 

From Examples 7.4 and 7.5 we know that N = 5, J.l = 4 g, and L xf = 90 g2. Therefore 

7.5 Show that 

N 
Lxf 2 

. 
_2 i-I 2 90 g 2 ..2 (T = -- - - J.l = - - (4 g) = 2 10 N 5 

(7.50) 
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Solution N 
In the following derivation, L represents L . 

As 2 and J-l are constants, 

i=l 
Population SS = L(xi - 11/ = L(Xr - 2xiJ-l + J-l2) = Lxt - L2xiJ-l + LJ-l2 

= Lxt - 2(�) LXi + N(� r 
= " r  _ 2 (LXi)2 + (LXi)2 L..J I N N 
= " r  _ (Lxi)2 L..J I N 

Note: With a similar proof, we could show ( n )2 LX' 
Sample SS = txt _ i=l I i=l n 

205 

(7. 5 1  ) 

7.6 Derive the computational formulas for population variance [equations (7 . 14) and (7. 1 5)] from the 
definitional formula [equation (7. 1 2)]. 

Solution 

To derive equation (7. 14), we substitute equation (7.50) for the numerator in equation (7. 12). 
To derive equation (7. 1 5), we do the following algebraic manipulation of equation (7. 1 4): 

= � [ Lxt _ (L;i)2] 
= Lxt _ (LXi)2 N N2 

k 
7.7 It can be proven mathematically, for any set of numbers XI . X2, " " Xk , that L(xi - a)2 will be a 

i=! 
minimum if and only if the number a is the arithmetic mean of the set of numbers. Empirically 
demonstrate this fact for this sample: 1 ,  2, 3,  4, 5. 
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Solution 
n 

To empirically demonstrate for this sample that 2)x; - a l is minimum if and only if 
;=1 

5 
LX; 

- ;=1 1 5  3 a = x = -- = - = 5 5 

[CHAP. 7 

we calculate this summation for as that are smaller and larger than x = 3. The results for five as (2.8, 2.9, 3.0, 
3 . 1 ,  and 3.2) are shown in Table 7 . 10 .  You can see from the totals at the bottom of each column how 

n L(x; - a)2 increases as a is made either smaller or larger than x = 3 .  
;= 1 

Table 7.10 

X; (x; - 2.8)2 (x; - 2.9l (x; - 3.oi (x; - 3 . li 
1 3.24 3.61 4 4.41 
2 0.64 0 .81 1 .2 1  
3 0.04 0.01 0 0.01 
4 1 .44 1 .2 1  0.81 
5 4.84 4.41 4 3 .61 

L 10.20 1 0.05 1 0  1 0.05 

(x; - 3.2i 
4.84 
1 .44 
0.04 
0.64 
3 .24 

1 0.20 

THE SAMPLE VARIANCE 

7.8 From the definitional fonnula for the sample variance [equation (7 . 1 6)], derive the three 
computational fonnulas given in Section 7. 8 [equations (7. 1 7), (7. 1 8), and (7. 19)]. 

Solution 

To derive equation (7. 17), we substitute equation (7.5 1 )  for the numerator of equation (7. 1 6). 
To derive equation (7. 1 8), we multiply both sides of equation (7 . 1 7) by � 

n 

n 2 n [ LX; - (L;;)2] 
-s = -=-------=-
n n(n - I) 

2 n LX; - (Lx;)2 S = -===-..-;._-'=;.......:C-
n(n - 1 )  

Finally, to derive equation (7 . 19), we do the following algebraic manipulation of equation (7. 1 6): 

As 2 and x are constants 
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And, as LX; = nX 

2 LxT - a(nx) + n� LxT - 2ni2 + n� LxT - ni2 
S - - - =--'---- n - l - n - l  - n - l  

7.9 Use equations (7. 18) and (7. 19) to calculate the variance for the sample of lengths in Example 7.6. 

Solution 

From Examples 7.6 and 7.7, we know that n = 5, L xi = 25 cm, L x/ = 135 cm2, and x = 5 cm. 
Therefore for equation (7 . 1 8), 

s2 = n LxT - (Lxf = 5(135 cm2) - (25 cmi = 2.5 cm2 n(n - 1) 5(5 - 1) 
and for equation (7. 19), 

S2 = LxT - nXZ = 135 cm2 - 5(5 cm/ = 2.5 cm2 n - 1 5 - 1  

THE POPULATION STANDARD DEVIATION 

7.10 For the population 9. 1 ,  8 .7, 9.0, 9.2, use equation (7.2 1) to calculate the population standard 
deviation. 

Solution 

fJ. = LX; = 36.0 = 9.0 N 4 

(J 
= JL(X� fJ.)2 

(9. 1 - 9.0)2 + (8.7 - 9.oi : (9.0 - 9.oi + (9.2 - 9.oi = 0. 1 8708, or 0 . 19  

7.11 For the population in Problem 7 . 10, use equation (7.23) to calculate the population standard 
deviation. 

Solution 

From Problem 7 . l0 we know that fJ. = 9.0, and so we need 

Therefore 
LxT = (9. 1i + (8.7)2 + (9.0)2 + (9.2)2 = 324. 14 

_ JLxT 2 _ )324. l4 2 _ (J - J:I - fJ.  - -4- - (9.0) - 0. 1 8708 , or 0 . 19  

7.12 Use equation (7.30) to calculate the standard deviation for the population of marathon times 
summarized in Table 6.2. 

Solution 

To use equation (7.30) requires the addition ofthese columns to Table 6.2: x7 andJix7. The modified table 
and the resulting calculation of the standard deviation are shown in Table 7. 1 1 .  
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Time (min) 
Xi 
129 
1 30 
1 3 1  
132 
133 
134 
1 35 
1 36 
1 37 
138 
139 
140 
141 
142 
143 
144 
145 

(J = 

Frequency 
fi 

2 
o 
o 

1 
2 
o 
3 
o 
o 
3 
4 
5 
2 
5 

30 

"" 1'.>2 _ (L fixi L..J Ji 1 N 
N 

Table 7.1 1  

fixi (min) 
1 29 
260 

0 
0 

133 
134 
135 
272 

0 
414 

0 
0 

423 
568 
7 1 5  
288 
725 

4, 1 96 min 

xf (min2) 
16,641 
16,900 
1 7, 1 6 1  
17,424 
17,689 
1 7,956 
1 8,225 
1 8,496 
1 8,769 
19,044 
1 9,321 
1 9,600 
1 9,88 1 
20, 164 
20,449 
20,736 
2 1 ,025 

fixf (min2) 
1 6,641 
33,800 

0 
0 

1 7,689 
1 7,956 
1 8,225 
36,992 

0 
57, 1 32 

0 
0 

59,643 
80,656 

1 02,245 
4 1 ,472 

1 05,125 
587,576 min2 

587,576 min2 _ (4, 1 96 min)2 

30 
30 = 4.8 1479 min, or 4.8 min 

THE SAMPLE STANDARD DEVIATION 

[CHAP. 7 

7.13 For the sample in Example 6. 1 (a), use equations (7.25) and (7.27) to calculate the standard 
deviation. 

Solution 

Using equation (7.25), 
_ L Xi 24 g X = - = - = 3.42857 g n 7 

s = 25.7143 g2 _ 2 0 020 2 1 6 - . 7 g, or . g 

Using equation (7.27), 

s = 

L xi = 24 g 

L xT = 108 i 
n LxT - (L xi)2 _ 7(1 08 g2) - (24 g)2 

n(n - 1) - 7(6) 

= J 4.28571 g2 = 2.07020 g, or 2 . 1  g 
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7.14 For the sample in Example 6. 1 (b), use equations (7.25) and (7 .28) to calculate the standard 
deviation. 

Solution 

Using equation (7.25), 

s =  

Using equation (7.28), 

x = I>; = 
222 g 

= 3 l .7 143 g 
n 7 

'L(x; - x)2 = /33 ,063
6

429 g2 = 74.2332 g or 74.2 g 
n - 1  V 

'Lxf = 40, 1 04 g2 

s _ i'Lxf - n,X2 _ 40, 104 g2 - 7,040.578 g2 = 74.2332 g, or 74.2 g - V  n - l  - 6 

7.15 Use equation (7.32) to calculate the standard deviation for the sample lengths swnmarized in Table 
6. 1 .  

. 

Solution 

To use equation (7.32) requires the addition of three columns to Table 6. 1 :  Xi - X, (X; - xi , and 
/;(Xi - xi. The modified table and the resulting calculation of the standard deviation are shown in Table 7. 12  . . 

Table 7.12 

Length (cm) Frequency 
Xi 
l .2 
1 .3 
1 .4 
1 .5 
l .6 
l .7 
l .8 

'L 

/; /;Xi (cm) (Xi - x) (cm) 
2 2.4 - 0.30 
7 9 . 1  - 0.20 

1 0  14 .0 - 0. 1 0  
1 2  1 8.0 0.00 
1 0  16.0 0. 1 0  
7 1 l .9 0.20 
2 3 .6 0.30 

50 75.0 cm 

x = 'L/;x; = 
75.0 em = l .50 em 

n 50 

(Xi - x)2 (cm2) 
0.09 
0.04 
0.0 1 
0.00 
0.01 
0.04 
0.09 

s = 'L/;(Xj _ x)2 = Jl . 1 2  em2 = 0. 1 5 1 1 86 em, or 0 . 1 5  em 
n - 1  49 

Ii (Xi - X)2 (cm2) 
0. 1 8  
0.28 
0. 1 0  
0.00 
0. 1 0  
0.28 
0. 1 8  

1 . 1 2  em2 

7.16 Use equations (7.33), (7.34), and (7.35) to calculate the standard deviation for the sample of lengths 
summarized in Table 6. 1 .  

Solution 

To use these equations requires the addition of two columns to Table 6. 1 :  x7 and/;xf, The modified table 
and the resulting calculations of the standard deviation are shown in Table 7 . 13 .  

7.17 For what types of samples would the following be true: ? = 0, S2 = - 1, or s = - 1 ? 
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Table 7.13 

Length (cm) Frequency 
Xi 
1 .2 
1 .3 
1 .4 
1 .5 
1 .6 
1 .7 
1 .8 

2: 

/; /;Xi (cm) if (cm2) 
2 2.4 1 .44 
7 9 . 1  1 .69 

10  14.0 1 .96 
12 18.0 2.25 
1 0  16 .0 2.56 
7 1 1 .9 2.89 
2 3 .6 3.24 

50 75 .0 cm 

- _ 2:/;Xi _ 75.0 cm _ 1 50 x � -- - - . cm 
n 50 

/;4 (cm2) 
2.88 

1 1 . 83 
1 9.60 
27.00 
25.60 
20.23 
6.48 

1 1 3 .62 cm2 

Using equation (7.33), 

s =  
n - I  

1 1 3 62 2 _ (75.0 cmi . cm 0 ___ --::-::-__ ....:5=-_ = 0. 1 5 1 1 86 cm, or 0. 1 5  cm 50 - 1  
Using equation (7.34), 

s =  

= 

n 2: /;x� - (2: /;Xi)2 

n(n - I) 

(50 x 1 1 3 .62 cm2) - (75.0 cm)2 
50(50 _ I) = 0. 1 5 1 1 86 cm, or 0.15 cm 

Using equation (7.35), 

1 13 .62 cm! - [50 x (1 .50 cm)2] 1 1 8 = . 
50 - 1  = 0. 1 5  6 em, or 0. 1 5  em 

[CHAP. 7 

A sample (or a population) will have a variance and a standard deviation equal to zero if and only if all 
data values in the sample are the same number. A sample (or a population) will never have a negative variance 
or a negative standard deviation. The variance will always be a positive value because it is based on squared 
deviations, and the standard deviation will always be a positive value because it is defined to be the positive 
square root of the variance (see Section 7.9). 

CALCULATING APPROXIMATE STANDARD DEVIATIONS FROM GROUPED FREQUENCY 
DISTRIBUTIONS 

7.18 Use equation (7.37) to calculate the approximate sample standard deviation for the grouped 
frequency distribution of second lecture exam scores in Ta?le 6 . 10 . 
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2d Exam 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 
80-84 
85-89 
90-94 
95-99 

L 

Table 7.14 

Class mark Frequency 
mj /; 
47 1 
52 0 
57 4 
62 3 
67 5 
72 3 
77 6 
82 1 1  
87 9 
92 1 7  
97 5 

64 

i � LJ;mj = 
5,208 = 8 1 .4 

n 64 

/;mj 2 mj 

47 2,209 
0 2,704 

228 3,249 
1 86 3,844 
335 4,489 
216 5 , 184 
462 5,929 
902 6,724 
783 7,569 

1 ,564 8,464 
485 9,409 

5,208 

n L J;mf - (L J;mii 27,732, 864 - 27, 1 23 ,264 
s � 

n(n - 1) 64(63) 

= 1 2.2690, or 12.3 

/;mf 
2,209 

0 
1 2,996 
1 1 ,532 
22,445 
15,552 
35,574 
73,964 
68,1 21  

143,888 
47,045 

433,326 

21 1 

To use equation (7 .37) requires the addition of two columns to Table 6. 10: mf and/; mT. The modified 
table and the resulting calculation of the standard deviation are shown in Table 7 . 14. 

CALCULATING VARIANCES AND STANDARD DEVIATIONS WITH CODED DATA 
2 

7.19 If Ci = a + bXi, show that s; = �� . 
Solution 

Equation (6 . 16) states that 

Therefore 

and 

_ 1 (_ ) x = - c - a  b 

c = a + bi 

Ci - C = (a + bXi) - (a + bi) = bXi + a - a - bi = b(Xi - i) 
Squaring both sides of the equation, 

(Ci - ci = b2(Xi - i)2 

Taking the sum of both sides of the equation, 
L� - � = L �� - � = � L� - �  
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Multiplying both sides of the equation by _1_ , n - l  

Thus 

and 

2)Ci - ci _ b2 L(Xi - xi 
n - l  - n - l  

[CHAP. 7 

7.20 For the sample of weight measurements (in grams) summarized in Table 6. 1 3 ,  calculate s; and Sx 
directly from the data using equations (7 . 18) and (7 .24) . Then, recalculate these values using 
equations (7.39), (7.40), and (7.4 1). Use a = 0 g and b = 0.0001 as the coding constants in the 
coding formula. 

Solution 

The direct calculations of s; and Sx and the calculations using the coding and decoding formulas are 
shown in Table 7.15 .  

Table 7.15 

Weight (g) 
Xi if (g2) (ci = O.OOOlx;) (g) c7 (g2) 

22,000.0 484,000,000 2.20 4.8400 
24,000.0 576,000,000 2.40 5.7600 
25,500.0 650,250,000 2.55 6.5025 
27,500.0 756,250,000 2.75 7.5625 
29,000.0 841 ,000,000 2.90 8.4100 
30,000.0 900,000,000 3.00 9.0000 

2: 158,000.0 g 4,207,500,000 g2 15 .80 g 42.0750 g2 

Direct calculations: 
?:. = n L xf  - (LXi)2 = (6 x 4,207,500,000 g2) - (158 ,000.0 g)2 = 9 366 666 66 ...2 x n(n _ 1) 6(5) , , . 7 g 

Sx = R = J9,366,666.67 g2 = 3,060.5010 g, or 3,060.50 g 
Calculations with coding and decoding formulas: 

?:. = n L Cf - (2: ci 
= 

(6 x 42.0750 i) - ( 15 .80 g)2 = 0.0936667 g2 c n(n - l) 6(5) . 

Sc = R = JO.0936667 g2 = 0.306050 g 

Decoding �: ?:. = s� = 0.0936667 g2 = 9 366 670.000 2 x b2 (0.0001)2 " g 

= 
� 

= 
0.306050 g 

= 3 060 5000 g or 3 ,060.50 g Sx b 0.0001 , . , 
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7.21 In Problem 6.9 we determined what happened to the average hourly wage in factories A and B that 
started with the same average (x = $5.39) but then gave different types of raises to their workers. We 
found that factory A, which gave a 5% per hour raise to all employees, increased their average wage 
to $5.66, and that factory B, which gave a $0.05 per hour raise to all employees, increased their 
average wage to $5 .44. By a remarkable coincidence, both factories before the raises had the same 
standard deviations for their samples of hourly wages (sx = $0.40). Use the following formula to 
determine the post-raise standard deviations for both factories: Sc = bsx. After the raise, which 
factory has the greater wage dispersion? 

Solution 

For factory A, if Xi is the previous hourly wage, then each worker now receives: Ci = $0.00 + l .05Xi' Thus, 
if Sx is the pre-raise standard deviation, Sc is the post-raise standard deviation, and the coding constants are 
a = $0.00 and b = 1 .05, then 

Sc = bsx = 1 .05($0.40) = $0.42 

For factory B, each worker now receives per hour: Ci = $0.05 + Xi' Thus, for B the coding constants are 
a = $0.05 and b = 1 .00. Therefore 

Sc = bsx = 1 .00($0.40) = $0.40 

Thus, while the standard deviation for factory A increased from $0.40 to $0.42, for factory B the standard 
deviation remained the same ($0.40). Factory A, therefore, has a greater wage dispersion after the raise than 
does factory B. 

CHEBYSHEV'S THEOREM 

7.22 These descriptive measures are from a sample of time measurements: n = 400, x = 2 1 .2 sec, and 
s = 1 .7 sec. Use Chebyshev's theorem from Section 7. 1 5  to answer this question: At least what 
proportion of the data lies within 2 i standard deviations from the arithmetic mean? 

Solution 

At least this proportion of the data lies within k = 2 � standard deviations from the mean 
1 1 16  1 - - =  1 - -- = 1 - - = 0.867769 k2 (2 �)2 12 1  

7.23 These measures describe a sample of length measurements: n =  10,000, x = 20.0 em, and 
? = 0.25 cm2. Using Chebyshev's theorem, determine at least how many of the measurements in 
the sample are in the interval (1 9.0 cm to 2 1 .0 cm). 

Solution 

Finding s, 

s = ..Jii = JO.25 cm2 = 0.5 cm 
To find k, we know that the interval (19.0 cm to 2 l .0 cm) is 

Therefore 
(x = 20.0 em) ± (ks = l .0 cm) 

k = l .0 cm = 
1 .0 cm = 2 

s 0.5 cm 



214 DESCRIPTIVE STATISTICS: MEASURES OF DISPERSION [CHAP. 7 

From Chebyshev's theorem we know that at least this proportion of the data lies in the interval x ± 2s 

1 1 
1 - k2 = 1 - 22 = 0.75 

Thus, at least this many measurements in the sample lie in the interval (19.0 cm to 2 1 . 0 cm) 

0.75(n = 10, 000) = 7,500 

7.24 A company that manufactures a type of flashlight battery wants to claim that at least 96% of these . 
batteries last from 95 hours to 105 hours. If they test a sample of 1 ,000 batteries and get a mean life 
of.x = 1 00 hr, then what is the maximum value possible for the sample standard deviation s if they 
are to make the 96% claim? 

S@lutien 

From Chebyshev's theorem, we know that when at least 96% of the data lie in the interval x ± ks then 

1 
1 -

k2 = 0.96 

. 1 

k2 = 1 - 0.96 = 0.04 

1 
k = - = 5  

0.2 

If the interval containing at least 96% of the data is (95 hours to 1 05 hours), then this is equivalent to 

(x = 100 hr) ± 5 hr 

Therefore 

ks = 5 hr 

s =
5 hr

=
5 hr

= l hr 
k 5 

Thus, s = 1 hr is the maximum standard deviation for the sample if the company is to make the 96% claim. 

7.25 A food company wants to sell a " 1 2  ounce" bag of potato chips, and by law such a bag must 
contain at least 12  ounces of chips. They test their automated bag-filling machine by setting it to put 
12 .20 0z in each bag, and then weighing the contents of 500 bags. The results from the test are: 
n = 500, .x = 12.20 oz, and s = 0.04 oz. Can they leave the machine at this setting if they want to be 
at least 99% certain of obeying the law? 

Solution 

Putting this question in a form that can be solved with Chebyshev'S theorem: Will at least 99% of the 
weights lie in the interval 12 .20 oz± k(O.04 oz)? 

From the theorem we know that for this to be true 

1 
1 - k2 = 0.99 

k =  1 0  

But for k =  1 0, the interval would extend below the mandatory 1 2  ounces 

12.20 oz ± 1 0(0.04 oz) 

1 2.20 oz ± 0.40 oz, or (1 1 . 80 oz to 12.60 oz) 

Therefore, to be at least 99% certain of obeying the law the company must either reset the machine to increase 
the average per-bag weight (x) or have the machine adjusted to decrease the dispersion of the per-bag 
weights (s). 
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THE EMPIRICAL RULE 

7.26 If a population is normally distributed, what percentage of the population is less than f.l - 20"? 

Solution 

Using the reasoning in Example 7 . 15 ,  this percentage is less than J-l - 2a 

� (100% � 95.4% = 4.6%) = 2 .3 % 

7.27 You are a biologist studying a species of snail, and as a part of your research you measure shell 
diameters (in mm) ofa sample of500 of these snails. Assuming, as is likely, that these diameters are 
essentially normally distributed, use the empirical rule (see Section 7 . 1 6) to determine the 
approximate number of shell diameters in this interval: x ± s. 

Solution 

From Section 7. 16  we know that � 68% of the data lie in the interval x ± s. Therefore, the number of 
shell diameters in that interval is � (0.68 x 500 = 340). 

7.28 Why do some statistics books define an outlier in a data set as a measurement that is more than 
three standard deviations from the mean of the set? 

Solution 

Sometimes there are values in a data set that are either much larger or much smaller than the rest of the 
data. Such extreme values are called outliers and one common definition of an outlier is any data value that is 
more than three standard deviations from the mean. You can see why this definition is given from the 
distribution percentages provided by the empirical rule. Thus, the rule states, for both symmetrical and skewed 
distributions, that � 100% of the data will be within three standard deviations from the mean. Therefore, a 
data value beyond three standard deviations is treated as a very unusual event-an outlier. Such outliers can be 
caused by procedural errors (measuring, recording, calculating), or equipment failure, or some complicating 
extraneous variable like taking measurements from more than one population. If there is an outlier, and good 
reason to believe that it is due to some technique problem, then it is sometimes legitimate to remove the outlier 
from the data set. 

7.29 For a data set that is approximately normal, what is the relationship between its range and its 
standard deviation? 

Solution 

For such a data set, the empirical rule states that � 95% of the data lie in the interval (mean ± 2 standard 
deviations), and � 100% of the data lie in the interval (mean ± 3 standard deviations). Therefore, as a general 
rule of thumb you can assume that the range of such a data set is equal to somewhere between four and six 
standard deviations, and consequently the standard deviation should be somewhere between � (range) and ! 
(range). This relationship can be used as a quick check of the accuracy of a standard-deviation calculation. 

GRAPHING CENTRAL TENDENCY AND DISPERSION 

7.30 You are a doctor at a sleep-disorder clinic, doing research on a new sleeping pill. Twenty clinic 
patients volunteer for the experiment, and you use a table of random numbers (see Section 3.23) to 
randomly assign 10  ofthem to each of two groups: pill and control. All 20 patients have their brain 
waves recorded during a night of sleep at the clinic. The difference between the groups is that 30 
minutes before going to b�d at 10 p.m., each patient in the pill group receives the new sleeping pill . 
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with a glass of milk, whereas each patient in the control group receives a sugar pill (a placebo) with 
milk. One measurement taken for each patient from their recorded brain waves is how long it takes 
to fall asleep: the time from 10  p.m. (0 min) to the first signs of sleep in the brain waves. The results 
for both groups are shown in Fig. 7-6, in the bar-graph form of Fig. 7-4(a), where the Yaxis is the 
measurement scale, the height of each bar represents the group mean X, and the length of the 
vertical line above a bar represents one standard deviation s. Using the information in the graph, 
answer these questions: (a) From Chebyshev's theorem, what time interval contains at least 68% 
of each group's data? (b) From the empirical rule, what time interval contains approximately 68% 
of each group's data? 

30 f- -r-

f-I 
fr 20 
� oj 

� 

f- T f-
.s 
" 10  S f-

E= 

I-

o 

Control Pill 

Fig. 7-6 

Solution 

(a) From Chebyshev's theorem we know that when at least 68% of the data lie in the interval i ± ks, then 

1 
1 - P = 0 .68 

k = 1 .76777 

For each group, i and s can be determined from the bar graph by visual estimation or measuring. These 
values are: control group, i = 2'0 min, s = 1 0  min; pill group, i = 1 5  min, s = 5 min. Therefore, for the 
control group the interval containing at least 68% of the data is 

i ± ks = 20 min ± ( 1 .76777 x 1 0  min) = 20 min ± 17.6777 min, or (2.3 min to 37.7 min) 

And for the pill group this interval is 

i ± ks = 1 5  min ± ( 1 .76777 x 5 min) 

= 1 5  min ± 8 .83885 min, or (6.2 min to 23.8 min) 

(b) Assuming the group time distributions are approximately normally distributed, the empirical rule 
indicates � 68% of the data lie in the interval i ± s. For the control group 

i ± s = 20 min ± 1 0  min, or (10 min to 30 min) 
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For the pill group 

x ± s = l�  min ± 5 min, or (10 min to 20 min) 

Note: From these results it would seem that the pill was effective: On the average, the pill group fell 
asleep faster and their times were less dispersed. However, these results are only descriptions of small 
samples, and what is desired is a general conclusion about all possible users and nonusers of the pill. To make 
such comparative population conclusions at some level of certainty (probability) requires the techniques of 
inferential statistics that we will begin to deal with in the next chapter. 

7.31 The data from Fig. 7-6 are shown in Fig. 7-7 in the floating-rectangle-graph form of Fig. 7-4(b). 
From this graph you can answer these questions: (a) Are the sample distributions symmetrical? 
(b) Does either sample contain outliers? 

50 
= 
g 40 Q. " ... 
� 30 
;§ 

-$-.9 
... 20 E 
!== 

1 0  

0 
Control Pill 

Fig. 7-7 

Solution 

(a) While the pill distribution is symmetrical about the mean, the control distribution is positively skewed 
(along the vertical axis). 

(b) In Problem 7.28 we gave one common definition of an outlier: a data value that is more than three 
standard deviations from its mean. Here, while there are no such values in the pill group, there is at least 
one such outlier in the control group: XI = 55 min, which is 3� standard deviations from its mean. 

Note: While the bar-graph version in Fig. 7-6 is the more common method of presenting such 
information, the form of the graph in Fig. 7-7 is useful if you want to emphasize asymmetry or extreme values. 
Here, for example, we can see that the distribution for the control group is not "approximately normal" as was 
assumed in Problem 7.30(b), and therefore it was not really appropriate to use the empirical rule on the control 
group. 

7.32 Because the sleeping-pill results (see Figs. 7-6 and 7-7) indicate that the pill was effective in 
reducing and making more predictable the time required to fall asleep, you decide to study this 
effect over four consecutive days. Twenty volunteers are randomly assigned ( 10  each) to new pill 
and control groups, but now the 10 people in each group repeat their versions of the experiment 
(described in Problem 7.30) for four consecutive days. The results for the pill group are shown in 
Fig. 7-8 in the line-graph form of Fig. 7-4(c). For days 1 and 4, use Chebyshev's theorem to 
determine the time interval that contains at least 68% of the data. 
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Solution 

On day 1 ,  x =  15  min, s = 5 min; and we know from Problem 7.30(a) that for the interval containing at 
least 68%, k =  1 .76777. Therefore, for day 1 the interval containing at least 68% is 

x ± ks = 1 5  min ± ( 1 .76777 x 5 min) 

= 1 5  min ± 8 .83885 min, or (6.2 min to 23 .8 min) 

For day 4, x = 25 min, s = 1 0  min, and so this interval is 

x ± ks = 25 min ± (1 .76777 x 10  min) 

= 25 min ± 1 7.6777 min, or (7.3 min to 42.7 min) 

7.33 The results for the pill group in Problem 7.32 seem to indicate that over four consecutive days the 
pill becomes progressively less effective: both x and s increase. To see how this compares to the 
control group, their results have been added to Fig. 7-8 as connected open circles in Fig. 7-9. Note 
how only one error bar is used with each line of circles to allow room for the two lines. Again for 
days 1 and 4, use Chebyshev's theorem to determine for the control group the time interval that 
contains at least 68% of the data. 

Solution 

For both days 1 and 4: x = 20 min, s = 1 0  min, and so for the interval containing at least 68% of the data, 
k= 1 .76777. Therefore, for both days 

. 

x ± ks = 20 min ± (1 .76777 x 10  min) 

= 20 min ± 17.6777 min, or (2.3 min to 37.7 min) 

Note: From Fig. 7-9 we can, at the level of descriptive statistics, compare the results for the two groups. 
We see that where the control group shows no particular pattern (oscillating up and down over the four nights 
with a constant dispersion of s = 10  min), the pill group shows a steady increase in x and s, until on day 4 it 
has a higher x and the same s as the control group. These results may indicate habituation to the pill: the same 
dose has progressively less effect over time. Before such a general population conclusion can be made, 
however, these group results must be analyzed with inferential statistics. 
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THE COEFFICIENT OF VARIATION 
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7.34 An oil company takes a survey of 1 ,000 customers, asking these questions about a typical week: 
How many miles do you drive? How many gallons of gasoline do you buy? How much do you 
spend on gasoline? The results are: x = 1 20 mi, s = 9.6 mi; x = 6 gal, s = 0.5 gal; x = $6.30, 
s = $0.70. Compare the relative dispersions of these three measurements using equation (7.45). 

Solution 

For miles per week, 

For gallons per week, 

For spending per week, 

s 9.6 mi V = i (100%) = 
120 mi 

(100%) = 8.0% 

V = ; (100%) = 06.5 ga
l
l
(100%) = 8.3% 

x ga 

V = i ( 100%) = :�:�� ( 100%) = 1 1 . 1  % 

This problem illustrates an important use of the coefficient of variation: Because it is independent of units 
of measurement, the coefficient of variation can be used to compare relative dispersions across distributions 
that have different units. Here we see that spending per week has a greater relative dispersion than either of the 
other two measurements. 

7.35 Why would it not be legitimate to calculate coefficients of variation for temperature data measured 
in OF or °C? 

Solution 

Because the coefficient of variation is a ratio, it is only legitimate to calculate it for ratio-level 
measurement (see Section 2.7), and temperatures in OF or °C are interval level. 
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THE STANDARD SCORE AND THE STANDARDIZED VARIABLE 

7.36 You are employed by a university's department of athletics to monitor the academic progress of the 
student-athletes. A football player tells you he got 68 out of a possible 100 points on his chemistry 
midterm exam, in which the class results were: x = 74, S = 13 ;  and 74 out of a possible 100 on his 
history midterm exam, in which the class results were: x = 84, S = 7. In which course did he do 
better relative to the class average? 

Solution 

Calculating standard scores for the two midterms 

for chemistry 

for history 

_ Xi - X _ 68 - 74 _ -0 461 538  or -0.46 Zi - s - 13  - . , 
Zi = Xi - x = 74 - 84 = - 1 .42857, or - 1 .43 s 7 

From these standard scores it is clear he did better relative to the average on the chemistry midterm. While in 
chemistry he was 0.46 standard deviations below average, in history he was 1 .43 standard deviations below 
average. 

7.37 Show for any sample from a standardized variable Z that: (a) z = 0, (b) Sz = l .  

Solution 

(aJ As 

then 

Therefore, as 

Xi - X Zi = -S-

2: (Xi - X) _ 2:Zi S 1 _ Z = mean of ZiS = -- = = - 2:(xi - x) n n ns 

2:(Xi - x) = 0 

_ 1 Z = -(0) = 0 ns J2:(Z' - zf (b) sz = standard deviation ofz;s = =...:...:'---,-'­n - l  
Therefore 

n - l (�) (_1 ) 2:(xi _ X)2 s2 n - 1 

= 1 

Note: With a similar proof we could show for any population from a standardized variable that f1.z = 0 
and (J z = 1 .  These properties of the mean and standard deviation of a standardized variable are important in 
Chapter 12, where we deal with the normal distribution ofa standardized variable called the standard normal 
distribution (or the standardized normal distribution). 
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THE INTERQUARTILE RANGE AND THE QUARTILE DEVIATION 

7.38 For the length data shown in Table 6.7, we calculated that: Q2 = X =  1 .50 cm (see Example 6. 1 3), 
midquartile = 1 .50 cm (see Example 6. 1 5), and quartile deviation = 0. 1 2 cm (see Example 7. 19). 
What percent of this data lie in the intervals: (a) (midquartile) ± (quartile deviation), 
(b) x± (quartile deviation)? 

Solution 

For this unimodal and perfectly symmetrical distribution, the midpoint of the interval from Ql to Q3 is 
equal to both the midquartile and x. Therefore, the intervals defined in both (a) and (b) contain the middle 
50% of the data. 

7.39 For the weight data shown in Table 6. 14, we calculated (see Problems 6.20 and 6.25) that: 
Q, = 1 7.3056 g, Q2 =x = 18 .29 1 7  g, Q3 = 19.0 g, and midquartile = 1 8 . 1 528 g. From the quartiles, 
calculate the interquartile range and the quartile deviation. Then, determine what percent of the data 
lie in the intervals: (a) (midquartile) ± (quartile deviation), (b) x ± (quartile deviation). 

Solution 

Interquartile range = Q3 - Ql = 1 9.0 g - 17.3056 g = l .6944 g, or l .7 g 

Quartile deviation = 
Q3 � QI = 

l .69

2

44 g 
= 0.8472 g, or 0.85 g 

(a) For any shaped distribution the midpoint of the interval from QI to Q3 is equal to the midquartile. 
Therefore, for this unimodal but negatively skewed distribution the interval (midquartile) ± (quartile 
deviation) contains the middle 50% of the distribution. 

(b) We have shown for this skewed distribution that x =f: (midquartile). Therefore, we can not determine with 
these simple techniques what percent of the distribution lie in the interval x± (quartile deviation). 

Note: Because for any shaped distribution the quartile deviation is always a measure of one-half the 
interval containing the middle 50% of the data, it is often used in place of the standard deviation for describing 
dispersion in extremely skewed or multimodal distributions. When this is done, then typically the median or 
the midquartile is given as the measure of location instead of the mean. 

7.40 For the temperature data shown in Table 6 . 15 ,  we showed (see Problems 6.2 1 ,  6.26, and 6.5 1) that: 
Q, = 100.8333°F, Q2 = x =  101 .3889°F, Q3 = 1 02.3°F, and midquartile = 101 .5667°F. From the 
quartiles, calculate the interquartile range and the quartile deviation. Then, determine what percent 
of the data in Table 6. 1 5  lie in the intervals: (a) (midquartile) ± (quartile deviation), 
(b) x± (quartile deviation). 

Solution 

Interquartile range = Q3 - QI = 102.3°F - 100.8333°F = 1 .4667°F, or l .5°F 

Q '1 d 
. .  Q3 - QI 1 .4667°F 

° 3° uartl e eVlatlOn = = = 0.7333 F, or 0.7 F 
2 2 

(a) For this unimodal, positively skewed distribution, the interval (midquartile) ± (quartile deviation) 
contains the middle 50% of the distribution. 

(b) We have shown for this skewed distribution that x =f: (midquartile), and therefore we again cannot 
determine with these techniques what percent of the data lie in the interval x± (quartile deviation). 

BOX PLOTS AND FIVE-NUMBER SUMMARIES 

7.41 Using the information in Problem 6.20 construct a box plot for the weight data in Table 6.8 that 
shows the five-number summary. 
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Solution 

The box plot for this data, showing Q" Q2, Q3, xs , XI , is presented in Fig. 7- 1 0. 

7.42 Using the information in Problems 6.21 and 6.5 1 ,  construct a box plot for the temperature data in 
Table 6.9 that shows the five-number summary. 

Solution 

The box plot for this data, showing Qb Q2, Q3, Xs > XI , is presented in Fig. 7- 1 1 .  

7.43 Using the exact quartiles from Problems 6.23 and 6.53 and the information in Table 6. 1 1 ,  construct 
a box plot for the golf winnings that shows the five-number summary. 

Solution 

The box plot for this data, showing Qh Q2, Q3, xS , and XI , is presented in Fig. 7-1 2. 

Supplementary Problems 

THE MEAN DEVIATION 

7.44 Calculate the range and the mean deviation for this sample: 0.0, 1 5 .3, 0.0, 100.3, 62. 1 ,  0.0. 

Ans. Range = 1 00.3, mean deviation = 34.3889, or 34.39 

7.45 For the sample swnmarized in Table 6.9, calculate the range and then, using equation (7.6), calculate the mean 
deviation. 

Ans. Range = 7°F, mean deviation = l .0470°F, or l .O°F 
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THE POPULATION VARIANCE 

7.46 Use equations (7. 1 2) and (7. 14) to calculate the variance for this population: 0, 1 , 2, 1 1 , 19 .  

Ans. 53 .84 
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7.47 Use equations (7. 12) and (7. 15) to calculate the variance for this population: 0.00, 0.01 ,  0.02, 0. 1 1, 0 .19 .  

Ans. 0.005384, or 0.0054 

THE SAMPLE VARIANCE 

7.48 Use equations (7. 16) and (7. 17) to calculate the variance for this sample: 1 38,  129, 1 32. 

Ans. 21 .00 

7.49 Use equations (7. 1 6) and (7. 19) to calculate the variance for this sample: 1 52, 129, 148 .  

ADS. 15 1 .00 

THE POPULATION STANDARD DEVIATION 

7.50 Use equations (7.20) and (7.22) to calculate the standard deviation for the population in Problem 7.46. 

ADS. 7.3 

7.51 Use equations (7.20) and (7.23) to calculate the standard deviation for the population in Problem 7.47. 

ADS. 0.073 
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7.52 For the golf-winnings data in Table 6. 1 1 , use equation (7.30) to calculate the standard deviation for this 
population. 
Ans. $28,536. 14, or $28,500 

THE SAMPLE STANDARD DEVIATION 

7.53 Using equation (7.27), calculate the standard deviation for the samples in Problem 6.37(a) to (d), 
Ans. (a) o sec, (b) 4.47214 sec, or 4.5 sec, (c) 40.9383 km, (d) 5.2743 km 

7.54 For the weight data in Table 6.8, use equation (7.34) to calculate the standard deviation for this sample, 
Ans. 1 .24847 g, or 1 .2 g 

7.55 For the temperature data in Table 6.9, use equation (7.35) to calculate the standard deviation for this sample. 
Ans. 1 .4485°F, or 1 .4°F 

CALCULATING APPROXIMATE STANDARD DEVIATIONS FROM GROUPED FREQUENCY 
DISTRIBUTIONS 

7.56 Use equation (7.36) to calculate the approximate population standard deviation for the grouped frequency 
distribution of golf-winnings in Table 6. 12. 
Ans. (J � $28,2 14.58, or $28,200 

CALCULATING VARIANCES AND STANDARD DEVIATIONS WITH CODED DATA 

7.57 For the following sample, first calculate the standard deviation directly from the data using equation (7.27) and 
then calculate it by means of equations (6. 14), (7.39), and (7.41): 0.0013 ,  0,0027, 0.0039, 0.0022. Use a = 0  
and b = 1 ,000 as the coding constants in the coding formula. 
Ans. 0.0010844, or 0.00108 

CHEBYSHEV'S THEOREM 

7.58 For the sample described in Problem 7.22, use Chebyshev's theorem (see Section 7. l 5) to answer this 
question: At least what percentage of the data lie in the interval (1 9.3 sec to 23 . 1  sec)? 
ADS. At least 1 9.9% of the data lie in the interval. 

7.59 For the sample described in Problem 7.22, use Chebyshev's theorem to answer this question: At least what 
percentage of the data lie in the interval (i = 2 1 .2 sec)± 4. 1  sec? 
Ans. At least 82.8% of the data lie in the interval. 

THE EMPIRICAL RULE 

7.60 For the sample of shell diameters in Problem 7.27, use the empirical rule (see Section 7 . 16) to determine the 
approximate number of shell diameters in the interval i± 2s. 
ADS. � (0.95 x 500 = 475) 

7.61 For the sample of shell diameters in Problem 7.27, use the empirical rule to determine the approximate 
number of shell diameters in the interval i± 3s. 
Ans. � (100% of the 500) 

. 
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7.62 If a population is nonnally distributed, what percentage of the population is less than /1± 2u? 
ADS. 97.7% 

GRAPHING CENTRAL TENDENCY AND DISPERSION 

7.63 From Fig. 7-7, which sample has the smallest and largest values? 
ADS. XS for both samples is 5 min, but XI is much larger for the control group (55 min vs. 25 min). 
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7.64 In Problem 7.29 we indicated that, as a general rule of thumb, the standard deviation should be somewhere 
between !(range) and ¥range). Is this true for the control and pill groups in Fig. 7 -7? 
Ans. For control: s;:::;!(range); for pill: s;:::;¥range) 

THE COEFFICIENT OF VARIATION 

7.65 Calculated for the past year (250 days of market trading), company A's stock had an average daily price per 
share of /1 = $ 140, u = $8, and company B's stock had an average daily price per share of /1 = $5, u = $0.8. 
Using equation (7.43), which stock had the greater relative dispersion? 
ADS. For company A :  V= 5.7%; for company B: V= 16.0% 

THE STANDARD SCORE AND THE STANDARDIZED VARIABLE 

7.66 For a sample XJ ,  X2, . . •  , Xn that is approximately nonnally distributed: (a) use Chebyshev'S theorem (see 
Section 7 . 15) to determine at least what proportion of the sample has standardized values between -2 and 2, 
and (b) use the empirical rule (see Section 7. 16) to determine approximately what percentage of the sample 
has standardized values between - 1 and 1 .  

Ans. (a) 0.75, (b) ;:::; 68% 

THE INTERQUARTILE RANGE AND THE QUARTILE DEVIATION 

7.67 For the distributions shown in Tables 6.7, 6 . 14, and 6 . 1 5, what percent of the data lie outside (above and 
below) the interval (midquartile) ± (quartile deviation)? 
ADS. 50% 

BOX PLOTS AND FIVE-NUMBER SUMMARIES 

7.68 The box plot in Fig. 7-1 3  shows a distribution summarized by a five-number summary: QJ, Qz, Q3, xs, XI. 
Detennine from the plot: interquartile range, quartile deviation, X, range, and whether the distribution is 
symmetrical or skewed. 
ADS. Interquartile range = 4 sec, quartile deviation = 2 sec, x = 15  sec, range = 10 sec, distribution is 
symmetrical 

7.69 The box plot in Fig. 7-14 shows a distribution summarized by a five-number summary: Qb Q2, Q3, xS' X,. 
Detennine from the plot: interquartile range, quartile deviation, X, range, and whether the distribution is 
symmetrical or skewed. 
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Ans. Interquartile range = 0.2 kg, quartile deviation = 0 . 1  kg, x = 2.65 kg, range = 1 .0 kg, distribution is 
positively skewed 



Chapter 8 

Probability: The Classical ,  Relative Frequency, Set 
Theory, and Subjective Interpretations 

8.1 THE CLASSICAL INTERPRETATION OF PROBABILITY 

The topic of probability was introduced in Chapter 3 (see Section 3 . 1 6) as part of an introductory 
overview of the science of statistics. Probability is an essential component of inferential statistics, where it 
is used to quantify the degree of uncertainty that can be assigned to any sample-to-population inference 
(see Section 3 .5). Therefore, as the primary emphasis ofthis book now shifts from descriptive to inferential 
statistics, it is necessary to first, in this chapter and the next, develop an understanding of the basic 
concepts and techniques of probability. 

As we indicated in Section 3 . 1 6, the probability of an event (a number between 0 and 1) indicates the 
likelihood or chance that the event will occur, with 0 indicating that the event cannot possibly occur and 1 
indicating that the event is certain to occur. Depending on how these probability numbers are calculated, 
however, they can have four differet;tt interpretations: the classical interpretation (presented in this section), 
the relative frequency interpretation (see Section 8.2), the set theory interpretation (see Sections 8.3 to 
8.6), and the subjective interpretation (see Section 8 .7). 

In discussing these four interpretations, we use a standard terminology that includes these concepts: 
experiments, trials, outcomes, and events. While in science an experiment involves the manipulation of an 
independent variable to see the effect on a dependent variable (see Section 1 . 1 9), in statistics an experiment 
is any process that yields a measurement. An example of such an experiment would be to roll a six-sided 
die and to observe, when the die stops rolling, the number of dots on the upward face. Each identical 
repetition of an experiment is called a trial (or subexperiment) of the experiment, and each result of a trial, 
the measurement, is called an outcome. Thus, each roll of the six-sided die is a trial of the experiment of 
rolling the die, and each trial yields one of six possible outcomes: 1 , 2, 3 ,  4, 5 ,  or 6 dots, which represent 
categories on a discrete ratio measurement scale (see Section 2.8). Any specific outcome of an experiment 
can be classified in different categories called events. Thus, for example, in the die-rolling experiment, 
rolling a specific number (e.g., a 3) is one possible event for this experiment, and rolling an even number 
(2, 4, or 6) is another. 

The classical interpretation of probability, which is the oldest of the four interpretations, was 
developed in the seventeenth century from studies of the games of chance used in gambling. It deals 
with idealized games in which every trial of an experiment is done under uniform and perfect conditions. 
Such perfect games are always "fair" in that all possible outcomes are equally likely to occur. One such 
idealized game would be the rolling of a uniformly dense, perfectly symmetrical die onto a flawless 
surface, using identical hand motions with each trial. Under these conditions all six faces of the die are 
equally likely to be upward at the end of the roll. This equal likelihood of outcomes is a distinguishing 
characteristic of the classical interpretation. 

For each experiment in such an idealized game, event A occurs if the experiment results in outcomes 
Javorable to A. Thus, for the die-rolling experiment, if A is rolling a 3, then A occurs if the single outcome 
favorable to this (rolling a 3) occurs. Similarly, if A is rolling an even number, then A occurs if one of three 
favorable outcomes (2, 4, or 6) occurs. For such experiments, the probability oj event A [denoted by peA)] 
is the ratio of the number of possible outcomes favorable to A (denoted by NA) to the total number of 
possible outcomes for the experiment (denoted by N), with the assumption that all possible outcomes are 
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equally likely. Thus 

peA) = r;; (8 . 1) 

which is the symbolic version of equation (3 .3). 
For the die-rolling experiment, if A is rolling a 3, then there is one favorable outcome out of a total of 

six, and 

peA) = r;; = � = 0 . 17 ,  or 17% 

If A is rolling an even number, then there are three possible favorable outcomes out of a total of six, and 

N 3 
peA) = ; = 6 = 0.50, or 50% 

These calculations illustrate that probability can be written as simple fractions, decimals, or percentages. If 
fractions are converted to decimals or percentages, then probabilities are typically reported, as here, to two 
significant figures. 

The classical interpretation is appropriate for any experiment where a definite set of possible outcomes 
is known in advance, one of the outcomes must occur, and all outcomes are equally likely. Because in this 
interpretation the probability is determined before the experiment is attempted, classical probabilities are 
also called a priori (before the fact) probabilities. 

EXAMPLE 8.1 You have a coin that is uniformly dense, perrectly flat and symmetrical, with two faces: a head and 
a tail. The experiment is to flip the coin into the air and observe which face lands upward. Determine the following 
probabilities : (a) P(head), (b) P(tail), (c) P(head or tail). 

Solution 

(a) There are two equally likely outcomes for each trial of this experiment-a head or a tail-and so N = 2. 
NA = 1 because only one of these outcomes (getting a head) is favorable to the event of interest. 
Therefore, using equation (8 . 1 )  

NA 1 P(head) = N = 2 = 0.50, or 50% 

(b) This problem has a solution identical to (a) 

P(tail) = ; = � = 0.50, or 50% 

(c) Here, N is the same but now NA = 2 because there are two possible outcomes favorable to the event of 
interest 

P(head or tail) = ; = � = 1 .0 or 100% 

This solution indicates that for an idealized flip of a coin, the probability is 100% that the outcome will be 
either a head or a tail. 

8.2 THE RELATIVE FREQUENCY INTERPRETATION OF PROBABILITY 

The classical interpretation of probability has serious limitations:. it is restricted to idealized 
experiments where all possible outcomes are known in advance and all are equally likely. There are 
many instances, however, where it is necessary to determine the probability of an event and it cannot be 
assumed that these classical requirements are being met. Thus in the following examples, while each 
experiment has two known outcomes (yes or no), these outcomes cannot be assumed to be equally likely: 
(1) an insurance company statistician determining the probability that a 45-year-old man will live to be 46; 
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(2) a geologist detennining the probability that an earthquake will occur sometime within the next five 
years in a city located along a fault line; and (3) a manufacturer of automobile headlights detennining the 
probability that none of the headlights in a shipment of 1 00 will be defective. While classical probabilities 
cannot be calculated for these examples, the required probabilities can be calculated using the relative 
frequency interpretation (also called the frequentistic interpretation, or empirical interpretation). 

In the classical interpretation, probabilities are detennined before any experiments are done. In the 
relative frequency interpretation, probabilities are detennined from the results of previous experiments. The 
data from many replications ofthe same or "similar" experiments are analyzed to see the relative frequency (i.e., 
the proportion of times) that the event of interest occurred. This relative frequency of the event, taken from 
previous data, is then considered to be an estimate of the probability offuture occurrences of the event. Thus, in 
the insurance example, the relative frequency of 45-year-old men dying before their 46th birthday would be 
calculated from previous data. Similarly, for the earthquake eXaQ1ple, the geologist would first find previous 
situations similar to the city in question and then would calculate the relative frequency of earthquakes 
following those conditions within a five-year period. And the headlight manufacturer would test several I 00-
light samples and detennine the relative frequency of defective lights in the samples. 

To develop the basic probability fonnula for the relative frequency interpretion, consider this simpler 
example. You have a coin that you think may be "unfair" -in some way fixed so that the two possible 
outcomes of a flip (head or tail) are not equally likely. To investigate this possibility you flip the coin 1 00 
times and get 70 heads and 30 tails. The relative frequency of heads is 70/1 00 = 7/ 1 0  = 0.70, or 70%, 
which is then your estimate of the probability of getting a head in future flips of this coin. It is only an 
estimate, an approximation, because if you went on to repeat the experiment 1 ,000 times or 1 ,000,000 
times you might get a somewhat different result. 

The relative frequency interpretation of probability can be stated as follows: 

The probability of event A [again denoted by peA)] is approximately equal to the ratio of the 
number of times A occurred in a long series of trials (denoted by n A) to the total number of trials in 
the series (denoted by n). Thus 

peA) � 
nA 
n 

(8.2) 

Another way that this is stated is the Law of Large Numbers (also known as Bernoulli 's theorem). This 
law states that for n trials of an experiment, if n A is the number of times A occurred in those trials and peA) 
is the probability of A occurring on any one trial, then the relative frequency (nA/n) will get closer and 
closer to peA) as n increases. In other words, the greater the number of trials the better the relative­
frequency estimate of peA). For the coin-flipping example described above, 1 00 trials is sufficient to 
confinn your suspicion that this coin is unfair-the coin seems "fixed" to give more heads than tails. 

EXAMPLE 8.2 A random number table (see Section 3.23) consists of thousands of digits-each of which is any 
one of the ten numbers from 0 to 9, and each of these ten numbers has an equal probability of appearing at any digit 
position in the table. Therefore, if we perfonn, the experiment of randomly picking a single-digit number from such a 
table, we can then use the classical interpretation to calculate the probabilities of events resulting from this pick (a 
specific number or group of numbers). Thus, for example, for Pea number less than 5) there are five numbers less than 
5 (0 to 4) so NA = 5, and there is a total of 1 0  possible numbers (0 to 9) so N = 10. Thus, using equation (8. l ), 

NA 5 
' 

P(# < 5) = 
N 

= 10 = 0.50, or 50% 

Test this probability for Table A. I in the Appendix by using any technique to enter the table, and then collecting 
240 consecutive single-digit numbers. Consider the taking of each number to be a trial. Calculate relative frequencies 
by accumulating frequencies and trials after every 1 0th trial (e.g., the relative frequency of numbers less than 5 in 
the first 1 0  trials, in the first 20 trials, in the first 30 trials, etc.) and then construct a graph of these relative 
frequencies. 
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Solution 

We entered Table A. I at row I and column I and proceeded to the right along the row, accumulating ten 
digits from each consecutive five-column unit. Thus, the first ten digits collected from row 1 and columns I 
through 5 were: 1 , 0, 0, 9, 7, 3, 2, 5, 3, 3 ;  the next ten digits collected from row I and columns 6 through 10  
were: 7, 6, 5, 2, 0, 1 , 3, 5, 8 , 6; and so on. To get 240 such digits we went from column I to column 75  along 
row I and then from column I to column 45 along row 2, ending with these ten digits from row 2 and columns 
41  through 45: 8 , 8 , 6, 9, 5, 4, 1 , 9, 9, 4. The results are shown in Fig. 8- 1 ,  where the vertical axis is relative 
frequency (nA/n), the horizontal axis is numbers of trials (n), the dashed horizontal line represents the classical 
frequency for this event [P(# < 5) = NA/N = 0.50], and the connected filled circles represent the relative 
frequency of numbers less than 5, with the frequency and trials accumulated after every lOth trial. 

It can be seen in Fig. 8-1 ,  as predicted by the Law of Large Numbers, that as the number of trials 
increases, the relative frequency estimate of the probability stabilizes near the classical probability. This 
agreement between the classical probability and the relative frequency estimate is evidence that Table A. I is 
indeed a random number table where each of the ten possible numbers is equally likely to be found at any digit 
position. This is not surprising because, if you read the introduction to the original source for this table (The 
RAND Coporation, A Million Random Digits, Free Press, Glencoe, Ill., 1 995), you will see that the table was 
generated by an "electronic roulette wheel" that had been carefully tested and adjusted to produce a random 
table. 
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8.3 SETS, SUBSETS, AND SAMPLE SPACES 

As indicated in Section 1 . 17, a set is a specific collection of things (e.g., objects, symbols, numbers, 
words). Set theory is the branch of mathematics that deals with sets, their characteristics and relationships. 
Set theory is discussed here because it is the basis for the mathematical theory of probability. However, we 
will deal only with those limited apects of the theory that are essential for an intuitive-level understanding 
of inferential statistics (see Section 3 . 14) .  

The things that belong to or are contained in a set are called the elements or members of the set. These 
elements are indicated either by listing them or by specifying their defining property. For example, say the 
set is the integers from 1 to 5. By the listing technique this set would be shown as 

S = { 1 , 2, 3 , 4, 5} 

where the elements of the set are listed within braces, and the braced list is made equal to the symbol S. By 
the defining-property technique, this set would be formally stated as 

S = {xix is an integer and I ::5 x ::5 5} 
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where the symbol xix (also written as x:x) means "x such that x." The entire equation is read: "s is the set 
of all elements x such that x is an integer and 1 ::: x ::: 5 ."  While this is the formal statement of a defining 
property, in this book we use a simpler phrase to specify the property. Thus, for this example 

S = {all integers from 1 to 5}  

If the set is  specified by the listing technique, then the order oflisting has no significance. It is  easier to 
see this for sets that have no necessary ordering: the students in a history class or the introductory 
economics books in a college library. 

A subset is any part of a set. Thus, if S = { I ,  2� 3 ,  4, 5 } ,  then the following are some of the subsets of 
S: A = { 1 ,  2} ;  B = { I , 2, 3 } ;  C = { 1 ,  4, 5 } .  Strangely, the entire set can be considered to be a subset, as can 
a set that contains no elements at all, which is called the empty set or null set and · denoted by 0. 

We said in Section 8 . 1  that in statistics an experiment is any process that yields a measurement. Each 
statistical experiment has a sample space-the set whose elements are all the possible outcomes of the 
experiment. Thus, for the die-rolling experiment described in Section 8 . 1  the sample space is S= { I ,  2, 3, 
4, 5,  6 } ,  and for the coin-flipping experiment in Example 8 . 1  the sample space is S = {head, tail} .  Note that 
the symbols used to denote sample spaces are the same as those used to denote sets. 

The die-rolling and coin-flipping experiments each have a finite number of possible outcomes, and so 
the sample spaces for these experiments are calledfinite sample spaces. By contrast, experiments at higher 
levels of measurement can have an infinite number of possible outcomes, and so can have infinite sample 
spaces. For example, if the experiment is to measure the air temperature in OF (interval level) or the heights 
of children in centimeters (ratio level), then these are continuous measurements that can theoretically yield 
an infinite number of outcomes. This chapter deals only with finite sample spaces, but later chapters deal 
with both types. 

8.4 EVENTS 

In Section 8 . 1  we said that any particular outcome or group of outcomes from an experiment is called 
an event. Now, restating this in set-theory language, we can say that any particular subset of the sample 
space is an event. A simple event (or elementary event) is a subset that contains only one outcome 
(element) that cannot be broken down (decomposed) into a simpler, more basic outcome. A typical 
notation for simple events is the lowercase of the letter e with a subscript representing position in the list of 
outcomes for the sample space. Thus, for the die-rolling experiment where S= { I ,  2, 3 ,  4, 5,  6} ,  there are 
six simple events in the sample space: el = { I } , e2 = {2} ,  e3 = { 3 } ,  e4 = {4} ,  es = {5 } ,  e6 = {6} .  

A compound event (or composite event) is  defined as a subset of the sample space that contains more 
than one simple event. Such compound events are typically denoted by capital letters. In the die-rolling 
experiment, for example, compound event A could be: rolling an even number. Then, A would include three 
simple events: e2 = {2 } ,  e4 = {4} ,  e6 = {6} ,  and be denoted by any of the following: A = {e2' e4, e6} ,  
A = {2, 4, 6} ,  or A = {rolling an even number} . A compound event has occurred if any one of its 
component simple events has occurred. 

From set theory it is known that if there are n elements in a set then there are 2n subsets of that set. 
Thus, for the sample space of the die-rolling experiment, S= { I , 2, 3, 4, 5, 6 } ,  n = 6 and there are 
(2n = 26 = 64) subsets of the set. Each of these subsets is an event that can result from the experiment, 
depending upon how the outcomes are classified. 

EXAMPLE 8.3 Three identical balls, numbered 1 , 2, and 3 ,  are placed in a jar. The experiment is to reach into the 
jar and, without looking, pull out one of the three balls. How many events (i.e., outcomes or groups of outcomes) can 
result from this experiment? 

Solution 

The sample space for this experiment is S = { I ,  2, 3 }. Since n = 3, there are (2n = 23 = 8) subsets of the 
set. One of the outcomes could be pulling out the #2 ball (a simple event), and another could be pulling out 
either the #2 ball or the #3 ball (a compound event, symbolized as {2, 3 }). All eight possible events are: the 
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three simple events [{ l } , {2},  {3}] ;  the three compound events that involve picking either one of two 
designated balls [ { l ,  2},  { I ,  3 } ,  {2, 3 }] ;  the compound event that involves picking any one of the three balls 
[ { l ,  2, 3 } ,  the set as a subset of itself]; and finally not picking any ball (0, the empty set). (While not 
picking any ball is not a real outcome ofthis experiment, it is nevertheless a subset with a probability of 
zero.) 

8.5 VENN DIAGRAMS 

A Venn diagram shows a sample space and events within the space. Three typical ways of constructing 
Venn diagrams are shown in Fig. 8-2. All three diagrams represent the sample space S =  { l ,  2, 3 ,  4, 5 ,  6} 
for the die-rolling experiment. The sample space is represented by a closed figure, such as an ellipse [Fig. 
8-2(a)] or a rectangle [Fig. 8-2(b) and (c)) . Simple events within the sample space can be shown as dots, 
called sample points [Fig. 8-2(a) and (b)], or they can be assumed present but not shown [Fig. 8-2(c)). 
Compound events are indicated by closed figures within the space. Compound event A = {rolling an even 
number} is shown as a shaded ellipse in Fig. 8-2(a) and (b) and as a shaded circle in Fig. 8-2(c). Where 
the sample points are shown, either identified by symbols or not, the Venn diagram is also called a Euler 
diagram. Where the sample points are not shown, the area of the closed figure within the sample space has 
no significance; the area is not proportional to the number of sample points that the figure encloses. 

(a) (b) (c) 

Fig. 8-2 

The complement of any event A in a sample space S is the subset of S that contains all elements of S 
that are not in A. This subset is given the symbol A' (or ..4). While A' is shown in Fig. 8-2(a), (b), 
and (c) as the space within S that is outside A,  the most common version of the Venn diagram for A and 
A' is shown in Fig. 8-3 . Here the circle containing A is not shaded, and A' is shown as the shaded area that 
is inside the rectangle but outside the circle. 

s 

Fig. 8-3 

Two events are said to be mutually exclusive events (or disjoint events) if when one occurs the other 
cannot occur. In set theory language, the events are mutually exclusive if they do not share any elements; 
there are no elements in one that are also in the other. By definition, all pairs of simple events in a sample 
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space are mutually exclusive. Thus, for example, it is not possible to flip a coin and simultaneously observe 
both a head and a tail, or to roll a die and simultaneously observe both a one and a six. Compound events 
are mutually exclusive if they have no simple events in common. 

EXAMPLE 8.4 Use a Venn diagram to depict the sample space for a die-rolling experiment, showing the two 
mutually exclusive events: A = {e" e3} and B = {e4' e6} '  

Solution 

A Venn diagram of the mutually exclusive events A and B in this example in which the sample points are 
shown, is seen in Fig. 8-4(a). A more typical Venn diagram for mutually exclusive events is shown in Fig. 8-
4(b). In both diagrams, the interior figures are separated and not shaded. 

The union of two events A and B in a sample space S is the subset of S whose elements belong to A or to 
B, or both A and B. In other words, the experiment can result in A or B or in both A and B. Such a union of two 
events is denoted in several ways: A u  B, A + B, A or B. For the die-rolling experiment, the union of events 
A = {3, 4} and B = {2, 4, 6} is shown, in Venn diagrams, in Fig. 8-5. In part (a) of the figure, the sample 
points are shown and both elliptical figures are shaded. The more typical version, seen in part (b) of the 
figure, shows the union of A and B with the two event circles overlapping and both circles shaded. 

The intersection of two events A and B in a sample space S is the subset of S whose elements belong to 
both A and B. In other words, the experiment results in the occurrence of both A and B. Such an intersection is 
denoted in various ways: A n B; A,B; AB; A and B. For the die-rolling experiment, a Venn diagram of the 
intersection of events A = {3 , 4} and B = {2, 4, 6}, showing the sample points, is seen in Fig. 8-6(a). The 
more typical version of a Venn diagram for the intersection of events A and B, without the sample points, is 
seen in Fig. 8-6(b). Notice in both figures that only the area of intersection (or overlap) is shaded. 

EXAMPLE 8.5 For the die-rolling experiment where S = { I ,  2, 3, 4, 5, 6}, if A = { I ,  2} and B = {2, 3, 4} what 
are: (a) A UB, (b) A n B, (c) A or B, (d) A and B? 

(a) (b) 

s 

0 0  
Fig. 8-4 

(a) (b) 
s s 

Fig. 8-5 
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(a) (b) 
s s 

Fig. 8-6 

Solution 

(a) A U  B is the union of A and B and therefore is the subset of S that contains all elements of S that are in A, 
in B, or in both A and B. Thus 

A U B = { 1 , 2, 3 , 4} 

(b) A n B is the intersection of A and B and therefore is the subset of S that contains all elements in S that are 
in both A and B. Thus 

(c) A or B is the same as A U B. 

(d) A and B is the same as A n B. 

A n B =  {2} 

8.6 THE SET THEORY INTERPRETATION OF PROBABILITY 

The set theory concepts and operations that we have dealt with in Sections S.3 to S.5 fonn the basis of 
the mathematical theory of probability. As with other mathematical theories, the theory of probability 
begins with a given set of assumptions called axioms (or postulates) that must be accepted as true. All the 
rest of the theory is then derived by deductive logic from the axioms. There are three such axioms for 
probability theory, which we will present shortly, from which all the properties and rules of probability can 
be derived. 

In the mathematical theory, probability is not related to specific real-world phenomena like gambling 
but is instead an abstract concept wholly defined and developed within the context of the theory, just as 
lines and points are abstract concepts in theoretical geometry. Within this theoretical context, a probability 
function is defined as any mathematical function that both assigns real numbers called probabilities to 
events in a sample space and also satisfies the three axioms. The probability function has as its domain the 
events in the sample space and as its range the probabilities assigned to these events. (See Section 1 . 1 7  for 
a discussion of functions.) So far in this chapter we have already dealt with two such functions: the 
function from the classical interpretation, which we will call the classical probability function, 
P(A) =NA/N, equation (S. l); and the function from the relative frequency interpretation, which we will 
call the relative frequency probability junction, peA) � nA/n, equation (S.2). 

Stated fonnally, this is the set theory interpretation of probability: 

Given that there is a sample space S that contains simple and compound events, then the 
probability of these events can be defined as a function that assigns specific real numbers called 
probabilities to each event in the sample space, with the provision that the function satisfies these 
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axioms: 

Axiom I For event A in S 

peA) 2: 0 

Axiom II For sample space S 

peS) = I 

Axiom ill If events A and B in S are mutually exclusive, then 

peA U B) = peA) + PCB) 
Axiom I states that the probability of event A is always a nonnegative real number; that peA) is always 

greater than or equal to zero . Axiom II states that one of the events in S must occur for every trial of the 
experiment; that the probability of one event in S occurring is 1 00%. It is because of Axiom II that S is 
called the certain event. Axiom ill, also called the special addition rule, states that the probability of the 
union of two mutually exclusive events A and B is equal to the sum of their separate probabilities. 

While these three axioms are part of the abstract world of mathematics, they were selected as the 
axioms for probability theory because the known properties of classical and relative frequency probability 
can be derived from them. In this book, we will not do these formal mathematical derivations but instead 
will simply present properties and rules that can be so derived. The following are seven such properties: 

Property 1 .  For the empty event 0 in S 

Property 2. For event A in S 

P(0) = 0 

o � peA) � I 

Property 3. For event A and its complement A' 

peA) + peA') = I 

Property 4. If events AI >  Az, . . .  , Ak in S are all mutually exclusive, then 

P(AI U A2 U . . . U Ak) = P(AI) + P(A2) + . . . + peAk) 

Property 5. If S contains n simple events ej that each have a probability P(ej), then 

n 
L P(ej) = 1 
i=1 

Property 6. If event A in S contains k simple events e;, then 

k 
peA) = L P( e;) 

;=1 

Property 7. If S contains N equally likely simple events e;, then 

I Pee;) = 
N 

and peA) = NA (�) 
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o is the empty or null subset of S, also called the empty event or null event, and therefore Property I 
states that the probability of the empty event is 0%. For this reason, the empty event is also called the 
impossible event; it can never occur. 

We know from Axiom I that peA) is always greater than or equal to zero and from Axiom II that the 
probability of the certain event S is 1 .  Property 2 simply combines these two axioms to state that all peA) 
values are nonnegative real numbers that are in the range from 0 to 1 .  

A and A' are mutually exclusive events. Therefore from Axiom III, 

peA U A') = peA) + peA') 

We also know that A' includes all elements of the set that are not in A (see Section 8.5), so that 

A U A' = S  

Therefore 

peA U A') = peS) = peA) + peA') = 1 

Thus, Property 3 states that the probability that an event will or will not occur is 100%. Property 3 can also 
be written 

peA) = 1 :- peA') 

or 

peA') = 1 - peA) 

Property 4 simply states that Axiom III can be generalized to apply to any number of mutually 
exclusive events in S. 

S contains n mutually exclusive events ei' Therefore 

S = el U e2 U . . .  U en 

and 

We know from Property 4 that 

n 
P(el U e2 U . . .  U en) = P(el ) + P(e2) + . . .  + peen) = L Pee;) 

i= 1  

Thus 

n 
L P(eJ = 1 
i=1 

Therefore, Property 5 states that the sum of the probabilities of the simple events in S is 100%. 
Property 6 states that the probability of event A is the sum of the probabilities of the simple events 

contained in A. 
Finally, Property 7 states that for the special case where all simple events in S are equally likely (the 

conditions for the classical interpretation) then if there are N simple events ei in S each of these will have 
the probability of 1 IN, and the probability of any compound event A will be the product of the number of 
simple events in A, NA, times l iN. 

EXAMPLE 8.6 In this section we indicated that any mathematical function is a probability function if it both 
assigns specific real-number probabilities to events in S and also satisfies the three axioms. Using examples from the 
die-rolling experiment, demonstrate that the function peA) =NA/N, equation (8. 1 ), which we have called the classical 
probability function, is indeed a probability function. 
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Solution 

As indicated in Section 8 . 1 ,  peA) = NA/N can be used for any experiment where the classical 
interpretation is appropriate. Under such conditions 

peA) = NA = number of outcomes favorable to A 
N total number of possible outcomes 

This can be stated for the set theory interpretation as 

peA) = NA = number of simple events in A 
N total number of simple events in S 

It is clear that this function assigns specific real-number probabilities to events in S and thus satisfies the 
first part of the definition of a probability function. To demonstrate that it also satisfies the three axioms, we 
must show that the axioms remain true if this function replaces peA) in the axioms. 

Axiom I, peA) ::: 0, states, in essence, that each event in S must have a probability greater than or equal to 
zero. This is clearly true for the die-rolling experiment where S = { I , 2, 3, 4, 5, 6} .  peA) = 0 when NA = 0, 
which is true for an empty subset of S such as A = {rolling a number larger than 6} .  For all other subsets of S, 
NA > 0 and thus peA) > O. 

Axiom II, P(S) = 1, states, in essence, that one simple event in S must occur for every trial of the 
experiment. Clearly for the die-rolling experiment, for every roll of the die one of the faces of the die must 
land upward and therefore one of the simple events in S must occur. 

Axiom III states for mutually exclusive events A and B that peA U B) = peA) + P(B). In general you can 
see that this is true from the following: 

peA U B) = NAUB = NA + NB = NA + NB = peA) + P(B) N N N N 
We can demonstrate that it holds true for the die-rolling experiment, using the two mutually exclusive events 
A = { I, 2} and B =  {3 ,  4, 5} .  For these, 

and 

NB = 3, NAUB = 5, 

peA U B) = NAUB = � 
N 6 

NA + NB 2 + 3 = ----'..:._--= 
N 6 

NA NB 2 3 = 
N + N

= 6 + 6 
= P(A) + P(B) 

8.7 THE SUBJECTIVE INTERPRETATION OF PROBABILITY 

Probabilities detennined with classical or relative frequency probability functions are called objective 
probabilities. They are detennined from purely objective infonnation: clear factual infonnation about the 
likelihood of an event, that has not been distorted by personal feelings or prejudices. Thus, classical 
probabilities are determined by knowing in advance all possible, equally likely outcomes of an experiment, 
and relative frequency probabilities are detennined by knowing the proportion of times an event has 
occurred in a long series of trials. 

There are many instances, however, when it is necessary to detennine probabilities and it is not 
possible to do this from purely objective infonnation. These instances require "personal judgments" or 
"educated guesses"-the personal and unique assessment of available infonnation to detennine the 
probability that an event will occur. In such instances, a numerical value is assigned to a personal degree of 
belief (or degree of certainty) in the likelihood of the event. Such measures of degree of belief are 
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subjective, and thus this version of probability is called the subjective (or personalistic or personal) 
interpretation of probability. 

The subjective interpretation is appropriate, for example, when an experiment that has never been done 
before will be attempted only once. Say you are a business manager who is about to introduce a new 
product into a market. To determine the probability of success for the product, you evaluate available 
information (e.g., successes and failures of similar products, your previous experiences when introducing 
new products, the general economic climate in this market), consult your feelings and intuitions, and then, 
somehow, put it all together into this subjective probability value: there is a 0.80 probability of success. By 
this mental integration you have decided that the product is four times more likely to succeed than to fail. 

Another example of a subjective probability for a one-time experiment is a high-school senior's 
judgment that there is a 50% chance she will be accepted into the college of her choice. From her 
assessment of available information and beliefs she has decided that she is as likely to be accepted as 
rejected. 

Typically the probability function for such subjective probabilities cannot be externalized and formally 
written out. Whatever skill, experience, and integrative mental processes went into such a calculation, 
however, the resulting probability values must conform to the axioms and properties of Section 8.6 and 
other rules and properties to be discussed in Chapter 9. 

8.8 THE CONCEPT OF ODDS 

The concept of odds is an alternative method for expressing any form of probability, obj ective or 
subjective. If peA) is the probability that event A will occur and peA') is the probability that it will not occur 
(the probability of its complement), then the odds in favor of the event occurring are defined as the ratio of 
peA) to peA'). This ratio, by convention, is expressed as the ratio of two positive integers, c and d, that have 
no factors in common. Thus, the odds in favor of A are 

which is typically stated as: The odds in favor of A are c to d. The odds unfavorable to A are 

peA') d 
peA) 

=
� 

which is typically stated as: The odds against A are d to c. 

(8 .3) 

(8.4) 

Odds are conventionally stated as odds in favor of A if peA) > peA'), and as odds against A if peA) < 
peA'). 

EXAMPLE 8.7 A television weatherman says that there is a 70% probability that it will rain tomorrow. According 
to him, what are the odds that it will rain tomorrow? 

Solution 

In this problem, the event A is the occurrence of rain tomorrow and the weatherman has stated that 
peA) = 0.70. From Property 3 in Section 8.6 we know that P(A') = 1 - peA). Therefore 

peA') = 1 - 0.70 = 0.30 

Thus, the odds in favor of rain tomorrow are 

peA) _ 0.70 _ 2 
7 t 3 

peA') - 0.30 - 3
' or 0 

Betting odds, as given by commercial gambling houses or at the race track, indicate the amount that a 
gambler can win or lose in betting on an event. Thus, betting odds of 5 to I indicate that the gambler can 
win $5 or lose $ 1  on the bet. Such betting odds are set to make a profit for the gambling establishment; 
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they are not necessarily the same as the odds the event will occur. If the two types of odds are the same for 
a given bet, then the bet is called a fair bet. 

EXAMPLE 8.8 You know that two tennis players, R and S, have played 36 matches and that R has won 24 of them. 
You offer to bet a friend your $ 15  against his $ 10  that R will win the next match. Is this a fair bet? 

Solution 

A = {R wins} ,  A' = {S wins}.  With the relative frequency interpretation 

Therefore, the odds in favor of A are 

peA') � .!3. = � 36 3 

peA) 2/3 2 
peA') 

� 1/3 = l '  or approximately 2 to 1 

Thus, for this bet to be a fair bet it should be your $20 against his $ 10. As is, it is not a fair bet. 

8.9 DETERMINING PROBABILITIES FROM ODDS 

In Section 8 .8  we detennined odds from probabilities. In this section, we detennine probabilities from 
odds, by solving the following equation for both peA) and peA'). 

peA) c = 
peA') d 

We know from Property 3 in Section 8 .6 that 

peA') = I - peA) 

Substituting this relation in the odds equation 

and thus 

Therefore 

and thus 

peA) c = 
I - P(A) d 

d x peA) = c[I - peA)] 
= c - e x  peA) 

[c x peA)] + [d x peA)] = c 
P(A)(c + d) = c 

P(A) = �
d c +  

To solve for peA') we again start with Property 3 in Section 8.6 

peA') = 1 - peA) 

(8.5) 
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Therefore 

and thus 

peA') = 1 _ _  c
_ 

c + d  
c + d  c 

= -- - --
c + d  c + d  
c + d - c  

= ------:--c + d  

P(A') = �
d c +  

EXAMPLE 8.9 If the odds in favor of event A occurring are 4 to 3, what are: (a) peA), (b) peA')? 

Solution 

As c = 4 and d= 3: 
c 4 

(a) peA) = -- = - = 0.57, c + d 4 + 3 

( ') d 3 (b) P A = -- = -- = 0.43 , c + d 4 + 3 

or 57% 

or 43% 

Solved Problems 

THE CLASSICAL INTERPRETATION OF PROBABILITY 

(8.6) 

8.1 In a standard 52-card deck of playing cards there are four suits (clubs, diamonds, hearts, and 
spades) of 1 3  cards each (ace, 2, 3 ,  4, 5, 6, 7, 8, 9, 1 0, jack, queen, and king). The diamonds and 
hearts are called red cards (marked with red symbols) and the clubs and spades are called 
black cards (marked with black symbols). The experiment consists of picking one card from a 
well-shuffled standard deck. Determine the following probabilities: (a) P(10  of hearts), 
(b) P(heart), (c) P(1 0), (d) P(red card). 

Solution 

(a) N = 52 because each of the 52 cards is equally likely to be picked. NA = 1 because only one of the 52 
cards is favorable to this event. Therefore, using equation (8. 1), 

NA I 
P(IO  of hearts) = Ii = 

52 
= 0.01 9, or 1 .9% 

(b) Again N= 52, but now there are 1 3  possible favorable outcomes (heart cards), so NA = 13 .  Therefore 

NA 13 0 P(heart) = Ii = 
52 

= 0.25, or 25 Yo 

(c) Again N = 52, but now there are 4 possible favorable outcomes (cards identified as lOs), so NA = 4. 
Therefore 

NA 4 P(10) = Ii = 
52 

= 0.077, or 7.7% 
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(el) Again N = 52, but now there are 26 possible favorable outcomes (diamond and heart cards), so NA = 26. 
Therefore 

NA 26 
P(red card) = Ii = 52 = 0.50, or 50% 

8.2 Table 8 . 1  shows the age and sex of 85 students in a college history class (e.g., 15 of the students are 
males who are 20 years old or younger). The experiment is to use a table of random numbers (see 
Section 3 .23) to select one of the students from the class and find his or her age and sex. Determine 
the following probabilities: (a) P(male 20 or younger), (b) P(male), (c) P(student 20 or 
younger), (d) P(male or female). 

Table 8.1 

Age 

20 or Over 20 Total 
Sex younger 

Male 1 5  30 45 
Female 20 20 40 

Total 35 50 85 

Solution 

(a) N = 85 because the equally likely outcomes of this experiment are the 85 students. They are all equally 
likely because the selection is random. NA = 1 5  because there are 1 5  males that are of age 20 or younger. 
Therefore, using equation (8. 1), 

N 1 5  
P(male 20 or younger) = : = 85 = 0. 1 8, or 1 8% 

(b) Again N = 85, but now there is a total of 45 males so NA = 45. Therefore 

NA 45 0 P(male) = 
N 

= 85 = 0.53, or 53 Yo 

(c) Again N = 85, but now there is a total of 35 students 20 or younger so NA = 35 .  Therefore 

N 35 
P(student 20 or younger ) = : = 85 = 0.4 1 ,  or 41 % 

(el) Again N= 85, but now all the students are either male or female so NA = 85. Therefore 

NA 85 
P(male or female) = Ii = 85 = 1 .0, or 1 00% 

8.3 Fifty marbles of different colors are placed in a jar and thoroughly mixed. Twenty-five of the 
marbles are blue, 20 are green, and 5 are red. If one marble is then blindly selected from the jar, 
determine the following probabilities: (a) P(red marble), (b) P(blue or red marble). 

Solution 

(a) N= 50 and NA = 5. Using equation (8. 1), 
NA 5 

P(red marble) = Ii = 50 = 0. 1 0, or 1 0% 
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(b) N= 50 and NA = 25 + 5 = 30. Using equation (8. 1), 
N 30 P(blue or red marble) = � = 50 = 0.60, or 60% 

[CHAP. 8 

8.4 Three families get together for a holiday dinner. Mr. and Mrs. Brown have three daughters and one 
son. Mr. and Mrs. Cruz have one daughter and two sons. Mr. and Mrs. Hansen have three sons. As a 
way of deciding who will carve the turkey, everyone writes his or her name on a piece of paper and 
places it in a hat. The pieces of paper are thoroughly mixed within the hat and, without looking, Mr. 
Hansen draws one of the names from the hat. Determine the probability that the name drawn 
is: (a) Mr. Hansen, (b) a member of the Cruz family, (c) a male, (d) not a member of the 
Hansen family. 

Solution 

(a) N = 6 + 5 + 5 = 16 and NA = 1 .  Using equation (8 . 1 ), 
NA 1 P(Mr. Hansen) = N = 1 6  = 0.06 = 6% 

(b) N= 6 + 5 + 5 = 1 6 and NA = 5  

P(member of Cruz family) = � = 1
5
6 = 0.3 1 %,  or 3 1  % 

(c) N= 6 + 5  + 5  = 1 6  and NA = 2 + 3 + 4 = 9  
NA 9 Pea male) = N = 16 = 0.56, or 56% 

(d) N= 6 + 5 + 5 = 16 and NA = 6 + 5 = 1 l  

P(not a member of the Hansen family) = NA = !.!. = 0.69, or 69% , N 16  

THE RELATIVE FREQUENCY INTERPRETATION OF PROBABILITY 

8.5 In Section 8 . 1  we used the classical interpretation to determine the probabilities for two possible 
events resulting from an idealized die-rolling experiment: P(rolling a 3) = 0. 17, and P(rolling an 
even number) = 0.50. Test these probabilities for an actual die by rolling it 240 consecutive times. 
Try to make all trials as similar as possible. From the results, calculate relative frequencies for each 
event by accumulating frequencies and trials after every 12th trial (e.g., relative frequency of 3 s in 
the first 1 2  trials, in the first 24 trials, in the first 36 trials, etc.) and then construct a graph of these 
relative frequencies. 

Solution 

We rolled a standard plastic die 240 times with a "uniform motion": the die was rolled into a wall some 
four feet away and then allowed to roll back along the floor until it stopped. The relative frequencies of getting 
even numbers and of getting 3s are shown in Fig. 8-7, where the vertical axis is relative frequency (nA/n); the 
horizontal axis is trials (n); the two dashed horizontal lines represent the classical probabilities (NA/N) for the 
two events; the connected filled circles represent the relative frequencies of 3s, accumulated after every 12th 
trial; and the connected open circles represent the relative frequencies of even numbers, accumulated after 
every 1 2th trial. 

It can be seen, as the Law of Large Numbers predicts (see Section 8.2), that as the number of trials 
increases the accumulated relative frequencies become increasingly more stable, getting closer and closer to 
the classical probabilities for these events. If the trials had continued, the relative frequencies might have 
settled exactly on the classical probability lines or, due to imperfections in the technique or the die, they might 
have remained slightly off the lines. 
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8.6 During the past year in the maternity ward of a hospital in a large city, 1 ,060 males were born and 
1 ,000 females. Assuming this data to be representative for all births, what is the probability that the 
next baby born in this hospital will be a boy? What is the probability it will be a girl? 

Solution 

For a boy, nA = 1 ,060, and n = (1 ,060 + 1,000) = 2,060. Thus, using equation (8.2), 
nA 1 , 060 P(boy) � -; = 2,060 = 0.5 1 ,  or 5 1  % 

For a girl, nA = 1 ,000, and n = 2,060. Thus 

P(girl) � nA 
= 

1 ,000 
= 0 49 or 49% n 2,060 . ,  

8.7 Early in the season (in late May), a baseball player had 5 hits in 26 times at bat. Later in that same 
season (early August), he had achieved 1 1 7  hits in 352 times at bat. What is the probability that the 
next time he comes to bat he will get a hit in: (a) late May, (b) early August? 

Solution 

(a) In late May the relative frequency of hits (his batting average) was 5/26 = 0.19 .  Thus the relative 
frequency estimate of the probability of his getting a hit the next time at bat was 

P(getting a hit) � nA = 0. 19  

(b) By early August the relative frequency estimate was 

n 

P(getting a hit) � n: = ��� = 0.33 

From the Law of Large Numbers we expect that the August estimate, based on almost 14 times the 
number of experiments (times at bat), is a much better estimate of the probability that he will get a hit. 

8.8 A manufacturer of automobile headlights wants to determine the probability that the next headlight 
produced by his company will be defective. He tests a sample of 100 and finds 2 defectives. What is 
the probability the next will be defective? How many defectives can he expect to find in a shipment 
of 1 ,000? 
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Solution 

For the sample of 1 00, nA = 2, and n = 100. Therefore, the probability that the next headlight will be 
defective is 

P(defective) � nA 
= � = 0.02, or 2% 

n 100 
From this one can estimate that 2%, or 20 headlights, will be defective in a shipment of 1 ,000. This, of 
course, is not an exact prediction but only an approximate estimate based on 100 trials of an experiment. 

SETS, SUBSETS, SAMPLE SPACES, AND EVENTS 

8.9 In a game of chance, a single card is picked from a well-shuffled, standard 52-card deck of playing 
cards. What is the sample space and how many events can result from the experiment? 

Solution 

There are 52 possible outcomes but instead of listing them we will use the defining property: S = {the 52 
cards in a standard deck} . Thus, from Section 8.4, 2n = 252 possible events can result from this experiment. 

8.10 The experiment is to randomly select one student from the 85-student class shown in Table 8. 1 .  
What is the sample space and how many events can result from the experiment? 

Solution 

Using the defining property S = {the 85 students in the history class} ,  285 possible events can result from 
this experiment. 

8.1 1  The experiment is to flip a coin two times and to observe, for each flip, whether the head or the tail 
lands face upward. What is the sample space and how many events can result from the experiment? 

Solution 

For two consecutive trials of the coin-flipping experiment, each simple event has two components . Using 
H for heads and T for tails, the sample space is S = {HH, HT, TH, TT}. Thus, there are (24 = 16) possible 
events that can result from this experiment. These events are: 

{HH} ,  {HT} ,  {TH},  {TT} ,  {HH, HT}, {HH, TH},  {HH, TT}, {HT, TH} ,  {HT, TT}, {TH, TT} , {HH, 
HT, TH},  {HH, HT, TT}, {HH, TH, TT}, {HT, TH, TT} ,  {HH, HT, TH, TT}, and 0 

(Recall from Section 8.4 that a compound event, such as {HH, HT},  involves getting just one of its simple 
events, such as HH.) 

8.12 For the maternity ward in Problem 8.6, the experiment is to determine the sex of the next baby born 
in the ward. For this experiment, what is the sample space and how many events can result? 

Solution 

S = {boy, girl}; the (22 = 4) possible events are: {boy} ,  {girl} ,  {boy, girl } ,  and 0 

8.13 For the baseball player in Problem 8.7, the experiment is to determine whether he gets a hit the next 
time at bat. For this experiment, what is the sample space and how many events can result? 

Solution 

S = {hit, no hit} ; the (22 = 4) possible events are: {hit} , {no hit}, {hit, no hit} , and 0 
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8.14 For the headlight manufacturer in Problem 8.8, the experiment is to determine whether the next 
headlight is defective. For this experiment, what is the sample space and how many events can 
result? 

Solution 

S =  {defective, not defective} ;  the (22 = 4) possible events are: {defective} ,  {not defective}, {defective, 
not defective}, and 0 

VENN DIAGRAMS 

8.15 A single card is drawn from a well-shuffled, standard deck of playing cards. For this experiment, 
indicate whether the following pairs of events are mutually exclusive and/ or 
complementary: (a) A =  {a  red card},  B = { a black card}; (b) A =  {a  card numbered 2, 3 , 4, 
6, or 1O} ,  B =  {a  card from the diamond suit}; (c) A = {a card numbered 2, 3 , 4, 5, 6, 7, 8, 9, or 
10} ,  B = {a  card that is an ace, jack, queen, or king};  (d) A = {a  diamond card that is an ace, 2, 3, 
4, 5, 6, or 7}, B =  {a diamond card that is an 8, 9, 1 0, jack, queen, or king} .  

Solution 

(a) Events A and B are mutually exclusive because no card can be both red and black. A and B are also 
complementary (B =A') because all simple events in S that are not in A are in B. 

(b) Events A and B are not mutually exclusive because they share simple events; the diamond suit has cards 
numbered 2, 3, 4, 6, and 10. As they are not mutually exclusive, events A and B are automatically also 
not complementary. Recall that A' contains all simple events in the sample space that are not in A. 

(c) Events A and B are mutually exclusive; they do not share any simple events. Events A and B are also 
complementary (B =A') because all simple events in S that are not in A are in B. 

(d) Events A and B are mutually exclusive; no diamond card can be simultaneously both an ace, 2, 3, 4, 5, 6, 
or 7, and an 8, 9, 1 0, jack, queen, or king. Events A and B are not complementary, however, because the 
other three suits in the sample space are not included in either A or B. 

8.16 A single student is chosen, at random, from the history class shown in Table 8 . 1 .  For this 
experiment, indicate whether the following pairs of events are mutually exclusive and/or 
complementary: (a) A = {a male 20 or younger} ,  B = {a male over 20} ;  (b) A = { a male } ,  
B =  {a female} ;  (c) A = { a  student 20 or younger},  B =  { a  student over 20 } ;  (d) A = { a  male 
20 or younger} ,  B = { a  female 20 or younger} .  

Solution 

(a) A and B are mutually exclusive but not complementary. 

(b) A and B are both mutually exclusive and complementary. 

(c) A and B are both mutually exclusive and complementary. 

(d) A and B are mutually exclusive but not complementary. 

8.17 For the sample space shown in the Venn diagram in Fig. 8-8, which includes events A, B, and e, 
what are: (a) A', (b) A UA', (c) A and A', (d) A n B, (e) A or B, (j) B and e, 
(g) B U e, (h) A' n B, (i) A' U B, (j) A' or B', (k) B' U e', (T) B' and e'? 

Solution 

(a) A' is the complement of A and therefore contains all elements of S that are not in A. Thus 
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s 

Fig. 8-8 

(b) A U A', the union of A and its complement, is the subset of S containing all elements in A, and A', or in 
both A and A'. Thus 

A U A' = S  

(c) A and A', the intersection of A and its complement, is the subset of S containing all elements shared by A 
and A'. As, by definition, there are no shared elements 

A and A' = 0 

(d) Events A and B do not share any elements because they are mutually exclusive. Thus 

A n B = 0  

(e) A or B is the union of A and B. Thus 

(f) Events B and C share e6. Thus 

(g) B U C = {e6, e7, e8, e9, eJQ, el l }  

Note that while e6 i s  in  both B and C it is only included once in B U C. 
(h) A' n B = {e6, e7, e8} 

(i) A' U B = A' = {ej, e4, e6, e7, e8, e9, eJQ, el l , e12} 

U) A' or B' = S  

(k) B' U C' = {all elements in S except e6} 

(I) B' and C' = {el' e2, e3, e4, es, e12} 

8.18 A single card is drawn from a well-shuffled, standard deck of playing cards, in which S = {the 52 
cards in a standard deck} .  For this experiment, consider the following events: A = {ace } ,  
B =  {diamond} ,  C= {2, 3 ,  4, 5, or 6 } ,  D =  {black card}. What are: (a) B', (b) A U B, (c) A 
and B, (d) A n B', (e) B n D', (J) B or C, (g) A n C, (h) C or D, (i) A and C', 
U) A' n B', (k) B' U D'? 

Solution 

(a) B' = {the 39 cards in the club, heart, and spade suits} 
(b) A U  B = {the 1 3  cards in the diamond suit and the ace of clubs, the ace of hearts, and the ace of spades} 

(c) A and B = {ace of diamonds} 

(d) A n  B' = {ace of clubs, ace of hearts, ace of spades} 

(e) B n D' = {the 1 3  cards in the diamond suit} 

(f) B or C= {the 1 3  cards in the diamond suit, and the 2, 3, 4, 5, and 6 cards from the other three suits} 
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(g) A n C= 0 
(h) C or D =  {the 26 black cards (clubs and spades) and the 2, 3 ,  4, 5, and 6 red cards (diamonds and 

hearts) } 

(i) A and C' = {the 4 aces} 

(j) A' n B' = {all cards in the club, heart, and spade suits except the aces} 
(k) B' UD' = S  

THE SET THEORY INTERPRETATION OF PROBABILITY 

8.19 A ticket for tonight's concert costs $4, $8, $ 1 2, $ 1 5,  or $20. The first 1 ,000 people to purchase 
tickets bought the following: 200 bought $4 tickets, 500 bought $8 tickets, 1 50 bought $ 12 tickets, 
100 bought $ 1 5  tickets, and 50 bought $20 tickets. The experiment is to predict the price of the next 
ticket purchased. Using this experiment as an example, demonstrate that equation (8.2), peA) � 
nA/n, which we have called the relative frequency probability function, is indeed a probability 
function. Use Example 8 .6 as a model for this demonstration. 

Solution 

In the relative frequency interpretation, the probabilities for events in the sample space of an experiment 
are determined by the relative frequency of these events in a series of previous trials of the experiment. Thus, 
as was stated in Section 8.2: 

P(A) is approximately equal to the ratio of the number of times A occurred in a long series of trials 
(nA) to the total number of trials in the series (n). 

Or, stated symbolically 

P(A) � 
nA 

n 

This function assigns specific real-number probabilities to events in S and thus satisfies the first half of 
the definition of a probability function. It also clearly satisfies Axiom I, as nA can never be less than zero and 
thus P(A) can never be less than zero. P(A) can be zero for an empty subset of S (e.g., purchasing a $25 ticket) 
or if nA is zero (e.g., no $4 tickets were purchased). 

Axiom II is satisfied because it is 100% certain that one of the simple events in S must occur on every 
trial of the experiment; that each time a ticket is purchased it must cost $4, $8, $ 1 2, $ 1 5, or $20. 

To show that Axiom III is satisfied we use the same logic as in Example 8.6 and let A = {ticket :s $8} 
and B = {ticket ::: $ 15 } .  Then 

nA = 700, 

and 

nB = 1 50, nAUB = 850, 

P(A U B) � 
nAUB = 

850 
n 1 ,000 

nA + nB 700 + 1 50 
� 

n 
= 

1 , 000 

nA nB 700 1 50 
� - + - = -- + --

n n 1 ,000 1 , 000 

� P(A) + P(B) 

n = 1 , 000 

8.20 In the sample space shown in Fig. 8-9, which includes events A, B, e, and D, each sample point 
represents an equally likely (equally probable) simple event. Use the axioms and properties of 
Section 8.6 to determine the following probabilities: (a) peA), (b) P(B),  (c) p(e) , 
(d) P(D), (e) P(A U C), (J) peA'), (g) p(A U B U e U D), (h) p(A n B), (i) P(A U C'). 
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s 

Fig. 8-9 

Solution 

(a) Property 7 states that if S contains N equally likely simple events ei then 

I Pee;) = N 
In this sample space N = 20, and therefore 

Property 7 further states that 

peA) = NA (�) 
Thus, as there are four simple events in A, 

(b) PCB) = NB(�) = 3 (z10) = ;0 
= 0. l 5  

(c) P(C) = Nc(�) = 5 Go) = ;0 
= 0.25 

(d) P(D) = ND (�) = 2 Go) = �O = 0. 1 0  

(e) A and C are mutually exclusive and therefore from Axiom III 

peA U C) = peA) + P( C) = 0.20 + 0.25 = 0.45 

(j) From Property 3 

peA') = I - peA) 
= 1 - 0.20 = 0.80 

(g) A, B, C, and D are all mutually exclusive, and therefore from Property 4 

peA U B U C U D) = peA) + PCB) + PC C) + P(D) 
= 0.20 + 0. 1 5  + 0.25 + 0 . 10  = 0.70 

(h) As A and B are mutually exclusive, A n B =  0, and therefore from Property I 
peA n B) = P(0) = 0 

[CHAP. 8 
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(i) A and C are not mutually exclusive so we cannot use Axiom III. Instead we will use Property 7: 

A U C' = {all simple events in S that are outside C} 

Thus 

NAUC' = 15  

and , ( I )  ( 1 ) 15 peA U C )  = NAUC' N = 15 20 = 20 = 0.75 

249 

8.21 In the sample space shown in Fig. 8-10, which includes events A, B, and C, the number above each 
sample point is the relative frequency approximation of the probability of the simple event 

n 
represented by the sample point Pee;) R:: ..:2.. Use the axioms and properties of Section 8.6 to determine the 

n 

following probabilities: (a) peA), (b) P(B), (c) P(C), (d) P(A U B), (e) PCB'), (j) P(A U B U C), 
(g) p(B n C), (h) P(A UB'). 

Solution 

(a) Property 6 states 

Therefore here 

(b) P(B) R:: 0 . 10 + 0.05 = 0. 1 5  
(c) P(C) R:: 0.25 + 0. 1 0  = 0.35 

s 

Fig. 8-10 

k 
peA) = "L, P(e;) 

;= 1 

peA) R:: 0.05 + 0.05 + 0.20 = 0.30 

(d) A and B are mutually exclusive, and therefore from Axiom III 

peA U B) = peA) + PCB) R:: 0.30 + 0 . 15  = 0.45 

(e) From Property 3 

PCB') = 1 -PCB) 
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Therefore 

PCB') � 1 - 0. 1 5  = 0.85 

(f) A, B, and C are all mutually exclusive, and therefore from Property 4 

peA U B U  C) = peA) + P(B) + P(C) 

and 

peA U B  U C) � 0.30 + 0. 1 5  + 0.35 = 0.80 

(g) As B and C are mutually exclusive, B n C = 0, and therefore from Property I :  

PCB n C) = P(0) = 0 

[CHAP. 8 

(h) A and B' are not mutually exclusive, so we cannot use Axiom III. Instead we will use Property 6: 

A U  B' = {all simple events in S that are outside B} 

Thus 

peA U B') � 0.05 + 0.05 + 0.20 + 0 . 10  + 0.25 + 0 . 10  + 0. 10 = 0.85 

8.22 For the experiment of drawing a single card from a well-shuffled, standard deck of playing cards, in 
which S= {the 52 cards in a standard deck}, use the axioms and properties of Section 8.6 to 
determine the following probabilities: (a) P(lO  of clubs), (b) P(king), ( c) P( card that is not a 
king), (d) P(heart or king), (e) P(4 or 10  or king). 

Solution 

(a) Using Property 7, 

1 1 
Pee;) = N = 

52 

Therefore, as there is only one 10 of clubs, NA = 1 and 

P(lO  of clubs) = NA (!.-) = 1 (�) = � = 0.019 
N 52 52 

(b) Now for Property 7, NA = 4  and 

Peking) = NA (�) = 4(5
1
2) = 

5� = 0.077 

(c) Using Property 3, 

P(card that is not a king) = 1 - peking) = 1 - 0.077 = 0.923 

(d) . {Heart or king} = { 1 3  heart cards and the kings of clubs, diamonds, and spades} .  Using Property 7, 

P(heart or king) = NA (�) = 16G2) = �� = 0.308 

(e) Since 4, 1 0, and king are mutually exclusive, we can use Property 4: 

As 

P(4 or 10 or king) = P(4) +P(10) + P(king) 

P(4) = P(IO) = Peking) = NA (.!.) = 4(..!..) = � = 0.077 
N 52 52 
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then 

P(4 or 1 0  or king) = 0.077 + 0.077 + 0.077 = 0.23 1 

8.23 In Problem 8 . 1 1  we determined that 1 6  possible events (outcomes and groups of outcomes) can 
result from the experiment of flipping a coin twice. Ifthis experiment is actually done and the result 
is HH, how many events occurred and what was the probability of each? 

Solution 

Prior to doing the experiment, (2n = 24 = 16) events were possible. Actually doing the experiment 
resulted in 2n - I events occurring, as there are this many subsets of S that contain the outcome of the 
experiment. Thus, here, there are (24- I = 23 = 8) events that contain HH: {HH} , {HH, HT}, {HH, TH}, 
{HH, IT}, {HH, HT, TH} ,  {HH, HT, IT}, {HH, TH, IT} and {HH, HT, TH, TT} . 

We can use Property 7 from Section 8.6 to determine all these probabilities. Thus, as S= {HH, HT, TH, 
IT}, N= 4, and therefore 

P(HH) = NA (�) = 1 G) = � = 0.25 

P(HH, HT) = P(HH, TH) = P(HH, TT) = NA (�) = 2 G) = � = � = 0.50 

P(HH, HT, TH) = P(HH, HT, TT) = P(HH, TH, TT) = NA (�) = 3G) = � = 0.75 

P(HH, HT, TH, TT) = NA (�) = 4G) = 1 

SUBJECTIVE INTERPRETATION OF PROBABILITY AND THE CONCEPT OF ODDS 

8.24 For the following probabilities, first indicate whether they are classical, relative frequency, or 
subjective, and then, using the appropriate formula from Section 8.8, convert the probabilities into 
odds: (a) you estimate that the probability you will get the job you have applied for is 
0. 10, (b) the probability of not getting a 3 in one roll of a die is 5/6, (c) based on the 
number of boys and girls born within a maternity ward over the past year, the probability that the 
next baby born in the hospital will be a boy is approximately 0.5 1 .  

Solution 

(a) Subjective probability: 

A = {get the job}, A' = {do not get the job}, P(A) = 0. 10, P(A') = 0.90 

Using equation (8.4), 

P(A') 0.90 9 
P(A) 

= 
0. 1 0  

= -

And thus, because P(A) < P(A'), it is stated conventionally that the odds against your getting the job are 
9 to 1 .  

(b) Classical probability: 

A = {3}, A' = { l ,  2, 4, 5, 6}, P(A) = 1/6, P(A') = 5/6 

Using equation (8.4), 

P(A') 5/6 
= 

P(A) 1 /6 

And thus the odds against getting a 3 are 5 to 1 .  

5 
1 
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(c) Relative frequency probability: 

A = {boy}, A' = {girl}, peA) � 0.5 1 ,  peA') � 0.49 
Using equation (8.3), 

peA) 0.51 5 1  
peA') 

� 0.49 = 49 

And thus, the odds in favor of the next baby being a boy are approximately 5 1  to 49. 

[CHAP. 8 

8.25 For the following odds, first use the appropriate formula from Section 8.9 to convert the odds to 
probabilities, and then state whether the resulting probabilities are classical, relative frequency, or 
subjective: (a) odds against your six-number ticket matching the selected six numbers and 
winning the state lottery are 5.2 million to 1 ;  (b) your estimate of the odds that the last 
prospective buyer will actually buy your house is 3 to 2 ;  (c) from past data it is estimated that 
the odds against a high school athlete becoming a professional athlete are 500,000 to 1 .  

Solution 

(a) A = {ticket wins}, A' = {ticket does not win} ,  c =  1 ,  d= 5,200,000. Using equation (8.6), 

peA') = _
d_ = 5,200,000 = 0.99999981 ,  or essentially 100% c + d 1 + 5,200,000 

Classical probability 
(b) A = {will buy}, A' = {will not buy}, c = 3, d = 2. Using equation (8.5), 

c 3 3 peA) = -- = -- = - = 0.60 
c + d  3 + 2  5 

Subjective probability 
(c) A = {becoming a professional} ,  A' = {not becoming a professional}, c;: � 1 ,  d � 500,000. Using 

equation (8.6), 

(A') d 500,000 . . 0 P = -d- � = 0.9999980 or agam essentIally 100 Yo + c I + 500,000 
Relative frequency probability 

8.26 A real-estate developer estimates for a commercial building that: the odds against its value 
increasing over two years are 3 to 2; the odds against its value staying the same over two years are 7 
to 3 ;  and the odds against its value decreasing over two years are 3 to 3 .  Do you see anything wrong . 
with these odds? 

Solution 

Converting the odds to probabilities, we use equation (8.5) to find these probabilities: 
Al = {value increases} ,  Ai = {value does not increase} , c = 2, d = 3 

c 2 2 
peAl) = -- = -- = - =  0.40 

c + d  2 + 3  5 

A 2 = {value remains the same}, A� = {value does not remain the same}, c = 3, d = 7 

c 3 3 P(A2) = c + d = 3 + 7 = 10 
= 0.30 

A3 = {value decreases}, A� = {value does not decrease}, c =  2, d= 3 
c 2 2 

P(A3) = c + d = 2 + 3 
= 5' = 0.40 
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Ai >  A2, and A3 are mutually exclusive. Therefore, from Property 4 in Section 8 .6, 

peAl U A2 U A3) = peAl) + P(A2) + P(A3)  
= 0.40 + 0.30 + 0.40 = 1 . 1 0  
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But this result violates Property 2, 0 ::s peA) ::s 1, from Section 8.6, and subjective probabilities like 
these must be consistent with all the axioms and properties of probability. Therefore, the developer should 
redo these probabilities until they are consistent. 

8.27 So far, a student has taken 1 6  college courses and has passed 12 of them. She makes a bet with her 
mother about passing the statistics course that she plans to take next semester. The student bets her 
$25 against her mother's $ 10  that she will pass the course. Is this a fair bet? 

Solution 

A = {student wins} ,  A' = {mother wins}. With the relative frequency interpretation described by equation 
(8.2), 

peA) � 
na 

n 

peA) � 
1 2  

= � peA') � � = � 16  4 16  4 
Therefore, using equation (8.3), the odds in favor of A are 

peA) 3/4 3 . 
peA') � 1/4 

= l '  or approxImately 3 to 1 

For this bet to be a fair bet (see Example 8.8), it should be the student's $30 against her mother's $ 10. It is not 
a fair bet. 

8.28 Two basketball teams play each other 10 times a year. Over the past eight years, team A has won 48 
times and team B has won 32 times. A fan of team A offers to bet a fan of team B his $30 against 
her $20 that team A will win the next game. Is this a fair bet? 

Solution 

A = {team A wins}, A' = {team B wins} .  With the relative frequency interpretation described by equation 
(8.2), 

The odds in favor of A are 

peA) � 
na 

n 

peA) � 
48 

= � peA') � 
32 

= � 
80 5 80 5 

peA) 3/5 3 . 
peA') � 2/5 

= 2: '  or approXImately 3 to 2 

This is a fair bet, as $30 to $20 is the same as 3 to 2. 

Supplementary Problems 

THE CLASSICAL INTERPRETATION OF PROBABILITY 

8.29 In a game of chance, a six-sided die is rolled once. Determine the following probabilities: (a) P(3 or 
5), (b) P (odd number). 

Ans. (a) 0.33, (b) 0.50 
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8.30 In a game of chance, a single card is drawn from a standard deck of cards . Detennine the following 
probabilities: (a) P(queen), (b) P(diamond or heart), (c) PGack, queen, or king). 
Ans. (a) 0.08, (b) 0.50, (c) 0.23 

8.31 Assume in this problem that a birthday is equally likely to occur on any one of the 365 days of the year. You 
have just found a new friend. What is the probability that she was born on: (a) the same day of the year as 
you were born, (b) the same month of the year that you were born? 
Ans. (a) 0.003, (b) 0.08 

8.32 Twenty names, including your name and your date 's name, are written on small pieces of paper and placed in a 
hat. The pieces of paper are thoroughly mixed and one is drawn out. What is the probability that the name 
drawn from the hat is: (a) your name, (b) either your name or your date's name? 
Ans. (a) 0.05, (b) 0. 10 

8.33 Fifty people, including five grandfathers and two great grandmothers, attend a graduation party. Each person's 
name is written on a small piece of paper and placed in a box, where they are thoroughly mixed. One name is 
drawn, blindly, from the box. What is the probability that the name is of: (a) a grandfather, (b) a great 
grandmother? 
Ans. (a) 0. 10, (b) 0.04 

THE RELATIVE FREQUENCY INTERPRETATION OF PROBABILITY 

8.34 At age 64, you learn that 40 of your 620 college classmates have died. What is the approximate probability 
that a senior graduating this year from your college will live to age 64? 

Ans. 0.94 

8.35 An insurance company wants to know the probability that a car will develop a cracked windshield that will 
need replacement. It collects infonnation on 20,000 cars, from July 1 of one year to July I of the next year, 
and finds that 600 of the cars developed cracked windshields. What is the approximate probability that a car 
will develop a cracked windshield within a one year time period? 
Ans. 0.03 

8.36 A university wants to know how many students it can accept without over-enrolling the following fall 
semester. It examines its records for the past five years and finds that during that time it accepted 30,000 
students but only 12,000 actually registered the following fall semester. What is the approximate probability 
that a student accepted into the university will register for classes the following fall semester? 
Ans. 0.40 

8.37 A vegetable farmer normally plants his tomatoes on June 1 ,  after which there has never been a frost in his 
fields. This year, he plans to plant his tomatoes on May 1 5  and he wants to know: What is the chance that there 
will be a frost between May 1 5  and June I?  He examines weather data, from a nearby weather station, 
collected over the past 30 years and finds that in 6 of the years there was a frost between May 15  and June 1 .  
What is the approximate probability that a frost will occur this year, between May 1 5  and June I?  
Ans. 0.20 

8.38 A manufacturing company that makes floppy disks for computers wants to know the probability that one of its 
disks will be defective. It examines 2,000 disks, and finds 1 00 are defective. What is the approximate 
probability that a given disk will be defective? 
Ans. 0.05 
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SETS, SUBSETS, SAMPLE SPACES, AND EVENTS 

8.39 Sixty marbles are placed in ajar and thoroughly mixed. Twenty of the marbles are red, 30 are blue, and 10 are 
green. The experiment is to draw, without looking, a single marble. What is the sample space of the 
experiment? 

Ans. S= {red, blue, green} 

8.40 A yogurt company promotes its product by having a lottery, in which numbers hidden under the container tops 
indicate how much a consumer will win. Some container tops have no numbers, some have $ 1 ,000, some have 
$2,000, and others have $5,000. If the experinlent is picking a yogurt container in a supermarket, what is the 
sample space? 

Ans. S= {no number, $ 1 ,000, $2,000, $5,000} 

8.41 In the coin-flipping experiment, S= {head, tail} .  How many possible events can result from a single flip of the 
coin? 

ADS. 2n =22 = 4  

8.42 In an experiment, a die is rolled twice and the outcome is the sum of the two rolls. (a) Describe the subset in 
which event A = 12. Is the event simple or compound? (b) Describe the subset in which event A = 8. Is the 
event simple or compound? 

ADS. (a) A = {6, 6} ,  simple event, (b) A = {( I ,  7), (2, 6), (3, 5), (4, 4)} ,  compound event 

8.43 A university has five categories of students: freshmen, sophomores, juniors, seniors, and graduate students . 
The experiment is to select three students at random, with the outcome of the experiment being the category of 
student. What is the sample space and how many events can result from each experiment? 

Ans. S = {freshman, sophomore, junior, senior, graduate} ;  number of possible events = 25 = 32 

8.44 A winery has produced the same brand of wine in four years : 1 986, 1989, 199 1 ,  and 1993, and wants to know 
whether a consumer can distinguish among the years. To find out, it has a wine-tasting party and arranges a 
table in which the four different wines are offered within 200 identical glasses (50 glasses of each kind of 
wine) and the glasses randomly placed on the table. The experiment is to blindfold a guest and to have 
him/her take four glasses and then taste the wine in each glass. What is the sample space and how many 
events can result from each experiment? 

Ans. S = { 1986, 1 989, 1991 ,  1993} ;  number of possible events = 24 = 16 

VENN DIAGRAMS 

8.45 A Venn diagram can show a sample space, an event in the sample space, the complement of an event, the 
union of two events, and the intersection of two events. Define each of these aspects of a set. 

ADS. A sample space is the set of all possible outcomes of an experiment. An event is a particular outcome 
of an experiment. The complement of an event is the subset of the sample space that contains all elements of 
the set that are not part of the event. The union of event A and event B is the subset of the set whose outcomes 
belong to A or to B or to both A and B. The intersection of event A and event B is the subset of the set whose 
outcomes belong both to event A and to event B. 

8.46 A university offers 30 courses in history. The set is a listing of the history courses, from 1 to 30. The 
experiment is to choose two students who graduated with a major in history and find out which history classes 
they took. Event A is the series of classes taken by student A and event B is the series taken by student B. 
Write out, in set theory notation, the following outcomes of the experiment: (a) the list of classes taken by 
student A but not student B, (b) the list of classes taken by either student A or student B or both 
students, (c) the list of classes taken by neither student A nor student B, (d) the list of classes taken by 
both student A and student B. 

ADS. (a) A U B', (b) A UB, (c) A' UB', (d) A n B 
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8.47 Two friends read as many new novels each year as they can, and both of them buy their books from the same 
book store. The set is a list of all the new novels published in the past year and offered for sale in their book 
store. Event A is the list of new novels read by friend A, event B is the list of new novels read by friend B. 
Write down, in set theory notation, the following outcomes of the experiment: (a) the new novels read by 
both friends, (b) the new novels read by friend A but not friend B, . (c) the new novels read by neither 
friend. 

Ans. (p) A nB, (b) A U B', (c) A' UB' 

SET THEORY INTERPRETATION OF PROBABILITY 

8.48 For the experiment of drawing a single card from a well-shuffled, standard deck of playing cards, in which 
S= {the 52 cards in a standard deck}, use the axioms and properties of Section 8.6 to detennine the 
probability of drawing a red card. 

Ans. 0.50 

8.49 For the card-drawing experiment in Problem 8.48, detennine the probability of drawing either a heart or a 
diamond. 

Ans. 0.25 + 0.25 = 0.50 

8.50 For the card-drawing experiment in Problem 8.48, detennine the probability of drawing a heart and a 
diamond. 

Ans. P(0) = 0  

8.51 For the card-drawing experiment in Problem 8.48, detennine the probability of drawing a heart and a king. 

Ans. 0.019 

SUBJECTIVE INTERPRETATION OF PROBABILITY AND THE CONCEPT OF ODDS 

8.52 An insurance company estimates that the probability of a fire in your house next year is aproximately 1/ 125. 
Is this a classical, relative frequency, or subjective probability? Use the appropriate fonnula from Section 8.8 
to convert the probability into odds. 

Ans. Relative frequency probability; the odds against a fire in your house next year are approximately 124 
to 1 .  

8.53 A coin is flipped twice and the probability of getting at least one head is 0.75. Is this a classical, relative 
frequency, or subjective probability? Use the appropriate fonnula from Section 8 .8 to convert the probability 
into odds. 

ADS. Classical probability; the odds of getting at least one head are 3 to 1 .  

8.54 You guess that there is a 40% chance that the piece of land you are interested in buying will increase in value 
by at least 60% in the next five years . Is this a classical, relative frequency, or subjective probability? Use the 
appropriate fonnula from Section 8.8 to convert the probability into odds. 

Ans. Subjective probability; the odds against the land value increasing by at least 60% in the next five years 
are 3 to 2. 

8.55 A single card is drawn from a standard deck of playing cards, and the odds of selecting a card numbered from 
2 to 1 0  are 9 to 4. Use the appropriate fonnula from Section 8.9 to convert the odds to a probability, and then 
state whether the resulting probability is classical, relative frequency, or subjective. 

Ans. 0.69; classical probability 
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8.56 It has been estimated that the odds against hitting oil on any given drill for oil are 1 00 to I .  Use the appropriate 
fonnula from Section 8.9 to convert the odds to a probability, and then state whether the resulting probability 
is classical, relative frequency, or subjective. 

Ans. 0.99; relative frequency probability 

8.57 You estimate that the odds of the stock market being higher one year from today than it is now are 1 to 1 .  Use 
the appropriate fonnula from Section 8.9 to convert the odds to a probability, and then state whether the 
resulting probability is classical, relative frequency, or subjective. 

Ans. 0.50; subjective probability 



Chapter 9 

Probability : Calculating Rules and Counting Rules 

9.1 CALCULATING PROBABILITIES FOR COMBINATIONS OF EVENTS 

Chapter 8 was a brief overview of the four interpretations of probability: classical, relative frequency, 
set theory, and subjective. In that overview, we also began an examination of how probabilities are 
calculated for combinations of events: events that are subsets of the same sample space. Thus, in Section 
8.6 we presented formulas for calculating probabilities for unions of events when the events are mutually 
exclusive. For two such events A and B, Axiom III, also known as the special addition rule, gives the 
formula 

peA U B) = peA) +P(B) 
and for more than two mutually exclusive events AI.  A2, . . .  , Ak, Property 4 gives the formula 

For the mutually exclusive events A and its complement A', Property 3 gives the formula 

peA) + peA') = 1 

We also examined another way . that events A and B can be combined, intersections (A n B), and did the 
most elementary probability calculation for when A and B are mutually exclusive [see Problem 8.20(h)] : 

peA n B) = P(0) = 0 

In this chapter we go on to show how probabilities are calculated for the unions and intersections of 
events that are not mutually exclusive. To do this we must first discuss new types of relationships between 
events, whether they are dependent or independent. We will develop mathematical definitions for these 
relationships (see Section 9.4), but we can now say that events are independent when the occurrence of one 
does not affect the probability of the occurrence of the other; and they are dependent when they are not 
independent. To develop these mathematical definitions and to do the rest of the work of this chapter, we 
must first deal with conditional probabilities. 

9.2 CONDITIONAL PROBABILITIES 

Given two events A and B, if we want to determine the probability of the intersection of the two events, 
peA n B), we answer this question: What is the probability that events A and B will both occur? If, on the 
other hand, we want to determine a conditional probability for these events, we answer a related but 
different question: What is the probability of A occurring given that B is known to have occurred? Or the 
reverse question: What is the probability of B given that A is known to have occurred. 

To understand how conditional probabilities differ from intersection probabilities, we will calculate 
examples of both types for the experiment of a single roll of a six-sided die where S= { I ,  2, 3, 4, 5, 6 } ,  
event A = {number � 3 } ,  and event B = {even number} . The set and the events are diagrammed in Fig. 
9-1 .  
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s 

Fig. 9-5 

We know from Property 7 in Section 8.6 that for any sample space S containing N equally likely 

simple events ei , P(ei) = � and peA) = NA (�) . Thus, for this sample space 

. 

1 1 
Pee;) = 

N 
= 6 

. P(A) = NA (�) = 4G) = � = 0.67 

PCB) = NB(�) = 3 (�) = � = 0.50 

We also know that the intersection of A and B, A n B, is the subset of S that contains all the elements of S 
that are in both A and B [see Example 8.5(b)], which we will denote by NAn B. Therefore 

peA n B) = peA and B) = NAnB(�) = 2G) = � = � = 0.33 

All three probabilities [peA), PCB), and peA n B)] were calculated for the entire sample space S; they 
represent the proportion of the sample points in S that are in the event of interest. 

Now consider the same experiment as a conditional probability-the probability of event A occurring 
given the condition that event B has occurred. In this particular die-rolling experiment, the conditional 
probability is the probability that the number on the upward face of the die will be greater than or equal to 
three (event A) given that we know an even number (event B) has occurred. The conditional probability is 
denoted by P(AIB), where the vertical bar in this denotation is read "given" (or "such that", see Section 
8.3) and the whole symbol is read "the probability of A given B." 

The conditional probability peA IB) is the ratio of the number of sample points in A n B to the number 
of sample points in B. Unlike our calculation of the probability that both A and B occur, which considered 
the entire sample space S, the calculation of A given B considers only a portion of the sample space-the 
sample points in event B. Stated symbolically, 

which can also be written 

or 

P(AIB) = 
NAnB (9 . 1 ) 
NB 

NAnB 

P(A IB) = ffs 
N 

peA n B) 
peA IB) = 

PCB) , provided that PCB) =j:. 0 (9.2) 
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This last equation is the general formula for conditional probabilities. It is used to calculate the likelihood 
of A occurring given that we know B has occurred. The formula is valid only when PCB) =j:. 0, because it is 
not permitted to divide a number by zero. For this die-rolling experiment 

and also 

P(AIB) = NAnB = � = 0.67 
NB 3 

P(A IB) = peA n B) = 1/3 
= � = 0.67 PCB) 1/2 3 

There is a 0.67 probability that the upward face of the die will be a 3,  4, 5, or 6 given that it is an even 
number. In other words, two out of the three even numbers (2, 4, and 6) are greater than or equal to three. 
The conditional probability of A given B (0.67) is higher than the probability of both A and B (0.33), 
because the conditional probability involves only a portion of the sample space. 

The probability of A given that B has occurred, or peA IB), is a conditional probability. The probability 
that B has occurred, or PCB), is calculated independently of its occurrence with A and is an unconditional 
probability, which is also called a simple probability. 

If we want P(BIA) instead of P(AIB), this probability would be written 

P(BIA) = NAnB 

NA 

peA n B) = 
peA) 

provided peA) =j:. 0 

1 /3 1 
= 

2/3 
= 2: = 0.50 

There is a 0.50 probability that an even number will occur given that a number greater than or equal to 
three has occurred. Two of the four numbers 2:3 are even numbers. Again, note that the formula is valid 
only when P(A) =j:. O. Here, P(BIA) is a conditional probability and P(A) is an unconditional probability. 

EXAMPLE 9.1 A medical team has developed a possible vaccine for the common cold. They test it on a group of 
160 volunteers divided into an 80-person experimental group and an 80-person control group. The members of the 
experimental group are vaccinated, while the members of the control group are not. After 12  months all 1 60 people are 
asked if they got a cold during the past year. The results are summarized in Table 9. 1 (e.g., 48 vaccinated people got a 
cold). The probability experiment is to randomly select one of the 160 people. If for this experiment S = {the 160 
people} ,  A = {got a cold}, and B =  {vaccinated} ,  then find the probability P(A IB). 

Solution 

Using equation (9.2), 

Got vaccinated 

Yes 

No 

Total 

P(AIB) = peA n B) 
PCB) 

Table 9.1 

Got cold 

Yes No 

48 32 

52 28 

1 00 60 

Total 

80 

80 

1 60 
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where 

We find that 

and 
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NB = 80, NANJ = 48, 
1 1 

= 
N 160 

p(A n B) = NANJ - = 48 - = - = -
( 1 ) ( 1 ) 48 3 

N 160 160 1 0 .  (1) ( 1 ) 80 1 PCB) = NB 
N 

= 80 
160 

= 
160 

= 2" 

P(A IB) = 
peA n B) 

= 
3/10  

= � = 0.60 
PCB) 1 /2 5 
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This states that the probability of selecting a person who did get a cold from the vaccinated group is 0.60. 

EXAMPLE 9.2 For the experiment in Example 9. 1 :  A' = {did not get a cold} and B' = {not vaccinated} .  Use the 
information in Example 9. 1 to determine P(A IB) + P(A' IB). 

Solution 

We know that 

N = 60, PCB) = 1 /2,  P(AIB) = 0.60 

and from Table 9 . 1 ,  NA' n B = 32. Therefore 

Then, using equation (9.2), 

Therefore 

peA' n B) = NA'NJ
(�) = 32C�0) = � 

P(A' IB) = 
peA' n B) 

= 
1 /5 

= 
0.2 

= 0 40 
PCB) 1 /2 0.5 

. 

P(A IB) + P(A' IB) = 0.60 + 0.40 = 1 .00 

This states that for a vaccinated person there is a 1 00% probability that either they had a cold or they did not. 
Note: This example illustrates what is true in general when an event and its complement are 

conditioned on the same event: 

P(YIX) + P(Y' I x) = 1 

There is a 1 00% probability that either the event or its complement will occur regardless of the conditional 
event. 

9.3 THE GENERAL MULTIPLICATION RULE 

The multiplication rules of probability deal with calculating the probability that two events both occur. 
The probability that both event A and event B occur is the probability of the intersection of the two events, 
p(A nB). 

The general multiplication rule applies to the intersection of dependent events (see Section 9 . 1 )  and so 
the concept of conditional probability applies. The expression peA IB), which indicates the probability of 
event A occurring given that B has occurred, can be viewed as the number of times that two events, A and 
B, occur together relative to the total number of times that B occurs. In the notation of probability, 

P(AIB) = 
peA n B) 

PCB) 
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or, for the probability that B occurs given that A has occurred 

peA n B) 
P(BIA) = 

peA) 

Rearranging to solve for peA n B) 

peA n B) = P(B)P(A IB) (9.3) 

and 

peA n B) = P(A)P(BIA) (9.4) 

These two mathematical relationships form the general multiplication rule. In words, the rule states that the 
probability of the intersection of two events is calculated by multiplying the unconditional probability of 
one of the events times the conditional probability of the other event given that the first event has occurred. 

EXAMPLE 9.3 If in Example 9. 1 two people were randomly selected, one after the other, from the 160, then what 
is the probability that both have been vaccinated? 

Solution 

The probability of the second person being vaccinated depends on whether the first person is vaccinated, 
as this person is removed from the sample space before the second person is selected. Thus, the probability of 
the second event depends on the outcome of the first event. If we let B 1 be the event that the first person was 
vaccinated and B2 be the event that the second person was vaccinated, then using the general multiplication 
rule, 

From Example 9. 1 ,  

80 1 PCB1) = PCB) = 160 = 2" 
Having removed one person from the vaccinated group (i.e., sampling without replacement; see Section 3 . 16), 

and 

P(B1 n B2) = PCB1)P(B2 IB1) 

1 79 79 = 2 x 1 59 = ill = 0.25 

The general multiplication rule can be expanded to include more than two events. This expansion is 
known as the generalization of the general multiplication rule. 

EXAMPLE 9.4 In three trials of the card-selection experiment, if the cards are not replaced between selections, 
then what is the probability that they will be, in any order, a jack of spades, a queen of hearts, and a king of diamonds? 

Solution 

For determining the intersection of k events A] ,  A2, A3, . • •  , Ak the general multiplication rule generalizes 
to the following: 
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If we let Cl be the first of these three cards, C2 be the second, and C3 be the third, then 

3 P(Cl) = 
52 

and 

2 P(C2 IC] )  = 51 

P(CI n C2 n C3) = P(C])P(C2 IC1)P(C3 IC2 n C1 ) 

3 2 I 6 
= - x - x - = = 0.000045 

52 5 1  50 132,600 

9.4 INDEPENDENT AND DEPENDENT EVENTS 
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We are now ready to mathematically define independent and dependent events. Recall that in Section 
9.1 we indicated that two events are said to be independent if the occurrence of one does not affect the 
probability of whether or not the second will occur. This statement can be written as the following 
conditional probabilities for independent events A and B: 

P(A IB) = peA) (9 .6) 
and 

P(BIA) = PCB) (9.7) 
In essence, the conditional probability of A given B is equal to the unconditional probability of A, and if 
this is true it is also true that the conditional probability of B given A is equal to the unconditional 
probability of B. If A is independent of B, then B is automatically independent of A and the events are said · 
to be independent events. If A and B are not independent, they are said to be dependent events. 

9.5 THE SPECIAL MULTIPLICATION RULE 

The special multiplication rule deals with the probability that two independent events will both occur. 
From Section 9.4 we know that whenever two events A and B are independent, we can substitute peA) for 
P(AIB) in equation (9.3) 

peA n B) = P(B)P(A IB) = P(B)P(A) 
and PCB) for P(BIA) in equation (9.4) 

peA n B) = P(A)P(BIA) = P(A)P(B) 
These equivalent formulas are called the special multiplication rule, which is typically stated as 

peA n B) = P(A)P(B) (9.8) 

EXAMPLE 9.5 Use the special multiplication rule to determine the following probabilities: (a) rolling a 4 twice 
in a row with the die-rolling experiment, (b) selecting a queen both times in two repetitions of the card-selection 
experiment, if the card is replaced and the deck reshuffled between selections. 

Solution 

(a) A = {rolling a 4 on the first roll} ,  peA) = � 
. 1 B = {rollmg a 4 on the second roll} ,  PCB) = "6 

. 1 1 1 peA n B) = P(A)P(B) = "6 x "6 = 
36 

= 0.028 



264 PROBABILITY: CALCULATING RULES AND COUNTING RULES 

(b) A = {selecting a queen on the first trial} ,  peA) = 
5
� = 

1
1
3 

[CHAP. 9 

B =  {selecting a queen on the second trial after replacement and reshuffling} ,  PCB) = 
5
� = 

1
1
3 

I I 1 peA n B) = P(A)P(B) = 13 x 13 = 
169 

= 0.0059 

When determining the intersection of k independent events AI >  A2, A3, . • .  , Ab the special multi­
plication rule [equation (9.8)] generalizes to 

which is known as the generalization of the special multiplication rule. 

9.6 THE GENERAL ADDITION RULE 

(9.9) 

In Section 8.6 in Axiom III, we gave the special addition rule for the union of mutually exclusive 
events A and B 

' 

peA U B) = peA) + PCB) 

We are now going to develop a general rule for the union of events A and B that applies whether or not they 
are mutually exclusive. 

From Property 7 in Section 8.6, we know that the special addition rule can be written as 

peA U B) = NA (�) + NB (�) 
This equation applies only to the union of events that are mutually exclusive. If it were used for two events 
that are not mutually exclusive, then the sample points that lie within the intersection of the two events 
would be counted twice. For events that are not mutually exclusive-that have sample points in common­
we modifY the equation as follows 

peA U B) = NA (�) + NB(�) - NAnB(�) 
peA U B) = NAUB (�) = NA + N � - NAnB 

The numerator of this final fraction is the number of simple events in A plus the number in B minus the 
number in the intersection of A and B. It follows that 

and thus that 

peA U B) = 
NA 

+ 
NB _ NAnB 

N N N 

peA U B) = peA) + PCB) - peA n B) 

This formula is the general addition rule. 

(9. 10) 
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EXAMPLE 9.6 For the die-rolling experiment shown in Fig. 9-1 ,  what is the probability that a toss of the die will 
result in event A = {3, 4, 5, 6}  or event B = {2, 4, 6}? 

Solution 

The two events have an intersection (4 and 6), and so are not mutually exclusive 

peA) = NA (�) = � 
PCB) = NB (�) = � 

peA n B) = NANJ (�) = � 

Using the general addition rule 

peA U B) = peA) + PCB) - peA n B) 

= � + � _ � = 4 + 3 - 2 
= � = 0.83 

6 6 6 6 6  

The general addition rule can be extended to the case of more than two events. This more general rule, 
which evaluates the probability of the union of two or more events, is known as the generalization of the 
general addition rule. 

EXAMPLE 9.7 A single card is drawn from a well-shuffled deck of standard playing cards, in which S= {52 
cards}, A = {face card}, B = {black card}, and C = { club}.  Determine peA U B U C). 

Solution 

A, B, and C are not mutually exclusive and, for a union of the three events, the general addition rule 
generalizes to 

peA U B  U C) = peA) + P(B) + P(C) - peA n B) - peA n C) - p(B n C) + P(A n B n  C) (9. 1 1 ) 

For this experiment: 

A = {face card} , peA) = �� 
26 B = {black card}, PCB) = 52 

1 3  
C = {club}, P(C) = 52 

A nOB = {black face card}, 6 peA n B) = 52 

A n  C = {club face card}, p(A n C) = :2 
1 3  

B n C = {black club card}, PCB n C) = 52 
3 

A n B n C = {black club face card} , peA n B n C) = 52 
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Therefore 

peA U B U C) = PeA) + PCB) + P( C) - peA n B) - peA n C) - PCB n C) + peA n B n C) 

1 2  26 13  6 3 1 3  3 = 
52 

+ 
52 

+ 52 - 52 
-

52 
-

52 
+ 

52 

= 
12  + 26 + 13 - 6 - 3 - 13  + 3 = 

32 = 0.62 
52 52 

9.7 DERIVING THE SPECIAL ADDITION RULE FROM THE GENERAL ADDITION RULE 

The special addition rule for probabilities applies to events that are mutually exclusive, with no 
elements that belong to both A and B. Thus 

and 

peA n B) = 0 

Applying the general addition rule 

peA U B) = peA) + PCB) - peA n B) 

peA U B) = P(A) + P(B) - 0 

peA U B) = peA) + PCB) (9. 12) 

Thus, the special addition rule is a special case of the general addition rule that is used when the events are 
mutually exclusive. 

EXAMPLE 9.8 A single card is drawn from a well-shuffled deck of standard playing cards. What is the probability 
of drawing either a king or a 2, 3,  or 4? 

Solution 

Let event A = {king} and event B =  {2, 3, 4}.  

A n  B = {king and 2, 3 ,  4} A U  B = {king or 2, 3 ,  4} 
4 peA) = 
52 

PCB) = 3(4) = 12  

52 52 

As event A and event B are mutually exclusive, 

Therefore 

p(A n B) = 0 

peA U B) = peA) + PCB) - peA n B) 

4 12  1 6  
= 

52 + 52 - 0 = 
5 2  

= 0.31 
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9.8 CONTINGENCY TABLES, JOINT PROBABILITY TABLES, AND MARGINAL 
PROBABILITIES 

267 

In this section we deal with experiments in which all possible outcomes can be placed into the 
mutually exclusive and exhaustive (also called totally inclusive, see Section 2.4) categories of two 
variables. For example, the experiment might be a potential customer entering a car dealership, and the 
outcome could be classified according to gender (male or female) and purchaser (purchases car or does not 
purchase car). In Table 9.2 we show the outcomes, so classified, for 100 trials of the experiment: 100 
potential customers entering the dealership. At a glance you can see, for example, that 70 of the potential 
customers are male (M), and of these 70 males, 40 purchased cars (P) and 30 did not (Pi). Such a summary 
table is called a contingency table if, as here, it is possible that the two variables have an independent­
dependent relationship (see Section 1 . 1 7), which is also described as one variable being contingent 
(dependent) on the other. Such tables will be used in Chapter 20 to study contingency relationships. In 
Table 9.2, for example, the relationship to be studied would be: Is purchase of a car contingent on gender? 

Table 9.2 

Purchaser 

Purchases Does not purchase 
Gender (P) (Pi) Total 

Male (M) 40 30 70 

Female (F) 10  20 30 

Total 50 50 100 

From such a contingency table, it is a simple matter to convert these frequency values into probabilities 
for the experiment. This conversion has been done in Table 9 .3 .  Each frequency value in Table 9.2 was 
converted to relative frequency by dividing by 1 00 (the total number of potential customers), which we 
then considered to be the probability of future events (see Section 8.2). While these probabilities are 
approximate, for this example we will consider them to be exact. Thus there is a 0.40 probability of the 
next potential customer being male and a purchaser, and a 0.30 probability of the next potential customer 
being female (purchaser and nonpurchaser). The probabilities in the cells of the table are probabilities of 
the intersection of two events. Thus p(p n M) = 40jlOO = 0.40 and P(PI n F) = 20jl OO = 0.20. Such 
probabilities of intersections are called joint probabilities because they are the probabilities of joint 
occurrences of two events. This is why such a probability table is called a joint probability table. 

The probabilities along the bottom and right side of Table 9.3 are called marginal probabilities 
because of their marginal positions in a joint probability table. They are the probabilities of the events 
featured in the particular row or column, independent of the other variable. They are therefore 
unconditional, or simple, probabilities (see Section 9.2). Thus, the probability of the next potential 
customer being male is P(M) = 0.70 and the probability of the next potential customer being a car 
purchaser is PCP) = 0.50. 

Gender 

Male (M) 

Female (F) 

Marginal probability 

Purchases 
(P) 

0040 

0. 1 0  

0.50 

Table 9.3 

Purchaser 

Does nQt purchase 

(P) 
0.30 

0.20 

0.50 

Marginal probability 

0.70 

0.30 

1 .00 
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Note for this table that the simple probabilities are the sums of two joint probabilities. Thus, the 
probability that the next person who enters will be a purchaser is: PCP) = PCP n M) + PCP n F). This result 
can be generalized to a rule called the marginal probability formula. 

The marginal probability of an event B that can occur in k mutually exclusive and exhaustive ways 
Ai (for i = 1 ,  2, . . .  , k) is equal to the sum of the k joint probabilities 

PCB) = P(AI n B) + P(A2 n B) + . . .  + P(Ak n B) 

or 

k 
PCB) = L peA; n B) (9 . 13) 

;=1 

which can be written [see equation (9.4)] as 

k 
PCB) = L P(A;)P(BIA;) (9. 14) 

;=1 

From a joint probability table, it is also possible to determine conditional probabilities using equation 
(9.2). Thus, in our example 

p(p n M) 0.40 
P(PIM) = P(M) = 0.70 

= 0.57 

which indicates there is a 0.57 probability that the next potential customer will purchase a car given that he 
is male. 

EXAMPLE 9.9 A computer company has three suppliers (A ] ,  A2, A3) of a component part for one of its personal 
computers. It gets 20% of these parts from Ai> 50% from A2, and 30% from A3. From past experience it is known that 
a percentage of each supplier's parts will be defective: I % of A I 's, 0.5% of A2's, and 0.9% of A3 's . The probability 
experiment is to select one of these parts at random and test to see if it is defective. Let A I ,  A2, A3 represent the events 
of selecting a part from the given supplier, B represent the event of selecting a nondefective part, and B' the event of 
selecting a defective part. From this information develop a joint probability table that includes these joint probabilities: 
P(AI nB), P(A2 nB), P(A3 nB), P(A I nB'), P(A2 nB'), P(A3 nB'); and these marginal probabilities: peAl), P(A2)' 
P(A3)' PCB), PCB'). 

Solution 

Again, we will treat relative frequency estimates as exact probabilities. Therefore 

and 

From these conditional probabilities for defective parts, given the suppliers, we can calculate the conditional 
probabilities of nondefective parts, given the suppliers. Thus 

P(BIA}) = I - P(B' IA})  = I - 0.010  = 0.990 

P(BIA2) = I - P(B' IA2) = I - 0.005 = 0.995 

P(BIA3) = I - P(B' IA3) = I - 0.009 = 0.991 
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We can now calculate the joint probabilities using equation (9.4). Thus 

and 

peAl n B) = P(A, )P(BIA,)  = (0.20)(0.990) = 0. 1 980 

P(A2 n B) = P(A2)P(BIA2) = (0.50)(0.995) = 0.4975 

P(A3 n B) = P(A3)P(BIA3) = (0.30)(0.99 1)  = 0.2973 

peAl n B') = P(A ,)P(B'IA , )  = (0.20)(0.01 )  = 0.0020 

P(A2 n B') = P(A2)P(B' IA2) = (0.50)(0.005) = 0.0025 

P(A3 n B') = P(A3)P(B' IA3) = (0.30)(0.009) = 0.0027 

Therefore, using equation (9 . 14), 

and 

k 
PCB) = L P(A;)P(BIA;) 

;= , 

= P(A, )P(BIA,) + P(A2)P(BIA2) + P(A3)P(BIA3) 

= 0. 1980 + 0.4975 + 0.2973 = 0.9928 

k 
PCB') = L P(A;)P(B'IA;) 

;= , 

= P(A , )P(B'IA , )  + P(A2)P(B'IA2) + P(A3)P(B' IA3) 

= 0.0020 + 0.0025 + 0.0027 = 0.0072 
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We now have all of the required probabilities, and the completed joint probability table is shown in 
Table 9.4. 

Table 9.4 

Suppliers 

Defects (A,) (A2) (A3) Marginal probability 

Nondefective (B) 0 . 1980 0.4975 0.2973 0.9928 

Defective (B') 0.0020 0.0025 0.0027 0.0072 

Marginal probability 0.20 0.50 0.30 1 .00 

9.9 BAYES' THEOREM 

In Example 9.9, P(BIA,)  represents the probability of a part being nondefective given that it comes 
from supplier A , ;  and PCB' IA 1) represents the probability of a part being defective given that it comes from 
A, .  In terms of cause-and-effect (see Section 1 . 1 9), we are asking: What is the probability of effect B (or 
B') given that the part comes from (was caused by) supplier A I? Now, in this section, we will be 
determining these probabilities: peA l iB) and peA l iB'), to answer the inverse of the causality question: 
Given that effect B (or B') has occurred, what is the probability that the part comes from (was caused by) 
supplier A I? They are inverse questions, because while one asks forward in time from cause-to-effect, the 
other asks backward in time from effect-to-cause. To answer this new inverse question we will be deriving 
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a formula called Bayes ' theorem, which again assumes that event B (or B') can occur in k mutually 
exclusive and exhaustive ways Aj• Stated for events B and At .  Bayes' theorem is 

P(AdB) = 
:(AI )P(BIA I )  

L P(Aj)P(BIAj) j=1 

(9. 1 5) 

As Bayes' theorem gives the result of this inverse of causality, it is also called Bayes ' theorem for the 
probability of causes. 

To derive Bayes' theorem for B and A I we begin with the general formula for conditional probabilities 
[equation (9.2)] for both Al given B and B given AI '  

peA IB) = 
P(AI n B) 

I 
P(B) 

, 

P(BIA ) = 
P(AI n B) 

I P(AI)  , 

provided that PCB) =1= 0 

provided that peA I )  =1= 0 

Solving both equations for P(AI n B), 

Therefore 

Dividing both sides by PCB) 

peA I n B) = P(B)P(A l iB) 

P(AI n B) = P(AI)P(BIA I) 

Finally, substituting the marginal probability formula [equation (9 . 14)] for PCB) in the denominator we 
get Bayes' theorem 

P(AdB) = 
:(AI )P(BIA I )  

L P(Aj)P(BIAj) j=1 

Clearly for these conditions the formula can be can be modified for B' or for any of the Ak events. 
Thus, for example, for A2, 

P(A2 IB) = 
:(A2)P(BIA2) 

L P(Aj)P(BIAj) 
j=1 

EXAMPLE 9.1 0  As a statistician working for the computer company in Example 9.9, you decide to use Bayes' 
theorem to determine the probability that a particular defective part comes from supplier A \ .  
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Solution 

The question is: What is P(AI IB')? Using Bayes ' theorem [equation (9. 1 5)] and the calculations from 
Example 9.9, 

P(A B') _ P(AI)P(B'IA 1) 
I I - P(A1)P(B' IAI )  + P(A2)P(B' IA2) + P(A3)P(B' IA3) 

= 
0.0020 = 0.0020 

= 0.28 
0.0020 + 0.0025 + 0.0027 0.0072 

In the context of Bayes' theorem, the unconditional probability known before the experiment is called 
a prior probability. Thus in Example 9.9, we know in advance of selecting a part that the probability the 
selected part will be from supplier A l  is P(AI) = 0.20. After the experiment, if we have selected a defective 
part the probability of the selected part being from A I becomes peA l iB') = 0.28. This is called a posterior 
probability; a revised version of P(AI) after we learn the outcome of the experiment. Note the change in 
probability: in advance the probability of A l  is 0.20 (i.e. ,  supplier Al provides 20% of the parts), but after 
the experiment if we have selected a defective part the probability of the part being from A I becomes 0.28. 

This revision of prior probabilities after the experiment has been done and new information is 
available is the primary use of Bayes' theorem. It is particularly important for subjective probabilities (see 
Section 8.7), where the prior probability of an event is assigned on the basis of personal degree of belief. 
Thus, a business executive can assign a subjective probability to the outcome of a financial decision based 
on available quantitative data, intuitions, judgments, beliefs, and can then use Bayes' theorem to revise this 
probability for future decisions as new evidence accumulates. In the field of business statistics the theorem 
is used as the basis for Bayesian decision analysis, which deals with the continual testing and revising of 
managerial probability assignments in financial decision situations. 

9.10 TREE DIAGRAMS 

A tree diagram is a tool for calculating the probability of a sequence of events. It is a visual 
representation of the multiplication rules, showing the formation of intersections and intersection 
probabilities Goint probabilities) of two or more events. In such a diagram, the probability of each 
event is shown as a line, called a branch, and the sequence of branches that form an intersection is called a 
path. 

The tree diagram shown in Fig. 9-2(a) shows the intersection probabilities of dependent events 
(conditional probabilities). It could represent, for example, the experiment of drawing two cards, without 
replacement, from a deck of standard playing cards, with the following events A I = {a king of hearts} ,  
A2 = {not a king of hearts} ,  B I = {a  heart} ,  and B2 = {not a heart}. Consider the probability of drawing a 
king of hearts on the first draw and a card that is not a heart on the second draw. The unconditional 
probability of the first event [peA I)] is shown above the first branch and the conditional probability of the 
second event [PCB I IA I)] is shown above the second branch in the pathway. The outcome of both events 
occurring, which is the intersection A I n B I ,  is listed along with the intersections of the other events in the 
column immediately to the right of the path. The formulas for the probabilities of the intersections 
[equation (9.4)] are listed in the second column to the right of the paths. Thus for events Al  and BJ, 

The more typical version of a tree diagram, which we will use in subsequent problems, is shown in 
Fig. 9-2(b). It differs from the one shown in Fig. 9-2(a) in that it shows the probability values instead of 
the probability symbols above the branches and it gives the actual probability values for the intersections in 
the second column. The particular tree diagram shown in Fig. 9-2(b) represents two trials of the coin-
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(a) 

(b) 

� [H2l [Tl l� [T2l 
Fig. 9-2 

Intersections 

Intersections 

Intersection 
probabilities 

Intersection 
probabilities 

1 14 = 0.25* 

114 = 0.25* 

1 14 = 0.25* 

114 = 0.25 

sum = 1 .00 

[CHAP. 9 

tossing experiment. As the outcome of the first trial has no influence on the outcome of the second trial, the 
two events are independent and their intersection probabilities are calculated by the special multiplication 
rule [equation (9.8)]. Thus, the probability of getting a head on the first throw and a head on the second 
throw is 

As the listed intersections include all the mutually exclusive events in the sample space their 
probabilities sum to 1 .00. 

EXAMPLE 9.1 1 The experiment is to flip a coin twice. Use both a multiplication rule and a tree diagram to find the 
probability of getting a tail on both the first and second flips and to find the probability of not getting a tail on the first 
and second flips. 

Solution 

The probability of getting a tail on a single flip of a coin is �. The event of getting a tail on the first flip 
(T1) and the event of getting a tail on the second flip (T2) are independent events. Therefore, the special 
multiplication rule applies and 

P(TJ n T2) = P(TJ )P(T2) = G) G) = � 
This is in agreement with what is shown for P(TJ n T2) on the lowest path in Fig. 9-2(b). 
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The probability of not getting a tail on the first and the second flips can be found by using first the special 
multiplication rule to find all the intersection probabilities except P(TI n T2) 

P(H1 n H2) = P(HJ )P(H2) = G) G) = � 
P(H1 n T2) = P(H1)P(T2) = G) G) = � 
P(TI n H2) = P(Tl)P(H2) = G) G) = � 

and then using a variation of Property 4 in Section 8.6 to find the probability of this union 

Using the tree diagram shown in Fig. 9-2(b), the probability of not getting tails on both flips can be found 
by summing all the intersection probabilities except the probability of Tl n T2. The sum of these probabilities 
(each is marked with an asterisk in the table) is 

I I 1 3 
P(HJ n H2) + P(HJ n T2) + P(T] n Hz) = 4' + 4 + 4 = 4 = 0.75 

9.1 1  COUNTING RULES 

From Property 7 in Section 8.6, we know that: If S contains N equally likely simple events (ea, then 

P(eJ = � and peA) = NA (� ) . The total number of events (N) in a sample space cannot, however, always 

be easily determined. Counting rules are mathematical formulas that describe how to count the total 
number of events in a set. They are of great use in calculating the probabilities of outcomes from a 
sequence of trials in an experiment. 

There are three counting rules: the multiplication principle, permutations, and combinations. Any 
arrangement of the outcomes in a unique and defined order is a permutation of the outcomes. Any 
arrangement without regard to order is a combination of the outcomes. The fundamental tool for deriving 
the formulas for the number of permutations and the number of combinations is the multiplication 
principle. 

9.12 COUNTING RULE: MULTIPLICATION PRINCIPLE 

The counting rule: multiplication principle determines the total number of sample points when there 
are two or more trials of an experiment. In its simplest form, the multiplication principle states that: If an 
experiment has two consecutive trials, in which the first trial has nl possible outcomes and, after this has 
occurred, the second trial has n2 possible outcomes, then the total number of sample points (i.e., the 
number of ways in which the combined trials can happen) is n l  x n2' Extending the multiplication 
principle to cover more than two trials: If an experiment has k consecutive trials with nl possible outcomes 
for the first trial, n2 for the second, . . .  , nk for the kth, then the total number of sample points is given by 
the formula 

# sample points = nl x n2 x . . .  x nk (9. 1 6) 

In words, the outcomes of a sequence of trials are multiplied to "count" the total number of sample 
points for the experiment. When a sample space is shown in a tree diagram, the multiplication principle 
counts the number of unique paths through the diagram. 
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EXAMPLE 9.12 How many three-letter words can be formed from the last four letters of the alphabet (w, X, Y, and 
2), if each letter can be used more than once in a word? After you have completed your calculations, use a tree 
diagram to show that your calculations are correct. 

Solution 

Consider this experiment as drawing three times from a group of four letters. After a letter is drawn, it is 
returned to the group and thus is available again for the next draw. The first trial has four possible outcomes 
(w, X, Y, or 2), the second trial has the same four possible outcomes, as does the third trial. Thus, k= 3, nj = 4, 
n2 = 4, n3 = 4, and 

# sample points = nJ x n2 x n3 

= 43 = 64 

The requested tree diagram is shown in Fig. 9-3, where each unique path through the diagram represents 
a unique three-letter word. In agreement with the calculations, there are 64 such paths. 

9.13 COUNTING RULE: PERMUTATIONS 

Any arrangement of objects in a given specific and unique order is a permutation of the objects. The 
counting rule: permutations is a special case of the counting rule: multiplication principle. It tells us the 
number of unique orderings that can come from selecting objects, one after the other, from a set of objects. 

If we have a set of n distinct objects and choose, one after the other, r objects from the set (r :s n), then 
for the first trial, we select from the entire set of n objects. For the second trial, the object selected in the 
first trial is no longer available (it has become the first object of the ordering) and so the number of objects 
from which to select is n - 1 .  For the third trial, the objects selected in the first and second trials are no 
longer available and so the number of objects from which to select is n - 2, and so on until the last object 
(on the rth trial) is selected from the remaining n - r + 1 objects. Thus, the number of possible orderings 
(permutations) of the n distinct objects taken r at a time is 

nPr = n(n - 1) . . .  (n - r + 1 )  (9. 1 7) 

This equation for calculating "Pr is the counting rule: permutations formula. (A second symbol, P; is also 
commonly used to denote the formula.) It can be simplified through the use of factorials. Recall from 
Section 1 .6 that n factorial (written n !) is calculated by 

Therefore 

Rearranging terms, 

n! = n(n - 1 ) · · ·  (n - r + l )(n - r)(n - r - 1) · · · (3)(2)(1) 

n! = [n(n - 1) . . .  (n - r + 1)][(n - r)(n - r - 1 ) · . .  (3)(2)(1)] 

= nPr X [en - r) !] 

n! 
nPr = (n - r)! 

This simpler equation is another version of the counting rule: permutations formula. 

(9. 1 8) 

EXAMPLE 9.13 Use equations (9. 17) and (9. 1 8) to determine how many unique three-letter words can be formed 
from the last four letters in the alphabet (w, X, Y, 2). The same letter cannot be used more than once in any given word 
(note how this differs from Example 9 . 12). Then use a tree diagram to show that your calculations are correct. 

Solution 

The question is: How many permutations are there of (n = 4) things taken (r = 3) at a time? Using 
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[W] . [W] 
/ �[A1 

c?-
[
� ��� [W]� [Y] [[� �[A1 

�[Y] [Z] [Z] �1� [Y] [Z] 
�[[� [Y] [Z] 
�[[� [Y] [Z] 
�1� �[Y] [Z] [W] �12 

/
[WJ �\� 

c?-[A1_��::-----I[:� 
[Y]� [Y] [

[W]Z] � [A1 [Y] [Z] [Z] �[[� [Y] [Z] 

Fig. 9-3 

�[[
� �[Y] [Z] 

�[[
� �[Y] [Z] [W] �[A1 

�[Y] [Z] 
�[[� [Y] [Z] 
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equation (9. 17), 

and using equation (9. 18), 

nPr = n(n - 1) . . .  (n - r + 1) 

4P3 = 4(4 - 1)(4 - 3 + 1) = 4 x 3 x 2 = 24 

n! 
nPr = (n - r)! 

4! 4 x 3 x 2 x 1 
- = . = 24 
l !  1 

[CHAP. 9 

The requested tree diagram (without probabilities) is shown in Fig. 9-4, where each unique path through 
the diagram represents a permutation of the four letters taken three at a time. In agreement with the 
calculations, there are 24 such paths. 

Fig. 9-4 

9.14 COUNTING RULE: COMBINATIONS 

If you have a set of n distinct objects and you select r of them (where r � n), and you are not 
concerned about the order in which the objects are selected or arranged, then each distinct group of r 
objects so-selected is a combination. The number of possible combinations of n distinct objects taken r at a 
time is given by the counting rule: combinations formula, which can be written either as 

n(n - l) · · · (n - r + l) 
nCr = , r. 

(9. 19) 
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c _ n! 
n r - r!(n _ r)! 

(The symbols (; ) and q are also commonly used to denote these formulas.) 
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(9.20) 

The counting rule: combinations can be visualized by converting the 24 unique three-letter words 
(which are paths, or permutations) shown in the tree diagram in Fig. 9-4 into the four rows of six words 
each shown in Fig. 9-5. Each row has only one unique combination of letters from which six permutations 
have been formed. From this figure, it can be seen that there are just four unique three-letter combinations 
(one in each row) of the four letters . 

EXAMPLE 9.14 Using equation (9.20), determine how many unique three-letter combinations can be formed from 
the last four letters of the alphabet (w, X, Y, and Z). 

WXY 

WXZ 

WZY 

XYZ 

Solution 

WYX XWY XYW YWX YXW 

wzx XWZ XZW ZWX zxw 

WYZ ZWY ZYW YZW 

XZY YXZ YZX zxy ZYX 
Fig. 9-5 

nCr = -,--,-_
n_! � = 4! = 4 X 3 X 2 X 1 = 4 

r!(n - r)! 3 !(4 - 3)! 3 X 2 X 1 ( 1 ) 

This result confirms what is shown in Fig. 9-5. 

The counting rule: combinations can be considered as a special case of the counting rule: 
permutations. Using the counting rule: permutations formula [equation (9. 1 8)], we find that the number 
of permutations 

of r objects from a set of r objects (i.e., n = r) is [rPr = 
(r � r)! 

= r!J Thus, for example, the number of 

three-letter words that can be formed from three letters is (r! = 3 ! = 3 X 2 = 6) . This result can be seen in 
Fig. 9-5, where each row contains all six permutations of three letters from a set of three letters. The first 
column contains the four combinations of the four letters taken three at a time. Together, all 24 words are 
the permutations of four letters (rather than three letters) taken three at a time. Thus, we can see that the 
total number of permutations (�3) is equal to the number of rows (4C3) times the number of columns (r!). 

4P3 = 4C3(r!) 

= [3 ! (4 � 3)!] c3 !) 

= 
4! 

= 24 
1 !  

This illustrates what is true in general when r objects are selected from n distinct objects 
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C = nPr n r r! 

n(n - 1) . . .  (n - r + 1 )  
= 

r! 

n! 
r!(n - r)! 

Solved Problems 

[CHAP. 9 

CONDITIONAL PROBABILITIES AND THE MULTIPLICATION RULES 

9.1 Consider again the experiment described in Example 9. 1 in which a vaccine is tested on a group of 
1 60 volunteers. Eighty volunteers are vaccinated and the rest are not. After 12  months all 160 
people are asked if they got a cold during the past year. The results are shown in Table 9. 1 .  The 
experiment is to randomly select one of the 1 60 people. If for this experiment S = {the 160 people} ,  
A = {got a cold} ,  A'  = { did not get a cold}, B = {vaccinated} ,  and B' = {not vaccinated} , then find 
these probabilities: (a) P(A IB'), (b) P(BIA), (c) P(B'IA'). 

Solution 

(a) P(A IB') = peA n B) 
PCB') 

peA n B') = NAnB, (�) = 52 (_1
_) = � = � 

N 160 160 40 

PCB') = NB, (�) = 80(_
1
_) = .!. 

N 160 2 

and thus 
, peA n B') 13/40 13  P(AIB ) = 

PCB') 
= 172 = 

20 
= 0.65 

This states that the probability of selecting a person who got a cold from the nonvaccinated group is 0.65. 

(b) P(BIA) = peA n B) 
peA) 

We know from Example 9 . 1  that 

Using equation (8. 1 ), 

and using equation (9.2), 

3 peA n B) = 
1 0  

( A) = peA n B) = 3/ 10  = 1 2  = 0.48 P BI peA) 5/8 25 
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This states that the probability of selecting a person who is vaccinated from the group that got colds 
is 0.48. 

(c) P(B'IA') = peA' n B') 
peA') 

peA' n B') = NA'nB' (�) = 28 (1 �o) = :0 
P(A') = NA. (�) = 60C�0) = � 
and thus 

P( ' IA') = peA' n B') = 7/40 = 2. = 0 47 B peA') 3/8 1 5 . 

This states that the probability of selecting a person who is not vaccinated from the group that did not get 
a cold is 0.47. 

9.2 If in Problem 9. 1 ,  two people are randomly selected, one after the other, from the 1 60, then what is 
the probability that: (a) both got colds, (b) one got a cold and the other did not? 

Solution 

(a) If we let A I be the event that the first person got a cold and A z be the event that the second person got a 
cold, then using equation (9.4), 

From Table 9. 1 ,  

Having removed one person from the cold group, 

and thus 

1 00 99 9,900 P(AI n Az) = 160 x 1 59 = 25,440 = 0.39 

(b) If we let AI be the event that the first person got a cold and A'z be the event that the second person did 
not, then using equation (9.4), 

We know that 

With 60 people still in the no-cold group and one person having been removed from the cold group 

and 

, 60 P(A2 IAl) = 1 59 

peAl n A�) = P(AI)P(A� IAl) 

=
100 �= 

6,000 
= 0 24 160 x 159 25,440 . 
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9.3 In the work force of a large factory, 70% of the employees are high-school graduates, 8% are 
supervisors, and 5% are both supervisors and high-school graduates. From this information, answer 
these questions. (a) If the employee is a high-school graduate, what is the probability he is a 
supervisor? (b) If the employee is not a high-school graduate, what is the probability he is a 
supervisor? 

Solution 

(a) A nB= {supervisor (A) and high-school graduate (B)} , p(A nB)= 0.05 
B = {high-school graduate}, PCB) = 0.70 

Using equation (9.2) 

P(AIB) = peA n B) = 0.05 = 0.071 PCB) 0.70 

(b) A nB' = {supervisor (A) and not high-school graduate (B')}, peA nB') = 0.03 
B' = {not high-school graduate}, P(B') = 0.30 

( ') = peA n B') = 0.03 = 0 10 P AlB PCB') 0.30 
. 

9.4 A die is thrown two times. What is the probability that the total of both times is six, given that the 
first is twice as large as the second? 

Solution 

Let event A = { I st twice 2nd} and event B = {a sum of six} . Using equation (9. 1 ), 

where 

Thus 

peA IB) = 
NAnB 
NB 

A n B can only occur with the sequence 4 and 2, so NAnB = 1 

B can occur five ways (1 and 5, 5 and 1, 2 and 4, 4 and 2, 3 and 3), so NB = 5 

1 peA IB) = "5 = 0.20 

9.5 Two cards are drawn from a well-shuffled, standard deck of playing cards [four suits (diamonds, 
hearts, clubs, and spades) of 1 3  cards each (ace through king)]. If the first card is not replaced 
between selections, then what is the probability that: (a) both cards will be hearts, (b) both will 
be queens, (c) one will be a king and the other a queen? 

Solution 

(a) If we let HI be the event that the first card is a heart and H2 be the event that the second card is a heart, then using equation (9.4), 

and 
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Therefore 
1 12 12 P(HJ n Hz) = 4 x 51 = 204 = 0.059 

28 1 

(b) If we let QJ be the event that the first card is a queen and Qz be the event that the second card is a queen, 
then using equation (9.4), 

and 

Therefore 
1 3 3 P(QJ n Qz) = 13 x 51 = 663 = 0.0045 

(c) If we let KJ be the event that the first card is a king and Qz be the event that the second card is a queen, 
then using equation (9.4), 

and 

Therefore 
1 4 4 P(KJ n Qz) = 13 x 51 = 663 = 0.0060 

9.6 A manufacturer of automobile headlights has sent a shipment of 1 ,000 headlights to a customer, not 
knowing that three of the headlights are defective. The customer has a policy of testing a sample of 
three headlights from such a shipment, and if at least one of the three is defective he rejects the 
shipment. What is the probability he will reject this shipment? 

Solution 

The event we are interested in, {at least one in three is defective} , has as its complement {none of the 
three is defective} . If we use equation (9.5) (the generalization of the general multiplication rule) to solve for 
the probability of the complement, we can then solve for the probability of rejection by using Property 3 in 
Section 8.6. 

For the complement to be true, all three sample headlights must be good (nondefective). Representing 
these events by Nj, Nz, N3, we find that 

997 P(N) = 1 ,000 
996 P(Nz IN) = 999 
995 P(N3 IN) n Nz) = 998 



282 PROBABILITY: CALCULATING RULES AND COUNTING RULES 

and, using equation (9.5), 

P(NI n N2 n N3) = P(NI)P(N2 INI)P(N3 INI n N2) 

= 997 x 
996 x 

995 = 988,046,940 = 0.9910 1 8 1 ,000 999 998 997, 002,000 

Therefore, using Property 3 from Section 8.6, the probability of rejection is 

peat least one in three is defective) = 1 -P(NI n N2 n N3) = 1 - 0.99 10 18 = 0.0090 

[CHAP. 9 

9.7 In Chapter 8, we used the set theory interpretation of probability to show for the experiment of 
flipping a coin twice that 

P(HH, HT, TH) = peat least one head) = 0.75 

Now, use equation (9.8) (the special multiplication rule) to show that this is true. 

Solution 

.If we let HI and H2 represent heads on the first and second trials, repectively, and TI and T2 represent 
tails on the first and second trials, then 

Property 4 in Section 8.6 states that: If events Ai>  A2, . . •  , Ak in S are all mutually exclusive, then 

Therefore, 

As getting a head on the first trial has no effect on the outcome of the second trial, HI and H2 are independent 
and therefore, using equation (9.8), 

Similarly, as HI and T2 are independent 
I I 1 

P(HI n T2) = P(HI)P(T2) = 2' x 2' = 4' 
And, as T\ and H2 and independent 

Therefore 

P(HH, HT, TH) = P(HI n H2) + P(HI n T2) + P(TI n H2) 

I I 1 3 = 4'+4'+ 4 = 4 = 0.75 
9.8 You know that peA) = 0.25 and peA n B) = 0.20. What is P(BIA) if: (a) A and B are independent 

events, (b) A and B are dependent events? 
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Solution 

(a) If A and B are independent events, then 
P(BIA) = PCB) 

and equation (9 .8) is used 
peA n B) = P(A)P(B) 

Therefore 

(b) If A and B are dependent events, then equation (9.4) is used 
peA n B) = P(A)P(BIA) 

and 

P(BIA) = 
peA n B) = 0.20 = 0 .80 peA) 0.25 
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9.9 In the cold-vaccination study described in Example 9. 1 ,  100 people got colds and 60 people did not 
get colds (see Table 9. 1). Four consecutive random selections are made from the 1 60 people, with 
replacement after each selection. What is the probability that the first two had colds and the second 
two did not? 

Solution 

For detennining the joint probability of k independent events, we use equation (9.9) (the generalization 
of the special multiplication rule). If we let C) and Cz be the first two independent selections of people with 
colds and N3 and N4 be the next two independent selections of people without colds, then 

and 

and thus 

100 5 P(C)) = P(Cz) = 160 = '8 

P( C) n Cz n N3 n N4) = P( C) )P( C2)P(N3)P(N4) 

5 5 3 3 225 = - x - x - x - = -- = 0.055 8 8 8 8 4,096 

9.10 You flip a coin seven times in a row and get seven heads. (a) What is the probability of this 
occurring? (b) What is the probability that if you go on to flip the coin an eighth time you will get 
a tail? 

Solution 

(a) If we let H) , Hz, H3, H4, H5, H6, and H7 be the seveil independent heads, then 
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and using equation (9.9) 

P(H1 n H2 n H3 n H4 n Hs n H6 n H7) = P(Hl)P(H2)P(H3)P(H4)P(Hs)p(H6)P(H7) 

= G) 7 = 1�8 = 0.0078 

[CHAP. 9 

(b) The probability of each individual flip is the same, and therefore the probability of getting a tail on the 
eighth flip is !. The error of thinking that because there were seven heads in a row, a tail is now more 
likely than a head is called the gambler s fallacy. It is the mistake of not accepting that all flips of a coin 
are independent events. 

9.11 What is the probability of rolling a 2 at least once in three consecutive rolls of a die? 

Solution 

The event we are interested in, {at least one 2 in three rolls } , has as its complement {no 2s in three rolls} . 
We can use equation (9.9) to solve for the probability of the complement. We can then solve for the 
probability of {at least one 2 in three rolls} by using Property 3 in Section 8.6, which states : For event A and 
its complement A', peA) + P(A') = I .  

For the complement to be true, there can be no 2s in any of the three rolls. Representing these 
independent rolls by Nh N2, and N3, we find 

and using equation (9.9), 

Therefore, using Property 3, 

(5) 3 1 25 = 6 = 2 16 = 0.578704 

P(at least one 2 in three rolls) = I - P (no 2s in three rolls) 

= I - 0.578704 = 0.42 
ADDITION RULES 

9.12 For the cold-vaccination study in Example 9. 1 (see Table 9. 1), if s= {the 1 60 people} ,  A = {got a 
cold},  A' = {did not get a cold},  B = {was vaccinated},  B' = {was not vaccinated} , then use 
equation (9. 10) (the general addition rule) to determine: (a) P(A U B), (b) P(A' UB), 
(c) peA U B'), (d) peA' U B'), (e) peA U A'). 

Solution 

1 00 
(a) A = {got a cold} , peA) = 1 60 

80 ! B= {was vaccinated} , PCB) = 160 
. 48 A nB = {got a cold and was vaccmated} , peA n B) = 1 60 
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Therefore, using equation (9. 1 0), 

peA U B) =P(A) + PCB) - peA n B) 

1 00 80 48 132 = 160 + 160 - 160 = 160 = 0.82 

(b) A' = {did not get a cold}, peA') = 1
6;0 

B =  {was vaccinated}, PCB) = 1
8
6
0
0 

A' n B = {did not get a cold and was vaccinated}, peA' n B) = 1
3:0 

Therefore 

, 60 80 32 108 peA U B) = 1 60 + 1 60 - 160 = 160 = 0.68 

100 (c) A = {got a cold} , peA) = -160 

B' = {was not vaccinated}, PCB') = 1
8
6
0
0 

A nB' = {got a cold and was not vaccinated} ; peA n B') = 1
5:0 

Therefore 

, 1 00 80 52 128 peA U B )  = 160 + 1 60 - 160 = 1 60 = 
0.80 

(d) A' = {did not get a cold}, peA') = 1
6
6
0
0 

B' = {was not vaccinated}, PCB') = 1
8
6
0
0 

A' n B = {did not get a cold and was not vaccinated}, peA' n B') = � 
1 60 

Therefore 

peA' U B') - � � -' � - � -
- 160 + 1 60 160 - 160 - 0.70 

100 
(e) A = {got a cold}, peA) = 160 

A' = {did not get a cold}, peA') = 1
6;0 

A nA' = {got a cold and did not get a cold}, peA nA') = 0, as they are mutually exclusive 
Therefore 

P(A U A') = 
100 � - o = 160 = 1 .0 1 60 + 160 160 
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9.13 In the Venn diagram in Fig. 9-6, the numbers on the boundaries of the circles are the probabilities 
for the events represented by the circles, and the numbers within enclosed areas of the circles are the 
probabilities for events represented by those areas. Using this infonnation and equation (9. 10), 
find: (a) P(A U B), (b) P(A' U B), (c) P(A U B'), (d) P(A' U B'). 
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0.34 0.47 

Fig. 9-6 

(a) P(A) = 0.34, P(B) = 0.47, p(A nB) = 0.26 
Therefore, using equation (9. 10), 

peA U B) = peA) + PCB) - P(A n B) 
= 0.34 + 0.47 - 0.26 = 0.55 

(b) P(A') = 1 - 0.34 = 0.66, P(B) = 0.47, p(A' nB) = 0.21 
Therefore 

P(A' U B) = 0.66 + 0.47 - 0.21 = 0.92 

(c) P(A) = 0.34, P(B') = 1 - 0.47 = 0.53, p(A nB') = 0.08 
Therefore 

peA U B') = 0.34 + 0.53 - 0.08 = 0.79 

(d) P(A') = 0.66, P(B') = 0.53, P(A' nB') = 1 - (0.08 + 0.26 + 0.21) = 0.45 
Therefore 

peA' U B') = 0.66 + 0.53 - 0.45 = 0.74 

[CHAP. 9 

9.14 For the sample space shown in Fig. 9-6, are A and B independent events? Are A and B mutually 
exclusive events? 

Solution 

The special multiplication rule [equation (9.8)] can be used to test if two events are independent. If they 
are, then it must be true that 

peA n B) = P(A)P(B) 
For this sample space P(A) = 0.34, PCB) = 0.47, and therefore P(A)P(B) = (0.34)(0.47) = 0.1 598. But we can 
see from the diagram that 

peA n B) = 0.26 
Therefore, P(A n B)=f:p(A)P(B), and thus these events are dependent. A and B are not mutually exclusive 
because peA n B) =j:. o. 

9.15 In the Venn diagram in Fig. 9-7, the numbers in the circles are the probabilities for the events 
represented by the circles. Using this information and the appropriate addition rule, find: 
(a) P(A U B), (b) P(A' U B), (c) P(A U B') ,  (d) P(A ' U B'). 

Solution 

(a) peA) = 0.39, PCB) = 0.27 
As these events are mutually exclusive we use equation (9. 12) 

peA U B) = peA) + PCB) = 0.39 + 0.27 = 0.66 
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s 

Fig. 9-7 

(b) P(A') = 1 - 0.39 = 0.6 1 ,  P(B) = 0.27, peA' nB) = 0.27 
As A' and B are not mutually exclusive we use equation (9. 1 0) 

peA' U B) = peA') + PCB) - peA' n B) = 0.61 + 0.27 - 0.27 = 0.61 

(c) P(A) = 0.39, P(B') = 1 - 0.27 = 0.73, p(A nB') = 0.39 
Again as A and B' are not mutually exclusive we use equation (9. 1 0) 

peA U B') = 0.39 + 0.73 - 0.39 = 0.73 

(d) P(A') = 0.61 ,  P(B') = 0.73, P(A' n B') = 1 - (0.39 + 0.27) = 0.34 
Again as A' and B' are not mutually exclusive we use equation (9. 10) 

peA' U B') = 0.61 + 0.73 - 0.34 = 1 .0 

9.16 For the sample space shown in Fig. 9-7, are A and B independent events? 

Solution 

Using equation (9.8) to test for independence, 

peA n B) = P(A)P(B) 

For this sample space peA) = 0.39, PCB) = 0.27, and therefore 

P(A)P(B) = (0.39)(0.27) = 0. 1 053 

But we can see from the diagram that 

peA n B) = 0 

Therefore, peA n B) =I P(A)P(B), and these events are dependent. 
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9.17 In the die-rolling experiment, if S =  { l , 2, 3, 4, 5, 6} ,  A = { even number} ,  B =  {number � 2} ,  
C = {number :s 4} ,  use equation (9. 1 1) to determine P(A U B U C). 
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Solution 

We know from what is given that 

A = {even number} , 

B = {number � 2}, 

C = {number :::: 4}, 

peA) = � 
PCB) = � 

4 P(C) = 6 

A n  B = {even number � 2} ,  3 peA nB) = 6 

A n  C = {even number :::: 4}, 

B n C = {2 :::: number :::: 4}, 

2 p(A n C) = 6 
3 p(B n C) = 6 

A n  B n C = {2 :::: even number :::: 4}, 2 peA n B n  C) = 6 
Therefore, using equation (9. 1 1 ), 

peA U B U C) = peA) + PCB) + P( C) - PeA n B) - peA n C) - PCB n C) + peA n B n C) 

3 5 4 3  2 3 2  
= 6 + 6 + 6 - 6 - 6 - 6 + 6 

3 + 5 + 4 - 3 - 2 - 3 + 2  6 = 6 = 6 = 1 .0 

JOINT PROBABILITY TABLES, MARGINAL PROBABILITIES, AND BAYES' THEOREM 

9.18 An urn is an opaque vessel whose contents cannot be seen. Three such urns (A b A2, A3) each 
contain four balls. The balls are identical except for color: A l  has three blue balls and one yellow, A2 
has two blue and two yellow, andA3 has one blue and three yellow. The experiment is to randomly select 
one ofthe urns and then, without looking, select one ball from that urn. Let Ab A2, A3 represent the 
events of selecting a ball from the given urn, B represent the event of selecting a blue ball, and B' the 
event of selecting a yellow ball. From this information develop a joint probability table. 

Solution 

We know from what is given that 

1 peA l )  = P(A2) = P(A3) = 3" = 0.3333 

3 P(BIA } )  = 4 = 0.75 

2 P(BIA2) = 4 = 0.50 

1 
. . P(BIA3) = 4 = 0.25 

, 1 PCB IAI) = 4 = 0.25 

, 
) 2 PCB IA2 = 4 = 0.50 

, ) 
3 PCB IA3 = 4 = 0.75 
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We can now calculate the joint probabilities using equation (9.3). Thus 

PCB n AI) = P(A I)P(BIA I )  = (0.3333)(0.75) = 0.249975 

PCB n A2) = P(A2)P(BIA2) = (0.3333)(0.50) = 0. 166650 

PCB n A3) = P(A3)P(BIA3) = (0.3333)(0.25) = 0.083325 

PCB' n AI) = P(AI )P(B'IAI )  = (0.3333)(0.25) = 0.083325 

PCB' n A2) = P(A2)P(B'IA2) = (0.3333)(0.50) = 0. 166650 

PCB' n A3) = P(A3)P(B' IA3) = (0.3333)(0.75) = 0.249975 
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For the marginal probabilities, we know P(AI), P(A2), and P(A3) and we can now calculate PCB) and 
PCB') using equation (9. 14) (the marginal probability formula). Thus 

. 

k 
PCB) = I: P(A;)P(BIAj) 

;=1 

= P(AI)P(BIAI) + P(Az)P(BIAz) + P(A3)P(BIA3) 

= 0.249975 + 0. 166650 + 0.083325 = 0.499950 
k 

PCB') = I: P(Aj)P(B' IAj) 
j=1 

= P(AI )P(B' IA I) + P(Az)P(B'IAz) + P(A3)P(B' IA3) 

= 0.083325 + 0.l66650 + 0.249975 = 0.499950 
We now have all of the required probabilities, and the completed joint probability table is shown in Table 

9.5. 

Table 9.5 

Urns 

Balls Al  A2 A3 Marginal probability 

B 0.249975 0. 166650 0.083325 0.499950 
B' 0.083325 0. 166650 0.249975 0.499950 

Marginal probability 0.3333 0.3333 0.3333 1 .00 

9.19 From the information in Problem 9. 1 8, answer the following questions both directly from Table 9.5 
and also by using equation (9. 1 5) (Bayes' theorem). (a) Given that a blue ball was selected, what is 
the probability it came from urn AL? (b) Given that a yellow ball was selected, what is the 
probability it came from urn A2? 

Solution 

(a) The question is: What is P(AdB)? 

We know from equation (9.2) that 

Therefore, from Table 9.5, 

p(B n AI) 
peA J IB) = PCB) 

peA IB) = 0.249975 = 0.50 I 0.499950 
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Using equation (9. 1 5) and the infonnation in Problem 9. 1 8, 

P(A1 IB) = {(A1)P(BIA1 ) 

L P(Ai)P(BIAJ 
i=1 

P(A1 )P(BIA1) + P(A2)P(BIA2) +P(A3)P(BIA3) 

= 0.249975 = 0.249975 = 0.50 
0.249975 + 0. 166650 + 0.083325 0.499950 

[CHAP. 9 

These results show that while the prior probability that urn A1 will be selected was 0.3333, once it 
was known that a blue ball was selected this increased the probability (posterior) to 0.50 that urn A I had 
been selected. 

(b) The question is: What is P(A2 IB')? 
We know from equation (9.2) that 

Therefore, from Table 9.5, 

peA IB') = PCB' n A2) 2 PCB') 

, 0. 1 66650 P(A2 IB ) = 
0.499950 

= 0.3333 

Using equation (9. 1 5) and the infonnation in Problem 9. 1 8, 

P A B') _ P(A2)P(B' IA2) ( 2 1 - P(Al)P(B' IA1 ) + P(A2)P(B' IA2) + P(A3)P(B' IA3) 
0. 1 66650 = 0.166650 = 0.3333 

0.083325 + 0. 1 66650 + 0.249975 0.499950 

These results show that the prior and posterior probabilities of selecting A2 are both 0.3333. 

9.20 A district sales manager for a textbook publishing company feels there is a 60% probability that a 
rival company will sell its chemistry textbook to the chemistry department of a large university. He 
also feels that if this happens, then there is an 80% probability that a community college in the same 
city as the university, which will choose a chemistry textbook after the university, will also adopt 
the rival's book. If the university does not adopt, then he feels there is still a 50% probability that the 
college will adopt the rival's book anyway. If U and U represent the events of adoption and 
nonadoption by the university of the rival's book and C and C represent these events for the college, 
then develop a joint probability table that includes these intersection probabilities: p(Cn U), 
p(cn U'), PCC n U), P(C n U'); and these marginal probabilities: P(U), P(U'), PCC), P(c). 

Solution 

We know from what is given that 

P(U) = 0.60, P(Cj U) = 0.80, P(CIU') = 0.50 

Therefore we can calculate that 

P(U') = 1 - 0.60 = 0.40 

P(C' IU) = 1 - 0.80 = 0.20 

P(C' IU') = 1 - 0.50 = 0.50 
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We can now calculate the intersection probabilities using equation (9.3) 

P(C n V) = P(V)P(C1 V) = (0.60)(0.80) = 0.48 

P(C n V') = P(V')P(C1 V') = (0.40)(0.50) = 0.20 

P(C' n V) = P(V)P(C' I V) = (0.60)(0.20) = 0. 12  

P(C' n V') = P(V')P(C'I V') = (0.40)(0.50) = 0.20 
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For the marginal probabilities, we know P(U) and P(V') and we can now calculate P(C) and PCC') using 
equation (9. 14) 

k 
P(C) = L: P(V;)PCClV;) 

;= 1 

= P(V)P( CI V) + PC V')P( Ci V') 

= 0.48 + 0.20 = 0.68 

k 
P(C') = L: P(V;)P(C' I VJ 

;=1 

= P( V)P( C'I V) + P( V')P( C' I V') 

= 0. 1 2  + 0.20 = 0.32 

We now have all of the required probabilities, and the completed joint probability table is shown in 
Table 9.6. 

Table 9.6 

University 

College V V' Marginal probability 

C 0.48 0.20 0.68 

C' 0. 1 2  0.20 0.32 

Marginal probability 0.60 0.40 1 .00 

9.21 From the information in Problem 9.20, answer the following questions both directly from Table 9.6 
and by using equation (9. 1 5). (a) Given that the college has adopted the textbook, what is the 
probability that the university has also adopted it? (b) Given that the college has not adopted the 
textbook, what is the probability that the university has also not adopted it? 

Solution 

(a) The question is: What is P(V1c)? 
We know from equation (9.2) that 

Therefore, from Table 9.6, 

p(c n V) 
P(VIc) = 

P(C) 

P(VIc) = 0.
48 = 0.71  

0.68 
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Using equation (9. 15) and the infonnation in Problem 9.20 

P(UIc) = P(U)P(q U) 
k 

'L P(U;)P(q u;) 
;=1 

P(U)P(q U) 
P(U)P(q U) + P(U')P(CI U') 

0.48 = 0.48 = 0.7 1 
0.48 + 0.20 0.68 

[CHAP. 9 

The results show that while the prior (subjective) probability that the university will adopt was 0.60, 
once it was known that the college had adopted the book this knowledge increased the probability 
(posterior) of the university adopting to 0.7 l .  

(b) This question is: What is P(U'IC')? 
We know from equation (9.2) that 

So from Table 9.6, 

P(U'Ie') = P(C' n U') 
PCC') 

( , ') 0.20 
6 P U IC = - =  0.625, or O. 2 

0.32 

Using equation (9. 1 5) and the infonnation in Problem 9.20, 

, , P( U')P( C' I U') P(U C )  = P(U')P(C' I U') + P(U)P(C' I U) 
0.20 _ 0.20 _ 

r 2 = 
0 12  - 0 32 

- 0.625, 0 0.6 
0.20 + . . 

These results show that while the prior (subjective) probability that the university will not adopt was 
0.40, once it was known that the college had not adopted this increased the probability (posterior) that 
the university had not adopted to 0.62. 

9.22 A new viral disease has infected approximately 25% of the pig population on fanns in several 
southern states. There is a diagnostic test for the presence of the virus but it gives a positive result 
(virus present) only 84% of the time when the pig actually has the disease and a negative result 
(virus absent) only 80% of the time when the pig does not have the disease. The probability 
experiment is to take a pig from this popUlation and test it for the presence of the virus. From this 
information, answer these questions. (a) If the test result is positive, what is th� probability the 
pig actually is infected by the virus? (b) If the test result is negative, what is the probability the 
pig is actually not infected by the virus? (c) What is the probability the test will give the correct 
diagnosis? 

Solution 

For answering these questions, let Vand V' represent the events that the pig actually is or is not infected 
by the virus and R and R' represent the events of positive and negative results with the diagnostic test. 

(a) The question is: What is P(VlR)? 
Using equation (9. 1 5), 

P(V)P(R IV) P(VIR) = P(V)P(RI V) + P(V')P(RI V') 
While the percentages given are relative frequency estimates, we will do all probability calculations as if 
they were exact percentages. Therefore, we know from what is given that 

P(V) = 0.25, P(RI V) = 0.84, P(R' I V') = 0.80 



CHAP. 9] PROBABILITY: CALCULATING RULES AND COUNTING RULES 

Therefore we can calculate 

And thus 

P(V') = 1 - P(V) = 1 - 0.25 = 0.75 

P(RI V') = 1 - P(R'I V') = 1 - 0.80 = 0.20 

P(V R) - (0.25)(0.84) = 0.21 _ 0.21 
- 0 8 I - (0.25)(0.84) + (0.75)(0.20) 0 .21  + 0 . 15  

-
0.36 -

.5 
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Therefore, while it is true that if the pig has the disease there will be a positive test result 84% of the 
time, it is inversely true that if the test result is positive then there is only a 58% probability that the pig 
actually has the disease. 

(b) The question is: What is PWIR')? 
U sing equation (9. 1 5), 

P V' R' 
_ . P(V')P(R'I V') 

( I ) - P(V')P(R' I V') + P(V)P(R' I V) 
The only missing element is 

Therefore 

P(R'I V) = 1 - P(R IV) = 1 - 0.84 = 0 . 16  

P(V' R') _ (0.75)(0.80) = 
0.60 = 0.60 = 0.94 I - (0.75)(0.80) + (0.25)(0. 16) 0.60 + 0.04 0.64 

Thus, while it is true that if the pig does not have the disease there will be a negative result 80% of 
the time, it is inversely true that if the test result is negative there is a 94% probability the pig does not 
have the disease. 

(c) The question is: What is P[ ( V n R) U (V' n R')]? 
. As VnR and V' n R' are mutually exclusive, we know from Property 4 in Section 8.6 that 

P[(V n R) U (V' n R')] = P(V n R) + P(V' n R') 
and from equation (9.4) 

Therefore 

P(V n R) = P(V)P(RI V) = (0.25)(0.84) = 0.21 

P(V' n R') = P(V')P(R'I V/) = (0.75)(0.80) = 0.60 

P(correct diagnosis) = P[(V n R) U (V' n R')] = 0.21 + 0.60 = 0 .81  

Thus, with this test there is an 81  % chance of a correct diagnosis. 

9.23 An insurance company executive has developed an aptitude test for selling insurance. She knows 
that in the current sales force, 65% of the salespeople have good sales records and the remaining 
35% have bad sales records. She gives her test to the entire sales force and finds that 73% of those 
with good records pass the test and 78% of those with bad records fail the test. The probability 
experiment is to select a salesperson at random and give them the test. From this information, 
answer these questions. (a) If someone passes the test, what is the probability they have a good 
sales record? (b) If someone fails the test, what is the probability they have a bad sales 
record? (c) What is the probability that performance on the test will correctly identify someone 
with either a good or a bad sales record? 

Solution 

For answering these questions, let T and T' represent the events of passing or failing the test and R and R' 
represent the events of having a good or bad sales record. 

(a) The question is: What is P(RIT)? 
Using equation (9. 1 5), 

P(R)P(TIR) 
P(R IT) = 

P(R)P(TIR) + P(R')P(TIR') 
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From the infonnation given, we know that 

peR) = 0.65, (R') = 0.35, P(TIR) = 0.73 , P(T'IR') = 0.78 

Therefore we can calculate 

Thus 

P(TIR') = 1 - P(T'IR') = 1 - 0.78 = 0.22 

peR T) _ (0.65)(0.73) 
I - (0.65)(0.73) + (0.35)(0.22) 

0.4745 = 0.4745 = 0.86 
0.4745 + 0.0770 0.55 1 5  

[CHAP. 9 

Therefore, while there is a 65% probability that if a salesperson is picked at random from the sales 
force they will have a good sales record, if they have passed the test there is an 86% probability they will 
have a good sales record. 

(b) The question is: What is P(R' IT')? 
Using equation (9. 1 5), 

P R' T' _ P(R')P(T'IR') 
( I ) - P(R')P(T' IR') + P(R)P(T' IR) 

The only missing element is 

Thus 

P(T'IR) = 1 - P(TIR) = 1 - 0.73 = 0.27 

peR' T') _ (0.35)(0.78) 
I - (0.35)(0.78) + (0.65)(0.27) 

0.2730 = 0.2730 = 0.61 
0.2730 + 0. 1755 0.4485 

Therefore, while there is a 35% probability that if a salesperson is selected at random they will have 
a bad sales record, if they have failed the test there is a 6 1  % probability they will have a bad record. 

(c) The question is: What is P[(R n T) U (R' n T' )]? 
As R n T and R' n T' are mutually exclusive, we know from Property 4 in Section 8.6 that 

P[(R n T) U (R' n T')] = peR n T) + peR' n T') 

and from equation (9.4) 

Thus 

peR n T) = P(R)P(TIR) = (0.65)(0.73) = 0.4745 

peR' n T') = P(R')P(T' IR') = (0.35)(0.78) = 0.2730 

P(correctly identifying) = P[(R n T) U (R' n T')] 

= 0.4745 + 0.2730 = 0.75 

Therefore, with this test there is a 75% chance of identifying someone with either a good or bad 
sales record. 

TREE DIAGRAMS 

9.24 Four balls in an urn are identical except for color; one is red (R), one white (W), one yellow (Y), and 
the fourth is blue (B). The experiment is to pick a ball from the urn and then, without replacing it, 
pick a second ball. Use a tree diagram to find peat least one Y ball). 

Solution 

If we let Ra, Wa, Ya, and Ba represent possible outcomes for the first pick and Rb, Wh, Yb, and Bb 
represent possible outcomes for the second pick, then the tree diagram for this experiment is as shown in Fig. 
9-8. 
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\) [Rb] �[Ml 
[Ra] 1�3 [Yb] 

[Bb] 

[Rb] 

[Wb] 

[Yb] 

[Bb] 

[Rb] 

[Ya] 
[Wb] 

[Yb] 

[Bb] 

[Rb] 

[Wb] 
[Ba] 

[Yb] 

[Bb] 

Intersections 

Ra n Rb 

Ra n Wb 

Ra n Yb 

Ra n Bb 

Wa n Rb 

Wa n Wb 

Wa n Yb 

Wa n Bb 

Ya n Rb 

Ya n Wb 

Ya n Yb 

Ya n Bb 

Ba n Rb 

Ba n Wb 

Ba n Yb · 

Ba n Bb 

Fig. 9-8 

Intersection 
probabilities 

0.0 

1/12 = 0.08333 

1112 = 0.08333* 

1112 = 0.08333 

1112 = 0.08333 

0.0 

1112 = 0.08333* 

1/12 = 0.08333 

1112 = 0.08333* 

1112 = 0.08333* 

0.0 * 

1112 = 0.08333* 

1112 = 0.08333 

1/12 = 0.08333 

11 12 = 0.08333* 

0.0 

sum = 1 .00 
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For peat least one Y ball) the relevant probabilities are marked with an asterisk in the intersection 
probabilities column in Fig. 9-8. Therefore as these intersections are mutually exclusive we know from 
Property 4 in Section 8.6 that 

peat least one Y ball) = P(Ra n Yb) + P(Wa n Yb) + P(Ya n Rb) + P(Ya n Wb) 
+ P(Ya n Yb) + P(Ya n Bb) + P(Ba n Yb) 

As P(Ya n Yb) = 0.0, 

peat least one Y ball) = 6(0.08333) = 0.50 

9.25 A friend in high school wants to go to medical school, but first she will either go to a local college 
where she has already been accepted, or to a prestigious university. She would prefer to go to the 
university but feels there is only a 65% probability she will be accepted. She further thinks that if 
she goes to the college there is a 95% probability she will graduate and then a 50% probability she 
will be accepted by a medical school. If instead she goes to the university, then she feels there is a 
70% probability she will graduate followed by a 75% probability she will be accepted by a medical 
school. Of course she has to graduate from either the college or the university to be accepted by a 
medical school. Use a tree diagram to determine P(acceptance by a medical school). 

Solution 

If we let U and C represent her going to the university or the college, G and G' represent subsequent 
graduation or nongraduation, and M and M represent her acceptance or nonacceptance by a medical school, 
then the tree diagram for this experiment is as shown in Fig. 9-9. 

For P(M) the relevant probabilities are marked with asterisks in the intersection probabilities column in 
Fig. 9-9. Therefore, as these intersections are mutually exclusive we know from Property 4 in Section 8.6 that 

P(M) = p(U n G n M) + P(U n G' n M) + p(C n G n M) + p(C n G' n M) 
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10" �. 

q� ;r 

� [M] < [GJ O�S . [M'l 
[U] 0 '.]0 � [M] 

[G 1.0 
[M1 � [M] < [GJ 050 . [M'l 

[C] 0 
·OS � [M] 

[G 1.0 
[M'l 

Fig. 9-9 

and, as P(U n G' n M) = p(C n G' n M) = 0 

Intersection 
Intersections probabilities 

Ur. G r. M  0.34125* 

U r. G r. M' 0. 1 1375 

U r. G' r. M 0.0 * 

l.f r. G' r. M' 0.19500 

Cr. G r. M  0. 16625* 

Cr. G r. M' 0.16625 

C r. G' r. M 0.0 * 

C r. G' r. M' 0.01750 

sum = 1 .00 

P(M) = P(U n G n M) + p(C n G n M) = 0.34125 + 0. 1 6625 = 0.51 

[CHAP. 9 

9.26 A senator campaigning for reelection is trying to raise $ 100,000 for a last-minute series of 
television advertisements. He thinks there is a 55% probability he will be able to raise the money 
and that if he does there is then a 70% chanc'e he will be reelected. He also feels that if he fails to 
raise the money then there will still be a 55% probability he will be reelected. Use a tree diagram to 
find P(he did not raise the money, given he was reelected). 

Solution 

If we let M and M' represent raising or not raising the money and R and R' represent being reelected or 
not reelected, then the tree diagram for this experiment is as shown in Fig. 9- 10. 

To find P(M' IR) we use equation (9. l 5) and the values marked with asterisks in the intersection 
probabilities colunm in Fig. 9- 10. Therefore 

P(M' IR) _ P(M')P(RIM') 
- P(M')P(R IM') + P(M)P(RIM) 

P(M' n R) 
P(M' n R) + P(M n R) 

0.2475 , 0.2475 
7"0.-=-24-:-:7::-:5,-+

-
0"....738::-:5:'70 

= -
0.

-
63
-

2
-
5 

= 0.39 

�.10 [Rl 

0.) [R1 
<' [M] 0.30 

o'.,s �.5S [Rl 
[M1 0.45 

[R1 

Intersections 

Mn R 

Mr. R' 

M'r. R  

M'r. R' 

Fig. 9-10 

Intersection 
probabilities 

0.3850* 

0. 1650 

0.2475* 

0,2025 

sum = 1 .00 
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COUNTING RULES 

9.27 Use the counting rule: mult iplication principle to determine the number of sample points in the 
sample spaces for these experiments: (a) flipping a coin eleven times, (b) selecting a card from 
a standard 52-card deck five times in a row with replacement and reshuffling after each selection. 

Solution 

(a) This experiment has k= I I  consecutive trials, with two possible outcomes for each trial. Using equation 
(9. 1 6), 

# sample points = nl x n2 x . . .  x nl 1 
= 21 1  = 2,048 

(b) This experiment has k= 5 consecutive trials, with 52 possible outcomes for each trial. Therefore 

# sample points = nl x n2 x . . .  x ns 
= 52s = 380,204,032 

9.28 For the experiments in Problem 9.27, determine the following probabilities using both equation 
(9.9) and Property 7 from Section 8.6: (a) P(getting a head on all 1 1  trials), (b) P(getting a 
queen of hearts on all 5 trials). 

Solution 

(a) If we let HI, H2, . • •  , Hl l represent the independent events of heads on each of the I I  flips, then from 
equation (9.9), 

P(HI nH2 n · · ·  nHI I ) = P(HI )P(H2) · · · P(HI I ) 
Therefore, as P(HI) = P(H2) = . . .  = P(Hl1 ) = � ( 1) 1 1  

P(HI n Hz n · · ·  nHl 1 ) = 2: = 0.00049 
From Property 7, if A = { I I  heads in a row} , then there is only one way this can occur and NA = 1 .  

From Problem 9.27 (a) we know that N= 2 1 1 = 2,048. Therefore 

peA) = NA (�) = I (2'�48) = 0.00049 

(b) If we let Q), Qz, . . .  , Qs represent the independent events of queen of hearts on each of the five card 
selections, then from equation (9.9) 

P(QI n Q2 n . . .  n Qs) = P(Q\)P(Q2) . . .  P(Qs) 
1 

Therefore, as P(QI) = P(Q2) = . . . = P(Qs) = 52 ' 

P(QI n Q2 n . . . n Qs) = (5
1
2) 

s 
= 0.0000000026 

From Property 7, if A = {queen of hearts on all 5 selections}, then there is only one way this can 
occur and NA = I .  From Problem 9.27(b) we know that N = 525 = 380,204,032. Therefore 

peA) = NA (�) = I (380'2�4,032) = 0.0000000026 

9.29 A car manufacturer offers several options for a particular model of car: (a) two or four 
doors, (b) one of six colors (red, yellow, blue, green, white, silver), (c) AM or AM-FM 
radio, (d) automatic or manual shifting. How many versions of this car are possible? If each of 
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the versions is described on a separate card, all of the cards are put in a bowl, and then you blindly 
select one of the cards from the bowl, what is the probability it will read: a red car with two doors, 
manual shifting, and an AM-FM radio? 

Solution 

The experiment is picking a car that has a unique mixture of the four types of options. If we consider 
each option to be a trial of the experiment, then: n] = door options = 2, n2 = color options = 6, n3 = radio 
options = 2, and n4 = shifting options = 2. Therefore, using equation (9. 16), 

# sample points = # possible versions of the car = nl x n2 x n3 x n4 
= 2 x 6 x 2 x 2 = 48 

Using Property 7 from Section 8 .6, if A = {red car with two doors, manual shifting, and an AM-FM 
radio} ,  then NA = I ,  N = 48, and 

9.30 Use both equations (9. 17) and (9. 1 8) to determine how many ways eight books can be arranged in a 
line along a shelf. 

Solution 

The question is: What is nPn? 
Substituting n for r in equation (9 . 17) we get 

nPn = n(n - 1 )  . . . (n - n + 2)(n - n + 1) 
= n(n - 1) · . .  (2)(1) = n! 

and doing this in equation (9. 1 8) we get 

_ n! _ � _ n! _ , 
nPn - (n _ n)! - (O)! - I - n. 

Therefore, in this problem where n = 8 
gPg = 8! = 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 40,320 

9.31 After shuffling a standard deck of 52 cards you deal three cards which you place on a table in a left­
to-right sequence. What is the probability that the sequence is jack, queen, king of the same suit? 

Solution 

Using Property 7 from Section 8.6, if A = {same-suit sequence of jack, queen, king}, then as there are 
four suits, NA =4. And, using equation (9 . 1 8), 

Therefore 

52! 52! 
(52 _ 3)! = 49! = 52 x 51 x 50 = 132, 600 

9.32 You live in a state where the car license plates have three letters (without duplications on a plate) on 
the left followed by three numbers (again without duplications) on the right. The letters are 
randomly selected from the 26 letters of the alphabet, and the numbers are randomly selected from 
the ten integers 0 to 9. Assuming that all plates are available, and that you are assigned a plate 
randomly, what is the pl'obability that you will get a plate that reads: ABC01 2? 
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Solution 

Using Property 7 from Section 8.6, if A = {ABCO I2} , then NA = 1 .  And, if we consider the selection of 
the three letters as the first trial of an experiment and the selection of the three numbers as the second trial, 
then using both equation (9. 16) and equation (9. 1 8), 

N = 26P3 X IOP3 = [(26
2:! 

3)J [( IO

I�! 

3)J 
= G�:) (\�') = (26 x 25 x 24)(10 x 9 x 8) 

= (15 ,600)(720) = 1 1 ,232,000 

Therefore 

peA) = NA (�) = I C 1 ,23
1

2,000} = 0.000000089 

9.33 In the house of representatives of your state legislature there are 90 Democrats and 70 Republicans. 
By a random process, a Majority Leader and an Assistant Majority Leader will be selected from the 
Democrats and a Minority Leader and Assistant Minority Leader will be selected from the 
Republicans. How many permutations are there of these four leadership positions? 

Solution 

Using equation (9. 18), the permutations for the Democrats are 

n!  90! 
nPr = 90P2 = (n _ r)! 

= (90 _ 2)! 
= 90 x 89 = 8, 010 

and those for the Republicans are 

n! 70! 
nPr = 70P2 = 

(n _ r)! 
= 

(70 _ 2)! = 70 x 69 = 4,830 

If we consider the selection of the two Democrats as the first trial of an experiment and the selection of 
the two Republicans as the second trial, then using equation (9 . 1 6), 

(leadership permutations) = 90P2 X 70P2 = (8,0 10)(4,830) = 3 8 , 688, 300 

9.34 If in the house of representatives described in Problem 9.33 there are six Democrats and four 
Republicans from the same city, what is the probability that representatives from this city will be 
selected to all four leadership positions? 

Solution 

Using equation (9. 1 8), the leadership permutations for the Democrats from this city are 

n! 
nPr = 6P2 = (n - r)! 

and those for the city's Republicans are 

6! 
(6 _ 2)! 

= 6 x 5 = 30 

4! 
nPr = 4P2 = 

(4 _ 2)! 
= 4 x 3 = 12 

Then, calculating leadership permutations for the four positions as was done in Problem 9.33, but now 
restricted to the city's representatives, 

(leadership permutations) =6 P2 X4 P2 = (30)( 12) = 360 
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Therefore, using Property 7 from Section 8.6, if A = {all four leaders from the same city} ,  NA = 360, and 
from .problem 9.33, N = 38,688,300, then 

peA) = NA (�) = 360C8,68
1
8 ,300) = 0.0000093 

9.35 If all three-letter words that can be formed from the word CLOVER (with no letter duplications in a 
word) are each written on a separate card and all these cards are placed in a bowl, what is the 
probability of then selecting a card from the bowl that has a word on it that begins with a vowel? 

Solution 

Using equation (9. 1 8), the total number of three-letter words from CLOVER is 

n! 6! 
nPr = 6P3 = (n _ r)! = (6 _ 3)! = 6 x 5 x 4 = 1 20 

As there are two vowels in CLOVER (E, 0), the number of three-letter words that can be fonned starting with 
a vowel is found by using equation (9. 1 6) 

2 x 4P2 = 2[ (4 �!2)! J = 2(4 x 3) = 24 

Therefore, using Property 7 from Section 8.6, if A = {words starting with a vowel} ,  NA = 24, N= 120, then 

peA) = NA (�) = 24C�0) = 0.20 
9.36 A manufacturer shows 40 bathing suits to a buyer. Use equation (9.20) to determine how many 

ways the buyer can choose five of the suits to sell in her store. 

Solution 

The question is: What is 40CS? Using equation (9.20), 

C n! 40! 40 x 39 x 38 x 37 x 36 x 35! 
= 658 008 40 5 

= r!(n _ r)! 5!(40 - 5)! (5 x 4 x 3 x 2 x 1 )(35!) , 

9.37 Your instructor in a college history course gives you a list of 20 possible essay questions from 
which he will randomly pick four for the final examination. Pressed for time, you prepare for only 
four of the questions. What is the probability these four will be on the examination? 

Solution 

Using equation (9.20), the number of possible four-question final examinations that can be taken from 
the list of 20 question is 

C _ n ! = 20! 
20 4 - r!(n _ r)! 4!(20 - 4)! 

= 20 x 19 x 18 x 17 x 16 ! 
= 4, 845 (4 x 3 x 2 x 1 )(1 6!) 

Therefore, using Property 7 from Section 8.6, if A = {four questions you have prepared} ,  NA = 1 , 
N=4,845, then 

peA) = NA (�) = 1 (4'�45) = 0.0002 1 
You have a 0.00021 'probability of selecting the four questions on the exam. 
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9.38 To play your state lottery, you select six numbers from 1 to 42. You win the grand prize if your six 
match the six winning numbers selected by the lottery. What is the probability that your ticket will 
win the grand prize? 

Solution 

Using equation (9.20) to detennine how many six-munber combinations can be selected from the 42 
numbers, 

C _ n! 
42 6 - r!(n _ r)! 

42! 
6! (42 - 6)! 
42 x 41 x 40 x 39 x 38 x 37 x 36! 

(6 x 5 x 4 x 3 x 2 x 1 )(36!) 

= 5 ,245 ,786 
Therefore, using Property 7 from Section 8.6, if A = {winning grand prize}, NA = 1 ,  N = 5,245,786, then 

peA) = NA(�) = 1 (5'24�'786
) = 0.0000001 9 

9.39 In the lottery in Problem 9.38, you win the second prize if you match five of the lottery'S six 
winning numbers. What is the probability that your ticket will win the second prize? 

Solution 

To win the second prize you must have selected five of the six winning numbers and one of the 36 losing 
numbers. If we consider selecting the five winners as the first trial of an experiment and selecting the one loser 
as the second trial, then using both equation (9.20) and equation (9. 16), the number of ways you can pick five 
correct numbers is 

[ 
6! J [ 36! 

J 6CS x 36CI = 5!(6 _ 5)! 1 !(36 - I) ! 

(
6 x 5 !

) (
36 x 35!

) = 5Ti! 1 !35! = 6 x 36 = 2 16 

Therefore, using Property 7 from Section 8.6, ifA= {winning 2nd prize}, NA =216, and N= 5,245,786 
(from Problem 9.38), then 

9.40 What is the probability that if you are dealt a five-card poker hand, two of the cards will be 
diamonds, two will be hearts, and one will be a club? 

Solution 

To get this hand you must have been given two of the 13 diamonds, two of the 13 hearts, and one of the 
13 clubs. If we consider these as three trials of an experiment, then using both equation (9.20) and equation 
(9 . 16), the number of ways you can get this hand is 

13C2 x 13C2 X 13CI = [2!(l!
3� 2)J [2!(1!

3� 2)J L!(1!
3� l )J 

� 
[
1 3 x 1 2 x I I !

J [
1 3 x 1 2  x l 1 !

J [
1 3 x 12 !

J (2 x 1)(1 1 !) (2 x 1)( 1 1 !) J ! 12 ! 

= C
3 ; 12) (

13 ; 12) (\
3
) = 78 x 78 x 13 = 79,092 
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The total number of five-card poker hands that are possible from a 52-card deck is 

C _ 52! = 52 x 51 x 50 x 49 x 48 x 47! = 2, 598,960 52 5 - 5!(52 _ 5)! (5 x 4 x 3 x 2 x 1 )(47!) 

[CHAP. 9 

Therefore, using Property 7 from Section 8.6, if A = {hand with 2 diamonds, 2 hearts, and 1 club},  
NA = 79,092, N = 2,598,960, then 

peA) = NA (�) = 79,092C
, 59!,960) = 0.030 

9.41 You want to arrange eight books in a line along a shelf. How many unique combinations are there of 
these eight books? 

Solution 

The question is: What is nCn? In general, using equation (9. 1 9), 

Therefore, when n = 8 

n(n - 1) · ·  . (n - n + 2)(n - n + 1)  
nCn = 

I n. 

_ n(n - 1) · . .  (2)( 1) _ n! _ 
1 - n! - n! -

Supplementary Problems 

CONDITIONAL PROBABILITIES AND THE MULTIPLICATION RULES 

9.42 · A single card is drawn from a well-shuffled, standard deck of playing cards. Given that a diamond card has 
been selected, what is the probability it is a face card Gack, queen, or king)? 

3 
Ans. 13 = 0.23 

9.43 A single card is drawn from a well-shuffled, standard deck of playing cards. Given that a card numbered 2, 3 ,  
4, or 5 has been selected, what is the probability it is a diamond? 

4 
Ans. 

1 6  
= 0.25 

9.44 A single card is drawn from a well-shuffled, standard deck of playing cards. Given that a king has been 
selected, what is the probability it is a red card? 

2 
Ans. 4 = 0.50 

9.45 Two cards are drawn, one after the other, from a well-shuffled, standard deck of playing cards. The first card is 
not returned to the deck after it has been drawn. Use equation (9.4) to determine the probability of selecting a 
diamond card in both draws. 

Ans. G�) G �) = 0.059 
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9.46 An urn contains 60 marbles: 30 are white, 1 8  are red, and 1 2 are blue. Two marbles are removed, at random, 
from the urn. The first marble is not returned to the urn after it has been removed. What is the probability that 
both marbles are blue? 

ADS. G�) G!) = 0.037 

9.47 Determine the probability of not rolling a 4 on either of two consecutive repetitions of the die-rolling 
experiment. 

Ans. (�) 2 = 0.69 

9.48 In three repetitions of the card-selection experiment, if the cards are not replaced between selections, then 
what is the probability that they will all be queens? 

ADS. (5�) (:1) (520) = 0.000 1 8 

9.49 In the coin-flipping experiment, what is the probability of rolling two heads in succession? 

ADS. GY= 0.25 
9.50 In six repetitions of the card-selection experiment, with replacement and reshuffling after each selection, what 

is the probability that all six cards will be red cards? 

Ans. GY= 0.016 
9.51 During the past year in a maternity ward of a hospital, 1 ,060 males were born and 1 ,000 females. Assuming 

these totals to be representative of all births, what is the probability that the next four babies born in the ward 
will be girls? 

(
1 ,000

)
4 

Ans. 2,060 
= 0.056 

ADDITION RULES 

9.52 A single card is drawn from a well-shuffled, standard deck of playing cards. What is the probability of drawing 
either a diamond or a red card? 

13 26 13 26 
Ans. 52 + 52 - 52 = 52 = 0.50 

9.53 A single card is drawn from a well-shuffled, standard deck of playing cards. What is the probability of drawing 
either a diamond or a king? 

1 3 4 1 1 6 
Ans. 52 + 52 - 52 = 52 = 0.3 1 

9.54 A single card is drawn from a well-shuffled, standard deck of playing cards. What is the probability of drawing 
either a 2, 3, or 4 and not a diamond? 
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9.55 Detennine P(BIA) when: (a) A and B are mutually exclusive events, (b) A and B are independent events. 

Ans. (a) 0, (b) PCB) 

9.56 Detennine peA n B) when: (a) A and B are mutually exclusive events, (b) A and B are independent 
events. 

Ans. (A) 0, (b) P(A)P(B) 

9.57 Determine peA UB) when: (a) A and B are mutually exclusive events, (b) A and B are independent 
events. 

Ans. (a) P(A) + P(B), (b) P(A) +P(B) - peA nB) =P(A) + P(B) - [P(A)P(B)] 

9.58 One hundred mayors of US. cities are attending a conference on environmental issues. Fifty ofthe mayors are 
Democrats and 50 are Republicans. Sixty are men and 40 are women, and of the 60 men, 25 are Democrats. If 
one of the mayors is randomly chosen, then detennine the probability that: (a) the mayor will be a male 
Democrat, (b) the mayor will be either a male or a Democrat. 

25 
Ans. (a) 

1 00 
= 0

.
25

, 
(b) � � - � - 0 85 

100 
+ 

1 00 1 00 - . 
9.59 For the mayors in Problem 9.58, 1 5  of the 40 women are Republicans. If one mayor is randomly selected from 

all 1 00 mayors each day for two days (sampling with replacement), then detennine the probability 
that: (a) a man will be chosen on day one and a woman on day two, (b) on day two, either a male 
Democrat or a female Republican will be chosen. 

' 

60 40 
Ans. (a) 

100 x 
100 

= 0.24, 
� � - 4 (b) 
1 00 

+ 
1 00 - O. 0 

9.60 For the mayors in Problem 9.58, 1 5  of the 25 male Democrats are over 45 years of age. If one mayor is 
randomly selected from the 100, what is the probability of selecting a male Democrat who is over 45 years of 
age? 

9.61 For the mayors in Problem 9.58, 50 are over 45 years of age (30 males and 25 females) . Of these 50, 25 are 
Democrats. If one mayor is randomly selected from the 100, what is the probability of selecting either a male 
or a Democrat or someone who is over 45 years of age? 

A 
60 � � _ � _ � _ � � - 0 95 ns. 
1 00 

+ 
100 

+ 
100 1 00 100 1 00 

+ 
100 - . 

JOINT PROBABILITY TABLES, MARGINAL PROBABILITIES, AND BAYES' THEOREM 

9.62 Events AI ,  A2, and A3 are mutually exclusive and exhaustive, with probabilities peA I) = 0.20, P(A2) = 0.60, 
and P(A3) = 0.20. Given that P(BIA1) = 0 . 10, P(BIA2) = 0.50, and P(BIA3) = 0.40, calculate PCB). 

Ans. 0.40 

9.63 From the information provided in Problem 9.62, calculate : (a) P(AdB), (b) P(A2 IB), (c) P(A3IB). 

Ans. (a) 0.05, (b) 0.75, (c) 0.20 
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9.64 Events Db D2, and D3 are mutually exclusive and exhaustive causes of two effects, C and C'. The 
probabilities of the causes are P(D1) = 0.69, P(D2) = 0.05, and P(DJ) = 0.26. Given that P(C1D1) = O.lO, 
P(ClD2) = 0.36, and P(ClDJ) = 0.54, what is the probability of effect C'? 

Ans. 0.77 

9.65 For the information provided in Problem 9.64, what is the probability that effect C' is caused by Db D2, or 
DJ? In other words, what are: (a) P(DJI C'), (b) P(D2IC'), (c) P(D31 C')? 

Ans. (a) 0.8 1 ,  (b) 0.04, (c) 0. 16 

9.66 At Easter, a father places colored eggs in baskets for his small daughter to find. He hides three baskets in three 
hiding places. The first basket contains two red eggs, the second basket contains a red egg and a blue egg, and 
the third basket contains two blue eggs. Given that the child finds a blue egg, what is the probability that it 
comes from the second basket? 

Ans. 1 /3 

9.67 Colored marbles are placed in two urns, one black and the other white. The black urn contains 12 blue marbles 
and 6 red ones. The white urn contains 4 blue marbles and 8 red ones. An urn is selected at random and one 
marble is drawn from it. If the marble is blue, then what is the probability that the marble was drawn from the 
black urn? 

Ans. 2/3 

TREE DIAGRAMS 

9.68 For the experiment of flipping a coin three times, use a tree diagram to find peat least two tails). Let Hb H2, 
and H3 represent heads on the first, second, and third flips, and Tj , T2, and T3 represent getting a tail on the 
first, second, and third flips . . 

Ans. In the tree diagram, shown in Fig. 9-1 1 ,  the asterisks represent all the ways of getting at least two tails. 
peat least two tails) = 0.50 

9.69 For the experiment of rolling a die twice, use a tree diagram to find P(total for both rolls of 7 or 1 1 ). Let 1 a, 
2a, 3a, 4a, 5a, and 6a represent the possible outcomes for the first roll and Ib, 2b, 3b, 4b, 5b, and 6b represent 
the outcomes for the second roll. 

Ans. In the tree diagram, shown in Fig. 9-12, the asterisks represent all the ways of getting a total for both 
rolls of 7 or 1 1 . P(total for both rolls of 7 or 1 1 ) = 0.22 

[HI] 

[Td 

� [H3] 

\ [T3] 
� [H� I� 

I<? � [H3] 

[T2] 112 
[T3] � [H3] 

\ 
[T3] 

� [H'l I� 

I<? � [H3] 

[T2] 112 
[T3] 

Fig. 9-11 

Intersection 
Intersections probabilities 

HI ll H2 1l H3 1/8 = 0. 1 25 

HI Il H2 1l T3 118 = 0. 125 

HI ll T2 1l H3 1/8 = 0. 1 25 

HI ll T2 1l T3 1/8 = 0. 125* 

T} 1l H2 1l H3 1/8 = 0. 125 

T} Il H2 1l T3 1/8 = 0 . 125* 

TI ll T2 1l H3 118 = 0. 1 25* 

T} 1l T2 1l T3 118 = 0. 1 25* 

sum = 1 .00 
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Intersection 
Intersections probabilities 

[lb) Ia r-db 1/36 = 0.02778 

[2b) Ia n 2b 1/36 = 0.02778 

[3b) Ia n 3b 1/36 = 0.02778 [la) [4b) Ia n 4b 1136 = 0.02778 

[5b) Ia n 5b 1/36 = 0.02778 

[6b) Ia n 6b 1136 = 0.02778' 

[lb) 2a n Ib 1136 = 0.02778 

[2b) 2a n 2b 1/36 = 0.02778 

[3b) 2a n 3b 1136 = 0.02778 [2a) [4b) 2a n 4b 1/36 = 0.02778 

[5b) 2a n 5b 1136 = 0.02778' 

[6b) 2a n 6b 1/36 = 0.02778 

[1 b) 3a n Ib 1/36 = 0.02778 

[2b) 3a n 2b 1136 = 0.02778 

[3b) 3a n 3b 1136 = 0.02778 [3a) [4b) 3a n 4b 1136 = 0.02778' 

[5b) 3a n 5b 1/36 = 0.02778 

[6b) 3a n 6b 1136 = 0.02778 

[Ib) 4a n Ib 1/36 = 0.02778 

[2b) 4a n 2b 1136 = 0.02778 

[3b) 4a n 3b 1136 = 0.02778' [4a) [4b) 4a n 4b 1136 = 0.02778 

[5b) 4a n 5b 1136 = 0.02778 

[6b) 4a n 6b 1136 = 0.02778 

[Ib) 5a n Ib 1/36 = 0.02778 

[2b) 5a n 2b 1/36 = 0.02778' 

[5a) [3b) 5a n 3b 1/36 = 0.02778 

[4b] 5a n 4b 1/36 = 0.02778 

[5b] 5a n 5b 1/36 = 0.02778 

[6b] 5a n 6b 1/36 = 0.02778' 

[lb] 6a n Ib 1/36 = 0.02778" 

[2b] 6a n 2b 1136 = 0.02778 

[3b] 6a n 3b 1136 = 0.02778 [6a] [4b] 6a n 4b 1136 = 0.02778 

[5b) 6a n 5b 1136 = 0.02778' 

[6b] 6a n 6b 1/36 = 0.02778 

sum = 1 .00 

Fig. 9-12 

COUNTING RULES 

9.70 A committee consisting of one man and one woman is to be chosen from a group of 8 men and 1 5  women. 
How many possible committees can be chosen? 

Ans. 120 

9.71 A fratemity plans to send four students-a freshman, a sophomore, a junior, and a senior-to a national 
meeting. The volunteers for this group include four freshmen, four sophomores, eight juniors, and three 
seniors. How many different sets of four students, one from each class, are possible? 

Ans. 384 
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9.72 A man packs four slacks, six shirts, and three ties for a trip. How many different "outfits" of these three kinds 
of clothing can he form? 

ADS. 72 

9.73 A die is rolled nine times. What is the number of sample points for this experiment? 

ADS. 10,077,696 

9.74 For the experiment in Problem 9.73, determine the probability of getting a 5 on all 9 trials. 

ADS. 0.000000099 

9.75 An exam consists of ten multiple-choice questions, each of which has four choices and only one correct 
answer. What is the probability of selecting all ten correct answers by making random choices for each 
question? 

ADS. 0.00000095 

9.76 If each of the three-letter words represented by unique paths in Fig. 9-4 is written on a separate card and then 
all the cards are placed in a bowl, what is the probability that if you blindly selected one card from the bowl 
the word written on it would include the letter W? 

ADS. 0.75 

9.77 A basketball league has 1 8  teams. How many ways can the teams finish the season in a first, second, and third 
order? 

ADS. 4,896 

9.78 How many ways can nine graduate students be assigned as teaching assistants to nine courses (one graduate 
student per course)? 

ADS. 362,880 

9.79 How many ways can twelve 30-second commercials be arranged to be shown in a one-hour television 
program? 

Ans. 479,00 1 ,600 

9.80 How many ways can the first and second prize winners of a raffle be selected from 1 ,000 ticket holders? 

ADS. 999,000 

9.81 If a salesman must visit five cities, how many unique routes are there connecting the cities? 

ADS. 120 

9.82 How many ways can four distinct batteries be placed in the first through the fourth positions of a long 
flashlight? 

. 

ADS. 24 

9.83 How many ways can 200 job candidates be rated: top candidate, second best, third best, fourth best? 

ADS. 1 ,552,438,800 

9.84 How many ways can your state income tax office randomly select three out of 1 00 tax forms to audit? 

ADS. 16 1 ,700 
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9.85 A college plans to send five students to a national conference; Thirty students volunteer to go. How many 
unique combinations of five students can be chosen? 

Ans. 142,506 

9,86 A woman has 1 2  dresses and wants to choose four to take with her on a trip. Determine the number of 
combinations from which she can choose. 

Ans. 495 

9.87 If a salesperson must visit ten cities, how many unique combinations are there of these cities? 

Ans. 



Chapter 1 0  

Random Variables, Probability Distributions, and 
Cumulative Distribution Functions 

10.1 RANDOM VARIABLES 

In this chapter we will introduce and examine three concepts from probability theory that are of 
fundamental importance in inferential statistics: random variables, probability distributions, and cumula­
tive distribution functions. These are all functions that have a domain, a rule of association, and a range 
(see Section 1 . 1 7). We will begin with random variables. 

The domain of a random variable (also called a chance variable) is the sample space that summarizes 
the outcomes of a randomly determined statistical experiment (see Section 8 .1) .  The rule of association for 
a random variable assigns one and only one real number (see Section 1 . 1 7) to each sample point in the 
sample space. And the range of a random variable is the sample space of numbers defined by the rule of 
association. 

EXAMPLE 10.1 The experiment is flipping a coin twice. If the random variable is the nwnber of heads on the two 
flips, then what is: (a) its domain, (b) its rule of association, (c) its range? 

Solution 

(a) S= {HH, HT, TH, TT} 
(b) Count the number of heads for each sample point. 
(c) S= {O, 1 ,  2} 

EXAMPLE 10.2 The experiment is rolling a die twice. If the random variable is the nwnber of dots on the two 
rolls, then what is: (a) its domain, (b) its rule of association, (c) its range? 

Solution 

(a) The sample space for this experiment, shown as a tree diagram in Fig. 9- 12, has 36 sample points 

S = {( I , 1 ) , ( 1 ,  2), ( 1 , 3), . . .  , (6, 4), (6, 5), (6, 6) } 

(b) Count the total nwnber of dots for the two rolls. 
(c) S= {2, 3 , 4, 5, 6, 7, 8, 9, 10, 1 1 , I 2} 

Strictly speaking, a random variable is this set theory definition (see Section 8.6): A real-number­
valued function defined on the sample space of a randomly determined experiment. There is also, however, 
a "common usage" meaning for a random variable: If the outcomes of a statistical experiment are 
quantitative measurements (numerical values) and if these outcomes depend to some extent on chance, 
then the resulting measurement variable (see Section 1 . 1 6) is said to be a random variable. Thus, for 
example, if you take a random sample of children and measure the height of each child in inches, then this 
quantitative measurement variable is said in common usage to be a random variable. 

The relationship between the two versions of a random variable is that they both deal with numerical 
measurement values that are the outcomes of statistical experiments. The common usage version deals with 
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the set of all possible numerical measurements that can result from the experiment, and the set theory 
version deals with the measurement process itself, the function (or rule) that assigns a number to each 
outcome. In the remainder of the book, the version of a random variable that is being discussed will be 
apparent from the context. 

As with the variables that were described earlier (see Sections 1 . 13 to 1 . 16), we typically denote 
random variables by capital letters from the end of the alphabet (2. Y, X, etc.). Also, as before, we 
distinguish between the random variable and the real number value it can assume by denoting the value by 
the variable's lowercase letter (z, y, x, etc.). Thus, for example, the symbol P(X = x) denotes the probability 
that the random variable X will assume the value of x. If, say, X = 1 ,  then P(X = 1 )  denotes the probability 
that the random variable X will assume the value of 1 .  

EXAMPLE 1 0.3 For each of the following, indicate whether it is or is not a random variable: (a) number of 
heart beats per minute, (b) number of fives rolled in two rolls of a die that has fives on all of its faces, (c) time 
in seconds between airplane takeoffs at an airport, (d) amount. of pesticide in a sample of lake water, measured 
in milligrams per liter, (e) amount of money taken in each week by a department store, (f) rating the size of 
objects on this three-valued scale: small, medium, large, (g) number of people out of 100 surveyed who say 
yes in answer to a question, (h) number of state lottery tickets you have to buy before you win the grand 
prize. 

Solution 

(a) Random variable 
(b) Not a random variable because the outcome of the experiment is not determined by a random process; 

the outcome is always a pair of fives and thus the number 2. 

(c) Random variable 
(d) Random variable 
(e) Random variable 
(f) As is, this is not a random variable. If, however, one counted the number of objects that were rated 

"small" in a sample of 50, then that would be a random variable. 
(g) Random variable 
(h) Random variable 

10.2 DISCRETE VERSUS CONTINUOUS RANDOM VARIABLES 

A random variable may be discrete or continuous. The exact definitions of these two terms depend on 
whether we use the common usage or the set theory version of a random variable. 

If we consider the common usage version of a random variable, then a random variable is a randomly 
determined quantitative measurement variable. Therefore, in common usage, a discrete random variable is 
the same as a randomly determined discrete quantitative measurement variable, and a continuous random 
variable is a randomly determined continuous quantitative measurement variable (see Section 2.8). 

Ifwe consider the set theory version of a random variable, then a random variable is a function defined 
on the sample space of a randomly determined experiment. In this version, a discrete random variable has 
a sample space that isfinite or countably infinite, and a continuous random variable has a sample space that 
is infinite and not countable. 

All the sample spaces discussed in Chapters 8 and 9 and so far in this chapter are finite; they have a 
finite number of sample points. The sample space S = {HH, HT, TH, TT} , for example, is finite with four 
sample points, and thus a random variable defined on this sample space (e.g., number of heads) is a 
discrete random variable. Similarly, the 36-point sample space for the experiment of rolling a die twice 
is finite, and thus the random variable of total number of dots for the two rolls is a discrete random 
variable. 
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In this chapter we deal for the first time with countably infinite sample spaces, which have an infinite 
number of sample points although the points can be listed and thus counted. An example of such a sample 
space would result from the experiment of counting the number of days from now until there is an 
earthquake where you live. It could happen today, tomorrow, or not in your lifetime, or not during the next 
million years. The random variable number of days to the earthquake can take on an infinite number of 
values yet, theoretically, the days can be listed and thus counted. In fact, the list is the set of all possible 
positive integers: 1 ,  2, 3, . . .  , 00. Because this sample space is countably infinite, the random variable 
number of days to the earthquake is a discrete random variable. 

Sample spaces that are infinite and not countable are introduced in this chapter and then are the 
principal topic of Chapter 1 2  in Volume 2. For such sample spaces, it is not possible to list and count the 
elements. Such a space, for example, would result from the experiment of measuring the height in inches of 
a random sample of children. This sample space would include all outcomes that are theoretically possible, 
which assumes complete accuracy of measurement (see Section 2. 14) and sensitivity of measurement to an 
infinite number of decimal places. Such a set of outcomes is not listable and therefore not countable, and so 
the random variable height in inches is a continuous random variable. An infinite and uncountable sample 
space corresponds to all possible values in an uninterrupted interval along the real number line (see Section 
1 .20). 

EXAMPLE 1 0.4 For each of the following, indicate whether the random variable is discrete or conti­
nuous: (a) number of heart beats per minute, (b) time in seconds between airplane takeoffs at an 
airport, (c) amount of pesticide in a sample of lakewater, measured in milligrams per liter, (d) amount of 
money taken in each week by a department store, (e) number of people out of 1 00 surveyed who say yes in answer 
to a question, (j) number of state lottery tickets you have to buy before you win the grand prize. 

Solution 

(a) Discrete random variable 
(b) Continuous random variable 
(c) Continuous random variable 
(d) Discrete random variable 
(e) Discrete random variable 

(j) Discrete random variable that can take on a countably infinite number of values 

10.3 DISCRETE PROBABILITY DISTRIBUTIONS 

In Section 8.6 we defined a probability function as any mathematical function that both assigns real 
numbers called probabilities to events in a sample space and satisfies the three axioms of probability 
theory. The function has a domain, which is all the events in the sample space, and it has a range, which is 
all the probabilities assigned to these events. When the sample space has been defined by a discrete 
random variable, the domain of the probability function consists of all values that the random variable can 
assume (X =x), and the range of the probability function consists of the probabilities assigned to these 
values [P(X = x)]. In this case, where the sample space is defined by a discrete random variable, the 
probability function may be called either a discrete probability distribution or a probability mass 
function. The two terms are synonymous. The term mass function refers to the fact that the probability 
is "massed" at discrete values of the random variable. Both terms are- denoted by the symbols 
P(X =x) = f(x). 

A discrete probability distribution is defined by a mathematical formula, and all probabilities in the 
distribution are calculated with that formula. However, the distribution may be presented in four ways: As 
the formula itself or as a list, table, or graph of the probabilities calculated from the formula. Examples of 
all four presentations for the experiment of rolling a die once are shown in Table 10 . 1 and Fig. 10-1 where 
the discrete random variable that defines the sample space is the number of dots on the final upward face of 
the die. The presentation as a probability list is shown in Fig. 1O- 1(a) where all values of the variable 
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(X = x) are given, along with the probability assigned to each value [P(X = x) = J(x)] .  The same 
information is presented as a probability table in Table 1 0. 1 .  Note the symbol at the base of the table 

LJ(X). This means sum the values ofJ(x) for all values of x that the random variable can take on. This 
x 

symbol has the same meaning as LJ(X) and they are used interchangeably throughout the book. 
The graphs used to present discrete probability distributions are essentially the same as those used in 

Chapter 5 to present relative frequency distributions. Thus, if the random variable is a discrete ratio-level 
measurement variable, as here, we can use a probability version of a bar chart, histogram, or rod graph (see 
Problems 5.9 and 5 . 10). A probability histogram for the experiment of rolling a die once is shown in Fig. 

Table 10.1 

Number of dots 
x 

2 
3 
4 
5 
6 

Probability 
f(x) 

1 /6 
1 /6 
1 /6 
1 /6 
1 /6 
1/6 

l: f(x) = 1 .00 
x 

(a) For the possible values of the random variable x = 1, 2, 3, 4, 5, 6 

P(X=I) = j(I) = 1/6; P(X= 2) = j(2) = 1/6; P(J(= 3) = j(3) = 1/6; 
P(X=4) = j(4) = 1/6; P(X= 5) = j(5) = 1/6; P(X= 6) = j(6) = 1/6 

(b) j(x) 

1/6 l-

0 

(c) j(x) 

1/6 I-� :.= � or> 
e j:l., 

0 

I I I I 
2 3 4 

Number of dots 

2 3 4 

Number of dots 

(d) P(X= x) = j(x) = 1/6, for x =  1, 2, 3, 4, 5, 6  

Fig. 10-1 

I I x 
5 6 

x 
5 6 
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10- I (b), where the bars represent values of the random variable (X =x). Each bar has a height that is equal 
to f(x) and, on the X axis, a base of one that is centered on the value. A probability rod graph of the same 
distribution is shown in Fig. 1 0-I (c), where now each value (X=x) is represented by a vertical line of 
height f(x). It is in the rod graph form that one sees the "massing" of the probabilities above discrete 
values along the X axis, which is why the discrete probability distribution is also called a probability 
mass function. Finally, the presentation of the discrete probability distribution as a formula is shown in Fig. 
lO- I (d). 

Because a discrete probability distribution is a probability function, it obeys the rules and properties of 
probability theory (see Section 8.6). This means, among other things, that [P(X= x) =f(x)] is always 
greater than or equal to zero [f(x) ::: 0], and that the sum of the probabilities for any given discrete 

probability distribution is always equal to one [ � f(x) = peS) = 1 .00; see Table 1 0. 1 ] . 

EXAMPLE 1 0.5 For the experiment of flipping a coin three times, present the discrete probability distribution for 
the random variable number of heads as both a probability table and a probability histogram. 

Solution 

To solve this problem, we first convert the probabilities for the simple events in the sample space (shown 
as a tree diagram in Fig. 9-1 1) to probabilities for simple events in the new sample space defined by the 
random variable S= {O, 1 , 2, 3 } .  This means we must findf(0),f(1), f(2), f(3). 

As all simple events (paths) shown in the tree diagram are mutually exclusive events, we can use Property 
4 from set theory (Section 8.6) to find the new probability values. Thus 

f(O) = P(TJ n T2 n T3) = 0. 125 

f(l) = P(HJ n T2 n T3) + P(TJ n H2 n T3) + P(TJ n T2 n H3) = 3(0. 125) = 0.375 

f(2) = P(HJ n H2 n T3) + P(HJ n T2 n H3) + P(TJ n H2 n H3) = 3(0. 1 25) = 0.375 

f(3) = P(HJ n H2 n H3) = 0. 1 25 

This discrete probability distribution is presented as a probability table in Table 10.2 and as a probability 
histogram in Fig. 1 0-2. 

Table 10.2 

Number of heads Probability 
x f(x) 

0 0. 1 25 
1 0.375 
2 0.375 
3 0. 1 25 

L 1 .00 

10.4 CONTINUOUS PROBABILITY DISTRIBUTIONS 

A continuous probability distribution (or probability density function) assigns probabilities to events in 
the sample space of a continuous random variable, which can take on an infinite and not countable number 
of specific values. Chapter 1 2  in Volume 2 is devoted entirely to such distributions, but we discuss them 
briefly in this chapter as part of a general introduction to probability distributions. 

We begin our presentation of continuous probability distributions by comparing them with discrete 
probability distributions. The graph of a discrete probability distribution is shown in Fig. 1 0-3 (a), together 
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fix) 

0.4 t-

0.3 -

0.2 t-

0. 1 l-

I I I x 
o 2 3 

Number of heads 

Fig. 10-2 

with a summary of its important properties (from Sections 1 0. 1 ,  10.2, and 1 0.3). Each discrete probability 
in the distribution, denoted by fix), is based on a discrete random variable X that takes on a specific value x 
[Properties (1), (2), and (3)]. The domain of the function consists of all sample points (X = x) in the sample 
space defined by X, and the range consists of the probabilities assigned to these sample points 
[P(X =x) = fix)] [Property (4)]. The discrete probability distribution can be presented as a list, table, 
graph, or formula [Property (5)]. In the histogram version of the graph [see Fig. 10-3(a)], the height of 

� ;.= � 
.g ... � 

Properties 

(a) 
fix) 

0.6 -

0.4 -

0.2 -

o 
I I 
a b 

Discrete random variable (X) 

(1) Discrete random variable denoted by X 

x 

(2) Specific values of random variable denoted by x 
(3) Discrete probability distributions (also called 

probability mass functions) denoted by f(x) 
(4) P(X = x) = f(x) 
(5) Can be presented as list, table, graph, or formula 

(6) P(X = x) =f(x) � 0 

(7) L:f(x) = peS) = 1 .00 
x 

(b) 

fix) 

-----==- x a b 

Continuous random variable (X) 

Properties 
(1) Continuous random variable denoted by X 
(2) Specific values of random variable denoted by x 

(3) Continuous probability distributions (also called 
probability density functions) denoted by f(x) 

(4) P(X = x) = 0 
(5) Can be presented as graph or formula 

(6) P(a :::: X :::: b) = ff(X) dx � 0 wheref(x � 0) 

(7) P( -00 < X < 00 = J�oof(X) dx = peS) = 1 .00 

Fig. 10-3 
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each bar represents a probability [P(X= x) =f(x)] , and therefore we know from Axiom I of set theory 
(Section 8.6) that a bar can never extend below the X axis; that is, P(X= x) =f(x) 2: 0 [Property (6)]. 

Finally, it is always true for a discrete probability distribution that "LJ(x) = P(S) = 1 .00 [Property (7)]; that 
x 

is, it is certain for any trial of the experiment that one ofthe events in S must occur (see Section 8.6, Axiom 
II). Further, for such a histogram version of a discrete probability distribution, if the distance between 
consecutive scale x values on the X axis is always 1 .0 (e.g., if a = 2 and b = 3), then the area of each bar 
above an x value is equal to f(x), and the total area under the histogram is equal to "LJ(x) = 1 .0 .  

The graph of a continuous probability distribution is shown in Fig. 1 0-3(b), together with a summary 
of its important properties. Such a continuous probability distribution, denoted also by f(x) , is based on a 
continuous random variable X that can take on an infinite and not countable number of specific values x 
[Properties ( 1 ), (2), and (3)]. This continuous random variable X defines a sample space that has an infinite 
and uncountable number of sample points. Because of this, there is zero probability that the random 
variable will assume any one specific value x [P(X=x) = 0; Property (4)] . While the continuous 
probability distribution cannot assign probability values to each sample point, what it does do is assign 
a real number called a probability density to each sample point. Thus, the distribution is a function whose 
domain consists of all the sample points in the sample space defined by X, and whose range consists of all 
f(x) values assigned to the sample points. These f(x) values represent theoretical measurements of the 
"density" or "concentration" of probability for each x value. Because there is an infinite and uncountable 
number of sample points, and thus a corresponding number of probability densities, continuous probability 
distributions cannot be presented as lists or tables, but only as graphs of continuous curves [see Fig. 
10-3(b)] or as the mathematical formulas that generate the curve [Property (5)]. 

If the height of the curve above the X axis in Fig. 1O-3(b) represents probability density [f(x)] and not 
probability [P(X= x)], then where is probability in the graph of the continuous probability distribution? It 
is in the area under the curve. When a probability is calculated from a continuous probability distribution, 
it is the probability that X will take on some value in the interval between a and b [Pea � X � b)] , and this 
probability is the area above the interval from a to b that is bounded by the curve, the X axis, and the 
vertical lines above a and b [the shaded area in Fig. 1 0-3(b)]. 

To calculate the probability that X will take on some value in the interval between a and b (the area 
above it under the curve) requires techniques from integral calculus. These techniques are not required for 
this book, but if you are familiar with calculus you will recognize in Property (6) that 
Pea � X � b) = J: f(x) d(x) states symbolically that to find the probability that X will take on some 
value in the interval from a to b,J(x) must be integrated from a to b. For a crude idea of what this means, 
for those who have not had calculus, consider the vertical density lines above a and b in Figure 10-3(b). 
These lines have height but no width because the base point representing each x value is infinitesimally 
small, and thus the lines have no area. However, if the infinite number of such lines above the points in the 
interval from a to b are added together (integrated) then this process of summation does produce an area 
and this area is a probability [Pea � X � b)]. Property (6) also states that Axiom I from set theory (Section 
8.6) holds true for this probability [Pea � X � b) 2: 0] and that for this to be true it must also be true that 
f(x) � O. 

Whether or not the vertical density lines above a and b in Fig. I 0-3(b) are included in the interval from 
a to b has no effect on the area over that interval, since these lines have no area. Stated more formally: 
Whether or not the endpoints of an interval are included in the calculations does not affect the probability 
that X will take on a value in that interval. Thus for a continuous probability distribution 

Pea < X � b) = Pea � X � b) = Pea < X < b) = Pea � X < b) ( 10 . 1 )  

Finally, Property (7) states, again in the symbolic language of integral calculus, that the total area (total 
probability) under a continuous probability distribution over the interval extending from minus infinity to 
plus infinity ( - 00 to 00) is always equal to peS) = 1 .00. [This assumes thatf(x) = 0 for values of x in the 
interval from - 00 to 00 that are not in S.] 
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Note in Fig. 1O-3(b) that no scale is  given on the vertical axis (the Yaxis) that would allow direct 
reading of/ex). This is typical, as only areas under the probability density function are of importance for 
statistical procedures. 

While techniques from integral calculus are required to calculate probabilities for continuous 
probability distributions, a knowledge of these techniques is not required for general statistics because 
summary tables of these relationships are available for all important probability distributions. Several of 
these tables are provided in the Appendix to this book. 

10.5 THE RELATIONSIDP BETWEEN DISCRETE PROBABILITY DISTRIBUTIONS AND 
DESCRIPTIVE DISTRIBUTIONS 

By the common usage definition (see Section 10. 1), a random variable is the set of possible numerical 
outcomes of a randomly determined statistical experiment; it is the quantitative measurement variable that 
is being used in the experiment. Therefore, if such an experiment is performed, then the numerical data that 
result represent observed values of the random variable. Such data can be an entire measurement 
population or they can be measurement samples from such a population (see Sections 3 . 1  and 3.3). 
Either way, we saw in earlier chapters how such data can be organized into descriptive distributions 
(Chapter 4), presented in graphs (Chapter 5), and described by statistical measures of central tendency 
(Chapter 6) and dispersion (Chapter 7). 

From the first introduction of the concepts of population and sample (see Sections 3 . 1  through 3 .5) we 
indicated that because populations are rarely available, samples are taken and used to make statistical 
inferences about their populations. Such samples of real-world data allow us to estimate the characteristics 
of populations that would otherwise be unavailable because the populations are too large or too separated 
to be measured, or because they are hypothetical. Sample information also allows us to go to statistical 
theory to find an appropriate theoretical, mathematical description or model of how the unavailable 
popUlation is distributed. This, in fact, is what probability distributions really are: theoretical models of 
popUlation distributions; specifically of population relative frequency distributions. Discrete probability 
distributions, therefore, are theoretical models of population relative frequency distributions of discrete 
random variables. 

EXAMPLE 10.6 You have fonned a new species of rat by means of genetic engineering and now have the entire 
500-member physical-population of these rats in your laboratory. Noting that they have one, two, or three black spots 
on their white coats, you measure a11 500 on the discrete quantitative measurement variable (discrete random variable) 
number of spots. The resulting measurement population is presented as both a frequency and a relative frequency rod 
graph in Fig. lO-4(a). If you select a rat at random from the population, what are the probabilities it will have one spot, 
two spots, or three spots? 

(a) (b) j{x) 

300 I- - 0.6 0.6 r-
» <.) c:: 

» ., &' <.) '" 
c:: 200 r- - 0.4 i'f 0.4 c-., <!:: � '" 0- ., .g � ·i � ... � 

100 r- - 0.2 -.:; 0.2 r-'" 

0 0.0 0.0 x 
2 3 2 3 

Number of spots Number of spots 

Fig. 10-4 



CHAP 10] RANDOM VARIABLES 3 1 7  

Solution 

The sample space defined by the random variable is S = { 1 ,  2, 3} ,  and the associated probabilities 
[calculated with the classical probability function (see Section 8.6) from the frequencies in Fig. I O-4(a)] are: 
P(1) = 100/500 = 0.2, P(2) = 300/500 = 0.6, and P(3) = 100/500 = 0.2. This discrete probability distribu­
tion is presented as a probability rod graph in Fig. lO-4(b). If you now compare the rod graphs in Fig. 
lO-4(a) and Fig. 1O-4(b), it is clear that the population relative frequency distribution is identical to the 
discrete probability distribution. The point is, for this real and finite measurement-population, the relative 
frequency of a measurement in the population is also the probability that this measurement will be randomly 
selected from the population. The probability that a randomly selected rat will have one spot is 0.2, the 
probability it will have two spots is 0.6, and the probability it will have three spots is 0.2. 

The measurement population described in Example 10.6 was real, finite, and relatively small. This is 
not, however, the case with most statistical analyses. More typically, the measurement population cannot be 
measured completely or it is hypothetical. An example of a hypothetical measurement population is dot 
counts for every possible roll of a die. This population will never be available for analysis, but what is 
available are: ( 1 )  An empirical sample (observed rolls of the die) from this population, and (2) a 
mathematical model for its relative frequency distribution: The discrete probability distribution for the 
random variable number of dots (see Fig. 10-1). 

If in a statistical analysis the most appropriate probability distribution has been selected as the model 
for a population relative frequency distribution, then sample relative frequency distributions from this 
population should become increasingly similar to the probability distribution as sample size increases. We 
have already seen this happen in the die-rolling experiment where, in Fig. 8-1,  the sample relative 
frequency estimates got closer and closer to the theoretical probabilities as sample size increased. For the 
same 240 die rolls illustrated in Fig. 8-1 ,  Fig. 1 0·5 shows, for all six dot numbers, a comparison between 
sample relative frequencies and the theoretical discrete probability distribution for this experiment. 
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10.6 THE RELATIONSIDP BETWEEN CONTINUOUS PROBABILITY DISTRIBUTIONS 
AND DESCRIPTIVE DISTRIBUTIONS 

In Section 10.5 we indicated that discrete probability distributions are theoretical, mathematical 
models of population relative frequency distributions of discrete random variables. Similarly, continuous 
probability distributions are theoretical, mathematical models of population relative frequency distributions 
of continuous random variables. 
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To understand this new interpretation of continuous probability distributions, let us return to the 
genetically engineered rats of Example 1 0.6. It is now several years later and there are many thousands of 
these rats . We will consider them to be a sample from an infinitely large hypothetical population of all such 
rats in the present and future. From these rats we take a random physical-sample of 1 00 adult males and 
measure them on the continuous quantitative measurement variable (continuous random variable )-weight 
in grams. While weight is a continuous variable, it is only measured to the nearest gram. The resulting data 
are shown as a grouped relative frequency distribution (see Section 4.5) in Fig. 1 0-6(a). The data has been 
grouped into nine classes, each having a class width of 3 g. The resulting histogram and related polygon 
(see Sections 5 .4 and 5.6) are symmetrical and unimodal. 

After returning the 1 00-male sample to the population, we now take a new random sample of 500 adult 
males and this time weigh them to the nearest 0 . 1  g. The resulting data, grouped into 28 equal-width 
classes (1  g each), are shown as a relative frequency histogram and its related polygon in Fig. 1O-6(b). 
Again the graphs are symmetrical and unimodal. 
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If this process of sampling were continued indefinitely, and each time the sample size n was increased, 
the measurement taken to more decimal places, and the class width made progressively smaller, then as 
sample size approached, population size N the relative frequency polygon would become a smooth CUlVe 
called a relative frequency curve, as shown in Fig. 10-6(c). The ultimate limit to this process is when n =N, 
at which point the sample distribution has become the population distribution. While such a population 
distribution is almost never available, statistical theory provides theoretical models for it in the form of 
continuous probability distributions. This is why continuous probability distributions are also called the 
limiting Jorm of a relative frequency distribution; their theoretical curves are the curves that sample relative 
frequency polygons should approach as a limit as n approaches N, as measurement is taken to more 
decimal places, and as class width is progressively decreased. 

A model probabilIty distribution is selected to achieve the closest possible approximation of the 
population relative frequency distribution. This selection is done from information about the statistical 
experiment that generated the data and from analysis of the sample characteristics. If the selected 
probability distribution is a good approximation, then it can be used to estimate population relative 
frequencies. This is possible because the probability available from a probability distribution-the 
probability that the random variable X will take on some value in the interval from a to b-is also an 
estimate of the population relative frequency in that interval. Thus, such probabilities also give the 
expected relative frequency in future samples of values of X in the interval from a to b. 

The relative frequency polygons in Fig. 1 0-6(a) and (b) are essentially symmetrical and bell­
shaped, with tails that approach the X axis. These traits characterize the most important and useful 
continuous probability distribution: the normal distribution (or normal probability distribution, or normal 
probability density Junction). From the version of a normal probability distribution shown in Fig. 1O-6(c), 
you can see that it would be a good approximation for the descriptive (empirical) distributions shown in 
Fig. 10-6(a) and (b). Because many real-world continuous random variables generate relative frequency 
distributions that can be fit by normal distributions, this distribution is the main topic of a chapter (Chapter 
12) and then becomes of great importance throughout the remainder of the book. 

10.7 CUMULATIVE DISTRIBUTION FUNCTION OF A DISCRETE RANDOM VARIABLE 

In Section 10.5 we indicate� that discrete probability distributions (or probability mass functions) are 
theoretical, mathematical models of population relative frequency distributions of discrete random 
variables. Similarly, the cumulative distribution Junction (also called a distribution Junction or cumulative 
probability distribution) of a discrete random variable is the theoretical, mathematical model of the 
popUlation "or less" cumulative distribution for that variable (see Section 4.9 and Problem 5.26). Thus, as 
the population "or less" cumulative relative frequency distribution of a random variable X gives the 
relative frequency in the population of values equal to or less than X = x, the cumulative distribution 
function gives the probability that the random variable X will take on a value that is equal to or less than 
X =x. This function, denoted by F(x), is defined for all real numbers (- 00 < x < (0) by 

F(x) = P(X � x) (10.2) 

If X is a ·  discrete random variable and we want to know P(X � a) for any real number a, then this 
probability can be calculated with this formula 

F(a) = 'LJ(x) ( 10.3) 
x-::,a 

where the symbol L J(x) means: Take the sum ofJ(x) (the discrete probability distribution) for all values 
x<a 

of x less than or equal to a. 
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EXAMPLE 1 0.7 For the experiment of rolling a die with the random variable number of dots, convert the discrete 
probability distribution in Table 10 . 1  into a cumulative distribution function. Swnmarize the function with the 
standard symbolic notation and then graph the function. 

Solution 

The cumulative distribution function for this experiment and random variable can be summarized as 
shown in either Fig. 1 O-7(a) or Fig. 1 0-7(b), with the abbreviated version in Fig. 1 O-7(b) the more typical 
version. 

These swnmaries utilize the two formulas described above: F(x) = P(X ::; x), for all real numbers in the 
interval - 00 < x < 00, and pea) = L J(x) for any real number a. Together, the two formulas indicate that 

x<a 
the probability F(x) of the random variable X taking on any value x equal to or less than any real number a is 
the sum of all values ofJ(x) for x ::; a. In the swnmary in Fig. 1 0-7(a), the summation ofJ(x) is shown on the 
left for any value of x in the interval shown to the right. Thus, for the top line, as the random variable cannot 
take on any values that are less than or equal to any value in the interval - 00 < x < I ,  F(x) for all values of x 
in that interval will always be zero. For the second line from the top, as X can now take on one value (x = I) 
that i s less than or equal to any value in the interval 1 ::; x < 2 , F(x) for any value in that interval is J(I), which 
from Table 1 0. 1  is 1 /6. Then, for the third line from the top, as X can now take on two values (x= I , and 
x = 2) that are less than or equal to any values in the interval 2 ::; x < 3, F(x) is now equal to J( 1 ) + J(2) = 2/6 
for all x values in that interval. This process of cumulation continues to the bottom line, which states that 

(a) 
0 -= <x < \ 
j{\) = 1/6 \ $ x < 2  
j{\) + j{2) = 2/6 2 $ x < 3  

F(x) = j{\) + j{2) + j{3) = 3/6 3 $ x < 4  
j{\) + j{2) + j{3) + j{4) = 4/6 4 $x < 5  
j{\) + j{2) + j{3) + j{4) + j{5) = 5/6 5 $x < 6  
j{\)  + j{2) + j{3) + j{4) + j{5) + j{6) = 6/6 6 $ x < oo 

(b) 
0 x < \ 
116 \ $ x < 2  
2/6 2 $ x < 3  

F(x) = 3/6 3 $ x < 4  
4/6 4 $ x < 5  
5/6 5 $ x < 6  
6/6 6 $ x 

(c) F(x) 

6/6 -

g • 

� 4/6 • .ro 
e Q, 
" 

.:: • 

� 
e 2/6 • = u 

• 

x 
0 2 3 5 

Number of dots 

Fig. 10-7 
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F(x) =f(l) +f(2) +f(3) +f(4) +f(5) +f(6) = 6/6 for all x values that are in the interval 6 ::;: x < oo. The 
version of this summary in Fig. I 0-7(b) simply gives the calculated F(x) values on the left for all x values in 
the interval on the right. 

The graph of this cumulative distribution function is shown in Fig. IO-7(c). It is very similar to the "or 
less" cumulative graphs for discrete variables in Chapter 5 (see Fig. 5-32 and 5-33). However, while in that 
type of graph the dot above random-variable values indicated "or less" cumulative frequency, relative 
frequency, or percentage, now the dot above a random-variable value indicates f(x) at that value: The 
probability that X can take on the value of x or less. The straight line extending to the right from the dot 
indicates that F(x) remains constant up to the next random-variable value. Thus, for example, the dot above 
x= 3 indicates that F(3) = 3/6, that the probability of X taking on a value equal to or less than 3 is 3/6; and 
the height of the line above x = 3.5 indicates that F(3 .  5) also equals 3/6, that the probability of X taking on a 
value equal to or less than 3 .5 is 3/6. 

The graph in Fig. 10-7 (c) shows why the cumulative distribution function for a discrete random 
variable is called a step function: its values change in discrete steps at each value of the random variable. 
The size of the step at each value of the random variable (X=x) is equal to P(X= x) =fCx). Thus, the step 
between x = 2 and x = 3 is equal to P(x = 3) = f(3) = 1 /6. 

You can see two other properties of the cumulative distribution function from Fig. 10-7(c) : (1) F(�) is 
always greater than or equal to zero [F(x) ::: 0], and (2) F(x) always increases as X = x increases, arriving at 
F(x) = 1 for the largest possible value that the random variable can take on. 

General rules that are true for any discrete-variable cumulative distribution function F(x) are, given any 
two real numbers a and b with a < b, 

pea < X :::: b) = F(b) - F(a) 
pea :::: X :::: b) = F(b) - F(a) + f(a) 

pea < X < b) = F(b) - F(a) -feb) 

pea :::: X < b) = F(b) - F(a) + f(a) -feb) 

(10.4) 

(1 0.5) 

(10.6) 

(10.7) 

where F(x) is a value of the cumulative distribution function andf(x) is a value of the discrete probability 
distribution. Applications of these rules are provided in Problems 1 0.7 and 10 .8. 

10.8 CUMULATIVE DISTRIBUTION FUNCTION OF A CONTINUOUS RANDOM VARIABLE 

The cumulative distribution function of a continuous random variable is defined in the same way as 
the cumulative distribution function of a discrete random variable (see Section 10.7). Thus, for all real 
numbers ( - 00 < x < 00), F(x) = P(X :::: x). Where the cumulative distribution function of a continuous 
random variable differs from the cumulative distribution function of a discrete random variable is in its 
calculation and presentation. For discrete random variables, we find P(X :::: a) for any real number a by 
calculating F(a) = L f(x). For continuous random variables, by contrast, we find P(X :::: a) by calculating 

x�a 

(10.8) 

This formula uses the techniques from integral calculus that we introduced in Section 10.4. It indicates 
that to find F(a), f(x) must be integrated from - 00 to a. We have illustrated what this means in Fig. 10-8 
where F(a), the shaded area that extends above the X axis from - 00 to a, is the probability that the 
continuous random variable X will take on a value that is equal to or less than a. To understand what this 
means, recall from Section lOA that for a continuous distribution, the probability is calculated only for 
intervals: The probability that X will take on some value in the interval from a to b. Here we are 
determining the probability that X will take on a value in the interval from - 00 to a, and to do this we are 
summing (integrating) the infinite number of vertical density lines between - 00 and a. 

The graph of a cumulative distribution function for a continuous random variable is the smooth-curve 
theoretical version of the population "or less" relative frequency ogive. (An ogive is a graphical 
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(a) (b) 
fix) F(x) 

g 
:0 .. .rJ 
e Po. 
" > 
.� 
'3 § u 

--..L----=-- x -=�..L----�-�------- x 
-00 _ a a b 

Continuous random variable (X) Continuous random variable (X) 

Fig. 10-8 

representation of a continuous cumulative distribution, as described in Section 5. 1 1 .) For the continuous 
probability distribution shown in Fig. 10-8(a), the smooth-curve ogive is shown in Fig. 1 0-8(b), where now 
the shaded area under the density curve in Fig. 1O-8(a) over the interval from - 00 to a has become the 
height of F(x) above the X axis at a. Note that because the total area (probability) under the continuous 
probability distribution is 1 .0, F(x) rises continuously to the right to a maximum cumulative probability of 
1 .0. 

It is always true for continuous random variables that P(X = x) = 0 and, therefore, that 
Pea <X :::: b) =P(a :::: X :::: b) =P(a < X  < b) = P(a :::: X < b). As a consequence, the four equations for 
calculating the cumulative distribution function F(x) of a discrete random variable [equations (10.4) 
through ( 10.7)] become F(b) - F(a) for the cumulative distribution of a continuous random variable. 
Stated formally, for any continuous-variable cumulative distribution function F(x), given for any two real 
numbers a and b that a < b, then 

Pea < X :::: b) = Pea :::: X :::: b) = Pea < X < b) = Pea :::: X < b) = F(b) - F(a) (10.9) 

This relationship for continuous random variables, together with the rules for discrete random variables, 
were used to construct the probability tables presented in the Appendix. 

10.9 THE EXPECTED VALUE OF A DISCRETE RANDOM VARIABLE 

A probability distribution has a mean that is also known as the expected value (or mathematical 
expectation, or expectation). To understand this concept, recall that the probability distribution of a random 
variable is the theoretical, mathematical model of the population relative frequency distribution of that 
variable (see Sections 10.5 and 10.6). Because relative frequency distributions can be described by 
statistical measures, probability distributions can also be described by comparable statistical measures. 
Both types of distributions have means as measures of central tendency, and both types have variances and 
standard deviations as measures of dispersion. 

The expected value (or mean) of the probability distribution of a discrete random variable is defined as 
follows: 

If X is a discrete random variable that can take on the values xl ' X2 ' . . .  , xk with the respective 
probabilities/(xl ),f(X2)' . . .  ,f(Xk), then the expected value of X, denoted by E(X), is 

k 
E(X) = J1 = L xJ(x;) = L X/(x) 

i=1 x 
( 10 . 10) 
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EXAMPLE 1 0.8 For the rat-selection experiment in Example 10.6, with the discrete random variable number of 
spots, determine the means for both the frequency jrelative-frequency distribution in Fig. 1 0-4(a) and the discrete 
probability distribution in Fig. 1O-4(b). 

Solution 

Applying the nongrouped frequency-distribution formula for arithmetic means [equation (6. 1 1 )] to the 
population data in Fig. 1O-4(a), 

k 

= t;/;xi = ( 100 x 1 )  + (300 x 2) + ( 100 x 3) = 1 00 + 600 + 300 = 2.0 � N 500 500 

This arithmetic-mean formula can also be written to make use of the relative frequency scale in Fig. l O-4(a) 

� = E x [(X;) x (�) ] = L [(value of x;) x (relative frequency of Xi in the population)] ( 10. 1 1 )  

And thus 

� = ( 1  x 0.2) + (2 x 0.6) + (3 x 0.2) = 2.0 

Applying the formula for E(X) to the data in Fig. I 0-4(b) , 

E(X) = LX/(x) = ( 1  x 0.2) + (2 x 0.6) + (3 x 0.2) = 0.2 + 1 .2 + 0.6 = 2.0 
x 

You will probably have noted, in this example, that the H(X) calculation is identical to the second 
calculation of f.l. This is because, as we stated in Example 10.6, for a real and finite measurement 
popUlation such as this, the relative frequency of a measurement in the population is also the probability 
that this measurement will be randomly selected from the population. 

The expected value E(X) is considered to be a mean because it indicates that in many repetitions of this 
experiment, you can "expect" this value to be the average of the results. Because E(X) is the mean of the 
mathematical model of the population distribution it is also given the symbol f.l, or the symbols f.lx or f.ly if it 
is necessary to specify it is for random variable X or Y. 

The expected value of a discrete random variable is considered to be a weighted mean of that variable, 
because the formula for the expected value is a reduced version of such a population weighted-mean 
formula. E(X) is the weighted mean of all possible values that X can take on with each value weighted by 
its probability. In Section 6.9, a weighted mean for a population was defined by equation (6. 18) 

Thus for E(X) . 

k 

L wixi i=1 f.lw = k 

L Wi i=1 

k 

L xJ(Xi) i-I f.lw = f.lx = f.l = E(X) = :"'-":"
k --
L: /(Xj) 
i=1 

(10. 12) 

However, with expected values we are always dealing with complete probability distributions, so the 
sum of the probabilities in the denominator of the formula will always be equal to one. Therefore, this 
formula always reduces to equation ( 10. 10). 
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The expected value of a function of a discrete random variable can also be calculated. If X is a discrete 
random variable that can take on the values Xl ,  X2, . . .  , Xk with the respective probabilities f(xl), 
f(x2), . .  ,/(Xk), and g(X) is a function of X, then the expected value of g(X), or E[g(X)] is 

k 
E[g(X)] = I: g(Xi)f(Xi) = I: g(x)f(x) (10. 13) 

i=l x 

In words, to get the expected value of the function of a random variable, take the sum of the products of the 
function-value at Xi times the probability of X = Xj. 

EXAMPLE 1 0.9 What are the expected values of the following functions of the discrete random variable 
X: (a) X2; (b) a + bX, where a and b are constants; (c) (X - a)2, where a is a constant? 

Solution 

k 
(a) E(X2) = "L xff(xi) = "L x2f(x) 

i= 1 x 

k 
(b) E(a + bX) = "L(a + bXi)f(xi) = "L(a + bx)f(x) 

i=1 x 
This equation can be simplified by using summation-notation manipulations (see Section 1 .22 and 

Problems 1 .41 to 1 .46) 

E(a + bX) = "L(a + bx)f(x) = "L af(x) + "L bxf(x) = a "L f(x) + b "Lxf(x) 
x x x x x 

As "L f(x) = 1 (see Section 10.3) and "L xf(x) = E(X) [equation ( 10. 1 0)] 
x x 

E(a + bX) = a + bE(X) 

k 
(c) E[(X - a)2] = "L(Xi - a)2f(x)= "L(x - a)2j(x) 

i=1 x 
Again using summation notation manipulations, 

E[(X - ail = L(x - ail(x) = L(r - 2ax + a2)f(x) 
x x 

= Lx2f(x) - "L 2axf(x) + L a2f(x) 
x x x 

= Lx2f(x) - 2a "Lxf(x) + a2 Lf(x) 
x x x 

As "L x2 f(x) = E(X2), L xf(x) = E(X), and "L f(x) = 1 ,  
x x x 

10.10 EXPECTED VALUE OF A CONTINUOUS RANDOM VARIABLE 

The expected value E(X) of the probability distribution of a continuous random variable is comparable 
to the E(X) of a discrete random variable. The only difference is that the discrete expected value is defined 
with summation notation whereas the continuous expected value is defined with integral calculus. 

If X is a continuous random variable with density functionf(x), then the expected value of X is 
defined by 

E(X) = {Lx = {L = J�oo xf(x) dx ( 10 . 14) 
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Note that, as with E(X) for a discrete variable, E(X) for a continuous variable is considered to be the mean 
()1.x = )1.) of both the continuous variable X and the continuous probability distribution fix).  

It should be emphasized again that knowledge of calculus is  not required for this book. You will not be 
asked to use the formulas involving calculus in this or other chapters, but the formulas will provide 
precalculated results that we will make use of. 

10.1 1  THE VARIANCE AND STANDARD DEVIATION OF A DISCRETE RANDOM 
VARIABLE 

An important measure of dispersion is the variance of a discrete random variable. For a discrete 
random variable X, the variance of X (and of its probability distribution) is the expected value of the 
squared deviation of X from its mean. 

Var(X) = cr; = cr2 = E[(X - E(X)i] = E[(X - )1.i] (10. 1 5) 

Now, we know from Section 10 .9  that E[g(X)] = L g(x)f(x), so we can define the variance as follows: 
x 

If X is a discrete random variable that can take on the values XI , X2 ' . . . , Xk with respective 
probabilities f(xl) ,f(x2)' . . . ,f(xk), then the variance of X is 

k 
E[ eX - )1.)2] = cr2 = L(Xi - )1.)2f(xi) = L(x - )1.if(x) (10. 1 6) 

i=! x 

In Section 7.9 we indicated that the standard deviation of a population of measurements is the positive 
square root of the variance of those measurements [equation (7.20)] 

cr = .;;;z 
This is also true for the standard deviation of the discrete random variable X (or its probability 
distribution) 

(10 . 17) 

EXAMPLE 1 0.10 For the rat-selection experiment in Example 1 0.6, in which the discrete random variable is the 
number of spots, determine the variance for both the frequency/relative frequency distribution 

'
in Fig. 1 0-4(a) and the 

discrete probability distribution in Fig. 1 O-4(b). 

Solution 

We calculate the variance for the frequency/relative frequency distribution with the nongrouped 
frequency-distribution formula for variances. In Section 7. 1 2, we developed this frequency distribution 
formula [equation (7.29)] for the standard deviation 

which for the variance becomes 

(J =  
N 

k 2 
L: j;(Xi - J.l) 

(J2 
= ,-i=..:.I_� __ 

N 
( 10. 1 8) 
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k 
L: ftxi 

[CHAP. 10  

Applying this equation to the population data in Fig. 1O-4(a), and using f.-L = i=I
N = 2.0 from Example 

10.8, we get 

k 
2 

(72 = ;....�.;;...I ft_i(_
X
_i -_f.-L)_ = 1 00(1 - 2.0)2 + 300(2 - 2.0)2 + 1 00(3 - 2.0)2 
N 500 

= 1 00 + 0 + 1 00 = 0.4 
500 

This variance fonnula can also be written to make use of the relative frequency scale in Fig. 1 0-4(a) 

[ . .  2 ( relative frequency of this )] = L: (devlatIOn of Xi from f.-L) x deviation in the population . 

= [( 1  - 2.0)2 x (0.2)] + [(2 - 2.0)2 x (0.6)] + [(3 - 2.of x (0.2)] = 0.4 

(10. 1 9) 

Applying equation ( 1 0. 1 6) to the data in Fig. 1 O-4(b) and now using E(X) = f.-L = 2.0 from Example 10.8, 

x 
= [(1 - 2 .0)2 x (0.2)] + [(2 - 2.of x (0.6)] + [(3 - 2.0)2(0.2)] 

= 0.4 

Here for variances, as was true for means, the relative frequency fonnula is identical to the probability 
fonnula. Again it is because for such a real and finite population, relative frequency equals probability. 

10.12 COMPUTATIONAL FORMULAS FOR THE VARIANCE AND STANDARD DEVIATION 
OF A DISCRETE RANDOM VARIABLE 

In Chapters 6 and 7 we made the distinction between definitional and computational formulas for 
statistical measures. Thus from Section 7 . 12  we know that

'
the definitional frequency-distribution formula 

for the population variance [equation (10 . 1 8)] 

k 
2 

Lfi(Xi - p) 
(12 = ;....i=...:..I ____ --

N 

can be modifed to form a computational formula [equation (7.3 1) squared] 

k 
Lfixf 

2 i=1 2 
(1 = -- - p  N 

and the relative frequency version of this computational formula is 

(10.20) 

(10.2 1) 
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There are comparable formulas for probability distributions. Thus, the definitional formula for the variance 
of a discrete probability distribution can be used to derive a computational formula. The derivation begins 
with equation (10. 16) 

(12 = L(x - Illf(x) 
x 

= L(x2 - 2x/l + /l2)f(x) 
x 

= L x2f(x) - L 2x/lf(x) + L /l2f(x) 
x x x 

= Lx2f(x) - 2/l Lxf(x) + /l2 L f(x) 
x x x 

Knowing that L f(x) = 1 and that L xf(x) = /l, 
x . x 

(12 = Lx2f(x) - 2/l2 + /l2 
x 

= L x2f(x) - /l2 
x 

Knowing that E(X) = /l and E(X2) = L �f(x), we get this computational formula 
x 

� = Lx2f(x) - /l2 = EeX2) - [E(X)]2 
x 

(10.22) 

Using this computational formula on the random variable described in Example 10. 10, with E(X) = /l = 2.0 

(12 = Lx2f(x) - /l2 = [(1 x 0.2) + (4 x 0.6) + (9 x 0.2)] - (2.0)2 = 0 .4 
x 

This is the same value we got in Example 10 . 10 using the definitional formula. 
The computational formula for the standard deviation, then, is 

(10.23) 

EXAMPLE 10.1 1 For the experiment of rolling a die with the discrete random variable number of dots (see Table 
10 . l ), determine the variance of that variable using both the definitional and the computational formulas described 
above. 

Solution 

First we need to calculate the expected value of the random variable 

E(X) = �xf(x) = (1 x �) + (2 x �) + (3 x �) + (4 x �) + (5 x �) + (6 x D 
= (0. 166667) + (0.333333) + (0.5) + (0.666667) + (0.833333) + ( 1 .0) 

= 3.5 
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Thus, E(X) =)1.= 3.5. We then apply the definitional formula [equation (10. 1 6)] to the probability distribution 
for this variable shown in Table 10. 1 .  

r? = L(x - )1.)2f(x) 
x 

= [( 1 - 3,5)2 x �J + [(2 - 3 .5)2 x �J + [(3 - 3 .5)2 x �J 

+ [(4 - 3 .5)2 x �J + [(5 - 3.5)2 x �J + [(6 - 3.5) x �J 

6.25 2.25 0.25 0.25 2.25 6.25 = -6- +6+6 +6 +-6-+ 6 
= 17 .50 = 2.92 6 

Applying the computational formula [equation ( 10.22)] to the same data 
(J2 = Lx2f(x) - 1L2 

" 

= [ (1 x �) + (4 x �) + (9 x �) + (1 6 x �) + (25 x �) + (36 x �) ] - (3 .5)2 

91 = '6 - 12.25 = 2.92 

10.13 THE VARIANCE AND STANDARD DEVIATION OF A CONTINUOUS RANDOM 
VARIABLE 

As you would expect from earlier sections of this chapter, a continuous random variable has a variance 
and a standard deviation that are comparable to a2 and a for a discrete random variable. However, while the 
discrete values are defined with summation notation 

Var(X) = a; = a2 = E[(X - )1.iJ = LXx - )1.)2f(x) 
x 

and 

the continuous values are defined with integral calculus: 

If X is a continuous random variable with density functionf(x), then the variance of X is defined 
by 

and the standard deviation is 

10.14 CHEBYSHEV'S THEOREM AND THE EMPIRICAL RULE 

( 10.24) 

Chebyshev's theorem describes the relation between the standard deviation of a distribution and the 
concentration of values about the mean ofthe distribution (see Section 7 . 15). A version of the theorem that 
applies to probability distributions is: 
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For any number k 2: 1, the probability that a random variable X with mean J1. and standard 

deviation a will take on a value in the interval J1. ± ka is at least 1 - ;2 . 
329 

EXAMPLE 10.1 2 The probability distribution in Table 1 0.3 is for the experiment of rolling a die twice with the 
discrete random variable total number of dots for the two rolls. (See Problem 10 .2 for how this table was determined) 
What is the probability that the random variable will take on a value in the interval J.l± 2(J? 

Table 10.3 

Total of dots Probability 
x f(x) 

2 0.02778 
3 0.05556 
4 0.08334 
5 0. 1 1 1 1 2 
6 0. 13890 
7 0 . 16668 
8 0. 1 3890 
9 0.1 1 1 1 2 
1 0  0.08334 
1 1  0.05556 
1 2  0.02778 

L 1 .00 

Solution 

A solution using Chebyshev's theorem (k= 2), is that the probability is at least 

1 1 3 
1 - - = 1 - - = - = 0.75 k2 4 4 

The exact solution to this problem requires a summation of the probabilities for all possible values of X in 
the interval J.l± 2(J. The mean and standard deviation for the distribution of this variable, shown in Table lOA, 
are J.l = 7.00 and (J = 2A1 . (See Problem 10. 1 5  for how this table and the calculations were determined.) 
Therefore 

J.l ± 2(J is 7.00 ± 2(2Al), or 7.00 ± 4.82, or 2. 1 8  to 1 1 . 82 

As X can take on the values 3 through 1 1  in this interval, we can say from the probability distribution in Tables 
1 0.3 and lOA that the probability of X taking on any one of these values is 

1 1  
L f(x) = 0.94452, or 0.94 
x=3 

The empirical rule also describes the relation between the standard deviation and the concentration of 
values about the mean of a distribution. A version of this rule that applies to nonnal probability 
distributions, which are continuous distributions, is: 

For a random variable X with mean J1. and standard deviation a that has a probability distribution 
that is approximately normally distributed, there is � 0.68 probability that X will take on a value in 
the interval J1. ± a, � 0.95 probability that X will take on a value in the interval J1. ± 2a, 
and � 1 .00 probability that X will take on a value in the interval J1. ± 3a. 
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Table 10.4 

Total of dots Probability 
x x'- f(x) xf(x) x2f(x) 

2 4 0.02778 0.05556 0. 1 1 1 12 
3 9 0.05556 0. 16668 0.50004 
4 1 6 0.08334 0.33336 1 .33344 
5 25 0. 1 1 1 12 0.55560 2.77800 
6 36 0. 13890 0.83340 5.00040 
7 49 0. 1 6668 1 . 1 6676 8 . 16732 
8 64 0. 13890 1 . 1 1 120 8.88960 
9 8 1 0. 1 1 1 12 1 .00008 9.00072 
10 100 0.08334 0.83340 8.33400 
1 1  12 1 0.05556 0.6 1 1 16 6.72276 
12 144 0.02778 0.33336 4.00032 

L 1 .00 7.00056 54.83772 

(J2 = L x'-f(x) - J.l2 = 54.83772 - (7.00056)2 = 54.83772 - 49.00784 = 5 .82988, or 5.83 
(J = ...[;i2 = v'5.82988 = 2.4145 1 ,  or 2.41 

EXAMPLE 10.1 3 If we treat the discrete random variable number-of-dots in the experiment of rolling a die twice 
(Example 1O. l 2) "as if it were continuous" (see Problems 5.9 and 5.26) and assume that its probability distribution is 
approximately normally distributed (unimodal, roughly mound-shaped, essentially symmetrical), then this version of 
the empirical rule should apply to this variable. How well does this rule apply for the interval J.l ± 2(J? 

Solution 

It can be seen from the results in Example 1 0. 12 that the exact probability is 0.94, the probability 
predicted by the empirical rule is � 0.95, and Chebyshev's theorem only says that the probability is at least 
0.75. 

Solved Problems 

RANDOM VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS 

10.1 For each of the following, indicate whether it is a random variable and, if so, whether it is discrete or 
continuous: (a) determining whether airplanes arrive on time, (b) classifying birds by their 
species, (c) age of female applicants to a medical school, (d) number of measureable earth­
quakes in California in a six-month period, (e) number of five-card poker hands you must be 
dealt before you get a hand with four queens, (J) wind velocity in miles per hour, (g) number 
of correct answers achieved on a twenty-question examination, (h) weight in grams of each of 
400 melons. 

Solution 

(a) As is, this is not a random variable. If, however, one counted the number of planes that arrive "on time" 
in' a sample of 200, then that would be a discrete random variable. 

(b) As is, this is not a random variable. If, however, one counted the number of sparrows in a sample of 80 
birds, then that would be a discrete random variable. 
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(c) Continuous random variable 
(d) Discrete random variable 

RANDOM VARIABLES 

(e) Discrete random variable that can take on a countably infinite number of values 
(j) Continuous random variable 
(g) Discrete random variable 
(h) Continuous random variable 
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10.2 For the experiment of rolling a die twice, present the discrete probability distribution for the random 
variable total number of dots for the two rolls as both a probability table and a probability rod 
graph. 

Solution 

To solve this problem, we first convert the probabilities for the simple events in the sample space (shown 
as a tree diagram in Fig. 9- 12) to probabilities for the simple events in the new sample space defined by the 
random variable S= {2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 1 2} . This means we must findJ(2),f(3), . . .  ,f(1 1),f(12). 

As all simple events (paths) shown in the tree diagram in Fig. 9-12 are mutually exclusive events, we can 
use Property 4 from set theory (Section 8.6) to find the new probability values. Thus 

J(2) = P(la n ib) = 0.02778 
J(3) = P(la n 2b) + P(2a n Ib) = 2(0.02778) = 0.05556 
f(4) = P(la n 3b) + P(2a n 2b) + P(3a n Ib) = 3(0.02778) = 0.08334 
f(5) = P(la n 4b) + P(2a n 3b) + P(3a n 2b) + P(4a n ib) = 4(0.02778) = 0. 1 1 1 12 

J(6) = P(l a n 5b) + P(2a n 4b) + P(3a n 3b) + P(4a n 2b) + P(5a n ib) = 5(0.02778) = 0. 13890 
J(7) = P(l a n 6b) + P(2a n 5b) + P(3a n 4b) + P(4a n 3b) + P(5a n 2b) + P(6a n ib) = 6(0.02778) 

= 0. 16668 

f(8) = P(2a n 6b) + P(3a n 5b) + P(4a n 4b) + P(5a n 3b) +P(6a n 2b) = 5(0.02778) = 0.1 3890 

J(9) = P(3a n 6b) + P(4a n 5b) + P(5a n 4b) + P(6a n 3b) = 4(0.02778) = 0. 1 1 1 12 

J(10) = P(4a n 6b) + P(5a n 5b) + P(6a n 4b) = 3(0.02778) = 0.08334 

J(1 I ) = P(5a n 6b) + P(6a n 5b) = 2(0.02778) = 0.05556 

f(12) = P(6a n 6b) = 0.02778 

This discrete probability distribution was presented as a table in Table 10.3 and is shown as a rod graph in 
Fig. 10-9. 

10.3 Two participants were randomly selected from the 1 60 who took part in the cold-vaccination study 
of Example 9.1  and Table 9. 1 .  There was no replacement between selections. Construct a 
probability table that presents the discrete probability distribution for the random variable 
number of people selected who got a cold during the year. 

Solution 

If we let C1 and C2 represent first and second selections of people who got colds and Nl and N2 represent 
first and second selections of people who did not get colds, then the completed tree diagram for the sample 
space of this experiment is shown in Fig. 10-1 0(a) and (b). 
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Total of dots 

Fig. 10-9 

Intersection 
(a) Intersections probabilities 

CI Ii C2 P(CI)p(C2 1 CI) 
[Cd 

CI Il N2 P(CI)p(N2 1 CI) 
NI Ii C2 P(NI)p(C2 I NI) 

[NIl 
NI IlN2 P(NI)P(N2 1 NI) 

(b) � [C2l CI Ii C2 0.3891 5 1  

[CIl 601159 
[N2l CI Il N2 0.235849 

[C2l NI Ii C2 0.235849 

[N2l NI Il N2 0. 1 39 1 5 1  

Fig. 10-10 

We must now convert the probabilities for this sample space to probabilities for the new sample space 
defined by the random variable S= {O, 1 ,  2} . This means we must findf(O),f( 1 ), andf(2), and to do this we 
can again use Property 4 from set theory (Section 8.6). 

Thus 

/(0) = P(NI n N2) = 0 . 1 39 1 5 1  

/(1) = P(CI n N2) + P(NI n C2) = 2(0.235849) = 0.471 698 

/(2) = P(CI n C2) = 0.389 1 5 1  

This discrete probability distribution is presented in Table 10.5 . 

10.4 Explain why the following lists are not discrete probability distributions: (a) P(X = small) = 
/(small) = 0.5, P(X= large) =/(1arge) = 0.5; (b) P(X= O) =/(0) = 0.2, P(X= 1) =/ (1) = 0.6, 
P(X= 2) =/(2) = 0.3 ;  (c) P(X= 3) =/(3) = - 0.2, P(X= 4) =/(4) = 0.8. 
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Solution 

RANDOM VARIABLES 

Table 10.5 

Number got colds 
x 

o 
2 

Probability 
f(x) 

0. 139 1 5 1 
0.471 698 
0.389 15 1 

1 .00 
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(a) In Section 10 . 1 it is stated that the values of a random variable must be real numbers, not "small" or 
"large", so this is not a random variable. As discrete probability distributions are based on random 
variables (see Section 10.3), this is therefore not a discrete probability distribution. 

(b) In Section 10.3 it is stated that for every discrete probability distribution "L f(x) = peS) = 1 .00. Here 
"L f(x) = 1 . 1 , so this is not a discrete probability distribution. x 

(c) In Section 10.3 we said that it must be true for all possible values x of a random variable Xthatf(x) :::: O. 
Here f(3) = - 0.2, so this is not a discrete probability distribution. 

CUMULATIVE DISTRIBUTION FUNCTIONS 

10.5 For the experiment of rolling a die twice with the random variable total number of dots for the two 
rolls, convert the discrete probability distribution in Table 10.3 into a cumulative distribution 
function. Summarize the function with the abbreviated standard summary [see Fig. 1O-7(b)] and 
then graph the function. 

Solution 

The requested summary and graph are shown in Figs. lO- l l (a) and 10-1 I (b) respectively. 

10.6 For the cold-vaccination study with the random variable number of people who got a cold, convert 
the discrete probability distribution in Table 10.5 into a cumulative distribution function. 
Summarize the function with the abbreviated standard summary [see Fig. 1 0-7(b)] and then 
graph the function. 

Solution 

The requested summary and graph are shown in Figs. 1O-12(a) and 1O-1 2(b) respectively. 

10.7 From the graph of the cumulative distribution function in Fig. 10- 13 ,  determine the following: 
(a) F(3), (b) 1(3), (c) P(X > 3), (d) F(3) - F(2), (e) F(3 .8), (I) 1(3 .8). 

Solution 

(a) F(3) = 0.4 
(b) From Section 1 0.7 we know that the probability of 3, or f(3), is the size of the step F(x) takes at 3 . 

Therefore, f(3) = 0.2. 
(c) P(%) > 3, the probability that X will take on a value greater than 3, is equal to 

"Lf(x) =f(4) +f(5) +f(6), which is the same as I - F(3). Therefore 
x>3 

P(X > 3) = I -F(3) = 1 - 0.4 = 0.6 
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F(x) 

1 .0 

g � 0.8 
.t:> 
e 0.6 Q. 
., > '.:::l 1 0.4 

0.2 u 

0.0 

(d) F(3) - F(2) =/(3) = 0.2 
(e) F(3.8) = 0.4 
(f) /(3 .8) = 0  

0 
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-

-

-

-

-

2 3 4 5 6 

Discrete random variable (X) 

Fig. 10-13 

10.8 From the graph of the cumulative distribution function in Fig. 10-13 , determine the following: 
(a) P(3 < X :s  5), (b) P(3 :s X :s  5), (c) P(3 < X  < 5), (d) P(3 :s X < 5). 

Solution 

The discrete random variable X in Fig. 1 0- 13 can take on five values: x = 2, 3, 4, 5, 6. These five events 
are mutually exclusive so we can use Property (4) from set theory (Section 8.6) to determine unions of the 
events 

(a) P(3 <X -:s 5) =P(4 U 5) =/(4) +/(5) =F(5) - F(3) = 0.8 - 0.4= 0.4 
(b) P(3 -:s X -:s 5) = P(3 U4U 5) =/(3) +/(4) +/(5) =F(5) - F(3) +/(3) = 0.8 - 0.4 + 0.2 = 0.6 
(c) P(3 <X < 5) =P(4) =/(4) =F(5) - F(3) -/(5) = 0.8 - 0.4 - 0.2 = 0.2 
(d) P(3 -:s X < 5) =P(3 U4) =/(3) +/(4) =F(5) - F(3) +/(3) -/(5) = 0.8 - 0.4+ 0.2 - 0.2 =0.4 

EXPECTED VALUE OF A RANDOM VARIABLE 

10.9 For the experiment of rolling a die with the discrete random variable number of dots (Section 10.3), 
determine the expected value of that variable. 

Solution 

Applying equation ( 10 . 10) for the expected value to the discrete probability distribution in Table 10. 1  

E(X) = �x/(x) = (1 x �) + (2 x D + (3 x D + (4 x �) + (5 x �) + (6 x �) 

= (0. 1 66667) + (0.333333) + (0.5) + (0.666667) + (0.833333) + (1 .0) 

= 3.5 

This means that if the experiment were repeated a large number of times we would expect the average of the 
results to be 3.5 dots. 
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10.10 For the experiment of rolling a die twice with the discrete random variable total number of dots for 
the two rolls, use the tabled version of the probability distribution for this variable in Table 1 0.3 to 
determine the expected value of the variable. 

Solution 

To use Table 10.3 to determine E(X), all that is required is to add an xf(x) column. The resulting table and E(X) calculation are shown in Table 10.6, where E(X) = 7.0 signifies that if this experiment were repeated a 
large number of times, we would expect the average of the results to be 7.0 dots. 

Table 10.6 

Total of dots Probability x f(x) xf(x) 
2 0.02778 0.05556 
3 0.05556 0. 16668 
4 0.08334 0.33336 
5 0. 1 1 1 12 0.55560 
6 0. 13890 0.83340 
7 0. 1 6668 1 . 1 6676 
8 0. 13890 1 . 1 1 120 
9 0. 1 1 1 12 1 .00008 
10 0.08334 0.83340 
1 1  0.05556 0.6 1 1 16 
12 0.02778 0.33336 

L 1 .00 7.00056, or 7.0 

10.11 In Section 8.8 we indicated that for a given bet if the odds that an event will occur are the same as 
the betting odds, then it is a fair bet. Now we can define a fair bet in terms of expected values: 

If X is a discrete random variable that represents possible outcomes of an experiment as 
winnings and losses on a bet Xl ' X2 ' . . .  , Xk, where the respective probabilities are 
f(Xl ) ,f(X2) ,  . . .  ,f(Xk), then then the bet is considered to be a fair bet if E(X) = 
L xf(x) = o. 

x 
In essence, this means that if the experiment/bet is repeated many times it is a fair bet if in the long 
run you can expect to come out even-neither winning nor losing money. From this expected-value 
definition, which of the following would be considered to be a fair bet: (a) on the flip of a coin, if 
heads you win $3, if tails you lose $2; (b) on the single roll of a die, if an even number you win 
$3, if an odd number you lose $3 ; ( c) on drawing a single card from a deck, if a red card you win 
$ 1 ,  if a black card you lose $2? 

Solution 

(a) E(X)= �Xf(X)=( $3 x D+( -$2 x D= $ 1 .5 - $ 1 = $0.5 
This is not a fair bet because over the long run you can expect to win, on average, $0.5 per flip. 

(b) E(X) = �xf(x) = (-$3 x �) + ($3 x �) + (-$3 x �) + ($3 x �) + (-$3 x �) + ($3 x �) 
= 3 ( - $:) + 3e:) = -$1 .5 + $ 1 . 5 = $0 

This is a fair bet; in the long run you can expect to come out even. 
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(c) E(X)= LX/(x)= ($ 1 x 
26) + (-$2 x 

26) = $0.5 - $ 1 .0 = -$0.5 
x 52 52 

This is not a fair bet; in the long run you can expect to lose, on average, $0.5 per draw. 
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10.12 A charity organization is holding a lottery for the following prizes: one $500 prize, five $ 100 prizes, 
and fifty $50 prizes. They plan to sell 5,000 tickets for the lottery, and you are asked to set a ticket 
price that is three times as large as the fair price. What price do you recommend? 

Solution 

First we detennine the probabilities for each prize: /($500) = 1/5,000 = 0.0002; /($100) = 5/5,000= 
0.001 ;/($50) = 50/5,000 = 0.0 1 .  The expected value per ticket is 

E(X) = LX/(x) = ($500 x 0.0002) + ($ 100 x 0.001) + ($50 x 0.01) 
x 

= $0. 1 0 + $0. 1 0 + $0.50 = $0.70 

Therefore, the fair price per ticket would be $0.70, but to give the charity the profit they seek you would 
recommend that each ticket be $2. 10. 

10.13 Table 10.7 is a 4-year (208-week) summary, for an electronics store, of how many of their most 
popular computer model they sold per week. For iJ)ventory purposes, the store manager wants to 
know: How many of these computers can the store expect to sell in the next 6 months (26 weeks)? 

Table 10.7 

Computers sold Number of weeks 
per week (out of 208) 
Xj fi 

6 
2 33 
3 50 
4 70 
5 25 
6 17 
7 7 

L 208 

Solution 

First we find the expected value for the discrete variable number of computers sold per week. The 
necessary table with its/ex) and x/ex) columns and the resulting calculation of E(X) is shown in Table 10.8 . 
Therefore, in the next 6 months the store can expect to sell 26 x [E(X) = 3.740385] = 97.250010, or 97 
computers. 

THE VARIANCE AND STANDARD DEVIATION OF A RANDOM VARIABLE 

10.14 For the experiment of flipping a coin three times with the discrete random variable number of heads, 
use equations (10.22) and (10.23) to determine the variance and the standard deviation of this 
variable. 
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Table 10.8 

Computers sold 
per week Probability 
x f(x) xf(x) 

0.028846 0.028846 
2 0.1 58654 0.3 1 7308 
3 0.240385 0.72 1 1 55 
4 0.336538 1 .346 152 
5 0. 1 20192 0.600960 
6 0.08 173 1 0.490386 
7 0.033654 0.235578 

L 1 .00 3.740385 

Solution 

We must first determine the expected value for the experiment by applying equation (10 . 10) for £(X) to 
the probability distribution in Table 10.2 

£(X) = Lxf(x) = (0 x 0. 125) + (1 x 0.375) + (2 x 0.375) + (3 x 0. 125) 
x 

= (0) + (0.375) + (0.750) + (0.375) = 1 .5 

Thus, £(X) = J1. =  1 .5 . We then apply equation (10.22) to the probability distribution in Table 10.2 

= [(0 x 0. 125) + ( 1 x 0.375) + (4 x 0.375) + (9 x 0. 125)] - ( 1 .5)2 

= 0.75 

Therefore, using equation (10.23) the standard deviation is 

(j = N = ../0.75 = 0.87 

10.15 For the experiment of rolling a die twice with the discrete random variable total number of dots for 
the two rolls, determine the variance and standard deviation of the variable by applying equations 
(10.22) and (10.23) to the probability distribution in Table 10.3.  

Solution 

To use Table 10.3 to determine (j2 and (j, all that is required is to add x2 and �f(x) columns. The resulting 
table ana the � and (j calculations are shown in Table 10.4. 

10.16 ' For the computer-sales experiment with the discrete random variable computers sold per week, 
determine the variance and standard deviation of this variable by applying equations (10.22) and 
( 10.23) to the probability distribution shown in Table 10.8 .  

Solution 

The necessary table with its � and � f(x) columns and the resulting calculations of (j2 and (j is shown in 
Table 10.9. 
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Table 10.9 

Computers Probability 
sold per week 
x X2 f( x) xf(x) � f (x) 

1 0.028846 0.028846 0.028846 
2 4 0. 1 58654 0.31 7308 0.634616 
3 9 0.240385 0.72 1 155 2. 163465 
4 16 0.336538 1 .3461 52 5.384608 
5 25 0. 1 20 192 0.600960 3.004800 
6 36 0.08 173 1 0.490386 2.9423 16 
7 49 0.033654 0.235578 1 .649046 

2: 1 .00 3.740385 1 5 .807697 

rl = 2: x2f(x) - Ji = 15 .807697 - (3.740385)2 = 1 5.807697 - 13 .990480 = 1 .8 17217, or 1 .82 

(J = ...,f;;i = .J1 .8172 17 = 1 .348042, or 1 .35 

CHEBYSHEV'S THEOREM AND THE EMPIRICAL RULE 
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10.17 For the computer-sales experiment with the discrete random variable computers sold per week, 
what is the probability that the random variable will take on a value in the interval J1. ± 2a? 

Solution 

Using the version of Chebyshev's theorem from Section 1 0. 14, the probability is at least 

1 1 1 - k2 = 1 - 22 = 0.75 

Using the exact technique from Example 10. 1 2, knowing that Jl= 3.74 and (J= 1 .35 (see Table 1 0.9), 
Jl ± 2(J is 3.74 ± 2(1 .35), or 3.74 ± 2.70, or 1 .04 to 6.44 

As X can take on the values 2 through 6 in this interval, we can say from the probability distribution in 
Tables 10.8 and 1 0.9 that the probability of X taking on any one of these values is 

6 
2:f(x) = 0.937500, or 0.94 
x=2 

If we treat this discrete variable as if it were continuous and consider its probability distribution to be . 
approximately normally distributed, then we can apply the probability version of the empirical rule (see 
Section 10. 14). Thus, the probability that X wiII take on a value in the interval Jl± 2(J is ��.95. 

Supplementary Problems 

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 

10.18 For each of the following random variables, indicate whether it is discrete or continuous: (a) number of cars 
passing an intersection per hour, (b) the time each car spends at a stop sign, (c) weight of sugar (in 
grams) put on a bowl of cereal, (d) hours of sunlight each day, (e) number of babies born each year in a 
hospital, (f) heights of plants (in inches) in a meadow. 

Ans. (a) Discrete, (b) continuous, (c) continuous, (d) continuous, (e) discrete, (f) continuous 
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10.19 At a company dinner, fifty bills are placed in a hat: three bills for $ 1 , ten bills for $5, 23 bills for $10, 13 bills 
for $20, and one bill for $50. The bills are thoroughly mixed and then an employee chosen at random draws 
one bill at random from the hat. What are the probability values for the different kinds of bills in the hat? 
ADS. J($ I ) = 0.06, J($5) = 0.20, J($ 1 0) = 0.46, J($20) = 0.26, J($50) = 0.02. 

10.20 A sociologist wants to know how many people live in each house in a particular subdivision of 815 houses. He 
finds that 93 houses have one resident each, 160 houses have two residents each, 320 houses have three 
residents each, 1 10 houses have four residents each, 82 houses have five residents each, and 50 houses have 
six residents each. If one house is chosen at random, what are the probability values for the number of 
residents per house? 
ADS. J(I) = 0. 1 14,/(2) = 0. 196,/(3) = 0.393,/(4) = 0. 135, J(5) = 0. 10 1 , J(6) = 0.061 

10.21 An ornithologist wants to know the clutch sizes (number of eggs per nest) of song sparrows on an island. Of 
the 150 song sparrow nests on the island, she finds 4 nests with two eggs, 36 nests with three eggs, 66 nests 
with four eggs, 40 nests with five eggs, and 4 nests with six eggs. If one nest is chosen at random, what are the 
probabilities for number of eggs in the nest? 
ADS. J(2) = 0.027, J(3) = 0.240, J(4) = 0.440, J(5) = 0.267, J(6) = 0.027 

CUMULATIVE DISTRIBUTION FUNCTION OF A RANDOM VARIABLE 

10.22 For the experiment of flipping a coin three times with the random variable number of heads, convert the 
discrete probability distribution in Example 10.5 (Table 10.2) into a cumulative distribution function. 
Summarize the function with the abbreviated standard summary [see Fig. 1O-7(b)] and then graph the 
function. 
ADS. The requested summary and graph are shown in Fig. 10-14(a) and (b) respectively. 

10.23 From the summary of the cumulative distribution function in Fig. 10- 15, determine the following: 
(a) F(4), (b) J(4), (c) P(X� 3), (d) F(5) - F(4), (e) F(4.4), (f) J(4.4). 

(a) 

(b) 

0. 125 

r F(x) = 0.500 
0.875 
1 .000 

F(x) 

1 .0 
.£ 
� 0.8 
'§ .... 0.6 0.. 
<1) > 
� 0.4 
E =' 0.2 u 

0 

x < O  
O � x < 1 
l � x < 2  
2 � x < 3  
3 � x 

-

• 

• 

x 
2 3 

Number of heads 

Fig. 10-14 
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F(x) = 

o 
0. 1 0 
0.25 
0.45 
0.70 
1 .00 

x < 2  
2 � x < 3  
3 � x < 4  
4 � x < 5  
5 � x < 6  
6 � x 

Fig. 10-15 
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Ans. (a) F(4) = 0.45, (b) f(4) = 0.20, (c) P(X::: 3) = .L:f(x) =f(3) +f(4) +f(5) +f(6) = 1 - F(2); 
x>3 

therefore, P(X ::: 3) = 1 - F(2) = 1 - 0. l 0= 0.90, (d) F(5) - F(4)=f(5) = 0.25, (e) F(4.4) = 0.45, 
(f)f(4.4) = 0 

10.24 For the bill-from-hat experiment described in Problem 1 0. 1 9, convert the probabilities [[(x)] into the 
cumulative distribution function [F(x)] by cumulating from smallest to largest denomination. 

Ans. F($ l) = 0.06, F($5) = 0.26, F($ IO) = 0.72, F($20) = 0.98, F($50) = 1 .00 

10.25 For the number-of-residents experiment described in Problem 10.20, convert the probabilities [((x)] into the 
cumulative distribution function [F(x)] by cumulating from smallest to largest number. 

Ans. F(l ) = 0. 1 14, F(2) = 0.3 1 0, F(3) = 0.703, F(4) = 0.838, F(5)= 0.939, F(6) = 1 .000 

10.26 For the number-of-eggs experiment described in Problem 10.2 1 , convert the probabilities [((x)] into the 
cumulative distribution function [F(x)] by cumulating from smallest to largest number. 

Ans. F(2) = 0.027, F(3) = 0.267, F(4) = 0.707, F(5) = 0.974, F(6) = 1 .001 ,  or 1 

EXPECTED VALUE OF A RANDOM VARIABLE 

10.27 For the experiment of flipping a coin three times with the discrete random variable number of heads, if the 
experiment is repeated 500 times, what is the total number of heads you would expect to have flipped? 

Ans. 750 

10.28 What would be a fair price to charge for the following bet: on the single roll of a die, if a one or a six you win 
$6, if a two or a five you win $3, if a three or a four you get nothing? (See Problem 1 0. 1 1  for a demonstration 
of how this problem is solved.) 
ADS. $3 

10.29 An insurance agent sells a 35-year-old woman a $ 10,000 life insurance policy for an annual premium of$ 1 30. 
If the agent's company knows from past records that of the 35-year-old women, 3 out of every 1 ,000 will die 
between the ages of 35 and 36, what does the company expect to gain in the first year of this policy? 

Ans. $ 100.00 

10.30 For the bill-from-hat experiment described in Problem 10. 1 9, if many such draws are done with the bill 
replaced after each draw, then what amount of money, on average, can the company expect to pay on each 
draw? 

ADS. $ 1 1 .86 

10.31 For the number-of-residents experiment described in Problem 10 .20, if the experiment is repeated many times, 
each time choosing from all 8 1 5 houses, then how many people, on average, can one expect to live in a house? 

ADS. 3 . 10 
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10.32 For the number-of-eggs experiment described in Problem 10.2 1 , if the experiment is repeated many times, 
each time choosing from all 1 50 nests, then how many eggs, on average, can one expect to find in a nest? 
Ans. 4.03 

THE VARIANCE AND STANDARD DEVIATION OF A RANDOM VARIABLE 

10.33 For the repeated experiment in Problem 10.30, what are the variance and standard deviation of amount of 
money per draw? 
Ans. c? = 64.400, U = 8.02 

10.34 For the repeated experiment in Problem 10.3 1 , what are the variance and the standard deviation of number of 
residents per house? 
Ans. c? = 1 .706, U = 1 .3 1  

10.35 For the repeated experiment in Problem 10.32, what are the variance and the standard deviation of number of 
eggs per nest? 
Ans. c?= 0.7 14, u= 0.85 

CHEBYSHEV'S THEOREM AND THE EMPIRICAL RULE 

10.36 For the repeated experiment in Problems 10.3 1 and 10.34, the probability that the random variable (number of 
residents per house) will take on a value in the interval ,u± 2u is at least 0.75 when Chebyshev's theorem is 
used and, if the distribution is a normal distribution, approximately 0.95 when the empirical rule is applied. 
What is the exact solution? 
Ans. P=0.939 

10.37 For the repeated experiment in Problems 1 0.32 and 10.35, the probability that the random variable (number of 
eggs per nest) will take on a value in the interval J,l± 2u is at least 0.75 when Chebyshev's theorem is used 
and, if the distribution is a normal distribution, approximately 0.95 when the empirical rule is applied. What is 
the exact solution? 
Ans. P= 0.947 



Appendix 
Table A.I Random Numbers 

2 3 4 5 6 7 8 9 10 1 1  12 1 3 14 15 16 17 1 8 19 20 2 1 22 23 24 25 

10 09 73 25 33 76 52 01 35 86 34 67 35 48 76 80 95 90 91 1 7 39 29 27 49 45 
2 37 54 20 48 05 64 89 47 42 96 24 80 52 40 37 20 63 6 1 04 02 00 82 29 16 65 
3 08 42 26 89 53 19 64 50 93 03 23 20 90 25 60 15 95 33 47 64 35 08 03 36 06 
4 99 01 90 25 29 09 37 67 07 15 38 31 1 3 1 1  65 88 67 67 43 97 04 43 62 76 59 
5 12 80 79 99 70 80 15 73 6 1 47 64 03 23 66 53 98 95 1 1  68 77 12 17 17 68 33 
6 66 06 57 47 17 34 07 27 68 50 36 69 73 6 1 70 65 81 33 98 85 1 1  19 92 91 70 
7 3 1  06 01 08 05 45 57 18 24 06 35 30 34 26 14 86 79 90 74 39 23 40 30 97 32 
8 85 26 97 76 02 02 05 16 56 92 68 66 57 48 18 73 05 38 52 47 18 62 38 85 79 
9 63 57 33 21 35 05 32 54 70 48 90 55 35 75 48 28 46 82 87 09 83 49 12 56 24 
10 73 79 64 57 53 03 52 96 47 78 35 80 83 42 82 60 93 52 03 44 35 27 38 84 35 
11 98 52 01 77 67 14 90 56 86 07 22 10 94 05 58 60 97 09 34 33 50 50 07 39 98 
12 1 1  80 50 54 3 1 39 80 82 77 32 50 72 56 82 48 29 40 52 42 01 52 77 56 78 51 
13 83 45 29 96 34 06 28 89 80 83 13 74 67 00 78 1 8 47 54 06 1 0 68 7 1 17 78 17 
14 88 68 54 02 00 86 50 75 84 01 36 76 66 79 5 1 90 36 47 64 93 29 60 91 10 62 
15 99 59 46 73 48 87 51 76 49 69 91 82 60 89 28 93 78 56 13 68 23 47 83 41 13 
16 65 48 1 1  76 74 17 46 85 09 50 58 04 77 69 74 73 03 95 7 1 86 40 21 81 65 44 
17 80 12 43 56 35 17 72 70 80 1 5 45 3 1 82 23 74 2 1 1 1  57 82 53 14 38 55 37 63 
18 74 35 09 98 17 77 40 27 72 14 43 23 60 02 10 45 52 16 42 37 96 28 60 26 55 
19 69 91 62 68 03 66 25 22 91 48 36 93 68 72 03 76 62 1 1  39 90 94 40 05 64 1 8 
20 09 89 32 05 05 14 22 56 85 14 46 42 75 67 88 96 29 77 88 22 54 38 2 1 45 98 
21 91 49 91 45 23 68 47 92 76 86 46 16 28 35 54 94 75 08 99 23 37 08 92 00 48 
22 80 33 69 45 98 26 94 03 68 58 70 29 73 41 35 53 14 03 33 40 42 05 08 23 41 
23 44 10 48 19 49 85 15 74 79 54 32 97 92 65 75 57 60 04 08 81 22 22 20 64 13 
24 12 55 07 37 42 1 1  10 00 20 40 12 86 07 46 97 96 64 48 94 39 28 70 72 58 15 
25 63 60 64 93 29 16 50 53 44 84 40 21 95 25 63 43 65 17 70 82 07 20 73 17 90 
26 6 1 19 69 04 46 26 45 74 77 74 5 1 92 43 37 29 65 39 45 95 93 42 58 26 05 27 
27 15 47 44 52 66 95 27 07 99 53 59 36 78 38 48 82 39 6 1 01 1 8 33 21 15 94 66 
28 94 55 72 85 73 67 89 75 43 87 54 62 24 44 31 9 1 19 04 25 92 92 92 74 59 73 
29 42 48 1 1  62 13 97 34 40 87 21 16 86 84 87 67 03 07 1 1  20 59 25 70 14 66 70 
30 23 52 37 83 17 73 20 88 98 37 68 93 59 14 16 26 25 22 96 63 05 52 28 25 62 

3 1 04 49 35 24 94 75 24 63 38 24 45 86 25 1 0 25 6 1 96 27 93 35 65 33 7 1 24 72 
32 00 54 99 76 54 64 05 1 8 8 1  59 96 1 1  96 38 96 54 69 28 23 91 23 28 72 95 29 
33 35 96 3 1 53 07 26 89 80 93 54 33 35 13 54 62 77 97 45 00 24 90 10 33 93 33 
34 59 80 80 83 91 45 42 72 68 42 83 60 94 97 00 13 02 12 48 92 78 56 52 01 06 
35 46 05 88 52 36 01 39 09 22 86 77 28 14 40 77 93 9 1 08 36 47 70 61 74 29 41 

36 32 17 90 05 97 87 37 92 52 41 05 56 70 70 07 86 74 3 1 71 57 85 39 41 18 38 
37 69 23 46 14 06 20 11 74 52 04 15 95 66 00 00 18 74 39 24 23 97 1 1  89 63 38 
38 19 56 54 14 30 01 75 87 53 79 40 41 92 15 85 66 67 43 68 06 84 96 28 52 07 
39 45 1 5 5 1  49 38 1 9 47 60 72 46 43 66 79 45 43 59 04 79 00 33 20 82 66 95 41 
40 94 86 43 19 94 36 16 81 08 51 34 88 88 15 53 01 54 03 54 56 05 01 45 1 1  76 

(Continued) 
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Table A.1 Random Numbers (Continued) 

[APP. 

26 27 28 29 30 3 1  32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

1 98 08 62 48 26 45 24 02 84 04 44 99 90 88 96 39 09 47 34 07 35 44 13 18 80 
2 33 1 8 5 1  62 32 4 1 94 15 09 49 89 43 54 85 8 1 88 69 54 19 94 37 54 87 30 43 
3 80 95 10 04 06 96 38 27 07 74 20 15 1 2 33 87 25 0 1 62 52 98 94 62 46 1 1  71 
4 79 75 24 91 40 7 1 96 1 2 82 96 69 86 10 25 91 74 85 22 05 39 00 38 75 95 79 
5 18 63 33 25 37 98 14 50 65 7 1 3 1  0 1 02 46 74 05 45 56 14 27 77 93 89 19 36 
6 74 02 94 39 02 77 55 73 22 70 97 79 0 1 7 1 19 52 52 75 80 2 1 80 8 1 45 17 48 
7 54 17 84 56 1 1  80 99 33 71 43 05 33 5 1  29 69 56 1 2 71 92 55 36 04 09 03 24 
8 1 1  66 44 98 83 52 07 98 48 27 59 38 17 1 5 39 09 97 33 34 40 88 46 12 33 56 
9 48 32 47 79 28 3 1  24 96 47 10 02 29 53 68 70 32 30 75 75 46 1 5 02 00 99 94 
10 69 07 49 41 38 87 63 79 19 76 35 58 40 44 01 1 0 5 1  82 1 6 15 0 1 84 87 69 38 
1 1  09 18 82 00 97 32 82 53 95 27 04 22 08 63 04 83 38 98 73 74 64 27 85 80 44 
12 90 04 58 54 97 5 1  98 15 06 54 94 93 88 19 97 91 87 07 6 1 50 68 47 66 46 59 
13 73 18 95 02 07 47 67 72 52 69 62 29 06 44 64 27 12 46 70 1 8 41 36 18 27 60 
14 75 76 87 64 90 20 97 1 8 1 7 49 90 42 91 22 72 95 37 50 58 7 1  93 82 34 3 1  78 
15 54 01 64 40 56 66 28 13 10 03 00 68 22 73 98 20 7 1 45 32 95 07 70 61 78 13 
16 08 35 86 99 10 78 54 24 27 85 13 66 15 88 73 04 6 1 89 75 53 3 1 22 30 84 20 
17 28 30 60 32 64 8 1  33 3 1  05 91 40 5 1  00 78 93 32 60 46 04 75 94 1 1  90 1 8 40 
1 8 53 84 08 62 33 8 1  59 41 36 28 5 1  2 1 59 02 90 28 46 66 87 95 77 76 22 07 91 
19 91 75 75 37 41 6 1 61 36 22 69 50 26 39 02 12 55 78 17 65 14 83 48 34 70 55 
20 89 41 59 26 94 00 39 75 83 91 12 60 71 76 46 48 94 97 23 06 94 54 13 74 08 

21 77 5 1  30 38 20 86 83 42 99 01 68 41 48 27 74 5 1 90 81 39 80 72 89 35 55 07 
22 19 50 23 71 74 69 97 92 02 88 55 2 1 02 97 73 74 28 77 52 5 1  65 34 46 74 15 
23 2 1 8 1 85 93 13 93 27 88 1 7 57 05 68 67 3 1  56 07 08 28 50 46 3 1  85 33 84 52 
24 5 1 47 46 64 99 68 10 72 36 2 1 94 04 99 13 45 42 83 60 91 9 1 08 00 74 54 49 
25 99 55 96 83 3 1  62 53 52 41 70 69 77 7 1 28 30 74 8 1 97 8 1  42 43 86 07 28 34 
26 33 7 1 34 80 07 93 58 47 28 69 5 1 92 66 47 21 58 30 32 98 22 93 17 49 39 72 
27 85 27 48 68 93 1 1  30 32 92 70 28 83 43 41 37 73 5 1  59 04 00 7 1 14 84 36 43 
28 84 13 38 96 40 44 03 55 21 66 73 85 27 00 91 61 22 26 05 6 1 62 32 7 1 84 23 
29 56 73 2 1 62 34 1 7 39 59 61 3 1  10 1 2 39 16 22 85 49 65 75 60 81 60 41 88 80 
30 65 13 85 68 06 87 64 88 52 61 34 3 1  36 58 61 45 87 52 1 0 69 85 64 44 72 77 

3 1  38 00 10 21 76 8 1  71 91 17 1 1  71 60 29 29 37 74 2 1  96 40 49 65 58 44 96 98 
32 37 40 29 63 97 0 1 30 47 75 86 56 27 1 1  00 86 47 32 46 26 05 40 03 03 74 38 
33 97 1 2  54 03 48 87 08 33 14 1 7 21 81 53 92 50 75 23 76 20 47 15 50 12 95 78 
34 21 82 64 1 1  34 47 14 33 40 72 64 63 88 59 02 49 1 3 90 64 41 03 85 65 45 52 
35 73 13 54 27 42 95 71 90 90 35 85 79 47 42 96 08 78 98 8 1  56 64 69 1 1  92 02 

36 07 63 87 79 29 03 06 1 1  80 72 96 20 74 4 1 56 23 82 19 95 38 04 71 36 69 94 
37 60 52 88 34 41 07 95 41 98 14 59 17 52 06 95 05 53 35 2 1 39 6 1 2 1 20 64 55 
38 83 59 63 56 55 06 95 89 29 83 05 12 80 97 19 77 43 35 37 83 92 30 15 04 98 
39 10 85 06 27 46 99 59 91 05 07 13 49 90 63 19 53 07 57 18 39 06 41 01 93 62 
40 39 82 09 89 52 43 62 26 3 1  47 64 42 1 8 08 14 43 80 00 93 5 1  3 1  02 47 3 1  67 

(Continued) 
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Table A.I Random Numbers (Continued) 
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5 1 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 

59 58 00 64 78 
2 38 50 80 73 41 
3 30 69 27 06 68 
4 65 44 39 56 59 
5 27 26 75 02 64 

75 56 97 88 00 
23 79 34 87 63 
94 68 8 1  6 1 27 
1 8 28 82 74 37 
13 1 9 27 22 94 

88 83 55 44 86 
90 82 29 70 22 
56 19 68 00 9 1 
49 63 22 40 41 
07 47 74 46 06 

23 76 80 61 56 
17 71 90 42 07 
82 06 76 34 00 
08 33 76 56 76 
17 98 54 89 1 1  

6 9 1  30 70 69 9 1  19 07 22 42 10 
7 68 43 49 46 88 84 47 31 36 22 
8 48 90 8 1 58 77 54 74 52 45 91 
9 06 9 1 34 51 97 42 67 27 86 0 1 

36 69 95 37 28 
62 1 2 69 84 08 
35 70 00 47 54 
1 1  88 30 95 28 
91 34 23 78 2 1 

28 82 53 57 93 
1 2 84 38 25 90 
83 82 45 26 92 
63 0 1 19 89 0 1 
88 3 2 5 8 08 5 1  1 0 1 0 45 5 1  60 1 9 1 4  2 1 03 37 1 2 

1 1  1 2 8 8 3 9 73 43 6 5 02 76 1 1  84 04 2 8 5 0 1 3 92 
1 2 2 1  77 83 09 76 38 80 73 69 61 3 1  64 94 20 96 
13 1 9 52 35 95 15 65 1 2 25 96 59 86 28 36 82 58 
14 67 24 55 26 70 35 58 3 1  65 63 79 24 68 66 86 
15 60 58 44 73 77 07 50 03 79 92 45 13 42 65 29 

17 97 41 50 77 
63 28 10 20 23 
69 57 2 1 37 98 
76 46 33 42 22 
26 76 08 36 37 

16 53 85 34 13 77 
1 7 24 63 73 87 36 
1 8 83 08 01 24 5 1  
19 1 6 44 42 43 34 
20 60 79 0 1 8 1 57 

21 03 99 1 1  04 61 
22 38 55 59 55 54 
23 17 54 67 37 04 
24 32 64 35 28 61 
25 69 57 26 87 77 
26 24 1 2 26 65 9 1 
27 6 1 1 9 63 02 3 1  
28 30 53 22 1 7 04 
29 03 78 89 75 99 
30 48 22 86 33 79 

3 1  60 36 59 46 53 
32 83 79 94 24 02 
33 32 96 00 74 05 
34 19 32 25 38 45 
35 1 1  22 09 47 47 

36 3 1  75 1 5 72 60 
37 88 49 29 93 82 
38 30 93 44 77 44 
39 22 88 84 88 93 
40 78 2 1 21 69 93 

36 06 69 48 50 
74 38 48 93 42 
38 99 22 28 15 
36 15 19 90 73 
57 17 86 57 62 

58 83 87 38 59 49 36 47 33 3 1  
52 62 3 0 79 92 1 2 3 6 91 8 6 0 1 
07 75 95 1 7 77 97 37 72 75 85 
27 49 37 09 39 85 13 03 25 52 
1 1  16 17 85 76 45 81 95 29 79 

93 7 1  61 68 94 66 08 32 46 53 84 60 95 82 32 
32 88 65 97 80 08 35 56 08 60 29 73 54 77 62 
92 05 24 62 15 55 12 12 92 8 1 59 07 60 79 36 
95 81 90 68 31 00 91 19 89 36 76 35 59 37 79 
39 51 03 59 05 14 06 04 06 19 29 54 96 96 16 

27 69 90 64 94 
92 96 26 17 73 
1 0 27 41 22 02 
75 86 72 07 17 
85 78 34 76 19 

14 84 54 66 72 
41 83 95 53 82 
39 68 52 33 09 
74 41 65 3 1  66 
53 1 5 26 74 33 

61 95 87 7 1 00 
17 26 77 09 43 
1 0 06 1 6 88 29 
35 20 83 33 74 
35 66 35 29 72 

35 07 53 39 49 
56 62 33 44 42 
36 40 98 32 32 
57 62 05 26 06 
07 39 93 74 08 

42 6 1 42 92 97 0 1 9 1 82 83 1 6  
34 99 44 1 3  74 70 07 I I  47 36 
99 38 54 1 6 00 1 1  1 3 30 75 86 
66 49 76 86 46 78 13 86 65 59 
48 50 92 39 29 27 48 24 54 76 

68 98 00 53 39 15 47 04 83 55 
14 45 40 45 04 20 09 49 89 77 
07 48 18 38 28 73 78 80 65 33 
27 49 99 87 48 60 53 04 51 28 
35 90 29 13 86 44 37 21 54 86 

88 65 12 25 96 
74 84 39 34 13 
28 59 72 04 05 
74 02 28 46 17 
65 74 1 1  40 14 

Reprinted from Hubert M. Blalock. Social Statistics (2d ed), McGraw·HiII, New York, 1 979, pp. 598--601 .  

04 1 1  10 84 08 
95 95 44 99 53 
05 46 26 92 ()() 
96 29 99 08 36 
97 34 13 03 58 
28 97 66 62 52 
09 81 59 3 1  46 
54 13 05 5 1  60 
14 97 44 03 44 
43 66 77 08 83 

90 71 22 67 69 
08 81 64 74 49 
16 43 59 1 5 29 
26 65 59 08 02 
41 32 64 43 44 

96 24 04 36 42 
03 74 28 38 73 
5 1 97 23 78 67 
54 84 65 47 59 
65 13 00 48 60 

88 61 81 91 61 
71 29 92 38 53 
27 95 45 89 09 
80 86 30 05 14 
33 56 46 07 80 

90 89 97 57 54 
78 03 87 02 67 
55 98 66 64 85 
87 53 90 88 23 
1 6 8 1 86 03 1 1  
98 95 37 32 3 1  
09 95 8 1 80 65 
15 91 70 62 53 
1 9 64 09 94 13 
85 24 43 5 1 59 

03 15 21 92 21 
22 1 0 97 85 08 
94 20 52 03 80 
82 03 71 02 68 
87 48 13 72 20 

Original source: The RAND Corporation, A Million Random Digits, Free Press, Glencoe, III., 1 955, pp. 1-3, with the kind pennission of the 
publisher. (Numbered guidelines on X and Yaxes added.) 
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Table A.2 Satisties Class Data 

This table summarizes data from the statistics class introduced in Example 3 .5. In two parts (females and males) it 
gives: student initials (col. 1); assigned numbers (col. 2); score out of 1 00 possible points on the second lecture exam 
(col. 3); height in inches to nearest 114 inch (col. 4); weight in pounds (col. 5); household income to nearest $100 (col. 
6); hair color (black, blonde, brown, red) (col. 7); letter grade on term paper (A, B, C, D, F) (col. 8); and, whether 
selected (*) for the simple random sample (SRS) (col. 9), the proportional stratified random sample (PSRS) (col. 10), 
the systematic random sample (SYRS) (col. 1 1 ), or the single-stage cluster random sample (SCRS) (col. 12). 

2d Household Hair 
Initials Nwnber Exam Height Weight income color Grade SRS PSRS SYRS SCRS 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (1 1 ) (12) 

FEMALES 

LB 03 83 67.75 127 3 1 ,500 brown B * 

AA 09 88 60.25 109 25,600 blonde B * 

AE 17 57 63.75 1 1 7 76,500 black F * * 

MJ 27 78 65.25 123 20,200 blonde B * * * * 

NO 28 97 62.00 105 37,800 blonde A * 

LT 30 82 63.50 1 19 15 ,400 black B * 

JD 33 91 65 .25 129 71 ,800 blonde A 
DD 34 90 65.50 123 3 1 ,700 blonde B 
EF 44 80 65.25 1 24 30, 100 brown B * 

AC 49 64 64.75 12 1 34,700 brown C * 

JH 5 1  87 67.00 134 40,500 blonde A * * 

AH 53 79 64.25 1 1 5 36,900 black C * 

GY 56 91 69.25 136 20,400 red A 
MZ 57 79 66.25 1 3 1  30,400 brown C 
BJ 58 65 63.00 1 1 1  28,500 blonde D 
TM 64 94 64.75 12 1 46, 1 00 blonde A * 

MALES 
CA 01 90 69.25 1 80 2 1 ,200 brown B * * 

FE 02 94 65.25 138 145,000 brown A * 

HE 04 59 69.00 152 29,300 brown D 
LW 05 91 73.00 172 26,600 blonde B 
OA 06 84 69.25 163 20,900 blonde B * 

PS 07 96 70.25 1 70 26,200 blonde A * * * 

OF 08 84 67.00 158 33,700 blonde B 
HC 1 0 79 71 .75 190 54,200 brown C * 

EB 1 1  84 66.25 148 28,600 brown B * 

MA 12 90 66.25 157 29,200 black B 
ME 13 72 70.25 1 56 58,400 brown C * 

HK 14 93 68.00 164 2 1 ,700 black A 
AD 1 5 69 72.00 175 27,700 black C * 

RE 16 87 69.00 160 24,200 blonde B 
FA 1 8 93 72.50 172 42,500 blonde A 
CE 19 90 65.25 152 28, 100 brown B * * 

BP 20 74 72.25 1 84 22,200 red C * 

EO 2 1  88 67.25 142 24,100 blonde B * 

(Continued) 
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Table A.2 Statistics Class Data (Continued) 
2d Household Hair 

Initials Number Exam Height Weight income color Grade SRS PSRS SYRS SCRS 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (1 1 ) ( 12) 

RA 22 86 67.00 124 49,000 brown B * * 

DA 23 71 68.25 152 25, 1 00 brown C * 

GK 24 80 7 l .00 1 69 3 1 ,700 black B 
JA 25 94 68.00 1 50 39,200 blonde A 
GB 26 98 69.25 147 35,600 blonde A * 

JW 29 8 1  67.00 140 15 ,700 brown B * * 

HO 3 1 59 73.00 19 1 66,900 blonde D * 

WA 32 86 67.50 138 14, 1 00 brown B * 

NA 35 90 69.00 159 33,300 red B * 

SM 36 67 67.50 160 28,300 blonde C 
MQ 37 85 66.25 1 3 1 30,700 brown B * * 

IT 38 64 68.50 147 25,600 blonde D * * 

TS 39 69 71 .25 1 86 32,400 brown C * * 

MU 40 83 69.00 152 12,700 blonde C 
GM 41 68 64.25 143 103,600 brown C * 

BC 42 99 70.75 173 17,300 red A * 

CI 43 95 68.25 1 5 1 37,200 brown A * * 

JL 45 64 70.00 160 43,700 brown D * * 

JQ 46 92 68.75 149 88,000 black A * * 

FV 47 87 69.50 144 3 1 ,600 black B * * 

DW 48 78 70.25 158 24,300 brown B * 

DM 50 55 64.75 1 19 1 8,000 blonde F 
BF 52 88 74.00 194 23,900 red B * 

NP 54 76 70.75 176 49,000 black C 
GT 55 90 70.00 166 35,000 brown A * * 

LR 59 49 69.00 165 58,600 brown F * * 

CR 60 80 68.75 16 1 52, 100 black B 
PB 61 91 69.00 170 25,400 black A 
EJ 62 90 70.25 1 5 1 36,1 00 brown A 
AT 63 84 65.25 124 42,300 black B * * 





A priori probabilities, 228 
Abscissa, 1 3  
Absolute constants, 8 
Absolute dispersion, 199 
Absolute values, 4, 18, 30, 183 
Absolute zeros, 35, 36 
Accuracy: 

in physical sciences, 4 1 ,  46-47, 50 
in statistics, 40-41 
of a measurement, 40-41 

Addition rules, 284-288, 303-304 
Algebraic expressions, 7, 22, 32 
Approximate arithmetic mean, calculation from grouped 

frequency distributions, 144-145, 159-160, 179 
Approximate mean deviation, 185-186 
Approximate measurements, 38-39, 4�4, 49 
Approximate standard deviation, calculation from grouped 

frequency distributions, 192-193, 210-2 1 1 
Arbitrary constants, 8 
Arithmetic mean, 52-53, 140-141, 157-158, 178-179 

as measure of average value, 143 
calculation from nongrouped frequency distributions, 

143-144 
calculation with coded data, 146, 161,  179 
deviations from, 142 
rounding-off guidelines, 141 

Arithmetic numbers, 7 
Arrays, 72, 82, 95-96 

quantile-locating formula for, 150-151 
Average deviation, 183 
Average value, 139 
Axioms, 59, 234-237 
Axis of symmetry, 14 

Bar charts, 103, 1 1 1-1 14, 132-133 
Bar graphs, 102, 198 
Base, 5 
Baseline data, 56 
Bayes' theorem, 269-27 1 ,  288-294, 304-305 
Bayesian decision analysis, 271 
Bernoulli's theorem, 229 
Betting odds, 238 
Between-class widths, 76 
Bias, 40, 63 
Biased sampling designs, 62 
Bimodal distribution, 176 
Bimodal frequency histogram, 176 
Biostatistics, 1 
Box plots, 201-202, 221-222, 225 
Branch, 27 l 

Cartesian coordinates, 13, 24, 32 
Categorical data, 38 
Cause and effect, 1 1 ,  54 

Index 
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Celsius (or centigrade) scale for temperature, 35 
Censuses, 57 
Center of gravity of distribution, 143, 1 83 
Central tendency, 139 

graphs, 198, 2 15-218, 225 
Certain event, 235 
Chebyshev's ineqUality, 1 95 
Chebyshev's theorem, 195-196, 213-214, 224, 328-330, 

339, 342 
Check count, 109 
Class, 74 
Class boundaries, 75 
Class interval, 74 
Class limits, 74 
Class widths, 76 
Classical probability function, 234 
Classificatory data, 38 
Cluster random sampling, 62 
Clusters, 62 
Coding formula, 146 
Coefficient of dispersion, 199 
Coefficient of variation, 199, 219, 225 
Combinations, 276-278 
Common logarithm, 21 
Complement of an event, 232 
Complete quadratic equation, 8 
Component-parts frequency bar chart, 1 13 
Component-parts frequency histogram, 134 
Composite event, 23 1 
Compound event, 23 1-233 
Conditional probability, 258-261 ,  268, 278-284, 

302-303 
general formula, 260, 270 

Confidence interval, 54 
Confounding variable, 56 
Consecutive-parts frequency bar chart, 1 1 3  
Consecutive-parts relative frequency pictograph, 107 
Consecutive values, 156 
Constant, 8 
Contingency table, 267 
Continuous data, 38 
Continuous measurement variables, 36 
Continuous probability distribution, 3 1 3-319 
Continuous random variable, 3 1 0-3 1 1 ,  321-322, 328 
Continuous ratio-level measurement, 37 
Continuum without gaps, 36-37 
Control groups, 56 
Controlled experiments, 56-57 
Conversion factors, 42, 47-48, 50 

Coordinates, 13 
Counting rules, 273-278, 297-302, 306-308 

combinations, 276-278 
multiplication principle, 273-274, 297 
permutations, 274-276 



350 

Cumulative distribution function, 3 1 9-322, 333-335, 
340-341 

Cumulative distributions, 90-95, 99-101 
graphs, 1 10-1 1 1 , 126-132, 136-138 

Cumulative probability distribution, 319 

Data types, 37-38 
Deciles, 1 50 
Decimal fractions, 3 
Decimal notation, 45 
Decimal places, 3, 1 4 1  
Decoding formula, 146 

for standard deviation, 194 
for variance, 194 

Deductive logic, 66 
Deductive reasoning, 55, 66 
Degree of belief, 237 
Dependent events, 263 
Dependent relationships, 258 
Dependent variable, 1 1 ,  55 
Descriptive distribution, 3 1 6-3 19 
Descriptive research, 55 
Descriptive statistics, 1,  53, 72-101,  102-138, 139-1 8 1 ,  

1 82-226 
Deviations from arithmetic mean, 142 
Discontinuous measurement variables, 37 
Discrete data, 38 
Discrete data graphs for cumulative distributions, 128 
Discrete measurement variables, 36 
Discrete probability distribution, 3 1 1-313, 316-3 17 
Discrete random variable, 3 10-3 1 1 ,  3 19-324, 325-328 
Discrete ratio-level-measurement, 37 
Disjoint events, 232 
Dispersion: 

graphs, 198 
measures, 1 82-226 

Disproportional stratified random sampling, 62 
Distribution-free statistics, 58 
Distribution function, 3 1 9  
Distributions, 72-8 1 ,  83-95, 96-101 

center of gravity of, 143, 183 
transforming ungrouped into grouped, 76-77 

Domain, 10, 234 
Doubtful digit, 38 

Element, 10, 5 1  
Elementary event, 23 1 
Empirical rule, 175, 196-197, 2 15, 224-245, 328-330, 339, 

342 
Empirical sample, 3 1 7  
Empty event, 236 
English system, 35 
English units, 42 
Enumeration data, 38 
Equal class widths, 76 
Equal sign, 7 
Equations, 7-8, 22, 32 
Equivalent fractions, 2 
Error bar, 198 
Errors of measurement, 40 
Estimation problems, 66 
Estimation theory, 54 
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Euler diagram, 232 
Even number, 149 
Events, 23 1-232, 244-245, 255 
Exact arithmetic mean, 145 
Expected relative frequency, 3 1 9  
Expected value of continuous random variable, 324-325 
Expected value of discrete random variable, 322-324 
Expected value of function of discrete random variable, 324 
Expected value of random variable, 335-337, 341-342 
Expected value of squared deviation of X from mean, 

325-326 
Experimental group, 56 
Experimental units, 56 
Experiments, 12, 67, 70 
Exploratory experiments, 55 
Exploratory research, 55 
Exponent, 5 
Extraneous variables, 56 

Factorials, 4, 1 9, 30 
Fahrenheit scale for temperature, 36 
Fair bet, 239 
Finite population, 5 1  
Finite sample spaces, 23 1 ,  3 10-3 1 1  
Finite sequence, 1 5  
First -degree function, 13 
Five-number summary, 201-202, 221-222, 225 
Flow chart, 58 
Formulas, 7-8, 22, 32 
Fractions, 1-2, 17, 30 
Frequency bar chart, 103 
Frequency curves, 107, 1 23-124 
Frequency distribution, 72-73, 83, 96 

for population standard deviations 
computational formulas, 192 
definitional formula, 1 9 1  

for sample standard deviation 
computational formula, 192 
definitional formula, 192 

formula for mean deviation, 1 84-185 
Frequency histogram, 1 04, 177 
Frequency polygon, 105 
Frequency tables, 72 
Functional notation, 1 1  
Functions, 10-1 1 ,  24, 32 

graphing, 13-14, 25-26, 32 
in statistics, 1 1-12 

General addition rule, 264-266 
General multiplication rule, 26 1-263 
General numbers, 7 
General statistics, 1, 59 
Generalization of general addition rule, 265 
Generalization of general multiplication rule, 262 
Generalization of special multiplication rule, 264 
Geometric mean, 149, 162-165, 180 

formula, 149 
Global mode, 176 
Graphs, 13-14, 25-26, 32, 102 

central tendency, 198, 215-218, 225 
cumulative distributions, 1 10-1 1 1 , 126-132, 136-138 
dispersion, 198, 215-218, 225 



Grouped cumulative distributions, 8 1  
Grouped distributions, 84-88, 96-97 
Grouped frequency distributions, 74-76, 144-145, 154, 

156, 159-160, 1 69-173, 178, 179, 1 8 1 ,  192-193, 
210-21 1 , 224 

Grouped "or more" cumulative frequency distribution, 92 
Grouped "or more" cumulative percentage distribution, 92 
Grouped percentage distributions, 76 
Grouped relative frequency distributions, 76 

Harmonic mean, 149, 1 62-1 65, 1 80 
formula, 149 

Histograms, 133-134 
grouped data, 1 05, 1 17-120 
ungrouped data, 104, 1 14-1 17 

Hypothesis-testing: 
problems, 66 
research, 55 
theory, 54 

Hypothetical population, 5 1  
Hypothetical variables, 10 

Identities, 7 
Implied class interval, 75 
Implied interval, 41 
Implied range, 38 
Implied range of accuracy, 41 
Impossible event, 236 
Incomplete quadratic equation, 9 
Independent events, 263 
Independent relationships, ,258 
Independent variable, 1 1 , 55 
Index, 4, 15 
Index of summation, 15 
Inductive logic, 66 
Inductive reasoning, 66 
Inductive statistics, 66 
Inequality, 16, 28-29, 33 

relationship, 16 
solution to, 16 
symbols, 16 

Inferential statistics, 1 ,  53, 54, 66, 309 
Infinite population, 5 1  
Infinite sample spaces, 23 1 , 3 10-3 1 1  
Infinite sequence, 14-15 
Integral calculus, 3 1 5  
Integrated systems, 59 
International System of Units, 41-42 
Interquartile range, 201,  221 ,  225 
Intersection of two events, 233, 258-260 
Interval-level measurement, 35 
Intuitive level, 59 

J -shaped distribution, 1 1 8 
Joint probability, 269 
Joint probability table, 267-268, 288-294, 304-305 
Judgment sampling designs, 62 

Kelvin scale for temperature, 36 

Law of Large Numbers, 229 
"Less than" cumulative frequency distributions, 79-80, 90, 
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"Less than" cumulative relative frequency disttibutioo, 91 
Levels of variable, 55 
Limiting form of relative frequency distribution, 319 
Line graphs, 102, 198 
Linear function, 13 
Local mode, 176 
Logarithms, 6, 20-21 ,  3 1-32 
Lower class boundary, 75 
Lower class limit, 74 

Major mode, 176 
Marginal probability, 267-269, 288-294, 304-305 
Marginal probability formula, 268, 270 
Mathematical level, 59 
Mathematical statistics, 1, 59 
Maximum value, 14 
Mean, 322 
Mean absolute deviation, 183 
Mean deviation, 182-184, 202-204, 222 

frequency-distribution formula for, 184-185 
Measure of average value, 1 39, 143 
Measurement: 

definition, 34 
levels, 34-35, 42-43, 48-49 
units, 35 

Measurement popUlation, 5 1  
Measurement sample, 52 
Measurement scales, 34 
Measurement variables, 10 
Measures of average value, 139 
Measures of central tendency, 139 
Measures of dispersion, 1 82-226 

rounding off, 1 9 1  
Measures o f  location, 1 39-140 
Measures of variability, 1 82 
Measures of variation, 1 82 
Median, 149-150, 165-169, 180 
Median category, 1 5 1 ,  152 
Meristic measurement variables, 37 
Metric system, 35, 41-42 
Midpoints, 75 
Midquartile, 155, 173-174, 1 8 1  
Midrange, 155, 173-174, 1 8 1  
Minimum value, 14 
Minor mode, 176 
Mode, 156, 174-178, 1 8 1  

calculation from grouped frequency distributions, 178 
Mode-locating formula grouped frequency distributions, 

156 
Monomial expression, 7 
Multinomial expression, 7 
Multiple-valued function, 1 1  
Multiplication principle, 273-274, 297 
Multiplication rules, 278-284, 302-303 
Multistage cluster random sampling, 62 
Mutually exclusive events, 232, 236, 258 

Naperian logarithm, 21 
Natural experiment, 57 
Natural logarithm, 21 
Negative deviation, 142 
Negative skewing, 1 15, 1 1 8 
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Nominal-level measurement, 35 
Nonconsecutive values, 156 
Nongrouped frequency distributions, 143-144, 1 5 1 ,  

19 1-192 
Nonparametric statistical techniques, 58 
Nonprobability sampling designs, 62 
Nonrandom sampling, 62-63, 68, 71 
Nonrandom sampling designs, 62 
Normal deviate, 200 
Normal distribution, 3 1 9  
Normal probability density function, 196 
Normative data, 56 
Null event, 236 

Objective probability, 237 
Observable variables, 10 
Observational studies, 57, 67, 70 
Odd-even rules, 149, 1 5 1  
Odd number, 149 
Odds concept, 238-239, 251-253, 256-257 
Ogives, 1 10-1 1 1, 126-132 
Open-ended class, 77 
Open-ended grouped distributions, 77-79, 88-90, 98 
"Or more" cumulative distributions, 80-81 
"Or more" cumulative percentage distribution, 91 
"Or more" cumulative relative frequency distribution, 91 
Order of magnitude, 39-40, 45-46, 49 
Ordinal-level measurement, 35 
Ordinate, 13 
Outcomes, 60 
Overall grade point average (GPA), 180 
Overall mean, 148, 162-165, 1 80 

formula, 148 

Parameters, 52-53, 66, 70 
Parametric assumptions, 57 
Parametric statistical techniques, 57 
Path, 271 
Percentage curves, 107, 123-124 
Percentage distributions, 73-74, 83, 96 
Percentiles, 150 
Permutation, 274-276 
Physical population, 5 1  
Physical sample, 5 2  
Pictographs, 107 
Pie graphs, 102, 109 
Polygons, 1 34-135 

grouped data, 106, 1 22-123 
ungrouped data, 105-106, 120-122 

Population mean, 53, 142 
PopUlation size, 53 
Population standard deviation, 189-190, 207, 223-224 
Population variance, 204-206, 223 

computational formulas, 1 87 
definitional formula, 186-187 

Populations, 1,  5 1 ,  65, 69 
Positive deviations, 142 
Positive skewing, 1 15, 175, 176 
Posterior probability, 27 1 
Postulates, 234 
Potential independent variables, 56 
Powers, 5-6, 19-20, 3 1  
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Precision: 
in physical sciences, 4 1 ,  46-47, 50 
in statistics, 40-41 
of a measurement, 40-41 

Premises, 66 
Prior probability, 271 
Probability, 227-257 

calculating rules, 258-308 
calculation for combinations of events, 258 
classical interpretation, 227-228, 240-242, 253-254 
counting rules, 258-308 
determining from odds, 239-240 
empirical interpretation, 229 
for sampling with and without replacement, 67-68, 70 
frequentistic interpretation, 229 
mUltiplication rules, 261-263 
relative frequency interpretation, 228-230, 229, 242-244, 

254 
set theory interpretation of, 234-237, 247-25 1, 256 
subjective interpretation, 237-238, 25 1-253, 256-257 

Probability density, 3 1 5  
Probability density function, 3 1 3  
Probability distribution, 3 1 1-319, 330-33, 339-340 

computational formula, 327-328 
definitional formula, 327-328 

Probability function, 234, 3 1 1  
Probability histogram, 3 12, 3 1 3  
Probability list, 3 1 1  
Probability mass function, 3 1 1  
Probability of an event, 60 
Probability rod graph, 3 1 3  
Probability table, 312, 3 1 3  
Probability theory, 54 
Proportional stratified random sampling, 62 

Quadrants, 1 3  
Quadratic formula, 8 ,  9 ,  22-23, 32 
Quadratic function, 14 
Qualitative data, 38 
Qualitative variable, 9 
Quantile category, 1 5 1  
Quantile class, 154 
Quantile-locating formula: 

for arrays, 150-15 1  
for grouped frequency distributions, 154 
for nongrouped frequency distributions, 151  

Quantiles, 149-150, 165-169, 1 80 
calculation from grouped frequency distributions, 

169-173, 1 8 1  
Quantitative data, 3 8  
Quantitative variable, 9 
Quartile deviation, 201, 221, 225 

. 

Quartiles, 150 
Quasi-experiment, 57 

Radical sign, 4 
Radicals,  4, 19, 3 1  
Radicand, 4 
Random-digit dialing, 7 1  
Random errors of measurement, 40 
Random number table, 229 
Random numbers, 63, 343-345 



Random sampling, 6 1 ,  68, 7 1  
Random selection, 5 6  
Random variables, 309-3 1 1 ,  3 16, 330-333, 337-342 
Ranges, 72, 82, 95-96 
Ratio-level measurement, 36 
Real number line, 12, 24, 32 
Real number system, 10 
Rectangular Cartesian coordinate system, 13, 24, 32 
Rectangular coordinate system, 13 
Relations, 10-1 1,  24, 32 
Relative dispersion, 199 
Relative frequency curves, 107, 1 23-124 
Relative frequency distribution, 73-74, 83, 96 

limiting fonn of, 3 1 9  
Relative frequency histogram, 1 14 
Relative frequency polygon, 120 
Relative frequency probability function, 234 
Relative location, 150 
Relative standard deviation, 199 
Research hypotheses, 54-55 
Response bias, 62-63 
Reversed-J-shaped distribution, 1 18 
Rod graph, 1 17, 3 1 3, 3 17 
Root mean square deviation, 1 89 
Roots, 4, 19, 3 1  
Rounding off, 3 ,  18, 30, 141 

measures of dispersion, 191 
Rule of association, 10 

Sample points, 232 
Sample size, 53 
Sample spaces, 230-23 1 ,  244-245, 255, 287, 3 1 0-3 1 1  
Sample standard deviation, 190-191, 208-210, 224 

computational fonnulas, 190 
definitional fonnulas, 190 . 

Sample variance, 1 88-189, 206-207, 223 
computational fonnulas, 1 89 
definitional fonnula, 1 88 

Samples, 1 ,  52, 65-66, 70 
Sampling: 

bias, 62 
designs, 59-60 
theory, 54, 59 
with replacement, 60 
without replacement, 60 

Scientific hypotheses, 54 
Scientific notation, 39-40, 45-46, 49 
Selection bias, 62 
Self-selection bias, 63 
Semiinterquartile range, 201 
Sensitivity limit, 40 
Sequences, 14, 26-28, 33 
Series, 15, 26-28, 33 
Set of irrational numbers, 10 
Set of rational numbers, 10 
Set theory interpretation of probability, 234-237, 247-25 1 ,  

256 

Sets, 10, 230-23 1 ,  244-245, 255 

SI units, 4 1-42 
Sigma, 15 

Signed numbers, 2-3, 17, 30 
Significant digits, 39, 44-45, 49 
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Significant figures, 39 
Simple event, 23 1 
Simple probability, 260 
Simple random sampling, 6 1 ,  68, 7 1  
Single-stage cluster random sampling, 62, 68 
Single-valued function, 1 1  
Single-variable equations, 8, 22-23, 32 
Single-variable linear equation, 8 
Single-variable quadratic equation, 8 
Skewed to the left, 1 15 
Skewed to the right, 1 15 
Smooth-curve frequency ogive, 1 32 
Smooth-curve relative frequency ogive, 132 
Solution set, 17 
Solution to an inequality, 1 6  
Special addition rule, 235, 258, 266 
Special multiplication rule, 263-264, 272, 286 
Square roots, 4, 5, 19, 3 1  
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Squared deviation of X from mean, expected value of, 
325-326 

Standard deviation, 141,  1 83, 189-190, 199, 200 
calculation from grouped frequency distributions, 224 
calculation from nongrouped frequency distributions, 

1 91-192 
calculation with coded data, 194-195, 21 1-213, 224 
decoding fonnula for, 1 94 
of continuous random variable, 328 
of discrete random variable, 325-326 

computational fonnula, 326-328 
of random variable, 337-338, 342 

Standard error of the mean, 141  
Standard score, 200, 220, 225 
Standardized variable, 200, 220, 225 
Starting place, 64 
Starting unit, 62 
Statistical decision theory, 54 
Statistical hypotheses, 54-55 
Statistics, 52-53, 66, 70 

definitions, 1 
mathematics required, 1-33 
science, 53-54 
See also Descriptive statistics; Inferential statistics 

Statistics class data, 346-347 
Stem-and-leaf displays, 109, 1 24-126, 136 
Stratified random sampling, 61-62, 68 
Subjective factor, 77 
Subjective probability, 27 1 
Subjects, 56 
Subscript, 15 
Subsets, 230-23 1 , 244-245, 255 
Sum of squared deviations, 1 83 
Sum of squares, 1 86 
Summation notation, 15, 26-28, 33 
Surveys, 57 
Systematic errors of measurement, 40 
Systematic random sampling, 62 

Table of random numbers, 63, 343-345 

Temperature: 
Celsius (or centigrade) scale for, 35 

Fahrenheit scale for, 36 
Kelvin scale for, 36 
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Tenn of a sequence, 15 
Theorems, 59 
Tied values, 151  
Translation of data, 146 
Treatment groups, 56 
Treatments, 55 
Tree diagram, 271 ,  276, 294-296, 305 
Trimean, 155, 173-174, 1 8 1  
Trimodal distribution, 176 
True class limits, 75 
True independent variable, 56 
True mode, 176 
Two-stage cluster random sampling, 62 

Unconditional probability, 260 
Unequal class widths, 77-79, 88-90, 98 
Union of two events, 233 
Unit conversions, 41-42, 47-48, 50 
Units, 35, 42-43, 48-49 
Upper class boundary, 75 
Upper class limit, 74 
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Variable of summation, 1 5  
Variables, 8 

in statistics, 9, 23-24 
Variance, 183 

calculation with coded data, 194-195, 21 1-213, 224 
decoding fonnula for, 1 94 
of continuous random variable, 328 
of discrete random variable, 325-326 
computational fonnula, 326-328 
of random variable, 337-338, 342 

Variate, 9 
Venn diagram, 232, 245-247, 255-256, 285, 286 

Weighted mean, 147-148, 162-165, 1 80, 323 
fonnula, 147 

Working hypotheses, 54 

z score, 200 




